Chapter

37

July 2003

Adaptation of Generated
Code

This chapter containsinformation about making an adaptation of
the generated code to make it communicate with the generated
code.

Thefirst part of thischapter describestheinterfacetobeused when
writingtheadaptation, the GCI Interface. Thedifferent partsof the
interface are explained in detail with recommendations and exam-
ples of use.

The second part of this chapter isa C implementation of GCI, this
can be used as areference documentation.

Thethird part describesthe EGci (extended GCI) value construc-
tion and functions.

Thefourth section introducesthe Adaptation Framework that can
be used to implement GCI functionsin a straightforward way with
ready-made low-level protocol implementations such as TCP/IP.

Thefifth and final section describes the means and measuresto
completetheadaptation. It describestherequirementson theadap-
tation in terms of the necessary functionsto implement.

Telelogic Tau 4.5 User’ sManual 1449

Chapter 37 Adaptation of Generated Code

The GCI Interface

The Generic Compiler Interpreter (GCI) interface standardizesthe com-
muni cation between aTTCN component supplied by avendor and other
test system components supplied by the customer, together forming a
MOT, Method Of Test.

The GClI interface focuses on what an ATS needs in order to executein
term of functionality, and on what is needed in order to integrate TTCN
into alarger system. This chapter contains a natural language descrip-
tion of the interface and a GCI C Reference.

The GCI Interface Model

The main purpose of the GCI interfaceis to separate TTCN behavior
from protocol and test equipment specific code. The GCI interface shall
be a standardized set of functions. Communication shall be done by
calling functions, passing arguments to the functions and return values
from the functions, and in no other way. The interface is bidirectional
which means that both parties (the TTCN Runtime Behavior and the
Test Adaptation) must provide servicesto each other. The TTCN Runt-
ime Behavior shall at least provide services for handling values and
managing tests (eval uating test cases etc.) and the Test Adaptation shall
provide the protocol/test equipment specific parts of an executable
(send, snapshot, timer functions etc.). The implementation of the func-
tionsin the TTCN Runtime Behavior may only depend onthe ATS and
9646-3, no extrainformation shall be needed to implement them.

‘ Supervisory Functions ‘

———————————————— GCI Management i/f

———————————————— GCI Operational i/f

‘ Service Provider ‘

Figure 265: The GCl model

1450 Teldlogic Tau 4.5 User's Manual July 2003

The GCI Interface

July 2003

Informal Description of the Test Run Model

This section contains an informal description of how atest run might
look like using the GCl interface. A test runisdefined asacompletetest
session, where a selection of test cases are run to ensure a specific be-
havior of the IUT.

A test run begins when the user decidesto run atest case or acollection
of test cases. Hewill then use the Supervisory functionsto start test cas-
es and monitor their verdicts. The TTCN Runtime Behavior then exe-
cutes TTCN, occasionally using the operational interface (send, snap-
shot, etc.) to gather information or to request some service. The TTCN
Runtime Behavior handles verdicts internally during atest case and re-
turns the verdict at the end of atest case.

Before using the TTCN Runtime Behavior, it must beinitialized. After
that the user chooses which test case to run using the supervisory func-
tions. The test case returns a verdict which the user can use to form re-
ports or stop test runs. The TTCN Runtime Behavior or the GCI inter-
face does not impose any restrictions on this part. Any number of test
cases can be run and each is commanded using the Supervisory func-
tions.

Supervisory TTCN
Functions RTB

»| Initialization of the TTCN Runtime
Gcilnit Behavior.

Run test cases.

»

GciStartTestCase | Test cases return verdicts to the

-< Supervisory functions.
GCiPASS
[] More test cases can be run if de-
[sired.
[]

Test run can be terminated at the
end of a test case

Figure 266: Sart of test run

Telelogic Tau 4.5 User's Manua 1451

Chapter 37 Adaptation of Generated Code

1452

Thetest case at some point will try to send amessage on some PCO. The
TTCN Runtime Behavior then passes information to the Test Adapta-
tion about the message to send and on which PCO to send it on. It isthe
responsibility of the Test Adaptation to properly encode the message
and actually send it on some media (e.g. sockets, screen, printer port,
pipe). Note that control isin the Test Adaptation until it returnsto the
TTCN Runtime Behavior. When control returnsto the TTCN Runtime
Behavior it assumes that the message was sent correctly and continues
execution of the test case.

Eventually the test case will have emptied its possihilities to act and
needsinput from the environment. It therefore passes control to the Test
Adaptation in order to take a snapshot of the IUT. Within the snapshot,
the Test Adaptation then checks all PCO’s for incoming messages and
al timersfor time-outs. If amessage has arrived on aPCO, the Test Ad-
aptation must decode the message and trandlate it into a proper GCI val-
ue. If atimer hastimed out, the Test Adaptation must record which tim-
er. The Test Adaptation acts as afilter between the IUT and the TTCN
Runtime Behavior. Note that the actual reception of a message or time-
out could be handled somewhere else (e.g. in an interrupt routine), only
the official communication that the event has taken place must be done
in SNAPSHOT.

TTCN Test
RTB Adaptation

»| To send a value.
GciSend

Y

- To be informed of messages ar-
GciSnapshot rived and/or timers timed out. The
Test Adaptation then must use
the functions GciReceive and
GciSnapshot to inform the TTCN
Runtime Behavior.

Figure 267: Send and Shapshot

Telelogic Tau 4.5 User's Manual July 2003

The GCI Interface

Preliminary verdicts may be set during the test execution and when afi-
nal verdict is set, the test case returnsto the Test Adaptation immediate-
ly. The Test Adaptation then has freedom to decide to continue the test
run or not. A final verdict has meaning only in the context of the current
test purpose. The meaning of afinal verdict is not specified in the con-
text of an entire collection of test cases. For example, when doing re-
gression tests, all test cases should be run regardless of how many failed
in order to get a complete picture of the status of the [UT.

Which Does What?

Thetable below summarizesthe responsibilities of thetwo GCI parties,
the TTCN Runtime Behavior and the Test Adaptation. It is meant to de-

scribe the model and basic assumptions being made.

TTCN Runtime Behavior

Test Adaptation

SEND:
Buildsthe object to be sent and
requests the actual sending

SEND:
Receives the object that shall be
sent and transfersthisto the IUT.

When avalueis put on aPCO
gueue by the Test Adaptation,
it remains there until a match-
ing receive lineisfound in
TTCN.

from the Test Adaptation. This might include encoding in
some form.
RECEIVE: RECEIVE:

Buildsthereceived object (from the
IUT) into a GCI value, which may
include someform of decoding, and
notifies the TTCN Runtime Behav-
ior that the message has arrived.

Setsthe verdict (based on the | Treatstheverdict (i.e. decidesif the
test case). test run should continue or not).
Impl. of value representation. | Encoders/decoders.

Uses the value repr. Usesthe value repr.

Provides test cases. The test
cases are sensitive to test case
selection references.

Determines which test casesto run
and in which order.

Uses send on messages.

Provides the send functionality.

Telelogic Tau 4.5 User’s Manual

1453

Chapter 37 Adaptation of Generated Code

1454

TTCN Runtime Behavior

Test Adaptation

Uses SNAPSHOT tofix a

view of the status of the IUT.
Expects al changesin system
status to be recorded in SNAP- | ior.
SHOT.

Reads system statusin SNAPSHOT
and records this through GCI inter-
face for the TTCN Runtime Behav-

Uses the LOG function to log
TTCN Runtime Behavior.

Provides the LOG functionality,
and also decides on what level log-
ging should be done.

Case Studies

This section contains case studies of a send and areceive. For the case
studies, we use an example PDU shown in Figure 268.

TTCN PDU Type Definition

PDU Name: pdul

Field Name Field Type Comment
a INTEGER w value 19
b BOOLEAN w value FALSE

Comment: Example pdu for GCI case studies

Figure 268: Example table

Case Study: SEND

Nr

Lbl

Statement Line

Cref

Comment

L ! CR

CR_c

The semantic of the TTCN send statement is as follows:

agpODOE

Build the SendObject using the constraint reference.
Execute the assignments.

Send the SendObject on the PCO.
Execute the timer operations.
LOG, at least the PCO and the SendObject must be logged.

The SendObject above isatemporary object containing the object to be
sent. All steps above are initiated by the TTCN Runtime Behavior.

Telelogic Tau 4.5 User's Manual

July 2003

The GCI Interface

Steps 3 to 5 require communication with the environment (IUT). The
TTCN Runtime Behavior will build a SendObject using the constraint
CR_cabove. Thenit will call the Test Adaptation function Send. By do-
ing this, the TTCN Runtime Behavior has ensured that the message gets
sent on whatever PCO was stated. The Test Adaptation function Send
then encodes the message using the transfer syntax of the protocol and
then sends the message on the medium that represents the PCO. The ar-
guments passed to Send is the PCO and the message in the GCI repre-
sentation, and the side effect of Send isto send the messagein protocol
representation on the PCO in test system representation. Note that the
encoding and sending on a PCO might very well be represented as a
function call.

TTCN Test Value
RTB Adaptation Repr.

Test Adaptation called
through GCl interface.

snd >

Now encode the data using

J&pduta GCl interface primitives

i 19

g pdul b
< Talse

Send the encoded data on
the PCO to the IUT (environ-

011001 ...
Done, return to caller

A

oK

Figure 269: The send event

July 2003 Telelogic Tau 4.5 User's Manua 1455

Chapter 37 Adaptation of Generated Code

1456

Case Study: RECEIVE

Nr | Lbl | Statement Line Cref Comment

L ? CC cc c

The receiveis alittle more complicated than the send. Send isinitiated
by the TTCN Runtime Behavior whilereceiveisaninternal eventinthe
TTCN Runtime Behavior. The actual reception of messagesisdonein
the Test Adaptation and these actions are communicated to the TTCN
Runtime Behavior in SNAPSHOT. Note that there may be a difference
between the reception of a message and the notification to the TTCN
Runtime Behavior that the message has arrived. The TTCN Runtime
Behavior callsthefunction SNAPSHOT and whenit returns, the TTCN
Runtime Behavior expects al time-outs to have been recorded and al
received messages to be put on the correct PCO queues in the correct
format. In this case we study the message event only and not the time-
out.

A message has been received from the I[UT (not necessarily in
SNAPSHOT) and the TTCN Runtime Behavior must be told that
the message has been received. This shall be donein SNAPSHOT
using the GCI function provided. The message and the PCO must
be presented in a representation understood by the TTCN Runtime
Behavior. Note that the message probably needs to be trandated
into the GCI value representation somewhere but again not neces-
sarily in SNAPSHOT.

If SNAPSHOT doeswhat is stated above, the TTCN Runtime Behavior
will do the following on the receive line in the test case:

The PCO queueischecked and if there is amessage there, that mes-
sage is matched against the constraint reference. If the message
matches, it is removed from the PCO gueue and the receive state-
ment is considered to be TRUE, otherwise, the next alternativeis
checked.

In Figure 270, we assume that decoding is done in SNAPSHOT. The
message i s decoded using the value manipulating primitives of the GCI
interface. When the message has been decoded into something known
to the TTCN Runtime Behavior, it is easy to assign it to a PCO using
the GCI function receive.

Telelogic Tau 4.5 User's Manual July 2003

The GCI Interface

July 2003

TTCN Test Ad- Value
R. B. aptation Repr.

Something is physically re-
ceived from the IUT

Lt
011001 ...

Test Adaptation called
snapshot ™ through GCl interface.

Decode the message using
knowledge of its type. As-
sume it was a pdul

mK_pdul ™
— handle

set_paul a™
i oK

1. Get an object of suitable
type:
ASHJ)UULb; 2. Set each field in pdul

<*—recave oK Put the decoded object on
ok > the PCO queue
GciReceive(PCO, handle)
hn ok

Done, return to the TTCN
Runtime behavior

Figure 270: The receive event

Methods Used

This section contains general thoughts on methods used for designing
the GCI interface. Choices have been made such as to provide reason-
able trade-offs between speed and ease of use. An efficient implemen-
tation in C should be possible with the choices made.

Identifying Global Objects in TTCN/ASN.1

One problem is how to identify global objectsin TTCN, PCOs, CPs,
ASPs etc. There are a number of requirements that should be met:

1. Execution time:

The TTCN behavior, operational and value interface functions are
likely to be called many timesin atime sensitive context which re-
quiresthem to befast. The management functions doesnot havethis
requirement.

