INCLUDES

FREE

NEWNES ONLINE
MEMBERSHIP

PROGRAMMING
8-BIT PIC
MICROCONTROLLERS w C

with Interactive Hardware Simulation

* Utilizes the C programming language, the most popular
for microcontrollers

* Features Proteus VSM along with CCS PCM C compiler

* (uestions & assignments available at the end
of each chapter

Martin P. Bates

Foreword

Embedded microcontrollers are everywhere today. In the average household you will
find them far beyond the obvious places like cell phones, calculators, and MP3 players.
Hardly any new appliance arrives in the home without at least one controller and, most
likely, there will be several—one microcontroller for the user interface (buttons and
display), another to control the motor, and perhaps even an overall system manager. This
applies whether the appliance in question is a washing machine, garage door opener,
curling iron, or toothbrush. If the product uses a rechargeable battery, modern high
density battery chemistries require intelligent chargers.

A decade ago, there were significant barriers to learning how to use microcontrollers.
The cheapest programmer was about a hundred dollars and application development
required both erasable windowed parts—which cost about ten times the price of the
one time programmable (OTP) version—and a UV Eraser to erase the windowed part.
Debugging tools were the realm of professionals alone. Now most microcontrollers use
Flash-based program memory that is electrically erasable. This means the device can be
reprogrammed in the circuit—no UV eraser required and no special packages needed for
development. The total cost to get started today is about twenty-five dollars which buys
a PICkit™ 2 Starter Kit, providing programming and debugging for many Microchip
Technology Inc. MCUs. Microchip Technology has always offered a free Integrated
Development Environment (IDE) including an assembler and a simulator. It has never
been less expensive to get started with embedded microcontrollers than it is today.

While MPLAB® includes the assembler for free, assembly code is more cumbersome

to write, in the first place, and also more difficult to maintain. Developing code using

C frees the programmer from the details of multi-byte math and paging and generally
improves code readability and maintainability. CCS and Hi-Tech both offer free “student”
versions of the compiler to get started and even the full versions are relatively inexpensive
once the savings in development time has been taken into account.

xii Foreword

While the C language eliminates the need to learn the PIC16 assembly language and frees
the user from managing all the details, it is still necessary to understand the architecture.
Clocking options, peripherals sets, and pin multiplexing issues still need to be solved.
Martin’s book guides readers, step-by-step, on the journey from “this is a micro-
controller” to “here’s how to complete an application.” Exercises use the fully featured
PIC16F877A, covering the architecture and device configuration. This is a good starting
point because other PIC16s are similar in architecture but differ in terms of IO lines,
memory, or peripheral sets. An application developed on the PIC16F877A can easily be
transferred to a smaller and cheaper midrange PICmicro. The book also introduces the
peripherals and shows how they can simplify the firmware by letting the hardware do the
work.

MPLAB®, Microchip’s Integrated Development Environment, is also covered. MPLAB
includes an editor and a simulator and interfaces with many compilers, including the
CCS compiler used in this book. Finally, the book includes the Proteus® simulator which
allows complete system simulation, saving time and money on prototype PCBs.

Dan Butler
Principal Applications Engineer
Microchip Technology Inc.

Preface

This book is the third in a series, including

¢ PIC Microcontrollers: An Introduction to Microelectronic Systems.
¢ Interfacing PIC Microcontrollers: Embedded Design by Interactive Simulation.

® Programming 8-bit PIC Microcontrollers in C: With Interactive Hardware
Simulation.

It completes a set that introduces embedded application design using the Microchip

PIC® range, from Microchip Technology Inc. of Arizona. This is the most popular
microcontroller for education and training, which is also rapidly gaining ground in the
industrial and commercial sectors. Interfacing PIC Microcontrollers and Programming
PIC Microcontrollers present sample applications using the leading design and simulation
software for microcontroller based circuits, Proteus VSM® from Labcenter Electronics.
Demo application files can be downloaded from the author’s support Web site (see

later for details) and run on-screen so that the operation of each program can be studied
in detail.

The purpose of this book is to
¢ Introduce C programming specifically for microcontrollers in easy steps.
¢ Demonstrate the use of the Microchip MPLAB IDE for C projects.
® Provide a beginners’ guide to the CCS PCM C compiler for 16 series PICs.
¢ Explain how to use Proteus VSM to test C applications in simulated hardware.
® Describe applications for the Microchip PICDEM mechatronics board.

¢ Qutline the principles of embedded system design and project development.

Xiv Preface

C is becoming the language of choice for embedded systems, as memory capacity
increases in microcontrollers. Microchip supplies the 18 and 24 series chips specifically
designed for C programming. However, C can be used in the less complex 16 series PIC,
as long as the applications are relatively simple and therefore do not exceed the more
limited memory capacity.

The PIC 16F877A microcontroller is used as the reference device in this book, as it
contains a full range of peripherals and a reasonable memory capacity. It was also used
in the previous work on interfacing, so there is continuity if the book series is taken as a
complete course in PIC application development.

Microcontrollers are traditionally programmed in assembly language, each type having
its own syntax, which translates directly into machine code. Some students, teachers, and
hobbyists may wish to skip a detailed study of assembler coding and go straight to C,
which is generally simpler and more powerful. It is therefore timely to produce a text that
does not assume detailed knowledge of assembler and introduces C as gently as possible.
Although several C programming books for microcontrollers are on the market, many

are too advanced for the C beginner and distract the learner with undesirable detail in the
early stages.

This text introduces embedded programming techniques using the simplest possible
programs, with on-screen, fully interactive circuit simulation to demonstrate a range of
basic techniques, which can then be applied to your own projects. The emphasis is on
simple working programs for each topic, with hardware block diagrams to clarify system
operation, full circuit schematics, simulation screenshots, and source code listings, as
well as working downloads of all examples. Students in college courses and design
engineers can document their projects to a high standard using these techniques. Each
part concludes with a complete set of self-assessment questions and assignments designed
to complete the learning package.

An additional feature of this book is the use of Proteus VSM (virtual system modeling).
The schematic capture component, ISIS, allows a circuit diagram to be created using an
extensive library of active components. The program is attached to the microcontroller,
and the animated schematic allows the application to be comprehensively debugged
before downloading to hardware. This not only saves time for the professional engineer
but provides an excellent learning tool for the student or hobbyist.

Preface XV

Links, Resources, and Acknowledgments
Microchip Technology Inc. (www.microchip.com)

Microchip Technology Inc. is a manufacturer of PIC® microcontrollers and associated
products. I gratefully acknowledge the support and assistance of Microchip Inc. in

the development of this book and the use of the company trademarks and intellectual
property. Special thanks are due to John Roberts of Microchip UK for his assistance

and advice. The company Web site contains details of all Microchip hardware, software,
and development systems. MPLAB IDE (integrated development system) must be
downloaded and installed to develop new applications using the tools described in this
book. The data sheet for the PIC 16F877A microcontroller should also be downloaded as
a reference source.

PIC, PICmicro, MPLAB, MPASM, PICkit, dsPIC, and PICDEM are trademarks of
Microchip Technology Inc.

Labcenter Electronics (www.labcenter.co.uk)

Labcenter Electronics is the developer of Proteus VSM (virtual system modeling), the
most advanced cosimulation system for embedded applications. I gratefully acknowledge
the assistance of the Labcenter team, especially John Jameson, in the development of
this series of books. A student/evaluation version of the simulation software may be
downloaded from www.proteuslite.com. A special offer for ISIS Lite, ProSPICE Lite,
and the 16F877A simulator model can be found at www.proteuslite.com/register/
ipmbundle.htm.

Proteus VSM, ISIS, and ARES are trademarks of Labcenter Electronics Ltd.

Custom Computer Services Inc. (www.ccsinfo.com)

Custom Computer Services Inc. specializes in compilers for PIC microcontrollers. The
main range comprises PCB compiler for 12-bit PICs, PCM for 16-bit, and PCH for

the 18 series chips. The support provided by James Merriman at CCS Inc. is gratefully
acknowledged. The manual for the CCS compiler should be downloaded from the
company Web site (Version 4 was used for this book). A 30-day trial version, which will
compile code for the 16F877A, is available at the time of writing.

http://www.microchip.com
http://www.labcenter.co.uk
http://www.ccsinfo.com
http://www.proteuslite.com
http://www.proteuslite.com/register/ipmbundle.htm
http://www.proteuslite.com/register/ipmbundle.htm

Xxvi Preface

The Author’s Web Site (www.picmicros.org.uk)

This book is supported by a dedicated Web site, www.picmicros.org.uk. All the
application examples in the book may be downloaded free of charge and tested using

an evaluation version of Proteus VSM. The design files are locked so that the hardware
configuration cannot be changed without purchasing a suitable VSM license. Similarly,
the attached program cannot be modified and recompiled without a suitable compiler
license, available from the CCS Web site. Special manufacturer’s offers are available via
links at my site. This site is hosted by www.larrytech.com and special thanks are due to
Gabe Hudson of Larrytech® Internet Services for friendly maintenance and support.

I can be contacted at the e-mail address martin @picmicros.org.uk with any queries or
comments related to the PIC book series.

Finally, thanks to Julia for doing the boring domestic stuff so I can do the interesting
technical stuff.

About the Author

Martin P. Bates is the author of PIC Microcontrollers, Second Edition. He is currently
lecturing on electronics and electrical engineering at Hastings College, UK. His interests
include microcontroller applications and embedded system design.

http://www.picmicros.org.uk
http://www.picmicros.org.uk
http://www.larrytech.com
http://martin@picmicros.org.uk

Introduction

The book is organized in five parts. Part 1 includes an overview of the PIC microcontroller
internal architecture, describing the features of the 16F877A specifically. This chip is
often used as representative of the 16 series MCUs because it has a full range of
peripheral interfaces. All 16 series chips have a common program execution core, with
variation mainly in the size of program and data memory. During programming, certain
operational features are configurable: type of clock circuit, watchdog timer enable, reset
mechanisms, and so on. Internal features include the file register system, which contains
the control registers and RAM block, and a nonvolatile EEPROM block. The parallel
ports provide the default I/O for the MCU, but most pins have more than one function.
Eight analog inputs and serial interfaces (UART, SPI, and I?C) are brought out to specific
pins. The hardware features of all these are outlined, so that I/O programming can be
more readily understood later on. The application development process is described,
using only MPLAB IDE in this initial phase. A sample C program is edited, compiled,
downloaded, and tested to demonstrate the basic process and the generated file set
analyzed. The debugging features of MPLAB are also outlined: run, single step,
breakpoints, watch windows, and so on. Disassembly of the object code allows the
intermediate assembly language version of the C source program to be analyzed.

Part 2 introduces C programming, using the simplest possible programs. Input and output
are dealt with immediately, since this is the key feature of embedded programs. Variables,
conditional blocks (IF), looping (WHILE, FOR) are quickly introduced, with a complete
example program. Variables and sequence control are considered in a little more detail
and functions introduced. This leads on to library functions for operating timers and
ports. The keypad and alphanumeric LCD are used in a simple calculator program. More
data types (long integers, floating point numbers, arrays, etc.) follow as well as assembler
directives and the purpose of the header file. Finally, insertion of assembler into C
programs is outlined.

xviii Introduction

Part 3 focuses on programming input and output operations using the CCS C library
functions. These simplify the programming process, with a small set of functions usually
providing all the initialization and operating sequences required. Example programs

for analog input and the use of interrupts and timers are developed and the serial port
functions demonstrated in sample applications. The advantages of each type of serial bus
are compared, and examples showing the connection of external serial EEPROM for data
storage and a digital to analog converter output are provided. These applications can be
tested in VSM, but this is not essential; use of VSM is optional throughout the book.

Part 4 focuses specifically on the PICDEM mechatronics board from Microchip. This has
been selected as the main demonstration application, as it is relatively inexpensive and
contains a range of features that allow the features of a typical mechatronics system to

be examined: input sensors (temperature, light, and position) and output actuators (DC
and stepper motor). These are tested individually then the requirements of a temperature
controller outlined. Operation of the 3.5-digit seven-segment LCD is explained in detail,
as this is not covered elsewhere. A simulation version of the board is provided to aid
further application design and implementation.

Part 5 outlines some principles of software and hardware design and provides some
further examples. A simple temperature controller provides an alternative design to that
based on the mechatronics board, and a data logger design is based on another standard
hardware system, which can be adapted to a range of applications—the BASE board.
Again, a full-simulation version is provided for testing and further development work.
This is followed by a section on operating systems, which compares three program
design options: a polling loop, interrupt driven systems, and real-time operating systems.
Consideration of criteria for the final selection of the MCU for a given application and
some general design points follow.

Three appendices (A, B, and C) cover hardware design using ISIS schematic capture,
software design using CCS C, and system testing using Proteus VSM. These topics are
separated from the main body of the book as they are related more to specific products.
Taken together, MPLAB, CCS C, and Proteus VSM constitute a complete learning/design
package, but using them effectively requires careful study of product-specific tutorials.
VSM, in particular, has comprehensive, well-designed help files; and it is therefore
unnecessary to duplicate that material here. Furthermore, as with all good design tools,
VSM evolves very quickly, so a detailed tutorial quickly becomes outdated.

Appendix D compares alternative compilers, and application development areas are
identified that would suit each one. Appendix E provides a summary of CCS C syntax

Introduction XiX

requirements, and Appendix F contains a list of the CCS C library functions provided
with the compiler, organized in functional groups for ease of reference. These are
intended to provide a convenient reference source when developing CCS C programs, in
addition to the full CCS compiler reference manual.

Each part of the book is designed to be as self-contained as possible, so that parts can be
skipped or studied in detail, depending on the reader’s previous knowledge and interests.
On the other hand, the entire book should provide a coherent narrative leading to a solid
grounding in C programming for embedded systems in general.

PIC Microcontroller Systems

1.1 PIC16 Microcontrollers
* MCU features
® Program execution
* RAM file registers
e Other PIC chips

The microcontroller unit (MCU) is now big, or rather small, in electronics. It is one of the
most significant developments in the continuing miniaturization of electronic hardware.
Now, even trivial products, such as a musical birthday card or electronic price tag, can
include an MCU. They are an important factor in the digitization of analog systems, such
as sound systems or television. In addition, they provide an essential component of larger
systems, such as automobiles, robots, and industrial systems. There is no escape from
microcontrollers, so it is pretty useful to know how they work.

The computer or digital controller has three main elements: input and output devices,
which communicate with the outside world; a processor, to make calculations and handle
data operations; and memory, to store programs and data. Figure 1.1 shows these in a
little more detail. Unlike the conventional microprocessor system (such as a PC), which
has separate chips on a printed circuit board, the microcontroller contains all these
elements in one chip. The MCU is essentially a computer on a chip; however, it still
needs input and output devices, such as a keypad and display, to form a working system.

The microcontroller stores its program in ROM (read only memory). In the past, UV
(ultraviolet) erasable programmable ROM (EPROM) was used for prototyping or

2 Part 1

[' Input — — Output ' |
L B gﬁef infgll | Peripherals CPU Peripherals I 7‘??{?“}{% |
T *P*n; ;grr; -7 ROM Central RAM

D gl g | Read Only |—> Processing K—=> Read & Write
| _Downioad | Memory Unit Memory

Figure 1.1: Elements of a Digital Controller

small batch production, and one-time programmable ROM for longer product runs.
Programmable ROM chips are programmed in the final stages of manufacture, while
EPROM could be programmed by the user.

Flash ROM is now normally used for prototyping and low-volume production. This can
be programmed in circuit by the user after the circuit has been built. The prototyping
cycle is faster, and software variations are easier to accommodate. We are all now familiar
with flash ROM as used in USB memory sticks, digital camera memory, and so on, with
Gb (10° byte) capacities commonplace.

The range of microcontrollers available is expanding rapidly. The first to be widely used,
the Intel 8051, was developed alongside the early Intel PC processors, such as the 8086.
This device dominated the field for some time; others emerged only slowly, mainly

in the form of complex processors for applications such as engine management systems.
These devices were relatively expensive, so they were justified only in high-value
products. The potential of microcontrollers seems to have been realized only slowly.

The development of flash ROM helped open up the market, and Microchip was among
the first to take advantage. The cheap and reprogrammable PIC16F84 became the most
widely known, rapidly becoming the number one device for students and hobbyists. On
the back of this success, the Microchip product range rapidly developed and diversified.
The supporting development system, MPLAB, was distributed free, which helped the PIC
to dominate the low-end market.

Flash ROM is one of the technical developments that made learning about microsystems
easier and more interesting. Interactive circuit design software is another. The whole
design process is now much more transparent, so that working systems are more quickly
achievable by the beginner. Low-cost in-circuit debugging is another technique that
helps get the final hardware up and running quickly, with only a modest expenditure on
development tools.

PIC Microcontroller Systems 3

MCU Features

The range of microcontrollers now available developed because the features of the MCU
used in any particular circuit must be as closely matched as possible to the actual needs of
the application. Some of the main features to consider are

¢ Number of inputs and outputs.
® Program memory size.

e Data RAM size.

* Nonvolatile data memory.

¢ Maximum clock speed.

* Range of interfaces.

¢ Development system support.

¢ Cost and availability.

The PIC16F877A is useful as a reference device because it has a minimal instruction
set but a full range of peripheral features. The general approach to microcontroller
application design followed here is to develop a design using a chip that has spare
capacity, then later select a related device that has the set of features most closely
matching the application requirements. If necessary, we can drop down to a lower range
(PIC10/12 series), or if it becomes clear that more power is needed, we can move up

to a higher specification chip (PIC18/24 series). This is possible as all devices have

the same core architecture and compatible instructions sets.

The most significant variation among PIC chips is the instruction size, which can be

12, 14, or 16 bits. The A suffix indicates that the chip has a maximum clock speed of
20MHz, the main upgrade from the original 16F877 device. These chips can otherwise be
regarded as identical, the suffix being optional for most purposes. The 16F877A pin-out
is seen in Figure 1.2 and the internal architecture in Figure 1.3. The latter is a somewhat
simplified version of the definitive block diagram in the data sheet.

Program Execution

The chip has 8k (8096 X 14 bits) of flash ROM program memory, which has to be
programmed via the serial programming pins PGM, PGC, and PGD. The fixed-length

4 Part 1

\—/ 40 [] «—» RB7/PGD

MCLR/NePp — [1
RAO/ANO «—» [2 39 [] «—» RB6/PGC
RA1/AN1 «—» [3 38 [] «—» RB5
RA2/AN2/VReF-/CVREF «— [4 37 [] «—» RB4
RA3/AN3/VREF+ «—> [5 36 [] «—» RB3/PGM
RA4/TOCKI/C10UT «—» [] 6 35 [] «—» RB2
RA5/AN4/SS/C20UT «—» [7 < 34 [] «—>RB1
REO/RD/AN5 «—» [8 K 33 [« RBOINT
REI/WR/AN6 «—>]9 § 320« Voo
RE2/CS/AN7 «— []10 & 31 [] «— Vss
Voo —» [11 @ 30 [] «—» RD7/PSP7
vss — []12 © 29 [] «—» RD6/PSP6
OSC1/CLKI —» [] 13 o 28 [] «—» RD5/PSP5
OSC2/CLKO «— []14 & 27 [] «—» RD4/PSP4

RCO/T10SO/T1CKI «—» [15 26 [] «—» RC7/RX/DT
RC1/T10SI/CCP2 «—» [] 16 25 [] «—» RC6/TX/CK
RC2/CCP1 «—» [17 24 [] «—» RC5/SDO
RC3/SCK/SCL «—» [] 18 23 [] «—» RC4/SDI/SDA
RDO/PSPO «—» [] 19 22 [] «—» RD3/PSP3
RD1/PSP1 «—» [] 20 21 [] «—» RD2/PSP2

Figure 1.2: 16F877 Pin-out (reproduced by permission of Microchip Inc.)

instructions contain both the operation code and operand (immediate data, register
address, or jump address). The mid-range PIC has a limited number of instructions (35)
and is therefore classified as a RISC (reduced instruction set computer) processor.

Looking at the internal architecture, we can identify the blocks involved in program
execution. The program memory ROM contains the machine code, in locations numbered
from 0000h to 1FFFh (8k). The program counter holds the address of the current
instruction and is incremented or modified after each step. On reset or power up, it is reset
to zero and the first instruction at address 0000 is loaded into the instruction register,
decoded, and executed. The program then proceeds in sequence, operating on the contents
of the file registers (000-1FFh), executing data movement instructions to transfer data
between ports and file registers or arithmetic and logic instructions to process it. The CPU
has one main working register (W), through which all the data must pass.

If a branch instruction (conditional jump) is decoded, a bit test is carried out; and if

the result is true, the destination address included in the instruction is loaded into the
program counter to force the jump. If the result is false, the execution sequence continues
unchanged. In assembly language, when CALL and RETURN are used to implement

PIC Microcontroller Systems 5

| |
| |
| Flash ,/'—1 Program Qounter < i
! ROM N (13 bits) !
| Program :
: Memory Address @ |
! 8192 !
| X 14 bits |
| Stack RAM !
: 13 bits File |
| . X 8 Registers '
Instructions '
: Levels 368_ :
| X 8 bits |
I
I
I
: Instruction Register A :
| T | File Address !
! '
| : Program Address :
: I
I .
. I
I : |
| i L———Jppi Working (W) File Select [
I 1] i .
| i Literal Register Register |
! : Arithmetic & Logic !
: H Unit |
| : Status |
! op- ! .---1 Status (Flag) !
: code Register Data .Bus :
I . . (8 bits) :
I
! v \ 4 EEPROM |
| Instruction — MCU 256 bytes :
| Decode & —> control v |
! CPU control — lines :
I Ports, Timers !
| T ADC, Serial /O !
I
Timing control !
A Y W i O o i i
! Clock | ! Reset !
ot ’ Cote Pt A B C D E

Figure 1.3: PIC16F877 MCU Block Diagram

subroutines, a similar process occurs. The stack is used to store return addresses, so

that the program can return automatically to the original program position. However,

this mechanism is not used by the CCS C compiler, as it limits the number of levels of
subroutine (or C functions) to eight, which is the depth of the stack. Instead, a simple
GOTO instruction is used for function calls and returns, with the return address computed
by the compiler.

www.newnespress.com

6 Part 1

Table 1.1: PIC16F877 Simplified File Register Map

Bank 0 (000-07F)

Bank 1 (080-O0FF)

Bank 2 (100-180)

Bank 3 (180-1FF)

Address | Register | Address | Register | Address | Register | Address | Register
000h Indirect 080h Indirect 100h Indirect 180h Indirect
001h Timer0 081h Option 101h Timer0 181h Option

Prog. Prog. Prog. Prog.
002h count. 082h count. 102h count. 182h count.
low low low low
003h Status reg 083h Status reg 103h Status reg 183h Status reg
004h File select 084h File select 104h File select 184h File select
005h Port A 085h Port A 105h - 185h -
data direction
006h Port B 086h .Port.B 106h Port B 186h Port.B
data direction data direction
007h Port C 087h Port C 107h - 187h -
data direction
008h Port D osgn | FortD 108h - 188h -
data direction
009h Port E 089h Port E 109h - 189h -
data direction
Prog. Prog. Prog. Prog.
00Ah count. 08Ah count. 10Ah count. 18Ah count.
high high high high
00Bh Interrupt 08Bh Interrupt 10Bh Interrupt 18Bh Interrupt
control control control control
4 4
10Ch- peripheral 18Ch- | peripheral
.20 _20 10Fh control 18Fh control
00Ch- peripheral | 08Ch- | peripheral registers registers
01Fh control 09Fh control
registers registers 110B- 16 general 190h- 16 general
11Fh e 19rn | PUIPOSE
registers registers
020h- SOU%er:)esrjl 0AOh- SOU%er:)esreal 120h- SOU%er:)esrjl 1A0h- SOU%er:)esreal
osrn | PUP oern | PUP 16rh | PP 1gFn | PYP
registers registers registers registers
16

oron- | common | orun- | e | sy | Acewes | yron- | Ao
07Fh OFFh) 17Fh - 1FFh -

access 07Fh 07Fh 07Fh

GPRs

PIC Microcontroller Systems 7

RAM File Registers

The main RAM block (Table 1.1) is a set of 368 8-bit file registers, including the special
function registers (SFRs), which have a dedicated function, and the general purpose
registers (GPRs). When variables are created in C, they are stored in the GPRs, starting at
address 0020h. The file registers are divided into four blocks, register banks O to 3. The
SFRs are located at the low addresses in each RAM bank.

Some registers are addressable across the bank boundaries; for example, the status
register can be accessed in all blocks at the corresponding address in each bank. Others
are addressable in only a specific page, for example, Port A data register. Some register
addresses are not physically implemented. Since some registers are accessible in multiple
banks, bank switching can be minimized by the compiler when assembling the machine
code, thus saving program code space and execution time. For full details of the file
register set, see the MCU data sheet.

The program counter uses two 8-bit registers to store a 13-bit program memory address.
Only the low byte at address 002h is directly addressable. The status register 003h
records results from ALU (arithmetic and logic unit) operations, such as zero and carry/
borrow. The indirect and file select registers are used for indexed addressing of the GPRs.
TimerO is the timer/counter register available in all PIC MCUs, while Timer1 and Timer2
registers are in the peripheral block. The port registers are located in Bank 0 at addresses
05h (Port A) to 09h (Port E) with the data direction register for each at the corresponding
location in bank 1. We can see that a total of 80 + 16 + 80 + 96 + 96 = 368 GPRs are
available for use as data RAM. Note that the number of registers used for each C variable
depends on the variable type and can range from 1 to 32 bits (1-4 GPRs).

Other PIC Chips

In any embedded design, the features of the MCU need to be matched to the application
requirements. The manufacturer needs to make sure that, as applications become more
demanding, a more powerful device of a familiar type is available. We can see this
process at work where Microchip started out producing basic chips such as the 16C84,
then developed the product range to meet the growing market. PIC microcontrollers are
currently available in distinct groups, designated the 10, 12, 16, 18, and 24 series. Their
general characteristics are outlined in Table 1.2.

The original 16 series CMOS devices were designated as 16CXX. When flash memory
was introduced, they became 16FXXX. Currently, a limited number of devices are

8 Part 1
Table 1.2: PIC Microcontroller Types
MCU Pins Data | Program Typical Speed Description
Word | Memory Instruction MIPS
(bits) (bytes) Set

Low pin count, small

1 OFXXX -6 8 =512 33 X 12 bits =5 | form factor, cheap, no
EEPROM, no low-power,
assembler program
Low pin count, small form

12FXXX | =8 8 =2kB | 12/14bits | =05 |facton cheap, EEPROM,
10-bit ADC, some low
power, assembler
Mid-range, UART, 12C,

16FXXX =64 8 =14kB | 35X 14 bits =5 | SPI, many low power, C or
assembler program
High range, CAN, USB

18FXXXX | =100 8 =128 kB | 75X 16 bits =16 | series 3V supply, C
program
Power range, 3V supply,

24FXXXX | =100 16 =128 kB | 76 X 24 bits =16 | no EEPROM, data RAM
=8 kB, C program

available in the low pin count (LPC) ranges (10/12 series), while the power ranges are
expanding rapidly. In addition are those listed in the 24HXXXX range, which runs at 40
MIPS, and the dsPIC (digital signal processor) high-specification range.

1.2

PIC16 MCU Configuration

Clock oscillator types

Watchdog, power-up, brown-out timers
Low-voltage programming

Code protection

In-circuit debug mode

When programming the PIC microcontroller, certain operational modes must be set
prior to the main program download. These are controlled by individual bits in a special

PIC Microcontroller Systems 9

configuration register separated from the main memory block. The main options are as
follows.

Clock Options

The ‘877 chip has two main clock modes, CR and XT. The CR mode needs a simple
capacitor and resistor circuit attached to CLKIN, whose time constant (C X R)
determines the clock period. R should be between 3k and 100k, and C greater than 20 pF.
For example, if R = 10k{2 and C = 10nF, the clock period will be around 2 X C X

R = 200 ps (calculated from the CR rise/fall time) and the frequency about 5kHz. This
option is acceptable when the program timing is not critical.

The XT mode is the one most commonly used, since the extra component cost is small
compared with the cost of the chip itself and accurate timing is often a necessity. An
external crystal and two capacitors are fitted to CLKIN and CLKOUT pins. The crystal
frequency in this mode can be from 200 kHz to 4 MHz and is typically accurate to better
than 50 ppm (parts per million) or 0.005%. A convenient value is 4 Mz, as this is the
maximum frequency possible with a standard crystal and gives an instruction execution
time of 1.000 ps (1 million instructions per second, or 1 Mip).

A low-speed crystal can be used to reduce power consumption, which is proportional to
clock speed in CMOS devices. The LP (low-power) mode supports the clock frequency
range 32-200kHz. To achieve the maximum clock speed of 20 MHz, a high-speed (HS)
crystal is needed, with a corresponding increase in power consumption.

The MCU configuration fuses must be set to the required clock mode when the chip is
programmed. Many PIC chips now have an internal oscillator, which needs no external
components. It is more accurate than the RC clock but less accurate than a crystal. It
typically runs at 8 MHz and can be calibrated in the chip configuration phase to provide a
more accurate timing source.

Configuration Options

Apart from the clock options, several other hardware options must be selected.

Watchdog Timer

When enabled, the watchdog timer (WDT) automatically resets the processor after a
given period (default 18 ms). This allows, for example, an application to escape from
an endless loop caused by a program bug or run-time condition not anticipated by the

10 Part 1

software designer. To maintain normal operation, the WDT must be disabled or reset
within the program loop before the set time-out period has expired. It is therefore
important to set the MCU configuration bits to disable the WDT if it is not intended to
use this feature. Otherwise, the program is liable to misbehave, due to random resetting of
the MCU.

Power-up Timer

The power-up timer (PuT) provides a nominal 72 ms delay between the power supply
voltage reaching the operating value and the start of program execution. This ensures
that the supply voltage is stable before the clock starts up. It is recommended that it be
enabled as a precaution, as there is no adverse effect on normal program execution.

Oscillator Start-up Timer

After the power-up timer has expired, a further delay allows the clock to stabilize before
program execution begins. When one of the crystal clock modes is selected, the CPU
waits 1024 cycles before the CPU is enabled.

Brown-out Reset (BoR)

It is possible for a transitory supply voltage drop, or brown-out, to disrupt the MCU
program execution. When enabled, the brown-out detection circuit holds the MCU in
reset while the supply voltage is below a given threshold and releases it when the supply
has recovered. In CCS C, a low-voltage detect function triggers an interrupt that allows
the program to be restarted in an orderly way.

Code Protection (CP)

The chip can be configured during programming to prevent the machine code being read
back from the chip to protect commercially valuable or secure code. Optionally, only
selected portions of the program code may be write protected (see WRT_X% later).

In-Circuit Programming and Debugging

Most PIC chips now support in-circuit programming and debugging (ICPD), which
allows the program code to be downloaded and tested in the target hardware, under the
control of the host system. This provides a final test stage after software simulation has
been used to eliminate most of the program bugs. MPLAB allows the same interface to be

PIC Microcontroller Systems 11

used for debugging in both the simulation and in-circuit modes. The slight disadvantage
of this option is that care must be taken that any application circuit connected to the
programming/ICPD pins does not interfere with the operation of these features. It is
preferable to leave these pins for the exclusive use of the ICPD system. In addition, a
small section of program memory is required to run the debugging code.

Low-Voltage Programming Mode

The low-voltage programming mode can be selected during programming so that

the customary high (12V) programming voltage is not needed, and the chip can be
programmed at V44 (+5V). The downside is that the programming pin cannot then be
used for digital I/O. In any case, it is recommended here that the programming pins not
be used for I/O by the inexperienced designer, as hardware contention could occur.

Electrically Erasable Programmable Read Only Memory

Many PIC MCUs have a block of nonvolatile user memory where data can be stored
during power-down. These data could, for example, be the secure code for an electronic
lock or smart card reader. The electrically erasable programmable read only memory
(EEPROM) can be rewritten by individual location, unlike flash program ROM. The ‘877
has a block of 256 bytes, which is a fairly typical value. There is a special read/write
sequence to prevent accidental overwriting of the data.

Configuration in C

The preprocessor directive #fuses is used to set the configuration fuses in C programs
for PICs. A typical statement is

#fuses XT, PUT,NOWDT, NOPROTECT, NOBROWNOUT

The options defined in the standard CCS C 16F877 header file are

Clock Type Select LP, XT, HS, RC
Watchdog Timer Enable WDT, NOWDT

Power Up Timer Enable PUT, NOPUT

Program Code Protect PROTECT, NOPROTECT
In Circuit Debugging Enable DEBUG, NODEBUG
Brownout Reset Enable BROWNOUT, NOBROWNOUT
Low Voltage Program Enable LVP, NOLVP

EEPROM Write Protect CPD, NOCPD

Program Memory Write Protect WRT_50%, WRT_25%,

(with percentage protected) WRT_5%, NOWRT

12 Part 1

The default condition for the fuses if no such directive is included is equivalent to

#fuses RC,WDT,NOPUT, BROWNOUT, LVP, NOCPD, NOWRT

This corresponds to all the bits of configuration register being default high.

1.3 PIC16 MCU Peripherals
¢ Digital I/O
® Timers
* A/D converter
¢ Comparator
e Parallel slave port

® Interrupts

Basic digital input and output (I/O) in the microcontroller uses a bidirectional port

pin. The default pin configuration is generally digital input, as this is the safest option
if some error has been made in the external connections. To set the pin as output, the
corresponding data direction bit must be cleared in the port data direction register (e.g.,
TRISD). Note, however, that pins connected to the analog-to-digital (A/D) converter
default to the analog input mode.

The basic digital I/O hardware is illustrated in simplified form in Figure 1.4, with
provision for analog input. The 16 series reference manual shows equivalent circuits for
individual pins in more detail. For input, the current driver output is disabled by loading
the data direction bit with a 1, which switches off the tristate gate. Data are read into the
input data latch from the outside world when its control line is pulsed by the CPU in the
course of a port register read instruction. The data are then copied to the CPU working
register for processing.

When the port is set up for output, a 0 is loaded into the data direction bit, enabling the

current output. The output data are loaded into the data latch from the CPU. A data 1 at
the output allows the current driver to source up to 25 mA at 5V, or whatever the supply
voltage is (2-6V). A data 0 allows the pin to sink a similar current at 0'V.

PIC Microcontroller Systems

13

Write TRIS bit ————»

»

Data
Direction
Latch

CPU Data Bus « c

Write Data bit

Output

Data
Latch

Read Data bit ————»

Input
Data

v

Output
Current
Driver

Tristate
Qutput
Enable

Latch

Analog Input ¢
Multiplexer

Figure 1.4: 1/O Pin Operation

The 16F877 has the following digital I/O ports available:

Port A
Port B
Port C
Port D
Port E

RAO-RA5
RBO-RB7
RCO-RC7
RDO-RD7
REO-RE2

Total digital I/O available

Most of the pins have alternate functions, which are described later.

Timers

6 bits
8 bits
8 bits
8 bits
3 bits

33 pins

Most microcontrollers provide hardware binary counters that allow a time interval
measurement or count to be carried out separately from program execution. For example,

a fixed period output pulse train can be generated while the program continues with
another task. The features of the timers found in the typical PIC chip are represented in
Figure 1.5, but none of those in the ‘877 has all the features shown.

The count register most commonly is operated by driving it from the internal instruction
clock to form a timer. This signal runs at one quarter of the clock frequency; that is, one
instruction takes four cycles to execute. Therefore, with a 4-MHz clock, the timer counts

in microseconds (1-MHz instruction clock). The number of bits in the timer (8 or 16)

14 Part 1

Capture Signal

Capture Register

Timer
Instruction Clock —» Clock Prescaler Postscaler Overflow/
Source P (Clock (Output — Time-out
External Pulse —»{ Select Divide) Divide) (Interrupt)
Flag

I_’

Compare Register Match Flag

Figure 1.5: General Timer Operation

determines the maximum count (256 or 65536, respectively). When the timer register
overflows and returns to zero, an overflow flag bit is set. This flag can be polled (tested)
to check if an overflow has occurred or an interrupt generated, to trigger the required
action.

To modify the count period, the timer register can be preloaded with a given number.

For example, if an 8-bit register is preloaded with the value 156, a time-out occurs after
256 — 156 = 100 clocks. Many timer modules allow automatic preloading each time

it is restarted, in which case the required value is stored in a preload register during timer
initialization.

A prescaler typically allows the timer input frequency to be divided by 2, 4, 8, 16, 32,
64, or 128. This extends the maximum count proportionately but at the expense of timer
precision. For example, the 8-bit timer driven at 1 MHz with a prescale value of 4 counts
up to 256 X 4 = 1024 ps, at 4 ps per bit. A postscaler has a similar effect, connected at
the output of the counter.

In the compare mode, a separate period register stores a value that is compared with the
current count after each clock and the status flag set when they match. This is a more
elegant method of modifying the time-out period, which can be used in generating a pulse
width modulated (PWM) output. A typical application is to control the output power to

a current load, such as a small DC motor—more on this later. In the capture mode, the
timer count is captured (copied to another register) at the point in time when an external
signal changes at one of the MCU pins. This can be used to measure the length of an
input pulse or the period of a waveform.

The 877 has three counter/timer registers. TimerO has an 8-bit counter and 8-bit
prescaler. It can be clocked from the instruction clock or an external signal applied to
RAA4. The prescaler can also be used to extend the watchdog timer interval (see later),
in which case it is not available for use with Timer0. Timer1 has a 16-bit counter and
prescaler and can be clocked internally or externally as per TimerO. It offers capture and

PIC Microcontroller Systems 15

Input
— o
Analog ———» . -
Inputs > Multiplexer ANx K- Setup ADC
]
Ana|og_ 777777 Read ADC
to-Digital

Converter 8-bit or 16-bit
Integer Result

Reference Volts ———»{ +v

Figure 1.6: ADC Operation

compare modes of operation. Timer2 is another 8-bit counter but has both a prescaler and
postscaler (up to 1:16) and a compare register for period control.

Further details are provided in Interfacing PIC Microcontrollers by the author and the
MCU data books. When programming in C, only a limited knowledge of timer operation
is necessary, as the C functions generally take care of the details.

A/D Converter

Certain PIC pins can be set up as inputs to an analog-to-digital converter (ADC). The
’877 has eight analog inputs, which are connected to Port A and Port E. When used

in this mode, they are referred to as ADO—AD7. The necessary control registers are
initialized in CCS C using a set of functions that allow the ADC operating mode and
inputs to be selected. An additional “device” directive at the top of the program sets the
ADC resolution. An analog voltage presented at the input is then converted to binary and
the value assigned to an integer variable when the function to read the ADC is invoked.

The default input range is set by the supply (nominally 0-5V). If a battery supply is used
(which drops over time) or additional accuracy is needed, a separate reference voltage
can be fed in at AN2 (+V,.) and optionally AN3 (—V). If only +V . is used, the
lower limit remains 0V, while the upper is set by the reference voltage. This is typically
supplied using a zener diode and voltage divider. The 2.56V derived from a 2V7 zener
gives a conversion factor of 10mV per bit for an 8-bit conversion. For a 10-bit input,

a reference of 4.096V might be convenient, giving a resolution of 4mV per bit. The
essentials of ADC operation are illustrated in Figure 1.6.

Comparator

The comparator (Figure 1.7) is an alternative type of analog input found in some
microcontrollers, such as the 16F917 used in the mechatronics board described later.

16 Part 1

Vc+
.5 Comparator
Status Bit
chg’ Vc+ > Ve—

Figure 1.7: Comparator Operation

Chip Select ————»| —— Interrupt
Read ———— |
Write ————| Parallel
Slave

EXTERNAL <:::> Port <:::> INTERNAL
Data X 8 Data X 8

Figure 1.8: Parallel Slave Port Operation

It compares the voltage at a pair of inputs, and a status bit is set if the C+ pin is higher
than C—. The comparator status bit may also be monitored at an output pin. The 917
has two such comparator modules; they are enabled using a system function to set the
operating mode. The 877 has no comparators, so the ADC must be used instead.

Parallel Slave Port

The parallel slave port on the 877 chip is designed to allow parallel communications
with an external 8-bit system data bus or peripheral (Figure 1.8). Port D provides the
eight I/O data pins, and Port E three control lines: Read, Write, and Chip Select. If data
are to be input to the port, the pin data direction is set accordingly and data presented

to Port D. The chip select input must be set low and the data latched into the port data
register by taking the write line low. Conversely, data can be read from the port using the
read line. Either operation can initiate an interrupt.

Interrupts

Interrupts can be generated by various internal or external hardware events. They are
studied in more detail later in relation to programming peripheral operations. However,
at this stage, it is useful to have some idea about the interrupt options provided within the
MCU. Table 1.3 lists the devices that can be set up to generate an interrupt.

PIC Microcontroller Systems

17

Table 1.3: Interrupts Sources in the PIC16F877

Interrupt Source Interrupt Trigger Event Interrupt Label
Timers

Timer0 TimerO0 register overflow INT TIMERO
Timer1 Timer1 register overflow INT TIMER1
CCP1 Timer1 capture or compare detected INT_CCP1
Timer2 Timer2 register overflow INT_TIMER2
CCP2 Timer2 capture or compare detected INT_CCP2
Ports

RBO/INT pin Change on single pin RBO INT_EXT
Port B pins Change on any of four pins, RB4-RB7 INT_RB
Parallel Slave Port Data received at PSP (write input active) INT_PSP
Analog Converter A/D conversion completed INT_AD
Analog Comparator Voltage compare true INT_COMP
Serial

UART Serial Port Received data available INT_RDA
UART Serial Port Transmit data buffer empty INT_TBE

SPI Serial Port Data transfer completed (read or write) INT_SSP

I2C Serial Port Interface activity detected INT_SSP

I2C Serial Port Bus collision detected INT_BUSCOL
Memory

EEPROM Nonvolatile data memory write complete INT_EEPROM

The most effective way of integrating timer operations into an application program is

by using a timer interrupt. Figure 1.9 shows a program sequence where a timer is run

to generate an output pulse interval. An interrupt routine (ISR) has been written and
assigned to the timer interrupt. The timer is set up during program initialization and
started by preloading or clearing it. The main program and timer count then proceed
concurrently, until a time-out occurs and the interrupt is generated. The main program

is suspended and the ISR executed. When finished, the main program is resumed at the
original point. If the ISR contains a statement to toggle an output bit, a square wave could
be obtained with a period of twice the timer delay.

When interrupts are used in assembly language programs, it is easier to predict the effect,
as the programmer has more direct control over the exact sequence of the ISR.

18 Part 1
Program Execution
1 » 2
Start Counter Run
Statement Counter
until
Program Execution Overflow
:
3
!
Time-out '
Interrupt
!
4
Jump
to
ISR
7
Continue
5
Time-out
Process
(Interrupt
Service 6
Routine) Return
from
Interrupt

Figure 1.9: Timer Interrupt Process

A C program is generated automatically by the compiler, so the precise timing that results
from an interrupt is less obvious. For this reason, the use of a real-time operating system
(RTOS) is sometimes preferred in the C environment, especially when programs become
more complex. In fact, C was originally developed for precisely this purpose, to write
operating systems for computers. C interrupts are considered further in Section 3.2, and
RTOS principles are outlined in Section 5.4.

1.4 PIC16 Serial Interfaces
e USART asynchronous link

® SPI synchronous bus
®]2C synchronous bus

Serial data connections are useful because only one or two signal wires are needed,
compared with at least eight data lines for a parallel bus plus control signals. The typical

PIC Microcontroller Systems 19

PIC MCU HOST PC
) Line
TX1 Trans_mlt Driver +/—12V RX2
RX1 Receive Interface TX2 COM PORT
Ground l Ground
Figure 1.10: USART Operation
a Bit Period
<+—>
0 | » Time
Idle Start Bit Bit Bit Bit Bit Bit Bit Bit Stop
Bit 0 1 2 3 4 5 6 7 Bit

Figure 1.11: USART RS232 Signal

PIC microcontroller offers a choice of serial interfaces. The best one for any given
communication channel depends on the distance between nodes, the speed, and the
number of hardware connections required.

USART

The universal synchronous/asynchronous receive transmit (USART) device is typically
used in asynchronous mode to implement off-board, one-to-one connections. The term
asynchronous means no separate clock signal is needed to time the data reception, so
only a data send, data receive, and ground wires are needed. It is quick and simple to
implement if a limited data bandwidth is acceptable.

A common application is connecting the PIC chip to a host PC for uploading data
acquired by the MCU subsystem (Figure 1.10). The USART link can send data up to 100
meters by converting the signal to higher-voltage levels (typically £12V). The digital
signal is inverted and shifted to become bipolar (symmetrical about OV, line negative
when inactive) for transmission.

The PIC 16F877 has a dedicated hardware RS232 port, but CCS C allows any pin to be
set up as an RS232 port, providing functions to generate the signals in software. The
basic form of the signal has 8 data bits and a stop and start bit. The bit period is set by
the baud rate. A typical value is 9600 baud, which is about 10k bits per second. The bit
period is then about 100 ps, about 1 byte per millisecond, or 1K byte per second.

20 Part 1

The data are transferred between shift registers operating at the same bit rate; the receiver
has to be initialized to the same baud setting as the transmitter. Assuming we are looking

at TTL level data, in the idle state, the line is high. When it goes low, the receiver clock is
started, the data are sampled in the middle of each following data bit period, and data are

shifted into the receive register (Figure 1.11).

RS232 is used to access the standard serial LCD display, in which case, line drivers

are not necessarily required. ASCII characters and control codes are sent to operate the
display, which has its own MCU with a serial interface to receive and decode the data.
It then drives the pixel array to display alphanumeric characters. Most LCDs may also
be set up to display simple bit-mapped graphics. In simulation mode, an RS232 virtual
terminal provides a convenient way of generating alphanumeric input into the MCU for
testing. The ASCII codes are listed in Table 2.5.

Master

Serial Data Out, SDO
Serial Data In, SDI

A
vivy

Serial Clock, SCK
Slave 1 Slave 2
SDO a SDO
| SDI 4 SDI
SCK SCK
I >
1SS 1SS

Slave Select SSt1
Outputs SS2
SS3

v

Figure 1.12: SPI Connections

oo X7 X8 XXX X XX @ X oot
SCK Clock

Figure 1.13: SPI Signals

PIC Microcontroller Systems 21

SPI Bus

The serial peripheral interface (SPI) bus provides high-speed synchronous data exchange
over relatively short distances (typically within a set of connected boards), using

a master/slave system with hardware slave selection (Figure 1.12). One processor must
act as a master, generating the clock. Others act as slaves, using the master clock for
timing the data send and receive. The slaves can be other microcontrollers or peripherals
with an SPI interface. The SPI signals are

e Serial Clock (SCK)

e Serial Data In (SDI)

e Serial Data Out (SDO)
e Slave Select (!SS)

To transfer data, the master selects a slave device to talk to, by taking its SS line low.
Eight data bits are then clocked in or out of the slave SPI shift register to or from the
master (Figure 1.13). No start and stop bits are necessary, and it is much faster than
RS232. The clock signal runs at the same speed as the master instruction clock, that is,
5SMHz when the chip is running at the maximum 20 MHz (16 series MCUs).

I’C Bus

The interintegrated circuit (I*C) bus is designed for short-range communication between
chips in the same system using a software addressing system. It requires only two signal
wires and operates like a simplified local area network. The basic form of the hardware
and data signal are illustrated in Figures 1.14 and 1.15.

The I°C slave chips are attached to a two-wire bus, which is pulled up to logic 1 when
idle. Passive slave devices have their register or location addresses determined by a
combination of external input address code pins and fixed internal decoding. If several
memory devices are connected to the bus, they can be mapped into a continuous address
space. The master sends data in 8-bit blocks, with a synchronous clock pulse alongside
each bit. As for SPI, the clock is derived from the instruction clock, up to 5SMHz at the
maximum clock rate of 20 MHz.

To send a data byte, the master first sends a control code to set up the transfer, then the
8-bit or 10-bit address code, and finally the data. Each byte has a start and acknowledge
bit, and each byte must be acknowledged before the next is sent, to improve reliability.

22 Part 1

+5V Master Slave 1 Slave 2 | etc.
\:g | | | » SDA
» SCL

Figure 1.14: 1°C Connections

Ack |
Start Address/Data Bits cknowledge

v
sDA /7 X8 X5 X4 X3 X2 X1 X0\ l /)

SCL

Figure 1.15: I°C Signals

The sequence to read a single byte requires a total of 5 bytes to complete the process, 3 to
set the address, and 2 to return the data. Thus, a substantial software overhead is involved.
To alleviate this problem, data can be transferred in continuous blocks (memory page
read/write), which speeds up the transmission.

1.5 PIC16 MPLAB Projects
e MPLAB C Project

® Project Files

The PIC microcontroller program comprises a list of machine code instructions, decoded
and executed in sequence, resulting in data movement between registers, and arithmetic
and logic operations. MCU reset starts execution at address zero, and the instructions are
executed in address order until a program branch is decoded, at which point a new target
address is derived from the instruction. A decision is made to take the branch or continue
in sequence based on the result of a bit condition test. This process is described in detail
in PIC Microcontrollers by the author.

The program could be written in raw binary code, but this would require manual
interpretation of the instruction set. Therefore, the machine code is generated from
assembly code, where each instruction has a corresponding mnemonic form that is

PIC Microcontroller Systems 23

more easily recognizable, such as MOVF05,W (move the data at Port A to the working
register). This low-level language is fine for relatively simple programs but becomes time
consuming for more complex programs. In addition, assembly language is specific to a
particular type of processor and, therefore, not “portable.” Another level of abstraction is
needed, requiring a high-level language.

C has become the universal language for microcontrollers. It allows the MCU
memory and peripherals to be controlled directly, while simplifying peripheral setup,
calculations, and other program functions. All computer languages need an agreed set
of programming language rules. The definitive C reference is The C Programming
Language by Kernighan and Ritchie, second edition, incorporating ANSI C standards,
published in 1983.

A processor-specific compiler converts the standard syntax into the machine code for a
particular processor. The compiler package may also provide a set of function libraries,
which implement the most commonly needed operations. There is variation between
compilers in the library function syntax, but the general rules are the same.

Usually, a choice of compilers is available for any given MCU family. Options for the
PIC at time of writing are Microchip’s own C18 compiler, Hi-Tech PICC, and CCS C.
CCS was selected for the current work because it is specifically designed for the PIC
MCU, supports the 16 series devices, and has a comprehensive set of peripheral driver
functions.

MPLAB C Project

The primary function of the compiler is to take a source text file PROJINAME.C and
convert it to machine code, PROJINAME.HEX. The hex file can then be downloaded

to the PIC MCU. The source file must be written in the correct form, observing the
conventions of both ANSI C and the specific compiler dialect. The first program we see
later in the tutorial section is shown in Listing 1.1.

This can be typed into any text editor, but we normally use the editor in MPLAB, the
standard Microchip development system software package. This provides file management,
compiler interface and debugging facilities for PIC projects, and may be downloaded free
of charge from www.microchip.com. Before starting work, the complier also has to be
installed. The compiler file path is set in MPLAB by selecting Project, Set Language Tool
Locations. The compiler can then be selected via the Project, Select Language Tool Suite
menu option. Browse for the compiler executable file (CCSC . EXE) and select it.

www.microchip.com

24 Part 1

Listing 1.1 A Simple C Program

/*
OUTBYTE.C MPB 2-1-07 V1.0
*/
#include "16F877A.h" // MCU select
void main() // Main block
{
output_D(255) ; // Switch on outputs

A project folder called PROJNAME should now be created to hold the files that

will be generated and a new project created with the same name. A workspace window
appears with file project folders named Source Files, Header Files, and Other Files.
Open a new source window, type in the program header comment at the top of the
program as shown in Listing 1.1, and save the file as PROJINAME.C in the project
folder. Type the rest of the program in and save it. The source code must now be attached
to the project, by right clicking on Source Files workspace folder to open the “add file”
dialog.

Note, in the source code, a statement #include 16F877A.h. This defines the specific
chip for which the program is created and refers to a header file supplied with the
compiler. This file must be included because it holds information about the chip register
addresses, labeling, and so on (it can be viewed in any text editor and is listed in full in
Section 2.8). The file should be copied from the Devices folder in the CCS C program file
folder set into the project folder. It can then be attached to this project by right clicking
on the Header Files folder. We are now ready to compile the program by clicking on

the Compile button in the MPLAB main toolbar. The compiler execution dialog briefly
appears and, ideally, a “build succeeded” message is displayed.

The program can now be tested in simulation mode by selecting Debugger, Select Tool,
MPLAB SIM. This brings up a control panel in the main toolbar. Press Reset, and a
green arrow indicates the execution point at the top of the program. Run seems to have
little effect, but if View, Special Function Registers is selected, Port D can be seen to
have been written with the data FF. To see the program listed in assembler, select View,
Disassembler Listing. This shows an assembler version of the program derived from the
compiler output.

PIC Microcontroller Systems 25

Project Files

Let us now look at some of files created in the project folder. Some, which are concerned
with MPLAB project management, do not need to be considered at this stage.

outbyte.c The source code file is created in a text edit window, in line with
the compiler and ANSI C syntax rules. For viewing outside MPLAB, it can be
“opened with” (right click) Notepad. The syntax requirements are detailed in the
C programming sections later.

outbyte.hex The hex file, the program download file, is shown in Listing 1.2,

as it is displayed in a text editor. The fact that it is readable shows that it is stored as
ASCII characters. It must be converted by the program downloading utility to actual
binary code for loading into program flash memory in the MCU. If the hex listing is
compared with the machine code column in the Disassembler listing visible in Figure
1.16, we can see that the first 4 bytes (eight digits) contain the start address 0000. The
program code starts at the ninth digit, but the bytes of the four-digit instruction code
are reversed. Therefore, the first instruction is code 3000 (MOVLW 0), but this is listed
in the hex file as 0030, indicating that, in program memory, the low byte is at the lower
(even) address, which is logical. The whole program is 40 bytes (80 hex digits), ending
at 6300 and highlighted in bold. Additional configuration data follow, and the file ends
with the MCU identifier.

outbyte.lst This contains the intermediate assembly language version of the
program, plus the configuration fuse settings. When viewed in a text window, it can be
seen that the configuration code is 3F73h, consistent with the program code.

outbyte.cof This file contains the machine code plus source file information that
allows debugging tools to display the source code and variables using their original labels.
This file is attached to the MCU in Proteus VSM to support source code debugging.

Listing 1.2 Program hex File

:1000000000308A0004280000840183131F30830518
:1000100083161F149F141F159F1107309C00880121
:08002000FF3083128800630029

:02400E00733FFE

:00000001FF

;PICL6F877A

26 Part 1

» outbyte - MPLAB IDE v7.52

Flo Edt Yew Project Debugger Programmer Tools Confipre Window Help
DS W ' mE GAD? Rlcasc VT FRBO | ¢ &

v B TP E
EEXE

OUTBYTE.C MPB 2-1-0'4 g
*/

BB oulbyte.mow B Disassembly Listing.

VLM O

HOVUF Oza
#include "16FETTA.h" GOTO Oxd
void main() a3 CUTBYTE.C MPB 2

output D(255) ; #include "16F877A.h"

woid main(}

CLEF Oxd

BCE 0x3, 0x7
HOVIM 0xlf
RNDUF 0x3, ¥
BS¥ Ox3, 0x$
BSF Oxli, O
BSF Oulf, Oxl
BSF Oxlf, 02
BCF Oxlf, 03
HOVIN 0=7

[Clean: Deleting inberm A
Clean: Deleted file "C:

0 0000000
4 0000100
28 0011100
0 0000000
0 0000000
0 0000000
0 0000000

[Clean: Done.
Executing: “C\Prograr
Memory usage: R
0Errors, 0'Warming
Loaded C\PIC BOOK:
BUILD SUCCEEDED:

<

HOVUE Ozlc

output _DBI255) ;
CLRF Ox8
MOVLY Ozt
BCF Ox3, OxS
MOWME Ox8
SLEEP

2551111111
0 0000000
0 0000000
0 0000000

Figure 1.16: Screenshot of MPLAB Project

outbyte.err The error file provides debugging messages, which are displayed in
the Output, Build window after compilation.

outbyte.sym The symbol map shows the register locations in which the program
variables are stored.

outbyte.mcp This is the MPLAB project information file.
outbyte.mcw This is the MPLAB workspace information file.

outbyte.pjt This is the CCS compiler project information file.

