
SECURING OPEN SOURCE VIRTUAL PRIVATE NETWORKS:
A STUDY IN LINUX SECURITY

By

WILLIAM VALELLA

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTERS OF SCIENCE

UNIVERSITY OF FLORIDA

2001

Copyright 2001

by

William Valella

TABLE OF CONTENTS

Page

LIST OF TABLES... vi

LIST OF FIGURES .. vii

ABSTRACT... ix

CHAPTERS

1 INTRODUCTION ..1

Virtual Private Networks .. 2
Virtual Private Network Design Issues... 4
Virtual Private Network Implementations .. 5

Application Layer ... 6
Link Layer... 7
Network Layer .. 7
Transport Layer... 8

IPSEC Implementation ... 9
Outline of Thesis... 11

2 LINUX ..13

Introduction to Linux .. 13
History... 15
Linux Virtual Private Network Solution... 15

3 PRE-IMPLEMENTATION CONSIDERATIONS ..17

Hardware Requirements.. 17
Network Addresses ... 17
File System Structure.. 18

Filesystem Hierarchy Standard Directory Requirements ... 21
Secondary Hierarchy... 22
Linux VPN File System Structure .. 25

User Accounts and Groups ... 26
Passwords.. 30

4 INSTALLING LINUX ...32

iii

Application Packages.. 34
Devlopment Packages... 37
System Environment Packages ... 40
Final Configurations ... 43

5 UPDATING THE LINUX DISTRIBUTION...46

Updating the Linux Kernel ... 46
Compiling and Installing the New Kernel .. 49

6 SERVER SECURITY...54

Physical security ... 54
Terminal Security.. 55
LILO – Linux Loader.. 57
Boot Process.. 61

7 PROCESS AND FILE SYSTEM SECURITY...66

Setting Resource Limits on Processes .. 66
Securing the cron daemon... 67
Console Apps Security Directory ... 68
Brief Explanation of Linux File Permissions.. 69
Securing File System Permissions .. 73
System Logs.. 77

8 ACCESS AUTHENTICATION ...80

Pluggable Authentication Modules... 80
PAM and Super-User Commands... 83

9 NETWORK CONFIGURATION...85

Network Configuration ... 85
Settings for the /proc/sys Directory .. 88

10 DAEMON SECURITY ..94

Dynamic Host Configuration Protocol ... 94
Securing Name Resolution Services... 95
The inetd Daemon... 102
TCP Wrappers... 103
Secure Shell Configuration ... 104

11 SECURE SOCKETS LAYER ..114

OpenSSL... 114

iv

How PKI Works.. 115
How SSL Works ... 116
Server Certificates... 117

12 APACHE WEB SERVICE...119

Apache Modules ... 119
Install the mod_auth_external module.. 126
Compiling and Installing Apache ... 127
Define a Secure Virtual Host .. 128
Starting Apache... 130
Securing Apache ... 130

13 WEBMIN..133

Installation... 134
Configuration .. 135

14 FREES/WAN IPSEC..137

FreeS/WAN IPSEC Configuration ... 137
Setting up RSA Authentication Keys ... 139
Exchanging authentication keys ... 142

IPSEC configuration file... 143
Securing the IPSEC Configuration and Key Files.. 148
Configuring Remote Gateways for IPSEC Communication 148

15 FINAL CONFIGURATION...150

Firewall ... 150
Installing the VPN firewall ... 152
Final Lockdown .. 152
Conclusion .. 152

APPENDICES

A KERNEL CONFIGURATION OPTIONS ..154

B OPENSSL CIPHER SPECIFICATIONS...157

C APACHE WEB SERVER CONFIGURATION..159

D FIREWALL CONFIGURATION SCRIPT...169

LIST OF REFERENCES...180

BIOGRAPHICAL SKETCH ...188

v

LIST OF TABLES

Table Page

Table 3-1. External Network (eth0) Configuration..17

Table 3-2. Reserved Private Network Allocated IP Addresses ...18

Table 3-3. Internal Network (eth1) Configuration...18

Table 3-4. File System Directory Classifications ..20

Table 3-5. User and Group Accounts ..27

Table 4-1. Application Packages ...34

Table 4-2. Development Packages...36

Table 4-3. System Environment Packages...39

Table 6-1. Inittab actions defined ..64

Table 7-1. File Permissions..71

Table 13-1. Webmin Configuration...133

Table B-1. SSL RSA Ciphers ..157

Table B-2. SSL Diffie-Hellman Ciphers ...157

Table B-3. OpenSSL Cipher Specification Tags ...158

Table B-4. OpenSSL Aliases ...158

vi

LIST OF FIGURES

Figure Page

3-1. Root directory structure ..20

3-2. Directory structure of /usr...23

3-3. Directory structure of /usr/local..23

3-4. Directory structure of /var ..24

3-5. Linux file system structure ...25

3-6. RedHat Linux default users ..26

5-1. RedHat Update Packages..51

5.2. OpenSSH and OpenSSL packages..52

5-3. Additional Linux packages...53

6-1. LILO configuration file – /etc/lilo.conf..58

6-2. Run level configuration of /etc/inittab..61

7-1. Mountable file system table..74

7-2. Default file permissions..75

7-3. System log configuration..78

8-1. Configuration of /etc/pam.d/login ..81

8-2. Configuration of /etc/pam.d/other ..83

8-3. Configuration of /etc/pam.d/su ...84

9-1. Network configuration of etc/sysconfig/network-scripts/ifcfg-eth085

9-2. Network configuration of /etc/sysconfig/network-scripts/ifcfg-eth186

9-3. Configuration of /etc/sysconfig/network ..86

vii

Figure Page

9-4. Configuration of /etc/host.conf...87

9-5. Configuration of /etc/resolv.conf..87

9-6. Configuration of /etc/sysctl.conf ..89

10.1. Configuration of /etc/dhcpd.conf ..94

10-2. Directory structure of /chroot ...96

10-3. Configuration of /etc/rc.d/init.d/named ...98

10.4. Configuration of /etc/inetd.conf..100

10-5. Configuration of /etc/hosts.deny...103

10-6. Configuration of /etc/hosts.allow ...104

10-7. Configuration of /etc/ssh/sshd_config ..107

10-8. Configuration of /etc/ssh/ssh_config ..111

12-1. Apache web server SSL global context configuration ...122

12-2. Modify pwauth source code ...126

12-3. Configuration of /etc/pam.d/pwauth...127

12-4. Apache Secure Virtual Host Configuration..129

12-5. Configuration of /etc/rc.d/init.d/httpd..131

13-1. Apache Webmin virtual host ..134

13-2. Apache Webmin web directory ..135

14-1. Configuration of /etc/ipsec.secrets ...140

14.2. Virtual private network connection ..143

14-3. Configuration of /etc/ipsec.conf ...144

viii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

SECURING OPEN SOURCE VIRTUAL PRIVATE NETWORKS:
A STUDY IN LINUX SECURITY

By

William Valella

December 2001

Chairman: Dr. Manuel Bermudez
Major Department: Computer and Information Science and Engineering

Small businesses continue to search for ways to save money while increasing

productivity. Finding a solution to this oxymoron may appear to be beyond the grasp of

most. However, with the growing open-source community and the rapid adoption of the

Linux operating system it is possible to save money and increase productivity. Linux is a

free operating system and is widely available both in retail stores and on the Internet. As

a result, a great number of programmers and researchers have begun developing,

maintaining, and freely distributing many of the same types of programs previously only

available at high cost.

 By using these “freeware,” open source programs, small businesses can now

connect branch offices and remote users to the home-office network. This thesis

introduces many of the open-source tools available for developing and securing Virtual

Private Networks that can provide low-cost connectivity for small businesses. The thesis

focuses on creating a production system using low-cost PC hardware and freely

ix

distributed software. In addition, it provides an in-depth discussion of the security

implications of remote connectivity and guides the reader through the steps involved in

addressing each security issue. The thesis also reports on the experience gained while

deploying a production Linux Virtual Private Network solution and the experience of

maintaining such a system.

x

CHAPTER 1
INTRODUCTION

Consider a time when access to a file left in a directory on a corporate network

would prove invaluable at another location. The company denies access to the corporate

network from anywhere other than the physical location of the network—from a

workstation directly connected to the network. Using an ftp client to get the file from the

corporate ftp server would make life much easier. However, the file contains sensitive

information and, according to corporate policy, cannot reside on a server providing

publicly accessible services such as ftp. Opening a telnet connection to the corporate

network is no longer an option since telnet is inherently an insecure protocol.

