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CHAPTER 1

INTRODUCTION

Until the latter half of the twentieth century, the understanding of the interaction of light

and matter was limited to the linear response of matter to electromagnetic radiation.

Beginning in 1666 with the separation of white light into its component colors by Isaac

Newton, for hundreds of years man has been investigating the linear response of matter

to light. The apparent continuum observed by Newton was found to contain discrete

lines, and the field of spectroscopy was born due to the pioneering works of Joseph von

Fraunhofer (1778-1826), Robert W. Bunsen (1811-1899), and Gustav R. Kirchhoff (1824-

1887)[1]. The corpuscular theory of light was strongly adhered to until Thomas Young in

1801 discovered interference, shifting belief to a wave description of light. The nature of

light as electromagnetic radiation travelling in wave form was mathematically described

by James Clerk Maxwell first in 1862, and collected into the famous Maxwell’s Equations

by Oliver Heaviside and Heinrich Hertz in 1885[2]. Maxwell believed that electromag-

netic radiation travelled in a medium known as the ether, an assumption proven wrong by

Michelson and Morley in 1887[3], but not explained for nearly twenty more years.

The twentieth century began with radical shifts in the understanding of physics in two

areas: (1) the nature of the atom, and (2) the nature of light, time, and space. The first shift

began with the description of a hohlraum, or empty container, which was to unify electro-

magnetic theory, thermodynamics, and classical mechanics by showing that the vibrations

of molecules in the wall of the container share energy with the electromagnetic vibra-

tions of waves within the cavity. However, theory deviated from experiment inexplicably

1
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for high frequency radiation, a conundrum termed the ultraviolet catastrophe, until 1901

when Max Karl Planck introduced his novel ideas regarding energy distribution within

the cavity. Planck’s equations described energy within the hohlraum as existing not in a

continuum ranging from zero to infinity as previously thought, but in discrete amounts

according to the standing waves allowed by the container, i.e. the energy was quantized.

Einstein in his explanation of the photoelectric effect in 1905[4][5], and Compton in his

observation of the scattering of X-rays off a metal foil in 1923[6] provided further evi-

dence for the quantized nature of energy within the description of atomic behavior.

The second shift began in 1905 when Einstein explained the anomaly first seen by

Michelson and Morley by stating that “the speed of light is independent of the motion

of its source”[7][8]. He stated that rather than the speed of light changing within inertial

frames, the speed of light is constant and it is time, previously thought to be absolute in

all frames, which is relevant and changing. Though the theory of the wave nature of light

had become predominant, his work on the photoelectric effect that same year gave greater

credence to the particulate nature of light. It was principally for his explanation of the

photoelectric effect that he received the 1921 Nobel Prize in Physics.

In 1924 the duality of wave and particle, by then accepted for electromagnetic radia-

tion, was applied by de Broglie in his doctoral dissertation to electrons and alpha par-

ticles, which at that time were assumed to exist only as particles, establishing the de

Broglie wavelength of the electron[9]. The waves of de Broglie’s theory were shown to

propagate according to the equations developed by Schrödinger in 1925, resulting in the

famous Schrödinger equation, and the study of quantum mechanics was given structure

and definition[10]. All nonrelativistic quantum effects can be described by solving the

Schrödinger equation, a task that is in general easier said than done.

Nonlinear effects in quantum systems were an inaccessible realm until the discovery of

nuclear magnetic resonance (NMR) in 1946 by Felix Bloch[11] and Edward Purcell[12],

working independently. However, spectroscopy was limited to describing only linear
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effects until the advent of the laser in 1961. The first laser was built by Theodore H.

Maiman using a synthetic ruby rod[13]. The first nonlinear optical effect was observed

by Franken, et al, in 1961 when harmonic generation was produced by passing the pulse

of a ruby laser through a quartz crystal[14]. Nonlinear optical effects have since become

increasingly important and nonlinear optics has developed into an independent discipline

within the field of optics.

1.1 ULTRAFAST APPLICATIONS

The applicability of nonlinear spectroscopic techniques has been greatly enhanced by the

advent of the ultrafast laser. The term ultrafast is generally used to describe an event that

occurs in a picosecond or less. Beginning a decade after the introduction of the laser in

the 1960’s, ultrafast pulses were generated using organic dye lasers in research laborato-

ries. As lasers using solid-state materials capable of emitting a large spectral bandwidth

were optimized, pulses having a temporal width in the femtosecond (10−15 s) region, with

some pulses being below 10 fs, were produced[12]. It can be difficult for the layman to

appreciate the shortness of this timescale: 1 femtosecond is to 1 second as 1 second is

to 31,688,088 years. Femtosecond pulses achieved significant notice in the nonscientific

media with the awarding of the 1999 Nobel Prize in Chemistry to Ahmed H. Zewail for

using ultrafast measurements to explore the dynamics of chemical reactions involving very

short-lived transition species[17]. As commercially available lasers approach the theoret-

ical limit of pulse duration, 5 fs for an 800 nm pulse[12][16], the body of experimental

research using ultrafast technology grows accordingly.

1.2 INTRODUCTION TO NONLINEAR SPECTROSCOPY

When the strength of an external radiation field, such as an ultrafast pulse, incident on a

material is much smaller than the electric fields within the material itself, then the polar-
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ization induced in the material by the pulse can be expanded as a power series in the

electric field ~E[11],

~P = χ(1) · ~E + χ(2) : ~E ~E + χ(3)... ~E ~E ~E + ...

where χ(1), χ(2), and χ(3) are the linear, second order, and third order susceptibilities and

are second, third, and fourth rank tensors respectively.

For a nonmagnetic material all relevant material properties are encapsulated in the

polarization. The second order term is responsible for second harmonic generation, or

frequency doubling and sum- and difference-frequency generation. Materials such as liq-

uids, gases, amorphous solids, and many crystals do not exhibit any second order effects

due to inversion symmetry. In materials with inversion symmetry, the third order term

is the leading nonlinear term in the polarization. The third order term is responsible for

third harmonic generation, generating an intensity-dependent refractive index, and photon

echoes.

One of the major experimental techniques that uses the third order polarization is four-

wave mixing (FWM)[12]. FWM gets it name from three waves having frequencies ω1, ω2,

and ω3 interacting to generate a fourth wave with frequency ω4 = ω1±ω2±ω3. Four-wave

mixing will be discussed further in Chapter Three.

An outline of this thesis is as follows: The second chapter of this thesis will provide

a method for numerically calculating the third order polarization signal and will describe

results calculated on a model system. The third chapter will present the experimental set-

up, sample description, experimental results, and a comparison to the model calculation.

The final chapter will present the conclusions of this thesis.
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CHAPTER 2

CALCULATION OF THE NONLINEAR OPTICAL RESPONSE FUNCTIONS

The doped inorganic crystal Y2SiO5:Ce3+ which is the focus of this thesis can be par-

titioned in the following manner: the system, which describes a subset of the electronic

energy levels of the Ce3+ dopant, and the bath, which describes the vibrational modes of

the host crystal. When an external radiation field such as an ultrafast optical pulse resonant

with a Ce3+ transition interacts with the material, an ensemble of electronic superposition

states c1|g〉+ c2|e〉 is created (Figure 2.1). When the system and bath interact, i.e. by the

scattering of phonons off the electronic states, the coherence of the ensemble is lost. The

processes responsible for the loss of coherence are termed dephasing processes.

Optical dephasing is often described in terms of the optical Bloch equations, which

are optical analogues of the (nuclear magnetic resonance) Bloch equations. The Bloch

equations were originally derived to describe the evolution of a nuclear spin 1
2

system

interacting with an external radiation field and a thermal bath. Extensions to the Bloch

equations enabled additional levels to be taken into account using the same formalism. In

the optical Bloch equations, population relaxation mechanisms such as nonradiative decay

result in a longitudinal relaxation time, denoted T1. The lifetime of a coherent superpo-

sition state, or rather the time during which coherence is maintained between states, is

called the transverse relaxation time, and is denoted T2[1]. When the fluctuation time of

the bath is slow compared to the characteristic timescale of the experiment, the dephasing

is said to be inhomogeneous. When the fluctuation of the bath is very fast compared to the

7
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Figure 2.1: A Superposition State between the Ground State and First Excited State



9

characteristic timescale of the experiment, the dephasing leads to homogeneous broad-

ening. Under some experimental conditions, inhomogeneous dephasing can be reversed,

resulting in a photon echo.

The Bloch equations have several limitations: (i) Only the electronic degrees of

freedom (the system) that interact with the external radiation field are included, requiring

the system-bath interactions which are responsible for dephasing to be treated phe-

nomenologically. Systems where the broadening is intermediate between inhomogeneous

and homogeneous cannot be treated accurately with the Bloch equations. (ii) Effects due

to vibrational quantization of the bath degrees of freedom, i.e. zero point motion, are not

included. (iii) Identical ground state and excited state potential surfaces are assumed.

Despite their limitations, the Bloch equations provide a useful starting point for the

description of Y2SiO5:Ce3+. More general approaches include the Brownian oscillator

model[2] and semi-classical simulations[3]. In this chapter the Bloch model is described

following the treatment by Joffre[6].

2.1 FUNDAMENTALS

In quantum mechanics, a system can be described by a state vector, |ψ(t)〉, the time-

evolution of which is described by the time-dependent Schrödinger equation

d

dt
|ψ(t)〉 = − i

h̄
H|ψ(t)〉. (2.1)

It is often convenient to expand the state vector in a basis set which consists of eigenstates

of the Hamiltonian, H|φn〉 = En|φn〉, i.e.

|ψ(t)〉 =
∑

n

|φn〉〈φn|ψ(t)〉 (2.2)

where
∑

n |φn〉〈φn| = 1, cn = 〈φn|ψ(t)〉, and |cn|2 is the probability of finding |ψ(t)〉 in

state |φn〉.
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The density operator, ρ(t) = |ψ(t)〉〈ψ(t)|, can be expressed in the same basis, ρ(t) =

∑

nm cnc
∗

m|φn〉〈φm|, and obeys the Liouville equation,

d

dt
ρ(t) = − i

h̄
[H, ρ(t)] (2.3)

The expectation value of an arbitrary operator O, 〈O〉 = 〈ψ(t)|O|ψ(t)〉, can be calcu-

lated using the density operator as 〈O〉 = Tr(Oρ(t)).

A system comprised of many identical particles is denoted an ensemble. If all of the

particles in the system are in the same quantum state, then the system is said to be in a pure

ensemble or pure state. A pure state can be represented by a single ket. If some fraction

of the particles are characterized by a different ket, it is said to be in a mixed ensemble or

mixed state[5]. If a particular state |ψi(t)〉 occurs Ni times in an ensemble comprised of

particles in N total states, then the density matrix for that mixed state is

ρ(t) =
∑

i

wi|ψi(t)〉〈ψi(t)|

where wi = Ni/N is the weighting factor for |ψi(t)〉 and
∑

i wi = 1. If the states |ψi(t)〉

are orthogonal, the weight wi = Ni/N = 〈ψi(t)|ρ(t)|ψi(t)〉 is also the probability of

finding the ensemble in the state |ψi〉. The ensemble average of an arbitrary operator O

for a system in a mixed ensemble is also given by Tr(Oρ(t)).

For a large ensemble the Schrödinger equation becomes highly complex and unwieldy

because all the details of the particles within the ensemble must be known. An advantage

of the density operator is (i) complete knowledge of the wavefunction is not needed, and

(ii) a reduced density operator rather than the full density operator can be used in calcu-

lations.

The Hamiltonian which describes the sample can be partitioned into four sections: (1)

the system Hamiltonian, HS , which usually describes the electronic states of interest, (2)

the interaction Hamiltonian, Hint, which describes the interaction of the system with the

external electric field, (3) the bath Hamiltonian, HB , which describes the reservoir, and
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(4) the system-bath Hamiltonian, HSB, which describes the coupling between the system

and the bath. For Y2SiO5:Ce3+, the system is the electronic states of the Ce3+ dopant and

the bath is the vibrational modes of the Y2SiO5 crystalline host.

The system and bath are described by eigenstates of their respective Hamiltonians. We

take the eigenstates ofHS to be |ηn〉 and the eigenstates ofHB to be |ξµ〉. After interaction,

the general state would be

|ψ(t)〉 =
∑

n,µ

CnCµ|ηn〉|ξµ〉

where |ηn〉|ξµ〉 from a complete direct product basis in the Hilbert space of the combined

system and bath.

If we wish to know the ensemble average of an observable which depends only on the

system degrees of freedom, and not on the bath degrees of freedom, we can sum over the

eigenstates of the bath and obtain a reduced density operator

ρ̃(t) ≡
∑

µ

〈ξµ|ρ(t)|ξµ〉

with matrix elements

ρ̃(t)nn′ =
∑

µ

〈ηn|〈ξµ|ρ(t)|ξµ〉|ηn′〉 = TrB(〈ηn|ρ(t)|ηn′〉)

where TrB is a partial trace over only the bath degrees of freedom.

The ensemble average of an operator depending only on the system eigenstates using

the reduced density operator can be shown to be equivalent to the expectation value using

the full density operator.

Tr(ρ(t)O) =
∑

nµ

〈ηn|〈ξµ|ρ(t)O|ηn〉|ξµ〉 (2.4)

=
∑

nµ

∑

n′µ′

〈ηn|〈ξµ|ρ(t)|ξµ′〉|ηn′〉〈ηn′|〈ξµ′|O|ξµ〉|ηn〉

=
∑

nµ

∑

n′

〈ηn|〈ξµ|ρ(t)|ξµ〉|ηn′〉〈ηn′|O|ηn〉

=
∑

nn′

〈ηn|ρ̃(t)|ηn′〉〈ηn′|O|ηn〉
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=
∑

nn′

ρ̃nn′(t)On′n

= Tr(ρ̃(t)O)

Thus the observables of the operators acting on the system can be described entirely by

the trace over the system eigenstates of the reduced density operator ρ̃(t)[5].

2.2 THE POLARIZATION EXPANSION

In the Maxwell equations, which describe electromagnetic phenomena, the polarization is

the only observable quantity that contains information on the nonmagnetic material, i.e.

all processes in a nonmagnetic material can be studied according to how they affect the

polarization.

When the strength of an external radiation field incident on a material is much smaller

than the electric fields within the material itself, then the polarization induced in the mate-

rial by the pulse can be expanded as a power series in the electric field [11],

~P = χ(1) · ~E + χ(2) : ~E ~E + χ(3)... ~E ~E ~E + · · · (2.5)

= P (1) + P (2) + P (3) + · · ·

where χ(n) is the nth order susceptibility. The susceptibility, a frequency domain func-

tion, is related to the Fourier transform of the response function, a time domain function,

denoted S(n)(tn, . . . , t2, t1). In this case the nth order polarization is given by

P (n)(t) =
∫

∞

0
dtn

∫

∞

0
dtn−1 · · ·

∫

∞

0
dt1S

(n)(tn, tn−1, · · · , t1)

E(t− tn)E(t− tn − tn−1) · · ·E(t− tn − tn−1 − · · · t1)

The experiment described in this thesis is performed in the time domain, and thus the third

order polarization will also be calculated in the time domain.