Telelogic Tau 4.5 User's Manua 1457

Chapter 37 Adaptation of Generated Code

1458

2. Compilation time:

The Test Adaptation and the TTCN Runtime Behavior arelikely to
be used together with a graphical interface (GUI) or integrated into
alarger system. Thisintegration should be possible without re-com-
piling the GUI or the larger system every time a change has been
madeinthe ATS. Thisrequiresthat dependenciesbetweenthe ATS
and the management interface implementation must be kept to a
minimum.

There are at least three alternative solutions to be considered:

1. Straight name reference using target language semantics, i.e start
test case “TC1” by writing the function call “TC1()” in C, and the
value of the variable“TCVAR1" is expressed simply as TCVAR1

2. Assign an integer to each object. Symbolic names could then be
used. The examples from above would then be;

#define TC1 192

#define TCVAR1 1211

Verdict = GeciStartTestCase(TC1l);
Display(GciGetValue(TCVAR1));

3. Use string references.

Verdict = GeciStartTestCase(TC1l) ;
Display(GciGetValue(TCVAR1));

Solution 1 gives the fastest execution but is very unsuitable for integra-
tion into alarger application. Solution 2 is at least possible to integrate
into a GUI, and almost as fast as solution 1. Solution 3 is excellent for
integration but gives slow execution.

In the GClI interface, we choose to use solution 3 (string references) in
the management functions and solution 2 in the TTCN behavior func-
tions. It would then be very easy to integrate an ETS into an already ex-
isting test system since the interfaceis string based while we still main-
tain speed in the execution of test cases.

A similar problem ishow to identify fieldsin structured types. The sim-
plest solution is to address them using integersfield O, field 1, etc., but
then the Test Adaptation writer would get very little support from the
compiler. From the Test Adaptation writers point of view, he might
want to address the fields using names and also get type checking aid
from the compiler. The Test Adaptation writer also wants to write ge-
neric functions for encode/decode. The GCI interface supports both

Telelogic Tau 4.5 User's Manual July 2003

The GCI Interface

July 2003

views, one view where substructures areidentified by numbers, and one
which in effect use name addressing.

Test Suite Operation Definitions

The TTCN Runtime Behavior requires that all test suite operations are
defined as functions at run-time. Arguments to and return vaues from
the test suite operation functions shall use the GeiVaue* format. The
name of the test suite operation function shall be the same as the name
of the test suite operation in TTCN.

Logging

Thelog will provide aview of atest run. Most things happening in the
system will need to be logged. We have identified a number of require-
ments on the log functionality:

1. It should be possible to only log every event visibleto the TTCN
Runtime Behavior. | .e. the sending of amessage should leave anote
in thelog while the internal behavior of the TTCN Runtime Behav-
ior should not.

2. For debug purposes, it must be possible to report every event in the
system.

3. Thegranularity of thelog must be easy to change by the Test Adap-
tationwriter. It should be possible to be quite specific when logging,
i.e. log only sends and receives.

The method that the GCI interface suggests is massive logging. Every-
thing islogged at any time and every type of event (send, receive etc.)
isassigned anumber. That way it is easy for the Test Adaptation writer
to write alog function that only logs interesting log messages.

Value Representation

The GCI interface must provide a stable way of manipulating values.
Thisis most important for the Test Adaptation writer to be able to ac-
cess and build values in his encode and decode functions. The GCI in-
terface proposes not to specify the value representation but rather the
methods which can be used on it. The GCI interface specifies what the
Test Adaptation writer is able to do with values. The reason for thisis
that most vendors supporting the GCI interface would like to have their
own value representation within their TTCN Runtime Behavior, and the

Telelogic Tau 4.5 User's Manual 1459

Chapter 37 Adaptation of Generated Code

1460

representation used within TTCN has different requirements than the
representation needed for the Test Adaptation.

Introduction to the GCI Interface

This section contains the description of the GCI interfacein natural lan-
guage. Theinterface functionality is sorted by responsibility. The man-
agement, behavior and value interfaces are interfaces to the TTCN
Runtime Behavior. The operational interfaceistheinterfaceto the Test
Adaptation.

Management Interface

The management interface consists of those functions necessary for ini-
tiating and managing test runs. They provide an API to the ATS. These
functions are used by the Supervisory functions to govern test runs.

Initiation of the TTCN Runtime Behavior

Must be called before the TTCN Runtime Behavior isused in any way.
It will read test suite variables (using primitives in the operationd i/f),
set up test case selection references, test suite constants and any other
initialization necessary. It should only be called once.

Start Test Case

Shall run atest case according to the dynamic behavior in 9646-3. Input
shall be atest case name or test case group name. Thetest caseor all the
test casesin thetest group shall then berunin the order which they were
listed in the ATS. If the selection reference of atest case or test case
group isfalse, that test case or test case group shall not be executed.
Verdict shall be set and communicated back tothecaller. In case several
test cases have been run, the verdict shall be the most negative of the
verdicts from each test case (if onetest caseis FAIL, the verdict would
be FAIL, if al are PASS, the verdict would be PASS).

Start Test Component

Thisfunction works just line the function to start test cases, but starts
test components for example when concurrent TTCN is used.

Test Case List

A list of names of test cases.

Telelogic Tau 4.5 User's Manual July 2003

The GCI Interface

July 2003

Test Case Group List
A list of names of test case groups.

Number of Timers and PCOs

Two functions are needed to return information about the amount of
timers and PCOs in the system.

Information About Timers and PCOs

Help functions are needed to get some extrainformation about timers
and PCOs. (For example name and type.)

Configuration Information

A set of functionsis needed to retrieveinformation about configurations
when running concurrent TTCN.

Accessing TTCN Values

Vauesof TTCN (and ASN.1) objects must be accessible from the Test
Adaptation. A general access function will be provided. Information
passed shall be an object name and the information passed back shall be
the value of the object. Valid objects shall be test suite parameters, test
case selection expressions, test suite constants, test suite variables and
test case variables.

Behavior Interface

The behavior interface consists of functions used to notify the TTCN
Runtime Behavior of eventsinthe IUT. The functions are aformalism
of what the TTCN Runtime Behavior needs to know about the status of
the IUT. The functions are implemented in the TTCN Runtime Behav-
ior and must be used in Snapshot.

Receive

Whenever a message has been received and decoded it must be passed
to the TTCN Runtime Behavior in SNAPSHOT in order for it to match
it with the constraint. The information passed shall be the PCO descrip-
tor and the value. Note that the value passed in receive must be a
GciValuer.

Telelogic Tau 4.5 User's Manual 1461

Chapter 37 Adaptation of Generated Code

1462

Time Out
Whenever atimer has timed out the TTCN Runtime Behavior must be

notified of it in SNAPSHOT. The information passed shall be thetimer
descriptor.

Done
Whenever atest component has terminated its execution the TTCN

Runtime Behavior needs to know about this. The information passed is
the descriptor for the given test component.

Operational Interface

The operational interface consists of those primitives necessary for the
TTCN Runtime Behavior to implement TTCN, i.e. Send, Snapshot,
StartTimer etc. This part of GCI can be compared to POSIX. TTCN
Runtime Behavior requires that the functions are defined.

Test Suite Parameters

The TTCN Runtime Behavior shall call the Test Adaptation once for
each test suite parameter during theinitialization of the TTCN Runtime
Behavior. Information passed shall be ahandlefor the value, the param-
eter name and the PICS/PIXIT reference.

Test Suite Operations

Each test suite operation must be defined in the Test Adaptation. The
name of thetest suite operation function shall bethesameasinthe ATS,
and the order of the parameters shall also be the same.

Create

When atest component needs to be created this function will be called
from the TTCN Runtime Behavior.

Configuration

When different tests are run, different configurations might be needed.
Thisfunction is called from the TTCN Runtime behavior to set up a
configuration before the test goes on.

Telelogic Tau 4.5 User's Manual July 2003

The GCI Interface

Snapshot

Thestatusof the lUT must beread. Eventsinthe lUT must betranslated
for the TTCN Runtime Behavior to be aware of them. The communicat-
ing interface between the TTCN Runtime Behavior and the IUT (envi-
ronment) is made up of messages that has arrived and timers that have
timed out. Therefore there are only two requirements on SNAPSHOT:
1) any received messages shall be recorded and 2) any timersthat have
timed out shall be recorded. The recording shall be done by using the
provided GCI functions described in the Behavior i/f.

Send

This function is used by the TTCN Runtime Behavior to ensure that
messages get sent. Send probably involves encoding and physical send-
ing but might aswell transl ate to encoding of some parts of the message
and use of alower layer service. The information passed to thefunction
shall be a PCO descriptor and the value to be sent.

Start Timer

When the TTCN Runtime Behavior needs to start atimer. Information
passed shall be thetimer descriptor, theinteger timeout duration and the
timer unit.

Read Timer

Shall passthe current timer value back to the caller. Information passed
to the function shall be atimer descriptor.

Cancel Timer
Shall stop atimer identified by atimer descriptor.

Log

Shall log events on an appropriate format. An integer specifying log
message type and alog string shall be passed as parameters.

July 2003 Telelogic Tau 4.5 User's Manual 1463

Chapter 37 Adaptation of Generated Code

Value Interface

The interface to valuesis asimple API in which the user is allowed to

build and access GciValuesin an ordered way. The actual values used

are not specified, only the methods that can be used on them are includ-
ed. Thisway will allow vendors to have their own value representation
within their TTCN Runtime Behavior and still conform to GCI.

Three types of value primitives are needed. Primitives to access struc-
tured values:

» Primitivesto build and access components of structured values

e Primitivesto find and set the type of values

* Primitivesto convert base values to and from the value domain of
the target language

Value primitives can be further divided in the groups:

» SEQUENCE values, which include SET valuesand also TTCN
ASP, PDU and Struct types

SEQUENCE OF values, which include SET OF values
CHOICE values

OBJECT IDENTIFIER values

BASE values, integers, booleans, strings and reals

Please notethat SET and SET OF valuesaretreated as SEQUENCE and
SEQUENCE OF values because there is no semantic difference at this
level of abstraction. The unordered behavior of SETsis considered ade-
coder problem and |eft to the decoder writer.

1464 Teldlogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

GCI C Code Reference

This section is a code description of GCI. It describes what each func-
tion does and why it is used. Some of the functions must be implement-
ed by you in your adaptation. See section “ Compl eting the Adaptation”

on page 1502.

Predefined Types
These are the GCI value types with their respective value set:

GciStatus = { GciNotOk, GciOk }

GciVerdict = { GciFail, GciInConc, GciPass, GciNone}
GciTimeUnit ={ Gecips, Gecins, Gcius, Gecims, Geis, Geimin }
GciTimerStatus = { GCIRUNNING, GCISTOPPED, GCIEXPIRED }
GciPCOID = INTEGER

GciTimerID = INTEGER

GciPosition = <internal position value>

These are structured GCI value types with their respective members:

The general communication address type
typedef struct GeciAddress {

int type; /* Address type 0 - 100 is
reserved by Telelogic */

char* buffer; /* The address stored in a
buffer */

} GciAddress;

The general time value
typedef struct GeciTime
unsigned long time val;
GciTimeUnit unit;
} GciTime;

July 2003 Telelogic Tau 4.5 User's Manual 1465

Chapter 37 Adaptation of Generated Code

Management Interface

The management interface consists of the functions necessary for initi-
ating and managing test runs. They provide an API to the TTCN
runtime behavior.

GciStatus GeiInit ()

Initiates the TTCN Runtime Behavior. Must be called before any
test cases are started.

GciStatus GeciExit ()

Shuts down the TTCN Runtime Behavior system. Usually called
last before closing atest session.

GcivVerdict GeciStartTestCase(const char* TCorTGName)

Calling thisfunction with atest case namewill start and run the giv-
en test case. The verdict returned is the verdict set by the test case.

If the function is called with atest group name, it will start and run
the given test group. The verdict returned is the product of the ver-
dicts set in the test cases or test groups contained in the given test
group. Theindividua verdicts from the different test cases or test
groups have to be extracted from the log. The verdict algorithm for
test groups is defined as follows:

1. Theverdictis PASSif the verdict of every test caseis PASS.

2. Theverdict isINCONC if the verdict of at |east one test caseis IN-
CONC and al others are PASS.

3. TheverdictisFAIL if the verdict of at least one test caseis FAIL.

If the given nameis not avalid test case nor test group, the function
will return cciNotok and log the following message:

No such Test Case or Test Group as <name> to run!