1.6 PIC16 Program and Debug
® Programming the chip
¢ In-circuit debugging

® Design package

www.newnespress.com

PIC Microcontroller Systems 27

Figure 1.17: PICkit2 Demo System Hardware (reproduced by permission of
Microchip Inc.)

Once the compiler has produced the hex file, it can be downloaded to the target
application board. However, it is generally preferable to test it first by software
simulation. This means running the program in a virtual MCU to test its logical function.
This can be done within MPLAB (tabular output) or using a third party debugging tool
such as Proteus VSM (graphical output). More details on simulation are provided in
Appendix C, and VSM interactive simulation is referred to throughout the text to provide
circuit schematics and debugging facilities.

Programming

A low-cost programmer available at the time of writing is the Microchip PICkit2
programmer (Figure 1.17). This connects to the USB port of the host PC, with the
programming module plugging direct into the target PCB. The six-way in-circuit

serial programming (ICSP) connector, between the programmer module and the target
board, must be designed into the application circuit. An in-line row of pins provides the
programmer connection to the target MCU, as shown in Figure 1.18.

Pin 1 carries the programming voltage (12-14 V) and is connected to pin V,,, which
doubles as the MCU reset input, ! MCLR. Pin 4 (PGD) carries the program data and pin 5
(PGC), the program clock. Any other circuits connected to these pins must be designed
with care, so that they do not interfere with the programmer. The USB output provides
the target board power, up to a limit of 500 mA, on pins 2 and 3. If necessary, a separate
target board supply must be provided.

28 Part 1

Reset
< 2 Vdd
3 * ,| Vss
«—4
ICSP PGD
D P
Interface 5 PGC
_ o0
Vdd Vss

Board +5V Supply

Figure 1.18: ICSP Target Board Connections

"2 PICKit 2 Programmer
Fie DevieFamy Programmer Took Help

Midrange Configueation

Device: PICI6FES0 Conhigueation: (FES

Uz D FF FF FF FF

Checksum: 1506

Hex file sucessfully imported, @ MICROCHIP

[] VODROkRZ
& On =

[Read | [(wine | [veity | [Ersse | [iskhesk | O mctm (50 &

Program Memony

[Ensbied [HexDrlp w| Source: [C\..ook\Apps\FICKAZ peogs\kiT kit hes

000 3000 008A 2819 0000 3027 o084 1383 0800 A
008 1903 2817 3002 00AL OLAO OBAOD 280D OBAL
olo zaoc 3087 O0AD OBAD 2813 0BE0 ZB0A 118A
018 283D o184 1383 301F 0583 3071 1683 008F
020 1283 1703 10LF 109F LALF L1SF 1303 L3F
028 3000 1703 00SE 0199 019 1683 019E 1283
030 0458 1303 1280 OlAé 1683 0QLBT 1283 0826
038 0087 OAAG 3064 00A7 2804 2834 0063 3FFF
040 3FFF IFFF IFFF 3FFF 3IFFF 3IFFF 3FFF 3FFF
048 3FFF 3FTF 3FFF 3FFF 3FFF 3FFT 3FFF 3FFF
050 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
058 AFFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF OFFF N

EEPROM Data
. Auo Import Hex
[7) Ensbled [HexOnly | + Wi Device

00 FFFFFFFFFFIFFFITFFFT T IFFT T IT IT & Fead Device +

10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [EW'H“"’I
20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF |
30 FFFFFFFFFFFFITFFFFIT FFFF T FF FF T & P'ck"z

Figure 1.19: PICkit2 Programmer Dialog

Once the hardware is connected up and the programmer drivers loaded, the programming
utility window (Figure 1.19) can be opened by running PICkit2 . exe file, selected
from the Programmer menu. The hex file created by the compiler is imported via the file
menu and downloaded using the write button. The target program is run by checking the
On box.

www.newnespress.com

PIC Microcontroller Systems 29

Figure 1.20: Microchip ICD2 Module

Host PC
MPLAB PIC MCU
Development ICD2 Target
Interface
System 6-WAY System
+ C Compiler connector

Figure 1.21: ICD2 Program and Debug System

Debugging

If in-circuit debugging is required, the Microchip MPLAB ICD2® in-circuit debugger
(Figures 1.20 and 1.21) is recommended. This allows the application program to be
tested in real hardware by using the same MPLAB debugging tools used in the simulation
mode: source code display, run, stop, step, reset, breakpoints, and variable watch
windows. The target system needs its own power supply and an ICD connector.

With power supplied to the target, load the application project files. Select Debugger,
Select Tool, MPLAB ICD2. The debug control panel appears with controls to run, step,
and reset (Figure 1.22). If the program is recomplied after a change in the source code,
the target can be automatically reprogrammed.

Use of breakpoints is generally the most useful debugging technique in C, as it allows
complete blocks of assembler to be executed at full speed. These are enabled by right
clicking on the source code and indicated by a red marker. Once set, they can be
temporarily enabled and disabled. The watch window, selected from the View menu,
allows program variable values to be monitored as the program progresses.

www.newnespress.com

30 Part 1

Fio &t Ve Promct Cobugow Progaemaer fook Gorfigrs Wind feb

OF | " B GMAYT | Rane T cRBBO 7| Thbe e w PO E

- |DX| =mCL et

f/ TEST.C HER 14-4-07
#/ First program for testing
// PICDEM Mechatronics Board
f/ flashes 4 LEDs

#inclode "16F917.h"
fuse delayi{clock=8000000)

void main()
i

int n-0;
while{1)

{

output_Din) ;
delay _ms {10}

ne

Figure 1.22: ICD Debugging Windows

When debugging has been completed, the chip must be reprogrammed for the final time
by selecting Programmer, Select Tool, MPLAB ICD2. Then, hit the Program Target
Device button. When done, the program can be stopped and started using the Hold In
Reset and Release From Reset buttons. When the ICD pod is disconnected, the program
should auto-run in the target system.

Design Package

The components of the ECAD design package used in this book are listed below. The
PCB implementation tools are not described further, as they are outside the scope of this
programming guide.

¢ Circuit schematic capture (Proteus ISIS)

e Interactive circuit simulation (Proteus VSM)

¢ PCB layout design (Proteus ARES)

¢ PIC development system (Microchip MPLAB)

¢ PIC C Compiler (Custom Computer Services CCS C)

® PIC programming and in-circuit testing (Microchip ICD2)

www.newnespress.com

PIC Microcontroller Systems 31

Assessment 1
5 points each, total 100

1.

2
3.
4

10.

11.
12.
13.

14.

List five consumer products that typically include a microcontroller.
Identify the five functional elements of a microcontroller.
Explain why flash ROM is an important technology in microcontrollers.

State five important characteristics of a microcontroller that should be
considered when selecting the best part for a given application.

Describe briefly the process of program execution in a microcontroller,
referring to the role of the program memory, instruction register, program
counter, file registers, and working register.

State the function of the following registers in the PIC16F877: 02h, 03h, 09h,
89h, 20h.

Explain the significance of the following abbreviations in relation to the
configuration of the PIC microcontroller: RC, XT, WDT, PUT, NOWRT.

Explain the function of the following elements of the PIC I/O circuit: tristate
gate, current driver, data direction latch, input data latch, output data latch.

A 16-bit PIC hardware timer is driven from the internal clock signal, and the
MCU is operating with a 20-MHz crystal. Calculate the preload value required
to produce an interrupt every 10 ms.

If an analog-to-digital converter has a positive input reference voltage of
2.048V and is set up as for 8-bit conversion, calculate the resolution of the
ADC in millivolts per bit and the output code if the input voltage is 1.000V.

Refer to Figure 1.9, and briefly explain the timer interrupt process and why it is
useful.

Sketch the RS232 signal that transmits the character X (ASCII code 01011000)
on a line operating at *12V. Indicate the stop and start bits as S and P.

Explain the difference between an asynchronous and synchronous data
transmission by reference to RS232 and SPI.

Explain the difference between hardware and software addressing as used by
SPI and I°C.

32 Part 1

15. Explain briefly why SPI is generally faster than I>C.

16. A page of plain text contains about 1000 ASCII characters. Estimate the
minimum time required to transmit this page over a 9600-baud RS232 link
and an SPI line, under the control of an MCU running at 20 MHz, stating any
assumptions made.

17. State the function of each of the C project files that have the following
extension: C, HEX, COF, LST, and ERR.

18. State the function of the five connections in the PIC in-circuit programming and
debugging interface.

19. Study the content of the dissembler window in Figure 1.22, and state the
function of the five visible windows.

20. List a minimum set of development system hardware and software components
required to create a C application for the PIC microcontroller.

Assignments 1
Assignment 1.1

Download the data book for the PIC16F87X MCUs from www.microchip.com. Study
Figure 1.2, the PIC16F877 block diagram. Describe in detail the sequence of events that
occurs when the data code for 255, (11111111,) from a machine code instruction is
output to Port D. Refer to the role of the program memory, program counter, instruction
register, instruction decoder, file register addressing, internal data bus, and clock. What
path must the data follow to get from the program memory to Port C? Describe the setup
required in Port C to enable the data byte to be observed on the port pins (Figure 1.4).
Refer, if necessary, to PIC Microcontrollers: An Introduction to Microelectronics by the
author.

Assignment 1.2

Research a list of SPI and I>C peripherals that might be useful in constructing PIC
applications. Identify typical memory, interfacing, and sensor chips that use these
interfaces and summarize the range of devices available for each interface.

http://www.microchip.com

PIC Microcontroller Systems 33

Assignment 1.3

Download and install MPLAB development system from www.microchip.com, and

the demo C complier for the PIC16F877 from www.ccsinfo.com. Create the project
OUTBYTE as described in Section 1.5. Enter the source code and save in the project
folder. Copy the header file into the same folder. Compile the program and view the files
created in the folder. Check that the .hex, .1st, and . cof files have been created. Test
the program in simulation mode; arrange the MPLAB windows as seen in Figure 1.6 and
check that Port C is loaded with the output byte FFh. Study the assembler version of the
program; note the number of instructions required to implement the C output statement.
Reset and step through the program, noting the two phases: initialization and loop.
Change the output number in the source code from 255 to 85, recompile, and run. What
is the Port D output now in binary and hex?

http://www.ccsinfo.com
http://www.microchip.com

C Programming Essentials

2.1 PIC16 C Getting Started

e Simple program and test circuit
® Variables, looping, and decisions
¢ SIREN program

Programming PIC microcontrollers in C is introduced here using the simplest possible
programs, assuming that the reader has no previous experience of the language. The CCS
compiler uses ANSI standard syntax and structures. However, a compiler for any given
microcontroller uses its own variations for processor-specific operations, particularly
input and output processes. These are fundamental to MCU programs and so will be
introduced from the start.

Simple Program

Microcontroller programs contain three main features:
e Sequences of instructions
¢ Conditional repetition of sequences
e Selection of alternative sequences

The following basic programs show how these processes are implemented in CCS C. The
program in Listing 2.1 is a minimal program that simply sets the bits of an 8-bit port in
the 16F877 to any required combination.

36 Part 2

Listing 2.1 A Program to Output a Binary Code

// OUTNUM.C Outputs an 8-bit code at Port D in the 16F877 MCU

#include "16F877A.h" // MCU header file
void main () // Main block start
{

output_D(255) ; // Switch on outputs

}

The essential source code components can be identified. The include statement tells
the compiler to incorporate the header file for a particular MCU. It provides information
about the chip hardware features that the compiler needs to tailor the program. The
keywords void main indicate the start of the main program block, and the associated
braces (curly brackets) enclose the program statements. This program only contains one
statement, the function call output_D (nnn) that sends a binary code to Port D.

Program Creation

The development process was introduced in Part 1, and further details are provided in
Appendices A, B, and C. Briefly, the program project is created as follows:

1. Assuming that MPLAB and CCS C compiler are installed, create a folder for the
project files, and an MPLAB project called OUTNUM. Copy the MCU header
file 16F877.h from the CCS header file folder to the project folder.

2. Write the program (OUTNUM.C) in the source code edit window of MPLAB,
referring to the compiler manual for the correct syntax, and save it in the project
folder. Assign the source code and header file in the project window.

3. Build the project (compile and link all files) to create OUTNUM.COF. Correct
any syntax and linker errors.

4. Run the program in MPSIM simulation mode. Use the source code debugging
window to trace the program execution and the watch window to track the CPU
variables. Correct any logical errors.

5. Optionally, the program can be tested in Proteus VSM, which once installed, can
be selected from the debugger menu.

C Programming Essentials 37

DER L S0 Bm/+ +AQ80 -~ 1B ITEE A*E~

Figure 2.1: ISIS Dialog to Attach the Program

Program Testing

The program could be tested by downloading to a suitable hardware target system, but

it is preferable to debug it first in simulation mode, either in MPLAB or, preferably, in
Proteus VSM. In the VSM schematic capture and cosimulation module ISIS, the target
PIC is selected from the component library and placed on the schematic. The application
file OUTNUM.COF previously created by the compiler is attached to it (Figure 2.1) and
the schematic saved in the project folder. When the simulation is run, the state of the
outputs is indicated by red and blue indicators.

Although not absolutely necessary for program testing in simulation mode, a set of LEDs
with their load resistors are attached to Port D, since these are required in the actual
hardware to display the outputs (Figure 2.2). No other circuit components or connections
are required at this stage, since the simulation runs correctly without a clock circuit. In
the real hardware, the clock circuit must be added and !MCLR input tied to Vg4 (+5V).
Here, the clock frequency is set in the MCU properties dialog when the program is
attached. To take advantage of the full debugging facilities of MPLAB, Proteus VSM can
be run from within MPLAB by installing it in the debug tool menu. For this, a plug-in
needs to be downloaded from www.labcenter.co.uk. When selected, the simulator runs in
a VSM viewer window (Figure 2.3).

http://www.labcenter.co.uk.

38 Part 2

Ut
% OSC1/CLKIN RBO/INT %
—— MCLR/VPP/THV RB2 5o
5 RB3/PGM [—5—
—2— RAO/ANO RB4 55
—;— RA1/ANT RB5 [—5g
5 1 RA2/AN2VREF— RB6/PGC 40
—2—| RA/ANS/VREF+ RB7/PGD —20
——{ RA4/TOCKI_ .5
— | RA5/AN4/SS ~ RCO/T10SO/T1CKI >
o ~ Rci/T1osiccr2 18
—g—| REO/ANS/RD RC2/CCP1 —]g
To—| REV/ANS/WR RC3/SCK/SCL [—5-
+— RE2/AN7/CS RC4/SDI/SDA (—2=-
RC5/SDO [—o2-
RCB/TX/CK [—22-] 20
RC7/RX/DT |22 1
19 3 =18 o
RDO/PSPO [— < i — .
RD1/PSP1 [—=2 =1 e =
RD2/PSP2 [—57 e T— s ‘
RD3/PSP3 |—22 T e :
RD4/PSP4 ¢ e :
RD5/PSP5 [—=¢ o T—— > 3
RD6/PSP6 20— 0— 1 [5
RD7/PSP7 —
PIC16F877 1

Figure 2.2: OUTBYTE Test Circuit with Output LEDs

Program Analysis

The main program contains just one statement, output_D (255). This means output

the number 255 as a binary code to Port D of the chip, setting all pins high (obviously,
any number between 0 and 255 results in a corresponding output bit combination). All
statements are terminated with a semicolon. This statement is a function call, which means
the compiler gets the machine code for this operation from the standard set of built-in
functions supplied with the compiler. This particular function is one of a set of library
functions of the form output_x (n), where x is the port number (A—E), and n is the output
value (0-255). The general form of the C function is function_name (). Any information
needed by the function, the function parameter(s), is inserted into the parentheses.

The main program starts with the key words void main () and is enclosed between
curly brackets, or braces, as they are officially known. All program blocks are enclosed

C Programming Essentials 39

& outnem - MPLAB IDE v1.52

Pl £t Vew Fromct Cebugoer Frogammer fook Corfigure Window Heb

O | @ SAw Y oy POGcRBO Y& [runwhPoE| ee
PLAT DE Edis T TR
D +Q280 a0

7.
fource code file:

#include "16F8TTA.h"

L]
ratshzing Froseas vEM Ser o | L2 vodd madn()
Irebisinzing Aimmdatinn]

Loading Frogram. ontput_D(255)
FEADT 4

Funneg
READY

Figure 2.3: MPLAB IDE Screenshot

by braces, allowing a multilevel hierarchical structure. Main is a special function that
contains the main program block, within which all lower-level functions are contained.
These can return a result to the calling function, but the keyword void preceding the
function name main means that this function returns no result, since it is the top-level
function.

The preprocessor directive #include "16F877A.h" instructs the compiler to include
this processor-specific file at the top of the program. It contains labels for the registers in
the selected MCU, so that the compiler knows where to store MCU control variables.

Comments can be enclosed between slash/star (/*...*/) control characters or can
follow a double slash (//), in which case the comment is terminated with a line return.
The program header should contain as much information as possible to assist the user and
facilitate future modifications. Ideally, line comments should describe the effect of the
statement in the target system.

The meaning of the C program is independent of the layout on the page. Only the
sequence of characters is significant to the compiler. However, in practice, the program
source code should be arranged to make it as easy to understand as possible. Spaces or
tabs can be used to indent each block (program level), and the open and close braces
should be lined up in the same column so that the brace pairs can be matched up when

www.newnespress.com

40 Part 2

checking the program. This makes subsequent source code debugging and modification
easier. The benefits of good layout become more obvious later, when more complex
programs are developed.

By tradition, C source code is written mainly in lower case, with upper case used for
certain key words.

2.2 PIC16 C Program Basics
® Variables
* Looping
® Decisions

The purpose of an embedded program is to read in data or control inputs, process them,
and operate the outputs as required. Input from parallel, serial, and analog ports are held
in the file registers for temporary storage and processing; and the results are output later
on, as data or a signal. The program for processing the data usually contains repetitive
loops and conditional branching, which depends on an input or calculated value.

Variables

Most programs need to process data in some way, and named variables are needed to hold
their values. A variable name is a label attached to the memory location where the variable
value is stored. When working in assembly language, a register label acts as the variable
name and has to be assigned explicitly. In C, the variable label is automatically assigned
to the next available location or locations (many variable types need more than 1 byte of
memory). The variable name and type must be declared at the start of the program block,
so that the compiler can allocate a corresponding set of locations. Variable values are
assumed to be in decimal by default; so if a value is given in hexadecimal in the source
code, it must be written with the prefix 0x, so that 0xFF represents 255, for example.

A variable called x is used in the program in Listing 2.2, VARI.C. Longer labels

are sometimes preferable, such as “output_value,” but spaces are not allowed. Only
alphanumeric characters (a-z, A-Z, 0-9) and underscore, instead of space, can be used.
By default, the CCS compiler is not case sensitive, so ‘a’ is the same as ‘A’ (even though
the ASCII code is different). A limited number of key words in C, such as main and
include, must not be used as variable names.

C Programming Essentials 1

Listing 2.2 Variables

/*
Source code file: VARI.C
Author, date, version: MPB 11-7-07 V1.0
Program function: Outputs an 8-bit variable
Simulation circuit: OUTBYTE.DSN

********‘k*********‘k***************‘k*****‘k***‘k*‘k***‘k***‘k*‘k***‘k**/

#include "16F877A.h"

void main ()

{

int x; // Declare variable and type
x=99; // Assign variable value
output_D(x) ; // Display the value in binary

}

The variable x is an 8-bit integer with whole number values 0-255;,. The value in binary
can be seen when it is output at an 8-bit port. Generally, C integers (int) are stored as 16-

bit values, but C for 8-bit microcontrollers uses a default 8-bit integer format. In Program
VARILC, an initial value is assigned to the variable (99), which is then used in the output

function. The point here is that the variable value can now be modified without having to
change the output function call itself.

In the program, an 8-bit variable x is declared and assigned a value 99 using the “equals”
operator. It is then output to Port D using the standard output function.

Looping

Most real-time applications need to execute continuously until the processor is turned
off or reset. Therefore, the program generally jumps back at the end to repeat the main
control loop. In C this can be implemented as a “while” loop, as in Listing 2.3.

The condition for continuing to repeat the block between the while braces is contained in
the parentheses following the while keyword. The block is executed if the value, or result of
the expression, in the parentheses is not zero. In this case, it is 1, which means the condition
is always true; and the loop repeats endlessly. This program represents in simple form the
general structure of embedded applications, where an initialization phase is followed by

an endless control loop. Within the loop, the value of x is incremented (x++). The output

42 Part 2

Listing 2.3 Endless Loop

// Source code file: ENDLESS.C
// Program function: Outputs variable count

#include "16F877A.h"

void main ()

{

int x; // Declare variable

while (1) // Loop endlessly

{ output_D(x); // Display value
X++; // Increment value

}
}

therefore appears to count up in binary when executing. When it reaches the maximum for
an 8-bit count (11111111 = 255), it rolls over to 0 and starts again.

Decision Making

The simplest way to illustrate basic decision making is to change an output depending on
the state of an input. A circuit for this is shown in Figure 2.4, INBIT.DSN. The switch
generates an input at RCO and RDO provides the test output.

The common keyword for selection in many high level languages is IF. Program IFIN.C
(Listing 2.4) has the usual endless “while” loop but contains a statement to switch off Port D
initially. The input state is read within the loop using the bit read function input (PIN_CO).
This assigns the input value 1 or 0 to the variable x. The value is then tested in the i £
statement and the output set accordingly. Note that the test uses a double equals to differentiate
it from the assignment operator used in the previous statement. The effect of the program is
to switch on the output if the input is high. The switch needs to be closed before running to
see this effect. The LED cannot be switched off again until the program is restarted.

Loop Control

The program can be simplified by combining the input function with the condition
statement as follows:

if (input (PIN_CO))output_high (PIN_DO) ;

C Programming Essentials 43

U1
% OSC1/CLKIN RBO/INT %
N OSC2/CLKOUT RB1 35
—— MCLR/VpR/THV RB2 32
5 RB3/PGM 5 »
3 RAO/ANO RB4 a8
—4—| RA1/AN1 RB5 59 10k
——| RA2/AN2VrEF - RB6/PGC (o
—2—| RAJ/AN3/VREF+ RB7/PGD 2
——{ RA4/TOCKI_ .5
—| RA5/AN4/SS ~ RCO/T10S0/T1CKI
8 RC1/T10Si/CCcP2 |16
—5—| REO/ANS/RD RC2/CCP1 —];
To—| REV/AN6/WR RC3/SCK/SCL (—18-
19 RE2/ANT7/CS RC4/SDI/SDA (23 ‘\
RC5/SDO —5-
RCE/TX/CK (—22- °9
RC7/RX/DT —== D1)
RDO/PSPO |12 A0 ,
20
RD1/PSP1 S 220R
RD2/PSP2 7 LED-RED
RD3/PSP3 |22
RD4/PSP4 —5k-
RD5/PSP5 9 E—
RDB/PSP6 —2- -
RD7/PSP7 %
PIC16F877

Figure 2.4: INBIT.DSN Test Circuit with Input Switch

Listing 2.4 IF Statement

// IFIN.C Tests an input
#include "16F877A.h"

void main ()

{
int x;
output_D(0) ;
while (1)

{
x = input (PIN_CO) ;

if (x==1)output_high (PIN_DO) ;

}

//
//

/7

//
//

Declare variable
Clear all outputs

Loop always

Get input state
Change output

www.newnespress.com

44 Part 2

Listing 2.5 Conditional Loop

// WHILOOP.C Input switch controls output flashing
#include "16F877A.h"
#use delay (clock=1000000) // MCU clock = 1MHz

void main ()
{
while (1)
{
while (input (PIN_CO0)) // Repeat while switch open

{
output_high (PIN_DO) ;

delay _ms (300) ; // Delay 0.3s
output_low (PIN_DO) ;
delay _ms (500) ; // Delay 0.5s

}

output_low (PIN_DO) ; // Switch off LED

}
}

The conditional sequence can also be selected by a while condition. In Program
WHILOOP.C (Listing 2.5), the input is tested in the loop condition statement and the
output flashed on and off while the switch is open (input high). If the switch is closed,
the flash loop is not executed and the LED is switched off.

The program also demonstrates the delay function. If this were absent, the loop would
execute in just a few microseconds, since each machine code instruction takes 4 s at a
clock rate of 1 MHz.The flashing of the output would be invisible. The delay required
(in milliseconds) is given as the function parameter, and a reference to the function
library is provided at the start of the program with the #use directive. This allows

the compiler to find the library routine delay_ms (). The clock speed of the target
processor must be given in the use directive, so that the correct delay is calculated
within the function.

Compare the syntax of the I/O statements. The function output_high (PIN_nn) is

an output operation to set the port pin high. The function input (PIN_nn) is an input
function that returns a 1 or 0 from the input pin, which can be tested by an IF or WHILE
statement. The ports are initialized automatically within these functions.

C Programming Essentials 45

Listing 2.6 FOR Loop

// FORLOOP.C Repeat loop a set number of times

#include "16F877A.h"
#use delay (clock=1000000)

void main ()

{

int x;
while (input (PIN_CO0)) {}; // Wait until switch closed
for (x=0; x<5; xX++) // For loop conditions
{
output_high (PIN_DO) ; // Flash sequence

delay_ms (500) ;
output_low (PIN_DO) ;
delay_ms (500) ;
}
while (1) ; // Wait for reset

FOR Loop

The WHILE loop repeats until some external event or internally modified value satisfies
the test condition. In other cases, we need a loop to repeat a fixed number of times. The
FOR loop uses a loop control variable, which is set to an initial value and modified for each
iteration while a defined condition is true. In the demo program FORLOOP.C (Listing 2.6),
the loop control parameters are given within the parentheses that follow the for keyword.
The loop control variable x is initially set to 0, and the loop continues while it is less than 6.
Value x is incremented each time round the loop. The effect is to flash the output five times.

The FORLOOP program also includes the use of the while loop to wait for the switch to
close before the flash sequence begins. In addition, an unconditional while loop terminates
the program, preventing the program execution from running into undefined locations
after the end of the sequence. This is advisable whenever the program does not run in a
continuous loop. Note that the use of the empty braces, which contain no code, is optional.

SIREN Program

A program combining some of these basic features is shown in SIREN.C (Listing 2.7).
This program outputs to a sounder rather than an LED, operating at a higher frequency.

46 Part 2

Listing 2.7 SIREN Program

/*

Source code file: SIREN.C

Author, date, version: MPB 11-7-07 V1.0
Program function: Outputs a siren sound
Simulation circuit: INBIT.DSN

Compiler: CCS C Version 4

‘k*************‘k*k********‘k*****************‘k***‘k*‘k*‘k*‘k*‘k*‘k**/

#include "16F877A.h"
#use delay (clock=1000000)

void main ()

{

int step;
while (1) // Keep checking switch
{ while (!input (PIN_CO0)) // Siren while switch ON
{ for (step=0;step<255;step++) // Loop control
{ output_high (PIN_DO) ; // Sound sequence

delay us (step) ;
output_low (PIN_DO) ;
delay_us(step) ;

The delay is therefore in microseconds. The output is generated when the switch is closed
(input CO low). The delay picks up the incrementing value of “step,” giving a longer pulse
each time the for loop is executed. This causes a burst of 255 pulses of increasing length
(reducing frequency), repeating while the input is on. Note that 255 is the maximum
value allowed for “step,” as it is an 8-bit variable. When run in VSM, the output can be
heard via the simulation host PC sound card. Note the inversion of the input test condition
using ! = not true.

The header information is now more extensive, as would be the case in a real application.
Generally, the more complex a program, the more information is needed in the header.
Information about the author and program version and/or date, the compiler version, and

C Programming Essentials 47

the intended target system are all useful. The program description is important, as this
summarizes the specification for the program.

Blank Program

A blank program is shown in Listing 2.8, which could be used as a general template. We
should try to be consistent in the header comment information, so a standard comment
block is suggested. Compiler directives are preceded by hash marks and placed before the
main block. Other initialization statements should precede the start of the main control
loop. Inclusion of the unconditional loop option while (1) assumes that the system will
run continuously until reset.

We now have enough vocabulary to write simple C programs for the PIC microcontroller.
A basic set of CCS C language components is shown in Table 2.1. Don’t forget the
semicolon at the end of each statement.

2.3 PIC16 C Data Operations
® Variable types

¢ Floating point numbers
® Characters
® Assignment operators

A main function of any computer program is to carry out calculations and other forms of
data processing. Data structures are made up of different types of numerical and character
variables, and a range of arithmetical and logical operations are needed. Microcontroller
programs do not generally need to process large volumes of data, but processing speed is
often important.

Variable Types

Variables are needed to store the data values used in the program. Variable labels are
attached to specific locations when they are declared at the beginning of the program,
so the MCU can locate the data required by each operation in the file registers.

48 Part 2

Listing 2.8 Program Blank

// Source Code Filename
// Author/Date/Version :
// Program Description :
// Hardware/simulation :

L1777 7077707 7777777777777 7770777777777777777777777777777777777

#include "16F877A.h" // Specify PIC MCU
#use // Include library routines
void main () // Start main block
{
int // Declare global variables
while (1) // Start control loop
{

// Program statements

}

} // End main block

Table 2.1: A Basic Set of CCS C Source Code Components

C Compiler Directives
#include source files

#use functions(parameters)

Include source code or header file

Include library functions

C Program Block

main(condition) {statements}
while(condition) {statements}
if (condition) {statements}

for (condition) {statements}

Main program block
Conditional loop
Conditional sequence

Preset loop

CCS C Library Functions
delay_ms (nnn)
delay_us (nnn)
output_x(n)
output_high (PIN_nn)

output_low (PIN_nn)

input (PIN_nn)

Delay in milliseconds

Delay in microseconds
Output 8-bit code at Port X
Set output bit high

Set output bit low

Get input

C Programming Essentials 49

Table 2.2: Range of Integer Variables

Name Type Minimum Maximum Range

intl 1 bit 0 1 1=20
unsigned int8 |8 bits 0 255 256 = 28
signed int8 8 bits —127 +127 256 = 28
unsigned int16 | 16 bits 0 65535 65536 = 2'°
signed int16 16 bits —32767 +32767 65536 = 2'°
unsigned int32 |32 bits 0 4294967295 4294967296 = 232
signed int32 32 bits —2147483647 | +2147483647 4294967296 = 232
Integers

We have seen the integer (whole number) variable in use. In the 8-bit MCU, the default type
is an unsigned 8-bit number, giving a range of values of 0-255. This obviously is inadequate
for many purposes, so 16- and 32-bit integer types are also needed (see Table 2.2). The range
of a number is determined by the number of different binary codes that can be represented.
If n is the number of bits, 2" different codes are possible. As 0 must be included, the highest
number is 2"~ V. Hence, the 16-bit unsigned integer has the range 0-65535 (2!° — 1) and the
32 bit 04294967295 (232 — 1). There is also a 1-bit type for bit storage.

Signed Integers

The signed integer uses the most significant bit (MSB) as the sign bit, so the range is
accordingly reduced by half. MSB = 0 represents a positive number, MSB = 1 indicates a
negative number. Therefore, the range for a 16-bit signed integer is —32767 to +32767.
The sign bit must be processed separately to get the right answer from a calculation.

Floating Point

Integers can represent only a limited range of numbers, with a precision of =0.5.
Therefore, the floating point (FP) type should be used for many calculations, particularly
those with a fractional result. The 32-bit FP format can represent decimal numbers from
about 107% to 10*3%, with a precision of about 10”7 (£0.0000001). The number is stored
in exponential format, as used in a standard calculator. Twenty-three bits are used for the
significant digits, called the mantissa. Eight bits are used for the exponent part and one

50 Part 2

for the sign. The IEEE standard form has the sign bit as the MSB, but Microchip and
CCS use a slightly more logical form, where the sign bit is the MSB of the third byte,
leaving the exponent to be represented by the complete high byte (Table 2.3).

The significant figures of the floating point number (mantissa) are represented by a
positive fractional binary number whose value is between 0 and 1. As in any binary
number, the weighting of the 23 bits is a power of 2 series but fractional, that is, Y2, Y4, 14,
Ve, V32, V64, ..., ¥2*. The final fraction represents the resolution of the format, that is, the
smallest step in the number sequence:

1/2% = 1/8388608 =~ 0.0000001 = 1077

Hence, 32-bit floating point numbers are precise to about seven decimal places. The final
result can therefore be quoted to six decimal places, assuming that rounding errors are not
significant.

An example of a floating point number is given in Table 2.4. Its value can be determined
by following the process of conversion that comes next, which is the easiest way to
describe the FP format.

The 32-bit FP number given is

1000 0011 1101 0010 0000 0000 0000 0000

Table 2.3: Microchip/CCS Floating Point Number Format

Exponent Sign Mantissa
eecee eeee s MMM MMM MMM NOMm MMM Immm
8 bits 1 bit 23 bits

Table 2.4: Example of 32-Bit Floating Point Number Format

FP number: 1000 0011 1101 0010 0000 0000 0000 0000

Mantissa: 101 0010 0000 0000 0000 000O

Exponent: 1000 0011

Y
Sign: 1 = negative number

C Programming Essentials 51

The mantissa is the low 23 bits, and the set bit weighting gives the value
1/2 + 1/8 + 1/64 = 0.5 + 0.125 + 0.015625 = 0.640625

Then, 1 is added to shift the decimal part into the range between 1.9999999 and 1.000000:
Decimal number = 1.640625

Signed result = —1.640625

The exponent is given by the high byte: 1000 0011 = 13144

This includes an offset of 127 to allow for positive and negative exponents, so we subtract
127 to obtain the corrected exponent: 131 -127 = +4

The multiplier value is then calculated from the binary exponent: 2™ = 16

The final value is found by multiplying this by the mantissa result:

16 x-1.640625 = —-26.25

The range of numbers that can be represented by the FP format can be estimated from the
exponent range:

Minimum exponent value: 27127 =~ 1073°

Maximum exponent value: 228 =~ 10+38

This is adequate for most purposes. The disadvantage of this format is there are always
slight rounding errors; so if an integer is converted to a FP number and back, it no longer
is exact. This is illustrated in Figure 2.5, where integer variables have been assigned

their maximum values in a demo program and are displayed in the watch window after
running in MPSIM. The integers are correct, but the discrepancy due to rounding errors
between the working value of the floating point number and the original can be seen to be
12.3456793 — 12.3456789 = 0.0000004.

One advantage of C is that the exact method of calculation is normally concealed

within the built-in functions and operations. However, we still need to use the most
appropriate numerical format, because the C compiler does not tell us if the right answer
is obtained from any given calculation. This is where simulation is useful in real-time
applications—we can check that the answers are correct before they are used to modify
control outputs in real hardware. The integer types and ranges available in CCS C are
shown in Table 2.1.

52 Part 2

Fie B3 Vew Prowe Cebggw FProgaemer Tk Cordgue Window el
D@ B SAYT | (e T ERBBO T

LTI

Demo of variable types

#include "16F87TA.h"
veid main()
i

intl hibit=1:

ints hibyte=255;

intlé hiword=65535;
int32 hilong=2147483647:
float afloat=12 3456789 ;
char aletter='n';

while (1) {}

* hibit
hibyte
hivord OXFFFE
hilong OxTFFFFFFF
afloat 12.3456793
aletter 0xd1

Figure 2.5: Variable Types Demo Program Screenshot

Character Variable

Text characters are generally represented by ASCII codes (Table 2.5). The basic set of 7-
bit characters includes the upper and lower case letters and the numerals and punctuation
marks found on the standard computer keyboard. For example, capital (upper case) A is
1000001 (65;(). The numeric characters run from 0x30 (0) to 0x39 (9), so to convert to
the actual number from ASCII, simply subtract 0x30. The character variable is indicated
in C source code in single quotes. For example the statement answer ='Y'; will assign
the value 0x59 to the variable ‘answer’.

Assignment Operations

A range of arithmetic and logic operations are needed where single or paired operands are
processed. The result is assigned to one of the operand variables or a third variable.

Integers can be used for simple unsigned arithmetic operations, giving an exact result.
However, in general, floating point numbers must be used for signed calculations, but
remember there will be small errors. Logical operations must use integers, as the numbers
are processed bit by bit. A complete set of operators is listed in Table 2.6.

www.newnespress.com

C Programming Essentials

53

Table 2.5: The 7-Bit ASCII Codes

High Bits
Low Bits 010 011 100 101 110 111
0000 Space 0 @ P p
0001 ! 1 Q a q
0010 " 2 B R b r
0011 # 3 C S c s
0100 $ 4 D T d t
0101 % 5 E u e u
0110 & 6 F \ f v
0111 ! 7 G \\% g w
1000 (8 H X h X
1001) 9 I Y i y
1010 * J 4 j z
1011 + ; K [k {
1100 : < L \ | |
1101 - = M] m }
1110 > N n n ~
1111 / ? 0] _ o Del

Figure 2.6 shows the output of a test program that carries out some sample operations.

The results are shown in a watch window after running the program in MPSIM. The

8-bit integer operations give the correct output while the result is in range. The product

of the multiplication (mulbyte) is clearly incorrect, while the result of the integer division

(divbyte) is truncated. Floating point calculations are required in this case. The floating
point results show nine significant figures, but only four are valid for the addition and
subtraction, seven for the multiplication, and the division result is also correct only to

seven figures.

54 Part 2
Table 2.6: Arithmetic and Logical Operations
Operation Operator | Description | Source Code Example Result
Single operand
Increment ++ Add 1 to result = numl++; 0000 0000 0000
integer 0001
Decrement - Subtract 1 result =numl-——; 1111 1111 1111
from integer 1110
Complement | ~ Invert all result = ~numl; 0101 0010 1010
bits of 1101
integer
Arithmetic operation
Add + Integer or result = numl+num?2 ; 0000 1010 0001
float +0000 0111 |o0001
Subtract - Integer or result = numl-num?2; 0000 1010 0000
float -0000 0011 |o0111
Multiply * Integer or result =numl*num?2; 0000 1010 |o00O01
float *0000 0011 |1110
Divide / Integer or result =numl /num?2; 0000 1100 0000
float /0000 0011 |0100
Logical operation
Logical AND | & Integer result=numl&num?2 ; 1001 0011 |o0001
bitwise &0111 0001 |o0001
Logical OR | Integer result=numl |num?2; 1001 0011 |1111
bitwise |0111 0001 |0011
Exclusive OR | * Integer result = numl”“num2 ; 1001 0011 |1110
bitwise ~0111 0001 |o0010

Conditional Operations

Where a logical condition is tested in a while, if, or for statement, relational operators
are used. One variable is compared with a set value or another variable, and the block

is executed if the condition is true. The conditional operators are shown in Table 2.7.
Note that double equals is used in the relational test to distinguish it from the assignment

operator.

C Programming Essentials 55

& " opers - MPLAD IDE v1.50
Fa B Vew Promct Cebuggw Frogaemer Tooh Codgus Widow el
DL DB SAW T | fanc o c@BO 18| [cuwh iR

ints bytel-173, byte2-45
intd addbyte, subbyte, mulbyte, divbyte:
intd incbytel, decbytel, combytel:

int® MMDbyte, ORbyte, XOBbyte

float puml=17.34, numd=-56.78;
float addfloat, subfloat, msulfloat, divfloat

incbytel - bytel. incbytel:::
decbytel - bytel: dechbytel

combytel =~ bytel.
addbyte - bytel + byte2:
subbyte - bytel - byte?

mulbyte - bytel * byted
divbyte - bytel / byte2:

#ubfloat
mulfloat
Aivfloat
ANDBYe
ORbyte

addfloat - num? + numl; XoRbyte 01010110

subfloat - num? - numl;
mulfloat - num? * puml
divfloat - pum2 / numl

byto?
byte2
byte?

Waich1 | \wlsich 2| Wiskch 3] \elatch 4|

Figure 2.6: Results of Sample Arithmetic and Logic Operations in
MPLAB Program Simulation

Table 2.7: Conditional Operators

Operation Symbol Example

Equal to == if(a==0) b=b+5;
Not equal to 1= if(a!=1) b=b+4;
Greater than > if(a>2) b=b+3;
Less than < if(a<3) b=b+2;
Greater than or equal to >= if(a>=4) b=b+l;
Less than or equal to <= if(a<=5) b=b+0;

Sometimes, a conditional test needs to combine tests on several values. The tests can be
compounded by using logical operators, as follows:

AND condition: if ((a>b)&& (c=d))..

OR condition: if ((a>b)]||(c=d))..

www.newnespress.com

56 Part 2

(a) (b)
L 4
A 4
Condiﬁo} .
< ?
True: Statement
Block
A 4
Statement
Block Condition
True?

]
Figure 2.7: Comparison of (a) While and (b) Do..While Loop

2.4 PIC16 C Sequence Control
While loops

® Break, continue, goto
e If, else, switch

Conditional branching operations are a basic feature of any program. These must be
properly organized so that the program structure is maintained and confusion avoided.
The program then is easy to understand and more readily modified and upgraded.

While Loops

The basic while (condition) provides a logical test at the start of a loop, and the
statement block is executed only if the condition is true. It may, however, be desirable
that the loop block be executed at least once, particularly if the test condition is affected
within the loop. This option is provided by the do. .while (condition) syntax. The
difference between these alternatives is illustrated in Figure 2.7. The WHILE test occurs
before the block and the DO WHILE after.

The program DOWHILE shown in Listing 2.9 includes the same block of statements
contained within both types of loop. The WHILE block is not executed because the
loop control variable has been set to 0 and is never modified. By contrast, ‘count’ is
incremented within the DO WHILE loop before being tested, and the loop therefore is
executed.

C Programming Essentials 57

Listing 2.9 DOWHILE.C Contains Both Types of ‘While’ Loop

// DOWHILE.C
// Comparison of WHILE and DO WHILE loops

#include "16F877A.H"

main ()

{
int outbytel=0;
int outbyte2=0;
int count;

// This loop is not executed

count=0;

while (count!=0)

{ output_C (outbytel) ;
outbytel++;
count--;

}

// This loop is executed...................

count=0;

do

{ output_C (outbyte?2) ;
outbyte2++;
count--;

} while (count!=0);

while(1){};
}

Break, Continue, and Goto

It may sometimes be necessary to break the execution of a loop or block in the middle of
its sequence (Figure 2.8). The block must be exited in an orderly way, and it is useful to
have the option of restarting the block (continue) or proceeding to the next one (break).
Occasionally, an unconditional jump may be needed, but this should be regarded as a last
resort, as it tends to threaten the program stability. It is achieved by assigning a label to
the jump destination and executing a goto. .label.

The use of these control statements is illustrated in Listing 2.10. The events that trigger
break and continue are asynchronous (independent of the program timing) inputs from
external switches, which allows the counting loop to be quit or restarted at any time.

58 Part 2

4

A4

<

v

Label

Statement
Block

Goto

Continue

Break —

<

v

Figure 2.8: Break, Continue, and Goto

Listing 2.10 Continue, Break, and Goto

// CONTINUE.C

// Continue, break,

#include "16F877A.H"
#use delay(clock=4000000)

main ()
{
int outbyte;

again: outbyte=0;

while (1)

{
output_C (outbyte) ;
delay _ms (10) ;
outbyte++;

delay_ms(100) ;

if (!input (PIN_D1)) break;

and goto jumps

if (!input (PIN_DO)) continue;

if (outbyte==100) goto again;

// Destination of goto

// Foreground operation

// Increments Port C

// Skip other tests if input 0

low

// Terminate loop if input 1 low

// Debounce inputs
// Restart at 100

www.newnespress.com

C Programming Essentials 59

The goto again is triggered by the count reaching a set value, which could be better
achieved by using the While condition. In a more complex program, exiting a function in
this way risks disrupting program control, since the function is not properly terminated.
The significance of this should become clearer when functions are analyzed later.

If..Else and Switch..Case

We have seen the basic if control option, which allows a block to be executed or skipped
conditionally. The else option allows an alternate sequence to be executed, when the

if block is skipped. We also need a multichoice selection, which is provided by the
switch. .case syntax. This tests a variable value and provides a set of alternative
sequences, one of which is selected depending on the test result.

These options are illustrated in flowchart form in Figures 2.9 and 2.10, and the i £. .
else and switch. .case syntax is shown in Listing 2.11. The control statement
switch (variable)tests the value of the variable used to select the option block. The
keyword case n: is used to specify the value for each option. Note that each option
block must be terminated with break, which causes the remaining blocks to be skipped.
A default block is executed if none of the options is taken.

The same effect can be achieved using if. .else, but switch. .case provides a more
elegant solution for implementing multichoice operations, such as menus. If the case
options comprise more than one statement, they are best implemented using a function
block call, as explained in the next section.

(a) (b)
Condition Condition
True? True?
A 4 v v
If If Else
Block Block Block

|

Figure 2.9: Comparison of (a) If and (b) If..Else

60 Part 2

Test Variable Value

Value

Procedure 1

Procedure 2

=37 Procedure 3

Default Procedure
v
Figure 2.10: Switch..Case Branching Structure

2.5 PIC16 C Functions and Structure

® Program structure

¢ Functions, arguments

Global and local variables

The structure of a C program is created using functions (Figure 2.11). This is a block of
code written and executed as a self-contained process, receiving the required parameters
(data to be processed) from the calling function and returning results to it. Main () is the
primary function in all C programs, within which the rest of the program is constructed.

When running on a PC, main ()
to the OS when the C program is

is called by the operating system, and control is returned
terminated. In the microcontroller, main () is simply

used to indicate the start of the main control sequence, and more care needs to be taken in
terminating the program. Normally, the program runs in a continuous loop, but if not, the

final statement should be while

(1) ; , which causes the program to wait and prevents

the program running into undefined locations following the application code.

C Programming Essentials 61

Listing 2.11 Comparison of Switch and If..Else Control

// SWITCH.C

// Switch and if..else sequence control

// Same result from both sequences
[117077
#include "16F877A.h"

void main ()

{

int8 inbits;

while (1)
{
inbits = input_D(); // Read input byte
switch(inbits) // Test input byte
{
case 1: output_C(1); // Input = 0x01, output = 0x01
break; // Quit block
case 2: output_C(3); // Input = 0x02, output = 0x03
break; // Quit block
case 3: output_C(7); // Input = 0x03, output = 0x07
break; // Quit block
default:output_C(0) ; // If none, output=0x00

}

if (input (PIN_DO)) output_C(1l); // This block has same effect
if (input (PIN_D1)) output_C(2);

if (input (PIN_DO) && input (PIN_D1)) output_C(7);

else output_C(0);

We have already seen built-in functions such as input (PIN_DO) and output_C (255),
which read and write the ports. Function “arguments,” given in the parentheses, allow
function parameters to be passed to the function block, in this case specifying the port or
pin to be accessed. Another example is delay_ms (100), which passes the required
delay time to the delay function.

In this case, the function code must be called up explicitly with the #use delay
(clock=4000000) directive. This tells the compiler to include the delay library
functions, allowing the system clock to be specified at the same time, so that the correct
delays can be calculated.

62 Part 2

! 1
LEVEL 0 ' LEVEL 1 ' LEVEL 2
! 1
!
P void funl()
statements
}
Main()
statements
funl() <
statements
statements
P void fun2(arg) ‘{’OId fun3
ol statements statements
statements L .
fun2(arg) < fun3 <
statements L)
’ return(val) Q

Figure 2.11: Hierarchical C Program Structure

Basic Functions

A simple program using a function is shown in FUNCI1.C, Listing 2.12. The main

block is very short, consisting of the function call out () and a while statement, which
provides the wait state at the end of main (). In this case, the variables are declared
before the main block. This makes them global in scope; that is, they are recognized
throughout the whole program and within all function blocks. The function out () is also
defined before main (), so that, when it is called, the function name is recognized. The
function starts with the keyword void, which indicates that no value is returned by the
function. The significance of this is explained shortly.

The function itself simply increments Port C from 0 to 255. It contains a for loop to
provide a delay, so that the output count is visible. This is a simple alternative to the
built-in delay functions seen in previous examples and is used here to avoid the inclusion
of such functions while we study user-defined functions. It simply counts up to a preset
value to waste time. The delay time is controlled by this set value.

For those readers familiar with assembly language, the disassembly listing for this
program is instructive. It will be seen that Call and Return are not used to implement the
function call. Instead, Goto is used throughout; this is to avoid the limited stack depth
(eight levels) in the PIC architecture, so that it is possible to have more that eight levels of
function calls in the program.

C Programming Essentials 63

Listing 2.12 Basic Function Call

// FUNC1l.C
// Function call and program structure
[177707777077

#include "16F877A.H"

int8 outbyte=1; // Declare global variables
intlé n;
void out () /17777177777 777777777/7/777/7/ Start of function block
{
while (outbyte!=0) // Start loop, quit when output 0
{ output_C (outbyte) ; // Output code 1 - OXFF
outbyte++; // Increment output
for(n=1;n<500;n++); // Delay so output is visible
}
}
main() /177777777777 777777777/7/// Start of main block
{
out () ; // Function call
while (1) ; // Wait until reset

Global and Local Variables

Now, assume that we wish to pass a value to the function for local use (that is, within the
function). The simplest way is to define it as a global variable, which makes it available
throughout the program. In program FUNC2.C, Listing 2.13, the variable count, holding
the delay count, hence the delay time, is global.

If there is no significant restriction on program memory, global variables may be used.
However, microcontrollers, by definition, have limited memory, so it is desirable to

use local variables whenever possible within the user functions. This is because local
variables exist only during function execution, and the locations used for them are freed
up on completion of function call. This can be confirmed by watching the values of C
program variables when the program is executed in simulation mode—the local ones
become undefined once the relevant function block is terminated.

If only global variables are used and the functions do not return results to the calling
block, they become procedures. Program FUNC3.C, Listing 2.14, shows how local

64 Part 2

Listing 2.13 Passing a Parameter to a Function

// FUNC2.C
// Uses global variables only
[/1777777777770777

#include "16F877A.H"

int8 outbyte=1; // Declare global variables
intl6é n,count;

void out () /1777777777777 //7//// Function to run output count
{
while (outbyte!=0)
{ output_C (outbyte) ;
outbyte++;
for (n=1;n<count;n++) ; // Use global value for count
}
}

main () /117717777777 /777//7// Main block
{

count=2000; // Set variable value

out () ; // Call function

while (1) ; // Wait for reset
}

variables are used. The function out () runs a binary count, which is stopped when

a switch on pin DO is closed. This value is then returned to the main program and
displayed. Variable n is local to function out () and is declared within the function.
Variable t is also local but receives its value from the variable count in the calling
routine. The value is transferred between the argument in the function call (count) and
the argument of the function declaration (int16 t).Note that the local integer type
must be declared in the function declaration. The function also returns a value outbyte
to the main block. This is displayed at Port C in the main routine.

2.6 PIC16 C Input and Output
e RS232 serial data
e Serial LCD

¢ (Calculator and keypad

C Programming Essentials 65

Listing 2.14 Using Local Variables in Functions

// FUNC3.C
// Uses local variables
[1777177

#include "16F877A.H"

int8 outbyte=1; // Declare global variables
intl6 count;
int out(intlé t) /////7///////// Declare argument types
{
intlé n; // Declare local variable

while (input (PIN_DO)) // Run at speed t
{ outbyte++;
for (n=1;n<t;n++);
}
return outbyte; // Return output when loop stops

}

main () [177
{
count=50000;

out (count) ; // Pass count value to function
output_C (outbyte) ; // Display returned value
while (1) ;

If an electronic gadget has a small alphanumeric LCD, the chances are that it is a
microcontroller application. Smart card terminals, mobile phones, audio systems, coffee
machines, and many other small systems use this display. The LCD we use here has a
standard serial interface, and only one signal connection is needed. The signal format is
RS232, a simple low-speed protocol that allows 1 byte or character code to be sent at a
time. The data sequence also includes start and stop bits, and simple error checking can
be applied if required. The PIC 16F877, in common with many microcontrollers, has a
hardware RS232 port built in. Further details of RS232 are found elsewhere in this book.

Serial LCD

CCS C provides an RS232 driver routine that works with any I/O pin (that is, the
hardware port need not be used). This is possible because the process for generating
the RS232 data frame is not too complex and can be completed fast enough to generate

66 Part 2

the signal in real time. At the standard rate of 9600 baud, each bit is about 100 s long,
giving an overall frame time of about 1 ms. The data can be an 8-bit integer or, more
often, a 7-bit ASCII character code. This method of transferring character codes via a
serial line was originally used in mainframe computer terminals to send keystrokes to the
computer and return the output—that is how long it’s been around.

In this example, the LCD receives character codes for a 2-row X 16-character display. The
program uses library routines to generate the RS232 output, which are called up by the
directive #use RS232. The baud rate must be specified and the send (TX) and receive
(RX) pins specified as arguments of this directive. The directive must be preceded by a
#use delay, which specifies the clock rate in the target system. The LCD has its own
controller, which is compatible with the Hitachi 44780 MCU, the standard for this interface.

When the system is started, the LCD takes some time to initialize itself; its own MCU
needs time to get ready to receive data. A delay of about 500 ms should be allowed in
the main controller before attempting to access the LCD. A basic program for driving the
LCD is shown in Listing 2.15.

Characters are sent using the function call putc (code), whose argument is the ASCII
code for the character; the ASCII table given previously (Table 2.5) lists the available
codes. Note that the codes for ‘0’ to ‘9’ are 0x30 to 0x39, so conversion between the code
and the corresponding number is simple. Characters for display can be defined as ‘A’ to
Z’ and so on, in single quotes, in the program.

The character is then replaced by its code by the compiler. The display also needs control
codes, for example, to clear the display and reset the cursor to the start position after
characters have been printed. These are quoted as an integer decimal and sent as binary. Each
control code must be preceded by the code 254 (1111 1110) to distinguish it from data. The
code to start the second line of the display is 192. The display reverts automatically to data
mode after any control code. A basic set of control codes is identified in Table 2.8.

In the example program LCD.C, the sample character ‘acap’ is upper case ‘A’, ASCII
code = 1000001 = 65,. If a string of fixed characters are to be displayed, the form
printf ("sample text") can be used. The meaning of the function name is “print
formatted.” We often need to insert a variable value within fixed text; in this case, a
format code is placed within the display text, and the compiler replaces it with the value
of the variable, which is quoted at the end of the printf statement. The code $d means
display the variable value as an integer decimal number, $c means display the ASCII
character corresponding to the number. Multiple values can be inserted in order, as seen
in program LCD.C. A summary of formatting codes is shown in Table 2.9.

C Programming Essentials

67

Listing 2.15 Serial LCD Operation

// LCD.C
// Serial LCD test-send character using putc() and printf ()
[1777

#include "16F877A.h"

#use delay(clock=4000000)

#use rs232(baud=9600, xmit=PIN_DO, rcv=PIN_D1) // Define speed
and pins

void main ()

{

char acap='A"'; // Test data

delay ms (1000) ; // Wait for LCD to wake up

putc(254); putc(l); // Home cursor

delay ms (10) ; // Wait for LCD to finish

while (1)

{
putc (acap) ; // Send test character
putc(254); putc(192); delay_ms(10); // Move to second row
printf ("ASCII %c CHAR %d ",acap,acap); // Send test data again
while(1);

Table 2.8: Essential Control Codes for Serial 2x16 LCD

Code Effect

254 Switch to control mode
followed by

00 Home to start of row 1
01 Clear screen

192 Go to start of row 2

Listing 2.16 shows the program FLOAT.C, which illustrates how different variable types
are displayed, as well as showing the range of each type. Each variable type is output in

turn to the display. The general form of the format code is $nt, where n is the number
of significant figures to be displayed and t is the output variable type. The number of

68 Part 2

Table 2.9: Output Format Codes

Code Displays

%d Signed integer

%u Unsigned integer

sLu Long unsigned integer (16 or 32 bits)

LS Long signed integer (16 or 32 bits)

%g Rounded decimal float (use decimal formatting)
&£ Truncated decimal float (use decimal formatting)
%e Exponential form of float

W Unsigned integer with decimal point inserted (use decimal formatting)
%X Hexadecimal

$LX Long hex

%cC ASCII character corresponding to numerical value
%s Character or string

decimal places printed can also be specified for floating point numbers; for example,
%5 .3d displays a decimal number with five significant digits and three decimal places.

