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I ntroduction

Abstract Data Types in Java examines the design and development of the data structures
required for meaningful application development, specifically in the Java programming
language. With its numerous examples and exercises, this book isintended as both a resource
for the programmer and as a collegiate text. Abstract Data Typesin Java provides extensive
analysis, explanation, and code examples in the Java programming language for the data
structures explored. An incremental learning approach is used to facilitate the comprehension
and retention of the material. Simpler, basic abstract types evolve into the more complex
structures chapter by chapter. Each chapter closes with a summary of the important topics
discussed as well as exercises designed to illustrate the points covered and to solidify the
reader's understanding.

This book iswritten for the intermediate-level programmer and the college-level computer
sciences student who are studying advanced programming concepts. As a programmer, a solid
understanding of abstract data typesisintegral to the software-development process. This
understanding includes the design, use, and implementation of these data structures. Any
large-scale software development project will use at least some of these abstract typesin its
implementation. This book addresses these needs. Since the examples and exercisesin the
book are implemented in the relatively new and very popular Java programming language, this



book should also appeal to programmers migrating from the more established industry
languages such as C and C++.

To make good use of this book, you should have a reasonable familiarity with the Java
programming language and its syntax. C and C++ programmers should have little problem
following the examples supplied. Non-programmers and beginning programmers may want to
have a Javalanguage reference manual at hand. Appendix A supplies a brief overview of the
Java language and syntax.

Chapter Overview
Chapter 1, Basic Concepts

This chapter answers the question, "What are abstract data types?' The idea of using
well-designed abstract data types (ADTSs) to smplify the development

Page xii

life cycle and to create reusable code is well established. This chapter covers the basics of
designing and implementing ADTsin an object-oriented programming language. As a
foundation to exploring data abstraction, we will take alook inside Java and explore some of
the interna workings of the Java runtime system. Java reference objects will be explained.
The passing of reference and value types as arguments and how each type of argument passing
is used in the Java programming language will be discussed. Near the end of this chapter,
exercises are provided to stimulate understanding in the use of reference objects.

Chapter 2, Error Handling and Exceptions

This chapter explains the importance of critical and non-critical error handling. The use of
return values is contrasted with the use of exception handling. The Java Exception superclassis
explored in detail as an example. The syntax and mechanics of Throwing and Catching
Exceptions are briefly covered. Examples of how to extend the Exception class are given and
explained. Exercises demonstrate the use of standard exceptions as well as how the use of
customized exceptions can facilitate smooth software development.

Chapter 3, Arrays, Vectors, and Sorting

This chapter takes a brief ook at the basics of array handling and explains the vector asa
generic extensible array type. The treatment of arrays as objectsin Javais discussed and
examples are provided for the declaration and initialization of Java arrays. The reasons for
using vectorsinstead of arrays are outlined, and examples are given on how to extend vectors
to provide functionality not available in a standard array. One of the examples in the chapter
shows us how to use a container class to extend the functionality of the basic Java vector. The
Quick Sort algorithm is explained and a simple implementation is presented. The exercises
near the end of this chapter include the development of a Sortable interface to create the

Sor t edVect or datatype, which brings together these concepts.

Chapter 4, Hash Tables

This chapter examines the hash table. The hash table is a container that allows for quick and
easy storage and retrieval of data that has a unique
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key associated with it. The concepts of hash codes and hash methods are discussed in detail. A
simple hash table classis defined from scratch to demonstrate the concepts. How and when to
use hash tables are explained, and examples are given that use the core Java class Hashtable
and its subclass, the Properties class. The chapter concludes with exercises that include the use
of the Properties object to parse command-line arguments.

Chapter 5, Linked Lists

In this chapter we examine the linked list. Linked lists are container types that store collections
of datain a sequentia order. The concept of the generic data node is introduced and explained
in this chapter. The standard linked list operations are covered in detail, and examples are
given for smple add, insert, and delete methods. Array-based and non-array linked list
implementations are examined and contrasted. List traversal is explained and implemented
using the java.util.Enumeration interface.

Chapter 6, Circular and Doubly-Linked Lists

In this chapter afew of the extensions to the linked list class will be covered. Better super
classes will be defined, and the examples will help provide the explanation and
implementation of doubly-linked and circular-linked lists. The impact of performance and
flexibility are explored in these more complex implementations. Integration of the previously
developed quick sort is among the exercises presented at the end of the chapter.

Chapter 7, Stacks

This chapter takes alook at the stack as a specialized linked list. The built-in Java Stack object
isused as an example of aVector based stack. An analysis of the internals for the stack is
provided and a non-Vector implementation is developed as a contrast. Exercises present an
opportunity to look at uses of the stack.

Chapter 8, Queues

This chapter explores another specialization of the linked list, the queue. Queues are used in
systems requiring message handling, event processing,
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and the sharing of resources such as printers. Throughout the chapter we will be walking
through the concepts behind, and the implementation of, a standard first-in/first-out queue. We
will compare the queue storage container to the stacks covered in the last chapter and their
last-in/first-out schema. We will once again take alook at Vector and non-V ector
implementations of the queue in the examples and exercises we cover in the chapter.

Chapter 9, Simple Trees

In this chapter we explain the structure and use of ssmple rooted trees. Rooted trees are
specialized storage containers that possess a single entry point and arrange the el ements
contained in a hierarchical fashion. We will draw a comparison between the tree structure and



traditional linked lists such as those we have covered in previous chapters. We will take a
look at the mechanism behind tree traversal and how it differs from that of the linked list. We
will also briefly discuss the use of an Interface to provide generic search and compare
functionality to the tree.

Chapter 10, Binary Trees

This chapter expands concepts provided in Chapter 9 and explainsthe Binary Tree. A Binary
Treeisimplemented with a balanced tree structure to improve performance. The search
algorithm is explained, implemented, and contrasted to the sequential search availablein
non-sorted linked lists.

Chapter 11, Multi-Way Trees

This chapter explains the structure of more complex tree types. We will expand on the binary
treeswe've covered so far and take aclose ook at a specific multi-way tree, the 2-3-4 tree.
We will draw comparisons between the newly introduced multi-way trees and the binary tree
structures we've looked at previously. Examples are provided to illustrate how a multi-way
tree can be rendered as a binary implementation. |mplementations of the tree types are walked
through in the examples. Exercises encourage the development of other variations of the
multi-way trees.

Page xv
Chapter 12, B-Trees

In this chapter we will take a detailed ook at the B-Tree data structure as an extension of the
red/black and 2-3-4 trees. B-Trees are typically used to index large data sets and external data
stores such as database files. We will take alook at a simple B-Tree implementation to help
walk through the concepts presented in the chapter. Exercises include the development of a
simple indexed datafile.

About the Examples

All of the source code in this book was written using Version 1.1.3 of the Java Development
Kit (JDK). All examples were tested and compiled using the JDK from Sun Microsystems on
the Solaris™ and Windows 95™ platforms. Source code appears in a monospaced font
(Couri er).

All of the examples should be source compatible with any Version |.1.x of the JDK and should
compile using any development environment that conforms to the Version 1.1 specification.
With the exception of the inner classes used in the later sections of the book, all of the code
should compile and run without modification using any previous versions of the JDK as well.

All of the source examplesin this book are written using the same basic style. The following
coding style guidelines are used to enhance source readability throughout the book:

Class names always begin with a capital letter.

V ariable names begin with alowercase | etter with each subsequent word in the variable
name beginning with a capital letter.



Congtants (publ i c final static)areinall uppercase.

In cases where two or more classes are defined in the same sourcefile, the publ i ¢ class
isdefined first followed by classes of def aul t or pr ot ect ed scope.

"ext ends" and"i npl ement s" clauses are indented on lines subsequent to the class
name definition.

Page xvi

The methods of aclass are defined beforest at i c(cl ass) variables and instance
variables.

All curly braces ("{ " and"}" ) are vertically aligned.

public class Foo
ext ends Bar
{

public Foo( int argunmentOne )

{
}

public final static int LEFT =1
String nyString;

Systemout.printin( "Hello Wrld" );

}
Contacting the Author

Michadl S. Jenkinsis an independent software development consultant. For the past nine years
he has been assisting his clients in successfully devel oping their business applications and
enterprise systems. He has worked with companies such as the Chicago Board of Trade, the
Chicago Stock Exchange, Baxter Healthcare, A.C. Nielsen/Dun & Bradstreet, and other major
corporations.

If you have any questions or comments about anything in this book you can contact the author
viaemail at:

java@cs-inc com
or on the world wide web at the following URL:

http://ww. wwa. cont - nj enki ns
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Chapter 1
Basic Concepts

This chapter answers the question, "What are abstract data types?' The idea of using



well-designed abstract data types (ADTSs) to simplify the development life cycle and to create
reusable code is well established. This chapter covers the basics of designing and
implementing ADTs in an object-oriented programming language. As afoundation to exploring
data abstraction, we will take alook inside Java and explore some of the internal workings of
the Java runtime system. Java reference objects will be explained. The passing of reference
and value types as arguments and how each type of argument passing is used in the Java
programming language will be discussed. Near the end of this chapter, exercises are provided
to stimulate understanding in the use of reference objects.
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Abstract Data Types

This book is an introduction to abstract data types. So what are ADTS? To answer this
guestion, we'll take alook at something we already know about: an integer datatype. Virtually
every modern programming language has some representation for an integer type.

In Java, we'll ook at the primitive typeint. Aninitialized Javaint variable holds a 32-bit
signed integer value between -2* and 2% -1. So, we've established that an int holds data.

Operations can be performed on an int. We can assign avaue to an int. We can apply the Java
unary prefix and postfix increment and decrement operatorsto an int. We can useanint in
binary operation expressions, such as addition, subtraction, multiplication, and division. We
can test the value of an int, and we can use an int in an equality expression.

In performing these operations on an int variable, the user does not need to be concerned with
the implementation of the operation. The internal mechanism by which these operationswork is
irrelevant. Examine the following simple code fragment, for example:

int i =0;
i ++;

The user knows that after the second statement is executed, the value of thei variableis 1. It
isn't important to know how the value became 1—just that in performing the increment in this
example, i awayswill equal 1.

The user also does not need to know how the value is represented and stored internally Things
such as byte order again are irrelevant to the user in the preceding code example.

To summarize the built-in int data type, an int does the following:
Anint holds an item of data.
Predefined operations can be performed on an int.

Anint has an internal representation that is hidden from the user in performing these
operations.

If we consider the primitive datatypesin thislight, it is easy to understand the definition we
will giveto ADTs. An ADT isdefined as the following:
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An ADT is an externally defined data type that holds some kind of data.*
An ADT has built-in operations that can be performed on it or by it.

Users of an ADT do not need to have any detailed information about the internal
representation of the data storage or implementation of the operations.

S0, in effect, an ADT is a data construct that encapsul ates the same kinds of functionality that a
built-in type would encapsulate. This does not necessarily imply that ADTs need to have
addition or increment operations in order to be valid or useful, and it does not mean that any of
the built-in operators will work with an ADT. It only means that the appropriate operations for
the type created will be transparently available and that the user does not need to be concerned
with the implementation details.

Classes and Abstract Data Types

In the Java language, all user-defined data types are classes. A classisa notation used by an
object-oriented programming language to describe the layout and functionality of the objects
that a program manipulates. All Java ADTs therefore are described by one or more classes.
Not all classesare ADTSs, but certainly all ADTs are implemented as classes. The built-in
typesin Java are not classes. This section takes alook at the differences among the various
Javartypes.

Reference Objects and Value Types

In Java, two basic types of variables exist: primitive types and reference types. Primitive types
are the standard built-in types we would expect to find in any modern programming language:
int, long, short, byte, char,

We will use the generic term data to refer to what, in most cases, will be a Java object.
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boolean, void,? float, and double. Reference types are any variables that refer to an object.
Thisis an important distinction, because the two variable types are treated differently in
various situations. All reference type objects are of a specific class, for example.

All classes in Java are derived from the root class Obj ect . So, given the rules of inheritance
and polymorphism, an Obj ect class variable can refer to any reference object of any class. In
other words, awidening conversion can take place from any classto Obj ect . Take alook at
the following code, for example:

String s = new String("Hello Wrld");
oject o = s;

M/d ass m = new Myd ass();
Ghject o = m

One of Java's strengthsis the fact that it uses a polymorphic model® wherein all classes are
derived from a.common root. All objects share a common base Application Programming
Interface (API). This does not apply to the primitive types, however. The following code does



not work, for example:

double d
hject o

3.8;
d;

The Java Development Kit (JDK) from Sun Microsystems comes complete with a set of
classes defined by Sun asthe core API. All these classes are the Java equivalent of a standard
library. The Java core classes include wrapper classes for al the primitive types. | nt eger
for int, Doubl e for double, FI oat for float, and so on. Of course, all these wrapper classes
are derived from the root class Qbj ect aswell.

One unique case isthat of the array. An array can be an array of primitives or an array of
reference types. For the most part, the array itself is treated as a reference type of the Cbj ect
class. Theindividua members, of course, are not treated in any specia way. The rule of thumb
isthat anything created by the operator new is assignable to Qbj ect . So, again, the following
code would work:

2\/oid isavalid return type, even though it technically is not adata type. Variables cannot be declared
astypevoid. Void is used to denote that a method returns nothing.

3Polymorphism is an Object Oriented Programming term used to describe the capability of an object
of one classto betreated as an object of another class due to the fact that the two classes maintain a
hierarchical relationship.
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long 1[ 10] = new |l ong[ 10];
oject o = 1;
Qoj ect a[] = new bject[10];
hject o = a;

What does all this mean in terms of ADTs? Well, if we create a construct that works with
objects of class Obj ect , we can use the construct with any reference typein place of
bj ect.

Passing Reference and Value Types

When calling a class member function, the developer will pass any required parametersto the
method as arguments to the method call. Suppose that classf 00 has a member method
declared as the following:

public int bar( String s, int i )

The caller of the method must supply aSt r i ng (or an equivalent object that is automatically
convertibleto St ri ng) andani nt tothecall, or the compiler will generate an error. The
questions here are, "What are we passing?' and "What are the consequences of passing any
given parameter type?”

In very oversmplified terms, when a method is called, the system takes the arguments passed

to the method from the calling routine and pushes them on the program stack. The execution
point in the program then is jumped to the beginning of the method's code. The system then pops
the arguments off the stack and uses them as variables of the types declared in the method's



parameter list. This type of mechanism enables methods to be passed arguments that normally
may be outside the method's scope of visibility. When it istime for the method to return to the
calling routine, it pushes the return value onto the stack. The program then jumps back to the
calling routine and pops the return value back off the stack. For the purposes of this discussion,
it is not inmrportant that we know the details of how a stack works. It is enough to know that a
stack is a construct used to store data (see Figure 1-1). For more information on stacks, see
Chapter 7, "Stacks."

Java uses a mechanism called pass by value to handle argument passing in method calls. This
means that the system makes a copy of the vaue of the argument and pushes that onto the stack
for the called method to access. In the following example, the value 4 is passed to the method
foo():
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AR I Data |
b g - -
Data DAL
Drata Data
Data Data
Figure 1-1

A typical data stack where one dataitem is "pushed" onto and then "popped"” off of the stack.

int i =4
foo(i);

The method itself has no knowledge of the variablei . Changes made by f oo() to the vaue
passed will have no effect on i from the caller. If 4 isincremented to 5, for example, the value
of i remains4.

This pass by value approach is relatively straightforward for primitive types. But what about
reference types? Aren't they references to objects? Isn't passing a reference equivalent to
passing the original object itself? To answer these questions, take a closer look at the
relationship between Java objects and the variables that are declared to hold them. Think about
what really is happening in this statement:

String s = new String("Hello Wrld");

Here, s isavariable of class St r i ng. The operator new allocates enough memory for a

St ri ng object and calls the constructor for st r i ng withtheargument"Hel | o Wor | d".
The return value for the operator new is a handle to the newly created St r i ng object. A
handle to an object isbasically an indicator to alocation in memory. Y ou might be familiar
with pointers from the C and C++ programming languages. The handle is similar to a pointer; it



does "point" to an object. Unlike the more traditiona pointers, though, a handle to a Java object
cannot be modified except in the case of assignment to variables. A Javareference variable
can be reassigned to a different object.
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The implications of the differences between handles and pointers are subtle but important.
When areference type is passed as an argument to a method, the handle to the object is copied
and passed—not the object itself So, in this code segment, the output would be " Hel | 0":

String s = new String( "Hello" );

change( s );
Systemout.printin( s );

public void change( String t )
{

}

The handle to the object containing " Hel | 0" ispassedtochange() asString t. tis
reassigned to the new object containing " Wor | d", but s remains unchanged. So, on the return
of thefunction, "Wor | d" isleft unreferenced, and the memory it occupies eventually is
reclaimed by the garbage collector

t = new String( "Wrld" );

So, any handle that we want to be reassigned during a method call must be the return value for
the method, or the handle must be a member of an enclosing or wrapper class.

In the following example, anew string containing " Hel | 0" is created:

String s = new String("Hello");
s = s.concat (" World");

Whentheconcat () method then isused, anew string is created inthe concat () method
containing" Hel | o Wor | d" and isreturned to the calling routine. Thisnew string is
completely unrelated to the original string " Hel | 0" . Theconcat () method is defined to
returna St r i ng object.

In the next example, St r i ngW apper contains asamember fielda St r i ng object:

class StringWapper
{

}

public String s;
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changeString( StringWapper t )

{
t.s += " World";



}

StringWapper s = new StringWapper();
s.s = "Hello";
changeString(s);

Here the St ri ngW apper object is passed as an argument to changeSt ri ng() , and
StringW apper. s isreassignedtothenew string "Hel | o Wor | d". After returning from
thecall tochangeSt ri ng() , the caling routine has accessto thenew "Hel | o Wor | d”
string. A coreclasscalled St ri ngBuf f er providesamutable St ri ng class. Thisclassis
much more complete than this smple example here.

Why Use Abstract Data Types?

Now that we have some idea of what ADTs are, this section takes alook at why we use them.
The St r i ng class has been mentioned severa timesin this chapter. The St r i ng class
provides a mechanism by which string literals may be stored, accessed, and manipulated. It
provides methods with which we can compare, concatenate, copy, and convert strings. If a

St ri ng classdid not exist, string operations would have to be implemented from scratch each
time they were needed.

A robust and reasonably generic St r i ng class gives us the capability to use these string
operations at any time without having to "reinvent the wheel" each time. So ADTs provide us
with code reusability. After we encapsulate the operations required to make auseful St ri ng
class, we can reuse those facilities at any time in the future, with little or no additional
development effort.

This also isthe case with other ADTS, such as the ones we'll develop and examinein the
following chapters. By designing our ADTs to be as generic as possible, we can reuse them in
various Situations and over several projects. Any time we develop an object or agroup of
related objects that can be reused, we reduce the overall development time of a project.

There are certain guidelines that need to be followed to make ADT's reusable. In this book, we
are primarily concerned with container ADTs. A container object's primary purpose isto hold
other objects. The contain-
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erswe will design and implement in the following chapters will hold various types of data.

To make oour containers reusable, we need to make them generic. Generic, in this sense,
means that the containers need to follow three rules:

1. Containers need to be able to store data of any kind.

2 Containers should provide a public interface that encompasses only behaviors that would be
useful in ageneral sense.

3. Containers should be kept insulated from application-specific considerations.

To satisfy rule 1, we can select the Obj ect class as our datatype. This means that we will
define our API for each of the ADTs to store and retrieve data of class Obj ect . Asdiscussed



earlier, the Obj ect classistheroot for al classesin Java. Therefore, any class defined in
Javais assignable directly to avariable of class Obj ect . If we were to specify a data class
called MyDat aCl ass, for example, we could pass a handle to that class to any method
defined to take a parameter of the Cbj ect class. Thisisa standard, automatic widening
conversion and requires no typecasting. The reverse narrowing conversion always requires
casting. So extracting our data back out of the constructs requires a cast to the appropriate type.
If aget Dat a() method is defined to return atype Cbj ect , for example, we need to cast the
returned handle back to MyDat aCl ass explicitly.

Asabrief aside, take aquick look at typecasting. Typecasting enables the programmer to
temporarily change the type of an object or primitive. Two types of typecasting exist: automatic
(or implicit) casting and manual (or explicit) casting. Implicit casting can be used when the
compiler is able to determine that the type change is safe. Explicit casting isrequired if the
safety of the typecast cannot be determined until runtime. To understand when each of the two
typesis appropriate, it is necessary to comprehend alittle about the relationship of classes.

In the Java language, all classes are related in a hierarchical manner. The base of the hierarchy
isthe Qbj ect class. Asdiscussed earlier, all classesin Java are derived from the root class
(bj ect . Each classthat is subclassed directly from Obj ect createsanew branch in the
hierarchy. When these subclasses are subclassed, they extend and split the branch farther and
farther. Figure 1-2 shows a sample hierarchy.
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Java lang Object ]—‘ T :
Java.util. Hasltable J

===—_ java.util Properties J

S Java lang String J

java.awt Component J

SR Java.awt. Button J

Figure 1-2
A partia inheritance diagram for the Java core classes.

Aswe can seg, if we start tracing the hierarchy tree backward from any class on the treg, it
eventually leads us back to the Obj ect class. Each class aong the route from the starting
classisasuperclass of the starting class aswell as a superclass of itsimmediate child classes.
Because a subclass extends its superclass, any subclassed object can be treated as a member of
the superclass. This process is known as a widening conversion. An object's typeis being
widened toward the more general. The compiler can assume that any widening conversion is



safe; therefore, the compiler can automatically supply the conversion.

This process works fine as long as the conversion is in the direction of the superclass or more
general case. Because Javais polymorphic, it is possible to determine at runtime the real type
of an object. This runtime type information is necessary to determine whether a narrowing
conversion is safe. Because a subclassis actually an extension of its parent class, there will
naturally be a possibility that thereis some field information in the subclass that isn't in the
superclass.

Because this determination is done at runtime, thistype of invalid cast cannot be detected at
compiletime. If it is detected at runtime, the system throws a runtime exception, the

Cl assCast Except i on, to indicate the error. If the system throws this exception, the
offending thread is halted. For a more detailed discussion of exceptions, see Chapter 2, "Error
Handling and Exceptions.”
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We can create an object of type Myl ass, asin the following example, and passit to a
method that takesan Obj ect as an argument. The widening conversion is checked at compile
time and therefore is implicitly done. If we then return the same object as atype Qbj ect , the
narrowing conversion is checked at runtime and therefore needs to have an explicit cast.

M/d ass m = new Mycl ass();

m = (Myd ass) processData( m);

publ i c Cbject processData(Chject 0)
{

return o;
}
When designing around rules 2 and 3, we need to keep in mind which behaviors are specific to
the application we will be implementing and which are afunction of the ADT itself
Devel opers have atendency to over-design container and utility classes to include every
conceivable functionality into the classitself Generally, thisisamistake and is probably one
of the biggest causes of code non-reusability. Keep in mind that we can subclassthe ADT class

and add case-specific code to the subclass. This leaves the base ADT class uncluttered and
much more likely to be suitable for reuse.

Suppose that we design a base class called Pol ygon. We would restrict the fields and
methods in the base class to those dealing with any generic polygon. We could have a

nunber O Si des field and accessor methods, but probably not an ar ea() method, because
the area cal cul ations would be dependent on the specific polygon we instantiate. Then we
could subclass Pol ygon into Rect angl e, Quadri | at er al, Cct agon, and so on. We
also could subclass Rect angl e into Squar e as a specific case of Rect angl e. A sample
hierarchy is shown in Figure 1-3.
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Figure 1-3
An example of inheritance providing specialization in agroup of objects.
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Exercises

1. Write asmall Java application that usesthe St r i ng class to input one word at atime and
outputs a complete sentence when a terminating punctuation mark is entered.

2. Write an application similar to the one in exercise 1, but output the words in the sentence in
reverse order.

3. Write the same application using asingle St r i ngBuf f er object passed to the input
method to collect the words in the sentence.

4. Writeaclass Mut abl el nt eger similar to the Javacoreclass| nt eger but with the
capability to change the value of the integer. (Thel nt eger class, likethe St ri ng class, is
immutable after it isinitialized.)
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Summary
In this chapter, we learned the following:

Abstract data types are similar to built-in typesin that they have the same functionality.



All ADTsin Java are implemented as classes.
Primitive types and reference types have very different properties.

All arguments to methods are passed by value in Java. Primitive types pass the value of the
variable; reference types pass the value of the handle.

Widening conversions of reference types passed as arguments are automatic while
narrowing conversions require atype cast.

Following afew simple design rules can promote code reusability, especialy in the design
of ADTs.
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Chapter 2
Error Handling and Exceptions

This chapter explains the importance of critical and non-critical error handling. The use of
return values is contrasted with the use of exception handling. The Java Except i on
superclassis explored in detail as an example. Welll take a brief 1ook at the syntax and
mechanics of throwing and catching exceptions. This chapter also provides examples of
extending the Except i on class. Near the end of this chapter, exercises demonstrate using
standard and customized exceptions to facilitate smooth software devel opment.
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What Are Exceptions?

The proper handling of exception conditionsis integral to sound software development. The
first question that may come to mind is, "What is an exception?' An exception, in terms of
software development, is an anomal ous situation in which the state of the programisin
jeopardy of becoming or has become unstable or corrupt.

One example of this condition iswhen a program is trying to call a non-static method for which
the instance has not been defined or initialized. In Java, this state would generate a

Nul | Poi nt er Except i on. In this case, the exception condition must be handled
immediately to prevent the program from coming to an unexpected halt. We could use this code,
for example:

public class ExceptionTest
{
public static void main( String argv[] )
{
Vector v = null;
try
{
v. el enent At (0);



}

cat ch( Nul | Poi nt er Exception e )

{
}

System out. println("Exception Handl ed");

}

This code attemptsto call theel enent At () method of Vect or for instance v without first
creating the object to which v refers. When an instance method is called from within a
program, the Java runtime environment automatically passes the method the handle t hi s.

t hi s isareference to the calling instance object. If thet hi s argument referstonul | , a

Nul | Poi nt er Except i on isthrown. After it isthrown, if the exception is not caught, the
program is halted by the Java runtime environment. (We will cover the mechanics of throwing
and catching exceptions shortly.) The point here isthat once program execution reaches the

el enent At () cal, thereisno way to continue processing. If the call were allowed to
continue, the method would be accessing memory in an undefined location. Thiswould not only
be a security breach, but it aso could cause problems with the runtime or the system itself
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Return Values Versus Exceptions

Some programming languages do not support exception handling. As a matter of fact, exception
handling such as that supported by Javais relatively new to mainstream software devel opment.
In the past, it was common to use the return value of a method or function to determine whether
the call was successful, as shown in this example:

publ i ¢ bool ean toUpper( String s )
{

if( s =null ) /1 Error condition!
return fal se;

/] process the String

return true;

}

In this case, the method would return t r ue or f al se to indicate whether the method
succeeded. The problem with this type of approach istwofold. First, there is no way to
indicate what kind of error occurred or even where in the method the error occurred. What if
two or three primary operations were performed by the method? Thereis no way to tell which
operations succeeded and which failed.

The second problem with this approach is the fact that, in many instances, meaningful dataiis
passed back to the calling routine by the method. Suppose that we define a method called
doSonet hi ng() to return areference to an object of type St r i ng. Upon reaching an error,
this method would return nul | instead of a String reference as an indication of an error. Take
alook at what would happen in the following call, for example:

nyCbj ect. doSonmething ( . concat ("Wrld" );

The problem with this code is that any error that occursin doSonet hi ng() would cause the



program to crash or cometo an abrupt halt. The return value from doSonet hi ng() isbeng
cascaded into theconcat () call from the expected St ri ng object being returned. If the
method returnsnul | , what will theconcat () method work on?nul | isnotaStri ng
object. It has no methods to be called.

In some cases, however, it might be appropriate to use the return vaue of a method to indicate
an error condition. When using the method, the user must be clear asto the meaning of the
return value. We might want
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to use areturn value for error reporting if we are using amethod such asthei ndexdf ()
method of the St r i ng class, for example. i ndexOf () isused to find the placein a string
where the first instance of a character exists. The return value is that position. If the character
is not found, the method returns -1. Why not throw an exception instead? An error condition is
not always an exception. Remember that an exception is a condition in which program or data
stability is suspect or actually corrupt. Not finding a character in astring doesn't pose any kind
of impending threat to the program or data state. Although the method failsin its objective, the
data still retainsits integrity.

In cases like this, throwing an exception might cause more harm than good. Programming and
runtime overhead are involved in exception handling. The cost of implementing the exception
must be weighed against the benefits derived. With thisin mind, continue to the next section,
which takes a closer look at the mechanics of throwing and catching exceptions.

Throwing and Catching Exceptions

Any method in Java may throw any exception. In order to throw the exception, though, the
method must be defined to throw it.! Thereisat hr ows clause that can be added to any
method declaration to indicate that the method can throw an exception. We can list as many
exceptions as appropriate for the method, as shown in this example:

Publ i c void Foo()
t hrows Bar Exception, Bar2Exception
{

}

To throw an exception (assuming that at hr ows clause exists that allowsit), we need to
create a new object of the type of the required exception class and use the keyword t hr ow to
deliver it, asthis statement shows:

1A group of exceptions called runtime exceptions s subclassed from the JavaRunt i meExcept i on
class. These special exceptions do not need to be declared to be thrown. Any method may throw any
of these exceptions at any time. TheRunt i neExcept i on classis used to indicate aruntime error
condition, such as trying to access a method on an unallocated class object or trying to access an
out-of-bounds index on an array.
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t hrow new | OException("Bad file name");



Catching an exception isalittle more involved. We use a combination of statement blocks to
define the relevant test and response actions. To let the system know that we are testing for the
exception condition, we enclose therelevant codeint ry/ cat ch blocks, asthis code
shows:

try
{

}
catch( My/Exceptiond ass e )

{
}

Here, ablock of code followsthet r y statement. Thisisthe code for which the exception will
be tested. A second block of code also followsthet r y block; thisisthecat ch block. The
cat ch keyword alwaysis followed by a declaration much like a method declaration with a
single parameter. The parameter should be a derivative of the Except i on class, and it must
be aclasstypethat has Thr owabl e initsclass hierarchy. Thiscat ch block is the actual
exception handler.

. /1 code in danger of exception condition

. // handl er code

If, in the process of executing the codeinthet ry block, an exception is generated that is
assignable to the exception class declared in the cat ch statement, the exception is said to
have been caught At this point, the code in the cat ch block is executed in the thread in which
the exception occurred. This codeis treated much like a method call, but its scopeisthat of the
method enclosing thet r y/ cat ch blocks.

To perform exception handling, both blocks are necessary, complete with parentheses.
Although it generally isn't agood ideato do this, either block can legally be empty. If thet ry
block is empty, the entire code segment is a null operation. Obvioudly, if no code existsto test
for the exception, no exceptions are caught.

The only reason to have an empty cat ch block is to prevent an exception from being
propagated to the parent class. We must be certain that thisis really what we intend before we
do something like this, because it can have serious consequences in the running Java process.

In the preceding code example, there can be as much code as necessary in thet r y block. We
are not limited to just the method call that may throw the exception. It is agood idea to keep the
code to aminimum, though. Just include enough code to properly encapsulate the significant
operations. If arepeated operation, such asawhi | e loop, encloses a
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method call, it might be appropriate to include the entirewhi | e loopinthet ry block instead
of placingthet r y block within thewhi | e loop. This approach circumvents the repeated
overhead of thet r y clause. Be sure that the cat ch block takes this fact into consideration,
though, if the exception is not terminal.

A third statement block can be used optionally to enhance the functionality of thet r y/ cat ch
blocks: thef i nal | y block. Thef i nal | y block offers away to provide for the execution of
ablock of code after at r y/ cat ch block, whether or not an exception is caught. This clause



overrides any control-transfer statements invoked in the cat ch block, including any br eak,
conti nue, or r et ur n statements as well as the propagation of the exception itself

Thef i nal | y block of code is executed whether or not the exception is caught and whether or
not an exception is even thrown. In terms of program flow, if the exception is not thrown, the
final |y block isexecuted immediately after thet r y clause completes. If the exception is
thrown and is caught by the cat ch block, thef i nal | y block is executed immediately after
thecat ch block but beforeany r et ur n, br eak, or cont i nue statements. Thefi nal | y
block isused to ensure that our follow-up code aways gets executed.

Suppose that we have a method that opens afile, performs some input and output operations,
and then closes thefile. If an exception condition occurs during the course of the input or output
operations, we probably

Figure2-1
|OTest.java

i mport java.io.*;

public class | Olest

{
public static void witeFile( String nane, String
contents )
{
Fi | eQut put Stream f;
try
{
f = new Fil eQut put Strean( nane );
}
catch( Exception e )
{
Systemerr.println( "Exception opening
file "
+ name +":" + e );
return;
}
Continues
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Figure2-1
Continued
Dat aCut put St ream out = new Dat aCut put Strean(f);
try
{
out.witeBytes( contents );
}
catch( | OException e )
{

Systemerr.println(
"Exception witing to file:" + e );
return;



finally

{
try
{

}
catch( | OException e )

{

f.close();

Systemerr.println(
"Exception closing file:" + e );
return;

}
}

public static void main( String args[] )

{
}

witeFile("Test", "This is it, ny friend" );

}

will want to make sure that thefile still closes. Thef i nal | 'y block is perfect for thistype of
situation. Figure 2-1 shows a small test application to demonstrate this.

Thewri t eFi | e() method performs three basic operations. It creates a new file named
name, it writescont ent s to thefile, and then it closes the file. Don't be daunted by the fact
that this method has more than 30 lines of code; it isreally quite smple and elegant. Each of
the three operations may fail for reasons beyond the control of the programmer. There may be
no room on the local file system, for example, or the user may not have permission to create a
file. A number of conditions could cause the failure, so each operation is protected by a
try/ cat ch block. Thewri t eByt es() method is protected by a

try/ catch/finally block to ensurethat thecl ose operation is executed. Note that the
cl ose() method is called after the catch'spr i nt statement but before thewr i t eFi | e()
method returns.
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Onefinal note on catching exceptions: Because all exceptions are subclasses of the
Excepti on class, it is perfectly legal to defineacat ch statement such asthis:

try
{

}
catch( Exception e )

{

}

Although thisis perfectly legal, it generally isavery bad idea. The big problem with this
exampleisthat thiscat ch statement will catch any exception. One of the great features of
Java exception handling isthat the cat ch statement only catches the exceptionsiit is defined to
catch. Supposethat thist r y/ cat ch block is protecting against an | OExcept i on. The

cat ch statement as defined will catch thel OExcept i on if it occurs. The cat ch block
then can handle the exception by whatever means has been defined. But what will happen if a



Nul | Poi nt er Except i on isgenerated? The cat ch statement defined here will catch this
exception aswell. This statement is designed to handle input/output exceptions, and yet it will
be called for aNul | Poi nt er Excepti on.

If thecat ch block handles the exception smply by closing the stream and returning, the

Nul | Poi nt er Except i on remains unhandled. This could lead to unforeseen problems
with the rest of the application. It isalmost always a bad ideato catch the Except i on class
instead of one of its subclasses.

In certain Situations catching a more genera exception can be useful. We could define an
exception class that is the superclass to all the custom exceptions that can be thrown by classes
in our project. We then could catch our base exception and differentiate it, if necessary, by
usng thei nst anceof operator inthe cat ch block. But keep in mind that we must be very
careful that we handle every exception in the group properly.

The Throwable Class

The base classfor al exceptionsin Javaisthe Thr owabl e class. For an object to be thrown
or caught, it must be derived from Thr owabl e or one of the subclasses of Thr owabl e.
Two types of general Thr owabl e objects exist: the Exception class and the Er r or class.
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TheExcept i on classisaspecia class, because the compiler enforces its throwing and
catching. Unless the exception is generated by the Java virtual machine, the method doing the
throwing must declare that it may throw the exception. Likewise, if amethod declared to throw
an exception is used, the exception must be dealt with in some fashion. We can deal with an
exception in two ways: catch it or rethrow it. A class may define that it throws an exception.
By declaring this, it alleviates the class's methods from explicitly handling that particular
exception. In this case, the unhandled exception simply is propagated to the class that invoked
the offending method. The Except i on classitself doesn't add any user functionality to

Thr owabl e; itisjust used as a superclass to other enforced exceptions.

The difference between the Except i on classand the Er r or classisthat Er r or isnot
bound by the compiler to be declared as being thrown or caught. These exceptions represent
conditions that may occur during runtime that affect the virtual machine. Er r or generaly is
not intended to be caught by the program. It indicates a condition that in theory should not occur
in arunning program. An example of an Er r or subclassisthe St ackOver f | owError.
This error is thrown when the program stack in the Java virtual machine overflows. Errors are
abnormal and generally unrecoverable; therefore, they are best left to the system to handle.

The exception model is defined this way to give all exceptions a common base that is not
equivalent to Thr owabl e and to differentiate Except i ons fromEr r or s. Using thiskind
of no-op subclassing? ensures that, during type checking, al Except i ons are Thr owabl e,
but all Thr owabl es are not necessarily Except i ons. Because the difference between the
definitionsof Thr owabl e and Except i on redly isin name only, our exploration of the
Except i on classisaso an examination of the Thr owabl e class.

Except i on defines only two constructors to override the Thr owabl e constructors. These
constructors are the only methodsin the Except i on class. Their sole functionality isto call



the corresponding Thr owabl e constructor. The constructor takes no arguments at all or a
single St r i ng object that is used as a detail message to the Thr owabl e object.

The rest of the methods examined in this chapter are part of the Thr owabl e superclass.

The method get Message( ) returnsthe St ri ng object containing the detailed message.
Thismay benul | if no detailed message was supplied.

AWe are referring here to creating subclasses without adding any new member fields or methods.
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A standardt oSt ri ng() method exists, asin most methods (those methods that don't supply a
toString() inherit the default from the Cbj ect class).

Themethodfi | | | nSt ackTr ace() populatestheinternal handle backt r ace withthe
call stack information. The code that generates this information is native to the loca platform.
The format of this stack information is unspecified and also is platform dependent.

Thereareacoupleof pri nt St ackTr ace() methods that will each call the private native
print StackTraceO() method, which will print the stack trace to either the
System out streamortoaPri nt St rearn supplied by the caller.

Using the Built-in Exceptions

Now take alook at some of the most commonly used exceptions. The first Exception subclass
we will exploreisthe Ar r ayl ndexQut OF BoundsExcept i on. Thisexception isthrown
when an attempt is made to access a member of an array with an invalid index. If the index
supplied is greater than the length of the array less one or less than zero, it isinvalid.

In this example, the index 3isinvalid:

int array [] = newint[3];
array[3] = 6;

This code would cause the Ar r ayl ndexQut OF BoundsExcept i on to bethrown. The
only valid indexesfor ar r ay areQ, 1, and 2. Thisisone of the Runt i neExcept i on
subclasses. Because this exception is generated by the Java virtual machine, it does not need to
be declared explicitly as being thrown, and it is not mandatory that it is caught. If the exception
is not caught, however, it leads to the invoking thread being shut down.

Another common exception in Java applications programming isthe | OExcept i on. This
exception is thrown when there is a problem with an input or output operation. Take alook at
the following ssimple output operation, which creates a new file for outpuit:

public FileQutputStream openQutFile( String nane )

{
try
{

}

return new Fil eQut put Stream nane );
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catch( java.lang.| OException e )

{
Systemout.println("Unable to open file:" +
nane) ;
return null;

}

}

Suppose that an invaid file name is supplied to this method. The constructor for

Fi | eQut put St r ean declaresthat it throws| OExcept i on. Without thet r y/ cat ch
block or a declaration that the class will rethrow the exception, a compilation error will occur.
This example assumes that the calling method will check the return value for nul | and handle
the error. It could prompt the user for anew file name in the exception handler, for example.

Defining Our Own Exceptions

When designing our own exception classes, it isagood ideato follow the convention of
keeping the exception class with the package from which it isintended to be thrown. The

| CExcepti on class, for example, ispart of thej ava. i o package. This conventionisa
good ideafor two reasons. First, it prevents the need to import a whole package of exceptions
or to explicitly import each exception class into the class that usesit. If the code needsto catch
an exception from an object's method, the package that defines the object (and therefore the
package that defines the exception) already will have been imported. Second, the base
Excepti on classispart of thej ava. | ang package. It isnot agood ideato make any
modifications to the core packages, because that could lead to confusion when delivering the
compiled classes or installing anew Javaclass library.

With that in mind, we will now create our own exception class. Because constructors have no
return types, assume that we need to check that a constructor isinitialized properly. To do this,
we'll create aConst r uct or Except i on class. For this class, we wart to include away to
determine the cause of the constructor failure. The base class providesast ri ng object in
which we can store detail information in the exception object. A lot of overhead exists in string
manipulations, though. It is easier programatically to check a numeric value instead of the
string. We will add an int field member to our classto store the numeric value. We also will
define some constants that can be used to represent the different failure conditions. The class
definition follows:
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public class Constructor Exception
extends Exception

{
public ConstructorException( String s, int cause )
{
super(s);
thi s. cause = cause;
}
publ i c ConstructorException( int cause )
{

this(null, cause);



}

publ i c ConstructorException( String s )
{

}

publ i c Constructor Exception()
{

}

public int getCause()
{

}

i nt cause;

this(s, UNKNOM);

this(null);

return cause;

public static int UNKNOM = 0;
public static int REASON FOO
public static int REASON BAR

1
2;
}

Notice that the Const r uct or Except i on class has two additional constructorsin addition
to the Except i on superclass. We have allowed for the exception object to be created in as
many ways as possible. The object requires two parameters. a string and an int. The user may
create the exception using either, both, or none. Any parameters that are not passed as
arguments are set to default values by the appropriate constructor. The string is set to null if it
isnot provided, and the int is set to the constant value UNKNOWN if it is omitted.

The string can be used to store meaningful text information in the event that the exception is
rethrown all the way to the virtual machine level (through the propagation discussed earlier). If
the exception gets that far without being handled, the executing thread halts, and the detailed
message is printed along with a stack trace. The stack trace can be handy
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for debugging purposes because it shows the call stack of all of the methods leading to the
exception condition.

Theint value can be used by acat ch clause to determine the reason for failure and perhaps to
allow recovery. If the cause of the failure was FOC, for example, perhaps something can be
done to correct the situation, and then the constructor could be called again to instantiate the
object.

That'sredly dl thereisto it. Defining our own exceptions is ssimply a matter of adding any
exception-specific data to the base Except i on class and supplying any constructors or
accessor methods needed.
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Exercises



1. Create individual classes that generate the following exceptions:

Arithneti cException

Nul | Poi nt er Excepti on

Arrayl ndexQut OF BoundsExcepti on
Fi | eNot FoundExcepti on

Cl assNot FoundExcept i on

2. Demonstrate the effects of catching and not catching (rethrowing) each type of exception
from Exercise 1.

3. Develop aclass called Posi t i veOnl y. This class should take a positive integer value
through its constructor. Use an instance method to decrement the value. Create a custom
exception to be thrown whenever anegative value is reached. Use the exception handler to
report this exception to Syst em out and set the value in the object to a non-negative value.
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Summary
In this chapter, we learned the following:

An exception isan unusual situation in which the state of the program isin jeopardy of
becoming or has become unstable or corrupt.

Return values can be used to indicate some error conditions upon the return from a method,
but exceptions can give more detailed information about the cause of the method failure and
can offer a better chance of error recovery in certain circumstances.

