LOQO User’'s Manual — Version 2.27

Robert J. Vanderbei

Statistics and Operations Research
Technical Report No. SOR-96-07

February 28, 1997

Princeton University
School of Engineering and Applied Science
Department of Civil Engineering and Operations Research
Princeton, New Jersey 08544

LOQO USER’'S MANUAL — VERSION 2.27

ROBERT J. VANDERBEI

ABSTRACT. LOQOIs a system for solving convex optimization problems. It is based on an infeasible primal-dual interior-
point method. For linear programs, it reads industry standard MPS formated input files. For convex quadratic problems, we
have extended the definition of the MPS format to allow one to specify quadratic terms in the objective function. We call this
extended format the QPS format.

In addition to an executable progran@Qo also comes with a subroutine library that can be used to solve general convex
optimization problems. These problems are solved by forming a quadratic approximation to the problem at each iteration of
the infeasible interior-point method.
This manual describes

(1) how to installL.oQo on your hardware,

(2) how to formulate and solve linear programs in MPS format,

(3) how to formulate and solve quadratic programs in QPS format,

(4) how to useamPL together withLoQoto solve linear or quadratic programs, and

(5) how to use the subroutine library to formulate and solve convex optimization problems.

1. INSTALLATION

The normal mechanism for distribution is by downloading from the following website:
http://ww. princeton. edu/ ~rvdb/ | oqoexecs. ht m

At that website is a list of the supported hardware platforms. To download, simply click on the platform that is
appropriate. For sake of discussion, suppose that the appropriate platf8@h i§| Rl X 6. 2) Execut abl e.

Then, the downloaded file will be callexhi _| Rl X6. 2. t ar. gz. While not required, it is a good idea to put this

file in an empty directory calledoqo. This file is a compressed collection of files bundled together witt tre
command. To expand out the original files, execute the following commands:

gunzip sgi _IRI X6. 2. tar
tar xvf sgi IR X6.2.tar

The tar command will extract several files fragi _| Rl X6. 2. t ar . Here is a list of some of the files you will
find.

l oqo An executable code, which solves linear programming problems that are presented in
industry-standard MPS form (seé i r 0. nps for an example) and quadratic program-
ming problems in an extension of MPS form (sdd r 0. gps for an example).

| ogo. c A file containing the main program férogo. It is included as an example on how to use
theLoqQo function library.

| ogo2. ¢ A modification ofl ogo. c illustrating how to modify the variable initialization routine
and/or the stopping rule for application specific programming.

Research supported by AFOSR through grant AFOSR-91-0359 and by NSF througBQRໍ.

2 ROBERT J. VANDERBEI

 0go. h A header file containing the function prototypes for each function inLth@o function
library. This file must be#i ncl ude'd in any program file in which calls to theoQo
function library are madd ©qo. c is an example of this).
i bl ogo.a An archive file containing theoQo function library.
Some of these files are regular text files while others are platform dependent binary files. The platform dependent
binaries are in a subdirectory. You should link (or copy or move) them up to the current directory:

In -s sgi _IRIX6.2/install
In -s sgi IR X6.2/1iblogo.a .
In -s sgi IR X6.2/10qo .

Now, to check that you have all the files, type
ls -1

If they all seem to be there, you may want to remege _| Rl X6. 2. t ar by typing
rmsgi _| R X6. 2. tar

since it is a fairly large file that is now redundant. Tih& command will also show you the read/write/execute per-
missions on these files. Check to make sure that you have read permission on all of these files and execute permission
onl ogo, andi nstal | .

Before you can useoQo you need to rum nst al | . To do this, simply type

.linstall

If you are logged in as ‘root’ when you execute this commantst al | will set things so that anyone with a login
on your machine will be able to use the system — otherwise, only you yourself willdtaess to it.
You may want to have your system administrator move some of the files as follows:

nmv loqo /usr/local/bin
mv 1 oqgo. h /usr/local/include
mv |ibloqgo.a /usr/local/lib

2. SOLVING LINEAR AND QUADRATIC PROGRAMS INMPS FORMAT

Solving linear programs that are already encoded in MPS format is easy. For example, to solve the linear program
stored inmyf i r st p. nps, you simply type
l oqo nyfirstlp. nmps
Logo will display on your screen an iteration log giving information regarding the solution process. When it is done
it will put the optimal solution (primal, dual and reduced costs) into a file catiefdi r st | p. out (which is derived
from thenyfi r st p on theNAME line of nyfi r st p. nps). The solution file can then be perused using any file
editor (such agi orenacs).
StandarduNix features can be used witloqo. For example, if you want to save the iteration log into a file called
saynyfirstlp. | og,simply type
logo nyfirstlp.nmps > nyfirstlp.log
If you want to time the entire solution process, use

tinme logo nyfirstlp.nps

LOQO USER’S MANUAL — VERSION 2.27 3

2.1. MPS File Format. Input files follow the standard MPS format (for a detailed description, see [2]) for linear
programs and are an extension of this format in the case of quadratic programs. The easiest way to describe the format
is to look at an example. Consider the following quadratic program:

1
minimize 31 — 2Xo + X3 — 4X4 + 5(X3 — 2Xg)?

X1 +X2 —4x3 +2%¢ = 4

—3X1 +X2 —2X3 < 6

+X2 —Xq4 = -1

X1 +X2 —X3 = 0
x1free, —100<x2 <100, X3,Xq4>0.

The input file for this quadratic program looks like this:

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890

NAME myfirstlp

ROWS

Grl

L r2

E r3

E rd

N obj

COLUMNS

x1 rl 1. r2 -3.
x1 r4 1. obj 3.
X2 rl 1 r2 1.
X2 r3 1. r4 1.
X2 obj 2.

X3 rl -4. 12 -2.
x3 r4 -1. obj 1.
x4 rl 2. 13 -1.
x4 obj -4,

RHS

rhs ri 4, r2 6.
rhs r3 -1.

BOUNDS

FR x1

LO x2 -100.

UP X2 100.

QUADS

x3 x3 1.

X3 X4 -2.

x4 X4 4,

ENDATA

4 ROBERT J. VANDERBEI

Upper case labels must be upper case and represent MPS format keywords. Lower case labels could have been upper
or lower case. They represent information particular to this example. Column alignment is important and so a column
counter has been shown across the top (tabs are not allowed).

The ROWS section assigns a name to each row and indicates whether it is a greater than row (G), a less than row
(L), an equality row (E), or a nonconstrained row (N). Nonconstrained rows refer to the linear part of the objective
function.

The COLUMNS section contains column and row label pairs for eamfizero in the constraint matrix together
with the coefficient of the corresponding nonzero element. Note that either one or two nonzeros can be specified on
each line of the file. There is no requiremehbat whether one or two values are specified on a given line although
the trend is to specify just one nonzero per line (this uses slightly more disk space, but disk storage space is cheap and
the one-per-line format is easier to read). All the nonzeros for a given column must appear together, but the row labels
within that column can appear in any order.

The RHS section is where the values of nonzero right-hand side values are given. The label “rhs” is optional.

By default all variables are assumed to be nonnegative. If some variables have other bounds, then a BOUNDS
section must be included. The label FR indicates that a variable is free. The labels LO and UP indicate lower and
upper bounds for the specified variable.

If the problem has quadratic terms in the objective, their coefficients can be specified by including a QUADS
section. The format of the QUADS section is the same as the COLUMNS section except that the labels are column-
column pairs instead of column-row pairs. Note that only diagonal and below diagonal elements are specified. The
above diagonal elements are filled in automatically.

