
July 2003 Telelo

Chapter
37 Adaptation of Generated

Code
This chapter contains information about making an adaptation of
the generated code to make it communicate with the generated
code.

The first part of this chapter describes the interface to be used when
writing the adaptation, the GCI Interface. The different parts of the
interface are explained in detail with recommendations and exam-
ples of use.

The second part of this chapter is a C implementation of GCI, this
can be used as a reference documentation.

The third part describes the EGci (extended GCI) value construc-
tion and functions.

The fourth section introduces the Adaptation Framework that can
be used to implement GCI functions in a straightforward way with
ready-made low-level protocol implementations such as TCP/IP.

The fifth and final section describes the means and measures to
complete the adaptation. It describes the requirements on the adap-
tation in terms of the necessary functions to implement.
gic Tau 4.5 User’s Manual ,um-st1 1449

Chapter 37 Adaptation of Generated Code
The GCI Interface
The Generic Compiler Interpreter (GCI) interface standardizes the com-
munication between a TTCN component supplied by a vendor and other
test system components supplied by the customer, together forming a
MOT, Method Of Test.

The GCI interface focuses on what an ATS needs in order to execute in
term of functionality, and on what is needed in order to integrate TTCN
into a larger system. This chapter contains a natural language descrip-
tion of the interface and a GCI C Reference.

The GCI Interface Model
The main purpose of the GCI interface is to separate TTCN behavior
from protocol and test equipment specific code. The GCI interface shall
be a standardized set of functions. Communication shall be done by
calling functions, passing arguments to the functions and return values
from the functions, and in no other way. The interface is bidirectional
which means that both parties (the TTCN Runtime Behavior and the
Test Adaptation) must provide services to each other. The TTCN Runt-
ime Behavior shall at least provide services for handling values and
managing tests (evaluating test cases etc.) and the Test Adaptation shall
provide the protocol/test equipment specific parts of an executable
(send, snapshot, timer functions etc.). The implementation of the func-
tions in the TTCN Runtime Behavior may only depend on the ATS and
9646-3, no extra information shall be needed to implement them.

Figure 265: The GCI model

Supervisory Functions

TTCN Runtime behavior

Test Support Functions

Service Provider

PCOs

GCI Management i/f

GCI Operational i/f
1450 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The GCI Interface
Informal Description of the Test Run Model
This section contains an informal description of how a test run might
look like using the GCI interface. A test run is defined as a complete test
session, where a selection of test cases are run to ensure a specific be-
havior of the IUT.

A test run begins when the user decides to run a test case or a collection
of test cases. He will then use the Supervisory functions to start test cas-
es and monitor their verdicts. The TTCN Runtime Behavior then exe-
cutes TTCN, occasionally using the operational interface (send, snap-
shot, etc.) to gather information or to request some service. The TTCN
Runtime Behavior handles verdicts internally during a test case and re-
turns the verdict at the end of a test case.

Before using the TTCN Runtime Behavior, it must be initialized. After
that the user chooses which test case to run using the supervisory func-
tions. The test case returns a verdict which the user can use to form re-
ports or stop test runs. The TTCN Runtime Behavior or the GCI inter-
face does not impose any restrictions on this part. Any number of test
cases can be run and each is commanded using the Supervisory func-
tions.

Figure 266: Start of test run

Supervisory
Functions

TTCN
RTB

GciInit
Initialization of the TTCN Runtime
Behavior.

GciStartTestCase

Run test cases.

Test cases return verdicts to the
Supervisory functions.

GciPASS

More test cases can be run if de-
sired.

Test run can be terminated at the
end of a test case
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1451

Chapter 37 Adaptation of Generated Code
The test case at some point will try to send a message on some PCO. The
TTCN Runtime Behavior then passes information to the Test Adapta-
tion about the message to send and on which PCO to send it on. It is the
responsibility of the Test Adaptation to properly encode the message
and actually send it on some media (e.g. sockets, screen, printer port,
pipe). Note that control is in the Test Adaptation until it returns to the
TTCN Runtime Behavior. When control returns to the TTCN Runtime
Behavior it assumes that the message was sent correctly and continues
execution of the test case.

Eventually the test case will have emptied its possibilities to act and
needs input from the environment. It therefore passes control to the Test
Adaptation in order to take a snapshot of the IUT. Within the snapshot,
the Test Adaptation then checks all PCO’s for incoming messages and
all timers for time-outs. If a message has arrived on a PCO, the Test Ad-
aptation must decode the message and translate it into a proper GCI val-
ue. If a timer has timed out, the Test Adaptation must record which tim-
er. The Test Adaptation acts as a filter between the IUT and the TTCN
Runtime Behavior. Note that the actual reception of a message or time-
out could be handled somewhere else (e.g. in an interrupt routine), only
the official communication that the event has taken place must be done
in SNAPSHOT.

Figure 267: Send and Snapshot

TTCN
RTB

Test
Adaptation

GciSend
To send a value.

GciSnapshot
To be informed of messages ar-
rived and/or timers timed out. The
Test Adaptation then must use
the functions GciReceive and
GciSnapshot to inform the TTCN
Runtime Behavior.
1452 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The GCI Interface
Preliminary verdicts may be set during the test execution and when a fi-
nal verdict is set, the test case returns to the Test Adaptation immediate-
ly. The Test Adaptation then has freedom to decide to continue the test
run or not. A final verdict has meaning only in the context of the current
test purpose. The meaning of a final verdict is not specified in the con-
text of an entire collection of test cases. For example, when doing re-
gression tests, all test cases should be run regardless of how many failed
in order to get a complete picture of the status of the IUT.

Which Does What?
The table below summarizes the responsibilities of the two GCI parties,
the TTCN Runtime Behavior and the Test Adaptation. It is meant to de-
scribe the model and basic assumptions being made.

TTCN Runtime Behavior Test Adaptation

SEND:
Builds the object to be sent and
requests the actual sending
from the Test Adaptation.

SEND:
Receives the object that shall be
sent and transfers this to the IUT.
This might include encoding in
some form.

RECEIVE:
When a value is put on a PCO
queue by the Test Adaptation,
it remains there until a match-
ing receive line is found in
TTCN.

RECEIVE:
Builds the received object (from the
IUT) into a GCI value, which may
include some form of decoding, and
notifies the TTCN Runtime Behav-
ior that the message has arrived.

Sets the verdict (based on the
test case).

Treats the verdict (i.e. decides if the
test run should continue or not).

Impl. of value representation. Encoders/decoders.

Uses the value repr. Uses the value repr.

Provides test cases. The test
cases are sensitive to test case
selection references.

Determines which test cases to run
and in which order.

Uses send on messages. Provides the send functionality.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1453

Chapter 37 Adaptation of Generated Code
Case Studies
This section contains case studies of a send and a receive. For the case
studies, we use an example PDU shown in Figure 268.

Case Study: SEND

The semantic of the TTCN send statement is as follows:

1. Build the SendObject using the constraint reference.
2. Execute the assignments.
3. Send the SendObject on the PCO.
4. Execute the timer operations.
5. LOG, at least the PCO and the SendObject must be logged.

The SendObject above is a temporary object containing the object to be
sent. All steps above are initiated by the TTCN Runtime Behavior.

Uses SNAPSHOT to fix a
view of the status of the IUT.
Expects all changes in system
status to be recorded in SNAP-
SHOT.

Reads system status in SNAPSHOT
and records this through GCI inter-
face for the TTCN Runtime Behav-
ior.

Uses the LOG function to log
TTCN Runtime Behavior.

Provides the LOG functionality,
and also decides on what level log-
ging should be done.

Figure 268: Example table

Nr Lbl Statement Line Cref Comment

L ! CR CR_c

TTCN Runtime Behavior Test Adaptation

TTCN PDU Type Definition

PDU Name: pdu1
Field Name Field Type Comment

b
INTEGERa
BOOLEAN w value FALSE

w value 19

Comment: Example pdu for GCI case studies
1454 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The GCI Interface
Steps 3 to 5 require communication with the environment (IUT). The
TTCN Runtime Behavior will build a SendObject using the constraint
CR_c above. Then it will call the Test Adaptation function Send. By do-
ing this, the TTCN Runtime Behavior has ensured that the message gets
sent on whatever PCO was stated. The Test Adaptation function Send
then encodes the message using the transfer syntax of the protocol and
then sends the message on the medium that represents the PCO. The ar-
guments passed to Send is the PCO and the message in the GCI repre-
sentation, and the side effect of Send is to send the message in protocol
representation on the PCO in test system representation. Note that the
encoding and sending on a PCO might very well be represented as a
function call.

Figure 269: The send event

Send the encoded data on
the PCO to the IUT (environ-

Now encode the data using
GCI interface primitives

011001 ...

Test Adaptation called
through GCI interface.

Done, return to caller

send

Test
Adaptation

Value
Repr.

TTCN
RTB

19

false

ok

get_pdu1_b

get_pdu1_a
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1455

Chapter 37 Adaptation of Generated Code
Case Study: RECEIVE

The receive is a little more complicated than the send. Send is initiated
by the TTCN Runtime Behavior while receive is an internal event in the
TTCN Runtime Behavior. The actual reception of messages is done in
the Test Adaptation and these actions are communicated to the TTCN
Runtime Behavior in SNAPSHOT. Note that there may be a difference
between the reception of a message and the notification to the TTCN
Runtime Behavior that the message has arrived. The TTCN Runtime
Behavior calls the function SNAPSHOT and when it returns, the TTCN
Runtime Behavior expects all time-outs to have been recorded and all
received messages to be put on the correct PCO queues in the correct
format. In this case we study the message event only and not the time-
out.

A message has been received from the IUT (not necessarily in
SNAPSHOT) and the TTCN Runtime Behavior must be told that
the message has been received. This shall be done in SNAPSHOT
using the GCI function provided. The message and the PCO must
be presented in a representation understood by the TTCN Runtime
Behavior. Note that the message probably needs to be translated
into the GCI value representation somewhere but again not neces-
sarily in SNAPSHOT.

If SNAPSHOT does what is stated above, the TTCN Runtime Behavior
will do the following on the receive line in the test case:

The PCO queue is checked and if there is a message there, that mes-
sage is matched against the constraint reference. If the message
matches, it is removed from the PCO queue and the receive state-
ment is considered to be TRUE, otherwise, the next alternative is
checked.

In Figure 270, we assume that decoding is done in SNAPSHOT. The
message is decoded using the value manipulating primitives of the GCI
interface. When the message has been decoded into something known
to the TTCN Runtime Behavior, it is easy to assign it to a PCO using
the GCI function receive.

Nr Lbl Statement Line Cref Comment

L ? CC CC_c
1456 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The GCI Interface
Methods Used
This section contains general thoughts on methods used for designing
the GCI interface. Choices have been made such as to provide reason-
able trade-offs between speed and ease of use. An efficient implemen-
tation in C should be possible with the choices made.

Identifying Global Objects in TTCN/ASN.1

One problem is how to identify global objects in TTCN, PCOs, CPs,
ASPs etc. There are a number of requirements that should be met:

1. Execution time:

The TTCN behavior, operational and value interface functions are
likely to be called many times in a time sensitive context which re-
quires them to be fast. The management functions does not have this
requirement.

Figure 270: The receive event

snapshot

Test Ad-
aptation

Value
Repr.

TTCN
R. B.

ok

ok

ok

set_pdu1_b

set_pdu1_a

receive
ok

handle
mk_pdu1

Test Adaptation called
through GCI interface.

Something is physically re-
ceived from the IUT

011001 ...

Decode the message using
knowledge of its type. As-
sume it was a pdu1

1. Get an object of suitable
type:

2. Set each field in pdu1

Put the decoded object on
the PCO queue

GciReceive(PCO, handle)

Done, return to the TTCN
Runtime behavior
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1457

Chapter 37 Adaptation of Generated Code
2. Compilation time:

The Test Adaptation and the TTCN Runtime Behavior are likely to
be used together with a graphical interface (GUI) or integrated into
a larger system. This integration should be possible without re-com-
piling the GUI or the larger system every time a change has been
made in the ATS. This requires that dependencies between the ATS
and the management interface implementation must be kept to a
minimum.