All relevant material properties can be described by Eq 2.5. The first order term gives

the strength of the induced polarization within the material and is responsible for the
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refractive index and absorption. The second order term is responsible for second harmonic

generation, or frequency doubling, as used in the Nd3+:YVO4 laser used in this experi-

ment, and also sum- and difference-frequency generation. Materials such as liquids, gases,

amorphous solids, and many crystals do not exhibit any second order effects due to the

presence of inversion symmetry. In materials with inversion symmetry, the third order

term is the leading nonlinear term in the polarization. The third order term is responsible

for third harmonic generation, the generation of an intensity dependent refractive index,

four-wave mixing effects, and photon echoes, which are closely related to this experiment.

The polarization is the sum effect of the molecular dipoles contained in the material.

In quantum mechanics, the dipole operator for a member α of a dilute ensemble of chro-

mophores in the Schrödinger picture is

V (r) = qα(r− rα). (2.6)

where qα is the electronic charge and rα is the position operator. The polarization is

described by the ensemble average of the dipole operator,

P (r, t) = Tr (V (r)ρ(t)) . (2.7)

2.3 THE BLOCH MODEL

The treatment in this section closely follows that of Joffre[6]. Note that in this section,

all calculations are done with the reduced density operator; to simplify the notation, the

reduced density operator ρ̃(t) is written as ρ(t).

In the Bloch model the reduced density operator obeys the following equation

ih̄
d

dt
ρ(t) = [HS, ρ(t)] + [Hint, ρ(t)] + ih̄

∂

∂t
ρ(t)

∣

∣

∣

relax
. (2.8)

Here HS is the unperturbed system Hamiltonian having eigenstates En

HS|φn〉 = En|φn〉,
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Hint = −V E(t) is the electric dipole interaction Hamiltonian describing interaction of

the system with the incident pulses E(t), and V is the electric-dipole operator. The last

term of the equation corresponds to the interaction of the material with the bath, which

leads to relaxation, with matrix elements of the form

∂

∂t
ρ(t)

∣

∣

∣

relax
= −Γnm(ρnm(t)− ρ(0)

nm).

When n 6= m, Γnm = 1/T2 is denoted the dephasing rate, and when n = m, Γnm = 1/T1

is denoted the population relaxation rate. The density operator at thermal equilibrium is

ρ(0) where ρ(0)
gg =1, since only the ground state is populated. Our relaxation term for any

matrix element other than ρgg

∣

∣

∣

relax
simplifies to

∂

∂t
ρnm(t)

∣

∣

∣

relax
= −Γnmρnm(t).

The equation of motion for elements of the density matrix is

(

i
d

dt
− ωnm + iΓnm

)

ρnm(t) = −E(t)

h̄

∑

l

[Vnlρlm(t)− ρnl(t)Vlm]. (2.9)

where ωnm = (En − Em)/h̄. The Green function for the above equation is

Gnm(t) =
i

h̄
Θ(t)e−iωnmt−Γnmt

with the Fourier transform

Gnm(ω) =
i/h̄

ω − ωnm + iΓnm

.

Using Fourier transform techniques, the solution of Eq 2.9 is

ρnm(t) = Gnm(t)⊗
(

E(t)
∑

l

[Vnlρlm(t)− ρnl(t)Vlm]
)

(2.10)

where ⊗ represents convolution.
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2.3.1 THE DENSITY OPERATOR EXPANSION

Because the external electric field is weak, the density operator is expanded perturbatively

in the electric field

ρ(t) = ρ(0) + ρ(1)(t) + ρ(2)(t) + ρ(3)(t) + . . . (2.11)

where ρ(0)
gg = 1 and ρ(0)

nm = 0 for all other states. By substituting Eq 2.11 into Eq 2.10, and

collecting terms of different orders, the nth term of the expansion is be found to be

ρ(n)
nm(t) = Gnm(t)⊗

(

E(t)
∑

l

[Vnlρ
(n−1)
lm (t)− ρ

(n−1)
nl (t)Vlm]

)

,

which can be iterated.

2.3.2 THE TWO-LEVEL SYSTEM

Y2SiO5:Ce3+ can be described by a two-level system with the ground state |g〉 and the

excited state |e〉. Since Y2SiO5 possesses a center of inversion, the dipole operator is of

the form

V =









0 Veg

Vge 0









where Vge = V ∗

eg. The first order term in the expansion of the density matrix is

ρ(1)
eg (t) = VegGeg(t)⊗ E(t) = ρ∗(1)ge (t).

where ρ(1)
gg = ρ(1)

ee = 0. The second order terms are limited to containing only the off-

diagonal first order terms, and therefore only the two diagonal second order terms survive:

ρ(2)
ee (t) = −|Veg|2Gee(t)⊗

[

E(t)
(

Gge(t) +Geg(t)
)

⊗ E(t)
]

(2.12)

ρ(2)
gg (t) = |Veg|2Ggg(t)⊗

[

E(t)
(

Geg(t) +Gge(t)
)

⊗ E(t)
]

.

The third order terms needed to describe the system can now be found and will contain

only the ρ(2)
ee (t) and ρ(2)

gg (t) terms,

ρ(3)
eg (t) = Geg(t)⊗

[

E(t)
(

Vegρ
(2)
gg (t)− ρ(2)

ee (t)Vgg

)]
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Because Tr(ρ(t)) = 1, the initial condition Tr(ρ(0)(t)) = 1 for our system forces

Tr(ρ(2)(t)) = 0. Then ρ(2)
gg (t) = −ρ(2)

ee (t), simplifying ρ(3)
eg (t) to

ρ(3)
eg (t) = −2Geg(t)⊗

(

E(t)Vegρ
(2)
ee (t)

)

(2.13)

= 2|Veg|2VegGeg(t)⊗
{

E(t)
[

Gee(t)⊗
[

E(t)(Gge(t) +Geg(t))⊗ E(t)
]]}

Since the density matrix is Hermitian, ρ(3)
ge (t) = ρ(3)∗

eg (t).

The external field E(t) is real, and can be expressed in terms of a complex field E(t),

i.e.

E(t) =
E(t) + E∗(t)

2
. (2.14)

Applying the rotating wave approximation, i.e. keeping only the terms which are res-

onant, the sixteen terms resulting from substituting Eq 2.14 into ρ(3)(t) are reduced to

four. The double-sided Feynman diagrams[7] of these four terms are given in Figure 2.2.

Because we are studying a two-level system in which the population relaxation time is

much greater than the experimental time-scale, we set Γee = Γgg = 0 in this case, and

R1=R4 andR2=R3. Of these two remaining terms, onlyR2 (=R3) generates a photon echo;

it is this term that is explored in this work. The appropriate third order matrix element of

the density operator described by R2 is

ρ(3)
eg (t) = −Veg|Veg|2

4
Geg(t)⊗

{

E3(t)
[

Gee(t)⊗
(

E2(t)[G
∗

eg(t)⊗ E∗1 (t)]
)]}

(2.15)

where E∗1 (t), E2(t), and E3(t) are the contributing components of pulses E1(t), E2(t), and

E3(t).

The polarization is the ensemble average of the electric dipole operator. By expanding

the density matrix perturbatively in the electric field, we find the third order polarization

as the trace of the dipole operator with the third order density matrix,

P (3)(t) = Tr(V ρ(3)(t)).

The third order polarization is a triple integral in time involving Green functions and the

interaction Hamiltonian. In the Bloch model the triple integral can be written in terms of
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Figure 2.2: Feynman Diagrams of the Rotating-Wave Approximation.
Diagrams taken from Shaul Mukamel, Principles of Nonlinear Optical Spectroscopy,

(Oxford University Press, London, 1995), p. 298.
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three convolutions because the response function can be factored. The convolutions can

be carried out more efficiently using fast Fourier transform techniques than evaluating the

triple integral directly.

The double-sided Feynman diagram for R2 in Figure 2.2 describes a system which

begins in the ground state, |g〉〈g|, is then acted on by a field to the left (with wave-vector

k1) which puts the system in a superposition state, |g〉〈e|. This state is evolved in time by

the matter green function Gge(t1) until the system is perturbed by a second field acting

to the right (with wave-vector k2). The system is now in a population state, |e〉〈e|, which

evolves according to the green function Gee(t2). A third field perturbs the system, acting

on the left (with wave-vector k3), putting the system back into a superposition state, |e〉〈g|,

which evolves in time according to the green function Geg(t3). A signal described by

wave-vector ks is then emitted in the ks = k3 + k2 − k1 direction, having frequency

ωs = ω3+ω2−ω1. In the two-beam degenerate four-wave mixing described by this thesis,

the wave-vector and frequency terms simplify to ks = 2k2 − k1 and ωs = 2ω2 − ω1 = ω1

respectively.

The evaluation of the polarization using the convolution is greatly simplified for our

two-level system. The 2× 2 matrix obtained by operating the electric dipole operator on

the third order density matrix has the form

V ρ(3)(t) =









Vgeρ
(3)
eg (t) 0

0 V ∗

geρ
(3)∗
eg (t)









.

The third order polarization is the trace of this matrix,

P (3)(t) = Vgeρ
(3)
eg (t) + V ∗

geρ
(3)∗
eg (t) = 2Re(Vgeρ

(3)
eg (t)). (2.16)

For a homogeneously broadened system, the four-wave mixing signal as a function of

delay τ can be calculated using

Ssig(τ) ∝
∫

∞

0
|P (3)(t, τ)|2dt. (2.17)
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For an inhomogeneously broadened system, the total polarization is the sum of inde-

pendent two level systems whose transition frequencies ωeg are weighted by g(ωeg), a

Gaussian distribution. The four-wave mixing (photon echo) signal can be calculated from

Eq 2.17 where P (3)(t, τ) is now the total polarization. Note that the τ dependence of

P (3)(t, τ) is implicit in the density matrix.

2.4 MODELLING THE POLARIZATION AND PHOTON ECHO

The model system is an electronic two-level system with T1 � T2, meaning the popula-

tion relaxation time, T1, is much longer than the dephasing time, T2. A nearly impulsive

radiation field with a very short pulsewidth (FWHM of 5 fs) and low frequency (3000

cm−1) was used in the model calculation in order to reduce computer time.

The polarization was found directly by computing the expression in Eq 2.16 using

the program given in Appendix A. Polarization components for five frequency compo-

nents within the inhomogeneous broadening bandwidth are given in Figure 2.3. The delay

between pulse one and two was fixed at 50 fs for these calculations, with pulse two occur-

ring at t = 0. We note that the five polarization components remain out of phase until 50

fs, the time after pulse two which equals the delay between pulse one and pulse two. At

50 fs, all the polarization components are seen to be in phase, creating the photon echo.

The photon echo was found by summing the calculated polarization components from

200 frequency components contributing to the inhomogeneous broadened line according

to the program given in Appendix B. Calculations of the photon echo illustrate the

behavior of the echo as the delay between pulses k1 and k2 = k3 is varied, as shown in

Figure 2.4. As expected, the photon echoes occur at a time interval after the arrival of k2

equal to the delay between k1 and k2. As the delay increases, the amplitude of the photon

echo signal decreases. When the change in amplitude is graphed with respect to delay

time, an exponential decay of e−t/T2 results.
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Figure 2.3: Polarization components for five frequencies within the inhomogeneous
broadening bandwidth, zero phonon line at 3000 cm−1.

(a) 2500 cm−1, (b) 2750 cm−1, (c) 3000 cm−1, (d) 3250 cm−1, (e) 3500 cm−1



21

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200

t (fs)

-1

0

1

P(
t)

 (
ar

b.
 u

ni
ts

)
(a)

(b)

(c)

Figure 2.4: Photon echoes calculated at three delays between pulses 1 and 2.
(a) 25 fs delay, (b) 75 fs delay, (c) 125 fs delay



22

Calculations of the photon echo signal as a function of the delay τ between the pulses

will be presented and discussed at the end of Chapter Three.
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CHAPTER 3

EXPERIMENTAL ULTRAFAST DEGENERATE FOUR-WAVE MIXING

3.1 THE LASER SYSTEM

An actively modelocked Ti:Sapphire laser is used to generate ultrashort pulses on the order

of 70 femtoseconds. The system is composed of: (1) an intracavity doubled Nd:YVO4

solid state pump laser, and (2) an actively modelocked ultrafast titanium sapphire laser

followed by an optional frequency doubler. Characterization equipment includes an auto-

correlator for measuring the pulse width, and a rotating grating spectrometer for moni-

toring the bandwidth. Each component is described in detail below.

3.1.1 ND:YVO4 PUMP LASER

The Nd:YVO4 laser (Spectra Physics Millennia [1]) is optically pumped by two fiber optic

bundles which propagate the output of two GaAlAs diode laser bars lasing at 809 nm.

Each diode laser bar is capable of 20 W power output but is operated at only 75% of the

maximum power output to increase longevity and to enable stabilization of the Nd:YVO4

laser. Operating at less than full power allows for minor misalignment of the Nd:YVO4

laser to be compensated for by increasing or decreasing the electric current to the diodes.

The usefulness of this feature was observed when the lenses focusing the diode emission

into the fiber optic bundles became misaligned, resulting in reduction of the pumping

efficiency. The attempts by the feedback system to correct the power deficiency resulted

in dramatic current increases recorded to the diodes and provided a clue as to the source

23
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Figure 3.1: Four-Level Lasing System of the Nd3+ ion

of the problem. The increase in current was capable of counterracting the misalignment

problem until the misalignment became severe.

The neodymium yttrium vanadate (YVO4:Nd 3+) laser is operated in a continuous

working (CW) mode. YVO4:Nd3+ is a four level laser as can be seen from Figure 3.1.

A four level system enables a population inversion to be maintained, thus allowing con-

tinuous working operation. Nd3+ has a strong absorption band at 860 nm, which is over-

lapped by the diode laser emission. The optically excited electrons rapidly nonradiatively
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decay from the 4S 3

2

, 4F 7

2

, 2H 9

2

, and 4F 5

2

levels to the 4F 3

2

level and radiatively decay to the

4I 11

2

state, lasing at 1064 nm. From the 4I 11

2

state they relax rapidly to the 4I 9

2

ground state.

The combination of the relatively long lifetime at the 4F 3

2

storage level (60 µs) and the

rapid relaxation to the ground level creates a population inversion and therefore an ideal

lasing transition.

The 1064 nm emission is intracavity doubled using a lithium triborate (Li3BO3) non-

linear mixing crystal to generate a 532 nm continuous wave emission at a power of 5 W;

it is this laser emission that is used to pump the Ti:Sapphire laser.