Keypad and Calculator

A simple calculator application demonstrates the use of the LCD and a keypad, as well as
some numerical processing.

A matrix keypad provides a simple data entry device for microcontroller systems. The
keys are connected in rows and columns, such that pressing a button connects a row to a
column. The required connections are shown in Figure 2.12. The rows, labeled A, B, C,
and D, are connected as outputs at Port B, avoiding the programming pins. The columns,
labeled 1, 2, 3, and 4, are connected as inputs on Port D and are pulled up to +5V by
10-k resistors. A serial LCD, described previously, is driven from pin 7 of Port D.

To read the keypad, each row is set low in turn and the state of the inputs tested. If no
button is pressed, all the inputs remain high. When a key is operated, a low on that

C Programming Essentials

69

Listing 2.16 Formatted Variable Output to a Serial Display

/* FLOAT.C MPB 4—3—07

Displays variable types and ranges
**/

#include "16F877A.h"

#use delay(clock=4000000)
#use rs232(baud=9600, xmit=PIN_DO, rcv=PIN_D1)

intl minbit=0, maxbit=1;

signed int8 minbyte=-127, maxbyte=127;

signed intl6 minword=-32767, maxword=32767;

signed int32 minlong=-2147483647, maxlong=2147483647;
float testnum=12345.6789;

void main ()

{

delay ms (1000) ; // Wait for LCD to wake
putc(254); putc(l); // Home cursor
delay_ms(10) ; // Wait for LCD to do
while (1)

{
printf ("Bit:%d or %d",minbit, maxbit); delay_ms(1000) ;
putc(254); putc(l); delay _ms(10);

printf ("Byte %d to %d",minbyte, maxbyte) ; delay_ms(1000) ;
putc(254); putc(l); delay ms(10);

printf ("Word %Ld",minword); putc(254); putc(192);
delay_ms(10); printf(" to %Ld",maxword); delay ms(1000);
putc(254); putc(l); delay _ms(10);

printf ("Long %Ld",minlong); putc(254); putc(192);
delay _ms (10); printf(" to %$Ld",maxlong); delay_ms(1000) ;
putc(254); putc(l); delay_ms(10);

printf ("Float %5.4g",testnum); putc(254); putc(192);
delay_ms(10); printf("or %e", testnum); delay ms(1000);
putc(254); putc(l); delay_ms(10);

row is detected on the column input for that key, which allows a corresponding code
to be generated. This is a binary number or ASCII code, as required by the particular
application. Program CALC.C (Listing 2.17) runs on this hardware and implements a

simple calculator with limited range.

70 Part 2
U1
A
% OSC1/CLKIN RBO/INT %
14— oscz/cLkout RB1 [A E B
—1 | MCLRVee/THV RB2 32
2 RB3/PGM 37 8
—2— RAO/ANO RB4 —o¢ }}
—— RAT/AN RB5 —ao
—5—{ RA2/AN2VrEF— RB6/PGC [.
5 RA3/AN3/VREF + RB7/PGD ——
——{ RA4/TOCKI_ 15
—7 | RAS/AN4/SS RCO/T10SO/T1CKI |15 oN
7 RC1/T10Si/ICCP2 |18 o E E
-2 ReO/ANS/RD Reziccpt 17 —
Jo—| REV/ANSWR Rca/sckiscL (18
10| Re2/AN7/CS RCA4/SDI/SDA —23.
RC5/SDO (22
RC6/TX/CK [—52-
RC7/RX/DT |28
RDWPSPO‘4§%
RD1/PSP1 [—5C
RD2/PSP2 51
RD3/PSP3
oPSee [2s
5/PSP5 —20-
RD6/PSP6 % LD
RD7/PSP7 VDD
PIC16F877 RXD

VSs

MILFORD-2X16-BKP

Figure 2.12: Calculator Schematic

Listing 2.17 Calculator Program

/*
Source Code Filename:
Author/Date/Version:
Program Description:
Hardware/simulation :

CALC.C

MPB 21-12-07

Calculator demo program
CALC.DSN

**/
#include "16F877A.h"

#use delay(clock=4000000)
#use rs232 (baud=9600,xmit=PIN_D7,rcv=PIN_DO)

// Declare Varlables R R I b i R AR I Rk R R R b R R R R Ik Sk R R R I

int akey, keynum, opcode, numofdigs, start;

int32 numl, num2, result, reml, rem2, rem3, remé;
int32 hunsdig, tensdig, onesdig;

int32 hunthous, tenthous, thous, hunds, tens, ones;

C Programming Essentials 71

// Declare functions R S I I I S S I I S I S S R I I S I R I I I S

void scankey(); // Read keypad
void makenum(); // Construct input decimal from keys

// MAIN PROGRAM: Get numbers & calculate %%kt doh koo koo ook ko

void main ()

for(;;)
{

F A € 1= Tl o U 111 oY1k P

delay_ms (500); putc(254); putc(l); delay ms(10); // Clear display
numofdigs=onesdig=tensdig=hunsdig=0; akey=0x30;

do

{ scankey(); // Get first number
putc (akey) ;
if ((akey>=0x30) && (akey<=0x39)) makenum() ;

} while((akey>=0x30)&& (akey<=0x39)) ;

numl=(onesdig+ (tensdig*10) + (hunsdig*100)) ; // Calculate it
opcode=akey;

numofdigs=onesdig=tensdig=hunsdig=0; akey=0x30; // Get second number
do
{ scankey();
putc (akey) ;
if ((akey>=0x30) && (akey<=0x39)) makenum() ;
} while((akey<=0x30)&& (akey<=0x39)) ;

num2= (onesdig+ (tensdig*10) + (hunsdig*100)) ; // Calculate it

// Calculate resUlt.ttt it et e e e
if (opcode==0x2F) result=numl/num?2;
if (opcode==0x24) result=numl*num?2 ;
if (opcode==0x2D) result=numl-num2;
if (opcode==0x2B) result=numl+num2;

//Calc result Aigits. ...ttt e e e e e e e e
hunthous=result/100000; reml=result- (hunthous*100000) ;
tenthous=reml/10000; rem2=reml- (tenthous*10000) ;
thous=rem2/1000; rem3=rem2- (thous*1000) ;

hunds=rem3/100; rem4=rem3- (hunds*100) ;

tens=rem4/10; ones=remd- (tens*10) ;

// Display AigaitsS. v v ittt e e e e e e e e e e

start=0;
if (hunthous!=0) {putc (hunthous+0x30) ;start=1;}

72 Part 2

if ((tenthous!=0) || (start==1)) {putc (tenthous+0x30); start=1;}
if ((thous!=0) || (start==1)) {putc(thous+0x30); start=1;}

if ((hunds!=0) || (start==1)) {putc (hunds+0x30); start=1;}

if ((tens!=0) || (start==1)) {putc (tens+0x30); start=1;}

1f ((0) 1] ¢) {putc (ones+0x30); start=1;}

while (akey!=0xFF) scankey/() ;

ones!= start==1)

}
// PROCEDURE: Derive input digits R R I b S I O S S S S O I

void makenum ()
{
keynum=akey-0x30;
numofdigs++;
if (numofdigs==3)
{ hunsdig=tensdig; tensdig=onesdig; onesdig=keynum; }
if (numofdigs==2)
{ tensdig=onesdig; onesdig=keynum; }
if (numofdigs==1)
onesdig=keynum;

}

// PROCEDURE: Scans keypad attached to Port D **#F*xdkkddkkxdkrdhrtix

void scankey ()
{
akey=0;
while (akey==0)
{
output_b(255); output_low(PIN_B1l);
if (!input (PIN_D1))
{akey = 0x37; delay _ms(50); while(!input (PIN_D1)){};}
if (!input (PIN_D2))
{akey = 0x38; delay_ms(50); while(!input (PIN_D2)){};}
if (!input (PIN_D3))
{akey = 0x39; delay ms(50); while(!input (PIN_D3)){};}
if (!input (PIN_D4))
{akey = 0x2F; delay ms(50); while(!input (PIN_D4)){};}

output_b(255); output_low(PIN_B2) ;
if (!input (PIN_D1))

{akey = 0x34; delay ms(50); while(!input (PIN_D1)){};}
if (!input (PIN_D2))

{akey = 0x35; delay_ms(50); while(!input (PIN_D2)){};}
if (!input (PIN_D3))

{akey = 0x36; delay_ms(50); while(!input (PIN_D3)){};}

C Programming Essentials 73

if (!input (PIN_D4))
{akey = 0x2A; delay ms(50); while(!input (PIN_D4)){};}

output_b (255); output_low(PIN_B4) ;
if (!input (PIN_D1))

{akey = 0x31; delay ms(50); while(!input (PIN_D1)){};}
if (!input (PIN_D2))

{akey = 0x32; delay _ms(50); while(!input (PIN_D2)){};}
if (!input (PIN_D3))

{akey = 0x33; delay_ms(50); while(!input (PIN_D3)){};}
if (!input (PIN_D4))

{akey = 0x2D; delay ms(50); while(!input (PIN_D4)){};}

output_b(255); output_low(PIN_B5) ;
if (!input (PIN_D1))

{akey = OxFF; putc(254); putc(l); delay ms(500);}
if (!input (PIN_D2))

{akey = 0x30; delay ms(50); while(!input (PIN_D2)){};}
if (!input (PIN_D3))

{akey = 0x3D; delay _ms(50); while(!input (PIN_D3)){};}
if (!input (PIN_D4))

{akey = 0x2B; delay_ms(50); while(!input (PIN_D4)){};}

The program incorporates a procedure makenum () to generate a one-, two-, or three-
digit integer from the individual input digits and scankey () to read each keystroke.

The functions are declared as prototypes before main () ; this allows the functions to be
defined after main (). This is sometimes more logical—the main block is designed first,
and the details within the functions developed afterward. The main block is a continuous
loop defined by the control statement for (; ;). This unconditional for statement is
equivalent to while (1), the unconditional while loop. The main loop processes the input
and calculates the resulting digits.

2.7 PIC16 C More Data Types

® Arrays and strings
® Pointers and indirect addressing

e Enumeration

74 Part 2

The data in a C program may be most conveniently handled as sets of associated
variables. These occur more frequently as the program data becomes more complex, but
only the basics are mentioned here.

Arrays

Arrays are sets of variable values having the same type and meaning. For example, each
word in a text file is stored as a character array, a sequence of ASCII codes. This is also
referred to as a string. A numerical array might be a sequence of voltage readings from an
analog input in a test system or controller. The program ARRAYS.C (Listing 2.18) shows
how they can be created and displayed. The arrays are declared using a collective name

Listing 2.18 Numerical and Character Arrays

// ARRAYS.C

// Demo of numerical and string arrays

// Attach ARRAYS.COF to LCD.DSN to display
[1177777777077

#include "16F877A.h"
#use delay(clock=4000000)
#use rs232 (baud=9600, xmit=PIN_DO, rcv=PIN_D1)

main ()

{
int8 aval=0, n; // Declare single variables
int8 anum[10]; // Declare integer array
char astring[16]; // Declare character array

/7] SEATE LiCD . i ittt ettt et e e e e e e e e e e e e e e e
delay_ms (1000) ;
putc(254); putc(l); delay ms(10);

// Assign data@ L0 ATTayS. . i i it iiit ettt eeeeeenneeeeeneenn.
for (n=0; n<10; n++) { anum[n]=aval; aval++; }
strcpy(astring, "Hello!");

// Display Aata. . vuii ittt it e e e e e e e e
for (n=0; n<10; n++) printf("%d",anum[n]);
putc(254); putc(192); delay ms(10);
puts (astring) ;

while(1); // Wait

C Programming Essentials 75

and subscript placeholder (anum[10]and astring[16]), which instructs the compiler to
allocate a suitable set of locations in RAM. The variable type declaration determines how
many locations per value are needed.

The numerical array values are initialized using a for loop; a variable n, which
increments from 0 to 9, is used as loop counter and also as the array index value. The
character array values are assigned using the function strcpy () (string copy). Its
arguments are the target array name astring and the text in double quotes, which is
copied to the array. The end of the string is automatically terminated by a zero value,
creating a “null terminated string.” This allows the end of the message to be easily
detected by a receiving device.

The numerical data are displayed on our 16x2 LCD using printf (), again using a

for loop. The string is output in a different manner; the puts () (put string) function
is simpler than printf () and avoids the need to output each character separately, using
putc (). However, printf () is still more convenient for displaying a fixed string.

Table 2.10 shows the contents of the RAM file registers after the program ARRAYS has
executed. It can be seen that the numerical array data has been allocated to locations
0x21 to 0x2 A inclusive in the GPRs, with the character data in locations 0x2D to 0x32
inclusive. The characters are displayed in the right column, converted from ASCII. The
single integers are seen in the locations 0x2B and 0x2C (final value 0x0A). The data
bytes can be accessed directly in these locations using indirect addressing operators.

Indirect Addressing Operators

C provides various ways of manipulating data in memory. Since there always seems to be
several ways to get the same result, this can be confusing for the beginner. If a variable

Table 2.10: MPLAB Display of Array Data in File Register

Address 00 01 02 03 04 05 06 07 08 09 0A OB 0C 0D OE OF ASCII
000 -- 00 38 1Cc 00 00 00 00 01 00O OO OO OO OO 00 0O =8
010 00 00 00 0O 0O 00 00 00 00 00 00 OO0 0O 00 00 00 ... oo,

020 00 00 01 02 03 04 05 06 07 08 09 0OA OA 48 65 6C, Hel

030 6C 6F 21 00 00 00 00 00 00 0O 00 0O OO0 32 00 18 lol..oooo ool 2..

040 20 20 20 39 14 OA 00 00 00 00 00O 00 0O 00 00 0O L

76 Part 2

& paints - MPLAD I0F ¥7.50
Fa £ Vew Promct Oebugow Progammer fook Corfigure Window Heb

OoF | ‘Wl SHY Y | Ricasc v G RO TE| cuehPrE
- Apeintsc

// POINTE.C

#include "16F87TA.h"

main()
i
int8 numl=123, pointl, num2:

pointl = &numl ;
= W 4
WPrograen File#CCS PIC CompilenPICC Dl pointl;
APIC BOOKSF

CPIC BOOKSIF while(l) :

Mamoryisge; FOMsD% RAMSZ% - 2%

OEnces, 2 Wamings.

Loadad CFIC BOOKSIFIC Progrmimisg BaokiAp

[BUILD SUCCEEDED: Tha Mar £2 203400 2007

<
- alch

2 KN Bonstars o= ADCOND | [Add Syeted | C1OUT

[Addreas [00]01]02[03]04]05]06]07]08]05[0A]08]0c] 00| OE[0F A AT 1
010 00 00 00 00 00 00 00 00 00 0O 00 0O 0D 00 00 00 5"::‘!1 e | Ty
ozo 00 7B 21 78 00 00 00 00 00 00 00 00 00 00 00 00 P‘:.Z X
030 00 00 00 00 00 00 00 00 00 0O 00 GO 00 DO 00 0D ¥ X L)

© 3 numl o0x78

Waich 1 [taiateh 2 | wiakeh 3| wisich &

LR S FICIEFATTA peilicie Wb e bark.0

Figure 2.13: Program POINTS.C Demonstrating Address_of and
Contents_of Operators

is declared in C, the next available RAM location, or locations, is reserved for it by the
compiler. As we have seen, CCS C can assign 1 bit, 1 byte (integer or character),
2 bytes (integer), or 4 bytes (integer or float).

If we initially concentrate on byte storage, we can see that it consists of two associated
values, the address of the location and the contents of the location. When a variable is
declared, its label is assigned to the file RAM address by the compiler. When the variable
1s used, this address is used to access the variable value.

Often, it is useful to be able to do this explicitly, and some functions require it. Therefore,
the operators address_of (&, ampersand) and contents_of (*, star) are provided. These are
illustrated in Figure 2.13, a screenshot of demo program POINTS.C.

An 8-bit integer labeled num1 is declared and initialized to the value 123 (0x7B). Pointer
pointl is then assigned the address of num1 (File RAM address 0x21), and num2 is
assigned the contents of the address pointed to by point1 (0x7B). These values can be
seen in the watch window and file register window. The pointer (contents_of operator)
can be used for accessing a sequence of data words in memory by incrementing,
decrementing, or modifying the pointer variable. The address_of operator can be used

to obtain the address of the first item in the array.

www.newnespress.com

C Programming Essentials 77

Fin G Ve Peowc Dstugee Pogwene Tok Cafgus Widee Rep

Do S SNN T Recae TS HBO TE LR]

rogramming bk ppsprogs Wasiablerenumer wnumer ¢
{/ ENUMER.C
#include "LEFSTTA.h"
main ()
{
intg month:
enum {none, jan, feb, mar, apr. may, jun):
anum 1Jul=7, aug, sep, oct, nov, dec):
month=mar :

while(l) ;

e Raginters (=13

0Es i
Loades P 8008 S\P'C%f‘s mmmmmmmmmmmm
= 00

D SUCCEEDED: Fribar 2 18 00 00 00 0O 00 00 00 00 BB 00 00 00
Uis T 0b 80 48 08 00 0 00 #8 08 10 00 b) o6 48 46

00 00 03 B0 00 00 00 00 00 BB 00 00 00 B0 B0 08 00 ¥
© 3

Figure 2.14: Enumeration MPLAB Screenshot

These operators are useful for accessing data arrays and structures. Structures are sets
of data that contain different variable types mixed together, but as they are used more
extensively in data processing applications than real-time applications, they will not be
covered here.

Enumeration

Individual variables can be assigned an initial value when declared. If we wish to declare
a set of numbers that are continuous, as in ARRAYS.C, a convenient way is to use the
enumeration variable type (Figure 2.14). In its simplest form, it assigns incrementing
values to a set of labels. Optionally, the value can be set explicitly at any point in the list,
and the values increment from there.

Note that the label values are not initialized in the file registers, just created in the
complier memory. In the example ENUMER.C illustrated, the value of label mar (03)
only appears in memory at address 0x21 when assigned to the integer variable month.

2.8 PIC16 C Compiler Directives

® Include and use directives

® Header file listing and directives

www.newnespress.com

78 Part 2

Compiler directives are typically used at the top of the program to set up compiler
options, control project components, define constant labels, and so on before the main
program is created. They are preceded by the hash symbol to distinguish them from other
types of statements and do not have a semicolon to end the line.

Program Directives

Examples using the directives encountered thus far follow—refer to the compiler
reference manual for the full range of options.

#include "16F877A.h"

The include directive allows source code files to be included as though they had been
typed in by the user. In fact, any block of source code can be included in this way, and
the directive can thus be used to incorporate previously written reusable functions. The
header file referred to in this case provides the information needed by the complier to
create a program for a specific PIC chip.

#use delay(clock=4000000)

The ‘use’ directive allows library files to be included. As can be seen, additional
operating parameters may be needed so that the library function works correctly. The
clock frequency given here needs to be specified so that both software and hardware
timing loops can be correctly calculated.

#use rs232(baud=9600, xmit=PIN DO, rcv=PIN D1)
In this directive, the parameters set the RS232 data (baud) rate and the MCU pins to be

used to transmit and receive the signal. This software serial driver allows any available
pin to be used.

Header File

A selection of the more commonly used directives are seen in the processor header file,
which must be included in every program. The file 16F877A.H is reproduced in full in
Listing 2.19.

The device directive selects the target processor, and can be followed by various options.
One that we use later is ADC=8, which sets the resolution of the analog input conversion.

C Programming Essentials 79

Listing 2.19 Header File 16F877A.H

//////// Standard Header file for the PIC16F877A device /////////
#device PIC16F877A

#nolist

//////// Program memory: 8192x14 Data RAM: 367 Stack: 8

//////// I/0: 33 Analog Pins: 8

//////// Data EEPROM: 256

//////// C Scratch area: 77 ID Location: 2000

//////// Fuses: LP,XT,HS,RC,NOWDT,WDT,NOPUT, PUT, PROTECT, DEBUG, NODEBUG
//////// Fuses: NOPROTECT, NOBROWNOUT, BROWNOUT, LVP, NOLVP, CPD, NOCPD, WRT_50%
//////// Fuses: NOWRT,WRT_25%,WRT_5%

/117777177
[1777
//

// Discrete I/O Functions: SET_TRIS_x(), OUTPUT x(), INPUT_x(),

// PORT_B_PULLUPS(), INPUT(),
!/ OUTPUT_LOW (), OUTPUT_HIGH(),
!/ OUTPUT_FLOAT (), OUTPUT_BIT()
//

// Constants used to identify pins in the above are:
#define PIN_AO 40 // Register 05, pin 0 (5x8)+0=40

#define PIN_Al 41 // Register 05, pin 1 (5x8)+1=41
#define PIN_A2 42 // Register 05, pin 2 (5x8)+2=42
#define PIN_A3 43 // Register 05, pin 3 etc
#define PIN_A4 44 // Register 05, pin 4

#define PIN_AS5 45 // Register 05, pin 5

#define PIN_BO 48 // Register 06, pin 0 (6*8)+0=48
#define PIN_B1 49 // Register 06, pin 1 etc
#define PIN_B2 50 // Register 06, pin 2

#define PIN_B3 51 // Register 06, pin 3

#define PIN_B4 52 // Register 06, pin 4

#define PIN_B5 53 // Register 06, pin 5

#define PIN_B6 54 // Register 06, pin 6

#define PIN_B7 55 // Register 06, pin 7

#define PIN_CO 56 // Register 07, pin 0 (7*8)+0=56
#define PIN_C1l 57 // Register 07, pin 1 etc
#define PIN_C2 58 // Register 07, pin 2

#define PIN_C3 59 // Register 07, pin 3

#define PIN_C4 60 // Register 07, pin 4

#define PIN_C5 61 // Register 07, pin 5

#define PIN_C6 62 // Register 07, pin 6

#define PIN_C7 63 // Register 07, pin 7

80 Part 2

#define PIN_DO 64 // Register 08, pin 0 (8*8)+0=64
#define PIN_D1 65 // Register 08, pin 1 etc
#define PIN_D2 66 // Register 08, pin 2

#define PIN_D3 67 // Register 08, pin 3

#define PIN_D4 68 // Register 08, pin 4

#define PIN_D5 69 // Register 08, pin 5

#define PIN_D6 70 // Register 08, pin 6

#define PIN_D7 71 // Register 08, pin 7

#define PIN_EO 72 // Register 09, pin 0 (9*8)+0=72
#define PIN_E1 73 // Register 09, pin 1 etc
#define PIN_E2 74 // Register 09, pin 2
1117777777777 777/7/ Useful defines
#define FALSE 0 // Logical state 0

#define TRUE 1 // Logical state 1

#define BYTE int // 8-bit value

#define BOOLEAN short int // 1l-bit value

#define getc getch // Alternate names..

#define fgetc getch // ..for identical functions

#define getchar getch
#define putc putchar
#define fputc putchar
#define fgets gets
#define fputs puts

/1777777777777 777/77//7/ Control
// Control Functions: RESET CPU(), SLEEP(), RESTART_CAUSE()

// Constants returned from RESTART CAUSE() are:

#define WDT_FROM_SLEEP O // Watchdog timer has woken MCU from sleep
#define WDT_TIMEOUT 8 // Watchdog timer has caused reset

#define MCLR_FROM_SLEEP 16 // MCU has been woken by reset input
#define NORMAL_POWER_UP 24 // Normal power on reset has occurred

[1777/77777/7/ Timer 0
// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS() or SETUP_TIMERO (),

// SET_TIMERO () or SET_RTCC(),

// GET_TIMERO () or GET_RTCC ()

// Constants used for SETUP_TIMERO () are:

#define RTCC_INTERNAL 0 // Use instruction clock
#define RTCC_EXT_L_TO_H 32 // Use TOCKI rising edge
#define RTCC_EXT_H_TO_L 48 // Use TOCKI falling edge

#define RTCC_DIV_1 8 // No prescale
#define RTCC_DIV_2 0 // Prescale divide by 2
#define RTCC_DIV_4 1 // Prescale divide by 4

C Programming Essentials 81

#define RTCC_DIV_S8
#define RTCC_DIV_16
#define RTCC_DIV_32
#define RTCC_DIV_64
#define RTCC_DIV_128
#define RTCC_DIV_256

// Prescale divide by 8

// Prescale divide by 16
// Prescale divide by 32
// Prescale divide by 64
// Prescale divide by 128
// Prescale divide by 256

~N o Ul W N

#define RTCC_8_BIT 0

// Constants used for SETUP_COUNTERS() are the above
// constants for the lst param and the following for
// the 2nd param:

L1070 700 0700700070770 7007700700777/ WoT

// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above)
// RESTART_WDT ()

// Constants used for SETUP_WDT() are:

#define WDT_18MS 8 // Watchdog timer interval=18ms
#define WDT_36MS 9 // Watchdog timer interval=36ms
#define WDT_72MS 10 // Watchdog timer interval=72ms
#define WDT_144MS 11 // Watchdog timer interval=144ms
#define WDT_288MS 12 // Watchdog timer interval=288s
#define WDT_576MS 13 // Watchdog timer interval=576ms
#define WDT_1152MS 14 // Watchdog timer interval=1.15ms
#define WDT_2304MS 15 // Watchdog timer interval=2.30s

L1100 0007000707000/ Timerl
// Timer 1 Functions: SETUP_TIMER_1, GET_TIMER1l, SET_TIMER1

// Constants used for SETUP_TIMER_1() are:

// (or (via |) together constants from each group)

#define T1_DISABLED 0 // Switch off Timer 1
#define T1_INTERNAL 0x85 // Use instruction clock
#define T1_EXTERNAL 0x87 // Use TI1CKI as clock input
#define TI1_EXTERNAL_SYNC 0x83 // Synchronise T1CKI input
#define T1_CLK_OUT 8

#define T1_DIV_BY 1 0 // No prescale

#define T1_DIV_BY_ 2 0x10 // Prescale divide by 2
#define T1_DIV_BY 4 0x20 // Prescale divide by 4
#define T1_DIV_BY_38 0x30 // Prescale divide by 8

11777777777 77/7/777// Timer 2
// Timer 2 Functions: SETUP_TIMER_ 2, GET_TIMER2, SET_TIMER2

// Constants used for SETUP_TIMER_2 () are:

#define T2_DISABLED 0 // No prescale

#define T2_DIV_BY_1 4 // Prescale divide by 2

#define T2_DIV_BY_ 4 5 // Prescale divide by 4

#define T2_DIV_BY 16 6 // Prescale divide by 16

82 Part 2

[177/7777/7 CCP
// CCP Functions: SETUP_CCPx, SET_PWMx_DUTY

// CCP Variables: CCP_x, CCP_x_LOW, CCP_x_HIGH

// Constants used for SETUP_CCPx() are:

#define CCP_OFF 0 // Disable CCPx

#define CCP_CAPTURE_FE 4 // Capture on falling edge of
CCPx input pin

#define CCP_CAPTURE_RE 5 // Capture on rising edge of
CCPx input pi

#define CCP_CAPTURE_DIV_4 6 // Capture every 4 pulses of
input

#define CCP_CAPTURE_DIV_16 7 // Capture every 16 pulses of
input

#define CCP_COMPARE_SET_ON_MATCH 8 // CCPx output pin goes high
when compare succeeds

#define CCP_COMPARE_CLR_ON_MATCH 9 // CCPx output pin goes low
when compare succeeds

#define CCP_COMPARE_INT 0xA // Generate an interrupt when
compare succeds

#define CCP_COMPARE_RESET TIMER 0xB // Reset timer to zero when
compare succeeds

#define CCP_PWM 0xC // Enable Pulse Width
Modulation mode

#define CCP_PWM_PLUS_1 0x1lc

#define CCP_PWM_PLUS_2 0x2c

#define CCP_PWM_PLUS_3 0x3c

long CCP_1;

#byte CCP_1 = 0x15 // Addresses of CCPl registers

#byte CCP_1_LOW = 0x15

#byte CCP_1_HIGH= 0x16

long CCP_2;

#byte CCP_2 = 0x1B // Addresses of CCP2 registers

#byte CCP_2_LOW = 0x1B

#byte CCP_2_HIGH= 0x1C

[177/ PSP

// PSP Functions: SETUP_PSP, PSP_INPUT_FULL(), PSP_OUTPUT_ FULL(),

// PSP_OVERFLOW (), INPUT _D(), OUTPUT_D()

// PSP Variables: PSP_DATA

// Constants used in SETUP_PSP() are:
#define PSP_ENABLED 0x10 // Enable Parallel Slave Port
#define PSP_DISABLED 0 // Disable Parallel Slave Port

#byte PSP_DATA= 8 // Address of PSP data register

C Programming Essentials 83

[177/7/7/ SPI
// SPI Functions: SETUP_SPI, SPI_WRITE, SPI_READ, SPI_DATA_IN
// Constants used in SETUP_SSP() are:

#define SPI_MASTER 0x20 // Select SPI master mode

#define SPI_SLAVE 0x24 // Select SPI slave mode

#define SPI_L_TO_H 0 // Strobe data on rising edge of
clock

#define SPI_H_TO_L 0x10 // Strobe data on falling edge of
clock

#define SPI_DIV 4
#define SPI_CLK_DIV_16
#define SPI_CLK_DIV_64
#define SPI_CLK_T2
#fine SPI_SS_DISABLED

// Master mode clock divided by 4

// Master mode clock divided by 16
// Master mode clock divided by 64
// Master mode clock source=Timer2/2
// Slave select input disabled

P WwWwND P o

#define SPI_SAMPLE_AT END 0x8000
#define SPI_XMIT L_TO_H 0x4000

[1777/7/// UART
// Constants used in setup_uart() are:

// FALSE - Turn UART off

// TRUE - Turn UART on

#define UART ADDRESS 2

#define UART DATA 4

[17777 7777777777777 7777777777777777777777777777777777777/77777777/77 COMP
// Comparator Variables: C10OUT, C20UT

// Constants used in setup_comparators() are: (see 16F877 data
sheet, figure 12.1)
#define AO_A3_Al_ A3 Oxf£f£04 // Two common reference
comparators

#define AO_A3_Al_A2_OUT ON_A4_A5 0xfcf03 // Two independent
comparators with outputs

#define AO0O_A3_Al_A3_OUT_ON_A4_A5 Oxbcf05 // Two common reference
comparators with outputs

#define NC_NC_NC_NC 0x0f£f07 // Comparator inputs
disconnected

#define AO_A3_Al_A2 0xfff02 // Two independent
comparators

#define AO_A3_NC_NC_OUT_ON_A4 0x9ef01 // One independent
comparator with output

#define AO_VR_Al_VR 0x3ff06 // Two comparators with
common internal reference

#define A3_VR_A2_VR Oxcffle // Two comparators with

common internal reference

#bit ClOUT =0x9c.6
#bit C20UT =0x9c.7

84 Part 2

[177771777/777//// VREF
// Constants used in setup_vref () are:

//

#define VREF_LOW 0xal // Comparator reference voltage low
range 0-3.75V nominal

#define VREF_HIGH 0x80 // Comparator reference voltage high
range 1.25V-3.75V nominal

// Or (with |) the above with a number 0-15 (reference voltage

selection within range)
#define VREF_A2 0x40

LI170770 7700700770077 7 70770777707 77777777777777777777777777/77 ADC

// ADC Functions: SETUP_ADC (), SETUP_ADC_PORTS() (aka SETUP_PORT_A),

// SET_ADC_CHANNEL (), READ_ADC ()

//

// Constants used for SETUP_ADC() are: (Fosc=MCU clock frequency)

#define ADC_OFF 0 // ADC Off

#define ADC_CLOCK_DIV_2 0x10000 // ADC clock=Fosc/2

#define ADC_CLOCK_DIV_4 0x4000 // ADC clock=Fosc/4

#define ADC_CLOCK_DIV_S8 0x0040 // ADC clock=Fosc/8

#define ADC_CLOCK_DIV_16 0x4040 // ADC clock=Fosc/16

#define ADC_CLOCK_DIV_32 0x0080 // ADC clock=Fosc/32

#define ADC_CLOCK_DIV_64 0x4080 // ADC clock=Fosc/64

#define ADC_CLOCK_INTERNAL 0x00cO // Internal 2-6us clock

// Constants used in SETUP_ADC_PORTS() are:

#define NO_ANALOGS 7 // None - all pins
are digital I/O

#define ALL_ANALOG 0 // A0 Al A2 A3 A5 EO

El E2 are analog
#define ANO_AN1_AN2_AN4_AN5_AN6_AN7_VSS_VREF 1 // 7 analog, 1
reference input

#define ANO_ANI1_AN2_AN3_AN4 2 // 5 analog, 3
digital I/O
#define ANO_AN1_AN2_ AN4_VSS_VREF 3 // 4 analogue, 1
reference input
#define ANO_ANI1_AN3 4 // 3 analog, 5
digital I/0
#define ANO_AN1_VSS_VREF 5 // 2 analog, 1
reference input
#define ANO_AN1_AN4_ANS5_AN6_AN7_VREF_VREF 0x08 // 6 analog, 2
reference inputs
#define ANO_AN1_AN2_AN3_AN4_AN5 0x09 // 6 analog, 2
digital I/0
#define ANO_AN1_AN2_AN4_AN5_VSS_VREF 0x0A // 5 analog, 1

reference input

C Programming Essentials 85

#define ANO_ANI1_AN4_AN5_VREF_VREF 0x0B // 4 analog, 2 reference
inputs, 2 digital

#define ANO_AN1_AN4_VREF_VREF 0x0C // 3 analog, 2 reference
inputs, 3 digital

#define ANO_AN1_VREF_VREF 0x0D // 2 analog, 2 reference
inputs, 4 digital

#define ANO 0x0E // 1 analog, 7 digital

#define ANO_VREF_VREF 0xO0F // 1 analog, 2 reference,
5 digital

// Constants used in READ_ADC() are:
#define ADC_START_AND_ READ 7 // This is the default if
nothing is specified

#define ADC_START ONLY 1

#define ADC_READ_ONLY 6
[177/7/7 INT
// Interrupt Functions: ENABLE_INTERRUPTS(), DISABLE_INTERRUPTS(),

// EXT_INT_EDGE ()

// Constants used in EXT_INT EDGE () are:

#define L_TO_H 0x40 // Interrupt on rising edge of external input
#define H_TO_L 0 // Interrupt on falling edge of external input
// Constants used in ENABLE/DISABLE_INTERRUPTS() are:

#define GLOBAL 0x0BCO // Identify all interrupts

#define INT_RTCC 0x0B20 // Identify Timer0 overflow interrupt
#define INT_RB 0x0B08 // Identify Port B change interrupt
#define INT_ EXT 0x0B10 // Identify RBO external interrupt

#define INT_AD 0x8C40 // Identify ADC finished interrupt

#define INT_ TBE 0x8C10 // Identify RS232 transmit done interrupt
#define INT_ RDA 0x8C20 // Identify RS232 receive ready interrupt

#define INT_TIMER1 0x8C0l1 // Identify Timerl overflow interrupt
#define INT_TIMER2 0x8C02 // Identify Timer2 overflow interrupt

#define INT_CCP1 0x8C04 // Identify Capturel or Comparel interrupt
#define INT_CCP2 0x8D01 // Identify Capture2 or Compare2 interrupt
#define INT_SSP 0x8C08 // Identify Synchronous Serial Port interrupt
#define INT_PSP 0x8C80 // Identify Parallel Slave Port interrupt

#define INT_BUSCOL 0x8D08 // Identify I2C Bus Collision interrupt
#define INT_EEPROM O0x8D10 // Identify EEPROM write completion interrupt
#define INT TIMERO 0x0B20 // Identify Timer0 overflow interrupt
#define INT_COMP 0x8D40 // Identify Analog Comparator interrupt

#list
#device PIC16F877A

86 Part 2

#define PIN A0 40

The define directive causes simple text replacement in the source code and is used
primarily for defining constants, that is, fixed values used in the program. As can be seen,
most of the header file consists of this directive. In the previous example, the compiler
replaces the text PIN_AQ with the number 40,,, which specifies bit 0 of file register 5 in
the PIC register set (5x8=40). We can therefore deduce that the compiler identifies each bit
in the file registers by counting from zero (file register 0, bit 0) through all the registers. In
other cases, a setup code for loading into a control register is defined, as follows.

#define T1l INTERNAL 0x85

In the header file, the constant values are associated mainly with the chip hardware (e.g.,
I/O pin identification) or constants used in the CCS 1/O functions. However, they can
also be used to specify alternate function names and to create a MACRO. This is a block of
replacement code, allowing a frequently used code sequence to be replaced with a macro
name. We use it later to simplify the LCD driver code.

#list, #nolist

These turn the C source code insertion within the assembler list file on and off. It is turned
off at the beginning of the header file to stop the source code window being filled with the
header file, then turned on again at the end to show the user source code, which follows.
#byte, #bit

These are used to specify the address to be used for a particular bit- or byte-sized variable.
Comments have been added to the header file in Listing 2.19 to clarify the function of some
directives. For more details on the meaning of the defined constants, refer to the MCU

data sheet and CCS Compiler Reference Manual. Generally, the constants are values to be
loaded into the control registers to set up a specific peripheral interface. Not all the options
available within the MCU control registers are available as C function options. If necessary,
control bits in the peripheral setup registers can be written directly, using the ‘contents_of’
operator. If a function needs more than one argument, the constants may be combined with
an OR operator (1), so that the active bits from more than one control code take effect.

2.9 PIC16 C Assembler Routines
® Reasons for using assembly language
¢ Insertion of assembler sequence

¢ Overview of assembly language

C Programming Essentials 87

The default programming language of any microprocessor or microcontroller is its own
assembly language. The syntax used for any given processor is determined by its internal
architecture and the machine code instructions that control it. Assembly language is the
first-level abstraction from machine code, where each instruction is represented by a
corresponding text mnemonic.

Program Compilation

When compiled, a C program is converted into assembler, then to machine code. We also
have seen that one C statement translates into a whole sequence of assembler instructions.
Since each C statement is independently translated into machine code, there is often
unnecessary duplication of instructions. For example, each time a port is accessed, the
required initialization is repeated. As a result, the assembler program derived from C
source code is always considerably longer than an equivalent assembler program that
performs these functions.

For this reason, many compilers contain optimization routines that try to minimize this
problem by analyzing the compiler code and eliminating redundant operations. For example,
when an I/O operation is converted, the compiler can check to see if the port is already
correctly initialized; if so, repetition of the initialization can be eliminated from the code.

Alternatively, sections of the program can be written directly in assembler. Not only is

the code more compact, the timing is more predictable and execution faster. Say that a

fast pulse waveform is to be generated by toggling a port bit. The maximum frequency
depends on the number of instructions on the output loop. If the sequence is implemented
in C code, a loop of two statements is required (Listing 2.20). This compiles into the code
seen in Listing 2.21, and we see that a sequence of nine assembler instructions is obtained.
Taking into account that the last instruction, GOTO 0x6b, takes two instruction cycles to
complete, the total loop time will be ten instructions. If the MCU is clocked at 4 MHz, each
instruction takes 1ps and the whole loop, 10ps. The period of the output then is 100kHz.

Listing 2.20 C Code Fragment for Pulse Output Loop

while (1)
{ output_high (PIN_DO) ;
output_low (PIN_DO) ;
}

88 Part 2

Listing 2.21 Disassembled Code for Pulse Output Loop

25: while (1)
26: { output_high(PIN_DO) ;
006B 1008 BCF 0x8, O
006C 1283 BCF 0x3, 0x5
006D 1408 BSF 0x8, O
27: output_low (PIN_DO) ;
006E 1683 BSF 0x3, 0x5
006F 1008 BCF 0x8, O
0070 1283 BCF 0x3, O0x5
0071 1008 BCF 0x8, O
28: 1}
0072 1683 BSF 0x3, 0x5
0073 286B GOTO O0x6b

Note the redundancy in the sequence; the pin data direction setting is repeated in each
statement, where the file register bank is selected (BCF 0x3, 0x5), and the direction bit is
cleared to O (BCF 0x8, 0).

Assembler Block

The maximum output frequency of the pulse waveform can be increased by using a small
assembler block to toggle the output bit. A program is shown in Listing 2.22 that outputs
a pulse train when a button connected to RBO input is pressed (active low). The main
program provides initialization of the button interrupt and an assembler block, which
outputs the signal in a loop that is as short as possible. The interrupt routine at the top of
the program is called when the button is not pressed (default condition), switching off the
output and waiting for the button to be pressed again to resume the output.

The start of the assembler block is identified by the #asm directive and terminated with
#endasm. All the code between these points must conform to the PIC assembler syntax
requirements (see Instruction Set, Table 2.11). The interrupt still works, even though

it is set up in C, because ultimately the interrupt control settings are the same in C and
assembler. Listing 2.23 disassembles the assembly block.

Note that the compiler automatically includes the necessary file register bank select
command to access the port data bits. Port B, bit 0, is then set, cleared, and the GOTO
takes the execution point straight back to the set instruction, giving a total loop time of

C Programming Essentials

89

Listing 2.22 C Source Code with Assembler Block

/*
Source code file: FAST.C
Author, date, version: MPB 19-10-07 V1.0
Program function: Demo of assembler block
Simulation circuit: ASSEM.DSN

***/

#include "16F877A.h"
#use delay(clock=4000000)

// ISR switches off output and waits for button ******kxsxkx
#int_ext
void isrext ()
{ output_low (PIN_DO) ;
delay_ms (100) ;
while (input (PIN_BO)) ;
}

// Main block initializes interrupt and waits for button ***
void main ()
{

enable_interrupts (int_ext) ;

enable_interrupts (global) ;

ext_int_edge(L_TO_H) ;

// Assembler block outputs high speed pulse wave ***x***xx*

#asm
Start:
BSF 8,0
BCF 8,0
GOTO Start
#endasm

} // End Of source COde LRIk I I I S S I I I S S R S I S Sk I I

four instructions, or 4 us. The output therefore runs at 250kHz, 2.5 times faster than the
C loop shown in Listing 2.20. If the MCU clock is uprated to the maximum 20 MHz, the

output frequency is 1.25 MHz.

A screenshot of this program, FAST.C, under test in MPLAB with VSM debugging
is shown in Figure 2.15. The frequency of the output is displayed on the VSM virtual

counter/timer instrument.

90 Part 2

Table 2.11: PIC 16FXXX Instruction Set by Functional Groups

Operation Example

Move

Move data from F to W MOVF oC,w
Move data from W to F MOVWF oc
Move literal into W MOVLW

Register

Clear W (reset all bits and value to 0) CLRW

Clear F (reset all bits and value to 0) CLRF oc
Decrement F (reduce by 1) DECF oc
Increment F (increase by 1) INCF 0c
Swap the upper and lower four bits in F SWAPF ocC
Complement F value (invert all bits) COMF oc
Rotate bits Left through Carry Flag RLF oc
Rotate bits Right through Carry Flag RRF oc
Clear (reset to 0) the bit specified (e.g., bit 3) BCF 0c,3
Set (to 1) the bit specified (e.g., bit 3) BSF 0c,3
Arithmetic

AddWtoF ADDWF 0oc
Add F to W ADDWF oc,w
Add Lto W ADDLWOF9
Subtract W from F SUBWF ocC
Subtract W from F, placing result in W SUBWF oc,w
Subtract W from L, placing result in W SUBLWOF9

Logic

AND the bits of W and F, result in F ANDWF 0oc
AND the bits of W and F, result in W ANDWF oc,w
AND the bits of L and W, result in W ANDLWOF9

C Programming Essentials

91

Table 2.11: (Continued)

Operation Example

OR the bits of W and F, result in F IORWF 0ocC
OR the bits of W and F, result in W IORWF oc,w
OR the bits of L and W, result in W IORLWOF9
Exclusive OR the bits of W and F, result in F XORWF oc
Exclusive OR the bits of W and F, result in W XORWF oc,w
Exclusive OR the bits of L and W XORLWOF9

Test and Skip

Test a bit in F and Skip next instruction if it is Clear (= 0) BTFSC 0¢C,3
Test a bit in F and Skip next instruction if it is Set (= 1) BTFSS 0¢c,3

Decrement F and Skip next Instruction if it is now 0

Increment F and Skip next Instruction if it is now 0

DECFSZ 0c
INCFSZ 0c

Jump

Go To a Labeled Line in the Program GOTO start
Jump to the Label at the start of a Subroutine CALLdelay
Return at the end of a Subroutine to the next instruction RETURN

Return at the end of a Subroutine with L in W RETLW 0F9
Return from Interrupt Service Routine to next instruction RETFIE

Control

No Operation, delay for 1 cycle NOP

Go into Standby Mode to save power SLEEP

Clear Watchdog Timer to prevent automatic reset CLRWDT

Load Port Data Direction Register from W* TRISO06

Load Option Control Register from W OPTION

Notes: The result of operations can generally be stored in W instead of the file register by adding ‘W’ to the

instruction. General Purpose Register 1, address 0C, represents all file registers (00-4F).
Literal value OF9 represents all values 00-FF. Bit 3 is used to represent File Register Bits 0-7.
For MOVE instructions data are copied to the destination but retained in the source register.

F = Any file register (specified by number or label), example is 0C.

W = Working register.
L = Literal value (follows instruction), example is OF9.

* = Use of these instructions not now recommended by manufacturer.

92 Part 2

Listing 2.23 Assembler Block Disassembled

29: // Assembler block outputs high speed pulse wave ******%

30:

31: #asm

32:

33: Start:

34: BSF 8,0 006B 1283 BCF 0x3, 0x5
006C 1408 BSF 0x8, O

35: BCF 8,0 006D 1008 BCF 0x8, O

36: GOTO Start 006E 286C GOTO O0x6¢c

37:

38: #endasm

& fast - MPLAR IDE ¥7.52
Fle [t Vew Froject Detugoer Frogrammer Tock Configus Window el

D& BETAYY (R T EERO tE | rEE PR e re
- 8
L |
[// ISR switches off output and -
=N éb~~ @B T |[+AQ00 /40" =
A N ve EEE CEE o
void isrext() .
| output_low(BIN_DO) - a5
delay_ms(100) ; ut C k|
| whi Lo Anput (PIH_BO}) ; 1= e 73
= { raare =5
/F Main block initialises int R rnw R 4
55 e, - -
void main() rmtteio
1 %
enable_interrupts(int_ext) i ﬁ B
enable_interrupts (global) = TR 9
u

ext_int_edge (L_To_H)
// Assembler block cutputs|

it 1 .0

Start
BSF 8,0

BCF 8,0 VARIMATING: 000117 600000 [CPY ioad 2731 0, 5Mesragel)
GOTO Start

Hendasm

] // End of source code swekesksaes

¥

Figure 2.15: Debug Screenshot of FAST.C Showing Output Frequency

PIC Assembly Language

A complete introduction to programming PIC microcontrollers in assembly language
is given in PIC Microcontrollers, An Introduction to Microelectronics by the author
(Elsevier, second edition, 2004). A brief overview is given here for those readers
interested primarily in C programming. To program in assembler, some knowledge
of the internal hardware of the MCU is needed. The PIC16F877A architecture was

www.newnespress.com

C Programming Essentials 93

introduced in Part 1 of this book, and the file register set is detailed further in
Appendix C.

The primary purpose of any programming language is to get data into a system, process
it, and output it in some useful form. In assembly language, the program statements act
directly on the MCU registers. All the hardware information needed for programming
in assembler is given in the data sheet for each PIC MCU, including the instruction set,
register details, and setup requirements.

A simplified version of the instruction set is shown in Table 2.11. It is organized by
function; that is, instructions with similar functions are grouped together. As explained in
Part 1, the operation of the MCU revolves around the numbered file register set and the
working register, designated W in the instructions. Register OC (12), the first general
purpose register, is used to represent the file registers in the examples. The special
function registers at the low addresses, which control the MCU setup and program
execution, are accessed in exactly the same way as the data registers.

The Move instructions are the most commonly used; these allow a data byte to be moved
from the working register to a file register and back or to load immediate data into W. Note
that data cannot be moved directly between file registers in the 16FXXX instruction set—this
is one of the casualties of the minimal instruction set (RISC) chip design philosophy. The
register instructions operate on a single file register, allowing it to be cleared, incremented,
decremented, rotated (shifted), and so on. Individual bits may also be set and cleared.

The Arithmetic and Logic instructions operate on pairs of registers in binary: adding,
subtracting, and carrying out logical bit-wise operations. If the result of an operation is
0 or a carry or overflow occurs, this is recorded in a flag bit in the status register

(SFR 03). For example, if a result is 0, the status register bit 2 is set. The flag can then
be used by a bit Test and Skip instruction to select alternate program sequences. In the
PIC, this is implemented by the instruction following the test being skipped or not,
depending on the result. Usually, this a jump instruction (GOTO or CALL), which takes
the program execution point to a new position (or not).

GOTO means go to a given program memory location unconditionally. CALL also means
jump but store a return address, so that the current sequence can be resumed when the
subroutine is finished, indicated by the RETURN instruction. The jump destination is
normally given a label, such as “start” in the example, in the source code.

Unlike C, the program designer must allocate memory explicitly, using suitable labels;
variables are declared using an equate directive at the top of the program to identify

94 Part 2

a GPR for that byte. The register labels are then recognized by the assembler as
representing a specific location. Obviously, only 8-bit variables can be used in assembler,
so care must be taken if using long values generated in the C program sections. An
assembler header file can allocate standard labels to the SFRs in the same way as the C
header defines the control register codes. The #include directive is the same in C and
assembler and can be used to include assembler header, library, and user source code.

There are only 35 core instructions in the 16FXXX instruction set. This reduced
instruction set increases the program execution speed. Additional special instructions

are available to compensate for the limited instruction set; these are basically predefined
macros. A macro is a code sequence that can be predefined and given its own name,
then inserted by the assembler when invoked by name. User-defined macros may also be
created as required.

Therefore, if direct control of the MCU registers and instruction sequence is required for any
reason or the speed of execution is critical, the C programmer can always revert to assembler
code. Since most microcontroller application designers are familiar with assembly language
anyway, including assembler blocks typically requires little additional learning time.

Assessment 2
(5 points each, total 100)

1. List the syntax features that a minimal C program must contain if compiled for
the PIC16F877A MCU.

2. List the steps required to create and test a C program for a PIC MCU prior to
downloading to hardware.

3. Write a C statement that outputs the 8-bit value 64, to Port C. Write an
alternative 1-bit output statement that has the same effect, assuming all the port
bits are initially 0.

4. Describe briefly the difference between a WHILE loop, a DO..WHILE loop, and
a FOR loop.

5. Describe the effect of the following statements on active high LEDs connected to
Port D, assuming an active low switch circuit is connected to pin RC7:
output_D(255); delay ms(1000);

while (!input (PIN_C7)){output_D(15);}
output_D(0);

C Programming Essentials 95

10.

11.

12.

13.

14.

15.

Calculate the highest positive number that can be represented by the following
variable types: (a) 8-bit unsigned integer, (b) 16-bit signed integer, (c) 32-bit
floating point number.

Estimate the degree of precision provided by the following numerical types as a
percentage, to two significant figures: (a) 8-bit integer, (b) 32-bit FP number.

Work out the value of the FP number represented by the binary code
1000 0010 0011 0000 0000 0000 0OOO 0O0OO

Write a C statement to convert numbers O to 9 to their ASCII hex code, using
variables ‘n’ for the number and ‘a’ for the ASCII code and send it to serial LCD.

State the result of each of these operations in decimal and 4-bit binary, if n=5
andm=7:

(a) n++.

(b) ~m.

(¢) n&m.

(d) n|m.

(e) n~m.

State the effect of the jump commands continue, break, and goto label
when used within a program loop.

A menu is required with a choice of three options to be selected by a numerical
variable x =1, 2, 3. Each option is implemented in a separate function, funx ().
Write a C code section to show how swi tch can be used to implement the menu.

Explain why the use of local variables is preferable in C programs designed for
microcontrollers with limited RAM.

Explain how the use of functions leads to well-structured C programs and the
benefits of this design approach.

State the meaning of the source code items that are underlined:
int out (intl6é t)

{
intl6 n;

while (input (PIN_DO0))
{ outbyte++;
for (n=1;n<t;n++);
}

return outbyte;

96 Part 2

16. Outline briefly the format of the RS232 signal and how it is used to operate a
serial alphanumeric LCD.

17. Draw a simple flowchart to represent a function to scan the keys of a numerical
keypad and return a code for a key press.

18. Explain the meaning of each component of the statement
printf ("%d",anum[n]) ;

19. Explain the significance of the & and * operators in C.
20. State the function of the compiler directives:

(a) #include.
(b) #define.
(c) #use.

(d) #device.
(e) #asm.

Assignments 2

To undertake these assignments, install Microchip MPLAB (www.microchip.com),
Labcenter ISIS Lite (www.proteuslite.com), and CCS C Lite (www.ccsinfo.com).
Application files may be downloaded from www.picmicros.org.uk. Run the applications in
MPLAB with Proteus VSM selected as the debug tool. Display the animated schematic in
VSM viewer, with the application COF file attached to the MCU (see the appendices for
details).

Assignment 2.1

Download the OUTBYTE.DSN file and attach ENDLESS.COF. Check that it works
correctly. Modify the program so that the LED output LSB flashes at 4 Hz. Predict the
frequency of the MSB and measure it using the simulation clock.

Assignment 2.2

Download the SIREN project files and check that the SIREN program in Listing 2.7
works correctly. Modify the program to produce a default output at 1 kHz. Further
modify the program so that the output frequency is halved each time the input button is
pressed.

http://www.microchip.com
http://www.proteuslite.com
http://www.ccsinfo.com
http://www.picmicros.org.uk.

C Programming Essentials 97

Assignment 2.3

Download the CALC project files and check that the CALC program works correctly.
Modify the program such that the ON/C key must the pressed to start the program

and pressing it again disables the program. Investigate the use of the string processing
functions to provide a more elegant implementation of the conversion of an input string of
numbers to decimal during the input phase. Outline how the program could be developed
to handle floating point numbers to provide a more practical calculator.

C Peripheral Interfaces

3.1 PIC16 C Analog Input
® Analog input display
® Voltage measurement
® ADC setup codes

A microcontroller analog input allows an external voltage to be converted to digital
form, stored, and processed. This type of input occurs in data loggers, control systems,
digital audio, and signal processors, to mention just a few. The dsPIC range is designed
specifically for high-speed analog signal processing.

Analog Setup

A basic setup to demonstrate analog input is shown in Figure 3.1. The PIC16F877 has
eight analog inputs, which are accessed via RAO, RA1, RA2, RA3, RAS5, REO, RE1,

and RE2, being renamed ANO to AN7 in this mode. All these pins default to analog
operation, but a combination of analog and digital inputs can be selected using the system
function set_up_adc_ports () .

These inputs are multiplexed into a single converter, so they can be read only one at a
time. The function set_ADC_channel (n) selects the input channel. The analog-to-
digital converter module has a resolution of 10 bits, giving a binary output of 0x 000 to
0x3FF (1023;(). Therefore, the measurement has a precision of 1/1024 X 100%, which
is slightly better than 0.1%. This is good enough for most practical purposes. A 16-bit
integer or floating point variable is needed to receive this result.