Five Java keywords are used when throwing and catching exceptions: t hr ows, t hr ow,
try,catch,andfi nal | y. Welooked at using these keywords and deciding when it is
appropriate to use each keyword to handle exceptions.

The Thr owabl e classisthe base classfor al Excepti on and Er r or classes. We
briefly explored the methodsin the Thr owabl e class.

How to use some of the built-in Except i on classes.

How to define customized Except i on classesto be used in special situations.
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Chapter 3
Arrays, Vectors, and Sorting
This chapter takes a brief ook at the basics of array handling and explains the vector asa

generic extensible array type. The treatment of arrays as objectsin Javais discussed and
examples are provided for the declaration and initialization of Java arrays. The reasons for



using vectorsinstead of arrays are outlined, and examples are given on how to extend vectors
to provide functionality not available in a standard array. One of the examples in the chapter
shows us how to use a container class to extend the functionality of the basic Java vector. The
Quick Sort agorithm is explained, and a ssimple implementation is presented. The exercises
near the end of this chapter include the development of aSor t abl e interface to create the
Sort edVect or datatype, which brings together these concepts.
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What Are Arrays?

Anarray isacollection of data, al the same type, stored in contiguous memory. In Java, an
array may be an array of primitive types, such asints, floats, or chars. An array also can
consist of reference types, including objects of the core classes and objects of a user-defined
type. Arrays have a static number of elements set when the array is instantiated. After the array
is created, the number of elementsit can contain is static. Although all the elements of the array
may not be populated with valid objects at any given moment, the size of the storage set aside
for the array isfixed. Array variables (references) are reusable; to change the length of an
array, we can create anew array of the desired length and assign it to the original array
variable.

Arrays are aspecial datatype in the Javalanguage. Certain properties are special to arrays. In
Chapter 1, "Basic Concepts," reference data types were discussed. Arrays are treated as
reference types by the system, regardless of the type contained in the array. But at the same
time, arrays are not classes as are other reference types. Also, arrays do not extend from the
root class (bj ect , dthough Obj ect isconsidered the superclass of all arrays,* and an array
can betreated asif it were of type Cbj ect . An array can be assigned to any variable of type
oj ect . Any of the methods from Obj ect can be called through an array. The memory for
an array must be allocated using the new operator just like a class object, no matter what type
is contained by the array.

int arraycfIint[] = newint[7];
String arrayO>String[] = new String[4];

In the preceding declarations, ar r ayOf | nt isan array of seven int values. Because intisa
primitive type, there is no need to allocate any additional space after the new call. The array
already is assigned enough contiguous memory to hold sevenints. ThearrayOf St ri ng
allocation call isalittle different. The new operator assigns enough contiguous memory for the
handlesto four St ri ngs; it does not alocate the memory for the St r i ng objects
themsalves. The St r i ng memory must be created separately, as shown in this code:

1See section 10.8 of the Java Language Specification (Gosling, Joy, Steele)
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int arraycfInt[] = newint[7];
String arrayOdfString[] = new String[4];

for( int i =0; i <7; i++)

{



arraycfint[i] = 1i;
}

arraydf String[ 0]
arraydf String[ 1]
arraydf String[ 2]
arraydf String[ 3]

new String("Hello");
new String("Wrld")
new String("It's");
" MR -

The final statement isan implicit call to the following:
arraydf String[3] = new String("M");

Access to the elementsin an array is provided by the index operator ([ ]), asin the preceding
example. All Java arrays use a zero-based index. This means that for an array of N elements,
thevalid index valuesare 0 to N-1. An array also has a specia public instance member called
length. Thel engt h member contains the allocated | engt h of the array. Thisvalueis
associated with the array object at allocation time and is not changeable during the life of the
object.

What Are Vectors?

A vector is atype-safe, dynamic collection class similar to an array with advanced
data-handling features. In a vector, the size of the collection is dynamic. Storage space can be
added or deleted on-the-fly. This allows for efficient memory management on a data set that
can vary in size. The vector also alows the addition, insertion, and deletion of data.

The vector class has three constructors, all of which are public. One of the protected member
fieldsiscapaci t yl ncr enent . This member keeps track of how much to grow the
collection when memory needs to be allocated. The parameters to the constructors offer
different levels of control over theinitial Sizeand capaci t yl ncr enent . The constructors
for thevect or classareasfollows:

public Vector(int initial Capacity, int capacitylncremnment)
public Vector(int initial Capacity)
public Vector()
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Thefirst constructor enables the user to set both the initial size of the collection and the
capaci tyl ncr enent . The collection size isanalogous to thel engt h member in an
array. The second constructor setstheinitial size but leavesthe capaci t yl ncr enent set
asthe default. The third constructor sets both the initial size and the capaci t yl ncr enent
to the defaullts.

Thevect or classdefault sizeis 10. The default capaci t yl ncr enent isnot a specific
number; instead, it is an algorithm. If no specific capacity increment exists, the vector doubles
the size of the collection every time it runs out of space. This process might seem inefficient,
but it isn't. In most cases, it is very effective as a trade-off between speed and space
management. Now take a closer look at how the vector manages memory.

The vector uses an internal array variable to store the data. Asthe array runs out of space, a
new array is alocated based onthecapaci t yl ncr ement . The datafrom the old array is
copied to the new array, and the new array is assigned to the internal array variable. The



creation of the new array and the copying are relatively expensive in terms of time. To get the
best possible performance out of a construct such as the vector, you need to minimize the
number of expansions made to the collection. At the same time, to keep resource useto a
minimum, you need to keep the unused storage space in the collection as small asfeasible.

If you have a good handle on the data requirements, you can manage the growth of the
collection programmatically. In many cases, though, you will not be able to accurately estimate
the appropriate capacity and increment of the collection. In these cases, the default

capaci tyl ncrenment can bevery efficient; it is agood trade-off between memory and
Speed.

Consider the following scenario. A vector is created with an initial size of 1, and then 100
strings are added to the vector, one by one. Compare the capacity changesin Table 3.1 for the
default increment versus an increment of 10.

Using the default capaci t yl ncr enment causes aresize only seven times, whereas using an
increment of 10 requires 10 resizes. Here, the trade-off is three less array creations and copies
against the unused space associated with the 28 extra elements that are allocated.

public final synchronized void copylnto(Cbject anArray[])

Thecopyl nt o() method takes an array as an argument and copies the entire contents of the
vector into it, as shown in the preceding code. The collection must be of sufficient size to hold
all the elementsin the vector.

public final synchronized void trinfloSi ze()
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Table 3.1 Vector Capacity Changes
Capacity Default I ncrement
Change I ncrement of 10
Iteration
0 1 1
1 2 11
2 4 21
3 8 31
4 16 41
5 32 51
6 64 61
7 128 71
8 81
9 91
10 101

Thet ri nlfoSi ze() method reduces the capacity of the vector to equa the number of
elements contained, as shown in the preceding code. In this scenario, acall to



trimroSi ze() after string 100 is added reduces memory use from 128 strings to 100. This,
of course, involves another iteration of the capacity change. Thistime, the capacity is reduced
rather than increased.

public final synchronized
voi d ensureCapacity(int mnCapacity)

The preceding method checks the length of the internal array against them nCapacity
argument. If the array is of greater or equa length, the method smply returns. If the array is
shorter than the requested capacity, the vector isresized to themi nCapaci t y supplied or to
thenext capaci t yl ncr enent step, whichever is greater

public final synchronized void setSize(int newSi ze)

Theset Si ze() method enables the user to have explicit control over the size of the internal.
Here, the array is set to the specified size, and the data in the original array that was beyond the
new end of the array is truncated.
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public final int capacity()
This method returns the current capacity of the vector.
public final int size()
This method returns the current number of used elementsin the vector.
public final boolean i sEmpty()

Thismethod returnst r ue or f al se to indicate whether the vector has any elements. This
code is regardless of capacity; it refers strictly to the used elements.

public final synchronized Enumeration el enents()

Theel ement s() method returns an enumeration of the elementsin the vector. Here,
Enuner at i on isan interface that allows a single-pass walk-through of a data set. The
Vect or class providesits own specialized Enuner at i on class called

Vect or Enuner at i on. The methods are the standards provided by the interface
declaration; no new methods are defined in Vect or Enuner at i on.

public final bool ean contains(Cbject elen)

The preceding method returnst r ue or f al se to indicate whether the supplied object is
contained in the array. Here, the object is compared by using the object'sequal s() method.

public final int indexOF(Object elem
Using the same criteriaas earlier, i ndexCf () returns the index of the desired element.

public final synchronized
int indexOr(Qoject elem int index)

The preceding method differs from the single-parameter version only in the fact that the search
for the object starts at the supplied index instead of zero.

public final int IastlndexOr(Coject elem



This method performsthei ndexOF () search backward from the last element in the
collection.
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public final synchronized int |astlndexC(Cbject elem int
i ndex)

The preceding method is the same, except that the backward search begins at the specified
index.

public final synchronized bject elenmentAt(int index)

Theel enent At () method is an accessor method that provides the same index reference
functionality astheindex operators ([ ]) in an array. The element at the indicated index is
returned. Here, the index must be valid for the current collection, or an exception is thrown.

public final synchronized (bject firstE ement()
This method returns the element at the zero index.

public final synchronized Cbject |astEl ement()
This method returns the last element in the collection.

public final synchronized
voi d set El ement At (Qoj ect obj, int index)

This method enables the user to substitute a new object for the object contained in the element
indicated. Here, the index must be valid for the current collection, or an exception is thrown.

public final synchronized void renoveEl enent At (i nt index)

This method enables the user to delete an element from the collection at the specified index.
Here, the index must be valid for the current collection, or an exception is thrown.

public final synchronized
voi d insertEl ement At (Obj ect obj, int index)

This method enables the user to insert an element at the specified index. Here, the index can be
anywhere from zero to the number of elements. Thisenablesthei nsert El ement At ()
method to be used aso as an append operation (the last element in the list is indexed at one
less than the number of elements-N-1). The list is checked for available space and expanded as
necessary according tothei ncr ement Capaci ty setting.

public final synchronized void addEl enent (Cbj ect obj)
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TheaddEl enent () method appends the new object to the end of the collection. Thelistis
checked for available space and expanded as necessary.

public final synchronized bool ean renoveEl enent (Obj ect obj)

The preceding method removes the element from the collection that matches the specified



object. Here, thei ndexOf () method is used to find the first occurrence of the object in the
collection, and that element isremoved using ther enoveEl enent At () method.

public final synchronized void renoveAl | El enents()

This method empties the collection of elements. Each element, in turn, isset to nul | , and the
element count is reset to zero.

publ i c synchronized Object clone()

Thecl one method creates a copy of thevect or object, not the elements. Here, the interna
array iscopied to anew Vect or object, which then isreturned. The vector is defined to
implement the clonable interface; therefore, this method must be supported.

public final synchronized String toString()
This method generates and returns a string representation of the Vect or object.

Only threeinstance variables are defined in the Vect or class:

protected bject elenentDatal];
protected int el enentCount;
protected int capacitylncrenent;

All three variables are declared to be protected so that they are available to subclasses but not
the general public. el enent Dat a isageneric Obj ect array handle that holds the internal
array storage for the collection. The el enent Count member field is self-explanatory, and
capaci tyl ncr ement wascovered earlier in this chapter.

VectorsVersus Arrays

In many cases, avector and an array may be used interchangeably. Generally, though, oneis
preferred over the other for any given circumstance. As agood genera rule of thumb, we
would use an array anytime the collection meets the following conditions:
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All elements of the collection are of the same type (especially the primitive types).
The collection is a known, fixed size or maximum size.
The collection is a non-sorted data set (data is not inserted into the collection).

If any of these conditions are not met, it might be better to use a vector object. Generaly, the
choiceis pretty clear. If it necessary to manipulate the storage of the data, regardless of
whether the data itself is manipulated, it probably is better to use a vector instead of an array.
The advantages of the vector are mainly the fact that the collection is of a dynamic size and that
methods are available to manipulate the storage.

If we want to perform an insert into an array, assuming that we have space for the additional
member, we would have to do something aong these lines:

System arrayCopy( nyArray, insertPosition,
nyArray, insertPosition + 1,
array.length - insertPosition );



nyArray[insertPosition] = newEl enent;
Thisisbasically what the vector'si nsert El enent At () method does.

The advantages of using an array are speed, easy access, and reduced overhead. As mentioned
earlier, the vector's capability to expand as necessary comes with the price of creating and
copying the collection to the new internal array. By allocating al the memory needed for the
array at one time, these time-consuming operations are eliminated. Each accessto an element in
avector also requires amethod call, which is avoided by the simple index notation an array
uses for element access.

The advantages of avector are flexibility and control. The methods available in the vector
enable the programmer to manipulate the collection at will. It is a simple matter to insert or
move an element in the collection.

Extending the Vector

In the JavaVect or class, most of the methods are defined as final; this prohibits us from
modifying the behavior of the class by preventing us from overriding the methods. This
restriction also speeds up the performance of the Vect or class. In Java, it is possible to have
more than one method in the same class with the same name. The methods must have different
argument lists, but they can all share the same name. Thisfea-
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ture is known as method overloading. Methods inherited from a superclass may be overloaded
aswell. A subclass aso may contain a method with a name and signature that are identical to a
method in the superclass. Thisfeature is known as method overriding.

When a class has methods that are overridden, there is a question of from which class
(superclass or subclass) to actually invoke the method. The method called is the closest match
to the choices avail able based on the runtime type of the object calling the method. It
sometimes is impossible to determine at compile time which class an object redly is. For this
reason, the determination of which method to call is deferred until runtime. At runtime, the
system can determine the exact real type of all the objects. Remember that an object carries not
only itsreal type but also all the types of al its superclasses al the way down to the Qbj ect
classitself

Any method that has the possibility of being overridden is called avirtual method All the
virtual methods are kept in atable by the system so that the runtime environment can perform
lookups to determine the correct virtual method to call. In Java, al rrethods are virtual by
default. Methods declared as final, however, cannot be overridden by a subclass. This
eliminates the need for avirtual function table and the overhead involved with looking up the
appropriate method each time acall is made. Accessto any fina or private methods is faster
than access to the virtual methods in the class.

The vector's instance variables are declared as pr ot ect ed, though. Protected accessto the
variables enables us to extend the functionality of the vector by allowing the subclass access to
the internal data representation of the class. So, in effect, even though the core functionality of
the class cannot be changed because of the final methods, the class may be extended at will by



adding functionality to the class.

Any kind of functiondity can be added to the class as long as we don't need to change the
behavior of any of the existing methods. In the next section, welll take alook at extending the
vector by adding the capability to sort the elements in the collection.

Creating a Sorted Vector

One feature that would be handy to haveinavect or classwould be the capability to have
the vector automatically sort the data. Of course, in order to sort the data, we first must be able
to compare one element to another. To accommodate this requirement, we will define a Java
interface
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called Conpar abl e. The base interface needs to declare only one method: conpar e() .
We can define the Conpar abl e interface by using the following code:

public inteface Conparabl e
{

}

This simple code segment says alot. Remember that, in Java, an interface does not implement
any methods; it just declares them. Any class that implements the interface will implement the
methods declared. By implementing the Conpar abl e interface, an instance of the class
becomes an object of type Conpar abl e aswell asits other inherited types. Thislets us use
thei nst anceof operator from within our sortable Vect or classto confirm that an object
is comparable before we attempt to call the conpar e() method when sorting the object
within the vector.

public int conpare( Conparable obj );

Theconpar e() method should perform an operation similar to theconpar eTo() method
inthe St r i ng class. The method should compare itself to the object passed as an argument
and return an integer comparison value. The return value should be zero if the two objects are
considered equal, negative if this object is less than the argument object, and positive if this
object is greater than the argument object.

So, after we define the Sor t edVect or classto usetheconpar e() method to determine
sort order, any class that implements Conpar abl e can be stored in sorted order. But what
happensif an object that is not comparable is passed to the sortable vector? We can handle this
situation in one of two ways. We can supply a default order for non-comparable objects, or we
can throw an exception indicating this as an unacceptable condition.

Another condition to consider is the case in which two objects implement the Conpar abl e
interface and yet are of different types. Suppose that the user defines a Conpar abl eFoo and
aConpar abl eBar classand triesto store both in the Sor t edVect or . How isthis
situation handled? It isirrelevant to the Sor t edvect or class what type of objectsit stores,
as long as they implement the Conpar abl e interface. The responsibility is on the user of the
classto be sure that any comparable objects inserted into the collection know how to compare
themselves to other comparable objects.



One of the benefits of using an interface to define a data type is that it enables classes like

Sor t edVect or to be used very flexibly. If the user can find some way to compare two
different classes, both classes may be stored in the Sor t edVect or together, aslong asthey
both implement the Conpar abl e interface.
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Even though we can't override the vector's methods, there is nothing stopping us from
overloading the methods in the vector. Overloading is defining methods with the same names
that use different parameter lists. So, if we definethe addEl enent () method to take a
comparable instead of an object, we allow the user to add comparables to the list using the
method defined in Sor t edVect or instead of the superclass addEl enent ( Obj ect) .

Using thiskind of subclassing requires good documentation. There is no way to stop the user
from inadvertently adding an object that is not a comparable. If the user calls

addEl ement () withaSt ri ng argument, the vector'saddEl enent () processesthe call
and destroys the sort order of the collection. However, as long as the user adds only
comparablesto the collection, the methodsin Sor t edvect or add them in appropriate order.

Figure 3-1 shows the compl ete implementation of adt.Chapter03.SortedV ector.

Figure3-1
SortedVector.java.

package adt. Chapt er03;

i mport java.util.Vector;
i mport java.util.Enumeration

public class SortedVector
ext ends Vector
{

public SortedVector( int initialSize, int capacitylncrenent )

{

super( initial Size, capacitylncrenent );

}

public SortedVector( int capacitylncrenment )
{ super ( capacityl ncrenment );

}

public SortedVector()

i super () ;

public voi d addEl ement ( Conparable o )
throws Sort abl eException

{

i nt index;

i ndex = getlnsertlndex(o);



Continues
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Figure3-1
Continued

i nsert El enent At (o, i ndex) ;

}

public void insert( Conparable o)
throws Sortabl eException

{
addEl enent (0) ;
}
publ i ¢ bool ean contai ns( Conparable o)
{
return super.contains(o);
}
publ i ¢ SortedEnunerati on sortedEl ement s()
{
return new SortedEnunerati on(el ement Dat a) ;
}

private int getlnsertlndex( Conparable o)
t hrows Sortabl eException

{
i nt index;
for( index = 0; index < el enentCount; index++ )
{
if( !(elenmentDatalindex] instanceof
Conpar abl e) )
t hr ow new Sort abl eException( "El enent
+ index + " not Conparable" );
i f( o.conpare( (Comparable)el enent Dat a
[index] ) <0)
br eak;
}
return index;
}

}

cl ass SortedEnuneration
i mpl ement's Enunerati on
{

Sort edEnuneration( Object array[] )

{
}

publ i ¢ bool ean hasMor eEl enent s()

{

this.array = array;

if( index < array.length)



return true
return fal se;

}

Continues
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Figure3-1
Continued

publ i c Cbject nextE ement ()

{
if( !(array[index] instanceof Conparable) )

t hr ow new Sort abl eExcepti on(
"Element " + index
+ " not Conparable" );

return array[i ndex++];

}

Qoj ect array[];
int index = O;

}

A Sor t abl eExcept i on classaso is defined to handle any objects inserted into the
collection that are not comparable. Although there is no way to stop this from happening
because the vector itself will store any object, we can test that each element encountered in the
addEl enent () andi nsert El enment () iscomparable aswe insert each new object to
determinethat itisa Conpar abl e. Each element aso istested asit is passed through the
sort edEl enent s() method. If it isnot aninstance of Conpar abl e, the exceptionis
thrown. These two checks ensure that none of the methodsin the Sor t edvect or classwill
generate aruntime error because of data of the wrong type being included in the collection.

We now can create a small application to demonstrate the Sor t edVect or ; this application
iscalled Sor t abl eVect or . Tousethe Sor t edVect or , we need to define adata class to
implement the Conpar abl e interface. The dataclassis called Conpar abl eStri ng, as
shown in Figure 3-2.

To keep the example simple, the Conpar abl eSt ri ng classis not well encapsulated. The
St ri ng member should be declared aspr i vat e, and it should really have accessor
methods. The important part of the classisthe conpar e method, because it isthe
implementation of the Conpar abl e interface. Because thisisacomparable St r i ng class, it
usesthebuilt-in conpar eTo() methodinthe St r i ng class and saves the work of
reimplementing the functiondity.

The Sor t abl evect or application ssmply declares and instantiates a Sor t edVect or
object and fillsit with Conrpar abl eSt r i ng objects (see Figure 3-3). Notice that all the
addEl enment () callsareenclosed inasinglet ry block. If weinadvertently try to add an
object that is not comparable, the Sor t abl eExcept i on isthrown. After all the

Conpar abl eSt ri ng's are added to the collection, the application demonstrates that they
are sorted by walking through the enurn enumeration.



Figure3-2
ComparableString. java.

package adt. Chapter03;

public class Conparabl eString
i mpl ement's Conpar abl e

{
publ i c Conparabl eString( String s )
{
string = s;
}
public int conpare( Conparable obj )
{
return string. conpareTo(((Conparabl eString)obj).
string);
}
public String string;
}
Figure 3-3
SortableVector.java.

package adt. Chapt er03;
i mport java.util.Enumeration;

public class Sortabl eVect or
{
public static void main( String arg[] )
throws java.io.| CException
{

Conpar abl eString cString;

SortedVector v = new SortedVector();
try

{
. addEl ement ( new Conpar abl eString( "

. addEl ement ( new Conpar abl eString( "
. addEl ement ( new Conpar abl eString( "

v
v
v
v. addEl enent ( new Conparabl eString( "

<

. addEl emrent ( new Conpar abl eStri ng(
. addEl ement ( new Conpar abl eString( "
. addEl ement ( new Conpar abl eString( "
. addEl emrent ( new Conpar abl eString( "

atch( Sortabl eException e )

~— o< < <

Systemout.println(e);

This" ) );
is" ) );

a" ) );
sorted" ) );

"vector" ) );

in" ) );
sort" ) );
order" ) );
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Figure 3-3
Continued

System exi t (0)
}

Enuneration enum = v.el enents();
whi | e( enum hashMor eEl enent s() )

{
System out. printl n(
((Conpar abl eStri ng) enum next El enent()).string );

Systemin.read();

}

Figure3-4
The output from the data set {"This", "is', "a", "sorted", "vector", "in", "sort", "order"}

Thi s

a

in

is

or der
sort
sorted

Figure 3-4 shows the output for the application.

The Sor t edVect or class maintains the sort order by managing the add and insertion
operations. No special sort-in-place operation restores sort order if the order of elementsin
the collection changes. Thistype of utility class relies on the programmer to use the class
properly. It isrelatively easy to shoot yourself in the foot if you are not careful. Thistype of
design enabl es the programmer to be much more flexible in implementing a solution, but it
comes with a price. Other, somewhat safer, approaches to the sorted vector problem exist.

External Vector and Array Sorting

Asan alternative to extending the Vect or class, sorting can be done externally by a utility
class. In this case, the data items are added to the collection normally, using the methods in the
Vect or class. At some point in the process, the collection is passed through a sort engine that
reordersit appropriately. The sort engine could support any one of a number of sort algorithms
that could be used interchangeably according to the user's preference. In this chapter, we will
take alook at one of these types of generic sort algorithms: the quicksort.
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The quicksort algorithm has a worst-case time of N2, where N is the number of elementsin the
collection to be sorted. So, at most, N? comparisons must be made between the elementsin the
collection to completely sort the collection. This might not seem very efficient, but the average
is closer to NlogN This can be proven mathematically, but such proof is beyond the scope of
this book. Quicksort usually is considered to be afairly efficient general-purpose sort
algorithm. The genera theory behind this algorithm is divide and conquer. The collection to be
sorted is split into two subsets that are recursively put through the same process. The key to the
algorithm is the process by which the subsets are determined. A boundary value is defined so
that each element of subset A compares as less than the boundary value, and each element in
subset B compares as greater than the boundary value.

Givenanarray Al | of length N (where LO=0, HI=N, and X=A[LQ]), partition the array so that
al elementslessthan X areto theleft of X, and al valuesto the right of X are greater than X in
the array. X can be any element in the array except for Al N- 1] . If the boundary valueisthe
last element in the array and it also isthe lowest sort value in the collection, we will end up in
an infinite recursion. The partitioning is accomplished by walking through the array in both
directions and comparing the elements encountered to X. When an element in the ascending or
descending leg of the walk compares as out of place, that leg is halted until the other legis
complete. After both legs are complete, the indexes of each leg are compared. If the ascending
leg index is less than the descending leg index, the elements are swapped, and the process
continues. If the ascending leg index is greater than the descending leg index, the array is
partitioned at the descending leg index, and the two subarrays go through the same process.

Figure 3-5 shows an array of seven ints[6,3,8,5,7,1,9] in various stages of being sorted. The
qgui cksort agorithmisused to sort the array.

(A) showstheinitia array. The value of the first element of the array, 6, is used as a pivot.
[9] compares greater than 6, so the [9] isin the correct half and the arrow moves to the next
nodein line: [1]. [1] isless than the pivot value 6, so the arrow stops at [1]. The first
element in the array, [6], compares (as expected) equal to the pivot value, so the arrow
stops here. 6 isless than 1, so the two elements are swapped.

(B) The comparisons continue after the swap with the top arrow at [7]. [7] is greater than
6, so the arrow movesto [5]. 5islessthan 6, so the arrow stops. The other arrow would
have been pointing at [1] after the swap. That arrow movesto [3], which islessthan 6. The
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Figure 3-5

Three intermediate stages of a data set run through the quick sort algorithm.

arrow moves again to [8] which is, of course, greater than 6. Once again, the arrow stops.
Because both arrows are stopped, a comparison is made between the elements at each
arrow, and it is determined that a swap needs to take place between [8] and [5].

(C) Because the arrows have met, we know that al the values below the split are less than
6 and all those above the split are greater than 6. Therefore, you can split the array into two
subarrays at the arrows and start the process over again. Each subarray gets a new pivot
value based on the first element in each subarray.

For the purpose of this example, we will define two classes that handle the sorting instead of
subclassing the Vect or class. Thefirst classisthe sort engine. It hasasort () method that
can be called to sort an array or avector. The engine classiscalled Sor t Engi ne. We till
need a method of comparing the objects in the collection. For this, we'll define a new interface
with aconpar e() method. Theinterfaceiscalled Sort | nt er f ace.
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Figure 3-6
SortEnginejava.

package adt. Chapt er03;

i mport java.util.Vector;



public class SortEngi ne

{
public SortEngi ne( Sortlinterface s )
{
hel per = s;
}
public void sort( Cbject array[] )
{
qui cksort( array, 0, array.length );
}
public void sort( Vector v )
{
qui cksort( v, 0, v.size() );
}
public void quicksort( Cbject array[], int lo, int
hi )
{
if( lo==nhi)
return;
Qoject o = array[lo];
int i =lo - 1;
int j = hi
while( true )
{
while( --j >=10)
{
i f( hel per.conpare( array[j], 0)
<=0)
br eak;
}
while( ++i < hi )
{
i f( hel per.conpare( array[i], 0)
>=0)
br eak;
}
if(i <j)
Qoject tnp = array[i];
Continues
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Figure 3-6
Continued.
array[i] = array[j];
array[j] = tnp;

j +t;



i--
}

el se

{

}
}
qui cksort( array, lo, j );
qui cksort( array, j+1, hi );

br eak;

}
public void quicksort( Vector v, int lo, int hi )
{
if( lo==nhi)
return;
Qoject o = v.elenment At(lo0);
int i =1lo - 1;
int j = hi;
while( true )
{
while( --j >=10)
i f( hel per.conpare( v.elenmentAt(j),
0) <=0)
br eak;
}
while( ++i < hi )
{
i f( hel per.conpare( v.elementAt(i),
0) >=0)
br eak;
}
if(i <j)
{
Object tnmp = v.elenment At (i);
v.setElenent At ( v.elementAt(j), i);
v.setEl enent At (tnp,j);
j+
i--
}
el se
{
br eak;
}
}
Continues
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Figure 3-6

Continued.



qui cksort( v, lo, j );
qui cksort( v, j+1, hi );
}

public Sortlnterface hel per;
public final static int QUCK =1

SISO

package adt. sort;

public interface Sortlnterface

{

}

The difference between the Conpar abl e interfaceand the Sor t | nt er f ace isthat, in this
case, theconpar e() method compares two separate objects. In the Conpar abl e interface,
aConpar abl e object compares another Conpar abl e object to itself After we passthe
sort engine an object that implements Sor t | nt er f ace, we can usetheconpar e() method
to compute the sort order.

public int conpare( Object a, Cbject b );

To better understand the qui cksor t algorithm, we can examinethe qui cksor t () method.
The array versionis alittle easier to follow. The qui cksort () method is called with three
arguments: the array to be sorted and two integer values. The integer values represent the low
and high index range of the array to be sorted. These values are necessary to have the
capability to sort subarrays within alarger array. Initialy, the method is called with the array,
zero, and the array length, respectively.

In thisimplementation, the low index awaysis used to determine the partitioning boundary.
The method initializesint'si and| to keep track of the current positions of each leg of the
array traversal. Thej leg compares each element of the array by descending index to the
boundary value to determine whether the e ement belongs in the greater than subset. As soon as
avaueisfound that isless than or equal to the boundary value, thej -leg is stopped, and the

i -leg begins. Thei -leg starts at the low end of the array and moves upward, comparing each
value to the boundary value to determine whether it belongs to the less than subset. When a
valueisfound that is greater than or equal to the boundary value, thei -leg is stopped.

If thei -leg stopped at alower index than the | -leg, the elements are swapped, and the
comparisons continue through the whi | e loop. If thei and | -legs stop on the same index or if
they cross, the array is parti-
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tioned around the boundary value. In this case, the array is split around the boundary, and the
two subsets are put recursively through the same process. After the size of any subset getsto 1,
the element indexed isin the right place. So, after the recursion is done, the array is sorted!

Figure 3-7 shows a small console application to test the sort engine.



This example creates a vector with the words "Thisis a sorted vector in sort order” asits
elements. It then createsa sort engineusing t hi s asthe sort interface. The vector is sorted and
displayed in order. The application then creates an array of strings containing "Thisis a sorted
array in sort order,” which it then sorts and displays. Notice that it does not really matter to
Sor t Engi ne from wherethe Sor t | nt er f ace came. It could have been implemented in a
separate class St ri ngSor t | nt er f ace. Inthiscase, it was more convenient to implement
it in the main class.

Figure 3-7
SortTest.java

package adt. Chapt er03;

i mport java.util.Enumeration
i mport java.util.Vector;

public class Sort Test
i mpl ements Sortlnterface
{

public static void main( String arg[] )
throws java.io.| CException
{

Sort Test test = new SortTest ();
Sort Engi ne engi ne = new Sort Engi ne(test);

Vector v = new Vector();

. addEl ement ( " Thi s" );
.addEl erment ( "is" );
.addEl ement ( "a" )

. addEl erent ( "sorted" );
. addEl erent ( "vector" );
.addEl ement ( "in" );

. addEl ement ( "sort" );

. addEl erent ( "order" )

<K << <K< <K<K <K KL<

engi ne. sort(v);

Enuneration enum = v. el enents();
whi | e( enum hasMor eEl enent s() )

{

Systemout.println( (String)enum
next El enent () );

}

Continues
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Figure3-7
Continued.

String array[] = { "This","is","a", "sorted"
"array","in","sort","order" };



engi ne. sort (array);
for( int i =0; i <array.length; i++)
Systemout.println( array[i] );

Systemin.read();

}

public int conpare( Object a, hject b))
{

}

return ((String)a).conpareTo((String)b);
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Exercises
1. Create a small application to create, populate, and list an array of strings.
2. Create and use a vector to hold the same strings.

3. Modify the Sor t | nt er f ace to handle generic collections. Thisrequires at least these
additional methods: swap, get Pr evi ous, and get Next . Then modify Sor t Engi ne and
Sort Test to usethis new model to sort avector and an array using the same call to

Sort Engi ne. sort ().
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Summary
In this chapter, we learned the following:
Arrays are collections of data stored in contiguous memory.
A vector isatype-safe, dynamically sized implementation of an array.

Sometimes, it is more appropriate to use an array, and sometimes a vector can be the best
storage mechanism.

The Vect or class can be extended in various ways to be more useful.

Sorting can be applied to the Vect or classin several ways.

Page 57

Chapter 4
Hash Tables

This chapter examines the hash table. A hash table is a container that enables quick-and-easy
storage and retrieval of data that has a unique key associated with it. Hash codes and hash



methods are discussed in detail in this chapter. A ssmple hash table classis defined fron
scratch to demonstrate these concepts. We'll learn how and when to use hash tables, and well
look at examples that use the core Java class Hasht abl e and its subclass, the Pr operti es
class. Near the end of this chapter, we'll run through some exercises on using the

Pr operti es object to parse command-line arguments.
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What AreHash Tables?

Hash algorithms describe a mapping of objects to arange of integer hash values so that the
distribution of mapped objectsis as even as possible. Hash tables are a collection of afixed
number of containers, with one container for each integer in the range of possible hash values.
When an object is stored in a hash table, a hash value is computed, and the object is placed in
the hash tabl€e's container that corresponds to the hash value.

A hash table is a storage container that associates a unique key with each object it stores. The
key used to store the object is used later to retrieve the object from the table. Hash tables
enable us to easily access data without having to linearly search through the entire set of datain
the container. Asthe nameimplies, the datais stored in atable that is ssimilar in many waysto a
standard array. In fact, a hash table isreally a generalized implementation of an array. Take a
minute to examine what that means. In an array, datais stored in atabular fashion. The datais
accessed through an index into the array. If the index is known in advance, the data can be
accessed with a single lookup operation such asthis:

String nyString = array[n];

In the case of the array, we can think of the index as akey. Arrays do require that the index be
unique. Two data items cannot exist at the same index in the array. Arrays also require a static
size. The array cannot be grown to larger than the initial capacity. So the array has afixed set
of keys (indexes) and a fixed storage capacity.

Because the hash table stores the data items in a tabular format, the hash table also requires that
the keys are unigue. One difference between an array and a hash tableis that, in a hash table,
the universe of keys generaly is considered the set of natural numbers. The main difference
between an array and a hash table isthat, in the array, only one dataitem is stored in each
index. In the hash table, the storage scheme is a bit different. The hash table generally has an
internal array, but thisarray is an array of lists of key/value pairs. The indexesin the array
represent the key listsin which to search for the specified key. It is desirable—but not
necessary—to have a single object in each index.

A hash code is a numeric representation of an object. Suppose that we have alist of dataitems
for which the domain of keys consists of two character strings (such as"aa’, "ab", "ac", . . .,
"ba’, "bb", "bc", and so on). To trandate the keys into numeric indexes that can be used in the
array, a hash method must be defined.
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The hash agorithm implemented must satisfy two basic requirements. First, it must guarantee
that the same key always will produce the same hash code. The entire purpose of the hashing is



defeated if the hash codes aren't consistent. Second, the algorithm should have a reasonable
chance of evenly distributing the expected universe of keys among al the possible hash codes.
If the hash codes aren't evenly distributed, the efficiency of the hash table is degraded. Take a
look at asmplified example of a hash algorithm. Suppose that, like the earlier example, the
keys are all two-character strings, and all the characters are between 'a and 'z'. The hash code
generated isthe ASCII value of the first character of the key minus 'a. This generates a hash
code between 0 and 25. The hash method could look like the one in Figure 4-1.

In Figure 4-1, the keys are hashed to the values of 0, 0, 0, 1, 1, and 1, respectively. Notice that
the keys"aa", "ab", and "ac" are all hashed to the same value: 0. "ba", "bb", and "bc" are al
hashed to the same value: 1. These conditions are known as collisions When keys collide, the
key list at the appropriate index grows. Thelist of keys at any given index is commonly known
asthe bucket. All keyswith a hash code of zero are put in the zero bucket, as shown in Figure
4-2.

If auser retrieves the data associated with "ba’, the hash table lookup is ssimplified in
comparison to alinear search construct, such as avector. ba' hashesto 1, so bucket oneis
traversed linearly until the key isfound. This reduces the maximum number of lookupsto the
number of keysin the bucket. In avector, the entire set of keys would have to be traversed until
the desired oneis found, giving an average number of lookups of N/2 (N

Figure4-1
A simple hash method.

public int hash( String key )

{
byte array[] = new byte[ 1]
key.getBytes ( 0, 1, array, 0 );
return (int) (array [0]-(byte) "a')
}

Figure4-2
Multiple keys sharing the same "bucket" based on the hash agorithm provided.

Bucket Key List

0 "aa", "ab", "ac", ... , "az"
1 "ba", "bb", "bc",..., "bz"

25 "za", "zb",..., "zz"
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isthe number of keysin the data set). In this particular hash table example, the average number
of lookups is 26/(N*2), assuming that there is an even distribution of keys. If thisisthe case,
storing any list of more than five keysis more efficient (on average) in the hash table than in the
vector.



Thisisavery crude and simplified example; its purpose is to demonstrate the basic concepts
of hashing. The biggest problems with this example are that the table size is static and there is
no alowance for optimization. What would happen if al the entriesin the hash table had a key
that started with 'a or 'b'? The first two buckets would fill up, and the remaining 24 buckets
would stay empty. This, in turn, would lead to inefficient linear lookups within the two filled
buckets.

Also consider what could happen if the keys were three characters instead of two. With
two-character keys, the table can hold a maximum of 676 entries, or 26 per bucket. If the key
sizeis expanded to three, the table holds 17,576 entries. There are till only 26 buckets to hash
into, with a new maximum of 676 keys per bucket. Aswe can see, the number of buckets and
available keys can have a great effect on how efficient the hash table is. For the hash table to
be useful in real-world applications, we'll need a better hashing agorithm. In the next section,
well take a closer ook at the hashing algorithm.

A Simple Hash Table

Up to this point in the chapter, we have examined the basic concepts of the hash table. Now
take alook at a ssimple but fairly complete hash table construct. For the purpose of this
demonstration, assume that al keys are unique St r i ng objects and that data may be any Java
object derived from the Obj ect class.

First take alook at the hash code generator method. It takes a string "key" as an argument and
generates an int that represents the sum of all the characters in the string. Figure 4-3 defines the
hashCode() method.

Now take alook at the entire class in Figure 4-4. The first thing we will notice is the definition
of anon-public class called HashObj ect . TheHashObj ect classissimply adata
structure; it has no methods. This classis used for holding the key/value pairs and forming the
basis of our list in each bucket.

Inthe HashTabl e class, the provided constructor takes no arguments. It smply initializes the
bucket table to the correct starting size by creating an array of HashQbj ect s to serve asthe
bucketsin the table. The size
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Figure4-3
A smplehashCode method.

public int hashCode ( String key )
{

int value = 0;

byte array[] = new byte[key.length()];
key.getBytes ( 0, key.length(), array, 0 );
for (int i =0; i <array.length; i++)

{

value += (int)array[i];

}



return val ue;

}

Figure4-4
HashTablejava.

package adt. Chapt er 04;

cl ass HashObj ect

{
String key;
oj ect dat a;
HashObj ect next;
}
public class HashTabl e
{
publ i ¢ HashTabl e()
{
tabl e = new HashQbj ect[ 23];
size = table.length;
rehashSi ze = 4;
capacitylncrenent = 2;
count = 0;
}
public void put( String key, nject data )
{
HashObj ect obj = new HashOoj ect ();
obj . key = key;
obj .data = dat a;
obj .next = null;
bucket Add( tabl e, getBucket(hashCode(key)),
);
count ++;
if( count > size * rehashSize )
rehash();
}
Continues
Figure4-4
Continued.

public Cbject get( String key )
t hrows NoSuchKeyExcepti on
{

HashObj ect place = tabl e[ get Bucket

(hashCode(key)) 1;

obj

whi | e( pl ace. key. conpareTo(key) !'= 0 && pl ace

I'=null )
pl ace = pl ace. next;
if( place == null )
t hr ow new NoSuchKeyException( key );
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return pl ace. dat a;

}
private int hashCode( String key )
{
int value = 0;
byte array[] = new byte[key.length()];
key. get Bytes( 0, key.length(), array, 0 );
for( int i =0; i <array.length; i++)
{
value += (int)array[i];
}
return val ue;
}
private int getBucket( int hash )
{
return hash % si ze;
}

private void bucket Add( HashCbject table[],int
bucket, HashObject obj )

{
obj .next = tabl e[ bucket ];
tabl e[ bucket ] = obj;
}
private void rehash()
{
int newSi ze = size * capacitylncrenent;
HashObj ect newTabl e[ ];
HashQbj ect tnp, obj;
if( newSize %2 == 0 )
newsi ze++;
newTabl e = new HashChj ect[ newSi ze ];
for( int i =0; i < size; i++)
{
tnp = table[i];
Continues
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Figure4-4
Continued.

while( tnp !'= null )

{
obj = new HashObj ect ();
obj . key = tnp. key;
obj .data = tnp. dat a;



obj .next = null;
bucket Add( newTabl e, hashCode
(tmp. key) % newSi ze, obj );
tnp = tnp. next;
}

}. .

size = newsSi ze

t abl e = newrTabl e;

}

private HashObject table[];
private int size;

private int rehashSi ze
private int capacitylncrenent;
private int count;

}

variables also are set to their default values. These variables are used to track the size of the
table and to determine when to "rehash" the entire construct. It isimportant to use an odd
number, preferably a prime, astheinitia size of the table. This helps to optimize the
distribution of keysin the table. We easily could add a constructor and accessor methods to
enable the user to fine-tune the hash table performance, but for this example, we'll leave these
out.

Theonly publ i ¢ methods defined beyond the constructor areput () andget () . The

put () method takesastring key and an object dat a as parameters. A new HashCObj ect
instance is created to hold the key/data pair. The bucket into which this key belongsis
determined by using the hashCode() and get Bucket () methods. Thisisaso the point at
which the counter is bumped. If the total item count exceeds the maximum defined by si ze *
rehashSi ze, thetableisrehashed. Assuming that there is an even distribution of keysto the
buckets, the hash table is rehashed when there arer ehashSi ze entriesin each bucket.

Theget () method is used to retrieve the data by looking up the supplied key. The bucket
number is determined by using the same process asthe put () method. After the appropriate
bucket is determined, the list at that bucket is traversed linearly until aratching key isfound. If
the key is not found in the list, an exception (NoSuchKeyExcept i on) isthrown to indicate
the error condition. Figure 4-5 shows the definition for NoSuchKeyExcept i on Itisnothing
more than a no-op subclass of exception.
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Figure4-5
NoSuchKeyException.java.

package adt. Chapt er 04;

publ i c class NoSuchKeyException
ext ends Exception
{

publ i ¢ NoSuchKeyException( String s )
{

}

super (s);



publ i c NoSuchKeyExcepti on()
{

}

super () ;

Thiskind of subclassing sometimes is used to indicate specific exceptionsinstead of the
generalized Java core Except i on class. Thisalso makesit easier to add more specific
behaviors or information to the exception at alater time.

Note that the private hashCode() method defined in this classis not really necessary in
real-world Java applications. It is provided as an example of one specific method in which to
generate hash code values. The core Java Qbj ect class, which isthe parent to all Java
classes, defines ageneralized hashCode() method for use by all objects. This method
returns alarge int value for any instance of any object in the system. This hash code is not
guaranteed to be unique, but it is guaranteed to aways generate the same value for the same
instance of any object.

