
Guardant®

Anti�piracy Protection System

User’s
Manual

Supplement

Guardant Stealth II
Guardant Net II

Dongles

Revision 4.8

© 2005 Aktiv Company

Contents

 3

Contents
Contents ...3
Guardant Stealth II and Guardant Net II – New Dongles of Guardant Family5
GSII64 Algorithm ..7

Algorithm Description... 7
GSII64 Algorithm Descriptor .. 7
GSII64 Algorithm Modes .. 9

Guardant API Functions .. 13
New Constants ..13

The Codes of Dongle Models ..13
Different Dongle Type Codes...13
New Error Code..14
TransformEx Operation. Transforming Information Using the Dongle’s GSII64
Hardware Algorithm..14
The nskCommand() Function ..17

Working with GSII64 Algorithm from the NSKUTIL Dongle Programming Utility. 19
New GSII64 Algorithm Creation ...19
Obtaining Responses from GSII64 Hardware Algorithm...20
Data Encoding and Decoding with GSII64 Algorithm..22

Additional Sources of Information ... 25

Guardant Stealth II and Guardant Net II – New Guardant Family Dongles

 5

Guardant Stealth II
and Guardant Net II – New

Dongles of Guardant Family
The new dongles employ a most up�to�date elemental base that made it
possible to significantly expand their protection potential. Guardant
Stealth II and Net II are fully compatible with the preceding products of
the Guardant family, retaining the functionality of Guardant Stealth and
Net dongles.

The difference between new dongles of Guardant family and the
preceding Stealth and Net dongles lies primarily in the implementation of
a new GSII64 data encoding hardware algorithm.

To protect the device against hardware cracking, the entire content of
Guardant Stealth II EEPROM�memory is securely enciphered with a key
that is unique for each dongle.

Guardant Stealth and Net II USB are introduced in a new embodiment,
that is a single�unit cast high�strength plastic case and a custom designed
long�life USB connector.

Important
This document is a supplement to the Guardant User’s Manual and contains information
specific for Guardant Stealth II and Guardant Net II dongles.

GSII64 Algorithm

 7

GSII64 Algorithm

Algorithm Description
GSII64 is the new algorithm developed for Guardant dongles. GSII64 is a
block algorithm resistant to cryptanalysis and specially devised for
Guardant Stealth II. Key length is 16 or 32 bytes (128 or 256 bits). GSII64
encodes data in 8�byte (64�bit) blocks. It also supports encoding of data
sequences of length divisible by 8 and random length. The algorithm is
symmetric, hence it can be used for both data encoding and decoding
with the same key.

GSII64 algorithm supports the following functions:

• block data encoding (64�bit blocks)

• stream data encoding (data of random length)

• pseudorandom numbers generation

• hash calculation

GSII64 Algorithm Descriptor
An individual descriptor specifies the properties and representation of
each hardware algorithm. Each descriptor occupies a certain space in the
memory. Therefore, the number of algorithms in the dongle is limited.

The descriptor of GSII64 hardware algorithm comprises the following
components:

Offset from
the Beginning
of the Descriptor

Field Length
in Bytes

Field Name Field Description

0 1 km_ad_flags Algorithm flags

1 1 km_ad_algo Algorithm type code (must be 5
for GSII64)

2 4 km_ad_GP Algorithm counter

6 1 km_ad_klen Determinant (key) size in bytes
(16 or 32 bytes)

7 1 km_ad_blen Query length in bytes (must be
8 bytes)

8 equals
km_ad_klen

km_ao Determinant

User’s Manual, Supplement

 8

km_ad_flags field. This contains flags*, which specify the properties of the
hardware algorithm. The following flags can be set (names of flags
provided below are used in Guardant API):

• nsaf_ID: the algorithm depends on the dongle’s ID

• nsaf_GP: the algorithm depends on its km_ad_GP field

• nsaf_GP_dec: km_ad_GP field must be decremented each time
before the algorithm is executed.

km_ad_algo field. This contains algorithm type code. The value must
equal 5 for GSII64 algorithm.

km_ad_GP field. This contains the algorithm’s counter. If nsaf_GP_dec
is indicated, the field specifies the number of times the algorithms can be
executed. When the counter reaches 0 value the algorithm ceases to
convert data. If an area of the algorithm has a hardware�based read and
write lock, this field can be incremented only if the entire algorithm is
written anew.