100 Part 3

® Ut
13_fosci/oLkin RBO/INT (—33-
-4 oscz/cLkouT RB1 o
—— MCLRNpp/THV RB2 | —2-
RV1 36
® 5 RBI/PGM [—=
[]< 2| RAO/ANO RB4 [—of
O] 1 ~a] RAVANT RB5 3o
~=—| RA2/AN2/VREF - RB6/PGC [—o-
—2—{ RAJ/ANI/VREF+ RB7/PGD 2
~—| RA4/TOCKI_ .5
—7 | RA5/AN4/S§ RCO/T10SO/T1CKI |12
= ~_ Rcimiosicer2 6
—5—| REO/ANS/RD RC2/CCP1 %
To—| RE1/AN6/WR RC/SCK/SCL 18-
B Re2/AN7/CS RC4/SDI/SDA —=2-
RC5/SDO (22
RC6/TX/CK (—52- LCD1
RC7/RX/DT —2& e
RDO/PSPO ;g AXD
RD1/PSP1 —22- vs
RD2/PSP2 (57 l
RD3/PSP3 == MILFORD-2X16-BKP
RD4/PSP4 2L =
RDS/PSP5 [—2 -
RDB/PSP6 —2-
RD7/PSP7 39
PIC16F877

Figure 3.1: Single Analog Input and Display Test Circuit

Alternatively, the low-resolution mode can be used if an 8-bit conversion is sufficiently
precise (output = 0-255). This mode is selected using the directive #device ADC=8.
The function read_aDC () then returns the input value as an unsigned integer. The
default input voltage range is 0-5V, which does not give an exact conversion factor. In
the demo program, Listing 3.1, the 8-bit input value is divided by 32 to give an arbitrary
voltage level from O to 8. This is then converted to the ASCII code by adding 0x30

and sending it to the display. The operation is repeated endlessly, using the statement
for (;;), which means execute a for loop unconditionally.

Voltage Measurement

The circuit shown in Figure 3.2 allows the input voltage at each analog input to be
displayed. An external reference voltage (2.56V) is connected to RA3, which sets the
maximum of the input range. This allows a more accurate and convenient scaling of the
measurement. The reference voltage is supplied by a zener diode and voltage divider

C Peripheral Interfaces 101

Listing 3.1 Source Code for Simple Analog Input Test Program

/* ANALIN.C MPB 5-1-07
Read & display analog input

******************‘k***********************‘k*‘k***‘k*****‘k***‘k*‘k**/

#include "16F877A.h"
#device ADC=8 //8-bit conversion

#use delay(clock=4000000)

#use rs232 (baud=9600, xmit=PIN_DO, rcv=PIN _D1) //LCD output
VOld maln() //***
{
int vinO; // Input variable
setup_adc (ADC_CLOCK_INTERNAL) ; // ADC clock
setup_adc_ports (ALL_ANALOG) ; // Input combination
set_adc_channel (0) ; // Select RAO
for(;;)
{ delay_ms(500) ;
vin0=read_adc() ; //Get input byte
vinO=(vin0/32)+0x30; //Convert to ASCII
putc(254); putc(l); delay_ms(10); // Clear screen
printf ("Input="); putc(vin0) ; // Display input

circuit. The value of the zener load resistor has been selected by simulation to adjust the
voltage to 2.560 £ 0.1%. A potentiometer is connected to each of the measured inputs so it
can be set to an arbitrary test value. The test program VOLTS.C is provided in Listing 3.2.

This time, the ADC resolution is set to 10 bits, to obtain a more precise reading. Floating
point array variables are declared for the input readings (0—1023) and the calculated
voltage. The reference voltage, 2.56V, is represented by the maximum conversion value,
1024, so the scaling factor is 1024/2.56 = 400 bits per volt. The input is therefore divided
by this factor to obtain a display in volts. Note that, in the division operation, both values
must be float types.

The ADC port setup code selects all inputs as analog, with RA3 an external reference
(although this is not obvious from the select statement format). All the possible

102 Part 3

P RV5(1) N
V=2.71739 LeD1 T
R3 VDD
T
120R RXD
Ri VSS
680R
® RVS MILFORD-2X16-BKP
@ [L U1(RA3/AN3/VREF+) -
/ﬂ V=2.55838
o RV4 U1
Tk [% OSC1/CLKIN RBO/INT %
© RV3 12 osce/cLkouT RB1 35
@[—— MCLRNpp/THV RB2 55"
RB3/PGM ==
kO 2 RAO/AND RB4 ot
7| RAV/AN1 RBS 5o
— 1K =—| RA2/AN2/VREF - RB6/PGC —o-
- —| RAS/ANS/VREF + RB7/PGD
—— RA4/TOCKI_ .5
RV1 0] RAS/AN4/SS RCO/TTOSO/T1CKI (—2-
o 8 __ RC1T108ICCP2 &
RV6 Rv2 5| REU/ANS/RD RC2/CCP1 (— L
o 19| REI/ANSWR RCI/SCK/sCL 18
o] 1) 1K RE2/AN7/CS RC4/SDI/SDA (==
Rv7 RC5/SDO (2%
o] Ny RCE/TX/CK (—22-
® RV8 RC7/RX/DT |—25
o) RDO/PSPO ;g
O] RD1/PSP1 (52
1 RD2/PSP2 (—51-
©) R2 RD3/PSP3 22
4k7 RD4/PSP4 —25L-
RD5/PSP5 |—22-
1k D1 RD6/PSP6 22
>—¢ RD7/PSP7 30
_L BZX79C2V7
PIC16F877

Figure 3.2: Input Voltage Measurement and Display

combinations of analog and digital inputs are given in the 16F877A.H header file, Listing
2.19. When the program is compiled, the define statement selected is replaced by the
corresponding hex code, which is then loaded into the ADC control register to set up

the ADC.

The set of functions that control the ADC are listed in Table 3.1. The function
setup_adc () allows the clock rate (ADC sampling rate) to be selected to suit the
application, and setup_adc_ports () allows the mix of analog and digital inputs
to be defined using the combinations provided in the header file.

C Peripheral Interfaces 103

Listing 3.2 Test Program for Voltage Measurement

/* VOLTS.C MPB 25-3-07
Read & display 10-bit input voltage

***/

#include "16F877A.h"

#device ADC=10 // 10-bit operation
#use delay(clock=4000000)

#use rs232 (baud=9600,xmit=PIN_DO, rcv=PIN_D1)

VOld maln() //**

{

int chan;

float analin[8], disvolts[8]; // Array variables
setup_adc (ADC_CLOCK_INTERNAL) ; // ADC Clock source
setup_adc_ports (ANO_AN1_AN2_AN4_AN5_AN6_AN7_VSS_VREF); // ADC inputs
while (1) // Loop always
{
for (chan=0; chan<8; chan++) // Read 8 inputs
{ delay_ms (1000) ; // Wait 1 sec
set_adc_channel (chan) ; // Select channel
analin[chan]=read_adc(); // Get input
disvolts[chan]=(analin[chan]) /400; // Scale input
putc(254) ;putc(l) ;delay ms (10); // Clear display
printf (" RA%d=%4.3g",chan,disvolts([chan]); // Display volts
}
}

Table 3.1: CCS C Analog Input Functions

Action Description Example

ADC SETUP Initialize ADC setup_adc (ADC_CLOCK_INTERNAL) ;
ADC PINS SETUP Initialize ADC pins setup_adc_ports (RAO_ANALOG) ;
ADC CHANNEL SELECT | Select ADC input set_adc_channel (0) ;

ADC READ Read analog input inval=read_adc() ;

104 Part 3

3.2 PIC16 C Interrupts

¢ C interrupt functions
® Interrupt sources
¢ External interrupt

Interrupts allow an external event to initiate a control sequence that takes priority over
the current MCU activity. Typically, the interrupt service routine (ISR) carries out some
operation associated with the port or internal device that requested the interrupt.

Interrupts are frequently used with hardware timers, which provide delays, timed
intervals, and measurement. A time delay can be implemented using a simple software
counting loop, but this has the disadvantage of tying up the processor while the delay
executes. A more efficient technique is to use a hardware timer running independently
from the MCU clock. This allows accurate timing to be more easily achieved, and the
timer can run concurrently with some other task. A time-out interrupt informs the MCU
that the timer interval has expired and the ISR can implement the required action. The
interrupt has to be initialized for use at the top of the program.

C Interrupts

The CCS C complier provides a set of functions that implement the PIC interrupt system
(Table 3.2). The interrupt sources available in the PIC16F877 are as listed in Tables 3.3

Table 3.2: CCS C Interrupt Functions

Action Description Example

INTERRUPT CLEAR | Clears peripheral interrupt clear_interrupt (int_timer0) ;

INTERRUPT Disables peripheral interrupt | disable_interrupts (int_timer0) ;
DISABLE

INTERRUPT Enables peripheral interrupt | enable_interrupts (int_timero0) ;
ENABLE

INTERRUPT Checks if interrupt flag set interrupt_active (int_timer0) ;
ACTIVE

INTERRUPT EDGE Selects interrupt trigger edge | ext_int_edge (H_TO_L) ;

INTERRUPT JUMP Jump to address of ISR jump_to_isr(isr_loc);

C Peripheral Interfaces 105

and 3.4. These predefined labels must be used when enabling individual interrupts and
declaring the ISR block. They are defined in the header file along with the initialization
codes for the interrupt control registers.

Table 3.3: 16F877 Primary Interrupts

Interrupt Label | Interrupt Source

GLOBAL Use to enable all interrupt sources
INT_EXT External interrupt detect on RBO
INT_RB Change on Port B detect
INT_RTCC Timer 0 overflow (same as TIMERO)
INT TIMERO Timer 0 overflow (same as RTCC)

Table 3.4: 16F877 Peripheral Interrupts

Interrupt Label | Interrupt Source

Ports

INT_TBE USART transmit data done
INT_RDA USART receive data ready
INT_SSP Serial data received at SPI or 12C

INT_BUSCOL 12C collision detected

INT_PSP Data ready at parallel serial port

Timers
INT_ TIMER1 Timer 1 overflow
INT_CCP1 Timer 1 capture or compare detect

INT_TIMER2 Timer 2 overflow

INT_CCP2 Timer 2 capture or compare detect
Others
INT_AD Analog-to-digital converter complete

INT_COMP Comparator output change

106 Part 3

Listing 3.3 External Interrupt Test Program Source Code

// INTEXT.C MPB 10-4-07
// Demo external interrupt RBO low interrupts foreground output count

#include "16F877A.h"
#use delay(clock=4000000)

#int_ext // Interrupt name
void isrext () // Interrupt service routine
{ output_D(255); // ISR action

delay_ms (1000) ;
}

VOid main() //**

{
int x;
enable_interrupts (int_ext); // Enable named interrupt
enable_interrupts (global) ; // Enable all interrupts
ext_int_edge (H_TO_L) ; // Interrupt signal polarity
while (1) // Foreground loop
{

output_D(x); x++;

delay_ms (100) ;
}

Interrupt Example

Program INTEXT.C (Listing 3.3) demonstrates the basic interrupt setup. An output count
represents the primary task. This is interrupted by the switch input at RBO going low,
forcing the execution of the interrupt service routine, which causes all the output LEDs to
come on for 1 second. The original task is then automatically resumed at the point where
it was interrupted. It is designed to run on the hardware shown in schematic Figure 3.3.

When the RBO interrupt is detected during the main loop, the context (current register
contents) is saved before the ISR executed. If the program execution is studied carefully,
it can be seen that the original count prior to the interrupt is restored to the port output
after the interrupt. The ISR includes code to save and restore the MCU registers, so that
the main task can be resumed unaffected by the interrupt. Only local variables should be
used in the ISR to protect the integrity of the rest of the program.

C Peripheral Interfaces 107

U1

]
—C| Az 13 OSC1/CLKIN RBO/INT 22
150F 12 osca/cLkouT RB1 e R1
X14 MCLR/Vpp/THV RB2 g 10k
c2 T |, RB3/PGM [
| - 5| RAO/ANO RB4 g
15pF —— RAT/ANT RB5 [—5g
——| RAZAN2/VREF - RB6/PGC —,0-
—>—| RAS/ANG/VREF + RB7/PGD |—2 i\
——| RA4/TOCK] _ 5
——— RA5/AN4/SS RCO/T10SO/T1CKI —e 0®
RC1/T108lI/IcCCP2 |18)
-8 REO/ANS/RD RC2/CCP1 |
4 To—| RET/AN6/WR RC3/SCK/SCL %
- 2 RE2/AN7/CS RC4/SDI/SDA |—==-
RC5/SDO [—52- p—
RCB/TX/CK (—22- -
RDO/PSPO ;g ; —— fg g
RD1/PSPY S —2— g
RD2/PSP2 57—~ 1 5
RD3/PSP3 22— 1 | — L2
RD4/PSP4 —5i——2—| C— 2
RD5/PSPS 50— 24
RDB/PSP6 20— 15—
RD7/PSP7 o1 T4
o | — -
PIC16F877 10| —— [_1
L 220R

Figure 3.3: External Interrupt Test Hardware

Interrupt Statements
The program statements associated with interrupt operation are as follows.
#int ext

This directive tells the compiler that the code immediately following is the service
routine for this particular interrupt. The routine is the form in a standard function,
with a function name appropriate to the ISR task, in this case void isrext (). The
interrupt name is preceded by # (hash) to mark the start of the ISR definition and to
differentiate it from a standard function block. An interrupt name is defined for each
interrupt source.

108 Part 3

enable interrupts(int ext);

This statement in the main program block enables the named interrupt by loading the
necessary codes into the interrupt control registers. These are defined in the device header
file by association with the interrupt label.

enable interrupts(global);

This is required in all cases, allowing all interrupts to be enabled or disabled together.
The corresponding global disable function might be used to turn off all interrupts when a
timing critical task is to be executed.

ext int edge(H TO L);

The active edge of the external input can be selected as the falling (H_TO_L) or rising
(L_To_H) edge. As in this example, a manual switched input is usually wired as active
low, and the falling edge is therefore used. On the other hand, it may be preferable to use
the rising edge, since there is no switch bounce when the contacts are opening.

Further examples of interrupts are provided later among the peripheral interfacing demo
programs.

3.3 PIC16 C Hardware Timers

¢ Counter/timers
¢ Capture and Compare

¢ Timer interrupt

The PIC 16F877 has three hardware timers built in: TimerO (originally called RTCC, the
real-time counter clock), Timerl, and Timer2. The principal mode of operation of these
registers are as counters for external events or timers using the internal clock. Additional
registers are used to provide Capture, Compare, and Pulse Width Modulation (PWM)
modes. The CCS timer function set is shown in Table 3.5.

Counter/Timer Operation

A counter/timer register consists of a set of bistable stages (flip-flops) connected in
cascade (8, 16, or 32 bits). When used as a counter, a pulse train fed to its least significant
bit (LSB) causes the output of that stage to toggle at half the input frequency. This is fed
to the next significant bit, which toggles at half that rate, and so on. An 8-bit counter thus

C Peripheral Interfaces 109

Table 3.5: Timer Functions

Action Description Example
TIMERX SETUP Set up the timer mode setup_timer0 (RTCC_
INTERNAL | RTCC_DIV_38) ;

TIMERX READ Read a timer register (8 or 16 bits) count0 = get_timer0();

TIMERX WRITE Preload a timer register (8 or 16 bits) | set_timer0(126) ;

CCPX SETUP Select PWM, capture, or compare setup_ccpl (ccp_pwm) ;
mode

PWMX DUTY Set PWM duty cycle set_pwml_duty(512) ;

counts up from 0x00 to 0xFF (255) before rolling over to 0 again (overflow). The binary
count records the number of clock pulses input at the LSB.

In the ‘877, TimerO is an 8-bit register that can count pulses at RA4; for this purpose,

the input is called TOCKI (TimerO clock input). Timer1 is a 16-bit register that can count
up to OxXFFFF (65,535) connected to RCO (T1Ck1). The count can be recorded at any
chosen point in time; alternatively, an interrupt can be generated on overflow to notify the
processor that the maximum count has been exceeded. If the register is preloaded with a
suitable value, the interrupt occurs after a known count.

The counters are more frequently used as timers, with the input derived from the MCU clock
oscillator. Since the clock period is accurately known, the count represents an accurate timed
period. It can therefore be used to measure the period or frequency of an input signal or
internal intervals or generate a regular interrupt. Many PIC MCUs incorporate one or more
Capture, Compare, and PWM (CCP) modules that use the timer registers.

A timer/counter register may have a prescaler, which divides the input frequency by

a factor of 2, 4, 8, and so forth using additional stages, or a postscaler, which does

the same at the output. TimerO has a prescaler that divides by up to 128; Timer] has
one that divides by 2, 4, or 8; and Timer2 has a prescaler and postscaler that divide by
up to 16.

PWM Mode

In Pulse Width Modulation mode, a CCP module can be used to generate a timed output
signal. This provides an output pulse waveform with an adjustable high (mark) period.

110 Part 3

Listing 3.4 Pulse Width Modulation Program Source Code

// PWM.C MPB 11-4-07
// Demo PWM output, MCU clock=4MHz

#include "16F877A.h"

void main ()

{

setup_ccpl (ccp_pwn) ; // Select timer and mode
set_pwml_duty (500) ; // Set on time

setup_timer_2 (T2_DIV_BY_16,248,1); // Clock rate & output period
while (1) {} // Wait until reset

The high output state, called the duty cycle, is expressed as a percentage of the overall
period of the pulse wave. A duty cycle of 50% gives an equal mark and space ratio.
Program PWM.C (Listing 3.4) shows the basic setup procedure.

The setup_ccpl () function selects the mode of operation of the CCP module. The
function setup_timer_2 () controls the overall period of the PWM wave and has three
arguments. The first sets the timer prescale division ratio, 16 in this case. The prescaler is
an additional counter stage that reduces the input clock rate by the selected ratio of 1, 4,
or 16. The second argument gives the overall output period from 1 to 255 times the input
clock period. The last value is the postscaler setting, from 1 to 16, which divides

the output from the MSB before it is fed to the interrupt system, so that the interrupt
period can be adjusted to be a multiple of the timer output. The duty cycle is set via the
set_pwml_duty () function call. The value given is in the range 1-1023, an initial value
for a 10-bit counter. The value 500 gives a mark-space ratio of about 50%.

The PWM wave is generated continuously after the setup is completed. The values

for duty cycle (500) and overall period (248) used in this example produce an output

at CCP1 of 250Hz (4 ms) and a mark-space ratio of 50% with a 4-MHz MCU clock.
The overall period is derived as follows: Timer2 is driven from the instruction clock at

1 MHz (Fosc/4). After prescaling, the clock period is 16 ps and the timer counts up to
248, overflowing approximately every 16 X 248 = 3968 ps or about 4 ms (the figure 248
is used rather that 250 to adjust for software overheads in the timer processing). The
postscaler value is set to default ‘1,” since the timer interrupt is not being used in this
example.

C Peripheral Interfaces 111

Preload
Set Interrupt
CCPR1H CCPRI1L Flag (CCP1IF)
< T Set/Clear
Comparator Pin RC2
TMR1H TMRIL ¢ Instruction
Clock

Figure 3.4: Compare Hardware Block Diagram

The various setup options available for the timers and CCP modules are given in the
16F877 header file in Listing 2.19. Refer to the CCS User Manual for more details about
using these options.

Compare Mode

PWM uses the compare operation illustrated in Figure 3.4 to generate a timed output

in conjunction with Timer2. The 16-bit CCPR register is preloaded with a set value,
which is continuously compared with the Timer1 count. When the count matches the
CCPR value, the output pin toggles and a CCP interrupt is generated. If this operation is
repeated, an interrupt and output change with a known period can be obtained.

Capture Mode

This mode uses the timer in the inverse manner to compare. The CCP pin is set to input
and monitored for a change of state. When a rising or falling edge (selectable) is detected,
the timer register is cleared to 0 and starts counting at the internal clock rate. When the
next active edge is detected at the input, the timer register value is copied to the CCP
register. The count therefore corresponds to the period of the input signal. With a 1-

MHz instruction clock, the count is in microseconds. An interrupt can also be generated
on each active edge. The general hardware configuration is shown in Figure 3.5, and a
program to demonstrate this operation is shown in Listing 3.5.

In the main block of Program PERIOD.C, Timer1 and the CCP mode are set up

(RE = rising edge of signal to be captured). The required interrupt is enabled, and the
program waits for the CCP1 interrupt, indicating that the next rising edge has arrived.
The CCP1 interrupt service routine clears the timer and interrupt, ready for the next

112 Part 3

Set Interrupt

Flag (CCP1IF)
Prescale & » CCPR1H CCPR1L
Edge Select Capture
T Enable
TMR1H TMRIL Instruction
Clock
Pulse Input
Pin RC2

Figure 3.5: Capture Hardware Block Diagram

Listing 3.5 Capture Mode Demo Program

// PERIOD.C MPB 11-4-07
// Demo of period measurement

#lnclude "16F877A.h" //****************************

#int_ccpl // Interrupt name
void isr_ccpl() // Interrupt function
{
set_timerl(0); // Clear Timerl
clear_interrupt (INT_CCP1) ; // Clear interrupt flag
}
VOid main() //************************************
{
setup_timer_1 (T1_INTERNAL) ; // Internal clock
setup_ccpl (CCP_CAPTURE_RE) ; // Capture rising edge on RC2
enable_interrupts (GLOBAL) ; // Enable all interrupts
enable_interrupts (INT_CCP1) ; // Enable CCPl interrupt
while (1) {}

capture event. The captured value is copied automatically into a variable called cCp_1.
The simulation of this program is shown in Figure 3.6. When the program is run with the
100-Hz signal input, a count of 9963 s is captured (error = 0.4%). This shows that some
allowance may be needed for the software overhead associated with the capture process
and adjustment made to correct the result obtained.

C Peripheral Interfaces 113

& period - MPLAB IDE v7.52
Fle Edt View Project Debugger Programmer Took Configure Window Help

D@

L] ‘Hﬂ?

- N’llch

{

// BPERIOD.C MPB 11-4-07
// Demo period measurement

#include "16F877A.h"
intlé count:

#int_ccpl

wvoid isr_cecpl ()
i
set_timerl (0) ;

clear_interrupt (INT_CCP1) ;

}

void main()

setup_timer_ 1 (T1_INTERNAL) ;
setup_ccpl (CCP_CAPTURE_RE) ;

Debug I ERBO T

-," 3
m['l

PICLEFTTA peieSl Do)

beok 1 Ln1d4, Col 1

NS WR

Figure 3.6: Capture Mode Used to Measure Input Period

3.4 PIC16 C UART Serial Link

e RS232 port functions

e Simulation with virtual terminal

A basic serial link is provided by the UART. We have already seen that any pair of pins
can be used for this interface, as the data rate is quite low, allowing the signals to be
generated in software. However, a dedicated hardware port is provided, which must be
used if an interrupt is needed. The CCS C library functions associated with this port are

listed in Table 3.6.

The UART can be tested in simulation mode by connecting it to the virtual terminal
provided in Proteus VSM, as shown in Figure 3.7. The terminal input RXD (receive data)
is connected to the PIC MCU TX (transmit) pin, and the TXD (transmit data) output is
connected to PIC MCU RX (receive). It has additional handshaking (transmission control)

lines RTS and CTS, but these are not usually needed.

www.newnespress.com

114 Part 3

Table 3.6: RS232 Serial Port Functions

Title Description Example

RS232 SET BAUD RATE Set hardware RS232 setup_uart (19200) ;
port baud rate

RS232 SEND BYTE Write a character to the | putc (65)
default port

RS232 SEND SELECTED Write a character to s=fputc("A",01);
selected port

RS232 PRINT SERIAL Write a mixed message | printf ("Answer:%4.3d",n);

RS232 PRINT SELECTED Write string to selected fprintf (01, "Message") ;

serial port

RS232 PRINT STRING Print a string and write sprintf (astr, "Ans=%d",n) ;
it to array

RS232 RECEIVE BYTE Read a character to an n=getc () ;
integer

RS232 RECEIVE STRING Read an input stringto | gets (spoint) ;
character array

RS232 RECEIVE Read an input string to astring=fgets (spoint, 01);
SELECTED character array
RS232 CHECK SERIAL Check for serial input s=kbhit () ;
activity
RS232 PRINT ERROR Write programmed error | assert (a<3) ;
message

The program listed as HARDRS232.C (Listing 3.6) is attached to the MCU in the
simulator. The getc () function is used to read a character from the virtual terminal; it
waits for user input. The terminal must be activated by clicking inside terminal window,
and the computer keyboard then provides the input to the PIC as the corresponding ASCII
codes; these are assigned to the variable incode, as they arrive.

The ASCII code can be output using print£(). If formatted as a decimal, the numerical
value of the character code is displayed. Alternatively, the character formatting code %c is
used to display the character itself. The function putc (13) outputs the code for a line return
on the display. If putc () is used to output an ASCII code, the character is displayed.

C Peripheral Interfaces 115

0]
1i: OSCA/CLKIN RBO/INT
1. OSC2/CLKOUT RB1 =
MCLRAVpRITHY RB2 |=25
2n respom (222 | EFNIOBI
27 RaosaND RB4 ASCII
S| RATANT RBS ot
o | RAZIANZIVREF. RBE/PGC ASCII
S| RAS/ANGIVRER+ RET/PGD ASCII
~u| RAXTOCK
RAS/ANA/SE RCO/T1DSOITICK
o _ RCUT1DSKCCF2
= | RED/ANS/RD. RC2/CCP1 [
.lgl RE1/ANS/WE RC3/SCHISCL
REZ/ANTICS RCA/SDISDA
RCS/SDO (22
ROBITXICK
RCT/RAIDT
RDO/PSPO
RD1/PSP1
RD2/PSP2
RD3/PSP3
RDAPSP4
RDS/PSPS
RDE/PSFB
RD7/PSPT

PICAGFE77
<TEXT>

Figure 3.7: RS232 Peripheral Simulation

Listing 3.6 Hardware UART Demo Program

// HARDRS232.C MPB 13-6-07
// Serial I/0 using hardware RS232 port

#include "16F877A.h"
#use delay(clock=8000000) // Delay function needed for RS232
#use rs232 (UART1) // Select hardware UART

void main() //************************************

{
int incode;
setup_uart (9600) ; // Set baud rate
while (1)
{ incode = getc(); // Read character from UART
printf (" ASCII = %d ",incode); // Display it on
putc(13); // New line on display

116 Part 3

3.5 PIC16 C SPI Serial Bus

e SPI system connections
e SPI function set

e SPI test system

The serial peripheral interface master controller uses hardware slave selection to identify
a peripheral device with which it wishes to exchange data (refer to Section 1.4 for full
details of the signaling protocol). The available set of SPI driver functions are shown in
Table 3.7.

The test system has a slave transmitter that reads a binary-coded decimal input from a
thumbwheel switch and sends it to the master controller. This resends the code to the
slave receiver, which outputs to a BCD display (0-9). Each of three devices needs its own
test program to make the system work. The test system hardware is shown in Figure 3.8
and the individual test programs as Listings 3.7, 3.8, and 3.9.

As seen in the schematic, the slave MCUs are permanently enabled by connecting their
slave select inputs to ground. This is possible because there is only one sender on the
master input, so there is no potential contention. In a system with more that one slave
sender, each would need a separate slave select line, with only one being enabled at a time.

The individual programs were created as separate projects in MPLAB but saved in the
same folder, sharing a copy of the MCU header file. The COF files were then attached to
the corresponding chip in the simulated hardware.

Table 3.7: SPI Function Set

Operation Description Example

SPI SETUP Initializes SPI serial port setup_spi (spi_master) ;
SPI READ Receives data byte from SPI port | inbyte=spi_read() ;

SPI WRITE Sends data byte via SPI port spi_write (outbyte) ;

SPI TRANSFER Sends and receives via SPI inbyte=spi_xfer (outbyte) ;
SPI RECEIVED Checks if SPI data received done=spi_data_is_in() ;

C Peripheral Interfaces 117

(]

N

o

T Al
B R A ﬁg U2
e A4 —— % RBO/INT OSC1/CLKIN +Z
I B S S A5 —— 35 | RB1 OSC2/CLKOUT K
e R T e A —— 36 | RB2 MCLRNVpp/THV ——
R e et i A7 — 37_| RB3/PGM 2
I A S S A8 —— 3g | RB4 RAO/ANOT
P ATt T | B1[0.7] f— 59| RBS RA1/ANT —4—
RS =0 - | N ~5— RB6/PGC RA2/AN2/VREF — (——
~2 1 RB7/PGD RAS/ANS/VREF+ [—2—
15 RA4/TOCKI 7
P ~&—| RCOT10SOTICKI RAS/AN4/SS
3 ~>—| RCI/T10SI/CCP2 |
OSC1/CLKIN RBO/INT 34 8] RC2/CCP1 REO/AN5/RD o
0SC2/CLKOUT RB1 5z 53 RC3/SCK/SCL RE1/AN6/WR o
MCLR/Vpp/THV RB2 36 ?Z— RC4/SDI/SDA RE2/AN7/CS ——
RB3/PGM [—5 55| RC5/SDO
RAO/ANO RB4 —5g g | RCB/TX/CK
RA1/AN1 RB5 39" -=— RC7/RX/DT
RA2/AN2/VREF — RBE/PGC 5 Swi 19
RA3/AN3/VREF + RB7/PGD —— ® 20 | RDO/PSPO
RA4/TOCKI 15 6 51 RD1/PSP1
RA5/AN4/SS RCO/T10SO/T1CKI 6 52 RD2/PSP2
~~ " Recimiosiccp2 |18 @ = 22| RD3/PSP3
REO/ANS/RD RC2/CCP1 _}; B 21_{ Rp4/PSP4
RE1/AN6/WR RC3/SCK/SCL (2 5o | RDS/PSP5
RE2/AN7/CS RC4/SDI/SDA 54 30 RD6/PSP6
RC5/SDO [—5- RD7/PSP7
RCB/TX/CK {—2=-
RC7/RX/DT PIC16F877 PROGRAM=spitransmit.cof
RDO/PSPO | 19 Slave Transmitter
RD1/PSP1 —20-
A Rere 22 | PIC16F877 PROGRAM=spireceive.cof
27 - Slave Receiver
RD4/PSP4 —5&- -
RD5/PSP5 59 33 13
RD6/PSP6 —2 - 34 | RBO/INT OSCH/CLKIN |—-
RD7/PSP7 |2 45 RB1 OSC2/CLKOUT [~
6] ng/PGM MCLR/Vpp/THV [——
= RB3
PIC16F877 . 37 | pga RAO/ANO —2—
PROGRAM=spimaster.cof 38 | RB5 RA1/ANT |——
CLOCK=4MHz 39 4
A ~0 | RBE/PGC RA/AN2/VREF— [——
CFGWORD=0x3731 — ~— RB7/PGD RA3/ANS/VREF+ —2—
Master 15 RA4/TOCKI 7
~o—| RCOT10SO/TICKI RAS/AN4/SS
—>—| RCI/T10SI/CCP2 | s
~5—| RG2/CCP1 REO/ANS/RD (—¢—
35| RC3/SCK/SCL RE1/AN6/WR [—o-
Sa—| RC4/SDI/SDA RE2/AN7/CS |——
-5z RC5/SDO
52| RCE/TX/CK
<8 RC7/RX/DT
;g RDO/PSPO
1| RD1/PSP1
5| RD2/PSP2
SPIC.DSN S=— RD3/PSP3
Demonstrates SPI read 25 | RD4/ESE
from slave transmitter % RD6/PSP6
and write to slave receiver ~ | RD7/PSP7
via master controller us

Figure 3.8: SPI Test System Schematic

www.newnespress.com

118 Part 3

Listing 3.7 SPI Slave Transmitter Source Code

// SPITRANSMIT.C MPB 20-6-07
// Serial I/0 using SPI synchronous link
// Simulation hardware SPIC.DSN, transmitter program attached to U2

#include "16F877A.h"

VOld maln() //***

{

int sendnum;

setup_spi (spi_slave) ; // Set SPI slave mode
while (1)
{ sendnum = input_D(); // Get BCD input
spi_write (sendnum) ; // Send BCD code to master

Listing 3.8 SPI Master Controller Source Code

// SPIMASTER.C MPB 20-6-07
// Serial I/O using SPI synchronous link
// Simulation hardware SPIC.DSN, master program, attach to Ul

#include "16F877A.h"

vold maln() //***

{

int number;

setup_spi (spi_master) ; // Set SPI master mode

while (1)

{ number = spi_read(); // Read SPI input BCD code
spi_write (number) ; // Resend BCD code to slave

}

3.6 PIC16 C I’C Serial Bus

¢ I°C simulation test system
e I2C control, address, and data bytes

The inter-integrated circuit (I*C) synchronous serial bus provides a means of
exchanging data between peripheral devices and microcontrollers using software

C Peripheral Interfaces 119

Listing 3.9 SPI Slave Receiver Source Code

// SPIRECEIVE.C MPB 20-6-07
// Serial I/0 using SPI synchronous link
// Simulation hardware SPI.DSN, receiver program, attach to U3

#include "16F877A.h"

VOld maln() //***************************************

{

int recnum;

setup_spi (spi_slave) ; // Set SPI slave mode

while (1)

{ recnum=spi_read(); // Read BCD code at SPI port
output_D(recnum) ; // Display it

}
}

addressing. This means that only two signals are required, data and clock (see Section 1.4
for details).

The test system shown in Figure 3.9 has only one I>C peripheral device, the 24AA256
serial flash memory chip, to keep it as simple as possible. Serial memory is a common
feature of applications that require additional data storage, such as a data logger. It allows
the internal EEPROM of the PIC to be expanded using only two I/O pins. The downside
is that the memory access is rather slow, with the maximum write cycle time of 5ms (200
bytes/sec) specified for this device. Therefore, the data sampling rate needs to be suitably
modest.

The serial memory chip has a capacity of 256-k bits, or 32-k bytes, with three external
address pins: A0, A1, and A2. This allows a set of up to eight chips to be used in the
system, each with a different hardware address, 0—7. This address is included in the
address code sent by the master controller, so that a specific address in a selected chip can
be accessed. With eight 32-k chips, the total address space is 256 k. In the test system, the
memory chip hardware address is 000.

The system reads a test code set manually on Port B inputs, which is copied to the
serial memory. Pull-ups must be fitted to the serial clock and data lines, and a virtual
IC analyzer is also attached to the bus. The test program writes the test byte (3F in the

120 Part 3

@ I2CMEM - MPLAB IDE v7.52
Fle Edt View Project Debugoer Programmer Tocks Corfigure Window Help

D W imE | S WP PP TPRER| 00

M |ZCMEM.mow |- (O)/X M Qutput - B o\ NPCMEM.C
] | Budd | Version Conteol | Findin Files | Proteut o
void main()
| ZCMEM.DSN - Proteus VSM MPLAB Viewer (Animating) {
=0 S B ¢+ D int sendbyte, lowadd:

v EEE=E 26 lowadd-0 ;
port_b_pullups(l):
sendbyte- (input_B())

Retease VI SR B O | T &

while(1)

{
ize_start();
iZe_write(0xA0)
iZe_write(0x00)
ize_write(lowadd)
iZe_write(sendbyte) ;
i2c_stop()

delay ms(5);
Lowadd++

Z.144 £ 5 AD A OD A 4F A IF AP
2,150 # S A0 A OD A S0 A IF AP
2,157 s SADAOCO ASLAIFAPR IF IF IF IF|IF 3F r)r;p)r)l:ri)f;r)r):A
2.163 8 S AD A DD A SE A IF A B 0 | 3F 3F 3F 3F|3F 3F 3F 3F|3F 3F 3IF 3F|3F 3F 3IF IF
: 3F 3F 3F 3F|3F 3F 3F 3F|IF 3F IF 3F|IF 3IF IF 3F
ZAEI s SAOL OO AR AIFAY 0030 F 3F|3F 3F 3F 3F|3F 3F 3F 3F
2175 3 2 A0 A OD A 5S4 AIF AP 004 3F 3F 3 F 3F|3F 3F 3F 3IF | 3F 3F IF 3F
F 3F|3F 3F 3F 3F|3F 3F 3F 3F
0060 | 3F IF 3F 3F|3IF 3IF 3F 3IF|3IF 3F 3F 3IF|3F 3F IF 3IF @

Figure 3.9: 1°C Test System

example shown) to the address 1owadd, which increments from 0 after each write. The
i2c_start () function initiates the data transfer sequence, by generating a start bit on
the data line. This is followed by 4 bytes, containing control, address, and data codes.

The first is the control code, AO. The memory chip has a factory-set high address code of
0101(A). This distinguishes it from other types of I’C devices that may be added to the
bus. The next 3 bits are the hardware address (000), and the LSB is set to O to indicate a
write operation, making the low nibble 0000. This is followed by the two address bytes.
The high address byte is 00, and the low address increments from 0, so the test program
writes only to the first 256 bytes. The data byte follows, which is read in from the input
switches.

Each of these bytes must be acknowledged by the receiving device taking the data line
low, and the transfer is terminated by a stop bit. More details on the exact data format and
timing requirements may be found in the chip data sheet.

The simulation system allows the bus activity to be logged and displayed in the I’C debug
window using the virtual bus monitor instrument. A time stamp, the transfer codes, and

www.newnespress.com

C Peripheral Interfaces 121

Table 3.8: I>C Functions

Operation Description Example

I2C WRITE Send a single byte i2c_write (outbyte) ;
I2C READ Read a received byte inbyte=i2c_read() ;
I2C STOP Issue a stop command in master mode i2c_stop () ;

I2C POLL Check to see if byte received sbit=i2c_poll();

the Start (S), Acknowledge (A), and Stop (P) bits are detected as they occur. In addition,
the memory contents can be displayed to confirm the test data and which locations have
been written.

When the memory content window is opened, we see that it retains the data from
previous runs of the simulation, representing the nonvolatile nature of the data store. To
see the data change, a new code must be set on the switches for each run.

The I2C functions are summarized in Table 3.8.

3.7 PIC16 C Parallel and Sernial Interfaces

¢ PSP functions and test system

e Comparison of parallel and serial links

The parallel slave port (PSP) allows an external controller to initiate an 8-bit data
exchange with the PIC MCU. This method of data exchange is compared with the serial
ports.

Parallel Slave Port

In the example in Figure 3.10, a master ‘877 is feeding data to a slave chip of the same
type. Arbitrary data are set on the DIP switch at Port B of the master. The internal
pull-ups available on these pins are activated in the master program to avoid the need for
external resistors on the switches. The test data are transferred to Port C and presented to
the slave Port C pins (Listing 3.10). The slave port is already enabled via EO (1CS = not

122 Part 3
(O]
ON OFF
% OSC1/CLKIN RBO/INT gi‘ o] % RBO/INT OSC1/CLKIN %
14 osca/cLkout RB1 2221 T — RBI 0SC2/CLKOUT (-
—1 MCLRVpp/THY RB2 23 T — RE2 MCLRNVpp/THV [H—
A RB3/PGM oo I —55| RB3/PGM 2
—Z£— RAANO RB4 2o T 371 RB4 RAO/ANO |-2—
—— RAT/ANT RB5 001 T 32 mBs RAT/ANT -o—
—2— RA2/AN2IVREF- RB6/PGC o5 I 2 ; AN —ao| RBEIPGC RA2/AN2/VREF— (5—
-2 | RAJANG/VREF+ RB7/PGD ——] =}, — —*{rerreD RA/AN3/VREF + -2 —
—2 1 RA4/TOCKI_ 15 o 16 15 RA4/TOCKI {-2—
——— RA5/AN4/SS RCO/T10SO/T1CKI f—= — RCO/T10SO/T1CKI RA5/AN4/SS ——
RC1/T108I/CCP2 |8 17 /=42 15 16 | RC1/T10SI/CCP2
8 | REO/ANS/AD RC2/CCP1 L 16— 223 14 17 1 RC2/CCP1 REO/ANS/RD |2
2| REY/ANG/WR ReaiscrscL (18 e 18 ReaiscrysoL RE1/ANG/WE |3
RE2/AN7/CS RC4/SDI/SDA 22 e 23 | RC4/SDISDA RE2/AN7/CS

RC5/SDO [—24 — 1124 | pcs/SDO

RC6/TX/CK [—22 2 2= 0 25 | peeTX/CK

RC7RXDT 28— 1 /108 9 261 RC7/RX/DT

RDO/PSPO (12 210819 | roorpspo

RD1/PSP1 RD1/PSP1

RD2/PSP2 21 211 RD2/PSP2

RD3/PSP3 RD3/PSP3

RD4/PSP4 2L 2T RD4/PSP4

RD5/PSP5 [—29 22 | rosiesps

RD6/PSP6 [—22 29| RD6/PSPS

RD7/PSP7 RD7/PSP7

PIC16F877 U1 MASTER PIC16F877 U2 SLAVE

Figure 3.10: PSP Test System

Listing 3.10 PSP Master Test Program

// PSPMASTER.

#include

void main ()

{
int sendbyt
port_b_pull

while (1)
{ sendbyte
output_D(

output_1lo
output_1lo

C

"16F877A.h"

// Test system master controller program,

//**************************************

e;

design file PSP.DSN, Ul

// Activate Port B pull-ups

ups (1) ;

= input_B(); //

sendbyte) ; //

w(PIN_E2) ; //

w(PIN_E1) ; //
//

output_high(PIN_E1) ;

Get test byte
Output on PSP bus

Select PSP slave

Write byte to slave port

Reset write enable

www.newnespress.com

C Peripheral Interfaces 123

Listing 3.11 PSP Slave Test Program

// PSPSLAVE.C
// Test system slave controller program, design file PSP.DSN, U2

#include "16F877A.h"

VOld maln() //**

{

int recbyte;

setup_psp (PSP_ENABLED) ; // Enable PSP slave port
while (1)
{ if (psp_input_full()) // If data have been received
{ recbyte=input_D() ; // Copy in test data
output_C (recbyte) ; // Display data on bar graph

}
}
}

chip select) on Port E, and the data are latched in when E1 (!WR = not write) is pulsed
low by the master.

In simulation mode, the write pulse frequency was measured at 40kHz (MCU clock =

4 MHz). The slave program (Listing 3.11) monitors the receive flag associated with the
port and picks up the data when the port indicates that data have been loaded into the PSP
data register. The data then are transferred to Port C for display on the bar graph.

A parallel external bus can thus be created that connects microcontrollers, extra memory,
and other 8-bit devices to form a system similar to a conventional microprocessor system.
On the PSP bus, the master must select the peripheral device to be accessed using the chip
select mechanism. If necessary, an address decoding system can be added to expand the
hardware without using extra master pins. For example, a 3-bit decoder generates eight
chip select signals. A memory space is created for the master, where different peripherals
are accessed at separate address ranges.

Table 3.9 summarizes the PSP functions.

Comparison of Communication Links

We can now compare the available PIC MCU communication ports so that the most
suitable can be selected for any given application. Table 3.10 summarizes the main features.

124 Part 3

Table 3.9: PSP Functions

Operation Description Example

PSP SETUP Enables or disables PSP setup_psp (PSP_ENABLED) ;

PSP DIRECTION Sets the PSP data direction set_tris_e(0);

PSP OUTPUT READY Checks if output byte is ready pspo = psp_output_full();
to go

PSP INPUT READY Checks if input byte isready to | pspi = psp_input_full();
read

PSP OVERFLOW Checks for data overwrite error | pspv = psp_overflow() ;

As we have seen, three serial communication interfaces are available plus the parallel
slave port.

In theory, the parallel port should be the fastest, because 8 bits can be transferred at a
time. The PSP can be used to create a multiprocessor system with a common data bus
connected to same port on other MCUSs, with one master controlling the addressing
system and selecting the slave MCU. One example of such a multiprocessor system is a
robot with a separate controller for each motor. The master controller sends data to the
motor slaves to set position, speed, or acceleration of that axis. Data transfer speed may
be crucial to optimum system performance, so the parallel connection may be preferred in
this case. This is feasible as long as the physical distance between the controller and the
motors is not too far.

For serial data transfer, speed (bits per second) increases as we progress from UART
through I°C to SPI. As well as being the fastest, SPI is also relatively simple to implement.
It can operate in Multimaster mode but needs hardware slave selection. I>C needs only
two wires and operates like a mini-network, so it may be more effective for larger systems.
However, the software is more complex and carries a significant addressing overhead.

The UART is a simple way to link a single master and slave and allows greater link
distance by use of line drivers. On the other hand, it does not support any form of
multiprocessor or bus system.

C Peripheral Interfaces

Table 3.10: Comparison of PIC Communication Ports

UART

SPI

1’C

PSP

Description

Serial RS232, Host-
terminal, single link

Serial data, bus
connection with
hardware selection

Serial data and address,
bus connection with
software addressing

Parallel 8-bits, bus
connection with
hardware control

Clock Asynchronous Synchronous, max Synchronous, max Synchronous
SMHz 5SMHz
Wiring TX, RX, GND SCK, SDI, SS SCL, SDA + 10-k PSPO-PSP7, RD,
pull-ups WR, CS
Data 6-9 bits 8 bits serial 8 bits + address + 8 bits parallel
control
Page mode option
Control Start, Stop bits Clock strobe Clock strobe, Start, Read, Write, Chip
Acknowledge Select
Speed LOW <19.2kb/sec HIGH <5Mb/sec HIGH <1-5Mb/sec, MID <40 X
(bits/sec) depends on mode 8 =240kb/sec’
Distance? HIGH <100 m LOW <1m LOW <1m LOW <1m
Nodes 2 only Unlimited® 1024 (10-bit address) Limited by bus
characteristics
Systems Single peer to peer Master/slave Master/slave Master/slave
Operation Can be connected Simple clocked Complex software Simple hardware
as a simple 2- data, high speed control and addressing | control but with
wire system but but requires slave reduces speed but limited bus length.
has additional selection wiring and | requires no slave Higher speeds
handshaking modes | possibly external selection wiring or possible using
and parity checking | decoding external decoding assembler routine.
for extra reliability hardware May need external
decoding.
Typical PC host to MCU Sensor data Multiperipheral control | Multiprocessor

applications

target data transfer
(e.g., data logger)

link, MCU
communication link

system with sensors and
low-speed memory data
storage

system, parallel
MCU data link

Notes:

" This is an estimated speed using nonoptimized C code to drive the bus. If optimized assembler code were
used, this could be improved significantly.
2 Transmission distance in the UART is enhanced by using line drivers to increase the signal voltage to
overcome line impedance and interference. Data transmission at TTL signal levels in the other links restricts
the distance to within the same subsystem (board, unit, or back plane). For greater distances and multinode
operation, a local area network interface is required, which provides synchronous data communication with
unlimited software addressing and error correction.
3 The SPI system can be expanded by additional address decoding and line drivers as necessary, but there are

practical limits to this option, and 12C or networking would probably be more effective.

125

126 Part 3

3.8 PIC16 C EEPROM Interface
e EEPROM test system
e EEPROM test program

The internal electrically erasable programmable read only memory block is not strictly
speaking a peripheral, as it is internal to the MCU, but it is accessed in a way similar to
external devices so it is included in this part. In the 16F877, the EEPROM is a block of
256 bytes of nonvolatile read/write memory. It allows data to be retained while the power
is off, which is useful in applications such as an electronic lock where a secure code
needs to be stored.

Figure 3.11 shows a test circuit that demonstrates its operation. Arbitrary 8-bit codes
are set on the switch bank, which are stored, recalled, and displayed on the LED bank.
The R/!'W (Read/Not Write) input switch is closed to select the Write mode. The switch
code is set and the button pressed. This stores the code in the first EEPROM location,

Ui O] 0]
ON__OFF
% OSC1/CLKIN RBO/INT gi ; —— A
14 osca/cLkouT RB1 —o2 =
RB2 |—2 gy
:2,,— RAO/ANO RB3/PGM [—o= 5 |
—+ | RAV/ANT RB4 g ——
— | RA2/AN2IVREF—/CVREF RB5 55 |
—2—| RAI/ANSVREF + RB6/PGC (—, o |
——1{ RA4/TOCKI/C10UT RB7/PGD ———
—L 1 RA5/AN4/SS/C20UT 15
RCO/T10SO/T1CKI R1 R2
g— REO/ANS/RD RC1/T10SI/CCP2 13 H 10K H 10K
So—| REVANGWR RC2/CCP1 (—11-
<2 RE2/AN7/CS RC3/SCK/SCL 18
; RCA4/SDI/SDA %
—1 MCLR/Vpp/THV RCS5/SDO [—7--
RCB/TX/CK [; 2
RC7/RX/DT —28- o
19 1 16 s 1 =8 Step
RDO/PSPO 20 2 5 2 —1 17 RAW
RD1/PSP1 (— 11— ” o s o 1 et
RD2/PSP2 —1—2 i e [] o o
RD3/PSPS I — 5 12 7 1= ? ©
RD4/PSP4 25— T e 1 E— 3 &) o
RDS/PSP5 [— - — m T 1C—
RD6/PSP6 —= —= s T .
RD7/PSP7 —
PIC16F877A

Figure 3.11: EEPROM Test System

C Peripheral Interfaces 127

address 0. The switch code is then changed and the next code stored in location 1, and so
on until a 0 is entered on the switches. As the data are stored, each byte is displayed on the
bar graph.

The R/!'W switch is then opened to select read mode. As the button is pressed, the same
sequence of stored codes is displayed from memory. The nonvolatile data storage is
demonstrated by the fact that the test data are retained between successive simulation
runs. This can be viewed if the simulation is paused and the EEPROM data window
selected from the debug menu. Listing 3.12 is an EEPROM test program.

3.9 PIC16 C Analog Output

® Waveform generator test system
® Waveform test program
® Waveform output

In microcontroller applications, analog output is not needed as often as analog input,
so no digital to analog converter (DAC) is built into the PIC MCU. An external DAC is
needed to generate analog output signals.

A serial DAC may be used to output a precision DC reference voltage or low-frequency
analog signal, using SPI or I°C to transfer the data. A 10-bit or 12-bit output is typically
provided, giving a precision of about 0.1 or 0.025%, respectively. However, the serial data
transfer is inherently slow. In the demo system described here (Figure 3.12), higher speed
is possible with parallel output to the DAC. The waveform generator circuit generates
trigonometric waveforms, which are displayed on the virtual digital oscilloscope.

The system provides 8-bit conversion, giving a precision of 100/256 = 0.4%. With a
20-MHz MCU clock, the maximum output frequency is about 4 kHz. This is limited by
the maximum rate at which the output loop can produce the instantaneous voltages that
make up the waveform.

The DAC code is output at Port D, with a variable delay to control the frequency. A set

of switches provides waveform selection and push-button frequency adjustment. The
DACO0808 produces a current output that needs an external amplifier to convert it to a
voltage and provide the output drive. The amplifier stage also allows the output amplitude
and offset to be adjusted.

128 Part 3

Listing 3.12 EEPROM Test Program

// EEPROM.C
// Internal data EEPROM test, design file EEPROM.DSN

#include "16F877A.h"
#use delay(clock=4000000)

void main () ////////7/7/77/777777/77
{

int writebyte, readbyte;

int maxadd, address;

port_b_pullups(l); // Enable Port B internal pull-ups
if (!input (PIN_C1)) // Write memory sequence //////////////////

{
address=0; // First address
do
{ while (input (PIN_CO0)) {}; // Wait for button
writebyte = input_B(); // Get switch bank data

write_eeprom(address,writebyte); // Write data to EEPROM
readbyte = read_eeprom(address); // Read it back

output_D(readbyte) ; // Display data on bar graph
while (!input (PIN_CO0)) {}; // Wait for button release
address++; // Next EEPROM address
} while(writebyte!=0); // Continue until data = 00
}
else // Read memory sequence ///////////////////
{
address = 0; // First address
do
{ while (input (PIN_CO0)) {}; // Wait for button
readbyte = read_eeprom(address); // Read data
output_D(readbyte) ; // Display it on bar graph
while (!input (PIN_CO0)){}; // Wait for button release
address++; // Next address
} while(readbyte!=0); // Continue until data = 00
While(l); // Done AAhkh A Ak hAk Ak Ak hk Ak kA kA kA dkhkhkrkhkkhhhkkkx*%

}

C Peripheral Interfaces 129

u (O]
13 33 ON__OFF| 5 A
T2 OSC1/CLKIN RBO/INT 54 g SQUARE
~3—] OSC2/CLKOUT RB1 (55 - SINE B —
—— MCLRNVpp/THV RB2 [—32 o TRIANG
> RB3/PGM [—5= - ARBIT cl—
—5—| RAO/ANO RB4 [—55
——| RAT/AN1 RBS5 [—35 WAVEFORM Dt—
——| RA2/AN2/VREF - RB6/PGC
—2—| RAJ/ANS/VREF+ RB7/PGD 1 (®)| PERIODUP
——| RA4/TOCKI_ 15 0—4
——| RA5/AN4/SS RCOT1OSO/T1CKI —2- —1_@| PERIOD DOWN
8 . RC1/T10SI/CCP2 | —2- o—4 OUTPUT AMPLITUDE
—5—| REO/ANS/RD. RC2/CCP1 — 1 @| ResTART
<o~ REVANG/WR RC3/SCK/SCL (5 o4
12— RE2/AN7/CS RC4/SDI/SDA |—=2- @ nowave RV2 | 2ok
24
’ RC5/SDO 5= o O
——{ MCLRNVpp/THV RCB/TX/CK —22-
RC7/RX/DT (—=2 Ui © 6
19 12 3
RDO/PSPO A8 vee| 3
RD1/PSP1 2‘1’ 1‘(‘] A7 comp [16 I c1 -
RD2/PSP2 (—27 3 Ac . 100nF , U3
RDY/PSP3 [—22 2 A5 IouT h
RD4/PSP4 A4 10k R3
RD5/PSPS 22 L A3 VREF- |15 —
RD6/PSP6
RD7/PSP7 [—30 S { A1 VREF+ |14 10k
PIC16F877A DAC0808 OUTPUT ¢
15V OFFSET o
R2 15k RV

Figure 3.12: Waveform Generator

The program source code is shown in Listing 3.13. This is only a demonstration of the
digital waveform generator principle, and a more sophisticated design is required to produce
a waveform with a better resolution at higher frequencies. It serves only to illustrate some
relevant features of C and the principle of waveform synthesis that may be used in high-
performance digital signal processors, such as the dsPIC range. This is an application where
critical sections of the code could be written in assembler for higher speed.

The main object of the program is to generate instantaneous voltages in sequence to
produce a square, sine, triangular, and arbitrary waveform. The mid-value for the output
is 100,(. Instant values ranging between —100 and + 100 are added to this value to
produce the output.

For the arbitrary pattern, most values are O in this example, with an increasing value at
intervals of ten steps. This produces a pulse-modulated triangular waveform, which might
be used to test a digital filter, but any other repetitive pattern can be entered as required.
The arbitrary sequence is generated from the values entered into the array amp [n] in

the function setwave () at the source code edit stage. A mechanism for entering these
externally in hardware could easily be added, but that is rather tedious to demonstrate.