2.2. Spec Files.LoQo has only a small number of user adjustable parameters. The parameters have default values
which are usually appropriate, but other values can be specified by including in the MPS file appropriate keywords
and, if required, corresponding values. These keywords (and values) must appear one per line and all must appear
before theNAMVE line in the MPS file. If preferred, these keywords (and values) can be putinto a separate file which is
then included on theogo command line. For example, suppose the file containing the keywords and values is called
spec. Then to solvaryfi r st | p. nps using this specfile, you'd type:

| oqo spec nyfirstlp. nmps
A list of the parameter keywords can be found in Appendix A.

2.3. Termination Conditions. Oncel oqo starts iterating toward an optimal solution, there are a number of ways
that the iterations can terminate. Here is a list of the termination conditions that can appear at the end of the iteration
log and how they should be interpreted:
OPTI MAL SOLUTI ON FOUND Indicates that an optimal solution to the optimization problem was
found. The default criteria for optimality are that the primal and dual agree to 8 significant
figures and that the primal and dual are feasible tdlth@e- 6 relative error level.
SUBOPTI MAL SOLUTI ON FOUND If at some iteration, the primal and the dual problems are fea-
sible and at the next iteration the degree of infeasibility (in either the primal or the dual)
increases significantly, théroqo will decide that numerical instabilities are beginning to
play heavily and will back up to the previous solution and terminate with this message. The
amount of increase in the infeasibility required to trigger this response is tied to the value
of | NFTOL2. Hence, if you want to forceoqo to go further, simply set this parameter to
a value larger than the default.
| TERATION LIM T Logo will only attempt 200 iterations. Experience has shown that if an optimal
solution has not been found within this number of iterations, more iterations will not help.
Typically, | ogo solves problems in somewhere between 10 and 60 iterations.

LOQO USER’S MANUAL — VERSION 2.27 5

PRI MAL | NFEASI BLE If at some iteration, the primal is infeasible, the dual is feasible and at the
next iteration the degree of infeasibility of the primal increases significantly, ltbejo
will conclude that the problem is primal infeasible. If you are certain that this is not the
case, you can forckoqo to go further by rerunning withNFTOL2 set to a larger value
than the default.

DUAL | NFEASI BLE If at some iteration, the primal is feasible, the dual is infeasible and at the next
iteration the degree of infeasibility of the dual increases significantly,ltioepo will con-
clude that the problem is dual infeasible. If you are certain that this is not the case, you can
forcel oqo to go further by rerunning withNFTOL 2 set to a larger value than the default.

PRI MAL and/ or DUAL | NFEASI BLE If at some iteration, the primal and the dual are infeasible
and at the next iteration the degree of infeasibility in either the primal or the dual increases
significantly, therl ogo will conclude that the problem is either primal or dual infeasible.

If you are certain that this is not the case, you can férago to go further by rerunning
with | NFTOL2 set to a larger value than the default.

PRI MAL | NFEASI BLE (| NCONSI STENT EQUATI ONS) This type of infeasibility is only de-
tected at the first iteration. Ifoqo terminates here and you are sure that it should go
on, set the paramet&PSSOL to a larger value than its default.

3. CALLING LOQO FROM WITHIN AMPL

AMPL is a language for expressing mathematical optimization problems (see [1]). For those usersaliating
installed on their system, it is easy to usBQO to solve linear or quadratic programs that are formulated usirg..
We shall illustrate how this is done with an example.

3.1. The Markowitz Model. Markowitz received thd 990 Nobel Prize in Economics for his portfolio optimization
model in which the tradeoff between risk and reward is explicitly treated. We shall briefly describe this model in its
simplest form. Given a collection of potential investments (indexed, say, fronm)j tet R; denote the return in the
next time period on investment j =1, ..., n. In general R; is a random variable, although some investments may
be essentially deterministic.

A portfoliois determined by specifying what fraction of one’s assets to put into each investment. That is, a portfolio
is a collection of nonnegative numbers j =1, ... , nthat sumto one. The return (on each dollar) one would obtain

using a given portfolio is given by
R = Z XjRj.
j

Thereward associated with such a portfolio is defined as the expected return:

ER=) XER;.
j

Similarly, therisk is defined as the variance of the return:
Var(R) = E(R-ER)?
EQ_xj(Rj —ERy))?

J
= EQ_XR)?
j

6 ROBERT J. VANDERBEI

Wherelij = Rj — ERj. One would like to maximize the reward while minimizing the risk. In the Markowitz model,
one forms a linear combination of the mean and the variance (parametrized herafy minimizes that:

maximize Y_; X;ERj — uE(Y; X} Rj)?
subject to XX =1
Xj >0j=12,...,n.

Here, i is a positive parameter that represents the importance of risk relative to reward. That is, high value of
tend to minimize risk at the expense of reward whereas low values put more weight on reward.

Of course, the distribution of thig; 's is not known theoretically but is arrived at empirically by looking at historical
data. Hence, iR; (t) denotes the return on investmegnat timet (in the past) and these values are known forjall
andfort =1,2, ..., T, then expectations can be replaced by sample means as follows:

1T
ERj == Y ORi).
t=1
The full model, expressed iumpPL and solved usingoQo, looks like this:

paramn integer > 0 default 500; # nunber of investment opportunities
param T integer > 0 default 20; # nunber of historical sanples

param mu default 1.0;

param R {1..T,1..n} := UnifornD1l(); # return for each asset at each tine
(in lieu of actual data,
we use a random nunber generator).

paramnean {j in 1..n} # mean return for each asset
= (sui in 1..T} Ri,j]) [/ T,

param Rtilde {i in 1..T,j in 1..n} # returns adjusted for their means
= Ri,j] - rean[j];
var x{1..n} >= 0;
m ni m ze |inear_conbination:
m * # wei ght

sun{i in 1..T} (sun{j in 1..n} Rilde[i,j]l*x[j])"2 # variance

sun{j in 1..n} nmean[j]*x[j] # nmean

1

subject to total _mass:
sum{j in 1..n} x[j] = 1,

option solver | oqo;
sol ve;

printf: "Optimal Portfolio: \n";

LOQO USER’S MANUAL — VERSION 2.27 7

printf {j in 1..n: x[j]>0.001}: " %3d %0.7f \n", j, x[j];:

printf: "Mean = 940.7f, Variance = 940.5f \n"
sum{j in 1..n} mean[j]*x[j],
sum{i in 1..T} (sun{j in 1..n} Rtilde[i,jl*x[j]l)"2

If we suppose that this model is stored in a file calied kowi t z. mod, then the model can be solved by typing:
anpl narkowi t z. nod
The output that is produced looks like this:
LOQO optinal solution (18 iterations)
primal objective -0.6442429645
dual objective -0.6442429804

Optinmal Portfolio:
55 0.0947938

110 0.0065181
117 0.0798031
133 0.0939989
139 0.0019010
149 0. 0659400
151 0.1004992
204 0.0010392
222 0.0655397
240 0.0659591
302 0.0065312
311 0.0075340
392 0.1939483
414 0.0533822
423 0.0087265
428 0.0212861
444 0.0551152
465 0.0128579
496 0.0385583
497 0.0260679
Mean = 0.6489705, Variance = 0.00473

The adjustable parameters described in Appendix A can be set within. For example, to request a more
elaborate iteration log, one would includerimr kowi t z. nod the following line somewhere before the solver is
called

option | ogo_options "verbose=2"
Several options can be adjusted in one line. For example,

option |l ogo_options "verbose=2 itnlim5 prinmal";

sets the verbosity level to 2, the maximum number of iterations to 5 and requests the primal-favored ordering (see
Appendix A for a description of this and other parameters).

8 ROBERT J. VANDERBEI

4. SOLVING CONVEX PROGRAMMING PROBLEMS

One of the most common (and natural) approaches to convex programming is a techniqusecplitial qua-
dratic programming In this method, a quadratic approximation to the convex programming problem is formed and
solved to optimality. Then, a new quadratic approximation is formed around the previously obtained QP solution. This
new QP is solved to optimality and the process is continued until the optimality conditions for the convex program are
met.

