CATCH-X Users Manual

H. Fischer, J. Franz, A. Grünemaier,F.H. Heinsius, L. Hennig, K. Königsmann, M. Niebuhr,T. Schmidt, H. Schmitt, J. Urban

Fakultät für Physik, Universität Freiburg, 79104 Freiburg, Germany

July 19, 2000

The CATCH-X module is a 6U one-mezzanine version of the 9U four-mezzanine CATCH module. The CATCH module is used in the COMPASS experiment as the driver of the front-end boards and serves as a data concentrator and mini-event builder before the data are transmitted to the readout buffer. The CATCH-X module facilitates the testing of the readout of the front-end electronics. It can be used either with the COMPASS trigger control system or independently of it, e.g. for test beam activities.

Contents

1	Intr	roduction and Overview	3
	1.1	COMPASS readout	3
	1.2	САТСН-Х	4
	1.3	Contents	5
	1.4	Literature	5
2	Inst	allation	6
	2.1	CATCH Mezzanine Card	6
	2.2	TCS Receiver	6
	2.3	S-Link LSC	$\overline{7}$
	2.4	Jumper and Switches	7
3	Soft	tware	9
	3.1	VME Access	9
	3.2	User Interface	9
	3.3	FPGA-Programming	9
	3.4	F1 initialisation	15
	3.5	Data Format	15
4	Har	dware	16
	4.1	Front Panel and LEDs	16
	4.2	Pin-Out Tables	18
	4.3	Power and Fuses	21
5	Apr	pendix	23
	5.1	CMC-HOTlink	23
		5.1.1 Connector and LEDs	23
		5.1.2 Data Format	23
	5.2	TDC-CMC	24
	0.1	5.2.1 Connector and LEDs	$24^{$
		5.2.2 Data Format	$\overline{25}$
R	efere	nces	25

1 Introduction and Overview

1.1 COMPASS readout

The CATCH-X (CATCH = COMPASS Accumulate, Transfer and Control Hardware), a multipurpose frontend-electronic driver and readout module, has been developed in the scope of the COMPASS experiment located at CERN. This state-of-the-art fixed target spectrometer is capable of standing beam intensities of up to $2 \cdot 10^8$ particles/spill. At a maximum trigger rate of 10^5 events/s several Gigabyte of data has to be read every second with negligible dead time.

The readout architecture of the COMPASS experiment is summarized in Figure 1. Data are digitized right at the detector by the front-end electronics wherever possible. In case of analog readout the pedestal subtraction and zero suppression is performed by the frontend at the detector. To suppress background for time measurements only those hits are transfered to the data recording units which have a correlation to a trigger time.

The data are transmitted from the front-end to the CATCH modules through twisted pair cables or optical fibres. The FPGA based VME module serves as an interface between the front-end of the detector systems and an optical S-LINK, which transmits the data to the Readout Buffer (ROB). It also acts as an fan-out for the COMPASS trigger distribution and time synchronisation system (TCS). The readoutdriver monitors the trigger and data flow to and from the front-ends. In addition a specific data buffer structure and sophisticated data flow control is used to pursue local pre-event building. At startup the module controls all necessary front-end initialisations.

Figure 1: The architecture of the COMPASS detector readout.

From the CATCH data are transmitted via a standardized link to the read-out buffers (ROB) which can store all data from at least one spill. The backbone of this data transfer is the S-link [1] interface and the S-LINK data transfer protocol. Presently about 128 S-LINK

connections are foreseen to transmit data with a maximum total bandwidth of about 12 GB/s.

The read-out buffers combine data which belong to one event, check consistency of the data and perform sub-event-building. In a next step they transmit the sub-events via Gigabit Ethernet to filter computers. Here the final event-building is performed and events are reconstructed. The filter farm will reduce the data based on physics cuts by a factor of 5 to 10 and a continuous rate of 12 to 30 MB/s will be transfered to the central data recording facilities at CERN.

1.2 CATCH-X

Figure 2: CATCH-X schematic with HOTLink mezzanine card.

The CATCH-X is designed similar to the CATCH but as a 6U VME-module. This reduces the maximum number of inputs by a factor of four compared to the 9U sized CATCH.

Figure 2 shows a block diagram of the CATCH-X overall architecture with the HOTLink mezzanine card. The CATCH-X module with HOTLink mezzanine card performs the setup, trigger and clock distribution to the front-end boards and the data transfer from the FE-boards

via CAT 5+ (Ethernet) cable. The data from 4 connected front-end-boards are received at a rate of up to 40 MByte/s per link. Alternative mezzanine cards are available for data transmission through optical fibres, for time-to-digital conversion on the CATCH and deadtime free scalers. Trigger timing is received from a trigger control-system mezzanine card. For standalone operation a *Dummy* TCS-card with NIM-input and local clock is available. The trigger, time synchronization, reset and one user signal are distributed to the front-end-boards. The event number is added to the event header. Programmable logic chips perform event sorting, header suppression, adding of geographic identifications and mini-event building. Formatted events are sent to the readout-buffers using S-link with a rate of about 100 MByte/s. All or prescaled events can be sent through the VME-bus at a speed of 10 MByte/s.

