
LOQO User’s Manual – Version 2.27

Robert J. Vanderbei

Statistics and Operations Research
Technical Report No. SOR-96-07

February 28, 1997

Princeton University
School of Engineering and Applied Science

Department of Civil Engineering and Operations Research
Princeton, New Jersey 08544

1

LOQO USER’S MANUAL – VERSION 2.27

ROBERT J. VANDERBEI

ABSTRACT. LOQOis a system for solving convexoptimization problems. It is based on an infeasible primal-dual interior-
point method. For linear programs, it reads industry standard MPS formated input files. For convex quadratic problems, we
have extended the definition of the MPS format to allow one to specify quadratic terms in the objective function. We call this
extended format the QPS format.
In addition to an executable program,LOQO also comes with a subroutine library that can be used to solve general convex
optimization problems. These problems are solved by forming a quadratic approximation to the problem at each iteration of
the infeasible interior-point method.
This manual describes

(1) how to installLOQO on your hardware,
(2) how to formulate and solve linear programs in MPS format,
(3) how to formulate and solve quadratic programs in QPS format,
(4) how to useAMPL together withLOQO to solve linear or quadratic programs, and
(5) how to use the subroutine library to formulate and solve convex optimization problems.

1. INSTALLATION

The normal mechanism for distribution is by downloading from the following website:

http://www.princeton.edu/~rvdb/loqoexecs.html

At that website is a list of the supported hardware platforms. To download, simply click on the platform that is
appropriate. For sake of discussion, suppose that the appropriate platform isSGI (IRIX 6.2) Executable.
Then, the downloaded file will be calledsgi IRIX6.2.tar.gz. While not required, it is a good idea to put this
file in an empty directory calledloqo. This file is a compressed collection of files bundled together with thetar
command. To expand out the original files, execute the following commands:

gunzip sgi_IRIX6.2.tar
tar xvf sgi_IRIX6.2.tar

The tar command will extract several files fromsgi IRIX6.2.tar. Here is a list of some of the files you will
find.

loqo An executable code, which solves linear programming problems that are presented in
industry-standard MPS form (seeafiro.mps for an example) and quadratic program-
ming problems in an extension of MPS form (seeafiro.qps for an example).

loqo.c A file containing the main program forloqo. It is included as an example on how to use
theLOQO function library.

loqo2.c A modification ofloqo.c illustrating how to modify the variable initialization routine
and/or the stopping rule for application specific programming.

Research supported by AFOSR through grant AFOSR-91-0359 and by NSF through grantCCR-9403789.

2 ROBERT J. VANDERBEI

loqo.h A header file containing the function prototypes for each function in theLOQO function
library. This file must be#include’d in any program file in which calls to theLOQO

function library are made (loqo.c is an example of this).
libloqo.a An archive file containing theLOQO function library.

Some of these files are regular text files while others are platform dependent binary files. The platform dependent
binaries are in a subdirectory. You should link (or copy or move) them up to the current directory:

ln -s sgi_IRIX6.2/install .
ln -s sgi_IRIX6.2/libloqo.a .
ln -s sgi_IRIX6.2/loqo .

Now, to check that you have all the files, type

ls -l

If they all seem to be there, you may want to removesgi IRIX6.2.tar by typing

rm sgi_IRIX6.2.tar

since it is a fairly large file that is now redundant. Thels command will also show you the read/write/execute per-
missions on these files. Check to make sure that you have read permission on all of these files and execute permission
onloqo, andinstall.

Before you can useLOQO you need to runinstall. To do this, simply type

./install

If you are logged in as ‘root’ when you execute this command,install will set things so that anyone with a login
on your machine will be able to use the system – otherwise, only you yourself will haveaccess to it.

You may want to have your system administrator move some of the files as follows:

mv loqo /usr/local/bin
mv loqo.h /usr/local/include
mv libloqo.a /usr/local/lib

2. SOLVING LINEAR AND QUADRATIC PROGRAMS IN MPS FORMAT

Solving linear programs that are already encoded in MPS format is easy. For example, to solve the linear program
stored inmyfirstlp.mps, you simply type

loqo myfirstlp.mps

Loqo will display on your screen an iteration log giving information regarding the solution process. When it is done
it will put the optimal solution (primal, dual and reduced costs) into a file calledmyfirstlp.out (which is derived
from themyfirstlp on theNAME line of myfirstlp.mps). The solution file can then be perused using any file
editor (such asvi or emacs).

StandardUNIX features can be used withloqo. For example, if you want to save the iteration log into a file called
saymyfirstlp.log, simply type

loqo myfirstlp.mps > myfirstlp.log

If you want to time the entire solution process, use

time loqo myfirstlp.mps

LOQO USER’S MANUAL – VERSION 2.27 3

2.1. MPS File Format. Input files follow the standard MPS format (for a detailed description, see [2]) for linear
programs and are an extension of this format in the case of quadratic programs. The easiest way to describe the format
is to look at an example. Consider the following quadratic program:

minimize 3x1− 2x2+ x3− 4x4+ 1

2
(x3− 2x4)

2

x1 +x2 −4x3 +2x4 ≥ 4
−3x1 +x2 −2x3 ≤ 6

+x2 −x4 = −1
x1 +x2 −x3 = 0

x1 free, − 100≤ x2 ≤ 100, x3, x4 ≥ 0.

The input file for this quadratic program looks like this:

123456789012345678901234567890123456789012345678901234567890

NAME myfirstlp
ROWS
 G r1
 L r2
 E r3
 E r4
 N obj
COLUMNS
 x1 r1 1. r2 −3.
 x1 r4 1. obj 3.
 x2 r1 1. r2 1.
 x2 r3 1. r4 1.
 x2 obj −2.
 x3 r1 −4. r2 −2.
 x3 r4 −1. obj 1.
 x4 r1 2. r3 −1.
 x4 obj −4.
RHS
 rhs r1 4. r2 6.
 rhs r3 −1.
BOUNDS
 FR x1
 LO x2 −100.
 UP x2 100.
QUADS
 x3 x3 1.
 x3 x4 −2.
 x4 x4 4.
ENDATA

 1 2 3 4 5 6

4 ROBERT J. VANDERBEI

Upper case labels must be upper case and represent MPS format keywords. Lower case labels could have been upper
or lower case. They represent information particular to this example. Column alignment is important and so a column
counter has been shown across the top (tabs are not allowed).

The ROWS section assigns a name to each row and indicates whether it is a greater than row (G), a less than row
(L), an equality row (E), or a nonconstrained row (N). Nonconstrained rows refer to the linear part of the objective
function.

The COLUMNS section contains column and row label pairs for eachnonzero in the constraint matrix together
with the coefficient of the corresponding nonzero element. Note that either one or two nonzeros can be specified on
each line of the file. There is no requirement about whether one or two values are specified on a given line although
the trend is to specify just one nonzero per line (this uses slightly more disk space, but disk storage space is cheap and
the one-per-line format is easier to read). All the nonzeros for a given column must appear together, but the row labels
within that column can appear in any order.

The RHS section is where the values of nonzero right-hand side values are given. The label “rhs” is optional.
By default all variables are assumed to be nonnegative. If some variables have other bounds, then a BOUNDS

section must be included. The label FR indicates that a variable is free. The labels LO and UP indicate lower and
upper bounds for the specified variable.

If the problem has quadratic terms in the objective, their coefficients can be specified by including a QUADS
section. The format of the QUADS section is the same as the COLUMNS section except that the labels are column-
column pairs instead of column-row pairs. Note that only diagonal and below diagonal elements are specified. The
above diagonal elements are filled in automatically.

