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Notation

E total energy per unit mass
EP energy source from particles
ES energy source from smoke
ESGS subgrid-scale energy flux
~fe vector of external volume forces
fP momentum source from particles
fS momentum source from smoke
~Fc vector of convective fluxes
~Fv vector of viscous fluxes
FR energy flux due to radiation
H total (stagnation) enthalpy
k thermal conductivity coefficient
mP mass source from particles
nx, ny, nz components of unit normal vector in x−, y−, z−direction
p static pressure
q̇h heat source
~Q source term
dS surface element
t time
u, v, w Cartesian velocity components
~v velocity vector
V contravariant velocity
~W vector of conservative variables
x, y, z Cartesian coordinates
µ dynamic viscosity coefficient
ρ density
τ viscous stress
Ω control volume
∂Ω boundary of a control volume
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Chapter 1

Introduction

1.1 Objective

The objective of the RocfluMP book is four-fold:

1. To enable users to compile and install the RocfluMP source code on computer systems.

2. To enable users to run the RocfluMP code for the example cases.

3. To enable users to run the RocfluMP code for their own cases.

4. To enable users to develop RocfluMP to suit their own needs.

1.2 Overview of RocfluMP

RocfluMP solves the three-dimensional time-dependent compressible Navier-Stokes equations
on moving and/or deforming unstructured grids. The grids may consist of arbitrary combi-
nations of tetrahedra, hexahedra, prisms, and pyramids. The spatial discretization is carried
out using the finite-volume method. The inviscid fluxes are approximated by upwind schemes
to allow for capturing of shock waves and contact discontinuities. Steady flows can be com-
puted using an explicit multi-stage method tuned for fast convergence. Unsteady flows are
computed with the fourth-order accurate Runge-Kutta method.

To solve fluid-dynamics problems in which processes other than those described by the
Navier-Stokes equations are important, RocfluMP is designed to interface with so-called
multi-physics modules. The multi-physics modules model phenomena such as turbulence,
particles, chemical reactions, and radiation and their interaction. At present, the multi-
physics modules are under development and have not yet been integrated with RocfluMP.
When considering fluid flow problems with several chemical species, RocfluMP may be re-
garded as solving transport equations for the mixture variables.

RocfluMP may be used to solve problems involving fluid-structure interactions. More
specifically, RocfluMP is designed to operate as a solution module inside CSAR’s coupled
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rocket-simulation code GENx. To accommodate dynamically changing fluid domains arising
from the deformation predicted by a structural simulation, RocfluMP allows for moving grids.
The Geometric Conservation Law (GCL) is satisfied in a discrete sense to machine-precision
to avoid the introduction of spurious sources of mass, momentum, and energy due to grid
motion.

The relationship of RocfluMP and the other codes is depicted schematically in Fig. 1.1.
A brief description of the multi-physics modules follows (they are described in detail in their
respective manuals).

• Rocturb is the turbulence module which implements a variety of models for Reynolds-
averaged Navier-Stokes (RANS) simulations and Large-Eddy Simulation (LES).

• Rocpart is the Lagrangian particle tracking module.

• Rocspecies is the module simulating the evolution of chemical species and Equilibrium
Eulerian particles.

• Rocrad is the radiation module.

RocfluMP consists of several modules:

• rfluconv is the conversion module of RocfluMP. It converts RocfluMP solution and grid
files from ASCII to binary format and vice versa, and converts RocfluMP grid files into
a format supported by YAMS and TETMESH. rfluconv requires interactive user input.

• rfluinit is the initialization module of RocfluMP. It generates RocfluMP solution files for
each region based on the information contained in the user input file.

• rflumap is the processor-mapping module of RocfluMP. It generates the mapping file
which is required for parallel computations. It also generates the Rocin control files for
computations with GENx. rflumap requires interactive user input.

• rflump is the actual solution module of RocfluMP.

• rflupick is used in conjunction with rflupost to visualize only specific cells in the grid,
such as cells near boundaries or cells sharing faces or vertices. For parallel computa-
tions, rflupick can also be used to instruct rflupost to convert only specific regions for
visualization. This allows the visualization of nominally large cases on small machines.
rflupick requires interactive user input.

• rflupost is the postprocessing module of RocfluMP. It converts grid and solution files
from the RocfluMP format into the formats recognized by visualization packages. At
present, the following formats are supported:

– TECPLOT format (Tecplot, Inc., Bellevue, WA)

– ENSIGHT format (Computational Engineering International, Apex, NC)
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Figure 1.1: Overview of RocfluMP and related codes.
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• rflupart is the partitioning module of RocfluMP. It converts grid files from outside
formats into binary or ASCII files in RocfluMP format and partitions the grids into
regions. At present, the following formats are supported:

– HYBRID format (CENTAUR grid generator, CentaurSoft, Austin, TX)

– VGRIDns format (VGRIDns grid generator, Shahyar Pirzadeh, NASA Langley)

– MESH3D format (MESH3D grid generator, Tim Baker, Princeton University)

– TETMESH format (TETMESH grid generator, SIMULOG, Fran

– Cobalt format (Cobalt flow solver, Cobalt Solutions LLC, Springfield, OH)

– GAMBIT format (GAMBIT grid generator, Fluent, Lebanon, NH)

1.3 Contributors

The following people, listed in alphabetical order, have contributed to the development and
testing of RocfluMP:

Mark Brandyberry: Testing, application of RocfluMP to fluid-structure interaction prob-
lems using GENx

Michael Campbell (Research Programmer, CSAR): Performance analysis and tuning, command-
line interface, assistance with porting of RocfluMP to new computing platforms

Heath Dewey (Graduate Student, Department of Aeronautical Engineering, UIUC): Imple-
mentation of Newton-Krylov solver

Jim Ferry: Time-dependent boundary conditions, initial implementation of Equilibrium
Eulerian method in Rocspecies

Robert Fiedler (Technical Program Manager, CSAR): Testing, application of RocfluMP to
fluid-structure interaction problems using GENx

Andreas Haselbacher (Principal Research Scientist, CSAR): Lead developer of RocfluMP

Xiangmin Jiao (Research Scientist, CSAR): Assistance with integration of RocfluMP into
GENx

Fady Najjar (Senior Research Scientist, CSAR): Lead developer of Rocpart module, inte-
gration of Rocpart with RocfluMP, testing, verification and validation

Adam Moody (Lawrence Livermore National Laboratory): Assistance with tuning of RocfluMP

Manoj Parmar (Graduate Student, Department of Aeronautical Engineering, UIUC): Val-
idation for shock diffraction over cylinders and spheres, implementation of Schlieren
and Interferogram image capability in rflupost, implementation of limiter functions
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Charles Shereda (Lawrence Livermore National Laboratory): Assistance with tuning of
RocfluMP

1.4 Overview of the RocfluMP Book

The RocfluMP book is divided into three parts.
Part I, which you are currently reading, is designed to provide preliminary information so

that users get an overview of RocfluMP, become familiar with the nomenclature, conventions,
and restrictions of RocfluMP, and can install and compile RocfluMP on their computer.

Part II contains information for users of RocfluMP. This entails a detailed description
of the capabilities of RocfluMP, the content and specification of the various files which
either must be provided or may have to be edited by the user, explanations of how to
set up a problem to be solved with RocfluMP, how to execute RocfluMP, how to visualize
results produced by RocfluMP, and how to resolve problems which may arise when running
RocfluMP.

Part III provides detailed information for developers of RocfluMP and serves as a reference
manual for users. It includes the precise form of the governing equations, the algorithms and
methods used to solve them, their parallel implementation, a detailed description of the data
structures, and the integration of RocfluMP with GENx, and the content and specification of
the various files which may have to changed by developers.

To convey information in a clear and concise manner, the following graphical aids are
employed:

Important information, such as restrictions, dependencies, or other subtleties which are
not immediately apparent are emphasized through colored boxes such as this one.

Because RocfluMP continues to evolve, the information contained in this book is also
changing. To draw attention to changes in the book, so-called change bars are positioned in
the margins. More specifically, change bars indicate that either a new capability was added
or that the corresponding description was changed.



Chapter 2

Nomenclature, Conventions, and
Restrictions

2.1 Nomenclature

The following conventions are used in this document:

1. A grid level, or simply level, represents the entire solution domain of RocfluMP. A grid
level can consist of one or more solution regions.

2. A solution region, or simply region, is obtained from a grid level by partitioning it for
parallel processing. For sequential processing, the region encompasses the entire grid
level.

3. A grid is defined to be an arbitrary collection of grid cells, or simply cells.

4. A grid cell is defined to be a convex polyhedron. Each cell is composed of faces.

5. A face is defined to be a polygon. Each face is composed of edges.

6. A patch is a collection of faces on the boundary of a region on which the same boundary
condition is applied.

7. An edge is defined to be a straight line linking two vertices.

8. A vertex is defined to be a point in space. A vertex belongs to at least one cell. A
vertex is not necessarily equivalent to a node.

2.2 Conventions

1. SI (Système International) units are used in RocfluMP and all documents relating to
RocfluMP.

19



20 Chapter 2. Nomenclature, Conventions, and Restrictions

2. All coordinate systems are right-handed.

3. Normal vectors point out of the solution domain.

2.3 Restrictions

1. Cells must be hexahedra, prisms, pyramids, or tetrahedra.

2. Cells must be conforming, i.e., hanging edges or vertices are not allowed.

3. Faces must be triangles or quadrilaterals.



Chapter 3

Installation and Compilation

3.1 Installation

The following assumes that RocfluMP is to be installed either from the CSAR CVS repository
or from a gzipped tar file.

3.1.1 Installation from CVS Repository

To be able to access the CSAR CVS repository, set the CVSROOT environment variable to
(taking the bash shell as an example)

export CVSROOT=:pserver:user@machine.uiuc.edu:/cvsroot

and either open a new terminal or type

[user@machine ~]$ source .bashrc

Then type

[user@machine ~]$ cvs login

and hit the Enter key at the prompt.
Now move into the directory where you want to install RocfluMP. In the following, this

is assumed to be directory. Then type

[user@machine ~/directory]$ cvs co genx/Codes/RocfluidMP

which will check out the source code for RocfluMP from the repository.
Assuming the checkout command has completed successfully, you are now ready to com-

pile the code for serial computations, and you can proceed to Sec. 3.2.

21
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3.1.2 Installation from .tar.gz File

Move into the directory where you want to install RocfluMP. In the following, this is assumed
to be directory. Move or copy the gzipped tar file, assumed to be <file>.tar.gz in the
following, into directory. Then type

[user@machine ~/directory]$ gzip -d <file>.tar.gz

[user@machine ~/directory]$ tar -xvf <file>.tar

which will unpack the source code.
Assuming these commands to have completed successfully, you are now ready to compile

the code for serial computations, and you can proceed to Sec. 3.2.

3.2 Compilation

3.2.1 Overview of Compilation Process

The compilation process for RocfluMP is automatic in the sense that the Makefiles determine
the machine type and set the suitable compilation options. If you intend to run on Apple,
IBM, Linux, SGI, or Sun machines, you do not need to modify any Makefiles. If you intend
to run on other machines, you will need to create your own Makefile. You can pattern it
after the existing machine-dependent Makefiles.

RocfluMP is compiled with MPI by default, which means that you must have installed
MPI on your machine before attempting to compile RocfluMP.

The compilation process consists of two stages. The first stage is the actual computation,
as described below. The output of the compilation process are several executables:

rfluconv The conversion module of RocfluMP.

rfluinit The initialization module of RocfluMP.

rflumap The region mapping module of RocfluMP.

rflupick The region and cell picking module of RocfluMP.

rflupost The postprocessing module of RocfluMP.

rflupart The partitioning module of RocfluMP.

rflump The flow solution module of RocfluMP.

The second stage consists of copying these executables into your $(HOME)/bin directory
by typing

[user@machine ~/directory]$ gmake RFLU=1 install



3.2. Compilation 23

3.2.2 Description of Compilation Options

To compile RocfluMP, type the following at the prompt:

[user@machine ~/directory]$ gmake RFLU=1 <options>

where the currently supported <options> are any of the following:

CHECK DATASTRUCT=1 Activates checking of data structures. This option will print out the
content of the important data structures used by RocfluMP. Note that activating this
option will lead to substantial screen output, so it should only be activated for small
cases.

DEBUG=1 Activates debugging compiler options. If this option is not specified, optimizing
compiler options are chosen by default.

PLAG=1 Activates compilation of Rocpart. This option must be specified if you wish to run
computations with Lagrangian particles.

ROCPROF=<Path to Rocprof library> Activates profiling of selected routines in RocfluMP.
Note that activating this option entails an overhead, so it should not be used for
production runs.

SPEC=1 Activates compilation of Rocspecies. This option must be specified if you wish to
run computations with chemical species and/or Equilibrium Eulerian particles.
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Chapter 4

Capability Descriptions

This chapter describes the capabilities of RocfluMP and points the user to the relevant
sections in Chapter 5.

4.1 Two-Dimensional Computations

RocfluMP can compute two-dimensional flows. Grids for two-dimensional computations may
contain only a single plane of prismatic and/or hexahedral cells in the z-coordinate direc-
tion. In other words, each cell must have two faces on patches with z = constant. A virtual
boundary condition as specified by the BC VIRTUAL Section must be applied to these patches.
Two-dimensional computations are activated by the keyword DIMENS in the NUMERICS Sec-
tion. A sample grid which could be used for two-dimensional computations with RocfluMP
is shown in Fig. 4.1.

Figure 4.1: Sample grid which can be used for two-dimensional computations with RocfluMP.



4.2. Periodic and Symmetry Boundary Conditions 27

4.2 Periodic and Symmetry Boundary Conditions

RocfluMP can impose periodic and symmetry boundary conditions. The periodic boundary
condition is general and allows both linear and rotational periodicity to be imposed, thus
allowing channel flows or flows in turbomachinery geometries, see, e.g., Fig. 4.2 , to be
computed. The imposition of periodic and symmetry boundary conditions is described in
the BC PERIODIC and BC SYMMETRY sections.

Figure 4.2: Generic turbine guide vane with leading-edge cooling. Such geometries can be com-
puted with RocfluMP using periodic boundary conditions. Inset shows detail view of cooling holes
at leading edge.
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4.3 Mass, Pressure, Skin-Friction, and Heat-Transfer

Coefficient Computation

RocfluMP can compute mass, pressure, skin-friction, and heat-transfer coefficients for faces
on patches. Definitions of these coefficients can be found in Section 12.6.

4.4 Force and Moment Computation

RocfluMP can compute forces and moments exerted by the fluid on the patches. Definitions
of the force and moment coefficients and their computation can be found in Section 12.7. The
computation of forces and moments is governed by the FORCES and the REFERENCE Sections
in the input file.

4.5 Thrust and Specific-Impulse Computation

RocfluMP can compute the thrust and specific impulse generated by the fluid on the patches.
The computation of thrust and specific impulse is governed by the FORCES and the REFERENCE
Sections in the input file.

4.6 Visualization of Discontinuities

RocfluMP can compute Schlieren pictures, Shadowgraphs, and Interferograms to assist in
the visualization of compressible flows with discontinuities. The computation of Schlieren
pictures, Shadowgraphs, and Interferograms is governed by the keyword DISCFLAG in the
POST Section of the input file.

4.7 Visualization and Identification of Vortical Struc-

tures

RocfluMP can compute variables which help visualize and identify vortical structures. The
computation of these variables is described in Subsection 9.1.2 and is governed by keywords
in the POST Section of the input file.
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Figure 4.3: Sample Schlieren picture of flow from open-ended shocktube 20 ms after rupture of
diaphragm. Dark regions indictate high gradients of the density and can thus be used to locate
shock waves and contact discontinuities.
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Chapter 5

File Content and Format
Specifications

This chapter describes the content and format of RocfluMP files which require or may require
editing by a user to prepare a computation or interpret results obtained from a computation.
The visualization files produced by rflupost are described in Chapter 9.

The content and format of RocfluMP files which cannot or must not be modified by a
user, but may have to be modified by a developer, are described in Chapter 16.

5.1 Filename Conventions

The majority of files share a user-specified string, the so-called ‘case name,’ represented by
casename below. Many of the files whose format is described below consist of a region index
and either an iteration or a time index. The region index indicates the global region number
with which a given file is associated. A region index of zero indicates that the given file is
associated with a serial or unpartitioned data set. A region index of one or greater indicates
that the given file is part of parallel data set.

5.2 Input File

The input file is called <casename>.inp. The input file is divided into sections. Each section
contains several lines, each of which consists of a keyword and a value, as shown below.

# SECTION_NAME

KEYWORD_1 VALUE_1

KEYWORD_2 VALUE_2

KEYWORD_3 VALUE_3

#
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Comments may be inserted after the specification of the values; they are ignored by the
routines reading the input file.

The following sections describe each section in the input file and the associated keywords
in detail. For simplicity, the sections are listed in alphabetical order, but they may appear
in any order in the input file.

5.2.1 FLOWMODEL Section

The FLOWMODEL section contains the following keywords:

MODEL Specifies which equations are to be solved. It can take the following values:

0 rflump solves the Euler equations.

1 rflump solves the Navier-Stokes equations.

MOVEGRID Specifies whether grid motion is active or not. It can take the following values:

0 Grid motion is inactive.

1 Grid motion is active.

It is important to note that this flag influences the names of the grid file and dimension file.
If grid motion is active and the flow is unsteady, these files aquire a time stamp, see Sec.
16.1.1.

5.2.2 FORCES Section

The FORCES section governs the computation of forces on moments on the patches of the
geometry. The computation of the forces and moments and the necessary conventions are
described in Section 12.7. The FORCES section contains the following keywords:

FLAG Specifies whether forces and moments are to be computed. It can take the following
values:

0 Do not compute forces and moments.

1 Compute forces and moments.

Activating the computation of forces and moments leads to the forces and moments
being printed on the screen and written to files.

PATCHFLAG Specifies whether pressure, skin-friction, and heat-transfer coefficients are to be
written to output files. It can take the following values:

0 Do not write coefficients to output files.

1 Write coefficients to output files.
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REFAREA Specifies value of reference area [m2].

REFLENGTH Specifies value of reference length [m].

REFXCOORD Specifies value of reference x-coordinate [m].

REFYCOORD Specifies value of reference y-coordinate [m].

REFZCOORD Specifies value of reference z-coordinate [m].

It is important to note that the computation of force and moment coefficients uses values
such as DENS, PRESS, and ABSVEL from the REFERENCE section, but it does not use the LENGTH
parameter from that section! Instead the reference length is given by the value assigned to
the keyword REFLENGTH.

5.2.3 FORMATS Section

The FORMATS section contains the following keywords:

GRID Specifies the format of the RocfluMP grid file. It can take the following values:

0 Grid file is in ASCII format.

1 Grid file is in binary format.

GRIDSRC Specifies the format of the grid file read by rfluprep. It can take the following
values:

0 Grid file is in CENTAUR ASCII format.

1 Grid file is in VGRIDns format.

2 Grid file is in MESH3D format.

3 Grid file is in TETMESH format.

4 Grid file is in Cobalt format.

5 Grid file is in GAMBIT format. Only GAMBIT files in ASCII neutral file format are
supported.

10 Grid file is in CENTAUR binary format.

SOLUTION Specifies the format of the RocfluMP flow file. It can take the following values:

0 Flow file is in ASCII format.

1 Flow file is in binary format.
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5.2.4 GRIDMOTION Section

The GRIDMOTION section contains the following keywords:

NITER Specifies the number of smoothing iterations. Only applicable if TYPE=1 or TYPE=2.

SFACT Specifies the smoothing coefficient. The values for the number of smoothing iter-
ations and the smoothing coefficient should be chosen together. The recommended
values are, for moving the grid by smoothing the boundary displacements, NITER=4
and SFACT=0.25, and for moving the grid by smoothing the coordinates, NITER=10
and SFACT=0.1. Only applicable if TYPE=1 or TYPE=2.

TYPE Specifies the type of grid motion. It can take the following values:

1 Move the grid by smoothing the boundary displacements. This option is only
available for serial computations.

2 Move the grid by smoothing the coordinates. This option is only available for serial
computations.

3 Move the grid using the MESQUITE package. This option is only available when
running RocfluMP in GENx.

Moving the grid based on smoothing boundary displacements has the advantage that
the vertices are not moved for vanishing displacements. This is not true if the grid
is moved by smoothing coordinates. In particular, non-uniform or distorted grids can
be strongly affected by smoothing the coordinates. Therefore, moving the grid by
smoothing the boundary displacements is the recommended option.

5.2.5 INITFLOW Section

The INITFLOW section is relevant only to rfluinit. It contains the following keywords:

DENS The density of the initial solution, [kg/m3]. Only relevant if FLAG=1.

FLAG Specifies whether initial solution is to be generated. It can take the following values:

1 Generate initial solution using the values assigned to the keywords DENS, VELX,
VELY, VELZ, and PRESS.

2 Generate initial solution using the data contained in a file.

3 Generate initial solution using a hardcode. The hardcode depends on the casename.
This option can only be used if appropriate code to initialize the solution was
added to the file RFLU InitFlowHardCode.F90 in rfluinit for the given casename.
If the appropriate code does not exist, rfluinit will return an error. At present,
hardcoded initial solutions for the following casenames are provided:

onera c0 ONERA C0 case [6].
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pipeacoust Pipe acoustics cases.

ringleb Ringleb flow [9].

st sod1 Sod shock tube [13], case 1.

st sod2 Sod shock tube [13], case 2.

ssvort<t><mxn>l<p> Supersonic free vortex.

<t>=[h|p] h and p denote hexahedral and prismatic grids, respectively.

<mxn> denotes the grid resolution for both hexahedral and prismatic grids.
It can take the following values: 20x5, 40x10, 80x20, 160x40, 320x80.

<p> denotes the number of layers in the z-coordinate direction. It can take
values 1 or 3.

IVAL1-IVAL6 Integer variable used to set hard-coded initial conditions. Its meaning is
dependent on the casename as specified below. Only relevant if FLAG=3.

PRESS The static pressure of the initial solution, [Pa]. Only relevant if FLAG=1.

RVAL1-RVAL6 Real variable used to set hard-coded initial conditions. Its meaning is depen-
dent on the casename as specified below. Only relevant if FLAG=3.

VELX The x-component of the velocity vector of the initial solution, [m/s]. Only relevant if
FLAG=1.

VELY The y-component of the velocity vector of the initial solution, [m/s]. Only relevant if
FLAG=1.

VELZ The z-component of the velocity vector of the initial solution, [m/s]. Only relevant if
FLAG=1.

The meaning of the variables IVAL1-IVAL6 and RVAL1-RVAL6 is dependent on the casename

and specified in the following list:

onera c0

pipeacoust

IVAL1 Specifies wave number of circumferential mode, [1/rad].

IVAL2 Specifies wave number of axial mode, [−].

IVAL3 Specifies root of derivative of Bessel function of order given by IVAL1, [−].

IVAL4 Specifies boundary conditions in axial directions:

0 The pressure disturbance vanishes.

1 The gradient of pressure disturbance vanishes.

RVAL1 Specifies amplitude of pressure disturbance, [Pa].
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It is important to note that initial solutions are defined after geometric transformations.

x

y

Injection

Outflow

Symmetry

Solid wall

Figure 5.1: Configuration and boundary conditions for onera c0 case.

5.2.6 MIXTURE Section

The MIXTURE section contains the following keywords:

FROZENFLAG Specifies whether mixture conservation are to be updated. It can take the
following values:

0 Do not update mixture conservation equations.

1 Update mixture conservation equations (default).

GASMODEL Specifies the gas model. The gas model determines how the molecular weight,
the specific heat at constant pressure, and the transport coefficients are computed. It
can take the following values:

1 The gas is considered to be thermally and calorically perfect, i.e., the molecular
weight and specific heat at constant pressure are constant (default). The latter is
given by the value of CP from the REFERENCE section. The former is computed from
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Figure 5.2: Configuration and boundary conditions for cylds case.

the specific heat at constant pressure and the value of GAMMA from the REFERENCE
section.