1.3 Contents

This document describes the CATCH-X for the general user and can be used mainly as a reference guide. Chapter 2 shows the required steps before installing the module in a VME crate. An introduction to the software to control the module via the VMEbus and a list of registers can be found in chapter 3. Also the current version of the output data format can be found here. The chapter 4 lists the pin assignments for all connectors, the front-panel, fuses, switches, and jumpers.

As a quick reference the HOTLink Mezzanine card and the TDC mezzanine card is documented in the Appendix.

1.4 Literature

For further reading the following literature is recommended:

- An introduction to the COMPASS readout scheme: *TDC Chip and Readout Driver Developments for COMPASS and LHC-Experiments* [2].
- The description of the F1 TDC:

An Eight Channel Time-to-Digital Converter Chip for High Rate Experiments [3] and A 8 channel time to digital and latch integrated circuit for the COMPASS experiment at CERN [4].

- The front-end board connection to the CATCH/CATCH-X through the HOTLink: Designing Front-End Boards for use with the CATCH-HOTLink Interface, COMPASS note 1999-7 [5].
- The specifications of the CATCH (9U version): em CATCH and CMC-HOTLink Readout Driver Specification [6].
- The COMPASS Online Data Format (COMPASS-Note 2000-8) [7].

The newest software and documentation can be found on the web page: http://hpfr02.physik.uni-freiburg.de/compass

2 Installation

Before the installation of the CATCH-X 6U VME-board one has to mount the following cards: The *input* is provided through the *CATCH Mezzanine Cards*. Currently one has the option between a CMC-HOTLink card to connect front-end boards via twisted pair cables and a TDC-CMC which provides up to 32 TDC channels.

The *output* data stream can either flow through the *S*-Link LSC card mounted on top or through the VME bus, in which case the S-Link card is not required.

The trigger and synchronisation signals are either received through the standard COMPASS trigger control system (TCS) and the TCS-Receiver or through NIM pulses converted in the TCS-Dummy receiver.

2.1 CATCH Mezzanine Card

CATCH mezzanine cards have the size of standardized common mezzanine cards [8] and are mounted on the lower part of the CATCH-X to which it connects through two mezzanine connectors.

Several types are currently foreseen:

- HOTLink-CMC with RJ-45 connector for cable interface.
- HOTLink-CMC with fibre interface (development in cooperation with Trieste group).
- TDC-CMC with four F1 chips.
- Fast dead-time free scaler on FPGA.

Some features of the HOTLink-CMC and the TDC-CMC are summarised in the Appendix 5.1 and 5.2, respectively.

Details on the CATCH mezzanine card specification can be found in [9].

2.2 TCS Receiver

The trigger control system interface (TCS) can be plugged into the P2 connector on the back.

The TCS-receiver transient card gets the trigger and timing information from the Compass trigger distribution system via optical fibre. This board has outputs for the main clock (38.88 MHz), trigger, reset, begin of burst, end of burst, data enable and error bits as well as data bits.

Alternatively a *TCS-dummy receiver* can be plugged into the P2 backplane connector. This board has NIM inputs (including trigger, begin/end of burst, reset) and one local 38.88 MHz clock to provide TCS functionality in standalone operations. It is pin compatible to the Compass TCS-receiver card (Table 13).

2.3 S-Link LSC

The CATCH-X board is designed such that a standard duplex S-LINK Link Source Card (LSC) can be plugged in at the upper part of the CATCH-X and connects through one mezzanine plug to the main board. Details can be found in the S-LINK interface specifications [1]. The pin out can be found in that documentation in table 21 (page 49). The size of these cards are based on single size Common Mezzanine Cards as defined in Ref. [8].

The S-Link card provides a fibre connection to the spill buffer PCI-cards, which reside in the readout buffer PCs (ROB).

The S-Link card is optional, alternatively the data can be read out via VME bus at a lower speed.

2.4 Jumper and Switches

The jumpers have to be set according to table 1 to the default positions, except for the TDC-CMC, which requires jumper 3 in position 2-3.

The base address of the board can be selected by two rotary switches SW1 and SW2. For specifics refer to section 3.