In LOQO, a similar but better approach is taken. Instead of solving each quadratic program tolipptinga
reform the quadratic approximation at every iteration of the interior-point method. This allows us to solve the convex
programming problem in approximately the same amount of time as it takes to solve just one quadratic program. The
QP solver inLoQo has hooks that allow a user to modify his or her problem at the beginniegatf iteration of
the interior-point method. These hooks can be used to update the quadratic approximation to a convex programming
problem. Furthermore, theoQo subroutine library contains functions that hide the details from the user thereby
making it relatively easy to formulate and solve convex programming problems.

In this section, we shall describe these functions and how to use them. We start with an example.

4.1. A Facility Location Model. Consider the problem of deciding on the location at which to build a warehouse
given that one wishes to minimize the sum of the distances to a given set of customer locatiors, et

1,2, ..., n, denote the customer locations (as point®#) and letx denote the as yet undetermined location of
the warehouse (also a pointli?). The objective is to minimize the sum of the distances from the warehoeseho

customer
n
> lIx—ajll.
=1

Here, the nornj| - || denotes the Euclidean distance. We should note that had we wished to minimize the sum of the
squareddistances, then the solution would be very simple. Indeedould be the centroid of the customer locations

Yiae
= —
However, transportation costs are better modeled as proportional to distance, not squared distance, and so the centroid
is not the best location for the warehouse.

As a specific example, suppose that there are 3 customers and their locati@s-dne (0, 1), and(10, 0). We can
useLOQO to solve this convex optimization problem. The idea is to put the linear parts of the problem into an MPS file
and then to specify the nonlinearities separately. The easiest way to make an MPS file is to use a modeling language,
such assMpPL. Here is theampPL formulation of the facility location problem (which is storedfiac_| oc. nod):

X

paramn := 3; # nunber of facility
paramd := 2; # di mensi on of geographi cal space
set CUSTS := 1..n; # set of facilities

par am a{ CUSTS, 1..2}; # geographi cal coordi nates of each facility
var x{1..2};

mnimze tot _dist:
sum {j in CUSTS} sqgrt(sum{i in 1..2} (x[i] - a[j,i])"2);

LOQO USER’S MANUAL — VERSION 2.27 9

dat a;

parama: 1

2
-1
1
0

WN -
o O o

1 ;

option presol ve O;

option auxfiles rc;

wite nfac_l oc;
Note that theampL model does not invoke any solver (such as LOQO). Instead, it simply writes out some fitesy Se
thepr esol ve option to zero directamMPL not to do any problem simplification. We want it just exactly the way
we've formulated it. The last line in thempL file instructsampL to write an MPS file called ac | oc. nps. Here
is the file it produces:

NAVE fac_l oc
RONB
N R0001
COLUWMNS
Q0001 RO001 0
Q0002 RO001 0
RHS
BOUNDS
FR BOUND C0001
FR BOUND C0002
ENDATA

It simply says that the problem has two variables, called CO001 and C0002 and that both of these variables are free
variables. It also sets up that linear part of the objective function, which is called RO001. But it puts all zeros in for
the data.

The nonlinearities must be specified separately. We do this by preparing a short C program (which is stored in
fac. oc. c):

#i ncl ude <math. h>
#i ncl ude "l oqo. h"

#define n 3 /* nunber of custoners */
#define d 2 /* dinension of Euclidean space */

void eucl (double *z, double *param
doubl e *pval, double *grad, double **hessian);

mai n(int argc, char *argv[])
{
LOQO *lp;

int i,];

char *col | abs[d] = { "Q0001", "@©0002" };

10 ROBERT J. VANDERBEI

doubl e obj _paran]n][d] ={{ 0.0, -1.0},
{ 0.0, 1.0},
{ 10.0, 0.0} }

I'p = openlp();

argc--; argv++;

readl p(argc, argv, | p);

for (j=0; j<n; j++) {
nl obj term(eucl, 2, collabs, 2, obj paranij]);
}

solvelp(Ip);

witesol (Ip, "fac_loc.out");

In the functionmai n() , the first order of business is to calpenl p() which sets up a data structure (called
LOQO) to hold an optimization problem and returns a pointer to this data structure (tgljed

Next, r eadl p() is called. Itis passed a couat gc of how many command-line arguments there were when
main was called together with an array of striregggv containing each of these command-line arguments. It also
gets a pointer to theOQO data structure that was created with the calbpenl p() . Readl p() expects each of
the command-line arguments to be the names of files. It attempts to read these files one at a time in the order that
they appear. These files, taken in their totality, should constitute a standard MPS file description of the linear part of
the problem. (It is a feature @oQoO that it allows one to break an MPS file into several pieces and then to list them
separately on the command line with the understanding &aall p() will read each fragment in order.) The linear
information that it reads in these files is stored in @O data structure to whichp points.

Next we must define the nonlinearities. There mmonlinear terms in the objective function. For eawnlinear
term of the form

f (Xjzs Xjps -+ Xji3 PL, -+ - 5 Pm),
we must make a call to the functiot obj t er n() . This function has five arguments:

(1) A pointer to the function that computes the valued pits gradient, and its hessian.

(2) Aninteger indicating the number of variabl&sappearing in the functiof.

(3) An array of strings, each string being a column label from the MPS file associated with the relevant variable.

(4) Aninteger indicating the number of auxillary parametenspn which the function depends.

(5) An array of double precision numbers containing the parametersy, ... , Pm.

In the facility location problem, the function is the Euclidean distance from a given point. The parameters are the
coordinates of the given point.

After finishing the loop that sets up the¢erms in the nonlinear objective function, we are ready to solve the convex
optimization problem. We do this by callirepl vel p() passing it the.OQOpointerl p. As its name indicates, the
functionsol vel p() solves the optimization problem. The optimal values of the primal and the dual variables are
stored in the-OQO data structure to whichp points.

The functionwr i t esol () creates a file containing the primal and the dual solution values.

For eachnonlinear function that appears in the model formulation, one must prepare a C function that evaluates this
function together with its gradient and hessian. In the facility location model, there is only one nonlinear function: the

LOQO USER’S MANUAL — VERSION 2.27 11

Euclidean distance function

f@ =lz-all=v(z-a)’+ (22— a2
Hence, we must define one corresponding C function. We've cakectit . The C function must have five arguments:
(1) An array containing the arguments to the mathematical function.
(2) An array containing the parameters that define the mathematical function.
(3) A pointerto a double precision variable which, on return, will contain the value of the nonlinear function.
(4) An array which will, on return, contain the gradient of the nonlinear function.
(5) Atwo-dimensional array which will contain the Hessian of the nonlinear function.
The code fragment shown above contains a prototypedol and passes a pointer to this functiomtioobj t er m
but does not define this function. Here is its definition (also fourfdia_l oc. c):

void eucl (double *z, double *param
doubl e *pval, double *grad, double **hessian)

{
doubl e z0, z1, val, val3;
z0 = z[0] - paraniO];
z1 = z[1] - paranfl1];
val = sqrt(z0*z0 + z1*z1);
val 3 = val *val *val ;
pval = val; / f */
grad[0] = zO0/val; [* fr]
grad[1] = zl/val; [* £]
hessian[0][0] = zil*z1l/val 3; [* £]
hessian[0][1] = hessian[1][0] = -z0*zl/val 3; [* £ */
hessian[1][1] = z0*z0/val 3; [* £
}