GciVerdict GeciStartTestComponent(char* TSName,
GcivValue* args)
This function worksjust like GciStartTestCase but is used to start a
parallel test component (PTC) when using concurrent TTCN.
TSNameisthe name of the Test Step to runinthe PTC.

1466 Teldlogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

July 2003

GciTCList* GciGetTestCaseList ()

Thisfunction returns alist of all test case names (including test cas-
esin test groups).

GciTCList GciGetTestCaseGroupList ()

Thisfunction returns alist of all test group names (including test
groupsin test groups). List of character strings.

GciValue* GciGetValue (char* TTCNObjectName)

This function returns the TTCN value object given the object’s
name. If the object name does not exist, the function will return
NULL and log the following message:

GciGetValue: Could not find <names>! NULL returned

If the object nameisaTTCN name, but not an object (variable, con-
stant, etc...) the function will return NULL and log the following

message:

GciGetValue: <name> not an instance! NULL returned

int GciGetNoOfTimers()
Returns the number of timers in the system.

int GciGetTimer (int index)

Returns the identifier of the given timer index.

char* GciGetTimerName(int timer)

Returns the name of the given timer.

int GciGetTimerIndex(int desc)

Returns the index of the given timer descriptor.

int GciGetNoOfPCOs ()
Returns the number of PCOs in the system.

int GciGetPCO(int index)
Returns the descriptor of the given PCO index.

char* GciGetPCOName(int pco)
Returns the name of the given PCO.

Telelogic Tau 4.5 User's Manual 1467

Chapter 37 Adaptation of Generated Code

1468

int GciGetPCOIndex(int desc)
Returns the index of the given PCO descriptor.

int GciGetPCOType(pco)
Returns the type of a given PCO.

int GciGetNoOfComponents(GciConf conf)

Returns the number of components in the given configuration.

GciComponent* GciGetComponent(GeciConf conf, int index)

Returns the indexed component in the given configuration.

char* GciGetComponentName (GciComponent* conp)

Returns the name of the given component.

int GciGetComponentType (GciComponent* conp)

Returns the type of the given component (GciMTC or GciPTC).

int GciGetComponentDescriptor(GciComponent* conp)

Returns the descriptor of the given component.

char** GciGetComponentCPs(GciComponent* conp)

Returns the CPs used by the given component.

char** GciGetComponentPCOs (GciComponent* conp)

Returns the PCOs used by the given component.

Behavior Interface

The behavior interface consists of the functions used to notify the
TTCN Runtime Behavior of eventsinthe IUT. The functions are afor-
malism of what the TTCN Runtime Behavior needs to know about the
status of the IlUT. Thefunctions areimplemented in the TTCN Runtime
Behavior and must be used in Snapshot.

GciStatus GciTimeout(int timerd)

Thisfunction will change the status of theinternal timer indexed by
the timer descriptor timerd. Thetimer will be marked astimed out.

Telelogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

July 2003

GciStatus GciReceive(int pcod, GciValue* value)

This function will insert the received object into the internal PCO
gueue indexed by the PCO descriptor pcod.

Operational Interface

The operational interface consists of the functions necessary for the
TTCN Runtime Behavior to communicate with the IUT, i.e. the depen-
dencies on the protocol and test environment. It implements functional -
ity for Send, Snapshot, StartTimer, etc. The TTCN Runtime Behavior
requires that the functions are defined in the adaptation.

GcivValue* GciReadTSPar (char* name, char* pRef)

The user has to implement how to read the test suite parameters.
This codewill be called onetime for each test suite parameter inthe
system. Here name isthe name of the test suite parameter and pref
isthe PICS/PIXIT field (ex. file). The value returned by this func-
tion must be a pointer to avalid cecivalue structure which can be
successfully used by the TTCN runtime behavior. If for any reason
this could not be done, NULL should be returned.

GciStatus GeciConfig(GciConf conf)

When using concurrent TTCN the user is responsible for creating
the configurations to be used for a given test. The creation of those
configurationsis donein this function using a set of help functions
in the management interface to traverse the information.

GciStatus GeciSnapshot ()

Thisisavery important function that the user has to implement.
Thisfunction is called from the run-time behavior when it needsin-
put from the test environment (timers and/or PCO's).

— Communication lines (PCOs) must be checked. If something
has been received, we must decode the message, build areceive
object and insert the object into the correct, internal PCO queue
by using the ccireceive function with appropriate PCO de-
scriptor. The GCI Vaue Interface is used to build the object(s).

— Timersmust be checked and their status must be reported to the
TTCN run-time system. If the user uses the simple adaptation
template he/she must self keep track of time and use GeiTime-

Telelogic Tau 4.5 User's Manual 1469

Chapter 37 Adaptation of Generated Code

out to mark atimer astimed out. If the user uses the timers ad-
aptation template he/she can use the adsetTime function (see
below) to have this work done automatically.

GeciStatus GeciSend(int pcod, GecivValue* value)

The user is responsible for implementing the send functionality.
Thisinvolvesidentifying agiven PCO and encoding the value be-
fore sending the message on that PCO.

GciStatus GeciStartTimer (int timerd, long duration,
int unit)

To start atimer the TTCN runtime behavior will call this function.
Note that timer duration valueis optional in TTCN but is aways
present here.

GciStatus GeciCancelTimer (int timerd)

Thisfunctionis called to stop the given timer. It should have the ef-
fect that the appropriate timer representation in the adaptation is
stopped.

long GciReadTimer (int timerd)

This function is called when atimer is read. It must return the cur-
rent timer value.

GeciStatus GeciCreate(int ptc, char* tree, GeciValue* args)

Thisfunctionsis called when a PTC is to be created to run agiven
dynamic behavior with the given arguments (concurrent TTCN).

GeciValue* <TS Op>(<Arguments>)

Every test suite operation must have this function defined. The
name shall bethe sameasinthe ATS and arguments must match the
parametersin the ATS.

GciStatus GciImplicitSend(GeciValue* value)

Thisfunction is called by the run-time behavior when an Implicit
Send Event occurs in the test suite. It is up to the adaptation writer
to define its exact implementation.

1470 Teldlogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

GciStatus GeciLog(int logId, char* LogString)

The user has to implement parts of the logging facility. Asthe GCI
document describes, somelog identifiers are already implemented.
Thelog identifiers (identifies the type of log message) in this func-
tion should NOT be changed as they follow the values listed in the
GCI document. The TTCN Runtime Behavior usesthisfunction for

logging.
logld Description ThelogString must contain:
Msg General message
StartTC | Start test case The name of the test case
StopTC Stop test case The name of the test case
StartTS | Start test step The test step name
StopTs Stop test step The test step name
StartDEF | Start default The default name
StopDEF | Stop default The default name
Verdict | Fina verdict set The verdict set
Pverdict | Prel. verdict set The verdict set
Match Line tried matches Line number
NoMatch | Linetried does not Line number
match
SendE Send Event The PCO name
The type of message sent
Constraint name
RecE Receive Event? The PCO name
The type of message received
Constraint name
OtherE Otherwise Event The PCO name
TimeoutE | Timeout Event The timer name
Assign Assignment The Left hand side

Theright hand side (textually)

July 2003

Telelogic Tau 4.5 User’s Manual

1471

Chapter 37 Adaptation of Generated Code

1472

logld Description ThelogString must contain:
StartT Start timer The timer name
The timer duration
StopT Stop timer The timer name
CancelT | Cancel timer The timer name
ReadT Read timer The timer name
The timer value
Attach Attachment The name of the attached test
step
ImplSend | Implicit send The PCO name
The message type
Goto Goto The line number to which the
jump will be made
Rec ReceiveP The PCO descriptor number
Timeout | Timeout® The timer descriptor number

a Logging that areceive line matches.

b. Notethisislow level logging done when the Test Adaptation writer calls Gci-

Receive (or GciTimeout)

c. Notethisislow level logging done when the Test Adaptation writer calls Gci-

Receive (or GciTimeout)

Value Interface
The interface to valuesis asimple API in which the user is allowed to

build and access GciValuesin an ordered way. The actual values used
are not specified, only the methods that can be used on them are includ-
ed. Thisway will allow vendorsto have their own value representation

within their TTCN Runtime Behavior and still conform to GCI.

Base Types/Values

These functions are used to transform actual valuesinto the GCI repre-
sentation. Theinterfaceison basetypesonly, so TTCN simpletypesare

not visible in the interface.

Telelogic Tau 4.5 User's Manual

July 2003

GCI C Code Reference

GcivValue* GciMkINTEGER(int num)
int GciGetINTEGER(GcivValue* value)

Used for integer values, and simple type values with base type inte-
ger.

GcivValue* GciMkBOOLEAN(int bool)
int GciGetBOOLEAN(GciValue* value)

Used for Boolean values, and simple type values with base type
Boolean.

GcivValue* GciMkREAL (int mantissa, int base, int exponent)
GciReal GciGetREAL(GeciValue* value)

Used for Real values, and simple type values with base type Real.

GciValue* GciMkBIT STRING(const char* str)
char* GciGetBIT STRING(GciValue* value)

Used for bit string values, and simple type values with base type bit
string.

GcivValue* GciMkKkHEXSTRING(const char* str)
char* GciGetHEXSTRING(GcivValue* value)

Used for hex string values, and simple type values with base type
hex string.

GeciValue* GciMkOCTET STRING(const char* str)
char* GciGetOCTET_ STRING(GeciValue* value)

Used for octet string values, and simple type values with base type
octet string.

GcivValue* GciMkNumericString(const char* str)
char* GciGetNumericString(GciValue* value)

Used for values numerical strings, and simpletype values with base
type numerical string.

GcivValue* GciMkPrintableString(const char* str)
char* GciGetPrintableString(GeciValue* value)

Used for Printable string values, and simple type values with base
type Printable string.

Telelogic Tau 4.5 User's Manual 1473

Chapter 37 Adaptation of Generated Code

1474

GcivValue* GciMkTeletexString(const char* str)
char* GciGetTeletexString(GeciValue* value)

Used for Teletex string values, and simple type values with base
type Teletex string.

GeciValue* GciMkVideotexString(const char* str)
char* GciGetVideotexString(GciValue* wvalue)

Used for Videotex string values, and simple type values with base
type Videotex string.

GcivValue* GciMkVisibleString(const char* str)
char* GciGetVisibleString(GeciValue* value)

Used for Visible string values, and simple type values with base
type Visible string.

GciValue* GciMkIAS5String(const char* str)
char* GciGetIA5String(GciValue* value)

Used for |A5string values, and simple type values with base type
| A5string.

GeciValue* GciMkT6lString(const char* str)
char* GciGetT61lString(GciValue* value)

Used for T61string values, and simple type values with base type
T61string.

GciValue* GciMkISO646String(const char* str)
char* GciGetIS0646String(GeciValue* value)

Used for 1SO646string values, and simple type values with base
type 1SO646string.

GciValue* GciMkGraphicalString(const char* str)
char* GciGetGraphicalString(GciValue* value)

Used for Graphical string values, and simple type values with base
type Graphical string.

GciValue* GciMkGeneralString(const char* str)
char* GciGetGeneralString(GciValue* wvalue)

Used for General string values, and simple type val ues with base
type General string.

Telelogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

GciValue* GciMkENUMERATED(int value)

int GciGetENUMERATED (GciValue* value)
Used for Enumerated values, and simpletype values with base type
Enumerated.

GcivValue* GciMKkCHOICE (const char* name, GciValue* value)
GcivValue* GciGetCHOICE(GeciValue* value)
char* GciGetCHOICEName (GciValue* value)
Used for Choice values, and simple type values with base type
Choice.

GcivValue* GciMkOBJECT IDENTIFIER ()
int GciOBJECT IDENTIFIERSize(GeciValue* value)
GciValue* GciAddOBJECT IDENTIFIERComponent (
GcivValue* value, int comp)
int GciGetOBJECT IDENTIFIERComponent(GciValue* value,
int index)
Used for Object identifier values, and simple type values with base
type Object identifier.

GcivValue* GciMkObjectDescriptor(const char* str)
char* GciGetObjectDescriptor(GeciValue* value)

Used for ObjectDescriptor values, and simpletype values with base
type ObjectDescriptor.

Gcivalue* GciMKNULL()
int GciGetNULL(GciValue* value)

Used for Null type values, and simple type values with base type
Null type.

GcivValue* GciMkANY(GciValue* value)
GcivValue* GciGetANY(GcivValue* value)

Used for ANY values, and simple type values with base type ANY .

GciValue* GciMkR TYPE(int value)
int GciGetR TYPE(GciValue* value)

Used for R_Type values, and simple type values with base type
R _Type.