Table 1: CATCH-X jumper positions. The *default* positions are for the CMC-HOTLink and the TDC-CMC, except jumper 3, which has to be set to position 2-3 for the TDC-CMC. For the locations of the jumpers see figure 4

Jumper	default	alternate	description
JP 1	2-3, 4-5		(no VME-Interrupt)
JP 2	open		(no VME-Interrupt)
JP28	2-3		Sync Trigger;
		1-2	async Trigger for RICH
JP 3	1 - 2		CMC-TCLK: 40 MHz local osc.
		2-3	CMC-TCLK: 38.88 MHz from TCS
For on b	oard cloc	k distributi	on (debugging only):
JP16	1-2		
JP 8	open		
JP 4	open		
JP 5	open		
JP 6	open		
$\rm JP~7$	open		
JP 9	open		
JP10	open		
JP12	open		
JP11	open		
JP18	open		
JP13	open		
JP14	open		
JP15	open		
JP17	open		
JP19	open		
JP20	open		
JP22	open		
JP21	open		

3 Software

A compilation of the software mentioned here can be found in the compass project space at /afs/cern.ch/compass/online/util/catch/. Executables are available in bin, bin/AIX, bin/Linux for MVME PowerPCs and Intel-VMIC, respectively.

3.1 VME Access

The CATCH-X can be accessed through a standard VME interface using the A32/D32 address mode. The base address is in hexadecimal notation:

E0 ab 00 00

where the byte **ab** can be selected by the two address selectors on the board. Switch 1 and 2 are corresponding to the value **a** and **b**, respectively. In the following tables (2-10) all registers are described together with their offset to the base address and whether read or write access is possible. Do not try to access any other addresses as this may hang your software. Note that some registers are only available after programming the FPGAs (Tab. 3-9).

The spy buffer can be read out using normal transfers or block transfers. In case the spy buffer is empty a $0x00 \ 00 \ 00$ is returned. It is recommended to check the flags and/or the number of values in the spy-buffer before reading a block of data.

3.2 User Interface

For the convenience of the user two types of interfaces are provided.

A full screen interface written in tcl/tk named CatchX-o-Matic provides access to all registers through a several windows. Details can be found in ref. [10].

Through a command line interface each register can be read or written to:

vme_read address

vme_write address value

where *address* and *value* is given as a hexadecimal value. Do not forget the base address 0xE0 00 00 00 of the CATCH.

For example the command

vme_read E00A0000

reads the identification and serial number of the CATCH-X whose the address switch is set to 10. While the command

vme_write E0010800 100

resets the CMC-card mounted on the CATCH-X with the address set to 1.

3.3 FPGA-Programming

The functionality of the CATCH-X board is provided through the use of six field programmable gate arrays (FPGA). Because the programming is stored in RAM, they have to be reprogrammed after every power up.

The programming is done by executing the command

Offset	Read/Write	Bits	Description		
00 00	R	0-15	CATCH-X serial number		
		16-31	'CA01' CATCH-X identification		
$00 \ 04$	R	27	TRIGGER (unused) CATCH-X status		
		26	FPGA pin TDO (JTAG)		
		25	CMC pin TDO (JTAG)		
		24	FPGA programming busy		
		23	FPGA INIT (programming pin)		
		22	FPGA DONE (programming pin)		
		21,20	Spy buffer FIFO $1/2$ empty		
		19	Spy buffer FIFO almost empty) 4 words)		
		18	Spy buffer FIFO half full (2048 words)		
		17	Spy buffer FIFO almost full (4092 words)		
		16	Spy buffer FIFO full		
		15-00	Number if words in Spy FIFO $(+2)$		
00 10	W	0	1 = Enable FPGA programming pins (PROG)		
		1	1 = Disable FPGA programming pins (PROG)		
		2	1 = set FPGA PROG pin (low)		
		3	1 = reset FPGA PROG pin (high)		
		4	1 = enable FPGA JTAG pins (TCK, TDI, TMS)		
		5	1 = disable FPGA JTAG pins (TCK, TDI, TMS)		
		6	1 = enable CMC JTAG pins (TCK, TDI, TMS)		
		7	1 = disable CMC JTAG pins (TCK,TDI,TMS)		
00 20	W	0-31	Send 32 bits of programming data to FPGA via DIN/CCLK		
00 40	W	0	TCK = 1 JTAG interface to FPGAs		
	W	1	TCK = 0		
	W	2	DIN = 1		
	W	3	DIN = 0		
	W	4	TMS = 1		
	W	5	TMS = 0		
00 80	W	0	TCK = 1 JTAG interface to CMC		
	W	1	TCK = 0		
	W	2	DIN = 1		
	W	3	DIN = 0		
	W	4	TMS = 1		
	W	5	TMS = 0		
$01 \ 00$	W	0	1 = enable FPGA programming (DIN, CCLK)		
		1	1 = disable FPGA programming (DIN, CCLK)		
		4	CCLK = 1		
		5	CCLK = 0		
		6	DIN = 1		
		7	DIN = 0		
02 00	W		Reset FPGAs		

Table 2: VME registers always available (in CPLD).