The two code fragments can be found together in a file céléarl| oc. ¢ and the MPS file is stored in a file called
fac_l oc. nps. These two files contain all the information necessary to describe a particular instance of the facility

location model.
We are now ready to solve this instance of the model. To this end, let us assume that thedibeh and
[i bl 0go. a sitin the same directory as the two model files. Then we can solve the problem by typing

cc -Ofac_loc.c liblogo.a -Im-o0 fac_loc
fac_l oc fac_l oc. nps

The iteration log produced by this run should look something like this:

vari abl es: non-neg 0, free 2, bdd 0, total 2
constraints: eq 0, ineq 0, ranged 0, total 0
nonzer os: A 0, Q 4

nonzer os: L 3, arith_ops 6

12 ROBERT J. VANDERBEI

| Pri mal | Dual | Sig
Iter | Obj Value I nf eas | Goj Val ue | nf eas | Fig Status
1 1. 2000000e+01 2. 83e+02 1. 2000000e+01 1. 58e+02 30
2 1.1742154e+01 1. 42e+01 1.1819860e+01 8. 60e+00 2
3 1.1732180e+01 7.13e-01 1.1742578e+01 4.55e-01 3
4 1.1732051e+01 3. 56e-02 1.1732669e+01 2. 29e-02 4
5 1.1732051e+01 1. 78e-03 1.1732082e+01 1. 15e- 03 6
6 1.1732051e+01 8.91e-05 1.1732052e+01 5. 74e-05 7
7 1.1732051e+01 4. 45e- 06 1.1732051e+01 2.87e-06 8 PF DF

OPTI MAL SOLUTI ON FOUND

The file,f ac_l oc. out looks like this:

COLUWNS SECTI ON

i ndex | abel prinmal_val reduced_cst | ower _bd upper _bd
0 X1 5.7735e-01 0. 0000e+00 -Infinity Infinity
1 X2 -0.0000e+00 0.0000e+00 -Infinity Infinity
RONS SECTI ON
i ndex | abel dual _val row_ actvty rght_hnd_sd range
ENDOUT

Before leaving this example, we should note that an improved versiba@fl oc. ¢ would allow the number of
customers to be a variable and would read from a separate data file theation vectors.

4.2. A Constrained Facility Location Model. Now, suppose that in addition to the desire to minimize the sum of
the distances to the customers, we also have constraints that the warehouse can be no further than a fixed distance
from each of several (say) factories that supply goods to the warehouse.t.eenote the position it of thei-th
factory and let; denote the maximum distance that tkth factory can be from the warehouse. Thenitftedistance
constraint can be written as
X —bill <di

or as

Ix — i |* < d?.
It turns out that the second representation is better and so we add constraints of this type to the model developed
before. The updatedviPL model, stored ifi ac_| oc2. nod looks like this:

paramm : = 2;
paramn := 3;
paramd := 2;

set CUSTS := 1..n;
set FACTS := 1..

param a{ CUSTS, 1..2};
param b{ FACTS, 1..2};

LOQO USER’S MANUAL — VERSION 2.27

par am di st { FACTS};
var x{1..2};

mnimze tot _dist:
sum {j in CUSTS} sqgrt(sum{i in 1..2} (x[i] - a[j,i])"2);

subject to not_far{k in FACTS}:
sum{i in 1..2} (x[i] - b[k,i])"2 <= dist[k]"2;

dat a;
parama: 1 2 =
1 0 -1
2 0 1
310 O ;
paramb: 1 2 D=
1 5 -2
2 6 1;
paramdi st :=
1 3
2 2 ;

option presol ve O;
option auxfiles rc;
wite nfac_| oc2;

and the MPS file it produces looks like this:

NANVE fac_loc2
RONG
L R0001
L R0002
N R0003
COLUMNS
C0001 R0001 0
C0001 R0002 0
C0001 R0003 0
C0002 R0001 0
C0002 R0002 0
C0002 R0003 0
RHS
B R0001 9
B R0002 4

14 ROBERT J. VANDERBEI

BOUNDS
FR BOUND C0001
FR BOUND C0002
ENDATA

Nonlinear terms appearing in constraints are specified in much the same manner as for nonlinear objective terms.
The functiommai n() infac_l oc2. c is almost the same ami n() infac. oc. c except that the following lines
must be inserted after the callteadl| p() and before the called ®ol vel p():

for (i=0; i<m i++) {
sprintf(row, "R000%dd", i+1);
nl constr(eucl 2, row, 2, collabs, 2, const_paranfil);

}

The functionnl const r () is similar tonl obj t er n() . It has six arguments, five of which are the same as before.
The new argument is inserted between the first two old arguments. It is a string indicating the row label (from the MPS
file) in which the nonlinear objective term appears. Here is a list of the six parameters and their meanings:
(1) A pointer to the function that computes the valued ¢f, its gradient, and its hessian.
(2) A string indicating the row label from the MPS file associated with this nonlinear constraint term.
(3) Aninteger indicating the number of variablé3 &ppearing in the functioffi () has.
(4) An array of strings, each string being a column label from the MPS file associated with the relevant variable.
(5) Aninteger indicating the number of auxillary parameten} ¢n which the function depends.
(6) An array of double precision numbers containing the parametersy, ... , Pm.
Of course, the number of factoriess 2 and their positions are at@, —2) and(6, 1). As before, the positions are
given in the parameters that are passed to the nonlinear function. In this case these parameters are stored in an array
calledconst _par am Hence, the following lines must appear near the topaifn() :
doubl e const_paranim[2] ={ { 5.0, -2.0 },
{ 6.0, 1.0} };
and the number of factoriescould be#def i ne’ed:
#define m2 /* nunber of factories */

The functioneucl 2() which computes the value, gradient, and hessian of the square of the Euclidean distance
from a specified point must be prototyped at the top of the file and must be defined somewhere, say at the end of the
file. Its definition is as follows:

void eucl 2(double *z, double *param
doubl e *pval, double *grad, double **hessian)

{

doubl e z0, z1, val;

z0 = z[0] - paraniO];
z1 = z[1] - paranfl];
val = z0*z0 + z1*z1;

pval = val; / f */

LOQO USER’S MANUAL — VERSION 2.27 15

grad[0] = 2*z0; [* £]
grad[1] = 2*z1; [* fr]
hessian[0][0] = 2; [* £
hessian[0][1] = hessian[1][0] = O; [* fr0 o]
hessian[1][1] = 2; [* £

}

The entire model can be found in the fifesc _| oc2. nps andf ac_| oc2. c distributed with the.0Qo software.
The model is compiled and run as before. This time it takes 12 iterations to converge to a solution having 9 figures
of agreement between the primal and dual objective functions. Looking at the solution file we see that the optimal
location for the warehouse is @.0795 0.44187%.

4.3. A Utility Approach to Portfolio Optimization. Consider the Markowitz model for portfolio optimization dis-
cussed in Section 3.1. The VonNeumann/Morgenstern theory of utility suggests that one should optimize the expected
utility of the return instead of the linear combination of risk and reward described earlier. Using the utility approach
with a log utility function, the portfolio optimization model can be formulated as follows:

paramn integer > 0 default 500; # nunber of investment opportunities
param T integer > 0 default 20; # nunber of historical sanples

param R {1..T,1..n} := UnifornD1l(); # return for each asset at each tine

var x{1..n} >= 0;
var y{1l..T};

m nimze negative_expected_utility:
-sun{i in 1..T} log(ylil);

subject to total _mass:
sun{j in 1..n} x[j] = 1;

subj ect to definitional _constraints {i in 1..T}:

y[i] =sun{j in 1..n} R, j]*x[j];

option auxfiles "c"; # to get row and colum files
wite mutility; # output into MPS format file