In addition, it is not economical for the company to hardwire everyone into the

trusted network. The manpower does not exist to deploy such a hardwired network, and

even if it did, the maintenance alone would be prohibitively expensive. Outsourcing the

connection to a third party would take care of the deployment and maintenance, but the

financial resources are normally insufficient to foot the bill for it. That does not leave

much in the way of options for corporate connectivity. Can the company afford not to

offer remote connectivity without sacrificing productivity? How can the company use a

low-cost, high-speed Internet connection such as a DSL or Cable modem to provide an

encryption/authentication tunnel into the corporate trusted network? An option must

exist to provide remote connectivity for small businesses and its branch offices.

1

 2

Virtual Private Networks

A Virtual Private Network (VPN) can provide a low-cost, low-maintenance

alternative for telecommuters and branch offices of corporate entities. As a result,

companies can consider a potential productivity increase with all users having access to

the corporate LAN from just about anywhere. A Virtual Private Network is a set of

private networks using secure communications across a public infrastructure like the

Internet. With the current availability of highly secure authentication and encryption

schemes it is possible to implement a tunnel protected by encryption and authentication

that passes packets from one trusted network to another. In fact, many vendors such as

Cisco, Nokia, and Watchguard Technologies provide such services through hardware

connected to any dedicated Internet connection.

The precursor to the VPN can be called the private data network – a secure

private medium using dedicated local office wiring and dedicated leased circuits to

connect remote sites or branch offices; all at an extremely high cost. The associated cost

involves the client now managing the network and all its associated elements, investing

capital in network-switching infrastructure to pass and route packets to the appropriate

subnets and bridges, hiring trained and experienced staff, and assuming complete

responsibility for the provisioning and on-going maintenance of the network service

(Ferguson & Huston, 1998).

The base motivation for not employing a private data network is the economics of

communication. Rhetorically, the question is just what is data worth and how much is

anyone willing to invest in its protection. Many small-to-medium businesses do not have

security policies or a standard means for evaluating their own network security.

 3

“Often, the business of engineering a product obscures the need to protect
the design from the unknown or unexpected Peeping-Tom. Further, their
capital is first and foremost used in engineering and marketing.
Commonly if a corporation does not have a significant web-presence, the
thought of network and Internet security is bottom of the list. As small
companies find it more economical to have branch offices rather than
expand locally, connecting remote sites is essential to sharing data. Most
companies, however, are not willing to invest the capital in a security
employee or in a managed connectivity solution. So what is the answer?
Provide a secure, easy to manage, low-cost VPN implementation that does
not require a large capital investment or additional staff.” (Chae, 1998)

By far the biggest selling point for Virtual Private Networks is the associated cost

savings. Using the Internet to distribute network services over long distances means

avoiding having to purchase expensive leased lines to branch offices or partner

companies. In addition, paying for long-distance charges on dial-up modem or ISDN

calls between distant sites becomes a thing of the past. Finally, implementing a VPN

solution means not having to invest in additional wide-area network (WAN) equipment

and instead leveraging an existing Internet installation.”

InternetWeek research on VPN usage shows that of 29% 200 IT managers

currently use a VPN solution and 55% plan to implement one in 6 months to a year.

Sixty-eight percent of IT mangers plan to use VPN authentication and access control on

extranet applications. Remote site connections were at the top of the usage list with 41%

intending to connect at least one remote site and 67% between one and ten sites. Ninety

percent of those surveyed felt Security was the most important requirement of VPN

implementations, with ease of management or tools provided a close second. Fifty-two

percent of managers intend to implement their own VPN solution rather than purchase a

bundled service such as a managed VPN from an Internet Service Provider

(InternetWeekOnline, n.d.).

 4

According to Packet Magazine, IP is seemingly the corporate standard for data

communications across local and wide-area networks, and intranets have become a

critical means for sustaining and increasing productivity and decreasing time to market,

which in turn places unprecedented demands on WAN technologies to ensure quality of

service and carry advanced network services such as security. With such importance

placed on intra-network communications, the need for cost-effective options for

connecting users over distributed networks steps forward as a problem needing

immediate attention. Managers want a way to quickly and economically set up a secure

intranet using leased lines and the “insecure” Internet.

Virtual private networks can provide “secure” connection using encrypted

connections between users’ distributed sites. More importantly, the VPNs forward IP

traffic so that in most cases they can provide a secure path for network applications that

requires no changes to the actual application itself to support multiple platforms.

“The principle motivation in establishing a VPN of this type is that
perhaps the majority of communications between devices within the VPN
community may be sensitive in nature…, yet the total value of the
communications system does not justify the investment in a fully private
communications system which uses discrete transmission elements.”
(Ferguson & Huston, 1998)

Perhaps the most pervasive type of VPN is one in which distributed subnetworks—

whether separated geographically or administratively—falling under a common

administrative or corporate domain must be interconnected using a shared domain that is

outside of administrative control.

Virtual Private Network Design Issues

A high-quality Virtual Private Network needs to support multiple OS platforms,

remain open-sourced but with roots firmly planted in a supported standard, provide IP

 5

fragmentation support, strong security, a bastion firewall, key management, policy

management, and authentication, and be scalable across a multitude of conditions. In

addition, these conditions must come at a cost most small businesses can manage.

Further, VPN implementations must take into account that the service provided

operates through a medium considered a mutually hostile environment. In such an

environment as the Internet, any vulnerability exposing the trusted partners to access by

third parties will, in most cases, be exploited in a hostile fashion. A Virtual Private

Network rarely exists as a completely isolated communication network. Each VPN has

some external connection that allows controlled connectivity with other VPNs and the

broader untrusted community. As a result, the greatest consideration in the design of a

virtual private network involves the tradeoff between secure privacy and the need for

external access.

Virtual Private Network Implementations

In past implementations of virtual private networking, attempts were made to

provide secure communications through the various operating system layers. Securing

the application layer meant providing secure communications on a program-by-program

basis. On the other side, providing secure communications through the link layer proved

extremely cost prohibitive. Using the network layer often proved successful but at the

cost of interoperability across platforms. Of the four layer implementations, the transport

layer proved the most versatile and remains at the forefront of VPN technology

(Ferguson & Huston, 1998). What follows is a summary description of current and past

implementations categorized by layer.

 6

Application Layer

Privacy can be provided based on an application-by-application basis using

cryptoAPIs such as the Generic Security Service API. The GSS API is an application-

programming interface that provides security services to callers in a generic fashion. It is

supportable by a range of underlying mechanisms and technologies, allowing source level

portability of applications to different environments. CryptoAPI provides an abstraction

layer that isolates the application from the algorithm used to protect the data. The

application will refer to contexts and keys and make calls to special functions listed in the

API that act as drivers for the encryption servers installed on the machine. These servers

are Cryptographic Service Providers (CSP) and are the modules that do the actual work

of encoding and decoding data. As a result, an application can be developed

incorporating the CryptoAPI and can provide secure communications on an application-

by-application basis.

Cryptographic Service Providers are not the only means for providing application-

based secure communications. Protocols such as Pretty Good Privacy (PGP) can provide

end-to-end encryption and authentication for files and email. PGP utilizes certificate and

key registrations that offer the user the option to encrypt their own data and publish a

public key to the global community. In addition, the user can register the public key with

an authorization authority so other users can verify the validity of the key. Other

examples of application-layer security include Domain Name System Security (DNSSec)

that allows secure zone transfers between different administrative name servers; Secure

remote access provided by using secure shell protocols such as SSH or Stanford’s Secure

Remote Password.