There are at least three alternative solutions to be considered:

1. Straight name reference using target language semantics, i.e start
test case “TC1” by writing the function call “TC1()” in C, and the
value of the variable “TCVAR1” is expressed simply as TCVAR1

2. Assign an integer to each object. Symbolic names could then be
used. The examples from above would then be:

#define TC1 192
#define TCVAR1 1211
Verdict = GciStartTestCase(TC1);
Display(GciGetValue(TCVAR1));

3. Use string references.

Verdict = GciStartTestCase(TC1);
Display(GciGetValue(TCVAR1));

Solution 1 gives the fastest execution but is very unsuitable for integra-
tion into a larger application. Solution 2 is at least possible to integrate
into a GUI, and almost as fast as solution 1. Solution 3 is excellent for
integration but gives slow execution.

In the GCI interface, we choose to use solution 3 (string references) in
the management functions and solution 2 in the TTCN behavior func-
tions. It would then be very easy to integrate an ETS into an already ex-
isting test system since the interface is string based while we still main-
tain speed in the execution of test cases.

A similar problem is how to identify fields in structured types. The sim-
plest solution is to address them using integers field 0, field 1, etc., but
then the Test Adaptation writer would get very little support from the
compiler. From the Test Adaptation writers point of view, he might
want to address the fields using names and also get type checking aid
from the compiler. The Test Adaptation writer also wants to write ge-
neric functions for encode/decode. The GCI interface supports both
1458 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The GCI Interface
views, one view where substructures are identified by numbers, and one
which in effect use name addressing.

Test Suite Operation Definitions

The TTCN Runtime Behavior requires that all test suite operations are
defined as functions at run-time. Arguments to and return values from
the test suite operation functions shall use the GciValue* format. The
name of the test suite operation function shall be the same as the name
of the test suite operation in TTCN.

Logging

The log will provide a view of a test run. Most things happening in the
system will need to be logged. We have identified a number of require-
ments on the log functionality:

1. It should be possible to only log every event visible to the TTCN
Runtime Behavior. I.e. the sending of a message should leave a note
in the log while the internal behavior of the TTCN Runtime Behav-
ior should not.

2. For debug purposes, it must be possible to report every event in the
system.

3. The granularity of the log must be easy to change by the Test Adap-
tation writer. It should be possible to be quite specific when logging,
i.e. log only sends and receives.

The method that the GCI interface suggests is massive logging. Every-
thing is logged at any time and every type of event (send, receive etc.)
is assigned a number. That way it is easy for the Test Adaptation writer
to write a log function that only logs interesting log messages.

Value Representation

The GCI interface must provide a stable way of manipulating values.
This is most important for the Test Adaptation writer to be able to ac-
cess and build values in his encode and decode functions. The GCI in-
terface proposes not to specify the value representation but rather the
methods which can be used on it. The GCI interface specifies what the
Test Adaptation writer is able to do with values. The reason for this is
that most vendors supporting the GCI interface would like to have their
own value representation within their TTCN Runtime Behavior, and the
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1459

Chapter 37 Adaptation of Generated Code
representation used within TTCN has different requirements than the
representation needed for the Test Adaptation.

Introduction to the GCI Interface
This section contains the description of the GCI interface in natural lan-
guage. The interface functionality is sorted by responsibility. The man-
agement, behavior and value interfaces are interfaces to the TTCN
Runtime Behavior. The operational interface is the interface to the Test
Adaptation.

Management Interface

The management interface consists of those functions necessary for ini-
tiating and managing test runs. They provide an API to the ATS. These
functions are used by the Supervisory functions to govern test runs.

Initiation of the TTCN Runtime Behavior

Must be called before the TTCN Runtime Behavior is used in any way.
It will read test suite variables (using primitives in the operational i/f),
set up test case selection references, test suite constants and any other
initialization necessary. It should only be called once.

Start Test Case

Shall run a test case according to the dynamic behavior in 9646-3. Input
shall be a test case name or test case group name. The test case or all the
test cases in the test group shall then be run in the order which they were
listed in the ATS. If the selection reference of a test case or test case
group is false, that test case or test case group shall not be executed.
Verdict shall be set and communicated back to the caller. In case several
test cases have been run, the verdict shall be the most negative of the
verdicts from each test case (if one test case is FAIL, the verdict would
be FAIL, if all are PASS, the verdict would be PASS).

Start Test Component

This function works just line the function to start test cases, but starts
test components for example when concurrent TTCN is used.

Test Case List

A list of names of test cases.
1460 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The GCI Interface
Test Case Group List

A list of names of test case groups.

Number of Timers and PCOs

Two functions are needed to return information about the amount of
timers and PCOs in the system.

Information About Timers and PCOs

Help functions are needed to get some extra information about timers
and PCOs. (For example name and type.)

Configuration Information

A set of functions is needed to retrieve information about configurations
when running concurrent TTCN.

Accessing TTCN Values

Values of TTCN (and ASN.1) objects must be accessible from the Test
Adaptation. A general access function will be provided. Information
passed shall be an object name and the information passed back shall be
the value of the object. Valid objects shall be test suite parameters, test
case selection expressions, test suite constants, test suite variables and
test case variables.

Behavior Interface

The behavior interface consists of functions used to notify the TTCN
Runtime Behavior of events in the IUT. The functions are a formalism
of what the TTCN Runtime Behavior needs to know about the status of
the IUT. The functions are implemented in the TTCN Runtime Behav-
ior and must be used in Snapshot.

Receive

Whenever a message has been received and decoded it must be passed
to the TTCN Runtime Behavior in SNAPSHOT in order for it to match
it with the constraint. The information passed shall be the PCO descrip-
tor and the value. Note that the value passed in receive must be a
GciValue*.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1461

Chapter 37 Adaptation of Generated Code
Time Out

Whenever a timer has timed out the TTCN Runtime Behavior must be
notified of it in SNAPSHOT. The information passed shall be the timer
descriptor.

Done

Whenever a test component has terminated its execution the TTCN
Runtime Behavior needs to know about this. The information passed is
the descriptor for the given test component.

Operational Interface

The operational interface consists of those primitives necessary for the
TTCN Runtime Behavior to implement TTCN, i.e. Send, Snapshot,
StartTimer etc. This part of GCI can be compared to POSIX. TTCN
Runtime Behavior requires that the functions are defined.

Test Suite Parameters

The TTCN Runtime Behavior shall call the Test Adaptation once for
each test suite parameter during the initialization of the TTCN Runtime
Behavior. Information passed shall be a handle for the value, the param-
eter name and the PICS/PIXIT reference.

Test Suite Operations

Each test suite operation must be defined in the Test Adaptation. The
name of the test suite operation function shall be the same as in the ATS,
and the order of the parameters shall also be the same.

Create

When a test component needs to be created this function will be called
from the TTCN Runtime Behavior.

Configuration

When different tests are run, different configurations might be needed.
This function is called from the TTCN Runtime behavior to set up a
configuration before the test goes on.
1462 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The GCI Interface
Snapshot

The status of the IUT must be read. Events in the IUT must be translated
for the TTCN Runtime Behavior to be aware of them. The communicat-
ing interface between the TTCN Runtime Behavior and the IUT (envi-
ronment) is made up of messages that has arrived and timers that have
timed out. Therefore there are only two requirements on SNAPSHOT:
1) any received messages shall be recorded and 2) any timers that have
timed out shall be recorded. The recording shall be done by using the
provided GCI functions described in the Behavior i/f.

Send

This function is used by the TTCN Runtime Behavior to ensure that
messages get sent. Send probably involves encoding and physical send-
ing but might as well translate to encoding of some parts of the message
and use of a lower layer service. The information passed to the function
shall be a PCO descriptor and the value to be sent.

Start Timer

When the TTCN Runtime Behavior needs to start a timer. Information
passed shall be the timer descriptor, the integer timeout duration and the
timer unit.

Read Timer

Shall pass the current timer value back to the caller. Information passed
to the function shall be a timer descriptor.

Cancel Timer

Shall stop a timer identified by a timer descriptor.

Log

Shall log events on an appropriate format. An integer specifying log
message type and a log string shall be passed as parameters.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1463

Chapter 37 Adaptation of Generated Code
Value Interface

The interface to values is a simple API in which the user is allowed to
build and access GciValues in an ordered way. The actual values used
are not specified, only the methods that can be used on them are includ-
ed. This way will allow vendors to have their own value representation
within their TTCN Runtime Behavior and still conform to GCI.

Three types of value primitives are needed. Primitives to access struc-
tured values:

• Primitives to build and access components of structured values
• Primitives to find and set the type of values
• Primitives to convert base values to and from the value domain of

the target language

Value primitives can be further divided in the groups:

• SEQUENCE values, which include SET values and also TTCN
ASP, PDU and Struct types

• SEQUENCE OF values, which include SET OF values
• CHOICE values
• OBJECT IDENTIFIER values
• BASE values, integers, booleans, strings and reals

Please note that SET and SET OF values are treated as SEQUENCE and
SEQUENCE OF values because there is no semantic difference at this
level of abstraction. The unordered behavior of SETs is considered a de-
coder problem and left to the decoder writer.
1464 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
GCI C Code Reference
This section is a code description of GCI. It describes what each func-
tion does and why it is used. Some of the functions must be implement-
ed by you in your adaptation. See section “Completing the Adaptation”
on page 1502.

Predefined Types
These are the GCI value types with their respective value set:

GciStatus = { GciNotOk, GciOk }

GciVerdict = { GciFail, GciInConc, GciPass, GciNone}

GciTimeUnit ={ Gcips, Gcins, Gcius, Gcims, Gcis, Gcimin }

GciTimerStatus = { GCIRUNNING, GCISTOPPED, GCIEXPIRED }

GciPCOID = INTEGER

GciTimerID = INTEGER

GciPosition = <internal position value>

These are structured GCI value types with their respective members:

The general communication address type
typedef struct GciAddress {
 int type; /* Address type 0 - 100 is

reserved by Telelogic */
 char* buffer; /* The address stored in a

buffer */
} GciAddress;

The general time value
typedef struct GciTime {
 unsigned long time_val;
 GciTimeUnit unit;
} GciTime;
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1465

Chapter 37 Adaptation of Generated Code
Management Interface
The management interface consists of the functions necessary for initi-
ating and managing test runs. They provide an API to the TTCN
runtime behavior.

GciStatus GciInit()

Initiates the TTCN Runtime Behavior. Must be called before any
test cases are started.

GciStatus GciExit()

Shuts down the TTCN Runtime Behavior system. Usually called
last before closing a test session.

GciVerdict GciStartTestCase(const char* TCorTGName)

Calling this function with a test case name will start and run the giv-
en test case. The verdict returned is the verdict set by the test case.

If the function is called with a test group name, it will start and run
the given test group. The verdict returned is the product of the ver-
dicts set in the test cases or test groups contained in the given test
group. The individual verdicts from the different test cases or test
groups have to be extracted from the log. The verdict algorithm for
test groups is defined as follows:

1. The verdict is PASS if the verdict of every test case is PASS.
2. The verdict is INCONC if the verdict of at least one test case is IN-

CONC and all others are PASS.
3. The verdict is FAIL if the verdict of at least one test case is FAIL.

If the given name is not a valid test case nor test group, the function
will return GciNotOk and log the following message:

No such Test Case or Test Group as <name> to run!

GciVerdict GciStartTestComponent(char* TSName,
 GciValue* args)

This function works just like GciStartTestCase but is used to start a
parallel test component (PTC) when using concurrent TTCN.
TSName is the name of the Test Step to run in the PTC.
1466 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
GciTCList* GciGetTestCaseList()

This function returns a list of all test case names (including test cas-
es in test groups).