3.1.2 TI:SAPPHIRE LASER

The ultrashort pulse laser (Spectra Physics Tsunami[2]) uses a Ti3+ doped sapphire

(Al2O3) crystal as its laser medium. The Ti3+ ions are strongly coupled to the vibrational

modes of the host resulting in broad emission bands. The absorption band extends from

400 nm to 650 nm, the peak occurring near 500 nm as shown in Figure 3.2. The emission

band extends from 600 nm to 1050 nm, but lasing only occurs to the red of 670 nm due

to overlap with the absorption band. Although the peak of the laser emission occurs at

790 nm, the laser has a tuning range from 690 nm to 1080 nm. The experiments described

in this thesis were performed using pulses with wavelength 790 nm which were then fre-

quency doubled. A 3.66 m pathlength is created in an enclosure smaller than 1 m through

the use of a folded cavity. A prism is used to spectrally disperse the beam, allowing a

variable slit to be used to tune the bandwidth. Bandwidths smaller than 11 nm cause

significant pulse lengthening while bandwidths larger than 27 nm lead to instability of

the laser. After bandwidth selection, the beam is sent through a second prism to reverse

the spectral dispersion of the first prism. Modelocking of the laser is accomplished using

an acousto-optic modulator. The resulting pulses have a temporal width of nominally 70

femtoseconds with a repetition rate of 82 MHz, yielding an average power of ∼800 mW.

Though the energy of each pulse is very small, on the order of 10−8 J, the peak power
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Figure 3.2: Absorption and Emission Spectra of Al2O3:Ti3+

(From Ref. [2])
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is high (∼140 kW) due to the short temporal width. The ultrafast laser emission is ana-

lyzed using a fast photo diode, a real time spectrometer, and an autocorrelator. The laser

emission can be frequency doubled to create ultraviolet light at 395 nm.

Laser power is monitored by a power meter placed at the output coupler. Usually

adjustments are made only to the prisms and tuning slit to obtain the highest power read-

ings. Very low laser power and instability are corrected by adjusting the placement of the

internal steering mirrors of the laser.

A beam splitter directs a small portion of the pulsing output into a fast photodiode.

The readings of the photodiode are shown on an oscilloscope and reveal the stability of

the pulsetrain. If a strong and stable pulse is not consistently seen, then the Ti:Sapphire

laser should be optimized to increase both power and stability. Once optimized, the design

of the laser provides stable operation under consistent environmental conditions for over

the period of a day, and requires only prism and slit adjustments to maintain power and

stability beyond that time period.

3.1.3 PULSEWIDTH MEASUREMENT

An indirect measurement of the pulsewidth is obtained using an autocorrelator (Spectra

Physics Model 409[3]). The autocorrelator splits the incoming beam and uses a rotating

block of fused silica placed in the path of both beams to create a variable difference

in the optical pathlength. The difference in pathlength ∆L of one beam is given by the

expression

∆L = 2d(
√

n2 − sin2 θ − cos θ + 1− n)

where d and n are the thickness and index of refraction of the block respectively. The

beams are aligned onto the rotating block at complementary angles, resulting in a differ-

ence in pathlength between the two given by

∆Lθ = 2d[(
√

n2 − sin2 θ − cos θ)− (
√
n2 − cos2 θ − sin θ)]
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As the block rotates, the beams travel in opposite directions, alternating between max-

imum and minimum pathlength distances: When one beam is at a maximum, the other is

at a minimum. When both beams are incident on the block at an angle of 45◦, the two path-

lengths are equal and the pulses are temporally overlapped. The beams are then focused

by a lens and spatially overlapped inside a frequency doubling crystal. The autocorrelator

signal is seen when the beams are both spatially and temporally overlapped within the

frequency doubling crystal. The autocorrelator signal is of the form

C(τ) = lim
T→∞

1

T

∫ t′+T

t′
x(t)x(t + τ)dt

where τ is the difference in temporal pathlengths and T is the time interval of the data

scan[4]. The signal is filtered by an ultraviolet band pass filter and directed into a pho-

tomultiplier tube housed within the autocorrelator. The resulting signal is viewed on an

oscilloscope. The fused silica block rotates 30 times per second, resulting in 60 signals

per second being sent to the oscilloscope. The pulsewidth of the autocorrelation signal is a

function of the pulse shape, and the true FWHM ∆σ of the sech2( t
∆Σ

) laser pulse (where

∆Σ is the pulsewidth) is scaled by a factor of s=0.65 of the autocorrelation trace,

∆σ = s∆σ′

where ∆σ′ is the FWHM of the signal as shown on the oscilloscope.

A fixed delay of 2∆d′n′/c is introduced into one of the pathlengths by placing a cal-

ibrating etalon within the beampath in a position where the beam will travel through it

twice. The etalon has a thickness of ∆d′ and an index of refraction of n′. The temporal

FWHM of a pulse ∆σ is found from the oscilloscope readings by the following calcula-

tion:

∆σ =
∆σ′

∆p

2∆d′n′

c
s

where ∆p is the distance between adjacent pulses as measured on the oscilloscope and

c is the speed of light. For the autocorrelator used in this work, 2∆d′n′/c = 310 fs.
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An example of the autocorrelation trace with and without the etalon delay is given in

Figure 3.3.

3.1.4 BANDWIDTH CHARACTERIZATION

The spectral bandwidth of the ultrashort pulses is measured by directing a small fraction of

the laser emission into a laser spectrum analyzer (IST-REES E200 series). This instrument

enables the spectrum of the laser to be monitored in real time, facilitating optimization of

the laser. A diffraction grating inside the instrument spins at a rate of 18 revolutions per

second, continually scanning the spectrum. The output is viewed on an oscilloscope in real

time. The bandwidth is measured by calculating the FWHM of the spectrum displayed on

the oscilloscope to an accuracy of ±0.3 nm as shown in Figure 3.4. The laser is adjusted

so that the bandwidth is in the range of 12 to 23 nm.

3.2 EXPERIMENTAL CONSIDERATIONS

3.2.1 Y2SIO5 :CE3+

Y2SiO5 is a monoclinic crystal that belongs to the C6
2h space group[5]. Each unit cell

contains eight molecules, and the Ce3+ cations occupy two inequivalent crystallographic

sites within the cell. It is not known which site is preferred by the cations, which are

considered to be distributed randomly in the host.

Trivalent cerium has the electronic configuration [Xe]4f1. The energy gap between the

ground state and the lowest 5d orbital is large, ranging from 20,000-35,000 cm−1. The

ground state in free radical form is split by spin-orbit effects. When surrounded by the

crystal field of a host, the two levels are split further. Excitation occurs from the 4f ground

level to the 5d level. An energy level diagram is given in Figure 3.5.

Y2SiO5:Ce3+ is a rapid response blue phosphor[6][7][8] having a decay to 10% time

of 120 ns and is mainly used for electron detection in scientific instruments such as mass
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spectrometers and electron microscopes. Its resistance to ultraviolet and fluid damage also

makes it useful in high energy scientific instruments[9].

The sample used in this research was a small plate that was optically polished on the

two largest faces using 5 µm diamond grit. The dimensions of the polished sample were

2.5 mm × 1.5 mm × 0.1 mm.

The excitation and emission spectra for the sample were taken using a spectrofluo-

rometer system (Jobin Yvon-SPEX Fluoromax-2) at room temperature and are given in

Figure 3.6. Peak excitation occurs at 350 nm, and peak emission at 400 nm. Emission is

broadband, extending from 400 to 420 nm. The shift between the excitation and emission

spectrum is called the Stokes shift and is a measure of the electron lattice coupling.

3.2.2 INTRODUCTION TO NONLINEAR SPECTROSCOPY AND DEGENERATE FOUR-

WAVE MIXING

One of the major experimental techniques that takes advantage of the third order suscepti-

bility is four-wave mixing (FWM)[12][13]. This technique which can be used to measure

both population decay and electronic dephasing includes a variety of nonlinear optical

experiments such as photon echoes.

Three laser pulses having wave-vectors k1,k2, and k3 interact at the sample to produce

a fourth signal with a wave-vector in the k4 = k1 ± k2 ± k3 direction. The frequencies of

the three pulses add with the same sign as the wave vectors. The three interacting waves

therefore generate a fourth wave with frequency ω4 = ω1 ± ω2 ± ω3 in the direction

specified by the wave vectors.

There are several variations of the basic FWM experiment. FWM signals can be

described in either the frequency domain or time domain. For ultrashort pulses which

have a broad frequency spectrum, the time domain description is more appropriate. In

time domain FWM, the behavior of the third pulse as the delay time between the first two

pulses is varied provides us with information about population decay time, or dephasing
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room temperature.
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time. By choosing the polarization combination of the incoming pulses, it is possible to

measure different components of the nonlinear susceptibility tensor, and create different

types of electronic polarizations within the material. In addition, the direction of the signal

chosen for observation can be varied according to the characteristics of the system. The

diffracted signal can be measured in the forward direction (transmission geometry) or in

the backward direction (reflection geometry). The reflection geometry is valuable for thin

films where the absorption of the substrate would make the forward signal weak, and thus

difficult to measure[12]. By varying the propagation directions of the incoming beams,

different experiments can be performed. For example, having two pump beams approach

the sample from opposite sides, followed by a third beam incident on the medium in a

different direction, results in the phase conjugate of the third beam. When the phase con-

jugated beam passes through the same aberrating medium the third wave passed through,

aberrations in the third beam are removed. In this type of experiment, the two pump beams

can be used to remove aberrations of waves passing through an external medium[11].

When all three pulses originate from the same laser, then they are of equal frequencies,

leading to the simplest type of FWM, termed degenerate four-wave mixing (DFWM).

In addition, k2 and k3 can originate from the same beam, simplifying the geometry to

two-beam DFWM. The resulting signal wave-vector is 2k2 − k1 and the resulting signal

frequency is 2ω2 − ω1 = ω1 (see Figure 3.7). Two-beam DFWM is the technique used

in this thesis. In this experiment the three pulses can be considered to interact in the

following way: The first pulse, k1, creates an electronic superposition state, creating a

time varying polarization. A second pulse, k2, arrives at the sample after a fixed delay

time, and modulates the polarization created by k1. This polarization then radiates the

signal field. If the delay time between the first and second pulse is less than the time

required for the sample to lose its phase memory due to system-bath interactions, termed

the dephasing time, no nonlinear signal will be observed.
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A particularly simple form of DFWM which is often a useful model for interpreting

the experiment is the transient grating. Two beams incident on the sample at an angle with

respect to each other cause an interference patterns. Bright areas where the two beams

interfere constructively will cause electronic transitions to a resonant excited state. Dark

areas where the two beams interfere destructively will result in the electronic population

remaining in the ground state, resulting in a population grating. The third pulse, k2 again,

then arrives at the sample and is diffracted by the population grating. The signal generated

by the third pulse provides information on the population lifetimes.

3.2.3 DFWM EXPERIMENTAL SET-UP

A schematic of the experimental setup is shown in Figure 3.8. The output of the

Ti:Sapphire laser is divided by a 50% beamsplitter into two paths. One path contains

a high precision translation stage (Newport UTMPP.1), allowing for a delay in the optical

path of up to 4 inches with a precision of 0.1 µm. An iris is placed immediately in front of
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the beam splitter. In addition, a second and third iris are placed at the end of each pathway,

immediately in front of the focusing lens. Because even a small change in pathlength of

one path can drastically effect the temporal overlap area of 70 fs pulses, the use of these

irises enables the beam paths to be reproduced from day to day, counteracting the effects

of mirror drift and changes resulting from laser alignment.

Before focusing, the two beams are “chopped” at different frequencies by a optical

chopper wheel (Stanford Research Systems Model SRS540). The chopper wheel contains

an inner and outer set of blades, each set having a different number of apertures. One beam

is passed through each set of blades, ensuring a difference in the chopping frequencies of

the two beams. The chopper ensures that only a signal generated by a combination of the

two frequencies, and thus the two beams, is detected by the lock-in amplifier (Stanford

Research Systems Model SR380). Any scattering from either of the beams is chopped

only at the frequency of the source beam and is therefore discriminated against. Only

a signal resulting from the interaction of the two beams will be modulated at the sum

frequency, and therefore amplified. The two beams are then focused into the sample using

a short focal length, 3 cm, convex lens. Spatial overlap in the sample is achieved by placing

one steering mirror in each path after the third iris and before the focusing lens. The two

beams are aligned parallel over a distance of approximately 5 m, ensuring spatial overlap

when focused into the sample. Temporal overlap is most quickly achieved by using a

mirror to divert the aligned and focused beams into an Li3BO3 second harmonic crystal,

and adjusting the placement of the translation stage until the two focused beams produce

a single beam of frequency doubled light visible between them. Once temporal overlap is

achieved, the beams are again directed into the sample.

3.2.4 DETECTION

After the sample, all pump and signal pulses are collimated using a 7 cm focal length

convex lens. A fast photo diode (New Focus Model 1621) having a detection surface of
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1 mm2 is placed on a translation stage, allowing it to be moved from one signal pulse to

the other to select the signal for analysis. Laser scatter is reduced using an aperture.

3.2.5 DATA ACQUISITION PROGRAM

The three motion stages and the lock-in amplifier were interfaced through the General

Purpose Interface Bus (GPIB) and controlled by a microcomputer. The GPIB interface

allows up to fifteen devices to communicate through a central controller, regardless of the

individual manufacturer or device language. A program was written in Visual Basic to

simultaneously control the motion stages within the experimental set-up and data collec-

tion by the lock-in amplifier. This program provides a graphical user interface to enable

the user to set the parameters for each experimental scan, as listed below.

Motion Stages

• zero point, or home position

• initial position of scan

• starting and stopping acceleration

• starting and stopping velocity

• velocity during motion

• size of each step

• resolution of each step

• time allotted for settling after each step

• total travel length, in absolute or relative distance

Lock-In Amplifier

• form of output, (r, θ) or (x,y)

• triggering function
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• internal or external source for triggering

• default values

• number of data points collected and averaged per step

Data Display

• maximum and minimum values of each axis

• total data acquisition or portion of data acquisition displayed

• step unit desired

• total number of scans taken

The results were plotted in real time as the data was being taken, allowing the user to

abort a scan, if necessary. After data was acquired, the user could choose to limit the data

shown on the screen, and “zoom-in” on regions of interest. The values of the axes could

be varied both before and after data was taken. Data was saved in files named by the user.

This program is given in Appendix C at the end of this thesis.

3.3 RESULTS AND DISCUSSION

3.3.1 EXPERIMENTAL RESULTS

The intensity of the four-wave mixing signals in the 2k1 − k2 and 2k2 − k1 directions

was measured as a function of the delay time τ between the pulse with wave-vector k1

and the pulse with wave-vector k2. For a sample with a fast dephasing time relative to the

pulsewidth, the dephasing time of the sample can be studied by examining the shift

between the peaks of the 2k1 − k2 and 2k2 − k1 signals. In the initial experiments, the

four-wave mixing signals exhibited various peak shifts with no discernible pattern. It was

subsequently discovered that this effect was due to backlash in the translation stage

controlling the pathlength of k2. After compensating for this problem, Carl Liebig
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Figure 3.9: Two beam degenerate four-wave mixing signals measured on Y2SiO5:Ce3+ at
395 nm. Filled circles are 2k2−k1 signal. Open circles are 2k1−k2 signal. Data courtesy
of Carl Liebig.
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gathered data on the sample which illustrated no shift between the peaks as shown in

Figure 3.9.

3.3.2 MODELLING THE RESULTS

Four-wave mixing signals for the model system described in Chapter Two were

calculated from the program given in Appendix D.