2.2. Spec Files.LOQO has only a small number of user adjustable parameters. The parameters have default values
which are usually appropriate, but other values can be specified by including in the MPS file appropriate keywords
and, if required, corresponding values. These keywords (and values) must appear one per line and all must appear
before theNAME line in the MPS file. If preferred, these keywords (and values) can be put into a separate file which is
then included on theloqo command line. For example, suppose the file containing the keywords and values is called
spec. Then to solvemyfirstlp.mps using this specfile, you’d type:

loqo spec myfirstlp.mps

A list of the parameter keywords can be found in Appendix A.

2.3. Termination Conditions. Onceloqo starts iterating toward an optimal solution, there are a number of ways
that the iterations can terminate. Here is a list of the termination conditions that can appear at the end of the iteration
log and how they should be interpreted:

OPTIMAL SOLUTION FOUND Indicates that an optimal solution to the optimization problem was
found. The default criteria for optimality are that the primal and dual agree to 8 significant
figures and that the primal and dual are feasible to the1.0e-6 relative error level.

SUBOPTIMAL SOLUTION FOUND If at some iteration, the primal and the dual problems are fea-
sible and at the next iteration the degree of infeasibility (in either the primal or the dual)
increases significantly, thenloqo will decide that numerical instabilities are beginning to
play heavily and will back up to the previous solution and terminate with this message. The
amount of increase in the infeasibility required to trigger this response is tied to the value
of INFTOL2. Hence, if you want to forceloqo to go further, simply set this parameter to
a value larger than the default.

ITERATION LIMIT Loqowill only attempt 200 iterations. Experience has shown that if an optimal
solution has not been found within this number of iterations, more iterations will not help.
Typically,loqo solves problems in somewhere between 10 and 60 iterations.

LOQO USER’S MANUAL – VERSION 2.27 5

PRIMAL INFEASIBLE If at some iteration, the primal is infeasible, the dual is feasible and at the
next iteration the degree of infeasibility of the primal increases significantly, thenloqo
will conclude that the problem is primal infeasible. If you are certain that this is not the
case, you can forceloqo to go further by rerunning withINFTOL2 set to a larger value
than the default.

DUAL INFEASIBLE If at some iteration, the primal is feasible, the dual is infeasible and at the next
iteration the degree of infeasibility of the dual increases significantly, thenloqo will con-
clude that the problem is dual infeasible. If you are certain that this is not the case, you can
forceloqo to go further by rerunning withINFTOL2 set to a larger value than the default.

PRIMAL and/or DUAL INFEASIBLE If at some iteration, the primal and the dual are infeasible
and at the next iteration the degree of infeasibility in either the primal or the dual increases
significantly, thenloqo will conclude that the problem is either primal or dual infeasible.
If you are certain that this is not the case, you can forceloqo to go further by rerunning
with INFTOL2 set to a larger value than the default.

PRIMAL INFEASIBLE (INCONSISTENT EQUATIONS) This type of infeasibility is only de-
tected at the first iteration. Ifloqo terminates here and you are sure that it should go
on, set the parameterEPSSOL to a larger value than its default.

3. CALLING LOQO FROM WITHIN AMPL

AMPL is a language for expressing mathematical optimization problems (see [1]). For those users havingAMPL

installed on their system, it is easy to useLOQO to solve linear or quadratic programs that are formulated usingAMPL.
We shall illustrate how this is done with an example.

3.1. The Markowitz Model. Markowitz received the1990 Nobel Prize in Economics for his portfolio optimization
model in which the tradeoff between risk and reward is explicitly treated. We shall briefly describe this model in its
simplest form. Given a collection of potential investments (indexed, say, from 1 ton), let R j denote the return in the
next time period on investmentj , j = 1, . . . , n. In general,R j is a random variable, although some investments may
be essentially deterministic.

A portfolio is determined by specifying what fraction of one’s assets to put into each investment. That is, a portfolio
is a collection of nonnegative numbersx j , j = 1, . . . , n that sum to one. The return (on each dollar) one would obtain
using a given portfolio is given by

R =
∑

j

x j R j .

Therewardassociated with such a portfolio is defined as the expected return:

ER =
∑

j

x j ERj .

Similarly, therisk is defined as the variance of the return:

Var(R) = E(R − ER)2

= E(
∑

j

x j (Rj − ERj))
2

= E(
∑

j

x j R̃ j)
2,

6 ROBERT J. VANDERBEI

whereR̃ j = Rj − ERj . One would like to maximize the reward while minimizing the risk. In the Markowitz model,
one forms a linear combination of the mean and the variance (parametrized here byµ) and minimizes that:

maximize
∑

j x j ERj −µE(
∑

j x j R̃ j)
2

subject to
∑

j x j = 1
x j ≥ 0 j = 1, 2, . . . , n.

Here,µ is a positive parameter that represents the importance of risk relative to reward. That is, high values ofµ will
tend to minimize risk at the expense of reward whereas low values put more weight on reward.

Of course, the distributionof theRj ’s is not known theoretically but is arrived at empirically by looking at historical
data. Hence, ifRj (t) denotes the return on investmentj at timet (in the past) and these values are known for allj
and fort = 1, 2, . . . , T , then expectations can be replaced by sample means as follows:

ERj = 1
T

T∑
t=1

Rj (t).

The full model, expressed inAMPL and solved usingLOQO, looks like this:

param n integer > 0 default 500; # number of investment opportunities
param T integer > 0 default 20; # number of historical samples

param mu default 1.0;

param R {1..T,1..n} := Uniform01(); # return for each asset at each time
(in lieu of actual data,
we use a random number generator).

param mean {j in 1..n} # mean return for each asset
:= (sum{i in 1..T} R[i,j]) / T;

param Rtilde {i in 1..T,j in 1..n} # returns adjusted for their means
:= R[i,j] - mean[j];

var x{1..n} >= 0;

minimize linear_combination:
mu * # weight
sum{i in 1..T} (sum{j in 1..n} Rtilde[i,j]*x[j])^2 # variance
-
sum{j in 1..n} mean[j]*x[j] # mean
;

subject to total_mass:
sum{j in 1..n} x[j] = 1;

option solver loqo;

solve;

printf: "Optimal Portfolio: \n";

LOQO USER’S MANUAL – VERSION 2.27 7

printf {j in 1..n: x[j]>0.001}: " %3d %10.7f \n", j, x[j];

printf: "Mean = %10.7f, Variance = %10.5f \n",
sum{j in 1..n} mean[j]*x[j],
sum{i in 1..T} (sum{j in 1..n} Rtilde[i,j]*x[j])^2;

If we suppose that this model is stored in a file calledmarkowitz.mod, then the model can be solved by typing:

ampl markowitz.mod

The output that is produced looks like this:

LOQO: optimal solution (18 iterations)
primal objective -0.6442429645
dual objective -0.6442429804

Optimal Portfolio:
55 0.0947938

110 0.0065181
117 0.0798031
133 0.0939989
139 0.0019010
149 0.0659400
151 0.1004992
204 0.0010392
222 0.0655397
240 0.0659591
302 0.0065312
311 0.0075340
392 0.1939483
414 0.0533822
423 0.0087265
428 0.0212861
444 0.0551152
465 0.0128579
496 0.0385583
497 0.0260679

Mean = 0.6489705, Variance = 0.00473

The adjustable parameters described in Appendix A can be set withinAMPL. For example, to request a more
elaborate iteration log, one would include inmarkowitz.mod the following line somewhere before the solver is
called

option loqo_options "verbose=2";

Several options can be adjusted in one line. For example,

option loqo_options "verbose=2 itnlim=5 primal";

sets the verbosity level to 2, the maximum number of iterations to 5 and requests the primal-favored ordering (see
Appendix A for a description of this and other parameters).