GciTCList GciGetTestCaseGroupList()

This function returns a list of all test group names (including test
groups in test groups). List of character strings.

GciValue* GciGetValue(char* TTCNObjectName)

This function returns the TTCN value object given the object’s
name. If the object name does not exist, the function will return
NULL and log the following message:

GciGetValue: Could not find <name>! NULL returned

If the object name is a TTCN name, but not an object (variable, con-
stant, etc...) the function will return NULL and log the following
message:

GciGetValue: <name> not an instance! NULL returned

int GciGetNoOfTimers()

Returns the number of timers in the system.

int GciGetTimer(int index)

Returns the identifier of the given timer index.

char* GciGetTimerName(int timer)

Returns the name of the given timer.

int GciGetTimerIndex(int desc)

Returns the index of the given timer descriptor.

int GciGetNoOfPCOs()

Returns the number of PCOs in the system.

int GciGetPCO(int index)

Returns the descriptor of the given PCO index.

char* GciGetPCOName(int pco)

Returns the name of the given PCO.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1467

Chapter 37 Adaptation of Generated Code
int GciGetPCOIndex(int desc)

Returns the index of the given PCO descriptor.

int GciGetPCOType(pco)

Returns the type of a given PCO.

int GciGetNoOfComponents(GciConf conf)

Returns the number of components in the given configuration.

GciComponent* GciGetComponent(GciConf conf, int index)

Returns the indexed component in the given configuration.

char* GciGetComponentName(GciComponent* conp)

Returns the name of the given component.

int GciGetComponentType(GciComponent* conp)

Returns the type of the given component (GciMTC or GciPTC).

int GciGetComponentDescriptor(GciComponent* conp)

Returns the descriptor of the given component.

char** GciGetComponentCPs(GciComponent* conp)

Returns the CPs used by the given component.

char** GciGetComponentPCOs(GciComponent* conp)

Returns the PCOs used by the given component.

Behavior Interface
The behavior interface consists of the functions used to notify the
TTCN Runtime Behavior of events in the IUT. The functions are a for-
malism of what the TTCN Runtime Behavior needs to know about the
status of the IUT. The functions are implemented in the TTCN Runtime
Behavior and must be used in Snapshot.

GciStatus GciTimeout(int timerd)

This function will change the status of the internal timer indexed by
the timer descriptor timerd. The timer will be marked as timed out.
1468 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
GciStatus GciReceive(int pcod, GciValue* value)

This function will insert the received object into the internal PCO
queue indexed by the PCO descriptor pcod.

Operational Interface
The operational interface consists of the functions necessary for the
TTCN Runtime Behavior to communicate with the IUT, i.e. the depen-
dencies on the protocol and test environment. It implements functional-
ity for Send, Snapshot, StartTimer, etc. The TTCN Runtime Behavior
requires that the functions are defined in the adaptation.

GciValue* GciReadTSPar(char* name, char* pRef)

The user has to implement how to read the test suite parameters.
This code will be called one time for each test suite parameter in the
system. Here name is the name of the test suite parameter and pRef
is the PICS/PIXIT field (ex. file). The value returned by this func-
tion must be a pointer to a valid GciValue structure which can be
successfully used by the TTCN runtime behavior. If for any reason
this could not be done, NULL should be returned.

GciStatus GciConfig(GciConf conf)

When using concurrent TTCN the user is responsible for creating
the configurations to be used for a given test. The creation of those
configurations is done in this function using a set of help functions
in the management interface to traverse the information.

GciStatus GciSnapshot()

This is a very important function that the user has to implement.
This function is called from the run-time behavior when it needs in-
put from the test environment (timers and/or PCO’s).

– Communication lines (PCOs) must be checked. If something
has been received, we must decode the message, build a receive
object and insert the object into the correct, internal PCO queue
by using the GciReceive function with appropriate PCO de-
scriptor. The GCI Value Interface is used to build the object(s).

– Timers must be checked and their status must be reported to the
TTCN run-time system. If the user uses the simple adaptation
template he/she must self keep track of time and use GciTime-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1469

Chapter 37 Adaptation of Generated Code
out to mark a timer as timed out. If the user uses the timers ad-
aptation template he/she can use the AdSetTime function (see
below) to have this work done automatically.

GciStatus GciSend(int pcod, GciValue* value)

The user is responsible for implementing the send functionality.
This involves identifying a given PCO and encoding the value be-
fore sending the message on that PCO.

GciStatus GciStartTimer(int timerd, long duration,
 int unit)

To start a timer the TTCN runtime behavior will call this function.
Note that timer duration value is optional in TTCN but is always
present here.

GciStatus GciCancelTimer(int timerd)

This function is called to stop the given timer. It should have the ef-
fect that the appropriate timer representation in the adaptation is
stopped.

long GciReadTimer(int timerd)

This function is called when a timer is read. It must return the cur-
rent timer value.

GciStatus GciCreate(int ptc, char* tree, GciValue* args)

This functions is called when a PTC is to be created to run a given
dynamic behavior with the given arguments (concurrent TTCN).

GciValue* <TS_Op>(<Arguments>)

Every test suite operation must have this function defined. The
name shall be the same as in the ATS and arguments must match the
parameters in the ATS.

GciStatus GciImplicitSend(GciValue* value)

This function is called by the run-time behavior when an Implicit
Send Event occurs in the test suite. It is up to the adaptation writer
to define its exact implementation.
1470 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
GciStatus GciLog(int logId, char* LogString)

The user has to implement parts of the logging facility. As the GCI
document describes, some log identifiers are already implemented.
The log identifiers (identifies the type of log message) in this func-
tion should NOT be changed as they follow the values listed in the
GCI document. The TTCN Runtime Behavior uses this function for
logging.

logId Description The logString must contain:

Msg General message

StartTC Start test case The name of the test case

StopTC Stop test case The name of the test case

StartTS Start test step The test step name

StopTS Stop test step The test step name

StartDEF Start default The default name

StopDEF Stop default The default name

Verdict Final verdict set The verdict set

PVerdict Prel. verdict set The verdict set

Match Line tried matches Line number

NoMatch Line tried does not
match

Line number

SendE Send Event The PCO name
The type of message sent
Constraint name

RecE Receive Eventa The PCO name
The type of message received
Constraint name

OtherE Otherwise Event The PCO name

TimeoutE Timeout Event The timer name

Assign Assignment The Left hand side
The right hand side (textually)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1471

Chapter 37 Adaptation of Generated Code
Value Interface
The interface to values is a simple API in which the user is allowed to
build and access GciValues in an ordered way. The actual values used
are not specified, only the methods that can be used on them are includ-
ed. This way will allow vendors to have their own value representation
within their TTCN Runtime Behavior and still conform to GCI.

Base Types/Values

These functions are used to transform actual values into the GCI repre-
sentation. The interface is on base types only, so TTCN simple types are
not visible in the interface.

StartT Start timer The timer name
The timer duration

StopT Stop timer The timer name

CancelT Cancel timer The timer name

ReadT Read timer The timer name
The timer value

Attach Attachment The name of the attached test
step

ImplSend Implicit send The PCO name
The message type

Goto Goto The line number to which the
jump will be made

Rec Receiveb The PCO descriptor number

Timeout Timeoutc The timer descriptor number

a. Logging that a receive line matches.

b. Note this is low level logging done when the Test Adaptation writer calls Gci-
Receive (or GciTimeout)

c. Note this is low level logging done when the Test Adaptation writer calls Gci-
Receive (or GciTimeout)

logId Description The logString must contain:
1472 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
GciValue* GciMkINTEGER(int num)
int GciGetINTEGER(GciValue* value)

Used for integer values, and simple type values with base type inte-
ger.

GciValue* GciMkBOOLEAN(int bool)
int GciGetBOOLEAN(GciValue* value)

Used for Boolean values, and simple type values with base type
Boolean.

GciValue* GciMkREAL(int mantissa, int base, int exponent)
GciReal GciGetREAL(GciValue* value)

Used for Real values, and simple type values with base type Real.

GciValue* GciMkBIT_STRING(const char* str)
char* GciGetBIT_STRING(GciValue* value)

Used for bit string values, and simple type values with base type bit
string.

GciValue* GciMkHEXSTRING(const char* str)
char* GciGetHEXSTRING(GciValue* value)

Used for hex string values, and simple type values with base type
hex string.

GciValue* GciMkOCTET_STRING(const char* str)
char* GciGetOCTET_STRING(GciValue* value)

Used for octet string values, and simple type values with base type
octet string.

GciValue* GciMkNumericString(const char* str)
char* GciGetNumericString(GciValue* value)

Used for values numerical strings, and simple type values with base
type numerical string.

GciValue* GciMkPrintableString(const char* str)
char* GciGetPrintableString(GciValue* value)

Used for Printable string values, and simple type values with base
type Printable string.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1473

Chapter 37 Adaptation of Generated Code
GciValue* GciMkTeletexString(const char* str)
char* GciGetTeletexString(GciValue* value)

Used for Teletex string values, and simple type values with base
type Teletex string.

GciValue* GciMkVideotexString(const char* str)
char* GciGetVideotexString(GciValue* value)

Used for Videotex string values, and simple type values with base
type Videotex string.

GciValue* GciMkVisibleString(const char* str)
char* GciGetVisibleString(GciValue* value)

Used for Visible string values, and simple type values with base
type Visible string.

GciValue* GciMkIA5String(const char* str)
char* GciGetIA5String(GciValue* value)

Used for IA5string values, and simple type values with base type
IA5string.

GciValue* GciMkT61String(const char* str)
char* GciGetT61String(GciValue* value)

Used for T61string values, and simple type values with base type
T61string.

GciValue* GciMkISO646String(const char* str)
char* GciGetISO646String(GciValue* value)

Used for ISO646string values, and simple type values with base
type ISO646string.

GciValue* GciMkGraphicalString(const char* str)
char* GciGetGraphicalString(GciValue* value)

Used for Graphical string values, and simple type values with base
type Graphical string.

GciValue* GciMkGeneralString(const char* str)
char* GciGetGeneralString(GciValue* value)

Used for General string values, and simple type values with base
type General string.
1474 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
GciValue* GciMkENUMERATED(int value)
int GciGetENUMERATED(GciValue* value)

Used for Enumerated values, and simple type values with base type
Enumerated.

GciValue* GciMkCHOICE(const char* name, GciValue* value)
GciValue* GciGetCHOICE(GciValue* value)
char* GciGetCHOICEName(GciValue* value)

Used for Choice values, and simple type values with base type
Choice.

GciValue* GciMkOBJECT_IDENTIFIER()
int GciOBJECT_IDENTIFIERSize(GciValue* value)
GciValue* GciAddOBJECT_IDENTIFIERComponent(
 GciValue* value, int comp)
int GciGetOBJECT_IDENTIFIERComponent(GciValue* value,
 int index)

Used for Object identifier values, and simple type values with base
type Object identifier.

GciValue* GciMkObjectDescriptor(const char* str)
char* GciGetObjectDescriptor(GciValue* value)

Used for ObjectDescriptor values, and simple type values with base
type ObjectDescriptor.

GciValue* GciMkNULL()
int GciGetNULL(GciValue* value)

Used for Null type values, and simple type values with base type
Null type.

GciValue* GciMkANY(GciValue* value)
GciValue* GciGetANY(GciValue* value)

Used for ANY values, and simple type values with base type ANY.

GciValue* GciMkR_TYPE(int value)
int GciGetR_TYPE(GciValue* value)

Used for R_Type values, and simple type values with base type
R_Type.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1475

Chapter 37 Adaptation of Generated Code
GciValue* GciMkPDU(GciValue* value)
GciValue* GciGetPDU(GciValue* value)

Used for PDU values, and simple type values with base type PDU.