Here, we have usedmvpL to define the convex optimization problem, but as before we have not indicated that we
wantAMPL to call any solver. Instead, we are simply askigpPL to write an MPS file containing the linear part of

the model (thewite mutility statement tellamPL to create an MPS file callagt i | i ty. nmps). We've also
requested thatmPL output an auxiliary file calledt i | i t y. col containing a list of the variable names in the order

in which they appear in the MPS file. The reason is that currenthnteL/solver interface routines provided with

the AMPL software do not produce functions that give values in the Hessian matrix (except if the problem is a QP).
But, as we've seen, we need this information. Therefore, we must still produce it by hand. This is not too hard. A
quick perusal of theiti | i ty. col shows that the first 20 variables correspongitd] toy[T] . Then, looking in
utility. nps we see thatthe MPS file refers to these variable30@¥)1 to C0020. Therefore, the C program file,
called sayuti | i ty. c shouldlook like this:

16

ROBERT J. VANDERBEI

#i ncl ude <math. h>
#i ncl ude "l oqo. h"

#define n 20
void logutil (double *z, double *pval, double *grad, double **hessian);

mai n(int argc, char *argv[])

{

LOQO *lp;

int i

char *col Il abs[n][1] ={ { "Coo001" },
{ "@ooo02" 1},
{ "00003" 1},
{ "©oo004" 1},
{ "C0005" 1},
{ "©ooo06" 1},
{ "@oooo7" 1},
{ "oooo8" 1},
{ "C0009" 1},
{ "ooo10" 1},
{ "ooo11" 1},
{ "ooo012" 1},
{ "00013" },
{ "0oo014" 1},
{ "00015" 1},
{ "ooo16" 1},
{ "oo017" 1},
{ "ooo18" 1},
{ "00019" 1},
{ "C0020" } } ;

doubl e obj _shifts[1] = { 0.0 }

I'p = openlp();

argc--; argv++

readl p(argc, argv, | p);

for (j=0; j<n; j++) {

nlobjterm(logutil, 1, collabs[j], obj_shifts);

}

solvelp(Ip)

witesol (Ip, "utility.out");

}

void logutil (double *z, double *pval, double *grad, double **hessian)

LOQO USER’S MANUAL — VERSION 2.27 17

{ doubl e z0, val;
z0 = z[0];
val = -1o0g(z0);
pval = val; / f */
grad[0] = -1/z0; [* £]
} hessian[0][0] = 1/(z0*z0); [* fr0 o]

The following commands compile and run the model;

cc -Outility.c liblogo.a -Im-o utility
utility utility. nps

This model converges in just 16 iterations (taking less than one second on a typical 10 MFLOP workstation).

5. MODELING HINTS

Every attempt has been made to mak®Qo as robust as possible on a wide spectrum of problem instances.
However, there are certain suggestions that the modeler should take heed of to obtain maximum performance.

5.1. Artificial Variables. Splitting free variables.Some existing codes for solving linear programs are unable to
handle free variables. As a consequence, many problems have been formulated with free variables split into the
difference between two nonnegative variables. This trick does not present any difficulties for algorithms based on the
simplex method, but it does tend to cause problems for interior-point methods and, in particulaQfor Since
LOQO is designed to be able to handle problems with free variables, we suggest that they be left as free variables and
indicated as such in the input file.

Artificial Big-M Variables. Some problems have artificial variables added to guarantee feasibility using the tradi-
tional Big-M method. Putting huge values anywhere in a problem invites numerical problem® has its own
feasibility phase and so we suggest that any Big-M type artificial variables be left out.

5.2. Separable Equivalents.The algorithm implemented inoQo only works on convex quadratic programs. This
means tha@Q must be positive semi-definite if the problem is a minimization (and negative semi-definite if the problem
is a maximization).LoQO checks this condition and prints a warning whenever it discove@sthat violates the
semidefiniteness condition.

This raises an interesting question. How do you know that a m@tixpositive semi-definite? Generally the best
way to prove this is to exhibit another matiixfor which

Q=F'TF.
Here, F does not need to be a square matrix. In fact, it is quite likely that you, the modeller, will knowFfaal

this F may have many fewer rows than columns. It will also most likely be sparser@hadn this case, it is much
better to replace the nonseparable quadratic term

LT
2x Qx

18 ROBERT J. VANDERBEI

in the objective function with an equivalent separable term
11
Ey y

and simply add the following constraints to the problem:

Fx—y=0.

Let us illustrate this concept with the Markowitz model presented in Section 3.1. By setting the verbosity level to
2, one discovers the following statistics associated withkowi t z. nod:

vari abl es: non-neg 500, free 0, bdd 0, total 500
constraints: eq 1, ineq 0, ranged 0, total 1
nonzer os: A 500, Q 250000

nonzer os: L 125751, arith_ops 42168001

The second entry on the third line gives the number of nonzeros in the ngatiefining the quadratic terms. Here it
is 250000 which is exactly 500 squared. This indicates@it a dense 50& 500 matrix.
Now, let us consider a slight modification to the model, which we have stored in a new fileraitl&dwi t z2. nod:

paramn integer > 0 default 500; # nunber of investment opportunities
param T integer > 0 default 20; # nunber of historical sanples

param mu default 1.0;
param R {1..T,1..n} := UnifornD1l(); # return for each asset at each tine
(in lieu of actual data,

we use a random nunber generator).

paramnean {j in 1..n} # mean return for each asset
= (sui in 1..T} Ri,j]) /I T,

param Rtilde {i in 1..T,j in 1..n} # returns adjusted for their means
= Ri,j] - rean[j];

var x{1..n} >= 0;

var y{1..T};

m nim ze |inear_conbination:
m * # wei ght
sum{i in 1..T} y[i]"2 # vari ance
sum{j in 1..n} mean[j]*x[]j] # mean

1

subject to total _mass:
sum{j in 1..n} x[j] = 1,

subj ect to definitional _constraints {i in 1..T}:
yli]l] =sum{j in 1..n} Rilde[i,j]l*x[j];

LOQO USER’S MANUAL — VERSION 2.27 19

option solver "/usr/people/rvdb/anpl/|oqgo";
option | ogo_options "verbose=2";

sol ve;

printf: "Optimal Portfolio: \n";
printf {j in 1..n: x[j]>0.001}: " 9%8d %0.7f \n", j, x[j];:

printf: "Mean = 940.7f, Variance = 9%40.5f \n",
sum{j in 1..n} mean[j]*x[j],
sum{i in 1..T} (sun{j in 1..n} Rtilde[i,jl*x[j])"2;

If we make a timed run of this model (by typimg ne anpl mar kowi t z2. nod), the first few lines of output look
like this:

LOQOC Verbosity level (VERBCSE) = 2

vari abl es: non-neg 500, free 20, bdd 0, total 520
constraints: eq 21, ineq 0, ranged 0, total 21
nonzer os: A 10520, Q 20

nonzer os: L 11271, arith_ops 256121

Note that there are now 20 more constraints but at the same time the number of nongei®sinty 20. Furthermore,

the number of arithmetic operations (which correlates closely with true run-times — at least for large problems) is only
256121 as compared with 42168001nmar kowi t z. nod. This suggest that the second formulation should run
perhaps a hundred times faster than the first. Indeed, running both models on the same hardware platform one finds
thatmar kowi t z2. nod solves in 5.95 seconds wheressr kowi t z. nod takes 188.75 seconds, which translates

to a speedup by more than a factor of 60.

5.3. Dense ColumnsSome problems are naturally formulated with the constraint matrix having a small number of
columns that are significantly denser than the other columns. From an efficiency point of view, dense columns have
been a red herring for interior-point methods. HoweverQo incorporates certain specific techniques to avoid the
inefficiencies often encountered on models with dense columns.