July 2003 Telelogic Tau 4.5 User's Manua 1475

Chapter 37 Adaptation of Generated Code

1476

GcivValue* GciMkPDU(GciValue* value)
Gcivalue* GciGetPDU(GcivValue* value)

Used for PDU values, and simple type values with base type PDU.

Base Functions

int GciGetType(GecivValue* val)

Shall return the type of avalue. Thetypeis represented as the num-
ber used to identify global objects, see“ldentifying Global Objects
in TTCN/ASN.1" on page 1457. Thefunctionisvalid for all values,
but some values may be untyped in which case the function
returns 0.

GcivValue* GciSetType(int type, GeciValue* val)

Shall set the type of avalue. Usesthe same number as above. Valid
for al values. Returns the input value with type set.

Value Management

The functions are divided into two meta sets derived from ASN.1: The
sequence, and the segquence of, corresponding to struct and array in C.

The choice type of ASN.1isnot represented as ameta class because all
valuesin the GCI value representation can be typed and therefore isthe
choice value implicit in GCI.

The functions only works within their intended set (e.g. Gci Set-
Field(GEiMkSEQUENCE(2), 1, GEiMkINTEGER()) iswell defined
but Gci SetField(GciMkSEQUENCEOR(), 0, GEIMKINTEGER()) is
not defined and certainly is unpredictable.

Sequence and Set Types/Values

GcivValue* GciMkSEQUENCE(int size)
Creates a sequence value with size children.

GciValue* GeciSetField(GcivValue* seq, int index,
Gcivalue* £f1ld)

Setsthefield identified by index to the given value. Indices start at
1. The function is undefined for indices greater than the size of the
sequence.

Telelogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

July 2003

GcivValue* GciGetField(GeciValue* seq, int index)

Returnsthefield identified by index. Indicesstart at 1. The function
is undefined for indices greater than the size of the sequence.

int GciSegSize(GciValue* seq)

Returns the number of fields declared in the sequence seqg.

Sequence of and Set of Types/Values

GcivValue* GciMkSEQUENCEOF ()
Creates a sequence of value.

GcivValue* GciAddElem(GeciValue* seqOf, GcivValue* elem)
Adds the element elemto the end of sequence of seqOf.

GciValue* GciGetElem(GeciValue* seqOf, int index)

Returnsthe element number index of the sequence of seqOf. Indices
start at 0. The function is undefined for indices greater than current
size.

int GciSeqOfSize(GciValue* seqOf)
Returns the current number of elementsin seqOf.

Examples

This section contains examples of how the mapping between
TTCN/ASN.1 and their GCI representation could be done. The exam-
ples use a conceptual model for encoding/decoding, no error handling
isdone and no attentionispaid to the fact that some functionswould use
pointers because of allocation issues.

Global objects (PCOs and types) are identified with an unique number.
This number is given asymbolic reference which isits TTCN name
with a D for Descriptor appended to the end of it. The number for the
PCO L istherefore referenced as LD.

Encoding/Decoding Examples

Each example consists of atable and the corresponding encode (and/or
decode) functions. The examples focus on the value representation so
the transfer syntax is simple: Each value is preceded by a header. The

Telelogic Tau 4.5 User's Manua 1477

Chapter 37 Adaptation of Generated Code

1478

header contains the type of the value (as a number) and in some cases
its length (element count, not size in bytes), in real ASN.1, the header
would be built using tags. The header is written/read using primitives
BufWriteType, BufWriteSeqOfSize, etc. They are not encode/decode

primitives but rather buffer primitives.

An encode function is a function that tranglates the GCI value onto a
buffer, and adecode function is one that reads avalue from abuffer and
builds avalue in the GCI representation. Encoding functions are called
from SEND and decoding functions are called from SNAPSHOT. The
buffer has type Buffer and could be anything behaving as a sequence of
bytes. The primitives BufReadInt, BufReadBool are used to read and

write GCI basic values.

ASN.1 SEQUENCE Type

ASN.1 PDU Type Definition

PDU Name: T1

Comment: Example PDU for GCl examples

Type Definition

SEQUENCE {
a INTEGER,
b BOOLEAN

}

Figure 271: Example
Encode
void EncodeTl (Buffer buf, GciValue* v)
BufWriteType(buf, Tid);

BufWriteInt (buf, GciGetField(v, 1));
BufWriteBool (buf, GciGetField(v, 2));

}

Decode
void DecodeTl (Buffer buf, GciValue* v)

int 1i;

v = GciMkSEQUENCE(2);

Telelogic Tau 4.5 User's Manual

July 2003

GCI C Code Reference

if (BufReadType(buf) != Tid)
Error () ;
GeciSetType(Tid, v);

i = BufReadInt(buf);
GciSetField(v, 1 , GciMKINTEGER(i));

i = BufReadBool (buf);
GeciSetField(v, 2 , GciMkBool(1));

ASN.1 SEQUENCE OF Type

ASN.1 PDU Type Definition

PDU Name: T2
Comment: Example PDU for GCI examples
Type Definition

SEQUENCE OF T1

Figure 272: Example

Encode
void EncodeT2 (Buffer buf, GciValue* v)

int 1i;

BufWriteType(buf, T2d);
BufWriteSeqOfSize (buf, GciSize(v));
for (1 =1 ; i <= GeciSize(v) ; i++)

EncodeT1 (buf, GciGetElem(v, 1));

Decode
void DecodeT2 (Buffer buf, GcivValue* v)

int i, seqOfSize;
GeciValue* elem;

if (BufReadType(buf) != T24)
Error () ;

July 2003 Telelogic Tau 4.5 User's Manual 1479

Chapter 37 Adaptation of Generated Code

GciSetType(T2d, v);

seqOfSize = BufReadSeqOfSize(buf);
for (i =1 ; i <= seqO0fSize ; i++)

DecodeTl(buf, elem);
GciAddElem(v, elem) ;

}

ASN.1 CHOICE

ASN.1 PDU Type Definition

PDU Name: T3

Comment: Example PDU for GCI examples
Type Definition

CHOICE {

cl T1,
c2 T2

}

Figure 273: Example

Encode
void EncodeT3 (Buffer buf, GciValue* v)

switch (GciGetType(v))

case Tld:
EncodeTl(buf, v);
break;

case T2d:
EncodeT2 (buf, v);
break;

default:
Error () ;

}

Decode
void DecodeT3 (Buffer buf, GciValue* v)

{

switch (BufGetType(v))

1480 Teldlogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

July 2003

case T1ld:
DecodeTl(buf, v);
break;

case T2d:
DecodeT2(buf, v);
break;

default:
Error () ;

In-Line ASN.1 Type

ASN.1 PDU Type Definition

PDU Name: T4

Comment: Example PDU for GCI examples
Type Definition

SEQUENCE {
cl T1,
c2 SEQUENCE ({

cl INTEGER,
c2 T2

Figure 274: Example

Encode
void EncodeT4 (Buffer buf, GciValue* v)

Gcivalue* tmp;

BufWriteType(T4d);

/* Encode first field */

EncodeTl (GciGetField(v, 1));

/* Now encode inline type definition */
tmp = GciGetField(v, 2);

BufWriteInt (buf, GciGetField(tmp, 0));
EncodeT2 (buf, GciGetField(tmp, 1));

Decode
void DecodeT4 (Buffer buf, GciValue* v)

int 1i;
Gcivalue* tmp;

v = GciMkSEQUENCE(2) ;

Telelogic Tau 4.5 User's Manual 1481

Chapter 37 Adaptation of Generated Code

if (BufReadType(buf) != T4d)
Error () ;
GciSetType(T4d, v);
DecodeTl(buf, tmp);
GciSetField(v, 1, tmp);
tmpseq = GciMkSEQUENCE(2) ;
i = BufReadInt (buf);
GciSetField(tmpseq, 1, GciMkINTEGER(i));
DecodeT2 (buf, tmp);
GciSetField(tmpseq, 2, tmp);

}
TTCN Examples

myQueue below isthe Test Adaptation writersown representation of the
PCO queue(s). In this example thereis only one PCO, called . (1.4 for
itsnumber). Notethat the number L.a can be any number (most certainly
not zero).

Snapshot Example

Snapshot must read the status of the IUT and tell thisto the TTCN Runt-
ime Behavior.

void GeciSnapshot ()
Gecivalue* v;

/* Check if anything has arrived, */
/* This would be a while statement */
/* in a blocking context */
if (! myQueue[0].empty)

switch (BufPeekType(myQueue[0] .buf))

case Tld:
DecodeTl (myQueue [0] .buf, v);
break;

case T2d:
DecodeT2 (myQueue [0] .buf, v);
break;

default:
Error () ;

GciReceive(Ld, v);

/* Nothing has happened. */

1482 Teldlogic Tau 4.5 User's Manual July 2003

GCI C Code Reference

Send Example

For the send example the following ASP table is used to show an API
view of encode.

ASN.1 ASP Type Definition

ASP Name: TCONreq
Comment: Example ASP for GCI examples
Type Definition

SEQUENCE {
num INTEGER, -- sequence number
pdu T1 -- Embedded pdu

Figure 275: Example

/* Two examples of send functionality */
GciStatus GeciSend(int pcoDescr, GcivValue* msg)

{

if (pcoDescr == PcoToSocket)

/* Encode first */
if (GciGetType(msg) == T1id)

EncodeTl(buf, msg);
BufSocketSend(buf);

else 1f (pcoDescr == PcoToAPI)
if (GciGetType(msg) == TCONreqgd)
Buffer pdu;

EncodeTl(pdu, GciGetField(msg, 1));
/* Call to lower layer */
T CONreq(GciGetField(msg, 0), pdu);

July 2003 Telelogic Tau 4.5 User's Manual 1483

Chapter 37 Adaptation of Generated Code

EGci Value Construction and Functions

1484

The GCI interface has been defined as a base for executable test suite
adaptation. One part of thisinterface coversvalues, how to build them,
accessthem, etc. While thisinterface was not enough, a set of functions
has been added with the EGci prefix so that the GCI functions (a set de-
fined by a standard) was not changed. The purpose of this section isto
describe this paradigm of value construction and the current EGci func-
tions available.

Value Construction

The mgjor difference in value handling is how values are constructed.
Valuesare either created by the GeiMk-prefixed functions, followed by
a GciSetType call, or value are created by a call to the EGciMkValue
function. The run time system is compatible with both alternatives but
thelatter is preferred. The differenceisthat the GeiMk-function creates
untyped values of a given predefined type (SEQUENCE, SET, INTE-
GER, etc.) while the EGciMkV a ue takes the type descriptor of the
user-defined type and creates the complete val ue structure with correct
typesthroughout thewholevalue structure. Values of type SEQUENCE
OF, SET OF and CHOICE cannot be fully instatiated since the
size/choice of the valueis not known at code generation time. Elements
of the SEQUENCE/SET type are appended explicitly and CHOICE val-
ues are also selected explicitly.

The procedure isto create the value structure (with uninitialized | eaf
values) and then extract the proper value (container) through ordinary
field access and extraction functions. Then the value is assigned using
the EGciAssign function. When available, for simple non-structured
values, EGci Set/Gci Set-functions can a so be used on the extracted val-
ues.

Below you will find two alternatives for creating a value given the fol-
lowing type:

T ::= SEQUENCE

a SEQUENCE {
b MyINTEGER
¢ MyINTEGER

MyINTEGER ::= INTEGER

Telelogic Tau 4.5 User's Manual July 2003

EGci Value Construction and Functions

July 2003

vT:={a{b17}, c 42}

Alternative 1 — Using GCiIMKSEQUENCE and GciSetType

Theindividual values through out the structured value have to be creat-
ed and the correct type set. It is also impossible to set the correct type
for the inlined types since they are unknown.

value = GciMKSEQUENCE (1) ;
GciSetType (value, GcTD) ;

inner seq = GciMkSEQUENCE (1) ;

/* GciSetType (inner seq, ?); This is not possible
since the inlined type is not available to the user.
A generated no-name type exists but is not known. So
the SEQUENCE will be untyped (only a SEQUENCE) . This
is not a problem with alternative 2. */

b = GciMkINTEGER(17) ;
GeciSetType (b, GcMyINTEGERD) ;
GciSetField(inner sequence, 1, b);
¢ = GciMKINTEGER (42) ;
GciSetType (¢, GcMyINTEGERD) ;
GciSetField(value, 1, inner seq);
GeciSetField(value, 2, c);

Alternative 2 — Using EGciMkValue (Recommended
Approach)

Using the EGciMkV alue function makes it somewhat more readable,
but what is more important is that the final value has the correct type
throughout the structure (all done by the generated type information
used in the call to EGciMkValue). All field names are also correct.

value = EGciMkValue (GecTD) ;

/* With this call the whole structure is created and
the basic leaf values are only extracted and set
(“filled in”). */

tmp = GciGetField(value, 1);

tmp = GciGetField(tmp, 1);

EGCciSetINTEGER (tmp, 17);

tmp = GciGetField(value, 2);
EGCciSetINTEGER (tmp, 42);

Telelogic Tau 4.5 User's Manual 1485

Chapter 37 Adaptation of Generated Code

1486

Available Functions

Gcivalue * EGciMkValue (int)

Takes the generated type identifier constant Ge<type>D and cre-
ates a proper value using al available type information generated.
Thisfunction is faster than the EcciMkvalueFromTypeName but
the typeidentifier constants can potentially change their numeric
valueif new types are added to the test suite. Any depending encod-
er/decoders haveto be recompiled if the generated type information
changes. If generation dependent information is required, the
EGciMkValueFromTypeName should be used

Example 275

Given thetype My Type, the call for constructing a value would be
EGciMkValue (GcMyTypeD) .