km_ad_klen field. This contains the size of the algorithm determinant in
bytes. For GSII64 type algorithm the value may equal only 16 or 32 bytes.
This value must be correct. If a wrong value has been entered, the
determinant length is set at 16 bytes by default.

km_ad_blen field. This contains the size of the algorithm query in bytes.
For GSII64 type algorithm the value must equal 8 bytes.

km_ao field. This contains the algorithm’s determinant which is the most
important part of the descriptor. The determinant plays a major part in
specifying a particular method for data conversion (i.e., in specifying the
exact type of hardware algorithm). The value of the determinant must
correspond to the value of km_ad_klen field and equal 16 or 32 bytes.

A hardware�based read and write lock can be implemented for the
memory area occupied by descriptors; this makes study, replication or
modification of hardware algorithms impossible.

GSII64 Algorithm

 9

GSII64 Algorithm Modes
ECB Mode

Electronic Code Book mode. This is the simplest of GSII64 algorithm
modes. Under ECB, each 8�byte block supplied to the algorithm encodes
into 8�byte block of encoded data with the same determinant. Thus a data
block will transform to an identical encoded data block.

GSII64 is designed to process 8�byte blocks. If the block length exceeds 8
bytes, then the data must be sent to the algorithm by 8�byte blocks. If the
final block is less than 8 bytes, it must be padded to 8 bytes. It is highly
recommended to keep these additional bytes random. Random numbers
can be used for the additional bytes. In the latter case the last encoded 8�
byte block must be stored completely, together with the encoded
additional bytes (rather than discarding these bytes). This will ensure
correct decoding of the useful data in this block.

The ECB mode is intended to encode small volumes of data, like
initialization vectors or encryption keys for other algorithm modes and
algorithms.

The ECB mode is recommended for use instead of the previous Stealth
algorithm, due to GSII64’s higher resistibility.

CBC Mode

Code Block Chaining mode. Under CBC mode, as in the case of ECB,
every 8�byte block transforms to an 8�byte block. Algorithm encodes 8�
byte blocks with the same determinant. The CBC mode is better suited for
conversion of data blocks that exceed 8 bytes.

Unlike ECB, however, conversion of two identical 8�byte blocks located
in different positions of the original data array will not yield an identical
result. This is accomplished due to the fact that, rather than encoding the
block itself, the sum of the block by module 2 is encoded at every
successive step. To produce the first encoded block the sum by module 2
of the first encoded block and some initialization vector IV is used. Value
IV should be retained for correct reverse transformation (decoding), yet it
is advisable to protect it (e.g. to encode it in ECB mode).

Thus conversion will be position�dependent, since encoding result
depends not only on the block itself, but also on the preceding block.

Reverse transformation will also be done on a block�by�block basis.

User’s Manual, Supplement

 10

The total length of the original data block must be divisible by 8 bytes.
Otherwise, the last block has to be padded to 8 bytes, as in the case of
ECB mode.

The CBC mode can be employed for calculation of reliable checksums,
and data authentication and verification. The last encoded 8�byte block is
used as checksum. This block depends both on all preceding encoded
blocks and on initialization vector, and is calculated on the basis of the
algorithm determinant. The block does not provide information on
original data, but identifies those unambiguously. It is as difficult to
replicate this block as to fit the algorithm determinant.

If the length of the encoded data array is not divisible by 8, then the last
block must be padded to 8 bytes. It is highly recommended to keep these
additional bytes random. Random numbers can be used for the additional
bytes. In the latter case the last encoded 8�byte block must be stored
completely, together with the encoded additional bytes (rather than giving
up these bytes). This will ensure correct decoding of the useful data in this
block.

CFB Mode

Coded FeedBack mode. The CFB mode allows transforming data blocks
of arbitrary length, not necessarily divisible by 8 bytes. This spares the
effort to pad the original data to an integer number of 8�byte blocks.
Under this mode the length of the encoded and the original sequences will
be equal

Under the CFB mode, as in the case of CBC, original data blocks are
chained; hence every encoded block will depend on all preceding blocks
of original data, since an encoded preceding block is used for encoding of
every following block of original data.