8 ROBERT J. VANDERBEI

4. SOLVING CONVEX PROGRAMMING PROBLEMS

One of the most common (and natural) approaches to convex programming is a technique calledsequential qua-
dratic programming. In this method, a quadratic approximation to the convex programming problem is formed and
solved to optimality. Then, a new quadratic approximation is formed around the previously obtained QP solution. This
new QP is solved to optimality and the process is continued until the optimality conditions for the convex program are
met.

In LOQO, a similar but better approach is taken. Instead of solving each quadratic program to optimality, we
reform the quadratic approximation at every iteration of the interior-point method. This allows us to solve the convex
programming problem in approximately the same amount of time as it takes to solve just one quadratic program. The
QP solver inLOQO has hooks that allow a user to modify his or her problem at the beginning ofeach iteration of
the interior-point method. These hooks can be used to update the quadratic approximation to a convex programming
problem. Furthermore, theLOQO subroutine library contains functions that hide the details from the user thereby
making it relatively easy to formulate and solve convex programming problems.

In this section, we shall describe these functions and how to use them. We start with an example.

4.1. A Facility Location Model. Consider the problem of deciding on the location at which to build a warehouse
given that one wishes to minimize the sum of the distances to a given set of customer locations. Leta j , j =
1, 2, . . . , n, denote the customer locations (as points inR2) and letx denote the as yet undetermined location of
the warehouse (also a point inR2). The objective is to minimize the sum of the distances from the warehouse toeach
customer

n∑
j=1

‖x − a j‖.

Here, the norm‖ · ‖ denotes the Euclidean distance. We should note that had we wished to minimize the sum of the
squareddistances, then the solution would be very simple. Indeed,x would be the centroid of the customer locations

x =
∑n

j=1 a j

n
.

However, transportation costs are better modeled as proportional to distance, not squared distance, and so the centroid
is not the best location for the warehouse.

As a specific example, suppose that there are 3 customers and their locations are(0,−1), (0, 1), and(10, 0). We can
useLOQO to solve this convex optimization problem. The idea is to put the linear parts of the problem into an MPS file
and then to specify the nonlinearities separately. The easiest way to make an MPS file is to use a modeling language,
such asAMPL. Here is theAMPL formulation of the facility location problem (which is stored infac loc.mod):

param n := 3; # number of facility
param d := 2; # dimension of geographical space

set CUSTS := 1..n; # set of facilities

param a{CUSTS, 1..2}; # geographical coordinates of each facility

var x{1..2};

minimize tot_dist:
sum {j in CUSTS} sqrt(sum {i in 1..2} (x[i] - a[j,i])^2);

LOQO USER’S MANUAL – VERSION 2.27 9

data;

param a: 1 2 :=
1 0 -1
2 0 1
3 10 0 ;

option presolve 0;
option auxfiles rc;
write mfac_loc;

Note that theAMPL model does not invoke any solver (such as LOQO). Instead, it simply writes out some files. Setting
thepresolve option to zero directsAMPL not to do any problem simplification. We want it just exactly the way
we’ve formulated it. The last line in theAMPL file instructsAMPL to write an MPS file calledfac loc.mps. Here
is the file it produces:

NAME fac_loc
ROWS
N R0001
COLUMNS

C0001 R0001 0
C0002 R0001 0

RHS
BOUNDS
FR BOUND C0001
FR BOUND C0002

ENDATA

It simply says that the problem has two variables, called C0001 and C0002 and that both of these variables are free
variables. It also sets up that linear part of the objective function, which is called R0001. But it puts all zeros in for
the data.

The nonlinearities must be specified separately. We do this by preparing a short C program (which is stored in
fac loc.c):

#include <math.h>
#include "loqo.h"

#define n 3 /* number of customers */
#define d 2 /* dimension of Euclidean space */

void eucl (double *z, double *param,
double *pval, double *grad, double **hessian);

main(int argc, char *argv[])
{

LOQO *lp;
int i,j;

char *collabs[d] = { "C0001", "C0002" };

10 ROBERT J. VANDERBEI

double obj_param[n][d] = { { 0.0, -1.0 },
{ 0.0, 1.0 },
{ 10.0, 0.0 } } ;

lp = openlp();

argc--; argv++;
readlp(argc,argv,lp);

for (j=0; j<n; j++) {
nlobjterm(eucl, 2, collabs, 2, obj_param[j]);

}

solvelp(lp);

writesol(lp, "fac_loc.out");
}

In the functionmain(), the first order of business is to callopenlp() which sets up a data structure (called
LOQO) to hold an optimization problem and returns a pointer to this data structure (calledlp).

Next, readlp() is called. It is passed a countargc of how many command-line arguments there were when
main was called together with an array of stringsargv containing each of these command-line arguments. It also
gets a pointer to theLOQO data structure that was created with the call toopenlp(). Readlp() expects each of
the command-line arguments to be the names of files. It attempts to read these files one at a time in the order that
they appear. These files, taken in their totality, should constitute a standard MPS file description of the linear part of
the problem. (It is a feature ofLOQO that it allows one to break an MPS file into several pieces and then to list them
separately on the command line with the understanding thereadlp() will read each fragment in order.) The linear
information that it reads in these files is stored in theLOQO data structure to whichlp points.

Next we must define the nonlinearities. There aren nonlinear terms in the objective function. For eachnonlinear
term of the form

f (x j1, x j2, . . . , x jk ; p1, . . . , pm),

we must make a call to the functionnlobjterm(). This function has five arguments:
(1) A pointer to the function that computes the values off , its gradient, and its hessian.
(2) An integer indicating the number of variables,k, appearing in the functionf .
(3) An array of strings, each string being a column label from the MPS file associated with the relevant variable.
(4) An integer indicating the number of auxillary parameters,m, on which the function depends.
(5) An array of double precision numbers containing the parametersp1, p2, . . . , pm.

In the facility location problem, the function is the Euclidean distance from a given point. The parameters are the
coordinates of the given point.

After finishing the loop that sets up then terms in the nonlinear objective function, we are ready to solve the convex
optimization problem. We do this by callingsolvelp() passing it theLOQO pointerlp. As its name indicates, the
functionsolvelp() solves the optimization problem. The optimal values of the primal and the dual variables are
stored in theLOQO data structure to whichlp points.

The functionwritesol() creates a file containing the primal and the dual solution values.
For eachnonlinear function that appears in the model formulation, one must prepare a C function that evaluates this

function together with its gradient and hessian. In the facility location model, there is only one nonlinear function: the

LOQO USER’S MANUAL – VERSION 2.27 11

Euclidean distance function
f (z) = ‖z − a‖ =

√
(z1− a1)2+ (z2− a2)2.

Hence, we must define one corresponding C function. We’ve called iteucl. The C function must have five arguments:
(1) An array containing the arguments to the mathematical function.
(2) An array containing the parameters that define the mathematical function.
(3) A pointer to a double precision variable which, on return, will contain the value of the nonlinear function.
(4) An array which will, on return, contain the gradient of the nonlinear function.
(5) A two-dimensional array which will contain the Hessian of the nonlinear function.

The code fragment shown above contains a prototype foreucl and passes a pointer to this function tonlobjterm
but does not define this function. Here is its definition (also found infac loc.c):

void eucl (double *z, double *param,
double *pval, double *grad, double **hessian)

{
double z0, z1, val, val3;

z0 = z[0] - param[0];
z1 = z[1] - param[1];

val = sqrt(z0*z0 + z1*z1);
val3 = val*val*val;

pval = val; / f */

grad[0] = z0/val; /* f’ */
grad[1] = z1/val; /* f’ */

hessian[0][0] = z1*z1/val3; /* f’’ */
hessian[0][1] = hessian[1][0] = -z0*z1/val3; /* f’’ */
hessian[1][1] = z0*z0/val3; /* f’’ */

}

The two code fragments can be found together in a file calledfac loc.c and the MPS file is stored in a file called
fac loc.mps. These two files contain all the information necessary to describe a particular instance of the facility
location model.