For the other waveforms, the values are calculated. The square wave is just a set of
constant maximum (+ 100) and minimum (—100) values, and the triangular wave is an

130 Part 3

Listing 3.13 Waveform Generator Source Code

// DACWAVE.C MPB 5-7-07
// Outputs waveforms to DAC, simulation file DAC.DSN

#include "16F877A.H"

#include "MATH.H"

#use delay(clock=20000000)

#use fast_io (D) // High speed output functions

int n, time=10;

float step, sinangle;

float stepangle = 0.0174533; // 1 degree in radians

int amp[91]; // Output instant voltage array

// ISR to read push buttons R b Sk I Sk kS I b Sk I I R S R b S Ik S

#int_rb
void change /()
{
if (time!=255)
{if (!input (PIN_B4)) time ++;} // Increase period
while(!input (PIN_B4)) ;

if (time!=0)
{if (!input (PIN_B5)) time--;} // Decrease period
while (!input (PIN_B5));

if (!input (PIN_B6))reset_cpul) ; // Restart program
if (!input (PIN_B7)) for (n=0;n<91;n++)amp[n]=0; // Zero output
}

void setwave() // Arbitrary waveform values ****&Fkkkkkkkhhdkdkkhrxx
{
amp[0] =00;amp
amp[5] =00;amp

] =00;amp[2] =00;amp
] =00;amp[7] =00;amp

3] =00;amp[4] =00;

1
6 8] =00;amp([9] =00;

[[

[[
amp[10]=10;amp[11]=00;amp[12]=00;amp[13]=00;amp[14]1=00
amp[15]=00;amp[16]=00;amp[17]=00;amp[18]=00;amp[19]1=00
amp[20]=20;amp[21]=00;amp[22]=00;amp[23]=00;amp[24]=00
amp [25]=00;amp[26]=00;amp[27]=00;amp[28]=00;amp[29]=00
amp[30]=30;amp[31]1=00;amp[32]=00;amp[33]1=00;amp[34]1=00
amp [35]=00;amp[36]1=00;amp[37]1=00;amp[38]1=00;amp[39]1=00;
amp[40]=40;amp[41]1=00;amp[42]1=00;amp[43]1=00;amp[44]1=00
amp [45]1=00;amp[46]=00;amp[47]=00;amp[48]=00;amp[49]=00
amp [50]=50;amp[51]=00;amp[52]=00;amp[53]=00;amp[54]1=00
amp [55]=00;amp[56]=00;amp[57]=00;amp[58]=00;amp[59]1=00
amp[60]=60;amp[61]1=00;amp[62]=00;amp[63]1=00;amp[64]=00
amp [65]=00;amp[66]1=00;amp[67]1=00;amp[68]=00;amp[69]=00

C Peripheral Interfaces 131

amp[70]1=70;amp[71]1=00;amp[72]=00;amp[73]1=00;amp[74]1=00;
amp[75]=00;amp[76]1=00;amp[77]1=00;amp[78]1=00;amp[79]1=00;
amp[80]=80;amp[81]1=00;amp[82]=00;amp[83]1=00;amp[84]1=00;
amp[85]=00;amp[86]=00;amp[87]=00;amp[88]=00;amp[89]1=00;
amp[90]1=90;

}

VOld maln() //***

{
enable_interrupts (int_rb) ; // Port B interrupt for buttons
enable_interrupts (global) ;
ext_int_edge (H_TO_L) ;
port_b_pullups (1) ;
set_tris_D(0);

// Calculate Waveform values EIEE R I I I I S R S I S I I S I I S

step=0;
for (n=0;n<91;n++)

{

if (!input (PIN_BO)) amp[n] = 100; // Square wave offset
if (!input (PIN_B1)) // Calculate sine values
{ sinangle = sin(step*stepangle) ;
amp[n] = floor(sinangle*100);
step = step+l;
}
if (!input (PIN_B2)) amp[n] = n; // Triangular wave
if (!input (PIN_B3)) setwave(); // Arbitrary wave

}
// Output Waveform ValeS LR R R R I e b I R R I I R R R R R R R I I S

while (1)

{ for(n=0;n<91;n++) {output_D(100+amp[n]); delay us(time)
for(n=89;n>0;n--) {output_D(100+amp[n]); delay us(time);}
for(n=0;n<91;n++) {output_D(100-amp[n]); delay us(time);}
for (n=89;n>0;n--) {output_D(100-amp[n]) ()}

i1

7

; delay_us(time

incrementing and decrementing count. The sine output is the most interesting, as it is
calculated using the sine function from the math.h library. These values are assigned to
the amp [n] array for output after being calculated, since to calculate each and output it
“on the fly” would be too slow.

132 Part 3

Digital Dscilloscope

Channel C

i

Figure 3.13: Sine Wave DAC Output

The waveform is selected at the start of the program by polling the selection switch bank.
If the waveform selection is changed, the loop must be restarted using the push button.
On the other hand, the frequency may be modified while the output is running. The main
consideration here is the timing of the output waveform—each step must take the same
time. The minimum step time is also important, as this determines the highest frequency.
Therefore, input polling is avoided. Instead, the Port B change interrupt is used to detect
the push buttons, and the period modification and waveform control operations are
placed in the interrupt routine void change(). Here, the delay between each output
step is incremented or decremented or the loop stopped and restarted. The sine waveform
obtained is illustrated in Figure 3.13.

Assessment 3
5 points each, total 100

1. Write a C statement that sets up the PIC ADC so that only RAO is used as an
analog input. Deduce the resolution per bit for a 10-bit conversion, assuming a SV

supply.
2. Ifasingle 4.096V reference voltage is connected to V¢, and 10-bit conversion

completed, write a C statement (a) to declare suitable variables and (b) to
convert the input value to the actual voltage for display.

C Peripheral Interfaces 133

10.

11.

12.

13.

14.

List the statements required to set up an ADC interrupt and outline the related
ISR initialization if it is called “isrADC.”

Explain the advantages of using an interrupt to read the data from an analog
input conversion, compared with simply checking it on a regular basis (polling)
within the program loop.

A 16-bit timer is preloaded with a value of 15,536. The MCU clock runs at § MHz,
with a prescaler set to divide by 16. Calculate the timer output interval obtained.

Explain briefly the difference between the Capture and Compare modes of
operation.

Draw a labeled diagram to show a PWM waveform, indicating how the
overall period and duty cycle are set by the arguments of functions setup_
timer 2 (a,b,c) and set_PwMx_duty (d). The MCU instruction clock
period is T.

Calculate modified parameters for the setup functions in program PWM that
produce an output at 1 kHz with a duty cycle of 10% (0.1-ms pulse). The
instruction clock is 1 MHz.

Explain why the UART is a suitable interface for transmission of characters to a
serial LCD display, especially if the LCD is separated from the MCU board.

Explain the effect of the statements printf ("%d", incode) and
putc (incode) on an LCD display connected to an MCU serial output, if the
value of incode is 0x41.

Outline how to structure a program using interrupts that can carry on some other
task while the serial data are transferred to and from the UART, and explain why
this might be useful.

By reference to Section 1.4, explain briefly how the hardware and master
program would be modified if more than one slave sender were in the SPI
system shown in Figure 3.8.

List the sequence of I°C statements to write the data byte 0xaA to address
0x01FF in the serial memory chip in the system shown in Figure 3.9.

Draw a block diagram showing how to connect two PIC MCUs using an I’C
link.

134

Part 3

15.

16.

17.

18.

19.

20.

Describe the sequence of operations required to write a byte to the parallel
slave port of the PIC MCU and to force the slave MCU to read the data in
immediately.

By reference to Table 3.10, select a serial link that connects numerous PIC
MCUs to a master controller using the minimum number of wires, and explain
briefly why this not the fastest method to read from a serial peripheral.

Select from Table 3.10 the most suitable communication link for each of these
applications, one for each method:

(a) An interface to a conventional memory chip with 8-bit data access.

(b) A robot control system with one master MCU and six motor control
slaves.

(¢) An MCU data logger uploading to a PC spreadsheet.
(d) A multiprocessor system with shared serial memory and sensors.

Describe briefly the function of EEPROM and its applications. Why is external
EEPROM sometimes necessary?

Explain why interrupts are used in the demo program DACWAVE to respond to
manual input to change the output frequency.

Outline how a simple program could produce a high-speed square wave using
the hardware in Figure 3.12.

Assignments 3

To undertake these assignments, install Microchip MPLAB (www.microchip.com), Labcenter
ISIS Lite (www.proteuslite.com), and CCS C Lite (www.ccsinfo.com). Application files may
be downloaded from www.picmicros.org.uk. Run the applications in MPLAB with Proteus
VSM selected as the debug tool. Display the animated schematic in VSM viewer, with the
application COF file attached to the MCU (see the appendices for details).

Assignment 3.1

Download the project ANALIN, the 8-bit analog test project. Run it and check that the
output voltage is represented by a number between 0 and 8. Now, modify the program to
display the actual voltage, bearing in mind that the reference value is 5V. That is, when

http://www.microchip.com
http://www.ccsinfo.com
http://www.proteuslite.com
http://www.picmicros.org.uk

C Peripheral Interfaces 135

the input is a maximum of 5V, the value received by the ADC will be 256. The scaling
factor therefore is 5/256 = 19.5mV/bit. The input therefore needs to be multiplied by
0.0195 to be displayed as voltage. Floating point variables need to be used in the revised
program.

Assignment 3.2

Download the project PWM and test it for correct operation. A 250-Hz (4-ms) pulse
waveform with a 50% duty cycle should be observed on the display. Now rewrite the
program to produce the same output using compare mode in Timer1. The timer needs
to run for 2 ms for each half cycle; assuming a 4-MHz MCU clock and a 1-MHz timer
clock, a compare value of 2000 is needed.

Assignment 3.3

Download the project DACWAVE and test it for correct operation. Measure the minimum
and maximum frequencies available. Modify the arbitrary waveform data to produce a
step waveform that has amplitude O for five steps of the output, 5 for the next five steps,
10 for the next five steps, and so on until the amplitude reaches 90 over the last five steps,
then reduces to 0 again. It should then produce the same over the negative half cycle of
the waveform before repeating.

C Mechatronics Applications

4.1 PICDEM Mechatronics Board Overview

® Mechatronics board hardware
¢ Mechatronics board connections

e Mechatronics board motor drives

The PICDEM mechatronics demonstration board (Figure 4.1), supplied by Microchip®
Inc., is a very useful target system for C control applications. A user manual, which can be
downloaded from www.microchip.com, contains the schematics and general guidance on
using the board. It can be programmed using the ICD2 In-Circuit Debugger module, which
allows a final stage of fault finding when testing an application in the target hardware.
Alternatively, the low-cost PicKit2 programmer can be used. Since our applications here
have been tested in simulation mode, the full ICD debugging interface is not needed.

PICDEM Hardware

The block diagram, Figure 4.2, shows the main parts of the mechatronics board. It is built
around a PIC 16F917, which is similar to the 16F877A but incorporates an LCD driver
module, which allows a plain 3.5-digit display to be operated with no additional interfacing.

The MCU internal clock runs at 8 MHz, giving a 0.5-ps instruction cycle. The main
output devices are a small DC motor and a stepper motor. These are operated from a set
of four current driver FETS, which can sink or source current. These allow either motor
to be driven in both directions when connected as a full bridge driver. Input tactile push
switches and output LEDs are provided for simple test programs, mode selection, and

http://www.microchip.com

138 Part 4

Figure 4.1: PICDEM Mechatronics Board (by permission of Microchip Inc.)

status indication. An RS232 serial port for exchanging data with the PC host is fitted,
which requires a suitable terminal program running on the PC.

A temperature sensor is fitted, which outputs 10 mV/C with OC giving 500 mV.
Therefore, at 20°C, the output will be 500 + (20 X 10) = 700 mV. This voltage can be
fed to an ADC input or comparator input on the MCU. A light sensor is also available,
giving an output in the range 0-5 V. Two pots, giving 0-5V, can be used as reference
inputs for the analog sensors or as test inputs for analog applications.

The mechatronics board has its main signals brought to in-line connectors, as shown in the
board layout (Figure 4.3). The components can be connected up for different applications
using link wires. The connector pin functions are listed for reference in Tables 4.1 through 4.4.

Motor Drives

The motors are driven from a set of four half-bridge driver stages, which can handle up to
1 A each. These can be connected to the 5-V regulated or the 9—12-V unregulated supply
for higher power output. Note that the main plug supply may be rated at less than 1 A, so
a separate supply is advisable if the full drive current is needed.

Each driver has a pair of MOSFETs, which allow the stage to source or sink current,
depending on which transistor is switched on (Figure 4.4). Control logic prevents both
coming on at the same time and shuts down all the drives if an overcurrent fault is detected.
This is activated on power up for fail safe operation and must be cleared manually before
testing a motor. If the DC motor needs to be driven in both directions, the half-bridge

C Mechatronics Applications 139
POT1 —> 0-5V N Z)?Z’V/OC
: emp =
POT2 —> J4 pins 3,4 Sensor — 500mV
J4 pin 1
Push Active Low Light 0-5V
Switch —> J4 pins Sensor J4 pin 2
2,3,4 —» 6,7,8
PIC 16F917 MCU 32.768 kHZ
8 MHz XTAL Clock
Reset SW1 IMCLR OSC1 [¢ !
0Ssc2
Serial < * |CSPCLK ™ | Serial Link
Programming
RAO/ANO LCD y 3.5-Digit
RA1/AN1 Display
RA3/AN3
Available /O
vl RA4 RD2/CC Available /O
<«——» RA5/AN4 P2
Drive Supply
LEDs
5V0lr12V J14 X8 0000000
Source Enable Px —» Half Motor
Control PWMx — Bridge [<—» Winding P9
Sink Enable Nx —»{ Driver 0-1A P10 Step
12,34 P9 P11 Motor
I P10 P12
Fault P11
Motor (Shutdown) Current P12
Winding Sense
Currents J15 P9 P10
l Fault
Current ’ (Shutdown) Optical
ﬁlee:tr Sense Interrupter -
au Circuit | Curent 2 pulsesirev J7
Sense
- 0- 1V

Figure 4.2: Block Diagram of P

ICDEM Mechatronics Board

www.newnespress.com

P21 B ble 2 s STEPPERMOTOR
E o0 o
[] G - VDD GND
Ll
L
SERAL o RE1| /RY 8- 12v0C eND — 5
EC. U i N odm ol -
mgz}a Reo gl] Leececsessessesesee c2
ve WS ., Leot . 8
R18 1 @cz@ Bczo PICDEM ~ Mechatronics
- aiﬂlﬁlﬁ D5 D6 D7 R32 C36 57
S L
ort i 9 Wos
=== :
10000008
]
PoT2 " R41 = = DRVE 1 BRUSHED DC MOWQR 4
4
Cc34 E rezlil WM [1 b I
s e
vt =:. restlii WMRe7 L] o1 o Q
[Camectfor g i £
- Full Bridge S MMc30 - (e Pe >
32.768KNz I =]
CRYSTAL = |
= = o 4
| ORIVE 2
. 2 = o
SW1 /MCLR =i c29
ﬂ ras v pcis
L L . y7 MMC3t 019g 7 25
= - —
= = = '
Connect for i DRIVE 3
Full Bridge — R25l .
LU | b
7@ oFTcAL NrERRUATER o17hg ure : :
RAS/CLUING
R27 - P11
rasscouT® 116 back e & == g
[merl® um IB L
K13
wes/ecP1/PIA® @ @eunren sevse] - na oy M 32 iy ORES o [N WMo
Ro4/020UT/PIB@) oy L] 5 "
RS4 1] s
reomzeic@| | @rcziverrio == = Ros
rosme@| | @ravaiorso |@ @) ose™ oy e O ml_1® | b4
D14 013 Rs3 FAULT >
wuosne| (O vee CEOSOMs| b e (e M
ool _lew @@ oo oiws | ML1® | wiMmESs

Figure 4.3: Mechatronics Board Layout (by permission of Microchip Inc.)

stages are connected as shown. Pairs of FETs are switched on to allow the current to flow
diagonally through FET1 and FET4 or FET3 and FET2, reversing the current in the load.

An additional control input allows PWM control of the drives. This involves switching
the current on and off over a set period and varying the average current by changing the
mark-space ratio. The PIC has two CCP modules that use the internal hardware timers to
provide the required output at CCP1 and CCP2 (see Part 3).

The DC motor needs some form of feedback if it is to be controlled accurately. It
therefore has a slotted wheel attached to its output shaft, which passes between an LED
and opto-sensor. The sensor produces a pulse for each slot, two per revolution, which
allows the motor position and speed to be measured by the MCU. Alternatively, provision
is made for speed measurement using back emf, where the drive is switched off for a
short period in the cycle and the voltage generated by the motor measured. The back emf
is proportional to the speed while the motor is working as a tachogenerator.

The stepper motor has two sets of windings, which are activated in sequence. This moves
the rotor one step at a time, or 7.5 degrees. The windings are connected to separate full-
bridge drivers consisting of half-bridges 1/2 and 3/4.

C Mechatronics Applications

141

Table 4.1: Mechatronics Board Fixed Connections

Label Alt Func MCU Pin | Function

Dedicated I/O

SW1/!MCLR RE3 1 Reset MCU (if enabled in fuses)
ICSPDATA RB7 40 In-circuit serial programming data
ICSPCLK RB6 39 In-circuit serial programming clock
RX RC7 26 Receive data from RS232 interface
TX RC6 25 Transmit data to RS232 interface
Display I/O

SEGO RBO 33 LCD segment O (see display map)
SEG1 RB1 34 LCD segment 1 (see display map)
SEG2 RB2 35 LCD segment 2 (see display map)
SEG3 RB3 36 LCD segment 3 (see display map)
SEG6 RC3 18 LCD segment 6 (see display map)
SEG21 REO 8 LCD segment 21 (see display map)
SEG22 REL 9 LCD segment 22 (see display map)
SEG23 RE2 10 LCD segment 23 (see display map)
COMO RB4 37 LCD Common connection 0

CoM1 RB5 38 LCD Common connection 1

COM2 RA2 4 LCD Common connection 2

COM3 RDO 19 LCD Common connection 3
VLCD1 RCO 15 LCD control voltage 1 (V44/3 = 1.66 V)
VLCD2 RC1 16 LCD control voltage 2 (2 V4q4/3 = 3.33 V)
VLCD3 RC3 17 LCD control voltage 3 Vg4

142 Part 4

Table 4.2: Mechatronics Board User Connections

User input devices

sSw2 General purpose tactile switches (active low),

Sw3 use RAO, RA1, RA3, RA4, RAS, RAG, RA7

Swa

POT1 Manual analog input (0-5V) for ADC and comparator,
POT2 use AN1 (C1—), AN2, AN3 (C1+), AN4

Sensor inputs

TEMP Temperature sensor (10mV/°C, 0°C = 500 mV), use ANT-AN4
LIGHT Light sensor (0-5 V), use C1— and C1+

Table 4.3: DC Motor Connections

Label Alt Func MCU Pin

DC motor output (J1)

Pl RD7 Enable source current driver stage 1
PWM1 CCP1 Pulse width control driver stage 1
N1 RD6 Enable sink current driver stage 1
P2 RD5 Enable source current driver stage 2
PWM2 CCP2 Pulse width control driver stage 2
N2 RD4 Enable sink current driver stage 2

DC motor sensors

OPTINT J7 Optical interrupter, 2 pulses per rev, use CCP1
BACKEMF Jl6 Back EMF, 0-5V, use RA1
CSENSE J15 Current measurement, 1 mV/mA, use RA1

All bridge drives are connected to ground via a 0.1-{) current sensing resistor, which
produces a voltage proportional to the load current. This is fed to an amplifier and
comparator so that the current can be measured. The comparator triggers a “fault”
condition if the current exceeds 1 A (100 mV across the sensing resistor), which shuts
down the drives. This fault condition also occurs on power-up, ensuring that the drives
start only after the Clear Fault switch is pressed.

C Mechatronics Applications 143

Table 4.4: Stepper Motor Connections

Label Alt Func MCU Pin
Pl RD7 Enable source current driver stage 1
PWM1 ccpl Pulse width control driver stage 1
N1 RD6 Enable sink current driver stage 1
P2 RD7 Enable source current driver stage 2
PWM2 CCP1 Pulse width control driver stage 2
N2 RD6 Enable sink current driver stage 2
P3 RD5 Enable source current driver stage 3
PWM3 CCP2 Pulse width control driver stage 3
N3 RD5 Enable sink current driver stage 3
P4 RD5 Enable source current driver stage 4
PWM4 CCP2 Pulse width control driver stage 4
N4 RD4 Enable sink current driver stage 4
+ Vg
Forward
Reverse FET FET J
1 3
FET FET

ihdliia

oV

Figure 4.4: Full-Bridge Driver Connection of the DC Motor

Test Program

An initial test program for the PICDEM board is used to check that the downloading and
in-circuit debugging modes are operational. The system setup is shown in Figure 4.5,

the test program outline in Listing 4.1, and the source code in Listing 4.2. The program
outline can be used in more complex applications to help to construct the program.

144 Part 4

ICD2 _____s

Download

& Debug PIC

Program 16F917 LEDS

PICDEMH o

[)

RD7 —\| « |D6
RD6
RD5 AR
RD4 e D4

Figure 4.5: Block Diagram of Test Hardware Configuration

Listing 4.1 Test Program Outline

TEST
Include 16F917 header file
Use delay library routines

Count=0

Loop always
Output count at Port D
Delay 10ms
Increment count

Listing 4.2 Mechatronics Board Test Program

//TEST.C MPB 14-4-07

//First program for testing Mechatronics Board
//Flashes 4 LEDs, total cycle time= 256x10ms=2.56s
//Connect RD7-D7, RD6-D6, RD5-D5, RD4-D4

#include "16F917.h" // Device header file
#use delay(clock=8000000) // Delay function clock speed
void main() //Start main block
{
int n=0; //Count loop variable
while (1) //Endless loop
{
output_D(n) ; //Show on LEDs
delay_ms (10) ; //Wait 10ms between steps
n++; // Increment loop count

}

} //End of source code

C Mechatronics Applications 145

A program implements a simple output loop, which increments the binary count at

Port C. The PIC 16F917 outputs RD4 to RD7 need to be connected to the LEDs D3 to D7
on the target board with link leads on the connector pins. The ICD2 module is plugged
into the board via the ICD connector and to a host PC USB port.

The source code is loaded or edited in the usual way within MPLAB and saved in a
project folder called “test.” The source code and device header file are placed in the project
folder and attached to the project in the project file window. Assuming the C compiler has
been previously installed, the project can be complied and the HEX and COF files

created.

The program is downloaded by selecting the menu Programmer, Select Programmer,
MPLAB ICD2. Confirmation that the target is ready should appear in the output window.
Hit the Program Target Device button and ideally a Programming Succeeded message is
returned. The Release from Reset button should set the output running on the LEDs on
the mechatronics board.

Debugging

If a program does not function correctly, it can be debugged in hardware using ICD2.

For this exercise, we run the program in debug mode anyway. From the Debugger menu,
Select Tool MPLAB ICD?2. If necessary, the operating system in the ICD module is
updated. A reminder may be received that the ICD2 module cannot operate as a debugger
and programmer at the same time. An error message may be displayed at this stage,
indicating that the system cannot enter debug mode. Resend the program and try again.
The output window should then show that the target system is ready.

The debug control panel now appears in the toolbar, allowing the program to Run,

Stop, Reset, or Single Step. The current execution point is displayed in the source

code window. Reset the program if necessary, and run it. The LEDs should flash in a
binary sequence on the target board. Stop the program and set a breakpoint at the output
statement in the source code. Open the watch window and display the value of ‘n’ in
binary. It increments each time the loop is executed, but note that the output shows only
the most significant 4 bits. It therefore changes only after a count of 16.

You will find that the step-over function does not work. This is probably because the
subroutine calls in CCS C are implemented using the assembler instruction GOTO
instead of CALL, which the step-over function is expecting. This can be confirmed by
opening the Disassembly Listing in the View menu.

146 Part 4

e £ Vew Pomct Cebuggw Progammer Todk Confguw Wndow het

D&M RE 2AY CEERO TE e ® FoFE Thte

/f TEST.C MPEB

f/ First program for testing
// Mechatronics Beard

fi flashes 4 LED=

#include "16F517.h"
#use delay(clock=8000000)

veid main()
{
int n=0;

while (1)
i

output_Din)
delay_ms{10) :
N+

Symbol Name | Mex | Decimal | Binacy | |
™ TxbF 143 10001111

wtaich 1 | wiatch 2| Wotch 3| Wiskch &

Figure 4.6: Test Program Debugging Screen

The debug windows are shown in Figure 4.6. When debugging is complete, clear all
breakpoints and ensure that the program is working as required. After the final version
is downloaded and the ICD module disconnected, the program should run from Reset on
power-up.

4.2 PICDEM Liquid Crystal Display

e LCD layout and connections

e LCD test program

¢ BCD count program
The plain 3.5-digit parallel liquid crystal display (LCD) is driven directly from the MCU,
occupying 15 of the I/O pins. The usual alternative to this arrangement is to use a serial
LCD, which can be driven via the RS232 port. This occupies only one or two pins, but it
is more expensive, as it contains its own microcontroller.

LCD Connections

The parallel LCD is operated by specific combinations of inputs that enable the segments
as required (Figure 4.7). The segments are designated A to G for each seven-segment

www.newnespress.com

C Mechatronics Applications 147

H ==
P D
(c) (d)
LCD1 PIN_| COM1 [COM2 | COM3 | COM4

1 1 |COM1 | ——— | ——— | ——-
COMQ | comt > e YOIV 1) [p—
COM1 3 com2 3 - ——— |CcOM3 | — =
com2 4| CcoM3 4 -—— [-—— [-—- [com4

5 RC | BATT |MINUS | AC

coMs 5| COM4 6 DH RH | 4B,C | DP3
SEG1 o | RC/BATT/-/AC = 3A 3F E)
SEG2 —| DH/RH/B-C/4DP 8 3B 3G 3C DP2
SEG3 5 3A/3F/3E/3D 18 gé ScFa ch; [?PD1
SEG11 5| 38/3G/3C/3DP 5 1A o= T 5
SEG6 0 2A/2F/2E/2D 12 1B 1G 1C —__
SEG21 11| 2B/2G/2C/2DP 13 S 52 m M
SEG22 15| \WIF/END 14 A v K S3
SEG23 15 1B1G/AC/
SEG16 T4 |Svs2mM
SEGO A/N/K/omega

Figure 4.7: (a) LCD Segment Connections (courtesy of Varitronix Ltd.); (b) Segment
Labels; (c) MCU to LCD Connection; (d) LCD Connection Map

digit, with digits numbered 1 to 4 from the right. The most significant half digit (4) has
only segments B and C, displaying only ‘1’. Four common connections (COM1-COM4)
enable groups of segments such that each has a unique address.

Note that this is a standard DMM display, so additional symbols are available that are
not needed in the mechatronics board applications. The data for the display segments are
stored in dedicated set of 12 registers in the PIC 16F917 (Table 4.5), called LCDDATAX,

148 Part 4

Table 4.5: PIC 16F917 LCD RAM Data Register Bits

Address COMO+ Address COM1+

00+ -- 06 -- -- 03 -- -- -- |24+ -- 06 -- -—- 03 -- -=- --
LCDDATAQO | xx 2A xx xx 3A xxX XX xxX | LCDDATA3 xx 2F xx xx 3F XX XX XX
08+ -—- -=- -—= -= 11 -- -=- -- |32+ -— - —= =11 == -= --
LCDDATALl | xx xxX XX XX 3B xX xX XX | LCDDATA4 |xX XX XX XX 3G XX XX XX
0le+ 23 22 21 -- -=- -= —-= —— |40+ 23 22 21 == -= —-= —= —-
LCDDATA2 | 1B 1A 2B XX XX XX XX XX | LCDDATAS 1G 1F 2G XX XX XX XX XX
Address COM2+ Address COM3+

48+ -- 06 -- -- 03 02 -- —-- |72+ -- 06 -- -- 03 02 -- --
LCDDATA6 | xx 2E xx xx 3E 4x xx xxX | LCDDATAY9 |xx 2D xx xx 3D P3 xX XX
56+ -—- - - --11 -- -- -- |80+ -—- -- = =11 -= -= --
LCDDATA7 | xx xxX xX xxX 3C xxX xX XX | LCDDATALO | xX XX XX XX P2 XX XX XX
64+ 23 22 21 -—- -- -- —-- -- |88+ -- 2221 —— —= —= -—= -—-
LCDDATAS8 | 1C 1lE 2C xx xxX XX XX xX | LCDDATAll [xx 1D Pl XX XX XX XX XX

where ‘x’is 0 to 11 (SFR addresses 110h—11Bh, bank 1). These registers contain 12 X
8 = 96 bits, which are identified individually, bits 0-95. If one of these bits is high, the
corresponding LCD segment or pixel is on.

The LCD has a total of 26 numerical segments, comprising three seven-segment digits
two segments for the MSD, and three decimal points. The MSD bits are controlled by
the same bit, as they always come on together, giving only 25 bits actually required.

Therefore, only some bits in the registers are used, but the spare capacity allows more
complex displays to be operated by the *917 in other applications. We see that the bits

’

that are used are not arranged very logically, so they will be mapped by the LCD display

function to simplify the output process.

The bits in the first three registers (LCDDATAO-LCDDATAZ2) are associated with COMO

output, the next three with COM1, and so on to COM3 (see Table 4.5). Unfortunately, the

C Mechatronics Applications 149

common inputs on the LCD are identified as COM1-COM4, so COM1 is controlled from
the MCU output COMO, and so on, with COM4 being connected to COM3 MCU output pin.

The 16F917 MCU can provide up to 24 segment drive outputs (SEGO-SEG23), with four
common connections (COM0-COM3). These are used in defined combinations to control
up to 24 X 4 = 96 segments or pixels in the display. In this way, 1 bit in the LCDDATAXx
registers controls one element of the display. This display needs only 25 bits and ten of
the available segment outputs (SEGO, 1, 2, 3, 6, 11, 16, 21, 22, and 23). These outputs are
encoded to allow individual bit control within the program.

LCD Test Program

Listing 4.3 shows a test program, LCD1, which displays the numerals O to 9 on each digit
in turn, then flashes on the MSD and three decimal points, so that correct operation of
each can be checked.

Listing 4.3 Test Program for Mechatronics Board LCD

// LCD1.C MPB 20-4-07
// Test program for mechatronics board LCD
// Displays count 0 to 9 on Digitsl,2,3 and 1 on Digit4

#include "16F917.h"
#use delay(clock=8000000)

//LCD DISPLAY DATA: (3 numerals "7 segments)+MSD 1 segment + 3 decimal
points

//Bit map for numerals 0-9 and blank......... ...t
//Numeral: 0 1 2 3 4 5 6 7 8 9 Dblank
byte const DigMap[11]={0xFD, 0x60, 0xDB, 0xF3, 0x66, 0xB7, 0xBF, 0XE0, 0XFF, O0xE7, 0x00};

//Bit addressess in LCD RAM locations LCDDATAO to LCDDATA11=12"8 bits
//Numbered 0-95 with offsets COM0O=0, COM1=24, COM2=48, COM3=72
//Segment : A B C D E F G
#define DIG1 COMO+22,COMO+23,COM2+23,COM3+22,COM2+22,COM1+22,COM1+23
//Bit addresses

#define DIG2 COMO+6, COMO+21,COM2+21,COM3+6, COM2+6, COMl+6, COM1+21
//Bit addresses

#define DIG3 COMO+3, COMO+11,COM2+11,COM3+3, COM2+3, COM1+3, COM1l+11
//Bit addresses

150 Part 4

#define DIG4 COM2+2

#define DP1 COM3+21
#define DP2 COM3+11
#define DP3 COM3+2
void main()

{

int8 n;
setup_lcd(LCD_MUX14,0);

for (n=0;n<11;n++)
{ 1lcd_symbol (DigMap[n],DIG1)

delay_ms (300) ;
}

for(n=0;n<11;n++)
{ 1lcd_symbol (DigMap[n],DIG2)

delay_ms (300) ;
}

for (n=0;n<11;n++)
{ lcd_symbol (DigMap([n],DIG3)

delay_ms (300) ;
}

lcd_symbol (0X80,DIG4) ;
delay_ms (1000) ;
lcd_symbol (0X00,DIG4) ;
lcd_symbol (OXFF,DP1) ;
delay_ms (500) ;
lcd_symbol (0X00,DP1) ;
lcd_symbol (0XFF,DP2) ;
delay_ms (500) ;
lcd_symbol (0X00,DP2) ;
lcd_symbol (OXFF,DP3) ;
delay_ms (500) ;
lcd_symbol (0X00,DP3) ;

while (1) {};

//Both bits

//Decimal point 1
//Decimal point 2
//Decimal point 3

//Initialize 14-pin LCD, no clock
divide

//Display numerals 0-9 at digit 1
; //Send digit bits to segment
addresses

//Display numerals 0-9 at digit 2
H //Send digit bits to segment
addresses

//Display numerals 0-9 at digit 3
; //Send digit bits to segment
addresses

//Switch on MSD digit 4

//Switch off MSD digit 4
//Switch on decimal point 1

//Switch off decimal point 1
//Switch on decimal point 2

//Switch off decimal point 2
//Switch on decimal point 3

//Switch off decimal point 3

/ /Done

C Mechatronics Applications 151

Table 4.6: Bit Maps for LCD Numerals

>
@)
O
(9]

Numeral | Segment LSB | Code

Bit

0xFD
0x60
0xDB

0xF3
0x66
0xB7

0xBF

0xEO

OxFF

W | o | J [0 | |W|N |k |O

0xXE7

olr|lrRr|rR|Rr|R|lo|rRr|Rr|o]|r]|N
o|lr|rRr|r|lo|lo|r|r|rRr|FR|~r|ln|®
olr|lrRr|rR|Rr|R|[RP|R|O|FR |~ |«
o|lo|lr|lo|lo|lo|o|r|r|o|r|N
o|lo|lr|o|lr|lo|lo|lo|r|o|r|w|m
o|lr|r|lo|lr|Rr|r|lo|lo|o|r|N|=T
olr|lr|lo|lr|rRr|RP|R|Rr|lo|lo|=
o|lr|lr|lo|lr|r|lo|r|lo|lo|r |

Blank

Each group of segments associated with each common connection on the LCD is
operated in turn by the program. The LCD functions used are setup_1lcd() and
lcd_symbol (). The arguments of the setup function specify a 14-pin display module
and O clock divide factor. The clock rate controls the display multiplexing rate, which
can be modified for best visibility.

The arguments of the output function comprise an 8-bit map for the numeral to be
displayed as a hex number (Table 4.6) and a list of the corresponding bits in the
LCDDATAXx locations for that digit. The 8-bit numeral codes are shown in Figure 4.7.
Because of the interaction of the control lines, the LSB for each code was determined by
inspecting the results on the display. Otherwise, the mapping is as normally required for
seven segment codes.

The mapping data for each segment is provided to the output function in the form of a
list of segment bit addresses, 0-95. To include information about which COM line is
active for each bit, the address is supplied as the sum of the start address of each COM
block and the bit number within that block. Therefore, the bit address of segment A of
digit 1 (DIG1) is COMO + 22. COMO has the value 0, COM1 = 24, COM2 = 48, and
COM3 = 72. Therefore, COMO + 22 = 22. By the same process, the single-bit address

152 Part 4

controlling the MSD (DIG4) is COM2 + 2 = 50, and the first decimal point (DP1) is
addressed at COM3 + 21 = 93.

For convenience, the lists of segment bit addresses for each digit are defined at the top
of the program, using the replacement text labels DIG1, DIG2, DIG3, and DIG4 plus the
three decimal point addresses. The 1cd_symbol () function is then supplied with the
constant array element number for the numeral to be displayed and the bit address list

as DIGx. A ‘for’ loop outputs each numeral at each position in turn, including the blank
digit, while the MSD and decimal points are switched on and off individually.

BCD Count Program

Listing 4.4 shows a program that displays a decimal count on the LCD. The count is
incremented until it reaches 10, when it is cleared back to 0 and the next most significant
digit incremented. The three digits are then displayed together. The MSD (DIG4) is not
used. The LCD data block is now concealed in a separate source code file 1cd. inc,
which is included at the top of the program.

4.3 PICDEM DC Motor Test Programs

® Motor test program

® Rev counter program

The primary target device on the board is the DC motor. The hardware configuration is
shown in Figure 4.8. The first program just switches the motor on and off, and the second
shows how to control the speed.

Basic Control

The minimal program (Listing 4.5) shows how to run the mechatronics board under the
control of SW2. The motor is connected to Drivel and Drive2 output terminals, with
two output bits of the MCU linked to P1 and N2. When these go high, the motor current
is switched on in a forward direction. The output code 0x90 = 10010000, switches on
RD4 and RD7 when the switch input RA4 goes low. If desired, the PIC output pins can
also be monitored on the LEDs. The project should be loaded and tested as described in
Section 4.1.

C Mechatronics Applications 153

Listing 4.4 LCD Counting Program

[177777 777777777777 77
//LCD2.C MPB 20-4-07

//LCD program to count up when SW2 on

//Hardware: Connect SW2 to RA4
[1777

#include "16F917.h"
#include "lcd.inc" //Include file with LCD data
#use delay(clock=8000000)

void main () ///// /T
{

int8 BCD1=0, BCD2=0, BCD3=0; //BCD count digits
setup_lcd (LCD_MUX14,0) ; //Initialize 14-pin LCD
while (1)
{ //GENERATE DECIMAL COUNT
if (!input (PIN_A4)) //Test Switch 2
{
delay_ms(10) ; //Debounce and slow
BCD1++; //Increment ones
if (BCD1==10) //..up to 9
{
BCD1=0; //Reset ones
BCD2++; //Increment tens
if (BCD2==10) //..up to 90
{
BCD2=0; //Reset tens
BCD3++; //Increment hundreds
if (BCD3==10) //..up to 900
BCD3=0; //All reset to zero

//DISPLAY BCD DIGITS

lcd_symbol (DigMap [BCD1],DIG1) ; //Display Digit 1

lcd_symbol (DigMap [BCD2],DIG2) ; //Display Digit 2

lcd_symbol (DigMap [BCD3],DIG3) ; //Display Digit 3
} //Loop always

YLLLLPL PP S)/ END

154 Part 4
PIC) LCD
16F917
Drive 1
Current
Source

Run Opto-Sensor I:l
Switch
Drive 2
> Current

Sink

Figure 4.8: Block Diagram of Motor Test System

Listing 4.5 Motor Test Program

//MOTOR1.C MPB 17-4-07 PICDEM board test program

//Control motor from switch. Connect SW2-RA4, RD7-P1, RD4-N2

#include"16F917.h"

void main ()
{
while (1)
{

if (!input (PIN_A4))
output_D(0x90) ;
else output_D(0x00) ;

//Test switch
//Switch on motor
//Switch off motor

}

Rev Counter

The system is now developed to measure the number of revolutions completed during a
short run. The motor is still attached to Drivel and Drive2 outputs, but in addition, the
output from the opto-sensor (OPTO), which produces two pulses per rev, is connected
to the Timer1 input on the MCU (RC5/T1CLKI). The motor is switched on by pressing
SW2, and the number of revs is displayed when it is released. The maximum rev count
is 999 (1998 pulses), which takes about 20 sec to reach, assuming the motor is running
at about 3000 rpm. The program source code is given in Listing 4.6 and is outlined in
Listing 4.7.

C Mechatronics Applications

155

Listing 4.6 Program to Display Motor Revs

[17777 7777770777777 777
// MOTREVS.C

// Program to count motor revs

// PICDEM hardware: Connect SW2-RA4, RD4-N2, RD7-P1
[17777777770777

#include "16F917.h"
#include "lcd.inc" //Include file with LCD data
#use delay(clock=8000000)

void main () /////// /1777777777711 7777777777777777777777777777171777777
{

int8 BCD1=0, BCD2=0, BCD3=0; //Initialize 3 digits
int8 huns=0, tens=0, ones=0; //and digit values
intl6 count=0; //Receives timer count
setup_lcd(LCD_MUX14,0) ; //Initialize 14-pin LCD
setup_timer_1 (T1_EXTERNAL) ; //Initialize rev counter
while (1) //Main loop start
{
while (input (PIN_A4)) {}; //Wait for switch 2 on
delay_ms (10) ; / /Debounce switch

//COUNT MOTOR REVSX2//////////////////7//1/777/17777/177777177/

set_timerl (0); //Reset counter
output_D(0x90) ; //Start motor

while (!input (PIN_A4)) //Wait while switch on
{ delay ms(10); } //Debounce switch
output_D(0x00) ; //Motor off
count=get_timerl () ; //Read counter
count=count/2; //2 pulses per rev

//CONVERT COUNT TO BCD////////////////////1///17/7/77/7/77/

huns=tens=ones=0; //Reset digit values
while (count>99) //Calculate hundreds

{ count=count-100; huns++; } //digit by subtraction
while (count>9) //Calculate tens

{ count=count-10; tens++; } //digit by subtraction

ones=count;

//DISPLAY BCD DIGITS//////////////7/7/7/11177777777777777177

lcd_symbol (DigMap[ones],DIG1) ; //Display Digit 1

lcd_symbol (DigMap[tens],DIG2) ; //Display Digit 2

lcd_symbol (DigMap [huns],DIG3) ; //Display Digit 3
} //Loop always

} LILTTTT7 7000000000077 0000000000077 7777777077777777777777/END

156 Part 4

Listing 4.7 Outline of Rev Counter Program

MOTREVS
Specify MCU 16F917
Include LCD function file

Initialize display digits to zero
Setup LCD
Setup timer as external pulse counter

Main loop
Display 3 digits on LCD
Wait for input switch on
Reset counter and start motor
Wait for input switch off
Stop motor
Convert timer count to 3 digit BCD

The timer is set up for external input using setup_timer_1 (T1_EXTERNAL), and the
resulting count is read using get_timerl (). The binary number obtained from the timer
is divided by 2 and converted to BCD by a process of successive subtraction, which is
simple if not elegant. The calculated digits are then displayed as in previous examples,
using the function 1cd_symbol () to output the display digits and the include file
LCD.INC for the display encoding.

4.4 PICDEM Stepper Motor Control

¢ Stepper motor operation

e Stepper motor test program

¢ Speed and direction control
The main advantage of the stepper motor is that it provides position control without the
feedback required by a DC motor. It has stator windings distributed around a cylindrical

rotor, which has permanent or induced magnetic poles. The windings operate in groups to
move the rotor by a fraction of a revolution at a time (Figure 4.8).

C Mechatronics Applications 157

Figure 4.9: Bipolar Permanent Magnet Stepper Motor with Two Winding sets

RD7 P1 .
SW2—> P » Drive 1 p—"
Direction CCP1 PWM1 R
» — o1 1 l
RD6 P2 Motor
» control » Drive 2
Sw3 PIC logic Orange
> 16F917 RD5 P3 Ilnkec_i for
Faster » full bridge Red
CCP2 PWM3 i » Drive3 k
> op(:zl:z\alteion
sw3
> RD4 P4 L :'—T -
Winding
Slower P Yellow
» Drive 4

Figure 4.10: Stepper Motor Test System Connections

Construction

The small stepper motor on the mechatronics board is an inexpensive permanent magnet
(PM) type, giving 7.5 degrees per step, 48 steps per revolution. It can also be moved in
half steps by suitable operation of the windings or even smaller steps (microstepping) by
suitable modulation of the winding current. The motor has two bipolar windings, which
means the current is reversed to change the polarity of the stator pole. The coils energize
two rings of poles, creating alternating north and south poles, which interact with the
permanent rotor poles (Figure 4.9).

Representative windings are shown Figure 4.10; in the actual motor, coils are distributed
around the whole circumference, multiplying the torque produced. Their terminals are

158 Part 4

connected to the four driver outputs on the board, which are normally connected for full-
bridge operation. This allows the current to be reversed in the stator windings, reversing
the polarity of the stator poles. The stator coils are brought out to four color-coded wires,
which are connected to the driver terminals.

In more expensive motors, a smaller step (typically 1.8°) can be obtained with four sets of
windings. These motors usually have six wires, with a common connection for each pair
of windings.

Stepper Motor Test

The stepper motor is connected to the driver outputs, in clockwise order. The six driver
input links must be closed to enable full-bridge operation, since the bipolar motor
requires winding current in both directions. P1, P2, P3, and P4 inputs are connected to
RD4, RD5, RD6, and RD7, respectively. When run, the program generates the required
switching sequence on the coils to energize them in the right order. SW2/RA1 changes
the direction, and SW3/RA3 and SW4/RA4 allow the step speed to be varied.

Source code STEPTEST.C is shown in Listing 4.8. Only the control inputs P1, P2, P3,
and P4 need to be connected to outputs RD7-RD4 at this stage. Note that the stepper
motor terminal connections are not in numerical color order. As can be seen, no special
program setup is needed. The program simply switches on the drivers in the order 1,4,2,3
by outputting a suitable hex code to Port D. The delay is set so that the steps can be
counted visually. It is helpful to attach an indicator flag to the motor shaft, so that the

stepping can be seen more easily. The number of full steps per rev can then be
confirmed (48).

Program STEPSPEED, Listings 4.9 and 4.10, is a development of the basic program to
test the motor response to a range of step rates. The input tactile switches change the
speed by modifying the delay time parameter, which is set to 16 ms by default. This gives
speed of

16 ms/step = 16 X 48 = (0.768 sec/rev = 0.768 X 60 = 46 rpm

Direction Control

The stepper motor program can now be further developed to include direction control, as
shown in STEPDIR.C (Listing 4.11). The program has been restructured to incorporate

Listing 4.8 Stepper Motor Test Program

// STEPTEST.C

// Test program for PICDEM Mechatronics Board stepper motor,

// basic full step mode. Connect RD7-P1, RD6-P2, RD5-P3, RD4-P4
// plus all 6 jumpers for full bridge mode

// Motor moves 48 steps per rev (7.5 deg/step)
[1177077777077777771777777777777777777777777777777777

#include "16F917.h"
#use delay(clock=8000000)

void main ()
{
while (1) //Loop always
{
output_D(0x80) ; //Switch on Drive 1
delay_ms (200) ;

output_D(0x10) ; //Switch on Drive 4
delay _ms (200) ;

output_D(0x40) ; //Switch on Drive 2
delay_ms (200) ;

output_D(0x20) ; //Switch on Drive 3
delay _ms (200) ;

Listing 4.9 Outline of Stepper Motor Speed Control Program

STEPSPEED
Specify MCU 16F917
Set default step delay time

Main loop
If Direction switch pulsed, Call Forward
If Direction switch pulsed, Call Reverse

Forward
Call Speed
Output one forward cycle (4 steps) to motor

Reverse
Call Speed
Output one reverse cycle (4 steps) to motor

Speed
If Up button on, halve step delay
If Down button on, double step delay

160 Part 4

Listing 4.10 Stepper Motor Speed Control Program

[177777777 777777777777 777
// STEPSPEED.CMPB 22-4-07

// Program for PICDEM Mechatronics Board stepper motor, full step mode
// Connect RD7-P1, RD6-P2, RD5-P3, RD4-P4 plus all 6 jumpers for full
// bridge mode plus SW3-RA3 and SW4-RA4. Motor speed SW3 up SW4 down
[17770777

#include "16F917.h"
#use delay(clock=8000000)

void main ()

{
int8 time=16; // Variable step delay

while (1) //Loop always
{

//CHECK SWITCHES

if (!input (PIN_A3)) //Poll SW3
{ delay ms (10) ; / /Debounce
if (time!=1)time=time/2; //Not if min
}
while (!input (PIN_A3)) {}; //Wait switch
if (!input (PIN_A4)) //Poll Sw3
{ delay_ms(10) ; / /Debounce
if(time!=128)time=time*2; //Not if max
}
while (!input (PIN_A4)) {}; //Wait switch

//4 STEPS CLOCKWISE

output_D(0x20); delay ms(time) ; //Step 1
output_D(0x40); delay ms(time) ; //Step 2
output_D(0x10); delay_ms(time) ; //Step 3
output_D(0x80); delay_ms(time) ; //Step 4

a procedure for modifying speed. In the main loop, the reversing button is tested; by
default the motor runs forward and is reversed each time the button is pressed. Before each
sequence of four steps, the speed buttons are polled and the delay modified if requested.
The structure makes it easier to write the program with the right logical sequence. A flaw

C Mechatronics Applications 161

Listing 4.11 Stepper Motor Speed and Direction Control

[177777777 777777777 77
// STEPDIR.C PICDEM Mechatronics Board stepper motor speed and dirc.

// Connect RD7-P1, RD6-P2, RD5-P3, RD4-P4 plus all 6 jumpers(full bridge)
// SW2-RA2, SW3-RA3, SW4-RA4. Motor speed SW3 up SW4 down, motor dirc SW2
[177771777

#include "16F917.h"
#use delay(clock=8000000)
int8 time=16;

//MCU select
//Internal clock
//Default speed

//PROCEDURES//////// /1171117717777 777777777777777777777777777777

void speed() //Halve or double speed //////////

{
if (!input (PIN_A3))
{ delay_ms(10);
if(time!=1)time=time/2;
}
while (!input (PIN_A3)){};

if (!input (PIN_A4))
{ delay ms(10);
if(time!=128)time=time*2;
}
while (!input (PIN_A4)){};
}

//Poll SW3
/ /Debounce
//Not if min

//Wait switch

//Poll SW3
/ /Debounce
//Not if max

//Wait switch

void forward() //4 steps clockwise /////////////

{
speed () ;
output_D(0x20); delay_ms(time) ;
output_D(0x40); delay ms(time);
() ()
() ()

’

output_D(0x10); delay ms(time
output_D(0x80); delay_ms (time
}

7

//Step 1
//Step 2
//Step 3
//Step 4

void reverse() //4 steps counter-clockwise /////

{
speed () ;
output_D(0x80); delay _ms (time)
output_D(0x10); delay_ms(time) ;
() ()
() ()

’

7

output_D(0x40); delay_ms (time
output_D(0x20); delay_ms (time

7

//Step 4
//Step 3
//Step 2
//Step 1

162 Part 4

void main() //Main loop/////////// /1111111171717 777777177777777777
{

while (1) //Loop always

{
while (input (PIN_A2)) { forward(); } //Run forward
delay_ms (10) ; / /Debounce
while (!input (PIN_A2)){}; //Wait until released
while (input (PIN_A2)) { reverse(); } //Run reverse
delay_ms(10) ; / /Debounce
while (!input (PIN_A2)) {}; //Wait until released

in the algorithm is that the program checks the buttons only after four steps, so the direction
and speed do not change immediately if the motor is running at low speed. This type of
problem can be solved using interrupts.

4.5 PICDEM Analog Sensors

e Light switch application

e Temperature display application

The mechatronics board is fitted with a light and temperature sensor, each of which
produces an analog output in the range of 0-5 V. In common with many sensors now
available, a signal conditioning amplifier is built in, so that no additional components are
needed to interface with an MCU.

Light Sensor

The light sensor can be tested using the analog comparator inputs of the 16F917, which
allow two input voltages to be compared. An output bit in a status register is set if the
positive input (C+) is at a higher voltage than the negative input (C—) or a reference
voltage. A range of setup options are defined in the header file.

The block diagram in Figure 4.11 shows the hardware configuration for this test. The
connector pin LIGHT, the light sensor output, is connected to RAQ (comparator input C—)
and POT1 to RA3 (comparator input C+), with LED D7 is assigned to RD7 to display the

C Mechatronics Applications 163

POTH
0-5V b Cx LED
DO

RD7 '()

Light
Sensor C—
0-5V

MCuU

Figure 4.11: Comparator Test Setup

Listing 4.12 Outline of Light Sensor Test Program

LIGHTCON
Select MCU 16F917
Initialize comparator input

Main loop
If light>set level, switch output OFF
Else switch output ON

comparator state. When the light level is reduced, the output switches on. Conversely, it goes
off as the light is increased through the switching level, which is adjustable using POT1. This
simulates the operation of an automatic streetlight switch or security lamp. The program
LIGHTCON is outlined in Listing 4.12 and the source code shown in Listing 4.13.

As we see, in the program, only the setup function is needed, which assigns the comparator
inputs to Port A pins. Two comparators are available, and the setup used here is the same
for all comparator applications using this hardware. C1IOUT is the bit label assigned to the
Comparator 1 output bit, which is tested using the i £ statement. The LED output is then
switched accordingly. The pot sets the switching level, and a desk lamp or flashlight was
found to work as a light source. The LED should go on when the light source goes off.

Temperature Measurement

The temperature sensor on the PICDEM board has an output of 10 mV/°C, with 500 mV =
0°C (Figure 4.12). For this application, the TEMP pin, to which the temperature sensor
output is connected, is linked to the first analog input RAO (ANO). When run, the

164 Part 4

Listing 4.13 Light Switch

L1177 70777770 7077777077777 77
// LIGHTCON.C

// Auto light switch uses comparator inputs on mechatronics board

// Pot 1 adjusted for light switching level.

// Connect: LIGHT to Cl-, POT1 to Cl+

L1177 70777770 7777777777777 7777777777777 7777777777777777777777777777777777

#include "16F917.h"

void main ()

{

setup_comparator (AO_A3_Al_A2); //Setup for PICDEM board
while (1)
{ if(!C10UT) output_low(PIN_D7); //Switch off LED if light>pot
else output_high (PIN_D7) ; //Switch on LED if light<pot
}
}
PIC
16F917
. [TEMP1.C]
emp
Sensor » ANO 4\ LCD
10mv/°C g m— i
0°C = 500 mV 2 digits

Figure 4.12: Temperature Sensor System

temperature is converted and displayed. The program TEMPDIS outline is given in
Listing 4.14 and the source code in Listing 4.15.

The ADC is set to 10-bit conversion, giving an output of 1024 steps:

Internal ADC reference voltage = 5.00 V.

Bit resolution = 5.00/1024 = 4.88 mV per bit.
Temperature measurement = 10 mV per °C.
Temperature resolution = 4.88/10 = 0.488°C per bit.

The temperature is therefore measured to about 0.5°C. This is quite acceptable, as the
display is precise to only *1°C. By contrast, if 8-bit conversion were used, the precision
would be only about 2°C per bit and the display would be misleading.

Listing 4.14 Outline of Temperature Sensor Test Program

TEMPDIS
Select MCU 16F917
Include LCD functions

Setup LCD
Setup ADC (10 bits, ANO)

Main loop

Read analogue input (binary 0-1024)
Convert to temperature value (integer)

Convert to BCD digits
Display on LCD (0-99)

Listing 4.15 Temperature Display Source Code

L1170 770 7700770770077 7707 7777777777777 77777777777 777777777777777

// TEMP1.C MPB 24-4-07

// Demo program for PICDEM Mechatronics Board
// Displays temperature +1/-0 deg C. Target board link: TEMP-ANO
[1177077777077

#include "16F917.h"
#device ADC=10
#include "lcd.inc"

void main ()
{
intl6 intemp;
float temp;
int8 distemp, tens, ones;

setup_lcd(LCD_MUX14,0) ;
setup_adc (ADC_CLOCK_INTERNAL) ;
setup_adc_ports (sANO) ;
set_adc_channel (0) ;

while (1)

{
intemp=read_adc() ;
temp=(intemp*0.488)-50;
distemp=temp;

tens=temp/10;
ones=distemp- (10*tens) ;

lcd_symbol (DigMap [ones],DIG1) ;
lcd_symbol (DigMap[tens],DIG2) ;

//MCU header file
//Select 10-bit ADC
//LCD segment map file

//Start main block

//Input temp from ADC result
//Decimal result of scaling
//Display temp and BCD digits

//Initialize 14-pin LCD
//Select internal ADC clock
//Configure for ANO input
//Select ANO

//Main loop always

//Read analog input
//Convert to degC
//Truncate to integer

//Calculate BCD ones digit

//Display low digit
//Display high digit

166 Part 4

The program needs to convert the input to degrees C by multiplying the input bit count
by the temperature resolution, 0.488°C per bit. Since the temperature range effectively
starts at 0°C = 500 mV, we must subtract this offset from the calculated temperature. For
example, at room temperature of 20°C, the sensor output is 500 + (20 X 10) = 700 mV.
This converts to a value of 700/4.88 = 143 (nearest integer).

We check that we see the correct display:

(143 X 0.488) — 50 = 19.8°C.

Due to rounding down in the program, this displays as 19°C and changes to 20°C
only when this input has been exceeded, so the display shows the correct temperature
accurate to +1°C and —0°C. A correcting factor of approximately + 1/2°C could be
implemented by simply adding 1 to the ADC result to give a display to the nearest
whole degree.

Note that the automatic type conversion incorporated into the complier simplifies the
arithmetic significantly. The type is changed automatically while preserving the value
as far as is possible in the new format. Therefore, a decimal is truncated to an integer by
simple assignment of the value from a float to integer variable.

4.6 PICDEM Temperature Controller

¢ Specification of temperature controller

¢ Input and output allocation

® Program outline
The PICDEM mechatronics board will now be used as the hardware platform for a
temperature controller. Using a ready-made board eliminates the need for detailed

hardware design and should be considered if a suitable product is available at a
reasonable cost.

Specification

A temperature controller is required to control a greenhouse or similar outdoor enclosure
at a temperature of 25-30°C using electric heaters and a cooling fan.

C Mechatronics Applications 167

<
ADC Vref+ < Light Sensor
St PICDEM
Mechatronics Fan
Stop Board
Reset < Pulse
> PIC 16F917 Sensor
3.5LCD
OK ICD

Heater 1

i
i

Fault Heater 2

Figure 4.13: Block Diagram of the Temperature Controller
1. Overall function

Maintain target temperature within +/—2°C, displaying it on the LCD. If the
temperature is within specifications, switch on RunOK indicator; if temperature
difference exceeds 5°C, switch on flash fault indicator.

2. Startup procedure
® Power up the system, reset the fault indicator.
¢ Display the set temperature on the LCD for operator adjustment.
® Wait for the start input push button.
3. Overall operation
¢ Switch on the first heater if the temperature is more than 2°C below the target.
e Switch on the other heater if the temperature is more than 5°C below the target.