GciValue * EGciMkValueFromTypeName (const char* tname)

Same as EGciMkValue but it takes the (bare) name of the type.

Example 276

Given the type My Type the call for constructing a value would be
EGciMkValueFromTypeName (“MyType”).

void EGciRmValue (GciValue *value)

This function deletes a constructed value.

GciStatus EGciAssign(GeciValue *destination, GeciValue
*source)

Given thetwo values, which must beinstantiated val ues of the same
type, the source is assigned to the destination value.

GciStatus EGciSetMemberByName (GciValue *val, const char*
name, GciValue *mem val)

Sets the named member of a SEQUENCE, SET or CHOICE value
tothegivenvalue (mem_value). Thisisthe same as doing an extrac-
tion followed by an assignment.

Telelogic Tau 4.5 User's Manual July 2003

EGci Value Construction and Functions

July 2003

GciStatus EGciSetEmptySET OF (GeiValue *value)

Sets the value to the defined state. That is, it isan empty SET OF
value.

GciStatus EGciSetEmptySEQUENCE OF (GciValue *value)

Sets the value to the defined state. That is, it is an empty SE-
QUENCE OF value.

GciStatus EGciSetOMIT (GciValue *value)
Sets the given optional value as omitted.

GciStatus EGciSetBOOLEAN (GciValue *value, Bool v)

Sets a constructed value of (base) type BOOLEAN to the given
boolean value.

GciStatus EGciSetSTRING (GciValue *value, const char *)

Sets a constructed value of any string base type (BITSTRING, OC-
TETSTRING, IA5String, etc.) to the given string vaue.

GciStatus EGciSetINTEGER (GciValue *value, int number)

Sets aconstructed value of (base) type INTEGER to the given inte-
ger value.

GciStatus EGciSetNULL (GciValue *value)
Sets a constructed value of (base type) NULL to the NULL value.

GcivValue * EGciSetENUMERATEDByName (GciValue *val, const
char* enum name)
Sets the actual value of the ENUMERATED value to one of its de-
clared named numbers. For example, EGci St ENUMERATED-
ByName(gcivalue, “foo”), where “foo” is one of the named num-
bersin the type.

Example 277
EType ::= ENUMERATED { first, second, third }

Gcivalue *eval = EGciMkValue (GcETypeD) ;
EGciSetENUMERATEDByName (eval, “second”) ;

Telelogic Tau 4.5 User's Manual 1487

Chapter 37 Adaptation of Generated Code

1488

const char * EGciGetENUMERATEDName (GciValue *value)
Retrieves the name of the current value.

Example 278

Continuing Example 277, acall t0 EGciGet ENUMERATED-
Name (eval) would returnthestring “second”.

GcivValue * EGciGetChoiceMemberByName (GciValue *value,
const char *name)

CHOICE values are not constructed all the way down to itsleaf val-
ue since the information about the selected field is not available in
the type information. When this function is called, the value con-
struction is continued and proper value will be constructed for the
selected CHOICE field (name) and the value can then be assigned

properly.

GcivValue * EGciGetChoiceMemberByTag (GciValue *value,
GeciTagClass tag class, int tag)

Equivalent to EGciGetChoiceMemberByName but the uniquetag
of the choice e ement instead of the name is used.

GcivValue * EGciGetSEQUENCE OFElement (GciValue *value)

Constructs a new value given the underlying/contained type of the
SEQUENCE_OF type. The newly constructed value must be ap-
pended using the cciaddelem function.

GciValue * EGciGetSET OFElement (GciValue *value)

Constructs a new vaue given the underlying/contained type of the
SET_OF type. The newly constructed value must be appended us-
ingthe cciaddelem function.

Bool EGciGetAnyValue (GciValue *value)

Predicateto check if thevalueisANY valueattribute. Notethat this
has nothing to do withthe cecigetany function sincethat function
operates on values of the type ANY.

Bool EGciGetAnyOrOmit (GeciValue *value)
Predicate to check if the valueis ANYOROMIT value attribute.

Telelogic Tau 4.5 User's Manual July 2003

EGci Value Construction and Functions

July 2003

Bool EGciGetIfPresent (GciValue *value)

Predicate to check if the IF_PRESENT val ue attribute is specified
for thisvalue.

Bool EGciGetDefault (GciValue *value)

Predicate to check if the instatiated value comes from the default
value of the type or not.

Error Handling

If an error occurs during execution, the error state is propagated up
through the call stack and error information is added. An error has oc-
curred when either the EGciGetErrorCount function returns a number
greater than zero or a Gei/EGci-function call has returned GeiNotOKk.
The error messageis retrieved by EGciGetL astErrorM essage and reset
by EGciClearError.

unsigned int EGciGetErrorCount ()

Retrieve the current number of errors detected by the run time sys-
tem.

const char* EGciGetLastErrorMessage (void)

Retrieve the last error message in text form.

void EGciClearError ()

Clear the error state of the run time system.

Miscellaneous

void EGciDumpValue (FILE *stream, const char *prefix,
GcivValue *value, const char *suffix)

Prints the given value on stream. The prefix and suffix are printed
before and after the value dump respectively.

void EGciSetDebugStream (FILE *stream)

Set the debug stream where logging will be made. It is set to
stderr by default.

Telelogic Tau 4.5 User's Manual 1489

Chapter 37 Adaptation of Generated Code

Examples
MyString IA5String
EmailAddress MyString
SnailmailAddress SET { street MyString, number INTEGER }
AddressKind ENUMERATED { email, snailmail }

-- This represents a contact with name and an address.

Contact ::= SEQUENCE {
name MyString,
address_kind AddressKind
address CHOICE {
email EmailAddress,
snailmail SnailmailAddress

}

A vaue would be constructed in the following way:

GciValue *tmp;
GciValue *address;
CcivValue *contact;

contact = EGciMkValue(GcContactD) ;

tmp = EGciGetFieldByName (contact, “name”);
EGciSetSTRING (tmp, “Elvis”);

tmp = EGciGetFieldByName (contact, “address_kind”) ;
EGciSetENUMERATEDByName (tmp, “snailmail”);

address = EGciGetFieldByName (contact, “address”) ;

address = EGciGetChoiceMemberByName (address, “snailmail”);
tmp = EGciGetFieldByName (address, “street”);
EGciSetSTRING (tmp, “High road”) ;

tmp = EGciGetFieldByName (address, “number”);
EGciSetINTEGER (tmp, 42);

1490 Teldlogic Tau 4.5 User's Manual July 2003

The Adaptation Framework

The Adaptation Framework

Introduction to the Adaptation Framework

The Adaptation Framework, technically referred to as“ACM”, isacol-
lection of thefunctionsthat are needed to write afull-fledged adaptation
implemented by plug-in librariesthat can beused “asis’. Currently, the
following plug-in modules are included in the TTCN suite distribution:

e TCP/IP socket communication implementation.
» Standard system-time timer implementation.

Thismeansthat if the target system uses TCP/IP to communicate, the
adaptation writer can simply use the Adaptation Framework right from
the box to get the IUT connected to generated code with minimal
amount of work.

Notethat the Adaptation Framework is provided as a standardized way
to implement the GCI interface. This means that the Adaptation Frame-
work does not replace GCl, but rather complementsit. To build the ad-
aptation, simply implement the needed GCI functions by calling the
counterpart framework functions that use the compiled-in implementa-
tionsfor thelow level code; inthisdistribution thiswould bethe TCP/IP
protocol for communication and a standard system time timer imple-
mentation. On the other hand, this means that one can continue to im-
plement adaptations without using the framework altogether, the old
way, and old adaptations will continue to work as before.

Examples of usage

Theincluded adaptation residing under the ACM/ subdirectory contains
an implementation of the GCI layer by framework functionsand isin-
structive in displaying the way to work with framework functions.

July 2003 Telelogic Tau 4.5 User's Manual 1491

Chapter 37 Adaptation of Generated Code

1492

Function reference

Communication data types

Defined constant values
Defined constant Meaning

ACM_ADDRESS TCPIP | The address type specifier used with
the TCP/IP implementation of the Ad-
aptation Framework for the cciad-
dress type.

More values will be defined in the file acm.h once more plug-in pack-
ages are available. The user can a so specify new valuesfor his’her own
communication modul es.

Note:
Values 0-100 are reserved for use by Telelogic.

Communication role of the executable test suite

typedef enum

ACMClient,
ACMServer
} ACMConnectionType;

The enumerated type ACMConnectionType is used when calling
AcMconnect () to select whether the generated code should act as a
server or client to the IUT.

Communication primitives

These functions are used to implement the GCI communication func-
tions.

Initializing the communication and timer package

GeciStatus ACMInit (const GeciTime* max timeout,
GciTimeUnit time tick unit)

Must be called after GClInit() but prior to any use of the ACM commu-
nication or timer primitives. The first argument, max_timeout defines

Telelogic Tau 4.5 User's Manual July 2003

The Adaptation Framework

July 2003

the maximum amount of time the system will wait in blocked state for
any timer. Setting this to alow value enables the possibility to write a
polling snapshot function. A defined constant exists by the name of
ACM_ONE_YEAR_IN_MINUTESthat can be used asadefault “big
enough” number argument.

The second argument, time_tick_unit, depicts the unit of time (in GCI
time units) used internally in the run-time system. Since all internal tim-
er datais converted to and from this unit, it isimportant to set thisto a
value that encompasses approximately the value range of the time-out
values used in the test suite. This parameter al so restricts the maximum
timethat is available for atime-out value, as depicted below.

Internal unit Maximum length of time before timer wraps
Gcips 4.3 seconds

Gcins 71 minutes

Gcius 49 days

Gcims 136 years

Resetting the Run-time System

GciStatus ACMReset ()

This function cancels all timers, and resets all timer queues and PCO
buffers. Itistypically called before starting anew test caseto ensurethat
al old datais removed, and to put the run-time system into an initial
mode.

Registering the GciTimeout Function

GciStatus ACMRegisterTimeoutHandler (ACMTimeoutHandler

timeouthandler)
This function needs to be supplied with a pointer to the Gci Timeout()
function before using the ACMShapshot() function, since ACM Snap-
shot() calls the timeout function automatically for every timer that has
expired.

Telelogic Tau 4.5 User's Manual 1493

Chapter 37 Adaptation of Generated Code

1494

Registering the GciReceive Function

GciStatus ACMRegisterReceiveHandler (GciReceiveHandler
receive callback)

This function needs to be supplied with a pointer to the GciReceive()
function before using the ACMShapshot() function, since ACM Snap-
shot() calsthereceivefunction automatically for every data packet that
has arrived.

Registering the Active Decode Function

GeciStatus
ACMRegisterDefaultDecodeHandler (ACMDecodeHandler
decode_handler)

The function ACMSnapshot() calls GciReceive() automatically for ev-
ery data packet that are ready to be received. In order to do this, howev-
er, a decode function needs to be registered that can decode the incom-
ing data from its transfer syntax to the internal GCI value representa-
tion. Thisis easily done by the above call. Note that this opensthe
possibility to switch decoding during runtime, since any decode func-
tion that fulfills the requirements are eligible to be registered as the de-
fault decoder at any time. See " Encoding, and in Particular Decoding
within ACM and GCI” on page 1512 in chapter 37, Adaptation of Gen-
erated Code for details on how to construct the decode function(s).