The shape of the four-wave mixing signals calculated with dephasing times of 0.01 fs

and 2.5 fs (0.002×pulsewidth and 0.5×pulsewidth respectively) are very similar

(although with a slight shift), illustrating the difficulty in determining an accurate

dephasing time when T2 is much shorter than the laser pulsewidth. When the dephasing

time is equal to or longer than the pulsewidth, as shown in the echo signals calculated

with dephasing times of 5.0 fs and 10.0 fs (equal to and twice the laser pulsewidth

respectively) a noticeable asymmetry can be seen in the signal. Dephasing times which

are long relative to the external pulsewidth would give a signal with an exponential tail

with characteristic time T2 and would exhibit a peak shifted significantly from zero.

Dephasing times which are short relative to the external pulsewidth would give a signal

shape similar to the external radiation pulseshape obtained by an autocorrelation

measurement. Both the 0.01 fs and 2.5 fs dephasing time calculations and the

experimental data (see Figure 3.9) exhibit minimal shift and the pulseshapes of both are

identical to that of the laser as shown in Figure 3.3. It is therefore concluded that the

dephasing time of Y2SiO5:Ce3+ is significantly shorter than the laser pulsewidth of 70 fs.
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Figure 3.10: Echo signals as a function of delay calculated at various dephasing times
with a laser FWHM pulse of 5 fs.

(a) T2 = 0.01 fs, (b) T2 = 2.5 fs, (c) T2 = 5.0 fs, (d) T2 = 10.0 fs
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CHAPTER 4

CONCLUSIONS

The spectroscopic properties of Y2SiO5:Ce3+ were investigated at room temperature.

The sample was found to have a peak excitation at 350 nm and a broadband emission

between 400 and 420 nm. An ultrafast two beam degenerate four-wave mixing

experiment was set up and utilized to establish an lower limit on the dephasing time of

Y2SiO5:Ce3+ at room temperature at an excitation frequency of 395 nm. For these

experiments a Ti:sapphire laser was used to produce 790 nm pulses at a repetition rate of

82 MHz. Laser pulses were characterized using a rotating grating spectrometer to

determine the spectral bandwidth and using a rotating block autocorrelator to determine

the temporal pulsewidth. The laser pulses had a temporal pulsewidth of 60 to 80 fs and a

spectral bandwidth ranging from 12 to 23 nm, depending on the requirements of the

experiment; these pulses were then frequency doubled to 395 nm.

Experimental data using a laser pulsewidth of 70 fs revealed no shift between the

2k2 − k1 and 2k1 − k2 four-wave mixing signal peaks. In addition, the experimentally

obtained photon echo signals showed no obvious asymmetry. The experimental results

are consistent with calculations performed on a model system having a dephasing time

significantly shorter than the laser pulsewidth; as a result the dephasing time of

Y2SiO5:Ce3+ is concluded to be significantly shorter than the pulsewidth of the laser, i.e.

70fs. Since the dephasing rate T−1
2 provides a measure of the coupling of the electronic

system to the bath, this result indicates that the electron-lattice coupling is strong in this

system as is expected from the large Stokes shift.
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APPENDIX A

CALCULATING THE POLARIZATION COMPONENTS

program joffres_polarization
implicit none

c THIS PROGRAM IS A VARIATION OF MAIN PROGRAM
c BJOFFRE.F AND CALCULATES THE POLARIZATION
c FOR ONE FREQUENCY COMPONENT OF THE INHOMOGENEOUS
c BROADENING AT A FIXED TAUPRIME DELAY VALUE BETWEEN
c PULSE 1 AND PULSE 2. NOTES FOR POLARIZATION
c PROGRAM WRITTEN IN ALL CAPS. THIS PROGRAM IS A MODEL
c SO WEG IS NOT THE TRUE TRANSITION FREQUENCY
c OF CERIUM DOPED YTTRIUM SILICATE. THE PROGRAM
c MODELS POLARIZATIONS WHICH OCCUR AT AND SLIGHTLY OFF
c THE TRANSITION FREQUENCY.

c PARAMETERS FROM PARAMETER FILE:
c isteps=number of divisions to create in interval
c mystop-mystart when calculating values of
c density operators and P**2(t)
c mystart=time in fs at which your external radiation
c pulses first hit the sample, time at which
c Greens functions begin taking effect, must
c be greater than or equal to zero
c mystop= time at which external radiation stops
c hitting sample, Greens functions no longer
c have an effect in sample tau=delay between
c external pulses 2 and 3,should be zero
c w1=frequency of external radiation for all three
c pulses,in wavenumbers
c weg=zero phonon line of first order signal from
c sample,in wavenumbers
c hbar, k Planck,Boltzmann constant
c t1=T1, the eigenstate decay rate, relaxation of
c density operator
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c diagonal matrix elements
c t2=T2 dephasing rate, relaxation of density operator
c off-diagonal matrix elements
c fwhm=fwhm of external radiation pulse in fs

integer nmax,i,imax
real pi,sigma
parameter (nmax=524288,pi=3.14159)

real t,signalmax
$ ,isteps,mystart,mystop,w1,weg,tau,tauprime,hbar,k
$ ,rp3(nmax),ip3(nmax)
$ ,rp2(nmax),ip2(nmax),rp1(nmax),ip1(nmax)
$ ,rgeg(nmax),igeg(nmax),tsteps,t1,t2,fwhm
$ ,gegr,gegi,geer,geei

real rconv(nmax),iconv(nmax)
$ ,invrconv(nmax),inviconv(nmax)
$ ,invrgeg(nmax),invigeg(nmax)
$ ,rgee(nmax),igee(nmax),signal(nmax)
$ ,re1(nmax),ie1(nmax),invre1(nmax)
$ ,invie1(nmax),rfunc(nmax),ifunc(nmax)
$ ,re2(nmax),ie2(nmax),re3(nmax),ie3(nmax)
$ ,rdipge,idipge,elec

complex e1(nmax),e2(nmax),e3(nmax),inve1(nmax)
$ ,p1inv(nmax),polar(nmax)
$ ,conv,p3(nmax),geg,gee,p2(nmax),p1(nmax),dipge

common /values/ hbar,weg,t1,t2,mystop
common /times/ tsteps,tau,tauprime
common /elecvals/ w1,sigma
character*16 fname

rdipge=1.0
idipge=0.0
dipge=cmplx(rdipge,idipge)

read (*,*) isteps,mystart,mystop,tau
$ ,w1,weg,hbar,k
$ ,t1,t2,fwhm

c redefine wavenumber input into correct units
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c of frequency. calcs are done with frequencies
c in units of 1/ fs (1e15/s)

w1=2*pi*3e8*w1*1e-13
weg=2*pi*3e8*weg*1e-13

c sigma=pulsewidth of external radiation field in fs,
c fwhm/1.76

sigma=fwhm/1.76

c GF exists only for 1st half of total increments, so
c imax is set at .5 of total isteps

imax=int((isteps+1)/2)

c FIRST PULSE, E1, OCCURS AT -50FS COMPARED TO E2 AND E3
c FOR POLARIZATION CALC. FOR THE POLARIZATION CALC
c THE SECOND PULSE OCCURS AT A DELAY OF 50 FS
c POLARIZATION WILL BEGIN FROM POINT WHEN
c SECOND AND THIRD PULSE SET UP AND DIFFRACT THROUGH
c TRANSIENT GRATING.

tauprime= 50
tsteps=(mystop-mystart)/isteps

c establish initial arrays from which all convolutions
c will be composed

i=1
do i=1,nmax

c The characteristics of how convolutions are programmed
c require that the response functions are calculated so
c G(i=1) is evaluated at t=0 and elec funcs are calculated
c so E(i=1) is evaluated at mystart. The GF(t>0) are
c convoluted, however, with the E(t<0). Do not wait for
c t>0 to begin convoluting GF with E(t).

t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

c E1(T) IS CHANGED TO E1(T+TAUPRIME), CAUSING THE TIME AT
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c WHICH E1 OCCURS TO BE SHIFTED TO THE LEFT (EARLIER)
c BY TAUPRIME SO THAT E2, E3, AND GF WILL BE CALCULATED
c FROM T=0.

e1(i)=elec(t+tauprime)
$ *cmplx(cos(w1*(t+tauprime*0.)),
$ -sin(w1*(t+tauprime*0.)))

else
e1(i)=0.

endif
inve1(i)=conjg(e1(i))
invre1(i)=real(inve1(i))
invie1(i)=imag(inve1(i))

enddo

c Green functions must be calculated for t>0 only, but
c convoluted with E(t<0) values determined by value of
c mystart. To ensure that elements E(t)(i) begin at
c mystart, and elements G(i) begin at t=0, separate loop
c is needed to redefine t for array elements i when
c determining the Green function. GF do not care about
c time values. they care only that they are divided into
c the same number of intervals as the pulses, regardless
c of time values.

i=1
do i=1,nmax
t=(i-1)*tsteps
if (i.le.imax) then

rgeg(i)=gegr(t)
igeg(i)=gegi(t)
rgee(i)=geer(t)
igee(i)=geei(t)

else
rgeg(i)=0.
igeg(i)=0.
rgee(i)=0.
igee(i)=0.

endif
invrgeg(i)=-real(conjg(cmplx(rgeg(i)

$ ,igeg(i))))
invigeg(i)=-imag(conjg(cmplx(rgeg(i)

$ ,igeg(i))))
enddo
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c p1=invgeg*inve1 in freq space, FT[G(t)]*FT[E(t)]=
c G(w)*E(w)

call fft(invrgeg,invigeg,nmax,nmax,nmax,1)
call fft(invre1,invie1,nmax,nmax,nmax,1)

c FT[G(t)]*FT[E1(t)]=G(w)*E(w)

i=1
do i=1,nmax

invrconv(i)=real(cmplx(invrgeg(i),invigeg(i))*
$ cmplx(invre1(i),invie1(i)))

inviconv(i)=imag(cmplx(invrgeg(i),invigeg(i))*
$ cmplx(invre1(i),invie1(i)))

end do

c p1(t) obtained from FT[FT[Ginv(t)]*FT[Einv(t)]]

call fft(invrconv,inviconv,nmax,nmax,nmax,-1)

c E*FT[FT[Ginv(t)]*FT[Einv(t)]]=E*p1

i=1
do i=1,nmax

t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

c E2 CALCULATED AT T, A DELAY OF TAUPRIME LATER THAN E1.
e2(i)=elec(t)*

$ cmplx(cos(w1*t),
$ -sin(w1*t))

else
e2(i)=0.

endif
p1(i)=e2(i)*cmplx(invrconv(i),inviconv(i))
rp1(i)=real(p1(i))
ip1(i)=imag(p1(i))

end do

c find FT[E2(t)*p1(t)] and FT[G(t)]

call fft(rp1,ip1,nmax,nmax,nmax,1)
call fft(rgee,igee,nmax,nmax,nmax,1)
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i=1
do i=1,nmax

rconv(i)=real(cmplx(rgee(i),igee(i))*
$ cmplx(rp1(i),ip1(i)))

iconv(i)=imag(cmplx(rgee(i),igee(i))*
$ cmplx(rp1(i),ip1(i)))

enddo
c FT[FT[G(t)]*FT[E(2)(t) * p1(t)]]

call fft(rconv,iconv,nmax,nmax,nmax,-1)
do i=1,nmax
enddo
i=1

do i=1,nmax
t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

c E3 BEGINS AT T, A DELAY OF TAUPRIME LATER THAN E1.

e3(i)=elec(t)*
$ cmplx(cos(w1*t),
$ -sin(w1*t))

else
e3(i)=0.

endif
p2(i)=e3(i)*cmplx(invrconv(i),inviconv(i))
rp2(i)=real(p2(i))
ip2(i)=imag(p2(i))

enddo

c p3=FT[G(t)]*FT[conv(t)]. Geg calculated in the
c beginning of program.

call fft(rp2,ip2,nmax,nmax,nmax,1)
call fft(rgeg,igeg,nmax,nmax,nmax,1)

i=1
do i=1,nmax

rconv(i)=real(cmplx(rgeg(i),igeg(i))*cmplx(
$ rp2(i),ip2(i)))

iconv(i)=imag(cmplx(rgeg(i),igeg(i))*cmplx(
$ rp2(i),ip2(i)))

enddo
call fft(rconv,iconv,nmax,nmax,nmax,-1)

i=1
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do i=1,nmax
p3(i)=(-1)*cmplx(rconv(i),iconv(i))

c third order polarization=V(ge)*p3(eg)+
c invV(ge)*invp3(eg)=2Real(V(ge)p3(eg))

polar(i)=2*real(dipge*p3(i))
enddo

c THIS LOOP IS LIMITED TO RECORDING THE VALUES OF
c POLARIZATION (OR p3) FROM TIME VALUES OF -20 TO 150.

open(unit=88,file=’polarization.paw’)
do i=(-20-mystart)/tsteps+1,

$ (150-mystart)/tsteps+1
t=mystart+(i-1)*tsteps
write(88,*) t,real(p3(i))
enddo

close(88)
end

complex function gee(t)
implicit none

c green function in time domain
real hbar,gammaee,t,igee,rgee,weg,t1,t2,mystop
common /values/ hbar,weg,t1,t2,mystop
gammaee=1/t1
if (t.ge.0) then

gee=cmplx(0.0,exp(-gammaee*t)/hbar)
else
gee=cmplx(0.0,0.0)

endif
return
end

real function geer(t)
implicit none
real t
complex gee
if (t.lt.0) then

geer=0
else
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geer=real(gee(t))
endif
return
end

real function geei(t)
c gee has only imaginary parts

implicit none
real t
complex gee

if (t.lt.0) then
geei=0
else

geei=imag(gee(t))
endif

return
end

complex function geg(t)
implicit none

c green function in time domain
real hbar,t,weg,gammaeg,t1,t2,mystop
common /values/ hbar,weg,t1,t2,mystop
gammaeg=1/t2
if (t.ge.0) then

geg=exp(-gammaeg*t)*cmplx(sin(weg*t),cos
$ (weg*t))/hbar

else
geg=cmplx(0.0,0.0)

endif
return
end

real function gegr(t)
implicit none
complex geg
real t
if (t.lt.0) then

gegr=0
else
gegr=real(geg(t))

endif
return
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end

real function gegi(t)
implicit none
complex geg
real t
if (t.lt.0) then

gegi=0
else
gegi=imag(geg(t))

endif
return
end

real function elec(t)
implicit none

c real amplitude expression of electric field,
c E(t)=elec(t)eˆ(-iwt)

real t,tsteps,sigma,w1,sech,tau,tauprime
common /times/ tsteps,tau,tauprime
common /elecvals/ w1,sigma
elec=sech(t/sigma)
return
end

real function sech(t)
implicit none
real t
sech=2/(exp(t)+exp(-t))
return
end



APPENDIX B

CALCULATING THE PHOTON ECHO

program joffres_photonecho
implicit none

c Variation of main program bjoffre.f.
c Uses fast fourier transform method by Joffre
c to calculate photon echo signal at a fixed
c delay between pulses 1 and 2. Polarization
c signals are calculated for frequencies within
c the inhomogeneous broadening of the material.
c The polarization signals are then added together
c to generate a photon echo occuring at a time
c after the 3rd pulse equal to the delay between
c pulses 1 and 2.