¢ Run fans at a speed proportional to the positive temperature difference: If the
fan speed is zero, switch on the fault indicator; if the temperature sensor is out
of range, enable the fault mode.

e If the light level indicates direct sunlight, add a positive offset to the fan speed
in anticipation of an additional temperature rise. If the light sensor is out of
range, enable the fault mode.

The block diagram, Figure 4.13, shows the system I/O requirements.

168

Part 4

1/O Allocation

Once the inputs and outputs required have been established, we can provisionally assign
them to particular pins (Table 4.7), as available in the PICDEM board. The appropriate

links can later be made for testing the application.

Implementation

Output half-bridge drivers 1 and 2 control the heaters. In the final system, these are
interfaced via contactors if the load operates at high voltage. For test purposes, a 6-V
filament lamp is connected to the drive output to represent the heater load. The motor is
operated by drive 4, with the PWM input to the bridge providing speed control. All these

Table 4.7: PICDEM Board 1/O Allocation for
Temperature Controller (Excluding LCD)

Pin Label Type Board Description

RAOQ Tempin Analog in TEMP Range 0-50°C = 500-1000 mV
RAL Lightin Analog in LIGHT Range 0-5V, needs calibration

RA2 SetTemp Analog in POT1 Range 0.5-1.00V, set target temp
RA3 Viyefs Analog in POT2 Adjusted to 1.024V

RAS5 Startin Digital in Sw2 Active low, push button, start system
RAG6 Stopin Digital in SW3 Active low, push button, shut down
RE3 Reset Digital in Swl Active low (hard wired) IMCLR
RD4 RunOK Digital out | DO Active high, status indicator LED
RD5 Fault Digital out | D1 Active high, status indicator LED
RD6 FanPWM Digital out | PWM4 Active high, DC motor, DRIVE 4
RD7 FanEn Digital out | N4 Active high, DC motor drive enable
RC5 FanInt Digital in CCP1 DC motor pulse feedback OPT. INT
RD1 Heatl Digital out | N1 Active high, heater 1 on, DRIVE 1
RD2 Heat?2 Digital out | N2 Active high, heater 2 on, DRIVE 2

C Mechatronics Applications 169

loads are controlled at the N drive inputs, which operate single-ended in sink mode, since
the current drive is needed in only one direction. The P gates can remain disabled. The
fan speed is controlled using a CCP module in capture mode. This allows low speeds to
be measured accurately.

The temperature sensor is calibrated at 10 mV/°C, with an operating accuracy of =2°C
and offset of 500 mV at 0°C. The temperature range is 0-50°C, so the sensing range is
500-1000 mV. If the second pot is used to provide a reference voltage of 1.024 V, the
10-bit conversion factor is 1 mV per bit, and the temperature is easily calculated in the
program by subtracting 500 from the input.

The light sensor needs to be tested to establish the output level when exposed to sunlight
and a threshold value incorporated into the program, so that the cooling boost cuts

in at an appropriate level. When testing the system, hot and cold air could be applied

to the temperature sensor to check basic functionality, but the set temperature input
provides a more convenient test input. If the temperature at the sensor is constant (room
temperature), adjusting the set input above and below this value has the same effect as the
temperature falling and rising.

If the application functions correctly, when the set temperature is adjusted to the actual
room temperature, neither the heater nor motor output is on. If the set value is increased,
meaning the input temperature is too low, one heater comes on. If increased further,

the other heater comes on. If the set value is decreased, the input appears too high and
the fan comes on. As the set value is further decreased, the fan speeds up. When the set
value is returned to room temperature, all outputs are disabled. If either sensor input is
disconnected (the most likely fault mode), the fault output comes on and all other
outputs are disabled. The same effect is observed if the motor is stalled, simulating a
fan fault.

When the real system is commissioned, the program values may need to be adjusted to
optimize the system response. In this kind of feedback system, the system generally needs
to respond as quickly as possible without showing instability. The loop delay time (wait
for fan) and the PWM calculation might need to be modified accordingly. In commercial
temperature controllers, time constant and gain values are adjustable, so that the system
response can be optimized in situ.

Listing 4.16 outlines the temperature controller program.

170 Part 4

Listing 416 Temperature Controller Program Outline

TEMCON temperature control system

Define & Initialize

StartIn = RAS (0/1)

StopIn = RA6 (0/1)

LightIn = RAl (0-255)

TempIn = RAO (0-255)

SetTemp = RA3 (0-255)

RunOK = RD4 (0/1)

Sunlit = 0-255 (calibrate)
Startup

All outputs disabled

Loop

Read, store, display SetTemp
While Start button not pressed

Main Loop
Read InputTemp

If InputTemp out of range
Disable outputs
Wait for reset
Flash fault indicator

If (TempIn-SetTemp< (-2))
Switch on Heatl
Disable Fan

If (TempIn-SetTemp< (-5))
Switch on Heat2
Flash fault indicator

If (TempIn-SetTemp>1))
Read FanInt
Calculate fan speed
Calculate PWM duty cycle

Read LightIn

If LightIn out of range
Indicate fault
Disable outputs
Wait for reset

If (LightIn>Sunlit)
Add offset to PWM duty cycle
Modify FanPWM duty cycle

Heatl
Heat2
FanPWM
FanInt
Fault
Reset
FanEn

RD1
RD2
RD6
RC5
RD5
RE3
RD7

(on/off)
(on/off)
(0-255)
(0-255)
(0/1)
(0/1)
(0/1)

C Mechatronics Applications 171

Enable fan
Disable Heaters
Wait 5s for fan to start
If (speed=0)
Indicate fault
Disable outputs
Wait for reset

Else enable RunOK
Always

4.7 PICDEM Board Simulation

® Mechatronics board simulation schematic
® Mechatronics board circuit operation

® Mechatronics board applications

A simulation version of the PICDEM mechatronics board created in Proteus VSM is
provided on the support Web site www.picmicros.org.uk. The ISIS schematic is shown
in Figure 4.14. The circuit has been organized into functional blocks, and some hardware
features are not included to simplify the schematic.

For example, generic drive FETs were used for compactness on the schematic, rather than
the specific devices. It was not necessary to include the circuit of the optical interrupter
interface, since the DC motor and pulse encoder are modeled in VSM as one component.
The RS232 interface is designed to work primarily with a terminal software module
provided with the PICDEM kit and therefore also was not included. Components such as
decoupling and filtering are used only where essential for accurate circuit modeling. The
overcurrent sensing circuit has a simulated input added because variations in the motor
loading cannot be represented; this also allows the operation of this part of the circuit to
be tested independently. The back emf from the DC motor can be modeled by a voltage
source or simple pot if required.

The component numbering is the same as the hardware wherever possible. The circuit
connections between the main blocks are made via terminal labeling in the schematic.
User connections for particular applications can be added as required.

http://www.picmicros.org.uk

TEMPERATURE SENSOR DRIVE
ENCODING
— RET] 7 -
5
i \ MOTOR
10 2 CURRENT
P1 DRIVERS
£> LIGHT P 1 4 A
T LCDT umsmoe .l : | . PMOSFET
m ENABLES
74HCO0
R40 I fa v L&
FLLL 41 L 2
-|e|e|e 10k U7B 8
BRIDG= - HCO8.
ANALOGUE TESTINPUTS 3.5DIGIT LCD w0779 ok 4 N sl a2
DRIVES s P
oM ™ R10 2 |elel|e 2 s . b
@ — B> pomt o2 w] R43 = =%
l pod b1l pzlp3lpal nslpel pr P [. IUS-B Sla i
. [1%
[L < N
O[> ror2 36 B35 R34 R33 R26 R38 R37 R3g Rad Reg e < FaukT
T 2108
Ol o Ei2 c27 ’ 10k " oyre LB .
POT2 LEDS : rancs Dyam I
TWF ACTIVE R47 ©
= HIGH 3 sl zh ozl =) sl s ok w2
— 26
i . 3 ay 1
PYM3 1 8 /]
. 10
U1 picsEe o s v
: - 0
<I>——{ RACIANOICT-1SEG"2 ROVCONS > cous TCasws

= REUANICI#VREFSEGTS
<> RAYCIOUTITOCKISEGA
<Pt RAS/ANA/C20UT/SSISEGS
<L RAGIOSC2CLKOT 050
<I>—2] RAT/OSCHCLKITIOS!

seG21 3:2 REGANS/SEG2T
SEG22 | RenanersEG22
SEGZS <] REJANTISEG23
MCLR [>——— REUMCLRA/DD

ok
ﬁ RAVAN' [C2-/SEGT ﬁ
com2 T RAZANIC2+IVREF/COM2 RD2ICCP2 ele|le
]
®

FLLL

RDIISEGTS ;Z—D SEG1S Rica:

RD4/SEGT7
LINKS.
RDS/SEG16 ORNVE

[
—

RD7/SEG20
RS0
RCONLCD1 ok
RG1MLOD2

o1 2

28 T
RDS/SEG1D 23T ele
50 384
<>
<]
<]
<]

RC2VLED3
RCIISEGE

>
(coa PMA
o>

FAAC00

l —1 & s - REATBISDOBEGH |22 SEG1 N
Swi & 5660 <p—3— RBUNT/SEGD RCSTICKICTPUSEGTD 22— [
Sw2 SEG1 <J—2t—] REISEGT RC6/TXICK/SCKISCLISEGY [—20—T>
sw3 sec2 J——| reuseG2 ROTRYDTISCUSDAISEGS [—20—<T>
© Swa SEG3 J—ao— RBASECH R48 R49
<] 5] COMo <3 RBAICOMO 10K 0k
<] @ COMI <J——c— RES/COM1 PIC
@ © ——{ RB&/CSPCLK/ICDCKISEG14
<} L 48| RB7ACSPDATACODAT/SEGTS MCU

MICROCHIP (TM) PICDEM MECHATRONICS BOARD
MPB Ver 1.0 May 2007

Simulation of sensor and actuator circuits:

DC Motor control with incremental encoder feedback
Stepper motor speed and position control
Overcurrent protection circuit

Temperature and light sensor measurement

For test programs and full details see
PROGRAMMING PIC MICROCONTROLLERS
by Martin Bates, 2007

AMPLIFIER X10

A

022

MCF6022

COMPARATOR

R17
1k

NMOSFET
ENABLES

OVERCURRENT
LATCH

Clear
i —No}
o

i SENSE

OVERCURRENT SENSE CIRCUIT

Figure 4.14: PICDEM Mechatronics Board Simulation Schematic

opTO

C Mechatronics Applications 173

Circuit Description

The central component of the PICDEM mechatronics board is the PIC 16F917, whose
main distinguishing feature is the integral LCD drive facility. The 3.5-digit LCD outputs
occupy a large proportion of the available I/O pins, leaving a limited number for the other
peripherals. The digit segments are enabled by appropriate combinations of the segment
and common inputs (see Section 4.2 for details). These are defined in an include file,
which must be added to the application project. Three bias voltages are also required by
the LCD at V., 2V /3, and V_/3; these are generated by a simple resistive divider.

The push-button (tactile switch) inputs on the hardware are represented by toggle
switches, so that they can be left in the closed position if necessary when running the
simulation. They can be replaced with buttons if preferred. A bank of active high LEDs
are provided for output monitoring. The temperature and light sensors are modeled as
generic devices, with user control of the set variable. They normally are connected to an
analog input on the MCU, either a comparator or an ADC input.

The drive control logic is also modeled using generic devices for the discrete CMOS
gates but with specific devices for the enable logic. The driver MOSFETSs themselves
are generic, so actual device characteristics may not be represented exactly. This is not a
significant issue, since the motor models are also generic.

The PMOSFET is switched on when its gate is taken low, and the NMOSFET is switched
on when its gate is logic high. No additional interfacing is necessary, which is a great
advantage of the FET over other types of current driver, such as bipolar power transistors.
In addition, the FET is voltage operated and input resistance at the gate is very high,
giving negligible loading on the control logic outputs.

The flywheel diodes in the output are added to cut off the back emf from the inductive
motor load when switching off the windings, a standard arrangement with inductive
loads. This high-voltage pulse could otherwise damage the FETs. The specific FETs used
in the actual hardware have Schottky diodes across the outputs, which perform a similar
protection function.

A motor overcurrent is detected by a 0.1-) resistor, through which all driver currents
flow to the ground. This generates a voltage of 100 mV at 1 A, and a noninverting
amplifier with a gain of 10 increases this to 1.0 V. This voltage is monitored by a
comparator stage, which has a reference voltage generated by a pair of diodes in series
giving just over 1 V. When this voltage is exceeded, the comparator output triggers the
overcurrent latch, which disables the bridge drivers via their control logic. This latch

174 Part 4

needs to be reset via the CLR FAULT push button on power-up or when an overcurrent
condition has been cleared.

Logic functions controlling each half bridge driver have been derived from inspection of the
control logic in the schematics of the mechatronics board in the PICDEM User Manual.

Source FET on: 'Pg = P.F. (! (M.N))
Sink FETon: Ng = M.N.F

where

Pg = PMOSFET gate (active low),

Ng = NMOSFET gate (active high),
N = N input from MCU,

P = P input from MCU,

M = PWM input from MCU,

F = FAULT input (disable all outputs).

The operation of each bridge driver deduced from these functions is represented in

Table 4.8, which shows only the significant logic conditions. The full logic table confirms
that the important fact that the FETSs are never on at the same time, which would effectively
short out the drive supply. F always disables the output when low (power-up condition from
the overcurrent circuit). For most input combinations, the half bridge is disabled (safe).

When the bridge control inputs are not connected, the P and N inputs are pulled low (0),
the M input pulled high (1) (logic states shown in bold), and the outputs are disabled
(Pg = 1, Ng = 0, State 2). They are also unconditionally disabled when F is low (Fault
mode, State 1).

Table 4.8: Bridge Driver Control Logic States

Inputs Outputs Result Drive State
P M N F Pg Ng

X X X 0 1 0 Bridge disabled, both off OFF 1

0 X 0 1 1 0 Bridge disabled (default input) | OFF 2

1 1 0 1 0 0 Source on, Sink off SOURCE 3

X 1 1 1 1 1 Source off, Sink on SINK 4

1 0 X 1 0 0 Source on, Sink off SOURCE 5

0 0 X 1 1 0 Bridge disabled, both off OFF 6
Note: Default input (open circuit links) is shown in bold.

C Mechatronics Applications 175

Assuming we start with all inputs open circuit and both FETs off, the bridge is switched
to the Source mode when the P input is taken high (State 3) and to the Sink mode when
N is taken high (State 4). The Sink mode can be used to switch a load connected to the
positive supply on and off or to provide single-ended PWM drive.

For full-bridge operation, P1 and N2, P2 and N1, and M1 and M2 are linked via the six
input links. Drive 3 and 4 inputs are linked in the same way. In this mode, load current
is bidirectional and can be reversed by toggling M with P and N high (States 4 and 5).
States 4, 5, and 6 allow the bridge to be switched between Sink, Source, and Off.

Demo Applications

The mechatronics board simulation represents fixed connections around the MCU by
labeled terminals. Additional connections can be made to uncommitted pins using
the normal wiring tools in ISIS, allowing the demo applications to be tested. Note,
however, that only the full version of ISIS is guaranteed to allow complete control
of the simulation. Therefore, different versions of the mechatronics board schematic
configured for testing particular applications are provided on the support Web site.

Assessment 4
5 points each, total 100

1. Sketch a full bridge driver circuit using PFETs and NFETs connected to a motor,
indicating the current flow for forward motion and the logic state of the FET inputs.

2. Calculate the speed of the stepper motor on the mechatronics board in rev/min if
it is driven at a rate of six steps per second.

3. Derive a formula for the output of the temperature sensor on the mechatronics
board, in the form V = f(t).

4. Suggest three disadvantages of using the 3.5-digit parallel LCD compared with
the serial alphanumeric display described in Part 2.

5. Write a statement to display the number ‘8’ on digit 1 on the mechatronics board
LCD, and explain the meaning of each element of the statement.

6. Describe briefly the hardware used to control the speed of a DC motor connected
to a microcontroller.

7. Outline how the position of the stepper motor on the mechatronics board is
controlled and the connections required.

176

Part 4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Outline a method for controlling the speed of the DC motor in the mechatronics
board, using Timer1 in the MCU to measure the sensor pulse period.

Calculate the delay required in the STEPTEST Program to run the stepper motor
at about 1 rev/sec (full step mode).

The temperature sensor on the mechatronics board has a calibrated output, while the
light sensor does not. Explain why the comparator interface is therefore appropriate
for light sensing but the ADC would be preferred for temperature measurement.

The temperature at the mechatronics board sensor is 25°C and is converted by the
10-bit ADC with a reference voltage of 2.048 V. Calculate the ADC output value.

Write down logic functions for the Source (Pg.Ng) and Sink (! Pg. !Ng)
conditions of the board driver logic in terms of the input variables P, M, N, and F
from the logic states shown in Table 4.8.

List the hardware links required for the bidirectional DC motor drive in the
mechatronics board, and explain their significance in terms of switching the
current in the bridge forward, reverse, and off.

State the connections required for the stepper motor drive in the mechatronics
board, and list the activation sequence required at the drive logic inputs.

State the features of the power MOSFET that make it suitable for use as a current
driver device.

Refer to the simulation schematic Figure 4.14 and calculate the output voltage of
the overcurrent amplifier in the mechatronics board simulation circuit when the
test pot is set to its mid-position.

Refer to the simulation schematic Figure 4.14 and explain briefly how the
overcurrent latch functions.

Explain briefly why a PMOSFET and an NMOSFET are needed in each half-
bridge driver stage.

Outline how to set up the mechatronics board to control the speed of the DC
motor in one direction only, and state the required output from the MCU.

Study the setup for stepper motor driving in full-bridge mode; and by using the
drive logic functions, determine the winding activation sequence, in terms of the
current flow between drive terminals 1, 2, 3, and 4.

C Mechatronics Applications 177

Assignments 4

To undertake these assignments, install Microchip MPLAB (www.microchip.com), Labcenter
ISIS Lite (www.proteuslite.com), and CCS C Lite (www.ccsinfo.com). Application files may
be downloaded from www.picmicros.org.uk. Run the applications in MPLAB with Proteus
VSM selected as the debug tool. Display the animated schematic in VSM viewer, with the
application COF file attached to the MCU (see the appendices for details).

Assignment 4.1

Download the mechatronics board simulation file PICDEMboard.DSN and attach the
program test.cof . Check that the simulation runs correctly, causing the outputs at Port
D to display a binary count. Modify the delay count and confirm that the output timing
changes accordingly.

Assignment 4.2

Download the PICDEM mechatronics board simulation file PICDEMdcmotor . DSN and
attach the program motorsim.cof. Check that it runs correctly, displaying the motor
revs completed on the display after the input switch has been operated. Modify the
program to measure the time interval between pulses from the motor sensor and display
the speed in rev/sec. To implement this, measure the pulse interval in microseconds using
Timerl (maximum count = 65 ms) in Capture mode, MCU clock = 4 MHz. This gives
the time taken for half a rev in microseconds, t;,, and the speed can then be calculated,
in rev/sec = 106/2t;,. For example, if the speed is 3000 rpm (probably exceeding the
maximum achievable by the motor), we should see 50 rev/sec on the display. The value
of t, will then be 10 ms, a count of 10,000 in Timer1. We can see from this that the
minimum speed measurable is about 10 rev/sec. Use a suitable prescale value to extend
this value to less than 1 rev/sec, and modify the program to improve the precision of the
speed measurement to =0.1 rev/sec.

Assignment 4.3

A temperature controller program is required for the mechatronics board that implements
a cooling system. The DC motor has a fan attached, and the controller increases the fan
speed when the temperature increases. Connect up the mechatronics board for PWM
control of the DC motor. Write a cooling program that reads the temperature sensor and
modifies the motor speed accordingly. Demonstrate the application in simulation or
hardware as facilities allow.

http://www.microchip.com
http://www.proteuslite.com
http://www.ccsinfo.com
http://www.picmicros.org.uk

5.1

PIC16 C Applications and Systems

PIC16 C Application Design
Block diagram
Program outline

Debugging and testing

Formal design methods recommended for engineering projects may need to be applied in
the professional design environment. Here, some basic methods are outlined as a starting
point; these allow new applications to be developed with some degree of consistency and
help communicate project concepts and design details clearly in reports and presentations.

Hardware Design

The block diagram is an effective way to show the general form of a microcontroller
application design, and examples are seen throughout this book. Some simple rules are
used to represent system blocks and their input and output signals:

The direction of signal flow is represented by an arrowhead.
The TTL level digital signal is the default (default arrow) style.
Other switching levels (e.g., RS232 line) are indicated by labels.
The analog voltage range is indicated by a label and arrow style.
Parallel data are represented by a block arrow.

Analog signals are represented as a simple waveform.

180 Part 5

Analo

VoItagge Text Box with » Parallel Data Output
Functional

0-Vn Description ~ ——» Single TTL Output

Figure 5.1: Block Diagram Conventions

The block diagram (Figure 5.1) is easily constructed using only the drawing tools in a
standard word processor. The example in Figure 5.1 might represent an analog-to-digital
converter chip, with an “end of conversion” output.

Once a block diagram has been created, defining the inputs and outputs of each block, a
circuit schematic can be derived from it.

Software Design

The application program can be designed using various methods. A flowchart shows
the overall program sequence in a visual manner and is good for illustrating simple
program sequences. However, for C programs, some form of structured pseudocode

is recommended, where the main program is outlined as a text file, which can then be
converted directly to source code. Examples are again found throughout this book; the
general content is described in Listing 5.1.

After the application program source code has been created in the MPLAB text editor,

it can be compiled to generate the project file set. This includes the MCU machine code
HEX file and the COF file, which incorporates the hex file with additional debugging
information. It is necessary to have all the project files in the same folder, making copies
of the resource files as necessary. All applications need an MCU header file, such as
16F877A.H.

The application source code, MCU header file and any other files to be included or used
must be attached to the project in the project file window. The application can then be
built and the HEX machine code file produced. This is downloaded to the target system to
operate the application in hardware.

Application Debugging and Testing

The application program is tested and debugged in several stages. The main types of
errors and the tools for detecting them are outlined next.

PIC16 C Applications and Systems 181

Listing 5.1 General Control Program Outline

PROGNAME.C //////////1/717771777777777777777777
Program header information
Author, date, version etc

Include MCU header file
Include function library files
Include user source files

Use function library files
Define constants

Declare global variables
Declare function prototypes

Main block /////////77///7777777777777177777777
Initialization sequence
Initialization function calls
etc

Main loop
Sequences
Function calls (level 1)
etc and repeat

Function block /////////77///7777/777777/7/7/777
Initialization sequence
Process sequences
Function calls (level 2)
etc and return

Syntax errors are mistakes in the source code, such as spelling and punctuation errors,
incorrect labels, and so on, which cause an error message to be generated by the compiler.
These appear in a separate error window, with the error type and line number indicated so
that it can be corrected in the edit window.

When the program is successfully compiled, it can be tested for correct function in the
target hardware so that any logical errors can be identified. However, it is preferable to
test it in software simulation mode first, as it is quicker and easier to identify errors in the
program sequence. Two simulation methods are available here, MPSIM and Proteus VSM.

MPSIM is the simulator provided with MPLAB. It allows the program source code to
be run, stopped and stepped, and breakpoints set. The registers and source variables may
be inspected at each step. When debugging C programs, breakpoints are the most useful,

182 Part 5

while stepping is more useful in assembly language. The program sequence and variable
values are monitored and errors identified when the results obtained do not agree with
those expected. Error information is provided principally in tabular form.

By comparison, the Proteus VSM debugging environment has significant advantages.
The animated schematic gives a much more immediate indication of the overall program
function. Interactive input and output devices operate in real or simulated time. The
source code and breakpoints can be displayed.

In addition, if the VSM viewer is run from within MPLAB, the progress of the program
can also be monitored simultaneously in MPSIM. Therefore, the more detailed debugging
tools in MPSIM can be run alongside VSM and the most appropriate selected for any
debugging task. The simulated hardware design is thus tested in conjunction with the
MCU firmware (cosimulation), allowing circuit modifications at an early stage and
hardware-software interaction to be studied on screen. When the program is eventually
downloaded to the real hardware, it is now far more likely that it will work the first time.

The VSM Viewer is invoked from the debug tools menu in MPLAB, and the program is
attached and tested. However, if circuit modifications are needed, VSM must be opened
separately to run alongside MPLAB, so that the full set of ISIS schematic edit tools and
component models are available. VSM still accesses the same COF file, so both software
and hardware changes can be tested. More details on interactive debugging are given in
Appendices A, B, and C.

5.2 PIC16 C Temperature Controller
® Basic system
e Software design
¢ Implementation

In this section, the software design principles just outlined are applied to a typical
application, a temperature control system. The schematic of the demo hardware is shown in
Figure 5.2. The TEMP pot represents a temperature sensor that outputs a voltage of 0-5V.
If a scaling of 100mV/°C is assumed, the range is 0-50°C, with 2.5V representing 25°C.

System Operation

The sensor is connected to AN1, the ADC channel 1. A SET pot provides the reference
temperature for the system. If the measured temperature is below the set level, a heater,

PIC16 C Applications and Systems 183

TEMPERATURE CONTROLLER

temcon.dsn
SET TEMP 2 osci/CLKIN RBO/ANT (32
14— osca/cLkout RB1 (32
——{ MGLRNVpp/THV RB2 2
@ -| RB3/PGM 37
=— RAO/ANO RB4 —3g 7
©) J S— RAT/ANT RB5 [0 -~ L1
——{ RA2/AN2/VREF - RBS/PGC (o0 —ev
—5__| RAS/AN3/VREF + RB7/PGD |—2% -
-S| RagrTocKI
10k VIN | RASIAN4/SS RCOT10SOMTICKI 1S N
— s — Rcimiosicer2 1S
= -2 | RE0/ANS/RD rcz/copt 12 AN
70— REI/ANG/WR Roa/sCK/scL 18
19 Re2/AN7/CS RC4/SDISDA (23 — —
@ RC5/SDO |21 LCD1
RCE/TX/CK [—22-
0] RC7/RX/DT |25 VDD
TEMP 10
RDO/PSPO RXD
100 mV/deg C 10k RD1/PSP1 %
RD2/PSP2 21 vss
e RD3/PSP3 22
- RD4/PSP4 [—55- MILFORD-2X16-BKP
RD5/PSPS [—50-
RD6/PSP6 T30 —
RD7/PSP7 30 —
PIC16F877 Ut

Figure 5.2: Temperature Control System

represented by the filament lamp output, is switched on. If it is above the set value, a
cooling fan switches on instead, represented by the DC motor.

To avoid the outputs “chattering” at the switching point, due to input noise, switching
hysteresis should be incorporated into the control sequence, meaning that the switching
level when the temperature is rising is higher than when the temperature is falling.

The temperature is displayed on the serial LCD as well as the status messages Heater ON
or Fan ON. The program structure ensures that the correct message is displayed during
the changeover phase.

Software Design and Implementation

The process of designing the software can be aided by writing a program outline. The
main structures and sequences are summarized using suitable layout and operational
descriptions.

A typical problem to be overcome is that the displayed message must agree with the output
status in the presence of hysteresis. Therefore, an output status flag (variable type intl) is
used to record the current output status. This flag is then tested by the conditional output
statement. Note that the switching levels can be modified to suit the application. In the
code shown (Listings 5.2 and 5.3), the upper switching level is 20 steps above the lower.

184 Part 5

Listing 5.2 Temperature Control Program Outline

TEMCON

Initialize
MCU 16F877A
ADC 8 bits, Inputs RAO, RAl
RS232, Output RDO

Loop
Delay 500ms for display
Read Set Pot 0-255
Read Temp 0-255
Scale Temp for display
Display Temp on LCD line 1

If Temp below lower limit
Switch ON Heater
Switch OFF Fan

If Heater is ON
Display on LCD line 2

If Temp above upper limit
Switch OFF Heater
Switch ON Fan

If Fan is ON
Display on LCD line 2

Always

In a real system, the interfacing needs to be further developed. The temperature sensor
is likely to need an amplifier, perhaps with voltage-level shifting. The heater and fan
need a relay or contactor to operate the final load, with the relay requiring a transistor
interface or current driver. Details of interface design can be found in Interfacing PIC
Microcontrollers by the author.

5.3 PIC16 C Data Logger System
* BASE board hardware
® Application design
¢ Program outline

Since this book is concerned mainly with software development, off-the-shelf hardware,
such as the PICDEM mechatronics board featured in Part 4, is very useful. This is

PIC16 C Applications and Systems 185

Listing 5.3 Temperature Controller Source Code

/*
TEMCON.C MPB 27-3-07
Temperature controller demo. Target simulation system: TEMCON.DSN

***/

#include "16F877A.h"
#device ADC=8 // 8-bit conversion

#use delay(clock=4000000)
#use rs232(baud=9600, xmit=PIN_DO, rcv=PIN_D1l) // Display output

VOld maln() //***

{
float refin, numin, temp;
intl flag;

setup_adc (ADC_CLOCK_INTERNAL) ; // Setup ADC
setup_adc_ports (ALL_ANALOG) ;

for(;;) // Repeat always
{
delay _ms (500) ;
set_adc_channel (0) ; // Read ref. volts
refin = read_adc();
set_adc_channel (1) ; // Read temp. volts
numin = read_adc();

temp = (numin*50)/256; // Calc. temperature
putc(254); putc(l); delay_ms(10);
printf (" Temp = %$3.0g ", temp) ; // Display temp.
putc(254); putc(192); delay ms(10);
if (numin<(refin-10)) // Temp. too low
{ output_high(PIN_B1) ; // Heater on
output_low (PIN_B2) ; // Fan off
flag = 1;
}
if (flag==1) printf (" Heater ON ") ; // Status message
if (numin> (refin+10)) // Temp. too high
{ output_low(PIN_B1) ; // Heater off
output_high (PIN_B2) ; // Fan on
flag = 0;
}
if (flag==0) printf(" Fan ON ") ; // Status message

186 Part 5

X7
Reset —»| LC Display

St
X12
ICD «—» X7
<: Keypad

Vier = 2.56 V ——>

Test Input PIC —(LED

025V — > 16F877A

MCU
Buzzer
X7

User I/0 » Serial
(Digital or » Memory
Analog)

+——» RS232

X3

Figure 5.3: BASE Board Block Diagram

reflected in real applications by the use of standard hardware such as PC-compatible
boards as the platform for a wide range of applications.

BASE Board

A general purpose board with a typical selection of peripherals attached to a PIC
16F877A is described here. This design was originally developed to demonstrate
hardware interfacing techniques. The PIC 16F877 BASE (basic application and system
evaluation) board incorporates six analog inputs, a 12-button keypad, a parallel 16 X 2
character LCD, 16k serial memory, an RS232 port, and ICD programming connections.
The block diagram is shown in Figure 5.3, the schematic in Figure 5.4.

Here, the board is used as a data logger. It records input analog voltage levels at timed
intervals and stores this data for later uploading to a host PC. The PIC 16F877 has
eight 10-bit analog inputs, but to keep the demo system simple, 8-bit conversion is
used. The reference voltage applied to RA3 is 2.56 V, which gives a resolution of
2.56/256 = 10mV per bit and a precision of 100/256 = 0.4%.

The reference voltage and a test input occupy two of the analog inputs, so six are available
for connecting to an external target system. Typically, the inputs are connected to analog
sensor inputs, measuring temperature, position, strain, and other physical variables from
suitable sensors. Another possibility is that the target system is an analog board whose
performance is being evaluated by measuring the circuit voltages under test conditions.

—1 6 o g ICD Programming Connector m R12
C1 10 —o0 O o1 ™ +5V
J3 R11 o] D2 D3 \2/ 180R
v || R13 Resel o N POWER
22” 1k c3 O Vl -
pF _L Po .
1nF| = — I
] Xt B 12 - NI/
5y 4MHz LS1
Cc2 NDER
i 1‘3‘ OSCA/CLKIN RBO/INT j SQU
T : +—{ osca/cLkouT RBI (=== 10k sehALE
MCLRAVpRTHY RB2
1 22%F RBA/PGM |—£ Serial Memory
] - 2 RadiANO Re4 |31 D4 _L . .
. = RATIANY RES [vin T = SCK A0 [—=—)
o | 2| RAZIANZIVREF- RBGIPGC [—=2 S SDA Al |5
o1 = RAS/ANSVREF+ RB7/PGD we A2
o= | =— RA4TOCKI_ 5 L R14 18R
(< [RASIAN4/SS RCOT10SOITICKI f—2 U2
o1 s o RC1/T10SICCP2 == +5y |
o— =—| REV/ANSIRD. RC2/CCP1 —
o1 —=—] RETANGR RC3/SCK/SCL g
o= RE2/AN7ITS RC4/SDI/SDA [—=2
T RC5/SDO
[RCETXICK
Y PiC1ere77 RC7RX/DT
s —4 ut ROOPSPO |12 10k
B RD1PSP1 [
+5V R2 | RV1 RD2/PSP2 [~
RD3/PSP3 === +5v
300R Reference RD4/PSP4 7
R15 Voltage 8 ot
* RDSPSPS [—=— 5
10k RDEPSPS [—=2
RD7/PSP7
RvV2 C4
® Test Volts 10K
5| 20 4] mMaxes2
D1 R1 +5V RV3
BZX79C2V7 c2- co+
Contrast
) 6 | U3
| VS+ i b oi i il ofo|<] of]-
8 3_ NOEOYONTO WZTY Wow
L o S, by || sssssses ze gng
A B RIN Ri0UT 42
(T10UT T1IN
4 ololololo) s
ov O 0O 00O/ rem C1- ci+ LCD1
LMOT6L

16F877A BASE MODULE MPB 2006 f €5

22u

Figure 5.4: BASE Board Circuit Diagram

swiaysAs pup suonvanddy D 91Did

L8l

188 Part 5

The measured values are stored in an I°C serial flash memory chip, which retains the
data when powered down. The driver routines for this device are demonstrated in section
3.6. The data can be transferred later to a host PC or other data terminal via the RS232
interface. A driver chip is fitted to convert the data to line voltages.

The board has a simple keypad, where operational parameters, such as the sampling
interval, can be input during initialization or the mode of operation toggled between
“logging” and “uploading.” Scanning a keypad is described in section 2.6 in connection
with the calculator demo application.

Listing 5.4 Program Outline for Data Logger

LOGGER
Initialize
Delays
Analogue inputs
UART port
I2C port
Interrupts

Main
Set logging interval
Select active analogue inputs
Enable interrupts
Wait

Interrupt Routines
Timeout
Restart timer
Read selected analogue inputs
Store in external EEPROM
Display channels and input voltages
Return from interrupt

Zerokey

Disable timer

Display 'Logging Stopped'

If Starkey
Restart logging

If Hashkey
Send data via RS232
Display 'Sending data'
Return from interrupt

PIC16 C Applications and Systems 189

The parallel LCD is used to display status messages and data as they are sampled. It

is useful to compare it with the serial LCD described previously, as parallel access is
generally faster, particularly when bit maps are used for graphics in more sophisticated
applications. The 8-bit ASCII and control codes must be sent as 4-bit nibbles from
RDA4-7, with RD1 acting as the register select (RS) input and RD2 generating the data
strobe (E). More details are provided on driving the parallel LCD in Interfacing PIC
Microcontrollers, by the author. Alternatively, the manufacturer’s data sheet can be
consulted for the necessary control codes and timing information.

Program Outline

As can be seen in the program outline (Listing 5.4), the application is largely interrupt driven.
The timer interrupt is the simplest way to generate a regular event, in this case, sampling at
fixed intervals. The O key is used to interrupt the logging process, so it might be desirable to
reassign the input from column 2 of the keypad to RBO, the primary interrupt input. Logging
is restarted using the star (*) key and data upload initiated using the hash (#) key.

5.4 PIC16 C Operating Systems
¢ Polling

® Interrupts
e RTOS

As microcontroller operating programs become more complex, consideration must

be given to the best method of organizing the program response to input, memory
management, and output timing. Three main methods are used to handle input and output
events, which after all, is the primary requirement of a real-time system. In order of
complexity, they are I/O polling, interrupts, and the real-time operating system (RTOS).

Polled I/0O

This is the easiest, and may be considered the default, method of input and output,
where operations are simply scheduled as part of the main loop. It is seen in most of
the examples in this book, because they have been deliberately kept simple. The basic
principle is illustrated in Figure 5.5.

This option is fine if the delay that occurs between input signal and output response is
not critical to the correct overall operation of the system. The time taken to complete

190 Part 5

Initialize

Read Input

Figure 5.5: Polled 1/O Process

the input processing may vary significantly, depending on the input data or programmed
options within the loop. For example, a test on the data may result in an optional
sequence being executed, or not, depending on the value. In fact, this is pretty much
inevitable in most real programs.

However, it is often important for the input and output timing to be more predictable. Take
the example of motor speed control. In small DC motors, this is usually implemented by
pulse width modulation, as discussed in section 4.3. The output is switched on and off over
a regular cycle, the proportion of “on” to “off” time determining the average motor current
and hence the speed. To achieve accurate control, the shaft speed must be measured,
usually by a pulse encoder. The input pulse interval must be measured and the PWM duty
cycle adjusted accordingly. It is just about possible to do this using a polling process

(see PIC Microcontrollers, An Introduction to Microelectronics by the author, 2004), but a
more elegant solution can be implemented using interrupts.

Interrupts

As we have seen in Section 2.9, interrupts are internally or externally generated
asynchronous hardware signals that force the processor to stop its current (background)
task and carry out the interrupt service routine (ISR), a higher-priority (foreground) task.
The processor “context” (current register contents and status) must be saved and the
current program address stored on the stack so that the background task can be resumed
when the ISR has finished.

Let us see how this can be applied to the motor controller, assuming we are using a 16F877
MCU (Figure 5.6). The input pulse period can be measured using one of the hardware
timers. Since Timer2 is designed to provide PWM mode, Timer] can be used to monitor

PIC16 C Applications and Systems 191

High-
Priority
Task

Initialize

Background 4---- Interrupt

Task " Return from
Interrupt

Figure 5.6: Basic Interrupt Operation

the input, working in Capture mode. The counter/timer register is fed from the system
clock to measure absolute time intervals, and the count is stored when the input changes.

The pulse period can then be worked out and this result compared with a target value,
which represents the required period (hence speed). If it is too long (speed too low),

the motor speed is increased by increasing the PWM duty cycle in Timer2. If too short
(speed too high), the duty cycle is reduced. An interrupt is generated by Timer1 when the
count is captured; the ISR modifies the output duty cycle as required, and the controller
then waits for the next interrupt to occur.

If the program uses multiple interrupts, one ISR may be interrupted by another. The
interrupts may need to be assigned an order of priority, so that a less important task does
not interrupt a more important one. When the higher-priority ISR is being executed, the
lower-priority interrupt can be disabled, or masked, until it is finished. In more complex
programs, numerical levels of priority can be assigned, with higher priorities taking
precedence. Unfortunately, the 16 series PIC is not well suited to this, as it does not have
a built-in priority system, unlike more powerful processors. Further, the different interrupt
sources have to be identified explicitly by a user routine.

An operating system (OS) provides an alternative to interrupts as a means of providing
a more predictable time response in the microcontroller system but again is typically
implemented in the higher-power MCU type, such as the PIC18 or 24 series.
Nevertheless, to point the way ahead, the principles are outlined here.

PC Operating System

The most well-known example of an operating system is Microsoft Windows®. Why is
this needed in PC-type computers? The answer is simply the complexity of the software

192 Part 5

compared with a microcontroller. The operating system provides a collection of the
numerous program components required to run the computer. Each peripheral interface
has its own driver (keyboard, screen, disks, mouse, network, etc.) plus modules for
memory management and general system control.

Therefore, the PC needs a more sophisticated task management system. A lengthy
process, such as printing or disk access, cannot be allowed exclusive use of the system
resources. If the processor ignores the keyboard completely while downloading a large
file from the Internet, the user cannot access the system to do something more urgent. In
addition, the OS has to be multitasking; that is, it must allow several operations to appear
to be running simultaneously, such as allowing you to keep writing while printing. We
also want to switch quickly between tasks by keeping more than one window open at a
time, which means keeping multiple tasks loaded in memory. For example, while running
the examples in this book, we need to have MPLAB and Proteus open at the same time,
plus maybe a data PDF and the word processor.

Multitasking is essentially achieved by time slicing. Each apparently concurrent task is
allowed to run for a given time interval, say 100 ms, then execution switches to another.
Priority can be assigned, so that, for example, one Internet data packet is picked up and
stored in memory before the next arrives and overwrites it in the network data buffer.
Therefore, the OS is designed so that multiple tasks appear to run smoothly together and
with the right priorities.

The PC is essentially a batch processing system; that is, the timing of the major tasks is
not critical. If a word-processing task is delayed for a few milliseconds, it is not apparent
to the user and not significant in terms of overall system effectiveness. On the other hand,
the timing of events in so-called real-time systems must generally be highly predictable.
When an input is received, it must be processed and the output generated within a known
time frame. The point is obvious if one considers an example such as an aircraft flight
control system or automobile engine controller. To manage complex control system
software, we may need a real-time operating system.

Real-Time Operating System

The principle of operation of a simple RTOS, as implemented by CCS C, is shown in
Figure 5.7. The program is divided into separate tasks, which are executed in turn. A timer
interrupt causes the task switching, but interrupts are otherwise not used. When a task is
suspended, its context (file register state) is saved and restored when it is restarted the next
time around. In this way, multiple tasks are executed in rotation and can appear to execute

PIC16 C Applications and Systems 193

Initialize OS

— Timer Interrupt

— Timer Interrupt

< Timer Interrupt

< Timer Interrupt

Figure 5.7: Basic RTOS Operation

simultaneously, and the I/O timing is more predictable. More sophisticated systems
incorporate task priority and implement more complex task management strategies.

A blank program is shown in Listing 5.5 to illustrate how CCS C implements the RTOS. The
MCU used is an 18F452, which is the 18 series equivalent to the 16F877 (CCS C supports
RTOS for only 18 series PICs and above). The delays in the RTOS are implemented using
the standard function, where the MCU clock rate has to be specified (20 MHz).

The directive #use rtos ()indicates to the compiler that this program uses the RTOS
structure. It then expects some task definitions to follow and the main block to contain
the statement rtos_run (). The hardware timer used to produce the timer interrupt that
triggers task switching is specified as an argument of the directive, TimerO in this case.
The “minor cycle” defines the maximum time for which the task runs. Each individual
task execution rate must be a multiple of this time.

The task definitions follow. Each is preceded by the directive #task, so that the
compiler knows this is an RTOS task and not a standard function definition. The rate
specifies how often the task executes (e.g., once per second for Task 1), and max is the
maximum time allowed for this task. The task block is then defined as a sequence of
statements in the same way as a standard function, but bear in mind that its execution can
be suspended and restarted at intervals defined by the RTOS.

All that remains then is to start up the RTOS in the main block, and the tasks are

executed in turn, with the frequency and duration specified for each. The CCS
implementation is classified as a cooperative, multitasking RTOS. This means that the
tasks return control to the scheduler voluntarily to allow the next to run. A set of functions

194 Part 5

Listing 5.5 Blank RTOS Program

// RTOS1.C
// Minimal blank RTOS program
[1177

#include <18F452.h> // Define MCU
#use delay(clock=20000000) // Define clock rate
#use rtos(timer=0,minor_cycle=100ms) // Define RTOS timing

// Task functions //////////111777770 7077707777700 7777077777777777

#task (rate=1000ms,max=100ms) // Define first task
void taskl ()
{
// Taskl statements...
}

#task (rate=500ms, max=100ms) // Define another task
void task2 ()
{
// Task2 statements...
}

#task(rate=100ms,max=100ms) // Define last task
void task3 ()
{
// Task3 statements...
}

// Main function //////////777177
void main ()
{
rtos_run() ; // Start RTOS scheduler
}

are supplied that allow the tasks to work together for optimum effect. For example,
rtos_enable (taskl) and rtos_disable (taskl) allow tasks to be selectively
enabled and disabled. The function rtos_yield () allows the task to return control to
the scheduler when finished. Some functions allow status information and messages to
passed between tasks and the progress of the tasks to be monitored.

The RTOS is implemented with a total of only 13 functions and directives (see the CCS
C Compiler Reference Manual). A good general explanation of RTOS principles and
types can be found in the Salvo RTOS User Manual, Chapter 2, from Pumpkin Inc.
(www.pumpkininc.com).

http://www.pumpkininc.com

PIC16 C Applications and Systems 195

5.5 PIC16 C System Design

e Hardware selection
e Software design
e System Integration

We have seen how to get started with building PIC microcontroller systems programmed
in C. Simple examples have been used to illustrate the basic principles, so we now need to
look at some issues relating to more complex microcontroller-based systems. Numerous
texts are available, written by experienced and knowledgeable engineers, that discuss

the finer points of real-time system design, so the intention here is to introduce the some
basic concepts to help the reader to move toward a further understanding of real industrial
applications. Another objective of this section is to review some relevant factors in the
selection of the best combination of hardware, programming language, and development
tools for any given microcontroller product design.

Hardware Selection

There is a range of related devices around which embedded systems may be designed,
including a

® Microcontroller (MCU)
® Microprocessor (CPU)
¢ System on a chip (SoC)

The conventional microprocessor system embodies the traditional approach, where a central
processing unit, memory, and peripherals can be put together to meet the requirements of a
particular application as precisely as possible. Designing a custom-made CPU system is a
relatively expensive option, and such an extensive range of other options are available that
the conventional CPU-based system may be needed for only highly complex, specialist
systems or where a low-cost, standard board such as the PC motherboard can be easily
adapted. The discrete microprocessor does, however, allow multiprocessor systems to be
designed that typically use shared hardware resources, especially memory. Current standard
processors typically incorporate features to support multiprocessor operation, and the dual
core processor is currently becoming standard in PCs.

The SoC takes the concept of the microcontroller to the next level. It is, in effect,
a configurable microcontroller, where the designer has control over the internal

196 Part 5

arrangement of the hardware elements. Using a dedicated design system, the processor
core is selected and the required memory and peripherals added. These hardware
elements are supported by corresponding standard drivers provided as part of the
package. With a complex interface, such as USB, for example, the provision of a standard
protocol stack (software layers, not a hardware stack) is essential. The design can be fully
tested in software, in the same way that a PIC program can be tested in MPLAB. Only
when finally verified is the design fabricated by the hardware supplier.

If a design is to be created from scratch, then the most appropriate type of system may be
selected from the three main options listed previously. However, this choice is unlikely

to occur in isolation; factors such as the previous experience of the design team, existing
company products, and so on are significant. Nevertheless, the designer should keep an
open mind as far as possible and needs to keep up with a rapidly developing technology
in the embedded systems field to make the right choice—not easy.

Microcontrollers

A designer who has a store of expertise using a particular microcontroller type and
development system will need a good reason to look elsewhere for a solution. Gaining
similar expertise in another system takes time and resources, and any change must also
take into account the future strategy of the company or design group.

The PIC family may be our first choice for the following reasons:
e Low cost
e Simplicity
® Good documentation
® An established market
® A development system provided
¢ Third party support

The PIC is well suited to the learning environment as it was originally pitched at the low-
end (high-volume, low-complexity) market and is well supported by third party products.
Therefore, the assumption implicit in this book is that the PIC is the best starting point,
even if the learner is later to progress to other processor types. At the time of this writing
the main alternatives are Atmel (AVR), Freescale (Motorola), STMicroelectronics,
Hitachi, Philips, and National Semiconductor.

PIC16 C Applications and Systems 197

We can approach hardware selection on the basis of the choice offered within the PIC
range, which was outlined in section 1.1. Some of the main features to consider are

¢ The number of I/O pins.

e The interface types.

¢ The program memory capacity.
e The RAM capacity.

¢ The operating speed.

¢ The power consumption.

We assume that adequate development system support and driver libraries are available.
A logical approach to design is to select a chip that has spare capacity in relation to the
draft specification. The application can be prototyped in simulation mode without penalty
using an overspecified device. When the I/0, memory, and peripheral requirements
finally are established, a chip can be selected for hardware implementation that meets the
specification at minimum cost.

The anticipated scale of production is also a factor. The cost of each individual unit
produced becomes more critical as the scale of production increases. On the other hand,
the firmware can be reproduced at effectively no cost, unless variants are required. If we
assume a fixed cost, a, for design development (hardware and software) and each board
costs b to produce, the cost per unit is given by

y=alx+b

where x is the number of units produced. The fixed costs are divided by the number of
boards produced. So, if the development costs are, say, 1000 units of currency (a = 1000)
and the production cost 100 per board (b = 100), a curve showing the cost per board as
the volume of production is increased is obtained, as seen in Figure 5.8. We can see that
the cost per board is initially high, falling away and leveling off as the production volume
increases.

Hardware Design

Taking the hardware design criteria in turn, we can consider some of the relevant factors
in getting started with a design, assuming an agreed-on initial specification. Having said
this, it is useful to know how much flexibility is allowed in meeting the specification,

198 Part 5

1200

1000 T
800 \
600 \
400 \
200 \\‘

0 5 10 15 20 25 30 35
Number of boards

Cost per board

Figure 5.8: Production Cost

because a disproportionate cost might be involved. It may be acceptable to reduce the
performance to reduce costs, for example, reducing the precision of analog measurements
or the frequency range of a signal output.

The cost of the microcontroller tends to increase with the number of I/O pins, so it is
probably a good idea to look for ways to reduce the pin count. One example we saw in
previous sections is to use a serial LCD instead of a parallel one. The serial type requires
only 1 output, while the parallel LCD seen earlier needs 7, or possibly 11 if 8-bit data
are used. Certainly the serial interface should be considered the default choice, and the
parallel used only if high-speed access to the display is needed. The serial link can also
be physically longer.

Serial access sensors are becoming more common, where the data are sent to the MCU in
serial form, rather than as an analog signal. We saw that any pin can be used as an RS232
port, because CCS C provides a driver that generates the required interface purely in
software. This means dedicated analog ports may not be necessary, giving greater flexibility
in the choice of MCU. On the other hand, the sensor is likely to be more expensive.

Program memory capacity requirements are not easy to anticipate before the software has
been finalized. C programs generally need more memory than assembler, so the choice

of language is important. This factor is considered further later, but for now, suffice it to
say that memory requirements expand rapidly with program complexity. As regards RAM

PIC16 C Applications and Systems 199

requirements, the PIC is strictly limited, as the only onboard RAM consists of spare
file registers. External data memory may well be necessary, as in our data logger. An
alternative type of MCU could even be necessary for data-intensive applications.

The PIC scores well on operating speed, however. The 16 series devices can generally
run at 20 MHz, with the 18 and 24 series running at 40 MHz. The clock speed does

affect the power consumption, as the current consumed is proportional to the switching
rate in CMOS devices. Low-power MCUs are an important ongoing development in
microprocessor technology. Reduced operating voltages (e.g., 3.3-V supply) are also
increasingly used to reduce power dissipation. Power consumption is not one of the
operating parameters normally predicted by simulation, so a real hardware prototype may
be needed to finally specify the power supply. Obviously, power consumption is even
more critical in battery-powered systems.

Software Design

There are two main options for creating the system firmware for low-complexity
embedded systems: assembly language or C. There are other user-friendly programming
options aimed primarily at learners, such as software that allows C code to be generated
from a flowchart (see Appendix D). A wider range of high-level languages and
proprietary development systems are available to support more advanced processors.

In general, assembly language is used for simple programs and those where direct access
to control registers or speed is critical. Certainly, using assembler requires an intimate
knowledge of the MCU architecture and is an essential tool for the practicing embedded
engineer. If necessary, assembly language blocks of code can be embedded within a C
program.

However, the premise of this book is that there are good arguments for starting with C. Less
detailed hardware knowledge is needed, and programming is simplified. It is also a universal
language, whereas each MCU type has its own assembly language. Used in conjunction
with a user-friendly simulator, such as Proteus, useful applications for any microcontroller
type can be created with a minimum of experience. The availability of a comprehensive

set of peripheral drivers is also very helpful, as provided by CCS C. However, the main
advantage is that C is by far the most widely used high-level language for embedded
systems and can be applied by all embedded engineers, from beginner to expert.

The overall structure of the embedded firmware is determined by the complexity and, to
some extent, the hardware features of the host MCU. A simple program can use polled

200

Part 5

I/O in assembler program. If the chip has an interrupt structure that allows task priority
and timing to be adequately managed, then interrupts can be used in assembler or C. The
RTOS approach may well be the best solution for more advanced applications; this is the
next stage in microcontroller system design, to which I hope the reader will be able to
progress because of the system design concepts outlined in this book.

There is never a perfect solution to the embedded design challenge, but we can try for the
best one that lies within our own limits of experience and enjoy the challenge it presents.

Assessment 5
5 points each unless otherwise stated, total 100

1.
2.

10.

Explain why hysteresis is useful in processing switched inputs.

Write two C statements that select analog input AN1 and read it, and explain
briefly why the variable comes first in the read statement but is given as the
function argument in the select statement.

Draw a block diagram of a simple temperature control system, consisting of a
temperature sensor, heater, fan, start and stop buttons, and status indicators for
“running” and “temperature OK.” (10 points)

Write a basic program outline for the system described in Question 3 which has a
single fixed operating temperature and no hysteresis. A polling loop will wait for
the start button to be operated, while the stop button will shut down the system
via the MCU reset input.

Explain briefly why analog inputs, serial flash ROM, and a serial data link are
useful features of data logging system hardware.

Explain briefly how the use of a timer interrupt allows an accurate data logging
interval to be more easily implemented than simple input polling.

Explain briefly the meaning of interrupt priority.

Compare briefly the different features of a standard PC operating system and an
RTOS.

Explain briefly the significance of each part of the CCS C RTOS task definition
directive #task (rate=500ms, max=100ms).

Explain briefly the main difference between a microprocessor and
microcontroller-based hardware system.

PIC16 C Applications and Systems 201

11. Explain briefly the main advantage of a SoC when compared to a conventional
microcontroller.

12. State five criteria for selecting a microcontroller type or family.
13. State five criteria for selecting a microcontroller for a given application.

14. Explain briefly why the cost of a microcontroller application prototype is
relatively high, but the cost per unit reduces as more systems are produced using
that design, and sketch a curve that illustrates this fact.

15. Compare briefly the merits of a serial alphanumeric LCD module and the DMM
display used in the PICDEM mechatronics board.

16. Discuss briefly the factors that affect power consumption in an embedded system
and how to evaluate it.

17. Explain the advantages of using C for embedded applications. (10 points)

Assignments 5

To undertake these assignments, install Microchip MPLAB (www.microchip.com), Labcenter
ISIS Lite (www.proteuslite.com), and CCS C Lite (www.ccsinfo.com). Application files
may be downloaded from www.picmicros.org.uk. Run the applications in MPLAB with
Proteus VSM selected as the debug tool. Display the animated schematic in VSM viewer,
with the application COF file attached to the MCU (see the appendices for details).

Assignment 5.1

Download the project TEMCON and check that it runs correctly in MPLAB with Proteus
VSM viewer. Modify the program to display warning messages when the temperature is
more that 3°C above the upper switching level (TOO HOT) or more that 3°C below the
lower switching level (TOO COLD).

Assignment 5.2

Design a controller for a small hot and cold drinks machine, aimed at the domestic
market. Write a specification based on your own understanding of the typical
requirements of such a machine, draw a block diagram showing the interfacing required,
and outline a control program which can be implemented in C. Predict the input, output,
and memory requirements and select a PIC microcontroller (www.microchip.com) which
provides the features required for this application at minimum cost.

http://www.microchip.com
http://www.proteuslite.com
http://www.picmicros.org.uk.
http://www.ccsinfo.com
http://www.microchip.com

Hardware Design Using ISIS
Schematic Capture

Proteus VSM is an interactive electronics design package from Labcenter Electronics that
allows analog, digital, and microprocessor circuits to be subjected to virtual testing before
the creation of a PCB layout for the construction of real hardware. ISIS is the schematic
capture package, and ARES is the layout package.

The circuit is entered directly onto the schematic by selecting components from a library
of parts, which have associated mathematical models (e.g., V = IR for a resistor).