Recently discovered “tricks” (which are incorporated intwQo) have largely overcome the problems associated
with dense columns, however, the user should be aware that the presense of dense columns could be the source of
numerical difficulties. Often it is easy to reformulate a problem having dense columns in such a way that the new
formulation avoids dense columns. For example, if variabbppears in a large number of constraints, we would
suggest introducing several different variabbes.. .. , xk, all representing the same original variakland usingx;
in some of the constraintg, in some others, etc. Of courde— 1 new constraints must be added to equate each of
these new variables to each other. Hence, the new problem willkhavlemore variables ankl— 1 more constraints,
but it will have a constraint matrix that doesn’t have dense columns. Often itis better to solve a slightly larger problem
if the larger constraint matrix has an improved sparsity structure.

6. THE FUNCTION LIBRARY

The easiest way to explain how to use the function library is to look at an example. Here is a commented listing of
an abbreviated version bbqo. c:

20

#i ncl ude <l ogo. h>

#i ncl ude <string. h>

ROBERT J. VANDERBEI

/* defines LOQO structure and prototypes
functions */

mai n(int argc, char *argv[])

{
char f nane[80] ; /* solution file name */
LOQO *| p; /* a pointer to a LOQO structure */
I'p = openl p(); /* up to 20 problens can be open at once */
argc--; argv++; /* remove ‘loqo’ from conmmand |ine args */
readl p(argc, argv,|p); /* pass comrand |ine args to readlp */
solve_Ip(Ip); /* solve the optimzation problem */
inv_clo(); /* free up space reserved for solving systens

of equations */

writesol (Ip,"solution"); /* wite solution into a file */
cl osel p(1p); /* close this problem */
return(0);

}

The user interface to thepQo function library is patterned after the customary file manipulation functions defined
instdi o. h. Thatis, there is an open statement that simply returns a pointer to a structure containing all the relevant
information for the other library functions and there is a close function that releases this pointer for future use. In this
case, the structure containing all the relevant information is cal@@D. Here is the definition of this structure:

t ypedef struct 1oqo
int m
int n;
int nz;
doubl e *A;
int *iA
int *kA

double *b
double *c
doubl e f;
doubl e *r;
doubl e *I
doubl e *u
int *varsgn;

char **row ab
char **coll ab

{

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*

nunber of rows */

nunber of colums */

nunber of nonzeros */

pointer to array of nonzero values in A */

pointer to array of corresponding row indices */

pointer to array of indices into A (and iA)

i ndi cati ng where each new colum of A begins */

pointer to array containing right-hand side */

pointer to array containing objective function */

fixed adjustnment to objective function */

pointer to array containing range vector */

pointer to array containing |ower bounds */

pointer to array containing upper bounds */

array indicating which variables were declared to
be non-positive */

array of strings containing row |abels */

array of strings containing colum |abels */

LOQO USER’S MANUAL — VERSION 2.27 21

int gnz; /* nunber of nonzeros in lower triangle of Q */
double *Q /* pointer to array of nonzero values of Q */
int *iQ /* pointer to array of corresponding row indices */
int *kQ /* pointer to array of indices into Q (and i Q

i ndi cati ng where each new colum of Q begins */
double *At; /* pointer to array of nonzero values in At */
int *iAt; /* pointer to array of corresponding row indices */
int *kAt; /* pointer to array of indices into At (and iAt) */
int *bndmark; /* pointer to array of bound marks */
int *rngmark; /* pointer to array of range marks */
doubl e *w; /* pointer to array containing prinmal surpluses */
doubl e *x; /* pointer to array containing prinml solution */
doubl e *y; /* pointer to array containing dual solution */
doubl e *z; /* pointer to array containing dual slacks */
doubl e *p; /* pointer to array containing range slacks */
doubl e *q; /* pointer to array containing dual range slacks */
doubl e *s; /* pointer to array containing dual for ub slacks */
double *t; /* pointer to array containi ng upper bound sl acks */
doubl e *v; /* pointer to array containing dual for range (w */
doubl e *ub; /* pointer to array containing shifted up bounds */
int max; /* max = -1, mn =1 */
double inftol; /* infeasibility tolerance */
int sf_req; /* significant figures requested */
int verbose; /* level of verbosity */
char nane[15]; [/* string containing problem nanme */
char obj[11]; /* string containing objective function name */
char rhs[11]; /* string containing right-hand side nane */
char ranges[11];/* string containing range set nane */
char bounds[11];/* string containing bound set nane */
int (*stopping_rule)(); /* pointer to stopping rule fcn */
void (*init_vars)(); /* pointer to initialization fcn */
int iter; /* current iteration nunber */
doubl e pres; /* primal residual (i.e. infeasibility) */
doubl e dres; /* dual residual (i.e. infeasibility) */
int sigfig; /* significant figures */
double primal _obj; /* prinal objective value */
doubl e dual _obj ; /* dual obj ective value */
int flag; /* O=unopened, 1 = opened */

} LOQO

22

ROBERT J. VANDERBEI

If you wish to generate your own customized reports, simply replace the ealitbesol with a call to your own
output routine. Similarly, if you wish to write your own problem generator and do not want to put its output into an
MPS file but rather go straight intadQo, then you simply need to replace the call wad| p by a call to one of your
own functions which generates the optimization problem and stores ft.in

For those unfamiliar with C structures, the various componentaecessed by typingp- > followed by the
member name. For example, the number of constrairitpissmand thej-th element of the objective vector is
I p->c[j]. Since itis inconvenient to have to include the- > prefix all the time, a common trick is to copy the
needed parts of the data structure into local variables of the same name. For example, here is a simplified version of
the functionwr i t esol :

void witesol(LOQ *Ip, char fnane[])

{

}

int m n, *varsgn,
double *x, *y, *z;
char **rowl ab, **coll ab;
int i,

FI LE *fp;

m = | p->m

n = | p->n;
varsgn = | p->varsgn;
rowab = |p->row ab;
collab = 1p->collab;
X = | p->x;

y = I p->y;

z = | p->z;

for (j=0; j<n; j++) {
x[j1] varsgn[j1*x[j];
z[j] varsgn[jl*z[j];
}

if ((fp = fopen(fnane, "w')) == NULL) error(2,fnane);

fprintf(fp,"COLUWS SECTIONM\n");

fprintf(fp," i ndex | abel prinmal_value reduced cost\n");

for (j=0; j<n; j++) fprintf(fp,"¥%d 9%0s 9%0.3e 9%0.3e \n",
jocollabl[j],x[j],z[j]);

fprintf(fp,"ROAS SECTIONN");

fprintf(fp," i ndex | abel dual _value \n");

for (i=0; i<m i++) fprintf(fp,"9¥d 9%0s 9%0.3e \n",
i,roMabli],y[i]);

fclose(fp);

You should bear in mind that if you change any of the local variables that correspond to members OQthe
structure and you want these changes propagated back to the calling routine, you must copy the new version back into
theLOQOstructure. For example, thwere to change, you'd have to put

Ip->m=m

somewhere after you changed

LOQO USER’S MANUAL — VERSION 2.27

23

24 ROBERT J. VANDERBEI

REFERENCES

[1] R. Fourer, B. Kernighan, and D.M. Ga&MPL. Scientific Press, 1993.
[2] J.L. NazarethComputer Solutions of Linear Progran@xford University Press, 1987.

LOQO USER’S MANUAL — VERSION 2.27 25

APPENDIXA. ADJUSTABLE PARAMETERS

Here is a list of the parameter keywords with a description of each keyword’s meaning and how to use it:

BOUNDS str

DENSE n

DUAL

EPSNUM eps

EPSSOL eps

I NFTOL eps

Specifies the name of the bounds &itmust be a string that matches one of the bounds-
set labels in the bounds section of the MPS file. The default is to use the first encountered
bounds set.