c PARAMETERS FROM PARAMETER FILE:
c isteps=number of divisions to create in interval
c mystop-mystart when calculating values of
c density operators and P**2(t). Must be an integer.
c mystart=time in fs at which your external radiation
c pulses first hit the sample, time at which
c Greens functions begin taking effect, must
c be greater than or equal to zero
c mystop= time at which external radiation stops hitting
c sample, Greens functions no longer have an
c effect in sample
c tauprime=fixed delay between pulses 1 and 2.
c tau=delay between ext pulses 2 and 3,should be zero
c weg0=zero phonon line for transition freq in sample
c w1=frequency of external radiation pulse
c hbar, k Planck,Boltzmann constant
c t1=T1, the eigenstate decay rate, relaxation of
c density operator diagonal matrix elements
c t2=T2 dephasing rate, relaxation of density operator
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c off-diagonal matrix elements
c fwhm=full width half max time length of pulse of
c external radiation in fs
c minc=number of frequencies to include in the
c inhomogeneous broadening

integer nmax,i,m,minc,isteps
real pi,sigma,imax
parameter (nmax=524288,pi=3.14159)

real t,signalmax,wegmi,wegmf,deltaw,weight
$ ,mystart,mystop,w1,weg,weg0,tau,tauprime,
$ hbar,k
$ ,rp3(nmax),ip3(nmax)
$ ,rp2(nmax),ip2(nmax),rp1(nmax),ip1(nmax)
$ ,rgeg(nmax),igeg(nmax),tsteps,t1,t2,fwhm
$ ,gegr,gegi,geer,geei,photonecho(nmax)

real rconv(nmax),iconv(nmax)
$ ,invrconv(nmax),inviconv(nmax)
$ ,invrgeg(nmax),invigeg(nmax)
$ ,rgee(nmax),igee(nmax),signal(nmax)
$ ,re1(nmax),ie1(nmax),invre1(nmax)
$ ,invie1(nmax),rfunc(nmax),ifunc(nmax)
$ ,re2(nmax),ie2(nmax),re3(nmax),ie3(nmax)
$ ,rdipge,idipge,elec

complex e1(nmax),e2(nmax),e3(nmax),inve1(nmax)
$ ,p1inv(nmax),polar(nmax),rhototal(nmax)
$ ,conv,p3(nmax),geg,gee,p2(nmax),p1(nmax),dipge

common /values/ hbar,weg,t1,t2,mystop
common /times/ tsteps,tau,tauprime
common /elecvals/ w1,sigma
character*16 fname

rdipge=1.0
idipge=0.0
dipge=cmplx(rdipge,idipge)

read (*,*) isteps,mystart,mystop,tauprime,tau
$ ,w1,weg0,hbar,k,t1,t2,fwhm,minc
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c sigma=pulsewidth of external radiation field in fs
c sigma=fwhm/1.76 in units of param file

sigma=fwhm/1.76

c redefine wavenumber input into correct units of
c frequency calcs are done with frequencies in units
c of 1/ fs (1e15/s) wegmi (wegmf) is the initial
c (final) frequency from which inhomogeneous
c broadening is calculated.

w1=2*pi*3e8*w1*1e-13
weg0=2*pi*3e8*weg0*1e-13

wegmi=weg0-2*pi*3e8*800*1e-13
wegmf=weg0+2*pi*3e8*800*1e-13
deltaw=(wegmf-wegmi)/minc

c loop over i before beginning m loop to initialize
c each element of the total density matrix and photon
c echo signal.

do i=1,isteps
photonecho(i)=0.0
rhototal(i)=0.0
enddo

c loop over different frequency contributions weg to
c the inhomogeneous broadening bandwidth. Weighting
c factor weight will be multiplied to each frequency’s
c contribution to the density matrix element for each
c value of real time.

do m=1,minc+1
weg=0.0
weg=wegmi+(m-1)*deltaw
weight=exp(-((weg0-weg)/

$ (2*pi*3e8*500*1e-13))**2)

tsteps=(mystop-mystart)/isteps

c establish initial arrays from which all convolutions
c will be composed
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i=1
do i=1,isteps

c The characteristics of how convolutions are programmed
c require that the response functions are calculated so
c G(i=1) is evaluated at t=0 and elec funcs are calculated
c so E(i=1) is evaluated at mystart. The GF(t>0) are
c convoluted, however, with the E(t<0). Do not wait for
c t>0 to begin convoluting GF with E(t).

c e1 is calculated at e1(t+tauprime), meaning e1 will come
c tauprime fs before pulses e2 and e3. e2 and e3 will start
c at 0. The photon echo will occur tauprime fs after e2 and
c e3 have hit the sample.

t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

e1(i)=elec(t+tauprime)*cmplx(
$ cos(w1*t),-sin(w1*t))

else
e1(i)=0.

endif
inve1(i)=conjg(e1(i))
invre1(i)=real(inve1(i))
invie1(i)=imag(inve1(i))

enddo

c Green functions must be calculated for t>0 only, but
c convoluted with E(t<0) values determined by value of
c mystart. To ensure that elements E(t)(i) begin at
c mystart, and elements G(i) begin at t=0, separate
c loop is needed to redefine t for array elements i
c when determining the Green function.

c GF exists only for 1st half of total increments, so
c imax is set at .5 of total isteps

imax=int((isteps+1)/2)
i=1
do i=1,isteps
t=(i-1)*tsteps
if (i.le.imax) then

rgeg(i)=gegr(t)
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igeg(i)=gegi(t)
rgee(i)=geer(t)
igee(i)=geei(t)

else
rgeg(i)=0.
igeg(i)=0.
rgee(i)=0.
igee(i)=0.

endif
invrgeg(i)=real(conjg(cmplx(rgeg(i),igeg(i))))

invigeg(i)=imag(conjg(cmplx(rgeg(i),igeg(i))))
enddo

c p1=invgeg*inve1 in freq space, FT[G(t)]*FT[E(t)]=G(w)*E(w)

call fft(invrgeg,invigeg,isteps,isteps,isteps,1)
call fft(invre1,invie1,isteps,isteps,isteps,1)

c FT[G(t)]*FT[E1(t)]=G(w)*E(w)

i=1
do i=1,isteps

invrconv(i)=real(cmplx(invrgeg(i),invigeg(i))*
$ cmplx(invre1(i),invie1(i)))

inviconv(i)=imag(cmplx(invrgeg(i),invigeg(i))*
$ cmplx(invre1(i),invie1(i)))

end do

c p1(t) obtained from FT[FT[Ginv(t)]*FT[Einv(t)]]

call fft(invrconv,inviconv,isteps,isteps,isteps,-1)

c E*FT[FT[Ginv(t)]*FT[Einv(t)]]=E*p1

i=1
do i=1,isteps

t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

e2(i)=elec(t)*
$ cmplx(cos(w1*t),-sin(w1*t))

else
e2(i)=0.

endif
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p1(i)=e2(i)*cmplx(invrconv(i),inviconv(i))
rp1(i)=real(p1(i))
ip1(i)=imag(p1(i))

end do

c find FT[E2(t)*p1(t)] and FT[G(t)]

call fft(rp1,ip1,isteps,isteps,isteps,1)
call fft(rgee,igee,isteps,isteps,isteps,1)

i=1
do i=1,isteps

rconv(i)=0.
rconv(i)=real(cmplx(rgee(i),igee(i))*

$ cmplx(rp1(i),ip1(i)))
iconv(i)=0.
iconv(i)=imag(cmplx(rgee(i),igee(i))*

$ cmplx(rp1(i),ip1(i)))
enddo

c FT[FT[G(t)]*FT[E(*)(t) * p1(t)]]

call fft(rconv,iconv,isteps,isteps,isteps,-1)
i=1

do i=1,isteps
t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

e3(i)=elec(t+tau)*
$ cmplx(cos(w1*t),-sin(w1*t))

else
e3(i)=0.

endif
p2(i)=e3(i)*cmplx(invrconv(i),inviconv(i))
rp2(i)=real(p2(i))
ip2(i)=imag(p2(i))

enddo

c p3=FT[G(t)]*FT[conv(t)]. Geg calculated in the
c beginning of program.

call fft(rp2,ip2,isteps,isteps,isteps,1)
call fft(rgeg,igeg,isteps,isteps,isteps,1)

i=1
do i=1,isteps
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rconv(i)=0.
rconv(i)=real(cmplx(rgeg(i),igeg(i))*cmplx(

$ rp2(i),ip2(i)))
iconv(i)=0.
iconv(i)=imag(cmplx(rgeg(i),igeg(i))*cmplx(

$ rp2(i),ip2(i)))
enddo

call fft(rconv,iconv,isteps,isteps,isteps,-1)

i=1
do i=1,isteps

p3(i)=(rdipge**2+idipge**2)*conjg(dipge)*
$ cmplx(rconv(i),iconv(i))/4

rhototal(i)=rhototal(i) + weight*p3(i)

c third order polarization=V(ge)*p3(eg)+invV(ge)*
c invp3(eg)=2Real(V(ge)p3(eg)). Photon echo is found
c by adding the polarization terms together.

photonecho(i)=photonecho(i) +
$ 2*real(dipge*rhototal(i))

enddo

c ending of loop over frequencies in the external
c radiation bandwidth, m loop.

enddo

c write final values for each element of photonecho(i)
c with respect to real time to a file.

open(unit=89,file=’photonecho.paw’)
do i=1,isteps

t=mystart+(i-1)*tsteps
write(89,*)t,photonecho(i)
enddo

close(89)

end

complex function gee(t)
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implicit none

c green function in time domain

real hbar,gammaee,t,igee,rgee,weg,t1,t2,mystop
common /values/ hbar,weg,t1,t2,mystop
gammaee=1/t1
if (t.gt.0) then

gee=cmplx(0.0,exp(-gammaee*t)/hbar)
else
gee=cmplx(0.0,0.0)

endif
return
end

real function geer(t)
implicit none
real t
complex gee
if (t.lt.0) then

geer=0
else
geer=real(gee(t))

endif
return
end

real function geei(t)

c gee has only imaginary parts

implicit none
real t
complex gee

if (t.lt.0) then
geei=0
else

geei=imag(gee(t))
endif

return
end

complex function geg(t)
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implicit none

c green function in time domain

real hbar,t,weg,gammaeg,t1,t2,mystop
common /values/ hbar,weg,t1,t2,mystop
gammaeg=1/t2
if (t.gt.0) then

geg=exp(-gammaeg*t)*cmplx(sin(weg*t),cos
$ (weg*t))/hbar

else
geg=cmplx(0.0,0.0)

endif
return
end

real function gegr(t)
implicit none
complex geg
real t
if (t.lt.0) then

gegr=0
else
gegr=real(geg(t))

endif
return
end

real function gegi(t)
implicit none
complex geg
real t
if (t.lt.0) then

gegi=0
else
gegi=imag(geg(t))

endif
return
end

real function elec(t)
implicit none
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c real amplitude expression of electric field,
c E(t)=elec(t)eˆ(-iwt)

real t,tsteps,sigma,w1,sech,tau,tauprime
common /times/ tsteps,tau,tauprime
common /elecvals/ w1,sigma
elec=sech(t/sigma)
return
end

real function sech(t)
implicit none
real t
sech=2/(exp(t)+exp(-t))
return
end



APPENDIX C

DATA COLLECTION PROGRAM

c All forms have CANCEL or
c EXIT button, which hides
c the form. Program for
c all forms is as follows:
Private Sub cmdCancel_Click()
frmname.Hide
End Sub
________________________________

c loads the Main window and initializes
c the amplifier upon start-up
c of program, assigns pretermined defaults
c to the settings of the lock-in-amplifier
Private Sub Form_Load()

’initialize the lockin
Call ibfind("dev8", lia)
’this loop is included after every ib command
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)
’lia send output to gpib
Call ibwrt(lia, "outx1")
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)
’do a reset; all info in lia buffers is lost!!
Call ibwrt(lia, "*rst")
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)
’’set input to 10ˆ-6 amps

65
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’Call ibwrt(lia, "isrc 2")
’Do
’Call ibrsp(lia, r%)
’ Loop While ((r% And 2) = 0)
’set the input to read volts
Call ibwrt(lia, "isrc 0")
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)

’run the auto gain feature
Call ibwrt(lia, "agan")
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0) ’

’read previously set default settings from the file
’defaults.txt and place in array defsettings
Dim defsettings(10), lines As String
Dim i As Integer
i = 0
Open "c:\deanna\defaults.txt" For Input
Access Read Shared As 1
Do Until EOF(1)
’reads elements of the default file into an array,
’and from that array we give lia the correct settings

Do While i < 4
Line Input #1, lines
defsettings(i) = lines
If defsettings(i) = "X" Then
Call ibwrt(lia, "ddef 1,0,0")
ElseIf defsettings(i) = "R" Then
Call ibwrt(lia, "ddef 1,1,0")
ElseIf defsettings(i) = "Y" Then
Call ibwrt(lia, "ddef 2,0,0")
ElseIf defsettings(i) = "Theta" Then
Call ibwrt(lia, "ddef 2,1,0")
ElseIf defsettings(i) = "External" Then
Call ibwrt(lia, "fmod 0")
ElseIf defsettings(i) = "Internal" Then
Call ibwrt(lia, "fmod 1")
ElseIf defsettings(i) = "Sine" Then
Call ibwrt(lia, "rslp 0")
ElseIf defsettings(i) = "Positive Edge" Then
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Call ibwrt(lia, "rslp 1")
ElseIf defsettings(i) = "Negative Edge" Then
Call ibwrt(lia, "rslp 2")
End If

i = i + 1
Loop
Line Input #1, lines

defsettings(4) = lines
channelindex(0) = CInt(defsettings(4))
Line Input #1, lines

defsettings(5) = lines
channelindex(1) = CInt(defsettings(5))
Loop
Close
’Read values of array into the correct label box, minus the
’linefeed and end-of-line characters (they print bold
’parallel bars after the character)
Text10.Text = defsettings(0)
Text11.Text = defsettings(1)
Text9.Text = defsettings(2)
Text6.Text = defsettings(3)
txtchannelindex0.Text = CStr(channelindex(0))
txtchannelindex1.Text = CStr(channelindex(1))

End Sub
____________________________

c Checks for the presence
c of the motion stage
Private Sub ckMM3000_Click()

Call ibfind("dev1", mm)
Call ibln(mm, 1, 0, listen%)
test.Text = listen%

End Sub
____________________________

c START button
c starts the data collection
Private Sub cmdstart_Click()

’determine number of data points to be taken
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If Text5.Text <> "" Then
maxcnt = CLng(Text5.Text)

Else
maxcnt = 1000

End If
Text5.Text = Str$(maxcnt)
n = 0

’initialize graph
Picture1.Cls
Picture2.Cls

’read sensitivity value from lia
Call ibwrt(lia, "sens?")
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)

senst = Space$(255)
isens = 0
Call ibrd(lia, senst)

’remove end-of-line character from senst data
’and convert data to integer
senst = Mid$(senst, 1, ibcntl - 1)
isens = CInt(senst)

’create array of fixed sensitivity values from 1V to 1*10ˆ-
9 V
sensval(26) = 1
For n = 1 To 9