We are now ready to solve this instance of the model. To this end, let us assume that the filesloqo.h and
libloqo.a sit in the same directory as the two model files. Then we can solve the problem by typing

cc -O fac_loc.c libloqo.a -lm -o fac_loc
fac_loc fac_loc.mps

The iteration log produced by this run should look something like this:

variables: non-neg 0, free 2, bdd 0, total 2
constraints: eq 0, ineq 0, ranged 0, total 0
nonzeros: A 0, Q 4
nonzeros: L 3, arith_ops 6

12 ROBERT J. VANDERBEI

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
- -

1 1.2000000e+01 2.83e+02 1.2000000e+01 1.58e+02 30
2 1.1742154e+01 1.42e+01 1.1819860e+01 8.60e+00 2
3 1.1732180e+01 7.13e-01 1.1742578e+01 4.55e-01 3
4 1.1732051e+01 3.56e-02 1.1732669e+01 2.29e-02 4
5 1.1732051e+01 1.78e-03 1.1732082e+01 1.15e-03 6
6 1.1732051e+01 8.91e-05 1.1732052e+01 5.74e-05 7
7 1.1732051e+01 4.45e-06 1.1732051e+01 2.87e-06 8 PF DF

OPTIMAL SOLUTION FOUND

The file,fac loc.out looks like this:

COLUMNS SECTION
index label primal_val reduced_cst lower_bd upper_bd

0 X1 5.7735e-01 0.0000e+00 -Infinity Infinity
1 X2 -0.0000e+00 0.0000e+00 -Infinity Infinity

ROWS SECTION
index label dual_val row_actvty rght_hnd_sd range

ENDOUT

Before leaving this example, we should note that an improved version offac loc.c would allow the number of
customersn to be a variable and would read from a separate data file then location vectors.

4.2. A Constrained Facility Location Model. Now, suppose that in addition to the desire to minimize the sum of
the distances to the customers, we also have constraints that the warehouse can be no further than a fixed distance
from each of several (saym) factories that supply goods to the warehouse. Letbi denote the position inR2 of thei-th
factory and letdi denote the maximum distance that thei-th factory can be from the warehouse. Then thei-th distance
constraint can be written as

‖x − bi‖ ≤ di

or as
‖x − bi‖2 ≤ d2

i .

It turns out that the second representation is better and so we add constraints of this type to the model developed
before. The updatedAMPL model, stored infac loc2.mod looks like this:

param m := 2;
param n := 3;
param d := 2;

set CUSTS := 1..n;
set FACTS := 1..m;

param a{CUSTS, 1..2};
param b{FACTS, 1..2};

LOQO USER’S MANUAL – VERSION 2.27 13

param dist{FACTS};

var x{1..2};

minimize tot_dist:
sum {j in CUSTS} sqrt(sum {i in 1..2} (x[i] - a[j,i])^2);

subject to not_far{k in FACTS}:
sum {i in 1..2} (x[i] - b[k,i])^2 <= dist[k]^2;

data;

param a: 1 2 :=
1 0 -1
2 0 1
3 10 0 ;

param b: 1 2 :=
1 5 -2
2 6 1 ;

param dist :=
1 3
2 2 ;

option presolve 0;
option auxfiles rc;
write mfac_loc2;

and the MPS file it produces looks like this:

NAME fac_loc2
ROWS
L R0001
L R0002
N R0003
COLUMNS

C0001 R0001 0
C0001 R0002 0
C0001 R0003 0
C0002 R0001 0
C0002 R0002 0
C0002 R0003 0

RHS
B R0001 9
B R0002 4

14 ROBERT J. VANDERBEI

BOUNDS
FR BOUND C0001
FR BOUND C0002
ENDATA

Nonlinear terms appearing in constraints are specified in much the same manner as for nonlinear objective terms.
The functionmain() in fac loc2.c is almost the same asmain() in fac loc.c except that the following lines
must be inserted after the call toreadlp() and before the called tosolvelp():

for (i=0; i<m; i++) {
sprintf(row, "R000%1d", i+1);
nlconstr(eucl2, row, 2, collabs, 2, const_param[i]);

}

The functionnlconstr() is similar tonlobjterm(). It has six arguments, five of which are the same as before.
The new argument is inserted between the first two old arguments. It is a string indicating the row label (from the MPS
file) in which the nonlinear objective term appears. Here is a list of the six parameters and their meanings:

(1) A pointer to the function that computes the values off (), its gradient, and its hessian.
(2) A string indicating the row label from the MPS file associated with this nonlinear constraint term.
(3) An integer indicating the number of variables (k) appearing in the functionf () has.
(4) An array of strings, each string being a column label from the MPS file associated with the relevant variable.
(5) An integer indicating the number of auxillary parameters (m) on which the function depends.
(6) An array of double precision numbers containing the parametersp1, p2, . . . , pm.
Of course, the number of factoriesm is 2 and their positions are at at(5,−2) and(6, 1). As before, the positions are

given in the parameters that are passed to the nonlinear function. In this case these parameters are stored in an array
calledconst param. Hence, the following lines must appear near the top ofmain():

double const_param[m][2] = { { 5.0, -2.0 },
{ 6.0, 1.0 } };

and the number of factoriesm could be#define’ed:

#define m 2 /* number of factories */

The functioneucl2() which computes the value, gradient, and hessian of the square of the Euclidean distance
from a specified point must be prototyped at the top of the file and must be defined somewhere, say at the end of the
file. Its definition is as follows:

void eucl2(double *z, double *param,
double *pval, double *grad, double **hessian)

{
double z0, z1, val;

z0 = z[0] - param[0];
z1 = z[1] - param[1];

val = z0*z0 + z1*z1;

pval = val; / f */

LOQO USER’S MANUAL – VERSION 2.27 15

grad[0] = 2*z0; /* f’ */
grad[1] = 2*z1; /* f’ */

hessian[0][0] = 2; /* f’’ */
hessian[0][1] = hessian[1][0] = 0; /* f’’ */
hessian[1][1] = 2; /* f’’ */

}

The entire model can be found in the filesfac loc2.mps andfac loc2.c distributed with theLOQO software.
The model is compiled and run as before. This time it takes 12 iterations to converge to a solution having 9 figures
of agreement between the primal and dual objective functions. Looking at the solution file we see that the optimal
location for the warehouse is at(4.0795, 0.44187).