3 The gas is considered to be a mixture of thermally and calorically perfect gases.
The molecular weight and specific heat at constant pressure are computed from
mass-fraction weighted averages of the molecular weights and specific heats at
constant pressure of the mixture constituents, see Section 11.3.2. This gas model
is available only if species are solved, i.e., if the Rocspecies module is activated.

5 The gas is considered to be a pseudo gas. The molecular weight and specific heat at
constant pressure are computed from appropriately defined averages of the molec-
ular weights and specific heats at constant pressure of the mixture constituents,
see Section 11.3.3. This gas model is available only if species are solved, i.e., if
the Rocspecies module is activated.
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5.2.7 NUMERICS Section

The NUMERICS section contains the following keywords:

CFL Specifies the CFL number to be used during computations.

CRECONSTC Specifies whether constrained reconstruction is to be used to compute cell gra-
dients. It can take the following values:

0 Do not use constrained reconstruction (default).

1 Use constrained reconstruction.

CRECONSTF Specifies whether constrained reconstruction is to be used to compute face
gradients. It can take the following values:

0 Do not use constrained reconstruction (default).

1 Use constrained reconstruction.

If you wish to compute viscous flows, you must set CRECONSTF=1. Otherwise, the no-slip
condition is only enforced weakly and you may observe non-zero velocities on solid bound-
aries.

DIMENS Specifies the dimensionality of the computation. It can take the following values:

2 Run two-dimensional computation.

3 Run three-dimensional computation (default).

The dimensionality flag is provided so that truly two-dimensional computations can be
performed, i.e., a computation in which the grid contains only one cell in the z-direction.
Three-dimensional computations must contain at least three cells in all directions to
be able to compute gradients. If you wish to run truly two-dimensional computations,
there must be two boundary patches which coincide with z = constant planes, and you
should specify the boundary condition on those patches to be BC VIRTUAL, see Sect.
5.4.1.11.

DISCR Specifies the discretization scheme for the inviscid fluxes. It can take the following
values:

1 The flux-difference splitting scheme of Roe [10].

3 The HLLC approximate Riemann solver of Batten et al. [3]

4 The AUSM+ scheme of Liou [7].
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The flux-difference splitting scheme of Roe works well in general. Because Roe’s scheme
is not positively conservative, it can lead to negative densities and pressures for flows
with strong transients. For this reason, such flows should be computed with either the
HLLC solver or the AUSM+ scheme. For shock waves with perfect or near-perfect
alignment on uniform hexahedral grids, the Roe scheme and HLLC solver can suffer
from transverse shock instability, so the AUSM+ scheme should be used instead. Vis-
cous flows near solid walls with strong flow-to-grid alignment can occasionally lead to
mild forms of decoupling with the AUSM+ scheme.

DISSFACT Factor multiplying the dissipation terms of the flux-difference splitting of Roe.
The dissipation may need to be reduced to capture marginally resolved flow features
such as separation or vortices. It is important to note however, that reducing the
dissipation can compromise the stability of the computation. The default value of
DISSFACT is 1.

ENTROPY Specifies value of entropy correction coefficient. Applies only to the flux-difference
splitting scheme of Roe.

ORDER The order of accuracy of the flux discretization. It can take the following values:

1 Compute fluxes with first-order accuracy.

2 Compute fluxes with second-order accuracy.

For runs with GENx, rflupart should be executed with ORDER=2 even if the actual compu-
tation is carried out with ORDER=1. This is because MESQUITE requires virtual cells and
vertices beyond those available in first-order accurate runs for proper smoothing across region
boundaries.

ORDERBF The order of accuracy of the flux discretization for boundary faces. It can take
the following values:

1 Compute boundary fluxes with first-order accuracy.

2 Compute boundary fluxes with second-order accuracy.

Note that the order of accuracy of the flux discretization for boundary faces can be overrid-
den for a specific patch by specifying the order of accuracy through the keyword ORDER in
appropriate section in the boundary-condition file.

RECONST Specifies the way in which the gradients computed by the reconstruction method
are modified. It can take the following values:

0 The gradients are not modified.
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1 Weighted essentially non-oscillatory (WENO) reconstruction in which gradients are
weighted according to the inverse square of their magnitude.

2 Weighted essentially non-oscillatory (WENO) reconstruction in which gradient com-
ponents are weighted according to the inverse square of their magnitude.

10 Gradients are modified using limiter function of Barth and Jespersen [2].

11 Gradients are modified using limiter function of Venkatakrishnan [15].

For flows without sharp gradients (such as shock waves, contact discontinuities, or
material interfaces) or computations in which sharp gradients are resolved (such as
the above in inviscid flows), the gradients need not be modified. For flows with sharp
gradients or computations in which sharp gradients are not resolved, the gradients
must be modified to avoid numerical instability.

SDIMENSC Specifies the dimensionality of the cell stencil. It can take the following values:

2 use two-dimensional cell stencil.

3 use three-dimensional cell stencil (default).

SDIMENSF Specifies the dimensionality of the face stencil. It can take the following values:

2 use two-dimensional face stencil.

3 use three-dimensional face stencil (default).

SDIMENSBF Specifies the dimensionality of the boundary face stencil. It can take the fol-
lowing values:

2 use two-dimensional boundary face stencil.

3 use three-dimensional boundary face stencil (default).

TOLERICT Specifies the value of the tolerance used in the in-cell test for locating particles
and probes. The tolerance is typically important only if the grid contains cell types
with quadrilateral faces, i.e., hexahedra, prisms, or pyramids, and the quadrilateral
faces are not planar. Typical values should be in the range 10−8 to 10−6. RocfluMP
will check whether the value is appropriate and, if necessary, increase it.

5.2.8 POST Section

The POST section contains the following keywords:

COREFLAG Specifies whether variables for vortex identification are to be written to visual-
ization files. It can take the following values:

0 Do not compute variables for vortex identification and do not write to visualization
files.
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1 Compute variables for vortex identification and write to visualization files.

See also Sec. 9.1.

At present, vortex-identification variables can only be written to TECPLOT visualization
files.

DISCFLAG Specifies whether variables for Schlieren images, shadowgraphs, and interfero-
grams are to be written to visualization files. It can take the following values:

0 Do not compute variables for Schlieren images, shadowgraphs, and interferograms
and do not write to visualization files.

1 Compute variables for Schlieren images, shadowgraphs, and interferograms and
write to visualization files.

See also Sec. 9.1.

At present, the variables for Schlieren images, shadowgraphs, and interferograms can only
be written to TECPLOT visualization files, and the variables for interferograms are only
computed correctly when MERGEFLAG=1.

ERRFLAG Specifies whether errors are to be computed. This can only be done if a hard-coded
initial solution is used. See also FLAG in the INITFLOW section.

EXTRFLAG Specifies whether data is to be extracted from the solution. This option can only
be used if appropriate code to exctract data was added to the file RFLU ModExtractFlowData.F90

in rflupost for the given casename. If the appropriate code does not exist, rflupost will
not extract data, write a warning, and continue executing. At present, extracting
solution data is possible for the following casenames:

onera c0 2d 100x50 ONERA C0 case [6].

skews ms2p0, skews ms3p0, skews ms4p0 Shock diffraction problem of Skews [11, 12].

st sod1, st sod1 mp2 Sod shock tube [13], case 1.

st sod2, st sod2 mp2 Sod shock tube [13], case 2.

stg 2d Generic shock tube.

INTERORDER Specifies the polynomial order of interpolation. This keyword is only relevant
if INTERTYPE=2. It can take the following values:

1 Use linear interpolation.

2 Use quadratic interpolation.
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INTERTYPE Specifies whether and how data is to be interpolated from the cell-centers to
the vertices. It can take the following values:

0 Do not transfer the solution from cell centers to vertices. This option avoids the
introduction of interpolation errors and can be useful if it is necessary to visualize
small solution differences which may be smoothed out by the interpolation process.
TECPLOT and ENSIGHT allow the visualization of cell-centered solution data.

1 Use simple arithmetic averaging.

2 Use k-exact averaging. This method interpolates polynomials of order k exactly
on arbitrary grids. The order k is specified by the value assigned to the keyword
INTERORDER.

Choosing between INTERTYPE=1 and INTERTYPE=2 is largely a matter of balancing the
accuracy and cost of the interpolation. Simple arithmetic averaging is much faster but
also less accurate than the k-exact interpolation method. In practice, the differences
between the two methods are usually negligible unless solution gradients are very large
or grids are highly distorted.

MERGEFLAG Specifies whether the regions from a parallel computation are to be merged for
postprocessing. It can take the following values:

0 Do not merge the regions for postprocessing. Each partition will be written sepa-
rately to the output file. Virtual cells and boundary faces will be written sepa-
rately for each region and patch, respectively.

1 Merge the regions for postprocessing.

Not merging regions for postprocessing can be useful for several reasons: First, one may
want to make sure that solution contours are well-behaved across partition boundaries.
Second, when using this option in conjunction with rflupick, the amount of data to be
visualized can be reduced drastically by selecting only specific regions to be postpro-
cessed in rflupost. Third, it becomes possible to visualize virtual cells and boundary
faces which can be useful during debugging.

NSERVERS Specifies the number of servers when writing output files for parallel runs and
visualization with ENSIGHT. Only relevant if OUTFORMAT=2.

OUTFORMAT Specifies the format of the visualization files. It can take the following values:

1 Write visualization files in TECPLOT format.

2 Write visualization files in ENSIGHT format

PEULFLAG Specifies whether the Lagrangian particle fields are to be converted to Eulerian
particle fields and written to the visualization files. It can take the following values:
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0 Do not convert Lagrangian fields to Eulerian fields.

1 Convert Lagrangian fields to Eulerian fields.

See also Sec. 9.1.

At present, Eulerian particle fields can only be written to TECPLOT visualization files.

PLTPATFLAG Specifies whether only the first virtual patch is to be written to output file. It
can take the following values:

0 Write all patches to output file.

1 Write only the first patch virtual to the output file.

Because virtual patches only exist for two-dimensional computations, PLTPATFLAG is
only relevant if DIMENS=2. At present, PLTPATFLAG is only relevant for TECPLOT files,
i.e., if OUTFORMAT=1.

PLTTYPE Specifies the data to be written to output file. It can take the following values:

1 Write only the grid to the output file.

2 Write the grid and the solution to output file.

PLTVOLFLAG Specifies whether volume data are to be written to output file. It can take the
following values:

0 Do not write volume data for postprocessing; only surface data is written.

1 Write volume and surface data for postprocessing.

The advantage of not writing volume data to the output file is to reduce the amount
of data to be visualized.

SPECFLAG Specifies whether the postprocessor-information file produced by rflupick is to be
read. It can take the following values:

0 Do not read the postprocessor-information file.

1 Read the postprocessor-information file.

Reading the postprocessor-information file allows only specific regions to be postpro-
cessed. This option is only relevant if MERGEFLAG=0.

Note that special faces can only be written by rflupost to output files if only the grid is written
out, i.e., PLTTYPE=1, or if the solution is interpolated to the vertices, i.e., INTERTYPE=1 or
INTERTYPE=2.



44 Chapter 5. File Content and Format Specifications

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17

1815

(b)(a)

Figure 5.3: Partitioning of a quadrilateral grid into two regions using PARTMODE=2, demonstrating
importance of cell numbering.

WRIMERGE Specifies whether merged grid and solution files are to be written. See also
MERGEFLAG.

VORTFLAG Specifies whether vorticity is to be computed and written to visualization files.
It can take the following values:

0 Do not compute vorticity and do not write to visualization files.

1 Compute vorticity and write to visualization files.

See also Sec. 9.1.

At present, vorticity can only be written to TECPLOT visualization files.

5.2.9 PREP Section

The PREP section is relevant only to rflupart. It contains the following keywords:

PARTMODE Specifies the partitioning mode. It can take the following values:

1 Partition the grid with a general method. This will in general lead to well-balanced,
but not perfectly balanced, partitions.

2 Partition the grid with an imposed mapping to get perfect load balancing. Note
that this will work only if the cells in the grid are numbered like the cells in a
structured grid and if the number of regions is a divisor of the number of cells of
the unpartitioned grid. Furthermore, it is important to note that the ordering of
the cells will have a very strong impact on the resulting partitioning, see Fig. 5.3.
Depending on the numbering, it is possible to generate non-contiguous partitions
and/or partitions with large surface-to-volume ratios.
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5.2.10 PROBE Section

The PROBE section consists of two subsections separated by the character #. The first sub-
section contains the following keyword:

NUMBER Specifies the number of probes.

Immediately following the keyword NUMBER, there must be n lines, where n = NUMBER.
Each line must contain three real values, which represent the x-, y-, and z-coordinate of
a given probe. rflump attempts to find the cell whose centroid is closest to the specified
coordinates.

The second part contains the following keywords:

WRITIME Offset in seconds at which data is written to probe files.

WRIITER Offset between iterations at which data is written to probe files.

OPENCLOSE Specifies whether probe files are to closed and opened after writing data. It can
take the following values:

0 Do not close and open probe file after writing data.

1 Close and open probe file after writing data.

Closing and opening the probe file after writing data can be useful because this forces
write buffers to be flushed.

It is important to note that the separation character # must be present even if the keywords
in the second subsection are not included in the input file. Otherwise the remainder of the
input file will not be read correctly.

An example PROBE section for unsteady flow is given below.

# PROBE1

NUMBER 42

0.001 0.000 0.4993

0.001 0.000 -0.4994

9.999 0.000 0.4995

9.999 0.000 -0.4996

#7

WRITIME 5.0E-48

OPENCLOSE 19

#10
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5.2.11 REFERENCE Section

The REFERENCE section contains the following keywords:

ABSVEL Reference velocity magnitude, [m/s].

CP Reference specific heat coefficient at constant pressure, [J/kg K].

DENS Reference density, [kg/m3].

GAMMA Reference ratio of specific heats, [-].

LENGTH Reference length, [m].

PRESS Reference static pressure, [Pa].

PRLAM Reference laminar Prandtl number, [-].

PRTURB Reference turbulent Prandtl number, [-].

RENUM Reference Reynolds number, [-].

SCNLAM Reference laminar Schmidt number, [-].

SCNTURB Reference turbulent Schmidt number, [-].

5.2.12 TIMESTEP Section

The TIMESTEP section contains the following keywords:

DTMINLIMIT The time step in seconds below which information will be printed out about
the region and cell in which the minimum time step occurs. The additional information
can be helpful in diagnosing whether small time steps are due to unexpectedly small
cells or cells of poor quality. Once the region and cell with the minimum time step are
known, rflupick can be used in conjunction with rflupost to visualize that cell. Only
relevant if FLOWTYPE=1.

DTMINLIMIT should only be set to representative positive value if the additional information
is actually desired because determining the additional information incurs a performance
penalty for parallel runs.

FLOWTYPE Specifies whether flow steady or unsteady. It can take the following values:

0 Flow is steady.

1 Flow is unsteady.
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Note that the value of this keyword influences the name of the flow-solution files.

MAXITER The iteration number at which the computation is to be stopped. A calculation is
stopped if either the maximum number of iterations is reached, or if the norm of the
density residual has fallen below the residual tolerance. Only relevant if FLOWTYPE=0.

MAXTIME The time in seconds at which the computation is to be stopped. Only relevant if
FLOWTYPE=1.

PRNITER Offset between iterations at which convergence information is printed on screen
and written to the convergence file. Only relevant if FLOWTYPE=0.

PRNTIME Offset in time in seconds at which convergence information is printed on screen
and written to the convergence file. Only relevant if FLOWTYPE=1.

RESTOL The tolerance for the density residual below which the computation is judged to
be converged. A calculation is stopped if either the maximum number of iterations is
reached, or if the norm of the density residual has fallen below the residual tolerance.
Only relevant if FLOWTYPE=0.

RKSCHEME Specifies the Runge-Kutta method used to integrate the discrete equations in
time for unsteady flows. It can take the following values:

1 Classical RK4 scheme.

2 Three-stage Runge-Kutta method derived by Wray XXX ADD REF XXX.

If the Rocpart module is activated, RKSCHEME=2 must be chosen.

STARTITER The iteration number from which the computation is to be started. Only rele-
vant if FLOWTYPE=0.

STARTTIME The time in seconds from which the computation is to be started. Only relevant
if FLOWTYPE=1.

TIMESTEP The maximum time step in seconds to be used in the computation. Only relevant
if FLOWTYPE=1.

WRIITER Offset between iterations at which flow files are to be written. Only relevant if
FLOWTYPE=0.

WRITIME Offset in time in seconds at which flow files are to be written. For unsteady flows
with moving grids, the grid files are written also. Only relevant if FLOWTYPE=1.
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5.2.13 TRANSFORM Section

The TRANSFORM section is relevant only to rflupart. It contains the following keywords:

ANGLE X Angle of rotation around x-axis, in degrees. The angle of rotation is positive in
the counter-clockwise direction when looking down the x-axis.

ANGLE Y Angle of rotation around y-axis, in degrees. The angle of rotation is positive in
the counter-clockwise direction when looking down the y-axis.

ANGLE Z Angle of rotation around z-axis, in degrees. The angle of rotation is positive in
the counter-clockwise direction when looking down the z-axis.

FLAG Specifies whether the grid is to be scaled rotated. It can take the following values:

0 Do not scale and rotate the grid.

1 Scale and rotate the grid.

SCALE X Scaling factor for x-component of coordinates.

SCALE Y Scaling factor for y-component of coordinates.

SCALE Z Scaling factor for z-component of coordinates.

It is important to note that initial solutions are defined after geometric transformations.

5.2.14 VISCMODEL Section

The VISCMODEL section contains the following keywords:

MODEL Specifies the viscosity model. It can take the following values:

Sutherland viscosity model, see Section 11.5.1.1.

1 Fixed viscosity. The viscosity value is given by the value assigned to the keyword
VISCOSITY.

2 Antibes viscosity model see Section 11.5.1.2.

REFTEMP Specifies the value of the Sutherland constant [K].

SUTHCOEF Specifies the value of the reference temperature Tref in the Sutherland and Antibes
models [K].

VISCOSITY Reference value for the dynamic viscosity [kg/(ms)].
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The reference value for the dynamic viscosity must be chosen carefully because it is used
to compute the response times of Lagrangian and Eulerian particles if the Rocpart and/or
Rocspecies modules are activated. Otherwise, unphysical response times can result which
may lead to instability of the computation.

5.3 Patch-Mapping Files

Patch-mapping files are used to define a mapping between the patches defined in the VGRIDns,
MESH3D, TETMESH, and Cobalt grid files and that desired in RocfluMP simulations. The
motivation for mapping patches arises because grids are usually generated with more patches
than are required to impose boundary conditions for a simulation. For this reason, the patch-
mapping files are typically used to reduce the number of patches and therefore the number
of boundary conditions.

5.3.1 VGRIDns Patch-Mapping File (.vgi File)

The format of the .vgi file is:

Line 1: The number of patches after the mapping.

Line 2: The number of mappings (hereafter referred to as nMappings).

The remaining nMappings lines: Each line contains three integers. The first two integers
represent the lower and upper limits of the patches in the VGRIDns file which are to
be mapped to the patch indicated by the third integer. The lower limit must be less
than or equal to the upper limit.

The following is an example .vgi file:

51

82

5 6 13

1 4 24

12 12 25

7 7 36

10 10 37

8 9 48

11 11 49

17 22 510

This file indicates that five patches will exist after merging and that eight mappings are
listed. For example, the first mapping specifies that patches five and six are mapped to
patch one, and the last mapping specifies that patches 17 to 22 are mapped to patch five.
Note that it is possible to map several original patches to a given new patch in separate
mappings. That is, the following example is equivalent to the one given above:



50 Chapter 5. File Content and Format Specifications

51

102

5 5 13

6 6 14

1 4 25

12 12 26

7 7 37

10 10 38

8 9 49

11 11 410

17 18 511

19 22 512

It is important to note that the extrema of the lower and upper original patch indices
must be equal to unity and the number of patches specified in the .bc file, respectively.
Furthermore, the extrema of the new patch indices must be equal to unity and the number
of patches specified on the first line, respectively.

In practice, it is usually impossible to specify the mappings without having visually
inspected the grid. It is therefore recommended that in a first try, a one-to-one mapping is
specified. By inspecting the grid, it is possible to merge appropriate patches by writing the
proper mapping file.

5.3.2 MESH3D Patch-Mapping File (.mgi File)

The .mgi file serves the same purpose as the .vgi file. The format of the .mgi file is:

Line 1: The number of patches in the .m3d file.

Line 2: The number of patches after the mapping.

Line 3: The number of mappings (hereafter referred to as nMappings).

The remaining nMappings lines: Each line contains three integers. The first two integers
represent the lower and upper limits of the patches in the MESH3D file which are to
be mapped to the patch indicated by the third integer. The lower limit must be less
than or equal to the upper limit.

The first line contains the original number of patches because this information is not con-
tained the .m3d file.

One important difference between the .vgi and .mgi files is that the extrema of the
lower and upper limits of the original patches in the .mgi file do not have to be equal to
unity and the number of patches specified on the second line, respectively. This is because
boundary faces in the .m3d are grouped by arbitrary flags and not by patch numbers. Hence
the following is a valid .mgi file:
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221

72

103

5 6 14

1 4 25

12 12 26

7 7 37

10 10 38

8 9 49

11 11 410

17 22 511

200 600 612

100 100 713

Note in particular the last two lines: They illustrate that the upper limit of the original
patches does not have to be equal to the number of patches in the .m3d file.

5.3.3 TETMESH Patch-Mapping File (.tmi File)

5.3.4 Cobalt Patch-Mapping File (.cgi File)

The .cgi file serves the same purpose as the .vgi and .mgi files. The format of the .cgi

file is:

Line 1: The number of patches after the mapping.

Line 2: The number of mappings (hereafter referred to as nMappings).

The remaining nMappings lines: Each line contains three integers. The first two integers
represent the lower and upper limits of the patches in the Cobalt file which are to be
mapped to the patch indicated by the third integer. The lower limit must be less than
or equal to the upper limit.

5.4 Boundary-Condition File

The boundary-condition file is called <casename>.bc. Like the input file, the boundary-
condition file is divided into sections. Each section contains several lines, each of which
consists of a keyword and a value, with the exception of the line containing the keyword
PATCH, on which two values are listed.

# SECTION_NAME

PATCH PATCH_1 PATCH_2

KEYWORD_1 VALUE_1

KEYWORD_2 VALUE_2

#
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Each section assigns a boundary condition to either a single patch or to a range of patches.
The boundary-condition file must be terminated by the string:

# END

The sections may be listed in any order in the boundary-condition file, but are listed
below in alphabetical order for simplicity.

5.4.1 Physical Boundary Conditions

5.4.1.1 Farfield Boundary: BC FARF Section

The BC FARF section contains the following keywords:

ATTACK Angle of attack [deg]. See Fig. 5.4 for the definition of ATTACK.

CORR Specifies whether farfield point vortex correction is to be applied. It can take the
following values:

0 Do not apply point-vortex correction.

1 Apply point-vortex correction.

Note that at present the correction can only be used for two-dimensional computations
and has not been thoroughly tested.

KIND Specifies the treatment of the boundary condition. It can take the following values:

0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

MACH Mach number [-].

NAME Specifies the name of the boundary.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:

1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.
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Figure 5.4: Definition of angles ATTACK and SLIP for farfield boundary condition. Angles are
positive in direction of arrows.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

PRESS Static pressure [Pa].

SLIP Sideslip angle [deg]. See Fig. 5.4 for the definition of SLIP.

TEMP Static temperature [K].

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.

1 Compute thrust and specific impulse for this patch.

5.4.1.2 Inflow Boundary: BC INFLOW/BC INFLOW TOTANG Section

The BC INFLOW or BC INFLOW TOTANG section contains the following keywords:

BETAH Angle between velocity vector and its projection onto xz-plane [deg]. See Fig. 5.5
for the definition of BETAH.