Offset	Read/Write	Bits	Description
04 00	W	110	Serial setup bits 2312 for 1st FE-board (store bits)
04 10	W	110	Serial setup bits 110 for 1st FE-board (send all 24 bits)
04 04	W	110	Serial setup bits 2312 for 2nd FE-board (store bits)
$04\ 14$	W	110	Serial setup bits 110 for 2nd FE-board (send all 24 bits)
04 08	W	110	Serial setup bits 2312 for 3rd FE-board (store bits)
04 18	W	110	Serial setup bits 110 for 3rd FE-board (send all 24 bits)
$04 \ 0C$	W	110	Serial setup bits 2312 for 4th FE-board (store bits)
$04 \ 1C$	W	110	Serial setup bits 110 for 4th FE-board (send all 24 bits)

Table 3: SERIAL-FPGA VME registers (available after FPGA programming).

Table 4: CONTROL-FPGA VME registers (available after FPGA programming).

Offset	Read/Write	Bits	Description	
08 00	R	0-7	CONTROL FPGA design version number	
		8	BUSMODE of CMC card	
		9	IS24 (CMC-HOTLINK receiving 24 bit data)	
		10	BUSY 0 (serial interface 0 busy)	
		11	BUSY 1 (serial interface 1 busy)	
		12	BUSY 2 (serial interface 2 busy)	
		13	BUSY 3 (serial interface 3 busy)	
08 00	W	0-3	LED 1-4 "OFF" on	
		4-7	LED 1-4 "IDs" on	
		8	reset CMC-card	
		9	reset SLINK-FPGA	
		10	reset TCS-FPGA	
		11	reset FORMAT-FPGA	
		12	reset MERGE-FPGA	
		13	reset SERIAL-FPGA	

Table 5: FORMAT-FPGA VME registers (available after FPGA programming).

Offset	Read/Write	Bits	Description
10 00	R	0-7	Formatter FPGA design version number
		8-15	Data format identification
10 04	m R/W	0-9	source id (as given in the S-link header
			Following numbers need to be set for
			begin of run event:
10 08	R/W	0 - 15	CMC id
$10 \ 0 \mathrm{C}$	$\mathrm{R/W}$	0-15	CATCH S/N
10 10	R/W	0-7	TCS design version
		8-15	SLINK design version
10 14	R/W	0-7	MERGE design version

			(F 0 0)
Offset	Read/Write	Bits	Description
14 00	W	0	0: USR3=End of Burst, 1: USR3 = Pretrigger
		1	1: TCS dummy connected select ONLY when TCS clock a
14 04	W	0	1 send USR4 25 ns (front end reset)
		1	1 send USR4 400 ns (front end reset for CMC)
14 00	R	Status Register:	
		0-7	TCS FPGA design version number
		8	Pretrigger as USR3
		9	encoded USR signal output enable
		10	TCS Ready
		11	TCS Error
		12	Currently Burst
		13	RESET
14 04	R	0-15	trigger counter in current spill
14 08	R	0-15	trigger counter in last spill
14 OC	R	0-7	TCS receiver id
		8-15	TCS status register after last error
			7 numbers below are from current event:
14 10	R	0-4	trigger mask
		5-15	spill number
14 14	R	0-15	event number bit 0-15
14 18	R	0-3	event number bit 16-19
		8-15	error word
14 1C	R	0	skip current event
		1	mode of current event
		2	Status FIFO empty
		3	Status FIFO full
		4	Data FIFO empty
		5	Data FIFO full
		6	FILLED = TCS data ready for current event
		7	EREADY (Merge ready)
		8	FREADY (Format ready)
		9	HDEF (Header buffer empty flag)
		10	MEVTRDY (Event number ready flag)
		11	THREADY (TCS Header ready)
		12	MEVTSEL (Merger)
		13	HDREN (Formatter)

Table 6: TCS-FPGA VME registers (available after FPGA programming). Part I

Offset	Read/Write	Bits	$\operatorname{Description}$
$14 \ 20$	R	0-3	addr 0 from tcs fifo
		4-7	addr 1 from tcs fifo
		8-11	addr 2 from tcs fifo
		12 - 15	addr 3 from tcs fifo
$14 \ 24$	R	0-3	addr 4 from tcs fifo
		4-7	addr 5 from tcs fifo
		8-11	tcs data fifo counter
		12 - 15	status fifo counter
$14 \ 28$	R	0-15	TCS header in counter in last spill
$14 \ 2C$	R	0-15	TCS header out counter in last spill

Table 7: TCS-FPGA VME registers (available after FPGA programming). Part II

 Table 8: SLINK-FPGA VME registers (available after FPGA programming).