Any particular class may override the default method to provide specific hashing functionality.
The St ri ng class, for example, definesits own hashCode() method so that any two
equivalent strings hash to the same value. The default hashCode() method provided by

bj ect would generate different values for different instances of equivalent strings.

The remaining private methods are get Bucket () , bucket Add() ,andr ehash() . The
get Bucket () method calculates the bucket number by returning the modulus of the hash
value provided as an argument and the total number of buckets as defined by si ze. This
guarantees a bucket value between zero and si ze for each hash code.

Thebucket Add() method prepends the new HashQbj ect to thelist in the appropriate
bucket. If thereisno list in the bucket, the new HashQbj ect isused to start the list.
Otherwise, thefirst key inthelist is assigned to the new HashQbj ect 'snext reference, and
the new object becomes the beginning of the list. The table to which we are adding is supplied
to the method to make this method useful to ther ehash() method.
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Ther ehash() method gives the hash table the capability to expand without corrupting the
hash table scheme. Remember that the number of lookups required to find the key is directly
proportional to the number of keysin any given bucket. If 100 keys are spread evenly among 4
buckets, the average number of lookupsis 12.5. The same 100 keys spread evenly between 10
buckets yields alookup average of 5. When the table gets too full, the number of buckets
expands. To accomplish this, a new table must be created (because an array cannot change
size), and al the keys must be reassigned to the new table in the correct new buckets. After the
new tableisfully populated, it replaces the old table, and the size variable is adjusted to
reflect the larger table.

To test the example HashTabl e implementation, we can create a small Java application that
uses this class. The application shown in Figure 4-6 loads 2000 key/value pairs into the hash
table and then accesses them in the reverse order in which they were inserted.



Figure 4-6
HashTest.java

package adt. Chapt er 04;

public class HashTest
{

public static void main( String args[] )

{
HashTabl e tabl e = new HashTabl e();

for( int i =0; i < 2000; i++)

{
table.put("STRING" + i, new Integer( i )

);
}

for( int i =1999; i >=0; i--)
{

try

{

Systemout.printlin( "KEY = STRING " +
i+
" VALUE = " + table.get("STRING " +
i) )
}
cat ch( NoSuchKeyException e )

{
Systemout.println( "KEY NOT FOUND: "

+ e.get Message() );
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The only operation this sample hash table doesn't include is the capability to remove a
key/value pair from the table. Other than that, it is a reasonably usable construct asit stands.
The Java core classes, however, include aHasht abl e classthat is more robust than this
example and includes several other useful features for real-world applications.

The Java Hash Table

The Javacoreclassj ava. uti | . Hasht abl e implements al the functiondity of the hash
table presented in the previous section. The core class a so takes the next step and adds
functionality that can be useful to the programmer. This section discusses this additional
functiondlity.

The JavaHasht abl e class generates the hash code value by using the hashCode() method
internal to each object supplied as a key. The sample hash table supplied a specific
hashCode() method that was a part of the HashTabl e classto be used for all keys. This
method enables the table to convert any object supplied as a key into an appropriate hash code.
It is not necessary to restrict the universe of keysto strings, asin the example. The default



hashCode() method supplied by the Cbj ect class does not guarantee that the hash code
values will be positive. If we are using the default hash codes to index into the array, we must
make the hash code non-negative for the calculation. The Java hash table does this by
performing a bitwise AND on the value that causes the leftmost bit in the int to be dropped if it
is set. Java uses this leftmost bit to determine the sign of an int. The int values from 0x0 to
Ox7FFFFFFF are the positive integers 0 to 2147483647. The int values from 0x80000000 to
OXFFFFFFFF are -2147483648 to -1.

The JavaHasht abl e class uses adata class similar to the HashObj ect inthisexample. It
iscaled the Hasht abl eEnt r y class. In addition to storing thekey, val ue, and next
fields, it also stores the hash code for the key and providesacl one() method.

Figure4-7

The setting of the leftmost bit indicates a negative integer number

int value hexadecimal value binary value

2147483647 7FFFFFFF 011111111111111111111111111111111
- 2147483648 80000000 10000000000000000000000000000000
-1 FFFFFFFF 11111111111111111111111111111111
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In the Java core Hasht abl e class, constructors enable the user to define the size of theinitial
table and the percentage filled before rehashing takes place, as shown in the following code:

public Hashtable(int initial Capacity, float |oadFactor)
publ i ¢ Hashtabl e(int initial Capacity)
publ i ¢ Hasht abl e()

If one or both of these values are not specified, the class defines defaults for them. A default
Hashtable object has 101 buckets and is rehashed when it is 75 percent full. The Java

Hasht abl e class, by default, keeps an average of less than one key per bucket. It isup to the
user of the class to decide the best values for these fields for the implementation. The user
cannot changethel oadFact or andi ni ti al Capaci ty after the table is constructed.

Thesi ze() andi sEnpt y() methods are accessor methods used to determine the actual
number of key/value pairs stored in the hash table, as shown in this sample code:

public int size()
publ i c bool ean i sEmpty()

If there are no elements, i SEnpt y () returnst r ue; otherwise, it returnsf al se. The
si ze() method smply returnsthe value of thecount field.

Thekeys() andel enent s() methods supply an enumeration of the hash table data:

publ i ¢ synchroni zed Enuneration keys()
publ i ¢ synchroni zed Enuneration el enents()

An enumeration, in this context, is atraversable list of objects. Thekeys() method supplies



alist of al keysin thetable, and theel enent s() method suppliesalist of al data objects
stored in the table.

Thecont ai ns() andcont ai nsKey() methods search the hash table for the desired
object, as shown in this code:

publ i ¢ synchroni zed bool ean contai ns((bj ect val ue)
publ i ¢ synchroni zed bool ean cont ai nskKey(Obj ect key)

Thecont ai ns() method traverses the entire table looking for a match to the supplied
argument intheval ue (data) field. The cont ai nsKey() method uses the hash table lookup
to find the desired key object. Both these methods use the objects interna equal s() method
to determine whether a match has occurred.

Theget and put operations are supported much liketheget () and put () methodsinthis
example:
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publ i ¢ synchroni zed Object get(Object key)
publ i c synchroni zed Object put(Cbject key, Cbject val ue)

The JavaHasht abl e class adds more error checking to these operations. The put ()
method checks that the data object isnot nul | . Theget () method returnsnul | if thekey is
not found.

The Java hash tableincludesr enove() and cl ear () methods to enable the deletion of one
or al of the key/value pairsin thetable. Ther enove() method takes akey for an argument.
The key is searched for in the table, and, if it isfound, it is removed from the table returning the
value stored for that key. The method returnsnul | if the specified key is not found. The

cl ear () method removes all the entries in the table but does not affect the capacity:

public synchronized oject renmove(Object key)
public synchronized void clear()

TheHasht abl e class provides ashallow copy cl one method to create a duplicate hash
table. Thestandardt oSt r i ng() method isimplemented to create a string that includes a
complete list of al keys and data values stored in the table. The keys and values are
represented by their internal t oSt ri ng() methods, as shown in this code:

publ i ¢ synchroni zed Object clone()
public synchronized String toString()

Two very handy methods provided by the Hasht abl e classarer eadbj ect () and

wr i t eQbj ect () . These methods enable the user to save and restore the entire contents of a
hash table through a stream. The process of sending an object through a stream is called object
serialization. The methods do not save or restore the actua state of the hash table capacity and
load factor The hash table restored will not necessarily be equivalent to the table saved, except
that both have the complete set of al the key/value pairs. The number of buckets and the
specific buckets in which the entries reside may differ. Using r eadObj ect () and

wr it eQbj ect () givesthe programmer away to make the data stored in the hash table
persistent from one run of the program to the next, as shown in this code:



private synchronized void witeCbject (java.io.
oj ect Qut put Stream s)

private synchroni zed void readCbject (java.io.
Qoj ect I nput St ream s)

Ther ehash() method, for the most part, works the same as that in the example, except that
the capacity is hard coded to be approximately doubled each time the table is rehashed:
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protected void rehash()

Uses of theHash Table

As we've seen, hash tables can be used to store any type of objects, aslong as some unique key
exists for each value stored. The key can be an object of any class, as can the data. One
possible use for a hash table is to store information associated with pointsin a Cartesian
coordinate system. Normally, atwo-dimensional array might be used in this case, but what if
the datais only for a small number of pointsin the map?

In a200x200-pixel map such asthis, it would take atwo-dimensiona array of dimensions
[200][200], or 40,000 data objects, to store the information for all possible points. Even
though all 40,000 objects do not necessarily

Figure 4-8
The output from the PointTest program.
The entire area represents a 200X 200 point grid.
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need to be alocated, the array itself must be allocated from the free memory space. The hash
table can be aviable alternative in this case. It only needs to allocate memory based on the
number of points saved. Figure 48 was generated using the code in Figure 4-9.

Poi nt | nf o isthe data class for the PoinTest application. The source code for Poi nt | nf o
is shown in Figure 4-10.

Figure4-9
PointTest.java.

package adt. Chapt er 04;

i nport java.aw.*;

i mport java.util.Hashtabl e;

i mport java.util.Enuneration;
i mport java.util.Random

public cl ass Point Test
extends Frane

{
publ i ¢ Poi nt Test ()
{
Poi nt p;
Poi ntI nfo pi;
int X;
int y;
Color color[] = { Color.green, Color.blue,
Col or.red, Color.black };
tabl e = new Hashtabl e( 23, 2.0f );
rand = new Randon();
for( int i =0; i <50; i++)
{
x = Math.abs( rand.nextlnt() % 200 );
y = Math.abs( rand. nextlInt() % 200 );
p =new Point( x, y);
pi = new PointInfo( color[ i% ],
(rand.nextInt() %20) + 1 );
table.put( p, pi );
}
resize( 200, 200 );
}
public void paint( Gaphics g)
{
Poi nt p;
Poi ntI nfo pi;

Enuneration e = tabl e. keys();

whi | e( e. hasMoreEl enents() )
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Continued.
{
p = (Point)e.nextEl enent();
pi = (PointInfo)table.get( p );
g.setCol or( pi.getColor() );
g.drawOval ( p.x, p.y, pi.getSize(),
pi . getSize() );
}
}

public static void main( String args[] )

{

Poi nt Test p = new Poi nt Test () ;
p. show);
}

Hasht abl e t abl e;
Random r and;

}

Figure4-10
Pointinfo.java

package adt. Chapt er 04;
i mport java.awt . Col or;

public class Pointlnfo
{
public Pointlnfo( Color color, int size)

{

this.color = color;
this.size = size;

}

public Col or getCol or()
{ return color;

}

public int getSize()

i return size;

public void setCol or( Color color )
{

}

this.color = color;
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public void setSize( int size)

{

Continues
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Figure4-10
Continued.

this.size = size;

}

Col or col or;
int size;

}
Properties as a Subclass of the Hash Table

The Java core classes define the Properties class as an extension (subclass) of the

Hasht abl e class. The Pr operti es classisahashtable in which all the keys and data are
in the form of String objects. This table can be used to store and access configuration and
environment settings, as well as to perform other functions.

A system-level Pr operti es objectisin every Java application or applet. This object
contains the key/value pairs that describe the attributes of the system under which the Java
program is running. This object can be queried to determine any platform-specific information
available. A simple, one-line Java program can demonstrate the properties available. The
source code for the Pr oper t yLi st application follows:

cl ass PropertylLi st

{
public static void main( String arg[} )
{
System get Properties().list( Systemout );
}
}

Figure 4-11 shows the output generated from running this program.

ThePr operti es class hasacouple of important distinctions from its superclass,

Hasht abl e. As mentioned earlier, the Pr oper t i es table holds key/value pairs consisting
entirely of St ri ng objects. These pairs can be loaded directly from atext file opened as a
stream. The text file contains entries of this form:

KEY1=VALUEI
KEY2 VALUE2

KEYn=VALUEN
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Figure4-11



Ouput from the PropertyList application.

-- listing properties --

j ava. honme=C: \ Java\ JDK

awt . t ool ki t =sun. awt . wi n32. Mrool ki t
java.version=internal _build
file.separator=\

I i ne. separator=

j ava. vendor=Sun M crosystens | NC
user . nane=nj enki ns

0s. ar ch=x86

0S. nane=wi ndows 95
java.vendor. url =http://ww. sun. conf
user. di r=C \ Java\ Devel openent\src
java.class. path=.; C\Java\JDK\ i b\ d asses. xi p; C.\ Java. .
java.cl ass. version=45. 3
0s.version=4.0

pat h. separ at or =

user. honme=C: \ Java\ JDK

A text filelike thisis extremely useful for reading or writing configuration files. The
Properti es classalso can supply default values for keys that are not set explicitly in the
table. The Pr oper t i es constructor creates an empty hash table. It also can reference a
defaults hash table, as shown in this code:

public Properties()
public Properties(Properties defaults)

Thel oad() andsave() methods provide the mechanism for reading or writing a text
configuration file (stream), as shown in this code;

publ i c synchronized void | oad(lnputStreamin)
publ i c synchroni zed void save(Qut put St ream out,
String header)

Theget Propert y() method returns the string value associated with the string key
parameter. If thekey isnot found inthe Pr opert i es table, it issupplied by the default
Properties table (supplied to the constructor). If the key is not found in the defaults either, it
usesthedef aul t Val ue parameter to theget Pr opert y() method if oneis supplied:

public String getProperty(String key)
public String getProperty(String key, String defaultVal ue)
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Thepr opert yNanes() method returns an enumeration of all keysin the hash table. The
I'ist() methodtakesaPri nt St r eanr argument to which it dumpsthe entire
Properti es list:

publ i ¢ Enuneration propertyNanes()
public void Iist(PrintStream out)

Thisis handy for debugging purposes, athough the maximum St r i ng sizeit printsis 40
characters. After that, the value St r i ng istruncated, and an ellipsisis appended to the



String.

Using Properties To Pass Command-Line Information

The Javaruntime process (j ava. exe on Windows 95, ] ava on UNIX ) asoistied to the
Properti es class. One of the available command-line arguments to the runtime processis
the - D option. The - D option defines akey/value pair in the system's Pr oper t i es object, as
shown in this example:

java -Dthis.is.ny.property=HELLO HashTest

The runtime will put an entry into the system's Pr oper t i es object with the key
"this.is.ny.property" andthevaue"HELLC". A cal to the following, for example,
returns" HELLC" :

System get Properties() .getProperty("this.is.ny.property")

We can specify as many - D properties on the command line as we want. If the number gets too
large, though, it usually is better to create a configuration file and load a Pr oper t i es object
from thefile.
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Exercises

1. Rewritethe HashTabl e sample classto include the following:

A renove() method to delete a specific key/value pair.

A cl ear () method to remove all keysfrom the table.

A constructor that lets the user set theinitial capacity, rehash size, and capacity increment.
A built-in hashCode() method inherited from the key's class.

A st at s() method that supplies the number of entriesin the hash table as well as the number
of keysin each bucket.

2. Modify the NoSuchKeyExcept i on's message string to include the hash code for the
missing key and alist of al keysin the bucket to which the missing key should belong.

3. Write a Java application that generates a report showing the compl ete set of system
properties (do not use Properti es. | i st (), becauseit only displaysthe first 40
characters of the value).

4. Write a Java application that reads in a configuration file smilar to the following and also
displays the properties set:

NAMVE=ny name

DEFAULTDI R=C: \ TMP
VERSION= 1.0

EMAI L=ny emai | address
WNAENY honme page URL
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Summary
In this chapter, we learned the following:
That a hash table is similar in many ways to a standard array
How to create basic hashing algorithms
How to look up valuesin a hash table based on the key by which it is stored

The process by which ahash table is resized by moving all its entriesinto a new, larger
table

How to use the default JavahashCode() method to generate hash codes
How to usethe Pr oper ti es classto examine the available system information at runtime

How to usethe Pr oper ti es classto use aconfiguration file
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Chapter 5
Linked Lists

In this chapter, we'll examine the linked list. Linked lists are container types that store
collections of datain a sequential order. The concept of a generic data node also is introduced
and explained. The standard linked list operations are covered in detail, and examples are
given for simple add, insert, and delete methods. Both array-based and non-array linked list
implementations are examined and contrasted. List traversal is explained and implemented
usngthej ava. uti | . Enuner at i on interface.
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To demonstrate the use of alinked list, we'll develop a ssimple phone book utility. This utility
will use alinked list to store name information. Each of the linked list implementations
developed in this chapter will be used in the phone book utility to examine the linked list
functionality.

ThelLinked List asa Base ADT

When abstract data types (ADTs) are mentioned to programmers, the first thing that probably
comesto their mindsisthe linked list. A simple linked list isthe basis for many more advanced
ADTs—some of which are examined later in this book. Why is the linked list asimportant as
an ADT? It encapsulates one of the most common programming tasks. the organization and
maintenance of adynamic collection of datain a specified order. The linked ligt, in its many



incarnations, iswell suited to this task.

In Chapter 4, "Hash Tables," we looked at the operations of a hash table and learned that, at a
minimum, thistable includes put and get . In this chapter, we'll define aminimal set of
operations on the linked list to beadd, i nsert, get,anddel et e. Linked lists are empty
when created. While using alinked list, elements can be added to the list end of the list and
inserted at specific locationsin thelist, or later deleted from the list. And, of course, a some
point, the user will need to retrieve the objects stored in the list.

In some ways, alinked list is similar to a vector. Elements are stored in a specific order and
can be accessed in that same order. For the most part, though, all operations on a vector
container are based on the index of the item in the vector array. In a linked list, the operations
are based strictly on sequential accessto the elementsin the linked list instead of on an index.
Access to an element in the linked list is based on linear traversal of the list, smilar to the way
in which the enumeration that the vector'sel enment s() method providesits

hasMor eEl ement s() andnext El ement () methods. Also, Java vectors are based on
storage in a contiguous array. In alinked list, the data stored also can be stored in contiguous
memory, although thisis not a requirement. This brings up one of the possible advantages of
using alinked list: Growing a vector requires the creation of anew, larger internal array and
then the copying of the old datainto the new array. It is possible to implement alinked list in
which the memory for each element is created at the time the element is stored. This ensures
that no extra memory space is wasted.
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Figure 5-1
Four data nodesin alinked list.

A linked list can be represented as a collection of data objects tied together in a chain, with
each object keeping track of the next object in the list. In Figure 5-1, each data object in the
chain knows how to access the next data object. Aslong as we know how to access the first
object in the list, we can access any of the objectsin the list smply by walking the chain! The
job of thelinked list isto create and maintain this data chain and to give users away to walk
the chain.

Now we'll take a minute to define our requirements so far for the linked list. We need the
capability to store a collection of generic dataitemsin order. We must be able to traverse the
list and access each element in that same order. We need to be able to add dataitemsto the list
by appending, prepending, or inserting them so that the order we choose can be maintained. We
also need to be able to delete a particular item from the list.

An Array-Based Linked List

To implement our linked list, we need to create an ordered collection of elements. One way to
achievethisisto use an array as the collection container. Indexing the array provides us with
our mechanism to find the next element in the chain. We simply add 1 to theindex to find the



"next" element. In Java, we can create an array of primitive or reference types with the new ([
]) operators. Aswe saw earlier, though, the Javavect or classisasafe, generic way to
create adynamically sized array. Using the vector gives us the immediate advantage of freeing
us from the need to know the size of the list ahead of time. We also have many of the operations
we will need predefined, such as the capability to insert an object into the vector at a specific
index or to delete a specific item from the vector. Asis often the case, reusing and extending
the Java core classes is a good way to reduce devel opment time and increase productivity.

Now take alook at the smple implementation of a vector-based, singly-linked list classin
Figure 5-2. Here, we provide one public constructor that creates an empty list and initializes
our instance variables. The instance variables are references to the vector we use to store the
data (dat aSet ) and
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Figure5-2
VSLinkedList.java

package adt. Chapt er 05;

i mport java,util.Vector;
i mport java.util.Enumeration;

public class VSLi nkedLi st

{
publ i ¢ VSLi nkedLi st ()
{
current = 0;
dat aSet = new Vector ();
}
public void add( Qoject o)
{
dat aSet . addEl enent (0) ;
current = dataSet.size() - 1;
}
public void insert( Object o)
{
dat aSet.insertEl ement At( o, current );
}
public void delete()
{
dat aSet , r enoveEl enent At (current);
if( current >= dataSet.size () )
current--;
}
public void setCurrent( Object o)
{

dat aSet . set El enent At (o, current);

}



public Chject getCurrent()
{

}

public void reset()

{
}

publ i ¢ bool ean next ()

{

return dataSet. el ement At (current);

current = 0O;

i f( ++current < dataSet.size() )

{

return true;

Continues
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Figure5-2
Continued.

}

el se
return fal se;

}

publ i c Enuneration el ements()

{
}

protected Vector dataSet;
protected int current;

return dataSet. el enents();

}

an int primitive, which we use to keep track of our current position in the linked list,
(current).InFigure5-2, we declare our instance variables in this case to be protected to
allow the extension of our VSLi nkedLi st class. Any subclasses we create that use

VSLi nkedLi st asasuperclass most likely will need access to these variables.

Most of the methodsinthe VSLi nkedLi st classconsist of one statement. Thisis because
we are taking advantage of the vector's functionality to do most of the work for us. Now take a
look at what each method does.

Theadd() method adds an element to the end of the list by using the Vect or .

addEl enent () method. Additionaly, thecur r ent field needsto be adjusted. The field
always should point to the last element that was affected. In this case, that corresponds to the
last element in the list.

Thei nsert () method inserts the new element before the element indicated by the cur r ent
field. Thevector i nsert El enent At () method isused. Thevaueof thecur r ent field
doesn't need to change, because it now indicates the position of the new element.



Thedel et e() method usestheVect or . r enoveEl enent At () method to delete the
element a thecur r ent position in the list. Once again, thecur r ent field doesn't need
adjustment, because it now indicates the position of the element in the list that occupies the
position vacated by the deleted element. If no other references exist to the deleted element, its
memory is freed on the next pass of the garbage collector.

Theset Current () method is used to update or replace the datain the cur r ent position
in thelist. The element isreplaced by using the Vect or . set El enent At () method. The
reference to the displaced element islost to the list and, like the deleted element, its memory is
freed on the next pass of the garbage collector if no outside references exist to the e ement.
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Theget Current () method isused to retrieve the element stored at the current position in
thelist. It usesthe Vect or . el enent At () method to return the object. It isthe
responsibility of the caller of the method to cast the returned object to the appropriate type.

Ther eset () method andthenext () method usually work together. They enable the user
to manipulatethecur r ent field of thelinked list. Ther eset () method forcescur r ent to
thefirst position in thelist. Thenext () method then isused to move the cur r ent position
forward in increments of 1. Users therefore can walk through the list and perform any of the
other operations they want. next () also returns a boolean value to indicate whether it has
reached the end of thelist. If next () returnsf al se, current isset to the position of the
last element in thelist.

Putting the Linked List to Work

Now that we've developed alinked list class, it'stime to put it to work. In this section, we are
going to write an elementary Java application we can use to put the linked list through its
paces. We will develop an address book application that keeps track of names and prints a
listing.

Because the address book will be nothing more than a specific implementation of our linked
list, we will derive the Addr essBook classdirectly from VSLi nkedLi st .

Remember that a subclass inherits all the public and protected methods of its superclass. So,
for the most part, all we need to do iswrite the mai n() method. Thisisan application rather
than an applet. We will not need to write any HTML code, and we won't need to use a browser
to run the gpplication. For this example, we are not interested in presenting a nice GUI
interface, so we can just use the console for output.

To run the test, we can have our address book perform the following steps:
1. Create alinked list.

2. Add alist of namesto thelist.

3. Print the entire lit.

4. Verify that thelist is printed in the same order as entered.



5. Insert anew name at an arbitrary location in the list.

6. Reprint and verify the insertion.
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7. Delete adifferent name from thelist.
8. Reprint and verify the deletion.

The Addr essBook classmai n() method creates the new Addr essBook object and runs
right through the steps as outlined. Five names are added to the phone book (without phone
numbers), and the list is printed. To print the list, though, we need to walk through the entire
chain and print each name as we go. Luckily, the linked list class has just the thing we need; the
reset () andnext () methods are made for this type of work. We use these methods as the
basisfor our pri nt () method.

Figure5-3
AddressBook.java.

package adt. Chapt er 05;
i mport java.util.Enumeration

public class AddressBook
ext ends VSLi nkedLi st
{

public static void main( String args[] )
throws java.io.| CException
{

Addr essBook addr Book = new Addr essBook() ;
addr Book. add( "Ji m Jones" );

addr Book. add( "M ke Snmith" );

addr Book. add( "Patty Thonpson" );

addr Book. add( "Joan Barker" );

addr Book. add( "Joe Bl ock" );

addr Book. print ();

addr Book. reset () ;

while( !'( ((String)addrBook.getCurrent()).equals
( "Joan Barker" ) ) )

{

}
addr Book. i nsert ("John Smth");

addr Book. print ();

addr Book. next () ;

addr Book. reset () ;

while( !'(((String)addrBook. getCurrent()).equal s(
"Mke Smth" )) )

{

}
addr Book. del et e();

addr Book. next () ;
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addr Book. print ();
Systemin.read();

}

public void print()

{

reset();

do
{

Figure5-4

The output for our address book application.

Ji m Jones

M ke Smth
Patty Thonpson
Joan Barker
Joe Bl ock

Ji m Jones

M ke Smth
Patty Thonpson
John Snmith
Joan Barker
Joe Bl ock

Ji m Jones
Patty Thonpson
John Snmith
Joan Barker
Joe Bl ock

Systemout.printin( getCurrent() );
} while( next() );
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Then we walk through the list to find an entry that matches "Joan Barker". After "Joan Barker"
issetto cur r ent , insert anew node for "John Smith". Reprint the list with thepr i nt ()

method.

Finally, we reset the list again and walk through it to find "Mike Smith". When we find his
node, we delete it and again call pri nt () . Hereisthe complete class definition for the

Addr essBook application:
Figure 5-4 shows the output for this program.

Thislinked list was very easy to implement, because we took advantage of the vector's built-in

functionality, reducing our development time. In doing so, however, we a so inherit the



overhead of the vector. The vector-based implementation of the linked list has severd
disadvantages. First, consider the impact of the implementation on system resources. The two
resources impacted by our linked list are memory and CPU use. By using aJavavect or
object as our underlying mechanism, we inherit not
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only its functionality but also its overhead. In Chapter 3, "Arrays, Vectors, and Sorting," we
examined the way in which the Vect or class allocates memory for the storage of its elements.
If we do not actively want to manage the memory of the vector, we will have to live with the
default behavior This means that every time the vector runs out of preallocated memory, its size
doubles. Depending on our list, this could lead to alot of allocated but unused memory.

We could have the list internally manage the size of the vector, but that would have the side
effect of causing the vector to perform alot of ar r aycopy() operations (see"Vectors
versus Arrays' in Chapter 3). This process could be very time-intensive and could bring about
less than optimal performance in our linked list. The insert operation aso will aways cause an
arraycopy() tooccur. Again, we could program around this behavior by always adding to
the vector sequentially and keeping an index for the next node in the node itself. If we do that,
however, we give up the capability to use much of the built-in functionality of the vector.

To summarize, it appears that using an array-based implementation of our generic linked list
might not be the most efficient approach. Another dternative is to use areference-based
implementation to address these issues and develop a better, more efficient, and more easily
extensible linked list. In the next section, welll take alook at such an approach.

Nodes

Before we jump ahead to the new linked list, take a quick look back to the HashQbj ect from
Chapter 4. There, we used the HashObj ect to make alist in each bucket in the hash table.
Thisisredly alinked list in its simplest form. All the HashObj ect did was chain together
data elements into alinked list construct. The HashCbj ect isaconstruct called a node. We
can consider a node to be one part of alarger conglomerate whole. Individual computersin a
network sometimes are referred to as nodes.

The basic data storage container in the linked list isthe node. A linked list node contains, at a
minimum, a placeholder for our stored data and some mechanism to reference the next nodein
the chain. A node container also provides a layer of abstraction between the user and the
implementation. This gives us more flexibility in designing our implementation by
disassociating the data from the container. In other words, we can redesign the node in any way
we want in the future without affecting the code that uses the linked list.
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A node also issimilar in concept to the Java core class vector element we examined in Chapter
3. Unlike astandard array, the user has no direct accessto the individual nodes. The user
interacts with the data through accessor methods defined in our node API. Figure 5-5 shows a
simple node base class.

Figure5-5



SLNode.java.

package adt. Chapt er 05;

cl ass SLNode
i mpl ements d oneabl e

{
protected SLNode()
{
data = nul|;
}
protected SLNode( (hject data )
{
set Dat a(dat a) ;
}
protected void setData( Object data )
{
this.data = data;
}
protected Cbject getData()
{
return data;
}
protected void set Next( SLNode next )
{
this. next = next;
}
protected Cbject getNext()
{
return next;
}
publ i ¢ bool ean equal s( Cbject 0 )
{
return data. equal s(0);
}
private Object data;
private SLNode next;
}
Page 87
Figure 5-6
shallowCopy versus deepCopy.
cl ass Foo
{

public static Foo shall owCopy( Foo a )
{

Foo b = new Foo();



b.sl = a.si; /1 Copy the
reference
return b;

}

public static Foo deepCopy( Foo a )
{

Foo b = new Foo();

b.s1l = new String( a.sl1 ); // Copy the object
(String)
return b;

}

String si;
}

Thefirst thing we might notice about the SLNode (Single Link Node) classisthat we did not
declare it to be public. According to the Java visibility rules, this classis accessible only to
classes in the same package. We limit the visibility of our Node class, because the mechanism
we use for data storage and manipulation is implementation specific. These types of details
should be hidden from the end user of our linked list. Thiskind of encapsulation givesthe
programmer the freedom to change the implenentation later without affecting any existing code
that usesthe linked list.

We have declared that the SLNode class implementsthe Cl oneabl e interface. The

Cl oneabl e interface in Java defines no methods; it smply alows the SLNode object to be
copied using the standard cl one() method inherited from the Gbj ect class. Any class can
declare that it implements Cl oneabl e to enablethe use of thecl one() method. The
default Qbj ect . cl one() isanative (operating-system dependent) method that performs a
shallow copy of the instance object. A shallow copy means that each member is copied into the
corresponding member of the new class instance. In other words, the reference to amember is
copied, but anew copy of the member object is not created (see Figure 5-6). We can override
thecl one() method to specidlize the cloning behavior if it becomes necessary to have a
deep copy. A deep copy is a copy in which the members of the class are copied as well.

The class provides two constructors: a default constructor to create an empty node and a
constructor to create an SLNode and initialize the data
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field. Neither of the constructors needs to be declared as public, because the class cannot be
instantiated outside of the package.

SLNode usesthe Obj ect classastheinternal datatype. Asthe base classfor al Java
classes, this provides the generic behavior we want inan ADT. Any Javareference or array
type can be stored in our SLNode. Primitive types can be stored in our SLNode by using the
standard Java wrapper classes. We declare the data field member aspr i vat e to provide
data encapsulation to the class. All access to the data field must come through the accessor
methodsget Dat a() andset Dat a() .

Also, an instance variable next isused to store areference to the next nodein the chain. In



our vector-based implementation, we were using the vector's built-in indexing to keep track of
the position. SLNode also provides two accessor methods to allow outside access to this
field. So now we have a means to reference the next node in the chain without having to rely on
the vector's behavior.

A Reference-Based Linked List

Now that we have created the data storage mechanism for our linked list, we need to chain
together these nodes to create our linked list. Thistype of linked list iscalled a
reference-based linked list. The name stems from the fact that the node objects use a reference
to track the next object in the list. To complete the linked list, we need to provide the add,
insert, and delete functionality.

Now take alook at the SLi nkedLi st class; it provides a single constructor to create an
empty SLi nkedLi st and initialize the instance variables. The only instance variables
defined in this case are head and cur r ent , which are both SLNodes. head keeps track of
the first node in the chain, and cur r ent isused as an internal placeholder. Now it'stimeto
take alook at the mest of the linked list. Take alook at each of the operations and their
implementations for the linked list in Figure 5-7.

Standard Linked List Operations Revisited

The add() method is used to append a data element to thelist. It first needsto create a new
node object to hold the data. Next, we need to determine whether the list isempty. If head is
nul | , we haven't yet added
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Figure5-7

SLinkedList.java.

package adt. Chapt er 05;

i mport java.util.Enumeration;
public class SLinkedLi st

{ ?Ubl i ¢ SLinkedLi st ()

}

public void add( Qoject o)
{

head = nul | ;

SLNode newNode = new SLNode(0);

if( head == null )
{

current = head = newNode;
return;

}

current = head;



while( current.getNext() !'= null )

current = current.getNext();
current. set Next ( newNode );
current = newNode;

}
public void insert( Cbject o)
{
SLNode newNode = new SLNode(0);
SLNode tnp = current. get Next ();
current. set Next ( newNode );
newNode. set Next ( tnp );
}
public void delete()
{
SLNode tnp = head;
if( current == head )
{
current = head = head. get Next () ;
return;
}
while( tnp.getNext() !'= null )
{
if( tnmp.getNext() == current )
{
tnp. set Next ( current.getNext() );
Continues
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Figure5-7
Continued.
current = tnp.getNext();
return;
}
}
}
public void setCurrent( OCbject o)
{
current.setData(o);
}
public Cbject getCurrent()
{
return current.getbData();
}
public void reset()
{

current = head;

}



publ i ¢ bool ean next ()

{

current = current.getNext();
if( current == null )
return fal se;
el se
return true

}

publ i c SLEnuneration el enents()

{
}

protected SLNode head;
protected SLNode current;

return new SLEnunerati on( head );

any nodes; all we need to do isset head and cur r ent to reference the new node we created.
We awayswant to set cur r ent to reference the last node we affect. This enables us to keep
track internally of where we are. We will find this especially useful in thei nsert () and
del et e() methods. If thelist is not empty, we need to find the end of the list and add the
node there. We accomplish this by setting cur r ent to the start of thelist (head) and walking
thelist until next isnul | . When wefind the end of thelist, we simply let next refer to the
new node.
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Thei nsert () method isalittle different. It is used to insert a data element into the list at the
current position. We still need to check to see whether the list isempty. If it is, the usersreally
aren't inserting—they are adding. Thisis not an important enough distinction to the users of the
linked list, so there is no need to throw an exception. Well just handle the situation internally
by calling theadd() method. We could just duplicatetheadd() codeintheinsert, but if we
change the implementation of add() in the future, we will have to propagate that change to

i nsert () aswdll. If thelist isnot empty, we need to break the existing chain at the current
node and rejoin it with our new node in place, as shown in Figure 5-8. We assume that the user
has positioned cur r ent in the proper location in the list and wants to insert immediately
before the node that cur r ent references.

Thedel et e() method aso is concerned with checking for an empty list. The only case
where cur r ent should ever equal nul | iswhen thelist isempty. We just as easily could
check for head == nul | . Because the operation is based on the position of the cur r ent
node, though, we'll check cur r ent to be consistent. It also is possible that the user is deleting
the first node in the chain. This case requires specia handling as well, because we have to
reset the head reference. After we move the head reference to head's next, the list loses all
referencesto the old head object, and the garbage collector should free its memory on the next
pass.

Removing the head nodeis a special case, though; now look at a normal deletion. Normal
deletion presents us with a specia problem of its own. To delete a node, we need to break the



chain around the node we want to delete and restore the chain excluding the deleted node. To
do this, we need to know what the previous node was to restore the link! But our node only
keeps track of the next node in the series. To get around this problem, we need to walk the list
until we find the node where next refersto cur r ent . Then we set the previous node's
next tocurrent'snext,andcurrent dropsout of the chain. All that remainsisto reset
current torefertotheold curr ent 'snext , and we're done.

i 1

Node W ’-.,. Node I—..- Node j—..-: Node J

1

= [Node

Figure 5-8
A new nodeisinserted into the list by rearranging
the references of the previous node.
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Because we have an internal placeholder (cur r ent ), and we baseour i nsert () and

del et e() operations on the "current” node, we need to provide a mechanism for the user to
walk through the list to find the desired node. To provide this functionality, we've supplied
three public methods: r eset (), next () ,andget Curr ent () . The user can use these
three methods in combination to identify any nodein the list. Thisis exactly like our
vector-based implementation.

The procedure starts by resetting the list. Then, it repeatedly tests the current node and steps to
the next node if necessary. All three methods are extremely simple. Ther eset () method just
setscur r ent tohead so that we can begin at the start of thelist. Theget Current ()
method returns a reference to the data stored in the current node, and next () moves

cur r ent by one node after first checking to see that we are not going to step off the end of the
list. This extracheck inthenext () method aso ensuresthat cur r ent will never be nul |
unlessthelist is empty.

We've also supplied aset Cur r ent () method to enable the user to update the data at any
node using the same type of procedure, and we havean i sEnpt y() method to enable the user
to determine whether the list is, in fact, empty. We determine that the list is empty if head
referstonul | .

List Traversal

One of the advantages of storing datain alinked list isthat it is relatively easy to perform a
repetitive operation on the data stored in this fashion. This kind of processing is commonly
known aslist traversal or enumeration. In Javaterminology, it is called enumeration, and an
Enuner at i on interface is defined for implementation by any class for which enumeration is

appropriate.

Remember that a Java interface defines only the names and the signatures of the methods



required. It is up to the implementing class to actually define the method. We can use two basic
approaches to implement the Enuner at i on interface for alinked list. We can declare that
our linked list implemented the interface internally, or we can define a separate class in which
the sole purpose is to enumerate alinked list object.

If we opt to implement the interface within the linked list, we will have to create another
placeholder that issimilar to cur r ent , or we'll need to usecur r ent asour enumeration
placeholder. It's not agood ideato reuse cur r ent in this capacity, because this might
interfere with other opera-
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tions on the list and could confuse the linked list user. After we define this additional
placeholder, we just need to implement the two methods defined by the interface:
hasMor eEl enent s() andnext El enent () .

For this example, we'll use the second method. It's a better object-oriented solution, because it
enables us to disassociate the enumeration from the linked list implementation. It aso gives us
the capability to create multiple instances of the enumeration and smplifies the further
extension of the Enuner at i on class.

All we need to do to create the SLEnuner at i on classis provide the capability to walk the
data chain and determine when we are finished.

Figure 5-9
SLEnumeration.java.

package adt. Chapt er 05;
i mport java.util.Enumeration

public class SLEnuneration
i mpl ements Enunerati on

{
publ i c SLEnunerati on( SLNode first )
{
if( first == null )
t hr ow new Nul | Poi nt er Excepti on("List is
enpty");
current = first;
}
publ i ¢ bool ean hashor eEl enment s()
{
return (current !'= null );
}
publ i c Cbject nextE ement ()
{

oject o = current.getData();
current = current. getNext();
return o;



public void print()

{
whi | e( hasMor eEl ements() )

{
}

Systemout.println( nextEl ement() );

}

SLNode current;
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The question is how to access the linked list to provide this functionality in a separate object.
Well, we know that alinked list isreally just a collection of nodes in which each node knows
how to access the next. Again, aslong as we have accessto the first node in the list, we have
accessto al nodesin thelist, but in one direction only—forward. This satisfies the
requirements of the Enuner at i on interface, which is defined to walk through the
enumeration once and only once. So, al our SLEnuner at i on class needs to have is access
to thefirst nodein the list: head. The class constructor therefore is defined to take an SLNode
as an argument.

It might be reasonably expected that the enumeration is used to invoke some common function
on each nodein thelist in turn, such as printing. The user could do that by implementing
something similar to Figure 5-10.

In fact, because thisis likely to be a requested feature, we defined the method in the
Enumeration class.

Using the Reference-Based Linked List

Now we can run an application such as Addr essBook with our new reference-based linked
list. But first, we'll spruce up the Addr essBook application alittle. The first thing we should
do is add address entries to the data. After all, it is an address book. A smple st ri ng object
no longer is sufficient or practical to use when storing compound data. We also can make the
address book interactive. We need to define an Addr essEnt r y classto use as a data object.

The Addr essEnt r y class has two constructors. One creates an empty Addr essEnt ry,
and the other fillsin al the fields. The datafields are for the first name, last name, address,
city, state, and ZIP code. Accessor methods

Figure5-10
Using Enumeration to print alinked list

SLi nkedLi st |ist = new SLi nkedLi st ();

Enuneration e = list.elenents();
whi | e( e. hasMoreEl enents() )

{
}

Systemout.println( e.nextEl ement() );
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Figure5-11
AddressEntry.java.

package adt. Chapt er 05;

public class AddressEntry

{

publ i ¢ AddressEntry()

{
this.first = null;
this.last = null;
this.address = null;
this.city = null;
this.state = null;
this.zip = null;

}

public AddressEntry( String first, String last, String
address, String city, String state, String zip )

{
this.first = first;
this.last = | ast;
t hi s. address = address;
this.city = city;
this.state = state;
this.zip = zip;
}
public String getFirst()
{
return first;
}
public String getlLast()
{
return | ast;
}
public String get Address()
{
return address;
}
public String getCGty()
{
return city;
}
public String getState()
{
return state;
}

Continues
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Figure5-11
Continued
public String getZp()
{
return zip;
}
public void setFirst( String first )
{
this.first = first;
}
public void setLast( String last )
{
this.last = | ast;
}
public void set Address( String address )
{
t hi s. address = address;
}
public void setGty( String city )
{
this.city = city;
}
public void setState( String state )
{
this.state = state;
}
public void setZip( String zip )
{
this.zip = zip;
}
publ i ¢ bool ean | ast Equal s( String |last )
{
return this.last.equals( last );
}
public String toString()
{
return first +" " + last + "\n" +
address + "\n" +
city +", " + state + " " + zip;
}

private String first;
private String |ast;
private String address;
private String city;
private String state;



private String zip;
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encapsulate and give us safe access to the datafields. Thereis aso a method to enable the user
to compare for amatch on the last name field. A more complete implementation would have
comparison methods for al the fields.

Now we modify the Addr essBook classto use the new data object and display an
interactive menu. One important thing to mention isthat there is an additiona field in the

Addr essBook?2 class. The Dat al nput St r ear. in isused to allow the class to process
the Syst em i n stream as buffered line input. We used Syst em out previously to print
output to the console. Syst em i n isthe standard console input stream (a

j ava. i o. | nput St r ean object) supplied to each application. An | nput St r ean allows
for only afairly primritive input, though, so we've created a Dat al nput St r ean that will do
some of the work in processing the stream. The net effect is that the Addr essBook2 class
can usether eadLi ne() method to processinput. Here is the complete class definition for
the Addr essBook2 application:

Figure5-12
AddressBook?2 Java.

package adt. Chapt er 05;

i mport java.util.Enumeration;
i mport java.io.*;
public class AddressBook2

{
publ i ¢ Addr essBook?2()

{
list = new SLi nkedList();
in = new Datal nput Strean{ Systemin );

}

public void menu()

{
bool ean i sDone = fal se;
String choice = "";

whil e( !isDone )

{
Systemout.println("A Add Entry");
Systemout.printin("F Find Entry");
Systemout.println("l Insert Entry");
Systemout.printlin("D Delete Entry");
Systemout.printin("P Print List");
Systemout.printin("Q Quit");
Systemout.print( "Choice: " );
System out. flush();
try
{

choice = in.readLine();

Continues
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Figure5-12
Continued.
}
catch( | OException e )
{
Systemout.println( "Input Exception
"te);
}
swi t ch(choi ce. char At (0))
{
case 'a':
case 'A':
nmenuAdd() ;
br eak;
case 'f':
case 'F':
nmenuFi nd() ;
br eak;
case 'i'
case 'I'
nenul nsert();
br eak;
case 'd':
case 'D:
nenubel et e() ;
br eak;
case 'p':
case 'P:
nmenuPrint ();
br eak;
case 'q':
case 'Q:
System exi t (0)
}
}
}
private AddressEntry getEntry()
{

AddressEntry entry = new AddressEntry();

Systemout. print("First nane: "),
Systemout. flush();

try
{
entry.setFirst( in.readLine() );
}
catch( | OException e )
{

Systemout.printlin( "Input Exception: " +
e);



Continues

Figure5-12
Continued.