BETAV Angle between the projection of the velocity vector onto the xz-plane and the positive
x-axis [deg]. See Fig. 5.5 for the definition of BETAV.
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FIXED Specifies whether the flow is assumed to be normal to the boundary. It can take the
following values:

0 Inflow not assumed to be normal to boundary.

1 Inflow assumed to be normal to boundary.

Specifying the flow to be normal to the boundary can be particularly helpful if the
inflow boundary represents a reservoir condition or other conditions in which the flow
velocity is very small. It is important to note that the motivation for and effect of
FIXED is different from specifying the flow direction through BETAH and BETAV. The
keyword FIXED influences the angle computed from the extrapolated velocity vector.
For vanishing velocity, the determination of this angle becomes ill-conditioned which
can lead to failure of computations. Instead, the angle can be fixed so that the velocity,
no matter how small, is always normal to the boundary.

KIND Specifies the treatment of the boundary condition. It can take the following values:

0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

MACH Mach number [-]. The Mach number must be specified only if the inflow is supersonic.

NAME Specifies the name of the boundary.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:

1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

PTOT Total pressure [Pa].

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.
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Figure 5.5: Definition of angles BETAH and BETAV for inflow boundary condition. Angles are
positive in direction of arrows.

1 Compute thrust and specific impulse for this patch.

TYPE Specifies whether inflow is supersonic or subsonic. It can take the following values:

0 Inflow is supersonic. The Mach number must be specified by the keyword MACH.

1 Inflow is subsonic.

TTOT Total temperature [K].

Specification of Inflow Angles. For planar boundary patches with known normal vector
n = {nx, ny, nz}t and inflow normal to the boundary, the inflow angles are given by

βv = tan−1

(
nz

nx

)
, (5.1)

βh = − sin−1 ny. (5.2)

For imposed velocities and flow which is not necessarily normal to the boundary, the inflow
angles are given by

βv = tan−1
(w

u

)
, (5.3)

βh = sin−1

(
v

‖v||

)
. (5.4)
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The section name BC INFLOW is obsolete and should be replaced by BC INFLOW TOTANG. For
backward compatibility, RocfluMP treats the two boundary conditions in the same way.

5.4.1.3 Inflow Boundary: BC INFLOW VELTEMP Section

The BC INFLOW VELTEMP section contains the following keywords:

KIND Specifies the treatment of the boundary condition. It can take the following values:

0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

NAME Specifies the name of the boundary.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:

1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

PRESS Static pressure [Pa]. Only read if TYPE=0.

REFLECT Specifies whether the boundary condition is reflecting or non-reflecting. It can
take following values:

0 Non-reflecting boundary condition.

1 Reflecting boundary condition.

This option is relevant only if KIND=1.

TEMP Static temperature [K].

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.
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1 Compute thrust and specific impulse for this patch.

TYPE Specifies whether inflow is supersonic or subsonic. It can take the following values:

0 Inflow is supersonic. The static pressure must be specified by the keyword PRESS.

1 Inflow is subsonic.

VELX x-component of fluid velocity [m/s].

VELY y-component of fluid velocity [m/s].

VELZ z-component of fluid velocity [m/s].

5.4.1.4 Injection Boundary: BC INJECT Section

The BC INJECT section contains the following keywords:

BFLAG Specifies whether this patch is burning at t = 0. Only relevant for computations
with GENx. It can take the following values:

0 Patch is not burning at t = 0.

1 Patch is burning at t = 0.

COUPLED Specifies whether patch is interacting during a computation with GENx. It can
take the following values:

1 Patch is interacting.

2 Patch is not interacting.

CRECONST Specifies whether constrained reconstruction is to be used when computing face
gradients for this boundary. It can take the following values:

0 Do not use constrained reconstruction (default).

1 Use constrained reconstruction.

KIND Specifies the treatment of the boundary condition. It can take the following values:

0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

MFRATE Injection mass flux [kg/(m2 s)].

NAME Specifies the name of the boundary.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:
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1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

STATS Specifies whether particle impact statistics are to be gathered. It can take the
following values:

0 Do not gather paticle impact statistics.

1 Gather paticle impact statistics.

Particle impact statistics are written into the patch-coefficient file for visualization
with TECPLOT.

TEMP Injection static temperature [K].

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.

1 Compute thrust and specific impulse for this patch.

5.4.1.5 No-Slip Boundary: BC NOSLIP HFLUX Section

The BC NOSLIP HFLUX section is used to specify boundary conditions for patches with a
no-slip boundary condition and imposed heat fluxes and contains the following keywords:

COUPLED Specifies whether patch is interacting during a computation with GENx. It can
take the following values:

1 Patch is interacting.

2 Patch is not interacting.

CRECONST Specifies whether constrained reconstruction is to be used when computing face
gradients for this boundary. It can take the following values:

0 Do not use constrained reconstruction (default).
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1 Use constrained reconstruction.

If you wish to compute viscous flows, you must set CRECONST=1. Otherwise, the no-slip con-
dition is only enforced weakly and you may observe non-zero velocities on solid boundaries.

HFLUX Specifies the value of the heat flux [W/(m2 K)].

KIND Specifies the treatment of the boundary condition. It can take the following values:

0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

NAME Specifies the name of the boundary.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:

1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

STATS Specifies whether particle impact statistics are to be gathered. It can take the
following values:

0 Do not gather paticle impact statistics.

1 Gather paticle impact statistics.

Particle impact statistics are written into the patch-coefficient file for visualization
with TECPLOT.

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.

1 Compute thrust and specific impulse for this patch.
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5.4.1.6 No-Slip Boundary: BC NOSLIP TEMP Section

The BC NOSLIP TEMP section is used to specify boundary conditions for patches with an
isothermal no-slip boundary condition and contains the following keywords:

COUPLED Specifies whether patch is interacting during a computation with GENx. It can
take the following values:

1 Patch is interacting.

2 Patch is not interacting.

CRECONST Specifies whether constrained reconstruction is to be used when computing face
gradients for this boundary. It can take the following values:

0 Do not use constrained reconstruction (default).

1 Use constrained reconstruction.

If you wish to compute viscous flows, you must set CRECONST=1. Otherwise, the no-slip con-
dition is only enforced weakly and you may observe non-zero velocities on solid boundaries.

KIND Specifies the treatment of the boundary condition. It can take the following values:

0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

NAME Specifies the name of the boundary.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:

1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

STATS Specifies whether particle impact statistics are to be gathered. It can take the
following values:
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0 Do not gather paticle impact statistics.

1 Gather paticle impact statistics.

Particle impact statistics are written into the patch-coefficient file for visualization
with TECPLOT.

TEMP Specifies the value of the temperature [K].

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.

1 Compute thrust and specific impulse for this patch.

5.4.1.7 Outflow Boundary: BC OUTFLOW Section

The BC OUTFLOW section contains the following keywords:

KIND Specifies the treatment of the boundary condition. It can take the following values:

0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

NAME Specifies the name of the boundary.

NSCBCK Specifies the degree of reflection at boundary. The boundary is non-reflecting if
NSCBK=0.0, partially reflecting if NSCBK>0.0 and NSCBK<1.0, and reflecting if NSCBK=1.0.
This option is relevant only if KIND=1 and REFLECT=0.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:

1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

PRESS Static pressure [Pa]. The static pressure must only be specified if the outflow is
subsonic or mixed subsonic/supersonic.
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REFLECT Specifies whether the boundary condition is reflecting or non-reflecting. It can
take following values:

0 Non-reflecting boundary condition.

1 Reflecting boundary condition.

This option is relevant only if KIND=1.

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.

1 Compute thrust and specific impulse for this patch.

TYPE Specifies whether outflow is supersonic or subsonic. It can take the following values:

0 Outflow is supersonic.

1 Outflow is subsonic. The static pressure must be specified by the keyword PRESS.

2 Outflow is mixed subsonic/supersonic. The static pressure must be specified by the
keyword PRESS.

5.4.1.8 Periodic Boundary: BC PERIODIC Section

ANGLE Specifies the angle between two related periodic patches [deg]. For linear periodicity,
ANGLE=0.0. For rotational periodicity, the angle is that which transform the current
patch to be coincident with its related patch (as specified by the value assigned to the
keyword RELPATCH). The convention is that positive angles are defined according to
the right-hand rule assuming that the rotation axis (as specified by the value assigned
to the keyword AXIS) is pointing in the respective positive coordinate direction; see
Fig. 5.6 for an example.

AXIS For linear periodicity, specifies the direction of the translation vector which transforms
the current patch with its related patch. For rotational periodicity, specifies the direc-
tion of the axis about which the current patch is rotated to coincide with its related
patch. It can take the following values:

1 x-coordinate direction.

2 y-coordinate direction.

3 z-coordinate direction.

NAME Specifies the name of the boundary.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.
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Figure 5.6: Definition of rotation angle for periodic boundaries. In this example, the rotation
angle for the purple patch would be positive while that for the orange patch would be negative.

RELPATCH Specifies the patch to which the current patch is related.

5.4.1.9 Slip Boundary: BC SLIPW Section

The BC SLIPW section contains the following keywords:

COUPLED Specifies whether patch is interacting during a computation with GENx. It can
take the following values:

0 Patch is interacting.

2 Patch is not interacting.

CRECONST Specifies whether constrained reconstruction is to be used when computing face
gradients for this boundary. It can take the following values:

0 Do not use constrained reconstruction (default).

1 Use constrained reconstruction.

KIND Specifies the treatment of the boundary condition. It can take the following values:
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0 Simple boundary-condition treatment.

1 Characteristic boundary-coundition treatment.

NAME Specifies the name of the boundary.

ORDER Specifies the order of accuracy of computing fluxes on this boundary. It can take the
following values:

1 First-order accuracy.

2 Second-order accuracy.

The order with which boundary fluxes are computed must be less or equal to the order
of accuracy with which interior fluxes are computed as specified by the keyword ORDER

in the NUMERICS section. It can be useful to compute boundary fluxes with first-order
accuracy even though interior fluxes are computed with second-order accuracy if strong
gradients are swept across the boundary, such as shock waves or jet boundaries.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

STATS Specifies whether particle impact statistics are to be gathered. It can take the
following values:

0 Do not gather paticle impact statistics.

1 Gather paticle impact statistics.

Particle impact statistics are written into the patch-coefficient file for visualization
with TECPLOT.

THRUSTFLAG Specifies whether thrust and specific impulse are computed for this patch. This
flag is relevant only when FLAG=1 in the FORCE section. It can take the following values:

0 Do not compute thrust and specific impulse for this patch.

1 Compute thrust and specific impulse for this patch.

5.4.1.10 Symmetry Boundary: BC SYMMETRY Section

NAME Specifies the name of the boundary.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

The symmetry boundary condition can only be applied to flat patches. The symmetry
boundary condition can be applied to patches which are not xy-, xz-, or xy-coordinate
planes.
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5.4.1.11 Virtual Boundary: BC VIRTUAL Section

The BC VIRTUAL section contains the following keywords:

NAME Specifies the name of the boundary.

PATCH Specifies the range of patches to which the data in this section is to be applied using
two integers.

This boundary condition should only be applied with truly two-dimensional computations,
see the description of the keyword DIMENS in the NUMERICS Section. It is important to note
that virtual boundaries can only be applied to z = constant planes and must come in pairs.

The effect of this boundary condition is that no fluxes are computed. Because virtual
boundaries always come in pairs and each cell in a truly two-dimensional computation must
have one face each on the virtual boundaries, the effect of computing no fluxes on this
boundary is to simulate constant properties in the z-direction.

5.4.2 Time-Dependent Boundary Conditions

Any of the physical quantities specified by the user in the above-described sections can
be specified to vary in time. The time variations can be specified to be piecewise linear,
sinusoidal, or stochastic using additional sections in the boundary-condition file. Each of
these sections can be used to modify one user-specified physical quantity on one boundary
patch. If more than one physical quantity on a given patch or physical quantities on several
patches are to be modified, multiple additional sections have to be included in the boundary-
condition file.

5.4.2.1 TBC PIECEWISE Section

The TBC PIECEWISE section allows the specification of piecewise constant and piecewise linear
variations. Consider the following example section:

# TBC_PIECEWISE1

INJECT MFRATE ! BC and variable to which TBC applies2

PATCH 1 1 ! applies to patch3

ONTIME -1.0E6 ! time to start using this TBC4

OFFTIME 1.0E6 ! time to stop using this TBC5

ORDER 0 ! 0 = piecewise constant (default), 1 = piecewise linear6

NJUMPS 4 ! number of points at which behavior changes7

#8

FRAC 0.0 ! fraction of input value of variable before first time9

TIME 0.001 ! first time at which behavior changes10

FRAC 0.1 ! next fraction attained (constant) or ramped to (linear)11
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TIME 0.002 ! second time at which behavior changes12

FRAC 0.313

TIME 0.00314

FRAC 0.615

TIME 0.004 ! final time at which behavior changes16

FRAC 1.0 ! final value for constant case; *ignored* for linear case17

#18

Line 2: Specifies that the variable MFRATE on an INJECT boundary is to be modified. Note
that this does not yet specify which injection boundary is to be modified.

Line 3: Specifies that variables on patch one are to be modified.

Line 4: Specifies the lower bound on the time window in which the values are to be modified.

Line 5: Specifies the upper bound on the time window in which the values are to be modified.

Line 6: Specifies the polynomial order of interpolation. It can take the following values:

0 For piecewise constant interpolation.

1 For piecewise linear interpolation.

Line 7: Specifies the number of data points through which the time-dependent behavior is
specified.

Lines 9-17: Specify the behaviour of the user-specified variable in time. The behaviour
is specified through pairs of values for the user-specified value and the time at which
the variation changes. The user-specified value of the variable MFRATE is modified by
the fraction FRAC; i.e., at any time, the actual time-dependent value is given by the
product of MFRATE and FRAC. Figure 5.7 illustrates the piecewise constant and linear
variations arising from the input of the above example. It is important to note that
the piecewise constant and linear representations differ in their final value, because the
final value of FRAC is ignored for linear variations.

5.4.2.2 TBC SINUSOIDAL Section

The TBC SINUSOIDAL section allows the specification of sinusoidal variations of the form

α(t) = c (1 + A sin(ωt + φ))

where c is the user-specified constant value, A is the amplitude if the sinusoid, ω is the
angular frequency, and φ is the phase.

Consider the following example section:
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Figure 5.7: Illustration of piecewise constant and linear interpolations for TBC PIECEWISE time-
dependent boundary conditions.
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# TBC_SINUSOIDAL1

OUTFLOW PRESS ! BC and variable to which TBC applies2

PATCH 2 2 ! applies to patch3

ONTIME 1.0E-3 ! time to start using this TBC4

OFFTIME 2.0E-3 ! time to stop using this TBC5

AMP 0.2 ! amplitude of sinusoid6

FREQ 1.0E4 ! frequency of sinusoid7

PHASE 0.0 ! argument of sin() for t=08

#9

Line 2: Specifies that the variable PRESS of an OUTFLOW boundary is to be modified. Note
that this does not yet specify which outflow boundary is to be modified.

Line 3: Specifies that variables on patch two are to be modified.

Line 4: Specifies the lower bound on the time window in which the values are to be modified.

Line 5: Specifies the upper bound on the time window in which the values are to be modified.

Line 6: Specifies the amplitude A of the sinusoidal variation.

Line 7: Specifies the angular frequency ω of the sinusoidal variation [rad/s].

Line 8: Specifies the phase φ of the sinusoidal variation [deg].

5.4.2.3 TBC STOCHASTIC Section

5.4.2.4 TBC WHITENOISE Section

5.4.3 Grid-Motion Boundary Conditions

Computations with moving boundaries require the specification of boundary conditions for
the grid-motion algorithm. The following keywords can be specified in any of the above
sections:

MVPATCH Specifies whether patch is moving. It can take the following values:

0 Patch is not moving.

1 Patch is moving.

SMGRID Specifies whether grid on patch is to be smoothed. It can take the following values:

0 Do not smooth surface grid.

1 Smooth surface grid.
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It is important to note that surface grids can only be smoothed if the associated patches are
flat. rflump checks whether patches with active smoothing are flat. If such patches are not
flat, smoothing is deactivated automatically and a warning is printed to the screen.

MOVEDIR Specifies in which direction(s) the vertices on the patch are allowed to move. The
direction(s) in which movement is allowed are indicated by integers:

0 Vertices on patch are not allowed to be moved in any direction.

1 Vertices on patch are allowed to be moved in x-coordinate direction.

2 Vertices on patch are allowed to be moved in y-coordinate direction.

4 Vertices on patch are allowed to be moved in z-coordinate direction.

The non-zero values can be combined to specify movement in planes normal to coor-
dinate axes or arbitrary movement:

3 Vertices on patch are allowed to be moved in xy-plane, i.e., movement normal to
the z-coordinate direction is not allowed.

5 Vertices on patch are allowed to be moved in xz-plane, i.e., movement normal to
the y-coordinate direction is not allowed.

6 Vertices on patch are allowed to be moved in yz-plane, i.e., movement normal to
the x-coordinate direction is not allowed.

7 Vertices on patch are allowed to be moved in xyz-space.

5.5 Region-Mapping File

The region-mapping file contains the mappings between regions and processes. The file is
always in ASCII format and is called <casename>.map.

Consider the following example region-mapping file:

# ROCFLU region mapping file1

# Number of regions2

43

# Number of processes4

45

# Process 0000016

17

18

# Process 0000029

110

211

# Process 00000312
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113

314

# Process 00000415

116

417

# End18

Line 1: The first line must contain the string shown, otherwise reading of the file will fail.

Lines 2-5: Specify the number of regions and processes.

Lines 6-8: Specify that process one will run one region and that that region’s index is one.

Lines 9-17: Specify that processes two to four will run one region each and that the corre-
sponding region indices are two, three, and four, respectively.

Line 18: The last line must contain the string shown, otherwise reading of the file will fail.

It is instructive to consider the two additional examples shown below. On the left is the
region-mapping file for the case in which four regions are to be run on two processes. On the
right is the region-mapping file for the case in which four regions are to be run on a single
process.

# ROCFLU region mapping file # ROCFLU region mapping file1

# Number of regions # Number of regions2

4 43

# Number of processes # Number of processes4

2 15

# Process 000001 # Process 0000016

2 47

1 18

2 29

# Process 000002 310

2 411

3 # End12

413

# End14

5.6 Restart-Information File

The restart-information file contains the iteration numbers or time stamps at which restart
files were written by rflump. It is read by rflump to determine the iteration number or time
stamp from which a restart should be made. Restarts are always made from the iteration
number or time stamp on the last line in the restart-information file. The initial restart-
information file is written by rfluprep.
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The restart-information file allows jobs to be restarted automatically without user in-
tervention. This is particularly useful when running on computers which require jobs to be
submitted through batch queues.

5.7 Convergence File

The convergence file is called <casename>.con and is written in ASCII format. For steady
flows, the convergence file contains the following information:

Column 1: The iteration number.

Column 2: The residual.

Column 3: The x-component of the net force on solid walls.

Column 4: The y-component of the net force on solid walls.

Column 5: The z-component of the net force on solid walls.

Column 6: The mass flow entering the solution domain.

Column 7: The mass flow exiting the solution domain.

For unsteady flows, the convergence file contains the following information:

Column 1: The time.

Column 2: The time step.

Column 3: The x-component of the net force on solid walls.

Column 4: The y-component of the net force on solid walls.

Column 5: The z-component of the net force on solid walls.

Column 6: The mass flow entering the solution domain.

Column 7: The mass flow exiting the solution domain.

5.8 Probe File

The probe file is written by rflump if the input file contains the PROBE section and setting
the variable NUMBER to an integer greater than 0.

The name of the probe file is <casename>.prb mmmmm, where mmmmm is the number of the
probe.

Each line of the probe file consists of seven columns, which contain the following pieces
of data:
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Column 1: For steady flows, the iteration number; for unsteady flows, the time.

Column 2: The density.

Column 3: The x-velocity component.

Column 4: The y-velocity component.

Column 5: The z-velocity component.

Column 6: The static pressure.

Column 7: The static temperature.

5.9 Mass-Conservation Check File

The mass-conservation check file is written by rflump for unsteady flows with grid motion
outside of GENx. The file is called <casename>.mass and contains the following information:

Column 1: The time.

Column 2: The mass contained in the solution domain.

Column 3: The mass flow entering the solution domain.

Column 4: The mass flow exiting the solution domain.

Column 5: The volume of the solution domain.

As implied by its name, the mass-conservation check file is used to check that mass is
conserved during moving-grid computations.

5.10 Statistics File

5.11 GENx Control File

When rflump is run within GENx, an additional input file is required because rflump is
not invoked from the command line. This so-called GENx control file is always called
RocfluControl.txt and contains the following information:

Line 1: The case name.

Line 2: The directory name containing the rflump input files, relative to the directory from
which GENx is invoked.
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Line 3: The directory name containing the rflump output files, relative to the directory from
which GENx is invoked. written by Roccom.

Line 4: The verbosity level.

Line 5: The checking level.
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Chapter 6

Problem Setup

This chapter gives a summary of the problem setup. The objective is to assist users in setting
up a run, especially for coupled runs within GENx.

1. Generate a grid. The names and number of output files will differ depending on which
grid generator is used:

• CENTAUR: Output file is *.hyb.asc or *.hyb.bin. Rename the output files to
<casename>.hyb.asc or <casename>.hyb.bin.

• VGRIDns: Output files are *.bc and *.cgosg. Rename *.bc to <casename>.vbc.
This is important because rflump uses the extension .bc for its boundary-condition
file. Rename *.cgosg to <casename>.cgosg. Generate a patch-mapping file
<casename>.vgi as described in Sec. 5.3.1.

• MESH3D: Output file is *.m3d. Rename to <casename>.m3d. Generate a patch-
mapping file <casename>.mgi as described in Sec. 5.3.2.

• TETMESH: Output file is *.noboite. Rename to <casename>.noboite. Gener-
ate a patch-mapping file <casename>.tmi as described in Sec. 5.3.3.

• GRIDGEN: Specify Cobalt as the output format. Output files are *.bc and *.inp.
Because these extensions are used by rflump, it is recommended that you re-
name these files as *-COBALT.bc and *-COBALT.inp. Link <casename>.cgr to
*-COBALT.inp,

ln -s *-COBALT.inp <casename>.cgr

Generate a patch-mapping file <casename>.cgi as described in Sec. 5.3.4.

2. Generate a boundary-condition file <casename>.bc. The format of the boundary-
condition file is described in 5.4. Pay particular attention to the following:

• Make sure that the patch-mapping files generated above are consistent with the
boundary-condition file, i.e., each patch in the grid is mapped to a patch in
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the boundary-condition file. Changing the patch-mapping file means that the
preprocessor will need to be rerun.

• For coupled simulations: Make sure that each patch has the correct values for
the following parameters: COUPLED, MVPATCH, and SMGRID. Incorrect values of the
COUPLED parameter are likely to lead to failure of Surfdiver.

3. Generate an input file <casename>.inp. Pay particular attention to the following
sections:

• Format of grid file: Make sure you set the GRIDSRC keyword in the FORMATS section
to the correct value.

• Initial condition: Make sure that the initial condition is correct because changing
the initial condition means that the preprocessor will need to be rerun. In par-
ticular, make sure that the initial condition is sensible and compatible with the
boundary conditions.

• Reference values: Make sure that the values for CP and GAMMA are correct. They
have a very strong effect on steady-state pressure levels for typical rocket prob-
lems. Changing these values influences the initial solution and means that the
preprocessor will need to be rerun.

• For coupled computations, make sure that the PREP section contains the keyword
SURFFLAG set to 1 if rfluprep was not compiled as part of GENx.

• For coupled computations, make sure that the units are correct. If the grid was
generated in units other than meters (as is often the case), add a TRANSFORM

section with the appropriate scaling factors. Inconsistent units will lead to failure
of Surfdiver.

4. Generate a processor-mapping file if parallel runs are to be made by executing

rflumap -c <casename> -m 1 -p <nprocs> -r <nregions> -v <verbosity>

Note that the number of regions can be larger than the number of processes. See Sec.
7.3.