Offset	Read/Write	Bits	Description	
18 00	W	0-1	0: Spymode write 1 event if FIFO empty	
			1: Spymode write events until FIFO full	
			2: Spymode write every 4 event until FIFO full	
			3: Spymode write every 8 event until FIFO full	
		2	send URESET	
		3	send 3 testwords	
		4	send UTEST $(32x \text{ SLINK test pattern})$	
		5	Reset spy FIFO	
18 00	R	0-7	SLINK FPGA design version number	
18 04	R	3	HeaderEF	
		4	DataEF	
		5	SpyEF	
		6	LFF (link full flag)	
		7	LDOWN (link down)	

Offset	Read/Write	Bits	Description	
20 00	R	0-7	MERGE FGPA design version number	
20 10	W	0-3	'0' for FIFO on	
			'1' for FIFO off	
20 10	R	0-3	Status: FIFO on (1) or off (0)	
		4-7	Status: FIFO empty (1) or not (0)	
		8	'1' Is TDC-CMC	
		9	'1' Is HOTLink-CMC	
		10	'1' Is HOTFibre-CMC	
		11	'1' Is Scaler-CMC	
		12	0' = TDC locked, $1' = TDC$ not locked	
		13	(debug) FIFO 0 last	
		14	(debug) FIFO 1 last	
		15	(debug) FIFO 2 last	
20 20	R	15-0	16 bit id of the CMC-card	
20 30	R	15-0	16 bit of number of received events	
20 30	W	5-0	definition of trailer for TDC readout (24 bit)	

Table 9: MERGE-FPGA VME registers (available after FPGA programming).

Table 10: Spy buffer readout.

rable 10. Spj ballet foadbatt.					
Offset	Read/Write	Bits	Description		
80 00 -	R	0-31	Read data from spy buffer (block transfer possible)		
8F FF					

progcatch catch-x-n.nn.hex boardid

on the command line of the VME computer. The file *catch-x-n.nn.hex* is provided with the user interface software. The *boardid* is the CATCH-X *board id* in hex, as selected by the two rotary switches. It can take values between 0 and FF.

In case the PROG LED lits red an error has occurred. Check, that you have used the correct file and not interrupted the programming.

3.4 F1 initialisation

A F1 frontend board or TDC-CMC connected to the CATCH-X can be initialised by the command:

flsetup tdc.fl boardid -port

where *tdc.f1* is the file as generated by f1conf, *boardid* is the CATCH-X *board id* in hex, *-port* is the input port number.

3.5 Data Format

The format of the output data is given in Tab. 11. The data in the *Data Block* depends on the connected front-end electronics and the version of the format programmed in the FPGAs.

For details see [7].

Table 11: Format of data send through the S-Link or spy buffer. The *event size* counts all words (32 bit) excluding the two CTRL words (first and last word).

Format Identifier							
format version (8)	#err words (8)	TCS error (8)	status (8)				

Data Block	
Data, format defined by format version	

SLINK-Trailer	
CFED120 (28)	0 = CTRL(4)

4 Hardware

4.1 Front Panel and LEDs

On the front panel are several LEDs, as described in table 12, a cutout for the S-LINK LSC CMC, a reset button and a cutout for the CATCH Mezzanine Card. Reset switch.

Table 12: LEDs on front panel.

		Table 12: LEDs on front panel.
Name	color	Description
PWR	green	5 V Power available
VME	yellow	Board is currently accessed through VME
\mathbf{PRG}	red	If lit the FPGA's are not correctly programmed
ID	green	'-' if FPGAs are not programmed.
		Otherwise shows the selected board address (lower 4 bits).
TCS	red	Red, if the synchronisation clock is generated internally.
		Off, if the clock is received through the TCS system.
TRG	green	On if triggers are received from the TCS system.
24	yellow	On if CATCH-Mezzanine card produces 24 bit data (e.g. from TDC)
		Off, if 32 bit data is received (e.g. through HOTLink from RICH).
OFF	red	On, if port $1,2,3$ or 4 is disabled.
IDs	red	On, if setup data is received on port 1-4 of the HOTlink-CMC.
\mathbf{FF}	red	On, if the FIFO on port 1-4 is full.

4.2 Pin-Out Tables

On the mother board are connectors for initial programming and debugging of the programmable logic chips as well as the connectors to the mezzanine cards:

- JTAG port for Xilinx CPLD programming (9 pins CPLD JTAG).
- Program connectors for Xilinx FPGAs (X-Checker and JTAG) cable (18 pins FPGA PROG, FPGA JTAG).
- A JTAG port to the CATCH mezzanine card (9 pin CMC JTAG).
- An ISP-Port to program the Lattice-ispGAL (4 pins SCLK/GAL, MODE, SDO, SDI).
- Two 64 pin connectors for the CATCH mezzanine card (see table 14 and [9]).
- One 64 pin connector for the S-Link card. (In the 9U CATCH module the J3 connector is used.)