4.3. A Utility Approach to Portfolio Optimization. Consider the Markowitz model for portfolio optimization dis-
cussed in Section 3.1. The VonNeumann/Morgenstern theory of utility suggests that one should optimize the expected
utility of the return instead of the linear combination of risk and reward described earlier. Using the utility approach
with a log utility function, the portfolio optimization model can be formulated as follows:

param n integer > 0 default 500; # number of investment opportunities
param T integer > 0 default 20; # number of historical samples

param R {1..T,1..n} := Uniform01(); # return for each asset at each time

var x{1..n} >= 0;
var y{1..T};

minimize negative_expected_utility:
-sum{i in 1..T} log(y[i]);

subject to total_mass:
sum{j in 1..n} x[j] = 1;

subject to definitional_constraints {i in 1..T}:
y[i] = sum{j in 1..n} R[i,j]*x[j];

option auxfiles "c"; # to get row and column files
write mutility; # output into MPS format file

Here, we have usedAMPL to define the convex optimization problem, but as before we have not indicated that we
want AMPL to call any solver. Instead, we are simply askingAMPL to write an MPS file containing the linear part of
the model (thewrite mutility statement tellsAMPL to create an MPS file calledutility.mps). We’ve also
requested thatAMPL output an auxiliary file calledutility.col containing a list of the variable names in the order
in which they appear in the MPS file. The reason is that currently theAMPL/solver interface routines provided with
the AMPL software do not produce functions that give values in the Hessian matrix (except if the problem is a QP).
But, as we’ve seen, we need this information. Therefore, we must still produce it by hand. This is not too hard. A
quick perusal of theutility.col shows that the first 20 variables correspond toy[1] to y[T]. Then, looking in
utility.mpswe see that the MPS file refers to these variables asC0001 toC0020. Therefore, the C program file,
called sayutility.c should look like this:

16 ROBERT J. VANDERBEI

#include <math.h>
#include "loqo.h"

#define n 20

void logutil (double *z, double *pval, double *grad, double **hessian);

main(int argc, char *argv[])
{

LOQO *lp;
int j;

char *collabs[n][1] = { { "C0001" },
{ "C0002" },
{ "C0003" },
{ "C0004" },
{ "C0005" },
{ "C0006" },
{ "C0007" },
{ "C0008" },
{ "C0009" },
{ "C0010" },
{ "C0011" },
{ "C0012" },
{ "C0013" },
{ "C0014" },
{ "C0015" },
{ "C0016" },
{ "C0017" },
{ "C0018" },
{ "C0019" },
{ "C0020" } } ;

double obj_shifts[1] = { 0.0 } ;

lp = openlp();

argc--; argv++;
readlp(argc,argv,lp);

for (j=0; j<n; j++) {
nlobjterm(logutil, 1, collabs[j], obj_shifts);

}

solvelp(lp);

writesol(lp, "utility.out");
}

void logutil (double *z, double *pval, double *grad, double **hessian)

LOQO USER’S MANUAL – VERSION 2.27 17

{
double z0, val;

z0 = z[0];

val = -log(z0);

pval = val; / f */

grad[0] = -1/z0; /* f’ */

hessian[0][0] = 1/(z0*z0); /* f’’ */
}

The following commands compile and run the model;

cc -O utility.c libloqo.a -lm -o utility
utility utility.mps

This model converges in just 16 iterations (taking less than one second on a typical 10 MFLOP workstation).

5. MODELING HINTS

Every attempt has been made to makeLOQO as robust as possible on a wide spectrum of problem instances.
However, there are certain suggestions that the modeler should take heed of to obtain maximum performance.

5.1. Artificial Variables. Splitting free variables.Some existing codes for solving linear programs are unable to
handle free variables. As a consequence, many problems have been formulated with free variables split into the
difference between two nonnegative variables. This trick does not present any difficulties for algorithms based on the
simplex method, but it does tend to cause problems for interior-point methods and, in particular, forLOQO. Since
LOQO is designed to be able to handle problems with free variables, we suggest that they be left as free variables and
indicated as such in the input file.

Artificial Big-M Variables.Some problems have artificial variables added to guarantee feasibility using the tradi-
tional Big-M method. Putting huge values anywhere in a problem invites numerical problems.LOQO has its own
feasibility phase and so we suggest that any Big-M type artificial variables be left out.

5.2. Separable Equivalents.The algorithm implemented inLOQO only works on convex quadratic programs. This
means thatQ must be positive semi-definite if the problem is a minimization (and negative semi-definite if the problem
is a maximization).LOQO checks this condition and prints a warning whenever it discovers aQ that violates the
semidefiniteness condition.

This raises an interesting question. How do you know that a matrixQ is positive semi-definite? Generally the best
way to prove this is to exhibit another matrixF for which

Q = FT F.

Here,F does not need to be a square matrix. In fact, it is quite likely that you, the modeller, will know of anF and
this F may have many fewer rows than columns. It will also most likely be sparser thanQ. In this case, it is much
better to replace the nonseparable quadratic term

1
2

xT Qx

18 ROBERT J. VANDERBEI

in the objective function with an equivalent separable term

1
2

yT y

and simply add the following constraints to the problem:

Fx − y = 0.

Let us illustrate this concept with the Markowitz model presented in Section 3.1. By setting the verbosity level to
2, one discovers the following statistics associated withmarkowitz.mod:

variables: non-neg 500, free 0, bdd 0, total 500
constraints: eq 1, ineq 0, ranged 0, total 1
nonzeros: A 500, Q 250000
nonzeros: L 125751, arith_ops 42168001

The second entry on the third line gives the number of nonzeros in the matrixQ defining the quadratic terms. Here it
is 250000 which is exactly 500 squared. This indicates thatQ is a dense 500× 500 matrix.

Now, let us consider a slight modification to the model, which we have stored in a new file calledmarkowitz2.mod:

param n integer > 0 default 500; # number of investment opportunities
param T integer > 0 default 20; # number of historical samples

param mu default 1.0;

param R {1..T,1..n} := Uniform01(); # return for each asset at each time
(in lieu of actual data,
we use a random number generator).

param mean {j in 1..n} # mean return for each asset
:= (sum{i in 1..T} R[i,j]) / T;

param Rtilde {i in 1..T,j in 1..n} # returns adjusted for their means
:= R[i,j] - mean[j];

var x{1..n} >= 0;
var y{1..T};

minimize linear_combination:
mu * # weight
sum{i in 1..T} y[i]^2 # variance
-
sum{j in 1..n} mean[j]*x[j] # mean
;

subject to total_mass:
sum{j in 1..n} x[j] = 1;

subject to definitional_constraints {i in 1..T}:
y[i] = sum{j in 1..n} Rtilde[i,j]*x[j];

LOQO USER’S MANUAL – VERSION 2.27 19

option solver "/usr/people/rvdb/ampl/loqo";
option loqo_options "verbose=2";

solve;

printf: "Optimal Portfolio: \n";
printf {j in 1..n: x[j]>0.001}: " %3d %10.7f \n", j, x[j];

printf: "Mean = %10.7f, Variance = %10.5f \n",
sum{j in 1..n} mean[j]*x[j],
sum{i in 1..T} (sum{j in 1..n} Rtilde[i,j]*x[j])^2;

If we make a timed run of this model (by typingtime ampl markowitz2.mod), the first few lines of output look
like this:

LOQO: Verbosity level (VERBOSE) = 2
variables: non-neg 500, free 20, bdd 0, total 520
constraints: eq 21, ineq 0, ranged 0, total 21
nonzeros: A 10520, Q 20
nonzeros: L 11271, arith_ops 256121

Note that there are now 20 more constraints but at the same time the number of nonzeros inQ is only 20. Furthermore,
the number of arithmetic operations (which correlates closely with true run-times – at least for large problems) is only
256121 as compared with 42168001 inmarkowitz.mod. This suggest that the second formulation should run
perhaps a hundred times faster than the first. Indeed, running both models on the same hardware platform one finds
thatmarkowitz2.mod solves in 5.95 seconds whereasmarkowitz.mod takes 188.75 seconds, which translates
to a speedup by more than a factor of 60.

5.3. Dense Columns.Some problems are naturally formulated with the constraint matrix having a small number of
columns that are significantly denser than the other columns. From an efficiency point of view, dense columns have
been a red herring for interior-point methods. However,LOQO incorporates certain specific techniques to avoid the
inefficiencies often encountered on models with dense columns.