Under this mode initialization vector IV is used for data transformation
(see CBC mode).

Important
If, at decoding, a wrong initialization vector is indicated, all data, except for the first 8
bytes, will be decoded correctly. Should this be critical for the application, the OFB mode is
to be preferred.

GSII64 Algorithm

 11

OFB Mode

Output FeedBack mode. This has much in common with the CFB mode.

The main difference is that in OFB, to encode the following block, the
result of initialization vector IV’s transformation is used instead of the
encoded preceding block. The advantage of this mode is that at
transmission of the encoded data the dependence on distortions in the
preceding blocks is diminished. Yet, the mode has its negative side: the
OFB provides lower protection against malicious alteration of data, since
alteration in one bit of encoded data will result in alteration of the same bit
in decoded data. Here, a reliable checksum need to be used to
authenticate data.

As in the case of two previous modes, the OFB uses initialization vector
IV to transform data (See CBC and CFB modes).

Recommendations for Working with Initialization Vector IV

To correctly transform data using GSII64 algorithm it is required to take
into account the following:

• initialization vector IV must be equally initialized before encoding
and decoding;

• to preserve the value of initialization vector IV in the intervals
between addressing TransformEx at continuous
encoding/decoding of large blocks (over 248 bytes for ECB and
CBC and 255 bytes for CFB and OFB);

• at some encoding operations, like encoding of various database
records or disk sectors, to initialize IV with that number of the
record/sector. This is done to ensure that each of those
records/sectors is at all times encoded identically, while different
records with same values are encoded differently.

User’s Manual, Supplement

 12

Modes, Administered by Algorithm Property Flags

Field value
km_ad_flags

Mode Meaning Mode Description

0 Default mode Flags are not set; algorithm does not depend on
flags.

nsaf_GP_dec Limitation on the
number of algorithm
executions

A 4-byte initial value of the counter is entered
into the km_ad_GP field. The counter is
decremented at every address to TransformEx,
and the algorithm stops at counter reaching 0.

nsaf_GP Dependence of
algorithm on counter

A 4-byte value of the counter is entered into the
km_ad_GP field. The type of transformation
depends on counter value. If determinants are
identical, algorithms with different counter values
will encode data differently.

nsaf_GP
+nsaf_GP_dec

Pseudorandom
number generator

A high 4-byte initial value of the counter is
entered into the km_ad_GP field. The counter is
decremented at every address to TransformEx,
and the algorithm stops at counter reaching 0.
With every counter decrement the transformation
is done differently.

nsaf_ID Algorithm unicity by
ID

Encoding depends on the dongle’s ID. If
determinants are identical, algorithms with
different IDs will encode data differently.

nsaf_ID +
nsaf_GP_dec

Limitation on the
number of algorithm
executions + unicity
by ID

A 4-byte initial value of the counter is entered
into the km_ad_GP field. The counter is
decremented at every address to TransformEx,
and the algorithm stops at counter reaching 0.

nsaf_ID +
nsaf_GP
+nsaf_GP_dec

Pseudorandom
number generator

A high 4-byte initial value of the counter is
entered into the km_ad_GP field. The counter is
decremented at every address to TransformEx,
and the algorithm stops at counter reaching 0.
With every counter decrement the transformation
is done differently.

Guardant API Functions

 13

Guardant API Functions

New Constants
New constants for C/C++ are described in the last version of
NVSKEY32.H file. Constants for other languages are described in
corresponding header files or within source code samples.

The Codes of Dongle Models

To assure identification of Guardant Stealth II dongles new codes of
dongle models have been added. The model code is stored in the memory
at sam_bKeyModel address (see the dongle memory map). Following
codes are assigned to dongle models (see NVSKEY32. H):

Constant Name Value Dongle Model
nskm_GS1L 0 Guardant Stealth LPT
nskm_GS1U 1 Guardant Stealth USB
nskm_GF1L 2 Guardant Fidus LPT
nskm_GS2L 3 Guardant StealthII LPT
nskm_GS2U 4 Guardant StealthII USB

Previous constants have been kept for compatibility purposes.