Additionally standard VME backplane connectors are used to implement A32/D32 data transfers. No VME interrupts are generated.

The TCS card is connected via the VME-J2 backplane connector. Signal names are listed in table 13.

Pin	Active	I/O	Symbol	Symbol	I/O	Active	Pin
A1	+	Ι	+PECL clock	GND			C1
A2	-	Ι	-PECL clock	GND			C2
A3			GND	GND			C3
A4	Η	Ι	Data 0	Data1	Ι	Η	C4
A5	Η	Ι	Data 2	Data3	Ι	Η	C5
A6	Η	Ι	Data 4	Data5	Ι	Η	C6
A7	Н	Ι	Data 6	Data7	Ι	Н	C7
A8	Η	I/O	Address 0	Address 1	I/O	Η	C8
A9	Н	I/O	Address 2	Address 3	I/O	Н	C9
A10	\mathbf{L}	Ι	Header ready	Header enable	Ο	\mathbf{L}	C10
A11	Η	Ι	TTL clock	Status enable	Ο	L	C11
A12	\mathbf{L}	Ι	Data mode	Receiver ready	Ι	L^*	C12
A13	Η	Ι	(Synch) Start of burst	End of burst	Ι	Η	C13
A14	Н	Ι	$\operatorname{Synch}\operatorname{Trigger}$	PreTrigger	Ι	Н	C14
A15	\mathbf{L}	Ι	$({ m Synch}){ m Reset}$	Error	Ι	\mathbf{L}	C15
A16	\mathbf{L}	Ι	Skip data	AsynchTrigger	Ι	Η	C16

Table 13: P2 connector pin assignment for TCS receiver. Note that signal C12 (Receiver Ready) can be switched from active low to active high by setting bit 1 in register 0x14 00.

Pin Symbol	Pin Name	I/O	Description
D[310]	Data outputs	0	Data outputs.
DX[30]	Data extension	Ο	Additional bits used for
			error information.
RCLK#	Read clock	Ι	The rising edge clocks data D, DX out of the
			module when $\text{REN}[30]\#$ is LOW.
REN[30]#	Read enable	Ι	$\operatorname{REN}\#$ enables the RCLK input.
OE[30]#	Output enable	Ι	When $OE\#$ is LOW D,DX drive the bus,
(=REN[30]#)			when HIGH D,DX are in high impedance state.
EF[30]#	Empty flag	0	When LOW no data available,
			synchronized to RCLK.
PAE[30]#	Programmable	Ο	When LOW almost no data available,
	empty flag		synchronized to RCLK, the minimum
			amount of available data has to be specified.
FF[30]#	Full flag	Ο	When LOW internal buffers are full,
			not synchronized to RCLK.
RST#	Reset	Ι	Asynchronous reset.
BUSMODE1	Busmode 1	0	Busmode, identifies card type.
BUSMODE[42]	Busmode	Ι	Busmode, questions card type.
DEVID	Device id	Ι	If HIGH puts device identification on D[150].
DEVST	Device status	0	If LOW signal error condition of card.
SND[30]	Serial input	Ι	Four independent 10 Mbaud serial links.
			synchronous to TCLK.
TCLK	time clock	Ι	Time distribution 38.88 MHz TTL clock.
DTCLK	diff clock	Ι	Differential low jitter TCLK signal.
USR[30]	User signals	Ι	Trigger, time zero and user signals
			synchronous to TCLK.
USRC	User coded	Ι	Length coded $USR[30]$ signals,
			synchronous to TCLK.
TDI	Test data input	Ι	JTAG TDI
TMS	Test mode select	Ι	JTAG TMS
TDO	Test data output	0	JTAG TDO
TCK	Test data clock	Ι	JTAG TCK
TRST#	Test data reset	I/O	Test reset

Table 14: Pin definitions of the CATCH mezzanine card [9].