Base Functions

int GciGetType(GciValue* val)

Shall return the type of a value. The type is represented as the num-
ber used to identify global objects, see “Identifying Global Objects
in TTCN/ASN.1” on page 1457. The function is valid for all values,
but some values may be untyped in which case the function
returns 0.

GciValue* GciSetType(int type, GciValue* val)

Shall set the type of a value. Uses the same number as above. Valid
for all values. Returns the input value with type set.

Value Management

The functions are divided into two meta sets derived from ASN.1: The
sequence, and the sequence of, corresponding to struct and array in C.
The choice type of ASN.1 is not represented as a meta class because all
values in the GCI value representation can be typed and therefore is the
choice value implicit in GCI.

The functions only works within their intended set (e.g. GciSet-
Field(GciMkSEQUENCE(2), 1, GciMkINTEGER()) is well defined
but GciSetField(GciMkSEQUENCEOF(), 0, GciMkINTEGER()) is
not defined and certainly is unpredictable.

Sequence and Set Types/Values

GciValue* GciMkSEQUENCE(int size)

Creates a sequence value with size children.

GciValue* GciSetField(GciValue* seq, int index,
 GciValue* fld)

Sets the field identified by index to the given value. Indices start at
1. The function is undefined for indices greater than the size of the
sequence.
1476 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
GciValue* GciGetField(GciValue* seq, int index)

Returns the field identified by index. Indices start at 1. The function
is undefined for indices greater than the size of the sequence.

int GciSeqSize(GciValue* seq)

Returns the number of fields declared in the sequence seq.

Sequence of and Set of Types/Values

GciValue* GciMkSEQUENCEOF()

Creates a sequence of value.

GciValue* GciAddElem(GciValue* seqOf, GciValue* elem)

Adds the element elem to the end of sequence of seqOf.

GciValue* GciGetElem(GciValue* seqOf, int index)

Returns the element number index of the sequence of seqOf. Indices
start at 0. The function is undefined for indices greater than current
size.

int GciSeqOfSize(GciValue* seqOf)

Returns the current number of elements in seqOf.

Examples
This section contains examples of how the mapping between
TTCN/ASN.1 and their GCI representation could be done. The exam-
ples use a conceptual model for encoding/decoding, no error handling
is done and no attention is paid to the fact that some functions would use
pointers because of allocation issues.

Global objects (PCOs and types) are identified with an unique number.
This number is given a symbolic reference which is its TTCN name
with a D for Descriptor appended to the end of it. The number for the
PCO L is therefore referenced as LD.

Encoding/Decoding Examples

Each example consists of a table and the corresponding encode (and/or
decode) functions. The examples focus on the value representation so
the transfer syntax is simple: Each value is preceded by a header. The
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1477

Chapter 37 Adaptation of Generated Code
header contains the type of the value (as a number) and in some cases
its length (element count, not size in bytes), in real ASN.1, the header
would be built using tags. The header is written/read using primitives
BufWriteType, BufWriteSeqOfSize, etc. They are not encode/decode
primitives but rather buffer primitives.

An encode function is a function that translates the GCI value onto a
buffer, and a decode function is one that reads a value from a buffer and
builds a value in the GCI representation. Encoding functions are called
from SEND and decoding functions are called from SNAPSHOT. The
buffer has type Buffer and could be anything behaving as a sequence of
bytes. The primitives BufReadInt, BufReadBool are used to read and
write GCI basic values.

ASN.1 SEQUENCE Type

Encode
void EncodeT1(Buffer buf, GciValue* v)
{
BufWriteType(buf, T1d);
BufWriteInt(buf, GciGetField(v, 1));
BufWriteBool(buf, GciGetField(v, 2));

}

Decode
void DecodeT1(Buffer buf, GciValue* v)
{
int i;

v = GciMkSEQUENCE(2);

Figure 271: Example

ASN.1 PDU Type Definition

PDU Name: T1

Type Definition
Comment: Example PDU for GCI examples

SEQUENCE {
a INTEGER,
b BOOLEAN

}

1478 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
if (BufReadType(buf) != T1d)
Error();

GciSetType(T1d, v);

i = BufReadInt(buf);
GciSetField(v, 1 , GciMkINTEGER(i));

i = BufReadBool(buf);
GciSetField(v, 2 , GciMkBool(i));

}

ASN.1 SEQUENCE OF Type

Encode
void EncodeT2(Buffer buf, GciValue* v)
{
int i;

BufWriteType(buf, T2d);
BufWriteSeqOfSize(buf, GciSize(v));
for (i = 1 ; i <= GciSize(v) ; i++)
{
EncodeT1(buf, GciGetElem(v, i));

}
}

Decode
void DecodeT2(Buffer buf, GciValue* v)
{
int i, seqOfSize;
GciValue* elem;

if (BufReadType(buf) != T2d)
Error();

Figure 272: Example

ASN.1 PDU Type Definition

PDU Name: T2

Type Definition
Comment: Example PDU for GCI examples

SEQUENCE OF T1
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1479

Chapter 37 Adaptation of Generated Code
GciSetType(T2d, v);

seqOfSize = BufReadSeqOfSize(buf);
for (i = 1 ; i <= seqOfSize ; i++)

{
DecodeT1(buf, elem);
GciAddElem(v, elem);

}
}

ASN.1 CHOICE

Encode
void EncodeT3(Buffer buf, GciValue* v)
{
switch (GciGetType(v))

{
case T1d:
EncodeT1(buf, v);
break;

case T2d:
EncodeT2(buf, v);
break;

default:
Error();

}
}

Decode
void DecodeT3(Buffer buf, GciValue* v)
{
switch (BufGetType(v))

{

Figure 273: Example

ASN.1 PDU Type Definition

PDU Name: T3

Type Definition
Comment: Example PDU for GCI examples

CHOICE {
c1 T1,
c2 T2

}

1480 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
case T1d:
DecodeT1(buf, v);
break;

case T2d:
DecodeT2(buf, v);
break;

default:
Error();

}
}

In-Line ASN.1 Type

Encode
void EncodeT4(Buffer buf, GciValue* v)
{
GciValue* tmp;

BufWriteType(T4d);
/* Encode first field */
EncodeT1(GciGetField(v, 1));
/* Now encode inline type definition */
tmp = GciGetField(v, 2);
BufWriteInt(buf, GciGetField(tmp, 0));
EncodeT2(buf, GciGetField(tmp, 1));

}

Decode
void DecodeT4(Buffer buf, GciValue* v)
{
int i;
GciValue* tmp;

v = GciMkSEQUENCE(2);

Figure 274: Example

ASN.1 PDU Type Definition

PDU Name: T4

Type Definition
Comment: Example PDU for GCI examples

SEQUENCE {
c1 T1,
c2 SEQUENCE {
c1 INTEGER,
c2 T2

}
}

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1481

Chapter 37 Adaptation of Generated Code
if (BufReadType(buf) != T4d)
Error();

GciSetType(T4d, v);
DecodeT1(buf, tmp);
GciSetField(v, 1, tmp);
tmpseq = GciMkSEQUENCE(2);
i = BufReadInt(buf);
GciSetField(tmpseq, 1, GciMkINTEGER(i));
DecodeT2(buf, tmp);
GciSetField(tmpseq, 2, tmp);

}

TTCN Examples
myQueue below is the Test Adaptation writers own representation of the
PCO queue(s). In this example there is only one PCO, called L (Ld for
its number). Note that the number Ld can be any number (most certainly
not zero).

Snapshot Example

Snapshot must read the status of the IUT and tell this to the TTCN Runt-
ime Behavior.

void GciSnapshot()
{
GciValue* v;

/* Check if anything has arrived, */
/* This would be a while statement */
/* in a blocking context */
if (! myQueue[0].empty)

{
switch (BufPeekType(myQueue[0].buf))
{
case T1d:
DecodeT1(myQueue[0].buf, v);
break;

case T2d:
DecodeT2(myQueue[0].buf, v);
break;

default:
Error();

}

GciReceive(Ld, v);
}

/* Nothing has happened. */
}

1482 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 GCI C Code Reference
Send Example

For the send example the following ASP table is used to show an API
view of encode.

/* Two examples of send functionality */
GciStatus GciSend(int pcoDescr, GciValue* msg)
{
if (pcoDescr == PcoToSocket)
{
/* Encode first */
if (GciGetType(msg) == T1d)

{
EncodeT1(buf, msg);
BufSocketSend(buf);

}
}

else if (pcoDescr == PcoToAPI)
{
if (GciGetType(msg) == TCONreqd)

{
Buffer pdu;
EncodeT1(pdu, GciGetField(msg, 1));
/* Call to lower layer */
T_CONreq(GciGetField(msg, 0), pdu);

}
}

}

Figure 275: Example

ASN.1 ASP Type Definition

ASP Name: TCONreq

Type Definition
Comment: Example ASP for GCI examples

SEQUENCE {
num INTEGER, -- sequence number
pdu T1 -- Embedded pdu

}

July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1483

Chapter 37 Adaptation of Generated Code
EGci Value Construction and Functions
The GCI interface has been defined as a base for executable test suite
adaptation. One part of this interface covers values, how to build them,
access them, etc. While this interface was not enough, a set of functions
has been added with the EGci prefix so that the GCI functions (a set de-
fined by a standard) was not changed. The purpose of this section is to
describe this paradigm of value construction and the current EGci func-
tions available.

Value Construction
The major difference in value handling is how values are constructed.
Values are either created by the GciMk-prefixed functions, followed by
a GciSetType call, or value are created by a call to the EGciMkValue
function. The run time system is compatible with both alternatives but
the latter is preferred. The difference is that the GciMk-function creates
untyped values of a given predefined type (SEQUENCE, SET, INTE-
GER, etc.) while the EGciMkValue takes the type descriptor of the
user-defined type and creates the complete value structure with correct
types throughout the whole value structure. Values of type SEQUENCE
OF, SET OF and CHOICE cannot be fully instatiated since the
size/choice of the value is not known at code generation time. Elements
of the SEQUENCE/SET type are appended explicitly and CHOICE val-
ues are also selected explicitly.

The procedure is to create the value structure (with uninitialized leaf
values) and then extract the proper value (container) through ordinary
field access and extraction functions. Then the value is assigned using
the EGciAssign function. When available, for simple non-structured
values, EGciSet/GciSet-functions can also be used on the extracted val-
ues.

Below you will find two alternatives for creating a value given the fol-
lowing type:

T ::= SEQUENCE
{
 a SEQUENCE {
 b MyINTEGER
 },
 c MyINTEGER
}

MyINTEGER ::= INTEGER
1484 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 EGci Value Construction and Functions
v T := { a { b 17 }, c 42 }

Alternative 1 – Using GciMkSEQUENCE and GciSetType

The individual values through out the structured value have to be creat-
ed and the correct type set. It is also impossible to set the correct type
for the inlined types since they are unknown.

...
value = GciMkSEQUENCE(1);
GciSetType(value, GcTD);

inner_seq = GciMkSEQUENCE(1);
/* GciSetType(inner_seq, ?); This is not possible
since the inlined type is not available to the user.
A generated no-name type exists but is not known. So
the SEQUENCE will be untyped (only a SEQUENCE). This
is not a problem with alternative 2. */

b = GciMkINTEGER(17);
GciSetType(b, GcMyINTEGERD);
GciSetField(inner_sequence, 1, b);
c = GciMkINTEGER(42);
GciSetType(c, GcMyINTEGERD);
GciSetField(value, 1, inner_seq);
GciSetField(value, 2, c);
...

Alternative 2 – Using EGciMkValue (Recommended
Approach)

Using the EGciMkValue function makes it somewhat more readable,
but what is more important is that the final value has the correct type
throughout the structure (all done by the generated type information
used in the call to EGciMkValue). All field names are also correct.