Different Dongle Type Codes

To specify a dongle type, a new nskt_GSII64 flag has been added on the
sam_bwType address implying that the dongle supports the GSII64
algorithm. This flag may be used for dongle search.

Thus following flags of dongle types are available (See NVSKEY32.H):

Constant Name Value Dongle Type
nskt_DOS 0 The dongle supports protection of DOS applications
nskt_Win 0 The dongle supports protection of Windows

applications
nskt_LAN 1 The dongle supports protection of LAN applications.

(Net or Net II dongle)
nskt_Time 2 The dongle is capable of limiting the protected

application’s license term
nskt_GSII64 8 The dongle supports GSII64 algorithm

User’s Manual, Supplement

 14

New Error Code

In addition to the above�mentioned changes, a new error code was added:

Constant Name Value Short Description
nse_InvalidArg 46 Inadmissible value of one of function’s

arguments is set

TransformEx Operation.
Transforming Information Using the Dongle’s GSII64
Hardware Algorithm

For Guardant Stealth II:
nRet = nskTransformEx(dwPrivateRD, dwAlgoNum, dwLng, pData,
dwMethod, pIV)

For Guardant Net II:
nRet = nnkTransformEx(dwPrivateRD, dwAlgoNum, dwLng, pData,
dwMethod, pIV)

Operation type:
Main built-in

Input parameters:
dwPrivateRD Private Read code in numerical form.
dwAlgoNum Hardware algorithm number
dwLng Length in bytes of the data block to be converted.
pData Address of the data block to be converted.
dwMethod Conversion mode
pIV The address of 8-byte IV initialization vector

Output parameters:
Error code

Description:
The nXkTransformEx() functions allow to transform information with
the GSII64 hardware algorithm. These functions are available only for
Win32 applications.

Guardant API Functions

 15

Conversion is carried out by the algorithm whose number is specified by
bAlgoNum parameter. This algorithm must be created in advance. The
length in bytes of data array to be converted is specified by bLng
parameter and depends on the conversion mode specified by dwMethod.
For the ECB and CBC modes the data length should be divisible by
nsars_GSII64 (8 bytes), 248 bytes maximum. The function returns the
nse_InvalidArg error code if data length is not divisible by 8 bytes. For
the CFB and OFB modes any length not exceeding 255 bytes may be set.
The dwMethod parameter is a bitmapped value(See NVSKEY32.H):

Flag Value Description
0-5 bits – algorithm’s work mode
nsam_ECB 0 Electronic code book mode
nsam_CBC 1 Code block chaining mode
nsam_CFB 2 Coded feedback mode
nsam_OFB 3 Output feedback mode
Bit 6 - reserved
Bit 7 – operation type
nsam_Encode 0 Encode block
nsam_Decode 128 Decode block

The data block to be transformed should be placed at address specified by
pData parameter. If the function is executed successfully, then the same
length sequence of the transformed data will be placed at that address. In
this case the function returns nse_Ok.

The encoding / decoding speed directly depends on the dwLng length of
the pData data block. Thus the speed is maximal at the maximal block
length. If the data block size significantly exceeds the maximal dwLng
value, then it needs to be broken into pieces of the maximum allowed
length. However under this approach the dongle (especially an LPT
dongle) may be busy for a longer time at every operation of this kind.
Therefore in applications with critical timing parameters (for example, in
applications with multilple independent parallel inquiries to the dongle), it
is better to use smaller blocks.

For the modes using chaining of blocks, it is necessary to set an 8�byte pIV
initialization vector. The same initialization vector value must be specified
for both encoding and decoding. If encoding / decoding is performed in
multiple steps, then a value set as an initialization vector is returned to pIV
after the step has been completed to serve as an initialization vector for the
subsequent step.

If the nsaf_GP_dec flag is set in a descriptor of algorithm, then the
decrementation of GP counter occurs at each TransformEx call.

User’s Manual, Supplement

 16

Example:
To encode and decode a test string by available GSII64 algorithm in OFB
mode.