Pn1/Jn1					Pn2	/Jn2	
Pin	Signal Name	Signal Name	Pin	Pin	Signal Name	Signal Name	Pin
1	TCK	-12V	2	1	+12V	TRST#	2
3	Ground	FF[1]#	4	3	TMS	TDO	4
5	$\mathrm{EF}[1]\#$	PAE[1]#	6	5	TDI	Ground	6
7	BUSMODE1#	+5V	8	7	Ground	LVDS low	8
9	DEVID	$\mathrm{USR}[0]$	10	9	USR[2]	LVDS high	10
11	Ground	USR[1]	12	11	BUSMODE2#	+3.3V	12
13	RCLK	Ground	14	13	RST#	BUSMODE3#	14
15	Ground	DX[3]	16	15	3.3V	BUSMODE4#	16
17	DX[2]	+5V	18	17	USR[3]	Ground	18
19	+5V	D[31]	20	19	D[30]	D[29]	20
21	D[28]	D[27]	22	21	Ground	D[26]	22
23	D[25]	Ground	24	23	D[24]	+3.3V	24
25	Ground	REN[3]#	26	25	$\mathrm{EF}[3]\#$	D[23]	26
27	D[22]	D[21]	28	27	3.3V	D[20]	28
29	D[19]	+5V	30	29	D[18]	Ground	30
31	+5V	D[17]	32	31	D[16]	REN[2]#	32
33	$\mathrm{EF}[0]\#$	Ground	34	33	Ground		34
35	Ground	FF[3]#	36	35	PAE[2]#	+3.3V	36
37	$\mathrm{EF}[2]\#$	+5V	38	37	Ground	FF[2]#	38
39	Ground	FF[0]#	40	39	PAE[3]#	Ground	40
41	PAE[0]#	DX[1]	42	41	3.3V	DEVST	42
43	DX[0]	Ground	44	43	REN[1]#	Ground	44
45	+5V	D[15]	46	45	D[14]	D[13]	46
47	D[12]	D[11]	48	47	Ground	D[10]	48
49	D[9]	+5V	50	49	D[8]	+3.3V	50
51	Ground	REN[0]#	52	51	D[7]	SND[0]	52
53	D[6]	D[5]	54	53	3.3V	SND[1]	54
55	D[4]	Ground	56	55	SND[2]	Ground	56
57	+5V	D[3]	58	57	TCLK	SND[3]	58
59	D[2]	D[1]	60	59	Ground		60
61	D[0]	+5V	62	61	DTCLK+	+3.3V	62
63	Ground	USRC	64	63	Ground	DTCLK-	64

Table 15: Connector pin-outs of the CATCH mezzanine card [9].

4.3 Power and Fuses

The board uses 5V, +12V and -12V from the VME P1 and P2 connector. The voltages +12V and -12V are only provided for the CMC board and not used by the motherboard. A DC/DC converter produces 3.3V from the 5V supply.

The types of the different fuses are given in table 16, while its positions on the CATCH-X is shown in figure 4.

Table 16: Fuses							
Name	Value	Voltage	Used for				
F1	250 mA	$5 \mathrm{V}$	FPGA-JTAG / CMC-JTAG				
F2	250 mA	$5 \mathrm{V}$	FGPA-PROG / CPLD-JTAG				
F3	$5 \mathrm{A}$	$5 \mathrm{V}$	VCC				
F4	$0.5 \mathrm{A}$	+12 V	CMC				
F5	$0.5 \mathrm{A}$	-12 V	CMC				
F6	$0.5 \mathrm{A}$	$5 \mathrm{V}$	VCC-PECL				
F7	5 A	3.3 V	Power supply				

Figure 4: Positions of fuses, jumpers and switches on CATCH-X.

5 Appendix

5.1 CMC-HOTlink

The CMC-HOTLink cards serve as a general interface to the front-end boards:

- Each CMC cards connects up to four front-end boards
- Receive data through HOTLink deserialiser chips at a maximum rate of 40 MByte/s on each of the four channels
- Convert data from 8 bit HOTLink transmission format to 24 or 32 bits (1 word) depending on front-end board
- Word boundaries are automatically resynchronized at each received SYNC character
- The most significant byte is received first (bits 31-24)
- Receive errors are marked by special error codes
- Store data in four independent $1k \times 4byte$ FIFOs for final event building
- Maximum CMC output rate 160 MByte/s

5.1.1 Connector and LEDs

Each CMC-HOTLink has four RJ-45 connectors for CAT5+ cable (Table 17) to the front-end board. The ports are number from top to bottom 1 to 4. Details on the connection can be found in Ref. [5].

The four red LEDs correspond to port 1 to 4 counted from left to right. They are lit in case of errors are transmitted through the cable. During normal operation the LEDs are off.

Ta	ble 17: RJ-45 front-end board connector.
Pin	Description
1	38.88 MHz clock, PECL -
2	38.88 MHz clock, PECL $+$
3	10 Mbaud serial line, active low signal
6	10 Mbaud serial line, +5 V
	power supply for opto coupler
5	Trigger/User (coded 25-100 ns), LVDS -
4	Trigger/User (coded 25-100 ns), LVDS +
7	400 MHz HOTLink, PECL -
8	400 MHz HOTLink, PECL +

5.1.2 Data Format

The data format is defined according to Ref. [5].