Registering a Specific Decode Function for a PCO

GciStatus ACMRegisterDecodeHandler (ACMDecodeHandler

decode handler,

GciPCOID pco_id)
Thisfunction issimilar to the previous function, but it enables acertain
decode function to be connected with a certain PCO. This means that
the function ACMShapshot() will be able to use different decoding
mechani sms depending on which PCO the message was received from.
See “Encoding, and in Particular Decoding within ACM and GCI” on
page 1512 in chapter 37, Adaptation of Generated Code for details on
how to construct the decode functions.

Telelogic Tau 4.5 User's Manual July 2003

The Adaptation Framework

July 2003

Connecting to a Communication Port

GeciStatus ACMConnect (GciPCOID pco id,
GciAddress* address,

ACMConnectionType type,

unsigned int buffer size)
This function maps the PCO identifier valueinternally to an external
communication port and makes the connection. This makesit possible
to usethe PCO identifier in all subsequent calls, which makes the code
quite clear.

In addition, we need to supply what type of role the ETS will havein
the communication with the lUT - as a server (ACM Server) or asacli-
ent (ACMClient).

The buffer_size argument defines the largest possible buffer (in bytes)
that can bereceived in one chunk. This should usually be set to the larg-
est buffer needed to encode a value in the current val ue representation.

Disconnecting a Communication Port

void ACMDisconnect (GciPCOID pco_id)
This function disconnects a previously opened communication link.

Sending a Message

GciStatus ACMSend (GeciPCOID pco_id, GeciBuffer* buffer)

This function sends an encoded buffer on the designated PCO. When
sending, the function will block until the entire buffer have been sent,
or an error has occurred. Thisissimply becauseit is preferred to seethe
send operation as an atomic operation without possible race conditions.

Receiving a Message

GeciStatus ACMReceive (GeciPcoID pco_id, GciBuffer* buffer)

This function tries to receive a message from the designated PCO. If
successful, the received encoded byte stream isinserted to the provided
buffer, which is allocated inside the function.

Telelogic Tau 4.5 User's Manual 1495

Chapter 37 Adaptation of Generated Code

1496

Retrieving the Position of the First PCO with Received
Data

GciPosition ACMGetReceivedPCOPos ()

Thisfunction returnsthe position of thefirst PCO to have dataready for
receiving. The return valueis simply meant to be used as an iterator ar-
gument to the AcMGetNextReceivedpco () function. If the returned
valueis zero, there are at this time no PCO that has received data.

Retrieving the position of the next PCO with received
data

GciPCOID ACMGetNextReceivedPCO (GeciPosition* position)

This function returns the numeric identifier of the PCO that has data
ready to receive, and updates the position variable to point to the next
PCO with datato receive. If thepositioniszero, no further PCO hasdata
to receive.

A simpleloop that checks all PCO’ sfor receive can be writteninasim-
ilar manner to the timer iteration described below in “A Loop That
Fetches All Expired Timers and Prints Their ID Numbers’ on page
1498 in chapter 37, Adaptation of Generated Code.

Timer Primitives

Timer handling can be implemented in various ways. The package
makes it easy for the adaptation writer to use timers, by encapsulating
functionality that used to be implemented in afairly standard way in
GciSnapshot() implementations over and over again. Instead of using
cryptic timer structures the user can now use the GCI identifier for the
needed timer in a number of timer access functions. Time itself is
fetched from the system clock, normalized to zero at the time of starting
the execution.

Starting a Timer

GeciStatus ACMStartTimer (GeiTimerID timer id,

GciTime timeout)

Thisfunction startsthe designated timer with the given expiration time.
If the timer has not yet been created, this call will createit. If the timer
was running or expired it issimply restarted.

Telelogic Tau 4.5 User's Manual July 2003

The Adaptation Framework

July 2003

Cancelling a Timer

GeciStatus ACMCancelTimer (GciTimerID timer id)

This function transfers the designated timer from the active list to the
list of stopped timers. This call needsto be performed once atimer has
been noted as expired (viaGeciTimeout () iNGeisSnapshot () forin-
stance)

Cancelling All Timers

GciStatus ACMCancelAllTimers ()
This function cancels all timers, even if they are already expired.

Reading the Value of a Timer

GeciStatus ACMReadTimer (GciTimerID timer id,

GciTime* timer before timeout)

This function places the current time of a given timer in the provided
GciTime object.

Checking the Current Status of a Timer

GeciStatus ACMTimerStatus (GciTimerID timer id,
GeciTimerStatus* timer status)

This function places the current status of the given timer in the status
variable. Please refer to the declaration of GeiTimerStatus for the vari-
ous states of atimer.

Retrieving the Key to the First Timer That Has Expired

GciPosition ACMGetTimedOutPos ()

This function retrieves the position to the first timer that has expired
from achronological list of expired timers. The return valueis simply
meant to be used as an iterator argument to the AcMGetNextTimed-
out () function. If the returned value is zero, there are no currently ex-
pired timers.

Telelogic Tau 4.5 User's Manual 1497

Chapter 37 Adaptation of Generated Code

1498

Getting the Next Expired Timer

GciTimerID ACMGetNextTimedOut (GciPosition* position)

Given aposition index (the index to the first timer is fetched with the
ACMGetTimedoOutPos () function), thisfunction returns an expired tim-
er and updates the position variable to point to the next timer in the list
of expired timers. If the position value is equal to zero after thiscall, no
more expired timers exist in the list.

Example 279 A Loop That Fetches All Expired Timers and Prints Their
ID Numbers

GciPosition pos = ACMGetTimedOutPos ()
while (pos != NULL) ({

printf ("Timer %d has expired!\n",
ACMGetNextTimedOut (&pos)) ;

Time Left Before the Next Timer Expires

GeciStatus ACMTimeLeft (GeciTime *time before timeout)

This function retrieves the actual time left before the next timer is due
to expire. If one or more timers have aready expired, the function re-
turns zero as the time left. If no timers exist, or al timers have been
stopped, the function returns GeiNotOk.

Timer and PCO Handling with a Single Call

GeciStatus ACMSnapshot ()

For the hardened writer of many adaptations, this function offersare-
lief. Calling thisfunction will wrap most GciSnapshot functionality into
one call. Briefly, what the function performsinternally isthe following:

1. Check all PCO/CP channelsfor received data.

2. For each queue that contains fresh data, receive, decode it and call
GciRecelve() with the result.

3. For each expired timer, call GciTimeout() with the expired timer's
ID number, and move the timer to the list of stopped timers.

4. Return status of the operations.

Telelogic Tau 4.5 User's Manual July 2003

The Adaptation Framework

July 2003

In effect, the simplest snapshot implementation can now look like this:

Example 280 The Simplest Snapshot in the World!

GciStatus GeciSnapshot ()

{

return ACMSnapshot () ;

}

Somewhere in the code, before calling ACM Snapshot() for the first
time, it is also necessary to register three functions with ACM:

* GciReceive()
» GciTimeout()
* A decode function.

Thisisdueto thefact that ACM Snapshot() will possibly try to call these
functions depending on the internal state. A good placeto register these
functionsis close to the ACMInit() call:

ACMInit (max_timeout, ...);

ACMRegisterTimeoutHandler (&GciTimeout) ;
ACMRegisterReceiveHandler (&GciReceive) ;
ACMRegisterDefaultDecodeHandler (&DecoderFunction) ;

Waiting for the Next Event

GciStatus ACMWaitForEvent ()

If more functionality is needed in the snapshot function, a mechanism
for waiting for the correct amount of time is needed. This function
sleeps until the next timer is due, or until data arrives on a PCO, which-
ever comesfirst, and returns with status Gei Ok, at which point the snap-
shot function can simply poll the input queues for data, and/or take the
now arrived timeout. If no timers are running, the function returns after
the maximum time to wait as defined in ACM I nit(...). If thistimeis
set to a small amount, we have a polling snapshot in effect.

Telelogic Tau 4.5 User's Manual 1499

Chapter 37 Adaptation of Generated Code

Example 281: The Same Snapshot but with Written Out Code ————

GciStatus GeiSnapshot ()
GciPosition expired pos;
GciTimerID expired timer;
GciPosition received pos;

GciPCOID received_pco;
GeciBuffer buffer;
Gcivaluex* value;

/* Sleep until either a timer has expired
* or data is received. For a polling
* gnapshot, remove this. */
if (ACMWaitForEvent () != GciOk) ({
return GciNotOk;

/* First, check all timers. */
if (ACMSynchronizeTimers() != GciNotOk)
return GciNotOk;

expired pos = ACMGetTimedOutPos () ;

while (expired pos != NULL) ({
expired timer =
ACMGetNextTimedOut (&expired pos) ;
GciTimeout (expired timer) ;
if (ACMCancelTimer (expired timer) != GciOk) {
return GciNotOk;

/* Next, take care of the PCO’'s */

buffer.buffer =
(char *)malloc(sizeof (char) *
MAX ENCODING BUFFER+1) ;
buffer.current length = 0;
buffer.max length = MAX ENCODING BUFFER;

received pos = ACMGetReceivedPCOPos () ;
while (received pos != NULL) {

received pco =
ACMGetNextReceivedPCO (&received pos) ;
!

if (ACMReceive (received pco, &buffer) != GciOk)
return GciNotOk;

value = GeneralDecode (&buffer) ;

if (value != NULL) {
if (GciReceive (received pco, value) != GciOk) {

return GciNotOk;

1500 Teldlogic Tau 4.5 User's Manual July 2003

The Adaptation Framework

July 2003

else {
fprintf (stderr,
"Transfer syntax error on PCO %$s\n",
GciGetPCOName (received pco)) ;
return GciNotOk;

return GciOk;

}

Retrieving the Current System Time

GeciStatus ACMCurrentTime (GciTime* current time)

This function retrieves the time of the system clock in the instance of
the function call.

Error Handling

The error handling of the Adaptation Framework will be straightfor-
ward to those familiar with the err_no paradigm of C. Every timean er-
ror occurs, the function sets an internal error code and returns
GciNotOk. Theerror code can then beretrieved either as an enumerated
value, or as a descriptive string.

The error codes can be found in the file acm.h.
Setting the Error Code

ACMSetLastError (ACM_Error Number errornumber)
Sets the error number to the given value.

Retrieving the Error Code of the Last ACM Error

ACM_Error Number ACMGetLastError ()
Returns the last error code as an enumerated value.

Retrieving the Error String of the Last ACM Error

const char* ACMGetLastErrorMessage ()

Returnsthe last error code as a printable string.

Telelogic Tau 4.5 User's Manual 1501

Chapter 37 Adaptation of Generated Code

Completing the Adaptation

1502

The generated code has to be extended before it is complete in order to
test the intended implementation. This section describes how to make
these extensions.

Figure 276 displaysin a simple way the anatomy of an executable test
suite.

TTCN Runtime Behavior
(provided)

Test Support Functions

Figure 276: The anatomy of an executable test suite

When code is generated by the code generator, it does not know any-
thing about the system it is about to test. It assumes that it will have ac-
cess to certain functions, implemented by the user. Thisisthe “Test
Support Functions” module in Figure 276.

One important thing to remember is that the previously defined inter-
face called GClI, is a standardized set of functions.See “ The GCI Inter-
face” on page 1450 in chapter 37, Adaptation of Generated Code. Ad-
aptation should be made using the functionsand data typesdefined
by that interface.

The Test Support Functions

Thisisthe“glue’ betweenthe TTCN Runtime Behavior and the lUT. It
isaset of functionality (functions) that is adaptation specific and should
be provided by the user.

Telelogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

July 2003

The following areas have to be covered and they are described in more
detail in the sections they refer to.

Implementation and Handling of Timers

The timers defined in the Test Suite must have areal representation in

the test environment. The TTCN Runtime Behavior will, when neces-

sary, ask the adaptation about the status of atimer. See“ Representation
and Handling of PCO and CP Queues’ on page 1506 in chapter 37, Ad-
aptation of Generated Code.

Representation and Handling of PCOs [and CPs]

M essages are communicated through Points of Control and Observa-
tion and Connection Points. The actual buffering of incoming IUT mes-
sages must be supplied by the adaptation. See “ Representation and Han-
dling of PCO and CP Queues” on page 1506 in chapter 37, Adaptation
of Generated Code.

Communication with Test Equipment [and PTCs]

To be ableto test the IUT at all, there must be actual communication
channelsto and from it. The actual communication is of course totally
depending on the system environment. See “1UT Communication” on
page 1505 in chapter 37, Adaptation of Generated Code.