...
value = EGciMkValue(GcTD);
/* With this call the whole structure is created and
the basic leaf values are only extracted and set
(“filled in”). */

tmp = GciGetField(value, 1);
tmp = GciGetField(tmp, 1);
EGciSetINTEGER(tmp, 17);

tmp = GciGetField(value, 2);
EGciSetINTEGER(tmp, 42);
...
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1485

Chapter 37 Adaptation of Generated Code
Available Functions

GciValue * EGciMkValue(int)

Takes the generated type identifier constant Gc<type>D and cre-
ates a proper value using all available type information generated.
This function is faster than the EGciMkValueFromTypeName but
the type identifier constants can potentially change their numeric
value if new types are added to the test suite. Any depending encod-
er/decoders have to be recompiled if the generated type information
changes. If generation dependent information is required, the
EGciMkValueFromTypeName should be used.

Example 275 ––

Given the type MyType, the call for constructing a value would be
EGciMkValue(GcMyTypeD).

–––

GciValue * EGciMkValueFromTypeName(const char* tname)

Same as EGciMkValue but it takes the (bare) name of the type.

Example 276 ––

Given the type MyType the call for constructing a value would be
EGciMkValueFromTypeName(“MyType”).

–––

void EGciRmValue(GciValue *value)

This function deletes a constructed value.

GciStatus EGciAssign(GciValue *destination, GciValue
*source)

Given the two values, which must be instantiated values of the same
type, the source is assigned to the destination value.

GciStatus EGciSetMemberByName(GciValue *val, const char*
name, GciValue *mem_val)

Sets the named member of a SEQUENCE, SET or CHOICE value
to the given value (mem_value). This is the same as doing an extrac-
tion followed by an assignment.
1486 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 EGci Value Construction and Functions
GciStatus EGciSetEmptySET_OF(GciValue *value)

Sets the value to the defined state. That is, it is an empty SET OF
value.

GciStatus EGciSetEmptySEQUENCE_OF(GciValue *value)

Sets the value to the defined state. That is, it is an empty SE-
QUENCE OF value.

GciStatus EGciSetOMIT(GciValue *value)

Sets the given optional value as omitted.

GciStatus EGciSetBOOLEAN(GciValue *value, Bool v)

Sets a constructed value of (base) type BOOLEAN to the given
boolean value.

GciStatus EGciSetSTRING(GciValue *value, const char *)

Sets a constructed value of any string base type (BITSTRING, OC-
TETSTRING, IA5String, etc.) to the given string value.

GciStatus EGciSetINTEGER(GciValue *value, int number)

Sets a constructed value of (base) type INTEGER to the given inte-
ger value.

GciStatus EGciSetNULL(GciValue *value)

Sets a constructed value of (base type) NULL to the NULL value.

GciValue * EGciSetENUMERATEDByName(GciValue *val, const
char* enum_name)

Sets the actual value of the ENUMERATED value to one of its de-
clared named numbers. For example, EGciSetENUMERATED-
ByName(gcivalue, “foo”), where “foo” is one of the named num-
bers in the type.

Example 277 ––

EType ::= ENUMERATED { first, second, third }

GciValue *eval = EGciMkValue(GcETypeD);
EGciSetENUMERATEDByName(eval, “second”);

–––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1487

Chapter 37 Adaptation of Generated Code
const char * EGciGetENUMERATEDName(GciValue *value)

Retrieves the name of the current value.

Example 278 ––

Continuing Example 277, a call to EGciGetENUMERATED-
Name(eval) would return the string “second”.

–––

GciValue * EGciGetChoiceMemberByName(GciValue *value,
const char *name)

CHOICE values are not constructed all the way down to its leaf val-
ue since the information about the selected field is not available in
the type information. When this function is called, the value con-
struction is continued and proper value will be constructed for the
selected CHOICE field (name) and the value can then be assigned
properly.

GciValue * EGciGetChoiceMemberByTag(GciValue *value,
GciTagClass tag_class, int tag)

Equivalent to EGciGetChoiceMemberByName but the unique tag
of the choice element instead of the name is used.

GciValue * EGciGetSEQUENCE_OFElement(GciValue *value)

Constructs a new value given the underlying/contained type of the
SEQUENCE_OF type. The newly constructed value must be ap-
pended using the GciAddElem function.

GciValue * EGciGetSET_OFElement(GciValue *value)

Constructs a new value given the underlying/contained type of the
SET_OF type. The newly constructed value must be appended us-
ing the GciAddElem function.

Bool EGciGetAnyValue(GciValue *value)

Predicate to check if the value is ANY value attribute. Note that this
has nothing to do with the GciGetANY function since that function
operates on values of the type ANY.

Bool EGciGetAnyOrOmit(GciValue *value)

Predicate to check if the value is ANYOROMIT value attribute.
1488 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 EGci Value Construction and Functions
Bool EGciGetIfPresent(GciValue *value)

Predicate to check if the IF_PRESENT value attribute is specified
for this value.

Bool EGciGetDefault(GciValue *value)

Predicate to check if the instatiated value comes from the default
value of the type or not.

Error Handling

If an error occurs during execution, the error state is propagated up
through the call stack and error information is added. An error has oc-
curred when either the EGciGetErrorCount function returns a number
greater than zero or a Gci/EGci-function call has returned GciNotOk.
The error message is retrieved by EGciGetLastErrorMessage and reset
by EGciClearError.

unsigned int EGciGetErrorCount()

Retrieve the current number of errors detected by the run time sys-
tem.

const char* EGciGetLastErrorMessage(void)

Retrieve the last error message in text form.

void EGciClearError()

Clear the error state of the run time system.

Miscellaneous

void EGciDumpValue(FILE *stream, const char *prefix,
GciValue *value, const char *suffix)

Prints the given value on stream. The prefix and suffix are printed
before and after the value dump respectively.

void EGciSetDebugStream(FILE *stream)

Set the debug stream where logging will be made. It is set to
stderr by default.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1489

Chapter 37 Adaptation of Generated Code
Examples
MyString ::= IA5String
EmailAddress ::= MyString
SnailmailAddress ::= SET { street MyString, number INTEGER }
AddressKind ::= ENUMERATED { email, snailmail }

-- This represents a contact with name and an address.

Contact ::= SEQUENCE {
 name MyString,
 address_kind AddressKind
 address CHOICE {
 email EmailAddress,
 snailmail SnailmailAddress
 }
}

A value would be constructed in the following way:

GciValue *tmp;
GciValue *address;
CciValue *contact;

contact = EGciMkValue(GcContactD);

tmp = EGciGetFieldByName(contact, “name”);
EGciSetSTRING(tmp, “Elvis”);

tmp = EGciGetFieldByName(contact, “address_kind”);
EGciSetENUMERATEDByName(tmp, “snailmail”);

 address = EGciGetFieldByName(contact, “address”);
 address = EGciGetChoiceMemberByName(address, “snailmail”);
 tmp = EGciGetFieldByName(address, “street”);
 EGciSetSTRING(tmp, “High road”);
 tmp = EGciGetFieldByName(address, “number”);
 EGciSetINTEGER(tmp, 42);
1490 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Adaptation Framework
The Adaptation Framework

Introduction to the Adaptation Framework
The Adaptation Framework, technically referred to as “ACM”, is a col-
lection of the functions that are needed to write a full-fledged adaptation
implemented by plug-in libraries that can be used “as is”. Currently, the
following plug-in modules are included in the TTCN suite distribution:

• TCP/IP socket communication implementation.

• Standard system-time timer implementation.

This means that if the target system uses TCP/IP to communicate, the
adaptation writer can simply use the Adaptation Framework right from
the box to get the IUT connected to generated code with minimal
amount of work.

Note that the Adaptation Framework is provided as a standardized way
to implement the GCI interface. This means that the Adaptation Frame-
work does not replace GCI, but rather complements it. To build the ad-
aptation, simply implement the needed GCI functions by calling the
counterpart framework functions that use the compiled-in implementa-
tions for the low level code; in this distribution this would be the TCP/IP
protocol for communication and a standard system time timer imple-
mentation. On the other hand, this means that one can continue to im-
plement adaptations without using the framework altogether, the old
way, and old adaptations will continue to work as before.

Examples of usage
The included adaptation residing under the ACM/ subdirectory contains
an implementation of the GCI layer by framework functions and is in-
structive in displaying the way to work with framework functions.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1491

Chapter 37 Adaptation of Generated Code
Function reference

Communication data types

Defined constant values

More values will be defined in the file acm.h once more plug-in pack-
ages are available. The user can also specify new values for his/her own
communication modules.

Communication role of the executable test suite

typedef enum
{
 ACMClient,
 ACMServer
} ACMConnectionType;

The enumerated type ACMConnectionType is used when calling
ACMConnect() to select whether the generated code should act as a
server or client to the IUT.

Communication primitives

These functions are used to implement the GCI communication func-
tions.

Initializing the communication and timer package

GciStatus ACMInit(const GciTime* max_timeout,
GciTimeUnit time_tick_unit)

Must be called after GCIInit() but prior to any use of the ACM commu-
nication or timer primitives. The first argument, max_timeout defines

Defined constant Meaning

ACM_ADDRESS_TCPIP The address type specifier used with
the TCP/IP implementation of the Ad-
aptation Framework for the GciAd-
dress type.

Note:

Values 0-100 are reserved for use by Telelogic.
1492 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Adaptation Framework
the maximum amount of time the system will wait in blocked state for
any timer. Setting this to a low value enables the possibility to write a
polling snapshot function. A defined constant exists by the name of
ACM_ONE_YEAR_IN_MINUTES that can be used as a default “big
enough” number argument.

The second argument, time_tick_unit, depicts the unit of time (in GCI
time units) used internally in the run-time system. Since all internal tim-
er data is converted to and from this unit, it is important to set this to a
value that encompasses approximately the value range of the time-out
values used in the test suite. This parameter also restricts the maximum
time that is available for a time-out value, as depicted below.

Resetting the Run-time System

GciStatus ACMReset()

This function cancels all timers, and resets all timer queues and PCO
buffers. It is typically called before starting a new test case to ensure that
all old data is removed, and to put the run-time system into an initial
mode.

Registering the GciTimeout Function

GciStatus ACMRegisterTimeoutHandler(ACMTimeoutHandler
 timeouthandler)

This function needs to be supplied with a pointer to the GciTimeout()
function before using the ACMSnapshot() function, since ACMSnap-
shot() calls the timeout function automatically for every timer that has
expired.

Internal unit Maximum length of time before timer wraps

Gcips 4.3 seconds

Gcins 71 minutes

Gcius 49 days

Gcims 136 years

... ...
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1493

Chapter 37 Adaptation of Generated Code
Registering the GciReceive Function

GciStatus ACMRegisterReceiveHandler(GciReceiveHandler
 receive_callback)

This function needs to be supplied with a pointer to the GciReceive()
function before using the ACMSnapshot() function, since ACMSnap-
shot() calls the receive function automatically for every data packet that
has arrived.

Registering the Active Decode Function

GciStatus
ACMRegisterDefaultDecodeHandler(ACMDecodeHandler
 decode_handler)

The function ACMSnapshot() calls GciReceive() automatically for ev-
ery data packet that are ready to be received. In order to do this, howev-
er, a decode function needs to be registered that can decode the incom-
ing data from its transfer syntax to the internal GCI value representa-
tion. This is easily done by the above call. Note that this opens the
possibility to switch decoding during runtime, since any decode func-
tion that fulfills the requirements are eligible to be registered as the de-
fault decoder at any time. See “Encoding, and in Particular Decoding
within ACM and GCI” on page 1512 in chapter 37, Adaptation of Gen-
erated Code for details on how to construct the decode function(s).