/* A string to be encoded */
char sData[] = "Test 32 bytes for Encode/Decode.\0";
/* Initialization Vector */
char sInitVector[nsars_GSII64];
/* Set the initial value of the initialization vector*/
strcpy(sInitVector, "__IV___"); /* Init Vector for GSII64 algo */
/* Encode data */
nRet = nskTransformEx (
 // Regular Transform parameters
 dwPrivateRD, nsan_GSII64, DataLen, sData,
 // New TransformEx parameters
 nsam_OFB + nsam_Encode, /* Encode data in OFB mode */
 sInitVector);
/* Check error code (nRet) and decide on further running of the application */
………
/* Restore initialization vector*/
strcpy(sInitVector, "__IV___");
/* Decode data */
 nRet = nskTransformEx (
 // Regular Transform parameters
 dwPrivRD + Crypt, nsan_GSII64, DataLen, sData,
 // New TransformEx parameters
 nsam_OFB + nsam_Decode, /* Decode data in OFB mode */
 sInitVector);
/* Check error code (nRet) and decide on further running of the application */
………

Guardant API Functions

 17

The nskCommand() Function

nsc_Transform

This document describes only changes in Guardant Stealth II (see
nskCommand() function description in User’s Manual).

The nsc_Transform command parameters of nskCommand() function
(these are stored in the ns_Args structure type).

The na_CRC variable sets an algorithm mode (see the ns_Args structure),
defined as a bitmapped value (see NVSKEY32.H):

Flag Value Description
Bits 0-5 – algorithm work mode
nsam_ECB 0 Electronic code book mode
nsam_CBC 1 Code block chaining mode
nsam_CFB 2 Coded feedback mode
nsam_OFB 3 Output feedback mode
Bit 6 – reserved
Bit 7 - operation type
nsam_Ecode 0 Encode block
nsam_Decode 128 Decode block

The na_bLen variable: sets the size of data block to be transformed. For
the ECB and CBC modes this value must be divisible by 8 and not exceed
248 bytes. For other modes any value may be set within the limits of 1 –
255 bytes. If the value is specified incorrectly in na_bLen, nse_InvalidArg
error code is returned.

Starting with the na_dwLen32 variable’s address (bytes 56�64 in the
ns_Args structure), 8 bytes are occupied by the initialization vector IV.
After the nskCommand function has been called, the new value of
initialization vector is written in it, which may be used for subsequent
nsc_Transform command callings for GSII64 algorithm. Sequential
Transform call can be applied for stream encoding of data with size
exceeding 255 bytes. Here, however, for all calls but the last one, the data
length should necessarily be divisible by 8, i.e., including CFB and OFB
methods.

Data decoding may be performed by blocks of optional size (not
necessarily by those used for the same data encoding), but with size
divisible by 8 (except for the last portion of data). Other parameters
remain unchanged.

Working with GSII64 Algorithm from the NSKUTIL Dongle Programming Utility

 19

Working with
GSII64 Algorithm from the

NSKUTIL Dongle
Programming Utility

New GSII64 Algorithm Creation

Toolbar

Menu Edit|Add

Hotkey <Ins>

To create a new hardware algorithm it is required to write a descriptor into
the dongle. To create a new algorithm you should add a new field of
‘Algorithm’ type. It is possible to add this field by clicking any of above�
mentioned controls. A window then appears where the ‘GSII64’
algorithm type needs to be selected:

The GSII64 type algorithm determinant size may be 16 or 32 bytes; the
value is to be selected from the list. The values in the list are displayed in a
number system chosen in the utility main window.

User’s Manual, Supplement

 20

After choosing the type of algorithm, the following window will appear:

In this window the algorithm name and properties should be set. The
query size for this algorithm is a fixed value. To set the value of a
determinant, click [Determinant] button and enter or load the data from
a file. By default random numbers are entered in the determinant.

To assure writing and reading protection for new algorithm descriptor the
NSKUTIL will automatically correct the length of protected memory
area at the stage of new algorithm creation. The new hardware algorithm
will become available only after writing data into the dongle’s memory.

Warning
Since an algorithm is started by its sequential number, it is not recommended to insert new
algorithms between the existing ones; this will cause changes in numbers of algorithms
which follow the new algorithm in memory.

Obtaining Responses from GSII64 Hardware
Algorithm

Toolbar

Menu Dongle/Generate algorithm report
Hotkey <Ctrl-Q>

To use hardware algorithms of the dongle, it is necessary to know the
sequence that the required algorithm will return in reply to a query. This
response can then be used to make the protection logic more
sophisticated.