The ordering heuritics mentioned above are actually implemented as modifications of the
usual heuristics into two-tier versions of the basic heuristic. This is necessary since the re-
duced KKT system is not positive semi-definite. For each column of the constraint matrix,
there is an associated column in the reduced KKT system. Generally, speaking these are the
tier-one columns. These tier-one columns are intended to be eliminated before the tier-two
columns. However, it is sometimes possible to see tremendous improvements in solution
time if a small number of these columns are assigned to tier-two. The columns whose reas-
signment could make the biggest impact are those columns which have the most nonzeros
(i.e. dense columns)LoQO has a built in heuristic that tries to determine a reasonable
threshold above which a column will be declared dense and put into tier-two. However, the
heuristic can be overridden by settibgNSE to any value you want.

Requests that the ordering heuristic be set to favor the dual problem. This is typically
prefered if the number of constraints far exceeds the number of variables or if the problem
has a large number of dense columns. More generally, it is prefered if the rA@ttxhas

more nonzeros than the matri& A. By defaultLoQo uses a heuristic to decide if it is
better to use the primal-favored or the dual-favored ordering.

At the heart ofLoQoO is a factorization routine that factors the so-called reduced KKT
system into the product of a lower triangular matriximes a diagonal matri® times the
transpose of.. If the reduced KKT system is not of full rank, then a zero will appear on
each digonal element ob for which the corresponding equation can be written as a linear
combination of preceding equationEPSNUMis a tolerance — ifDjj < EPSNUM then

the | th vow of the reduced KKT system is declared a dependent row. The default value for
EPSNUMis 0.0.

Having dependent rows in the reduced KKT system is not by itself an indication of
trouble. All thatis required is that when solving the system using the forward and backward
substitution procedures, it is required that when encountering a row that has been declared
dependent, the right-hand side element must also be zero. If it is not, then the system of
equationsis inconsistent and a message to this effect is prieRSSOL is a zero tolerance
for deciding how small this right-hand side element must be to be considered equivalent to
a zero. The default i$. Oe- 6.

Specifies the infeasibility tolerance for the primal and for the dual problems. The default
isl. Oe-5.

I NFTOL2 eps Specifies the infeasibility tolerance used by the stopping rule to decide if matters are

| TERLI M

M N

deteriorating. That is, if the new infeasibility is greater than the old infeasibility by more
than INFTOL2 then stop and declare the problem infeasible. The defdulOis

Specifies a maximum number of iterations to perform. Generally speaking the an optimal
solution hasn't been found after about 50 or 60 iterations, it is quite likely that something
is wrong with the model (or withoQo itself) and it is best to quit. The default290.
Requests that the problem be a maximization instead of a minimization.

Requests that the problem be a minimization (this is the default).

26

M NDEG

M NLOCFI L

NOREORD

OBJ str

PRI MAL

RANGES str

RHS str

SIGFI G n

ROBERT J. VANDERBEI

This keyword requests the minimum degree heuristic (this is the default).

This keyword requests the minimum-local-fill heuristic. This heuristic is slower than
the minimum degree heuristic, but sometimes it generates significantly better orderings
yielding an overall win.

The rows and columns of the reduced KKT system are symmetrically permuted using a
heuristic that aims to minimize the amount of fill-in in Two heuristics are available:
minimum degreandminimum-local-fil{which is also called minimum-deficiency). If you
wish to use neither of these heuristics and simply solve the system in the original order,
include theNOREORD keyword.

Specifies the name of the objective functi@r must be a string that matches one of khe
rows in the rows section of the MPS file. The default is to use the first encouresd
Requests that the ordering heuristic be set to favor the primal problem. This is typically
prefered if the number of variables far exceeds the number of constraints or if the problem
has a large number of dense rows. More generally, it is prefered if the mfsfrixhas

fewer nonzeros than the matrix' A. By defaultLoQo uses a heuristic to decide if it is
better to use the primal-favored or the dual-favored ordering.

Specifies the name of the range s&t.must be a string that matches one of the range-set
labels in the ranges section of the MPS file. The default is to use the first encountered range
set.

Specifies the name of the right-hand sid&tr must be a string that matches one of the
right-hand side labels in the right-hand side section of the MPS file. The default is to use
the first encountered right-hand side.

Specifies the number of significant figures to which the primal and dual objective function
values must agree for a solution to be declared optimal. The default is 8.

TI MLl M tmax Sets a maximum time in seconds to let the system run. The default is forever.

VERBOSE n

Larger values of result in more statistical information printed on standard output. Zero
indicates no printing to standard output. The default value is 1.

LOQO USER’S MANUAL — VERSION 2.27

APPENDIXB. EXAMPLE.

B.1. An MPS file. Here is a partial listing of the MPS file BOEING2. The entire file contains 970 lines.

NAVE BCEI NG&2
ROWS
G REVENUES
G ACOCOSTS
N OBJECTIV
L FUELAVAL
G SYSTDEPT
G ACMLES
G ASMLES
L DCLGACRD
L DCLGACLE
L DCCLELGA
G MCORDBOS
G MILGACRD
COLUWNS
PBOSORDO REVENUES . 075 OBJECTI V -.075
PBOSORDO PASSNGRS 1. RPM LES . 86441
PBOSORDO LFRPNVASM -. 86441 DVBOSORD 1.
PBOSORDO LF1003S1 - 1.
PBOSORDL REVENUES . 075 OBJECTI V -.075
PBOSORDL PASSNGRS 1. RPM LES . 87605
N1201AC4 FUELAVAL . 70359 SYSTDEPT 1.
N1201ACA ACM LES . 18557 FLAV* 4 . 8063
N1201AC4 ATONM LE 2.7836 LFTNM LE 1.3918
N1201AC4 LF1201C1 11.25 CONTLGA4 1.
N1201AC4 CONTBCS4 - 1.
RHS
RHS1 FUELAVAL 100000. PASSNGRS 9431.
RHS1 SYSTDEPT 50. FLAV* 1 30.
RHS1 FLAV* 2 45. DVBOSORD 302.
RHS1 DVBCSLGA 2352. DVBCOSCLE 142.
RHS1 DMORDBGOS 302. DMORDLGA 515.
RHS1 DMORDCLE 619. DMLGABCS 2743.
RHS1 MBCLEBGCS 1. MBCLECRD 6.
RHS1 MBCLELGA 3. MCORDBCS 1.

RHS1 MCLGACRD 2. DCBOSCORD 12.

28

RHS1
RHS1
RHS1
RHS1

RANGES

RANGE1
RANGE1
RANGE1
RANGE1
RANGE1
RANGE1
RANGE1
RANGE1
RANGE1
RANGE1

BOUNDS

LO
uP
LO
uP
LO
uP
LO
uP

uP
uP
uP
uP
uP
uP
uP

I NTBOU
I NTBOU
I NTBOU
I NTBOU
I NTBOU
I NTBOU
I NTBOU
I NTBOU

I NTBOU
I NTBOU
I NTBOU
I NTBOU
I NTBOU
I NTBOU
I NTBOU

ENDATA

DCBCOSCLE
DCORDLGA
DCLGACLE
NOPTCLEO

DIVBOSORD
DVBCOSCLE
DVORDLGA
DMLGABGCS
DMLGACLE
DMCLECRD
DCBOSORD
DCORDBGCS
DCLGACRD
DCCLELGA

GRDTI WN1
GRDTI N1
GRDTI MN2
GRDTI MN2
GRDTI N3
GRDTI N3
GRDTI M\4
GRDTI M\4

N1100ACA
N1102AC2
N1102ACA
N1200AC2
N1200ACA
N1201AC2
N1201ACA

16.
13.
16.
24.

61.
29.
103.
549.
104.
143.
12.
4.8

©

-100.

- 90.

- 45.

- 45.