 7

Link Layer

Link layer secure communications typically involve the use of Asynchronous

Transfer Mode (ATM), a network technology based on transferring data in cells or

packets of a fixed size, and Frame Relay Virtual Connections. These technologies can

provide Private Virtual Circuits that allow discrete VPNs to be constructed across a

single Frame Relay network. However, such implementations are often cost prohibitive

and complex to implement and manage. Multi Protocol Over ATM (MPOA) is one

example of such technologies. MPOA uses standardized ATM switching to provide high

performance, scalable routing functionality to restrict and grant access to destinations on

managed networks and from the Internet. This implementation is very reliable if

constructed and managed well, however, because of its sole reliance on ATM means it

can be difficult and costly to implement.

Network Layer

At the network layer, secure communications typically utilize the operating

system’s routing implementations and services to encrypt and then transfer secured

information to other similarly implemented operating systems. The virtual private

network daemon (Vpnd) connects two networks on a network level either via TCP/IP or a

leased line attached to a serial interface. All data between the two networks are encrypted

using the un-patented free Blowfish encryption algorithm. Blowfish is a symmetric block

cipher that takes a variable-length key, from 32 bits to 448 bits. The random key length

makes it ideal for both domestic and exportable use since government restrictions allow

only a certain level of encryption for export – typically 56 bits or less. Bruce Schneier

designed Blowfish in 1993 as a fast, free alternative to existing encryption algorithms

such as DES and IDEA. However, vpnd is not intended as a replacement for existing

 8

secured communications software like ssh or tunneling facilities of the operating system.

Rather, it is intended as a means of securing transparent network interconnection across

potentially insecure channels. Such a network layer implementation would require

further application or transport layer securities.

Border Gateway Protocol (BGP) is an inter-autonomous system routing protocol

designed for TCP/IP Internets. BGP supports transit policies via controlled distribution of

routing information. In plain terms, it is a method to control route propagation. The use of

the BGP communities attribute allows a VPN provider to attach a community attribute to

the BGP Network Layer Reachability Information. In this way, configuration control

allows route information propagation in strict accordance with community profiles.

Subscribers to this type of VPN cannot detect the presence of other subscribers even

though multiple interwoven streams of subscriber data traffic pass unprotected in the core

of the service provider’s network

Transport Layer

Netscape’s Secure Sockets Layer (SSL) can allow a client and server to

authenticate each other and negotiate encryption and keys before an application transmits

data. Thus, it can provide secure communication for any application that can interact with

the transport layer calls for SSL. Transport Security Layer (TSL) is the next generation

of SSL 3.0.

VPN tunneling involves data packets that are first encrypted for security, and then

encapsulated in an IP package by the VPN and tunneled through the Internet. Such

implementations include L2TP, SOCKS 5, and IPSEC and can provide tunneling

functions that can be widely used as the building blocks for VPN security.

 9

Layer-2 Tunneling Protocol (L2TP) is a combination of Microsoft’s PPTP and

Cisco’s Layer-2 Forwarding (L2F). L2TP supports any routed protocol and any WAN

backbone technology (frame relay, ATM, x.25 and SONET). Further information on

L2TP is available in RFC2661.

SOCKS5, also known as Authenticated Firewall Traversal, creates network

proxies at the session layer. It is a protocol for handling TCP traffic through a proxy

server that can be used with virtually any TCP application, including Web browsers and

FTP clients. Further it provides a simple firewall and IP masquerading by checking and

filtering incoming and outgoing packets and hides the IP addresses of client applications.

It is a mechanism where a secure proxy data channel can be established in a client/server

environment.

Internet Protocol Security (IPSEC) is a suite of protocols that provide security

features for IP VPNs. IPSEC provides a means of ensuring the confidentiality and

authenticity of IP packets. IPSEC works by encapsulating IP data packets into new IP

packets fitted with authentication and security headers. It utilizes strong cryptography

such as RSA and DES3 to provide both authentication and encryption services.

Authentication ensures that packets are from the right sender and have not been altered in

transit; while, encryption prevents unauthorized reading of packet contents. IPSEC was

developed by the Internet Engineering Task Force and will be required as part of Ipv6.

 IPSEC Implementation

The premise of IPSEC is to provide security in the form of authentication and

encryption at the IP level. IPSEC implements its security using the ESP, AH, and IKE

protocols. The Encapsulating Security Payload (ESP) protocol encrypts and authenticates

data. The encryption is provided via a block cipher. A block cipher is a method of

 10

encrypting data in which a cryptographic key and algorithm are applied to a block of data

as a group rather than as one bit at a time. Packet authentication is done via the a hashed

message authentication code (HMAC) construct that uses a hashing algorithm such as

MD5 or SHA and a key to verify the integrity of the data. The Authentication Header

(AH) protocol provides a packet authentication service that implements verification of

connectionless integrity, data origin authentication, and optional anti-replay service.

The Internet Key Exchange (IKE) protocol is responsible for negotiating connection

parameters, including keys, for the ESP and AH protocols. IPSEC uses the Diffie-

Hellman key agreement that is based on the discrete logarithm problem and can employ

the RSA algorithm to authenticate gateways for Diffie-Hellman key negotiation.

A positive aspect of IPSEC is that it can protect any protocol running above IP

and any medium that IP runs over. Conversely, higher-level security implementations

such as PGP, SSH, SSL, or TLS can only protect a single protocol, and lower-level

services can only protect a single medium. In this respect, IPSEC provides flexibility not

had by other protocols by providing security at the IP level instead of other levels.

Though IPSEC is extremely well supported and flexible, it does have some

limitations that must be considered. IPSEC does not secure the system itself, so other

physical and software security must protect the integrity of the system. In addition,

IPSEC is not end-to-end between applications and users and additional security

implementations must be used to provide user-to-user security. Further, IPSEC

authenticates machines not authenticate users. Therefore, strong authentication controls

messages directing from machine to machine while user authentication must be done at

the application level.

 11

IPSEC cannot stop denial of service attacks and traffic analysis is still possible

while using IPSEC. Since the headers of the encrypted packets are not themselves

encrypted, a very skilled cracker can attempt to gather information such as source and

destination addresses and packet size from the headers. The cracker would not, however,

be able to gain information from the payloads of the packets themselves.

Even with these limitations, IPSEC’s benefits can outweigh any limitations that

may exist. IPSEC authentication of the underlying communication can prevent man-in-

the-middle attacks by preventing forging keys. IPSEC is also transparent to the end

users; therefore, all security considerations can be made at a central point of

implementation.

Finally, all the major open-source operating systems – Linux and BSD-derived

UNIX variants – support IPSEC. In addition, many commercial OS vendors such as

Microsoft, Apple, and Sun support IPSEC. The overall appeal of the IPSEC protocol and

its implementation at the transport layer is its interoperability since it doesn’t specify a

proprietary way to perform authentication and encryption.

Outline of Thesis

In this thesis we present the design and implementation of a production Linux

VPN server. Within this implementation, we will describe all aspects of a typical Linux

networked system. This will include, installation of the Linux operating system, user and

group additions and modifications, password selection, file system structure, network

configurations, and server daemon services. The focus during the implementation of the

Linux VPN server will be on securing the system and the data contained therein.

Securing a Linux system includes all aspects of the Linux system including physical and

network security. The following chapters will introduce the reader to the Linux operating

 12

system and provide an in-depth exploration of the steps necessary to secure a Linux

operating system server to function robustly in a production environment.

In addition, the installation and securing of various server services will be covered

with a focus on manageability of and integration with a VPN server. The FreeS/Wan

IPSEC software has been chosen for its ease of manageability and integration with

common server services.

CHAPTER 2
LINUX

Introduction to Linux

Millions of users worldwide use Linux for a variety of applications. Linux is used

as a robust server operating system by many web sites and ISPs., and many graphic

artists turn to it as an economical design workstation. Further, Linux is the development

platform of choice for a large number of C programmers. Much of this can be attributed

to its ability to run on less expensive PC hardware. Linux is a modern operating system

running on 32-bit architectures. It uses preemptive multitasking and protected memory

while supporting multiple users and networking (Schenk, n.d.).

Above all, Linux is a free UNIX-like clone that runs popular server software, and

is becoming increasingly popular in the desktop arena. The success of the Linux

operating system can be attributed to its flexibility, reliability, and economics.