5.2 TDC-CMC

The TDC-CMC contains four F1 TDC chips numbered from 0 to 3. Channels 0-7 are connected to TDC '0', whereas channels 24-31 are connected to TDC '3'. The details of the TDC operation can be found in Ref. [4].

5.2.1 Connector and LEDs

A 68 pin connector from Robinson-Nugent has been chosen as the input interface to the four F1 TDCs on the TDC-CMC. Two 34-wire twisted pair cables (AWG-28, 0.05") fit to a single socket. A special latching eject mechanism facilitates mating and unmating.

The socket, which goes on the cable is available from Robinson Nugent¹ part number P50E-068S-TGF or CERN self service number 09.55.21.071.4.

The four red LEDs show the following signals (from left to right): FIFO full, Token, PLL locked, TDC Be-INIT. Upon power on reset all four LEDs are on.

Table 18: TDC-CMC 68-pin Robinson Nugent input connector. If the F1 TDC-CMC board is used in the high resolution mode only the pins marked by '*' are active. All other inputs will be ignored.

Pin		Signal		Pin		Signal	
A01	In	0 +	*	B01	In	16 +	*
A02	In	0 -	*	B02	In	16 -	*
A03	In	1 +		B03	In	17 +	
A04	In	1 -		B04	In	17 -	
A05	In	2 +	*	B05	In	18 +	*
A06	In	2 -	*	B06	In	18 -	*
A07	In	3 +		B07	In	19 +	
A08	In	3 -		B08	In	19 -	
	•				•		
A31	In	14 +	*	B31	In	31 +	*
A31	In	14 -	*	B31	In	31 +	*
A31	In	15 +		B31	In	32 +	
A32	In	15 -		B32	In	32 -	
A33		GND		B33		GND	
A34		GND		B34		GND	

Input level is either: LVDS, LVPECL or differential TTL (second line: +2.5V fixed). On board input termination: '+' $3.6k\Omega$ to 5V, '-' $1k\Omega$ to GND, between '-' and '+' 100Ω .

¹Robinson Nugent (Europe) B.V., P.O. Box 70062, NL-5201 DZ 's-Hertogenbosch, The Netherlands. http://www.robinsonnugent.com.

5.2.2 Data Format

The 24-bit output data of the TDC chips as described in the F1 TDC manual [4] are mapped to bits 8-31. Bit 0-3 indicates whether the TDC 0,1,2 or 3 is locked (active high). Bits 4-7 are always zero.

Table 19: Incoming TDC data format. Shown is the format of the header and data. For each event one header is followed by n data words and one trailer, which has the same format and event number as the header. The event data may be intercepted by more headers, e.g. in case of the trigger buffer overflow error is set. 10 - 13 corresponds to the TDC locked signals of TDC 0 to 3.

31	30	29 24	23 15	14	13 12 9 8	7-4	3	2	1	0
0	trigger buffer	Event	Trigger	XOR	chip/channel	0	13	12	l1	10
	overflow (1)	number (6)	time (9)		$\operatorname{address}(6)$	(4)				
1	0	chip/channel	data (tim	e measu	ured relative	0	13	12	l1	10
		address (6)	to last re	(4)						

References

- Bowle et al., The S-LINK Interface Specification, http://www.cern.ch/HSI/s-link/, ECP Dvision, CERN, 1997.
- [2] G. Braun et al., TDC Chip and Readout Driver Developments for COMPASS and LHC-Experiments, Fourth Workshop on Electronics for LHC-Experiments, Rome, September 21-25 1998; CERN/LHCC/98-36.
- [3] G. Braun et al., An Eight Channel Time-to-Digital Converter Chip for High Rate Experiments. Fifth Workshop on Electronics for LHC-Experiments, Snowmass, September 20-24, 1999.
- [4] Braun et al., A 8 channel time to digital and latch integrated circuit for the COMPASS experiment at CERN, Universität Freiburg, 1999.
- [5] Braun et al., Designing Front-End Boards for use with the CATCH-HOTLink Interface, COMPASS note 1999-7, Universität Freiburg, 1999.
- [6] G. Braun et al., CATCH and CMC-HOTLink Readout Driver Specification, COMPASS note 1999-15, Universität Freiburg, 1999.
- [7] H. Fischer et al., The COMPASS Online Data Format, COMPASS note 2000-8, Universität Freiburg, TU München, 2000.
- [8] IEEE P1386/Draft 2.0 04-APR-1995, Standard for a Common Mezzanine Card Family: CMC (the CMC Standard).

- [9] Braun et al., Draft Standard for CATCH Mezzanine Cards: CATCH/OPEN, Universität Freiburg, 1999.
- [10] Braun et al., CatchX-o-Matic User Manual, HTML: http://hpfr02.physik.uni-freiburg.de/ĥennigla/manual/