Registering a Specific Decode Function for a PCO

GciStatus ACMRegisterDecodeHandler(ACMDecodeHandler
 decode_handler,
 GciPCOID pco_id)

This function is similar to the previous function, but it enables a certain
decode function to be connected with a certain PCO. This means that
the function ACMSnapshot() will be able to use different decoding
mechanisms depending on which PCO the message was received from.
See “Encoding, and in Particular Decoding within ACM and GCI” on
page 1512 in chapter 37, Adaptation of Generated Code for details on
how to construct the decode functions.
1494 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Adaptation Framework
Connecting to a Communication Port

GciStatus ACMConnect(GciPCOID pco_id,
GciAddress* address,
ACMConnectionType type,
unsigned int buffer_size)

This function maps the PCO identifier value internally to an external
communication port and makes the connection. This makes it possible
to use the PCO identifier in all subsequent calls, which makes the code
quite clear.

In addition, we need to supply what type of role the ETS will have in
the communication with the IUT - as a server (ACMServer) or as a cli-
ent (ACMClient).

The buffer_size argument defines the largest possible buffer (in bytes)
that can be received in one chunk. This should usually be set to the larg-
est buffer needed to encode a value in the current value representation.

Disconnecting a Communication Port

void ACMDisconnect(GciPCOID pco_id)

This function disconnects a previously opened communication link.

Sending a Message

GciStatus ACMSend(GciPCOID pco_id, GciBuffer* buffer)

This function sends an encoded buffer on the designated PCO. When
sending, the function will block until the entire buffer have been sent,
or an error has occurred. This is simply because it is preferred to see the
send operation as an atomic operation without possible race conditions.

Receiving a Message

GciStatus ACMReceive(GciPcoID pco_id, GciBuffer* buffer)

This function tries to receive a message from the designated PCO. If
successful, the received encoded byte stream is inserted to the provided
buffer, which is allocated inside the function.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1495

Chapter 37 Adaptation of Generated Code
Retrieving the Position of the First PCO with Received
Data

GciPosition ACMGetReceivedPCOPos()

This function returns the position of the first PCO to have data ready for
receiving. The return value is simply meant to be used as an iterator ar-
gument to the ACMGetNextReceivedPCO() function. If the returned
value is zero, there are at this time no PCO that has received data.

Retrieving the position of the next PCO with received
data

GciPCOID ACMGetNextReceivedPCO(GciPosition* position)

This function returns the numeric identifier of the PCO that has data
ready to receive, and updates the position variable to point to the next
PCO with data to receive. If the position is zero, no further PCO has data
to receive.

A simple loop that checks all PCO’s for receive can be written in a sim-
ilar manner to the timer iteration described below in “A Loop That
Fetches All Expired Timers and Prints Their ID Numbers” on page
1498 in chapter 37, Adaptation of Generated Code.

Timer Primitives

Timer handling can be implemented in various ways. The package
makes it easy for the adaptation writer to use timers, by encapsulating
functionality that used to be implemented in a fairly standard way in
GciSnapshot() implementations over and over again. Instead of using
cryptic timer structures the user can now use the GCI identifier for the
needed timer in a number of timer access functions. Time itself is
fetched from the system clock, normalized to zero at the time of starting
the execution.

Starting a Timer

GciStatus ACMStartTimer(GciTimerID timer_id,
GciTime timeout)

This function starts the designated timer with the given expiration time.
If the timer has not yet been created, this call will create it. If the timer
was running or expired it is simply restarted.
1496 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Adaptation Framework
Cancelling a Timer

GciStatus ACMCancelTimer(GciTimerID timer_id)

This function transfers the designated timer from the active list to the
list of stopped timers. This call needs to be performed once a timer has
been noted as expired (via GciTimeout() in GciSnapshot() for in-
stance)

Cancelling All Timers

GciStatus ACMCancelAllTimers()

This function cancels all timers, even if they are already expired.

Reading the Value of a Timer

GciStatus ACMReadTimer(GciTimerID timer_id,
GciTime* timer_before_timeout)

This function places the current time of a given timer in the provided
GciTime object.

Checking the Current Status of a Timer

GciStatus ACMTimerStatus(GciTimerID timer_id,
GciTimerStatus* timer_status)

This function places the current status of the given timer in the status
variable. Please refer to the declaration of GciTimerStatus for the vari-
ous states of a timer.

Retrieving the Key to the First Timer That Has Expired

GciPosition ACMGetTimedOutPos()

This function retrieves the position to the first timer that has expired
from a chronological list of expired timers. The return value is simply
meant to be used as an iterator argument to the ACMGetNextTimed-
Out() function. If the returned value is zero, there are no currently ex-
pired timers.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1497

Chapter 37 Adaptation of Generated Code
Getting the Next Expired Timer

GciTimerID ACMGetNextTimedOut(GciPosition* position)

Given a position index (the index to the first timer is fetched with the
ACMGetTimedOutPos() function), this function returns an expired tim-
er and updates the position variable to point to the next timer in the list
of expired timers. If the position value is equal to zero after this call, no
more expired timers exist in the list.

Example 279 A Loop That Fetches All Expired Timers and Prints Their
ID Numbers

. . .
GciPosition pos = ACMGetTimedOutPos()

while (pos != NULL) {
 printf("Timer %d has expired!\n",

ACMGetNextTimedOut(&pos));
}

Time Left Before the Next Timer Expires

GciStatus ACMTimeLeft(GciTime *time_before_timeout)

This function retrieves the actual time left before the next timer is due
to expire. If one or more timers have already expired, the function re-
turns zero as the time left. If no timers exist, or all timers have been
stopped, the function returns GciNotOk.

Timer and PCO Handling with a Single Call

GciStatus ACMSnapshot()

For the hardened writer of many adaptations, this function offers a re-
lief. Calling this function will wrap most GciSnapshot functionality into
one call. Briefly, what the function performs internally is the following:

1. Check all PCO/CP channels for received data.

2. For each queue that contains fresh data, receive, decode it and call
GciReceive() with the result.

3. For each expired timer, call GciTimeout() with the expired timer’s
ID number, and move the timer to the list of stopped timers.

4. Return status of the operations.
1498 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Adaptation Framework
In effect, the simplest snapshot implementation can now look like this:

Example 280 The Simplest Snapshot in the World!

GciStatus GciSnapshot()
{
 return ACMSnapshot();
}

Somewhere in the code, before calling ACMSnapshot() for the first
time, it is also necessary to register three functions with ACM:

• GciReceive()

• GciTimeout()

• A decode function.

This is due to the fact that ACMSnapshot() will possibly try to call these
functions depending on the internal state. A good place to register these
functions is close to the ACMInit() call:

.

.
ACMInit(max_timeout, ...);
.
.
ACMRegisterTimeoutHandler(&GciTimeout);
ACMRegisterReceiveHandler(&GciReceive);
ACMRegisterDefaultDecodeHandler(&DecoderFunction);

Waiting for the Next Event

GciStatus ACMWaitForEvent()

If more functionality is needed in the snapshot function, a mechanism
for waiting for the correct amount of time is needed. This function
sleeps until the next timer is due, or until data arrives on a PCO, which-
ever comes first, and returns with status GciOk, at which point the snap-
shot function can simply poll the input queues for data, and/or take the
now arrived timeout. If no timers are running, the function returns after
the maximum time to wait as defined in ACMInit(...). If this time is
set to a small amount, we have a polling snapshot in effect.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1499

Chapter 37 Adaptation of Generated Code
Example 281: The Same Snapshot but with Written Out Code ––––––

GciStatus GciSnapshot()
{
 GciPosition expired_pos;
 GciTimerID expired_timer;
 GciPosition received_pos;
 GciPCOID received_pco;
 GciBuffer buffer;
 GciValue* value;

/* Sleep until either a timer has expired
 * or data is received. For a polling
 * snapshot, remove this. */
 if (ACMWaitForEvent() != GciOk) {
 return GciNotOk;
 }

/* First, check all timers. */
 if (ACMSynchronizeTimers() != GciNotOk) {
 return GciNotOk;
 }
 expired_pos = ACMGetTimedOutPos();

 while(expired_pos != NULL) {
 expired_timer =

ACMGetNextTimedOut(&expired_pos);
 GciTimeout(expired_timer);
 if (ACMCancelTimer(expired_timer) != GciOk) {
 return GciNotOk;
 }
 }
/* Next, take care of the PCO’s */

 buffer.buffer =
 (char *)malloc(sizeof(char) *

MAX_ENCODING_BUFFER+1);
 buffer.current_length = 0;
 buffer.max_length = MAX_ENCODING_BUFFER;

 received_pos = ACMGetReceivedPCOPos();

 while(received_pos != NULL) {
 received_pco =
 ACMGetNextReceivedPCO(&received_pos);
 if (ACMReceive(received_pco, &buffer) != GciOk)
 {
 return GciNotOk;
 }
 value = GeneralDecode(&buffer);
 if (value != NULL) {
 if (GciReceive(received_pco, value)!= GciOk) {
 return GciNotOk;
 }
 }
1500 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 The Adaptation Framework
 else {
 fprintf(stderr,
 "Transfer syntax error on PCO %s\n",
 GciGetPCOName(received_pco));
 return GciNotOk;
 }
 }
 return GciOk;
}

––

Retrieving the Current System Time

GciStatus ACMCurrentTime(GciTime* current_time)

This function retrieves the time of the system clock in the instance of
the function call.

Error Handling

The error handling of the Adaptation Framework will be straightfor-
ward to those familiar with the err_no paradigm of C. Every time an er-
ror occurs, the function sets an internal error code and returns
GciNotOk. The error code can then be retrieved either as an enumerated
value, or as a descriptive string.

The error codes can be found in the file acm.h.

Setting the Error Code

ACMSetLastError(ACM_Error_Number errornumber)

Sets the error number to the given value.

Retrieving the Error Code of the Last ACM Error

ACM_Error_Number ACMGetLastError()

Returns the last error code as an enumerated value.

Retrieving the Error String of the Last ACM Error

const char* ACMGetLastErrorMessage()

Returns the last error code as a printable string.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1501

Chapter 37 Adaptation of Generated Code
Completing the Adaptation
The generated code has to be extended before it is complete in order to
test the intended implementation. This section describes how to make
these extensions.

Figure 276 displays in a simple way the anatomy of an executable test
suite.

When code is generated by the code generator, it does not know any-
thing about the system it is about to test. It assumes that it will have ac-
cess to certain functions, implemented by the user. This is the “Test
Support Functions” module in Figure 276.

One important thing to remember is that the previously defined inter-
face called GCI, is a standardized set of functions.See “The GCI Inter-
face” on page 1450 in chapter 37, Adaptation of Generated Code. Ad-
aptation should be made using the functions and data types defined
by that interface.

The Test Support Functions

This is the “glue” between the TTCN Runtime Behavior and the IUT. It
is a set of functionality (functions) that is adaptation specific and should
be provided by the user.

Figure 276: The anatomy of an executable test suite

TTCN Runtime Behavior

Test Support Functions

PCOs

IUT

 (provided)
1502 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
The following areas have to be covered and they are described in more
detail in the sections they refer to.

Implementation and Handling of Timers

The timers defined in the Test Suite must have a real representation in
the test environment. The TTCN Runtime Behavior will, when neces-
sary, ask the adaptation about the status of a timer. See “Representation
and Handling of PCO and CP Queues” on page 1506 in chapter 37, Ad-
aptation of Generated Code.

Representation and Handling of PCOs [and CPs]

Messages are communicated through Points of Control and Observa-
tion and Connection Points. The actual buffering of incoming IUT mes-
sages must be supplied by the adaptation. See “Representation and Han-
dling of PCO and CP Queues” on page 1506 in chapter 37, Adaptation
of Generated Code.

Communication with Test Equipment [and PTCs]

To be able to test the IUT at all, there must be actual communication
channels to and from it. The actual communication is of course totally
depending on the system environment. See “IUT Communication” on
page 1505 in chapter 37, Adaptation of Generated Code.

Encoding and Decoding

Values in the test suite (constraints, variables, constants, etc.) must be
properly encoded and decoded for sending them to the IUT. The actual
protocol for encoding decoding is up to the user. See “Encoding and De-
coding” on page 1507 in chapter 37, Adaptation of Generated Code and
“Encoding and Decoding Using BER” on page 1514 in chapter 37, Ad-
aptation of Generated Code for more details.