System out. print("Last nane: ");
Systemout. flush();

try

{
entry.setlLast( in.readLine() );

}

catch( | OException e )

{
Systemout.println( "Input Exception
e);

}

Systemout. print("Address: ");
System out. flush();

try

{
entry. set Address( in.readLine() );

}

catch( | OException e )

{
Systemout.println( "Input Exception
e);

}

Systemout.print("Gty: ");
System out . fl ush();

try

{
entry.setGty( in.readLine() );

}

catch( | OException e )

{
Systemout.println( "Input Exception
e);

}
Systemout.print("State: ");
System out. flush();

try

{
entry.setState( in.readLine() );

}

catch( | OException e )

{
Systemout.println( "Input Exception
e);

}

Systemout.print("Zip: ");
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Figure5-12
Continued.

}

System out . fl ush();

try
entry.setZp( in.readLine() );

catch( |1 OException e )
{

Systemout.println( "Input Exception:

e );

}

return entry;

public void menuAdd()

{
}

list.add( getEntry() );

public void nenuFind( )

{

String nane;

Systemout. print("Last name: ");
System out. flush();

try

{

name = in.readLine();

catch( |1 OException e )

{
Systemout.println( "Input Exception:
e);
return;
}
list.reset();
whi | e(
((AddressEntry)list.getCurrent()).|astEqual s(
name )
I=true )
{
if( list.next() == false )
{
Systemout.println("Nane " + nane + "
found.");
return;
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Systemout.println( (AddressEntry)list.
getCurrent() );

Continues
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Figure5-12
Continued
}
public void nenulnsert()
{
list.insert( getEntry() );
}
public void nenubel et e()
{
list.delete();
}
public void nenuPrint()
{
list.elements().print();
}
public static void main( String args[] )
{

Addr essBook2 book = new AddressBook2();
book. menu() ;

}

Dat al nput Stream i n;
SLi nkedLi st |ist;

}

The added functiondlity in this version of the Addr essBook makesit quite abit larger than
the original. Because this version is interactive, we must generate input prompts for the user
and process that input accordingly. For Addr essBook?2, we've added a nmenu() method to
give the user the available choices. After the user inputs a choice, we processit appropriately.
Thereis a separate method for each of the menu choices except for "Quit", which causes the
application to terminate. Also, aget Ent r y() method is used to prompt the user for the
detailsrequired in the Addr essEnt r y when we need to create anew entry in thelist.

One of the advantages of object-oriented programming and design is the capability to easily
replace the underlying implementation of an object. In the case of the Addr essBook
applications, it would have been atrivial matter to substitute the vector-based linked list for
the reference-based linked list, or vice versa. Thiskind of flexibility is especialy
characteristic of the Javalanguage. Javas interfaces encourage the definition of standard APIs.
The implementations of these APIs easily can be substituted for one another, which leadsto a
more flexible, extensible system.
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Exercises

1. Create alinked list implementation from scratch using Java arrays. Do not usethevect or
class.

2. Createasimple linked list class that is extended from SLNode instead of containing alist of
SLNodes.

3. Extend the implementation of Addr essBook2 to do the following:

Supply mechanisms to look up by first name, last name, address, city, state, or ZIP code.
Allow filtered printing (only list cities that match "Chicago”, for example).
Automatically insert the entries in aphabetical order by last name.
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Summary
In this chapter, we learned the following:
Thelinked list isavery commonly used ADT.
Linked lists share some common attributes with vectors, arrays, and hash tables.
We can implement alinked list construct by using the Vect or class as a base.
We learned what anode is and how to use it with the linked list.
We learned about thej ava. | ang. Cl oneabl e interface.
We |earned the difference between a shallow and a deep copy.
We implemented a reference-based linked list construct using node objects.
We looked at using list traversal and enumeration in linked lists.
We examined extending the standard j ava. uti | . Enumer at i on classto make it more

useful.
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Chapter 6
Circular and Doubly-Linked Lists

This chapter covers afew of the extensionsto the linked list class. Better superclasses are
defined, and examples explain the implementation of doubly-linked and circular-linked lists.



The impact of performance and flexibility is explored in more complex implementations. The
integration of the quicksort algorithm developed in Chapter 3, "Arrays, Vectors, and Sorting" is
one of the exercises presented near the end of this chapter.
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Extensible Linked List Superclasses

In the last chapter, we examined the singly-linked list and looked at classes for nodes,
enumerations, and the linked list itself. Unfortunately, the design of these classesisn't as
flexible asit could be. One reason for thisis that some implementation-specific methods and
fields are included in the classes to simplify and clarify the explanations.

In the introduction to Chapter 5, we learned that we can use the linked list as the basis for
severa other abstract datatypes. The ADTs covered in the next few chapters are all
derivatives of the linked list class. It therefore is appropriate to define some truly generic
linked list superclasses from which to extend.

We will start out with a new Node superclass (see Figure 6-1). One of the things that is going
to differ in the linked list derivativesis the num-

Figure6-1
NodejavaA

package adt. Chapt er 06;

cl ass Node
i mpl ements d oneabl e

{ Node()
{ data = nul|;
i\lode( oj ect data )
{ set Dat a(dat a) ;
}
voi d setData( Object data )
{ this.data = data;
}
oj ect get Dat a()
{ return data;
}
publ i ¢ bool ean equal s( Cbject 0 )
i return data. equal s(0);

protected Cbject data;
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ber and functionality of the links. The SLNode contains areference to the next node in the list,
appropriately called next . Some of the linked list types we will look at will not encompass
the concept of "next", per se. To alow for flexibility in defining the links, our Node superclass
will not specify any link at al. It will be left to the subclasses to define and implement the
appropriate link mechanism for the class.

The new Node classisvery similar to the SLNode class. It hasan Cbj ect asadatafield
that, in this case, is protected instead of private asit wasin the SLNode. The data Cbj ect
must be declared as protected to alow the subclasses access to the data field in the superclass.
All the public accessor methods for the data field are the same asin the SLNode. The default
equal s() method isretained as well to allow for data field comparisons.

The next class that has been rewritten to provide a generic superclassisthe

SLEnuner at i on class (see Figure 6-2). Its purpose isto provide the traversal functionality
in thelist. The new superclassiscaled Li st Enuner at i on. Likeits predecessor, it
implementsthe Enunrer at i on interface from the core Java utility package.

We should note some important changesinthe Li st Enumer at i on class. The object passed
to the constructor in the old SLEnuner at i on classwas of type SLNode. In the new class, it
isnow of type Node, our new node superclass. We want to use the generic Node asthe
parameter so that all the derived enumeration classes will share acommon root. Most of the
functionality of the enumeration is supplied by this superclass using the Node class. The only
thing the subclasses will need to do isimplement the next El enent () method.

Thenext El enent () method has been declared as being an abstract method. The

abst ract keyword in aJavamethod declaration indicates that the definition of the method is
not provided. Thisforces the user to create a subclass to define the method with the signature
provided. Thisissimilar in function to a Java interface declaration. In an interface, all the
declared methods are abstract and require a classto "implement" the interface by defining the
method bodies. Trying to instantiate an abstract class directly within a Java application
generatesaRunTi meExcept i on. Inthis case, we declare the method abst r act because
thenext El ement () method is supposed to follow the link to the "next" element in the list.
No link mechanism is defined in the Node class, though. We expect Node to be subclassed to
implement the link functionality, which will determine how the "next" element is reached.

The biggest change is the transformation of the SLi nkedLi st classtotheLi nkedLi st
class. Itisnolonger aclassat al. Li nkedLi st defines an interface rather than aclass. The
Javainterfaceisroughly equivalent to aclassin
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Figure6-2
ListEnumeration.java.

package adt. Chapt er 06;

i mport java.util.Enuneration;



public abstract class ListEnuneration
i mpl ement's Enunerati on

{
publ i c ListEnunmeration( Node first )
{
if( first == null )
t hr ow new Nul | Poi nt er Exception("List is
enpty”);
current = first;
}
publ i ¢ bool ean hashor eEl enent s()
{
return (current !'= null );
}

publ i c abstract Object nextEl ement();

public void print()

{
whi | e( hasMor eEl enents() )
{
Systemout.println( nextEl enment() );
}
}

Node current;

}

which all methods are declared to be abst r act . The big differences between an interface
andan abst r act classrevolve around inheritance. An abst r act class, like all classesin
Java, isasubclass of Qbj ect . It inherits al the members of Obj ect , aswould any other
subclass. An interface, on the other hand, is not a class and so does not inherit any of the
properties of the Gbj ect class. Theinheritance limit of one direct superclass for each class
does not apply, because an interface merely lists required methods that are present in the class.
A classis alowed to implement as many interfaces as desired.

In this case, the interface defines the minimum functionality that alinked list must provide. The
interface also defines the signature for each of the required methods. By using Javainterfaces,
the devel oper ensures compliance with a particular standard API. TheLi nkedLi st interface
(see Figure 6-3) defines aminimally required seven specific methods that must be implemented
to conform with the linked list specification.
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Figure6-3
LinkedList.java.

package adt. Chapt er 06;

public interface LinkedLi st

{
public void add( oject o0 );
public void insert( Object 0 );



public void delete();

public void reset();

public void setCurrent( Object o0 );
public Cbject getCurrent();

publ i c ListEnuneration el enents();

}

The most important thing we should keep in mind hereis that we don't expect the Node,

Li st Enuner ati on, or Li nkedLi st to be used aone. Asamatter of fact, because they
are abstract, the Li nkedLi st andLi st Enuner at i on are not ableto be used directly. An
abstract class must be subclassed to be used at all.

Node, Li st Enuner ati on, and Li nkedLi st comprise the basic building blocks welll
use to create the linked list derivativesin this and the following chapters. Now that we have
this foundation, take alook at the first of the linked list derivatives: the doubly-linked list.

A Doubly-Linked List

In Chapter 5, we looked at the singly linked list. Although these lists are quite useful under
certain circumstances, singly-linked lists do have disadvantages. Every access must start from
the head of the list, and movement through the list is unidirectiona. This makes some of the
operations, such as searching and appending on the list, less convenient than they could be
otherwise. The doubly-linked list isavariation of the linked list that doesn't have these
disadvantages. It provides bi-directional linksin the list. These links make it possible to
traverse the list in either direction—forward or backward.

In Chapter 5, we learned that, when working with the SLi nkedLi st class, that the

del et e() method needsto identify the nodein the list immediately preceding the node to be
deleted. Thelist hasto be traversed from the beginning each time to find the node that precedes
the node to be deleted. The preceding node is required so that we can save the next reference
from the deleted node to restore the chain. Traversing the list from the beginning to get a
reference to the preceding node can be
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Figure6-4
DLNodejava.

package adt. Chapt er 06;

cl ass DLNode
ext ends Node

{
DLNode()
{
super () ;
next = prev = null
}
DLNode( Obj ect data )
{

super (dat a) ;
next = prev = null



}

voi d set Next ( DLNode next )

{
t hi s. next = next;
}
DLNode get Next ()
{
return next;
}
voi d set Prev( DLNode prev )
{
this.prev = prey;
}
DLNode get Prev()
{
return prev,
}

private DLNode next;
private DLNode prev;

}

avoided in a doubly-linked list, beause each node can directly identify the preceding node as
well as the following one.

We will create the Node class for a doubly-linked list, DLNode, by subclassing our new
Node class (see Figure 6-4). The datafield and all the accessor methods of DLNode are
available from the Node superclass. In addition, DLNode implementsthe link functionality for
both forward and backward links. Thisis accomplished by defining two DLNode references
pr ev and next , aswell astheir accompanying accessor methods.
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Theset Next () andget Next () accessor methods maintain the forward link to the node.
Theset Prev() andget Prev() accessor methods maintain the new backward link. We
now have the mechanism by which we can walk forward or backward through the linked list.

Now take alook at the doubly-linked list classin Figure 6-5.

Figure 6-5
DLinkedList.java

package adt. Chapt er 06;
import java.util.Enuneration

publ i c class DLi nkedLi st
i mpl ement s Li nkedLi st
{

publ i c DLi nkedLi st ()
{

head = nul | ;



}
public void add( oject o)

{
DLNode newNode = new DLNode(0)
if( head == null )
{
current = head = tail = newNode;
return,
}
current = tail;
current. set Next ( newNode );
newNode. set Prev( current );
tail = current = newNode;
}
public void insert( Cbject o)
{
DLNode newNode = new DLNode(0)
DLNode prev;
if( head == null )
{
current = head = tail = newNode;
return,
}
prev = current.getPrev();
Continues
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newNode. set Next ( current );
newNode. set Prev( prev );
if( prev !=null )
prev. set Next ( newNode );
current.setPrev( newNode );
if( current == head )
head = newNode;
current = newNode;
}
public void delete()
{

DLNode prev;
DLNode next;



if( current == null )

return;
if( current == head )
{
current = head = head. get Next () ;
head. setPrev( null );
return;
}
if( current == tail )
{
current = tail = tail.getPrev();
tail.setNext( null );
return;
}

prev = current.getPrev();
current = next = current.get Next();

prev. set Next (next);
next . set Prev(prev);

}
public void setCurrent( Cbject o)
{
current.setData(o);
}
public Cbhject getCurrent()
{
return current.getbData();
Continues
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}
public void reset()
{
current = head;
}
publ i ¢ bool ean next ()
{
current = current. getNext();
if( current == null )
return false;
el se
return true
}

publ i ¢ bool ean prev()



current = current.getPrev();

if( current == null )
return fal se;
el se
return true;
}
public bool ean tail ()
{
current = tail;
if( current == null )
return fal se;
el se
return true;
}
publ i ¢ bool ean head()
{
current = head;
if( current == null )
return fal se;
el se
return true;
}
publ i ¢ DLEnuneration el enents()
{
return new DLEnunerati on( head );
}

prot ected DLNode head;
protected DLNode tail;
protected DLNode current;
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Aswith the DLNode class, the DLi nkedLi st classisvery similar to its singly-linked
counterpart in the methods and data fields it provides; the Li nkedLi st interface determines
the names and signatures of the main methods in the class. One notable difference between

DLi nkedLi st and SLi nkedLi st isthat,in DLi nkedLi st , an additional datafield
member caledt ai | exists. The DLNode t ai | isused in much the same way asthe
DLNode and SLNode head; it provides a placeholder that pointsto the element at the end of
thelist.

In the singly-linked list, head is used as the base point for many of the operations. We must
"reset” the list and traverse it from the beginning to locate a particular element of interest. We
canusethet ai | fieldintheDLi nkedLi st in much the same fachion. Instead of starting at
the beginning of the list and walking forward through it, we can usethet ai | field to start at
the end of the list and walk backward through it.

Even though the methods are by and large the same asthe SLI nkedLi st , the implementation
of the methodsinthe DLi nkedLi st isalittle different with the addition of thet ai | field.



Theadd() method checksto see whether the node being added isthe first nodeinthelist. If it
is,thehead, current ,andt ai | are set to point to the new node. If not, the node is added
to the end of thelist. Inthe SLi nkedLi st , the entire list must be traversed to find the end. In
theDLi nkedLi st ,thet ai | isalready there. After the new node is added, thet ai | field
must be reset to point to the new end of thelist (newNode).

Thei nsert () method performsthe same check asadd() for an empty list. Otherwise, the
new node isinserted before the current node by using the next and pr ev fieldsto reset the
links. Again, the need to traverse the list to find the previous node is dimrinated. Because we
insert before the current node, there is no need to maintain the tail reference aslong asthe list
is not empty The head reference still must be maintained, though, as before. If the current node
is the head node, the new node will have to become the new head.

Thedel et e() method needsto check for two special conditions: whether the node being
deleted isthehead or t ai | node. In either case, the end node is reset to the subsequent or
preceding node, respectively. If the node falls under either of these specia cases, the delete
operation is much simpler than in the singly-linked list. Again, we avoid traversing the list,
because we smply need to set the previous and next nodes to point to each other and drop the
current node out of the list.

Thereareno changes at all totheset Current (), getCurrent (), reset(),and
next () methods. A few additional methods aso are added for convenience. Thepr ev()
method enables the user to back-step
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through the list. The user also canusethet ai | () andhead() methodsto setthecur r ent
reference to either end of thelist.

Finaly, theel ement s() method is changed only to return aDLEnuner at i on object
derived from Li st Enuner at or instead of the SLEnuner at i on object.

Circular Linked lists

In the previous linked list derivatives, the end nodes are indicated by the next and/or pr ev
reference being set to nul | . (Remember that new nodes are initialized with all of the pointers
setto nul | .) Thelist can be set to one endpoint and traversed until thenul | reference
indicates that the other endpoint to thelist is reached.

The next derivative of the linked list we'll ook at has a dlightly different arrangement. Instead
of having thefirst and last nodes in the list reference nul | , they reference each other. This
type of linking is known as circular, in contrast to the linear approach used so far (see Figure
6-6).
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Figure 6-6
Unlike the linear linked list, any node may be the head of a
circular linked list without losing access to any of the nodes.
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Figure 6-6 illustrates the basic concept of the circular linked list. Looking at the illustration, it
isvery clear which nodes are the head and tail of the linear linked list. It is not clear which
node is the head of the circular list. This raises an interesting question: |Is the concept of a head
and tail node appropriate for acircular linked list? The answer depends on the intended use of
thelist.

One reason to opt for acircular design isthat it can simplify the implementation. Maintaining
the two-way linksin alinear implementation generally involves separate references for the
head and tail of thelist. Inacircular list, thetail easily can be computed from the head node
(head. get Prev() ). Thisremoves the need for a separate reference and the code needed to
maintain that reference. This approach offerslittle in the way of additional functionality, but it
can improve the performance of the list.

A different reason for using the circular design is the capability to have afloating head to the
list. Becausethelist is circular, there is no underlying requirement that the head of thelistis
any particular node. Thecur r ent reference used in the examples so far in this chapter easily
could be considered the head of the list for any particular operation. Operations that traverse
the list just need to continue through one compl ete cycle at the maximum, and possibly less if
the operation is searching for a particular node in the list.

The problem with this approach is that it makesit very difficult to maintain a specific order to
the list. Imagine traversing a list to find the correct place in which to insert a new node.
Because the nodes are inserted into the list in order, the usual processisto traverse the list
until the current node compares larger than the node being inserted. But with a floating head
node, at some arbitrary point in the traversal, the value of the nodes you are comparing to



drops. This requires the comparison method not only to compare the current node with the
target node but also with the previous node to determine whether the node with the maximum
value has been reached.

For this example, we will implement a hybrid implementation. We'l keep track of the true head
of the list and process as normal for most operations. We'll also allow traversal from an
arbitrary point if desired. This "floating head" behavior will be restricted to the list
enumeration.

First look at thenew Li st Enuner at i on subclassin Figure 6-7. Asin the previous

Li st Enuner at i on classes, we need to pass the constructor areference to the head of the
list. In this case, though, we need to retain this value to check whether we've cycled through the
wholelist. In our previous implementations, we checked for anul | reference to indicate the
end condition. In acircular list, thiswill not occur.
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Figure6-7
CLEnumeration.java.

package adt. Chapt er 06;
import java.util.Enuneration

public class CLEnuneration
extends Li st Enuneration

{
publ i c CLEnunerati on( DLNode first )
{
super(first);
if( first == null )
t hr ow new Nul | Poi nt er Exception("List is
enpty”);
current = first;
this.first = first;
}
publ i ¢ bool ean hashor eEl enent s()
{
i f( super.hasMoreEl enents() == fal se |
((DLNode)current).getNext () == first )
return fal se;
el se
return true
}
publ i c Object nextE enent ()
{

oject o = current.getData();
current = ((DLNode)current). get Next();

Thefirst field will hold areference to the head of the list. Asfar as our enumeration class
is concerned, this could be the real head of thelist, or it could be the "floating head" that has
been discussed. To the enumeration, thereis no difference as to which node it uses as a starting



point. This enumeration is designed to loop through the entire list once from the starting point
indicated. Where that starting point isin comparison to the "rea" head of the list makes no
difference and causes no change in processing or procedure.

For thissubclassof Li st Enumner at i on, all the methods have to be defined. We can't do
with the default hasMor eEl enent s() method from the superclass, because it doesn't
process acircular list. In thisversion of hasMor eEl enent s( ) , the superclass version of
the method is called first. This ensures that the error checking for an empty list is done before
our check for a"wrapped" entry is performed. Y ou might be asking, "Why not just
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do the same check here asis done in the superclass and save the extra method call?* That'sa
good question. As the classes currently stand, it would be easy to incorporate the
error-checking code into our new method and skip the call to super . But, once again, we need
to think about extensibility. What if the nature of the list changes so that other validation tests
are required for the enumeration? By incorporating acall to

super . hasMor eEl enent s() , we ensure that changes of this sort are included
automatically in our subclass without us having to re-edit and recompile. Now, take alook at
the CLi nkedLi st classshown in Figure 6-8.

The big difference between the DLi nkedLi st and CLi nkedLi st isthat thetail reference
isgone and, in its place, the head reference pointsto the "end" of thelist asits previous node.

Figure 6-8
CLinkedList.java.

package adt. Chapt er 06;
import java.util.Enuneration

public class CLi nkedLi st
i mpl ement s Li nkedLi st

{
publ i ¢ CLi nkedLi st ()
{
head = nul | ;
}
public void add( oject o)
{
DLNode newNode = new DLNode(0)
DLNode prev;
if( head == null )
{
current = head = newNode;
head. set Next ( current );
head. set Prev( current );
return;
}

prev = head. get Prev();



prev. set Next ( newNode );
head. set Prev( newNode );

newNode. set Next ( head );
newNode. set Prev( prev );

current = newNode;

Figure 6-8
CLinkedList.java.

}

public void insert( Cbject o)

{

}

if( head == null )
{
add(o);
return;

DLNode newNode = new DLNode(0)

DLNode prev;

prev = current.getPrev();

newNode. set Next ( current );

newNode. set Prev( prev );

prev. set Next ( newNode );

current.set Prev( newNode );

if( current == head )
head = newNode;

current = newNode;

public void delete()

{

DLNode prev;
DLNode next ;
DLNode tail;

if( current == null )
return,

tail = head.getPrev();
if( head == tail )
current = head = null

return;

if( current == head )
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current = head = head. get Next () ;

head. setPrev( tail );
tail.setNext( head );

return;
}
Continues
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Figure 6-8
Continued
if( current == tail )
{
current = tail = tail.getPrev();
tail.setNext( head );
head. setPrev( tail );
return;
}

prev = current.getPrev();
current = next = current. get Next();

prev. set Next (next);
next.set Prev(prev);

}
public void setCurrent( Cbject o)
{
current.setData(o);
}
public Cbject getCurrent()
{
return current.getbData();
}
public void reset()
{

current = head;

publ i ¢ bool ean next ()

{
current = current. getNext();
if( current == null )
return fal se;
el se
return true
}
publ i ¢ bool ean prev()
{

current = current.getPrev();



if( current == null )
return fal se;

el se
return true

}
public bool ean tail ()
{
current = head. getPrev();
if( current == null )
return fal se;
el se
return true
}
publ i ¢ bool ean head()
{
current = head. getPrev();
if( current == null )
Continues
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Continued.
return false;
el se
return true
}
publ i ¢ bool ean head()
{
current = head;
if( current == null )
return false;
el se
return true
}
public ListEnunmeration el ements()
{
return new DLEnenerati on(head );
}
public ListEnunmeration el ements( bool ean fronCurrent)
{
if( fronCurrent )
return new DLEnunerati on( head );
el se
return new CLEnunerati on( head );
}

protect ed DLNode head;
protected DLNode current;



Perfor mance Consider ations

A big advantage of both these types of linked listsis the increase in speed brought about by the
elimination of the need to traverse the list on insert and delete operations in the middle of the
list. In alist that primarily appends or prependsto the list, there is no big advantage to a doubly
or circularly linked list. The same rule appliesto alist in which deletes are performed
primarily to the first and last nodes in the list. As a matter of fact, the additional overhead of
maintaining the second set of references actually degrades the performance of thelist in these
situations.

For these bi-directionally linked list types, we've abandoned the vector approach to the
implementation. Thisis not to say that a vector solution is not viable. In the context of
performance, though, the vector has the most overhead in the insert and delete operations—the
very same operations that make the bi-directionally linked lists attractive.
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Exercises

1. Implement the DLi nkedLi st class by using the vector approach and compare its
performance to the reference implementation presented in this chapter.

2. Use the quicksort algorithm to create alinked list class that automatically orders a set of
comparable elements.
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Summary
In this chapter, we learned the following:

We defined new superclasses for the node and list enumeration to ssimplify further
extensions of the linked list.

We created a new interface to define the properties of alinked list type. Thisinterface
supports easier extension of the linked list.

We examined the concept of a bi-directionally linked list and compared it to the
unidirectional list covered earlier.

We looked at circular linking and the advantages it offers.
We examined some guidelines to help us decide which type of linked list to use in different

circumstances.
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Chapter 7
Stacks

This chapter takes alook at the stack as a specialized linked list. The built-in Java St ack
object is used as an example of avector-based stack. An analysis of the internals for the stack
is provided, and a non-vector implementation is developed as a contrast. Exercises near the
end of this chapter give us an opportunity to look at the uses of the stack.
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A Specialized Linked List—the Stack

In Chapter 1, "Basic Concepts,” we saw a data construct called a stack. It was used to describe
the mechanism the Java platform uses when passing arguments to amethod when it iscalled. A
stack is another of the abstract data types based on the linked list. More specifically, astack is
derived from the singly-linked list.

In Chapter 6, we learned that singly-linked lists are best used in situations in which most of the
additions to and deletions from the list will occur at one of the endpoints. The stack definitely
meets this criterion. A stack is a data storage mechanism of atype known aslast in, first out
(LIFO). A LIFO type has only two basic operationsit is responsible for: push and pop.

These operations are roughly analogous to the put and get operations used with the hash
table, as discussed in Chapter 4, "Hash Tables." Remember that the put operation adds a data
item to the hash table in a position determined by the hash table rather than the user. Aninternal
algorithm determines where in the table the element belongs. A get operation retrieves an
element based on the same agorithm.

Push and pop arevery similar to put and get ; they are used to store and retrieve datafrom
the stack. The difference isin the agorithm used to determine the storage position. InaLIFO,
the add operation is aways performed at the front (also called the top or head of the stack).
Each add therefore pushes the node before it deeper into the list. By the same token, each get
operation (deletion) moves a data item off the top of the stack (or popsit off the stack). This
operation also moves the rest of the data in the stack closer to the top by one position. Figure
7-1illustrates the push and pop operations.

To better visualize the mechanics of a stack, think about the spring-loaded plate servers at most
restaurant salad bars. Clean plates are |oaded onto a spring-loaded platform for the customers
to use. Imagine an employee loading the plates onto the platform one at atime. Aseach plateis
added, it pushes the plates before it deeper into the stack. Customers have easy access only to
the top plate in the stack. As each customer comes by and pops a plate off the top, each of the
remaining plates are moved one plate closer to the top. In other words, the last plate added to
the stack is aways the first plate removed from the stack—Iast in, first out.
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Figure 7-1

Pushing a node onto a stack and popping a node off of a stack.

TheJavaCoreClass. j ava. util. Stack

Among the core classes provided by the Java Developer's Kit is an implementation of a stack
type caled, appropriately, St ack. The Java St ack isextended from thevect or class,
making it an array-based implementation. Earlier, we learned that the most expensive
operationsin avector, in terms of time, are the operations that require a part or al of the
underlying array to be copied. The Javaimplementation of the stack makes sure to minimize the
need to copy.

Remember that no insert operation exists on a stack—just push and pop (add and get from
previous examples). Also, no delete operation from the middle of the list exists. All the
operations are performed at the end of the list. With this stipulation, the vector can be quite
effective as the underlying basis for a stack.

The Java St ack classisasubclass of Vect or . Thismeansthat all the public methodsin
Vect or areavailablein St ack. Using the standard Vect or methods, such as

i nsert El enment At () orrenoveEl enent (), defeats the purpose of using a stack in the
first place and so should be avoided. With that in mind, this section covers only the methods
provided directly in the St ack class.

Thepush() method adds an item to the top of the stack:
public Object push(Cbject item
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In the case of the vector implementation of the stack, the top of the list is considered to be the
last element in the underlying array. The Javaimplementation uses the vector's
addEl enent () method to append theitem to the lit.

Thepop() method extracts the top item in the stack:
publ i c synchroni zed Object pop()



In the vector implementation, the top of the stack isthe element at theindex Vect or . si ze()
- 1. Of course, the actual index of the top element changes with each push and pop. The fact
that the St ack awaysworks at the end of the vector instead of the beginning means that the
number of times an array copy occursis limited to the number of times the size of the
underlying array must be expanded.

Thepeek() method provides additiona functionality that can be quite handy:
publ i c synchroni zed Object peek()

Peek enables the user to view the element at the top of the stack without actually removing the
item from the stack. Think of peek as a nondestructive pop. The peek operation is not
strictly necessary to the stack, but it is a nice feature.

Theenpt y() method is used to determine whether the stack is empty:
Publ i ¢ bool ean enmpty()

If theVect or. si ze() == 0, thestack isempty. Again, this method is not necessary to the
stack but certainly is useful.

Thesear ch() method isanother addition to the St ack classthat is not strictly necessary
but isanice feature:

publ i c synchronized int search(Cbject 0)

The method returns the distance from the top that the supplied Obj ect islocated. If the

oj ect isnot found in the stack, -1 is returned. Thisimplementation uses the

Vector. | ast | ndexd () method to determine the position in the array and then subtracts
that index from the number of elementsinthe array (vect or. si ze() ) to determine how far
the element is away from the top of the stack.

We aso should know that, although St ack isasubclass of Vect or , it provides only the
default constructor. The user of the St ack class cannot specify the initia size of the
underlying array or the capacity increment of the St ack (aswas possible with the Vect or 's
constructors). The default
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constructor provides an initial size of 10. The default action for resizing the array is to double
it each time it becomes full.

Uses of the Stack

The stack is used in many cases when the desired action is to access the datain the reverse
order in which it was stored. Thisis similar to the undo function in word processing.
Keystrokes and the actions caused by them can be undone by unapplying them in reverse order.

Refer to the example in Chapter 1 of the mechanism used to pass arguments to a method when it
is called. The calling method first pushes its current instruction address onto the stack, and then
the arguments are pushed onto the stack. After program control is passed to the method, the
arguments are popped back off the stack. And, finally, when the method is ready to return, it



pops the return address off the stack and passes control back to the calling method.

The stack also is very useful when quick data storage and access are required and order is not
necessarily important. No traverse operation is necessary to a stack, because all access to data
isthrough asingle point. No overhead isinvolved in looking up a dataitem, because the next
dataitem isthe one at the top of the stack.

A Reference-Based Stack

Because we've aready looked at the Java core class vector-based stack, it'stime to take the
next step and define a reference-based stack class type of our own. It is possible to create a
stack type with just afew lines of Java code, as shown in Figure 7-2.

By looking at the Si npl eSt ack classin Figure 7-2, it is obvious that a reference-based
stack implementation is extremely simple. We've included only push() and pop() methods,
with only a default constructor.

The mechanics of the reference-based stack are as basic as the classitself Like all our linked
list implementations, the Si npl eSt ack uses anode class to store the data. In this case, we
define a package private Si npl eSt ackNode to do thejob. The Si npl eSt ackNode class
defines no methods. It has only the two package private (default access) fieldsin which to store
areference to the data object and the next node down in the stack.
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Figure7-2
SimpleStack.java.

package adt. Chapter07;

public class SinpleStack
{
public void push( bject o)
{
Si npl eSt ackNode tnp = new Si npl eSt ackNode() ;
tnp.data = o;
tnp. next = top;
top = tnp;
}

publ i c Object pop()

{
if( top == null )
return null;

Si npl eSt ackNode tmp = top;

top = top. next;
return tnp.data;

}
Si npl eSt ackNode t op;

}

cl ass Si npl eSt ackNode



oj ect dat a;
Si npl eSt ackNode next;

}

Asagenera rule of thumb, defining a class with exposed (public) data membersis abad idea.
There is very poor data encapsulation for the member fields, because they are visible and
accessible to any classin the package. Breaking encapsulation like this also severely limits the
extensibility of the whole stack construct by making the Si npl eSt ack class explicitly
dependent on the Si npl eSt ackNode implementation. Any change to the data types of the

Si npl eSt ackNode member fields most likely will cause aneed for the Si npl eSt ack
class to be modified accordingly.

Why wasthe Si npl eSt ackNode implemented thisway? To provide an example of one
instance in which thiskind of class can be used effectively. Notice that the

Si npl eSt ackNode classis defined in the same sourcefileas Si npl eSt ack Javaalows
multiple classes to be defined in asingle source file, aslong as only one of the classesis
defined as public. This practice also is frowned upon, but it is allowed for precisely thiskind
of situation. We should define multiple classes in the same source file if the package pri-
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vate classis used by the publ i ¢ classonly If aclass outside the source file containing the
package private class (with the publ i ¢ class) uses or extends the package private class, it
should be defined in its own source file.

Now take alook at exactly what push() and pop() aredoing. Thepush() method creates
anew node and populates the dat a field. The actual push part of the operation is performed
by setting the new nodes next field to point to the previous top of the stack. This effectively
maintains the chain of nodes without the need to traverse the list. The final step to the push isto
reassignt op to refer to the newly created node.

Thepop() method isamost as easy. First, we need to check that the list isnot empty. If t op
isnul | ,thelistisempty, and nul | isreturned. Otherwise, we can proceed with the pop
operation. Because we are going to remove the top node from the list, but we don't want to lose
the data associated with it, we need to keep atemporary reference to the node. Thisis doneto
protect against the node being prematurely garbage collected and because, after we reassign

t op, we lose the reference and have no way to get it back. Thisisasingly-linked list,
remember. Thelocal variablet np therefore is assigned with the referencetot op. All that
remainsistoreassignt op tothenext nodein thelist and to return the dat a object.

That isall thereisto creating an extremely simplified but fully functional stack type. Figure 7-3
shows aminimal demonstration program for the Si npl eSt ack class, and Figure 7-4 shows
the output from the program.

Figure7-3
SimpleStackTest.java.

package adt. Chapter07;

public class SinpleStackTest
{



public static void main( String args[] )

Si npl eSt ack ss = new Si npl eSt ack();

while( (s = (String)ss.pop()) !'= null )
Systemout.printin( s );

Output from the Si npl eSt ack class.

{
String s;
ss. push(
ss. push(
ss. push(
ss. push(
ss. push(
ss. push(
}
}
Figure7-4
or der
reverse
in
out
comes
this

"this" );
"cones" );
"out" );
int )
"reverse" );
"order" );
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The Si npl eSt ackTest program pushes the word strings onto the stack one at atime and
pops and displays each word as it comes off the stack. Notice that the defining feature of the

stack isthat the output is in the reverse order of the input.

Si npl eSt ack was quick and easy to implement, but it is probably not appropriate for
large-scale devel opment because the stack construct is so dependent on the implementation

details of its node class. It would be much more desirable to extend the more robust

superclasses we defined previoudly to alow for easy extensibility and maintenance than would

be available in our Si npl eSt ack example.

To come up with amore robust implementation, we need to start by defining the node class for
the stack. Once again, we will extend our generic Node class and add the next reference, as

shown in Figure 7-5.

The St ackNode subclass defines two constructors to match the two in the superclass. The
only additional work done hereisto initializethe next referenceto nul | . Thenthe class

supplies accessor methods for the next reference. We now have a much safer node
implementation with very little additiona effort.

The next task isto definethe St ack classitself (see Figure 7-6). Of course, we will be

implementing the Li nkedLi st interface we defined in Chapter 6.

In the source listing, notice that the class defines push() and pop() methods that are almost
identical to theonesin Si npl eSt ack. The only differenceisthat the St ackNode's next
reference is manipulated through the accessor methods provided by the St ackNode class.



The remaining methods (the ones from the interface) are very sparsely coded. One of the
reasons for defining the interface in the first placeisto allow the different Li nkedLi st
types to be used interchangeably. Unlike the vector-based Java core St ack class, though, we
don't want to allow the user to break the order of the stack. To accomplish both of these goals,
we can forcetheadd() ,i nsert () ,anddel et e() methodsto usepush() and pop()
to perform their operations.

This does change the behavior of the methods from that of the other implementations, but it is
consistent with the expected behavior of a
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Figure7-5
StackNode.java.

package adt. Chapter07;

cl ass St ackNode
ext ends Node
{

St ackNode( Cbj ect 0)
{

super (0);
next = null;

}

St ackNode()
{

super () ;
next = null;

}

St ackNode get Next ()
{

}

voi d set Next (St ackNode next)
{

}

private StackNode next;

return next;

t hi s. next = next;

}

Figure 7-6
Rstack.java.

package adt. Chapter07;

i mport adt. Chapt er 06. Li nkedLi st ;
i mport adt. Chapter06. Li st Enunmer ati on;

public class RStack
i mpl ement s Li nkedLi st



public RStack()

{
top = null;
}
public void push(Coject 0)
{
St ackNode tnp = new St ackNode(o);
t np. set Next (top);
top = tnp;
Continues
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Figure 7-6
Continued.
}
public Cbject pop()
{
St ackNode tnp = top;
top = top.get Next();
return tnp.getbData();
}
public void add(Object 0)
{
push(o);
}
public void insert(Cbject 0)
{
push(o);
}
public void delete()
{
pop() ;
}
public void reset()
{
}
public void setCurrent(Cbject o)
{
}
public Cbject getCurrent()
{

return top.getbData();
}



publ i c ListEnuneration el ements()

{
}

St ackNode t op;

return null;

}

stack. For example, push isanalogousto add in the stack vernacular. It is not unreasonable to
expect theadd() and push() methods to perform exactly the same operations.
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The insert operation is not really appropriate to astack at al. We defined that al additions to
the stack are performed at the top of the stack. Insert implies that the new element added will
be somewhere in the middle of the list. So one option for thei nser t () method isto haveit
do nothing at all, because the stack doesn't allow traditional insertions. Some precedence
exists, however, for an insertion to be performed at the list endpoint. Remember that an insert
to an empty list performs an add operation. Although this might be a bit of a stretch as a
justification, it is better to have thei nser t () method do apush and follow the conventions
of the stack than to have it do nothing at all.

Thedel et e() method always has been used so far to remove the current element in the list.
In the case of the stack, the current element is aways the top element in the stack. So it makes
perfect sense to havethedel et e() method call thepop() method. The differenceisthat the
pop() method is defined to return the reference to the "popped” element. Thedel et e()
method is not defined to return anything, so the reference is dropped.

To counter the fact that the del et e() method pops an element off the list without returning a
reference, theget Cur r ent () method returns a reference to the top element in the stack
without performing a pop. This operation is similar to the peek() method provided by the
Javacore class St ack.

Ther eset () andset Current () methods aren't appropriate at al for the stack. The
purpose of ther eset () method originally was to force the node at the endpoint (usualy,
head) to be the current node. With the stack, the current nodeis alwaysthet op node. The
reset operation therefore is meaningless to the stack and doesn't do anything. We do have to
define the method, though, or the Li nkedLi st interface will not be completely implemented.
So we define it as an empty method.

The same basic argument appliesto theset Cur r ent () method. The difference, of course, is
that set Current () was expected to find a particular element in the list and make the
corresponding node the current node in the list. The only way to make a particular element
current in the stack isto pop off al the elements until the desired oneis found. That
functionality is very counterintuitive, so it is best to leave this method empty as well.

The final method defined in the interface is the enumerator, el enent s( ) . The enumeration of
our linked lists so far have been non-destructive. There is no overwhelming reason to change
that behavior with the stack, sothe el enent s() method gives the user of the stack away to
peruse the contents of the stack without affecting the state of the stack.
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Listing 7-7
StackEnumeration.java.

package adt. Chapter07;
i nport adt. Chapt er06. Li st Enuner ati on;

public class StackEnuneration
extends Li st Enuneration
{

publ i c StackEnuneration( StackNode first )
{

super(first);
if( first == null )
t hr ow new Nul | Poi nt er Excepti on("Stack is

enpty”);
current = first;
}

publ i c Object nextE enent ()

{
oject o = current.getData();

current = ((StackNode)current). get Next();
return o;

}

This brings us to the last class needed to complete our stack implementation:
St ackEnuner at i on (see Figure 7-7). The implementation is ailmost exactly like the
enumeration demonstrated in Chapter 6.

Withthe St ackEnuner at i on class, the user has the capability to walk the contents of the
stack without having to pop each element off the stack.
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Exercises

1. Construct an application that uses the Java core class St ack to store alist of words.
Digplay the stack by using the pop() method. Substitute the Vect or classfor the St ack
classin the same application. Use the appropriate Vect or methodsto perform the push and
pop operations.

2. Construct an application using the Java core class St ack. Use the superclass Vect or

i nsert El enent At () method to store alist of words alphabetically in the stack (even
though this makes no sense in the context of the stack). Then usethe St ack pop() method to
display the contents of the stack.

3. Construct an application to use the Randon class to generate alist of 10,000 four-character
strings. Compare the performance of the RSt ack and the St ack to push and pop these 10,000



strings.
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Summary

In this chapter, we learned the following:
Stacks are specific implementations of singly-linked lists.
Stacks are last in, first out (LIFO) constructs.
Stacks are somewhat similar to hash tables.

We can implement stack functionality in severa ways.

Page 139

Chapter 8
Queues

This chapter explores another specialization of the linked list: the queue. Queues are used in
systems that require message handling, event processing, and the sharing of resources such as
printers. Throughout the chapter, we'll walk through the concepts behind, and the
implementation of, a standard first-in/first-out (FIFO) queue. Well compare the queue storage
container to the stacks covered in the preceding chapter and their last in, first out (LIFO)
schema. Once again, we'll take alook at both vector and non-vector implementations of the
gueue in the examples and exercises provided in this chapter.
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The FIFO Queue

When we discussed the stack type in the preceding chapter, we determined that it used a last
in, first out (LIFO) schema. The queue type welll examine in this chapter isof thefirst in, first
out (FIFO) variety, which means that the elements of the list will be accessed in the exact
order in which they were added to the list.

The queue is analogous to agrocery checkout line or awaiting line at a bank. The customers
are lined up and handled in the order in which they arrived. If 10 people are ready to check out
their groceries or to see ateller, they line up behind each other asthey comein at one end of
the line and are processed from the other end of the line. The first person in lineis checked out
(processed) first, and the tenth person in line is checked out tenth.

Like the stack type with itspush and pop operations, only two basic operations are required
onaqueue: put andget (seeFigure8-1). The put operation is expected to add an element
to the end of thelist, and the get operation is expected to extract the first item in the list.