Recently discovered “tricks” (which are incorporated intoLOQO) have largely overcome the problems associated
with dense columns, however, the user should be aware that the presense of dense columns could be the source of
numerical difficulties. Often it is easy to reformulate a problem having dense columns in such a way that the new
formulation avoids dense columns. For example, if variablex appears in a large number of constraints, we would
suggest introducing several different variables,x1, . . . , xk, all representing the same original variablex and usingx1
in some of the constraints,x2 in some others, etc. Of course,k − 1 new constraints must be added to equate each of
these new variables to each other. Hence, the new problem will havek− 1 more variables andk − 1 more constraints,
but it will have a constraint matrix that doesn’t have dense columns. Often it is better to solve a slightly larger problem
if the larger constraint matrix has an improved sparsity structure.

6. THE FUNCTION LIBRARY

The easiest way to explain how to use the function library is to look at an example. Here is a commented listing of
an abbreviated version ofloqo.c:

20 ROBERT J. VANDERBEI

#include <loqo.h> /* defines LOQO structure and prototypes
functions */

#include <string.h>

main(int argc, char *argv[])
{

char fname[80]; /* solution file name */
LOQO *lp; /* a pointer to a LOQO structure */

lp = openlp(); /* up to 20 problems can be open at once */

argc--; argv++; /* remove ‘loqo’ from command line args */
readlp(argc,argv,lp); /* pass command line args to readlp */

solve_lp(lp); /* solve the optimization problem */

inv_clo(); /* free up space reserved for solving systems
of equations */

writesol(lp,"solution"); /* write solution into a file */

closelp(lp); /* close this problem */

return(0);
}

The user interface to theLOQO function library is patterned after the customary file manipulation functions defined
in stdio.h. That is, there is an open statement that simply returns a pointer to a structure containing all the relevant
information for the other library functions and there is a close function that releases this pointer for future use. In this
case, the structure containing all the relevant information is calledLOQO. Here is the definition of this structure:

typedef struct loqo {
int m; /* number of rows */
int n; /* number of columns */
int nz; /* number of nonzeros */
double *A; /* pointer to array of nonzero values in A */
int *iA; /* pointer to array of corresponding row indices */
int *kA; /* pointer to array of indices into A (and iA)

indicating where each new column of A begins */
double *b; /* pointer to array containing right-hand side */
double *c; /* pointer to array containing objective function */
double f; /* fixed adjustment to objective function */
double *r; /* pointer to array containing range vector */
double *l; /* pointer to array containing lower bounds */
double *u; /* pointer to array containing upper bounds */
int *varsgn; /* array indicating which variables were declared to

be non-positive */
char **rowlab; /* array of strings containing row labels */
char **collab; /* array of strings containing column labels */

LOQO USER’S MANUAL – VERSION 2.27 21

int qnz; /* number of nonzeros in lower triangle of Q */
double *Q; /* pointer to array of nonzero values of Q */
int *iQ; /* pointer to array of corresponding row indices */
int *kQ; /* pointer to array of indices into Q (and iQ)

indicating where each new column of Q begins */

double *At; /* pointer to array of nonzero values in At */
int *iAt; /* pointer to array of corresponding row indices */
int *kAt; /* pointer to array of indices into At (and iAt) */

int *bndmark; /* pointer to array of bound marks */
int *rngmark; /* pointer to array of range marks */

double *w; /* pointer to array containing primal surpluses */
double *x; /* pointer to array containing primal solution */
double *y; /* pointer to array containing dual solution */
double *z; /* pointer to array containing dual slacks */
double *p; /* pointer to array containing range slacks */
double *q; /* pointer to array containing dual range slacks */
double *s; /* pointer to array containing dual for ub slacks */
double *t; /* pointer to array containing upper bound slacks */
double *v; /* pointer to array containing dual for range (w) */
double *ub; /* pointer to array containing shifted up bounds */

int max; /* max = -1, min = 1 */
double inftol; /* infeasibility tolerance */
int sf_req; /* significant figures requested */
int verbose; /* level of verbosity */
char name[15]; /* string containing problem name */
char obj[11]; /* string containing objective function name */
char rhs[11]; /* string containing right-hand side name */
char ranges[11];/* string containing range set name */
char bounds[11];/* string containing bound set name */

int (*stopping_rule)(); /* pointer to stopping rule fcn */
void (*init_vars)(); /* pointer to initialization fcn */

int iter; /* current iteration number */
double pres; /* primal residual (i.e. infeasibility) */
double dres; /* dual residual (i.e. infeasibility) */
int sigfig; /* significant figures */
double primal_obj; /* primal objective value */
double dual_obj; /* dual objective value */

int flag; /* 0=unopened, 1 = opened */
} LOQO;

22 ROBERT J. VANDERBEI

If you wish to generate your own customized reports, simply replace the call towritesolwith a call to your own
output routine. Similarly, if you wish to write your own problem generator and do not want to put its output into an
MPS file but rather go straight intoLOQO, then you simply need to replace the call toreadlp by a call to one of your
own functions which generates the optimization problem and stores it inlp.

For those unfamiliar with C structures, the various components areaccessed by typinglp-> followed by the
member name. For example, the number of constraints islp->m and the j -th element of the objective vector is
lp->c[j]. Since it is inconvenient to have to include thelp-> prefix all the time, a common trick is to copy the
needed parts of the data structure into local variables of the same name. For example, here is a simplified version of
the functionwritesol:

void writesol(LOQO *lp, char fname[])
{

int m, n, *varsgn;
double *x, *y, *z;
char **rowlab, **collab;

int i,j;
FILE *fp;

m = lp->m;
n = lp->n;
varsgn = lp->varsgn;
rowlab = lp->rowlab;
collab = lp->collab;
x = lp->x;
y = lp->y;
z = lp->z;

for (j=0; j<n; j++) {
x[j] = varsgn[j]*x[j];
z[j] = varsgn[j]*z[j];

}
if ((fp = fopen(fname, "w")) == NULL) error(2,fname);
fprintf(fp,"COLUMNS SECTION\n");
fprintf(fp," index label primal_value reduced cost\n");
for (j=0; j<n; j++) fprintf(fp,"%8d %10s %10.3e %10.3e \n",

j,collab[j],x[j],z[j]);
fprintf(fp,"ROWS SECTION\n");
fprintf(fp," index label dual_value \n");
for (i=0; i<m; i++) fprintf(fp,"%8d %10s %10.3e \n",

i,rowlab[i],y[i]);
fclose(fp);

}

You should bear in mind that if you change any of the local variables that correspond to members of theLOQO
structure and you want these changes propagated back to the calling routine, you must copy the new version back into
theLOQO structure. For example, ifm were to change, you’d have to put

lp->m = m;

LOQO USER’S MANUAL – VERSION 2.27 23

somewhere after you changedm.

24 ROBERT J. VANDERBEI

REFERENCES

[1] R. Fourer, B. Kernighan, and D.M. Gay.AMPL. Scientific Press, 1993.
[2] J.L. Nazareth.Computer Solutions of Linear Programs. Oxford University Press, 1987.

LOQO USER’S MANUAL – VERSION 2.27 25

APPENDIX A. A DJUSTABLE PARAMETERS

Here is a list of the parameter keywords with a description of each keyword’s meaning and how to use it:
BOUNDS str Specifies the name of the bounds set.Strmust be a string that matches one of the bounds-

set labels in the bounds section of the MPS file. The default is to use the first encountered
bounds set.

DENSE n The ordering heuritics mentioned above are actually implemented as modifications of the
usual heuristics into two-tier versions of the basic heuristic. This is necessary since the re-
duced KKT system is not positive semi-definite. For each column of the constraint matrix,
there is an associated column in the reduced KKT system. Generally, speaking these are the
tier-one columns. These tier-one columns are intended to be eliminated before the tier-two
columns. However, it is sometimes possible to see tremendous improvements in solution
time if a small number of these columns are assigned to tier-two. The columns whose reas-
signment could make the biggest impact are those columns which have the most nonzeros
(i.e. dense columns).LOQO has a built in heuristic that tries to determine a reasonable
threshold above which a column will be declared dense and put into tier-two. However, the
heuristic can be overridden by settingDENSE to any value you want.