5. Run the partitioning module by executing

rflupart -c <casename> -v <verbosity>

See Sec. 7.5. The partitioning module generates grid files in rflump format.

6. Run the initialization module by executing
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rfluinit -c <casename> -v <verbosity>

See Sec. 7.2. The initialization module generates solution files in rflump format.

7. For coupled computations, you need to generate an input file for Rocin by running
rflumap again,

rflumap -c <casename> -m 2 -p <nprocs> -r <nregions> -v <verbosity>

See Sec. 7.3.

8. For coupled computations, generate the RocfluControl.txt file, see Sec. 5.11.

9. You are ready to run either rflump or GENx.
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Chapter 7

Execution

This chapter contains detailed information on the command-line arguments and input and
output files of rfluconv, rfluinit, rflumap, rflump, rflupart, rflupick, and rflupost.

7.1 rfluconv

7.1.1 Invocation

rfluconv is invoked by typing

rfluconv -c <casename> -s <stamp> -v <verbosity>

The following command-line arguments are read by rfluconv:

<casename> A character string used to label the input and output files.

<stamp> A variable indicating the iteration or time from which the grid and solution files
are to be read.

<verbosity> An integer indicating the desired verbosity level of rfluconv. The verbosity
level can take the following values:

0 No output. rfluconv will not write any information to standard output.

1 Low level of output. rfluconv will write some information to standard output.

2 High level of output. rfluconv will write detailed information to standard output.

rfluconv expects interactive user input after invokation, as described in Sect. 7.1.4.
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7.1.2 Input Files

The following input files are read by rfluconv:

• A grid file in RocfluMP ASCII or binary format.

• A flow solution file in RocfluMP ASCII or binary format.

• A dimension file.

• A boundary condition file.

7.1.3 Output Files

The following output files are written by rfluconv:

• A grid file in RocfluMP ASCII or binary format.

• A flow solution file in RocfluMP ASCII or binary format.

• A surface-grid file for TETMESH or YAMS.

• A version file called rfluconv.vrs. It contains the version number and date of the
executable. Successive runs append to the version file.

7.1.4 Interactive Input

The interactive input after invokation is self-explanatory and will not be described here.

7.2 rfluinit

7.2.1 Invocation

rfluinit is invoked by typing

rfluinit -c <casename> -v <verbosity>

The command-line arguments read by rfluinit are:

<casename> A character string used to label the input and output files.

<verbosity> An integer indicating the desired verbosity level of rfluinit. The verbosity level
can take the following values:

0 No output. rfluinit will not write any information to standard output.

1 Low level of output. rfluinit will write some information to standard output.

2 High level of output. rfluinit will write detailed information to standard output.
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7.2.2 Input Files

The following input files are read by rfluinit:

• An input file called <casename>.inp.

• A grid file in RocfluMP format.

• A boundary-condition file. The name of the file is <casename>.bc.

• A dimension file.

• A restart-information file.

7.2.3 Output Files

The following input files are written by rfluinit:

• A flow solution file in rfluinit format.

• A version file called rfluinit.vrs. It contains the version number and date of the
executable. Successive runs append to the version file.

7.3 rflumap

7.3.1 Invocation

rflumap is invoked by typing:

rflumap -c <casename> -m <mode> -p <nprocs> -r <nregions> -v <verbosity>

The following command-line arguments are read by rflumap:

<casename> A character string used to label the input and output files.

<mode> An integer indicating the mode of invokation. The mode can take the following
values:

1 Initial mode. rflumap will only create a mapping file.

2 Final mode. rflumap will read an existing mapping file and create an input file for
Rocin.

<nprocs> An integer indicating the number of processes. The number of processes must be
less or equal to the number of regions.
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<nregions> An integer indicating the number of regions. The number of regions must be
greater or equal to the number of processes.

<verbosity> An integer indicating the desired verbosity level of rflumap. The verbosity
level can take the following values:

0 No output. rflumap will not write any information to standard output.

1 Low level of output. rflumap will write some information to standard output.

2 High level of output. rflumap will write detailed information to standard output.

7.3.2 Input Files

rflumap does not read any input files.

7.3.3 Output Files

rflumap writes the region mapping file. For coupled runs, rflumap also produces the input
file for Rocin.

7.4 rflump

7.4.1 Invocation

rflump is an MPI code and hence it’s invokation is dependent on the type of machine and may
also be dependent on the MPI distribution. For typical MPI distributions, rflump is invoked
by typing

mpirun -np <n> rflump -c <casename> -v <verbosity>

where <n> is the number of processes.
The command-line arguments read by rflump are:

<casename> A character string used to label the input and output files.

<verbosity> An integer indicating the desired verbosity level of rflump. The verbosity level
can take the following values:

0 No output. rflump will not write any information to standard output.

1 Low level of output. rflump will write some information to standard output.

2 High level of output. rflump will write detailed information to standard output.
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It is important to be aware of the automatic restart capability of rflump. When flow-solution
files are written, rflump writes the iteration number or time stamp into the so-called restart-
information file. Whenever rflump is invoked, it checks for the existence of the restart-
information file. If the restart-information file exists, rflump reads the last iteration number
or time stamp at which flow-solution files were written. rflump reads in the flow-solution files
corresponding to that iteration number or time stamp and starts the computation. Therefore,
successive invokations of the above commands lead to different behaviour of rflump! This is
done to simplify the execution of rflump within batch jobs.

7.4.2 Input Files

The following input files are read by rflump:

• An input file called <casename>.inp.

• A grid file in RocfluMP format.

• A flow-solution file in RocfluMP format.

• A boundary-condition file. The name of the file is <casename>.bc.

• A dimension file.

• A restart-information file.

7.4.3 Output Files

The following input files are written by rflump:

• A grid file in RocfluMP format.

• A flow solution file in RocfluMP format.

• A dimension file if the flow is unsteady and grid motion is active.

• A restart-information file.

• A probe file.

• A convergence file.

• A mass-conservation check file if grid motion is active and rflump is not run within
GENx.

• A version file called rflump.vrs. It contains the version number and date of the
executable. Successive runs append to the version file.
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7.4.4 Profiling and Performance Analysis Guidelines

To profile RocfluMP, it should be compiled with the Rocprof library as described in Subsec-
tion 3.2.2. Important routines in RocfluMP will be instrumented automatically. If additional
routines are to be included in the instrumentation, the source code must be edited accord-
ingly. The execution of RocfluMP is unchanged by the additional instrumentation. On
completing execution, dedicated output files are written by the Rocprof library for analysis
with the Profane tool.

The performance of RocfluMP is strongly affected by many factors. If the goal of the
analysis is to determine the outright speed of the code as a whole or selected portions of it,
the following guidelines should be considered:

1. Create a balanced data set for parallel runs. In other words, the dimensions of each
region should be identical or nearly identical. It is important to note that this applies
not only to real cells, but also to virtual cells because the latter determine the amount
of communication between the regions.

2. Deactivate the printing and writing of output, i.e.,

• Deactivate printing to screen by setting the verbosity level to zero.

• Deactivate checking by setting the checking level to zero.

• Deactivate the computation of forces. (This is particularly important for parallel
runs since the computation of forces and moments is likely to introduce a load
imbalance and requires additional communication.)

• Do not specify the extraction of data through probes. (This is particularly im-
portant for parallel runs since the writing of probe data is likely to introduce a
load imbalance.)

3. Choose an appropriate number of regions for a given number of processors and machine
configuration. Many parallel computers are divided into so-called nodes, each of which
may hold a given number of processors. For example, assume a given machine contains
16 processors on each node. If a run is to be made on 1024 processors, 64 nodes of this
machine would be required. In measuring outright performance of the code, however,
it is not a good idea to use all the processors on a given node. This is because the
operating system will require some resources also and then slow down the computation
of the region(s) assigned to that processor. It is therefore recommended that one
processor on each dataset be left unused on such machines. Hence it is necessary to
request more nodes or to create datasets which are multiples of Np − 1, where Np is
the number of processors per node.



7.5. rflupart 85

7.5 rflupart

7.5.1 Invocation

For serial computations, rflupart is invoked by typing

rflupart -c <casename> -v <verbosity>

The command-line arguments read by rflupart are:

<casename> A character string used to label the input and output files.

<verbosity> An integer indicating the desired verbosity level of rflupart. The verbosity
level can take the following values:

0 No output. rflupart will not write any information to standard output.

1 Low level of output. rflupart will write some information to standard output.

2 High level of output. rflupart will write detailed information to standard output.

7.5.2 Input Files

The following input files are read by rflupart:

• An input file called <casename>.inp.

• A grid file. rflupart supports the following formats:

– CENTAUR format. The CENTAUR grid file may be in ASCII or binary format.
The file in ASCII format is called <casename>.hyb.asc, and the file in binary
format is called <casename>.hyb.bin.

– VGRIDns format. The file is called <casename>.cgosg.

– MESH3D format. The file is called <casename>.m3d.

– TETMESH format. The file is called <casename>.noboite.

– Cobalt format. The file is called <casename>.cgr.

– GAMBIT format. The file is called <casename>.neu.

• A boundary condition file called <casename>.bc.

• A mapping file called <casename>.map specifying how many processors are to be used
for parallel computations, and how the regions are mapped to the processors. This file
is only required for parallel computations. If the mapping file does not exist, rflupart
assumes that a serial computation will be made.
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• A file specifying the mapping between the boundary patches used during grid genera-
tion and how these patches translate to the patches to be used in RocfluMP. This file
is only needed if a VGRIDns, MESH3D, or Cobalt grid file is read. The file is called
<casename>.vgi, <casename>.mgi, or <casename>.cgi, depending on whether the
grid file is in VGRIDns, MESH3D, or Cobalt format.

7.5.3 Output Files

The following output files are written by rflupart:

• A grid file in RocfluMP format. For parallel computations, the number of grid files
written out depends on the number of regions specified in the mapping file.

• A dimension file. For parallel computations, the number of dimension files written out
depends on the number of regions specified in the mapping file.

• A version file called rflupart.vrs. It contains the version number and date of the
executable. Successive runs append to the version file.

7.5.4 Batch-Job Submission Guidelines

Because rflupart is a serial code, the partitioning of large grids can be memory-intensive.
The memory required by rflupart is approximately independent of the number of partitions
provided that the number of partitions is not too small. This is because rflupart stores only
one partition at the same time as the serial grid.

To aid in the preparation of batch jobs, Fig. 7.1 summarizes the memory required to
partition a grid of a given number of cells.

7.6 rflupick

When running rflump in parallel, the output from rflupick can only be used if rflupost is
instructed not to merge regions.

7.6.1 Invocation

rflupick is invoked by typing:

rflupick -c <casename> -s <stamp> -v <verbosity>

The following command-line arguments are read by rflupick:

<casename> A character string used to label the input and output files.
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Figure 7.1: Memory requirements of rflupart to partition a grid of given number of cells.
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<stamp> A variable indicating the iteration or time from which the grid and solution files
are to be read.

<verbosity> An integer indicating the desired verbosity level of rflupick. The verbosity
level can take the following values:

0 No output. rflupick will not write any information to standard output.

1 Low level of output. rflupick will write some information to standard output.

2 High level of output. rflupick will write detailed information to standard output.

rflupick expects interactive user input after invokation, as described in Sect. 7.6.4.

7.6.2 Input Files

The following input files are read by rflupick:

• A grid file in RocfluMP ASCII or binary format.

• A flow solution file in RocfluMP ASCII or binary format.

• A dimension file.

• A boundary condition file.

• A mapping file.

7.6.3 Output Files

The following output files are written by rflupick:

• A postprocessor info file.

• A version file called rflupick.vrs. It contains the version number and date of the
executable. Successive runs append to the version file.

7.6.4 Interactive Input

After invokation, rflupick presents the following screen output:

Picking regions manually...

Enter information on regions:

a - Pick all regions

s - Pick some regions

n - Pick no regions

Enter information type:
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The input determines which regions will be postprocessed by rflupost.

Picking all regions. Assuming that the user enters option a, rflupick will loop over all
regions, and for each region present the following screen output (the following output assumes
that the region index is 00001):

Picking special cells...

Global region: 00001

Enter information on special cells:

b - cell adjacent to boundary face

c - single cell

f - cells adjacent to interior face

s - stencil members

v - cells meeting at vertex

q - quit

Enter information type:

This output is self-explanatory. Once special cells were picked, rflupick will present the
following screen output:

Picking special faces...

Global region: 00001

Enter information on special faces:

b - boundary face

i - interior face

q - quit

Enter information type:

Once again, the output is self-explanatory. Once special faces were picked, rflupick will re-
peat the same procedure for the next region.

Picking some regions. Assuming that the user enters option s, rflupick will present the
following screen output:

Enter global region index (< 1 to exit):

rflupick will repeat the same request until the user enters an integer smaller than unity.
Once some regions were picked, rflupick will loop over the picked regions and present the
same output as described above.
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7.7 rflupost

7.7.1 Invocation

For serial computations, rflupost is invoked by typing

rflupost -c <casename> -s <stamp> -v <verbosity>

The following command-line arguments are read by rflupost:

<casename> A character string used to label the input and output files.

<stamp> A variable indicating the iteration or time from which the grid and solution files
are to be read.

<verbosity> An integer indicating the desired verbosity level of rflupost. The verbosity
level can take the following values:

0 No output. rflupost will not write any information to standard output.

1 Low level of output. rflupost will write some information to standard output.

2 High level of output. rflupost will write detailed information to standard output.

7.7.2 Input Files

The following input files are read by rflupost:

• A grid file in RocfluMP format.

• A flow solution file in RocfluMP format.

• A dimension file.

• A boundary condition file.

• A file generated by rflupick detailing which regions are to be postprocessed and whether
individual cells are to be visualized. If this file does not exist, all regions are postpro-
cessed.

7.7.3 Output Files

The following output files are written by rflupost:

• A file in binary TECPLOT format called <casename>.plt.

• A version file called rflupost.vrs. It contains the version number and date of the
executable. Successive runs append to the version file.
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Example Cases

This chapter illustrates the execution of rflumap, rflupart, rfluinit, rflump, and rflupost for
several example cases. For the sake of brevity, the output produced by these program is not
shown.

8.1 Shocktube

The flow in a shocktube is used to test the shock-capturing capabilities of the spatial dis-
cretization and the accuracy of the temporal discretization. The CVS repository contains
coarse and fine grids for the first and second cases specified by Sod [13]. The grid is not
shown on account of the simple geometry.

The following files are required for this case:

shocktube.bc

shocktube.inp

shocktube.hyb.bin

The GRIDSRC variable in the FORMATS section of the shocktube.inp file indicates that the
original grid file is in CENTAUR format.

By typing

rflupart -c shocktube -v 2

the partitioner runs and writes the following output files:

shocktube.dim

shocktube.grd_00000

The initialization module is executed by typing
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rfluinit -c shocktube -v 2

which produces the file

shocktube.flo_00000_0.00000E+00

The solver may be run by typing

rflump -c shocktube -v 2

With the settings contained in the files from the CVS repository, rflump will take as many
time steps as needed to reach a physical time of t = 1.0 · 10−3 s.

The results may be visualized with TECPLOT. The postprocessor is used to interpolate
the solution variables from cell centroids to vertices and to write the TECPLOT data file by
typing

rflupost -c shocktube -s 1.0E-3 -v 2

The resulting data file may be read into TECPLOT by typing

tecplot shocktube_00000_1.00000E-03.plt

The contours of density are depicted in Fig. 8.1
The CVS repository contains a TECPLOT macro file called lineplots.mcr which can be
used to extract line plots of density, velocity, and pressure along the x-axis as shown in Fig.
8.2.

8.2 GAMM Bump

The transonic flow over a circular arc bump in a straight-walled channel is often used to test
the inflow and outflow boundary conditions and the shock-capturing capabilities of the spatial
discretization. This case will be used to illustrate both serial and parallel computations.

The grid used in this computation is shown in Fig. 8.3. The green surface indicates the
inflow boundary. The outflow boundary is hidden from view in this figure.

The following files are required for this case:

gamm8.bc

gamm8.inp

gamm8.hyb.bin

The GRIDSRC variable in the FORMATS section of the gamm8.inp file indicates that the original
grid file is in CENTAUR format.
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Figure 8.1: Density contours for shock-tube computation at t = 1.0 ·10−3 s with initial conditions
given by Sod’s first case.

Figure 8.2: Line plots for shock-tube computation at t = 1.0 · 10−3 s with initial conditions given
by Sod’s first case.
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Figure 8.3: Grid used for GAMM bump computation.

8.2.1 Serial Computation

By typing

rflupart -c gamm8 -v 2

the partitioner runs and writes the following output files:

gamm8.dim

gamm8.grd_00000

gamm8.flo_00000_000000

By typing

rfluinit -c gamm8 -v 2

the partitioner runs and writes the following output files:

gamm8.flo_00000_000000

The solver may be run by typing

rflump -c gamm8 -v 2
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Figure 8.4: Static pressure contours for transonic GAMM bump computation.

With the settings contained in the files from the CVS repository, rflump will take 500 steps
to reach the convergence tolerance.

The results may be visualized with TECPLOT. The postprocessor is used to interpolate
the solution variables from cell centroids to vertices and to write the TECPLOT data file by
typing

rflupost -c gamm8 -s 500 -v 2

The resulting data file may be read into TECPLOT by typing

tecplot gamm8_00000_000500.plt

The contours of static pressure are depicted in Fig. 8.4

8.2.2 Parallel Computation

The first step in preparing for a parallel computation is to decide how many regions should
be used. For this example, we will use five regions and hence type

rflumap -c gamm8 -m 1 -p 5 -r 5 -v 2

which leads to the region-mapping file
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gamm8.map

To partition the grid files, the partitioner is invoked by typing

rflupart -c gamm8 -v 2

which produces the following files:

gamm8.dim_00001 gamm8.grd_00001

gamm8.dim_00002 gamm8.grd_00002

gamm8.dim_00003 gamm8.grd_00003

gamm8.dim_00004 gamm8.grd_00004

gamm8.dim_00005 gamm8.grd_00005

To initialize the solution, the initializer is invoked by typing

rfluinit -c gamm8 -v 2

which produces the following files:

gamm8.flo_00001_000000

gamm8.flo_00002_000000

gamm8.flo_00003_000000

gamm8.flo_00004_000000

gamm8.flo_00005_000000

The parallel computation is initiated by

mpirun -np 5 rflump -c gamm8 -v 2

The precise command line may vary depending on which computer is used
The results of the computation will not be shown again. Instead, the capability of rflupost

to allow the user to visualize the partitioned geometry will be demonstrated. Generate the
TECPLOT file through

rflupost -c gamm8 -s 500 -v 2

Figure 8.5 depicts the five regions generated for this particular run. More importantly,
rflupost can be used to visualize individual regions, the interregion faces, the virtual faces
associated with particular regions and boundary patches, as well as the virtual cells of any
region. Some of these capabilities are illustrated in Fig. 8.6.
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Figure 8.5: Partitioned grid for parallel GAMM bump computation.

Figure 8.6: Partitioned grid for parallel GAMM bump computation, showing interregion faces as
well as virtual boundary faces.
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Chapter 9

Visualization

This chapter describes how results obtained with rflump can be visualized. The focus is
on presenting information which will be helpful in visualizing results obtained specifically
with rflump. Consult the appropriate manuals for information on how the visualization tools
themselves should be used.

This chapter assumes that the user has executed rflupost already and thereby produced
one or more files for visualization. The behavior of rflupost is influenced by the values
assigned to the keywords in the POST Section of the input file.

rflupost writes output files for TECPLOT and ENSIGHT. TECPLOT is best used to visu-
alize small to medium-sized cases and to aid in debugging, whereas ENSIGHT is best used
to visualize large cases.

9.1 Plotting Variables

rflupost can be instructed to write so-called plotting variables to the output files. Plot-
ting variables are variables derived from the solution, usually through non-trivial additional
computations in rflupost, to gain insight into particular features of the flowfield.

At present, rflupost writes plotting variables only to TECPLOT files.

9.1.1 Visualization of Discontinuities

The computation of plotting variables which allow the visualization of discontinuities is
activated by the keyword DISCFLAG in the POST Section of the input file. Three variables are
computed to allow the visualization of discontinuities:

1. The magnitude of the density gradient. This variable is used to make Schlieren pictures,
in which highly localized regions of large density gradients indicate shock waves and
contact discontinuities. For an example of a Schlieren picture, see Fig. 4.3.
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2. The Laplacian of the density. This variable is used to make Shadowgraphs.

At present, this variable is set to zero by rflupost.

3. An indicator function of the normalized density,

Ii =

⌊
nf

(
ρi −mini ρi

maxi ρi −mini ρi

)
+

1

2

⌋
mod 2, (9.1)

where i represents the index of a given cell and nf is the number of fringes. The
indicator function can be used to plot interferograms.

At present, rflupost computes correctly the indicator function only if MERGEFLAG=1 in the
POST Section of the input file.

If DISCFLAG=1, rflupost writes three plotting variables to the visualization files, i.e., the
magnitude of the density gradient, the Laplacian of the density, and Ii given by Eq. (9.1).

9.1.2 Visualization and Identification of Vortical Structures

The computation of plotting variables which allow the visualization of vortical structures is
activated by the keywords VORTFLAG and COREFLAG in the POST Section of the input file.

The keyword VORTFLAG activates the computation of the Cartesian components of the
vorticity field,

ωx =
∂w

∂y
− ∂v

∂z
, (9.2)

ωy =
∂u

∂z
− ∂w

∂x
, (9.3)

ωz =
∂v

∂x
− ∂u

∂y
. (9.4)

If VORTFLAG=1, rflupost writes three plotting variables to the visualization files, i.e., ωx, ωy,
and ωz.

The keyword COREFLAG activates the computation of variables which allow identification
of vortices. These variables are used in three criteria for vortex identification, which are
described and compared in detail by Chakraborty et al. [5]. The criteria are based on the
velocity gradient tensor ∇v and its symmetric and antisymmetric components

S =
1

2

(
∇v + (∇v)t

)
, (9.5)

Q =
1

2

(
∇v − (∇v)t

)
. (9.6)

The criteria are:
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1. Q Criterion: Vortices are identified by regions with Q > 0, where Q is the second
invariant of ∇v, i.e.,

Q =
1

2

(
‖Q‖2 − ‖S‖2

)
. (9.7)

2. λ2 Criterion: Vortices are identified by regions in which λ2 < 0, where λ2 is the second
eigenvalue of S2 + Q2, assuming an ordering of λ1 > λ2 > λ3.

3. Swirling-Strength Criterion: The eigenvalues of the velocity-gradient tensor are as-
sumed to be given by λr and λcr ± i λci. Then a vortex is identified by regions in which
λci > ε and λcr/λci 6 δ, where ε and δ are positive thresholds.

If COREFLAG=1, rflupost writes four plotting variables to the visualization files, i.e., Q given
by Eq. (9.7), λ2, and λcr and λci from the swirling-strength criterion.

9.1.3 Visualization of Eulerian Particle Fields

The computation of plotting variables which allow the visualization of Eulerian fields of the
particle data is activated by the keyword PEULFLAG in the POST Section of the input file.

If PEULFLAG=1, rflupost writes eight plotting variables to the visualization files.

9.2 TECPLOT Output

The TECPLOT files produced by rflupost are in binary format to reduce file size and loading
time. The binary file are compatible across machines, i.e., files written on little-endian
machines can be read on big-endian machines and vice versa. The files produced by rflupost
make use of TECPLOT features which require version 10 or newer.

9.2.1 File Naming Convention

The name of the TECPLOT files produced by rflupost depends on whether a steady or
unsteady flow is computed. The name of the TECPLOT file is:

• <casename> <iteration stamp>.plt for steady flows, where <iteration stamp> is
a six-digit string denoting the iteration number.

• <casename> <time stamp>.plt for unsteady flows, where <time stamp> is a string of
the form n.nnnnnnnE+nn denoting time.