Notice that no operations are defined for manipulating e ements in the middle of the list.

Aswas discussed earlier, the queue is another of the linked list derivatives appropriate for
implementation as asingly-linked list. In Chapter 6, we determined that the singly-linked list is
best used when the mgjority of the operations on alist is performed at the endpoints of the lit.
The queue meets this criterion handily.

Queue Versus Stack

Theput and get operationsfor the queue occur at opposite ends of the list, unlike the stack,
in which al operations are performed on a single endpoint. In the queue, al the put
operations are performed at the tail end of thelist, whereas al the get operations are
performed at the head of the ligt.

Put i | | | % Data |
5 Data i Data = Data e Dah [/
Draka !I./ r r I— Cet

Figure 8-1
All of the operations on a queue are performed on the endpoints of the list.
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A Vector-Based Queue

The Java core classes do not include an implementation of the queue. Unlike the St ack class,
the queue is not as efficiently rendered as an extension to the vector It isnot that it is more
difficult to implement the queue class as a vector extension, but that the performance limitations
of the vector are emphasized when using the queue schema.

As pointed out in Chapter 3, "Arrays, Vectors, and Sorting,” a big performance hit associated
with using a vector comes from the need to perform an array copy when the underlying array
needs to grow or when an element isinserted or deleted within the collection. Unfortunately,
implementing a vector-based queue tends to do alot of array copying. If the implementation
"gets' elements from the end of the vector, it must "put” elements at the first index in the vector
(index zero). Every put after the first element causes the array to be copied (refer to the
vector's insert operation in Chapter 3). Alternatively, the put operation could add elementsto
the end of the vector. Then the get operation would cause a deletion of the first nodein the
vector after retrieving the data element. Deleting the first element in the vector would cause an
array copy every time (refer to the vector's delete operation in Chapter 3).

Now we will do a quick implementation of avector-based queue. In thisimplementation, we
choose to take the performance hit in the put () method. The reason for choosing put instead
of get isthat theput operation will cause the vector to allocate more memory for the
underlying array when it fills up. Because growing the underlying array will cause the array
copy anyway (refer to the add operation in Chapter 3), we will isolate the performance issues
in this one method.

The actua classimplementation is very straightforward. Figure 8-2 shows the source code



listing for our vector-based queue class.

The entire VQueue class consists of two methods: put () and get () . No constructor is
supplied, so the class uses a default constructor. Any class that doesn't define its own
constructor uses a constructor by default, which is equivalent to the following:

public d assnane()

{

super () ;

Thus, the no-argument constructor for the parent Vect or classis called when aVQueue
object isinstantiated. Because the VQueue class doesn't supply a constructor, there is no way
for the user to specify the initial or in-
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Figure8-2
VQueuejava

package adt. Chapt er 08;
i mport java.util.Vector;

public class VQueue
ext ends Vector

{
public void put( Qoject o)
{
i nsertEl ement At (o, 0);
}
public Cbject get()
{
int n =size() - 1;
oject o = el enent At (n);
renmoveEl ement At (n);
return o;
}
}

crement size of the vector. Therefore, the default values are used, which cause the underlying
array to be doubled in size each timeit isresized.

The put () method performs an insert at the beginning of the vector. As mentioned earlier, this
causes the vector to perform an array copy each time an element is added. Also, an array copy
is executed each time the vector resizes the underlying array. Because we chose to do the
additions at the front of the vector, we have effectively isolated all of the resize operations to
this one method.

Theget () method retrieves the element from the other end of the vector. This preserves our
FIFO schema. The get operation in thisimplementation never causes the vector's underlying
array to be resized.

Consider the following scenario. An element is added to an empty VQueue using the put ()



method, placing it at index zero of the underlying vector. Another element is added to the queue
in the same fashion. Our original element is pushed out to index 1, and the new element is
added at index 0. Now there are two elements in the vector.

To extract an element, theget () method is used. We expect to retrieve the origina element,
because it was the first one added to the queue. To access the origina element using the
vector'sel enment At () method, theindex to extract is determined by subtracting 1 from the
size of the vector In this case, the sizeis 2, so theindex to retrieve is 1. After we have a
reference to the element, we can remove it from the queue and return the
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Figure8-3
VQueueTest.java.

package adt. Chapt er 08;

public class VQueueTest

{
public static void main( String args[] )
{
VQueue sq = new VQueue();
String s;
sq. put( "this" );
sq. put ( "comes" );
sq. put( "out" );
sq. put( "in" );
sq. put( "the" );
sq. put( "order" )
sq. put( "as" );
sq. put ( "submitted" );
while( (s = (String)sqg.get()) !'=null )
Systemout.printin( s );
}
}

extracted e ement to the method caller. The second element then can be removed in the same
manner, leaving us once again with an empty queue.

Just as with the Java core class vector-based St ack class, the user of the VQueue has access
to all the public methods of the Vect or superclass. The same rule we applied to the St ack
holds true for the VQueue, though: It isinappropriate to use many of the vector methods on the
VQueue because their use could break the VQueue's storage scheme (FIFO).

Now that we have implemented the VQueue class, we need to create a small application to
test it. The VQueueTest classisused for this purpose, as shown in Figure 8-3. The test
simply adds a few strings to the queue and then extracts and prints al of then to demonstrate
that they retain their order.

A Reference-Based Queue

Because of the performance issues involved with the vector-based queue, it probably isa



better idea to implement the queue as a reference-based linked list. As afirst implementation,
stick to just the basics and implement only the put and get operations, as shown in Figure

8-4.

Figure8-4
SimpleQueue.java.

package adt. Chapt er 08;

public class Sinpl eQueue

{

}

publ
{

}

public void put( Goject o)

{

publ

}

i c SinpleQueue()

head = tail = null;

Si npl eNode tnp = new Si npl e@ode() ;

tnp.data = o;

if( head == null )
head = tnp;

el se

tail.next = tnp;

tail = tnp;

ic Cbject get()

if( head == null )
return null;

oj ect o = head. dat a;
if( head == tail )

head = tail = null;
el se

head = head. next;

return o;

Si npl eQNode head;
Si npl eQNode tail

cl ass Si npl eQNode

{

}

oj ect dat a;
Si npl eQNode next ;
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Likeall our linked list implementations, the Si npl eQueue usesaNode classto store the



data. The package private Si npl eQNode classisused in this case. It has only two member
fields: dat a and next . No methods are available for thisNode class. The Si npl eQueue
class also has only the two
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package private fields in which to store a reference to the data object and the next node in line
in the queue. These fields are both of type Si npl eQNode. Becausethisisjust arough
implementation (like Si npl eSt ack from the preceding chapter), we are not subclassing the
Node class or implementing the Li nkedLi st interface.

Theput () method is designed to gppend an element to thelist. A new Si npl eQNode is
created and initialized with the data object argument. Next, the new node needs to be put in the
list. Thehead istested for nul | to determine whether the list is empty. If it isempty, head
andt ai | areboth assigned the new node, and the operation is complete. If thelist is not
empty, the new node is assigned to the next reference of thet ai | . Thet ai | thenis
reassigned to the new node, which becomesthenewt ai | .

Theget () method should extract the first element in the list and return it to the caller. To
retrieve the node, the list first needs to be checked to see whether it isempty. If thelistis
empty, the method returnsnul | . Asan adternative, theget () method could throw an
exception to indicate that the list is empty, but, in this case, the return of nul | is probably
sufficient. If the list is not empty, the data object is extracted from the head node. The head
reference is bumped up one in the queue, and the data Cbj ect isreturned.

Thisisal that is required in this minimalist implementation of the queue type. To test the

Si npl eQueue, wewill modify the VQueueTest application to usethe Si npl eQueue
classinstead of the VQueue class. The only changeto the original VQueueTest requiredis
to change the queue declaration line from

VQueue sq = new VQueue();

to

Si npl eQueue sq = new Si npl eQueue();
Figure 8-5 shows this program listing.

Now that we've looked at a simple reference-based queue implementation, it's time to create an
implementation that conformsto the Li nkedLi st interface. Of course, we'll need to define a
morerobust Node classthan Si npl eQNode. QNode is subclassed from the Node classto
provide better data encapsulation (see Figure 8-6).

The next step isto implement the Li nkedLi st interface. We therefore define the Queue
class, as shown in Figure 8-7.

Aswith the RSt ack classin the preceding chapter, we need to provide implementations of the
methods defined by the Li nkedLi st interface.
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Figure8-5



SimpleQueueTest.java.
package adt. Chapt er 08;

public class SinpleQueueTest

{
public static void main( String args[] )
{
Si npl eQueue sq = new Si npl eQueue();
String s;
sq. put( "this" );
sq. put ( "comes" );
sq. put( "out" );
sq. put( "in" );
sq. put( "the" );
sq. put( "order" )
sq. put( "as" );
sq. put ( "submitted" );
while( (s = (String)sqg.get()) !'=null )
Systemout.printin( s );
}
}
Figure 8-6
Onode.java.

package adt. Chapt er 08;

i mport adt. Chapt er 06. Node;

cl ass QNode
ext ends Node
{
ode( bj ect 0)
{
super (0);
next = null;
}
Node()
{
super () ;
next = null;
}
\ode get Next ()
{
return next;
}
voi d set Next (QNode next)
{

t hi s. next = next;

Continues
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Figure 8-6
Continued.

}

private QNode next;
}

Figure8-7
Queuejava.

package adt. Chapt er 08;

i mport adt. Chapter06. Li st Enunmerati on
i mport adt. Chapt er 06. Li nkedLi st ;

public class Queue
i mpl ement s Li nkedLi st

{
public Queue()
{
head = tail = null;
}
public void put( Qhject o)
{
ode tnmp = new Node(0);
if( head == null )
head = tnp;
el se
tail.setNext( tnp );
tail = tnp;
}
public Cbject get()
{
if( head == null )
return null;
oj ect o = head. getData();
if( head == tail )
head = tail = null;
el se
head = head. get Next ();
return o;
}
public void add(Object 0)
{
put (0) ;

}



Continues
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Figure8-7
Continued.

public void insert(Cbject 0)
{

put (0) ;
}
public void delete()
{

get();
}
public void reset()
{
}
public void setCurrent(Cbject 0)
{
}
public Cbject getCurrent()
{

return head. getData();
}
public ListEnunmeration el ements()
{

return new QEnuneration(head);
}
\ode head,;
\ode tail;

But again, some of the operationsintheLi nkedLi st are not necessarily appropriate for the
gueue model. In these cases, we force the behavior of theLi nkedLi st method to match the
expected behavior of the queue. We accomplish this by calling the appropriate "normal” queue
operation from the method in question.

Theadd() andi nsert () methods both call theput () method. Theadd() methodis
equivalent to put () inthiscontext, soit's easy to see the connection. Thei nsert ()
method, on the other hand, normally inserts a new element into the middle of thelist. The
gueue, however, alows operations to take place only at the endpoints of thelist. It is not too
much of astretchtoleti nsert () betheequivaent of add() , so we haveit call put aswell.

The next step toward completing this implementation is to define the enumeration class
required for theel enment s() method (see Figure 8-8).
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Figure 8-8
QEnumeration.java.

package adt. Chapt er 08;
i nport adt. Chapt er06. Li st Enuner ati on;

public class QEnuneration
extends Li st Enuneration

{
publ i ¢ QEnuneration( QNode first )
{
super(first);
if( first == null )
t hr ow new Nul | Poi nt er Excepti on(" Queue is
enpty”);
current = first;
}
publ i c Object nextE enent ()
{
oject o = current.getData();
current = ((Q\ode)current). get Next ();
return o;
}
}

The QEnuner at i on isexactly likethe St ackEnuner at i on, with the exception that it
supplies a different message string to the Nul | Poi nt er Excepti on.

To test the Queue class, we need to modify the declaration in the Si npl eQueueTest again
from

Si npl eQueue sq = new Si npl eQueue();
to
Queue sq = new Queue();

The results should be exactly like the original results for the VQueue and Si npl eQueue
tests.

Some Uses for the Queue

A queue can be useful any time data needs to be handled in sequential order. Here are some
examples of how we might use a queue:

A message queue: Messages from an outside source can be received and stored in a queue
until the application is ready to process them.
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An event queue: In GUI environments, input events such as keystrokes and mouse
movements need to be handed off to the appropriate handlers in the order in which they are
received.

A print queue: In anetworked and/or multitasked environment, it sometimes is necessary
to share printers between multiple users and print jobs. A print queue, or spooler, isused
to store print jobs until the resources are available to allow the job to print.
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Exercises

1. Add amethod to the Queue class with the following signature:
bool ean contai ns( Object o0 );

Have the method non-destructively check the queue to see whether the supplied argument isin
the queue. Return t r ue or f al se accordingly.

2. Add amethod to the Queue class with the following signature:
int size();
Have the method return the number of e ementsin the queue.
3. Construct an application that implements a message queue. Read messages from afile and
display each message in sequence, along with the number of remaining messages in the queue.
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Summary

In this chapter, we learned the following:
Queues are another speciaization of the singly-linked list.
A queueisafirstin, first out (FIFO) data structure.

A queueis similar to a stack, because al the operations are performed at the endpoints of
thelist.

A gueue has only two basic operations: put and get .
The queue is not as efficient as the stack as a vector-based implementation.
A gueueis best implemented as areference-based list.

Queues are very common in GUI- and message-based applications.
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Chapter 9
Simple Trees

In this chapter, we'll examine the structure and use of smple rooted trees. Rooted trees are
specialized storage containers that have a single entry point and arrange the elements contained
in ahierarchical fashion. We'll draw a comparison between the tree structure and traditional
linked lists, such as those covered in previous chapters. We'll take alook at the mechanism
behind tree traversal and how it differs from that of the linked list. We'll also briefly ook at
using an interface to provide generic search-and-compare functionality to the tree.
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Trees

For the past severa chapters, we've looked at different varieties of linked lists. The linked list
was described as a storage mechanism for linear, noncontiguous data collections. In this
chapter, we will begin looking at tree structures. The big difference between trees and linked
listsisthat trees store datain a non-linear, non-contiguous fashion. Trees store data nodes
hierarchically.

Before we delve into this chapter, we need to know some common terms. A tree node has at
most one entry point. An entry point is areference to anode by another node. In Figure 9-1,
node A has areference to node B. Thisisthe entry point to B. A is considered the parent of B
and the parent of D. B and D therefore are children of A. In general, a node can have as many
children as desired. Each child can have only one par-



Figure 9-1
A tree with one of its branches filled.
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ent, though, and there will always be exactly one less dataitem or key stored in the node than
the number of branches.

A tree also has exactly one root node. The root node has no parent and is considered the entry
point to the tree. The path between any two adjacent nodesis referred to as a branch. In Figure
9-1, node A has two branches. Node B has only one branch. If a node has zero branches
(meaning that it has no children), it is called aleaf The maximum number of branches a node
can have is determined by the type of the tree. Or, more accurately, tree structures are
classified by the maximum number of branches each node can support.

A tree has a height. The height of atree is the maximum number of consecutive nodesin the
longest path on the tree from root to leaf. In Figure 9-1, the height is three. Along with height,
we need to consider level. The level isthe number of nodes between any node and the root.
Nodes B and D are on level 1 of thetree, for example. Nodes C, E, and F are on level 2.

A level is considered to be full when it holds the maximum number of nodesit can hold. In the

figure, each node can have two possible branches. Level 1isfull (B and D), but level 2 isnot.

A balanced tree isatree in which each level, with the possible exception of the last, isfull. If

the tree supported nodes with three possible branches, three nodes would need to be on level 1
in order for it to be full. Six nodes would need to be on level 2 in order to fill that level.

In atree data structure, the root node is always at the top of the hierarchy. Trees are accessed
from the root node at the top, down in the direction of the leaf nodes. Another characteristic of



thetreeisthat it isarecursive structure. Each node of the tree can be considered the root of its
own subtree. Again referring to Figure 9-1, A isthe root of the wholetree. D istheroot for the
subtree containing D, E, and F

TreeVersusLinked List

In the previous chapters that covered the different kinds of linked lists, we saw that the lists
were very useful constructs in which to store ordered data. The order was determined by the
user manually inserting the datain place. The nature of the tree structure, on the other hand,
requires that the order be determined programmatically. The tree's nodes are not stored in a
linear fashion; they are inserted into the tree hierarchy based on a comparison to the existing
nodesin the tree.
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A tree therefore must be supplied with some algorithm by which the data stored in the tree can
be compared. The basis on which the comparison is made is arbitrary. The programmer could
decide that the data should be compared lexically, numerically, or by some other criteria.
Thereis aso no requirement that the data stored in a tree be of a homogenous type. The
important factor isthat, given any two data items (objects) stored in the tree structure, one can
be determined to be greater than, less than, or equal to the other. Aslong as a consistent basis
of comparison is determined, the tree structure's requirements are satisfied.

The basic storage schemain a tree structure uses the comparison relationship between two
nodes to determine the position of the nodes in the tree. Suppose that we have a tree node that
is defined to have three branches. The left branch of the node contains nodes with data items
that compare less than the current node's data. The center branch contains nodes that compare
equal to the current node. And the right branch contains nodes that compare greater to the
current node.

In atree containing these types of three branch nodes, the structure of the tree is that nodes on
the left side of the tree are comparatively less than nodes on the right. This distinction is
arbitrary aswell. The nodes just as easily could have been defined so that the right branch
holds the less-than nodes and the left branch holds the greater-than nodes. But a distinction
does need to be made, and it must be consistent for the entire tree structure. As ageneral rule,
programmers have a tendency to follow the left isless and right is greater model. Thisis
probably because people generaly sort things from left to right and least to greatest.

Now take alook at the difference in populating alinked list versus atree structure. Suppose
that we have the following data set of city namesto be stored:

Chicago

Los Angeles
Atlanta
Boston
Houston

Indianapolis



If we want to add this datato alinked list in alphabetical order, we could do this:
1. Add Chicago to the empty list.
2. Append Los Angeles.
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3. Insert Atlanta and Boston before Chicago.
4. Insert Houston and Indianapolis before Los Angeles.

All the determinations of where to insert and add the data can be done outside of the linked list
structure.

In atree, however, the position of the nodes not only depends on the a phabetical order, but
also on the order in which they are inserted and the number of branches alowed to each node
in the tree. Using the same data set in the same order, inserting the city namesinto atree with
nodes that have two branches would create a scenario like this:

1. Insert Chicago, which becomes the root node.

2. Insert Los Angeles, which becomes the right node for Chicago.
3. Insert Atlanta, which becomes the left node for Chicago.

4. Insert Boston, which becomes the right node for Atlanta.

5. Insert Houston, which becomes the |eft node for Los Angeles.
6. Insert Indianapolis, which becomes the right node for Houston.

Figure 9-2 shows the resulting tree structure.



Chicago

‘ Los Angeles l
I Houston !

l Indianapolis l
Figure 9-2

The order in which the nodes are added affects the structure of the tree.

Indianapolis

Boston
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Figure 9-3
The same tree, heavily unbalanced to the | eft.

Now look at what happens if we insert the nodes into the tree in the reverse order. Figure 9-3
shows the tree generated by the following scenario:



1. Insert Indianapolis, which becomes the root node.

2. Insert Houston, which becomes the left node for Indianapoalis.

3. Insert Boston, which becomes the |eft node for Houston.

4. Insert Atlanta, which becomes the | eft node for Boston.

5. Insert Los Angeles, which becomes the right node for Indianapolis.
6. Insert Chicago, which becomes the right node for Boston.

Thetree in this case looks very different from the tree in Figure 9-2. In fact, though, both trees
contain the same data.

Adding Nodestothe Tree

Why do the two sample trees ook so different? The answer isin the way in which nodes are
added to the tree. As mentioned earlier, atree has one—and only one—root node. In the case
of the first tree, Chicago was the first node added and therefore the root node. In the second
tree, Indianapolis become the root node, because it was the first node inserted into the tree.
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In the tree in Figure 9-2, the second node added (L os Angeles) is compared to the root node.
Because L os Angeles compares alphabetically greater than Chicago, the new nodeis placed to
the right of the root node. Because there are no other nodes on the right branch of the tree, this
node becomes the right-hand child of the root node at level 1.

The next node isfor Atlanta. Its case is exactly the same as Los Angeles, except that Atlantais
alphabetically less than Chicago. So this node becomes the | eft-hand child of the root node at
level 1. At thispoint, level 1isfull.

The next node to be inserted in the tree is the one for Boston. Again, it compares less than
Chicago, so placement moves to the left branch of the tree. In this case, though, the left child of
Chicago aready is occupied. The node now needs to be compared to the child, Atlanta. Boston
compares as greater than Atlanta, so it is moved to the right branch of the Atlanta subtree.
Because this branch is empty, Boston becomes the right child of Atlanta.

Houston is next, and it compares as greater than Chicago. Placement moves to the right branch
of the tree where Los Angelesis the child node. The comparison shows Houston to be less than
Los Angeles, so Houston is placed as the child on the left branch of the Los Angeles subtree.

Thefinal city is Indianapalis. In the same fashion as Houston, its placement is moved to the
right branch of the root tree. Because Houston aready occupies the left child position of Los
Angeles, the node is compared aso to Houston and becomes the child on the right branch of the
Houston subtree.

Now we can see why the two sample trees looked so different. Each placement of a new node
requires that each node along its path be compared and a decision made as to which branchis
next. Also, we should note that the first sample tree is much more balanced than the second.
Thefirst tree has atotal of two nodesin the left branch and three nodes in the right branch. The



second tree, however, has four nodes in the left subtree and only one node in the right. Welll
look at the issue of balance in amoment. But first, we need to look at how we access the nodes
inour tree.

Traversal

Much like their linked-list cousins, the nodes of atree are accessed by traversal. The starting
point for the traversal is the root of the tree. Each node in the tree then can be accessed by
"walking" the tree structure. In the
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linked list, this walking was linear through the list. After a node was visited, it was obvious
which node was next in line.

With atree, thereis only one way into each node: from the node's parent. In many cases,
though, multiple children exist for a given node and it might not be evident how to access them.
The key question hereis, "In what order are the nodes accessed?"

The order of the nodes can be determined in several ways. Here, well ook at the two most
common traversal schemes: in-order and pre-order traversal. In all cases, tree traversal begins
with the root node. In linked list traversal, after anodeis accessed in the traversal, the datain
the node is processed immediately, and the traversal moves on to the next node. In tree
traversal, a node may need to be accessed several times before the data actually is processed.

There are two operations in atraversal: movement and action. The movement operation causes
the focus of the traversal to shift to another node. The action operation is the processing of the
data contained in anode. The movement operation can happen multiple times for a single node
inasingletraversal. Thisis not as confusing as it sounds. First, take alook at how tree
traversal works.

In-Order Traversal

Using in-order traversal processes the nodes in exact sort order; thisis true regardless of the
number of child nodes. The key concept to remember is that, from the perspective of the nodes,
|eft meansless than and right means greater than.

To access the nodes in sort order, we need to start with the "least” or leftmost node and work
our way through to the "greatest” or rightmost node. Thisis the same genera principle we
might find in alinear list that is accessed from left to right, from the least to greatest value
node, according to the comparison criteria. In atree, however, we are working in more than
one dimension. Besides | eft to right, there is also top to bottom.

In the case of the tree, the top is the root node, and the leaves are at the bottom. To find the first
(least) node, we start at the root node. If there is a populated |eft branch to the root node, there
are nodes that evaluate less than the root. Take another ook at the first sample tree, whichis
shown again in Figure 9-4, to understand this process.

Start with the root node, Chicago. There is aleft branch to the Chicago node, so we move
there. Now the current node is Atlanta. There is no left branch, so Atlanta must be the leastmost
node. At this point, we take ac-
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(

Atlanta Los Angeles

Boston Houston

Indianapolis

Figure 9-4
Each subtree is traversed in total before its parent.

tion and process the node's data. Suppose that we are printing the list. In this section, each city
name appears in the order in which it will be printed. After each city name, we'll see an
explanation of why that name is printed in that order.

Atl anta

If any nodes are greater than Atlanta but still less than Chicago, they will reside in the right
branch of the Atlanta node. We next move to Boston. If there are nodes |ess than Boston but
greater than Atlanta, they would reside in the left branch of the Boston node. Because the | eft
branch is empty, we process the data for the current node.

Bost on

If the right branch of the Boston node were populated, it would be processed next. Because the
branch is empty, we move back up the tree to the root node. Now that the root node's entire | eft
branch has been processed, it's data can be processed as well.
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Chi cago
Houst on

At this point, it istime to process the right branch of the tree. Theright child of Chicago isthe
Los Angeles node. Los Angeles has aleft child, Houston, which must be processed first. So



Houston is made the current node. Because Houston does not have a left child, Houston's data
IS processed.

I ndi anapol i s

The Houston node has aright branch. The Indianapolis node is processed next. It has no
children, so it finishes the processing of the left branch of the Los Angeles node.

Los Angel es
Because Los Angeles does not have aright branch, it isthe last (greatest) node processed.
Pre-Order Traversal

Pre-order traversal works in much the same fashion asin-order traversal. The only real
difference between the two isthat, in pre-order traversal, the datain the node is acted on
before either of the branches is examined.

In other words, the in-order scheme follows:
1. Process the left branch.

2. Process the current node.

3. Process the right branch.

The pre-order scheme follows:

1. Process the current node.

2. Process the | eft branch.

3. Process the right branch.

Although the movement between the nodes of the tree remains unchanged, the order in which
the data is processed varies. The output for a pre-order traversal isfar different from the
previous in-order example, as shownin Table 9.1.

Aswe can see, the order in which the nodes are processed has a great impact on the behavior
of the traversal operation. Thething to keepin
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TABLE 9.1

In-Order Traversal Pre-Order Traversal

Atlante Chicago

Boston Atlante

Chicago Boston

Houston Los Angeles

Indianapolis Houston

Los Angeles Indianapolis




mind hereisthat, for the most part, the users of atree areinterested only in the ordered
traversal. The pre-order traversal generally is used for internal operations, such as searching
the tree for a particular node. It is beneficia in many operations, such as searching, to examine
each node as we pass though it. This can increase the performance of the search operation.

Rotation

The next tree concept we need to explore is rotation. As we saw with the first two tree
examples, the order in which the datais added to a tree can have a great impact on the actual
structure of the tree. It is quite possible to generate a tree in which one branch is much more
populated than the other. This causes the tree to become unbalanced, which affects the
performance of the add and search operations.

In aworst-case scenario, where the data inserted into atree already isin order, the resultant
tree ends up being alinear construct similar to the linked list. In the example in Figure 9-5, the
nodes were added in alphabetical order: A B C D E F. Each node was placed as the right child
of the node beforeit.

The resulting tree ends up being six levels high. It would be considerably better to have this
treefill the lower levelsinstead of continuously adding higher and higher levels. If the levels
of thistree werefilled, the tree would end up three levels high instead of the six shown. Refer
back to Figure 9-1 for an example of what a properly balanced tree of this size should look
like.
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Figure 9-5
A worst-case tree.

To further demonstrate the problem with this linear example, consider what would happen if
the rest of the letters of the alphabet were added as nodes, in order. Our tree would end up



being 26 levels high; the equivalent balanced tree with two branches per node would be only
five levels high.

To correct an unbalanced tree, we need to modify the structure of the tree without destroying
the order of the nodes. Thisiswhere rotation comes in. Because the structure of the treeis
based on well-defined properties, it is possible to shift the nodes and retain their original
order.

Here, we will take a specific subtree and rotate it so that the level it representsis more
balanced. Take alook at the examples shown in Figures 9-6 and 9-7.

Figure 9-6 shows how an unbalanced right branch in atwo-branch node can be rotated to the
left to achieve balance. The C node, which originally was the root of the subtree, has been
moved to the left child of the D node. The D node now becomes the new root of the subtree.
The net effect of thisrotation of position is that it reduces the number of levelsin the subtree
and fillsthe reduced level. The processis largely the same for nodes with more than twao
branches. The nodes can be shifted in position, but the greater than/less than relationship must
be maintained at all times.
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A) B)

Figure 9-6
A left rotation.



E)
S
)

Figure 9-7
A right rotation.

Figure 9-7 demonstrates a rotation to the right. The original subtree is unbalanced to the left.
The E node, which is the root of the subtree, becomes the right child of the D node. The D node
becomes the new root of the subtree. In both this case and in the left-rotation example, we can
say that we rotate around the D node, or that D isthe axis of rotation.

There is one important restriction on this type of rotation. The node being used as the axis of
the rotation cannot already have a child in the direction of the rotation. In the left-rotation
example, if the D node already had a child on its left branch, the rotation could not be
performed in this manner. It still is possible to perform such arotation, but it becomes more
complex to do so.
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Now look at the effects of rotation on an unbalanced tree. To balance the tree shown in Figure
9-5, for example, we will want to rotate the tree to the left, because all the nodes are on the
right branch of the tree. To balance the tree and reduce its six levels, we'll perform left
rotations on the root of the tree until the branches of the tree are as even as possible. Our axis
in these rotations aways will be the right child of the tre€'s root node.

Our first rotation is aleft rotation using the B node as the axis. The result of this rotation is that
the B node becomes the new root of the tree, and the A node isthe left child of the B node. We
still have four nodes on the right branch of the tree and only one on the |eft (not counting the
root node, which is at the center).

Because we have atotal of six nodes, and six nodes can fit on two levels, we can go ahead and
perform another left rotation to fill the second level. Thistime, well use the C node as the axis.
The C node resides in the same place that the B node did in the previous rotation—the right
child of the root node of the tree. Figure 9-8 shows the effect of this rotation.



Figure 9-8
The tree after the second | €eft rotation.
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The C node is the new root of the tree. The B node has been moved to the left child of the C
node. Notice that the A node continues to be the left child of the B node. Nothing about the
rotation has changed the relationship between A and B. At this point, we have two levels on the
left branch of the tree and three levels on the right branch.

Performing another rotation from the right child of the root will only switch the imbalance from
the right to the left branch. We still have too many levels on the right branch, though. Thereisa
third level, even though the second level is not filled. To remedy this, we will move the
rotation on the next level of the branch. We will perform another right rotation using the E node
asthe axis. Thisrotation affects the subtree rooted at the D node.

This rotation causes the D node to become the |eft child of the E node. The E node replaces the
D node as the root of the subtree, which yields the well-balanced tree shown in Figure 9-9.

The three rotations we performed transformed the heavily unbalanced tree we began with into
the completely balanced (but not full) treein Figure 9-9. Thiskind of internal balancing is
transparent to the user and has no effect on in-order traversals. There would be a definite
change in the results of a pre-order traversal but, as mentioned earlier, pre-order traversals
generdly are used only internally, anyway.

Now that we've examined the basic concepts of the tree structure, we will move on to the next
few chapters and look at different kinds of trees and their implementations.



Figure 9-9
Thefinal structure of the balanced tree.
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Exercises

1. Diagram three trees using nodes that have two branches each. Use the following data sets:
{AB,LLW,Q,S ZPI,REXC,J

{Z,Y,X,W,V,U, T, SR, Q}

{ABCD,HGFEIJK,L,P,O,N, M}

2. Diagram the rotations necessary to balance each of the trees we created in Exercise 1.
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Summary
In this chapter, we learned the following:

Trees are Similar to linked lists, because they use data nodes to abstract the tree structure
from the tree implementation.

Unlike linked lists, trees are not linear, and the mechanism for data placement isintegral to
the treeitself.

Trees are recursive structures, because each node of atreeistheroot of its own subtree.

The actua structure of atree can vary based on the order in which data nodes are added to
the tree.

Similar to linked lists, the datain atree generally is accessed by the user traversing the tree



and performing some action on each node in the tree.

The standard way for a user to traverse the tree is called in-order traversing, which
processes nodes in sorted order.

It sometimes is necessary to manipulate the tree structure to achieve balance.
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Chapter 10
Binary Trees

This chapter expands on the concepts presented in Chapter 9 and explains the binary tree. A
binary tree isimplemented with a balanced tree structure to improve performance. This
chapter aso explains implementing the search algorithm and contrasts it with using the
sequential search available in non-sorted linked lists.
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Binary Trees

Chapter 9 explained the base functionality of the basic tree structure. To keep the explanation
simple, the examples were based on tree nodes with a maximum of two branches. This type of
treeis caled abinary tree and will be the focus of this chapter Although atree structure may
support nodes with any number of branches, the binary tree isthe simplest to implement and in
many ways the most efficient in performing its operations. The operations are simplified by
restricting each decision in the tree to atwo-way choice: left/right or greater/less.

Tree Nodes

Chapter 9 explained the concepts involved with the tree. This chapter will concentrate on the
implementation of the binary tree. The first step in implementing the tree in Javaisto create the
node class (see Figure 10-1). The binary tree node class is very similar to the doubly-linked
list node classused inthe DLi nkedLi st examples.

Figure10-1
TreeNode.java.

package adt. Chapt er 10;

public class TreeNode

{
public TreeNode( (oject o)

{
| eft

right = null;
dat a ;

01

}
public Object getData()



{

return data;

}
public TreeNode getLeft()
{
return left;
}
publ i c TreeNode get Ri ght ()
Continues
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Figure 10-1
TreeNode.java.
(continued)
{
return right;
}
public void setData( bject o)
{
data = o;
}
public void setLeft( TreeNode | )
{
left =1;
}
public void setRi ght( TreeNode r )
{
right =r;
}
public String toString()
{
return "TreeNode " + data;
}

TreeNode | eft;
TreeNode ri ght;
oj ect dat a;

}

The Tr eeNode classfollowsthe format of the linked list nodes. The main differenceisin the
names of the link references: right and left. Of course, thereis no functional differencein the
references. The name change just makes the code easier to read. Asis usual, we use proper
data encapsulation by making the member fields private and supplying accessor methods to
manipul ate the values.

An Interface to Compare Nodes



Now that we have a safe, generic node class, we need to address some of the other issues
involved in the tree implementation. For the tree to correctly place the Tr eeNodes in sort
order within the tree, we need to be able to compare two nodes quantitatively (see Figure
10-2).
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Figure 10-2
Comparablejava.

package adt. Chapt er 10;

public interface Conparable
{

}

Figure 10-3
Traversal java.

public int conpare( Object a, Cbject b );

package adt. Chapt er 10;

public interface Traversa

{

}

To compare the nodes, welll create an interface that defines a method the tree class can call
when it needs to compare two objects. It will be the responsibility of this method to be able to
determine whether anode is greater than, less than, or equal to another node. In the examples,
all the dataisin the form of aphanumeric strings. In such cases, the conpar e() method
could just makeacall to St ri ng. conpar eTo() to perform the comparison.

public void process(Chject 0);

A Tree Traversal Interface

We are going to need one more interface defined for the tree (see Figure 10-3). Remember that,
during traversal, there is a movement operation and an action operation. The action operation
needs to be defined externally just asthe conpar e() method was.

TheTr aver sal interface defines amethod called pr ocess() . Theinstantiator of the tree
will need to pass a class that implementsthe Tr aver sal interface to the tree object. The tree
will call this method when it istime to process the data in the node.

The Tree Class

Now we can get on to the Tr ee classitsalf. Figure 10-4 shows the entire source listing for the
Tr ee class. The tree has two private instance variables:
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Figure 10-4
Treejava.



package adt. Chapt er 10;

public class Tree

{
public Tree( Conparable o)
{
c = o;
}
public void add( Qoject o)
{
add( root, new TreeNode( 0 ) );
}
protected void add( TreeNode root, TreeNode newNode )
{
if( root == null )
{
this.root - newNode
return;
}
int val = c.conpare( newNode. getDat a(),
root.getData() );
if( val == 0)
{
root.set Dat a( newNode. getData() );
return;
}
else if( val <0)
{
if( root.getLeft() == null )
root.setlLeft( newNode );
el se
add( root.getlLeft(), newNode );
else if( val >0)
{
if( root.getRight() == null )
root.setRi ght ( newNode );
el se
add( root.getR ght(), newNode );
}
}
public Cbject search( bject o)
{
return search( root, o );
}
Continues
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Figure 10-4



Continued

protected bject search( TreeNode root, Chject o)
{

if( root == null )

{ return null;

}

int val = c.conpare( o, root.getData() );
E{f( val == 0)

return root.getData();
else if( val <0)
{

return search( root.getlLeft(), o );

else if( val >0)

{ return search( root.getRight(), o );
ieturn nul | ;

}

public void traverse( Traversal t )

i traverse( INORDER, t );

public void traverse( int type, Traversal t )

{
}

protected void traverse( TreeNode root, int type,
Traversal t )

traverse( root, type, t );

{
Tr eeNode t np;
if( type == PREORDER )
t.process( root.getData() );
if( (tnmp = root.getLeft()) !'=null )
traverse( tnp, type, t );
if( type == I NORDER )
t.process( root.getData() );
if( (tnmp =root.getRight()) !'=null )
traverse( tnp, type, t );
}

protected TreeNode root;

Continues
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Figure 10-4
Continued

prot ected Conparabl e c;

public final static int | NORDER = 1;
public final static int PREORDER = 2;

protected final static int RIGHT = 1;
protected final static int LEFT = 2;

}

root andc. Ther oot variableisused to hold areference to the root of thetree. The c
variable holds areference to the object that implements the Conpar abl e interface that will
be used in al the placement and movement operations.

Only one constructor is supplied with the Tr ee class. The constructor takes a Conpar abl e
object as an argument, which is used to initiadize the ¢ reference. By not supplying a default
constructor, public Tr ee( ), theTr ee classforcesall new treesto be supplied with the
Conpar abl e object.

Besides the constructor, the remaining methods areadd( ) , search() andtraverse().
The interesting thing in this class is not only that these three methods are overloaded, but aso
that some of the overloaded methods are protected and therefore not available to other classes
(unlessthe classis a subclass or a part of the same package). Now take alook at why the class
was designed thisway.

Asapublic user of the Tr ee class, an application most certainly will need to add data (nodes)
to the tree. Eventually, the client application will need to search for datain the tree, traverse
the tree, or both. In the case of the add operation, there is one public add() method. The only
required argument for the public add() method is the object that is to be stored. But
internally, the class uses recursion to properly place the node within the tree.

Touserecursionintheadd() method, the class requires arelative root node for the tree or
subtree. The externa user of the tree doesn't need to know anything about nodes, roots, or
subtrees to use the tree. In fact, it is better encapsulation to insul ate the user from these details.
Therefore, the protected add() method tracks the root of the tree and is called from the public
add() method.

Adding NodestotheTree

The protected add( ) method takesaTr eeNode r oot and aTr eeNode newNode asits
arguments. The newNode is the data object passed in from
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the public add() method embedded in anew Tr eeNode object. This node needs to be
passed along and placed in the proper position in the tree. Ther oot argument, however, isthe
key to the recursion. When the protected add( ) method isfirst called from the public add( ) ,



thisr oot isthe actua root of the tree. If the treeis empty, thisroot will be nul | , and we
know to make this node to the root node. The new Tr eeNode isassignedtot hi s. r oot .
Thet hi s must be used explicitly in this case, because ther oot argument conflicts with the
class'sr oot instance variable. After thisis done, the add operation is complete, and the
method returns.

If the tree aready is populated, alittle more work must be done. We need to figure out exactly
where in the tree structure this data node belongs. To do this, we need to compare the datain
the node provided by the caller to the data object in the root node. There are three
possibilities: The data could compare greater than, less than, or equal to the root's data object:
Depending on the outcome of the comparison, the new node is placed in the left or right branch
from the root node.

The comparison is performed viathe conpar e() method in the Conpar abl e object
supplied in the Tr ee congtructor. Theconpar e() method is defined to return an int value
that represents the relationship between the two objects. A negative value indicates that the
new object compares as less than the root's data object. Zero means that the objects are equal,
and a positive value means that the new object is greater than the root's object.

If the objects compare as equd, thereis aproblem. The treeis structured so that it cannot
handle duplicates. Theoretically we could treat a duplicate by default as less than or greater
than and just insert it into the tree at the appropriate location. The new node would be
inaccessible to the search operation, though, because the first instance of the object (the root's
data object, in this case) would be a match. To avoid this problem and al the associated issues
that would come up, we have two choices. We can throw an exception or treat this operation as
an update. In this case, the update option was chosen, and the datain ther oot nodeis

assigned the data from the new node. This might be dightly confusing to think about, but
remember that the tree has no control over the conpar e() method. The data object in the
node may be a complex object, and only the keys of the objects are compared, such asin an
address record in which only the names are compared.

If the new node's data object compares as less than the root's data object, the new node needs
to be placed somewhere on the left branch of the tree. If thereis no left child of the root node,
the new Tr eeNode becomes the left child. If thereisalready a left child, we need to
determine
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where on the |eft branch the new node goes under the child. Thisis where the recursion comes
in.

In Chapter 9, we |learned that trees are recursive structures, which means that each node in the
tree is a subtree and can be considered to be a complete tree in and of itself. The structural
recursion of treesis crucia to the workings of the tree methods; because a subtreeisaso a
tree, any operation that can be performed on a tree can be performed on asubtree. To illustrate,
look again at the protected add() method in Figure 10-4. The Tr eeNode r oot argument
just as easily could be the root of a subtree as the root of the entire tree. We take advantage of
this fact to recurse down the left branch to place the new data node.

The left child of the root node is used as the root argument in anew call to the protected



add() method. The entire process begins again with the call to the conpar e() method. The
recursive call will never haveanul | r oot , becauseit already has been established that a
node is being passed. Thistime, the comparison is between the new data node and the root of
the subtree. The root node of the subtree, in this case, isthe left child of the entire tree's root.

This recursion continues until the proper place for the data node is determined and a new

Tr eeNode is added to the tree. Each recursion through the protected add( ) method isfor a
subtree of the next level of the tree. We can follow the path through the tree by tracing through
theillustration in Figure 10-5.

Figure 10-5
Each node can be considered to be the root of its own subtree.
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Of course, the entire scenario is the same for a positive return value from conpar e() . The
comparison is greater than instead of less than, and the child is on the right branch instead of

the left. But the processing is the same on either branch, and at every recursion the placement
may move left or right.

Searching the Tree

The next overloaded method of the Tr ee classwe'll look at isthesear ch() method. In
comparison to the linear search used with linked lists, a binary tree search is extremely fast and
efficient. In the worst-case scenario, the number of lookups required to find anode is equal to
the number of levelsin the longest branch in the tree. In the linked list, though, the worst case
requires as many lookups as there are nodes in the list.

Aswiththeadd() method, thereisapublic and a protected sear ch() method. The public
sear ch() method takes only an object as an argument. Thisis the object to compare to the
data objects in the nodes. When amatch is found, the data object for that node is expected to be
returned. If no match isfound in the tree, the method returnsnul | .

The public sear ch() method, like the publicadd() method, has only asingle line of
code—a call to the protected sear ch() method. In this respect, thesear ch() methods



work the same way astheadd() method. The user doesn't need to know about Tr eeNodes
to find the node for which the user is searching. For the search to be recursive, though, the
protected method needs to have a root node from which to search.

In most aspects, the protected sear ch() method isjust like the protected add() method.
The big differenceisthat, instead of adding the object to the end of the branch, the search
method walks the branch only as far as necessary to identify and return the data object in
question.

Traversingthe Tree

Thelast of our overloaded methodsisthet r aver se() method, for which there are two
public methods and one protected method. Thefirst publict r aver se() method takes an
object that implementsthe Tr aver sal interface asits only argument. The Tr aver sal
object providesthe pr ocess() method, which performs the user's desired action on the data
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object in each node in the tree, in order. This method assumes that the user wantsto use
in-order traversal.