When completed, the wiring schematic is converted to a set of nodes connected by
components, represented by a set of simultaneous equations derived from the model for
each component. The network is solved for any given set of inputs and the outputs are
displayed via active on-screen components, virtual instruments, or charts.

The microcontroller is simulated on the basis of its internal architecture and the specific
program being executed, which must be attached to complete the model. In our case, the
program is written in C and the COF file produced by the compiler attached to the MCU.
This file contains the program machine code and some additional information to help
with debugging the program. ISIS allows the source code and variables to be displayed
so that the program operation can be studied step by step and any functional errors
corrected.

Design Specification

The starting point for an electronics design is a specification, which should state clearly
the system performance requirements. Our example project is called BAR1 (Figure A.1).

204 Appendix A

'Run x8
McU X8 N
Button Bar Graph
4MHz 14 P

Figure A.1: BAR1 System Block Diagram

This is used as the project folder name and the file name for the project files. The
specification is as follows: When a button is pressed, the system generates an 8-bit binary
count, starting at 0, on a bar graph display. The output frequency at the least significant
bit is S0Hz, giving an overall cycle time of 2.56 sec.

This specification could be elaborated by, for example, requiring a battery supply. In that
case, an LCD display would be preferred for its low-power consumption over the LED
display used in the prototype.

A block diagram is useful for clarifying the hardware design. The function of each main
circuit block should be identified, as well as the signals in and out. In digital circuits, the
polarity of the signal can be indicated (! Run = active low input) and a parallel output
represented with a block arrow (x8 = 8 bits). The standard word processor has all the
drawing tools needed to create simple block diagrams.

Schematic Circuit

The circuit in Figure A.2 shows a PIC 16F877A with crystal clock, push-button input,
and 8-bit bar graph display. The output increments when the button is “pressed” using the
mouse pointer, and the effect can be seen on screen in real time.

The design of the circuit obviously requires knowledge of the relevant interfacing
techniques to connect up peripheral components correctly. For example, the resistor value
in the switch pull-up circuit is not critical, but the maximum value is limited by the input
current drawn by the PIC input; a maximum of 1 M2 is appropriate. At the low end of the
viable range, power conservation is the relevant factor. To limit the current when the switch
is closed, a resistor value of at least 1k(2 is required; 10k¢2 is a suitable compromise.

The resistance of each element in the series resistor pack controlling the LED segment
currents must be calculated. If the LED current required is assumed to be 10mA and the

Hardware Design Using ISIS Schematic Capture 205

5 bar1 - IS5 Professional FE®E
Fle Vew Edt Lbrary Toos Design Graph Sowce Debug Templste System Help

DSl @8R Rs + +QQQQ0 v~ |t @ TSTEE QA FE>

RES . . .
[RESPACK-8 . ‘o . . D A U R S

+MP>8UO0BNGYYQIES N rIFHE +¢

B s et At A A S e A B i o e A e B e e N S i b P

<
|¢OF |« t [1% W [m] conronent VokuemiNONE>, IONE>. Dives-BUTTON, Prout=<NONE [w0 o0 w

N start HEF =D OP & Maruss) Appendat.d...

B SEnS §As [albe-wan., | §ladcbs kesds...

Figure A.2: ISIS Schematic Capture Screen

forward volt drop of the LED is 2 V, then the resistor value is given by R = (5 — 2)/
(10 X 1073) = 3002 (NPV = 270 R).

Refer to Interfacing PIC Microcontrollers (Elsevier, 2005) by the author, for further
information on interface design.

Schematic Edit

ISIS is opened as a discrete package within the Proteus VSM suite. Create a new design
file and save it as BAR1.DSN in a project folder called BAR1, which is accessible from
Proteus and MPLAB.

To start the schematic, the Component button should be clicked to enable the

Devices mode in the object window. The Pick Devices button [P] at the head of the
Object Selector panel gives access to the device libraries (Figure A.3). The category
Microprocessor ICs has a subcategory, PIC 16 Family, from which the PIC 16F877 can
be selected; it then appears in the device list.

www.newnespress.com

206 Appendix A

=5 bar1 - IS5 Professional

DR @0 b Bx + +8Q80 v~ s B EEEE @ +rES
P
i Kepworgc Besubs (33}
e | Deavics [Lenry [Doserpon
H Maich Whole Weeds? PICIECS. MICRO PICTE Microcontoller [7E58) code, 258 data, Pors AB, 1xTimess)
I FICIECS4BUS MICRO PICTE Microconmober (7528 code. 298 data. Porls AB. 1xTimess)
Loegoy |WCIECSS MICRD FICTE Microcoroller (658 code, 248 data, Posts AC, 1Tmess]
b ™ |40 Categories) A |FCIECS5BUS MICRD PICTE Microconmoller [TE58 code, 248 data, Ports A-C. TxTimess)
9 {eupocdied) PICIECSS MICRD PICT6 Microcoriroler (15368 code, 298 data. Ports AB. 14T imers) e
?"m'c‘ PICIECSEEUS MICRO PICTE Micraconiroller (15388 code, 258 dats, Ports A8, 1xTimers) e
s Comaches i FICIECS? MICRO PICTE Microconiober (30728 code. 728 data. Ports AC. 1xTmess) =
i e PCIGCSTEUS MICRO PICTG Microcortiolsr [S0728 cods, 728 data, Poits AC. 1xTimest) o
o =i FICIECE] MICRD P16 Microcoriroller [10248 code, 368 data, Ports AB, TxTimess) ==
B re Tooks PICIECEE MICRO PICTE Microcortoer (2K cods, 1268 dala, Ports AC, 16COP. JTimers, —
odes MCIECEIY MICRO PICTE Microcortioller [4kE cods, 1508 data, Ports A, 2xCOP, 3Timers, —
] CL 10000 Series FICIECE4SA MICRO PICTE Microcormoler (268 code, 1268 data, Porls AE. 14CCP, PSP, 2T —
@ MCIGCESE MICRO PICTG Microcortoller [4kE cods, 1508 data, Poits A€, 2CCF, PSP, JTa =
5 Induxctors FICIECES MICRO PICTE Microcontvoller [SKB cods, 598 data, Ports A, 2COP, Timers, =
n Laplace Frisiives PICIECET MICRO PICTG Microcormober [SKE cods, 3698 data, Ports A€, 2CCP, PSP, 2T
in Macey IC3 PCIECTZA MICRO PICTE Microcortoller (268 cods, 1268 dats, Ports A, 16COP. STimers,
i FICIECTIE MICRO PICTG Microcorivaler [4kB cods. 1928 data. Ports AC. 24CCP. 3Timers,
@ Macuueos PCIECT4E MICRO PICI Microcorboler (4K cods, 1308 data, Pots A, 2CCP, PSP, eTa
7z Madsing Fiinkives PICIECTE MICRD PICTE Microcortober (S48 cods, 3558 data, Ports AL, 2CCP, HeTimers,
ope ol Al PCIBCT7 MICROD PICI Microcontsoler (348 cods, 3688 data, Poits A, HCCP. PSP, eTa
i Microcarinaber dua. 1 . Poits AB,
] L o FICIEFEZTA MICRO FICTE M (10248 code, 2248 228 EFROM. Ports AB
& |MCIEFE286 MICRO PICTG Microcorivoler (268 cods, 2248 data, 1268 EFROM, Pors A6, 1
® Resitoes L rac i N L
N - FICIEFETT b 1eTi
MICRO.LIE 81
[£ 23 June 2005 8 154323 b 19
A Iﬁu‘wFocmml 5 X
. el
ochio
= FIC1E Micsocontsaber (SR8 code, 3698 data, 2968 EPROM, [
#+ et AE. LP.PSP. e, ISSP.USART. 80 [0
— RE— . 2
MICRO PIC15 Microcoriioller vath Comparsice, LISART_ P IZL, Timers, CLP. 18

' barl - MPLAB...

Figure A.3: Picking the Microcontroller from the Parts Library

The bar graph component is picked from the Optoelectronics category, the crystal from
Miscellaneous, and the push button from the Switches and Relays. The resistor and
capacitor are the generic type. ACTIVE components with an associated SPICE model
must be used for interactive testing. Not all components are active, just a representative
selection.

After selection from the object list, a component can be placed with a left click on the
schematic, highlighted (red) with a right click, and removed by right clicking again.
Components are connected together by clicking on the pins in the Component mode.
Wires can be connected, but space on the connecting wire must be allowed between pins.
Always connect in line with a pin and check that a dot appears to confirm that a junction
between pins has been created. The Terminal button brings up the TERMINAL list.

The Ground and Power pins can then be placed. The Power pin automatically adopts the
V 44 of the MCU (+5V).

The Overview window allows the schematic to be recentered and displays the
components. The schematic can also be zoomed and centered using the mouse wheel.

www.newnespress.com

Hardware Design Using ISIS Schematic Capture 207

Components can be oriented or flipped using the rotation and reflection buttons, and
groups of selected components moved or copied using the Tagged Object edit buttons.
Each editing feature should be explored by reference to the Proteus help files and
practical experiment.

The clock circuit and power supplies are implicit in the microcontroller model, so it is not
actually necessary to include the external clock components at this stage. However, they
must be added before a circuit layout is generated in ARES. The simulation clock rate for
the MCU should be set in the component properties dialog when the COF file is attached;
4 MHz is usually used in the demo circuits, giving an instruction cycle time of 1 ps. This
determines the programmed delay count required to give the specified output rate. If the
output LSB frequency is 50 Hz, the period is 20 ms. The half-cycle time then is 10ms,
which is the required program delay.

Appendix B explains the program design process in more detail.

Software Design Using CCS C

A program is to be designed to meet the specification given in Appendix A, which
describes how to develop the hardware design for this application. The specification was as
follows: When a button is pressed, the system generates an 8-bit binary count, starting at
0, on a bar graph display. The output frequency at the least significant bit is 50 Hz, giving
an overall cycle time of 2.56 sec.

The general form of a real-time application is represented by the flowchart in Figure B.1,
which shows two main phases: initialization and main loop. The initialization is executed
once, and the main loop repeats.

The program must be written to the syntax requirements of standard C, with reference in
this case to the CCS C User Manual (Version 4), downloadable from as a PDF from www.
ccsinfo.com. The dialect of C developed by CCS Inc. is tailored specifically to the features
of the PIC microcontroller. CCS supplies different complier variants for low-, middle-, and
high-performance PICs; the mid-range compiler PCM is used for the PIC 16F877A.

Reset

A 4

Initialization

A 4

Control
Loop

Figure B.1: Real-Time Application Flowchart

210 Appendix B

The initialization phase typically contains statements that include the MCU-specific
header and library files specific to the target device. The main program is contained
in a function main (). Variables and data structures defined at this point are global in
scope (recognized and unique throughout the whole program). The endless loop can
be started with while (1) or for (; ;), both of which mean to run an endless loop
(unconditionally).

The main loop contains various conditional sequences and loops, comprising data
operations and function calls. These functions may be built into the compiler, included as
additional libraries with the use directive, or written by the user. They process input or
stored data and return results to be used by later functions, for example, as system output.
A general outline of a C program is shown in Listing B.1.

Listing B.1 C Program General Outline

Header comment block
Include resource files
Other preprocessor commands

Function blocks
Function name (plus received parameters)
Local variable & data structure declarations
Unconditional sequences
Conditional sequences
Loop sequences
Function calls
Return to calling block with results

Main block
Variable declarations
Data structure definitions
Loop
Unconditional Sequences
Conditional Sequences
Loop Sequences
Function Calls
Endlessly

Software Design Using CCS C 211

BAR1 Source Code

The program source code (Listing B.2) starts with a comment block containing the name
of the project, author, date, version, and program description. Details of the compiler
version, development system, and target hardware can be included. In other words, as
much information as possible to allow the code to be modified, updated, and maintained
effectively. In CCS C, the initialization phase includes a header file that defines the
MCU for which the program is intended. This is necessary as every PIC processor has

Listing B.2 Source Code BAR1.C

/* HEADER COWENT SECTION LRI I I I I I I I I R I I R R I S S I

BAR1.C MPB V1.0 Source code file details
Output binary count Program description

Simulation version Target system details */

// INITIALIZATION SECTION R b S i i I R R Ik b kR R R Rk i kS

#include "16F877A.h" // Define MCU regsisters etc
#use delay (clock = 4000000) // Include delay routines
void main() // Define main program block
{ // Start of main block

int x; // Declare variable

// CONTROL LOOP SECTION Rk R i e S R S e S S A IR R R R R I ik b I R

while (1) // Define endless loop

{ // Start of main loop
if (!input (PIN_A4)) // Test input button

{ // Start of conditional block
output_C(x) ; // Output binary code

X++; // Increment output variable

} // End of conditional block

delay _ms (10) ; // Wait 10ms
} // End of main loop

} // End of program

212 Appendix B

a different set of features: the number of ports, memory size, special input and output
facilities, and so on. The include statement is defined as a compiler (preprocessor)
directive by the leading hash symbol (#). The include directive inserts the source code
from the specified file as though it had been typed in. Your own files can be included, so
you can make a library of your own routines for reuse as required.

Many built-in functions are included by the compiler automatically, for example,
output_C (x). Others have to be specified with use, which identifies a library of
functions used later in the program. The directive #uses delay (clock=4000000)
calls up the set of delay routines that need the MCU clock speed to be stated so that the
correct delays can calculated. The compiler manual indicates which functions need to be
preceded by a use directive.

The initialization phase includes defining all global variables. The variable labels, such as
x Or input_value, are attached to the address where the variable value is to be stored.
The variable type declaration (e.g., int) allows the compiler to allocate an appropriate
set of locations for the variable. In CCS C, the default integer size is 8 bits, in others it is
16. Global variables remain in existence while the program is running and are recognized
throughout all levels of the program.

However, to save data memory and allow some duplication of labels, local variables
may be defined within a function. These then exist only for the duration of the function
execution and are subsequently lost. The value of local variables can be passed back to
the calling function or should be defined as global, so that the data are not lost when the
function completes.

PIC Registers

Some knowledge of the PIC internal architecture is useful at this point. The MCU
operation is controlled by a set of file registers, which contain special function registers
(SFRs) in the first 32 locations, followed by some general purpose registers (GPRs).
The 16F877 has four banks of 128 registers, as shown in Figure B.2. Some registers are
duplicated in more than one bank, so the actual number of distinct GPRs is 192.

Figure B.3 shows the function of each bit of the SFRs in BankO and Figure B.4 the details
for the status register, which contains the bank select bits. Note that the file register

Software Design Using CCS C 213

File File File File
Address Address Address Address

Indirect addr. ©) | 00h Indirect addr.) | 80h Indirect addr.) | 100h Indirect addr.) | 180h
TMRO 01h OPTION_REG |81h TMRO 101h OPTION_REG | 181h
PCL 02h PCL 82h PCL 102h PCL 182h
STATUS |03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h 107h 187h
PORTD" |08h TRISD™ 88h 108h 188h
PORTE™ |09h TRISE™ 89h 109h 189h
PCLATH |0Ah PCLATH |8Ah PCLATH 10Ah PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh
PIR1 och PIE1 8Ch EEDATA [10Ch EECONT1 18Ch
PIR2 oDh PIE2 8Dh EEADR 10Dh EECON2 [18Dh
TMRI1L OEh PCON 8Eh EEDATH |10Eh Reserved® | 18Eh
TMR1H OFh 8Fh EEADRH | 10Fh Reserved®@ | 18Fh
T1CON 10h 90h 110h 190h
TMR2 11h SSPCON2 [91h 111h 191h
T2CON 12h PR2 92h 112h 192h
SSPBUF |13h SSPADD |93h 113h 193h
SSPCON |14h SSPSTAT [94h 114h 194h
CCPRIL [15h 95h 115h 195h
CCPR1H |16h 96h General 116h General 196h
CCP1CON |17h 97h Purpose 117h Purpose 197h
RCSTA 18h TXSTA 98h Register | 11gh Register | 198h
TXREG _ |19h SPBRG | 99h 16Bytes | 419 16Bytes | 199
RCREG 1Ah 9Ah 11Ah 19Ah
CCPR2L [1Bh 9Bh 11Bh 19Bh
CCPR2H [1Ch CMCON 9Ch 11Ch 19Ch
CCP2CON [1Dh CVRCON |9Dh 11Dh 19Dh
ADRESH [1Eh ADRESL |9Eh 11Eh 19Eh
ADCONO [1Fh ADCON1 |9Fh 11Fh 19Fh
20h General AOh General 120h General 1A0h

General Purpose Purpose Purpose

Purp_ose Register Register Register
Register 80Bytes |y, 80Bytes | 4cpn 80Bytes | 4grn
96 Bytes accesses Foh accesses 170h accesses 1FOh
7Eh 70h-7Fh | Fgp 70h-7Fh | 47gp 70h-7Fh | 4EFh

Bank 0 Bank 1 Bank 2 Bank 3

Figure B.2: PIC 16F877 File Registers (by permission of
Microchip Technology Inc.)

www.newnespress.com

214 Appendix B
Address | Name Bit7 Bit6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bito | Valueon: | Details
POR, BOR |on page:
Bank 0
00h® INDF Addressing this location uses contents of FSR to address data memory (not a physical register) [0000 0000 | 31, 150
01h TMRO Timer0 Module Register xxxx xxxx| 55, 150
02n® PCL Program Counter (PC) Least Significant Byte 0000 0000 | 30, 150
03h® | STATUS wp | mp1 | mro | To | PD | z | bc | ¢ [ooor x| 22 150
04h® FSR Indirect Data memory Address Pointer xxxx xxxx| 31,150
05h PORTA — | — | PORTA Data Latch when written: PORTA pins when read --0x 0000| 43,150
06h PORTB PORTB Data Latch when written: PORTB pins when read xxxx xxxx| 45, 150
07h PORTC PORTC Data Latch when written: PORTC pins when read xxxx xxxx| 47,150
08h® PORTD PORTD Data Latch when written: PORTD pins when read xxxx xxxx| 48, 150
09h® PORTE — — — — — RE2 RE1 REO |---- -xxx| 49,150
0Ah'¥ | PCLATH — — — Write Buffer for the upper 5 bits of the Program Counter [---0 0000 30, 150
0Bh® INTCON GIE PEIE TMROIE INTE RBIE TMROIF INTF RBIF 0000 000x| 24,150
0Ch PIR1 PSPIF® ADIF RCIF TXIF SSPIF | CCP1IF | TMR2IF | TMR1IF [0000 0000/ 26, 150
0Dh PIR2 — CMIF — EEIF BCLIF — — CCP2IF |-0-0 0--0| 28, 150
OEh TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx| 60, 150
OFh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx| 60, 150
10h T1CON — | —]rickpst|TicKkPso | T10SCEN] TISYNC | TMR1CS | TMR1ON [--00 0000 57, 150
11h TMR2 Timer2 Module Register 0000 0000| 62, 150
12h T2CON — [Toutpsa]TouTPs2| TOUTPS1] TOUTPSO | TMR2ON | T2CKPS1 [T2CKPSO0 [-000 0000] 61, 150
13h SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx| 79, 150
14h SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPMO [o0000 0000| 82,82,
150
15h CCPR1L Capture/Compare/PWM Register 1 (LSB) xxxx xxxx| 63, 150
16h CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxx xxxx| 63, 150
17h CCP1CON — — CCP1X CCP1Y | CCP1M3 | CCP1M2 | CCP1M1 | CCP1MO |--00 0000| 64, 150
18h RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D [o0000 000x|112, 150
19h TXREG USART Transmit Data Register 0000 0000 (118, 150
1Ah RCREG USART Receive Data Register 0000 0000 (118, 150
1Bh CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxx xxxx| 63,150
1Ch CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxx xxxx| 63,150
1Dh corecoN| — [— | ccpax | ccpay [copams | coPam2 | cCP2m1 [CCP2MO [--00 0000 | 64, 150
1Eh ADRESH A/D Result Register High Byte xxxx xxxx (133, 150
1Fh | ADCONo | ADCst | ADCso| chsz | cHst | cHso [GOBONE| — | ADON [0000 0o-oli27, 150
Legend: x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, read as ‘0’, r = reserved.

Shaded locations are unimplemented, read as ‘0".

Figure B.3: PIC 16F877 Registers, Bank 0 (by permission of

Microchip Technology Inc.)

bank select bits RPO and RP1 are used for direct addressing, but IRP is used for indirect
addressing via the file select register (FSR).

In this case, the value in the register specified in the FSR is read or written at file address
00. The PIC internal architecture and register operations are fully explained in the
16F87XA data sheet downloadable from www.microchip.com.

www.newnespress.com

Software Design Using CCS C 215

R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-X R/W-X R/W-X
mRP | RP1 | RO | TO | PD | z | bc | c |
bit 7 bit 0
bit 7 IRP: Register Bank Select bit (used for indirect addressing)

1 = Bank 2, 3 (100 h-1FFh)
0 = Bank 0, 1 (00 h-FFh)
bit 6-5 RP1:RPO: Register Bank Select bits (used for direct addressing)
11 = Bank 3 (180 h-1FFh)
10 = Bank 2 (100 h-17Fh)
01 = Bank 1 (80h-FFh)
00 = Bank 0 (00h-7 Fh)
Each bank is 128 bytes.
bit 4 TO: Time-out bit
1 = After power-up, CLRWDT instruction or SLEEP instruction
0 = AWDT time-out occurred

bit3 PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit 2 Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
(for borrow, the polarity is reversed)
1 = Acarry-out from the 4th low order bit of the result occurred
0 = No carry-out from the 4th low order bit of the result
bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is
loaded with either the high, or low order bit of the source register.

Figure B.4: PIC 16F877 Status Register Bit Functions (by permission of
Microchip Technology Inc.)

BAR1 List File

The list file BAR1.LST, in Listing B.3, shows the assembly language version of the
program produced by the compiler. This book does not assume knowledge of assembler
programming, but for those readers who have followed the usual progression from
assembler, the list file gives a useful insight into how the compiler works. Comments
(italics) have been added to the original file to explain its operation. The original source
code is highlighted in bold.

The compiler initially sets the memory page to 0 by loading the PCLATH (program
counter latch high) register (0 A) with 0. This is the reset default setting anyway, but

216 Appendix B

Listing B.3 List File BAR1.LST

CCS PCM C Compiler, Version 4.024, 37533 16-Feb-07 17:05
Filename: barl.lst

ROM used: 59 words (1%)

Largest free fragment is 2048
RAM used: 8 (2%) at main() level

9 (2%) worst case

Stack: 1 locations

*I- START OF INITIALISATION BRI I S I R I R I I O
0000: MOVLW 00

0001: MOVWEF OA ; Select Program Page 0

0002: GOTO 01B ; Jump to main block

0003: NOP

.................... /* BAR1.C MPB V1.0
.................... Output binary count
.................... when button pressed
.................... LSB = 50Hz
.................... Simulation version

.................... */

.................... #include "16F877A.h"

.................... //////// Standard Header file for the PIC16F877A
device ///////1/11////11/

.................... #device PIC16F877A

.................... #list

.................... ; FUNCTION ROUTINE ******x&kkkkkkxkkxkkhxx
.................... #use delay (clock = 4000000)

0004: MOVLW 22

0005: MOVWF 04 ; Point to delay value

0006: BCF 03.7 ; Select File Bank 0,1 indirect addressing
0007: MOVF 00,W ; Fetch delay value

0008: BTFSC 03.2 ; If delay value = O0...

0009: GOTO 018 ; ...skip this routine

000A: MOVLW 01 ; START 1ms DELAY LOOP

Software Design Using CCS C 217

000B: MOVWF 78

000C: CLRF 77

000D: DECFSz 77,F
000E: GOTO 00D
000F: DECFSZ 78,F
0010: GOTO 00C

0011: MOVLW 4A

0012: MOVWF 77
0013: DECFSz 77,F
0014: GOTO 013
0015: GOTO 016
0016: DECFSZ 00,F
0017: GOTO 00A
0018: BCF O0A.3
0019: BCF OA.4
001A: GOTO 039

(RETURN)

.................... void main()

001B: CLRF 04

001C: BCF 03.7

001D: MOVLW 1F
001E: ANDWF 03,F

001F: BSF
0020: BSF
0021: BSF
0022: BSF
0023: BCF

03.
1F.
1F.
1F.
1F.

N B O U

3

0024: MOVLW 07
0025: MOVWF 1C

Load delay value high byte = 01
Load delay value low byte = 00

; Decrement low counter...

...and repeat x255 = 765us

; Decrement high counter...

...and do not repeat
Load low counter...
...with 0x4A(74)

; Decrement low counter...

...and repeat x73 = 219us

; Next step
; Decrement delay value...

...and repeat 1ms delay loop x9
Select program memory page zero

Jump back to main block

START OF MAIN BLOCK *****kkkkkkxxxx

Set FSR pointer = 0

Select File Bank 0,1 for indirect
addressing

Select File Bank 0 for direct
addressing

Select File Bank 1

Select analogue input mode 8

Switch off comparator inputs

File register 0x21 (GPR1)
appointed as x

; START OF MAIN LOOP

218 Appendix B

0029: BSF 03.5
002A: BSF 05.4
002B: BCF 03.5
002C: BTFSC 05.4
002D: GOTO 036

0026: MOVLW FF
0027: BCF 03.5
0028: MOVWF 20

002E: MOVLW 00
002F: MOVWF 20
0030: BSF 03.5
0031: CLRF 07
0032: BCF 03.5
0033: MOVF 21,W
0034: MOVWF 07

0036: MOVLW OA
0037: MOVWF 22
0038: GOTO 004

003A: SLEEP

Configuration Fuses:

Word 1: 3F73 RC NOWDT PUT NODEBUG NOPROTECT BROWNOUT NOLVP NOCPD NOWRT

while (1)

{

; place GOTO 0x29 at main loop end

if (!input (PIN_A4))

output C(x);

’

Select file bank 1

Set RA4 as input

Select file bank 0

Test input RA4...

and skip next block if high

Select file bank 0
GPRO = OXFF

GPRO = 0 x 00
Select file bank 1
Port C = output

Select file bank 0
Output x

Increment x

Load delay value...
into GPR2
Jump to delay routine

Jump back to start of main loop

Shut down (not normally executed)

Software Design Using CCS C 219

the compiler does not rely on this. The format of the file registers in Bank 0 is shown in
Figure B.2. The program then jumps over the delay function block.

The main block starts by initializing the memory bank selection and the analog inputs.
The variable x is then declared and the compiler allocates file register 0x21 (GPR1)
as its storage location. The statement while (1) at the start of the main loop instructs
the compiler to place a GOTO at the end of the loop with the address of the first loop
instruction as its destination (address 0x29).

The if () statement is implemented by first setting the pin RA4 as input then testing it.
We can see here that the pin initialization is repeated every time the statement is executed.
This is an example of an operation where C is clearly less efficient than assembler,

where the pin would normally be initialized once only. The same problem occurs in the
next block, when the value of x is output—the initialization is repeated each time the
statement is executed.

The delay period (10) is stored in the next available location, 0x22, when the delay is
called. The program then jumps back to the delay code block starting address 0x04. A
counting sequence follows, which gives a delay of 1 ms. This is repeated ten times, and
the program jumps back to the main block and the main loop repeats. Note that assembler
instructions CALL and RETURN are not used, because this would limit the number of
nested routines to eight, the limit of the PIC stack depth. By using GOTO instead, this
limitation is avoided by the CCS complier.

System Testing Using
Proteus VSM

A hardware design schematic BAR1.DSN has been devised (Appendix A) and an
application program BAR1.C developed (Appendix B) from the specification. These can
now be brought together for testing in simulation mode.

Attaching the Program

The application program is output by the C compiler as a file called BAR1.COF, which
should be stored in the project directory BARI. It contains the machine code plus some
debugging information required by the simulator to display the program source code.
Several other files are created by the compiler at the same time, and all these should be
stored in the same project folder containing the ISIS design file BAR1.DSN.

On the schematic, right click, then left click on the PIC chip to display the component
properties (Figure C.1). The folder browse button allows the COF file to be opened
(attached) to the virtual processor, and the MCU clock frequency can be set at the same
time. The 4 MHz is a useful default clock frequency, as this gives a 1-ps instruction

cycle time and is the maximum frequency using a standard crystal (XT mode in the chip
configuration settings). This clock setting must be passed to the delay routine in the
program. The Program Configuration Word has no significant effect at this stage but must
be set as appropriate when programming real hardware.

Program Debugging

The program can be run by pressing the Play button in the control console. If the program
is correct, the specified output is seen. The bar graph displays a binary count when

222 Appendix C

5= Edit Component E]@
Component Beference: Hidden: oK
Component Valus: [P!USFS?? Hidden: Help
PCE Package: [DIUO L”Tl |Hide,a| L] Data
Program File: [b&f‘.bﬁf _J |Hide,6.| L] Hidden Pins
Processor Clock Frequency: [anHz [Hideal +|

|

Program Configuration ‘Woed: [wrs |HideA| l]
Advanced Properties:
[Randonize Program Memeey? ~|[Ne | [Hidear ~|
Other Properties:

~

b
Altach heerarchy module:
Edit 31 properties as text:

Figure C.1: MCU Properties Dialog for Attaching the Program

the Input button on the schematic is “pressed” using the mouse pointer. It should take
2.56 sec to cycle through all the output codes with a loop delay of 10 ms. This can be
checked using the simulation clock at the bottom of the screen.

If the program does not work as required, it needs debugging. The screenshot in

Figure C.2 shows some of the debugging features. The principal technique is single
stepping—the program sequence is checked by executing one statement at a time. This
requires the source code to be displayed; pause the program and select the Debug menu,
PIC CPU Source Code. The source code window appears, with the current execution
point highlighted. If the Pause control is pressed instead of Run, the program can be
single stepped from the first statement. This is useful if the initialization sequence needs
to be checked.

It is not possible to operate the debugging tools and the interactive push button with the
mouse at the same time. Therefore, in Figure C.2, the Input button is shorted out with a
temporary link so that the output runs continuously. Alternatively, it can be replaced with
a switch for simulation purposes.

The source code window has a selection of debug buttons: Run, Step Over, Step Into, Step
Out Of . . . the current function. Step Over means execute the following function call at
full speed, stopping on return, while Step Into means execute the function stepwise. While
stepping through a function, Step Out Of allows you to return to the calling block at full
speed. This is useful for getting out of a function you have inadvertently stepped into.

System Testing Using Proteus VSM 223

5 bar1 - 1515 Professional (Animating)
Fie Vi Edt Lbrary Took Design Gragh Souce Debag Templste System Heb
Dl |3 8D ||Bu++a0€0 ||~ i af [TTIHN AFm >

F T — " g -
BTt A1 T L] [7 cru variables - u
0000 /% BARL.C NPE V1.0 %

et Output bimary count

when button pressed
LSB = 50H:z
Simulacion veesion

--—- Hinclude "16F877L.h"
0004 Suse delay (clock = 4000000)

---- void main()
0018

ine x:

whilei1}

B Hhrb bk 3

output_(x]
i

———— 1
oo3g delay_ma (10}

+EFSUOBNGYYREE s rOFuE+¢

an barl - MPLAE IDE v7.50

Figure C.2: Program Simulation Screenshot

The Breakpoint button is used to set and clear breakpoints in the code at the current
cursor position. Program execution is run at full speed, until stopped at the breakpoint.
Additional breakpoint control options can be selected by right clicking on the source code
window. This source window menu also allows the display to be modified to show line
numbers and program memory addresses. The assembler code for each statement can be
displayed by selecting Disassembly. Note that several lines of assembler code are needed
for each C statement—this is the reason that the C program needs more memory. The Set
Font option is useful if displaying the PC screen on a projector (teachers note); the text
can be enlarged for better visibility.

PIC CPU variables are displayed from the Debug menu. Right click on the window

and deselect the Globals option, leaving just the program variables visible. The display
numerical format can then be changed by right clicking on the variable in the window, for
example, to display the variables as unsigned integers if only positive whole numbers

are used.

The CPU registers may be displayed if required, as well as the CPU data memory, that
is, the file registers. Some of these have special or system functions, the rest are available
for variable storage. Remember that some variable types use more than one location;

www.newnespress.com

224 Appendix C

for example, a 16-bit integer uses two. The variable locations are highlighted when they
change during single stepping.

If you need to slow down the program execution, go to the System, Animation options.
The Frames per Second and Timestep per Frame settings control the simulation speed.
The default settings are 20{/s and 50 ms/f, giving 20 X 50 = 1000 ms/sec, or real time. If
the Timestep per Frame is reduced to, say, 5 ms, the simulation slows down by a factor
of 10. This allows the system operation to be observed at a more leisurely pace in Run
mode. In complex applications, the simulation may slow down automatically to allow the
processor to complete the circuit solution for each simulation step, in which case, it does
not run in real time. This can be checked by observing the simulation clock display.

Typical Errors

The types of errors that appear when the program is compiled are either syntax or linker
errors. A syntax error might be a spelling mistake in the source code or an undeclared
variable. Linker errors appear when the program files are combined to create the final
program; a common one is that the include files have not been placed in the project
folder and cannot be found by the linker.

Logical errors, on the other hand, appear only when the program is tested; and these are
easier to correct if detected prior to downloading to hardware, by using a simulator such
as MPSIM or VSM. VSM is easier to use, as the errors are more readily spotted in the
animated schematic than in the numerical output of MPSIM.

Some simple examples of possible errors in BIN1.C are outlined next.

Sequence Error

While the increment statement follows the output statement, the first output is 00000000.
If, instead, the increment were placed before the output, the first output is 00000001,

and this is not as specified. This error is not evident in the Run mode but is detected if the
program is single stepped from the top (hit Pause initially rather than Run).

Inversion Error

This is a logical error that causes the opposite effect to that required. For example, if the
exclamation mark is omitted before the input function, the output runs when the button is
open rather than closed.

System Testing Using Proteus VSM 225

Parameter Error

If the wrong input is specified in the input statement (e.g., PIN_A5 instead of PIN_24),
the button has no effect, as the wrong input is being tested. This error is detected by
comparing the program and schematic.

Timing Error

The delay time is calculated so that the LSB toggles every 10 ms. If this figure is
incorrect, the output frequencies are wrong. This can be checked by using the
simulation clock or a virtual oscilloscope.

The simulation clock is displayed at the bottom of the schematic window. To check
the period of the output, a breakpoint can be set at the beginning of the main loop. The
program then stops once per cycle, and the time taken per cycle can be read from the
clock. A breakpoint is set by clicking on the Breakpoint button at the top of the source
code widow.

The oscilloscope allows the output to be displayed in the time domain. It is selected
from the Virtual Instruments list. Input A should be connected to the output, RCO, and

55 bar1 - 1515 Professional (Animating)
Fla Ve Edt Lbrsry Todk Desion Grach Source Detug Temelste System reb

DEl|d% 60 || Bizl++qqa|o~ | i TTHE & Fn

PIC CPU Source Code - U1
CAPIC BO0KSVAIC Progrsming be = || 2

0000 /* BARL.C MPB V1.0
- Cutput binary count

—— when button pressed
—— LSB = SOHz

T oo |
voumr ¥ | M.
E s e |C
3 = sl -
o] 1y meme sew
R Simulavion version - J 3 3 g
in

e =

==== Winclude "16FB77A.h"
0004 Fuse delay (clock = 4000000)

---- void main()
001 (
m——— ine x:

——— while {1}

onze oueput_C[x]
oo3s x4

)
delay ms(10):

+EF-2U0DNBYYOEFsn rOFuE+4

. bard - MPLAB IDE v7.50

B DS Aas [

Figure C.3: Virtual Oscilloscope Screenshot

www.newnespress.com

226 Appendix C

a full-size version of the scope should appear when the simulation is run. If not, enable it
in the Debug menu. Adjust the controls to see the 50-Hz waveform displayed.

Figure C.3 shows the VSM analog scope and simulation clock display. A breakpoint has
been set at the if statement, so the clock increments by 10ms each time Run is selected.
ISIS also provides virtual signal sources, meters, voltage and current probes, logic
analyzer, and counter/timer, as well as a graphing feature for analog and digital signals.
When the program is fully debugged, it can be downloaded to hardware and retested. This
should leave only hardware faults to be rectified to obtain a working system.

Readers should note that Proteus VSM is continuously updated. New features and
components are added on a regular basis. Specifically, new MCUs are added as they are
released by the manufacturers. Version 6 was used to produce the simulation circuits in
this book. Version 7 has since been released, which has, for example, an enhanced
4-channel virtual oscilloscope. Visit www.labcenter.co.uk for the latest product
information.

C Compiler Comparison

The intention of this book is to introduce C programming for all microcontrollers.
However, particular products have to be selected to act as examples. When the
basics have been explained using one particular combination of MCU, compiler, and
development system, others can be considered.

The CCS C compiler was selected for this book principally because it has an extensive
library of peripheral driver routines, is reasonably inexpensive, and is recognized by
Microchip and Labcenter as a preferred compiler. However, several other suitable
compilers are available at the time of this writing, so it would be useful to see how they
compare. The following products have been selected, but bear in mind that, in the rapidly
moving microcontroller market, significant changes probably have occurred by the time
you read this:

® Microchip C18

¢ HiTech PIC C

® Mikroelektronika C
* Matrix Multimedia C

The first two are professional compilers, which would tend to be used by more
experienced engineers. The second two are aimed at the educational market and include
more user-friendly features to help the beginner.

Other PIC C compilers are available that are not considered here. They are typically
supplied by companies that produce development tools for a range of different processors,
which could suit application developers who use a range of MCU types. They do not
provide the range of library functions considered essential here.

228 Appendix D

Each compiler has a set of header files provided, all of which have a similar function of
defining the register and control bit labels for all the supported processors. The exact
labeling system can vary, although the labeling used in the PIC hardware manuals must
be preferred.

Microchip C18

Microchip does not supply a compiler for the mid-range 16 series MCUs. It is assumed
that any application developed in C will be run on an 18 series processor or above. This
is because the mid-range devices have limited memory capacity, and many commercial C
applications exceed this limit.

Nevertheless, it is well worth looking at C18, because having learned C on the 16 series,
the reader may wish to consider the option of progressing to the 18 series for further
work. The full list of features claimed for this compiler, as listed in the C18 User Guide
(www.microchip.com) includes

e ANSI ‘89 compatibility.

¢ Integration with the MPLAB IDE for easy-to-use project management and source-
level debugging.

¢ Generation of relocatable object modules for enhanced code reuse.

¢ Compatibility with object modules generated by the MPASM assembler, allowing
complete freedom in mixing assembly and C programming in a single project.

® Transparent read/write access to external memory.
e Strong support for in-line assembly when total control is absolutely necessary.
¢ Efficient code generator engine with multilevel optimization.

¢ Extensive library support, including PWM, SPI™, I2)C™, UART, USART, string
manipulation, and math libraries.

¢ Full user-level control over data and code memory allocation.

It must be assumed that the integration of C18 into the MPLAB IDE will be reasonably
seamless, giving it a built-in advantage over competing compilers. Source-level
debugging, in particular, can reveal limitations in the effectiveness of the integration into
the IDE of a third party product.

http://www.microchip.com

C Compiler Comparison 229

Relocatable object modules allow the user to build up a library of reusable routines. This
is obviously useful when producing a series of similar application programs. If particular
hardware peripherals are used repeatedly in different designs, the same driver routines,
perhaps with minor variations, can be used. However, these routines must be designed to
receive and return variable values in a consistent manner to maximize the benefits of this
approach.

Library routines are provided for the main peripheral interfaces, and a comprehensive
selection is found in the C18 Compiler Libraries manual. Software drivers allow
peripherals to be connected to any pin, not just those associated with the internal
hardware interface. This provides more flexibility in the use of the chip pins and may
mean that a cheaper device can be used for a particular application.

If we look at some source code examples provided in the C/8 User Guide, we may be
able to identify some of the features where C18 and CCS C diverge. Remember, however,
that the general language syntax must conform to the ANSI standard. Listing D.1 shows
a simple LED flasher program.

Listing D.1 C18 Sample Source Code (LED Flasher)

#include <pl8cxxx.h> /* MCU header file *****kkkki%/

void delay (void) /* Delay function **xxkkkxxxkk*/
{

unsigned int i;

for (i=0; i<10000; i++);

}
void main (void) /* Main Program *****xkkkkkkxxxx/
{
TRISB=0; /* Port B output */
while (1) /* Loop always */
{
PORTB=0; /* Reset the LEDs */
delay () ; /* Delay to see change */
PORTB = 0x5A; /* Light the LEDs */
delay () ; /* Delay to see change */

230 Appendix D

The MCU header file is included in the same way as in CCS C, and the delay routine
uses standard syntax. The main difference evident is that the port registers are addressed
directly by assigning a value to the data direction register (e.g., TRISB=0) and the output
data register (e.g., PORTB=0x52). In CCS C, a function is used (output_B(0)). The
C18 syntax is arguably simpler.

Listing D.2, a C18 program using interrupts, illustrates some other differences. As in
many PIC C compilers, direct access to the register control bits is used, for example,
in the statement INTCONbits.TMROIF=0, which resets the timer interrupt flag. This
requires knowledge of the internal architecture, which makes the programming more
difficult. CCS C sensibly avoids the need for such direct access. The timer setup
statement uses a function call in a similar format to CCS, but of course, the exact
syntax is different.

Listing D.2 also includes other features not covered elsewhere in this book. The #pragma
directive allows additional directives to be defined for this specific compiler and added to
the standard set defined in the ANSI standard. The keywords _asm and _endasm enclose
a section of assembly language code, in this case just one instruction GOTO label.

Hi-Tech PIC C

The Hi-Tech PIC C is a professional standard compiler supplied by a company well
established as a development system tool supplier. Hi-Tech supplies C compilers for
wide range of microcontrollers on the market: PIC 16, 18, 24, and dsPIC (digital signal
processors) as well as Freescale 68000-based types, ARM, 8051 derivatives, Texas
Instruments MSP430 devices, and other legacy products.

The features claimed are these:
e ANSI C—full featured and portable.
¢ Reliable—mature, field-proven technology.
e Multiple C optimization levels.
® An optimizing assembler.
o Full linker, with overlaying of local variables to minimize RAM usage.

¢ Comprehensive C library with all source code provided.

C Compiler Comparison 231

Listing D.2 C18 Sample Source Code (LED Output Using Timer Interrupt)

#include <pl8cxxx.h>
#include <timers.h>

#define NUMBER_OF_LEDS 8

void timer_isr (void);
static unsigned char s_count=0;

#pragma code low_vector=0x18

void low_interrupt (void)
{
_asm GOTO timer_isr _endasm

}

#pragma code
#pragma interruptlow timer_isr

void timer_isr (void)

{
static unsigned char led_display=0;
INTCONbits.TMROIF=0;
s_count=gs_count % (NUMBER_OF_LEDS+1) ;
led _display = (1 << s_count++)-1;
PORTB=1ed_display;

}

void main (void)
{
TRISB=0;
PORTB=0;

OpenTimer(0 (TIMER_INT_ON & TO_SOURCE_INT & TO_16BIT);
INTCONbits.GIE=1;

while (1) {}

e Support for 24-bit and 32-bit IEEE floating point and 32-bit long data types
included.

¢ Mixed C and assembler programming.

¢ Unlimited number of source files.

232 Appendix D

e Listings showing generated assembler.

e Compatible—integrates into the MPLAB® IDE, MPLAB ICD, and most third
party development tools.

e Runs on multiple platforms: Windows®, Linux®, UNIX®, Mac OS X, Solaris™.

Optimization involves reducing the final code size by removing redundant code and
modifying the assembler version to reduce the number of instructions to the minimum
achievable.

The most obvious disadvantage of this compiler is that only the standard library functions
for data conversion, memory management, mathematical operations, and basic I/O are
provided. It is assumed that the user will develop the peripheral drivers as required, to suit
the particular range of applications and hardware to be supported, or that the peripheral
control registers will be accessed directly.

On the other hand, a major advantage is that a fully featured freeware version, PICC-
Lite, is available for hobbyists, students, and limited commercial purposes. At the

time of writing, the following PIC MCUs are supported with no limitations, as

compared to the full version: 12F629, 12F675, and 16F84. A further set of 16 series chips
can be used with a limitation on RAM and program memory: ‘627, ‘684, ‘690, ‘877,
‘887, and ‘917. Other limitations are imposed due to the limited memory available in
these chips.

Hi-Tech also supplies Salvo RTOS, including a freeware version. This is a cooperative,
event-driven, priority-based, multitasking, real-time operating system designed for
microcontrollers with limited RAM and ROM. The manual supplied (www.pumpkininc.
com) with this product contains a very useful introduction to RTOS principles and is
recommended if further information is required on using RTOS in PICs.

An example of Hi-Tech C source code is shown in Listing D.3. It outputs a binary count
at Port B that is incremented every second using a timer interrupt. The port register is
addressed directly, using the label PORTB. The timer control bit labels are defined in the
header file PIC.H and set directly in the main routine. Note that here the calculation of
the initial loop count constant RELOADS is calculated in the initial directive block using
the arithmetic and logic operations provided within the directive syntax. Recall that CCS
C uses a directive to declare a function as an ISR; here, the compiler recognizes the
keyword interrupt within the function name instead.

http://www.pumpkininc.com
http://www.pumpkininc.com

C Compiler Comparison 233

Listing D.3 Hi-Tech C Sample Source Code (Timer Interrupt)

#include <pic.h>

/* Example code for using timer0 on a 16F84
Sets up a 1 second interrupt and increments Port B

*/

/* Calculate preload value for one second timer *****xkxk&xi/

#define
#define
#define
#define
#define
#define
#define

PERIOD 1000000

XTAL 4000000

IPERIOD (4 * 1000000/XTAL)
SCALE 256

TO_TICKS 256

TICK_PERIOD (SCALE * IPERIOD)
RELOADS ((PERIOD/TO_TICKS) /

TICK_PERIOD)

unsigned long seconds;
near char reload = 0;

/* Service routine for timer 0 interrupt

void interrupt timer(0_isr (void)

{

if(reload == 0){
reload = RELOADS + 1;

seconds++;
PORTB++;

}

reload--;

TOIF =

}

main ()

OPTION
TOCS =
TOIE =

GIE =
TRISB

for(;;

0;

= 0b0111;

= 0;

)

continue;

/!
//
//
//
//
//
//

//
//

//

//

//
//

/!
//

/*

//
//
//
//
/!

//

Period in us-one second here
Crystal frequency-4MHz

Period of instruction clock in us
Timer 0 prescaler

Number of counts for interrupt
Period (us) of timer clock
Calculate preload value

Second count
Reload count

*******************/

Define function as timer ISR

Set initial value of reload
count

Count seconds

Change port display

Count down reloads
Clear timer interrupt flag

Initialise timer and wait for
lnterrupt *************/

prescale by 256

select internal clock
enable timer interrupt
enable global interrupts
output changes on LED

let interrupt do its job

234 Appendix D

Figure D.1: Mikroelectronica EasyPIC4 Development Board

Mikro C

Mikroelectronica supplies range evaluation and development boards for the PIC and other
microcontrollers, as well as C, Pascal, and Basic compilers (Figure D.1). The C compiler
MikroC is well documented in a downloadable user manual and includes a good range of
peripheral driver libraries, including CAN, Ethernet, and graphical LCD drivers as part

of a comprehensive 1/O library. The packages are oriented toward the educational and
hobby market, offering additional features designed to assist the beginner in developing C
applications.

An evaluation version does not appear to be available at the time of this writing, and the
compiler syntax can be assessed prior to purchase only by reference to code fragments
given in the manual. An ADC input block is reproduced as an example in Listing D.4. As
we see, the control registers are set up by loading control codes as hex numbers, which
requires the program designer to look up the necessary bit configurations. However, the
ADC access function is simple and concise, allowing the input channel to be selected as
the function parameter.

Matrix C

The primary product line of Matrix Multimedia is a user-friendly hardware system,
E-blocks, that allows different systems to be assembled using plug-in modules. The

www.newnespress.com

C Compiler Comparison 235

Listing D.4 MikroC Source Code Sample (ADC Input and Display)

unsigned inval; // 16-bit integer for 10-bit input

void main {

ADCON1 = 0x80; // Setup ADC
TRISA = OxFF; // Analog inputs
TRISB = Ox3F; // RB6,RB7 display outputs
TRISD = 0; // Port D display outputs
do{
inval = Read_ADC(2); // Read channel 2 (RA2)
PORTD = inval; // Show low 8 bits
PORTB = inval>>2; // Show high 2 bits
}while (1) ;

Figure D.2: Matrix Multimedia Modular PIC System

processor module incorporates sockets for a range of PIC MCUs and a number of
D-type connectors. Peripheral modules with push buttons, LEDs, displays, keypad,
relays, communications interfaces, and so on are added as required (Figure D.2).

www.newnespress.com

236 Appendix D

Listing D.5 Matrix C Source Code Sample (ADC Input and Display)

#include <system.h>

void setupADC (void)

{ trisb = 0x00; /* Port B display */
trisa = Oxfl; /* RAO input, RA1-3 output */
adcon0 = 0x00; /* Set up ADC */
adconl = 0x80; /* Set up ADC */
ansel = 0x01; /* Select ANO only */

}

void main (void)

{

setupADC () ; /* Call setup function */
while (1) /* Loop always */
{ adcon0 = 0x05; /* Start ADC */
while (adcon0&0x04) ; /* Wait until done */
portb = adresl; /* Display low byte */
porta = adresh*2; /* Display high bits */

The application programming can be implemented using a choice of assembler or C.
Matrix also offers a proprietary flowchart-based programming system, Flowcode. The
program is constructed using flowchart blocks, which are automatically converted to
C and hence to assembler and machine code.

The C syntax used is illustrated in Listing D.5—a simple program to read an analog

input and display the result. As in many C compilers for PIC, the control registers are
loaded directly, and no special functions are used for peripheral access. The programming
system is described via a tutorial, which is included with the compiler, so no separate
reference manual is provided.

Summary of C Compilers

The features of the C compilers for the PIC 16 series MCUs outlined in this appendix are
compared in Table D.1. We are particularly interested in using the 16F877, our reference
device, which is used in the demo applications in the main part of this book. The
compilers have been divided into commercial and educational categories.

C Compiler Comparison

237

Table D.1: Comparison of C Compilers for PIC 16 Series M

Microchip C18 | Hi-Tech C CCsC Mikro C MM C
URL (microchip. (htsoft.com) (cesinfo. (mikroe.com) | (matrixmultimedia.
com) com) com)
Primary | Commercial Commercial Both Educational Educational
market
MCU PIC 18 only PIC + others PIC only Mainly PIC Mainly PIC
targets
Primary | Any Any Any Proprietary Proprietary
target single board modular
hardware
Function | Extensive Standard Good Extensive Standard libraries
libraries | peripheral libraries only peripheral peripheral only
support support support
Tutorial | Comprehensive | Comprehensive | Free Comprehensive | Tutorial in package
or user free download | free download | download free download | only
manual
Relative | PIC16 n/a PIC16 $995 16F87X $50 [PIC16+18 $249 | PIC16 $99*%
price PIC18 $495 PIC18 $995 PIC16 $150 |PIC24 $249 PIC16+18 $180*%
(single PIC24 $895 PIC24 $1195 PIC18 $200
user) PIC24 $250
Demo Function- Time-limited Time- and None None
version limited student | evaluation memory-
edition version limited demo
Origin us us us EU UK
*Approximate

Microchip C18 and Hi-Tech C are designed primarily for professional use, as reflected in
the relatively high price, but this is compensated for by the provision of feature-limited
freeware versions. For any development engineer who will be using mainly PIC 18 or
above parts, the C18 offers the advantage of extensive function libraries. Bear in mind
though, a separate compiler, C30, is needed for PIC24 and dsPIC devices, although one
can assume an easy progression route from C18. For those intending to use a wider range
of MCU types, Hi-Tech might be preferred. Hi-Tech PICC Lite offers good functionality
in a limited range of PIC 16 devices, including 16F877.

238 Appendix D

The educational compilers are designed primarily as components of training packages
consisting of hardware, development system, compiler, tutorials, proprietary simulation
software, and so on. These products should certainly be considered if a complete

package is required, for example, by a college or university upgrading its resources.

The Mikroelectronika packages are oriented more toward the hobby market, while the
Matrix Multimedia product range is suitable for a wide range of education institutions,
from schools to universities. The support materials provided with the Matrix Multimedia
compiler are very closely tied to the training packages, so no separate compiler manual is
provided, for example. For the hobbyist and independent learner, Mikro C is supported by
a comprehensive and fully documented function library.

Compiler Directives

#include source files
#use functions (parameters)
#define oldtext newtext
#device name

#list, #nolist

#asm, #endasm

#fuses options

#int_xxx

Program Blocks

main (condition) {statements}
while(condition) {statements}
do{statements} while(condition)
if (condition) {statements}

for (begin;end;next) {statements}
switch(x) ..case n:

Punctuation

/* Comments */

statement; // Comment

{ statement; statement; }
statement;

funcname (argl, arg2)

[n]

"text"

ry

CCS C Programming
Syntax Summary

Include source code or header file

Include library functions

Replace label in source code with value
Identify MCU type

Turn on source code listing

Start/end of assembler block

Select MCU configuration fuse settings
Declare function as interrupt service routine

Main program block
Conditional loop
Conditional loop
Conditional sequence
Preset loop conditions
Multichoice selection

Star/slash enclose block comment

Double slash before line comment

Braces enclose program block

Semicolon = end of statement

Function arguments/parameters, comma separates
Array size, variable

ASCII function argument/include filename
ASCII value

240 Appendix E

Basic I/O Functions

output_X(n)

output_high (PIN_Xn)

output_low (PIN_Xn)

Output 8-bit code at Port X
Set output bit high
Set output bit low

input (PIN_Xn) Get bit input

n=input_X() Get byte input

Variable Types
Identifier Type Min Max Range
intl 1 bit 0 1 1=20

unsigned int$8 8 bits 0 255 256 = 28
signed int8 8 bits ~127 ~127 255 =28—1
unsigned intl6 | 16 bits 0 65,535 65,536 = 216
signed intl6 16 bits ~32,767 ~32,767 65,535 =216 —1
unsigned int32 |32 bits 0 4,294,967,295 | 4,294,967,296 = 232
signed int32 32 bits ~2,147,483,647 | ~2,147,483,647 | 4,294,967,295 = 232 — 1
float 32 bits ~107% ~10"38 ~1077

Relational Operators

Operation Symbol Example

Equal to == if(a == 0) b=b+5;
Not equal to 1= if(a != 1) b=b+4;
Greater than > if(a > 2) b=b+3;
Less than < if(a < 3) b=b+2;
Greater than or equal to >= if(a >= 4) b=b+l;
Less than or equal to <= if(a <= 5) b=b+0;

CCS C Programming Syntax Summary 241

Formatting Codes

Code Displays

%d Signed integer

$u Unsigned integer

$Lu Long unsigned integer (16 or 32 bits)

$Ls Long signed integer (16 or 32 bits)

g Rounded decimal float (use decimal formatting)
st Truncated decimal float (use decimal formatting)
e Exponential form of float

W Unsigned integer with decimal point inserted (use decimal formatting)
$X Hexadecimal

$LX Long hex

%c ASCII character corresponding to numerical value
$s Character or string

Arithmetic and Logic Operators

1 Operand Arithmetic, 2 Operands Logic, 2 Operands
Assign value, Add, + AND, &
Increment, ++ Subtract, - OR, |
Decrement, -- Multiply, * XOR, *
Complement, ~ Divide, /

www.newnespress.com

CCS C Program Function
Reference

This is a summary of the more commonly used functions available in CCS C Version
4 (January 2007). For more details on how to use the listed functions and others not
included here, visit www.ccsinfo.com for a current manual download.

The following apply to all the following tables:
1. All functions require a header file, e.g., 16F877A.H.

2. The numerous CAN and USB functions are not included since these interfaces
are not typically available in 16 series MCUs.