If n <> 9 Then sensval(26 - 3 * n) = 1 * 10 ˆ (-n)
sensval(26 - 3 * n + 1) = 2 * 10 ˆ -n
sensval(26 - 3 * n + 2) = 5 * 10 ˆ -n

Next

’set graph parameters and display in appropriate text boxes
If Text1.Text <> "" Then

Picture1.ScaleTop = CDbl(Text1.Text)
’*0.000001 used for microamp scale

Else: Picture1.ScaleTop = sensval(isens) * 0.000001
p1 = Picture1.ScaleTop
p1 = Format(p1, "Scientific")
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Text1.Text = Str$(p1)
End If
If Text2.Text <> "" Then

Picture1.ScaleHeight = -(CDbl(Picture1.ScaleTop)
- CDbl(Text2.Text))

ElseIf Text10.Text = "X" Then: Picture1.ScaleHeight =
-2 * Picture1.ScaleTop

p2 = Picture1.ScaleHeight + Picture1.ScaleTop
’p2 = Format(p2, "Scientific")
Text2.Text = Str$(p2)

ElseIf Text10.Text = "R" Then: Picture1.ScaleHeight =
-Picture1.ScaleTop

p2 = Picture1.ScaleHeight + Picture1.ScaleTop
’p2 = Format(p2, "Scientific")
Text2.Text = Str$(p2)

Else: Picture1.ScaleHeight = -Picture1.ScaleTop
End If
Picture1.ScaleWidth = maxcnt
Text8.Text = Str$(maxcnt)
Picture1.ScaleLeft = 1
Text7.Text = Str$(1)
If channelindex(1) = 1 Then

If Text3.Text <> "" Then
Picture2.ScaleTop = CDbl(Text3.Text)
Else: Picture2.ScaleTop = Picture1.ScaleTop

End If
If Text4.Text <> "" Then

Picture2.ScaleHeight = -(CDbl(Text3.Text) - CDbl(Text4.Text))
Else: Picture2.ScaleHeight = Picture1.ScaleHeight

End If
ElseIf channelindex(1) = 2 Then

If Text3.Text <> "" Then
Picture2.ScaleTop = CDbl(Text3.Text)
Else: Picture2.ScaleTop = 180

End If
If Text4.Text <> "" Then

Picture2.ScaleHeight = -(CDbl(Text3.Text) - CDbl(Text4.Text))
Else: Picture2.ScaleHeight = -360

End If
End If
Text3.Text = Str$(Picture2.ScaleTop)

Text4.Text = Str$(Picture2.ScaleHeight + Picture2.ScaleTop)



70

Picture2.ScaleWidth = maxcnt
Picture2.ScaleLeft = 1

’start the main loop
For icnt = 1 To maxcnt
mytime = Timer + 0.08
Do
Loop Until (Timer > mytime)
’retrieve correct axes.
’for (x,y)
If channelindex(0) = 1 And channelindex(1) = 1 Then
Call ibwrt(lia, "snap?1,2")

Do
Call ibrsp(lia, r%)

Loop While ((r% And 2) = 0)
’for (r,theta)
ElseIf channelindex(0) = 2 And channelindex(1) = 2 Then
Call ibwrt(lia, "snap?3,4")

Do
Call ibrsp(lia, r%)

Loop While ((r% And 2) = 0)
’for (x,theta)
ElseIf channelindex(0) = 1 And channelindex(1) = 2 Then
Call ibwrt(lia, "snap?1,4")

Do
Call ibrsp(lia, r%)

Loop While ((r% And 2) = 0)
’for (r,y)
ElseIf channelindex(0) = 2 And channelindex(1) = 1 Then
Call ibwrt(lia, "snap?3,2")

Do
Call ibrsp(lia, r%)

Loop While ((r% And 2) = 0)
End If
myystr = Space$(255)
myxstr = Space$(255)
’read data from (x,y) coord into myystr

Call ibrd(lia, myystr)
’count position of 1st comma in myystr (2nd char)
’mypos records position, not actual array elements

mypos = InStr(myystr, ",")
’place only the x coord into myxstr

myxstr = Mid$(myystr, 1, mypos - 1)
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’lose the x coord and the end junk from the y coord
’myystr will now have only the y coord

myystr = Mid$(myystr, mypos + 1, ibcntl - mypos - 1)
’mytval is an array containing the # of the pts read

mytval(icnt) = CDbl(icnt)
myxval(icnt) = CDbl(myxstr)
myyval(icnt) = CDbl(myystr)

’plot each point, connecting line between points
If icnt = 1 Then Picture1.PSet (mytval(1), myxval(1))

Picture1.Line -(mytval(icnt), myxval(icnt))
If icnt = 1 Then Picture2.PSet (mytval(1), myyval(1))
Picture2.Line -(mytval(icnt), myyval(icnt))

Next icnt
End Sub
____________________________

c displays plots of data saved in
c a previously saved file. liadata
c contains the saved parameters and
c *dat contains the actual data
Private Sub cmdopenplot_Click()
Dim deltat As Integer
Dim icnt As Long
Dim maxcnt As Long
Dim n As Integer
’initialize graph and parameters
Picture1.Cls
Picture2.Cls
frmMain.Cls

xmin = liadata(4)
Text7.Text = CStr(xmin)
icnt = xmin
xmax = liadata(5)
Text8.Text = CStr(xmax)
ymin1 = liadata(6)
Text2.Text = CStr(ymin)
ymax1 = liadata(7)
Text1.Text = CStr(ymax1)
ymax2 = liadata(9)
Text3.Text = CStr(ymax2)
ymin2 = liadata(8)
Text4.Text = CStr(ymin2)
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If liadata(0) = 1 Then
Text10.Text = "R"

ElseIf liadata(0) = 2 Then
Text10.Text = "X"

Else: Text10.Text = "Error"
End If

If liadata(1) = 1 Then
Text11.Text = "Theta"
ElseIf liadata(1) = 2 Then
Text11.Text = "Y"
Else: Text11.Text = "Error"
End If

If liadata(2) = 1 Then
Text6.Text = "Sine"
ElseIf liadata(2) = 2 Then
Text6.Text = "Positive Edge"
ElseIf liadata(2) = 3 Then
Text6.Text = "Negative Edge"
Else: Text6.Text = "Error"
End If

’reset graphs using values from text boxes
Picture1.ScaleTop = ymax1
Picture1.ScaleHeight = -(ymax1 - ymin1)
Picture1.ScaleWidth = (xmax - xmin)
Picture1.ScaleLeft = xmin
Picture2.ScaleTop = ymax2
Picture2.ScaleHeight = -(ymax2 - ymin2)
Picture2.ScaleWidth = (xmax - xmin)
Picture2.ScaleLeft = xmin
maxcnt = xmax - xmin + 1
Text5.Text = Str$(maxcnt)

’replot
For icnt = xmin To xmax

If icnt = xmin Then
Picture1.PSet (xmin, myxval(xmin))
Picture2.PSet (xmin, myyval(xmin))
Else
Picture1.Line -(icnt, myxval(icnt))
Picture2.Line -(icnt, myyval(icnt))
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End If
Next icnt

End Sub
____________________________

c REPLOT button
c replots data with different x,y axis parameters
Private Sub cmdreplot_Click()
’define variables
Dim deltat As Integer
Dim icnt As Long
Dim maxcnt As Long
Dim n As Integer

’initialize graph and parameters
Picture1.Cls
Picture2.Cls

’rename text#.text
’include commands for empty textboxes for the
’case where a file is opened and no parameters
’exist in the appropriate textboxes.
If Text7.Text <> "" Then xmin = CDbl(Text7.Text)

’Else: xmin = liadata(4)
’text7.Text = CStr(xmin)

End If
If Text8.Text <> "" Then xmax = CDbl(Text8.Text)

’Else: xmax = liadata(5)
’text8.Text = CStr(xmax)

End If
If Text2.Text <> "" Then ymin1 = CDbl(Text2.Text)

’Else: ymin1 = liadata(6)
’text2.Text = CStr(ymin1)

End If
If Text1.Text <> "" Then ymax1 = CDbl(Text1.Text)

’Else: ymax1 = liadata(7)
’text1.Text = CStr(ymax1)

End If
If Text3.Text <> "" Then ymax2 = CDbl(Text3.Text)

’Else: ymax2 = liadata(9)
’text3.Text = CStr(ymax2)

End If
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If Text4.Text <> "" Then ymin2 = CDbl(Text4.Text)
’Else: ymin2 = liadata(8)
’text4.Text = CStr(ymin2)

End If

If Text10.Text = "" Then
If liadata(0) = 1 Then

Text10.Text = "R"
ElseIf liadata(0) = 2 Then

Text10.Text = "X"
End If

End If
If Text11.Text = "" Then

If liadata(1) = 1 Then
Text11.Text = "Theta"
ElseIf liadata(1) = 2 Then

Text11.Text = "Y"
End If

End If
If Text11.Text = "" Then

If liadata(2) = 1 Then
Text6.Text = "Sine"
ElseIf liadata(2) = 2 Then
Text6.Text = "Positive Edge"
ElseIf liadata(2) = 3 Then
Text6.Text = "Negative Edge"
End If

End If
’reset graphs using values from text boxes
Picture1.ScaleTop = ymax1
Picture1.ScaleHeight = -(ymax1 - ymin1)
Picture1.ScaleWidth = (xmax - xmin)
Picture1.ScaleLeft = xmin
Picture2.ScaleTop = ymax2
Picture2.ScaleHeight = -(ymax2 - ymin2)
Picture2.ScaleWidth = (xmax - xmin)
Picture2.ScaleLeft = xmin
maxcnt = xmax - xmin + 1
Text5.Text = Str$(maxcnt)
’replot
icnt = xmin
For icnt = xmin To xmax

If icnt = xmin Then
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Picture1.PSet (mytval(xmin), myxval(xmin))
Picture2.PSet (mytval(xmin), myyval(xmin))
Else
Picture1.Line -(mytval(icnt), myxval(icnt))
Picture2.Line -(mytval(icnt), myyval(icnt))
End If

Next icnt
End Sub
____________________________

c plots upper of two data windows
Private Sub cmdUpperPlot_Click()
dataplot = "e:\tempplot.dat"
Open dataplot For Output As 20
maxcount = Text5.Text
For icnt = 1 To maxcount
plotx = myxval(icnt)
ploty = myyval(icnt)
’Write #2, icnt, temp1, temp2
Print #20, icnt, Format(plotx, "Scientific"),
Format(ploty, "Scientific")
Next icnt
Shell ("c:\rcprsh32\rsh elderberry plot tempplot.dat")
Close #20
End Sub
____________________________

c sets accelerations values for the
c motion stages
Private Sub mAccel1_Click()
frmAccel1.Show
End Sub
c OK button, sets acceleration
c options as the default
c values to be used on
c all runs.
Private Sub cmdOK_Click()
Dim jog, home, accel As String

jog = "1JA" & txtJogAc.Text
home = "1OA" & txtHomeAc.Text
accel = "1AC" & txtAc.Text
Call ibwrt(mm, jog + Chr(13))
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Call ibwrt(mm, home + Chr(13))
Call ibwrt(mm, accel + Chr(13))

If optAccelDef1.value = True Then
Open "c:\deanna\acceldefaults1.txt" For Output

Access Write Shared As 35
Print #35, jog
Print #35, home
Print #35, accel
Close

End If

frmAccel1.Hide
End Sub
____________________________

c executes movement of the motion stages
Private Sub cmdExe_Click()
ex = "EX" & txtExePro.Text
Call ibwrt(mm, ex + Chr(13))
frmExePro.Hide
End Sub
____________________________

c executes data collection
Private Sub cmdExecute_Click()

’initialize MM3000
Call ibfind("dev1", mm)
Call ibln(mm, 1, 0, listen%)
frmMain!test.Text = listen%
’read sensitivity value from lia
Call ibwrt(lia, "sens?")
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)
senst = Space$(255)
Call ibrd(lia, senst)
’remove end-of-line character from senst data
’and convert data to interger
senst = Mid$(senst, 1, ibcntl - 1)
isens = CInt(senst)
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’create array of fixed sensitivity values from 1V to 1*10ˆ-
9 V
sensval(26) = 1
For n = 1 To 9

If n <> 9 Then sensval(26 - 3 * n) = 1 * 10 ˆ (-n)
sensval(26 - 3 * n + 1) = 2 * 10 ˆ -n
sensval(26 - 3 * n + 2) = 5 * 10 ˆ -n

Next
’set graph parameters and display in appropriate text boxes
If frmMain!Text1.Text <> "" Then

p1 = CDbl(frmMain!Text1.Text)
Else: p1 = sensval(isens)
’for microamp scale
’Else p1=sensval(isens)*0.000001

End If
p1 = Format(p1, "Scientific")
If frmMain!Text2.Text <> "" Then

p2 = CDbl(frmMain!Text2.Text)
Else: p2 = 0

End If
p3 = Str$(p2)
p4 = 1
If channelindex(1) = 1 Then

p5 = p1
p6 = p2

ElseIf channelindex(1) = 2 Then
p5 = 180
p6 = -360

End If
’variable for MM3000 motion for each loop, axis 3
motion = "3PR" & txtSteps.Text
maxcnt = txtmaxcount.Text
’marker for ending execution of all motion/loops
If optAbsLoop.value = True Then

bb = txtAbsLoop.Text / CDbl(txtSteps.Text)
ElseIf optRelLoop.value = True

Then: bb = txtRelLoop.Text / CDbl(txtSteps.Text)
End If
’counter for saving files of loops
q = 0
’start main loop: take data then move
’MM3000 the required number of steps
Do



78

icnt = 1
datasumx = 0
datasumy = 0
’start the data acquisition per loop
For icnt = 1 To maxcnt

mytime = Timer + 0.08
Do
Loop Until (Timer > mytime)

’retrieve correct axes.
’ for (x,y)

If channelindex(0) = 1 And channelindex(1) = 1 Then
Call ibwrt(lia, "snap?1,2")

Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)

’for (r,theta)
ElseIf channelindex(0) = 2 And

channelindex(1) = 2 Then
Call ibwrt(lia, "snap?3,4")

Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)

’for (x,theta)
ElseIf channelindex(0) = 1 And

channelindex(1) = 2 Then
Call ibwrt(lia, "snap?1,4")

Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)

’for (r,y)
ElseIf channelindex(0) = 2 And

channelindex(1) = 1 Then
Call ibwrt(lia, "snap?3,2")

Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)

End If
myystr = Space$(255)

’read data from (x,y) coord into myystr
Call ibrd(lia, myystr)

’count position of 1st comma in myystr (2nd char)
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’mypos records position, not actual array elements
mypos = InStr(myystr, ",")

’place only the x coord into myxstr
myxstr = Mid$(myystr, 1, mypos - 1)

’lose the x coord and the end junk from the y coord
’myystr will now have only the y coord

myystr = Mid$(myystr, mypos + 1, ibcntl - mypos -
1)

’mytval is an array containing the # of the pts read
mytval(icnt) = CDbl(icnt)
myxval(icnt) = CDbl(myxstr)
myyval(icnt) = CDbl(myystr)