The second publict r aver se() method takesaTr aver sal argument again, aswell asan
int argument: t ype. Thet ype argument lets the user specify the type of traversal to use. This
gives the user access to the preorder traversal and makes it easier in the future to expand the set
of traversals offered. Both this and the first public traversal method make asingle call to the
protectedt r aver se() method.

The protected t r aver se() method takesthree arguments. aTr eeNode r oot , anint
type,andaTraversal t.Aswiththeadd() andsear ch() methods, the protected
traver se() method requiresther oot argument in order to recurse. Thet ype andt
arguments are passed through from the public methods. The traversal operation begins with the
determination of the type of the traversal. If the typeis pre-order, the node is processed first. If
the type isin-order, we first move up the left branch. At this point, we recurse up the left
branch. Thet r aver se() method is called again, with the left child as the root node.

Assuming that the traversal type isin-order, the recursion continues up the left branch until
thereisno left child. We are at the leastmost node at this point. The node is processed by
calling the pr ocess() method fromthe Tr aver sal objectt . If thereisaright child to the
current node, the recursion moves up that branch in the same manner.

Traversal is different from the add and search operations, because not only do we need to
travel up the branches, but we also need to go back down the tree to process every node. After
we've exhausted the upward recursive movement, we need to go back. The Tr eeNodes do not
have references to their parents, so how do we go back? If we look at how we got to the
current node, the answer becomes clear. With each movement, thet r aver se() method was
called fromthet r aver se() method. When the method returns, it returnsto the calling
method, which has aroot one level higher. In this fashion, we can move up and down the
branchesto visit each node.

UsingtheTree



Now that we've examined the basic operations, it's time to put the tree to work. Well use the
cities example we've been looking at so far. Here, we're going to create an application to
populate and traverse the tree. Figure 10-6 showsthe Tr eeTest class source listing.
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Figure 10-6
TreeTest.java

package adt. Chapt er 10;

public class TreeTest

{

}

public static void main( String args[] )

{

Tree t = new Tree(
new Conpar abl e()
{
public int conpare( Object a, Chject b )
{
return ((String)a).conpareTo(
(String)b );

.add(" Chi cago");
.add("Los Angel es");
.add("Atlanta");
.add("Boston");
. add(" Houst on");
.add(" I ndi anapol i s");
.traverse(

new Traversal ()

{

— o~ o~ o~ — —

public void process(Object 0)

{
}

Systemout.printin( o );

)

Systemout.println( "SEARCH" + t.search(
"Houston" ) );
Systemout.println( "SEARCH" + t.search( "Mam "

) )

TheTr eeTest classhasonly one method: the mai n() method. When the application starts,
it first createsa Tr ee object. The Tr ee constructor requires a Conpar abl e object asan
argument. In this case, we supply an anonymous inner class that implements the Conpar abl e
interface. Inner classes were introduced to the Javalanguage in Version 1.1. An anonymous



inner class makes it easy to implement an interface that doesn't have alot of methods defined
and doesn't need to be referenced elsewhere in the defining class.

Page 183

Because the data in the cities example consists entirely of St r i ng objects, the conpar e()
method defined just callsthe St ri ng. conpar eTo() method to provide the comparison.

After the Tr ee object is created, the application moves on to add all the city data. Aswe can
see, the user of the class can remain blissfully unaware of the structure of the tree itself. There
is no external knowledge of the placement of the nodes.

After dl the dataisadded, Tr eeTest peformsatraversa of thetree. The Tr aver sal
object supplied as an argument to the publict r aver se() method is another anonymous inner
class. Again in this case, the anonymous inner classis appropriate, because the Tr aver sal
interface defines only one method, and the Tr eeTest class doesn't need to refer directly to
theTr aver sal object anywhere. Thepr ocess() method smply outputs the name of the
city to the console.

Finally to test out thesear ch() method, we look up two cities. Houston is one of our test
citiesand so isfound. Miami doesn't exist in thetree, sothesear ch() method returnsnul | .

Balancing the Tree

One of the problems with our binary tree implementation is that the physical structure of the
tree is dependent on the order in which the data is added to the tree. In the worst-case scenario,
the data could be added to the tree already in sorted order. This would cause the tree to
resemble a singly-linked list with al the additions extending the right branch only. In this case,
all the advantages of the binary tree over the linked list are lost.

For the tree to be efficient, it needs to be reasonably balanced. It is desirable to have as few
levels as possible for the data set being stored and to have those levels as full as possible. Itis
highly unlikely that the datawill be added to the binary treein precisely the right order to
achieve perfect balance to the tree. It therefore is possible to monitor and adjust the tree's
balance at the time that data is added to the structure to achieve a better balance. We'l
investigate other tree structures later that can lead to trees that are more nearly perfectly
balanced. At this point, we are going to keep it simple, though, and just try for atree that isn't
too lopsided.

As discussed in the preceding chapter, balance is achieved through the use of the rotation
operation. Any binary tree or subtree can be rotated to the right or the left around any node, as
long as the branch opposite the direction of rotation is not empty. Basically, this means that
because
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the left child becomes the new root of the subtree in aright rotation, we can't perform the
rotation if that child is empty. The same goes for aleft rotation and right child.

Now take alook at the Tr ee class with some measure of automatic balancing built in. To



build the Bal Tr ee class, as shown in Figure 10-7, we will extend the Tr ee class we just
created. For the most part, we ssimply are going to reuse the methods defined in the original
Tr ee class.

Figure 10-7
BalTreejava

package adt. Chapt er 10;

public class Bal Tree

extends Tree

{
publ i c Bal Tree( Conparable o)
{
super( 0 );
}
public void add( oject o)
{
super.add( o );
if( root !'=null )
{
root = bal ance( root );
}
}
protected int branchCount( TreeNode root,
direction )
{
count = 0O;
TreeNode branch = null;
if( root == null )
return O;
switch( direction)
{
case RI GHT:
branch = root.getR ght();
br eak;
case LEFT:
branch = root.getLeft();
br eak;
}
if( branch == null )
return O;
Continues
Figure 10-7
Continued.

traverse( branch, | NORDER,

i nt
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new Traversal ()

{
public void process( hject o)
{
count ++;
}
}

)

return count;

}

protected TreeNode rotate( TreeNode root, int
direction )

{
TreeNode newRoot = null;
TreeNode or phan = nul | ;
switch( direction)
{
case RI GHT:
newRoot = root.getlLeft();
root.setlLeft( null );
or phan = newRoot. get Ri ght();
newRoot . set Ri ght ( root );
br eak;
case LEFT:
newRoot = root.getRight();
root.setRight( null );
or phan = newRoot . get Left ();
newRoot . set Left( root );
br eak;
}
i f( newRoot == null )
return root;
if( orphan !'= null )
add( root, orphan );
return newRoot;
}
protected TreeNode bal ance( TreeNode root )
{
if( root == null )
return null;
int left = branchCount( root, LEFT );
int right = branchCount( root, RIGHT );
Continues
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Figure 10-7

Continued.



if( left >right )

while( left > right + 1)

{
root = rotate( root, RIGHT );
| eft = branchCount( root, LEFT );
right = branchCount( root, R GHT );
}
}
if( right > left )
{
while( right > left + 1)
{
root = rotate( root, LEFT );
| eft = branchCount( root, LEFT );
right = branchCount( root, R GHT );
}
}

root.setlLeft( balance( root.getLeft() ) );
root.setRight ( balance( root.getRight() ) );

return root,;

}

protected int count = O;

}

The congtructor for the Bal Tr ee classtakesa Conpar abl e object as an argument, just like
the superclass Tr ee. All this constructor needsto do is call the superclass constructor and
initialize the new instance variable, count . Thecount field will be used to help judge
whether the tree is out of balance.

The publicadd() method of the superclassisoverridden inthe Bal Tr ee class. At this
point, we attempt to balance the tree. By balancing the tree after the add operation, we
accomplish two things. First, we ensure that the tree always will be reasonably in balance. The
only way that data is added to the tree is through this method, and adding data is what throws
the tree out of balance.

The second thing that balancing from the add method gives us is a centralized point of
operation. Thisway, we don't have to worry about calling the balance routine before each
access by the user. Thisis somewhat a matter of judgment, however. Shifting the balance
operation to the point of user access (the search and traverse operations) may have some
advantages as well. If the data stored in the tree were added in arelatively
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random order, it tends to be more efficient to balance the tree after the treeis fully populated.

A count method is used internally to discover how far out of balance the treeis. A balanced
binary tree will have roughly the same number of nodesin each of its two branches. This
method leveragesthet r aver se() method to do its counting. Remember that each node can



be considered to be a complete subtree in and of itself By completely traversing one of these
subtrees and keeping a count as we go, we can determine exactly how many nodes are in the
branch in question. This doesn't include the parent node, of course.

Thebr anchCount () method takestwo arguments. aTr eeNode r oot to beused asthe
parent for the count and an int constant representing the direction of the branch to count (LEFT
or Rl GHT). The appropriate child of the parent is used as the root for an in-order traversal.
TheTr aver sal process method is used to increment a counter to keep track of the number of
nodes visited during the traversal; this yields the correct count for the branch. The count does
not include the node passed to the method as the parent.

Ther ot at e() method is used to manipulate the structure of the tree to bring it morein
balance. It isimportant that the rotation operation does not impact the results of an in-order
traversal of thetree. Ther ot at e() method takes two arguments. aTr eeNode r oot and
an int constant to indicate the direction of the rotation. Ther oot node is the node that is
actually going to be rotated into a new position. The rotations for |eft and right are mirrors of
each other. For convenience, this section covers only the |eft rotation, but keep in mind that the
steps for aright rotation are equivalent and opposite (refer to Figure 10-7).

We should be concerned with three nodes in a left rotation. Ther oot passed to the method is
the node that is targeted to be moved. The Tr eeNode newRoot istheright child of r oot .
It will take r oot 's place in the tree structure when the rotation is complete. The Tr eeNode
or phan isthe node, if any, that will be displaced as newRoot 's left child by r oot moving
into its place.

The actual Java code for the rotation isfairly straightforward. First, newRoot isassigned the
right child of r oot . Ther i ght referenceinr oot theniscleared so that thereisn't an
accidental circular referencein the tree. Next, or phan is assigned to the left child of
newRoot . Therotation isgoing to causer oot to becomethe left child of newRoot , and we
don't want to lose the subtree rooted at or phan. Wethen go ahead and set r oot asthe | eft
child of newRoot . If or phan isnot nul | , anode and possibly an entire subtree needsto be
put back in the tree. Luckily, we have an add()
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method that can take care of this. Wefinally just need to "add" or phan tor oot , and we're
done.

Thebal ance() method uses aredly smple agorithm to keep some semblance of balance in
the tree structure. All we do is check that one branch is not more than one node larger than the
other branch. If one branch is larger, we rotate in the opposite direction until the branches are
within one node of each other. We put in the "one more" qualification because, if the total
number of nodes in the branches is an odd number, it isimpossible to get the branches even.
Like many of the other methodsin the tree, bal ance() isrecursive. After we've balanced the
subtree rooted at ther oot node, we recursively balance each branch in the same manner

Aswithther ot at e() method, the Javacode for bal ance() isrelatively simple. First, we
get the count for each branch, and then we rotate the imbalance in the opposite direction and get
anew count. These steps are continued in awhi | e loop until the branches are about even.
Finally, wecall bal ance() for theleft and right child of thelocal r oot node and continue



down the tree until the leaf nodes are reached and the tree is reasonably balanced.

Now welll test out this new tree, as shown in Figure 10-8, and see how close we cometo a
balanced tree. The Tr eeTest 2 classisthe same asthe Tr eeTest class. In this case,
though, we are going to use alarger data set to demonstrate the balance functionality. For our
data strings, we will just use the letters of the alphabet, A-Z.

Figure 10-8
TreeTest2 java.

package adt. Chapt er 10;

public class TreeTest2
{
public static void main( String args[] )
{
Bal Tree t = new Bal Tr eg(
new Conpar abl e()
{
public int conpare( Object a, bhject b )
{
return ((String)a).conpareTo(
(String)b );

)

t.add("A");
t.add("B");

Page 189

Figure 10-8
Continued.
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t.add("X");
t.add("Y");
t.add("Z");

t.traverse( Tree. PREORDER,
new Traversal ()

{

public void process(Object 0)

{
}

Systemout.printin( o );

}
)
}
}

In this test, we explicitly use the pre-order traversal to demonstrate the tree structure. By using
pre-order, the data in the node is printed as soon as the node is accessed, before the move to
the next node. This gives you an idea of how thetreeis actually structured internaly.

There are better algorithms that can be used to balance a binary tree.1 In this example, the goa
was to avoid the worst-case binary tree scenario of al the nodes being placed along one
straight branch of thetree (likea

ICormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill/MIT Press, New Y ork,
1990.
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linked list). The balancing algorithm presented here was kept simple to illustrate tree rotation.
There is no reason why you could not implement a more complex (and efficient) algorithm for a
better binary tree balance. Such atree class easily could be subclassed from the Bal Tr ee
classitself. Minimally, all the devel oper would need to do isto override the bal ance()
method with a better implementation. The bal ance() method could adjust for the number of
children on a branch, for example, aswell asfor how full each level of thetreeis.
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Exercises

1. In addition to the in-order and pre-order traversals covered here, there are other traversal
algorithms. Modify the Tr ee classto support the following additional traversal types:

POSTORDER: The opposite of PREORDER It processes the left child, the right child, and the
root.

LEVEL ORDER: Processes each level in full before processing the next level. (Hint: The
recursive methods used so far emulate a stack. This ordered traversal might be better
implemented using a queue.)

2. Create asmall Java application to print the tree structure to the console, as shown in this
example:



3. Create asmall Java application to print the tree structure to the console from the leaves
down, as shown in this example:

4. Create asmall Java application to print the tree structure to the console sideways, as shown
in this example:

5. Use the tree-printing methods used in the earlier exercises to demonstrate the changesin the
tree structure due to the rotations performed in balancing the tree.
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Summary
In this chapter, we learned the following:
How to implement a binary tree.
The binary tree node is very similar to the node used for a doubly-linked list.
How to use recursive methods to make repetitive tree operations easier.
How to quickly and easily search the binary tree structure.

How to perform simple rotations within the tree structure to better balance the binary tree.
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Chapter 11
Multi-Way Trees

This chapter explains the structure of more complex tree types. It expands on the binary trees



covered so far and takes a close look at a specific multi-way tree: the 2-3-4 tree. Here, welll
draw comparisons between the newly introduced multi-way trees and the binary tree structures
we examined previously. Examples are provided to illustrate how a multi-way tree can be
rendered as a binary implementation. We'll walk through implementations of the tree typesin
the examples. Exercises near the end of this chapter encourage us to develop other variations of
multi-way trees.
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Adding Complexity: Multi-Way Nodes

So far, the discussion of tree types has been restricted to binary trees. A binary treeisa
specific implementation of the genera tree structure in which the nodes of the tree have exactly
two possible branches. There is no reason why atree cannot be constructed with nodes that
have alarger number of branches, though. This general type of tree can be called a multi-way
tree.

A tree node can be constructed to contain two, three, four, or n number of branches. To support
these branches, the node needs to support an appropriate number of keys. In the binary tree
node, there is one key for two branches—|eft and right. The left branch is for nodes with keys
less than the current key. The right branch isfor nodes with keys greater than the current key.

In atree that uses nodes that support three branches, the node needs to have two keys. Thefirst
key should be less than the second key. The left branch is for nodes with keys less than the first
key. The center branch is for nodes with keys greater than the first key but less than the second
key. Theright branch is for nodes with keys greater than the second key.

A two-branch node requires one key. A three-branch node requires two keys. In the same
fashion, afour-branch node requires three keys. As a matter of fact, an n branch node requires
n-1 keys. Thereis aways one less key than the number of branches the node supports; Figure
11-1 illustrates this point. The alphabetic charactersin each node represent the keys the node
contains, and the numbers represent the branches the node supports.

Sample | represents the typical binary (or two-way) node we've used before with its single key
and two branches. Sample 2 represents a three-way node, which needs two keys to support its
three branches. Sample 3 represents a four-way node with three keys and four branches.

A ) AB ) ABC
1 3 1 ' 4
! : 5 2 3
Figure 11-1

Multi-way nodes aways have one more branch than the number of dataitems (or keys).
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It istypical for multi-way trees to have nodes of severa types. A tree that supports three-way



nodes, for example, generaly will have both two-way and three-way nodes populating the tree,
because it makes the tree easier to manage. A 2-3-4 tree will contain two-way nodes,
three-way nodes, and four-way nodes.

2-3-4 Trees

A big difference between a multi-way tree like this and the previous binary treeisthat, in a
multi-way tree, data items always are added to the leaf nodes, and the tree grows up instead of
down. A 2-3-4 treeis atree structure that contains two-way, three-way, and four-way
nodes—just as its name implies. The tree starts out with atwo-way node and one dataitem. As
datais added to the tree, the node fills up. The tree first becomes a three-way node and then a
four-way node. When it reaches its maximum capacity of three data items, the tree splitsinto
three 2-way nodes; the middle node is pushed up one level, and the right and left nodes become
itsright and left children. In this case, the tree creates a new level in the process. The new data
item is placed in the appropriate two-way node, thereby making it a three-way node. The
process continues this way as more data items are added to the tree. The new data alwaysis
added to the appropriate leaf node, though. All the leaves for the tree always are at the same
level.

Now walk through the population of asmall 2-3-4 tree to get a better idea of how it works.
WEll start with an empty tree and add the sequence of data C-H-M-U-A-F-D. See Figure 11.2
for arepresentation of the tree after each step.

1. Add C to the empty tree. This creates atwo-way or binary node as the root of the tree.
Because there is only one dataitem, there are two possible branches to the node at this point.

2. Add H to the root node. The root node becomes a three-way node with the dataitemsin
sorted order.

3. Add M to theroot node. At this point, the node becomes a four-way node, with three data
items and four possible branches.

4. Add U to theroot node. At this point, the node already isfull. To add the new dataitem, the
node must be split. C and M each become two-way nodes. H is pushed up one level on the tree
to create anew root level. H is atwo-way node that parents both the C
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) )
E) MU ) Ac) (MU)
H) cH)
AC 1) M L’) _1) DF )( MU '}
Figure 11-2

A 2-3-4 tree structure grown by
adding the sequence of data C-H-M-U-A-F-D.

and M nodes. Findlly, the U dataitem is added to the appropriate two-way node, and M
promotes the two-way M to the three-way M-U.

5. A isadded to the tree using the same kind of placement algorithm as used in the binary tree.
It compares as lessthan H, so it is assigned to the left child of the root node. Because the | eft
child isatwo-way node, it is promoted to a three-way node and now holds both the A and C
dataitems.

6. F is added to the tree next. It compares as less than the root dataitem H, so it is assigned to
the left child A-C. The child node already is athree-way node, so it is promoted to a four-way
node containing A, C, and E

7. Findly, D is added to the tree. Again, it compares as less than H and is assigned to the | eft
child. Thistime, though, the left child is aready afour-way node. It needs to be split again. As
before, the two outer dataitems are populated into two-way nodes, and the middleitem, C, is
pushed up one level in the tree. The two-way node containing H is already at the root level, so
the C dataitem is added, which creates a three-way node at the root. Finally, the correct
two-way nodeisidentified and D is added, which creates the three-way node containing D-F.

One thing that should stand out while looking at the tree representations in Figure 11-2 is that
the 2-3-4 tree dways is extremely well balanced.
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Thisis a consequence of the structure of the tree combined with the method by which the new
data objects are added to the tree. New nodes are split from old nodes as space is heeded, but
the tree only grows new levels from the root end of the structure.

The Red-Black Tree: A Binary Version of the2-3-4 Tree

Aswe can ascertain from the discussion so far, the 2-3-4 tree is afairly efficient model for



data storage. These trees are self balancing and require no additional work by the user in
comparison to binary trees. The 2-3-4 tree also isafairly complex structure to implement.
Instead of implementing that structure here, we'll take alook at 2-3-4 treesin adifferent
fashion—one that keeps the benefit of the balanced tree and basic 2-3-4 structure but is much
easier to implement.

It is possible to represent the three-way and four-way nodes as a combination of two-way
nodes. Take alook at the four-way nodesin Figure 11-3. The node on the l€eft is a traditional
four-way node, like the one we've looked at so far. On the right is the two-way node equivalent
of the four-way node. This binary equivalent will be called afour-way cluster. We can see that
the binary representation retains all the important properties of the four-way node. There are
still three data objects maintaining four external branches. The binary representation does have
one magjor difference from the traditional four-way node: It requires an extralevel to provide
the same characteristics.

In the same way, a three-way node can be represented by two 2-way nodes in acluster There
are two data items and three external branches to the binary representations just like the
traditional equivalent. Once again, the price we pay for this convenience is measured in
additional levelsto the tree.

vy

N P

1 2 3 4

=0 Y

Figure 11-3
A traditional 4-way node can be represented by a cluster of 2-way nodes.
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Figure 11-4
Binary representations of a 3-way node.



In both Figures 11-3 and 11-4, you will notice that some of the branches are thicker lines than
the others. These thicker lines represent the interna links of the multi-way node. In the case of
the four-way node, the link between A and B and the link between B and C symbolize the
relationship of the data objects within the four-way node. The same goes for the three-way
node; the link between A and B isinternal to the three-way node cluster.

Traditionally, in red-black tree diagrams, the internal links are red and the external links are
black. This modified tree type gets its name from these diagrams: It is called ared-black tree.
When we move on to the implementation of the red-black tree, we will use a boolean value to
denote the color of thelink: t r ue for red and f al se for black. A node's color is considered
to be that of itslink with its parent. The color differentiation is the key to the maintenance of the
tree's balance. We use this information with two rules to maintain balance:

There can never be two consecutive red links on a branch.

The number of black linksin the path between each leaf and the root node should be equal
on al branches.

Therules are pretty easy to understand. Because the red links represent an internal relationship,
when would you ever want two reds in arow? Whenever an operation performed on the tree
violates one of these rules, arotation is performed to correct the imbalance.
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Implementing a Red-Black Tree

Now take alook at the implementation for the red-black tree. The tree will require interfaces
for Conpar abl e and Tr aver sal , just like the binary tree. Figures 11-5 and 11-6 list these
two interfaces. They areidentical to the interfacesin the binary tree.

The red-black tree also will need a node class to hold the data. This node will provide quite a
bit more functionality than the nodes defined previoudy. Figure 11-7 shows the complete
source listing for the Tr eeNode class for the red-black tree.

Figure11-5
Comparable.java.

package adt. Chapter 11;

public interface Conparable
{

}

Figure 11-6
Traversal.Java

public int conpare( Object a, (bject b );

package adt. Chapterl1l

public interface Traversa

{

public void process( hject 0 );



}

Figure 11-7
TreeNode.java.

package adt. Chapter11;

public class TreeNode

{
public TreeNode( bject o)
{
data = o;
col or = RED;
left = right = null;
}
publ i c Cbject getData()
{
return data;
}
Continues
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public void setData( object o)
{
data = o;
}
public TreeNode getLeft()
{
return left;
}
public void setLeft( TreeNode | )
{
left =1;
}
publ i c TreeNode get Ri ght ()
{
return right;
}
public void setRi ght( TreeNode r )
{
right =r;
}
publ i c bool ean get Col or ()
{

return col or;

}



public void setCol or( boolean c )

{
color = c;
}
public void flip()
{
color = !color;
}
publ i ¢ bool ean hasRedChi | d()
{
if( left '=null & left.color == RED )
return true;
if( right '=null & right.color == RED)
return true;
return fal se;
}
Continues
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publ i c bool ean is2Way()
{
if( color == RED)
return fal se;
return ! hasRedChil d();
}
publ i c bool ean is3Way()
{
if( color == RED)
return fal se;
if( is2way() || is4wvay() )
return fal se;
return true;
}
publ i c bool ean is4Way()
{

if( color == RED)
return fal se;

if( left ==null || right == null )
return fal se;

if( left.color == RED && right.color == RED)



return true;

return fal se;

}
public String toString()
{
return "Node " + data;
}

private TreeNode left;
private TreeNode right;
private Object data;
private bool ean col or;

public static final boolean RED = true;
public static final boolean BLACK = fal se;

}

In this version of the Tr eeNode, we have added a few extra member fields. First, we needed
to add afield to represent the color of the node. The earlier explanation described the links
between the nodes as having
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Figure 11-8
A node inheritsthe "color" of its parent branch.

acolor. For all practical purposes, the color may safely be associated with the node to
represent the link between the node and its parent. In the example in Figure 11-8, the B nodeis
the root. The tree root implicitly has ablack link, so the node's color is black. The A node has
ared link to the B node, making the A-B cluster athree-way node. Because the link from the A
child to the B parent isred, the A node carriesared color. The B-C link is black. C, in this
case, is atwo-way node attached to the A-B three-way cluster node. The link isblack, so the C
nodeis black.

In addition to the new boolean col or field are the public final static ints RED and BLACK We
have arbitrarily assigned Tr ue to RED, and f al se has been assigned to BLACK Inthe



Tr eeNode constructor, the color of the node is set to RED. With the exception of the tree's
root node, every node added to the red-black tree will be added as a REL link to an existing
node. Remember that, in the examplesin the traditional 2-3-4 tree, adds always occur in an
existing two- or three-way node. If afour-way node is the intended insertion point, it is split
into two 2-way nodes prior to the add operation.

The Tr eeNode class contains the same accessor methods the binary tree did: get Left (),
setlLeft(),getRight(),setRi ght(),getData(),andset Dat a() .Inadditionto
these accessors, afew new methods are available in the Tr eeNode for the red-black tree.

Theget Col or () andset Col or () methods are standard accessors for the col or field.
Also, autility method calledf | i p() setsthecol or field. Asitsnameimplies, fl i p() is
used to flip the color of the node from BLACK to RED or RED to BLACK. Thereisone nmore
method inthe Tr eeNode
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classthat is used specifically with color operations. The hasRedChi | d() method can be
used to determine whether either of the children of the node is RED linked. The capability to
determine whether a RED child exists, without specifically resolving which child it is, isvery
handy in some of the operations performed internally to the node and externally on the
red-black tree itself Well look at some of these operations next.

Because the red-black treeis a binary representation of a multi-way tree, it sometimesis
desirable to know exactly what kind of multi-way node is being modeled in the binary format.
The next three methods address this issue. Before we look at the individual methods, remember
that it is possible to determine the node configuration only from the root node of any particular
model. If anode hasared link toiit, it isachild in a configuration and cannot determine the
type of its parent. So these three methods are valid only on black nodes.

A node can have six basic configurations if we disregard direction:
1. No children

2. Two black children

3. Two red children

4. One black and one red child

5. One red child only

6. One black child only

These configurations are without regard to direction, because we don't particularly carein this
determination which child iswhich color. It is only relevant that a child or the specified color
exists—Ieft or right.

Thei s2Way () method determines whether a particular node is atwo-way node cluster. It
first checks to see that it is not ared node, as explained earlier. Of the six configurations here,
numbers 1 and 2 represent two-way nodes. Programmatically, this can be determined smply by
checking that there are no red children. So the bottom lineis that if anode is not red and has no



red children, it is atwo-way node.

Thei s4Way () method checks to see whether this node is the root of acompletely filled
four-way node cluster. The only way a node can be afour-way nodeisif the node itself is
black and both its children are red. Notice that in Figure 11-7, before attempting to accessthe
col or field of each child, we first determine whether the child exists. One of the most
common mistakes made by novice programmersistrying to access the fields or methods of an
object that doesn't exist. Skipping the check for existence leads to alot of

Nul | Poi nt er Excepti ons.
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All black nodes will be roots of clusters that will fall into one of three categories: two-way,
three-way, or four-way clusters. This makes the implementation of thei s3Way () method
very simple. If anodeis black, and it is not atwo-way or afour-way node, it must be a
three-way cluster.

Finally, the node class suppliesthet oSt ri ng() method so that printing the node is
equivaent to printing the dat a field only. It also could be used to print the node's color for
debugging purposes.

Next comes the tree class itself We defined the RBTr ee class to implement the red-black tree;
Figure 11-9 shows the complete listing. The public method names are the same asinthe Tr ee
class, but the implementations are substantially different.

Figure 11-9
RDTreejava

package adt. Chapter11;

public class RBTree

{

public RBTree( Conparable c )

{
this.c = c;
root = null;

}

public void add( Qoject o)

{
root = add( root, new TreeNode(o0) );
root.set Col or ( TreeNode. BLACK );

}

protected TreeNode add( TreeNode root, TreeNode
newNode )

{

if( root == null )
return newNode;

if( root.is4vay() )
split(root);

int val = c.conpare( newNode. getDat a(),
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}

root.getData() );

if( val <0)
{
if( root.getLeft() == null )
{
root.setlLeft( newNode );
}
el se
{
root.setlLeft(add( root.getlLeft(),
newNode ));
}
}
el se
{
if( root.getRight() == null )
{
root.setRi ght ( newNode );
}
el se
{
root.setRi ght (add( root.getRight(),
newNode ));
}
}
root = balance( root );

return root,;

protected TreeNode bal ance( TreeNode node )

{

i f( node. hasRedChild() == false)
return node;

TreeNode child = node. getLeft();

if( child !=null )
{
i f( child. hasRedChild() == true )
node = rotate( node, RIGHT );

}
child = node. getR ght();
if( child !=null )

{
i f( child. hasRedChild() == true )
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node = rotate( node,

}

return node;

public void split( TreeNode node )

Continues
Figure 11-9
Continued.
{
node. fli p();
node. getRight (). flip();
node. getLeft().flip();
}

LEFT );

protected TreeNode rotate( TreeNode root, int

direction )

{
TreeNode newRoot = null;
TreeNode or phan = nul | ;
bool ean t np;
tnmp = root.getColor();
switch( direction )
{
case RI GHT:
newRoot = root.getlLeft();
root.setlLeft( null
or phan = newRoot . get Ri ght ();
newRoot . set Ri ght ( root );
br eak;
case LEFT:
newRoot = root.getRight();
root.setRight( null
orphan = newRoot . get Left ();
newRoot . set Left( root );
br eak;
}
if( newRoot == null )
return root;
root . set Col or ( newRoot . get Color() );
newRoot . set Col or( tnp );
if( orphan !'= null )
add( root, orphan );
return newRoot;
}

protected bject search( TreeNode root,

{

Qoject 0 )
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if( root == null )

{ return null;
}
int val = c.conpare( o, root.getData() );
if( val == 0)
{
Continues
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Figure 11-9
Continued.
return root.getData();
else if( val <0)
{ return search( root.getlLeft(), o );
Llse if( val >0)
{ return search( root.getRight(), o );
iet urn null;
}
public void traverse( Traversal t )
{ traverse( INORDER, t );
}
public void traverse( int type, Traversal t )
i traverse( root, type, t );

protected void traverse( TreeNode root, int type,
Traversal t )
{

Tr eeNode t np;

if( type == PREORDER )
t.process( root.getData() );

if( (tnmp = root.getlLeft()) !'=null )
traverse( tnp, type, t );

if( type == I NORDER )
t.process( root.getData() );

if( (tnmp = root.getRight()) !'=null )
traverse( tnp, type, t );



protected TreeNode root;
protected TreeNode | ast Bl ack;
prot ected Conparabl e c;

public final static int | NORDER = 1;
public final static int PREORDER = 2;

protected final static int RIGHT = 1;
protected final static int LEFT = 2;
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The constructor for the RBTr ee classis the same as the constructor for the Tr ee class. It
takes an object of type Conpar abl e asan argument. Thisis used to perform comparisons
between the data stored in the nodes.

The publicadd() methodin RBTr ee takes an object as an argument just asits Tr ee
counterpart. It also cals the protected version of the add ( method in turn. Additionaly, in this
version of the method, we need to call set Col or () onthe root node to make sure that it
stays black. It isimportant to keep the root node black to correctly balance the tree. Remember
that, when splitting a four-way cluster, the colors of the nodes flip. If the root node splits, it
leaves the root as ared node. Red denotes that the node is a child in athree-way or four-way
node. Theroot of the tree by definition cannot be a child of anything, so we artificially force
the root to stay black at all times.

The protected add() method inthe RBTr ee classiswhere alot of the action in the tree takes
place. Aswiththe Tr ee class, the protected add() method takes two arguments-both of the
Tr eeNode's. Thefirstisther oot of the subtree to which this nodeis being added. The
second isthe newNode that is being added to the tree. As before, if ther oot passed to the
method isnul | , the tree is empty and the node becomes the new root of thetree. If thisisthe
first node added to the treg, it is added as ared two-way node. After returning to the caller (the
publicadd() method), the nodeis converted to a black two-way node. Thisisthe only case
in which anode is added as a two-way node.

If the tree already is partially populated, we need to add the node in the appropriate place and
then make sure that the tree still is balanced. In the description of the traditional 2-3-4 tree, we
discussed that the target for the new node isidentified and then, if necessary, the target is split.
If the target is afour-way node, it needs to be split into two 2-way nodes before the new node
can be added. Splitting the four-way node pushes a two-way node up one level in the tree. This
push could cause another four-way node to split, and so on. The normal processing on a 2-3-4
tree is atwo-pass operation. The new node travels down the tree to its destination, and then the
changes to the tree structure are propagated up the tree level by level until the root is reached.

In the red-black tree, we take a dlightly different approach. Because theadd() method uses
recursion, we still have what amounts to a two-pass operation: one pass while recursing
deeper into the tree structure and another as we come out of each layer of the recursion. In our
method, though, well do al the splitting on the first pass on the way down the tree to find the
new node's target. Thisis perfectly legal and acceptable,
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because we will pass through only node clusters that are aong the path to the new target
position in the tree. It is quite likely that we'll end up having to split any four-way node clusters
we pass through anyway. So, after checking whether we are adding the root node to the empty
tree, we immediately test to see whether the current node is the root of afour-way cluster. If it
is, we split the node at this point.

The next step isto determine the branch to which this node belongs. We perform the
comparison and check for avalue lessthan zero. If it isless than zero, we know that the new
node will go somewhere down the left branch of the current subtree. If there is no node on the
left branch, we have found the target position for the new node and can assign it as the | eft
child of the current root. If the branch is not empty, we need to recurse down the tree to the left
one more level and start the process all over again. The process is the same for the right
branch.

Note that the recursive call to theadd() method isembedded inacall totheset Left ()
method. Thisis done because it is quite possible that the child we pass as the root to the new
subtreein the recursive call may be rotated out of place on the return. Asyou can see, after the
new node is added to the tree and right before we return from the recursive call, the method
callsthebal ance() method to make sure that the tree structure il isintact.

Thebal ance() method's sole purpose isto maintain the tree's red-black structure. Thisis
accomplished by performing rotations on the subtrees as necessary. Under what conditions will
we need to perform rotations? Earlier in this chapter, we learned that there can never be two
consecutive red links on a branch. But the process of adding the new node gave no regard to the
color of the nodes being processed. This inevitably leads to circumstances in which the add
operation will break thisrule. The bal ance() method solves the problem by rotating the
double REL link into alegal red-black configuration.

Because the condition we need to correct in the bal ance() method is brought about by two
consecutive red nodes on the same branch, we immediately can cease the operation if the
current node has no red children. So bal ance() makesanimmediate call to the node's
hasRedChi | dren() method. If thiscall returnsf al se, we're done. If the node does have
at least one red child, we determine which child by testing each one. When we find ared child
node, we check it to see whether it has ared child. Thistime, we use the child node's
hasRedChi | d() method. If thiscall returnst r ue, we've encountered anillegal
configuration. To remedy the situation, we simply rotate the offending node in the opposite
direction of the inappropriate red
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child. If the node passed as an argument to the bal ance() method has aleft red child that, in
turn, has ared child, for example, we rotate right. If the argument node's right child isred, and
that node has ared child, we rotate | eft.

These rotations have two effects. The first is that the subtree to which the new node originaly
was added now has anew root. This new root is returned from the bal ance() method to the
add() method, which then returns the new root of the subtree affected to its caller (the
recursive add( ) ). Thisrepeats aong the path from the target subtree to the real root of the



whole tree structure, thereby supplying us with the second pass of our two-pass add operation.
The rotations also automatically force the tree into a very balanced structure.

Thespl it () method takesaTr eeNode node as an argument. This node should be the root
of afour-way cluster. If it is not afour-way cluster, the method returns immediately. As
discussed earlier, the only thing that needs to be done to split afour-way cluster isto flip the
colors of al the links or, in this case, the nodes. We don't need to worry about any of the
children being nul | , because we've already established that thisis afour-way cluster and
therefore has two red children.

Ther ot at e() method isthe samefor the RBTr ee asit wasfor the Tr ee class. The only
differenceisthat there are afew statementsin the method that maintain the colors of ther oot
and newRoot nodes. The idea hereisthat, even though the nodes have been rotated into new
positions, the colors of the links between the nodes should not change. If apair of nodes, A and
B, have ared link with A asthe parent, rotation around B causes B to become A's parent
instead of its child. To maintain the relationship of the two nodes (A-B being red), we need to
swap the colors of the nodes. This also has the effect of the former relationship between A and
its parent being maintained by B as the new root of the subtree.

The RBTr ee versonsof thesear ch() andtraver se() methods areidentical to those
found inthe Tr ee class. And that coversthe entire RBTr ee class. Next, we'll take our tree for
atest drive.

Using a Red-Black Tree

The RBTr eeTest classisarehash of the Tr eeTest worst-case scenario for abinary tree.
All the datais added to the tree already in sort order. With a data set like this, we expect that
the tree would become lopsided to the
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right. Fortunately, the red-black tree takes care of this problem, and we end up with a
reasonably balanced tree in any case. Figure 11-10 shows the source code for the
RBTr eeTest class.

Figure 11-10
RDTreeTest.java.

package adt. Chapter 11;

public class RBTreeTest
{
public static void main( String args[] )

{
RBTree t = new RBTreg(

new Conpar abl e()
{
public int conpare( Object a, hject b))
{
return ((String)a).conpareTo(
(String)b );
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new Traversal ()
{
public void process(Object 0)
{
Systemout.printin( o);
}
}
);
}
}

If you did the exercise in the last chapter to print the tree structure, you can plug that into the
RBTr ee to see the fina structure of the tree. Otherwise, you can use the PREORDER traversal
output to visualize the tree structure as it would appear. The first node listed is the root of the
tree. The nodes then follow, from the left branch down to the leaves. Then the right branches of
the nodes are listed as far back to the root node. Finally, the processis mirrored for the right
branch of the root.
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Exercises

1. Create a small Java application to print the red-black tree structure to the console. Y ou will
need to be alittle more creative than with the binary trees. Make sure to indicate the color of
each branch/node in the output.

2. Use the tree-printing method in Exercise 1 to demonstrate the changes in the tree structure as
datais added to the tree. Pay special attention to what happens to the structure when nodes are
filled and split.
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Summary
In this chapter, we learned the following:
How multi-way trees are structured.
How a 2-3-4 treeis different from a standard binary tree.

How the structure inherent in the 2-3-4 tree forces the tree to be as balanced as possible at
al times.

How to use the binary tree structure to represent higher order trees, such as the red-black
implementation of the 2-3-4 tree.

How to split full nodes to make room for tree structure expansion.
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Chapter 12
B-Trees

In this chapter, welll take adetailed look at the B-Tree data structure as an extension of the
red-black and 2-3-4 trees. B-Trees typically are used to index large data sets and external data
stores, such as database files. In this chapter, we'll take alook at asimple B-Tree
implementation to help us walk through the concepts presented here. Exercises near the end of
this chapter include developing a simple indexed datafile.
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B-Trees

The red-black trees discussed in Chapter 11 are examples of multi-way trees of afixed order.



Theterm order, in this context, describes the maximum number of branches a node can support.
The 2-3-4 and red-black treesin Chapter 11 have an order of 4. In other words, thereisa
maximum of three data elements or keys and four branches per multi-way node. In this chapter,
we'll discuss a multi-way tree structure with an arbitrary number of dataitems per node: a
B-Tree.

Asin all the previous tree examples, a B-Tree of order N will have nodes with a maximum of
N branches and N-1 keys or data elements. Figure 12-1 illustrates a partialy filled multi-way
tree of order 5. The full root node has four key values and five branches with children. The
first three children—A-B, D-E-F, and H-I—are partially filled. The last two
children—K-L-M-N and Q-R-S-T—are filled completely. The numbers at the bottom of the
illustration show the possible branches based on the current number of keysin each node.
Because the tree has an order of 5, al nodes have the potentia to parent five children on five
separate branches. Because a node can support only one more branch than the number of keys
contained, though, the partially filled nodes only show potential for the number of branches
indicated by the number of keys the nodes currently have.

A B-Tree of order 5 with two completely full levels has 24 keys and potentially 25 branches. If
athird level isfilled, the tree holds 149 keys with 150 potentia branches. One of the
advantages of the B-Tree datatypeisthat alarge number of keys can be stored in atree only a
few levels degp. When the nodes are being stored and read from disk files, these larger nodes
represent much more efficient accessto the data. Thisis true especially when the node sizes
are calibrated to match the block read size of the disk. Fewer nodes and levelsin the tree also
reduce the number of accesses required from the disk.
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Figure 12-1
A partialy filled 5-way tree.
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One additional note about the number of keys and branchesin anode: it is desirable to keep the
nodes as full as possible in a B-Tree to promote efficiency. We therefore define arule that
requires that, at a minimum, half the node must be occupied at all times. In aB-Tree of order 6,
for example, each node s required to have a minimum of three branches (order/2) and two
keys (number of branches- 1).

Indexing Large Data Sets

One of the most common uses of the B-Tree datatype is to represent an index for an indexed
sequential access method (ISAM) database file. The data and index usually are kept in
separate files. The index file allows for quick lookups in the data file by storing a unique key



along with a numeric offset in the data file to the beginning of the indexed record. The
advantage of theindex fileisthat, instead of having to sequentialy search through the datafile
to find the desired record, an access program can look up the key in the much smaller index file
to find the exact offset of the desired record within the datafile. Not only isthe index file
inherently much smaller than the data file (because the key is usualy asmall part of the
record), but it also is organized as a tree structure designed to optimize these kinds of lookups.

Generally, an application that uses a B-Tree type structure for an index optimizes the number of
keys so that the size of each node is equal to the size of a page read in the native filesystem. By
doing so, the application gets peak performance from the B-Tree, because the disk isread in its
largest single-read blocks, which then correspond to the size of a node.

Node Width

Determining the correct node width is somewhat of a problem in Java. Because the optimum
size of aB-Tree nodeisthe number of keys that fit in asingle disk page, a Javaimplementation
of aB-Treeisat some disadvantage. Javais meant to be platform independent; that is one of
the features that makes it so attractive as a development language. It aso means that the
developer isfairly well insulated from the native platform on which the codeis run.
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Thereis no way in Javato determine the page size of the local filesystem. There also isno

easy way in Javato determine the size of an object. Therefore, any 100-percent
Java-implemented B-Tree is not going to be able to optimize the number of keys per node to the
disk page size. The best we can do isto use what seemsto be a reasonable number of keys per
node and count on the advantages of the tree storage structure to help give better performance.
In any case, the performance of the B-Tree will be better than using alinear storage

mechanism.

B-Tree Operations

Most of the operations performed on a B-Tree are very similar to those performed on any tree
type. In operations such astree traversal and searching, the only difference isin navigation.
When performing a search, the process is basically the same asit isin the binary tree.