3. Alternative functions for the same operation:

putc () putchar ()
getc () getch() ==
output_bit (PIN_XX,1)
()
(
(

getchar ()
= output_high (PIN_XX)

output_bit (PIN_XX,0) == output_low (PIN_XX)
get_timer0 () == get_rtcc();
set_timer0(nnn) == set_rtcc(nnn);

pow () == pwr ()

http://www.ccsinfo.com

244 Appendix F

Table F.1: Port Input and Output
(Requires Chip Header File Only, e.g., 16F877A.H)

Function

Description

Example

Comment

WRITE BYTE

Write all bits with 8-bit

output_A (255) ;

Areplaced by B, C, D,

pin label

input (PIN_AQ) ;

integer orE
SET BIT Write output bit high output_high AQ replaced by AT,
using pin label (PIN_AOQ) ; A2,...,A7,BO,...,
B7, etc.
CLEAR BIT Write output bit low output_low A0 replaced by A1,
using pin label (PIN_AOQ) ; A2,...,A7,BO,...,
B7, etc.
READ BYTE Read input as 8-bit abyte = Areplaced by B, C,
integer input_A() ; D, orE
READ BIT Read input bit using abit = AO replaced by A1,

A2,...,A7,BO,...,
B7, etc.

(PIN_DO) ;

READ DIRECTION | Check port data ddra = Any parallel port ddr
direction register get_tris_al(); code can be checked
CHECK BIT Read input bit abit = Gets 1/0 bit value
input_state
(PIN_DO) ;
BIT TOGGLE Toggle output bit output_toggle Invert the logic level at

the specified pin

BIT OUTPUT

Change port bit to
output

output_drive
(PIN_DO) ;

Does not change the
existing bit value

FLOAT OUTPUT

Set output pin to high

impedance

output_float
(PIN_DO) ;

Allows an external
source to control the
line

SET PULLUPS

Switch input pull-ups
on or off

port_a_pullups
(TRUE) ;

Input floats to high
value, port A or B only

SET DIRECTION

Initialize port bits for
input or output

set_tris_a
(0x0F) ;

Explicitly sets up data
direction register

CCS C Program Function Reference

245

Table F.2: Analog Inputs (Requires #DEVICE ADC = nn)

Function Description Example Comment

SETUP Initialize ADC setup_adc (ADC_CLOCK_ | All modes listed in
INTERNAL) ; device header file

PINS SETUP Initialize ADC pins | setup_adc_ports All modes listed in

(RAO_ANALOG) ;

device header file

CHANNEL SELECT

Select ADC input

set_adc_channel (0) ;

Channels 0-7 selected
via multiplexer

READ

Read analog input

inval =

read_adc () ;

8-bit read 0-255,
10-bit read 0-1024
(#device option)

Table F.3: Timers (Requires Chip Header File Only, e.g.,

16F877A.H)

Function

Description

Example

Comment

TIMERX SETUP

Set up the timer mode

setup_timer0
(RTCC_INTERNAL
| RTCC_DIV_8);

Clock source and
prescale ratio

TIMERX READ

Read a timer register
(8 or 16 bits)

count0 =
get_timer0 () ;

Timer numbers (0-5)
valid as fitted

TIMERX WRITE

Preload a timer register
(8 or 16 bits)

set_timer0(126) ;

Timer numbers (0-5)
valid as fitted

TIMER CCP SETUP

Select PWM, Capture,
or Compare mode

setup_ccpl
(ccp_pwm) ;

See CCS manual for
CCP options

TIMER PWM DUTY

Set PWM duty cycle

set_pwml_duty
(512);

512 = mark
count = 50%

246 Appendix F
Table F.4: RS232 Serial Port
(Requires #USE RS232, #USE DELAYS (Clock=nnnnnnnn))
Function Description Example Comment

SET BAUD RATE

Set hardware RS232
port baud rate

setup_uart (19200) ;

Applies to hardware
serial port only

error message

SEND BYTE Write a character to the | putc (65) Writes ASCII data or
default port control code to serial
output
SEND SELECT Write a character to s = fputc("Aa",01); As preceding, but
selected port stream identifier given
PRINT SERIAL Write a mixed message | printf ("Answer: Write fixed strings and
%4.34",n) ; formatted variable
values
PRINT SELECT Write string to selected | fprintf As preceding, but
serial port (01, "Message") ; stream identifier given
PRINT STRING Print a string and write | sprintf Print and copy output
it to array (astr, "Ans=%d",n) ; to character array
RECEIVE BYTE Read a charactertoan |n = getc(); Waits for ASCII code
integer from serial input
RECEIVE Read an input string to | gets (spoint) ; Reads characters into
STRING character array an array at address
RECEIVE SELECT | Read an input string to | astring = As preceding, but
character array fgets(spoint, 01); string and stream
identifier given
CHECK SERIAL | Check for serial input s = kbhit(); Checks for serial input
activity data but does not wait
PRINT ERROR Write programmed assert (a<3); Generates an error

message if condition is
FALSE

CCS C Program Function Reference

247

Table F.5: SPI Serial Port (spi Can Be Replaced by spi2)

Function Description Example Comment
SPI SETUP Initialize SPI serial port setup_spi See CCS manual for
(spi_master) ; full list of options
SPI READ Receives data byte from inbyte = Waits for 8-bit data to
SPI port spi_read(); arrive
SPTI WRITE Sends data byte via SPI spi_write Writes 8-bit data to
port (outbyte) ; SPI serial line
SPI TRANSFER | Send and receive via SPI inbyte = See CCS manual for
spi_xfer variations
(outbyte) ;

SPI RECEIVED

Check if SPI data received

done = spi_data_
is_in();

Returns 0 for not
done, 1 if done

Table F.6: 12C Serial Port
(#USE 12C () If Hardware Peripheral Fitted, #DEFINE for Software Interface)

Function Description Example Comment
I’C START Issue start command in i2c_start(); Start a data
master mode transmission
I°C WRITE Send a single byte i2c_write Send a data byte
(outbyte) ;
12C READ Read a received byte inbyte = Read a data byte
i2c_read();
I’C STOP Issue a stop command in i2c_stop(); Stop the data
master mode transmission
I’C POLL Check to see if byte received sbit = Returns 1 if byte
i2c_poll () ; waiting

248 Appendix F
Table F.7: Parallel Slave Port
Function Description Example Comment
PSP ENABLE Enable or disable PSP setup_psp PSP_DISABLED to

(PSP_ENABLED) ;

switch of £SET.

SET DIRECTION

Set the PSP data direction

set_tris_e(0);

For input arg. = OxFF,
or mixed mode

OUTPUT READY

ready to go

Checks if output byte is

PsSpo = psp_
output_full();

Byte ready: pspo = 1
To write the PSP:
PSP_DATA = outbyte;

INPUT READY

ready to read

Checks if input byte is

pspil = psp_
input_full();

Byte ready: pspi = 1
To read the PSP:
inbyte = PSP_DATA;

PSP OVERFLOW

error

Checks for data overwrite

pPsSpv = psSp_
overflow() ;

Check to prevent loss
of data due to external
mistiming

Table F.8: LCD Control (Requires Chip Header File Only, e.g., 16F877A.H)

Function Description Example Comment
LCD SETUP Set up LCD internal | setup_1lcd Number of control
control (LCD_MUX12,1) ; lines, clock prescale
LCD LOAD Send display data lcd_load Pointer, offset, number
block to LCD (lcddata,0,16); of bytes
LCD SYMBOL Send segment bits lcd_symbol Specify segments
(lcddata,digl) individually
Table F.9: Register Manipulation
Function Description Example Comment

REGISTER BIT
SET

Set a selected bit

bit_set (num, 1) ;

Sets bit b in integer
num (8, 16, or 32 bits)

REGISTER BIT
CLEAR

Clear a selected bit

bit_clear (num, 2) ;

Clears bit b in integer
num (8, 16, or 32 bits)

REGISTER BIT
TEST

Test a selected bit

flag =
bit_test (num, 4) ;

Tests bit b in integer
num (8, 16, or 32 bits)

REGISTER SWAP

Swap nibbles in a
byte variable

swap (abyte) ;

Result not returned by
function

CCS C Program Function Reference

249

Table F.10: Block Rotate

Function

Description

Example

Comment

BLOCK ROTATE
LEFT

Rotates bits of
structure left

rotate_left
(&1lobyte, 6) ;

Address of low byte
and number of bytes

BLOCK ROTATE | Rotates bits of rotate_right Address of low byte

RIGHT structure right (&lobyte, 10) ; and number of bytes

BLOCK SHIFT Shift bit left into low shift_left Address of low byte,

LEFT bit of structure (&1lobyte,4,1); number of bytes, bit in

BLOCK SHIFT Shift bit right into high | shift_left Address of low byte,

RIGHT bit of structure (&lobyte,4,1); number of bytes, bit in

Table F.11: Math Functions (#INCLUDE MATH.H)

Function Description Example Comment

ABSOLUTE Absolute value of abres = abs(x); Returns unsigned

VALUE integer positive value of signed
integer

LONG Absolute value of longres = labs(x); Returns unsigned

ABSOLUTE long integer positive value of 16-bit
integer

FLOAT Absolute value of flores = fabs(x); Returns unsigned

ABSOLUTE float positive value of signed
float

FLOAT Round a floatup to | roundup = Returns integer from

CEILING integer ceil (afloat) ; float

FLOAT FLOOR

Round a float down
to integer

roundown =
floor (afloat) ;

Returns integer from
float

INTEGER
DIVIDE

Integer divide

divres =
div (numer, denom) ;

Returns a structure
of quotient and
remainder

LONG DIVIDE

Long integer divide

lonres =

1div (1lnumer, 1denom) ;

Returns a structure
of quotient and
remainder

EXPONENTIAL

Exponential function

expres = exp(x);

Returns exp where x is
a float

(continued)

250 Appendix F
Table F.11: (continued)
Function Description Example Comment
LOG BASE 10 | Logarithm base-10 logres == 1logl0 (x); Returns 1ogl0 (x)
function where x is a float
LOG BASE E Logarithm base-e lnres = log(x); Returns 1n (x) where
function X is a float
DIVISION Modulus (remainder) | modres = Returns remainder of
MODULUS of division fmod (numer, denom) ; float division
FRACTION Break up float into modfres = Returns fractional
MODULUS integer and fraction modf (afloat, &whole) ; part, stores integer
FRACTION Break up float into fexres = Returns fractional part
EXPAND integer and fraction frexp (afloat, &whole) ;
BINARY Multiply a float by lexres = Returns a float, sint
EXPAND integral power of 2 ldexp (afloat, sint) ; is a signed integer
RAISE TO Raise float to a powres = Returns a float raised
POWER power pow (afloat, apower) ; to a power

SQUARE ROOT

Calculate the square
root of a float

sgrres =
sgrt (afloat) ;

Returns positive root

RANDOM
NUMBER

Generates a
pseudorandom
number

anyl = rand() ;

Returns a random
integer from sequence

RANDOM SEED

Start value for the
“random” sequence

srand (seed) ;

seed is a new start
point in the sequence

CCS C Program Function Reference

251

Table F.12: Trigonometric Functions (#INCLUDE MATH.H)

Function | Description Example Comment
SIN Sine function numl = sin(a); Returns sine of angle a given in
radians
cos Cosine function num2 = cos(a); Returns cosine of angle a given
in radians
TAN Tangent function num3 = tan(a); Returns tangent of angle a given
in radians
ASIN Arc sine function angl = asin(n); |Returnstheanglein radians
whose sine is float n
ACOS Arc cosine function ang2 = acos(n); Returns the angle in radians
whose cosine is float n
ATAN Arc tangent function ang3 = atan(n); Returns the angle in radians
whose tangent is float n
SINH Hyperbolic sine function | hypl = sinh(x); | Returns hyperbolic sine of float x
COSH Hyperbolic cosine hyp2 = cosh(x); | Returnshyperbolic cosine of
function float x
TANH Hyperbolic tangent hyp3 = tanh(x); |Returns hyperbolic tangent of
function float x
Table F.13: Make Integers
Function Description Example Comment
MAKE BYTE Extract a byte from mybyte = Extracts byte from 16- or
long integer make8 (num, 3) ; 32-bit integer
MAKE WORD Make a 16-bit integer | myword = Combine separate bytes into
makel6 (bytel, one integer
byte0) ;
MAKE LONG Make a 32-bit integer | mylong = make32 Combine 4 bytes or two
(byte3,byte2, 16-bit integers
bytel, bytel) ;

252 Appendix F
Table F.14: Type Conversions (#INCLUDE STDLIB.H)
Function Description Example Comment
ASCII TO ASCII to float num0 = Converts a decimal
FLOAT conversion atof (decstring) ; number as string into
float
ASCII TO ASCII to 8-bit integer numl = Converts an integer
INTEGER conversion atoi (intstringl) ; given as string into an
8-bit integer
ASCII TO ASCll to 16-bit integer | num2 = Converts an integer
LONG conversion atol (intstring2) ; given as string into a
6-bit integer
ASCII TO ASCII to 32-bit integer num3 = Converts an integer
32 BIT conversion atoi32 (intstring3) ; given as string into a
32-bit integer
Table F.15: Character Test (# INCLUDE CTYPE.H)
Function Description Example Comment
ALPHANUMERIC? Test for alphanumeric | test = Returns 1 if character code

character

isalnum(acode) ;

isin ranges 0-9, A-Z, a-z

NUMBER DIGIT?

Test for numerical
digit character

test =
isdigit (acode) ;

Returns 1 if character code
is in range 0-9

LOWER CASE?

Test for lower case
alphanumeric

test =
islower (acode) ;

Returns 1 if character code
is in range a-z

SPACE?

Test for space
character

test =
isspace (acode) ;

Returns 1 if character code
is a space

UPPER CASE?

Test for upper case
alphanumeric

test =
isupper (acode) ;

Returns 1 if character code
is in ranges A-Z

HEX DIGIT?

Test for
hexadecimal digit

test =
isxdigit (acode) ;

Returns 1 if character code
is in ranges 0-9, A-F, a-f

character

ispunct (acode) ;

CONTROL? Test for control test = Returns 1 if character code
character iscntrl (acode) ; is control code (00 - 1F)
GRAPHIC? Test for printable test = Returns 1 if character code
character isgraph (acode) ; is graphical (21 - 7E)
PRINTABLE? Test for printable test = Returns 1 if character code
or space character | isprint (acode) ; is printable (20 - 7E)
PUNCTUATION? Test for punctuation | test = Returns 1 if character code

is a punctuation code

CCS C Program Function Reference

253

Table F.16: Search and Sort (#INCLUDE STDLIB.H)

Function

Description

Example

Comment

BINARY SEARCH

Search for given
value in a data array

bsearch
(k,al,n,w,compit)

Find value k in array
al of n elements of
width w

QUICK SORT Sort an array into gsort Sort array al of n
ascending order (al,n,w,sortl) elements of width
w using function
sortit
Table F.17: Processor Controls
(Requires Chip Header File Only, e.g., 16F877A.H)

Function Description Example Comment

GET Gets information chip = Peripheral hardware,

ENVIRONMENT about the MCU getenv (device) ; memory, configuration,

etc.

GOTO ADDRESS

Jump to program
memory location

goto_
address (0x1FFO0) ;

Jump in ROM, use with
caution

LABEL ADDRESS

Check address of
program label

labloc =
label_address
(start) ;

Labels should be used
only in exceptional cases

RESET CPU

Restarts the
program from 0

reset_cpul() ;

No return

RESTART CAUSE

Returns cause of last
reset

message =
restart_cause() ;

Messages defined in
MCU header file

RESTART Clear watchdog restart_wdt () ; Periodical operation to

WATCHDOG timer prevent MCU watchdog
reset

SETUP Select internal clock | setup_ MCUs with internal

OSCILLATOR mode oscillator() ; clock

SLEEP Stops program and | sleep(); Wake up on specific

waits for reset

events

254 Appendix F
Table F.18: Interrupts
(Requires Chip Header File, e.g., 16F877A.H & #INT_XXXX)
Function Description Example Comment
INTERRUPT Disables peripheral disable_interrupts | Interruptlabels
DISABLE interrupt (int_timero0) ; defined in device
header file
INTERRUPT Enables peripheral enable_interrpts Interrupt labels
ENABLE interrupt (int_timer0) ; defined in device
header file
INTERRUPT Clears peripheral clear_interrupt Interrupt labels
CLEAR interrupt (int_timer0) ; defined in device
header file
INTERRUPT Checks if interrupt flag | interrupt_active Interrupt labels
ACTIVE is set (int_timer0) ; defined in device
header file
INTERRUPT Selects interrupt trigger | ext_int_edge Rising (L_TO_H) or
EDGE edge (H_TO_L) ; falling (H_TO_L) edge
INTERRUPT Jump to address of ISR | jump_to_isr Use to service multiple
JUMP (isr_loc); interrupts
Table F.19: Memory Read and Write
Function Description Example Comment
READ RAM Read a RAM abyte = Alternative variable
BANK location directly read_bank (3, 0x20) ; access
WRITE RAM Write a byte into write_bank Write to bank 3,
BANK user RAM (3,0x20, 0XFF) ; address 0x20, data
OxFF
READ DATA Read an EEPROM | abyte = Get byte at given
EEPROM location read_eeprom(0x00) ; address

WRITE DATA
EEPROM

Write a byte into
EEPROM

write_eeprom
(0x1F, 0x9A7) ;

Write to nonvolatile
memory address, data

READ PROGRAM
ROM

Read code from
program ROM

read_program_memory
(0x100, copy, 4) ;

Get block from
program address, copy
in RAM

CCS C Program Function Reference

255

Table F.20: Memory Allocation (#INCLUDE STDLIBM.H)

Function Description Example Comment

MEMORY BLOCK Reserves a block of apl = Allocated block = 25%5

ALLOCATE memory calloc(25,4); | bytes

MEMORY BLOCK Releases a memory block | free (apl) ; Previously allocated at

DEALLOCATE address pointer apl

MEMORY BYTES Reserves a number of apl = Allocated block = 14

ALLOCATE bytes malloc (14); bytes

MEMORY BLOCK | Copy a given number of | memcpy Copy n bytes from apl

COPY bytes (apl,ap2,n); |toap2

MEMORY BLOCK | Move a given number of | memmove Move n bytes from apl

MOVE bytes (apl,ap2,n); to ap2

MEMORY BLOCK Initialize locations with a | memset Loads integer vall into

SET given value (apl,vall, numof locations from
numofb) ; apl

Table F.21: Special Setup

(Requires Chip Header File Only, e.g., 16F877A.H)

Function Description Example Comment
SETUP WATCHDOG | Initialize watchdog setup_wdt Time-out options from
TIMER time-out (wdt_1152ms) ; 18 ms to 2.304 sec

RESET WATCHDOG

Clear watchdog timer

restart_wdt () ;

Watchdog timer is

TIMER within the program normally reset before
loop time-out
SETUP Connection of analog setup_ Selected MCUs only
COMPARATORS comparators comparator
(AO_A3_Al1_A2);
VOLTAGE Specify the comparator | setup_vref Options in device
REFERENCE ref. voltage (vref_low|10); |header file

SETUP OPAMP

Enable built in op-amp
where fitted

setup_
opampl (1) ;

Selected MCUs only

SETUP SLEEP

Sets sleep delay time

sleep_ulpwl
(time_in_us) ;

Selected MCUs only

LOW VOLTS
DETECT

Triggers interrupt if
supply low

setup_low_
volt_detect
(1vd_33);

Selected MCUs only

Answers

Assessment 1

1.

Musical birthday card, electronic price tag, sound system, television, automobile,
robot.

Input, ROM, CPU, RAM, output.

Flash ROM is non-volatile but reprogrammable, so the program can be changed
or the chip reused. Program testing and modification is easier and development
time is reduced compared with alternative types of program memory.

Number of I/O pins, program memory size, RAM size, EEPROM size, maximum
clock speed, range of interfaces, development system, cost, availability.

The program is stored as machine code instructions, executed in sequence. The
instruction register holds the current instruction and the program counter holds its
address. The file registers store the program data and the working register the data
being operated on.

02 = Program Counter Low Byte.
03 = Status Register.

09 = Port E Data Register.

89 = Port E Data Direction Register.
20 = General Purpose Register 1.

RC = clock uses resistor/capacitor circuit to control clock frequency.
XT = clock uses crystal circuit to control clock frequency.

wDT = watchdog timer provides automatic reset if program hangs.

PUT = power-up timer delays the program start until the MCU is ready.
NOWRT = prevents writes to program memory areas.

258 Answers

8. Tristate gate = data switching circuit allows data through only when enabled;
otherwise, output is high impedance.
Current driver = provides extra current on a loaded data line.
Data direction latch = stores the bit that sets the port bit as input or output.
Input data latch = stores the incoming bit when the port line is set to input.
Output data latch = stores the outgoing bit when the port line is set to output.

9. 20-MHz clock — 5-MHz instruction clock — 200-ns period.
10ms = 10,000,000 ns.
Timer count required = 10,000,000/200 = 50,000 instruction clock cycles.
Maximum count of 16-bit timer = 65,536.
Preload value = 65,536 — 50,000 = 15,536.

10. Resolution = 2048/256 = 8§mV per bit.
Output = (1000/2048) X 256 =125=0+64 + 32+ 16 +8+4 +0 + 1
=01111101,.

11. The timer interrupt is set up at the beginning of the program. The timer is
started at some point in the program and runs concurrently with program
execution. When a time-out occurs, the program is suspended and the interrupt
service routine carried out. The program is then resumed at the original point.
Interrupts allow the timer to independently generate an accurate interval
between the timer start and interrupt request.

12. See the figure.

Ide |S 0 0 01 1|0[1]|OfP Idle IZ4V

13. RS232 is asynchronous, in that it has no separate clock signal. Instead, the
reception is resynchronized by each start bit, and reception is timed by a local
clock. SPI has a separate clock (used to strobe each bit into the receiver, generated
from the master MCU clock) and is therefore classed as a synchronous system.

14. SPI needs a hardware chip select signal connected to each slave, which the
master takes low to enable one slave receiver at a time. I>C transmits the target
address on the data line; the slave must check all transmissions and pick up the
data that follow its own address.

15. IC has to send addressing and control information as well as the data on the
data line, while SPI has hardware slave selection.

Answers 259

16.

17.

18.

19.

20.

RS232 = 9600 baud = 10 k bits/sec = 1k bytes/sec = 1000 characters/sec —
Page time =~ 1 sec.

SPI = 5-MHz clock — 0.2 ps/bit — 2 ps/character (some loading delay) —
Page time =~ 2ms.

C = source code entered via a text editor.

HEX = hexadecimal code (machine code) program.

coF = downloading file that contains the hex code plus debugging information.
LsT = list file, a text file containing source code, hex code, comments, etc.
ERR = error file that lists the error messages generated by the compiler.

Vi =0V, Vg = +5V = supply connections.
V,p = programming voltage (+14V); 1MCLR = Master Clear resets MCU.
PGD = program data download; PGC = programming clock signal.

Project file = shows the files used to make the project.

Source code = edits window for entering program.

Disassembler list file = shows the assembler code generated from the C source
code.

Output message = shows the compiler status and errors.

Watch = variable values monitored during program execution.

Host PC, MPLAB development system, C compiler, programming
module + connectors, target system with PIC MCU.

Assessment 2

1.

Include header file using #directive.
Main program statement block enclosed in braces.
I/O functions/sec within main.

Create MPLAB project.

Edit program using correct syntax.
Build program and correct syntax errors.
Test program in simulator and debug.
Optional—test in cosimulation mode.

output_C(64) ;
output_high (PIN_C6) ;

260

Answers

10.

11.

12.

13.

14.

The WHILE loop tests the control condition before the loop statements are
executed. The DO. .WHILE tests after they have been executed at least once. The
FOR loop executes a loop a fixed number of times.

Port D bits initially go on for 1 sec. If the switch is active, the high 4 bits then
go off, and the program waits until the switch goes inactive, at which point all
the outputs go off. If the switch is inactive, all the LEDs go off after 1 sec.

(a) 255 (b) 32,767 (c) (2-1/2%) x 218 =68 x 108

(a) 8-bit precision = 1/28 X 100% = 0.39%.
(b) 32-bit FP precision = 1/2%* X 100% = 0.000012%.

Mantissa = 011 — /% + % = 0.25 + 0.125 = 0.375 — 1.375.
Exponent = 1000 0010 = 130 — 130 — 127 = +3 — 23 =8,
Sign = 0 — positive.

Number = 8 X 1.375 = 11.000000.

a =n + 0x30;
putc(a);

n=35=010l,m=7=0111,
(2)6,0110 (b)8, 1000 (c)5,0101 (d)7,0111 (e)2,0010

Continue means restart a loop, Break means quit a loop, Goto means jump to
a label unconditionally.

switch (x)

{ case 1: funl();
break;
case 2: fun2();
break;
case 3: fun3();
break;

}

Local variables are allocated memory only when a function is called and are
discarded when the function has finished. The memory can then be used for
other purposes, saving on overall memory requirements.

Functions are self-contained blocks that implement a clearly defined set of
operations, receiving data for processing and returning results to the calling
routine. A structured program is a nested or hierarchical set of functions that

Answers 261

15.

16.

17.

18.

19.

is easy to understand and modify. Reusable function libraries can be created,
which save on programming time. Compiler packages provide function libraries
for the most common operations.

int = variable type returned.

out = name of the function.

intl6 t = variable and type received.
int16 n = local variable declaration.
outbyte = value returned from function.

The RS232 signal has a start bit, 8 data bits, and a stop bit. The edge of the start
bit triggers the LCD receiver shift register to sample the line in the middle of
each data bit. This is stored as an ASCII character and displayed. Control codes
for the LCD are preceded by the code 254.

See the figure.

The function prints formatted output. This means that any variable output has
an associated formatting code, such as %d, which determines how the value

is interpreted. The main options are signed integer, floating point decimal, or
ASCII character. The variable anum in this case is an array variable, the element
being output is numbered n.

Ampersand (&) is the address_of operator, which causes the memory address of
the named variable to be returned. The pointer (*) is the contents of operator, which
returns the value of the contents of the location corresponding to the variable value.

262

Answers

20.

#include means copy another source code file into the user source code,
#define instructs the compiler to replace the given text with the given value,
#use means include a library function, #device defines the target MCU and
optionally an operating mode, #asm indicates the start of an assembly language
sequence,

Assessment 3

1.

setup_adc_ports (ANO) ;
Reference = 5V, resolution = 5/1024 = 4.88 mV/bit.

Resolution = 4.096/1024 = 4.00mV/bit, conversion factor = 0.004.
(a) float volts, input;
(b) volts=input*0.004;

enable_interrupts (int_AD) ;
enable_interrupts (global) ;
#int_AD

void isrADC() {}

Using the ADC interrupt, the program is more efficient because time is not
wasted in polling the ADC, and the ADC result can be processed as soon as it is
available.

16-bit maximum count = 65,536, remaining count = 65,536 — 15,536 = 5,000.
Instruction clock = 8/4 = 2MHz.

Clock period after prescale = 16/2 = 8us.

Timer period = 5000 X 8 = 40ms.

The Capture mode uses an input bit change to trigger the capture of the current
timer reading, transferring it into the preload registers for processing. This mode
can be used for input signal period measurement. The Compare mode needs the
preload registers to be loaded with a value with which the current timer value is
continuously compared. An interrupt flag is set and an output toggled when they
match. This mode can be used to generate an output of a given period.

See the figure.

A

»
»

Overall Period = a*b*T
Duty Cycle = d/1024%

Answers 263

10.

11.

12.

13.

14.

15.

Output period = 1000ps = 1000 clocks = 250 X 4 = timer count X prescale —
setup_timer_2(4,250,1).
10% duty cycle = 102/1023 — set_PWM1_duty (102).

The standard serial LCD is designed to receive 8-bit ASCII codes in RS232
format. High speed is not required, because only a limited amount of data is
sent as the display is updated. The longer-link distance possible with RS232
may be useful if the display is mounted away from the MCU board.

0x41 is the ASCII code for character ‘A’. In the printf () statement, it is
output and displayed as a decimal 65 because the formatting code is $d. The
putc () function outputs the ASCII code and displays the character ‘A’.

The UART data transfer takes about 1 ms, during which time the MCU could be
working on another task. MCU utilization can be increased by using interrupts,
which can be set up to fire when the serial port has finished sending (int_tbe)
or receiving (int_rda) a byte. The interrupt service routines contain the

code to write the next byte or read the next byte. On return from interrupt, a
foreground task continues, which is interrupted again only when the UART is
ready for the next byte transfer.

Each slave sender needs a slave select line connected to the master MCU, not
to ground. The master program contains bit switching statements to enable the
select line of a slave MCU programmed to transmit.

)i

i2c_write (0xA0) ;

i2c_write (0x01) ;

i2c_start(
(
(
i2c_write (OxXFF) ;
(
)

i2c_write (0xAA) ;
i2c_stop(

7

See the figure.

+5V

PIC1 PIC2

SDA SDA

SCL SCL

Set up the PSP interrupt in the slave PIC.
Select the slave PIC by taking !CS low.

264

Answers

16.

17.
18.

19.

20.

Present the data to the Port D data pins.
Take !'WR low to latch in the data.
Interrupt INT_PSP generated to read the port data.

The minimum number of wires is used by I°C, but the rate of transfer is reduced
compared with SPI because control and address bytes have to be sent before the
data are returned.

(@) PSP (b) SPI (c) UART (d) I°’C

EEPROM is nonvolatile data storage, which allows data to be stored while the
power is off. It can therefore store security codes and limited amounts of other
key data long term. It is limited in size, so an external serial EEPROM can be
used to expand it.

The output speed is critical in this application, because the waveforms are
generated by outputting a table of values to the DAC as fast as possible. To
minimize the output loop time, interrupts are used instead of polling the
switches. The output frequency is thereby maximized.

An output bit can be toggled using an assembler sequence to minimize the
loop time, as shown in Section 2.8. In this circuit, the output port needs to be
switched between 0x00 and 0xFF using output_portD (n) within a minimal
loop to generate a fast square wave.

Assessment 4

1.

See the figure.

I

Q3
OJ E PMOSFET Ei L1

Answers 265

10.

11.

Speed = 6 steps/sec = 6 X 7.5 deg/sec = 45 deg/sec = 45/360 rev/sec —
60/8 = 7.5rpm.

Linear characteristic: Output voltage, V, = mt + c; t = temperature; Gradient,
m = 10mV/°C.
At 0°C, sensor voltage, V, = 500mV, so 500 = c. Hence, V, = 10t + 500 mV.

The parallel display uses more MCU output pins, drive requirements are more
complex (segment encoding required), and it shows only 3.5 numerical digits,
while the serial LCD is 16x2 alphanumeric.

lcd_symbol (DigMap[8],DIG1) ;

The first argument of the function is an array variable that contains the seven-
segment code for the number 8, and the second identifies the seven display
memory bits for the segments of the digit.

The DC motor needs position feedback to achieve a set position or speed. A
slotted wheel and optical sensor produce pulses as the shaft turns, allowing the
MCU to count the revs completed in unit time.

The stepper motor has multiple coils, which are energized in sequence to turn
the shaft, so it can be turned through a set number of steps with no feedback
required. The stepper motor on the mechatronics board has two sets of
windings, two wires each, which are connected to the four drive outputs.

Connect the motor sensor to Timer1 input and configure the timer to measure
the pulse period. The Capture mode of operation allows the timer count to be
captured when the sensor input changes. The MCU program can convert the
pulse period into revs/sec.

1 step = 7.5°, 1 rev = 360/7.5 = 48 steps.
Time per step = 1/48 = 20.8 ms = 21 ms.

The temperature sensor gives an output of 10mV/°C, with an offset of 500mV,
so the temperature can be calculated at any value in that range. The light sensor
output cannot be quantified in the same way, because it is not linear and the
absolute level is therefore more difficult to calculate.

V., = sensitivity X temp + offset = (10 X 25) + 500 = 750 mV.
ADC output scaling = 2048/1024 = 2mV/bit.
ADC output value = V /scaling = 750/2 = 375.

266

Answers

12.

13.

14.

15.

16.

17.

18.

19.

Sink = Pg.Ng = M.N.F.
Source = !Pg. !Ng = (P.M.!N.F)+(P.!M.F) = P.F.((M.!N)+!M).

P1 and N2, P2 and N1, M1 and M2. The current flows diagonally across the
bridge, so P1 and N2 are on together for forward current and P2 and N1 for
reverse. M1 switches on and off N2 and M2 switches N2 for PWM control.

With the inputs linked for full bridge operation, P1 and P2 operate Drives 1 and
2, respectively, which are connected to stepper motor Coil 1, brown and orange
wires. PWMI is connected to CCP1 output. P3 and P4 operate Coil 2, red and
yellow; and PWM3 is connected to CCP2. Sequence: Drive 1, 4, 2, 3.

It is voltage operated with a high input impedance, so it is simple to interface
and can be driven directly from a logic output. The output ‘on’ resistance is low,
and the ‘off” resistance is high.

Gain of amp = 10.

Sensing resistor = 0.1 2.

Test resistor = 3.3 + 0.5 = 3.8().

Total resistance = 3.8 + 0.1 = 3.9Q.

Amp input voltage = (0.1/3.9) X 5 = 0.13 V.
Amp output voltage = 0.13 X 10 = 1.3 V.

The latch consists of cross-coupled NOR gates, such that only one output can
be high at a time. The drives are disabled when the fault output is low and the
LED output is high. The comparator output goes high when an overcurrent is
detected, forcing the fault output low and switching on the LED. This state is
held until the Reset button forces the LED output low and the fault output high,
resetting the latch.

The MOSFET is switched by applying 5V between the gate and source, with
the load connected to the drain. The NMOSFET has its source connected to 0V
and is switched on with 5V at the gate; the PMOSFET has its source connected
to +5V and is switched on with OV at its gate. This provides symmetrical drive
components in the half bridge.

Connect the motor between Drives 1 and 2. Enable drive at P1 from MCU RD7,
and control N2 from MCU CCP2(RD2). PWM output is generated from the
CCP2 module, which controls the speed of the motor.

Answers 267

20. Output sequence at Port D: 0x80, 0x10, 0x40, 0x20.

PWM inputs not connected = 1 (enabled).
Outputs high: RD7(P1 + N2), RD4(P4 + N3), RD6(P2 + N1), RD5(P3 + N4).
Drive sequence: Winding]l forward(Drivel — Drive2).

Winding?2 reverse(Drive4 — Drive3).

Winding1 reverse(Drive2 — Drivel).

Winding?2 forward(Drive3 — Drive4).

Assessment 5

1.

Hysteresis means that the switching level of the input depends on the polarity
of the input change. This helps overcome noise on the input, which would cause
unreliable switching, by implementing an upper and lower switching levels.

set_adc_channel (0) ;
numin = read_adc();

In the read statement, the input value returned by the function has to be
assigned to another variable for processing. In the channel select statement, the
channel number is passed 7o the function as the function argument.

See the figure. (10 points)

Start Button ——» —— Sensor

Stop Button ——
Temperature
Controller

Temp OK Indicator +—
Heater

Running Indicator +——

TEMPCON

Initialize

MCU, ADC, Functions
Wait for 'Start'
Switch on 'Running'

Loop
Read temperature
If too low
Switch on Heater
If too high
Switch on Fan

268

Answers

10.

11.

12.

13.

If OK
Switch on 'TempOK'
Always //

(10 points)

A data logger often needs to record analog input values from sensors. Flash
ROM is nonvolatile so data are retained during power off, and the serial
interface uses only two pins on the MCU. A serial link is needed to upload the
acquired data to a host system.

In a polled system, the time between input samples may vary if the processing
time changes between samples. A timer interrupt forces the execution of an ISR
containing the input sampling event at fixed intervals.

In a system with multiple interrupts, each is assigned a numerical priority in
relation to the others, such that a high-priority ISR is not interrupted by a lower-
priority one, but a low-priority interrupt may be interrupted by a high-priority
task.

The PC operating system is a priority-interrupt driven, multitasking OS
optimized for file processing, so that the time response of the system to real-
time events is not predictable. The real-time operating system is designed to
provide a predictable response time to major system events, as required in
control systems.

rate = how often the task will execute.
max = time allowed for this task each time it is executed.

The microcontroller has all essential hardware resources built into one chip:
CPU, program ROM, data RAM, and peripheral interfaces. In a conventional
microprocessor system, these are provided as separate chips so that the system
can be tailored to the application.

The system on a chip allows the microcontroller hardware to be configured for
a specific application then manufactured on one chip, giving the benefits of both
the conventional microprocessor system and the microcontroller.

Familiarity, cost, complexity, range, development system, availability, features.

Sufficient I/O pins, peripheral support, program memory size, data memory
size, speed, power consumption.

Answers 269

14.

15.

16.

17.

The prototype costs are mainly hardware and software design time. As more
units are produced, the development costs are shared, so that the cost per unit
falls with the volume of production (see the figure).

Cost per Unit

v

Volume

The serial alphanumeric LCD needs only a single MCU pin and can display
several lines of numbers and characters. The 3.5-digit LCD is cheaper, the digit
display is larger, and access is faster.

The size of the system and number of components largely determine the
power consumption, plus the current drawn by the MCU increases with the
clock speed. The component data sheets need to be consulted to predict
power consumption, as this is not generally modeled in simulation systems. A
prototype must be built to confirm the power supply specification.

C is a higher-level language than assembler, so it is easier to learn and use, as
the meaning of the program statements is more obvious. The same standard C
syntax is used for all processors, with the compiler converting the source code
into the MCU-specific assembly language. This means that it is universal and,
to some extent, portable between systems. The basic programming techniques
are applicable to all embedded systems, with the main variation being in the I/O
function syntax. (10 points)

#bit 86

#byte 86

#define PIN_AQ 40 86

#define T|_INTERNAL 0x85 86
#device ADC=S8 directive 100
#fuses 11

#include 16F877A.h. statement 24, 39,78
#int_ext directive 107

#list 86

#nolist 86

#pragma directive 230

#task directive 193

#use delay directive 66, 78,212
#use rs232 78

#use rtos () directive 193

7-Bit ASCII codes 53

16F877 peripheral interrupts 105
16F877 primary interrupts 105

877 chip 9, 16

877 time registers 14

A

ACTIVE components 206

ADO-AD7 15

ALU (arithmetic and logic unit) 7

amp [n] array 131

Analog inputs 245

Analog setup 99-100, 101
Analog-to-digital converter (ADC) 12, 15
Animation options 224

ARES 203

Arithmetic and logical operations 54, 241
Arrays 74-5

Assembler block 88-92

Index

Assignment operations 52—4, 55
Atmel (AVR) 196

B

BARI1 203,204
list file 215-19
source code 211-12
BARI1.COF 221
BARI1.DSN 205, 221
BARI1.LST 215
BASE (basic application and system evaluation)
board 186-9
BCD count program 152, 153
Binary coded decimal (BCDx) digits 152
Blank program 47, 48
Block rotate 249
Break, continue, and goto 57-9
Breakpoint button 223
Brown-out Reset (BoR) 10

C

C compiler comparison 227
HiTech PIC C 227,230-3
Matrix Multimedia C 227, 234-6
Microchip C18 227, 228-30
Mikroelektronika C 227, 234, 235
for PIC 16 series M 237
C interrupts 104-5
C mechatronics applications:
PICDEM 137
analog sensors 162—-6
board simulation 171-5
DC motor test programs 152-6
liquid crystal display 146-52

272 Index

C mechatronics applications (Continued) memory read and write 254
mechatronics board overview 13746 parallel slave port 248
stepper motor control 156—62 port input and output 244
temperature controller 166-71 processor controls 253

C peripheral interfaces: register manipulation 248

PIC16 C 99 RS232 serial port 246
analog input 99-103 search and sort 253
analog output 127-32 special setup 255
EEPROM interface 126-7, 128 SPI serial port 247
hardware timers 108-13 timers 245
I2C serial bus 118-21 trigonometric functions 251
interrupts 104-8 type conversions 252
parallel and serial interfaces 121-5 programming syntax 239
C program structure 60-2 arithmetic and logic operators 241
C programming essentials: compiler directives 239
PIC16 C 35-40 formatting codes 241
assembler routines 86-94 I/0O functions 240
compiler directives 77-86 program blocks 239
data operations 47-55 punctuation syntax 239
data types 73-7 relational operators 240
functions and structure 60—4 variable types 240
input and output 64-73 software design:
program basics 40-7, 48 BARI list file 215-19
sequence control 56-60, 61 BARI1 source code 211-12

C Programming Language, The 23 PIC registers 212-15

C18 program 230 source code components 48

C18 User Guide 228, 229 CCS timer function 109

CALC.C 69, 70-3 Character test 252

Capture, Compare, and PWM (CCP) modules 109 Character variable 52, 53

Capture hardware block diagram 112 Clock options 9

Capture mode 111-13 Code protection (CP) 10

ccp_1 112 Communication links, comparison of 123-5

CCS C: Comparator 15-16

16F877 header file 11 Compare mode 111

analog input functions 103 Compiler directives 239

compiler 35 Component button 205

interrupt functions 104 Conditional operations 54-5

program function reference 243 Conventions, block diagram of 180
analog inputs 245 Counter/timer operation 108-9
block rotate 249 CR mode 9

character test 252
I°C serial port 247

integers 251 D

interrupts 254 DC motor connections 142
LCD control 248 Debugging 145-6

math functions 249-50 and testing:

memory allocation 255 application program 180-2

Index 273

Decision making 42, 43

delay_ms () 44

Digital controller, elements of 2
Digital input and output (I/O) 12-13
Digital to analog converter (DAC) 127
Disassembly Listing 145
DOWHILE.C 56, 57

DsPIC (digital signal processor) 8
Duty cycle 110

E

E-blocks 234

Electrically erasable programmable read only
memory (EEPROM) 11, 126

enable_interrupts (global); 108

enable_interrupts (int_ext) ;
statement 108

Enumeration 77

Erasable programmable ROM (EPROM) 1-2

ext_int_edge (H_TO_L); 108

External interrupt test hardware 107

F

FAST.C 89, 92

File select register (FSR) 214
Flash ROM 2

FLOAT.C 67-8, 69

Floating point (FP) 49-52
FOR loop 45

for statement 73

for(;;) 210

FORLOOP.C 45

Formatting codes 66, 68, 241
Frames per Second settings 224
Freescale (Motorola) 196
FUNCI1.C 62,63
function_name () 38

G

General purpose registers (GPRs) 7, 212
General timer operation 14
get_timerl () 156

getc () function 114

Global variable 63—4, 65
Globals option 223

H

Hardware design 179-80, 197-9
using ISIS schematic capture 203

design specification 203—4
schematic circuit 204-5
schematic edit 205-7

Hardware selection 195-6

Header file 78-86

Hitachi 196

HiTech PIC C 227, 230-3

Hold In Reset buttons 30

1

1/0 allocation, for temperature controller 168
1/0 functions 240
1/0O pin operation 13
I°C serial port 247
i2c_start () function 120
If..else and switch..case 59-60, 61
if statement 42, 163, 226, 219
IFIN.C 42,43
In-circuit programming and debugging (ICPD)
10-11
In-circuit serial programming (ICSP) 27
INBIT.DSN 42, 43
include directive 212
include files 224
include statement 36, 212
Indirect addressing operators 75-7
Input voltage measurement and display 102
input (PIN_nn) 44
Instruction set, for programming 90-1, 934
INTCONbits.TMROIF=0 statement 230
Integers 49, 251
Intel 8051 2
Interintegrated circuit (I>C) serial bus 21-2, 118
functions 121
test system 120
Interrupt 254
operation 190-1
in PIC16 peripherals 16-18
statements 107-8
Interrupt service routine (ISR) 17, 190

274 Index

Inversion error 224
ISIS schematic capture:
hardware design 203
design specification 203—4
schematic circuit 204-5
schematic edit 205-7

K
Keypad and calculator 68-73

L

Labcenter 203, 227
led.inc 152
lcd_symbol () function 151, 152, 156
LCDDATAx 147
Least significant bit (LSB) 108
LED flasher program 229
Light sensor 162-3, 164
Linker errors 224
Liquid crystal display (LCD) 146
connections 146-9
control 248
segment connections 147
test program 149-52
Local variable 63-4, 65
Logical errors 224
Loop control 42, 44
Looping 41-2
Low-cost in-circuit debugging 2
Low pin count (LPC) 8
Low-voltage programming mode 11
LP (low-power) mode 9

M

main () function 60, 62,73, 210
makenum () 73

Mantissa 49

math.h library 131

Math functions 249-50

Matrix Multimedia C 227, 234-6
Mechatronics board fixed connections 141
Mechatronics board user connections 142
Memory allocation 255

Memory read and write 254
Microchip 227
Microchip C18 227, 228-30
Microchip MPLAB ICD2® 29
Microchip PICKkit2 programmer 27
Microchip® Inc. 137
Microcontroller unit (MCU) 1

configuration 8-12

features 3,4,5

programs 35
Microcontrollers 1967, 198

types 8
Microsoft Windows® 191
Mikroelektronika C 227, 234, 235
Motor drives 138, 139, 142, 143
MPLAB 2, 10-11

C project 234

ICD2 145

IDE screenshot 39
MPSIM 181-2

N

National Semiconductor 196
“Null terminated string” 75

o

Object Selector panel 205
Operating System (OS) 191
Oscillator start-up timer 10
out () function 62, 64
outbyte.c 25
outbyte.cof 25
outbyte.err 26
outbyte.hex 25
outbyte.lst 25
outbyte.mcp 26
outbyte.mcw 26
outbyte.pjt 26
outbyte.sym 26
OUTBYTE test circuit 38
OUTNUM.COF 37
output_D(255) 38
output_high(PIN_nn) 44
Overview window 206

Index

275

P

Parallel slave port (PSP) 121-3, 248
functions 124
operation 16
Parameter error 225
PC operating system 191-2
PCLATH (program counter latch high)
215
Permanent magnet (PM) 157
Philips 196
PIC.H 232
PIC 16F877 65
file registers 213, 214
status register bit functions 215
PIC 16FXXX instruction set 90-1, 93—4
PIC assembly language 92—4
PIC chips 7-8
PIC registers 212-15
PICI16:
MCU configuration 8-12
clock options 9
configuration, in C 11-12
options 9-11
microcontrollers 1-8
MCU features 3, 4,5
PIC chips 7-8
program execution 3-5
RAM file registers 6,7
MPLAB projects 22—-6
MPLAB C project 23-4
project files 25-6
peripherals 12-18
analog-to-digital converter 15
comparator 15-16
digital I/O 12-13
interrupts 16-18
parallel slave port operation 16
timers 13-15
program and debug 26-30
debugging 29-30
design package 30
programming 27-8
serial interfaces 18-22
interintegrated circuit bus 21-2
SPI bus 20, 21
USART 19-20

PIC16 C 35
analog input 99
analog setup 99-100, 101
voltage measurement 100-3
analog output 127-32
application design 179
debugging and testing 180-2
hardware design 179-80
software design 180, 181
applications and systems 179
data logger system 184-9
design 179-82
operating systems 189-94
system design 195-200
temperature controller 182—4,
185
assembler routines 86
assembler block 88-92
PIC assembly language 924
program compilation 87-8
compiler directives 77
header file 78-86
program directives 78
data logger system 184
BASE board 186-9
program outline 188, 189
data operations 47
assignment operations 524, 55
conditional operations 54-5
variable types 47-52
data types 73
arrays 74-5
enumeration 77
indirect addressing operators 75-7
EEPROM interface 126-7, 128
functions and structure 60
arguments 62-3
global and local variables 63—4, 65
program structure 60-2
hardware timers 108
capture mode 111-13
compare mode 111
counter/timer operation 108-9
PWM mode 109-11
IC serial bus 118-21
input and output 64
keypad and calculator 68-73

276 Index

PIC16 C (Continued) light sensor 162-3, 164
RS232 serial data 64, 65 temperature measurement 163-6
serial LCD 65-8, 69 board simulation 171, 172
interrupts 104 circuit description 173-5
C interrupts 104-5 DC motor test programs 152, 154
example 106-7 control 152, 154
interrupt statements 107-8 Rev counter 154-6
operating systems 189 hardware 137-8, 139, 140, 141, 142, 143
interrupts 1901 liquid crystal display 146
PC operating system 191-2 BCD count program 152, 153
polled I/O 189-90 LCD connections 146-9
RTOS 192-4 LCD test program 149-52
parallel and serial interfaces 121 mechatronics board overview 137, 138
communication links, comparison of 123-5 debugging 145-6
parallel slave port 121-3, 124 motor drives 138, 139, 142, 143
program analysis 38—40 PICDEM hardware 137-8, 139, 140, 141,
program basics 40 142, 143
blank program 47, 48 test program 143-5
decision making 42, 43 stepper motor control 156
FOR loop 45 construction 157-8
loop control 42, 44 direction control 158-62
looping 41-2 stepper motor test 158, 159, 160
SIREN program 45-7 temperature controller 166
variables 40-1 I/O allocation 168
program creation 36 implementation 168-71
program testing 37-8, 39 specification 166—7
sequence control 56 Pick Devices button 205
break, continue, and goto 57-9 PICkit2.exe file 28
if..else and switch..case 59-60, 61 POINTS.C 76
while loops 56-7 Polled I/O 189-90
serial bus 116-18, 119 Power-up timer (PuT) 10
simple program 35-6 printf () 75,114
system design 195 Processor controls 253
hardware design 197-9 Program analysis 38-40
hardware selection 195-6 Program blocks 239
microcontrollers 1967, 198 Program compilation 87-8
software design 199-200 Program Configuration Word 221
temperature controller 182 Program creation 36
software design and implementation 1834, Program debugging 221-4
185 Program directives 78
system operation 182-3 Program execution 3-5
UART serial link 113-15 Program simulation screenshot 223
PIC16F84 2 Program Target Device 145
PIC16F877A 3 Program testing 37-8, 39
PICCLite 232 Programming, instruction set for 90-1, 934
PICDEM: Project files 25-6

analog sensors 162 PROJNAME.C 23, 24

Index 277

PROJINAME.HEX 23 set_ADC_channel (n) function 99
Proteus VSM 182, 203, 205 Set Font option 223
system testing: set_pwml_duty () function 110
errors 224-6 set_up_adc_ports () system function 99
program, attaching 221 setup_adc () function 102
program, debugging 221-4 setup_adc_ports () 102
Pulse Width Modulation (PWM) mode 14, 109-11 setup_ccpl () function 110
Punctuation syntax 239 setup_lcd () function 151
putc (13) function 114 setup_timer_1 156
putc (code) 66 setup_timer_2 () function 110

setwave () function 129
Signed integers 49

R Simple program 35-6
RAM file registers 6, 7 Single analog input and display test circuit 100
read_ADC () function 100 SIREN program 45-7
Real-time application flowchart 209 SIREN.C 45
Real-time counter clock (RTCC), see TimerQ Software design 180, 181, 199-200
Real-time operating system (RTOS) 18, 1924 and implementation 183-4, 185
Register 0C (12,o) 93 using CCS C 209
Register manipulation 248 BARI list file 215-19
Relational operators 240 BARI1 source code 211-12
Release From Reset buttons 30 PIC registers 212-15
Rev counter 154-6 Special function registers (SFRs) 7, 212
RISC (reduced instruction set computer) Special setup 255
processor 4 SPICE model 206
ROM (read only memory) 1,2 Step Out Of 222
RS232 20 Step Over 222
peripheral simulation 115 STEPDIR.C 158
serial data 64, 65 Stepper motor connections 143
serial port 246 Stepper motor test 158, 159, 160
functions 114 STEPSPEED 158
rtos_disable(taskl) 194 STEPTEST.C 158
rtos_enable (taskl) 194 STMicroelectronics 196
rtos_run () statement 193 strcpy () function 75
rtos_yield() function 194 String 74
Syntax error 224
S System operation 182-3
System testing, using Proteus VSM 221
Salvo RTOS 232 errors 224-6
Salvo RTOS User Manual 194 program, attaching 221, 222
Search and sort 253 program, debugging 221-4

Sequence error 224
Serial LCD 65-8, 69

Serial peripheral interface (SPI) bus 20, 21 T
function set 116 TOCKI (TimerO clock input) 109
serial port 247 Tagged Object edit buttons 207

test system 117 Temperature control system 183

278 Index

Temperature measurement 163—-6
Terminal button 206

Test program 143-5

Test program debugging screen 146
Timer interrupt process 18
TimerO 14, 109

Timerl 14-15, 109, 190-1
Timer2 15, 190

Timers 13-15, 245

Timestep per Frame settings 224
Timing error 225-6
Trigonometric functions 251
Type conversions 252

U

Universal synchronous/asynchronous receive

transmit (USART) 19-20

v

Variables 40-1
types 47, 240
character variable 52, 53
floating point 49-51
integers 49
signed integers 49

Virtual oscilloscope screenshot 225
void change () 132

void isrext () 107

void main() 36,38

Voltage measurement 100-3

W

while loops 41,45, 56-7

while (1) statement 73,210, 219
WHILOOP.C 44

Watchdog timer (WDT) 9-10
Waveform generator 129

X
XT mode 9

	cover.jpg
	sdarticle.pdf
	Foreword

	sdarticle_001.pdf
	Preface
	Links, Resources, and Acknowledgments
	About the Author

	sdarticle_002.pdf
	Introduction

	sdarticle_003.pdf
	Part 1: PIC Microcontroller Systems
	1.1 PIC16 Microcontrollers
	1.2 PIC16 MCU Configuration
	1.3 PIC16 MCU Peripherals
	1.4 PIC16 Serial Interfaces
	1.5 PIC16 MPLAB Projects
	1.6 PIC16 Program and Debug
	Assignments 1

	sdarticle_004.pdf
	Part 2: C Programming Essentials
	2.1 PIC16 C Getting Started
	2.2 PIC16 C Program Basics
	2.3 PIC16 C Data Operations
	2.4 PIC16 C Sequence Control
	2.5 PIC16 C Functions and Structure
	2.6 PIC16 C Input and Output
	2.7 PIC16 C More Data Types
	2.8 PIC16 C Compiler Directives
	2.9 PIC16 C Assembler Routines
	Assignments 2

	sdarticle_005.pdf
	Part 3: C Peripheral Interfaces
	3.1 PIC16 C Analog Input
	3.2 PIC16 C Interrupts
	3.3 PIC16 C Hardware Timers
	3.4 PIC16 C UART Serial Link
	3.5 PIC16 C SPI Serial Bus
	3.6 PIC16 C I2C Serial Bus
	3.7 PIC16 C Parallel and Serial Interfaces
	3.8 PIC16 C EEPROM Interface
	3.9 PIC16 C Analog Output
	Assignments 3

	sdarticle_006.pdf
	Part 4: C Mechatronics Applications
	4.1 PICDEM Mechatronics Board Overview
	4.2 PICDEM Liquid Crystal Display
	4.3 PICDEM DC Motor Test Programs
	4.4 PICDEM Stepper Motor Control
	4.5 PICDEM Analog Sensors
	4.6 PICDEM Temperature Controller
	4.7 PICDEM Board Simulation

	sdarticle_007.pdf
	Part 5: PIC16 C Applications and Systems
	5.1 PIC16 C Application Design
	5.2 PIC16 C Temperature Controller
	5.3 PIC16 C Data Logger System
	5.4 PIC16 C Operating Systems
	5.5 PIC16 C System Design
	Assignments 5

	sdarticle_008.pdf
	Appendix A: Hardware Design Using ISIS Schematic Capture
	Design Specification
	Schematic Circuit
	Schematic Edit

	sdarticle_009.pdf
	Appendix B: Software Design Using CCS C
	BAR1 Source Code
	PIC Registers
	BAR1 List File

	sdarticle_010.pdf
	Appendix C: System Testing Using Proteus VSM
	Attaching the Program
	Program Debugging
	Typical Errors

	sdarticle_011.pdf
	Appendix D: C Compiler Comparison
	Hi-Tech PIC C
	Mikro C
	Matrix C
	Summary of C Compilers

	sdarticle_012.pdf
	Appendix E: CCS C Programming Syntax Summary
	Compiler Directives
	Program Blocks
	Punctuation
	Basic I/O Functions
	Variable Types
	Relational Operators
	Formatting Codes
	Arithmetic and Logic Operators

	sdarticle_013.pdf
	Appendix F: CCS C Program Function Reference

	sdarticle_014.pdf
	Answers
	Assessment 1
	Assessment 2
	Assessment 3
	Assessment 4
	Assessment 5

	sdarticle_015.pdf
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