Implementing the Adaptor the Efficient Way – the Adaptation
Framework

The implementation of timer handling and communication primitives
can be made by calls to the Adaptation Framework API, which permits
the underlying “hard” protocol and timer implementation to change
without having to change the high-level adaptation code. See “The Ad-
aptation Framework” on page 1491 in chapter 37, Adaptation of Gener-
ated Code for a thorough explanation.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1503

Chapter 37 Adaptation of Generated Code
Timers
Timers need some special attention. As timers are implemented differ-
ently on different systems the implementation of the timers might differ.
See the timers adaptation template in the installation for ideas.

Timers are simply a number of constructions to keep track of each of the
test suite timers. In the generated code a timer is represented by an inte-
ger descriptor which uniquely identifies it. The timer implementation
supplied with the Adaptation Framework implements the timeout func-
tionality by maintaining an ordered list of the running timers, which
means that retrieving the time left to timeout and the next timer to expire
are quick operations.

To refresh the current status of timers, the timer lists need to be synchro-
nized to the system time. This is made automatically by the snapshot
function ACMWaitForEvent() (more on this function later) or can be
made explicitly by a call to the function ACMSynchronizeTimers().
This function simply checks all running timers with the system clock,
moving timers that are due to the list of expired timers.

There are four functions to consider regarding timers:

GciStartTimer

GciCancelTimer

GciReadTimer

GciSnaphot

The interfaces to timers that can (and should) be called in the TTCN
Runtime Behavior are:

GciTimeout

GciGetNoOfTimers

GetTimer

GciGetTimerName

GetTimerIndex

For details concerning these functions, see “GCI C Code Reference” on
page 1465 in chapter 37, Adaptation of Generated Code.
1504 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
The Adaptation Framework interfaces to timer functionality that can be
used to implement the GCI functions are:

ACMStartTimer

ACMCancelTimer

ACMCurrentTime

ACMGetTimedOutPos

ACMGetNextTimedOut

ACMReadTimer

ACMTimeLeft

ACMTimerStatus

ACMWaitForEvent

These functions map to a real-time timer implementation that is provid-
ed with the installation of TTCN suite and can be used “as-is”. See Re-
lease Notes for details on which platforms are supported by this timer
package.

Timer Adaptation Example

The timers adaptation template is the simple adaptation template with
timers implemented. It demonstrates in general how to use the Adapta-
tion Framework to implement timer functionality, and in particular the
use of the call ACMSynchronizeTimers() that must be used in snap-
shot when ACMWaitForEvent() can’t be used.

IUT Communication
From an abstract point of view, sending and receiving is done over
PCOs (Points of Control and Observation). The physical representation
of these PCOs has to be defined by the user. It can be shared memory,
serial communication, sockets, etc. This, of course, is only done on the
controlling side. The PCOs have to be connected somewhere to the test
equipment and the responsibility for this is put upon the user.

The GCI functions that must perform the communication is (at least):

GciSend
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1505

Chapter 37 Adaptation of Generated Code
GciReceive

For details concerning these functions, see “GCI C Code Reference” on
page 1465 in chapter 37, Adaptation of Generated Code.

Representation and Handling of PCO and CP
Queues
PCOs are constructions to handle the PCO queues. Each PCO should
have buffers for sending and receiving, a method for retrieving the sta-
tus of the receive buffer and additional information such as channels
and ports must be provided for the physical channels.

If the ETS is to run within the test equipment, i.e. the communication
between the ETS and the IUT resides within the test equipment, the ETS
has to be moved (cross compiling or if possible compiling within the
test equipment).

This queue initialization should of course be made before any test case
are run. The function that concerns the PCO’s and CPs are:

GciSnapshot

GciSend

GciSnapshot() can be implemented using for instance ACMWaitFor-
Event(), and GciSend() can be implemented using ACMSend(). To-
day, the ACM layer builds upon a TCP/IP socket implementation but
other protocol implementations can be easily added.

The interface that should be used when a message has been received (af-
ter proper decoding) in the TTCN Runtime Behavior is:

GciReceive

Note that if the ACM layer function ACMWaitForEvent() is used in the
snapshot function, the user never has to call GciReceive() since this
is done automatically from within ACMWaitForEvent()!

For details concerning these functions, see “GCI C Code Reference” on
page 1465 in chapter 37, Adaptation of Generated Code.
1506 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
Encoding and Decoding
tBuffer is the subsystem of UCF that is used to represent values of
ASN.1 types in the transmitted bit pattern. This section describes the in-
terface for tBuffer.

Functions

To invoke functions of tBuffer, the following macros are to be called:

Initialization of buffer

You should initialize tBuffer before using it.

void BufInitBuf(tBuffer buf, tDirectionType dirtype,
UCFStatus status)

Closing of buffer

You should close tBuffer after working with it.

void BufCloseBuf(tBuffer buf)

Initialization in write mode

This function initializes tBuffer in write mode. You can write data
to the buffer after calling this function.

UCFStatus BufInitWriteMode(tBuffer buf)

tBuffer buf Buffer for data storage

tDirectionType
dirtype

Data writing order (DIRECT or REVERSE).

UCFStatus status Status of initialization. Variable “status” is equal
to UCF_Ok if no errors were encountered during
initialization or an error code otherwise.

Note: Buffer direction mode

REVERSE modes is not supported in the buffers anymore, although
the prototype of the BufInitBuf function still includes the dirtype
parameter for backwards compatibility. The direction mode param-
eter is always ignored when calling the BufInitBuf function.

tBuffer buf Buffer
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1507

Chapter 37 Adaptation of Generated Code
Initialization in read mode

This function initializes tBuffer in read data. You can read data from
the buffer after calling this function.

UCFStatus BufInitReadMode(tBuffer buf)

Closing write mode

This function closes write mode of tBuffer. You should call this
function after the ‘write to buffer’ operation is completed.

void BufCloseWriteMode(tBuffer buf)

Closing read mode

This function closes read mode of tBuffer. You should call this
function after reading from the buffer is finished.

void BufCloseReadMode(tBuffer buf)

Getting direction type of the buffer

This function returns the direction type of tBuffer.

tDirectionType BufGetDirType(tBuffer buf)

Creating copy of buffer

This function makes a copy of the buffer.

UCFStatus BufCopyBuf(tBuffer dst, tBuffer srs)

Getting the data byte length

This function returns the buffer’s data length in bytes.

tLength BufGetDataLen(tBuffer buf)

Note: No REVERSE mode

REVERSE mode is not supported in the buffers anymore, although the
BufGetDirType function is still present in the buffer interface for
backwards compatibility. It will always return DIRECT mode.

tBuffer dst destination buffer

tBuffer src source buffer
1508 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
Getting the data bit length

This function returns the buffer’s data length in bits.

tLength BufGetDataBitLen(tBuffer buf)

 Getting the available length

This function returns the maximal data length you can write into the
buffer in one piece (in bytes).

tLength BufGetAvailableLen(tBuffer buf)

Getting byte

This function reads one byte from the buffer. The buffer should be
initialized in read mode.

unsigned char BufGetByte(tBuffer buf)

Getting data segment

This function reads a data segment from the buffer. The buffer
should be initialized in read mode.

unsigned char* BufGetSeg(tBuffer buf, tLength
seglen)

Peeking byte

This function peeks (reads, but does not remove) one byte from the
buffer. The buffer should be initialized in read mode.

unsigned char BufPeekByte(tBuffer buf)

Peeking data segment

This function peeks (reads, but does not remove) a data segment
from the buffer. The buffer should be initialized in read mode.

unsigned char* BufPeekSeg(tBuffer buf, tLength
seglen)

tBuffer buf Buffer to read from

tLength seglen Requested data length

tBuffer buf Buffer to read from

tLength seglen Requested data length
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1509

Chapter 37 Adaptation of Generated Code
Putting byte

This function writes one byte into the buffer. The buffer should be
initialized in write mode.

void BufPutByte(tBuffer buf, unsigned char byte)

Putting data segment

This function writes a data segment into the buffer. The buffer
should be initialized in write mode.

void BufPutSeg(tBuffer buf, unsigned char* data,
tLength seglen)

Putting bit

This function writes one bit into the buffer. The buffer should be ini-
tialized in write mode.

void BufPutBit(tBuffer bud, unsigned char bit)

Getting bit

This function reads one bit from the buffer. The buffer should be ini-
tialized in read mode.

unsigned char BufGetBit(tBuffer buf)

Putting bits

This function writes bits into the buffer. The buffer should be ini-
tialized in write mode.

void BufPutBits(tBuffer buf, unsigned char bits,
unsigned char num)

tBuffer buf Buffer to write into

unsigned char
byte

Byte to write into buffer

tBuffer buf Buffer to write into

unsigned char bit Value of bit (0 or 1)

tBuffer buf Buffer to write into

unsigned char bits Sequence of bits
1510 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
Getting bits

This function reads bits from the buffer. The buffer should be ini-
tialized in read mode.

unsigned char BufGetBits(tBuffer buf, unsigned char
num)

Putting padding bits

This function writes padding bits in PER ALIGN variant of encod-
ing. The buffer should be initialized in write mode.

void BufPutAlign(tBuffer buf)

Getting padding bits

This function reads padding bits in PER ALIGN variant of encod-
ing. The buffer should be initialized in read mode.

void BufGetAlign(tBuffer buf)

Set encoding variant (PER only)

This function sets the encoding variant.

void BufSetEncVar(tBuffer buf, UCFEncVariant encVar)

Get encoding variant (PER Only)

This function returns the encoding variant.

UCFEncVariant BufGetEncVar(tBuffer buf)

Setting up error catcher

This function sets up error catcher. Returns 0 or code of error if any.

unsigned int BufSetCatcher(tBuffer buf)

unsigned char
num

Number of bits in sequence (num <= 8)

tBuffer buf Buffer to read from

unsigned char Number of bits (num <= 8)

UCFEncVariant
encVar

Encoding variant (UCF_Align, UCF_Unalign or
UCF_NoEndPad)
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1511

Chapter 37 Adaptation of Generated Code
Getting error mode

This function gets error mode (bem_Off or bem_On).

tBufferErrorMode BufGetErrorMode(tBuffer buf)

Supported ASN.1 Types
• BOOLEAN
• INTEGER
• ENUMERATED
• REAL
• OBJECT IDENTIFIER
• NULL
• BIT STRING
• OCTET STRING
• IA5String
• NumericString
• PrintableString
• VisibleString
• UTCTime
• GeneralizedTime
• SEQUENCE
• SET
• SEQUENCE OF
• SET OF
• CHOICE
• Tagged types
• Open types

Encoding, and in Particular Decoding within ACM and GCI

The standard way to implement the encoder and decoder functions are
to put at least one function of each in the file encoder.c and declare them
in the file encoder.h. With every adaptation that is provided with the
TTCN suite installation are those files included, often with empty en-
code/decode functions where the user is supposed to enter the appropri-
ate functionality. The functions should be of the following structure:
1512 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
The Encoding Function

GciStatus Encoder_<name>(const GciValue*,
 GciBuffer**)

If encoding was successful, the GciBuffer should be loaded with the en-
coded data and GciOk returned by the function. Otherwise, the function
should return GciNotOk.

The Decoding Function

GciStatus Decoder_<name>(const GciBuffer*,
 int*,
 GciValue**)

If decoding was successful, the GciValue should be loaded with the de-
coded GCI value, the integer should contain the number of bytes that
were consumed in the decoding process and the return status GciOk.
Upon failure, the function should simply return GciNotOk.

Note that several encode/decode functions can exist, and the user can
switch between them at will, either by calling different functions from
GciSnapshot() or by registering different functions prior to calling AC-
MSnapshot(). See “Registering the Active Decode Function” on page
1494 in chapter 37, Adaptation of Generated Code for details.