Searching a B-Tree

The search starts with the first key in the root node of the B-Tree. If the key matches the target,
the search is complete. If the search target compares as |ess than the key, the search continues
down the first branch. If the target compares greater than the key, the second key is tested. The
comparison continues with the second key exactly as the first. The move to the second key is
the equivalent of the move down the right branch in abinary tree. Each key is checked until one
of three things happens:

A match is found, which terminates the search.

The target compares as less than the comparison key, which causes the search to proceed
down the corresponding branch.



If the target is greater than the last key in the node, the search continues down the right
branch of the node.

The search continues in exactly the same manner for each node along the search path until the
key matches the target or the search leadsto anul | branch, which indicates that the target
does not match any key in the tree.
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Traversing a B-Tree

The traversal operation predictably follows the same basic schema as the search operation.
Assuming an in-order traversal, the tree is traversed branch - key - branch - key - branch, in
much the same way as abinary tree. In a B-Tree, however, many of the branches are internal to
the node. This section walks us through the basics of the B-Tree in-order traversal.

The traversal starts, as always, with the root node. An in-order traversal starts with the first
branch. If the branchisnot nul | , the traversal moves to the child node on the branch. If the
branchisnul | , thefirst key is processed with the process method. Then the traversal moves
to the second branch of the node. The traversal continuesin this fashion until the last key in the
node is processed, and the traversal moves to the child node on its right branch, if any.

Asthetraversal moves to the children on each branch, the process is repeated as though the
child were the root of the tree. Because the traversal operation is recursive, after the right
branch is completely processed, the method returns to allow the next level up to continue. The
processing continues in the same way until every node on the tree is completely visited and
processed.

Adding Keysto a B-Tree

The add operation for a B-Treeis similar to the add operation for a 2-3-4 tree. The location
for the add is determined in exactly the same way asin a2-3-4 tree. The tree structure is
traversed looking for the node where the new key belongs. After the correct node is found, the
key isinserted into the node in the proper location. Thereis one big difference in aB-Tree add
operation compared to a 2-3-4 tree add. Unlike a 2-3-4 tree operation, a B-Tree add does not
split full nodes automatically asit passes through searching for the insert location. In aB-Tree,
we want to have the nodes as full as possible, which leads to the fewest number of overall
nodes and levels.

Splitting the Nodes of a B-Tree

The process of splitting a B-Tree node is again very similar to splitting the nodes of a 2-3-4
tree. When anode is full and a new key needsto be inserted, the node first is split into two
nodes. The process of splitting a
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B-Tree node involves first determining the center key in the series. This middle key is pushed
up to the next higher level in the tree, and it becomes a member of its former parent node. The
remaining keys and all the branches from the original node are used to populate the new nodes.



Thefirst branch in the node, the Ieft branch, becomes the left branch of the new left node. The
first key in the original node becomes the first key in the new left node. The same process
follows for the second branch and key, the third branch and key, and so on until the middle of
the node is reached.

Suppose that we are splitting a node with an order of 6, such as the one shown on theleft in
Figure 12-2. The first and second branch and key are transferred to the new left node. The third
branch (of six total) becomes the new left node's right branch. The third key is promoted to the
next higher level node, which, in turn, may cause that node to need splitting. The fourth branch
of the original node becomes the |eft branch of the new right node. The fourth key in the
origina becomesthefirst key in the new right node. The fifth branch and key from the original
become the second branch and key of the new right node, respectively. The sixth and final
branch of the original node becomes the right branch of the new right node. We end up with the
configuration shown on the right in Figure 12-2.

The key that was promoted to the parent of the original node now becomes the parent of the
new left node. In other words, if the promoted key becomes the third key in the parent, the new
left node is the child on the third branch of the parent. The branch that the original, unsplit node
resided on ends up pointing to the new right node.

It isimportant to note that, although a 2-3-4 tree splits any full nodes encountered during an add
operation, a B-Tree generally waits until an overflowing key is being added to the full node

itsalf. With aB-Tree, we
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Figure 12-2
Splitting a 6-way node.
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are looking to get as many full nodes as possible to keep the tree height to aminimum. If a
B-Tree implementation is going to be used as a file-based index, for example, each node can
be read from the index file as a single operation. Therefore, full nodes reduce the total number
of read operations to load the tree.

Balancing a B-Tree

A B-Treeis pretty much a self-balancing construct. Because of the nature of the add and split
operations, there generally is no need for any additional balancing after these operations.

Deleting a key from a node can throw the tree out of balance, however. Earlier, we defined a
rule stating that a node must be, at aminimum, half full. Deleting a key from anode can puit it



under the minimum. In a case like this, we would rebalance the tree by rotation.

Representing a B-Tree with Binary Nodes

The B-Tree structure can be implemented in many ways. In this section, we'll implement our
version of the B-Tree by using a binary representation of the multi-way nodes similar to the
red-black representation of a 2-3-4 tree.

Aswith ared-black tree, it can be easier to work with a B-Tree structure by using a binary
representation of the multi-way nodes. The biggest problem with the implementation is keeping
track of which of the branches of the binary tree represent internal links between keys and
which are external links to other multi-way nodes.

Compare the binary B-Tree representation in Figure 12-3 with its traditional representationin
Figure 12-1. These two illustrations show the structure for the exact same tree. In the binary
version, the thicker arrows marked with Rs (red) denote internal links between keysin the
same node. The thinner arrows marked with Bs (black) signify external branches for the
multi-way node. The black branchesin Figure 12-3 correspond to the branches shown in
Figure 12-1. The binary nodes C, G, J, and P are connected by red branches. These binary
nodes, in redlity, are siblings in the represented multi-way node of the B-Tree.
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Figure 12-3
A binary represenation of aB-Tree.
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Onerulethat is not going to carry over from the red-black 2-3-4 tree is that the structure of a
red-black tree forbids the occurrence of two consecutive red links. In the binary B-Tree,
consecutive red links are common. The limit to consecutive red branchesin the B-Tree i<
actually two less than the order of the tree. The maximum is based on the fact that thereis one



less branch joining the multi-node siblings than there are siblings. It also has been established
that thereis, at a maximum, one less sibling than there are external branches (the number of
which define the order).

Implementing a Binary B-Tree

In our binary implementation of a B-Tree, we need the same Conpar abl e and Tr aver sal
interfaces we used in the rest of the tree implementations. Figures 12-4 and 12-5 show the
source code for these interfaces.

The node class we will use for the B-Tree also is very similar to the node from the red-black
treein Chapter 11. The Tr eeNode class here containsthe same dat a, col or, | ef t , and
ri ght fieldsasits predecessor. The accessor methods get Dat a( ), set Dat a() ,
getLeft(),setLeft(),getRight(),setRi ght(),getColor(),ad

set Col or () asoarereusedinthisincarnation asisthe utility method f | i p() .

In the B-Tree's Tr eeNode class, we maintain the concept of node color as the color of the
branch from the parent (see Figure 12-6). Therefore, we retain the static final REC and BLACK
boolean constants. Just like in the red-black tree, we will depend heavily on the color of the
node to determine behavior during the processing of the operations on the B-Tree.

Figure12-4
Comparablejava.

package adt. Chapter 12;

public interface Conparable
{

}

Figure 12-5
Traversal.Java

public int conpare( Object a, (bject b );

package adt. Chapter12;

public interface Traversa

{
}

public void process( hject 0 );
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Figure 12-6
TreeNode.java.

package adt. Chapter12;

public class TreeNode

{
public TreeNode( bject o)

{
data = o;
col or = RED;



left = right = null;

}
public Object getData()
{
return data;
}
public void setData( object o)
{
data = o;
}
public TreeNode getLeft()
{
return left;
}
public void setLeft( TreeNode | )
{
left =1;
}
publ i c TreeNode getRi ght ()
{
return right;
}
public void setRi ght( TreeNode r )
{
right =r;
}
publ i ¢ bool ean get Col or ()
{
return col or;
}
public void setCol or( boolean c )
{
col or = c;
}
public void flip()
{
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Figure 12-6
Continued.
color = !color;
}
public int countRedChildren()
{

int count = O;



}

Two new methods are present in the B-Tree's node class: count RedChi | dren() and
i sOver Ful | (). Thecount RedChi | dren() method isused to determine how many
siblings are in the multi-node. For thisimplementation, the black node in any multi-node

if( left '=null & left.color == RED )

{
count += | eft. count RedChildren();
count ++;
}
if( right '=null & right.color == RED)
{
count += right.count RedChil dren();
count ++;
}

return count;

}

public bool ean isOverFul | (int order)

{
if( color == RED)
return fal se;

i f( countRedChildren() >= order - 1)
return true;

return fal se;

}
public String toString()
{
return "Node " + data;
}

private TreeNode left;
private TreeNode right;
private Object data;
private bool ean col or;

public static final boolean RED = true;
public static final bool ean BLACK = fal se;

grouping is

considered to be the conceptual owner of the node. The reason for thisis that, for a multi-node
to exidt, at least one key or dataitem must reside in one node. The black owner Tr eeNode
object theoretically could have no red siblings (children on the binary tree), but it is
impossible to have a sibling without its black owner Tr eeNode object. Also, because black
represents an external connection, the parent of a black node is always from a different

multi-node.



Thecount RedChi | dr en() method is arecursive method that counts the number of red
children the node has on each of its two branches. The recursion continues down each branch
until ablack child or no child isfound. Remember that a black child means a separate
multi-node, so it cannot be counted as a sibling. After both branches are counted in this manner,
the total is returned to the calling method. As the recursion unwinds, the final return value
contains atotal of all red siblings for the multi-node.

The other new addition to the Tr eeNode classisthei sOver Ful | () method. This method
is used to determine whether the multi-node needs to be split. Only the owner node for the
multi-node can make the determination of whether the group needs to be split. For this reason,
the first thing the method does is check the color of the node. If the color is red, the method
returnsimmediately. Otherwise, if it isablack node, the method checks the number of red
children it has. If the number of red children is greater than or equal to one less than the order,
the nodeistoo full.

A B-Tree takes a different approach than ared-black tree when determining when a node needs
to be split. This binary implementation takes the standard B-Tree approach one step further. In
normal B-Tree processing, the system determines that a new key must be added to a full node.
The node then is split according to the procedure outlined earlier, and the new key is added to
the appropriate node.

In the binary implementation, we do the splitting after the key (new binary node) is added. This
is covered in more detail shortly when we take alook at the B-Tree add operation. For now, it
isimportant only to understand that we will be looking for the condition of an overfilled node.
The method returnst r ue or f al se based on this determination.

Now take alook at the BTr ee classitself in figure 12-7. Once again, thisis a binary
representation of a multi-way tree just like the red-black tree. The implementation shares many
similarities with the red-black tree. The BTr ee also will have significant differences from the
red-black tree implementation.

One differenceisin the constructor. The BTr ee class constructor takes two arguments—the
tree's order and a Conpar abl e object—so that we can compare nodes.

Page 227

A B-Tree has the same basic public API as ared-black tree. Thereisapublicadd() anda
protected add() method. The publicadd() method isthe samefor aB-Treeasitisfor a
red-black tree. The protected add() method isalittle different, however. Aswith al the
binary trees, we first check to see whether the treeisempty. If it is, we assign the newNode to
the root node by using newNode as the return value for the method. After we determine that
thisis not an empty tree, we need to determine whether the new node is greater than or less
than the local root node.

If the new node isless, it goes somewhere on the left branch. If there is no left child of this
subtree, the new node becomes the left child of the root node. If there is aleft child, we
recursively call add() with theleft child as the root of the new add operation. If the new node
is greater than the root node, the same process follows for the right branch.

So far, this processis similar to the red-black add operation. The one differenceis that we



completely skipped the red-black's check for afull node and the subsequent split of the
multi-node if, in fact, the node was full. A B-Tree has different requirements for splitting the
multi-nodes. We don't want to split a full multi-node unless we need to actually add a new key
toit. This presents us with a bit of a problem. If we attempt to split the node before adding the
key, we most likely will end up needing to make two passes to add. The first pass identifies the
multi-node into which the new key needs to be inserted. The target multi-node then is checked
to determine whether it isfull. If it isfull, the node is split, and we can determine in which of
the child nodes to insert the new key. The changes in the branch structure then are popul ated
back up the tree viathe return value from the recursive call. Then we can make a second pass
to determine whether the tree has been thrown out of balance due to the add operation.

Suppose that we have atree with an order of 5. The full node has four keys and five branches.
To split the node, one of the keys must be promoted up one level to the parent multi-node. This
leaves three keys to distribute between two nodes. One node gets two keys, and the other gets
one. Suppose that the new key now needs to be added to the multi-node with the two keys. We
end up with one child with three keys and the other with only one key. Thisis unbalanced, so
we'll need to perform arotation to rebalance the nodes.

As an dternative to this process, we are going to add the node first and then determine whether
any splitting must be done. This greatly smplifies the implementation for us by eliminating the
need to determine the target location for the new key a second time and the need to rebalance
the tree across multiple multi-nodes.
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o, to finish off the add operation, the method callsthe bal ance() method and then checks
for the need to split an overfilled multi-node. Thespl i t () method iscalled if necessary.
Thebal ance() method caled here has nothing to do with rotating multi-nodes or even
rotating keys and branches between multi-nodes. In this case, we need to make sure that the
multi-node we are about to split is balanced internally. To smplify the split, we want the black
owner binary node to be the node we will promote to the next level. It therefore needsto bein
the middle of the multi-way node.

Figure 12-7
BTreejava

package adt. Chapter12;

public class BTree

{
public BTree( int order, Conparable c )

{
this.order = order;
this.c = c;
root = null;

}

public void add( Qoject o)
{

root = add( root, new TreeNode(o0) );
root.set Col or ( TreeNode. BLACK );



protected TreeNode add( TreeNode root, TreeNode

{

Continues

Figure 12-7
Continued.

}

newNode )

if( root == null )
return newNode;

int val = c.conpare( newNode. get Data(),
root.getData() );

if( val <0)
{
if( root.getLeft() == null )
{
root.setlLeft( newNode );
}
el se
{
root.setlLeft(add( root.getlLeft(),
newNode ));
}
}
el se
{
if( root.getRight() == null )
{
root.setRi ght ( newNode );
}
el se
{
root.setRi ght (add( root.getRight(),
newNode ));
}
}
root = balance( root );

if( root.isOverFull(order) )
{

}

return root,;

split(root);

protected int branchCount ( TreeNode child )

{

if( child !=null )
{
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if( child.getColor() == TreeNode. RED )

{
return child. count RedChildren() + 1;
}
}
return O;
}
protected TreeNode bal ance( TreeNode node )
{
if( node == null )
return node;
i f( node.getColor() != TreeNode. BLACK )
return node;
i f( node.countRedChildren() < 2)
return node;
whi | e( branchCount ( node. getLeft() )
< branchCount ( node.getRight() ) - 1)
{
node = rotate( node, LEFT );
}
Continues
Figure 12-7
Continued.
whi | e( branchCount ( node. get Ri ght () )
< branchCount ( node.getlLeft() ) - 1)
{
node = rotate( node, RIGHT );
}
return node;
}
public void split( TreeNode node )
{
i f( node.isOverFull (order) == false)
return;
node. flip();
if( node.getRight() !'= null )
node.getRight (). flip();
if( node.getLeft() !'= null )
node. getLeft (). flip();
}

protected TreeNode rotate( TreeNode root, int
direction )
{

TreeNode newRoot = null;
TreeNode or phan = nul | ;
bool ean t np;
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tnmp = root.getColor();
switch( direction)

{
case Rl GHT:

newRoot = root.getlLeft();

i f( newRoot == null )
return root;

or phan = newRoot. get Ri ght();

root.setlLeft( orphan );

newRoot . set Ri ght ( root );

br eak;

case LEFT:

newRoot = root.getRight();

i f( newRoot == null )
return root;

or phan = newRoot . get Left ();

root.setRi ght ( orphan );

newRoot . set Left( root );

br eak;

}

root . set Col or ( newRoot . getColor() );
newRoot . set Col or ( tnp );

return newRoot ;

Continues
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}
protected bject search( TreeNode root, Cbject o)
{ if( root == null )
{ return null;
}
int val = c.conpare( o, root.getData() );
if( val == 0)
{ return root.getData();
%Ise if( val <0)

return search( root.getlLeft(), o );

else if( val >0)

{
return search( root.getRight(), o );



}

return null;

}

public void traverse( Traversal t )

{

traverse( INORDER, t );

}

public void traverse( int type, Traversal t )

{

traverse( root, type, t );

}

protected void traverse( TreeNode root, int type
Traversal t )

{

TreeNode tnp

i f (

i f (

i f (

i f (

Continues
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}

type == PREORDER )
t.process( root.getData() );

(tmp = root.getLeft()) !'=null )
traverse( tnp, type, t );

type == | NORDER )
t.process( root.getData() );

(tmp = root.getRight()) !'=null )
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traverse( tnp, type, t );

protected TreeNode root;
protected Conparable c;
protected int order;

public final static int INORDER = 1
public final static int PREORDER = 2;

protected final static int RIGHT = 1;
protected final static int LEFT = 2;

}

Thebr anchCount () method is used to test the number of children on a branch of the
multi-node. It includes the child node in the count and is safe to call even if the child nodeis

nul | .

Thebal ance() method isused to internally balance a multi-node. To smplify the split



operation, it is desirable to have the black owner binary node in the middle of the multi-node.
Middle, in this case, means that the same number of red child nodes should exist on each of the
black node's two branches (or as close asis possible). The first thing the method does is check
to see whether thisis avalid attempt to balance the multi-node. The call isvalid if the node
passed to the method meets three criteria:

Itisnot null.
It is colored black.

It has at least two red children (it makes no sense to attempt to balance zero or one child!).

The actua processing of the balance operation isrelatively smple. If there are lessnodesin
the left branch than one less the number in the right branch, the tree is rotated to the left:

( branchCount ( node.getLeft() ) < branchCount (
node.getRight() ) - 1)

Otherwisg, if there are less nodes in the right branch than one less the number of nodes on the
left branch, the tree is rotated to the right:

( branchCount ( node. getRi ght() ) < branchCount (
node.getLeft() ) - 1)
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The new balanced root of the multi-node is used as the return value of the method.

Thespl it () method for aB-Treeisbasicaly thesameasthespl i t () method for a
red-black tree, with one exception. The B-Tree version of the method first does a check to
make sure that the split isvalid by calling the node'si sOver Ful | () method. The splitis
performed by flipping the color of the nodes. The original black node becomes red, thereby
becoming asibling in the original parent multi-node, and each of the red children becomes a
black owner of its own multi-nodes.

Ther ot at e() method is used to move the members of a multi-node around until the
multi-node is balanced. Of course, the bal ance() method controls the number of times
r ot at e() iscaled and the direction of the rotation.

To rotate a B-Tree, we get the binary child opposite the direction of rotation and assign it as
thenewRoot node. We then store areference to the child of the newRoot , if any, that isin
the same direction as the rotation. This orphan subtree is assigned as the new child of the
original root on the branch recently vacated by newNode( ) . Next, the old root is set asthe
new child of the newRoot in the branch formerly occupied by or phan.

The last two methods for aB-Tree, sear ch() andtr aver se() , are exactly the same as
with any of the other binary trees. We saw these same implementationsin al the binary-based
trees we examined.

Figure 12-8 shows a quick program to populate the tree.

Figure 12-8
BTreeTest.java.



package adt. Chapter 12;

public class BTreeTest

{
public static void main( String args[] )
{
String keys[] = {
"A', "B, "C, "D, "E', "F', "G, "H,
t,o"J", "k, "LY, "M, "N, "0, P,
"@, "R, "S', "1, "U', "V', "wW, "X,
"VA', "TA", "SA", "RA", "QA", "PA', "OQA",
NA", "MA', "LA", "KA', "JA", "IA", "HA",
GA', "FA', "EA", "DA", "CA", "BA", "AA" };
BTree t = new BTree( 6,
new Conpar abl e()
{
Continues
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Figure 12-8
BTreeTest.java
public int conpare( Object a, Chject b))
{
return ((String)a).conpareTo(
(String)b );
}
}
);
for( int i =0; i < keys.length; i++)
{
t.add(keys[i]);
}
t.traverse( BTree. | NORDER,
new Traversal ()
{
public void process(Object 0)
{
Systemout.printin( o );
}
}
);
}
}
UsingaB-Tree

The implementation we've just gone through covers the data structure itself. By itself, the
B-Tree class we've implemented could be used as a data storage container. To use the B-Tree
asan index for alarge datafile, we need to take severa additional steps.



In the beginning of the chapter, we |learned that the B-Tree structure can be stored directly in a
file. To do that, we first need to extend the BTree to handle the creation, reading, and writing
of the index file.

Some methods we might use for these purposesare cr eat el ndexFi | e() ,

del et el ndexFi | e(),readMul ti Node(),andwiteMil ti Node().The

cr eat el ndexFi | e() method most likely will take astring nane as an argument. We then
can use the name to cregte afile stream, which we can use as the disk-based index file. The
del et el ndexFi | e() method, of course, will delete the entire index from the disk.

We can usether eadMul t i Node() andwri t eMul ti Node() methodsto read and write
entire multi-way nodes to and from the tree structure. With these methods, we need to tregt the
binary representation of the multi-way node as though it were a more traditional
implementation.
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Keep in mind that one of the big advantages of the B-Tree as an index to adatafileisin
reducing the number of reads and writesto disk. We accomplish thisin traditional B-Trees by
reading and writing nodes that are optimized in sizeto the disk device. If the binary
representation is used and binary nodes are read and written to individually, we lose this
advantage. Using the red-black notation enables us to easily reconstruct the nodesin away that
more closely resembles the traditional nodes.
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Exercises

1. Complete the implementation of the file-based B-Tree class by extending the B-Tree class
and implementing the methods required to save and load the tree data.

2. Add amethod to print the structure of the B-Tree both in itsred-black form and asa
traditional B-Tree structure with its multi-way nodes.

3. Create an ordered data set and compare the tree structures of simple binary trees, 2-3-4
trees, and B-Trees.
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Summary
In this chapter, we learned the following:

A B-Treeisavariant of the tree structure that can have nodes containing an arbitrary
number of keys and/or data structures.

We looked at the functionality of the traditional B-Tree.

We created a binary representation of the B-Tree similar to the red-black binary



implementation of the 2-3-4 tree.

The B-Tree structure is commonly used to create and maintain index files for large data
sets.
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Appendix A
Java Language Overview

This appendix will present a brief overview of the Java programming language. This appendix
is not intended as a Java primer but as a convenient and brief reference. The general syntax,
keywords, primitive types, and class structure are briefly explained. An abbreviated overview
of the Java core packages and class hierarchy is presented as well.

Java

In 1995, Sun Microsystems, Inc. released the first official version of the Java platform and
programming language. Javaisintended to be an operating system and hardware platform
independent environment in which to develop and run computer programs. A special emphasis
is placed on network-centric applications. Java achieves its platform independence by
compiling the Java source code files into byte-code files that can be decoded by a Java runtime
virtual machine. The virtual machine (VM) is a platform-specific byte code interpreter that
trand ates the byte code into native instructions on the local host computer In this fashion, any
platform that supports a Java Virtual Machine can run any Java application without the need to
recompile or rewrite any of the source code.

Two basic execution units exist in the Java environment—Java appl ets and Java applications.
Applets are executable units designed to run in a World Wide Web browser environment such
as Netscape Navigator or Microsoft Internet Explorer. They are embedded in HTML encoded
"Web Pages' and run in a protected environment in the context of the browser itself. The
browser identifies an applet by recognizing a special HTML tag <APPLET> that suppliesthe
browser with all of the information it needs in order to download and run the applet. Fields
within the <APPLET> tag define where the byte code for the applet can be found aswell as
any parameters to be supplied to the applet at start-up. The browser then starts a Java VM and
runs the byte code by making calls to specific methods defined by the

j ava. appl et . Appl et class.

Java applications are designed to be run as stand-alone programs that do not need a Web
browser or Web Pages. They still require a Java Virtual Machine to interpret the byte code
Java classfiles, but they runin a
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stand-alone Java runtime interpreter, which makes them roughly equivalent in execution context
to native applications. The interpreter runs a Java application by calling the public static
method main() in the class named on the interpreter's command line.



Security

Security issues must be taken into consideration when letting an unknown applet from an
internet site run on alocal machine. Allowing an unknown applet unrestricted access to the
local host machine could lead to hostile attacks or viruses on the local corrputer running the
applet. For this reason, security restrictions exist regarding what resources an applet can
access.

Many World Wide Web browsers use a sandbox approach to applet security This approach
defines avery limited environment in which all applets must run. The environment generally
excludes any access to the following:

Thelocal files system (if any)
Execution of any local commands

Any socket connection except to the server from which the applet was loaded (its
originating URL)

Any GUI resources not managed by the browser itself (additionally, any windows opened
by the browser on behalf of the applet get tagged with awarning such as Unt r ust ed
Appl et W ndow to warn users that the window belongs to the applet)

Java applications generally have less restrictions than Java applets. A Java application does
not run in the context of aweb browser and so cannot generally be invoked directly over the
internet. A Java application needs to be executed in an explicitly created Java Virtual Machine
on the host computer unlike the applet, which is executed automatically by its browser host.
This being the case, Java applications are considered to be as trusted as any other non-Java
application and have the same access to system resources as any other application.

In either case, aJavaSecur i t yManager classisused to determine the access
characteristics of the Java executable unit being invoked. Although most web browsers come
with a preconfigured SecurityManager, the SecurityManager object may be modified to alow
different access rights
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based upon criteria such as the originating URL or adigital certificate or signature attached to
the apple.

Keywords

The following words are reserved in the Java language:
abstract
boolean

break
byte



case
catch
class
const2
continue
do
default
double
else
extends
falsel
final
finaly
float

for
goto?

if

int
interface
long
native
new
nulll
package
private
protected
public

return



short

static

super

switch
synchronized
this

throw
transient

truel

try

rue, false, and null are defined in the language as literal values. Unlike the rest of the list, they are
not keywords. They are reserved though, in that they cannot be used asidentifiers.

’These words are reserved but currently unused in the language.
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implements
import
instanceof
void
volatile
while

None of the words listed may be used as identifiersin any Java language construct. All of these
words have specific meanings in the Java language and will generate compiler errorsif not
used appropriately.

Java Built-In Data Types

Two basic sets of data types exist in the Javalanguage. Thefirst set is known as the primitive
types. The second set is the reference types.

Primitive Types

The Java primitive types are the same basic data types found in almost any programming
language. Primitive types hold a single data item. They do not have any methods associated
with them and are not considered as objects in Java. Some of the reserved words in Java



represent these primitive types.

The defined integer types are byte, short, int, and long. All integer typesin Java are signed and
so one bit of the total number of bitsin each typeis used for the sign. The floating point types
are float and double. Java floating point types are |EEE 754-1985 compliant. The Java char

type

TABLEA.1

Primitive Types

Keyword Represents Values

byte 8-hit signed integer

short 16-hit signed integer

int 32-bit signed integer

long 64-bit signed integer

float 32-bit floating point number
double 64-bit floating point number
char 16-bit unicode character
boolean true or false

Page 243

holds a 16-bit Unicode 1.1 character value, and the boolean type holds either the true or false
literal.

In other programming languages such as C and C++, the size of the primitive types is dependent
upon the platform on which the program is compiled/run. For example, in C++ an integer (int)
may be defined to be 16 bits on a PC platform and 32 bits on a UNIX platform. One of the
advantages that Java has over these other languages is the fact that the language itself defines
the size of the primitive types. This property of the language removes many of the
cross-platform porting issues associated with these other languages.

Reference Types

The second set of datatypesin Java are the reference types. Like most object-oriented
languages, the Java language uses classes as the constructs that define objects. Any field or
variable associated with a class or an interface is areference type. Arrays are also considered
to be reference types regardless of the contents of the array. So an array primitive typesis till
areference object.

A variable associated with areference type is caled areference. A reference to an object is
basically a handle or pointer to that object. Under the Java platform, there is never direct
access to the memory that holds an object. All access to objects is through one of these handles
(or references).

Access M odifiers

The Java language has four levels of access: private, default (or package), protected, and
public. Three Java keywords cover these four levels. The default accessin Javais defined to
be the package access. Package access is assumed unless one of the specific keyword
modifiers are used to define the access level. The access levels are hierarchical in relation to



one another

The private modifier is the most restrictive as it limits access to the enclosing scope of the
declaration. The private modifier may be used to restrict the access of any member of a class
(field or method) when it is defined. Any field declared as private in aclassis considered to
be tightly encapsulated because it is inaccessible to any class except its own. Any method in
the defining class can freely access such afield.

Generadlly, if aprivate field is used to describe an attribute of the class that needs to be set or
read publicly, access or methods are provided. In
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FigureA-1
Access levels defined in asimple class.

C ass Myd ass
{

public void setState( boolean b )

{
}

publ i ¢ bool ean get State()
{

}

private bool ean state;

state = b;

return state;

}

Figure A-1, MyCl ass hasone private member field, the boolean state. Since state is private,
it can be accessed only by a member method in the class MyCl as's, such as setState() and
getState(). An external user of the class gains access through these two methods thereby
insulating the actual datafield from outside access.

The default access (also known as package access) expands the access level to include the
entire package. If no modifier is applied to afield or method member of aclass, itis
considered to be of package access. Package level access restricts any class outside of the
declared package from accessing the member field or method. Inversaly, this means that any
class belonging to the same package has unrestricted access to the member.

Aswith the private modifier, afield with package access may describe an attribute that may
need to be publicly read or set. If thisisthe case, the class APl will include accessor methods
for the field. C++ developers will find that package accessis similar in concept to the friend
keyword in C++.

The protected modifier, in turn, expands this access to include subclasses, even those defined
in other packages. Protected access still includes all the access granted by the package level.
With the protected modifier, subclasses can access member fields and methods from within the
superclass. Protected access is often given for methods that would otherwise be restricted to
private access. The differenceis that the superclass designer assumes that the method may want
to be changed for a subclass. This allows subclasses to modify or extend the behavior of a



class without the need to declare either method or field members as publicly accessible.

The public modifier removes all restrictions on access, which gives the Java equivalent of
global access. Any method from any class can access members declared as public. The public
modifier is generally reserved for member methods because public access to amember field is
generally considered to be a bad idea since it breaks encapsul ation.
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Packages

The Java language allows the grouping of related classes using a concept called packages.
Classes and their members that belong to the same package have special privilegesin regard to
one another as explained earlier in this appendix.

The package for aclassis declared as the first non-commented statement in a source file. The
package name becomes part of the fully qualified name of the class. For example,

java. util . Vect or isthefully qualified name of the Vector class that belongsto the
javautil package. Inturnthej ava. uti | packageis nested within the java package. Package

names are separated from nested or sub-packages by using the"." notation, asisthe name of the
package from the name of the class.

To provide an easier way to refer to classes and thereby make code a bit more readable, Java
allows a source file to declare that specific classes or packages are to be used in the source.
The import statement provides this functionality:

i mport java.util.*;
i mport java.io.File;

These two declarations denote that all of thej ava. ut i | package and the File class of the

j ava. i o package may be referenced in the enclosing source file without the need for afully
qualified class name. The "* " notation indicates that the entire package is being imported as
opposed to naming each individual class. In this example, Vect or may be used in place of
java. util . Vect or anywhereinthe sourcefile. Fi | e will also refer to

j ava. i o. Fi | e throughout the sourcefile.

Classes
The class keyword is used to denote a class definition:
class WO ass {...}

A class name declaration is always followed by a definition block, which is delimited by a
matching set of curly braces"{ }". The definition block encloses all of the member fields and
methods contained in the class.

A class may be declared as allowing public or package access to itself. A public classis
accessible from anywhere while a package (or default) class
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is accessible only from within the package of which it is declared to be a member.



A class may also be declared as abstract or final. An abstract class may not be directly
instantiated. It must be subclassed, and the subclass may be instantiated. The abstract class may
be used as the type of areference variable and thereby hold any object that isinstantiated as a
subclass of the abstract class. A final class may beinstantiated directly but may not be
extended (subclassed).

Classes may be extended to provide additional specialization or functionality. A class that
extends another classis called a subclass The class being extended is called a superclass The
Java language limits the number of superclasses a subclass can extend to one. In other words,
multiple inheritance is not a supported feature in the Java language.

class Myd ass
ext ends SoneQ her d ass
{

} :
Subclasses automatically inherit al of the public and protected members of the declared
superclass. Thisincludes the methods and the fields defined by the superclass. Private

members are not accessible to the subclass and package members are available only if the
subclass belongs to the same package as the superclass.

I nterfaces

The Java language allows for a construct called an interface. An interface is adefinition of a
named API with no associated implementation. The API definition may contain zero or more
method declarations and zero or more static field declarations.

public interface M/Interface

{
}

A class may be defined to conform to an interface by declaring that the class implements the
interface and by providing implementations for the

public void i Method( Sting s );
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declared methods. The fields defined by the interface are automatically inherited by any class
that implements the interface.

public class M/d ass
i mpl ements Myl nterface
{

public void i Method( String s )
{

}

{

A class may implement as many interfaces asis desired. This faculty to implement multiple



interfaces offers devel opers the ability to design type-safe APIs that can be used to bridge
between classes.

M ethods

Methods are the routines that perform the work of classes (objects). Each class can define its
own methods to perform any task for which the classis responsible.

Every method has asignature. A method signature defines the name of the method and the
number and types of the arguments. All arguments are passed to the method by value and are
strictly type checked. Each method also has a return type that may be void, one of the primitive
types, or aclass. A value of the return type (except for void, which returns nothing) is passed
back to the calling method upon completion of the method.

Public or protected methods inherited from a superclass may be overridden by a subclass. An
overriding method in a subclass has the same signature as the method that is being overridden
in the superclass. The overriding method must also have the same return type as the overridden
method.

A subclass may access an overridden method in its superclass by using the super keyword:
super . net hodNane( args );

Otherwise a call to the overridden method from the subclass will result in acall to the
overriding method in the subclass.
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Applications and Applets

The two basic execution unitsin Java are applications and applets. Applets run inside World
Wide Web browsers. All Java applets are subclasses of thej ava. appl et . Appl et class.
Special HTML <APPLET> tags are embedded in web pages that give the browser the
information needed to load and start the applet. When an applet isloaded into the browser's
Java Virtua Machine, specific methods in the applet superclass are invoked to initialize and
start the applet.

Applications run as stand-alone programs. A Java Virtual Machine is started as a process on
the native operating system which in turn loads the desired class and invokes the class's static
main method.

TheJava Core ClassLibrary

The Java Development Kit (JDK) from JavaSoft3 comes with a set of core classes defined by
JavaSoft to provide the minimum level of functionality available to the Java platform. The core
library is divided into related packages based on the types of functionality the included classes
provide. The following sections will give a summary explanation of each package in the core
library including a brief overview of the specific classesin the package.

Thej ava. appl et Package



Thej ava. appl et packageisthe basisfor all applets. Any Java process to be run from a
browser platform must extend the Applet class. The Applet classitself extends

j ava. awmt . Panel and so providesaGUI container classfor al of the applet'sinterface
components.

3JavaSoft is a business unit of Sun Microsystems, Inc. JavaSoft maintains and develops the Java
platform and related Java technologies.
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I nterfaces

Appl et Cont ext
Appl et St ub
Audi od i p

Classes
Appl et

Thej ava. Appl et . Appl et classisderived fromthej ava. awt . Panel class. This
derivation gives each Applet abase GUI container in which to run.

Thej ava. awt Package

j ava. awt isthe abstract windowing toolkit package. This package is the basis for the
graphical user interfaces (GUI's) developed in Java. | ava. awt supplies standard GUI
components such as buttons, lists, labels, panels, and canvases that can be used directly or
subclassed into custom components:

I nterfaces

Adj ust abl e

|t enBel ect abl e
Layout Manager
Layout Manager 2
MenuCont ai ner
Pri nt Graphi cs
Shape

Classes

AWEvent

AWEvent Mul ti cast er
Bor der Layout

Button

Canvas
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Car dLayout
Checkbox
CheckboxG oup



CheckboxMenul t em
Choi ce

Col or
Conponent
Cont ai ner

Cur sor

Di al og

D nensi on
Event

Event Queue

Fi |l eD al og

Fl owlLayout
Font

Font Metrics
Frame

G aphi cs
GidBagConstraints
Gi dBagLayout
Gi dLayout

| mage

I nsets

Label

Li st

Medi aTr acker
Menu

MenuBar
MenuConponent
Menul tem
MenuShor t cut
Panel

Poi nt

Pol ygon
PopupMenu
PrintJob

Rect angl e
Scrol | Pane
Scrol | bar
Syst enCol or
Text Area

Text Conponent
TextField
Tool ki t

W ndow

Exceptions

AWIExcept i on
I I I egal Conponent St at eExcepti on
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Errors

AWEr r or

Thej ava. awt . dat at r ansf er Package



Thej ava. awt . dat at r ansf er package provides an interface to the native concept of a
clip board, allowing Java classes to perform cut-and-paste operations to the native clip board.
This allows a Java application to exchange data with another application running in the same
native environment.

I nterfaces

d i pboar dOaner
Transf erabl e

Classes

d i pboard
Dat aFl avor
StringSel ection

Exceptions

Unsupport edFl avor xcepti on

Thej ava. awt . event Package

Thej ava. awt . event package contains classes related to the delegation event model
introduced in JDK Version 1.1. Besides the event classes themselves, this package contains the
interfaces necessary to implement listener functionality as well as default adapter classes
which implement no-op listeners that may easily be extended.
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I nterfaces

Act i onLi st ener

Adj ust nent Li st ener
Conponent Li st ener
Cont ai ner Li st ener
FocusLi st ener

|t enli st ener
KeyLi st ener
MouselLi st ener
MouseMot i onLi st ener
Text Li st ener

W ndowLi st ener

Classes

Act i onEvent

Adj ust ment Event
Conponent Adapt er
Conponent Event
Cont ai ner Adapt er
Cont ai ner Event
FocusAdapt er
FocusEvent

I nput Event

I t enEvent



KeyAdapt er
KeyEvent

MouseAdapt er
MouseEvent

Mouselbt i onAdapt er
Pai nt Event

Text Event

W ndowAdapt er

W ndowEvent

Thej ava. awt . i nage Package

Thej ava. awt . i mage package contains severa classes that are useful to manipulate
images.

| mageConsuner

| mageCbser ver

| magePr oducer

AreaAver agi ngScal eFi |l ter
Col or Mbdel
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Cropl mageFil ter

Di r ect Col or Model

Fi | t er edl mageSour ce
| mageFi | ter

| ndexCol or Mbdel
Menor yl mageSour ce

Pi xel G abber

RGBI mageFi | ter

Repl i cateScal eFil ter

Thej ava. i o Package

Thej ava. i 0 package provides classes that handle all of the basic input and output for a Java
process. This package includes classes that handle raw and streamed input and output:

I nterfaces

Dat al nput

Dat aCut put

Ext ernal i zabl e

Fi | enanmeFi | ter

Qoj ect | nput

oj ect | nput Val i dati on
oj ect Qut put
Serializable

Classes

Buf f er edl nput St r eam
Buf f er edQut put St ream
Buf f er edReader

Buf feredWiter

Byt eAr rayl nput St ream



Byt eAr r ayQut put St r eam
Byt eToChar Convert er
Char Arr ayReader

Char ArrayWi ter

Char ToByt eConvert er
Dat al nput St r eam

Dat aQut put St r eam

File

Fi | eDescri ptor

Fi | el nput St ream
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Fi | eQut put Stream
Fi | eReader
FileWiter

Fil terl nput Stream

Fi | ter Qut put St ream

Fi | t er Reader
FilterWiter

I nput St ream

| nput St r eanReader

Li neNunber | nput St r eam
Li neNurber Reader

oj ect | nput St ream

Qoj ect Qut put Stream
oj ect St rean ass

Qut put St ream

Qut put StreanWiter

Pi pedl nput Stream

Pi pedQut put St r eam

Pi pedReader

Pi pedWiter

Print Stream
PrintWiter

Pushbackl nput St ream
PushbackReader
RandomAccessFi |l e
Reader

Sequencel nput St r eam
St reamTokeni zer

St ri ngBuf f erl nput Stream
StringReader StringWiter
Witer

Exceptions

Char Conver si onExcepti on
Conver si onBuf f er Ful | Excepti on
ECFExcepti on

Fi | eNot FoundExcepti on

| OExcepti on

I nt errupt edl OExcepti on

I nval i dd assExcepti on

I nval i dObj ect Excepti on

Mal f or medl nput Excepti on

Not Act i veExcepti on



Not Seri al i zabl eExcepti on
Obj ect St reanExcepti on
Opt i onal Dat aExcepti on

St r eanCor r upt edExcepti on
SyncFai | edExcepti on
UTFDat aFor mat Excepti on
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UnknownChar act er Excepti on
Unsuppor t edEncodi ngExcept i on
Wit eAbort edException

Thej ava. | ang Package

Thej ava. | ang package is the base package for the Java Development Kit. It isaglobally
available set of classes that require neither an import statement nor full package qualification
in order to be used. The classesin this package include all of the classes used to instantiate a
process and the threads that run in that process, the wrapper classes for the primitive types, the
basic numeric and text handling classes, and the Object class which is the ultimate superclass
of all Java classes.

I nterfaces

d oneabl e
Runnabl e

Classes

Bi gnum

Bool ean

Byt e

Char act er
d ass

d asslLoader
Conpi | er
Doubl e

Fl oat

| nt eger
Long

Mat h

Nunber

oj ect

Pr ocess
Runti ne
Securi t yManager
Short
String
StringBuffer
System

Thr ead
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Thr eadG oup



Thr owabl e
Voi d

Exception Classes

Arithneti cException

Arrayl ndexQut O BoundsExcepti on
ArraySt or eExcepti on

Cl assCast Excepti on

Cl assNot FoundExcepti on

Cl oneNot Suppor t edExcepti on
Excepti on

I'I'l egal AccessExcepti on

||| egal Argunent Excepti on

I'I'I egal Moni t or St at eExcepti on
I'l'l egal St at eException

||| egal ThreadSt at eExcepti on

| ndexQut OF BoundsExcepti on

I nstanti ati onExcepti on

| nt errupt edException

Negat i veArraySi zeExcepti on
NoSuchFi el dExcepti on
NoSuchMet hodExcepti on

Nul | Poi nt er Excepti on

Nurber For nmat Excepti on

Runt i mreExcept ion
SecurityException

St ri ngl ndexQut O BoundsExcepti on

Errors

Abst r act Met hodEr r or
ClassCGrcularityError

d assFor mat Er r or

Error
ExceptionlnlnitializerError
I'I'l egal AccessError

I nconmpat i bl e assChangeErr or
I nstantiationError

I nt ernal Error

Li nkageErr or

NoCd assDef FoundEr r or
NoSuchFi el dErr or

NoSuchMet hodEr r or

Qut O Menor yEr r or

St ackOver f | owErr or

Thr eadDeat h

UnknownEr r or
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Unsati sfi edLi nkErr or
VerifyError
Vi rt ual Machi neErr or

Thej ava. | ang. ref | ect Package



Thej ava. | ang. r ef | ect package provides the means to interrogate classes at run time as
to the public data and methods provided by the class. The facility is used extensively in Java

Beans.