It should be noted that the TECPLOT files produced for unsteady flows cannot be loaded into
TECPLOT from the command-line because TECPLOT interprets the character + as combining
two file names. Instead, these files need to be loaded into TECPLOT using the File -> Load

Data File(s) option after having started TECPLOT from the command line.
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Table 9.1: Names and meaning of solution variables written to TECPLOT files.

Variable Meaning Units

r Density kg/m3

ru x-component of momentum kg/(m2 s)
rv y-component of momentum kg/(m2 s)
rw z-component of momentum kg/(m2 s)
rE Total internal energy J/m3

p Pressure Pa
T Temperature K
a Speed of sound m/s

9.2.2 File Content

9.2.2.1 Solution Variables

rflupost writes all conserved and dependent variables into the TECPLOT files. In the TEC-
PLOT file, the variables are denoted by dedicated names as listed in Table 9.1.

9.2.2.2 Plotting Variables

Plotting variables are labelled PVnn where nn is a two-digit integer starting with 01, 02, and
so on. The meaning of a given plotting variable is dependent on the user input for the flags
DISCFLAG, VORTFLAG, COREFLAG, and PEULFLAG. Each variable is numbered consecutively
depending on whether the associated flag is active.

9.2.2.3 Patch-Coefficient Variables

9.2.3 Zone Naming Conventions

TECPLOT organizes data by zones. Each zone is assigned a name and may consist of either
volume or surface data. Because TECPLOT allows each zone to be activated (displayed) or
deactived (not displayed) separately, the separation of data into zones is useful in allowing
detailed and selective investigation of data. For this reason, the TECPLOT files produced by
rflupost make extensive use of zones. The following explains the zone naming conventions
used by rflupost.

The zone naming convention adopted by rflupost is best explained with reference to Fig.
9.1. Data written to the TECPLOT file is split into volume and boundary patch data. Volume
data is further split according to the cell type (tetrahedron, hexahedron, prism, or pyramid),
and, for each cell type, according to the cell kind (actual or virtual cell). Boundary patch
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Volume

Cell kind Face kind

Face typeCell type

Boundary patches Special objects

Region

Face type

Borders

Cell(s)

Face(s)

Zones in Tecplot file

Figure 9.1: Illustration of zones written to TECPLOT files by rflupost.

data is further split according to the face type (triangular or quadrilateral), and, for each
face type, according to the face kind (actual or virtual face).

9.2.3.1 Volume Zones

The names of volume zones are:

<cell type>-<cell kind>_<region index>

where

<cell type> is a four-letter string indicating the cell type:

TET if the zone consists of tetrahedral cells.

HEX if the zone consists of hexahedral cells.

PRI if the zone consists of prismatic cells.

PYR if the zone consists of pyramidal cells.

<cell kind> is a one-letter string indicating the cell kind:

A if the zone consists of actual cells.
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V if the zone consists of virtual cells.

<region index> is a five-digit string indicating the global region index.

Examples are shown in Fig. 9.2, which represents a screen dump of part of the zone style
menu in TECPLOT. Zone number 1 contains the actual hexahedra of region 1 while zone
number 23 contains the virtual prisms of region 2.

9.2.3.2 Boundary Patch Zones

The names of boundary patch zones are:

PAT_<patch index>_<face type>-<face kind>_<region index>

where

<patch index> is a three-digit string indicating the global patch index. It is important to
note that this is a global patch index.

<face type> is a string indicating the face type:

TRI if the zone consists of triangular cells.

QUAD if the zone consists of quadrilateral cells.

<face kind> is a one-letter string indicating the face kind:

A if the zone consists of actual faces.

V if the zone consists of virtual faces.

<region index> is a five-digit string indicating the global region index.

Examples are shown in Fig. 9.2, which represents a screen dump of part of the zone style
window in TECPLOT. Zone number 9 contains the actual quadrilateral faces on global patch
number 1 in region 1. Zone number 13 contains the virtual triangular faces on global patch
number 5 in region 1. Note once again that the patch numbers are global patch numbers.
Global patch number 5 corresponds to local patch number 3 in region 1.

9.2.3.3 Border Face Zones

The names of border face zones are:

INT-<face type>_<region index>

where
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Figure 9.2: Screen dump of part of zone style window in TECPLOT illustrating zone naming
convention used in rflupost.
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<face type> is a string indicating the face type:

TRI if the zone consists of triangular cells.

QUAD if the zone consists of quadrilateral cells.

<region index> is a five-digit string indicating the global region index.

An example is shown in Fig. 9.2, which represents a screen dump of part of the zone style
window in TECPLOT. Zone number 8 contains the quadrilateral border faces of region 1. In
this particular case, the zone contains only quadrilateral faces.

9.2.3.4 Special Cell Zones

The names of special cell zones are:

C_<cell index>_<region index>

where

<cell index> is an eight-digit string indicating the cell index.

<region index> is a five-digit string indicating the global region index.

Note that the names of special cell zones do not distinguish between cell types and cell
kinds. An example is shown in Fig. 9.2, which represents a screen dump of part of the zone
style window in TECPLOT. Zone number 5 contains cell number 1247 of region 1.

9.2.3.5 Special Face Zones

The names of special cell zones are:

F_<face index>_PAT_<patch index>_<region index>

where

<face index> is an eight-digit string indicating the face index.

<patch index> is a three-digit string indicating the global patch index. It is important
to note that this is a global patch index. The patch number is zero if the face is an
interior face.

<region index> is a five-digit string indicating the global region index.

Note that the names of special face zones do not distinguish between faces types. Exam-
ples are shown in Fig. 9.2, which represents a screen dump of part of the zone style menu in
TECPLOT. Zone number 5 contains cell number 1247 of region 1. Zone number 7 contains
face number 13 of global patch 1 of region 1.
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Table 9.2: Names and meaning of variable string in ENSIGHT file name.

variable Meaning Units

r Density kg/m3

rv Momentum vector kg/(m2 s)
rE Total internal energy J/m3

p Pressure Pa
T Temperature K
a Speed of sound m/s

9.3 ENSIGHT Output

The ENSIGHT files produced by rflupost are in binary format to reduce file size and loading
time. The binary file are compatible across machines, i.e., files written on little-endian
machines can be read on big-endian machines and vice versa. The files produced by rflupost
make use of ENSIGHT features which require version 8 or newer. To allow visualization
of large datasets, rflupost can write files suitable for use with the client-server version of
ENSIGHT Gold. The number of servers is specified by the keyword NSERVERS in the POST

Section.

9.3.1 File Naming Convention

The name of the ENSIGHT files produced by rflupost depends on whether a steady or unsteady
flow is computed. One variable, which may be a scalar or vector, is written to each file. The
name of an ENSIGHT file is:

• <casename>.<variable> <server index> <iteration stamp> for steady flows, where
<iteration stamp> is a six-digit string denoting the iteration number.

• <casename>.<variable> <server index> <time stamp> for unsteady flows, where
<time stamp> is a string of the form n.nnnnnnnE+nn denoting time.

For steady or unsteady flows, <variable> is a character string denoting the variable
contained in the file and <server index> is the index of the server which will read the file.
The meaning of the <variable> character string is as listed in Table 9.2.

9.3.2 Part Naming Conventions

ENSIGHT organizes data by parts. Each part is assigned a name and may consist of either
volume or surface data. Because ENSIGHT allows each part to be activated (displayed) or
deactived (not displayed) separately, the separation of data into parts is useful in allowing
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Figure 9.3: Illustration of parts written to ENSIGHT files by rflupost.

detailed and selective investigation of data. For this reason, the ENSIGHT files produced by
rflupost make extensive use of parts. The following explains the part naming conventions
used by rflupost.

The part naming convention adopted by rflupost is best explained with reference to Fig.
9.3. Data written to the ENSIGHT file is split into volume and boundary patch data. Volume
data is further split according to the cell type (tetrahedron, hexahedron, prism, or pyramid),
and, for each cell type, according to the cell kind (actual or virtual cell). Boundary patch
data is further split according to the face type (triangular or quadrilateral), and, for each
face type, according to the face kind (actual or virtual face).

9.3.2.1 Volume Parts

The names of volume parts are:

VOL_<region index>

where <region index> is a five-digit string indicating the global region index.

Examples are shown in Fig. 9.4, which represents a screen dump of the data part loader
window in ENSIGHT.
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Figure 9.4: Screen dump of data part loader window in ENSIGHT illustrating part naming con-
vention used in rflupost.
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9.3.2.2 Boundary Patch Parts

The names of boundary patch parts are:

PAT_<patch index>_<face type>-<face kind>_<region index>

where

<patch index> is a three-digit string indicating the global patch index. It is important to
note that this is a global patch index.

<face type> is a string indicating the face type:

TRI if the zone consists of triangular cells.

QUAD if the zone consists of quadrilateral cells.

<face kind> is a one-letter string indicating the face kind:

A if the zone consists of actual faces.

V if the zone consists of virtual faces.

<region index> is a five-digit string indicating the global region index.

Examples are shown in Fig. 9.4, which represents a screen dump of the data part loader
window in ENSIGHT.
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Troubleshooting

rflump classifies problems arising during execution into two categories:

1. Non-critical problems: rflump attempts to make an automatic recovery. It will print a
warning message and continue with the execution. The recovery attempt may entail
changing input variables specified by the user.

2. Critical problems: rflump cannot recover without user intervention. It will print an
error message and stop execution.

10.1 General Considerations

If a problem is encountered and it proves difficult to determine the source, the following
suggestions may prove helpful:

1. Repeat the run or restart from the last output dump with maximum verbosity level.
The additional output printed by activating the maximum verbosity level can indicate
possible problem areas, see Sec. 10.5

2. Repeat the run with smaller CFL number/time step. Decreasing the CFL number/time
step can mitigate the effect of strong transients. It is possible that some computations
have to be started with smaller a CFL number/time step to ensure stability.

3. Repeat the run with different flux function. Some flux functions exhibit pathological
behavior under certain conditions or do not guarantee preservation of positive-definite
quantities. For example, of the flux functions available in RocfluMP, the HLLC scheme
often exhibits more robustness in strong transients than the Roe scheme.

4. Repeat the run with a first-order scheme. Failing first-order accurate computations
often indicate problems with problem setup.

111
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5. Repeat the run with modified boundary conditions. For example, if problems persist
during strong transients at an outflow boundary, it may prove helpful to attempt a
new run with supersonic or subsonic conditions.

10.2 Explanations of Warnings

Inflow detected at outflow boundary!

Outflow detected at inflow boundary!

One or more faces on an inflow/outflow boundary were detected with outflow/inflow, respec-
tively. This is often caused by the precise values of the boundary conditions imposed by the
user. For example, too high a value of the static pressure at outflow boundaries can lead to
inflow in some conditions. Reverse flow on inflow/outflow boundaries can be a temporary
problem, i.e., the expected flow direction becomes established as the flow develops. In some
cases, however, reverse flow on boundaries can indicate a more serious problem, namely a
poorly chosen location of boundaries. This may be reflected in the persistence of inflow at an
outflow boundary despite lowering the static pressure, the persistence of outflow at an inflow
boundary despite increasing the stagnation pressure, or recirculation regions across outflow
boundaries. In these cases, it is necessary to reposition the relevant boundary patches.

These warnings will be accompanied by additional output which provides more infor-
mation about the precise location of the boundary faces with reverse flow. Section 10.5
describes how this output can be used to visualize the cells affected by reverse flow.

10.3 Explanations of Errors

Absolute difference in volumes larger than specified limit.

rflump computes the total volume of the computational domain using two methods. The
first method simply sums the volumes of all the cells in a given region. The second method
computes the total volume from the boundary and interregion faces. If the two methods
disagree by more than a (presently hardcoded) tolerance, it is likely that the interior grid in
invalid and the above error message is printed.

Invalid quantity detected.

rflump detected solution variables with the value NaN. This indicates a serious problem. This
is often the result of using a CFL number or a time step which is too large. For coupled
simulations, invalid variables may also arise if the geometry becomes heavily deformed. This
error message may also indicate problems with the specification of boundary conditions.

Negative positive-definite quantity detected.

Negative positive-definite solution variables, such as density, pressure, or temperature were
detected. This is often the result of using a CFL number or a time step which is too large.
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For coupled simulations, negative positive-definite variables may also arise if the geometry
becomes heavily deformed.

Negative volume(s) detected.

One or more cells with negative volumes were detected. For computations without moving
grids, this indicates that the cell or boundary-face connectivity is incorrect. For computations
with moving grids, negative volumes indicate that either the boundary deformation is too
strong given the grid-motion parameters specified by the user, or the grid quality is poor
and deteriorates with grid motion. In the latter case, the grid quality needs to be improved
before a new run is started.

Face sum greater than minimum face area.

rflump checks whether cells are closed by computing the sum of the face vectors and compar-
ing them against a (presently hardcoded) tolerance. It the sum of the face vectors exceeds
the tolerance, it is likely that the cell or boundary-face connectivity is incorrect.

10.4 Other Problems

This section lists problems and suggested remedies for problems which do not lead to warn-
ings or errors.

Cells near moving boundaries become highly stretched.
Highly stretched cells near moving boundaries indicate that the boundary motion is not
propagated well enough into the interior. This problem can be remedied by increasing the
number of smoothing interations NITER or by increasing the smoothing coefficient SFACT in
the GRIDMOTION section of the input file.

10.5 Locating Troublespots

If problems are encountered, rflump prints additional information to allow the user to deter-
mine precisely the locations at which problems occur. For example, consider the following
output:

Printing location information...
Global region: 00001
Cell location information:

# Cell x-coordinate y-coordinate z-coordinate Location
1 51 0.32081289E-02 -0.83698854E-01 -0.12040992E-01 Global patches: 1 6
2 300 0.12485188E-01 -0.83750698E-01 0.61473528E-03 Global patches: 1 6
3 357 0.35957776E-02 -0.83795613E-01 -0.74193030E-02 Global patch: 6
4 1696 0.11128962E-01 -0.83783063E-01 -0.56762047E-02 Global patches: 1 6
5 2048 0.10507133E-01 -0.83728027E-01 -0.66900307E-02 Global patches: 1 6
6 2066 0.87561363E-02 -0.83784932E-01 -0.89096344E-02 Global patches: 1 6
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7 2116 0.47333590E-02 -0.83785244E-01 -0.97767197E-02 Global patch: 6
8 2574 0.78548965E-03 -0.83765772E-01 -0.12463422E-01 Global patches: 1 6
9 2995 0.48426506E-02 -0.83799824E-01 -0.90511979E-02 Global patch: 6
10 6461 0.45099568E-02 -0.83819846E-01 -0.11576659E-01 Interior

Printing location information done.

The output lists the cells and the coordinates of the cell centroids along with their
locations. The location indicates whether the cell shares one or more faces with boundary
patches. In some cases, the above information may suffice because all or a majority of cells
lie on a given boundary patch, indicating that the problem originates with the boundary
conditions applied to this patch. If the location of the cells is not immediately apparent or
scattered around the computational domain, it can be helpful to select individual cells for
visualization using rflupick. This can be useful to determine whether the problems originate
in a clusters of cells of poor quality, or along the interface between layers of different cell
types.

If the source of the problem is not readily apparent from the additional output, it is often
helpful to place probes at the location of the cell centroids before restarting the computation
or starting a new computation. Taking the first three cells of above example, the following
PROBE may be inserted into the <casename>.inp file:

# PROBE
NUMBER 3
0.32081289E-02 -0.83698854E-01 -0.12040992E-01
0.12485188E-01 -0.83750698E-01 0.61473528E-03
0.35957776E-02 -0.83795613E-01 -0.74193030E-02
#
#

The probe files produced by repeating the run can be visualized with TECPLOT (or other
packages) and may help in determining the cause of the problem.
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Chapter 11

Governing Equations

11.1 The Navier-Stokes Equations

RocfluMP solves the three-dimensional time-dependent compressible Navier-Stokes equations
in integral form on moving and/or deforming grids,

∂

∂t

∫
Ω

~W dΩ +

∮
∂Ω

~Fc dS =

∮
∂Ω

~Fv dS

∫
Ω

~Q dΩ. (11.1)

The vector of the conservative variables ~W is

~W =


ρ
ρu
ρv
ρw
ρE

 . (11.2)

The vector of convective fluxes reads

~Fc =


ρV

ρuV + nxp
ρvV + nyp
ρwV + nzp

ρHV + Vgp + FR

 (11.3)

with the face-normal velocity given by

V = nxu + nyv + nzw − Vg, (11.4)

where Vg is the grid speed, i.e., the grid velocity normal to the control-volume face. The
vector of the viscous fluxes can be written as

~Fv =


0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz

 , (11.5)
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where

Θx = uτxx + vτxy + wτxz + k
∂T

∂x
+ ESGS

x

Θy = uτyx + vτyy + wτyz + k
∂T

∂y
+ ESGS

y (11.6)

Θz = uτzx + vτzy + wτzz + k
∂T

∂z
+ ESGS

z

are the terms describing the work of the viscous stresses and the heat conduction in the fluid.
In the case of LES, the viscous stresses read

τij = 2µ Si,j −
2

3
µ

∂vk

∂xk

δij + τSGS
ij (11.7)

with τSGS
ij being the subgrid stresses. In the case of RANS equations, the subgrid terms

ESGS in Eq. (11.6) and τSGS
ij in Eq. (11.7) are omitted. Instead, the dynamic viscosity and

the thermal conductivity are split into a laminar and a turbulent part, i.e.,

µ = µL + µT (11.8)

and

k = kL + kT = cp

(
µL

PrL

+
µT

PrT

)
, (11.9)

where cp stands for the specific heat coefficient at constant pressure, and Pr is the Prandtl
number.

The source term is given by

~Q =


mP

ρfe,x + fP
x + fS

x

ρfe,y + fP
y + fS

y

ρfe,z + fP
z + fS

z

ρ~fe · ~v + q̇h + EP + ES

 , (11.10)

where mP , fP , fS, EP , and ES represent the source terms introduced by the particle and
smoke modeling. The vector of external volume forces reads

~fe = ~g − ~a (11.11)

with ~g being the gravitational acceleration and ~a the acceleration of the rocket.

11.2 The Geometric Conservation Law

For uniform flow, Eq. (11.1) reduces to the Geometric Conservation Law (GCL),

∂

∂t

∫
Ω

dΩ−
∮

∂Ω

Vt dS = 0 . (11.12)
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The GCL ensures that the motion of the grid does not alter a uniform flow. It must be
satisfied in a discrete sense, independent of the deformation of the grid and the numerical
solution method. The discretization of the GCL in RocfluMP is described in Sec. 12.5.2.

11.3 Gas Models

11.3.1 Calorically and Thermally Perfect Gas

11.3.2 Mixture of Calorically and Thermally Perfect Gases

11.3.3 Pseudo Gas

11.4 Thermodynamic Properties

11.4.1 Calorically and Thermally Perfect Gas

11.4.2 Mixture of Calorically and Thermally Perfect Gases

11.4.3 Pseudo Gas

11.5 Transport Properties

11.5.1 Viscosity

11.5.1.1 Sutherland Model

The viscosity is computed from

µ

µref

=

(
T

Tref

) 3
2 Tref + Sref

T + Sref

where µ is the dynamic viscosity, µref is the reference dynamic viscosity, T is the static
temperature, Tref is the reference temperature, and Sref is the Sutherland constant.

11.5.1.2 Antibes Model

The viscosity is computed from

Tref ≥ 120 K:

µ =


µref

(
T

Tref

) 3
2 Tref + Sref

T + Sref

if T ≥ 120 K

µ120
T

120
if T < 120 K
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Tref < 120 K:

µ =


µref

T

Tref

if T < 120 K

µ120

(
T

120

) 3
2 120 + Sref

T + Sref

if T ≥ 120 K

This formula was specified by the organizers of the Workshop on Hypersonic Flows for
Reentry Problems [1]. Sref is given the value 110 K and µ120 denotes the value of the viscosity
at 120 K.

11.5.2 Conductivity

11.6 Boundary Conditions
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Chapter 12

Algorithms and Methods

12.1 Geometry Definition

RocfluMP uses a method originally due to Bruner [4] and improved by Wang [16] to compute
geometrical properties of faces and volumes. The method is particularly convenient for finite-
volume schemes because volume properties are expressed in terms of face properties. This
means that the face and volume properties can be computed in a single loop over faces.

12.1.1 Computation of Face Properties

The face properties of interest are the normal vector, the area, and its centroid.

For a triangular face, the scaled normal vector is given by

n =
1

2
(r12 × r23) . (12.1)

where rij = rj − ri. For a quadrilateral face, the normal vector is given by the average of
the average normal vectors obtained by subdividing the face into two triangles.

The area of triangular and quadrilateral faces follows from Eq. 12.1 as

S = ‖n‖2. (12.2)

The centroid of a triangular face is computed from

rc =
1

3
(r1 + r2 + r3) . (12.3)

For a quadrilateral face, the centroid is given by the average of the average centroids obtained
by subdividing the face into two triangles.
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12.1.2 Computation of Volume Properties

The volume properties of interest are the volume and its centroid.
For a polyhedron composed of N triangular faces, the volume may be computed from

V =
1

3

N∑
i=1

rc
i · ni Si. (12.4)

The centroid of a polyhedron composed of N triangular faces may be computed from

rc =
1

4V

N∑
i=1

(rc
i · ni) rc

i Si (12.5)

For polyhedra with quadrilateral faces, Eqs. (12.4) and (12.5) can be applied given that
they only involve face properties which have already been computed.

It is interesting to note that Eq. (12.5) expresses the volume centroid as a weighted sum
of face centroids, and that the weights are not guaranteed to be positive. Positive weights
can be guaranteed by first computing an approximate cell centroid r̃c as the average of the
vertex position vectors, and then replacing rc

i · ni by (rc
i − r̃c) · ni in Eq. (12.5).

12.2 Spatial Discretization

12.2.1 Stencil Construction

Explicit stencils only need to be constructed for the interpolation and gradient operators.
The minimum extent or size of these stencils is determined by their order of accuracy.

For an interpolation operator of order p on an arbitrary grid, the minimum extent is
given by

Nmin =
(p + 1)(p + 2)(p + 3)

6
+ 1. (12.6)

In the present work, filter operators are regarded as low-order interpolation operators. For
a gradient operator of order q on an arbitrary grid, the minimum extent is given by

Nmin =
(q + 1)(q + 2)(q + 3)

6
. (12.7)

For both interpolation and gradient operators, it may be advantageous to increase the
stencil extent to include more cell centroids than necessary. For filter operators, this can
be used to minimize the imaginary part of the transfer function. The larger-than-necessary
support necessitates the use of least-squares techniques to determine the interpolated value
or gradients.

Gradient operators are required at cell and face centroids. Interpolation operators are
required at cell and face centroids and at vertices. Hence cell-to-cell, face-to-cell, and vertex-
to-cell stencils must be constructed, as depicted schematically in Fig. 12.1.
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(a) (b) (c)

Figure 12.1: Schematic illustration stencils in two dimension. (a) Cell-to-cell stencil, (b) face-
to-cell stencil, and (c) vertex-to-cell stencil.

At present, these stencils are constructed using an Octree-based approach. The Octree
is initialized using cell-centroid coordinates, and queried with the locations at which the
interpolation or gradient operators are to be constructed.

12.2.2 Interpolation Operators

The interpolation operators are constructed using a least-squares approach based on a mod-
ified Taylor series. Assuming linear interpolation of a scalar variable φ, this gives

φi = φ0 + (∇φ)0 ·∆r0i, (12.8)

where φ0 is the interpolated value at location 0, which may be a cell or face centroid or a
vertex. Assuming that Eq. (12.8) is applied to the d0 points in the stencil, an overdetermined
system of linear equations is obtained,

∆x01 ∆y01 1
∆x02 ∆y02 1

...
...

...
∆x0d0 ∆y0d0 1




∂xφ
∂yφ

φ


0

=


φ1

φ2
...