The source code to the Linux kernel is “copylefted” under the GNU Public

License, meaning that the system must be freely distributed with source code available,

and anyone may freely modify that source code provided that any modifications they

choose to distribute are distributed with the source code included. Since the source to

Linux is open and available, it is easy to search and customize. This flexibility has

enabled Linux to run on everything from hand-helds and embedded systems to clusters of

hundreds of servers and mainframes. Open source accelerates the development process. It

breaks down the barriers between developers and users, and removes obstacles in

developer-to-developer communication (Jordan, n.d.)

13

14

The proof of the open source model is in the results: Apache holds roughly 60%

market share among web servers, and that market share is growing. Sendmail holds

roughly 80% market share among mail transfer agents. Linux is the fastest growing

server-class operating system (Schenk, n.d.).

Each new version of the Linux operating system is rapidly viewed and tested by

thousands of programmers world-wide and thus bugs are easily identified. Linux's

fundamental architecture also creates a more reliable system. Systems using protected

memory and preemptive multitasking are inherently more stable. Protected memory

prevents an error in one application from bringing down the entire system, and genuine

multitasking means that a bottleneck in one application does not hold up the rest of the

system. Linux also maintains a clean separation between user processes and kernel

processes. While other server class operating systems use protected memory, protected

memory does no good if faulty applications are allowed to invade kernel space with their

processes.

Since Linux is free and open-sourced, the initial investment in Linux is low.

Linux requires no seat licenses, and has no usage fees associated with the operating

system. Linux is also runs on a variety of CPU architectures, meaning it can run on low

cost, widely available personal computer hardware. The total cost of ownership is a

positive factor in the economics of a server class environment. Updates happen rapidly

and openly rather than on the timed-release schedules of most major vendors. Support is

available in a variety of forms, from a legion of open source programmers to a number of

commercial supporters of Linux. The result is that bugs are identified and fixed rapidly,

15

new features are brought on line quickly. This means a lower up-front cost that

dramatically reduces the total cost of ownership.

History

 In the early 1990s, a Finnish Computer Science student named Linus Torvalds

decided that he wanted a version of the industrial operating system called UNIX to run on

a personal computer. The development started with Minix, a small UNIX-like operating

system. Minix was originally written to assist students in learning operating system

concepts and programming; because of this, it came with its complete source code. Linus

developed and integrated his own source code to add some of Minix’s missing

functionality and in the end decided to abandon Minix and write his own version of a

UNIX operating system. Finally, Linus made his improvements available to the open-

source community.

Programmers from around the world responded with bug fixes, more

enhancements, suggestions and encouragement. Volunteers added features with each

release and eventually all the Minix code was rewritten. As a result, Linux became a

completely independent project. Now, Linux has several thousand active developers

worldwide, and it is currently the fastest growing server operating system. Several

projects are also underway to make Linux more attractive to the desktop market

(Schenk).

Linux Virtual Private Network Solution

Using Linux is it is possible to implement a gateway machine to provide secure

remote access through IPSEC between two distributed sites. In addition to the

connectivity between sites, the Linux gateway can provide site services for LAN

16

connectivity among the computers at each remote site. These services include DHCP for

IP connectivity and administrative web access. Further, the gateway should provide a

strong firewall implemented to mask the existence of the gateway on the Internet. The

implementation should provide transparent access for each site’s users to the remote sites

and to the Internet.

Linux can provide a low-cost solution for small businesses and individuals for

providing remote access to any IP-based network. The total cost of ownership will

remain low and support is available through a variety of resources whether free or fee-

based (Jordan, n.d.).

CHAPTER 3
PRE-IMPLEMENTATION CONSIDERATIONS

Hardware Requirements

To create a Virtual Private Network server using the Linux operating system, any

standard Pentium-class PC will do. A Pentium II 300MHz or above with 64MB RAM, a

10GB hard disk, a CD-ROM drive, and a floppy drive should be more than sufficient.

In addition to the basic PC, two Ethernet adapters are needed. Use the highest

quality cards possible, as lower end adapters tend to not perform as well. For a list of

some of the Linux-supported network adapters see the “Linux Networking HOWTO –

Chapter 6: Ethernet Information” (Drake, 2000).

Network Addresses

One adapter will function as the connection to the “unsecured” Internet using a

reserved IP address from a service provider as shown in Table 3-1.

Table 3-1. External Network (eth0) Configuration
IP address 209.86.84.125
Netmask 255.255.255.224
Default Gateway 209.86.84.124
Primary Nameserver 172.154.232.1
Secondary Nameserver 172.153.242.2

The other adapter will function as the connection to the private intranet using a

reserved IP address from the Local Area Network. The IP address range on the Local

Area Network should come from a reserved internal address range according to

RFC1918—“Address Allocation for Private Internets” by Y. Rekhter, B. Moskowitz, D.

Karrenberg, G. J. de Groot, and E. Lear, February 1996—available at ftp://ftp.isi.edu/in-

17

18

notes/rfc1918.txt. System administrators should choose intranet IP addresses from those

listed in Table 3-2.

Table 3-2. Reserved Private Network Allocated IP Addresses
Network Class Netmask Network Addresses

A 255.0.0.0 10.0.0.0 - 10.255.255.255
B 255.255.0.0 172.16.0.0 - 172.31.255.255
C 255.255.255.0 192.168.0.0 - 192.168.255.255

The IP address and an appropriate netmask for the external adapter will be

allocated from a service provider or from an existing pool of previously requested IP

addresses. In addition, it is necessary to have the IP addresses of a primary domain name

server and a secondary name server to resolve Internet addresses and the IP address of a

router providing access to the Internet to serve as the default gateway for traffic traveling

outside the LAN. The term eth0 will refer to the network adapter providing access to the

Internet, and eth1 will refer to the LAN network adapter. Only eth0 needs the domain

nameserver and default Internet information; eth1 only requires an internal IP and

netmask as shown in Table 3-3.

Table 3-3. Internal Network (eth1) Configuration
IP address 192.168.1.1
Netmask 255.255.255.0
Default Gateway 209.86.84.125

Once the network adapters and IP addresses are chosen and before beginning the

installation of the operating system, consideration needs to be given to the structuring of

the file system and to user access and security.

File System Structure

When developing any Linux-based server, consideration must be given to the

layout of the file system. By using a consistent file system structure, a system

administrator can readily identify changes within that file system. From a security

19

standpoint, by restricting the structure of the file system and consistently enforcing that

structure, changes made by intruders to the system can be detected more easily and in a

timely manner. For the Linux VPN system, the system administrator can use the

Filesystem Hierarchy’s standard to maintain the integrity of the file system.

The Filesystem Hierarchy Standard (FHS) was developed by the Filesystem

Hierarchy Standard Group to allow UNIX- and UNIX clone- based software an users to

predict the location of installed files and directories. The standard assumes that the target

operating system supports basic UNIX security features such as symbolic linking, group

and user permissions, and system and event logging.

The standard divides files into two distinct groups according to sharing

permissions and system state. As UNIX-based file systems typically exist in networked

and distributed environments, files are first classified based on whether they are shareable

or un-shareable. Files relevant to many users or hosts will be distributed or shared to

ease access and maintenance while files specific to single hosts or groups of hosts remain

unshared and protected from the network and distributed system as a whole.

Secondly, the file system can contain files considered either static or dynamic

relative to their specific system state. Static data includes binaries, documentation, run-

level templates, or anything that does not change without the intervention of a system

administrator. Dynamic data encompasses any data that will change without system

administrator intervention such as system logs, error reports, mail, spools, and other user

data. Often dynamic data is also referred to as variable – functioning as a storage location

holding a value or values that can be replaced or overwritten with new or changing values

by some internal or external means.

20

A common FHS-compliant system will employ the conventions listed in Table 3-

4 for data based on sharing and system state (Russell & Quinlan, 2001).

Table 3-4. File System Directory Classifications
 Shareable Unshareable
Static /usr /etc
 /opt /boot

Dynamic /var/mail /var/run
 /var/spool/news /var/lock

Of course, this is only one of many possible examples of an FHS-compliant

system. By following a common FHS-compliant file system securing the file systems on

a variety of UNIX-based operating systems becomes more direct and easier to manage.