Encoding and Decoding

Valuesin the test suite (constraints, variables, constants, etc.) must be

properly encoded and decoded for sending them to the IUT. The actual

protocol for encoding decoding isup to the user. See Encoding and De-
coding” on page 1507 in chapter 37, Adaptation of Generated Code and
“Encoding and Decoding Using BER” on page 1514 in chapter 37, Ad-
aptation of Generated Code for more details.

Implementing the Adaptor the Efficient Way — the Adaptation
Framework

The implementation of timer handling and communication primitives
can be made by callsto the Adaptation Framework API, which permits
the underlying “hard” protocol and timer implementation to change
without having to change the high-level adaptation code. See “ The Ad-
aptation Framework” on page 1491 in chapter 37, Adaptation of Gener-
ated Code for athorough explanation.

Telelogic Tau 4.5 User's Manual 1503

Chapter 37 Adaptation of Generated Code

Timers

Timers need some special attention. Astimers are implemented differ-
ently on different systemstheimplementation of thetimersmight differ.
See the timers adaptation template in the installation for ideas.

Timersare simply anumber of constructionsto keep track of each of the
test suite timers. In the generated code atimer is represented by an inte-
ger descriptor which uniquely identifiesit. The timer implementation
supplied with the Adaptation Framework implements the timeout func-
tionality by maintaining an ordered list of the running timers, which
meansthat retrieving thetimeleft to timeout and the next timer to expire
are quick operations.

To refresh the current status of timers, the timer lists need to be synchro-
nized to the system time. This is made automatically by the snapshot
function acMwaitForEvent () (moreon thisfunction later) or can be
made explicitly by acall to the function aAcMSynchronizeTimers ().
This function simply checks all running timers with the system clock,
moving timers that are due to the list of expired timers.

There are four functions to consider regarding timers:
GciStartTimer
GciCancelTimer
GciReadTimer

GciSnaphot

The interfaces to timers that can (and should) be called in the TTCN
Runtime Behavior are:

GciTimeout
GciGetNoOfTimers
GetTimer
GciGetTimerName

GetTimerIndex

For details concerning these functions, see “ GCI C Code Reference” on
page 1465 in chapter 37, Adaptation of Generated Code.

1504 Teldlogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

July 2003

The Adaptation Framework interfacesto timer functionality that can be
used to implement the GCI functions are:

ACMStartTimer
ACMCancelTimer
ACMCurrentTime
ACMGetTimedOutPos
ACMGetNextTimedOut
ACMReadTimer
ACMTimeLeft
ACMTimerStatus

ACMWaitForEvent

These functions map to areal-time timer implementation that is provid-
ed with the installation of TTCN suite and can be used “as-is’. See Re-
lease Notes for details on which platforms are supported by this timer
package.

Timer Adaptation Example

The timers adaptation template is the simple adaptation template with
timersimplemented. It demonstrates in general how to use the Adapta-
tion Framework to implement timer functionality, and in particular the
use of the call AcMSynchronizeTimers () that must be used in snap-
shot when acMwaitForEvent () can't be used.

IUT Communication

From an abstract point of view, sending and receiving is done over
PCOs (Points of Control and Observation). The physical representation
of these PCOs has to be defined by the user. It can be shared memory,
serial communication, sockets, etc. This, of course, isonly done on the
controlling side. The PCOs have to be connected somewhere to the test
equipment and the responsibility for thisis put upon the user.

The GCI functions that must perform the communication is (at least):

GciSend

Telelogic Tau 4.5 User's Manual 1505

Chapter 37 Adaptation of Generated Code

1506

GciReceive

For details concerning these functions, see “ GCI C Code Reference” on
page 1465 in chapter 37, Adaptation of Generated Code.

Representation and Handling of PCO and CP
Queues

PCOs are constructions to handle the PCO queues. Each PCO should
have buffers for sending and receiving, a method for retrieving the sta-
tus of the receive buffer and additiona information such as channels
and ports must be provided for the physical channels.

If the ETS isto run within the test equipment, i.e. the communication
betweenthe ETSand the lUT resideswithin thetest equipment, theETS
has to be moved (cross compiling or if possible compiling within the
test equipment).

This queue initiaization should of course be made before any test case
are run. The function that concerns the PCO’s and CPs are:

GciSnapshot

GciSend
Gcisnapshot () can beimplemented using for instance aAcMwaitFor-
Event (), and GeisSend () can beimplemented using acMsend (). To-

day, the ACM layer builds upon a TCP/IP socket implementation but
other protocol implementations can be easily added.

Theinterface that should be used when a message has been received (af-
ter proper decoding) inthe TTCN Runtime Behavior is:

GciReceive

Notethat if the ACM layer function acMwaitForEvent () isusedinthe
snapshot function, the user never hasto call GecirReceive () Sincethis
is done automatically from within acMWaitForEvent ()!

For details concerning these functions, see “ GCI C Code Reference” on
page 1465 in chapter 37, Adaptation of Generated Code.

Telelogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

July 2003

Encoding and Decoding

tBuffer is the subsystem of UCF that is used to represent values of
ASN.1typesinthetransmitted bit pattern. This section describesthein-
terface for tBuffer.

Functions
To invoke functions of tBuffer, the following macros are to be called:

Initialization of buffer
Y ou should initialize tBuffer before using it.

void BufInitBuf (tBuffer buf, tDirectionType dirtype,
UCFStatus status)

tBuffer buf Buffer for data storage
tDirectionType Datawriting order (DIRECT or REVERSE).
dirtype

UCFStatus status | Status of initialization. Variable “ status’ is equal
to UCF_OKk if no errors were encountered during
initialization or an error code otherwise.

Note: Buffer direction mode

REVERSE modes is not supported in the buffers anymore, although
the prototypeof thesuf 1nitBuf functionstill includesthedirtype
parameter for backwards compatibility. The direction mode param-
eter is always ignored when calling the Buf 1nitBuf function.

Closing of buffer
Y ou should close tBuffer after working with it.

void BufCloseBuf (tBuffer buf)

tBuffer buf Buffer

Initialization in write mode

This function initializes tBuffer in write mode. Y ou can write data
to the buffer after calling this function.

UCFStatus BufInitWriteMode (tBuffer buf)

Telelogic Tau 4.5 User's Manual 1507

Chapter 37 Adaptation of Generated Code

1508

Initialization in read mode
ThisfunctioninitializestBuffer inread data. Y ou can read datafrom
the buffer after calling this function.

UCFStatus BufInitReadMode (tBuffer buf)

Closing write mode
This function closes write mode of tBuffer. Y ou should call this
function after the ‘write to buffer’ operation is completed.

void BufCloseWriteMode (tBuffer buf)

Closing read mode
This function closes read mode of tBuffer. Y ou should call this
function after reading from the buffer is finished.

void BufCloseReadMode (tBuffer buf)

Getting direction type of the buffer
This function returns the direction type of tBuffer.

tDirectionType BufGetDirType (tBuffer buf)
Note: No REVERSE mode

REVERSE modeisnot supported in the buffersanymore, although the
BufGetDirType functionisstill present in the buffer interface for
backwards compatibility. It will always return pIRECT mode.

Creating copy of buffer
This function makes a copy of the buffer.

UCFStatus BufCopyBuf (tBuffer dst, tBuffer srs)

tBuffer dst destination buffer

tBuffer src source buffer

Getting the data byte length
This function returns the buffer’s data length in bytes.

tLength BufGetDatalen (tBuffer buf)

Telelogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

Getting the data bit length
This function returns the buffer’ s data length in bits.

tLength BufGetDataBitLen (tBuffer buf)

Getting the available length
Thisfunction returns the maximal datalength you can writeinto the
buffer in one piece (in bytes).

tLength BufGetAvailableLen (tBuffer buf)

Getting byte
This function reads one byte from the buffer. The buffer should be
initialized in read mode.

unsigned char BufGetByte (tBuffer buf)

Getting data segment
This function reads a data segment from the buffer. The buffer
should beinitialized in read mode.

unsigned char* BufGetSeg(tBuffer buf, tLength
seglen)

tBuffer buf Buffer to read from

tLength seglen Requested data length

Peeking byte
Thisfunction peeks (reads, but does not remove) one byte from the
buffer. The buffer should beinitialized in read mode.

unsigned char BufPeekByte (tBuffer buf)

Peeking data segment
This function peeks (reads, but does not remove) a data segment
from the buffer. The buffer should be initialized in read mode.

unsigned char* BufPeekSeg(tBuffer buf, tLength
seglen)

tBuffer buf Buffer to read from

tLength seglen Requested data length

July 2003 Telelogic Tau 4.5 User's Manual 1509

Chapter 37 Adaptation of Generated Code

Putting byte

This function writes one byte into the buffer. The buffer should be
initialized in write mode.

void BufPutByte (tBuffer buf, unsigned char byte)

tBuffer buf Buffer to write into
unsigned char Byte to write into buffer
byte

Putting data segment
This function writes a data segment into the buffer. The buffer
should be initialized in write mode.

void BufPutSeg(tBuffer buf, unsigned char* data,
tLength seglen)
Putting bit

Thisfunction writesonebit into the buffer. The buffer should beini-
tialized in write mode.

void BufPutBit (tBuffer bud, unsigned char bit)

tBuffer buf Buffer to writeinto
unsigned char bit | Value of bit (O or 1)

Getting bit
Thisfunction reads one bit from the buffer. The buffer should beini-
tialized in read mode.

unsigned char BufGetBit (tBuffer buf)

Putting bits

This function writes bits into the buffer. The buffer should be ini-
tialized in write mode.

void BufPutBits (tBuffer buf, unsigned char bits,
unsigned char num)

tBuffer buf Buffer to writeinto

unsigned char bits | Sequence of bits

1510 Teldlogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

July 2003

unsigned char Number of bitsin sequence (num <= 8)
num

Getting bits

This function reads bits from the buffer. The buffer should beini-
tialized in read mode.

unsigned char BufGetBits (tBuffer buf, unsigned char

num)
tBuffer buf Buffer to read from
unsigned char Number of bits (hum <= 8)

Putting padding bits

This function writes padding bitsin PER ALIGN variant of encod-
ing. The buffer should beinitialized in write mode.

void BufPutAlign (tBuffer buf)

Getting padding bits

This function reads padding bitsin PER ALIGN variant of encod-
ing. The buffer should beinitialized in read mode.

void BufGetAlign (tBuffer buf)

Set encoding variant (PER only)
This function sets the encoding variant.

void BufSetEncVar (tBuffer buf, UCFEncVariant encVar)

UCFEncVariant | Encoding variant (UCF_Align, UCF_Unalignor
encVar UCF_NoEndPad)

Get encoding variant (PER Only)
This function returns the encoding variant.

UCFEncVariant BufGetEncVar (tBuffer buf)

Setting up error catcher
Thisfunction sets up error catcher. Returns 0 or code of error if any.

unsigned int BufSetCatcher (tBuffer buf)

Telelogic Tau 4.5 User's Manua 1511

Chapter 37 Adaptation of Generated Code

Getting error mode
This function gets error mode (bem_Off or bem_On).

tBufferErrorMode BufGetErrorMode (tBuffer buf)

Supported ASN.1 Types
BOOLEAN
INTEGER
ENUMERATED
REAL

OBJECT IDENTIFIER
NULL

BIT STRING
OCTET STRING
|A5String
NumericString
PrintableString
VisibleString
UTCTime
GeneralizedTime
SEQUENCE
SET
SEQUENCE OF
SET OF
CHOICE
Tagged types
Open types

Encoding, and in Particular Decoding within ACM and GCI

The standard way to implement the encoder and decoder functions are
to put at least onefunction of each inthefile encoder.c and declarethem
in the file encoder.h. With every adaptation that is provided with the
TTCN suite installation are those files included, often with empty en-
code/decode functions where the user is supposed to enter the appropri-
ate functionality. The functions should be of the following structure:

1512 Teldlogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

July 2003

The Encoding Function

GeciStatus Encoder <name>(const GciValue¥*,
GeciBuffer**)

If encoding was successful, the GeiBuffer should be loaded with the en-
coded data and GciOk returned by the function. Otherwise, the function
should return GciNotOk.

The Decoding Function

GciStatus Decoder <name>(const GeciBuffer¥*,
int*,
GcivValue**)
If decoding was successful, the GeiValue should be loaded with the de-
coded GCI value, the integer should contain the number of bytes that
were consumed in the decoding process and the return status GciOk.
Upon failure, the function should simply return GciNotOKk.