DUAL Requests that the ordering heuristic be set to favor the dual problem. This is typically
prefered if the number of constraints far exceeds the number of variables or if the problem
has a large number of dense columns. More generally, it is prefered if the matrixAAT has
more nonzeros than the matrixAT A. By defaultLOQO uses a heuristic to decide if it is
better to use the primal-favored or the dual-favored ordering.

EPSNUM eps At the heart ofLOQO is a factorization routine that factors the so-called reduced KKT
system into the product of a lower triangular matrixL times a diagonal matrixD times the
transpose ofL . If the reduced KKT system is not of full rank, then a zero will appear on
each diagonal element ofD for which the corresponding equation can be written as a linear
combination of preceding equations.EPSNUM is a tolerance — ifD j j ≤ EPSNUM, then

the j th row of the reduced KKT system is declared a dependent row. The default value for
EPSNUM is 0.0.

EPSSOL eps Having dependent rows in the reduced KKT system is not by itself an indication of
trouble. All that is required is that when solving the system using the forward and backward
substitution procedures, it is required that when encountering a row that has been declared
dependent, the right-hand side element must also be zero. If it is not, then the system of
equations is inconsistent and a message to this effect is printed.EPSSOL is a zero tolerance
for deciding how small this right-hand side element must be to be considered equivalent to
a zero. The default is1.0e-6.

INFTOL eps Specifies the infeasibility tolerance for the primal and for the dual problems. The default
is1.0e-5.

INFTOL2 eps Specifies the infeasibility tolerance used by the stopping rule to decide if matters are
deteriorating. That is, if the new infeasibility is greater than the old infeasibility by more
than INFTOL2 then stop and declare the problem infeasible. The default is1.0.

ITERLIM Specifies a maximum number of iterations to perform. Generally speaking the an optimal
solution hasn’t been found after about 50 or 60 iterations, it is quite likely that something
is wrong with the model (or withLOQO itself) and it is best to quit. The default is200.

MAX Requests that the problem be a maximization instead of a minimization.
MIN Requests that the problem be a minimization (this is the default).

26 ROBERT J. VANDERBEI

MINDEG This keyword requests the minimum degree heuristic (this is the default).
MINLOCFIL This keyword requests the minimum-local-fill heuristic. This heuristic is slower than

the minimum degree heuristic, but sometimes it generates significantly better orderings
yielding an overall win.

NOREORD The rows and columns of the reduced KKT system are symmetrically permuted using a
heuristic that aims to minimize the amount of fill-in inL . Two heuristics are available:
minimum degreeandminimum-local-fill(which is also called minimum-deficiency). If you
wish to use neither of these heuristics and simply solve the system in the original order,
include theNOREORD keyword.

OBJ str Specifies the name of the objective function.Strmust be a string that matches one of theN
rows in the rows section of the MPS file. The default is to use the first encounteredN row.

PRIMAL Requests that the ordering heuristic be set to favor the primal problem. This is typically
prefered if the number of variables far exceeds the number of constraints or if the problem
has a large number of dense rows. More generally, it is prefered if the matrixAAT has
fewer nonzeros than the matrixAT A. By defaultLOQO uses a heuristic to decide if it is
better to use the primal-favored or the dual-favored ordering.

RANGES str Specifies the name of the range set.Strmust be a string that matches one of the range-set
labels in the ranges section of the MPS file. The default is to use the first encountered range
set.

RHS str Specifies the name of the right-hand side.Str must be a string that matches one of the
right-hand side labels in the right-hand side section of the MPS file. The default is to use
the first encountered right-hand side.

SIGFIG n Specifies the number of significant figures to which the primal and dual objective function
values must agree for a solution to be declared optimal. The default is 8.

TIMLIM tmax Sets a maximum time in seconds to let the system run. The default is forever.
VERBOSE n Larger values ofn result in more statistical information printed on standard output. Zero

indicates no printing to standard output. The default value is 1.

LOQO USER’S MANUAL – VERSION 2.27 27

APPENDIX B. EXAMPLE.

B.1. An MPS file. Here is a partial listing of the MPS file BOEING2. The entire file contains 970 lines.

NAME BOEING2
ROWS
G REVENUES
G ACOCOSTS
N OBJECTIV
L FUELAVAL
G SYSTDEPT
G ACMILES
G ASMILES

.

.

.
L DCLGAORD
L DCLGACLE
L DCCLELGA
G MCORDBOS
G MCLGAORD
COLUMNS

PBOSORD0 REVENUES .075 OBJECTIV -.075
PBOSORD0 PASSNGRS 1. RPMILES .86441
PBOSORD0 LFRPMASM -.86441 DMBOSORD 1.
PBOSORD0 LF1003S1 -1.
PBOSORD1 REVENUES .075 OBJECTIV -.075
PBOSORD1 PASSNGRS 1. RPMILES .87605

.

.

.
N1201AC4 FUELAVAL .70359 SYSTDEPT 1.
N1201AC4 ACMILES .18557 FLAV*4 .8063
N1201AC4 ATONMILE 2.7836 LFTNMILE 1.3918
N1201AC4 LF1201C1 11.25 CONTLGA4 1.
N1201AC4 CONTBOS4 -1.

RHS
RHS1 FUELAVAL 100000. PASSNGRS 9431.
RHS1 SYSTDEPT 50. FLAV*1 30.
RHS1 FLAV*2 45. DMBOSORD 302.
RHS1 DMBOSLGA 2352. DMBOSCLE 142.
RHS1 DMORDBOS 302. DMORDLGA 515.
RHS1 DMORDCLE 619. DMLGABOS 2743.
.
.
.
RHS1 MSCLEBOS 1. MSCLEORD 6.
RHS1 MSCLELGA 3. MCORDBOS 1.
RHS1 MCLGAORD 2. DCBOSORD 12.

28 ROBERT J. VANDERBEI

RHS1 DCBOSCLE 16. DCORDBOS 24.
RHS1 DCORDLGA 13. DCLGAORD 45.
RHS1 DCLGACLE 16. DCCLELGA 5.
RHS1 NOPTCLE0 24.

RANGES
RANGE1 DMBOSORD 61. DMBOSLGA 471.
RANGE1 DMBOSCLE 29. DMORDBOS 61.
RANGE1 DMORDLGA 103. DMORDCLE 124.
RANGE1 DMLGABOS 549. DMLGAORD 143.
RANGE1 DMLGACLE 104. DMCLEBOS 27.
RANGE1 DMCLEORD 143. DMCLELGA 82.
RANGE1 DCBOSORD 12. DCBOSCLE 3.2
RANGE1 DCORDBOS 4.8 DCORDLGA 2.6
RANGE1 DCLGAORD 9. DCLGACLE 3.2
RANGE1 DCCLELGA 5.

BOUNDS
LO INTBOU GRDTIMN1 -100.
UP INTBOU GRDTIMN1 0.
LO INTBOU GRDTIMN2 -90.
UP INTBOU GRDTIMN2 0.
LO INTBOU GRDTIMN3 -45.
UP INTBOU GRDTIMN3 0.
LO INTBOU GRDTIMN4 -45.
UP INTBOU GRDTIMN4 0.

. . .

. . .