A system administrator can predict the locations of important and private data requiring

protection and has the flexibility of scripting the permissions, sharing, and locking of the

file system’s data.

In open-source, UNIX-based operating systems such as Linux a particular file

system structure should and commonly is followed. The file system always starts with

the root directory (symbolized as /) and should include the directory structure listed in

Figure 3-1 (Russell & Quinlan, 2001).

 / -- the root directory
|_ bin Essential command binaries
|_ boot Static files of the boot loader
|_ dev Device files
|_ etc Host-specific system configuration
|_ lib Essential shared libraries and kernel modules
|_ mnt Mount point for mounting a filesystem temporarily
|_ opt* Add-on application software packages
|_ sbin Essential system binaries
|_ tmp* Temporary files
|_ usr* Secondary hierarchy
|_ var* Variable data

Figure 3-1. Root directory structure

21

Directories followed by an asterisk (*) should reside on separate partitions from

other directories and the root directory and should be symbolically linked, or mounted, as

part of the root directory. Further, each directory has specific requirements that must be

met in order for the file system structure to remain FHS-compliant.

Filesystem Hierarchy Standard Directory Requirements

The /bin directory must not contain any subdirectories or links to other mounted

directories or devices. In addition, only commands required for use in single user mode

(when no other file systems are mounted) should exist in the /bin directory. The

commands located in the /bin directory are available to both system administrators and

users, so extra care should be taken when moving or placing files into this directory.

The /boot directory must contain all data necessary for the boot process to

complete successfully including the system kernel. The data stored in /boot must not

contain any references to user-mode programs. Configuration files and the map installer,

though essential to the boot process, should not reside in the /boot directory since these

files belong in the system configuration (/etc) and the system command (/sbin) directories

respectively.

All local host configuration files should reside in the /etc directory. In addition, in

order to protect the directory from corruption or failed program installs, no binaries

should reside in the /etc directory. The /etc should be considered static and unshareable

since only the system administrator should access this directory for changes or updates to

the host configuration. Further, the /etc directory requires a /opt subdirectory to store

host configuration files for add-on application software packages. Each package should

create a subdirectory /etc/opt/<package> to store its configuration data. No data should

reside in the /etc/opt directory, only subdirectories.

22

The /mnt directory is provided for temporary mounting of file systems by the

system administrator only. No installation program may mount file systems in this

directory and the system administrator must implement a security procedure to allow user

mounting of devices and file systems either in this directory or in a suitable temporary

directory within the /usr directory.

The /opt directory is where add-on applications should reside and must be located

in a subdirectory -- /opt/<package>. The packages in the /opt/<package> directory should

be static package objects and any binaries or man pages to be invoked by a user must be

located in an /opt/<package>/bin or /opt/<package>/man directory respectively. Any

subdirectory residing in the /opt directory other than add-on package directories are for

local system administrator use only. If an add-on application requires the use of packages

that change in normal operation, or are deemed variable, is should reside in an

/var/opt/<package> subdirectory of the root directory.

The /sbin directory should contain only utilities and root-only commands for use

during system administration such as booting, restoring, recovering, or repairing the file

system and, therefore, should remain protected and unshared. Used only after successful

mounting of the /usr file system, the /usr/sbin directory contains utilities and root-only

commands not used for booting, restoring, recovering, or repairing the system. If the

system administrator requires additional utilities and programs, such files and binaries

should reside in the /usr/local/sbin subdirectory of /, the root.

Secondary Hierarchy

The /usr directory is the second major section of the file system and must be

shared and contain static (read-only) data. The directories, or symbolic links to

directories, listed in Figure 3-2 are required in /usr (Russell & Quinlan, 2001).

23

 /usr -- Secondary Hierarchy
|_bin Most user commands
|_include Header files included by C programs
|_lib Libraries
|_local Local hierarchy (empty after main installation)
|_sbin Non-vital system binaries
|_share Architecture-independent data

Figure 3-2. Directory structure of /usr

The system administrator installs local software in the /usr/local subdirectory

structure according to the directories or symbolic links to directories listed in Figure 3-3.

 /usr/local -- Local hierarchy
|_bin Local binaries
|_games Local game binaries
|_include Local C header files
|_lib Local libraries
|_man Local online manuals
|_sbin Local system binaries
|_share Local architecture-independent hierarchy
|_src Local source code

Figure 3-3. Directory structure of /usr/local

By FHS standards, in order for a file system to remain standards-compliant, no

other directories except for libraries directories may be in /usr/local after a systems initial

installation. The data contained in /usr/local must be protected from changes when

updates are performed on the system software. It is possible, if implemented carefully

and securely, to share the data in /usr/local among a group of hosts. Further exploration

on the sharing requirements of /usr/local will be covered in subsequent sections. The

/usr/share subdirectory is for static, hardware independent data. A man/ and misc/

directory must exist as a subdirectory of /usr/share. Online help manuals should reside in

/usr/share/man and miscellaneous non-platform-dependent data should reside in

/usr/share/misc. (Russell & Quinlan, 2001).

24

All dynamic data should live in the /var subdirectory. After making this

statement, should all other subdirectories be marked and/or mounted in a static (read-

only) state? The answer is absolutely, positively, and mostly. An exception to any

absolute always exists. Typically, a system administrator will want to provide each user

his or her own “sandbox” to play in. By creating each user a directory in the /home

subdirectory, a system administrator can segregate users from essential and protected

system data and control each user’s access to shared data. At logon, the user’s

environment is constructed from data or symbolic links within their home directory, and

their home directory acts as the root for all their data whether static or variable. In

addition, temporary subdirectories must exist in a read/write state for commands and

programs invoked by users. As a general rule, a system administrator should ensure the

bulk of dynamic data lives in /var hierarchy and should segregate users from protected

and unshareable data.

In the FHS, the directories, or symbolic links to directories, listed in Figure 3-4

are required in /var

 /var -- Variable data
|_cache Application cache data
|_lib Variable state information
|_local Variable data for /usr/local
|_lock Lock files
|_log Log files and directories
|_opt Variable data for /opt
|_run Data relevant to running processes
|_spool Application spool data
|_tmp Temporary files preserved between system reboots

Figure 3-4. Directory structure of /var

According to the Filesystem Hierarchy Standard, “[s]everal directories are

`reserved' in the sense that they must not be used arbitrarily by some new application,

25

since they would conflict with historical and/or local practice. They are: /var/backups,

/var/cron, /var/msgs, /var/preserve” (Russell & Quinlan, 2001).

Linux VPN File System Structure

As implementations provided in later subsections will target the open-source

Linux operating system, an additional subdirectory of the root, /, files system should be

addressed. Linux employs the proc file system as its de-facto standard for managing

system processes and system information. In addition, tightening security requires two

additional subdirectories of the root, /chroot and /home. A more detailed look at the

security implications of the /chroot subdirectory will come in later sections. The /home

directory contains user directories and is created automatically during the Linux install;

mount it on a separate partition for extra security. The revised file system structure for a

secure Linux VPN system would appear as listed in Figure 3-5.

 / -- the root directory
|_ bin Essential command binaries
|_ boot* Static files of the boot loader
|_ chroot* security jail
|_ dev Device files
|_ etc Host-specific system configuration
|_ home* User directories
|_ lib Essential shared libraries and kernel modules
|_ mnt Mount point for mounting a filesystem temporarily
|_ opt* Add-on application software packages
|_ proc Process and system information
|_ sbin Essential system binaries
|_ tmp* Temporary files
|_ usr* Secondary hierarchy
|_ var* Variable data

Figure 3-5. Linux file system structure

Subdirectories of the root followed by an asterisk, *, should be placed on separate

partitions of the hard disk drive. Armed with a definitive file system structure and the

right hardware and network information, the system administrator should delay the

26

system installation further to seriously consider the security implications of user accounts

and passwords.