Note that several encode/decode functions can exist, and the user can
switch between them at will, either by calling different functions from
GciSnhapshot() or by registering different functions prior to calling AC-
MSnapshot(). See “ Registering the Active Decode Function” on page
1494 in chapter 37, Adaptation of Generated Code for details.

General

A test suite has no knowledge of the encoding and decoding rules of the
actual application protocol. Thedefinition of signal componentsand the
description of the signal flows are done in an abstract and high-level
manner. The physica representation of the signal components and the
definition of the actual transfer syntax is not defined within the test
suite.

The encoding and decoding rules (functions) simply define acommon
transfer syntax between the test equipment and the executabl e test suite.

It isup to the user to write his’her own encoding and decoding rules us-
ing the GCI value representation. Even if the TTCN to C Compiler
comes with an adaptation template that includes a general encoder and
decoder, these rules can not be used at all times.

For test applications that need to send the same type of messages back
and forth through acommunication channel, the encoding and decoding

Telelogic Tau 4.5 User's Manual 1513

Chapter 37 Adaptation of Generated Code

1514

functions must be related to each other in such way that the decoding
function istheinverse function of the encoding function. Thisgivesthe
following simplerule:

Message = Decode(Encode (Message))

Thissimply states, that if you decode an encoded message, you will get
the original message back.

For applications that send and receive messages of different types (for
example an application sending commands to an interface one way and
receiving command results the other way), the encoding and decoding
rules might not be related at all.

It is up to the user to identify how he/she needs to encode and decode
messages to successfully be able to communicate with hig/her test
equipment.

Encoding and Decoding Using BER

TTCN Suite can generate encode/decode function definitions, that give
an opportunity for representing values of each ASN.1 type asastring of
eight-bits octets and transfer them between the environment and the
ETS. TTCN Suite now have support for BER (Basic Encoding Rules)
standard, defined in X.690 for the subset of ASN.1 that is defined by
TTCN.

BER Encoder/Decoder Support Library

The BER support comesin the form of astatic library that supports en-
coding/decoding functionality of ASN.1. Profiles of al the functions
that a user can use are located in the uct . h in the static files directory.
Thisfile should be included in the adaptation and the library should be
linked together with the adaptation.

The library contains two basic functions that provide functions for en-
coding/decoding types, computing length of values and buffer handling
procedures: BEREncode (. . .) and BERDecode (. ..).

How to Use BER Support in the TTCN Suite?

First, select Generate BER encoders/decoders in the Make options dia-
log. A filewill begenerated called asn1ende . hinyour target directory.
Thisfile defines the encoding and decoding functions for the ASN.1
definitionsin the test suite.

Telelogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

Second, you should implement the usage of the encoding functionsin
yOUfadaptor.chNSiSdoneinthchiSendand GeiSnapshot func-
tions. Also, you should define buffers and initialize them (this can be
doneinmain.

The generated file <ModuleName_of ASN.1-specifica
tion>_asnlicoder.h containsthe encoding/decoding function definitions
for ASN.1 objectsin the Test Suite. For example, if you have ASN.1
ASP Type definition by name of aspType1, two functions will be gen-
erated:

UCFStatus Encode ASPTypel (tBuffer, GciValue*) ;

UCFStatus Decode ASPTypel (tBuffer, tLength*, GciValue**) ;

July 2003

The first parameter of the encode function is the buffer where the en-
coded datais placed. The decoding is made from the buffer to a GCI
value.

The encoding/decoding functions are specific for the ASP/PDU typesin
guestion so when calling themin ceisend and Geisnapshot, you need
to make sure that they are called with avalue of the correct ASP/PDU
type. Oneway to get around this problem isto defineasingle ASP/PDU
typethat isa CHOICE of al typesthat you are sending or receiving in
your test suite.

Example
For example, we have atest suite with ASN.1 ASP Type

ASPTypel ::= INTEGER

And ASN.1 ASP constraint of ASPTypel named

ASPConl ::= 5

We have PCO named PCO1 and dynamic behavior like this:

PCO1 ! ASPTypel Constraint: ASPConl
PCO1 ? ASPTypel Constraint: ASPConl

Andwewant to use BER for encoding/decoding. After code generation
we have a<ModuleName_of ASN.1-specification>_asnlicoder.h file
with the following definitions:

tLength Encode ASPTypel (tBuffer, GciValue*) ;

Telelogic Tau 4.5 User's Manua 1515

Chapter 37 Adaptation of Generated Code

tLength Decode ASPTypel (tBuffer, GciValue**);

So in our adaptation file we need to declare, initialize and close BER
buffers;

tBuffer InBuffer;
tBuffer OutBuffer;

(rest of the adaptation)
int main(int argc, char* argv([])

BufInitBuf (InBuffer, DIRECT, status);
BufInitBuf (OutBuffer, DIRECT, status);

(ETS control)

BufCloseBuf (InBuffer) ;
BufCloseBuf (OutBuffer) ;
return 0;

Inccisend () weshouldinitialize buffer in writeMode and encodeval-
ue:
GciStatus GeciSend(int pcod, GcivValue* object)

UCFStatus status;
BufInitWriteMode (OutBuffer) ;

Encode ASPTypel (OutBuffer, object);
status = Encode_ ASPTypel (OutBuffer, object);

if (status != UCF_Ok)

UCFPrintErrorMessage (stderr, status) ;
/* warning or exit */

BufCloseWriteMode (OutBuffer) ;
return GciOK;

}
InGeisnapshot () weshouldinitialize buffer in ReadMode and decode
value:

GciStatus GeciSnapshot ()

UCFStatus status;
tLength DecLength;

1516 Teldlogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

July 2003

BufInitReadMode (InBuffer) ;

Decode ASPTypel (InBuffer, &result);

status = Decode ASPTypel (InBuffer, &DecLength,
&result) ;

if (status != UCF_Ok)

UCFPrintErrorMessage (stderr, status) ;
/* warning or exit */

BufCloseReadMode (InBuffer) ;
return GciOK;

}

How to Use the PER Support in the TTCN Suite

The PER support is used almost exactly like the BER support, so read
abovefirst tolearn how to usethe BER support. The PER Encoding/De-
coding functions have been changed and now return a UCFStatus val ue:;

UCFStatus Encode ASPTypel (tBuffer, GciValue¥)

UCFStatus Decode ASPTypel (tBuffer, tLength*,
GciValue**)

The primary difference to the BER support is that the PER support in-
cludes supporting different variants of PER. The variants supported are
Unalign, Align and NoEndPad with the Unalign variant being the de-
fault. The Unalign and Align variants are, just like BER, eight-bit octet-
oriented, but the NoEndPad variant is bit oriented which necessitates
use of the bit-oriented access to the buffer instead of the byte-oriented
access.

The mechanism to select PER encoding variantsis based on the use of
pre-processor symbols. By defining the symbol

UCF_PER DEFAULT ENCODING VARIANT to thevalue associated with
the selected encoding variant beforeincluding the asniende.h file, al
typeswill get the selected encoding variant unless explicitly overridden.

Overriding the default encoding variant can be done on a per type basis
by defining the pre-processor symbol

EncodingVariant <type names t0 the selected variant value before
including the asniende.h file.

Telelogic Tau 4.5 User's Manua 1517

Chapter 37 Adaptation of Generated Code

The following example shows a snippet of the adaptor.c filein asit-
uation where all types but thetype Type1 isto be encoded/decoded with
the Align variant and Type1 isto use the Unalign variant.

Example 282: Selecting PER encoding variant

#define UCF_PER DEFAULT ENCODING VARIANT UCF Align
#define EncodingVariant Typel UCF_Unalign
#include <asnlende.h>

The Adaptation Framework

Tomakeit even easier to connect the generated codeto “thereal world”,
the Adaptation Framework (ACM) isintroduced, a platform-indepen-
dent API that encapsul ates communication and timer handling provided
by plug-in components. These components can be communication pro-
tocol implementations, simulated timer modules, etc. and can easily be
replaced without having to rewrite the adaptation — provided the Adap-
tation Framework has been used to implement the GCI functionsin the
adaptor.

Currently, the TTCN suiteis delivered with the following plug-in mod-
ulesfor the framework:

» A TCP/IP socket communication implementation.
* A system-timetimer package.

Thismeansthat if the adaptation iswritten using the Adaptation Frame-
work, the generated code can instantly be used with TCP/IP communi-
cation. Asthe framework also hides all internal mechanisms of the run-
time system, the resulting adaptation will be easier to maintain, more
general and much smaller in size.

Example 283: An Implementation of GciSend with ACM

GciStatus GeciSend (int pcod, GecivValue* msg)

GciBuffer encoded value;
GeciStatus status;

encoded value.buffer = (char *) malloc(
sizeof (char) * MAX ENCODING BUFFER + 1);
encoded value.current length = 0;
encoded value.max length = MAX ENCODING BUFFER;

1518 Teldlogic Tau 4.5 User's Manual July 2003

Completing the Adaptation

July 2003

status = Encode (&encoded_ value, msg) ;
if (status != GciOk) {
fprintf (stderr, “%s\n”,
ACMGetErrorMessage (ACMGetLastError ())) ;
return GciNotOk;

status = ACMSend (pcod, &encoded value) ;
free (&encoded value) ;

if (status != GciOk) {
fprintf (stderr, “%s\n”,
ACMGetErrorMessage (ACMGetLastError ())) ;
return GciNotOk;

return status;

Adaptation Templates

An empty adaptation is copied to the code directory if the user has no
prior adaptation.

Itisup to the user to implement the functions in the GCI operational in-
terface. These functions are called from the TTCN runtime behavior
and should not be removed even if they are empty.

The function bodies and declarations are found in the empty adaptation
files, but the function bodies are empty. They only contain aprint state-
ment about the function not being implemented.

The ACM adaptor also usesthe Adaptation Framework for communica-
tion and timer handling and is a good example to study on how to use
the Adaptation Framework to implement GCI functions.

Auxiliary Adaptation Functionality

This section describes some extrafunctionality which isincluded in the
adaptation templ ates.

FILE* logStream;

Thisisthe stream to where log messages are written. The default
valueis stdout and is set in the main function, but can be set to
whatever stream the user wishes to use.

Telelogic Tau 4.5 User's Manual 1519

Chapter 37 Adaptation of Generated Code

1520

extern const int Gc<tablename>D = {int}
Constant numbersfor al tables (test case table, PCO table, timer ta-

ble, etc...) iInTTCN. Used to searchinthelcSymTab array (see sym-
bol table below). An exampleisfor GeTestcased = 517.

The simple adaptation template (in the installation) includes all empty
functions for the previously described GCI operationa functionsto be
defined by the user.

Telelogic Tau 4.5 User's Manual July 2003

	37 Adaptation of Generated Code
	The GCI Interface
	The GCI Interface Model
	Informal Description of the Test Run Model
	Which Does What?
	Case Studies
	Case Study: SEND
	Case Study: RECEIVE

	Methods Used
	Identifying Global Objects in TTCN/ASN.1
	Test Suite Operation Definitions
	Logging
	Value Representation

	Introduction to the GCI Interface
	Management Interface
	Behavior Interface
	Operational Interface
	Value Interface

	GCI C Code Reference
	Predefined Types
	Management Interface
	Behavior Interface
	Operational Interface
	Value Interface
	Base Types/Values
	Base Functions
	Value Management

	Examples
	Encoding/Decoding Examples
	ASN.1 SEQUENCE Type
	ASN.1 SEQUENCE OF Type
	ASN.1 CHOICE
	In-Line ASN.1 Type

	TTCN Examples
	Snapshot Example
	Send Example

	EGci Value Construction and Functions
	Value Construction
	Alternative 1 – Using GciMkSEQUENCE and GciSetType
	Alternative 2 – Using EGciMkValue (Recommended Approach)

	Available Functions
	Error Handling
	Miscellaneous

	Examples

	The Adaptation Framework
	Introduction to the Adaptation Framework
	Examples of usage
	Function reference
	Communication data types
	Communication primitives
	Timer Primitives
	Error Handling

	Completing the Adaptation
	The Test Support Functions
	Timers
	Timer Adaptation Example

	IUT Communication
	Representation and Handling of PCO and CP Queues
	Encoding and Decoding
	Functions
	Supported ASN.1 Types
	Encoding, and in Particular Decoding within ACM and GCI
	Encoding and Decoding Using BER
	How to Use the PER Support in the TTCN Suite

	The Adaptation Framework
	Adaptation Templates
	Auxiliary Adaptation Functionality