’sum data points
datasumx = myxval(icnt) + datasumx
datasumy = myyval(icnt) + datasumy
Next icnt
’average data points
dataavex(q) = datasumx / maxcnt
dataavey(q) = datasumy / maxcnt

’save the data from each loop into separate files, numeri-
cally indexed by q

If txtFileInd.Text <> "*.*" Then
m = InStr(txtFileInd.Text, "*.*")

If m <> 0 Then
datafile = Mid$(txtFileInd.Text, 1, m) & q & "dat"
liafile = Mid$(txtFileInd.Text, 1, m) & q & "lia"

Else
datafile = txtFileInd.Text & q & ".dat"
liafile = txtFileInd.Text & q & ".lia"

End If
Open datafile For Output As 72
Open liafile For Output As 73

’cannot save parameters ast Form1!textn.text because
’variable names are needed in order to pull out
’data when file is reopened
’maxcnt = CDbl(frmMain!Text5.Text)

If CStr(frmMain!Text10.Text) = "R" Then
channel1 = 1
ElseIf CStr(frmMain!Text10.Text) = "X" Then
channel1 = 2

Else
Print "Error in reading channel 1"
channel1 = 0
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End If
If CStr(frmMain!Text11.Text) = "Theta" Then

channel2 = 1
ElseIf CStr(frmMain!Text11.Text) = "Y" Then

channel2 = 2
Else

Print "Error in reading channel 2"
channel2 = 0

End If
If CStr(frmMain!Text6.Text) = "Sine" Then

trig = 1
ElseIf CStr(frmMain!Text6.Text) = "Positive Edge" Then

trig = 2
ElseIf CStr(frmMain!Text6.Text) = "Negative Edge" Then

trig = 3
Else

Print "Error in reading the trigger"
trig = 0

End If
minx = CDbl(p4)
maxx = CDbl(p3)
miny1 = CDbl(p2)
maxy1 = CDbl(p1)
miny2 = CDbl(p6)
maxy2 = CDbl(p5)

’print heading of all info in order, then print
’each piece of info on line, creating array to be
’read when file is opened

Print #73, "Ch 1 Ch 2 Trigger #pts minpt
maxpt minch1 maxch1 minch2 maxch2"

Print #73, channel1
Print #73, channel2
Print #73, trig
Print #73, maxcnt
Print #73, minx
Print #73, maxx
Print #73, miny1
Print #73, maxy1
Print #73, miny2
Print #73, maxy2
For icnt = 1 To maxcnt

tempx = myxval(icnt)
tempy = myyval(icnt)
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Print #72, icnt, Format(tempx, "Scientific"),
Format(tempy, "Scientific")

Next icnt
Close #72
Close #73
Else

txtLabel.Text = "You have not specified a filename."
End If
’Loop until LIA is done storing data

Do
Call ibrsp(lia, r%)

Loop While ((r% And 2) = 0)

’move MM3000
Call ibwrt(mm, motion + Chr(13))

Do
Waittime 1
Call ibwrt(mm, "3TS")
Call ibrd(mm, whereami)
Loop While (Left$(whereami, 1) = Chr(68))

’wait between motion and next loop, defined sub procedure
Waittime 10
q = q + 1

Loop While (q - 1) < bb
’write files of averages of each loop
q = 0
tempx = 0
tempy = 0
fileave = "ave" & txtFileInd.Text & ".dat"
liastuff = "ave" & txtFileInd.Text & ".lia"

Open fileave For Output As 74
For q = 1 To bb

tempx = dataavex(q)
tempy = dataavey(q)
Print #74, q, Format(tempx, "Scientific"), Format(tempy, "Scientific")

Next q
Close #74

Open liastuff For Output As 70
Print #70, "Ch 1 Ch 2 Trigger #pts minpt maxpt minch1 maxch1 minch2 maxch2"
Print #70, channel1
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Print #70, channel2
Print #70, trig
Print #70, maxcnt
Print #70, minx
Print #70, maxx
Print #70, miny1
Print #70, maxy1
Print #70, miny2
Print #70, maxy2
Close #70
End Sub
____________________________

c Allows the stage to rest
c for a specified amount of
c time after motion.
Public Sub Waittime(X As Long)
Dim starttime As Single
starttime = Timer
Do Until (Timer - starttime + 86400) Mod 86400 > X
Loop
End Sub
____________________________

c moves the motion stage
Private Sub cmdOK_Click()
If txtAbs1.Text <> "" Then

amove = "1PA" & txtAbs1.Text
Call ibwrt(mm, amove + Chr(13))
frmMain!test.Text = amove
Debug.Print "amove="; amove

End If
If txtRel1.Text <> "" Then

rmove = "1PR" & txtRel1.Text
Call ibwrt(mm, rmove + Chr(13))
frmMain!test.Text = rmove
Debug.Print "rmove="; rmove

End If
frmMain!test.Text = ""
frmMove1.Hide
End Sub
____________________________
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c opens previously saved data
c file for viewing
Private Sub cmdOpen_Click()
openfile = txtOpen.Text

If openfile <> "*.*" Then
m = InStr(openfile, ".")
If m <> 0 Then
datafile = Mid$(openfile, 1, m) + "dat"
liafile = Mid$(openfile, 1, m) + "lia"
Else
datafile = openfile + ".dat"
liafile = openfile + ".dat"
End If

Open datafile For Input As 10
Open liafile For Input As 11

Do Until EOF(11)
’reads 1st line of headings into junk string,
’lia data into an array

Line Input #11, junklines
Line Input #11, Data

’channel1
liadata(0) = Data

Line Input #11, Data
’channel2
liadata(1) = Data

Line Input #11, Data
’trig
liadata(2) = Data

Line Input #11, Data
’maxcount
liadata(3) = Data

Line Input #11, Data
’minx
liadata(4) = Data

Line Input #11, Data
’maxx
liadata(5) = Data

Line Input #11, Data
’miny1
liadata(6) = Data

Line Input #11, Data
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’maxy1
liadata(7) = Data

Line Input #11, Data
’miny2
liadata(8) = Data

Line Input #11, Data
’maxy2
liadata(9) = Data

Loop
maxcount = CLng(liadata(3))
icnt = 1
Do Until EOF(10)
For icnt = 1 To maxcount

Input #10, pnt, xval, yval
xval = CDbl(xval)
yval = CDbl(yval)
mytval(icnt) = CDbl(pnt)
myxval(icnt) = xval
myyval(icnt) = yval
’Print pnt, mytval(icnt), myxval(icnt), myyval(icnt)

Next icnt
Loop
’datalines = Input$(LOF(10), 10)
Close #10
Close #11
frmOpen.Hide
Else: Label3.Caption = "This file does not exist! Check loca-
tion and syntax."
End If
frmOpen.Hide
End Sub
____________________________

Private Sub Dir1_Change()
File1.Path = Dir1.Path
txtPath.Text = File1.Path
End Sub
____________________________

Private Sub Drive1_Change()
On Error GoTo DriveDefault
Dir1.Path = Drive1.Drive
Exit Sub
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DriveDefault:
Drive1.Drive = Dir1.Path
Exit Sub

End Sub
____________________________

Private Sub File1_Click()
txtOpen.Text = File1.filename
End Sub
____________________________

c allows options available on the
c motion stage to be activated.
Private Sub cmdOK_Click()
’initialize the MM3000 if appropriate
If frmMain!ckMM3000.value = True Then

Call ibfind("dev1", mm)
Do
Call ibrsp(lia, r%)
Loop While ((r% And 2) = 0)

End If
If optMotorOn.value = True Then

Call ibwrt(mm, "1MO" + Chr(13))
ElseIf optMotorOff.value = True Then
Call ibwrt(mm, "1MF" + Chr(13))

End If
If optBeepOn.value = True Then

Call ibwrt(mm, "1FS0" + Chr(13))
ElseIf optBeepOff.value = True Then
Call ibwrt(mm, "1FS40" + Chr(13))

End If
If optBase100.value = True Then

Call ibwrt(mm, "1VB100" + Chr(13))
ElseIf optBase4000.value = True Then
Call ibwrt(mm, "1VB4000" + Chr(13))

End If
If optEP1.value = True Then

Call ibwrt(mm, "1ER1:1" + Chr(13))
ElseIf optEP10.value = True Then
Call ibwrt(mm, "1ER1:10" + Chr(13))

End If
If optStep.value = True Then

Call ibwrt(mm, "1FM01" + Chr(13))
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ElseIf optEnc.value = True Then
Call ibwrt(mm, "1FM00" + Chr(13))

End If
If optLoopOn.value = True Then

Call ibwrt(mm, "1CL ON" + Chr(13))
ElseIf optLoopOff.value = True Then
Call ibwrt(mm, "1CL OFF" + Chr(13))

End If
frmOptions1.Hide
End Sub
____________________________

c Determines the type of output
c as (x,y) or (r,theta)
Private Sub cmdstart_Click()
If optx.value = True Then

Call ibwrt(lia, "ddef 1,0,0")
frmMain!Text10.Text = "X"
channelindex(0) = 1
ElseIf optr.value = True Then
Call ibwrt(lia, "ddef 1,1,0")
frmMain!Text10.Text = "R"
channelindex(0) = 2

End If
If opty.value = True Then

Call ibwrt(lia, "ddef 2,0,0")
frmMain!Text11.Text = "Y"
channelindex(1) = 1
ElseIf opttheta.value = True Then
Call ibwrt(lia, "ddef 2,1,0")
frmMain!Text11.Text = "Theta"
channelindex(1) = 2

End If
frmOutput.Hide
End Sub
c CANCEL button, hides form
Private Sub cmdCancel_Click()
frmOutput.Hide
End Sub
____________________________

c saves data to a data file
c named by the user
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Private Sub cmdSave_Click()
Dim m As Integer
Dim count As Long
If save1.Text <> "*.*" Then
m = InStr(save1.Text, "*.*")
If m <> 0 Then
datafile = Mid$(save1.Text, 1, m) + "dat"
liafile = Mid$(save1.Text, 1, m) + "lia"
Else
datafile = save1.Text + ".dat"
liafile = save1.Text + ".lia"
End If

Open datafile For Output As 2
Open liafile For Output As 3

’cannot save parameters ast Form1!textn.text because
’variable names are needed in order to pull out
’data when file is reopened
maxcount = CDbl(Form1!Text2.Text)
If CStr(Form1!Text9.Text) = "R" Then

channel1 = 1
ElseIf CStr(Form1!Text9.Text) = "X" Then
channel1 = 2
Else

Print "Error in reading channel 1"
channel1 = 0

End If
If CStr(Form1!Text10.Text) = "Theta" Then

channel2 = 1
ElseIf CStr(Form1!Text10.Text) = "Y" Then
channel2 = 2
Else

Print "Error in reading channel 2"
channel2 = 0

End If
If CStr(Form1!Text11.Text) = "Sine" Then

trig = 1
ElseIf CStr(Form1!Text11.Text) = "Positive Edge" Then
trig = 2
ElseIf CStr(Form1!Text11.Text) = "Negative Edge" Then
trig = 3
Else
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Print "Error in reading the trigger"
trig = 0

End If
minx = CDbl(Form1!text3.Text)
maxx = CDbl(Form1!text4.Text)
miny1 = CDbl(Form1!text5.Text)
maxy1 = CDbl(Form1!text6.Text)
miny2 = CDbl(Form1!text8.Text)
maxy2 = CDbl(Form1!text7.Text)

’print heading of all info in order, then print
’each piece of info on line, creating array to be
’read when file is opened
Print #3, "Ch 1 Ch 2 Trigger #pts minpt
maxpt minch1 maxch1 minch2 maxch2"
Print #3, channel1
Print #3, channel2
Print #3, trig
Print #3, maxcount
Print #3, minx
Print #3, maxx
Print #3, miny1
Print #3, maxy1
Print #3, miny2
Print #3, maxy2

For icnt = 1 To maxcount
tempx = myxval(icnt)
tempy = myyval(icnt)
’Write #2, icnt, temp1, temp2
Print #2, icnt, Format(tempx, "Scientific"),
Format(tempy, "Scientific")
Next icnt

Close #2
Close #3

save1.Text = "*.*"
Form5.Hide
Else
Label5.Caption = "You have not specified a filename."
End If
End Sub
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____________________________

c determines settings for lock-in-amplifier
Private Sub cmdOK_Click()
If optExternal.value = True Then

Call ibwrt(lia, "fmod 0")
frmMain!Text9.Text = "External"
ElseIf optInternal.value = True Then
Call ibwrt(lia, "fmod 1")
frmMain!Text9.Text = "Internal"

End If
If optSine.value = True Then

Call ibwrt(lia, "rslp 0")
frmMain!Text6.Text = "Sine"
ElseIf optPositive.value = True Then
Call ibwrt(lia, "rslp 1")
frmMain!Text6.Text = "Positive Edge"
ElseIf optNegative.value = True Then
Call ibwrt(lia, "rslp 2")
frmMain!Text6.Text = "Negative Edge"

End If
frmSettings.Hide
End Sub
____________________________

c sets the stepsize and resolution
c of the motion stages
Private Sub cmdSS1OK_Click()
If optMicron.value = True Then

Call ibwrt(mm, "1UU um" + Chr(13))
motionindex(0) = 1
ElseIf optMillimeter.value = True Then
Call ibwrt(mm, "1UUmm" + Chr(13))
motionindex(0) = 2
ElseIf optInch.value = True Then
Call ibwrt(mm, "1UUin" + Chr(13))
motionindex(0) = 3
ElseIf optMil.value = True Then
Call ibwrt(mm, "1UUmil" + Chr(13))
motionindex(0) = 4
Else: Print "Error-please choose a value for units"

End If
If opt007.value = True Then
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Call ibwrt(mm, "1US0.007um" + Chr(13))
motionindex(1) = 1
ElseIf opt050.value = True Then
Call ibwrt(mm, "1US0.050um" + Chr(13))
motionindex(1) = 2
ElseIf opt055.value = True Then
Call ibwrt(mm, "1US0.055um" + Chr(13))
motionindex(1) = 3
ElseIf opt074.value = True Then
Call ibwrt(mm, "1US0.074um" + Chr(13))
motionindex(1) = 4
ElseIf opt593.value = True Then
Call ibwrt(mm, "1US0.593um" + Chr(13))
motionindex(1) = 5
ElseIf opt100.value = True Then
Call ibwrt(mm, "1US0.100um" + Chr(13))
motionindex(1) = 6
ElseIf opt500.value = True Then
Call ibwrt(mm, "1US0.500um" + Chr(13))
motionindex(1) = 7
ElseIf opt1.value = True Then
Call ibwrt(mm, "1US1um" + Chr(13))
motionindex(1) = 8
ElseIf opt254.value = True Then
Call ibwrt(mm, "1US2.54um" + Chr(13))
motionindex(1) = 9
ElseIf opt10.value = True Then
Call ibwrt(mm, "1US10um" + Chr(13))
motionindex(1) = 10
Else: Print "Error-please choose a value for resolution"
’put int statement to oder program to beginning of loop