General

A test suite has no knowledge of the encoding and decoding rules of the
actual application protocol. The definition of signal components and the
description of the signal flows are done in an abstract and high-level
manner. The physical representation of the signal components and the
definition of the actual transfer syntax is not defined within the test
suite.

The encoding and decoding rules (functions) simply define a common
transfer syntax between the test equipment and the executable test suite.

It is up to the user to write his/her own encoding and decoding rules us-
ing the GCI value representation. Even if the TTCN to C Compiler
comes with an adaptation template that includes a general encoder and
decoder, these rules can not be used at all times.

For test applications that need to send the same type of messages back
and forth through a communication channel, the encoding and decoding
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1513

Chapter 37 Adaptation of Generated Code
functions must be related to each other in such way that the decoding
function is the inverse function of the encoding function. This gives the
following simple rule:

Message = Decode(Encode (Message))

This simply states, that if you decode an encoded message, you will get
the original message back.

For applications that send and receive messages of different types (for
example an application sending commands to an interface one way and
receiving command results the other way), the encoding and decoding
rules might not be related at all.

It is up to the user to identify how he/she needs to encode and decode
messages to successfully be able to communicate with his/her test
equipment.

Encoding and Decoding Using BER

TTCN Suite can generate encode/decode function definitions, that give
an opportunity for representing values of each ASN.1 type as a string of
eight-bits octets and transfer them between the environment and the
ETS. TTCN Suite now have support for BER (Basic Encoding Rules)
standard, defined in X.690 for the subset of ASN.1 that is defined by
TTCN.

BER Encoder/Decoder Support Library

The BER support comes in the form of a static library that supports en-
coding/decoding functionality of ASN.1. Profiles of all the functions
that a user can use are located in the ucf.h in the static files directory.
This file should be included in the adaptation and the library should be
linked together with the adaptation.

The library contains two basic functions that provide functions for en-
coding/decoding types, computing length of values and buffer handling
procedures: BEREncode(...) and BERDecode(...).

How to Use BER Support in the TTCN Suite?

First, select Generate BER encoders/decoders in the Make options dia-
log. A file will be generated called asn1ende.h in your target directory.
This file defines the encoding and decoding functions for the ASN.1
definitions in the test suite.
1514 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
Second, you should implement the usage of the encoding functions in
your adaptor.c. This is done in the GciSend and GciSnapshot func-
tions. Also, you should define buffers and initialize them (this can be
done in main.

The generated file <ModuleName_of_ASN.1-specifica-
tion>_asn1icoder.h contains the encoding/decoding function definitions
for ASN.1 objects in the Test Suite. For example, if you have ASN.1
ASP Type definition by name of ASPType1, two functions will be gen-
erated:

 UCFStatus Encode_ASPType1(tBuffer, GciValue*);

 UCFStatus Decode_ASPType1(tBuffer, tLength*, GciValue**);

The first parameter of the encode function is the buffer where the en-
coded data is placed. The decoding is made from the buffer to a GCI
value.

The encoding/decoding functions are specific for the ASP/PDU types in
question so when calling them in GciSend and GciSnapshot, you need
to make sure that they are called with a value of the correct ASP/PDU
type. One way to get around this problem is to define a single ASP/PDU
type that is a CHOICE of all types that you are sending or receiving in
your test suite.

Example

For example, we have a test suite with ASN.1 ASP Type

ASPType1 ::= INTEGER

And ASN.1 ASP constraint of ASPType1 named

ASPCon1 ::= 5

We have PCO named PCO1 and dynamic behavior like this:

PCO1 ! ASPType1 | Constraint: ASPCon1
PCO1 ? ASPType1 | Constraint: ASPCon1

 And we want to use BER for encoding/decoding. After code generation
we have a <ModuleName_of_ASN.1-specification>_asn1icoder.h file
with the following definitions:

tLength Encode_ASPType1(tBuffer, GciValue*);
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1515

Chapter 37 Adaptation of Generated Code
tLength Decode_ASPType1(tBuffer, GciValue**);

So in our adaptation file we need to declare, initialize and close BER
buffers:

tBuffer InBuffer;
tBuffer OutBuffer;
.
. (rest of the adaptation)
.
int main(int argc, char* argv[])
{

BufInitBuf(InBuffer, DIRECT, status);
BufInitBuf(OutBuffer, DIRECT, status);

 .
 . (ETS control)
 .
 BufCloseBuf(InBuffer);
 BufCloseBuf(OutBuffer);
 return 0;
}

In GciSend() we should initialize buffer in WriteMode and encode val-
ue:

GciStatus GciSend(int pcod, GciValue* object)
{
 UCFStatus status;

BufInitWriteMode(OutBuffer);
 .
 .
 Encode_ASPType1(OutBuffer, object);
 status = Encode_ASPType1(OutBuffer, object);
 if(status != UCF_Ok)
 {
 UCFPrintErrorMessage(stderr,status);
 /* warning or exit */
}

 .
 .
 BufCloseWriteMode(OutBuffer);
 return GciOK;
}

In GciSnapshot() we should initialize buffer in ReadMode and decode
value:

GciStatus GciSnapshot()
{
 UCFStatus status;
 tLength DecLength;
1516 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
 BufInitReadMode(InBuffer);
 .
 .
 Decode_ASPType1(InBuffer, &result);
 status = Decode_ASPType1(InBuffer, &DecLength,
&result);
 if(status != UCF_Ok)
 {
 UCFPrintErrorMessage(stderr,status);
 /* warning or exit */
 }
 .
 .
 BufCloseReadMode(InBuffer);
 return GciOK;
}

How to Use the PER Support in the TTCN Suite

The PER support is used almost exactly like the BER support, so read
above first to learn how to use the BER support. The PER Encoding/De-
coding functions have been changed and now return a UCFStatus value:

 UCFStatus Encode_ASPType1(tBuffer, GciValue*)

 UCFStatus Decode_ASPType1(tBuffer, tLength*,
GciValue**)

The primary difference to the BER support is that the PER support in-
cludes supporting different variants of PER. The variants supported are
Unalign, Align and NoEndPad with the Unalign variant being the de-
fault. The Unalign and Align variants are, just like BER, eight-bit octet-
oriented, but the NoEndPad variant is bit oriented which necessitates
use of the bit-oriented access to the buffer instead of the byte-oriented
access.

The mechanism to select PER encoding variants is based on the use of
pre-processor symbols. By defining the symbol
UCF_PER_DEFAULT_ENCODING_VARIANT to the value associated with
the selected encoding variant before including the asn1ende.h file, all
types will get the selected encoding variant unless explicitly overridden.

Overriding the default encoding variant can be done on a per type basis
by defining the pre-processor symbol
EncodingVariant_<type name> to the selected variant value before
including the asn1ende.h file.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1517

Chapter 37 Adaptation of Generated Code
The following example shows a snippet of the adaptor.c file in a sit-
uation where all types but the type Type1 is to be encoded/decoded with
the Align variant and Type1 is to use the Unalign variant.

Example 282: Selecting PER encoding variant –––––––––––––––––––

#define UCF_PER_DEFAULT_ENCODING_VARIANT UCF_Align
#define EncodingVariant_Type1 UCF_Unalign
#include <asn1ende.h>

––

The Adaptation Framework
To make it even easier to connect the generated code to “the real world”,
the Adaptation Framework (ACM) is introduced, a platform-indepen-
dent API that encapsulates communication and timer handling provided
by plug-in components. These components can be communication pro-
tocol implementations, simulated timer modules, etc. and can easily be
replaced without having to rewrite the adaptation – provided the Adap-
tation Framework has been used to implement the GCI functions in the
adaptor.

Currently, the TTCN suite is delivered with the following plug-in mod-
ules for the framework:

• A TCP/IP socket communication implementation.

• A system-time timer package.

This means that if the adaptation is written using the Adaptation Frame-
work, the generated code can instantly be used with TCP/IP communi-
cation. As the framework also hides all internal mechanisms of the run-
time system, the resulting adaptation will be easier to maintain, more
general and much smaller in size.

Example 283: An Implementation of GciSend with ACM –––––––––––

GciStatus GciSend (int pcod, GciValue* msg)
{
 GciBuffer encoded_value;
 GciStatus status;

 encoded_value.buffer = (char *) malloc(
sizeof(char) * MAX_ENCODING_BUFFER + 1);
 encoded_value.current_length = 0;
 encoded_value.max_length = MAX_ENCODING_BUFFER;
1518 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

 Completing the Adaptation
 status = Encode(&encoded_value, msg);
 if (status != GciOk) {
 fprintf(stderr, “%s\n”,
 ACMGetErrorMessage(ACMGetLastError()));
 return GciNotOk;
 }
 status = ACMSend(pcod, &encoded_value);
 free(&encoded_value);

 if (status != GciOk) {
 fprintf(stderr, “%s\n”,
 ACMGetErrorMessage(ACMGetLastError()));
 return GciNotOk;
 }
 return status;
}

––

Adaptation Templates
An empty adaptation is copied to the code directory if the user has no
prior adaptation.

It is up to the user to implement the functions in the GCI operational in-
terface. These functions are called from the TTCN runtime behavior
and should not be removed even if they are empty.

The function bodies and declarations are found in the empty adaptation
files, but the function bodies are empty. They only contain a print state-
ment about the function not being implemented.

The ACM adaptor also uses the Adaptation Framework for communica-
tion and timer handling and is a good example to study on how to use
the Adaptation Framework to implement GCI functions.

Auxiliary Adaptation Functionality
This section describes some extra functionality which is included in the
adaptation templates.

FILE* logStream;

This is the stream to where log messages are written. The default
value is stdout and is set in the main function, but can be set to
whatever stream the user wishes to use.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1519

Chapter 37 Adaptation of Generated Code
extern const int Gc<tablename>D = {int}

Constant numbers for all tables (test case table, PCO table, timer ta-
ble, etc...) in TTCN. Used to search in the IcSymTab array (see sym-
bol table below). An example is for GcTestCaseD = 517.

The simple adaptation template (in the installation) includes all empty
functions for the previously described GCI operational functions to be
defined by the user.
1520 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003

	37 Adaptation of Generated Code
	The GCI Interface
	The GCI Interface Model
	Informal Description of the Test Run Model
	Which Does What?
	Case Studies
	Case Study: SEND
	Case Study: RECEIVE

	Methods Used
	Identifying Global Objects in TTCN/ASN.1
	Test Suite Operation Definitions
	Logging
	Value Representation

	Introduction to the GCI Interface
	Management Interface
	Behavior Interface
	Operational Interface
	Value Interface

	GCI C Code Reference
	Predefined Types
	Management Interface
	Behavior Interface
	Operational Interface
	Value Interface
	Base Types/Values
	Base Functions
	Value Management

	Examples
	Encoding/Decoding Examples
	ASN.1 SEQUENCE Type
	ASN.1 SEQUENCE OF Type
	ASN.1 CHOICE
	In-Line ASN.1 Type

	TTCN Examples
	Snapshot Example
	Send Example

	EGci Value Construction and Functions
	Value Construction
	Alternative 1 – Using GciMkSEQUENCE and GciSetType
	Alternative 2 – Using EGciMkValue (Recommended Approach)

	Available Functions
	Error Handling
	Miscellaneous

	Examples

	The Adaptation Framework
	Introduction to the Adaptation Framework
	Examples of usage
	Function reference
	Communication data types
	Communication primitives
	Timer Primitives
	Error Handling

	Completing the Adaptation
	The Test Support Functions
	Timers
	Timer Adaptation Example

	IUT Communication
	Representation and Handling of PCO and CP Queues
	Encoding and Decoding
	Functions
	Supported ASN.1 Types
	Encoding, and in Particular Decoding within ACM and GCI
	Encoding and Decoding Using BER
	How to Use the PER Support in the TTCN Suite

	The Adaptation Framework
	Adaptation Templates
	Auxiliary Adaptation Functionality