I nterfaces

Menber

Classes

Array

Const ruct or
Field

Met hod

Modi fi er

Exception Classes

I nvocat i onTar get Excepti on

Thej ava. net Package

Thej ava. net package provides access to network resources. Thisincludes Internet and
local area network resources. TCP/IP sockets and URL connections are among the facilities

offered by this package.

I nterfaces

Cont ent Handl er Fact ory

Fi | eNameMap

Socket | npl Fact ory

URLSt r eantHandl er Fact ory

Classes

Cont ent Handl er

Dat agr anPacket

Dat agr anSocket

Dat agr anSocket | npl
Ht t pURLConnecti on
| net Addr ess

Mul ti cast Socket
Ser ver Socket
Socket

Socket | npl

URL

URLConnect i on
URLENncoder

URLSt r eanrHandl er

Exception Classes
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i ndExcepti on

Connect Excepti on

Mal f or medURLExcept i on
NoRout eToHost Excepti on
Pr ot ocol Excepti on
Socket Excepti on
UnknownHost Except i on
UnknownSer vi ceExcepti on

Thej ava. rm Package

Thej ava. r m package provides remote method invocation. This alows a Java process
running on one virtual machine to invoke methods on an object running on another virtua
machine.

I nterfaces

Renot e
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Classes

Nam ng
RM Securi t yManager

Exception Classes

AccessException

Al r eadyBoundExcepti on
Connect Excepti on
Connect | OExcepti on
Mar shal Excepti on
NoSuchQbj ect Excepti on
Not BoundExcepti on

RM SecurityException
Renot eExcept i on
ServerError

Ser ver Excepti on
Server Runt i meExcepti on
St ubNot FoundExcepti on
Unexpect edExcepti on
UnknownHost Except i on
Unmar shal Excepti on

Thej ava. rm . dgc Package
Thej ava. r m . dgc package provides distributed garbage collection for remote objects.

I nterfaces

DGC

Classes



Lease
VM D
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Thejava.rm . regi stry Package

Thej ava. rm . r egi st ry package provides the classes used in the RMI registry. Any
virtual machine allowing rmi connections will have aregistry. A registry on agiven node
provides a database that maps local names to remote objects.

I nterfaces

Regi stry
Regi st ryHandl er

Classes

Locat eRegi stry

Thej ava. rm . server Package

Thej ava. rm . ser ver package provides the server-side functionality for RMI services.
The server isthe node on which RMI connections and requests are received and processed.

I nterfaces

Loader Handl er

RM Fai | ur eHandl er
Renot eCal |

Renvot eRef

Ser ver Ref

Skel et on

Unr ef er enced

Classes

LogSt ream

Ohj I D
Qperation

RM O asslLoader
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RM Socket Fact ory
Renot ehj ect

Renot eSer ver

Renot eSt ub

u D

Uni cast Renpt eoj ect

Exception Classes

Export Excepti on



Server d oneExcepti on
Server Not Acti veExcepti on
Skel et onM smat chExcepti on
Skel et onNot FoundExcepti on
Socket Securi t yExcepti on

Thej ava. securi ty Package

Thej ava. secur ity package provides the meansto examine aclass at |load-time to
determine the classes level of accessto the local system.

I nterfaces

Certificate
Key

Pri nci pal
Pri vat eKey
Publ i cKey

Classes

Di gest | nput St ream
Di gest Qut put St ream
Identity

| denti t yScope
KeyPai r

KeyPai r Gener at or
MessageDi gest

Pr ovi der

Secur eRandom
Security

Si gnat ure

Si gner

Exception Classes

Di gest Excepti on
I nval i dKeyExcepti on

I nval i dPar anmet er Excepti on

KeyExcepti on

KeyManagemnment Excepti on
NoSuchAl gorit hmExcepti on
NoSuchPr ovi der Excepti on

Pr ovi der Excepti on
Si gnat ur eExcepti on

Thej ava. security. acl Package

Page 262

Thej ava. security. acl package provides an access control list functionality to the

java.security package.

I nterfaces

Acl



Acl Entry
G oup
Omner

Per m ssi on

Exception Classes

Acl Not FoundExcepti on
Last Onner Excepti on
Not Onner Excepti on

Thej ava. security.interfaces Package

Thej ava. security.interfaces package definesthe interfaces necessary to
implement encryption schemesin Java.
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I nterfaces

DSAKey

DSAKeyPai r Gener at or
DSAPar ans

DSAPr i vat eKey
DSAPubl i cKey

Thej ava. sql Package

Thej ava. sql package provides an interface to the industry standard Structured Query
Language used in accessing relational databases. The classesin this package use and manage
JDBC drivers that allow Javato interface with native RDBMS's.

I nterfaces

Cal | abl eSt at enent
Connection

Dat abaseMet aDat a

Driver

Pr epar edSt at enent
Resul t Set

Resul t Set Met aDat a
St at enent

Classes

Dat e

Dri ver Manager
DriverPropertyl nfo
Ti me

Ti mest anp

Types

Exception Classes

Dat aTruncati on
SQLException



SQ._War ni ng
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Thej ava. t ext Package

Theclassesinthej ava. t ext package provide alanguage-independent way to handle the
processing and formatting of text.

I nterfaces

Characterlterator

Classes

Br eakl t erat or

Choi ceFor nat

Col | ati onEl enment | t erat or
Col I ati onKey

Col | at or

Dat eFor mat

Dat eFor mat Synbol s

Deci nal For mat

Deci mal For mat Synbol s

Fi el dPosi ti on

For nmat

MessageFor mat

Nunber For nat

Par sePosi ti on

Rul eBasedCol | at or

Si npl eDat eFor mat
StringCharacterlterator

Exception Classes

Par seExcepti on

Thej ava. uti| Package

Thej ava. uti | package containsvarious utility classes. The package includes classes that
handle time and date functionality. There are container classes like the Vector, Hashtable,
Dictionary, and Stack. The package also includes the Random class used to generate random
numbers. Thej ava. ut i | packageis aso the home of the Enumeration and Observer
interfaces.
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| nterfaces
Enuner ati on

Event Li st ener
Cbser ver

Classes



Bi t Set

Cal endar

Dat e

Di ctionary

Event Qbj ect

G egori anCal endar
Hasht abl e

Li st Resour ceBundl e
Local e

oservabl e
Properties

Pr opert yResour ceBundl e
Random

Resour ceBundl e

Si npl eTi nmeZone

St ack

StringTokeni zer

Ti meZone

Vect or

Exceptions

Enpt ySt ackExcept i on

M ssi ngResour ceExcept i on
NoSuchEl ement Excepti on
TooManyLi st ener sExcepti on

Thejava. util. zi p Package

Thej ava. uti | . zi p package provides the classes needed for data compression and
decompression using various agorithms.

I nterfaces

Checksum

Classes

Adl er 32

CRC32

Checkedl nput Stream
CheckedQut put Stream
Def | ater

Def | at er Qut put Stream
&I Pl nput St ream

&ZI PQut put St ream
Inflater

I nflaterlnputStream
Zi pEntry

ZipFile

Zi pl nput St ream

Zi pQut put Stream

Exception Classes
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Dat aFor mat Except i on
Zi pException
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Appendix B
Keywordsand Literals

The following keywords and literals are defined for the Java language:

abstract
A keyword used to identify a class or method purposely left without a complete implementation
with the expectation that a subclass will provide the implementation.

boolean
A primitive type which always holds a value of either true or false.

break
A keyword used to leave an execution loop or switch statement.

while( true )
{

if( state == true )
br eak;

byte
A primitive integer type holding an 8-bit value.

case
A control flow statement used in a switch construct. Defines an action block to be executed if
the switch constant and the case constant are equal. See switch.

catch
A keyword used in exception handling to indicate the type of exception being trapped.

try
{

} .
catch( |1 OException e )
{

.
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class
A keyword used to indicate the beginning of a class definition.



const
A word reserved for future use in the Java language.

continue
A keyword used to switch program flow to the next iteration of aloop.

while( i < 100 )
{
if( i %10)
conti nue;
el se

do
A keyword used to indicate the starting point of aloop that has its exit contition after the body
of the loop. Always used with the while keyword.

do
{

} Mile( b ==true);

default
A keyword indicating the default action in a switch statement if none of the case Statements
apply. See switch.

double
A primitive floating point numeric type that holds a 64-bit value.

else
A keyword indicating the aternative branch in an if-else conditional statement.

if( b ==true

el se

extends
A keyword used in a subclass definition statement defining the name of the superclass from
which this class derives.
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false
A boolean literal.

final
A keyword used to identify a method that is not overridable or afield that is not modifiable.
finally

A keyword used in the definition of atry/catch/finally block used for exception handling. The
finally block is always executed regardless of whether or not the exception condition occured.



float
A primitive floating point numeric type that holds a 32-bit value.

for
A keyword used in the definition of an iteractive loop.

For( int i =0; i < 10; i++ )
{

}
if
A keyword used in the definition of a conditional statement. If the condition resolvesto true,
the supplied statement/block is executed.

if( b ==true)

implements
A keyword used with a class declaration to identify the interfaces implemented by the class.

import
A keyword used to identify the classes/packages from which the source file will use shortened
class and interface names.

i nport java.awt. *; alows" Graphi cs" instead of the fully qualified class name
"java. awt . Graphi cs"
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instanceof
A keyword used to test areference variable to determine whether the variable is castable to the
supplied type.

if( b instanceof Myd ass )
int
A primitive integer type holding a 32-bit value.

interface
A keyword used to declare a Javainterface.

long
A primitive integer type holding a 64-bit value.

native
A keyword used to denote that a method is defined in native (non-portable) code.

new
A keyword used to allocate dynamic memory for aclass or array instance.

null



A literal used to indicate that a reference does not point to any object.

package
A keyword used to define the package to which a source file belongs. The package statement
must be the first statement in the sourcefile.

private
A keyword access modifier used to denote access limited to the defining scope.

protected
A keyword access modifier used to denote access limited to the defining package and any
subclasses of the defining class.

public
A keyword access modifier used to denote free access by any class or method regardless of
package or class hierarchy.
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return
A keyword used in a method definition to indicate the exit point of the method. It may also be
used to supply the defined return value.

short
A primitive integer type holding a 16-bit value.

static
A keyword used to denote that a member exists only once per class rather than once per
instance of the class.

super
A keyword used to refer to the superclass of thisinstance.

switch

A keyword used in the definition of a multi-conditional statement. A supplied valueis tested
against multiple "cases" or constants for equivalence. Execution is transferred to the
appropriate case.

synchronized
A keyword used to place alock and monitior on an object in order to ensure data integrety in
objects accessed by multiple threads.

this
A keyword referring to the current instance of a class. The current object.

throw
A keyword used to generate and deliver an exception.

throws
A keyword used in the declaration of a method to indicate the possible exception conditions
that may be thrown by the method.



transient
A keyword used to denote that afield in a class object will not be persistent through
serialization.

true
A boolean literal.

try
A keyword used to define a block for which specific exceptions should be caught. See catch.
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void
A keyword used to indicate that a method has no return value.

volatile
A keyword used on adatafield to indicate that optimizing compilers should not make
assumptions about the field.

while
A keyword used to define a conditional 1oop.

Wiile( b == true)
{

.
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What's on the CD-ROM?

Complete Source Code for Abstract Data Typesin Java

All of the source code listed in the book is provided, ready to compile. The source listings are
broken down chapter-by-chapter Each chapter's Java source comes with an example
makef i | e that can be used to easily build all of the classes described in the book.

The main directory for al of the source code is\adt on the CD-ROM. Each chapter has its owr
subdirectory containing all of the source for that chapter.



5D
-1 adt
] Chapterti
) chapteroz
] Chapterts
-] Chaptercd
~{_] Chapteros
~{_] Chapteros
~{_] Chaptero?
—{_] Chapteros
—{_] Chaptercs
] Chapterio
(] chaptert
.7 ] chapter12
Figure 1

The main directory for the source
code on the CD-ROM.

Java Development Kit (JDK ) Version 1.1.3

The complete 1.1.3 release of the Java Development Kit Version 1.1.3 isincluded on the
CD-ROM. The compressed, installable versions for Windows 95, Windows NT, Solaris 2.x
(Sparc), and Solaris 2.x (x86) are located in the JDK directory. The file namesfollow.

jdkl . 1. 3-beta-sol ari s2-x86. bin
Solaris 2.x PC (x86)
version (beta version)
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jdk1l. 1. 3-sol ari s2-spare. bin
Solaris 2.x Sparc
version

j dk113. exe
Windows 95 / Windows NT
version

j dk113doc.tar. gz
Complete documentation for the JDK
in agzipped tar file format.

Installing the JDK on Windows 95 / Windows NT

Toinsgtal the IDK on Windows 95 or Windows NT, insert the CD-ROM, select the
appropriate drive letter in Windows explorer or File Manager, and double-click on the

] dk113. exe file. Theinstallation program will walk you through all of the steps necessary
to complete installation.

Please read the\ | dk\ READMVE filein order to set up the appropriate environment variables



before attempting to run the JDK utilities.
Installing the JDK on Solaris

To install the JDK on ether Solaris platform, Sparc, or x86, copy the appropriate file from the
CD-ROM to the desired base directory on your workstation. If you unpack the software or
documentation in a directory that contains adirectory named j dk1. 1. 3, the new software
will overwrite files of the same nameinthat j dk1. 1. 3 directory. Please be careful to
rename the old directory if it contains files you want to keep.

In a shell window, execute the following commands. Note that executing these commands
temporarily createsa README file in the current directory (which will overwrite any
README file you may have).

Toingdl the JDK on the SPARC platform (must be unpacked on a SPARC machine running
Solaris 2.4 or greater):

% chnod a+x j dkl. 1. 3-sol ari s2-sparc. bin
% ./jdkl.1.3-sol aris2-sparc.bin

Toinstal the JIDK on the x86 platform (must be unpacked on ax86 machine running Solaris 2.5
or greater):

% chnod a+x j dkl. 1. 3-beta-sol ari s2-x86. bin
% ./jdkl. 1. 3-bet a-sol ari s2-x86. bi n
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Thiswill bring up alicense for you to read. If you agree, typeyes, press Return, and the
program creates adirectory called | dk1. 1. 3 containing the JDK software.

Included in the unpacked filesisafilel i b/ cl asses. zi p. Donot unZlP the
cl asses. zip fil e.Thisfilecontainsall of the core class binaries and must remain in its
zipped form for the JDK to useit.

The Java source files originally appear asasr c. zi p fileunder thej dk1. 1. 3 directory in
the Solaris installation, which you may unzip manually to obtain access to the source code for
the JDK class libraries. However, you must use an unzip program that maintains long
filenames. Such unzip utilities may be found at the UUNet FTP Site

(ftp://ftp.uu. net/pub/archiving/zip)

Please read the\ | dk\ READVE file to set up the appropriate environment variables before
attempting to run the JDK utilities.

Installing the JDK Documentation

Toinstall the javadoc (HTML) documentation for al of the Java classes, copy the

j dk113doc. t ar. gz fileinto the same directory into which you installed the JDK.
Uncompress the file. On Windows platforms, you need to have the WinZip utility

(htt p: // www. Wi nzi p. cor). On the Solaris platforms, you need the gzip utility (available
from countless places on the Internet). The compressed file expands into the

j dkl . 1. 3/ docs directory that will contain all of the javadoc files for the core libraries.



Running the JDK from the CD-ROM

If you are running Windows 95 or Windows NT, you can run the JDK directly from the
CD-ROM without having to install it on your hard drive. The\ j dkl . 1. 3 directory on the
CD-ROM contains a completely expanded and ready-to-use version of the JDK, including the
Java source files. Y ou need to read the\ | dk\ READMVE file to set up the appropriate
environment variables.
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About ObjectSpace
/""

[]HJEET/SPHE[

ObjectSpace is an advanced software technology company that specializesin distributed
computing. Using a partnership approach, ObjectSpace provides the people, process,
technology, and skills transfer services needed to render innovative business solutions for our
clients. ObjectSpace strives for the highest levels of quality and functionality while
transforming the client's devel opment organization.

Extensive experience and continued research make the people at ObjectSpace experts at the
application of distributed technology. We facilitate skills transfer through an educational
services curriculum that blends partnered project devel opment, training classes, and mentoring
services. ObjectSpace leverages its rapid application development process by relying on
proven, iterative methodology. Finally, the company's portfolio of application frameworks,
advanced technology components, and project management tools ensure visible, timely, and
measurable results.

Headquartered in Dallas, Texas, ObjectSpace maintains officesin mgor cities across the US.
and has aworldwide distributor network. Among our clients are Fortune 500 companies
specializing in manufacturing, communications, and financia services,

The ObjectSpace Development Technology Division leads the market for standards-driven
C++ and JavaTM components. ObjectSpace products are proven performers that deliver
advanced technology in aform easily applied to today's development problems.

ObjectSpace Java? Products

The Java Products from ObjectSpace provide Java devel opers with core technology for Java
development. Both are free for commercial use at www.objectspace.com.

JGL& —Generic Collection Library for Java. The most comprehensive set of containers
and algorithms available for Java today.
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Voyagerd —Agent-Enhanced Distributed Computing for Java. The only Java platform today
that seamlesdly supports traditional and agent-enhanced distributed computing techniques
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What is Voyager ?

Voyager isthe world's first 100-percent Java agent-enhanced Object Request Broker (ORB).
Voyager enables Java programmers to create sophisticated network applications quickly and
easlly using bot traditiona and agent-enhanced distributed programming techniques.

Voyager was designed carefully to be extremly easy to use. Use regular Java message syntax to
construct remote objects, send them messages, and move them between applications. In
minutes, you can cregte autonomous agents that can roam a network and continue to execute as
they move.

Traditional Distributed Computing

Many people today are becoming familiar with client/server programming. Well-known
technologies, such as remote process communication (RPC), were designed specifically for the
client/server paradigm. In client/server computing, the client establishes a connection with one
or more stationary servers and sends them messages to compl ete a task.

Client/Server techniques do the following:

Consume network bandwidth for each message.
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Require the network connection be maintained with a specific service during the entire
conversation.

Agent-Based Computing

With agent-based computing, an application is constructed from amix of stationary objects and
mobile objects, or agents. When necessary, agents can move to stationary objects or to other
agents to perform high-speed, local communications.



Consumes network bandwidth only once, when the agent moves.

Agents continue to execute after they move, even if they lose connectivity with their
creators.

Agents use high-speed native messaging to complete the conversation, consuming no
network bandwidth.

The Best of Both Worlds

Voyager isthe only Java platform today that seamlessy supports traditional and
agent-enhanced distributed programming techniques. Depending on the application context, one
of these two approaches may better satisfy the system requirements. In most large distributed
systems, both techniques used together produce the optimal result. Don't restrict yourself by
choosing only one-choose Voyager and get both. Voyager is the obvious choice for distributed
system development because it is

100% Java

Extremely easy to use, requiring no modifications to your classes.

A single unified platform providing remote messaging, mobility, and autonomy.
Very compact and fast.

Absolutely free for commercial use.

" Agent technology will be asimportant for the Internet as the I nter net
has been for personal computing. Voyager is the most powerful and
easy-to-use solution for agent-enabled distributed computing | have
seen.”

—John Nordstrom, Sabre Decision Technologies
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Transparently locate agents and send them messages as they work, even if the agents are
moving. Do all this and much more—absolutely free—with VVoyager. With VVoyager you get the
following:

VOYAGER INCLUDES SEAMLESS SUPPORT FOR AGENT TECHNOLOGY.
Voyager enables you to create—in minutes—agents that can roam a network and continue to
execute as they move. Because an agent isjust a specia kind of object, moving agents and
other objects can exchange remote messages using regular Java message syntax.
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Agent
Mobility

Optional -
MNetwork
Connectivity

Local Method
Invocation

VOYAGER DOESNOT REQUIRE YOU TO ALTER JAVA CLASSESIN ANY WAY.
Voyager can remotely construct and communicate with any Java class, even third-party
libraries without source. Other
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technologies typically requiretheuseof . i dl files, interface definitions, and modificationsto
the origina class, which consume development time and tightly couple your domain classes to
aparticular ORB technology.

Method
Invocation

VOYAGER HASTHE BEST INTEGRATION WITH THE JAVA LANGUAGE. Objects
can be constructed remotely using the regular Java construction syntax; static methods can be

executed remotely; remote exceptions are automatically rethrown to the caller; and serializable
objects can be passed and returned by value. All of these features result in smpler and quicker



development for a Java programmer

VOYAGER INCLUDES SEAMLESS SUPPORT FOR OBJECT MOBILITY. You may
move any serializable object after it has been created to a new location, even while the object
IS receiving messages. Messages sent to the old location are automatically forwarded to the
new location.

VOYAGER ISFAST. Remote messages are as fast as the CORBA ORBS. In addition,
messages delivered by mobile agents are often up to 100,000 times faster than other Java
ORBs.

VOYAGER ISSMALL. Thetota classfilesizefor Voyager islessthan 150K. It isafully
functiona agent-enhanced object request broker and does not require any additional software
beyond the JDK 1.1.

VOYAGER ISCOMPREHENSIVE. Version 1.0 includes support for one-way, future, and
sync messages using TCP communications. Future versions will include a powerful distributed
event system, group communications, a distributed directory service, store-and-forward,
reliable UDP communications, mobile tracking facilities, and enhanced agent capabilities.
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VOYAGER HASTHE BEST CONNECTIVITY. Some ORBs prevent objects in browsers
from communicating with objects that are not located in the browser's server. Voyager does not
impose this restriction and includes an integrated software router than enables objects to
communicate with each other anywhere in the world (firewalls permitting).

VOYAGER IS 100% PURE JAVA. Voyager applications can be written once and run
anywhere.

Voyager on the CD-ROM

The current beta 3.0 version of VVoyager in included on the CD-ROM. All of the files needed to
install Voyager are included. Please read the license agreement included with the software. By
installing or using this software, you indicate acceptance of the terms and conditions of the
enclosed license. You do not need to download additional materialsto install beta 3.0.
Updates are available for free directly from the ObjectSpace web site at the following address:

http://ww. obj ect space. com
The files on the CDROM are as follows:

\ Voyager \ README. t xt
Installation instructions—PLEASE READ FIRST

\ Voyager\license. t xt
Voyager License—READ BEFORE INSTALLATION

\ Voyager \ Voyager . PDF
Voyager User's Manual in Adobe Acrobat format

\ Voyager\voyager |.0 beta 3.0.zip



Windows ZIP format

\ Voyager\voyager |.0 beta 3.0.tar.Z
UNIX TAR file

\ Voyager\voyager |.0 beta 3.0.tar.gz
UNIX GZipped TAR file

\ Voyager\voyager |.0 _beta 3. 0. exe
Sdf-extracting executable

Javais atrademark of Sun Microsystems. All other trademarks are the property of their
respective companies.
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A
abstract classes, 246
abstract datatypes (ADTS)

and classes, 3

container, 8-9

definition, 3

linked lists, 78

reasons for using, 8
abst ract keyword, 267
abstract windowing toolkit (j ava. awt package), 249-251
access modifiers, 243-244
action operation (traversal), 160
addEl enent () method

Sor t edVect or class, 42, 44

Vect or class, 37-38, 81
add() method

Bal Tr ee class, 186-188

BTr ee class, 227



DLi nkedLi st class, 114

Queue class, 148

RBTr ee class, 208-210

RSt ack class, 134

SLi nkedLi st class, 88, 90

Tr ee class, 175, 177-180

VSLi nkedLi st class, 81
Addr essBook class, 82-85, 97, 101
Addr essBook?2 class, 97-101
Addr essEnt ry class, 94-97
API (Application Programming Interface), 4
applets, 239

j ava. appl et package, 248-249

security issues with, 240-241
<APPLET> tag, 239, 248
argument passing, 5-6
Arrayl ndexQut Of BoundsExcept i on class, 24
arrays, 4

changing length of, 32

as datatype, 32

definition, 32

examples of, 32-33

hash tables vs., 58

indexesto, 58

number of elementsin, 32

and obj ect class, 32

sorting, with qui cksort agorithm, 47-48

vectorsvs., 38-39

axis of rotation, 165-167



B
backtrace, 24
balanced trees, 155
binary trees, 183-190
B-trees, 221
red-black trees, 198
bal ance() method
Bal Tr ee class, 188
BTr ee class, 228, 232
RBTr ee class, 209, 210
Bal Tr ee class, 184-188, 190
add() method of, 186-188
bal ance() method of, 188
branchCount () method of, 187
count () method of, 187
r ot at e() method of, 187, 188
binary trees, 172-190
adding nodesto, 177-180
balancing, 183-190
comparing nodes for, 173-174
definition, 172
node class for, 172-173
searching, 180
traversing, 174, 180-181
and Tr ee class, 174-177
using, 181-183
bool ean keyword, 267
branchCount () method

Bal Tr ee class, 187



BTr ee class, 232
branches, 155
br eak keyword, 267
br eak statement (catch block), 20
BTr ee class, 226-233
B-trees, 216-235
adding keysto, 219
balancing, 221
branchesin, 216-217

BTr ee class, 226-233
BTr eeTest class, 233-234
implementing binary, 221-234
with indexes, 217
keysin, 216-217
node width in, 217-218
searching, 218
splitting nodes of, 219-221
traversing, 219
Tr eeNode class, 223-226
using, 234-235
BTr eeTest class, 233-234
bucket Add() method (HashObject class), 64
buckets, 59, 60, 85
built-in exceptions, 24-25
byte-code files, 239
byt e keyword, 267

C
capacity changes (vectors), 34, 35
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capaci tyl ncrenent instance variable (Vect or class), 33-34, 38
capaci ty() method (Vect or class), 36
case keyword, 267
cat ch block, 19-22
catching exceptions, 16, 19-22
cat ch keyword, 267
children, 154-155
circular linked lists, 115-121
Cl assCast Excepti on, 10
classes
calling member functions of, 5
core, 4
declaring, 245-246
definition, 3
subclasses, 10, 246-247
superclasses, 10, 246
wrapper, 4
cl ass keyword, 268
cl ear () method (Hasht abl e class), 68
CLEnuner at i on class, 116-118
CLi nkedLi st class, 118-121
cl one() method
Hasht abl e class, 68
(bj ect class, 87
Vect or class, 38
collisions, 59
Conpar abl eSt ri ng class, 44, 45
conpar e() method



Conmpar abl e interface, 41

Sort | nterface interface, 51

Tr ee class, 178
conpar eTo() method (St ri ng class), 41, 44
concat () method(stri ng class), 7
const keyword, 268
Const ruct or Excepti on class, 25-27
containers, 8-9

over-designing, 11
cont ai nsKey() method (Hasht abl e class), 67
cont ai ns() method

Hasht abl e class, 67

Vect or class, 36
cont i nue keyword, 268
cont i nue statement (cat ch block), 20
conversions, widening vs. narrowing, 10
copyl nt o() method (Vect or class), 34
core AP, 4
core classes, 4
count () method (Bal Tr ee class), 187
count RedChi | dren() method (Tr eeNode class), 225-226
creat el ndexFi | e() method (BTr ee class), 234
current instancevariable (SLi nkedLi st class), 88, 90-92

D

data compression/decompression (j ava. uti | zi p package), 265-266
deep copies, 87

default access, 244

def aul t keyword, 268

del et el ndexFi | e() method (BTr ee class), 234



del et e() method
DLi nkedLi st class, 114
RSt ack class, 135
SLi nkedLi st class, 90, 91, 109
VSLi nkedLi st class, 81
DLi nkedLi st class, 111-115, 118
DLNode class, 110-111, 114
do keyword, 268

- D option (Java runtime process), 74

doubl e keyword, 268
doubly-linked lists, 109-115

E
el enent At () method (Vect or class), 37, 82, 142
el enment Count instance variable (Vect or class), 38
el enent Dat a instance variable (Vect or class), 38
el enent s() method

DLi nkedLi st class, 115

Hasht abl e class, 67

RSt ack class, 135

Vect or class, 36, 78
el se keyword, 268
enpt y() method (St ack class), 128
ensur eCapaci t y() method (Vect or class), 35
entry points, 154
Enuner at i on interface, 92-94
enumeration (list traversal), 92-94

Err or class, 23
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error conditions
exceptionsvs., 18
and return values, 17-18
event queues, 150
Excepti on class, 22, 23, 64
exception handling, 17
exceptions, 10
built-in, 24-25
catching, 16, 19-22
costs of implementing, 18
creating custom, 25-27
definition, 16
error conditionsvs., 18
example, 16
return valuesvs., 17-18
runtime, 18n1
and Thr owabl e class, 22-24
throwing, 16, 18-19
explicit typecasting, 9
ext ends keyword, 268

F

f al se keyword, 269

FIFO (firstin, first out), 140

Fi | eQut put St r eam, 24-25

filllnStackTrace() method (Thr owabl e class), 24
final classes, 246

fi nal keyword, 269

finally keyword, 269

firstEl enent () method (Vect or class), 37



firstin, first out (FIFO), 140

fl1ip() method (Tr eeNode class), 202
f | oat keyword, 269

f or keyword, 269

G
get Bucket () method (HashObj ect class), 63, 64
get Col or () method (Tr eeNode class), 202
get Current () method

DLi nkedLi st class, 114

SLi nkedLi st class, 92

VSLi nkedLi st class, 82
get Dat a() method

SLNode class, 88

Tr eeNode class, 202
get Entry() method (Addr essBook?2 class), 101
get Lef t () method (Tr eeNode class), 202
get Message() method (Thr owabl e class), 23-24
get () method

HashObj ect class, 63

Hasht abl e class, 67-68

Queue class, 148

Si npl eQueue class, 145

VQueue class, 141, 142
get Prev() method (DLNode class), 111
get Property() method (Properti es class), 73
get Ri ght () method (Tr eeNode class), 202
graphical user interfaces (GUIs), 249

H
handles, 6



pointersvs., 7
hash agorithms, 58-60
hashCode() method
HashObj ect class, 60, 61, 64
Hasht abl e class, 66
St ri ng class, 64
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HashObj ect class, 60-65

Hasht abl e class (Java), 66-69
hash tables, 58-74
arraysvs., 58
and buckets, 59, 60
definition, 58
example, 60-66
JavaHasht abl e class, 66-69
keysto, 58-60
Properti es class, 72-74
size of, 60
uses of, 69-72
hasMor el enent s() method
CLEnuner at i on class, 117-118
Enumer at i on interface, 93
hasMbst El emrent s() method (CLEnurer at i on class), 118
hasRedChi | d() method
RBTr ee class, 209-210
Tr eeNode class, 203
head instance variable
DLi nkedLi st class, 114
SLi nkedLi st class, 88, 90, 91



head() method (DLi nkedLi st class), 115
HTML, 239

I
i finally block, 20, 21
i f keyword, 269
i mpl ement s keyword, 269
implicit typecasting, 9
i mport keyword, 269
indexed sequential access method (ISAM) database files, 217
indexes, 58
i ndexOF ()  method (Vect or class), 36
inheritance, 12
in-order traversal, 159-162
i nsert El enent At () method (Vect or class), 37, 39, 81
i nsert () method
DLi nkedLi st class, 114
Queue class, 148
RSt ack class, 135
SLi nkedLi st class, 90, 91
VSLi nkedLi st class, 81
i nst anceof keyword, 270
instance variables, 79, 81
integer datatype, 2
i nt er f ace keyword, 270
interfaces, 246-247
i nt keyword, 270
| CExcepti on, 22, 24-25
ISAM (indexed sequential access method) database files, 217
i senpty() method



Hasht abl e class, 67
SLi nkedLi st class, 92
Vect or class, 36
i sOver Ful | () method (Tr eeNode class), 226
i s2\Wy () method (Tr eeNode class), 203
i s3Vy() method (Tr eeNode class), 204
i sS4y () method (Tr eeNode class), 203

J
Java, 239-248

access modifiersin, 243-244

appletsin, 248

applicationsin, 248

classesin, 245-246

execution unitsin, 239

interfacesin, 246-247

methodsin, 247

packagesin, 245

primitive typesin, 242-243

reference typesin, 243

reserved keywordsin, 241-242

and security, 240-241

stand-alone programs written in, 239-240
] ava. appl et package, 248-249
j ava. awm . dat at r ansf er package, 251
j ava. awt . event package, 251-252
j ava. awmt . i mage package, 252-253
j ava. awt package, 249-251
Java core class library, 248

Java Development Kit (JDK), 4, 248



Java. i o package, 25, 253-255

j ava. | ang package, 25, 255-257

j ava. |l ang. ref | ect package, 257
] ava. net package, 257-258

j ava. rm . dgc package, 259

j ava. rm package, 258-259
java.rm . registry package, 260

j ava. rm . server package, 260-261
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j ava. security. acl package, 262
j ava. security.interfaces package, 262-263
j ava. securi ty package, 261-262
j ava. sqgl package, 263
j ava. t ext package, 264
j ava. ut i | package, 264-265
java. util . zi p package, 265-266
Java Virtua Machine, 239, 240
JDK. See Java Development Kit
jumping, 5

K
keys, 58-60
with B-trees, 216-217, 219
with multi-way trees, 194
keys() method (Hasht abl e class), 67
keywords, Java, 241-242, 267-272
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| ast El enent () method (Vect or class), 37
lastin, first out (LIFO), 126



| ast | ndexdf () method (Vect or class), 36-37
leaves, 155
left isless and right is greater model, 156, 160
LIFO (lastin, first out), 126
Li nkedLi st class, 107-109, 145, 148
linked lists, 78-101
and abstract data types, 78
adding data elementsto, 88, 90-91
array-based, 79-82
address-based application, 82-85
circular linked lists, 115-121
definition, 77
doubly-linked lists, 109-115
empty, 91
enumeration with, 92-94
extensible superclasses with, 106-109
nodesin, 85-88, 90-92, 94
performance and types of, 121
reference-based, 88-90
address book application, 94-101
representing, 79
treesvs., 155-158
vectorsvs., 78
Li st Enuner at i on class, 107-109, 116
I'ist() method (Properties class), 74
list traversal (enumeration), 92-94
| oad() method (Pr operti es class), 73

| ong keyword, 270
M



mai n() method
Addr essBook class, 83
TreeTest class, 182
memory management
with arrays, 32
with vectors, 33, 78
menu() method (Addr essBook?2 class), 101
message queues, 149
method overloading, 39-40
method overriding, 39-40
methods
caling, 5
definition, 247
signatures of, 247
virtual, 40
Microsoft Internet Explorer, 239
movement operation (traversal), 160
multi-way trees, 194-195. See also B-trees
definition, 194
of fixed order, 216
2-3-4 trees, 195-197

N

narrowing conversions, 10

nat i ve keyword, 270

Netscape Navigator, 239

network resources (j ava. net package), 257-258
new keyword, 270

next El enent () method

Enunmer at i on interface, 93



Node class, 107
next () method
Addr essBook class, 83
DLi nkedLi st class, 114
SLi nkedLi st class, 92
VSLi nkedLi st class, 82
Node class, 106-107, 109
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nodes, 85-88, 90-92, 94, 154
adding, to trees, 158-159
binary trees, 177-180
base class, 86-88
color of, in red-black trees, 198
definition, 85
and left islessand right is greater model, 156, 160
in multi-way trees, 194-195
root, 155
splitting B-tree, 219-220
in 2-3-4 trees, 195-197
width of, in B-trees, 217-218
no-op subclassing, 23
NoSuchKeyExcept i on class, 63-64
nul | keyword, 270
Nul | Poi nt er Excepti on, 16, 22

O

hj ect class, 4-5, 9-11, 87-88
and arrays, 32

objects, handlesto, 6

order, 216



overloading, method, 39-40
overriding, method, 39-40, 247

P
package access, 244
package keyword, 270
packages, 245
parents, 154-155
pass by value, 5-6
peek() method (st ack cl ass), 128
pointers, 6-7
Poi nt | nf o class, 70-72
polymorphism, 4, 10
pop() method
RSt ack class, 132
Si npl eSt ack class, 129, 130
Si npl eSt ackNode class, 131
St ack class, 128
pre-order traversal, 162-163
prev() method (DLinkedList class), 114-115
primitive types, 3-4, 32, 242-243
print () method (Addr essBook class), 83, 84
print queues, 150
print StackTrace() method (Thr owabl e class), 24
pri vat e keyword, 270
private modifier, 243-244
process() method (Tr aver sal interface), 174
Properti es class, 72-74
PropertyLi st application, 72
propertyNanes() method (Pr operti es class), 74



pr ot ect ed keyword, 270

protected modifier, 244

publ i ¢ keyword, 270

public modifier, 244

push() method
RSt ack class, 132, 134
Si npl eSt ack class, 129, 130
Si npl eSt ackNode class, 131
St ack class, 127-128

put () method
HashQbj ect class, 63
Hasht abl e class, 67-68
Queue class, 148
Si npl eQueue class, 145
VQueue class, 141, 142

Q

QEnuner at i on class, 149
(QNode class, 145-147
Queue class, 145, 147-149
gueues, 140-150
and FIFO, 140
reference-based, 143-149
stacksvs., 140
uses for, 149-150
vector-based, 141-143
qui cksort agorithm, 46-52
qui cksort () method (Sort Engi ne class), 51

R
RBTr ee class, 204-210



RBTr eeTest class, 211-212
readMul ti Node() method (BTr ee class), 234
readbj ect () method (Hasht abl e class), 68

red-black trees, 197-212

balancing of nodesin, 198

interfaces for, 199

node configurationsin, 203

RBTr ee class, 204-210

RBTr eeTest class, 211-212

Tr eeNode class, 199-204

using, 210-212
reference-based linked lists, 88-90

address book application, 94-101
reference-based queues, 143-149
reference-based stacks, 129-136
reference types, 4, 32, 243
rehash() method

HashQbj ect class, 65

Hasht abl e class, 68
remote method invocation (j ava. r m package), 258-259
removeAl | El ement s() method (Vect or class), 38
removeEl enent At () method (Vect or class), 37, 81
removeEl enent () method (Vect or class), 38
renove() method (Hasht abl e class), 68
reset () method

Addr essBook class, 83

DLi nkedLi st class, 114

RSt ack class, 135
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SLi nkedLi st class, 92

VSLi nkedLi st class, 82
r et ur n keyword, 271
r et ur n statement (cat ch block), 20
return values, exceptionsvs., 17-18
root node, 155
r ot at e() method

Bal Tr ee class, 187, 188

BTr ee class, 233

RBTr ee class, 210
rotation, 163-167

binary trees, 183-184
RSt ack class, 132-135
RSt ackEnuner at i on class, 136
Runt i meExcepti on class, 18n1, 24

runtime exceptions, 18nl

S
sandbox approach, 240
save() method (Pr operti es class), 73
searching

binary trees, 180

B-trees, 218
sear ch() method

BTr ee class, 233

St ack class, 128

Tr ee class, 175-176, 180
security issues, with applets, 261-262
Securi t yManager class, 240-241
set Col or () method



RBTr ee class, 208

Tr eeNode class, 202
set Current () method

DLi nkedLi st class, 114

RSt ack class, 135

VSLi nkedLi st class, 81
set Dat a() method (SLNode class), 88
set El enent At () method (Vect or class), 37, 81
set Left () method

RBTr ee class, 209

Tr eeNode class, 202
set Next () method (DLNode class), 111
set Ri ght () method (Tr eeNode class), 202
set Si ze() method (Vect or class), 35
short keyword, 271
signatures, method, 247
Si npl eQNode class, 144
Si npl eQueue class, 144-145
Si npl eSt ack class, 129-131
Si npl eSt ackNode class, 129-131
Si npl eSt ackTest program, 132
si ze() method

Hasht abl e class, 67

Vect or class, 36
SLEnuner at i on class, 93-94, 107
SLi nkedLi st class, 88-92, 107, 109-110
SLNode class, 86-88, 107
Sort abl eExcepti on class, 44

Sor t abl eVect or application, 44-46



sort edEl ement s() method (Sort abl eExcept i on class), 44

Sor t edVect or class, 40-46
sorted vectors, 40-53
with Conpar abl e interface, 41-46
with qui cksor t agorithm, 46-52
Sor t Engi ne class, 48-51
Sort | nt er f ace interface, 48, 51, 52
Sort Test class, 52-53
split() method

BTr ee class, 228, 233
RBTr ee class, 210
spoolers, 150
St ack class, 127-129, 132
St ackNode class, 132
St ackOver f | owkr r or class, 23
stacks, 5, 6, 126-136
functioning of, 126-127
Java core class, 127-129
push and pop operations with, 126-127
gqueuesvs., 140
reference-based, 129-136
uses of, 129
st ati ¢ keyword, 271
Stringclass, 4, 6-7, 17, 41, 44, 64
StringW apper class, 7-8
Structured Query Language (j ava. sql package), 263
subclasses, 10, 246-247

subclassing, no-op, 23
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Sun Microsystems, Inc., 239
superclasses, 10, 246

super keyword, 271

swi t ch keyword, 271
synchr oni zed keyword, 271

T
tail () method (DLi nkedLi st class), 115
text processing (j ava. t ext package), 264
t hi s keyword, 271
Thr owabl e class, 22-24
throwing exceptions, 16, 18-19
t hr ow keyword, 271
t hr ows keyword, 271
toString() method
Thr owabl e class, 24
Tr eeNode class, 204
Vect or class, 38
transi ent keyword, 271
traversal, 159-163
binary trees, 174, 180-181
B-trees, 219
in-order, 159-162
pre-order, 162-163
Traver sal interface, 174, 180-181, 183, 199
traverse() method
BTr ee class, 233
Tr ee class, 176, 180-181
Tr ee class, 174-181
add() method of, 175, 177-180



conpar e() method of, 178

sear ch() method of, 175-176, 180

traver se() method of, 176, 180-181
Tr eeNode class

binary trees, 172-173, 177-181

B-trees, 223-226

red-black trees, 199-204
trees, 10, 154-167

adding nodes to, 158-159

B-. See B-trees

balanced, 155

binary. See binary trees

branches of, 155

children in, 154-155

entry pointsto, 154

full levels of, 155

height of, 155

leaves of, 155

linked lists vs., 155-158

multi-way, 194-195

nodes of, 154, 155

parentsin, 154-155

red-black. See red-black trees

root node of, 155

rotation of, 163-167

and traversal, 159-163

2-3-4 trees, 195-197

unbalanced, 163-166
TreeTest class, 181-183



Tr eeTest 2 class, 188-190

trimroSi ze() method (Vect or class), 34-35

t r ue keyword, 271

try/ cat ch blocks, 19-22, 25

t ry keyword, 271

2-3-4 trees, 195-197, 219-220. See also red-black trees
typecasting, 9

U
unbalanced trees, 163-166
utility classes
j ava. uti | package, 264-265

over-designing, 11
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vector-based queues, 141-143
vectors (Vect or class), 33-38, 79
arraysvs., 38-39
capacity changes of, 34, 35
constructors for, 33-34
default size of, 34
definition, 33
internal array variablesin, 34
linked listsvs., 78
method overloading/overriding with, 39-40
methods of, 34-38
sorted, 40-53
with Conpar abl e interface, 41-46
with qui cksort agorithm, 46-52



and St ack class, 127, 128
virtua machine (VM), 239, 240
virtual methods, 40
VM (virtua machine), 239, 240
voi d keyword, 272
void return type, 4n2
vol ati | e keyword, 272
VQueue class, 141-143
VSLi nkedLi st class, 80-82

W

whi | e keyword, 272

whi | e loops, 19-20

widening conversions, 10
World Wide Web browsers, 239
wrapper classes, 4

writeFile() method, 21

writeMil ti Node() method (BTr ee class), 234

writeCbj ect () method (Hasht abl e class), 68
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