= = :
NANANNN

ROBERT J. VANDERBEI

DCORDBCS
DCLGACRD
DCCLELGA

DVBOSLGA
DMORDBOS
DMORDCLE
DMLGACRD
DMCLEBCS
DMCLELGA
DCBCSCLE
DCORDLGA
DCLGACLE

LOQO USER’S MANUAL — VERSION 2.27

29

B.2. A log file. Here is a partial listing of the corresponding log file whemQo is used to solve the problem in

WOAONONOORFRPONONUOUONNPRPWRORMNORENMONO00OWOD:'!

54,
19

| nf eas

. 32e+03
. 29e+03
. 08e+03
. 76e+03
. 24e+03
. 45e+03
. 56e+03
. 70e+03
. 07e+03
. 11e+02
. 21e+02
. 91e+01
. 85e+00
. 96e+00
.01le-01
.17e-01
.12e-02
. 19e-02
.57e-03
. 56e-04
. 24e-05
. 01e-05
. 76e- 06
. 58e-06
. 81le-07
. 78e-07
. 60e-08
. 92e-08
. 13e-09
.97e-10

t ot al
t ot al

Sig
Fig Status

WNNRRE P

PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF

143
167

FRHRRHERT

Section B.1:
U +
I
| LOQO Version 2.11
| (© Princeton University, 1992-1995
S :
vari abl es: non-neg 89, free 0, bdd
constraints: eq 4, ineq 143, ranged
nonzer os: A 1339, Q 0
nonzer os: L 4363, arith_ops
| Pri mal | Dual
Iter | Obj Value | nf eas | bj Val ue
1 4.7237992e+03 5.75e-01 7.2271163e+09
2 4.7735777e+03 5. 74e-01 7.2010923e+09
3 5.5976588e+03 5.51e-01 7.0116304e+09
4 6.4798130e+03 5. 30e-01 6. 7046013e+09
5 8.5615694e+03 4. 48e-01 5. 3385958e+09
6 6.0632486e+03 3.11le-01 3.8072059e+09
7 5.2019929e+03 2.32e-01 2.1263747e+09
8 4.6772801e+03 1. 68e-01 1. 3486633e+09
9 3.8920450e+03 9. 93e-02 8. 3550490e+08
10 3.2774096e+03 8. 96e- 02 6. 9535403e+08
11 1. 3682424e+03 4.08e-02 5. 3629338e+08
12 1. 2199505e+03 3.31e-02 -4.9872847e+07
13 3.3982074e+02 9. 83e-03 -2.8819898e+07
14 8.6940743e+01 2.69e-03 -1.5355669e+07
15 3.0164084e+01 1. 03e-03 -4.6581330e+06
16 -1.4731024e+01 5.61le-04 -2.4296725e+06
17 -5.2302263e+01 3.32e-04 -1.6526514e+06
18 -1.2075975e+02 1. 36e- 04 -7.9671784e+05
19 -1.5180495e+02 4.23e-05 - 3.2575147e+05
20 -1.7334366e+02 2.61e-06 -7.2457483e+04
21 -1.7628397e+02 1. 33e-07 -6.3383861e+03
22 -2.0157336e+02 7.25e-09 -2.1985311e+03
23 -2.4811212e+02 2.32e-09 - 8.5903751e+02
24 -2.6365903e+02 1. 41e-09 -4.6257064e+02
25 -2.9579539e+02 4. 56e-10 -3.7439386e+02
26 -3.0246863e+02 2.63e-10 -3.4693510e+02
27 -3.0931667e+02 1. 03e-10 -3.2266089e+02
28 -3.1352719e+02 1.96e-11 -3.1897090e+02
29 -3.1468541e+02 1.03e-11 -3.1576272e+02
30 -3.1490420e+02 2.32e-11 -3.1508096e+02
dependent rows: 1

30

31 -3.1501125e+02
32 -3.1501835e+02
33 -3.1501871e+02

dependent rows:
34 -3.1501873e+02

OPTI MAL SOLUTI ON FOUND

1.51e-12

7.58e-14

3. 88e-15
1

5. 43e-16

ROBERT J. VANDERBEI

-3.1502190e+02
-3.1501889e+02
-3.1501874e+02

-3.1501873e+02

3.42e-11
6. 82e-11
2.92e-11

6. 46e-11

[N

PF DF
PF DF
PF DF

PF DF

LOQO USER’S MANUAL — VERSION 2.27

B.3. A solution file. And finally, here is part of the solution file:

COLUWNS SECTI ON

i ndex | abel prinmal_val reduced_cst | ower _bd upper _bd B flag

0 PBOSORDO 3. 0200e+02 4. 6896e-12 0. 0000e+00 Infinity
1 PBOSORDL 2. 7237e-07 6.9453e-03 0. 0000e+00 Infinity
2 PBOSORD2 2. 0514e-07 2.4120e-02 0.0000e+00 Infinity
3 PBOSORD3 8.7781le-08 4.5699e-02 0.0000e+00 Infinity
4 PBOSORD4 2. 6571e-07 1.2973e-02 0.0000e+00 Infinity
5 PBOSLGAO 7.1200e+02 1.7384e-12 0.0000e+00 Infinity
6 PBOSLGAL 2. 6800e+02 4.1145e-12 0.0000e+00 Infinity
7 PBCSLGA2 7.3947e-07 6.9637e-03 O

. 0000e+00 Infinity

137 N1102AC2 . 1029e- 08 . 2656e-01 . 0000e+00 . 0000e+00

3 1 0 7
138 N1102AC4 1.5372e-08 2.4910e-01 0.0000e+00 7.0000e+00
139 N1200AC2 1.4000e+01 9.2694e-11 0.0000e+00 1.4000e+01
140 N1200AC4 1.9873e-08 2.8403e-01 0.0000e+00 7.0000e+00
141 N1201AC2 1.3321e+01 1.0305e-10 0.0000e+00 1.4000e+01
142 N1201AC4 1.3578e-08 3.0478e-01 0.0000e+00 7.0000e+00
RONS SECTI ON
i ndex | abel dual _val row_ actvty rght_hnd_sd range B flag
0 REVENUES 2.9171e-12 4.4431e+02 0.0000e+00 Infinity
1 ACOCOSTS 1.0767e-11 1.2929e+02 0. 0000e+00 Infinity
2 CBJECTIV -4.7238e-97 -3.1502e+02 -Infinity Infinity
3 FUELAVAL -1.4524e-14 -1.8197e+02 -1.0000e+05 Infinity
4 SYSTDEPT 6.9938e-11 1.2307e+02 5.0000e+01 Infinity
5 ACM LES 7.5904e-11 4.9225e+01 0.0000e+00 Infinity
6 ASM LES 2.2615e-13 5.5609e+03 0.0000e+00 Infinity
7 PASSNGRS 1. 4260e-10 9.4560e+03 9.4310e+03 Infinity
159 DCBCSCLE 3. 4040e-01 -1.6000e+01 -1.6000e+01 3.2000e+00
160 DCORDBCS 7.5000e- 01 -2.4000e+01 -2.4000e+01 4.8000e+00
161 DCORDLGA 6. 8000e-01 -1.3000e+01 -1.3000e+01 2.6000e+00
162 DCLGACRD 3.1818e-01 -4.5000e+01 -4.5000e+01 9.0000e+00
163 DCLGACLE 1.6366e-01 -1.6000e+01 -1.6000e+01 3.2000e+00
164 DCCLELGA 3. 7000e- 01 -5.0000e+00 -5.0000e+00 5.0000e+00
165 MCORDBOS 1.3976e-09 2.6937e+00 1.0000e+00 Infinity
166 MCLGACRD 6.5306e-10 4.0000e+00 2.0000e+00 Infinity

ENDOUT

ROBERTJ. VANDERBEI, PROGRAM IN STATISTICS AND OPERATIONSRESEARCH PRINCETONUNIVERSITY, PRINCETON, NJ 08544
E-mail addressr vdb@r i ncet on. edu