. . .
UP INTBOU N1100AC4 7.
UP INTBOU N1102AC2 7.
UP INTBOU N1102AC4 7.
UP INTBOU N1200AC2 14.
UP INTBOU N1200AC4 7.
UP INTBOU N1201AC2 14.
UP INTBOU N1201AC4 7.
ENDATA

LOQO USER’S MANUAL – VERSION 2.27 29

B.2. A log file. Here is a partial listing of the corresponding log file whenLOQO is used to solve the problem in
Section B.1:

+---+
| |
| LOQO: Version 2.11 |
| (C) Princeton University, 1992-1995 |
| |
+---+

variables: non-neg 89, free 0, bdd 54, total 143
constraints: eq 4, ineq 143, ranged 19, total 167
nonzeros: A 1339, Q 0
nonzeros: L 4363, arith_ops 89262

| Primal | Dual | Sig
Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
- -

1 4.7237992e+03 5.75e-01 7.2271163e+09 8.32e+03
2 4.7735777e+03 5.74e-01 7.2010923e+09 8.29e+03
3 5.5976588e+03 5.51e-01 7.0116304e+09 8.08e+03
4 6.4798130e+03 5.30e-01 6.7046013e+09 7.76e+03
5 8.5615694e+03 4.48e-01 5.3385958e+09 6.24e+03
6 6.0632486e+03 3.11e-01 3.8072059e+09 4.45e+03
7 5.2019929e+03 2.32e-01 2.1263747e+09 2.56e+03
8 4.6772801e+03 1.68e-01 1.3486633e+09 1.70e+03
9 3.8920450e+03 9.93e-02 8.3550490e+08 1.07e+03
10 3.2774096e+03 8.96e-02 6.9535403e+08 9.11e+02
11 1.3682424e+03 4.08e-02 5.3629338e+08 7.21e+02
12 1.2199505e+03 3.31e-02 -4.9872847e+07 4.91e+01
13 3.3982074e+02 9.83e-03 -2.8819898e+07 5.85e+00
14 8.6940743e+01 2.69e-03 -1.5355669e+07 1.96e+00
15 3.0164084e+01 1.03e-03 -4.6581330e+06 3.01e-01
16 -1.4731024e+01 5.61e-04 -2.4296725e+06 1.17e-01
17 -5.2302263e+01 3.32e-04 -1.6526514e+06 7.12e-02
18 -1.2075975e+02 1.36e-04 -7.9671784e+05 2.19e-02
19 -1.5180495e+02 4.23e-05 -3.2575147e+05 5.57e-03
20 -1.7334366e+02 2.61e-06 -7.2457483e+04 7.56e-04 PF
21 -1.7628397e+02 1.33e-07 -6.3383861e+03 6.24e-05 PF
22 -2.0157336e+02 7.25e-09 -2.1985311e+03 2.01e-05 PF
23 -2.4811212e+02 2.32e-09 -8.5903751e+02 5.76e-06 PF DF
24 -2.6365903e+02 1.41e-09 -4.6257064e+02 1.58e-06 PF DF
25 -2.9579539e+02 4.56e-10 -3.7439386e+02 5.81e-07 1 PF DF
26 -3.0246863e+02 2.63e-10 -3.4693510e+02 2.78e-07 1 PF DF
27 -3.0931667e+02 1.03e-10 -3.2266089e+02 5.60e-08 1 PF DF
28 -3.1352719e+02 1.96e-11 -3.1897090e+02 2.92e-08 2 PF DF
29 -3.1468541e+02 1.03e-11 -3.1576272e+02 5.13e-09 2 PF DF
30 -3.1490420e+02 2.32e-11 -3.1508096e+02 3.97e-10 3 PF DF

dependent rows: 1

30 ROBERT J. VANDERBEI

31 -3.1501125e+02 1.51e-12 -3.1502190e+02 3.42e-11 4 PF DF
32 -3.1501835e+02 7.58e-14 -3.1501889e+02 6.82e-11 6 PF DF
33 -3.1501871e+02 3.88e-15 -3.1501874e+02 2.92e-11 7 PF DF

dependent rows: 1
34 -3.1501873e+02 5.43e-16 -3.1501873e+02 6.46e-11 8 PF DF

OPTIMAL SOLUTION FOUND

LOQO USER’S MANUAL – VERSION 2.27 31

B.3. A solution file. And finally, here is part of the solution file:

COLUMNS SECTION
index label primal_val reduced_cst lower_bd upper_bd OB_flag

0 PBOSORD0 3.0200e+02 4.6896e-12 0.0000e+00 Infinity
1 PBOSORD1 2.7237e-07 6.9453e-03 0.0000e+00 Infinity
2 PBOSORD2 2.0514e-07 2.4120e-02 0.0000e+00 Infinity
3 PBOSORD3 8.7781e-08 4.5699e-02 0.0000e+00 Infinity
4 PBOSORD4 2.6571e-07 1.2973e-02 0.0000e+00 Infinity
5 PBOSLGA0 7.1200e+02 1.7384e-12 0.0000e+00 Infinity
6 PBOSLGA1 2.6800e+02 4.1145e-12 0.0000e+00 Infinity
7 PBOSLGA2 7.3947e-07 6.9637e-03 0.0000e+00 Infinity
.
.
.

137 N1102AC2 3.1029e-08 1.2656e-01 0.0000e+00 7.0000e+00
138 N1102AC4 1.5372e-08 2.4910e-01 0.0000e+00 7.0000e+00
139 N1200AC2 1.4000e+01 9.2694e-11 0.0000e+00 1.4000e+01
140 N1200AC4 1.9873e-08 2.8403e-01 0.0000e+00 7.0000e+00
141 N1201AC2 1.3321e+01 1.0305e-10 0.0000e+00 1.4000e+01
142 N1201AC4 1.3578e-08 3.0478e-01 0.0000e+00 7.0000e+00

ROWS SECTION
index label dual_val row_actvty rght_hnd_sd range OB_flag

0 REVENUES 2.9171e-12 4.4431e+02 0.0000e+00 Infinity
1 ACOCOSTS 1.0767e-11 1.2929e+02 0.0000e+00 Infinity
2 OBJECTIV -4.7238e-97 -3.1502e+02 -Infinity Infinity
3 FUELAVAL -1.4524e-14 -1.8197e+02 -1.0000e+05 Infinity
4 SYSTDEPT 6.9938e-11 1.2307e+02 5.0000e+01 Infinity
5 ACMILES 7.5904e-11 4.9225e+01 0.0000e+00 Infinity
6 ASMILES 2.2615e-13 5.5609e+03 0.0000e+00 Infinity
7 PASSNGRS 1.4260e-10 9.4560e+03 9.4310e+03 Infinity
.
.
.

159 DCBOSCLE 3.4040e-01 -1.6000e+01 -1.6000e+01 3.2000e+00
160 DCORDBOS 7.5000e-01 -2.4000e+01 -2.4000e+01 4.8000e+00
161 DCORDLGA 6.8000e-01 -1.3000e+01 -1.3000e+01 2.6000e+00
162 DCLGAORD 3.1818e-01 -4.5000e+01 -4.5000e+01 9.0000e+00
163 DCLGACLE 1.6366e-01 -1.6000e+01 -1.6000e+01 3.2000e+00
164 DCCLELGA 3.7000e-01 -5.0000e+00 -5.0000e+00 5.0000e+00
165 MCORDBOS 1.3976e-09 2.6937e+00 1.0000e+00 Infinity
166 MCLGAORD 6.5306e-10 4.0000e+00 2.0000e+00 Infinity

ENDOUT

ROBERTJ. VANDERBEI, PROGRAM IN STATISTICS AND OPERATIONSRESEARCH, PRINCETONUNIVERSITY, PRINCETON, NJ 08544
E-mail address: rvdb@princeton.edu