φd0

 , (12.9)

or
Ax = b. (12.10)

The system can be inverted using the Singular Value Decomposition (SVD), which gives
a interpolation formula of the form,

φ0 =

d0∑
i=1

ω0iφi, (12.11)
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where the stencil weights are given by

ω0i = A−1
3,i for 1 ≤ i ≤ d0. (12.12)

12.2.3 Gradient Operators

The gradient operators are also constructed using a least-squares approach. Assuming linear
gradient reconstruction of a scalar variable φ, this gives

φi = φ0 + (∇φ)0 ·∆r0i, (12.13)

where φ0 is now the value at location 0, which may be a cell or face centroid or a vertex.
Assuming that Eq. (12.13) is applied to the d0 points in the stencil, an overdetermined
system of linear equations is obtained,


∆x01 ∆y01

∆x02 ∆y02
...

...
∆x0d0 ∆y0d0


{

∂xφ
∂yφ

}
0

=


∆φ01

∆φ02
...

∆φ0d0

 , (12.14)

or

Ax = b. (12.15)

The system can be inverted using the Singular Value Decomposition (SVD), which gives
a formula of the form,

(∇φ)0 =

d0∑
i=1

ω0i∆φ0i, (12.16)

where the vector of stencil weights is given by

ω0i = A−1
1:2,i for 1 ≤ i ≤ d0. (12.17)
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12.2.4 Inviscid Fluxes

12.2.4.1 Limiter Functions

12.2.4.2 Numerical Flux Functions

12.2.4.3 Entropy Fixes

12.2.5 Viscous Fluxes

12.2.6 Optimal LES Discretization

12.2.6.1 Computation of Integrals

12.2.6.2 Computation of Stencil Weights

12.2.7 Source Terms

12.3 Boundary Conditions

12.3.1 Simple Fluid-Solid Boundary Conditions

12.3.1.1 Slip Wall Boundaries

12.3.1.2 No-Slip Wall Boundaries

12.3.1.3 Injection Wall Boundaries

12.3.2 Simple Fluid-Fluid Boundary Conditions

12.3.2.1 Inflow Boundaries

12.3.2.2 Outflow Boundaries

12.3.3 Non-Reflecting Boundary Conditions

This section describes formulations to implement Navier-Stokes Characteristic Boundary-
Conditions (NSCBC) for Euler and Navier-Stokes equations. Such implementation controls
the spurious wave reflection at the computational boundaries and provide means for reflecting
and non-reflecting boundary conditions treatments.

Subject matter is this document is partly taken from 2 papers on characteristics based
boundary conditions (see [8] and [14]).
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12.3.3.1 Overall Approach

Euler Equations are

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
+

∂ρw

∂z
= 0 (12.18)

∂ρu

∂t
+

∂ρuu

∂x
+

∂ρuv

∂y
+

∂ρuw

∂z
= −∂p

∂x
(12.19)

∂ρv

∂t
+

∂ρvu

∂x
+

∂ρvv

∂y
+

∂ρvw

∂z
= −∂p

∂y
(12.20)

∂ρw

∂t
+

∂ρwu

∂x
+

∂ρwv

∂y
+

∂ρww

∂z
= −∂p

∂z
(12.21)

∂ρE

∂t
+

∂ρHu

∂x
+

∂ρHv

∂y
+

∂ρHw

∂z
= 0 (12.22)

These equations can be written in any orthogonal coordinate reference frame. Their form
remain invariant. lets consider a reference frame (n-s-r) instead of (x-y-z). flow velocities
would now be denoted by un,us,ur (instead of u,v,w), which refers to velocity components in
n,s,r coordinate directions. Euler equations are now,

∂ρ

∂t
+

∂ρun

∂n
+

∂ρus

∂s
+

∂ρur

∂r
= 0 (12.23)

∂ρun

∂t
+

∂ρunun

∂n
+

∂ρunus

∂s
+

∂ρunur

∂r
= −∂p

∂n
(12.24)

∂ρus

∂t
+

∂ρusun

∂n
+

∂ρusus

∂s
+

∂ρusur

∂r
= −∂p

∂s
(12.25)

∂ρur

∂t
+

∂ρurun

∂n
+

∂ρurus

∂s
+

∂ρurur

∂r
= −∂p

∂r
(12.26)

∂ρE

∂t
+

∂ρHun

∂n
+

∂ρHus

∂s
+

∂ρHur

∂r
= 0 (12.27)

Consider a boundary such that normal direction n is perpendicular to face and s,r di-
rection are tangential to boundary. Using characteristic analysis to modify the Hyperbolic
terms of Euler equations (12.23)-(12.27) corresponding to waves propagating in the n direc-
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tion, Euler equations can be written in following form,

∂ρ

∂t
+ d1 +

∂ρus

∂s
+

∂ρur

∂r
= 0

(12.28)

∂ρun

∂t
+ und1 + ρd3 +

∂ρunus

∂s
+

∂ρunur

∂r
= 0

(12.29)

∂ρus

∂t
+ usd1 + ρd4 +

∂ρusus

∂s
+

∂ρusur

∂r
= −∂p

∂s
(12.30)

∂ρur

∂t
+ urd1 + ρd5 +

∂ρurus

∂s
+

∂ρurur

∂r
= −∂p

∂r
(12.31)

∂ρE

∂t
+

1

2
(u2

n + u2
s + u2

r)d1 +
d2

γ − 1
+ ρund3 + ρusd4 + ρurd5 +

∂ρHus

∂s
+

∂ρHur

∂r
= 0

(12.32)

The vector d, which contains normal derivative terms (∂/∂n), is given by characteristic
analysis as follows:

d =


d1

d2

d3

d4

d5

 =



1

c2

[
L2 +

1

2
(L5 + L1)

]
1

2
(L5 + L1)

1

2ρc
(L5 − L1)

L3

L4


=



∂ρun

∂n

ρc2∂un

∂n
+ un

∂p

∂n

un
∂un

∂n
+

1

ρ

∂p

∂n

un
∂us

∂n

un
∂ur

∂n


(12.33)

In (n-s-r) coordinate frame Li’s can be written as:


L1

L2

L3

L4

L5

 =



λ1

(
∂p

∂n
− ρc

∂un

∂n

)
λ2

(
c2 ∂ρ

∂n
− ∂p

∂n

)
λ3

∂us

∂n

λ4
∂ur

∂n

λ5

(
∂p

∂n
+ ρc

∂un

∂n

)


(12.34)
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Figure 12.2: Finite difference at boundary.

where λi’s are defined as: 
λ1

λ2

λ3

λ4

λ5

 =


un − c

un

un

un

un + c

 (12.35)

Care should be given to the fact that at the interior of domain finite-volume formulation
is used. Flux integration for interior domain uses cell averaged quantity (see equations 12.36-
12.37). While at the boundary, flow equations are solved using Finite-difference formulation
and are solved for actual variables on boundary face, see Fig. 12.2.

∂

∂t

∫
Ω

φdV +

∮
∂Ω

φv · nds = 0 (12.36)

V
dφ

dt
+

∮
∂Ω

φv · nds = 0 (12.37)

where φ̄ = 1
V

∮
Ω

φdV is the average value of φ over cell.

The Local One-Dimensional Inviscid (LODI) Relations. At any point on the bound-
ary we can obtain a LODI system by considering the system of Eqs (12.23)-(12.27) and ne-
glecting transverse terms (setting ’s’ and ’r’ direction terms to zero). This is one-dimensional
Euler equation in ’n’ direction. In terms of primitive variables LODI relation can be written
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as:

∂ρ

∂t
= − 1

c2

[
L2 +

1

2
(L5 + L1)

]
(12.38)

∂p

∂t
= −1

2
(L5 + L1) (12.39)

∂un

∂t
= − 1

2ρc
(L5 − L1) (12.40)

∂us

∂t
= −L3 (12.41)

∂ur

∂t
= −L4 (12.42)

These relations may be combined to express the time derivatives of all the other quantities
of interest, e.g., Temperature, T.

∂T

∂t
+

T

ρc2

[
−L2 +

1

2
(γ − 1)(L5 + L1)

]
= 0 (12.43)

The NSCBC Strategy for the Euler Equations. Characteristics based boundary con-
ditions are implemented in following 3 steps.

1. For each physical boundary condition imposed, corresponding equation is eleminated
from the system (12.23)-(12.27). like if p or T is imposed, then there is no need to
solve energy equation at boundary.

2. At each boundary some of the characteristics are going out of domain and some are
coming in. Characteristic amplitudes Li’s corresponding to outgoing waves can be
computed using one sided differencing. Incoming wave amplitudes can not be computed
using one sided differencing. Using LODI relations and imposed boundary conditions,
these incoming wave amplitudes can be expressed in terms of outgoing wave amplitudes.

3. Use the remaining conservation equations of the system (12.23)-(12.27) combined with
the values of the Li’s obtained from Step 2 to compute all variables which are not
imposed by boundary conditions.

12.3.3.2 Inflow Boundary Conditions

Inflow boundary conditions discussed in this section are the ones where velocity and tem-
perature are specified. Inflow can be subsonic or supesonic. subsonic inflow can be reflecting
or non-reflecting.

At a generic boundary face un has to be negative for it to be inflow. un < 0 means flow
is incoming i.e. flow is entering the domain from outside.



130 Chapter 12. Algorithms and Methods

Figure 12.3: Subsonic inflow boundary

Subsonic Inflow For subsonic inflow (|un| < c) 4 characteristics (corresponding to λ1, λ2, λ3, λ4)
are entering the domain and one characteristic (λ5) is leaving the domain (see Fig. 12.3).
This implies, L5 would always be computed from interior solution while L1, L2, L3, L4 need
to be specified. L5 can be computed as given by equation (12.34).

L5 = λ1

(
∂p

∂n
− ρc

∂un

∂n

)

because un, us, ur, T are imposed at inflow, momentum and energy equations are eleminated
at boundary. Only density need to be solved at inflow boundary.

Subsonic Reflecting Inflow. For reflecting subsonic inflow, LODI relations for 4 im-
posed physical quantities (un, us, ur, T ) can be used to express unknown wave amplitudes
(L1, L2, L3, L4) in terms of known wave amplitude L5 and boundary conditions as follows:
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L5 = L1 − 2ρc
dun

dt
(12.44)

L2 =
1

2
(γ − 1)(L5 + L1) +

ρc2

T

dT

dt
(12.45)

L3 =
dus

dt
(12.46)

L4 =
dur

dt
(12.47)

(12.48)

Subsonic Non-Reflecting Inflow. For non-reflecting subsonic inflow, all incoming wave
amplitudes are set to zero.

L5 = L2 = L3 = L4 = 0 (12.49)

Supersonic Inflow. For supersonic inflow (|un| > c) all 5 characteristics are entering the
domain. No characteristic wave can travel upstream. For supersonic inflow all characteristic
amplitudes are set to zero.

L1 = L2 = L3 = L4 = L5 = 0 (12.50)

12.3.3.3 Outflow Boundary Conditions

Outflow boundary conditions discussed in this section are the ones where pressure is specified.
Outflow can be subsonic or supesonic. subsonic outflow can be reflecting or non-reflecting.

At a generic boundary face un has to be positive for it to be outflow. un > 0 means flow
is outgoing.

Subsonic Outflow. For subsonic outflow (|un| < c) one characteristic (corresponding to
λ1) is entering the domain and 4 characteristics (λ2, λ3, λ4, λ5) are leaving the domain (see
Fig. 12.4).This implies, L2, L3, L4, L5 would always be computed from interior solution while
L1 need to be specified. L2, L3, L4, L5 can be computed as given by equation (12.34).

L2 = λ2

(
c2 ∂ρ

∂x
− ∂p

∂x

)
L3 = λ3

∂v

∂x

L4 = λ4
∂w

∂x

L5 = λ5

(
∂p

∂x
+ ρc

∂u

∂x

)
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Figure 12.4: Subsonic outflow boundary

because p is imposed at outflow, energy equation need not be solved at the boundary.

Subsonic Reflecting Outflow. For reflecting subsonic outflow, LODI relations for pressure
can be used to express unknown wave amplitude L1 in terms of L5 and boundary condition
as follows:

L1 = −L5 − 2
dp

dt
(12.51)

Subsonic Non-Reflecting Outflow. For non-reflecting subsonic outflow, all incoming
wave amplitudes are set to zero.

L1 = 0 (12.52)

This is perfectly non-reflecting outflow. However sometimes little reflection should be allowed
for to simulate real conditions. In such case L1 can be expressed as:

L1 = K(p− p∞) (12.53)

Supersonic Outflow. For supersonic outflow (|un| > c) all 5 characteristics are leaving
the domain. No characteristic wave can travel downstream. For supersonic outflow all
characteristic amplitudes can be computed using relation (12.39).
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12.3.4 Virtual Boundary Conditions

12.3.4.1 Periodic Boundaries

12.3.4.2 Symmetry Boundaries

12.4 Temporal Discretization

12.4.1 Runge-Kutta Methods

12.4.2 Computation of Time Step

12.5 Grid Motion

12.5.1 Grid Smoothing

12.5.2 Discrete Geometric Conservation Law

12.5.3 Implementation Details

12.6 Mass, Pressure, Skin-Friction, and Heat-Transfer

Coefficient Computation

RocfluMP computes mass, pressure, skin-friction, and heat-transfer coefficients for faces on
patches. In the following, the subscript i denotes variables associated with a face with normal
vector ni.

The mass-flux coefficient is defined as

Cm,i =
ρivi · ni

1
2
ρrefVref

. (12.54)

The pressure coefficient is defined as

Cp,i =
pi − pref

1
2
ρrefV 2

ref

. (12.55)

The skin-friction coefficients are defined as

Cfx,i =
(τ i · ni)x
1
2
ρrefV 2

ref

, (12.56a)

Cfy,i =
(τ i · ni)y

1
2
ρrefV 2

ref

, (12.56b)

Cfz,i =
(τ i · ni)z
1
2
ρrefV 2

ref

. (12.56c)
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where τ i · ni is the viscous stress acting on the face.
The heat-transfer coefficient is defined as

Ch,i =
qi · ni

1
2
ρrefV 3

ref

. (12.57)

where qi is the heat flux for the face.

12.7 Force and Moment Computation

RocfluMP computes forces and moments exerted by the fluid on the patches. The force and
moment on a patch are computed from the sum of the forces and moments on the faces of
that patch.

The force on a face i with unit normal vector ni and area Si is

Fi = [(ρivi · ni)vi + (pi − pref)ni − τ i · ni] Si, (12.58)

where ρi is the density, vi is the velocity vector, pi is the pressurem, and τ i ·ni is the viscous
stress. The force components are given by

Fx,i =
[
(ρivi · ni) ui + (pi − pref) nx,i − (τ i · ni)x

]
Si, (12.59a)

Fy,i =
[
(ρivi · ni) vi + (pi − pref) ny,i − (τ i · ni)y

]
Si, (12.59b)

Fz,i =
[
(ρivi · ni) wi + (pi − pref) nz,i − (τ i · ni)z

]
Si. (12.59c)

The moment about a reference location rref created by the force on a face is

Mi = (ri − rref)× Fi, (12.60)

where ri is the position vector of the face centroid. The convention for positive moments
is shown in Fig. 12.5: Moments around a given coordinate axis are defined to be positive
if they lead to a counter-clockwise rotation when looking in the negative direction of that
coordinate axis. The moments components are given by

Mx,i = Fz,i(yi − yref)− Fy,i(zi − zref), (12.61a)

My,i = Fx,i(zi − zref)− Fz,i(xi − xref), (12.61b)

Mz,i = Fy,i(xi − xref)− Fx,i(yi − yref). (12.61c)

Non-dimensional force coefficients are defined by

CFx,i
=

Fx,i

1
2
ρrefV 2

refSref

=
(
Cm,i

ui

Vref

+ Cp,inx,i − Cfx,i

) Si

Sref

, (12.62a)

CFy,i
=

Fy,i

1
2
ρrefV 2

refSref

=
(
Cm,i

vi

Vref

+ Cp,iny,i − Cfy,i

) Si

Sref

, (12.62b)

CFz,i
=

Fz,i

1
2
ρrefV 2

refSref

=
(
Cm,i

wi

Vref

+ Cp,inz,i − Cfz,i

) Si

Sref

, (12.62c)
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Figure 12.5: Definition for positive moments.

where the mass coefficient Cm,i is defined by Eq. (12.54), the pressure coefficient Cp,i is
defined by Eq. (12.55) and the skin-friction coefficients Cfx,i, Cfy,i, and Cfz,i are defined by
Eqs. (12.56).

Non-dimensional moment coefficients are defined by

CMx,i
=

Mx,i

1
2
ρrefV 2

refSrefLref

= CFz,i

yi − yref

Lref

− CFy,i

zi − zref

Lref

, (12.63a)

CMy,i
=

My,i

1
2
ρrefV 2

refSrefLref

= CFx,i

zi − zref

Lref

− CFz,i

xi − xref

Lref

, (12.63b)

CMz,i
=

Mz,i

1
2
ρrefV 2

refSrefLref

= CFy,i

xi − xref

Lref

− CFx,i

yi − yref

Lref

. (12.63c)

The force and moment coefficients for an entire patch are simply given by the summation
of the force and moment coefficients for the faces on that patch,

CFx =
1

Sref

∑
i

(
Cm,i

ui

Vref

+ Cp,inx,i − Cfx,i

)
Si, (12.64a)

CFy =
1

Sref

∑
i

(
Cm,i

vi

Vref

+ Cp,iny,i − Cfy,i

)
Si, (12.64b)

CFz =
1

Sref

∑
i

(
Cm,i

wi

Vref

+ Cp,inz,i − Cfz,i

)
Si, (12.64c)

and

CMx =
∑

i

(
CFz,i

yi − yref

Lref

− CFy,i

zi − zref

Lref

)
, (12.65a)

CMy =
∑

i

(
CFx,i

zi − zref

Lref

− CFz,i

xi − xref

Lref

)
, (12.65b)

CMz =
∑

i

(
CFy,i

xi − xref

Lref

− CFx,i

yi − yref

Lref

)
. (12.65c)
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Chapter 13

Implementation Details

13.1 NSCBC Implementation

This document describes implementation of Navier-Stokes Characterstics based Boundary
Conditions in Rocflu (a three-dimensional time-dependent compressible Navier-Stokes equa-
tions solver on moving and/or deforming unstructured grids).

NSCBC implementation would require following procedures:

• Data-structure

• Initialization procedures

• Data read/write routines

• Gradient computation at boundary

• Characteristic wave amplitude computation

• Time integration

• Flux computation using boundary data

following sections would describe each of above in detail

13.1.1 Data-structure

NSCBC involves solving Navier-Stokes equations at boundary. following variables are needed
for proper implementation of NSCBC.

• Conservative and Dependent variables are needed at each boundary face. These are
updated by solving flow equations at boundary and these describes complete state of
flow system at boundary at all time.

137
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• A flag variable, bcKind, is needed to determine if a particular boundary is to be treated
as NSCBC. NSCBC routines are called if this variable bcKind == BC KIND NSCBC.

• Boundary condition data is required at each boundary. It is read from user specified
boundary condition inputfile containing details of boundary type bcType,bcName and
other details needed for complete implementation of boundary condition.

• Gradient arrays at boundary. These are computed and stored for each time step.

13.1.2 Initialization procedures

Navier-Stokes equations are initial-boundary value problems (IBV), which require an ini-
tial solution which is evolved in time. Flow variables at NSCBC boundaries are initial-
ized using routine RFLU BXV InitVars, which further calls specific initialization routine
depending on type of boundary condition like, RFLU NSCBC InitSlipWall for slip walls,
RFLU NSCBC InitOutflow for outflow boundary and so on.

13.1.3 Data read/write routines

Boundary variables are written in seperate files than interior solution files. Routines used to
read/write boundary solution files are RFLU BXV ReadVarsWrapper/RFLU BXV WriteVarsWrapper.
These wrapper routines further call corresponding routines to read/write binary or ASCII
datafiles, e.g., reading routines are RFLU BXV WriteVarsASCII and RFLU BXV WriteVarsBinary.
similarly there are writing routines.

13.1.4 Gradient computation at boundary

Gradients of the primitive variables at boundary are computed using RFLU ComputeGradBFacesWrapper.
Gradients are computed using least-square gradient reconstruction technique which need
2d/3d boundary face-to-cell stencils. When boundary is aligned with one of axis and interior
cells are lying in curvilinear direction normal to boundary face, then 1d stencil can be used to
compute normal derivatives of variables. This is useful only when there is no flow variation in
transverse directions. Stencils are computed using RFLU BuildBF2CStencilWrapper which
further calls routines for 1d/2d or 3d stencil computations. After stencils are computed,
weights are computed using RFLU ComputeWtsF2CWrapper. Once stencil and weights are
available gradients are computed through RFLU ComputeGradBFacesWrapper, which further
uses RFLU ComputeGradBFaces 1D to compute gradient using 1d stencils and RFLU ComputeGradBFaces

to compute gradients using 2d/3d stencils.

13.1.5 Characteristic wave amplitude computation

This is the most important step in implementing NSCBC. Local One-Dimensional Invis-
cid (LODI) relations are used at boundary face which uses derivatives of flow variables in
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face-normal direction. There is need to resolve x, y, z components of gradients in normal
and transverse directions at boundary face. Time derivatives of conservative variables are
expressed in terms of wave amplitudes (incoming or outgoing wave) and space derivatives in
transverse directions. This task is carried out in RFLU NSCBC CompRhs, which loops over each
boundary patch and depending on boundary type a specific subroutine is called to compute
right hand side of system of equation at boundary, e.g., RFLU NSCBC CompRhsOutflow for
outflow, RFLU NSCBC CompRhsFarf for farfield boundary condition and so on.

13.1.6 Time integration

RK-4 is used for time integration. It is point quantity at boundary face (unlike averaged
cell quantity in interior domain), which is being solved for. routine for carrying out RK-4
integration is RungeKuttaMP which calls RKInitMP and RKUpdateMP.

13.1.7 Flux computation using boundary data

Flux computation at the boundary faces is done making use of boundary variables and inte-
rior cell variables. Convective flux computation using second-order accurate approximation
for flow variables are carried out using RFLU NSCBC CompSecondPatchFlux subroutine and
RFLU NSCBC CompFirstPatchFlux can be used for first-order approximation.

figure 13.1 describes NSCBC implementation in the form of a flowchart.

13.2 Parallelization
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Figure 13.1: NSCBC implementation in Rocflu



Chapter 14

Data Structures

RocfluMP makes extensive use of Fortran 90 user-defined types for the definition of data
structures.

14.1 Philosophy and Abstraction

The top layer of the data structure developed for RocfluMP is depicted schematically in Fig.
14.1.

The top layer of the data structure consists of two main layers of abstraction:

1. At the highest layer are multigrid levels constructed from the finest grid. Each layer
can contain an arbitrary number of regions.

2. At the second level are solution region. A solution region is defined as the entire
solution region for sequential processing applications, or a single partition for parallel
processing applications. Each multigrid level can consist of an arbitrary number of
domains.

Note that the multigrid levels are located atop the solution regions. This means that each
multigrid level is partitioned separately for parallel processing. Because intra-layer commu-

Level

Region

Figure 14.1: Overview of data-structure layers.
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Region

Patches

Mixture

Grid(s)

Global data

Global region index

Mixture input

Figure 14.2: Overview of region data structure.

nication is more important than inter-level communication, the possibility of optimizing each
multigrid level for load balancing separately should allow for better parallel performance.

The types t level and t region are defined in ModDataStruct.F90.

14.2 Region Data Structure

The region data structure contains all the information required to solve the governing equa-
tions in a given region. A schematic overview of the region data structure is given in Fig.
14.2.

The region data structure itself is defined to be an array. This gives additional flexibility
in allowing several regions to be assigned to a single processor.