Working with GSII64 Algorithm from the NSKUTIL Dongle Programming Utility

 21

To obtain responses from a particular algorithm you should select it from
the list and click on any of the above controls. The following window will
appear:

In the ‘Number of queries’ field you should specify the number of
instances of the TransformEx operation required to obtain response. At
each TransformEx call a reply sequence is generated (reply), with length
coinciding with the question’s length, which is set in a ‘Question size’
field. For example, if in the ’Number of queries’ you specified number 4,
and in the ‘Question size’ you specified 32, then 4 32 byte�long answers
will be returned. For the ECB and CBC modes the question length should
be divisible by 8 bytes and not exceed 248 bytes. For the ECB and CBC
modes any question length not exceeding 255 bytes may be set.

From the ’Generate questions as’ list the sequence generation method of
an algorithm question is selected. There are 2 ways for doing that: the
question may be generated as a random numbers sequence or as an
arithmetical progression. The second option requires selection of the
progression step (in ’Progression step‘ field) and its first element should be
set in a hexadecimal editor (the [First query] button).

For convenience the algorithm’s questions and corresponding answers are
saved in a log file. This is a text file following syntax of one of the
programming languages: C/C++, Pascal/Delphi or assembler. A
language may be selected from the ‘Programming language’ list.

Questions and answers are written into a log file in the form of one or two
arrays. The ‘Report form’ list is available for selection of the report form.
In the first case both question and answer are collected in the same array.
Elements of such an array will represent an alternating sequence of

User’s Manual, Supplement

 22

questions and answers. The number of array elements will be equal to the
double number of questions, and each element will have the length equal
to the length of the question.

In the second case there will be 2 arrays created in a log file. One will
contain algorithm’s questions and the other � corresponding answers. The
number of elements for each array will be equal to the number of
questions, and each element of array will have the length equal to the
length of the question.

Further, the GSII64 algorithm’s parameters are adjusted. From the
‘Transform method’ list it is necessary to choose a method, from the
‘Transform mode’ list to establish the direction of algorithm
(encoding/decoding) and, if necessary, to set an initialization vector IV in
the hexadecimal editor, which is called by clicking the [Init. vector]
button. It is important in CBC, CFB and OFB modes to save the
initialization vector value for correct back transformation.

By default the mask is rewritten into a dongle’s memory before
transformation. It is possible to disable this mode by removing a
checkmark on ‘Rewrite mask into the dongle before execution’.

To generate a log file, click on the [Generate report] button. In the
window specify the report file name (a file with .REP extension;
TRANSFOR.REP is set by default). By means of Transform operation
the NSKUTIL will then call the selected algorithm, obtain answers from
this algorithm and generate a log file. Transformation of algorithm’s
questions into answers is reversible. To obtain answers it is possible to use
any of available hardware algorithms.

Data Encoding and Decoding with GSII64
Algorithm

Toolbar

Menu Dongle/Transform
Hotkey <Ctrl-T>

The GSII64 algorithm is symmetric, which allows to encode and decode
data directly by the dongle using the same key. This hardware
implementation alongside with a higher strength of the GSII64 algorithm
provide for a difference from the Encode/Decode operations that exist in
Guardant API and perform encoding/decoding at the PC’s CPU.

Preliminary encoded data can be stored in the application or in separate
data files and be decoded directly before they are used. The NSKUTIL
utility allows for preliminary data preparation.

Working with GSII64 Algorithm from the NSKUTIL Dongle Programming Utility

 23

It is necessary to select ‘GSII64’ type algorithm in the main window and
to use any of controls mentioned above (they are accessible only if
reversible algorithm is selected). The following window will appear:

The number of algorithm used for data encoding is indicated in the title of
this window. In ‘Input data’ section you can specify the data to be
transformed: the text or file of any format. Making a choice, you should
enter the text in the editor or specify a file name. Text or file name are
entered upon clicking button […], which is located to the right from the
input data selector. After that the text string or a file name will be
displayed in the field.