User Accounts and Groups

In the scope of a Linux Virtual Private Network server configuration, the system

administrator must make wise choices relating not only to the selection of strong

passwords but also relating to the appropriate number of users requiring access to the

system. By restricting the number of user and group accounts on a production machine, a

system administrator can then identify the addition of or changes made to any account or

group on the system. Red Hat Linux creates a default set of users at installation time.

The Red Hat default user accounts and any other users created are listed in the

/etc/passwd file. Figure 3-6 provides an example RedHat Linux password file.

 root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:operator:/root:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher-data:
ftp:x:14:50:FTP User:/var/ftp:
nobody:x:99:99:Nobody:/:

Figure 3-6. RedHat Linux default users

Each entry in the /etc/passwd file is in the form:

<username>:<password>:<UID>:<GID>:<description>:<home directory>:<login shell>

27

The password field contains only the character ‘x’ that redirects the authentication

process to a shadow file containing the passwords. In earlier UNIX generations,

passwords were stored in the passwd file. The problem was the /etc/passwd file needed

to be readable by other groups than just root to complete the login process. So even

though the passwords were “salted” with additional characters and encoded using a hash,

since the file was readable, it was susceptible to a dictionary attack. If a cracker could

obtain access to the /etc/passwd file she could then encode a dictionary of words and

common passwords with the 4096 possible salt values and run a comparison of that

dictionary to the encoded passwords. So the authentication module accepts a user’s login

and then checks the password in the /etc/shadow file that is only readable through root

access or a secured group access (Adams & Erickson, 1999).

Table 3-5. User and Group Accounts
Users Groups
root root
bin bin

daemon daemon
adm sys

nobody adm
named tty
read disk
write mem
httpsd kmem
admin wheel

 man
 nobody
 user
 named
 read
 write
 httpsd
 admin

28

Red Hat also comes with a set of default groups. Linux groups are stored in the

/etc/group file and each entry has the format:

<group name>:<blank>:<GID>:<member1,member2,...,membern>

Remove any non-essential user accounts and groups and check the /etc/passwd

and /etc/group file for additional users created by applications or intruders. The default

users and groups to keep are listed in Table 3-5; all other accounts and groups should be

deleted.

Use the userdel command to remove user accounts, and the groupdel command to

remove groups:

[root@turtledove /]# userdel <username>, [root@turtledove /]# groupdel
<groupname>.

Five additional user accounts and groups are needed in this Linux VPN system

configuration: admin, read user, write user, httpsd, and a chroot user, named, to provide a

secure jail for specific services and daemons.

Use the following syntax to add a user to the Linux VPN system:

[root@turtledove /]# useradd <username>

Use the following syntax to change or set the password for a user:

[root@turtledove /]# passwd <username>

Use the following syntax to add a group to the system:

[root@turtledove /]# groupadd <group name>

For the httpsd user, use the following to create the user account:

[root@turtledove /]# useradd -c httpsd -u 80 -s /bin/false -r -d /
/home/httpd https 2>/dev/null || :

Create the httpsd group in the same manner as all other groups.

29

Obviously root is the root user account that has uncontrolled access to all data on

the system. A system administrator should never logon to a system as root. Never.

Instead use an admin account. The admin account does not need truly special

permissions, it simply needs read access to all data on the system. With the admin

account the system administrator can su (substitute user to root superuser) to gain

read/write access to all data. The system administrator should only su when absolutely

necessary and should remember to exit the superuser shell with the exit command as soon

as possible. Alternatively, a system can be configured to automatically log off the root

superuser after a pre-determined amount of time by editing the .bashrc, or the

configuration file for whichever shell is used, in the /homes/root directory and adding the

line “TMOUT=<seconds to logoff>.” After the account remains unused for the specified

number of seconds, the user is automatically logged out of the shell. In this particular

implementation of a VPN server, IPSEC configurations will use the read and read/write

configuration accounts to automatically configure VPN connections. Finally, the chroot

account, named, provides a secure user under which to run specific exploit-targeted

services and daemons. The chroot account ensures exploit-targeted services will not run

under the root account; thereby further restricting access to the system. Typically, the

chroot account only has access to the /chroot partition and is in effect placed in a “jail”

with no easy escape. The chroot “jail” is not completely foolproof, but is does provide

another level of security a malicious entity must traverse before gaining root-level access.

Further explanation of the read, write, named, and httpsd accounts will be provided in

later relevant sections.

30

Passwords

Systems Administrators should educate users on methods for wise selection of

passwords. This rarely happens. Often a system administrator must force wise password

selection or assign passwords for users. The latter is a tedious process and can be

avoided by using four basic schemes to enforce wise password selection.

First, the system administrator must educate herself in appropriate selection of

passwords and then, if necessary, educate potential users of the system in patterns of

“good” password choices. “Good” password choices can include the concatenation of

two completely unrelated words that total 7 letters in length; insert a non-alphanumeric

character between the two words and then capitalize at least one letter in each word –

CloVe$ziT. Optionally, Choose a sentence containing seven words that is easily

remembered; use the first letter of each word capitalizing at least two letters and using the

punctuation from the sentence – “I was a teenage dirt bag baby!” becomes “IwatdBb!.”

Create a phonetic spelling of an word that spans eight characters and capitalize three of

the eight letters – actual becomes aKcHOol (Spafford, 1991).

Second, the system administrator should enforce strong password selection for all

accounts on the system thereby forgoing potential poor password selection. Set the

minimum length for passwords to eight characters. Require at least one capital letter, one

lower case letter, one number, and one non-alphanumeric character. In addition, when

users change passwords, add the following additional checks: do not allow rotated

versions of old password; do not allow new password that contain half of the characters

from the previous password; do not allow case changes of the password only.

31

Third, the system administrator should make use of use of a proactive password-

checking scheme using a tool such as passwd+ -- a proactive password checker by Matt

Bishop (Anonymous, 1998). Such a password-checking tool will use a configuration file

to enforce appropriate password selection by requiring a minimum number of characters

and the inclusion of capital letters and special characters.

Fourth, require an aging period for passwords that forces password changing and

revoke the password and reset it after a pre-established number of concurrent logon

failures.

Enabling MD5 hashing of passwords and shadowing passwords in a separate file

from /etc/passwd will also strengthen password protection on a Linux system. MD5 is a

one-way hashing algorithm developed by RSA Data Security, Inc. (http://www.rsa.com)

that takes data of any length and produces a 128-bit message digest. The message digest

is considered non-reversible and therefore is thought computationally impossible to

determine the data from the message digest (Rivest, 1992). In Password shadowing, the

/etc/passwd file does not have encrypted passwords in the password field. Instead, the

encrypted passwords are held in a shadow file such as /etc/shadow that is not world-

readable (Jackson, 1996).

By creating a rigid structure in the design of the Linux VPN server with respect to

the file system and user access, the VPN server can be made more secure. Changes that

violate the structure of the production system would then be more prominent and

therefore more easily detected. In the next chapter, a structured approach to the

installation of the Linux operating system and the packages and binaries it contains will

aid in the optimizing the detection of changes to the system by outsiders.

CHAPTER 4
INSTALLING LINUX

After considering and adapting a FHS-compliant file system, deciding on the

appropriate number of users needing access, and wisely choosing strong passwords, the

next step is the installation of the open-source operating system. By first carefully

planning the installation and identifying the necessary packages and binaries to install,

the administrator of the system can retain control of access to the files and programs on

the system. Further, the identification of new programs or binaries can be made more

easily if a rigid rule base is used to restrict what programs may reside on the system.

In this particular implementation of a Virtual Private Network, the target OS is a

Red Hat version 6.2 Linux distribution. Any Unix-based open-source operating system

will be similar in design and configuration to Red Hat Linux but may require searching

for some configuration files. Note, not all options and configuration screens are covered

as part of this document. Refer to the Red Hat Linux 6.2: The Official Red Hat Linux

Installation Guide (RedHat Documentation Team, 2000) for further installation support.

Once the installation program begins, make sure to choose “custom installation” to

achieve the most control over the installation process.