The components of the user-defined data type t region are defined as follows:

iRegionGlobal is the global index of the local region.

irkStep is the index of the Runge-Kutta step.

fieldFlagMixt is a field flag used to communicate the conserved variables for parallel cal-
culations using the FEM framework.

dt contains the timestep.
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TYPE t_region
INTEGER :: iRegionGlobal,irkStep
INTEGER :: fieldFlagMixt

REAL(RFREAL), POINTER :: dt(:)

TYPE(t_grid) :: grid,gridOld
TYPE(t_mixt) :: mixt
TYPE(t_turb) :: turb
TYPE(t_spec) :: spec
TYPE(t_radi) :: radi
TYPE(t_peul) :: peul

TYPE(t_plag) , POINTER :: plags(:)
TYPE(t_patch) , POINTER :: patches(:)
TYPE(t_global), POINTER :: global

TYPE(t_mixt_input) :: mixtInput
TYPE(t_turb_input) :: turbInput
TYPE(t_spec_input) :: specInput
TYPE(t_peul_input) :: peulInput
TYPE(t_plag_input) :: plagInput
TYPE(t_radi_input) :: radiInput

END TYPE t_region

Figure 14.3: Definition of region data structure.
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grid is the user-defined data type containing all the information relating to the grid. See
Sect. 14.3 for a description of t grid.

gridOld is the user-defined data type containing all the information relating to the old grid
when using grid motion. See Sect. 14.3 for a description of t grid.

mixt is the user-define data type containing all the information relating to mixture. It is
described in Sec. 14.5.2.

patches is the user-defined data type containing all the information relating to boundary
patches. See Sect. 14.4 for a description of t patch.

global is a pointer to global data.

mixtInput is a user-defined data type containing all the user-defined input for the solution
of the mixture equations. It is described in Sec. 14.5.1.

14.3 Grid Data Structure

The grid data structure contains information relating to the description of the grid. An
overview of the grid data structure is given in Fig. 14.4. The grid data structure is defined
in ModGrid.F90. Some additional (RocfluMP-specific) data is defined in RFLU ModGrid.F90,
which is mainly used in converting from exterior grid formats to that used by RocfluMP,
and in helping to construct some data structures. The two modules are discussed in detail
below.

14.3.1 Module ModGrid.F90

In understanding the grid data structure, the following points are important:

1. RocfluMP can operate on grids consisting of arbitrary combinations of tetrahedral,
hexahedral, prismatic, and pyramidal cells. As indicated in Sec. 2.1, these are referred
to as instances of different cell types. When running RocfluMP in parallel, one also has
to distinguish between actual and virtual cells, so RocfluMP introduces the concept of
a cell kind to distinguish between these.

2. RocfluMP categorizes faces according to types and kinds also. A face can be of trian-
gular of quadrilateral type, and can be of different kinds depending on whether the
adjacent cells are actual or virtual ones, and whether the face is on a boundary.

3. Since RocfluMP is based on the cell-centered method, the computation of fluxes is most
easily carried out by looping over faces of the grid. Because boundary conditions are
conveniently enforced by modifying the computation of fluxes on boundary patches, the
grid data structure only stores internal faces, i.e., faces which do not lie on boundary
patches.
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Grid

Num. Boundaries

Num. Bound. Quad.

Num. Boun. Tri.

Num. Cells

Num. Hexahedra

Num. Prisms

Num. Pyramids

Num. Tetrahedra

Num. Vertices

Hexahedra Conn.

Prism Conn.

Pyramid Conn.

Tetrahedra Conn.

Figure 14.4: Overview of grid data structure.



146 Chapter 14. Data Structures

TYPE t_grid
! - Basic grid quantities -----------------------------------------------------

INTEGER :: indGs,nBFaces,nBQuads,nBTris,nCells,nCellsTot,nEdges, &
nEdgesEst,nEdgesTot,nFaces,nFacesEst,nFacesTot,nHexs, &
nHexsTot,nPatches,nPris,nPrisTot,nPyrs,nPyrsTot, &
nTets,nTetsTot,nVert,nVertTot

INTEGER, DIMENSION(:), POINTER :: hexFlag,hex2CellGlob, &
priFlag,pri2CellGlob,pyrFlag, &
pyr2CellGlob,tetFlag,tet2CellGlob, &
vertFlag,v2c

INTEGER, DIMENSION(:,:), POINTER :: cellGlob2Loc,c2cs,e2v,e2vTemp,f2c, &
f2cTemp,f2cs,f2v,f2vTemp,hex2v,pri2v, &
pyr2v,tet2v,v2cInfo

REAL(RFREAL), DIMENSION(:,:), POINTER :: fc,fn
REAL(RFREAL), DIMENSION(:,:,:), POINTER :: cgwt,fgwt

! - Grid Motion ---------------------------------------------------------------

INTEGER, DIMENSION(:), POINTER :: degr
REAL(RFREAL), DIMENSION(:), POINTER :: gs,volMin
REAL(RFREAL), DIMENSION(:,:), POINTER :: rhs

! - Geometric information -----------------------------------------------------

REAL(RFREAL), POINTER :: xyz(:,:)
REAL(RFREAL), POINTER :: vol(:),cofg(:,:)

END TYPE t_grid

Figure 14.5: Definition of grid data structure.
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The components of the user-defined type t grid are defined as follows:

indGs is a flag used to allocate the array for the grid speeds. If grid motion is active, the
grid speeds need to be computed, and hence indGs=1, otherwise indGs=0. This allows
the grid speed array gs (see below) to be accessed even if grid motion is not active,
which simplifies the code because conditional statements can be avoided. The array
gs will typically be accessed through a statement such as gs(indGs*ifc), where ifc

is an integer variable used in a loop over interior faces.

nBFaces is the total number of triangular and quadrilateral faces on all boundary patches.

nBQuads is the total number of quadrilateral faces on all boundary patches.

nBTris is the total number of triangular faces on all boundary patches.

nCells is the number of interior cells in the grid.

nCellsTot is the total number of cells in the grid, i.e., interior and dummy cells.

nEdges is the number of interior edges in the grid.

nEdgesEst is the estimated total number of edges in the grid. It is used only in the con-
struction of the edge list.

nEdgesTot is the total number of edges in the grid, i.e., interior and dummy edges.

nFaces is the number of interior triangular and quadrilateral faces in the grid.

nFacesEst is the estimated total number of interior triangular and quadrilateral faces in
the grid. It is used only in the construction of the face list.

nFacesTot is the total number of triangular and quadrilateral faces in the grid, i.e., interior
and dummy faces.

nHexs is the number of interior hexahedral cells in the grid.

nHexsTot is the total number of hexahedral cells in the grid, i.e., interior and dummy hex-
ahedral cells.

nPris is the number of prismatic cells in the grid.

nPrisTot is the total number of prismatic cells in the grid, i.e., interior and dummy prismatic
cells.

nPyrs is the number of pyramidal cells in the grid.

nPyrsTot is the total number of pyramidal cells in the grid, i.e., interior and dummy pyra-
midal cells.
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nTets is the number of tetrahedral cells in the grid.

nTetsTot is the total number of tetrahedral cells in the grid, i.e., interior and dummy
tetrahedral cells.

nVert is the number of vertices in the grid.

nVertTot is the total number of vertices in the grid, i.e., interior and dummy vertices.

hexFlag contains a flag indicating the kind of a given hexahedral cell. It is read in from the
RocfluMP grid file, and can only take the values: CELL KIND BNDRY, CELL KIND ACTUAL,
and CELL KIND VIRTUAL (defined in ModParameters.F90).

hex2CellGlob contains the mapping of a given hexahedral cell to a global cell.

priFlag contains a flag indicating the kind of a given prismatic cell. It is read in from the
RocfluMP grid file, and can only take the values: CELL KIND BNDRY, CELL KIND ACTUAL,
and CELL KIND VIRTUAL (defined in ModParameters.F90).

pri2CellGlob contains the mapping of a given prismatic cell to a global cell.

pyrFlag contains a flag indicating the kind of a given pyramidal cell. It is read in from the
RocfluMP grid file, and can only take the values: CELL KIND BNDRY, CELL KIND ACTUAL,
and CELL KIND VIRTUAL (defined in ModParameters.F90).

pyr2CellGlob contains the mapping of a given pyramidal cell to a global cell.

tetFlag contains a flag indicating the kind of a given tetrahedral cell. It is read in from the
RocfluMP grid file, and can only take the values: CELL KIND BNDRY, CELL KIND ACTUAL,
and CELL KIND VIRTUAL (defined in ModParameters.F90).

tet2CellGlob contains the mapping of a given tetrahedral cell to a global cell.

vertFlag contains a flag indicating the kind of a given vertex. It is read in from the
RocfluMP grid file, and can only take the values VERT KIND ACTUAL and VERT KIND VIRTUAL

(defined in ModParameters.F90).

cellGlob2Loc contains the mapping of a global cell to the local cell of a given type.

c2cs contains the cell stencils for each cell. This array is used in computing cell gradients
and averaged variables.

e2v contains the two vertices defining an edge. This array is used only for grid motion.

e2vTemp is a temporary array used to construct e2v.

f2c contains the two cells adjacent to a face.
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f2cTemp is a temporary array used to construct f2c.

f2cs contains the face stencils for each face. This array is used in computing face gradients.

f2v contains the vertices defining a face.

f2vTemp is a temporary array used to construct f2v.

hex2v contains the connectivity information for the hexahedral cells. The vertices must be
numbered as shown in Fig. 14.6(a). The face to vertex, edge to vertex, and edge to
face connectivity arrays for hexahedral cells are shown in Table 14.1.

pri2v contains the connectivity information for the prismatic cells. The vertices must be
numbered as shown in Fig. 14.6(b). The face to vertex, edge to vertex, and edge to
face connectivity arrays for prismatic cells are shown in Table 14.2.

pyr2v contains the connectivity information for the pyramidal cells. The vertices must be
numbered as shown in Fig. 14.6(c). The face to vertex, edge to vertex, and edge to
face connectivity arrays for pyramidal cells are shown in Table 14.3.

tet2v contains the connectivity information for the tetrahedral cells. The vertices must be
numbered as shown in Fig. 14.6(d). The face to vertex, edge to vertex, and edge to
face connectivity arrays for tetrahedral cells are shown in Table 14.4.

fc contains the face-centroid coordinates.

fn contains the components of the face-normal unit vector and the area of the face.

cgwt contains the cell-gradient weights.

fgwt contains the face-gradient weights.

degr contains the degree of each vertex.

gs contains the grid speed of each face.

volMin contains the minimum volume of all cells incident to a vertex. The variable is used
in altering the effect of the grid-smoothing algorithm to avoid inverting cells and hence
negative volumes.

rhs contains the residual for grid smoothing.

xyz contains the x-, y-, and z-coordinates of the vertices.

vol contains the volumes of the cells.

cofg contains the centroids of the cells.
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Figure 14.6: Definition of cell connectivity.
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Face Vertices

1 1 4 3 2
2 1 2 6 5
3 2 3 7 6
4 3 4 8 7
5 1 5 8 4
6 5 6 7 8

Table 14.1: Face-to-vertex connectivity arrays for hexahedral cells.

Face Vertices

1 1 3 2
2 1 2 5 4
3 2 3 6 5
4 1 4 6 3
5 4 5 6

Table 14.2: Face-to-vertex connectivity arrays for prismatic cells.

Each cell type has not only a clearly defined numbering of its vertices, but also for its
edges and faces. These numberings are listed in Tables 14.1-14.4. In reading these tables,
it is to be understood that edges and faces have an orientation. This is a crucial point if
the routines which construct data structures are to be understood properly. Therefore, the
rows in these tables are to be read only from left to right. Thus, edge 10 of an hexahedron
is pointing from vertex 2 to vertex 6. Furthermore, faces are oriented such that their normal
vectors are pointing out of the cell. This corresponds to anti-clockwise ordering of the vertices
when viewing the face of a cell from the outside of that cell, and to clockwise ordering when
viewing the face through the cell.

Face Vertices

1 1 4 3 2
2 1 2 5
3 2 3 5
4 3 4 5
5 1 5 4

Table 14.3: Face-to-vertex connectivity arrays for pyramidal cells.
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Face Vertices

1 1 2 3
2 2 4 3
3 1 3 4
4 1 4 2

Table 14.4: Face-to-vertex connectivity arrays for tetrahedral cells.

Figure 14.7: Overview of boundary data structure.

14.3.2 Module RFLU ModGrid.F90

The module RFLU ModGrid.F90 contains some data structures used in the conversion of exte-
rior grid formats to that used in RocfluMP, and some data structures used in the generation
of other data structures.

14.4 Boundary Data Structure

An overview of the boundary data structure is given in Fig. 14.7. The definition of the
boundary data structure is shown in Fig. 14.8.

The components of the user-defined type for the boundary data structure are defined as
follows:

bcType is the type of the boundary patch. It is used to identify which boundary conditions
is to be set on that boundary patch.

bcCoupled is a flag indicating whether the boundary patch is coupled to another code. It
can have the values BC NOT COUPLED, BC NOT BURNING, and BC BURNING (defined in
ModParameters.F90).

iPatchGlobal is the global index of the boundary patch. For serial computations, iPatchGlobal
is equal to the index of the boundary patch. The variable is needed to access the correct
boundary condition information when reading the boundary condition file.

nBFaces is the total number of triangular and quadrilateral faces on a boundary patch.

nBTris is the number of triangular faces on a boundary patch, and is read from the grid
file.

nBQuads is the number of quadrilateral faces on a boundary patch, and is read from the grid
file.

nBVert is the number of vertices on a boundary patch.
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TYPE t_patch
INTEGER :: bcType,bcCoupled
INTEGER :: iPatchGlobal
INTEGER :: nBFaces,nBTris,nBQuads,nBVert,nBVertEst
INTEGER, DIMENSION(:), POINTER :: bf2bg,bf2c,bv,bvTemp
INTEGER, DIMENSION(:,:), POINTER :: bf2cs,bf2ct,bf2v,bf2vl,bTri2v, &

bTri2vl,bQuad2v,bQuad2vl
LOGICAL :: movePatch,smoothGrid
REAL(RFREAL), DIMENSION(:), POINTER :: gs
REAL(RFREAL), DIMENSION(:,:), POINTER :: bvn,dXyz,fc,fn
REAL(RFREAL), DIMENSION(:,:,:), POINTER :: bfgwt
CHARACTER*(CHRLEN) :: bcName

#ifdef GENX
INTEGER, DIMENSION(:), POINTER :: bFlag,bcFlag
REAL(RFREAL), DIMENSION(:), POINTER :: mdotAlp,pf,qc,qr,rhofAlp,tempf, &

tflmAlp
REAL(RFREAL), DIMENSION(:,:), POINTER :: duAlp,nfAlp,rhofvfAlp,tracf, &

xyz
#endif

TYPE(t_bcvalues) :: valMixt,valTurb,valSpec,valPeul,valRadi
TYPE(t_bcvalues), POINTER :: valPlag(:)
TYPE(t_tile_plag) :: tilePlag
TYPE(t_buffer_plag) :: bufferPlag

END TYPE t_patch

Figure 14.8: Definition of boundary data structure.



154 Chapter 14. Data Structures

nBVertEst is the estimated number of vertices on a boundary patch. It is used only in the
construction of the boundary vertex list.

bf2bg is an access array which maps a face of a patch to an address in the array bGradFace

contained in the mixture data type t mixt. It is needed because the boundary face
gradients of all boundary patches are stored in a single array for convenience.

bf2ct is an access array which maps a given boundary face to a cell type. It can only
take the values CELL TYPE TET, CELL TYPE HEX, CELL TYPE PRI, and CELL TYPE PYR

(defined in ModParameters.F90).

bf2v contains the vertices defining a boundary patch face.

bf2vl contains the vertices defining a boundary patch face, locally numbered for each bound-
ary patch.

bTri2v contains the vertices defining a triangular boundary patch face. The vertices are
oriented such that the normal vector is pointing out of the computational domain.

bTri2vl contains the vertices defining a triangular boundary patch face, locally numbered
for each boundary patch. The vertices are oriented such that the normal vector is
pointing out of the computational domain.

bQuad2v contains the vertices defining a quadrilateral boundary patch face. The vertices
are oriented such that the normal vector is pointing out of the computational domain.

bQuad2vl contains the vertices defining a quadrilateral boundary patch face, locally num-
bered for each boundary patch. The vertices are oriented such that the normal vector
is pointing out of the computational domain.

movePatch is a logical variable indicating whether the boundary patch is moving.

smoothGrid is a logical variable indicating whether the boundary patch grid is to be smoothed.

gs contains the grid speed of each boundary patch face.

bvn contains the components of the unit normal vector at the boundary patch vertices.

dXyz contains the imposed displacement of the boundary vertices.

fc contains the face-centroid coordinates.

fn contains the components of the face-normal unit vector and the area of the face.

bfgwt contains the face-gradient weights.

bcName contains the name of the boundary patch.
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bFlag is a flag whether a burning face has ignited or not when running RocfluMP inside
GENx. This is used to avoid faces which have ignited from extinguishing. (Used only
if GENX=1.)

bcFlag is a flag indicating the type of interaction with other codes when running RocfluMP
inside GENx. It can only assume the values BC NOT COUPLED, BC NOT BURNING, and
BC BURNING (defined in ModParameters.F90). (Used only if GENX=1.)

mdotalp contains the mass flux for each boundary patch face. It is allocated only for burning
boundary patches. (Used only if GENX=1.)

pf contains the face pressure. (Used only if GENX=1.)

qc contains the convective heat flux. It is allocated only for burning boundary patches.
(Used only if GENX=1.)

qr contains the radiative heat flux. It is allocated only for burning boundary patches. (Used
only if GENX=1.)

rhofalp contains the fluid density for each boundary patch face. (Used only if GENX=1.)

tempf contains the fluid temperature for each boundary patch face. It is allocated only for
burning boundary patches. (Used only if GENX=1.)

tflmAlp contains the static temperature of the injected fluid. It is allocated only for burning
boundary patches. (Used only if GENX=1.)

duAlp contains the incremental displacement. (Used only if GENX=1.)

nfAlp contains the components of the unit face-normal vector. (Used only if GENX=1.)

rhofvfAlp contains the components of the product of the fluid density times the fluid ve-
locity. Note that this is not the same as mdotalp, as the former also includes the effect
of boundary motion due to deformation. (Used only if GENX=1.

tracf contains the fluid traction for each boundary patch face. (Used only if GENX=1.)

xyz contains the x-, y-, and z-coordinates of the vertices. (Used only if GENX=1.)

valMixt contains the user-specified values for the enforcement of boundary conditions on
the mixture.
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TYPE t_mixt_input

INTEGER :: flowModel
LOGICAL :: moveGrid, externalBc
INTEGER :: nDv, nTv, nGv, nGrad, indCp, indMol
REAL(RFREAL) :: prLam, prTurb, scnLam, scnTurb

! - turbulence modeling

INTEGER :: turbModel

! - species

INTEGER :: specModel

! - continuum particles

LOGICAL :: conPartUsed

! - discrete particles

LOGICAL :: disPartUsed

! - radiation

LOGICAL :: radiUsed

! - numerics

INTEGER :: spaceDiscr, spaceOrder, pSwitchType
INTEGER :: timeScheme, nrkSteps, ldiss(5)
REAL(RFREAL) :: cfl, smoocf, vis2, vis4, pSwitchOmega, limfac, epsentr
REAL(RFREAL) :: ark(5), grk(5), trk(5), betrk(5)

! - flow initialization (used within preprocessor)

REAL(RFREAL) :: iniVelX, iniVelY, iniVelZ, iniPress, iniDens

! - flow initialization (for uniform flow preservation check)

REAL(RFREAL) :: unifDens, unifEner, unifMomX, unifMomY, unifMomZ, unifPres

END TYPE t_mixt_input

Figure 14.9: Definition of data type t mixt input.



14.5. Mixture Data Structure 157

14.5 Mixture Data Structure

14.5.1 Data Type t mixt input

flowModel is a flag indicating which flow model is used. It can only take the values
FLOW EULER or FLOW NAVST (defined in ModParameters.F90).

moveGrid is a logical variable indicating whether the volume grid is to be moved. Note
that the movement of interior points does not necessarily have to be activated when
boundary patches are moving.

nDv contains the number of dependent variables. It is used to determine the size of the array
dv (see below).

nTv contains the number of transport variables. It is used to determine the size of the array
tv (see below).

nGv contains the number of gas variables. It is used to determine the size of the array gv

(see below).

indCp is a flag used to allocate the array for specific heat in the gas-variable array. If the
specific heat is to vary in space, indCp=1, otherwise indCp=0. This allows the gas-
variable array gv (see below) to be accessed even if the specific heat is constant, which
simplifies the code because conditional statements can be avoided.

indMol is a flag used to allocate the array for molar mass in the gas-variable array. If the
molar mass is to vary in space, indMol=1, otherwise indMol=0. This allows the gas-
variable array gv (see below) to be accessed even if the molar mass is constant, which
simplifies the code because conditional statements can be avoided.

prLam contains the value of the laminar Prandtl number.

prTurb contains the value of the turbulent Prandtl number.

scnLam contains the value of the laminar Schmidt number.

scnTurb contains the value of the turbulent Schmidt number.

turbModel is a flag indicating which turbulence model is used.

specModel is a flag indicating which gas model is used. Currently, it can only take the value
SPEC MODEL NONE.

conPartUsed is a logical variable indicating whether continuum particles are used.

disPartUsed is a logical variable indicating whether discrete particles are used.

radiUsed is a logical variable indicating whether radiation modeling is used.
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spaceDiscr is a flag indicating which spatial discretization model is used. It can only take
the values DISCR UPW ROE or DISCR OPT LES.

spaceOrder is a flag indicating the order of accuracy of the spatial discretization. Currently,
it can only take the value DISCR ORDER 1.

nrkSteps is a flag indicating the number of steps of the explicit-multistage or the Runge-
Kutta scheme.

ldiss is a flag indicating whether the dissipation terms are to be computed in a given stage
of the explicit multistage scheme.

cfl contains the value of the CFL number.

epsentr contains the value of the constant in the entropy fix.

ark contains coefficients used in the explicit-multistage and the Runge-Kutta scheme.

grk contains coefficients used in the Runge-Kutta scheme.

trk contains coefficients used in the Runge-Kutta scheme.

betrk contains coefficients used in the explicit-multistage scheme.

iniVelX contains the x-component of the velocity vector for the initial condition. It is only
used in rfluprep and written into the solution file.

iniVelY contains the y-component of the velocity vector for the initial condition. It is only
used in rfluprep and written into the solution file.

iniVelZ contains the z-component of the velocity vector for the initial condition. It is only
used in rfluprep and written into the solution file.

iniPress contains the static pressure for the initial condition. It is only used in rfluprep
and written into the solution file.

iniDens contains the density for the initial condition. It is used only in rfluprep and written
into the solution file.

unifDens contains the density value when checking RocfluMP for uniform flow preserva-
tion. The check for uniform flow preservation is activated by compiling RocfluMP with
CHECK UNIFLOW=1.

unifEner contains the total internal energy value when checking RocfluMP for uniform
flow preservation. The check for uniform flow preservation is activated by compiling
RocfluMP with CHECK UNIFLOW=1.
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unifMomX contains the x-component of momentum when checking RocfluMP for uniform
flow preservation. The check for uniform flow preservation is activated by compiling
RocfluMP with CHECK UNIFLOW=1.

unifMomY contains the y-component of momentum when checking RocfluMP for uniform
flow preservation. The check for uniform flow preservation is activated by compiling
RocfluMP with CHECK UNIFLOW=1.

unifMomZ contains the z-component of momentum when checking RocfluMP for uniform
flow preservation. The check for uniform flow preservation is activated by compiling
RocfluMP with CHECK UNIFLOW=1.

14.5.2 Data Type t mixt

The data type t mixt contains data related to the mixture and the solution of the associated
transport equations. The variables associated with the mixture are divided into several types:

1. Conserved variables, i.e., dependent variables for which transport equations are solved,
are stored in the array cv. For RocfluMP, the conserved variables are {ρ, ρu, ρv, ρw, ρE}t.

2. Dependent variables, i.e., dependent variables for which no transport equations are
solved, are stored in the array dv. For RocfluMP, the dependent variables are {p, T, c}t.