End If
If optDef.value = True Then

Open "c:\deanna\stepdefaults1.txt" For Output
Access Write Shared As 33

Print #33, CStr(motionindex(0))
Print #33, CStr(motionindex(1))
Close

End If
frmStepSize1.Hide
End Sub
____________________________
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c OK button, sets velocity
c options for stage at various
c points of travel
c jog velocity=for manually moving
c stage outside of program
c homelo,homehi=min,max velocity as stage
c approaches home position
c vel=velocity in middle of motion
Private Sub cmdOK_Click()
If txtHiJog.Text <> "" Then joghi = "1JH" & txtHiJog.Text
If txtLoJog.Text <> "" Then joglo = "1JW" & txtLoJog.Text
If txtHiHome.Text <> "" Then homehi = "1OH" & txtHiHome.Text
If txtLoHome.Text <> "" Then homelo = "1OL" & txtLoHome.Text
If txtVel.Text <> "" Then vel = "1VA" & txtVel.Text
Call ibwrt(mm, joghi + Chr(13))
Call ibwrt(mm, joglo + Chr(13))
Call ibwrt(mm, homehi + Chr(13))
Call ibwrt(mm, homelo + Chr(13))
Call ibwrt(mm, vel + Chr(13))
If optDef.value = True Then

Open "c:\deanna\VelDef1.txt" For Output
Access Write Shared As 34
Print #34, joghi
Print #34, joglo
Print #34, homehi
Print #34, homelo
Print #34, vel
Close

End If
If ckSD.value = 1 Then

sd = "1SD" & txtSD.Text
Call ibwrt(mm, sd + Chr(13))
frmMain!test.Text = sd

End If
frmVel1.Hide
End Sub
____________________________

Private Sub cmdEnd_Click()
’compiles program
Call ibwrt(mm, "%" + Chr(13))
Call ibwrt(mm, "CP" + Chr(13))
End Sub
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____________________________

Private Sub cmdEnter_Click()
com = txtCommands.Text
Call ibwrt(mm, com + Chr(13))
Previous = txtWindow.Text & Chr(13)
txtWindow.Text = Previous & com
txtCommands.Text = ""
End Sub
____________________________

c Sets the home position
c of the motor stage
Private Sub cmdOK_Click()
’initialize the MM3000 if appropriate
If frmMain!ckMM3000.value = True Then Call ibfind("dev1", mm)
If optFloat.value = True Then

Call ibwrt(mm, "1OM0" + Chr(13))
ElseIf optSwPulse.value = True Then
Call ibwrt(mm, "1OM1" + Chr(13))
ElseIf optSW.value = True Then
Call ibwrt(mm, "1OM2" + Chr(13))

End If
frmZero1.Hide
End Sub
____________________________

Private Sub cmdOrigin_Click()
Call ibfind("dev1", mm)
Call ibln(mm, 1, 0, listen%)
Print listen%
Call ibwrt(mm, "1OR" + Chr(13))
End Sub



APPENDIX D

CALCULATING THE FOUR-WAVE MIXING SIGNAL

program joffres_transforms
implicit none

c Uses fast fourier transform method by Joffre
c to calculate third order polarization signal.
c Equation on pg. 277 is one term of the function.
c Each convolution is a separate subroutine.
c convolution from third order expression

c PARAMETERS FROM PARAMETER FILE:
c isteps=number of divisions to create in interval
c mystop-mystart when calculating values of
c density operators and P**2(t). Must be an
c integer.
c mystart=time in fs at which your external radiation
c pulses first hit the sample, time at which
c Greens functions begin taking effect, must
c be greater than or equal to zero
c mystop= time at which external radiation stops
c hitting sample, Greens functions no longer
c have an effect in sample
c tau=delay between ext pulses 2 and 3,should be zero
c taustart=first value of tauprime incalculations
c taustop=last value of tauprime in calculations
c tauincrements=# of tau values to step for each value
c of tauprime in calculations
c w1=frequency of external radiation (laser)
c weg0=zero phonon line of first order signal from
c sample,in wavenumbers
c hbar, k Planck,Boltzmann constant
c t1=T1, the eigenstate decay rate, relaxation of
c density operator diagonal matrix elements
c t2=T2 dephasing rate, relaxation of density operator
c off-diagonal matrix elements

93



94

c fwhm=full width half max time length of pulse of
c external radiation in fs

integer nmax,i,j,jmax,m,minc,isteps
real pi,sigma,imax
parameter (nmax=524288,pi=3.14159)

real t,signalmax,wegmi,wegmf,deltaw,weight
$ ,mystart,mystop,w1,weg,weg0,tau,tauprime,
$ taustart,taustop,tauincrements,hbar,k
$ ,rp3(nmax),ip3(nmax)
$ ,rp2(nmax),ip2(nmax),rp1(nmax),ip1(nmax)
$ ,rgeg(nmax),igeg(nmax),tsteps,t1,t2,fwhm
$ ,gegr,gegi,geer,geei

real rconv(nmax),iconv(nmax)
$ ,invrconv(nmax),inviconv(nmax)
$ ,invrgeg(nmax),invigeg(nmax)
$ ,rgee(nmax),igee(nmax),signal(nmax)
$ ,re1(nmax),ie1(nmax),invre1(nmax)
$ ,invie1(nmax),rfunc(nmax),ifunc(nmax)
$ ,re2(nmax),ie2(nmax),re3(nmax)
$ ,rdipge,idipge,elec,ie3(nmax)

complex e1(nmax),e2(nmax),e3(nmax),inve1(nmax)
$ ,p1inv(nmax),polar(nmax),rhototal(nmax)
$ ,conv,p3(nmax),geg,gee,p2(nmax),p1(nmax),dipge

common /values/ hbar,weg,t1,t2,mystop
common /times/ tsteps,tau,tauprime
common /elecvals/ w1,sigma

character*16 fname

rdipge=1.0
idipge=0.0
dipge=cmplx(rdipge,idipge)
read (*,*) isteps,mystart,mystop,tau,taustart,

$ taustop ,tauincrements,weg0,w1,hbar,k,
$ t1,t2,fwhm,minc

c sigma=fwhm/1.76 in units of param file

sigma=fwhm/1.76
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c calculated wegmi (wegmf) as being 800 cmˆ-1 before
c (after) the zero phonon line weg0. Convert wegmi,
c wegmf into frequency, 1/fs.

wegmi=(weg0-800)*2*pi*3e8*1e-13
wegmf=(weg0+800)*2*pi*3e8*1e-13
deltaw=(wegmf-wegmi)/minc

c redefine wavenumber input into correct units of
c frequency. calcs are done with frequencies in
c units of 1/ fs (1e15/s)

w1=2*pi*3e8*w1*1e-13
weg0=2*pi*3e8*weg*1e-13

c outer loop for calculating the signal at different
c values of the maximum value for tauprime & i has
c to be an integer

jmax=int((taustop-taustart)/tauincrements)

c GF exists only for 1st half of total increments, so
c imax is set at .5 of total isteps

imax=int((isteps+1)/2)
open(unit=89,file=’signal.paw’)
do j=1,jmax+1
signal(j)=0.0

c loop over all i’s to initialize rhototal(i),polar(i)
c before any frequency contributions are made.

do i=1,isteps
rhototal(i)=0.0
polar(i)=0.0
enddo

c loop over different frequency contributions to the
c external radiation pulse bandwidth. Weighting factor
c weight will be multiplied to each frequency’s
c contribution to the density matrix element for each
c value of real time.
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m=1
do m=1,minc+1

weg=0.0
weight=0.0

weg=wegmi+(m-1)*deltaw
weight=exp(-((weg0-weg)/

$ (2*pi*3e8*500*1e-13))**2)

c tauprime=delay between external pulses 1 and 2, varied
c as program progresses. tauprime delay value calculated

tauprime=taustart+(j-1)*tauincrements
tsteps=(mystop-mystart)/isteps

c establish initial arrays from which all convolutions
c will be composed

i=1
do i=1,isteps

c The characteristics of how convolutions are programmed
c require that the response functions are calculated so
c G(i=1) is evaluated at t=0 and elec funcs are calculated
c so E(i=1) is evaluated at mystart. The GF(t>0) are
c convoluted, however, with the E(t<0). Do not wait for
c t>0 to begin convoluting GF with E(t).

t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

e1(i)=elec(t)*cmplx(cos(w1*t),-sin(w1*t))
else

e1(i)=0.
endif
inve1(i)=conjg(e1(i))
invre1(i)=real(inve1(i))
invie1(i)=imag(inve1(i))

enddo

c Green functions must be calculated for t>0 only, but
c convoluted with E(t<0) values determined by value of
c mystart. To ensure that elements E(t)(i) begin at
c mystart, and elements G(i) begin at t=0, separate
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c loop is needed to redefine t for array elements i
c when determining the Green function.

i=1
do i=1,isteps
t=(i-1)*tsteps
if (i.le.imax) then

rgeg(i)=gegr(t)
igeg(i)=gegi(t)
rgee(i)=geer(t)
igee(i)=geei(t)

else
rgeg(i)=0.
igeg(i)=0.
rgee(i)=0.
igee(i)=0.

endif
invrgeg(i)=real(conjg

$ (cmplx(rgeg(i),igeg(i))))
invigeg(i)=imag(conjg

$ (cmplx(rgeg(i),igeg(i))))
enddo

c p1=invgeg*inve1 in freq space, FT[G(t)]*FT[E(t)]=G(w)*E(w)

call fft(invrgeg,invigeg,isteps,isteps,isteps,1)
call fft(invre1,invie1,isteps,isteps,isteps,1)

c FT[G(t)]*FT[E1(t)]=G(w)*E(w)

i=1
do i=1,isteps

invrconv(i)=real(cmplx(invrgeg(i),invigeg(i))*
$ cmplx(invre1(i),invie1(i)))

inviconv(i)=imag(cmplx(invrgeg(i),invigeg(i))*
$ cmplx(invre1(i),invie1(i)))

end do

c p1(t) obtained from FT[FT[Ginv(t)]*FT[Einv(t)]]

call fft(invrconv,inviconv,isteps,isteps,isteps,-1)
do i=1,isteps
enddo
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c E*FT[FT[Ginv(t)]*FT[Einv(t)]]=E*p1

i=1
do i=1,isteps

t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

e2(i)=elec(t+tauprime)*
$ cmplx(cos(w1*t),
$ -sin(w1*t))

else
e2(i)=0.

endif
p1(i)=e2(i)*cmplx(invrconv(i),inviconv(i))
rp1(i)=real(p1(i))
ip1(i)=imag(p1(i))

end do

c find FT[E2(t)*p1(t)] and FT[G(t)]

call fft(rp1,ip1,isteps,isteps,isteps,1)
call fft(rgee,igee,isteps,isteps,isteps,1)

i=1
do i=1,isteps

rconv(i)=0.
rconv(i)=real(cmplx(rgee(i),igee(i))*

$ cmplx(rp1(i),ip1(i)))
iconv(i)=0.
iconv(i)=imag(cmplx(rgee(i),igee(i))*

$ cmplx(rp1(i),ip1(i)))
enddo

c FT[FT[G(t)]*FT[E(*)(t) * p1(t)]]

call fft(rconv,iconv,isteps,isteps,isteps,-1)
i=1

do i=1,isteps
t=mystart+(i-1)*tsteps
if (i.le.(isteps+1)) then

e3(i)=elec(t+tauprime+tau)*
$ cmplx(cos(w1*t),
$ -sin(w1*t))

else
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e3(i)=0.
endif
p2(i)=e3(i)*cmplx(invrconv(i),inviconv(i))
rp2(i)=real(p2(i))
ip2(i)=imag(p2(i))

enddo

c p3=FT[G(t)]*FT[conv(t)]. Geg calculated in the
c beginning of program.

call fft(rp2,ip2,isteps,isteps,isteps,1)
call fft(rgeg,igeg,isteps,isteps,isteps,1)

i=1
do i=1,isteps

rconv(i)=0.
rconv(i)=real(cmplx(rgeg(i),igeg(i))*cmplx(

$ rp2(i),ip2(i)))
iconv(i)=0.
iconv(i)=imag(cmplx(rgeg(i),igeg(i))*cmplx(

$ rp2(i),ip2(i)))
enddo

call fft(rconv,iconv,isteps,isteps,isteps,-1)

i=1
do i=1,isteps

p3(i)=-(rdipge**2+idipge**2)*conjg(dipge)*
$ cmplx(rconv(i),iconv(i))/4

rhototal(i)=rhototal(i) + weight*p3(i)
enddo

c ending of loop over frequencies in the external
c radiation bandwidth, m loop.

enddo

c loop over i after all frequency contributions have been
c included in each rhototal(i) matrix element to calculate
c the polarization term and the four wave mixing signal.

do i=1,isteps

c third order polarization=V(ge)*p3(eg)+
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c invV(ge)*invp3(eg)= 2Real(V(ge)p3(eg))

polar(i)=2*real(dipge*rhototal(i))
signal(j)=signal(j) + polar(i)**2
enddo

c ending of loop over delays tauprime, j loop.

enddo

c normalize data

signalmax=0.0
do j=1,jmax+1
if (j.le.1) then

signalmax=signal(1)
else
if (signalmax.lt.signal(j)) then
signalmax=signal(j)
endif

endif
enddo

c loop to write normalized signal data to file with
c respect to delay

j=1
do j=1,jmax+1
tauprime=taustart+(j-1)*tauincrements
write(89,*) tauprime,signal(j)/signalmax

enddo

close(89)
end

c SUBROUTINES
complex function gee(t)
implicit none

c green function in time domain

real hbar,gammaee,t,igee,rgee,weg,t1,t2,mystop
common /values/ hbar,weg,t1,t2,mystop
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gammaee=1/t1
if (t.gt.0) then

gee=cmplx(0.0,exp(-gammaee*t)/hbar)
else
gee=cmplx(0.0,0.0)

endif
return
end

real function geer(t)
implicit none
real t
complex gee
if (t.lt.0) then

geer=0
else
geer=real(gee(t))

endif
return
end

real function geei(t)

c gee has only imaginary parts

implicit none
real t
complex gee

if (t.lt.0) then
geei=0
else

geei=imag(gee(t))
endif

return
end

complex function geg(t)
implicit none

c green function in time domain

real hbar,t,weg,gammaeg,t1,t2,mystop
common /values/ hbar,weg,t1,t2,mystop
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gammaeg=1/t2
if (t.gt.0) then

geg=exp(-gammaeg*t)*cmplx(sin(weg*t),cos
$ (weg*t))/hbar

else
geg=cmplx(0.0,0.0)

endif
return
end

real function gegr(t)
implicit none
complex geg
real t
if (t.lt.0) then

gegr=0
else
gegr=real(geg(t))

endif
return
end

real function gegi(t)
implicit none
complex geg
real t
if (t.lt.0) then

gegi=0
else
gegi=imag(geg(t))

endif
return
end

real function elec(t)
implicit none

c real amplitude expression of electric field,

real t,tsteps,sigma,w1,sech,tau,tauprime
common /times/ tsteps,tau,tauprime
common /elecvals/ w1,sigma
elec=sech(t/sigma)
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return
end

real function sech(t)
implicit none
real t
sech=2/(exp(t)+exp(-t))
return
end