Red Hat provides a reasonable installation interface that moves through

partitioning the hard disk or disks and building the file system structure. Details beyond

the FHS-compliant file system structure will not be provided here and those needing

further help with partitioning can reference the “Linux Partition HOWTO” (Harris &

Koehntopp, 2000) and the “Partitioning Your Disk for Red Hat Linux” section of the

32

33

Red Hat Linux 6.2: The Official Red Hat Linux Reference Guide (RedHat

Documentation Team, 2000).

Once the partitioning is complete, select the option to install the Linux Loader

(LILO) in the Master Boot Record (MBR) and select the default boot label “linux.”

Further explanation of the Linux Loader will be covered in Chapter 6.

Next, choose a hostname for the computer. The hostname should be in the form

of a fully qualified domain name (FQDN). A fully qualified domain name contains the

hostname followed by the domain name. If a registered domain name exists for the

organization installing the VPN server simply preface the domain name with the

computer name chosen, i.e. turtledove.destinationearth.net. In the network configuration

setup specify the IP address, netmask, default gateway, and nameserver information for

external network adapter, eth0. Configuration options for eth1 may need to be specified

after the initial installation is completed.

Once the network configuration completes, specify the password for the root user

and then add the four remaining user accounts—admin, chroot, read-only, read-write—

and their appropriate passwords. In the authentication configuration, choose to use

shadow passwords and enable MD5 passwords. Do not choose to enable NIS as it is not

part of the VPN configuration.

When selecting packages to install ensure the option to select individual packages

is checked. By selecting packages individually at install time fewer packages will need

to be removed or disabled when locking down the server software. Keep in mind keeping

the install to the absolute minimum required packages allows a tighter hold on security

measures put in place later. Two important security considerations should be made at

34

package selection time: by installing only essential services, potential intruders cannot

use other services to attack the server and impair or remove the essential services; and a

reduction in services installed means fewer log files to search for possible intrusions and

errors.

At install time, the packages are broken down into categories roughly according

to their function in the system. Tables 4-1 through 4-3 list the packages to install as part

of the Linux VPN system.

Table 4-1. Application Packages
Editors

 any
Internet

 tcpdump
 traceroute

System
 bind-utils
 iproute
 mtools
 procinfo
 symlinks

Text
 m4

Application Packages

Choose a familiar text editor to edit and create configuration files. Any text editor

will do; creating and editing configuration files is an indispensable means of securing the

Linux VPN system and will allow an easy interface to read package files and daemons

that are often used to exploit a Linux-based, Internet-connected server.

Tcpdump is a command-line tool allowing monitoring of network traffic. It can

capture and display incoming and outgoing packet headers on any or all network

interfaces. In addition, tcpdump can filter and display packet headers based on specific

criterion. This package is essential to monitoring and trouble shooting VPN traffic.

35

Traceroute allows a system administrator to display the route or routes used by IP

packets en route to a specified network or Internet host. Traceroute displays the IP

address and hostname of machines along the route taken by the IP packets to their

destination. This package can aid in debugging network connectivity issues and can

pinpoint the location of the problem along the route.

The bind-utils package contains a collection of utilities for querying Domain

Name Service name servers to find information about Internet hosts. These utilities will

provide a system administrator with IP address resolution from given host names. It can

also provide additional information about registered domains and network addresses.

Bind-utils is essential for any network-connected workstation or server.

Iproute is a specific tool allowing a host to take advantage of features and

characteristics of Linux 2.2.x kernels. In addition, it provides connectivity to the

standard network configuration utilities of ifconfig—lists network interface

configurations—and route—provides host routing configuration tools

Mtools should be installed to provide seamless access to MS-DOS files. This

package allows reading, writing and navigation of MS-DOS file system files. In addition,

mtools supports Windows9x style long file names. This tool is more of a convenience

tool than an essential file system tool. It can make it easier for a system administrator

who uses Windows editors to edit files on a workstation and transfer those files to a

Linux system with little or no character and formatting problems.

The procinfo utility allows access to system data in the /proc—kernel file

system—directory. It provides a formatted display of the data on the standard output so a

36

system administrator can easily acquire information about the system from the kernel as

it is running, and is thus an essential utility for the Linux system.

Install the symlinks package to aid in the maintenance of symbolic links.

Symlinks checks for symlink problems such as dangling symbolic links pointing to

nonexistent files and can convert absolute symbolic links to relative symbolic links. This

is essentially a maintenance tool and is not necessarily vital to securing a Linux VPN

system.

M4 is a macro processor that also includes functions for including named files,

running UNIX commands, doing integer arithmetic, manipulating text in various ways,

and using recursion. This package is the GNU—a recursive acronym for ``GNU's Not

Unix''—implementation of the traditional UNIX macro processor for Linux. M4 is useful

for writing text files that can be logically parsed and is used by many programs and

packages as part of their build process. This is a required package for autoconf to

generate configure scripts.

Table 4-2. Development Packages
Languages
 cpp
 perl
Libraries
 glibc-devel
System
 kernel-headers
 kernel-source
Tools
 autoconf
 automake
 bison
 libtool
 make
 patch

37

Devlopment Packages

Install the GNU C-Compatible Compiler Preprocessor (cpp) in order to have a

macro processor available to gcc—GNU Compiler Collection—to transform programs

before compilation. The C preprocessor provides four individual functionalities: the

inclusion of header files; macro expansion; conditional compilation; and line control.

This package should be installed to ensure compatibility of other package source

compilation.

The Linux system needs the Perl programming language in order to handle perl

scripts. Perl will be used primarily for system administration and for interactive web

pages using CGI in the Apache web server. Perl—Practical Extraction and Report

Language—is a language optimized for scanning arbitrary text files, extracting

information from those text files, and printing reports based on that information and is a

high-level programming language with roots in C, sed, awk, and shell scripting. It's also a

good language for many system management tasks.

Glibc-devel contains the header and object files necessary for developing

programs that use the standard C libraries. Any Unix-like operating system needs a C

library: the library that defines the ``system calls'' and other basic facilities such as open,

malloc, printf, exit, and so on. The GNU C library is used as the C library in most new

systems with the Linux kernel. In order to compile and create executables from source

code the system needs the standard header and object files provided by the glibc-devel

package.

38

Kernel-headers include the C header files for the Linux kernel. The header files

define structures and constants that are needed for building most standard programs and

for rebuilding the kernel.

Kernel-source contains the source code for the Linux kernel. The source files are

needed to build most C programs that depend on constants defined in the kernel source

code. In addition, a system administrator can use the source to build a custom kernel to

provide additional and better security features.

GNU Autoconf is a package for configuring source code and makefiles and for

generating configuration scripts. These scripts are present in a large number of free

software packages and are used to detect system features at compilation time.

Programmers can create portable and configurable packages with autoconf, so autoconf is

mostly needed for producing packages that run on a wide variety of platforms such as

Linux. Autoconf requires the m4 package.

Autoconf also requires the automake package. Automake automatically generates

make files compliant with the GNU coding standards. It was inspired by the 4.4 BSD

make and include files, but aims to be portable and to conform to the GNU standards for

Make file variables and targets. Automake is a Perl script and thus requires the perl

programming language.

Bison is a general-purpose parser generator that converts a grammar description

for an LALR—Look Ahead Left Recursive—context-free grammar into a C program to

parse that grammar. Bison is useful for developing a wide-range of language parsers and

is upwardly compatible with YACC—Yet Another Compiler Compiler. This package

39

will be strictly used for development and will not necessarily remain on the finished

Linux VPN system.

GNU libtool is a generic library support script that contains a set of shell scripts

that automatically configure UNIX and UNIX-like architectures to generically build

shared libraries. Libtool hides the complexity of using shared libraries behind a

consistent, portable interface.

Make is a tool that controls the generation of executables and other non-source

files of a program from a program's source files. Make gets its knowledge of how to build

a particular program from a file called the makefile, which lists each of the non-source

files and how to compute it from other files. This package allows a system administrator

to build and install packages without any significant knowledge about the details of the

build process. System administrators will use make to install add-on security and

administration programs after the initial system installation.