3. Transport variables, i.e., dependent variables such as the coefficients of viscosity and
conductivity.

4. Gas variables, i.e., dependent variables such as the specific heat at constant pressure
and the molar mass.

The dependent, transport, and gas variables are updated after the update of the conserved
variables by calling the routine mixtureProperties.F90.

Because it is convenient to work with different state variables at times, RocfluMP provides
routines to change the “state” of the state vector from conserved variables to two different
sets of primitive variables. This is advantageous when computing gradients for the viscous
fluxes and printing information on the solution. The possible states are as follows:

1. Conserved variables given by {ρ, ρu, ρv, ρw, ρE}t. This is the default state and indi-
cated by cvState having the value CV MIXT STATE CONS. The value of the integer pa-
rameter CV MIXT STATE CONS, and the corresponding parameters for the other states,
is defined in ModParameters.F90.

2. Primitive variables given by {ρ, u, v, w, p}t. This state is indicated by cvState having
the value CV MIXT STATE DUVWP.

3. Primitive variables given by {ρ, u, v, w, T}t. This state is indicated by cvState having
the value CV MIXT STATE DUVWT.
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TYPE t_mixt
REAL(RFREAL), POINTER :: cv(:,:), cvOld(:,:), dv(:,:), tv(:,:), gv(:,:)

#ifdef STATS
REAL(RFREAL), POINTER :: tav(:,:)

#endif
REAL(RFREAL), POINTER :: rhs(:,:), rhsSum(:,:), diss(:,:), fterm(:,:)
INTEGER :: cvState
REAL(RFREAL), DIMENSION(:,:), POINTER :: cvVrtx
REAL(RFREAL), DIMENSION(:,:,:), POINTER :: bGradFace,gradCell,gradFace

END TYPE t_mixt

Figure 14.10: Definition of data type t mixt.

Changes of the state are effected by USEing the module RFLU ModConvertCv.F90, and calling
the routines:

RFLU ConvertCvCons2Prim(pRegion,cvStateFuture) to convert from conserved variables
to primitive variables. cvStateFuture must be set to either CV MIXT STATE DUVWP or
CV MIXT STATE DUVWT; any other value will generate an error. An error will also be
generated if cvState is not equal to CV MIXT STATE CONS.

RFLU ConvertCvPrim2Cons(pRegion,cvStateFuture) to convert from a primitive variable
state to conserved variables. cvStateFuture must be set to CV MIXT STATE CONS; any
other value will generate an error. An error will also be generated if cvState is equal
to CV MIXT STATE CONS.

The strict checking of cvState upon calling the conversion routines is carried out to catch
programming errors, where the state was changed on entering a routine, but not changed
back on exiting the routine. Additional statements such as

IF ( pRegion%mixt%cvState == CV_MIXT_STATE_CONS ) THEN

CALL ErrorStop(global,ERR_CV_STATE_INVALID,__LINE__)

END IF ! region

may be placed at the top of routines to catch such errors.
The data defined in the data type t mixt is shown in Fig. 14.10, and explained in detail

below.

cv contains the vector of conserved variables.

cvOld contains the vector of old conserved variables, i.e., from a previous timestep.

dv contains the vector of dependent variables.
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tv contains the vector of transport variables.

gv contains the vector of gas variables.

rhs contains the residual vector.

rhsSum contains a weighted sum of residual vectors for the Runge-Kutta scheme.

diss contains the residual vector due to dissipative terms of the spatial discretization.

cvState is a flag indicating which state is stored in the conservative state vector. It can only
take the values CV MIXT STATE CONS, CV MIXT STATE DUVWP, and CV MIXT STATE DUVWT.

cvVrtx contains the state vector at the vertices. It is used only in rflupost after having
interpolated the cell-centered values to the vertices.

bGradFace contains the boundary-face gradients. It is accessed using the array bf2bg in
the data type t patch.

gradCell contains the cell gradients.

gradFace contains the face gradients.
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Chapter 15

GENx Integration

15.1 Definition of Attributes

15.1.1 Grid Attributes

15.1.1.1 Volume Panes

The volume-grid pane attributes are defined in Table 15.1.

15.1.1.2 Surface Panes

The surface-grid pane attributes are defined in Table 15.2. Note that multiple connectivity
lists exist for each face type, e.g., :t3:real and :t3g:real. The former is required by
Roccom and its entries are used to access the coordinate array nc on each surface pane. The
latter is required by rflump and its entries are used to access the coordinate array nc on the
volume pane.

15.1.2 Solution Attributes

The solution attributes are defined in Table 15.3.

15.1.3 Interface Attributes

15.1.3.1 Non-Interacting Panes

15.1.3.2 Non-Burning Panes

The attributes of non-burning panes are defined in Table 15.4.

15.1.3.3 Burning Panes

The attributes of burning panes are defined in Table 15.5.
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Table 15.1: Definitions of volume-grid pane attributes.

Attribute Meaning Units Type

nc Coordinates m Real
pconn Pane connectivity − Integer
:T4:real Connectivity of actual tetrahedra − Integer
:T4:virtual Connectivity of virtual tetrahedra − Integer
:H8:real Connectivity of actual hexahedra − Integer
:H8:virtual Connectivity of virtual hexahedra − Integer
:W6:real Connectivity of actual prisms − Integer
:W6:virtual Connectivity of virtual prisms − Integer
:P5:real Connectivity of actual pyramids − Integer
:P5:virtual Connectivity of virtual pyramids − Integer

Table 15.2: Definitions of surface-grid pane attributes.

Attribute Meaning Units Type

bcflag Boundary-condition flag − Integer
patchNo Patch number − Integer
constr type Constraint type − Integer
nc Coordinates m Real
:t3:real Connectivity of actual triangles, local numbering − Integer
:t3:virtual Connectivity of virtual triangles, local numbering − Integer
:t3g:real Connectivity of actual triangles, global numbering − Integer
:t3g:virtual Connectivity of virtual triangles, global numbering − Integer
:q4:real Connectivity of actual quadrilaterals, local numbering − Integer
:q4:virtual Connectivity of virtual quadrilaterals, local numbering − Integer
:q4g:real Connectivity of actual quadrilaterals, global numbering − Integer
:q4g:virtual Connectivity of virtual quadrilaterals, global numbering − Integer
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Table 15.3: Definitions of solution attributes.

Attribute Meaning Units Type

rhof Density kg/m3 Real
rhovf Momentum per unit volume kg/(m2 s) Real
rhoEf Energy per unit volume J/m3 Real
pf Pressure Pa Real
Tf Temperature K Real
af Speed of sound m/s Real

Table 15.4: Definitions of attributes on non-burning panes.

Attribute Meaning Units Intent Location Type

du alp Displacement m Incoming Vertex Real
rhofvf alp Momentum flux kg/(m2 s) Incoming Face Real
Tb alp Boundary temperature K Incoming Face Real
nf alp Normal vector − Outgoing Face Real
rhof alp Density kg/m3 Outgoing Face Real
pf Pressure Pa Outgoing Face Real
qc Convective heat flux W/m2 Outgoing Face Real
qr Radiative heat flux W/m2 Outgoing Face Real
tf Traction Pa Outgoing Face Real
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Table 15.5: Definitions of attributes on burning panes.

Attribute Meaning Units Intent Location Type

du alp Displacement m Incoming Vertex Real
rhofvf alp Momentum kg/(m2 s) Incoming Face Real
mdot alp Injection mass flux kg/(m2 s) Incoming Face Real
Tflm alp Flame temperature K Incoming Face Real
nf alp Normal vector − Outgoing Face Real
rhof alp Density kg/m3 Outgoing Face Real
pf Pressure Pa Outgoing Face Real
tf Traction Pa Outgoing Face Real
qc Convective heat flux W/m2 Outgoing Face Real
qr Radiative heat flux W/m2 Outgoing Face Real
Tf Temperature K Outgoing Face Real
bflag Burning flag − Outgoing Face Integer



Chapter 16

File Content and Format
Specifications

This chapter describes the content and format of RocfluMP files which may require modi-
fications by a developer. The content and format of RocfluMP files which requires or may
require editing by a user is described in Chapter 5. The naming of most files follows the
conventions outlined in Sect. 5.1.

16.1 Grid Files

16.1.1 RocfluMP Grid File

The grid file contains the coordinates and connectivity information of the grid at a given
iteration or time. The name of the grid file depends on whether it is written in ASCII or
binary format and whether the grid is moving. The name of the grid file in ASCII format is:

• <casename>.grda <mmmmm> for steady flows

• <casename>.grda <mmmmm> <n.nnnnnnnE+nn> for unsteady flows with moving grids

where <mmmmm> is the region number and <n.nnnnnnnE+nn> is the time stamp. The name of
the grid file in binary format is:

• <casename>.grd <mmmmm> for steady flows

• <casename>.grd <mmmmm> <n.nnnnnnnE+nn> for unsteady flows with moving grids

The format of the grid file in ASCII format is illustrated by the following code fragment:

WRITE(iFile,’(A)’) ’# ROCFLU grid file’1

WRITE(iFile,’(A)’) ’# Precision and range’2

WRITE(iFile,’(2(I8))’) PRECISION(1.0_RFREAL),RANGE(1.0_RFREAL)3
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WRITE(iFile,’(A)’) ’# Physical time’4

WRITE(iFile,’(E23.16)’) global%currentTime5

WRITE(iFile,’(A)’) ’# Dimensions’6

WRITE(iFile,’(5(I8))’) pGrid%nVertTot,pGrid%nTetsTot,pGrid%nHexsTot, &7

pGrid%nPrisTot,pGrid%nPyrsTot8

WRITE(iFile,’(A)’) ’# Coordinates’9

DO i = 1,310

WRITE(iFile,’(5(E23.16))’) (pGrid%xyz(i,j),j=1,pGrid%nVertTot)11

END DO ! i12

IF ( pGrid%nTetsTot > 0 ) THEN13

WRITE(iFile,’(A)’) ’# Tetrahedra’14

DO i = 1,415

WRITE(iFile,’(10(I8))’) (pGrid%tet2v(i,j),j=1,pGrid%nTetsTot)16

END DO ! i17

END IF ! pGrid%nTetsTot18

IF ( pGrid%nHexsTot > 0 ) THEN19

WRITE(iFile,’(A)’) ’# Hexahedra’20

DO i = 1,821

WRITE(iFile,’(10(I8))’) (pGrid%hex2v(i,j),j=1,pGrid%nHexsTot)22

END DO ! i23

END IF ! pGrid%nHexsTot24

IF ( pGrid%nPrisTot > 0 ) THEN25

WRITE(iFile,’(A)’) ’# Prisms’26

DO i = 1,627

WRITE(iFile,’(10(I8))’) (pGrid%pri2v(i,j),j=1,pGrid%nPrisTot)28

END DO ! i29

END IF ! pGrid%nPrisTot30

IF ( pGrid%nPyrsTot > 0 ) THEN31

WRITE(iFile,’(A)’) ’# Pyramids’32

DO i = 1,533

WRITE(iFile,’(10(I8))’) (pGrid%pyr2v(i,j),j=1,pGrid%nPyrsTot)34

END DO ! i35

END IF ! pGrid%nPyrsTot36

WRITE(iFile,’(A)’) ’# Boundaries’37

WRITE(iFile,’(I8)’) pGrid%nPatches38

DO iPatch = 1,pGrid%nPatches39

pPatch => pRegion%patches(iPatch)40

WRITE(iFile,’(3(I8))’) pPatch%nBTrisTot,pPatch%nBQuadsTot41

IF ( pPatch%nBTrisTot > 0 ) THEN42

DO j = 1,343

WRITE(iFile,’(10(I8))’) (pPatch%bTri2v(j,k),k=1,pPatch%nBTrisTot)44

END DO ! j45

END IF ! pPatch%nBTrisTot46

IF ( pPatch%nBQuadsTot > 0 ) THEN47

DO j = 1,448



16.1. Grid Files 169

WRITE(iFile,’(10(I8))’) (pPatch%bQuad2v(j,k),k=1,pPatch%nBQuadsTot)49

END DO ! j50

END IF ! pPatch%nBQuadsTot51

END DO ! iPatch52

WRITE(iFile,’(A)’) ’# End’53

16.1.2 CENTAUR Grid File

16.1.3 VGRIDns Grid Files

The .mapbc file produced by VGRIDns is not read.

16.1.3.1 .vbc File

The .vbc file corresponds to the .bc file written by VGRIDns. It is renamed because the
boundary-condition file of RocfluMP has the extension .bc.

16.1.3.2 .cgosg File

16.1.4 MESH3D Grid File

16.1.5 TETMESH Grid File

16.1.5.1 .noboite File

The format of the .noboite file is described in the TETMESH user’s manual.

16.1.6 Cobalt Grid File

The first line of the Cobalt grid file contains three integers,

nDimensions nZones nBoundaryPatches

where the meaning is self-explanatory. For use within rflump, Cobalt grid files must satisfy
the following restrictions: nDimensions must be equal to 3 and nZones must be equal to 1.

The next line contains five integers,

nVertices nFaces nCells nVerticesPerFaceMax nFacesPerCellMax

where the last two quantities represent the maximum number of vertices defining a face and
the maximum number of faces defining a cell. For example, if the grid consisted purely
of tetrahedra, nVerticesPerFaceMax and nFacesPerCellMax would be equal to 3 and 4,
respectively. On the other hand, if the grid consisted of tetrahedra, prisms, and pyramids,
nVerticesPerFaceMax and nFacesPerCellMax would be equal to 4 and 5, respectively.
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The next nVertices lines contain the x-, y-, and z-coordinates for each vertex.
The next nFaces lines contain the face-connectivity information,

nVerticesPerFace <nVerticesPerFace> vertices Cell1 Cell2

where Cell1 and Cell2 are the two cells which share a given face. If a face lies on a boundary
patch, the respective cell is given by the negative patch index.

16.2 Flow-Solution File

The flow-solution file contains the conserved variables of the solution at a given iteration or
time. The name of the flow-solution file depends on whether it is written in ASCII or binary
format and whether a steady or unsteady flow is computed. The name of the flow-solution
file in ASCII format is:

• <casename>.floa <mmmmm> <nnnnnn> for steady flows

• <casename>.floa <mmmmm> <n.nnnnnnnE+nn> for unsteady flows

where <mmmmm> is the region number, <nnnnnn> is the iteration number, and <n.nnnnnnnE+nn>

is the time stamp. The name of the flow-solution file in binary format is:

• <casename>.flo <mmmmm> <nnnnnn> for steady flows

• <casename>.flo <mmmmm> <n.nnnnnnnE+nn> for unsteady flows

The format of the flow-solution file in ASCII format is illustrated by the following code
fragment:

WRITE(iFile,’(A)’) ’# ROCFLU flow file’1

WRITE(iFile,’(A)’) ’# Precision and range’2

WRITE(iFile,’(2(I8))’) PRECISION(1.0_RFREAL),RANGE(1.0_RFREAL)3

WRITE(iFile,’(A)’) ’# Initial residual’4

WRITE(iFile,’(E23.16)’) global%resInit5

WRITE(iFile,’(A)’) ’# Physical time’6

WRITE(iFile,’(E23.16)’) global%currentTime7

WRITE(iFile,’(A)’) ’# Dimensions’8

WRITE(iFile,’(2(I8))’) pGrid%nCellsTot,pRegion%mixtInput%nCv9

WRITE(iFile,’(A)’) ’# Mixture density’10

WRITE(iFile,’(5(E23.16))’) (pCv(CV_MIXT_DENS,j),j=1,pGrid%nCellsTot)11

WRITE(iFile,’(A)’) ’# Mixture x-momentum’12

WRITE(iFile,’(5(E23.16))’) (pCv(CV_MIXT_XMOM,j),j=1,pGrid%nCellsTot)13

WRITE(iFile,’(A)’) ’# Mixture y-momentum’14

WRITE(iFile,’(5(E23.16))’) (pCv(CV_MIXT_YMOM,j),j=1,pGrid%nCellsTot)15

WRITE(iFile,’(A)’) ’# Mixture z-momentum’16
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WRITE(iFile,’(5(E23.16))’) (pCv(CV_MIXT_ZMOM,j),j=1,pGrid%nCellsTot)17

WRITE(iFile,’(A)’) ’# Mixture total internal energy’18

WRITE(iFile,’(5(E23.16))’) (pCv(CV_MIXT_ENER,j),j=1,pGrid%nCellsTot)19

WRITE(iFile,’(A)’) ’# End’20

16.3 Dimension File

The dimension file contains information about the grid and grid-related quantities for a given
region. It is read by the various programs to determine the sizes of arrays. The file is called

• <casename>.dim <mmmmm> for steady flows, and

• <casename>.dim <mmmmm> <nnnnnnE+nn> for unsteady flows,

where <mmmmm> is the region index and <nnnnnnE+nn> is the time stamp. At present, the
time stamp of the dimension file is always zero.

The dimension file is always in ASCII format and consists of sections whose significance
is indicated by character strings. The sections can be written in any order. Consider the
following example dimensions file:

# ROCFLU dimensions file1

# Vertices2

1797 4102 49223

# Cells4

8194 19697 236365

# Tetrahedra6

8194 19697 236367

# Hexahedra8

0 0 09

# Prisms10

0 0 011

# Pyramids12

0 0 013

# Patches14

3 615

1 219 468 0 016

3 360 708 0 017

5 82 155 0 018

# Borders19

720

4 4 988 1184 254 301 4821

9 2 2904 2457 617 516 14122

10 4 2121 2206 477 500 10723

12 3 3709 3358 770 690 19124

13 4 80 67 51 41 025
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15 3 611 750 168 216 3126

16 3 1477 1481 340 340 7027

# End28

Line 1: The first line must contain the string shown, otherwise reading of the file will fail.

Line 2: Specifies the beginning of the vertex dimension section.

Line 3: Specifies the number of actual vertices, the total number of vertices, and the
maximum allowed number of vertices. The maximum allowed number of vertices must
be equal to or greater than the total number of vertices.

Line 4: Specifies the beginning of the cell dimension section.

Line 5: Specifies the number of actual cells, the total number of cells, and the maximum
allowed number of cells. The maximum allowed number of cells must be equal to or
greater than the total number of cells.

Lines 6-13: Specify the dimensions of tetrahedral, prismatic, pyramidal, and hexahedral
cells.

Line 14: Specifies the beginning of the patch dimension section.

Line 15: Specifies the number of patches local to the given region and the global number
of patches. In this case, the given region contains three patches while there exist six
global patches. The remainder of the patch section contains one line for each local
patch.

Lines 16-18: Specifies, for each local patch, its global index, the number of actual triangles,
the total number of triangles, the number of actual quadrilaterals, and the total number
of quadrilaterals.

Line 19: Specifies the beginning of the border dimension section.

Line 20: Specifies the number of borders in the given region. The remainder of the border
section contains one line for each border.

Lines 21-27: Specifies, for each border, the global index of the region with which data
must be exchanged, the corresponding index of the border of the region with which
data must be exchanged, the number of cells for which data must be sent, the number
of cells for which data must be received, the number of vertices for which data must
be sent, the number of vertices for which data must be received, and the number of
vertices for which data must be shared.

Line 28: The last line must contain the string shown, otherwise reading of the file will fail.
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16.4 Cell-Mapping File

The cell-mapping file contains the mappings between the numbering local to a given cell-type
and the global numbering over all cell types. The file is always in ASCII format and is called
<casename>.cmp <mmmmm> where <mmmmm> is the region index.

The format of the cell-mapping file is illustrated by the following code fragment:

WRITE(iFile,’(A)’) ’# ROCFLU cell mapping file’1

WRITE(iFile,’(A)’) ’# Dimensions’2

WRITE(iFile,’(4(I8))’) pGrid%nTetsTot,pGrid%nHexsTot,pGrid%nPrisTot,pGrid%nPyrsTot3

WRITE(iFile,’(A)’) ’# Tetrahedra’4

WRITE(iFile,’(10(I8))’) (pGrid%tet2CellGlob(icg),icg=1,pGrid%nTetsTot)5

WRITE(iFile,’(A)’) ’# Hexahedra’6

WRITE(iFile,’(10(I8))’) (pGrid%hex2CellGlob(icg),icg=1,pGrid%nHexsTot)7

WRITE(iFile,’(A)’) ’# Prisms’8

WRITE(iFile,’(10(I8))’) (pGrid%pri2CellGlob(icg),icg=1,pGrid%nPrisTot)9

WRITE(iFile,’(A)’) ’# Pyramids’10

WRITE(iFile,’(10(I8))’) (pGrid%pyr2CellGlob(icg),icg=1,pGrid%nPyrsTot)11

WRITE(iFile,’(A)’) ’# End’12

16.5 Renumbering File

The renumbering file contains the mapping between the global cell and vertex numbers of a
given region and the global cell and vertex numbers of the serial region. In addition, the file
contains the mapping between the boundary faces of a given region and the boundary faces of
the serial region. The file is always in ASCII format and is called <casename>.rnm <mmmmm>

where <mmmmm> is the region index.
The format of the renumbering file is illustrated by the following code fragment:

WRITE(iFile,’(A)’) ’# ROCFLU renumbering file’1

WRITE(iFile,’(A)’) ’# Dimensions’2

WRITE(iFile,’(2(I8))’) pGrid%nVertTot,pGrid%nCellsTot3

WRITE(iFile,’(A)’) ’# Vertices’4

WRITE(iFile,’(10(I8))’) (pGrid%pv2sv(ivg),ivg=1,pGrid%nVertTot)5

WRITE(iFile,’(A)’) ’# Cells’6

WRITE(iFile,’(10(I8))’) (pGrid%pc2sc(icg),icg=1,pGrid%nCellsTot)7

WRITE(iFile,’(A)’) ’# Boundary faces’8

WRITE(iFile,’(10(I8))’) (pGrid%pbf2sbfCSR(ifl),ifl=1,pGrid%nBFacesTot)9

WRITE(iFile,’(A)’) ’# End’10

16.6 Communication-Lists File

The communication-lists file contains the communications lists required by each region to
send data to and receive data from other regions. The file is always in ASCII format and is
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called <casename>.com <mmmmm> where <mmmmm> is the region index.
The format of the communication-lists file is illustrated by the following code fragment:

WRITE(iFile,’(A)’) ’# ROCFLU communication lists file’1

WRITE(iFile,’(A)’) ’# Dimensions’2

WRITE(iFile,’(I8)’) pGrid%nBorders3

DO iBorder = 1,pGrid%nBorders4

pBorder => pGrid%borders(iBorder)5

WRITE(iFile,’(2(I8))’) pBorder%iRegionGlobal,pBorder%iBorder6

END DO ! iBorder7

WRITE(iFile,’(A)’) ’# Cells’8

DO iBorder = 1,pGrid%nBorders9

pBorder => pGrid%borders(iBorder)10

WRITE(iFile,’( 2(I8))’) pBorder%nCellsSend,pBorder%nCellsRecv11

WRITE(iFile,’(10(I8))’) (pBorder%icgSend(icl),icl=1,pBorder%nCellsSend)12

WRITE(iFile,’(10(I8))’) (pBorder%icgRecv(icl),icl=1,pBorder%nCellsRecv)13

END DO ! iBorder14

WRITE(iFile,’(A)’) ’# Vertices’15

DO iBorder = 1,pGrid%nBorders16

pBorder => pGrid%borders(iBorder)17

WRITE(iFile,’( 3(I8))’) pBorder%nVertSend,pBorder%nVertRecv,pBorder%nVertShared18

WRITE(iFile,’(10(I8))’) (pBorder%ivgSend(ivl),ivl=1,pBorder%nVertSend)19

WRITE(iFile,’(10(I8))’) (pBorder%ivgRecv(ivl),ivl=1,pBorder%nVertRecv)20

WRITE(iFile,’(10(I8))’) (pBorder%ivgShared(ivl),ivl=1,pBorder%nVertShared)21

END DO ! iBorder22

WRITE(iFile,’(A)’) ’# End’23
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