The ‘Output data’ section serves for assigning the format of encoded data.
This can be text or binary file. In the first case, the encoded data presented
as an array of numbers will be written to the text file created by syntax
rules of one of three basic programming languages: C/C++,
Pascal/Delphi or the assembler. This form of data presentation is
convenient when, for example, you want to encode a text string. In the
second case a binary file containing encoded sequence of bytes will be
created. This form of data presentation is convenient when, for example,
you want to encode a configuration file. You can enter a file name by
clicking the button […] located to the right from the target file type
selector. File OUTPUT.REP is used by default. After that the file name
will be displayed in the ‘Output data’ dialogue.

If the output data are represented as text it is necessary to choose from the
‘Programming language’ list the programming language syntax for array
creation.

From the ‘Command’ list choose whether data will be encoded or
decoded.

User’s Manual, Supplement

 24

Transformation is performed in one of four GSII64 algorithm operating
modes: ECB, CBC, CFB or OFB. The operating mode of algorithm is set
from the ‘Transform method’ list. It is necessary to remember special
features of GSII64 algorithm modes.

For data transformation in CBC, CFB and OFB modes it is required to
set an 8�byte initialization vector IV. The initialization vector is set in the
hexadecimal editor, which is called by the [Init. vector] button. In the
editor, data can be entered manually or loaded from a file. By default
NSKUTIL creates an initialization vector as a sequence of random
numbers. The initialization vector is displayed in dialogue that enables to
follow changes in its value in the encoding/decoding process. The
[Restore] button serves for restoration of an initialization vector initial
value.

By default the mask is rewritten into a dongle’s memory before
transformation. It is possible to disable this mode by removing a
checkmark on ‘Rewrite mask into the dongle before execution’.

After preparatory actions data transformation may start. Click [Execute]
button at the top of the window to start the process. For speed
considerations related to reducing the number of TransformEx
operations, transformation will run with the longest possible blocks.
Reverse transformation can be set to a different block length, depending
on the task.

The transformed data will be placed into the specified target file or as an
array of numbers, or as a byte sequence.

Now, in order to get access to the encoded data from the protected
application, the data need to be decoded. For correct decoding in CBC,
CFB and OFB modes it is necessary to set the same initialization vector as
that used at encoding.

Important
The nskUtil utility version 3.3.0.1 and earlier is unable to work with Stealth II since it will
not process information about the dongle and will not write / read Stealth II.
Old (current) utilities chknsk, chknsk32, chknskw and the diagnostics utility will detect new
dongles as:
Stealth II LPT: Stealth II LPT
Stealth II USB: Stealth III LPT
All other utilities will work correctly. At the time of replacing Stealth I with Stealth II
dongles it is OBLIGATORY to load new nskUtil and diagnostic utilities, since the old versions
will not work and old diagnostic utilities will return incorrect information for Stealth II USB.

Additional Sources of Information

 25

Additional Sources
of Information

Should any questions arise that remain unanswered after reading this
Manual, please refer to the following additional sources of information:

• README File. Can be located on the distributive media or on your
computer once Guardant software has been installed on it. It contains the
latest information on advanced features and updates of Guardant
hardware and software.

• WWW: http://www.guardant.com – developer’s web site with huge
amount of reference information on Guardant protection, namely: FAQ,
troubleshooting, recommendations, etc.

• Technical Support Service: e�mail: hotline@guardant.com, Telephone:
+7 (095) 105�77�90. We will do our best to supply a most prompt and
comprehensive reply to your query.

	Contents
	Guardant Stealth II and Guardant Net II – New Dongles of Guardant Family
	GSII64 Algorithm
	Algorithm Description
	GSII64 Algorithm Descriptor
	GSII64 Algorithm Modes
	ECB Mode
	CBC Mode
	CFB Mode
	OFB Mode
	Recommendations for Working with Initialization Vector IV
	Modes, Administered by Algorithm Property Flags

	Guardant API Functions
	New Constants
	The Codes of Dongle Models
	Different Dongle Type Codes
	New Error Code
	TransformEx Operation. Transforming Information Using the Dongle's GSII64 Hardware Algorithm
	The nskCommand() Function

	Working with GSII64 Algorithm from the NSKUTIL Dongle Programming Utility
	New GSII64 Algorithm Creation
	Obtaining Responses from GSII64 Hardware Algorithm
	Data Encoding and Decoding with GSII64 Algorithm

	Additional Sources�of Information