Table 4-3. System Environment Packages
Base
 ipchains
 krb5-configs
Daemons
 bind
 inetd
 iputils
 mod_perl
 routed
 tcp_wrappers
Libraries
 glib10
 krb5-libs
Shells
 bash
 tcsh

40

The patch program applies diff files to original files. Patch takes a patch file

containing a difference listing produced by diff and applies those differences to one or

more original files, producing patched versions. It is a common way of upgrading

applications.

System Environment Packages

The Linux IP Firewalling Chains program in the ipchains package is an update to

the Linux kernel packet filtering code. Ipchains allows firewalling and IP masquerading.

It is required to administer the IP packet filters in Linux kernel versions 2.1.102 and

above. The older Linux firewalling code doesn't deal with fragments, has 32-bit counters,

doesn't allow specification of protocols other than TCP, UDP or ICMP, can't make large

changes atomically, can't specify inverse rules, and can be tough to manage and prone to

user error. Install the ipchains package to setup firewalling for the Linux VPN server and

the LAN behind the server.

Kerberos V5 is a trusted-third-party network authentication protocol. It is

designed to provide strong authentication for client/server applications by using secret-

key cryptography. The Kerberos protocol uses strong cryptography so that a client can

prove its identity to a server (and vice versa) across an insecure network connection.

After a client and server have used Kerberos to prove their identity, they can also encrypt

all of their communications to assure privacy and data integrity as they go about their

business.

Install bind for client name resolution on the LAN. The Berkley Internet Name

Domain (BIND) provides the DNS protocol and includes a DNS server to resolve

hostnames to IP addresses. The DNS server will allow clients to name resources or

41

objects and share the information with other network machines. This package must only

run on the LAN side of the Linux VPN server and should be isolated in a secure jail since

BIND is often a target for known hacker exploits.

The inetd program listens for connections on certain network sockets. When a

connection is found on a network socket, inetd decides what service the socket

corresponds to and invokes a program to service the request. The server program is

invoked with the service socket as its standard input, output and error descriptors. After

the program is finished, inetd continues to listen on the socket. Essentially, inetd allows

running one daemon to invoke several others, reducing load on the system. Inetd can be a

source of many security breaches and should be configured wisely and should employ the

use of tcp_wrappers.

The iputils package contains the utility ping that can send a series of ICMP

protocol ECHO_REQUEST packets to a specified network host and can return

information showing whether a certain network machine is alive and receiving network

traffic. Iputils can be useful in diagnosing connectivity problems on the LAN.

The primary advantages of mod_perl are power and speed; it provides full access

to the inner workings of the Apache web server and can intervene at any stage of request

processing. This allows for customized processing of URI (Uniform Resource Identifiers

are short strings that identify resources in the web: documents, images, downloadable

files, services, electronic mailboxes, and other resources) to filename translation,

authentication, response generation, and logging. With mod_perl it is not necessary to

start a separate process, as is often done with web-server extensions. The most

widespread such extension, the Common Gateway Interface (CGI), can be replaced

42

entirely with Perl code that handles the response generation phase of request processing.

mod_perl includes two general purpose modules for this purpose: Apache::Registry, that

can transparently run existing perl CGI scripts and Apache::PerlRun, which emulates the

CGI environment, allowing programmers to write scripts that run under CGI or mod_perl

without change. Unlike Apache::Registry, the Apache::PerlRun handler does not cache

the script inside of a subroutine. Scripts will be "compiled" every request. After the script

has run, it's namespace is flushed of all variables and subroutines. This package is

required to use the Webmin administration scripts.

Routed is a daemon invoked at boot time to manage the network routing tables. It

uses Routing Information Protocol, RIPv1 (RFC 1058), RIPv2 (RFC 1723), and Internet

Router Discovery Protocol (RFC 1256) to maintain the kernel routing table. The routed

daemon listens on the udp socket for the route service for Routing Information Protocol

packets and sends and receives multicast Router Discovery ICMP messages. If the host is

a router, routed periodically supplies copies of its routing tables to any directly connected

hosts and networks. It also advertises or solicits default routes using Router Discovery

ICMP messages. Routed will provide routing information and discrimination based on

destination of packets—to the VPN connection, to the Internet, or to a machine on the

LAN.

With the tcp_wrappers package incoming requests for the SYSTAT, FINGER,

FTP, TELNET, RLOGIN, RSH, EXEC, TFTP, TALK, and other network services can be

monitored and filtered. The wrappers report the name of the client host and of the

requested service; the wrappers do not exchange information with the client or server

applications, and impose no overhead on the actual conversation between the client and

43

server applications. Tcp_wrappers are an essential tool in securing a Linux VPN system

and care should be used in configuring the service to achieve the best results.

The glib10 package is essential for successful functioning of many programs part

of the Red Hat Linux distribution. The package contains GLib version 1.0.6 and provides

a library of utility functions for programs that are part of Red Hat. Install the necessary

Kerberos libraries from the krb5-libs package.

The shell packages bash2 and tcsh satisfy several dependencies among other

programs or packages. The GNU Bourne Again shell (Bash) is a command interpreter

that combines features from sh, ksh, and csh shells. Bash is the default shell for Red Hat

systems and bash2 includes additional features for the default bash shell. The Samba

server and the perl programming language require tcsh, so it must be installed as part of

the default installation.

Final Configurations

After the system administrator makes the appropriate configuration options for the

installation, the Red Hat installer formats the file system and then installs the selected

packages. The final step of the install is to make a boot disk for the Linux system. The

system administrator should always keep a boot disk for each system in the network for

emergency recover or repair of servers or workstations.

When the initial system install finishes, the installer reboots the new system and

additional configuration of the Linux VPN server can continue. Once the system reboot

completes, login under the root account to allow the most freedom to customize the

installation. As comprehensive and flexible as the Red Hat installer is, not all options are

selectable at installation time. In fact the Red Hat installer installs some extra packages

44

that are unnecessary or are security risks to a Linux VPN system. Thankfully an easy

way to remove the extra packages exists; Red Hat uses the RPM (Red Hat Package

Manager) utility to install and manage packages included with their distributions. All

packages included with the Red Hat distribution are provided in RPM format, therefore

removing extraneous programs or applications is no problem. The syntax for installing a

package from an rpm distribution is simple:

[root@turtledove /]# rpm –i <package name>.rpm.

To remove a package use the rpm erase syntax:

[root@turtledove /]# rpm –e <package name>.

Remove the apmd package since it is the advanced power mangament daemon

and the server will not need to go into power saving or standby mode. Apmd is used

primarily for laptop systems to aid in conserving battery power. The gnupg package is

GNU’s open PGP (Pretty Good Privacy) implementation and since the system

administrator will use a workstation for package downloading and verification, PGP is

unnecessary and should be removed. The system hardware configured before installation

of the Linux OS should remain static throughout the life of the Linux system and thus

makes the isapnptools (ISA plug and play) package extraneous; remove it. A second

laptop only package is kernel-pcmcia-cs and is unnecessary in a server environment.

Unless a tape drive is present in the server systems the mt-st package for moving files to

tape and performing tape operations is not needed and should be uninstalled. The pump

package is a client-side DHCP utility for receiving network configurations from a DHCP

server; the Linux VPN system should use a fixed IP address for both the internal and

external network adapters and will not use pump. For systems providing redundancy

45

services, the raidtools provides utilities for initializing and managing raid arrays. Unless

redundancy is part of the system, the raidtools are superfluous ans should be removed.

Two packages vulnerable to intruder exploit should definitely go as soon as

possible. Sendmail provides email services, and since this VPN implementation does not

require email services, remove it to make one less log to check for suspicious activity.

The setserial package contains utilities for getting and setting serial port configurations.

If this command is available, an intruder could potentially use it to cause IRQ and other

resource conflict that could render the system unusable, and it should be uninstalled.

In the next chapter, the same principles of rigidity in structuring the Linux system

are applied to the Linux kernel and to the installation of server services. In addition,

several security issues will be identified and the reader will be presented with a means for

dealing with each issue as it arises. Referring to the road map presented in Chapter 1,

each design issue for the Linux server are dealt with by considering the issues impact on

a production VPN server and its robustness and security.

CHAPTER 5
UPDATING THE LINUX DISTRIBUTION

To provide the means for dealing with security issues in the scope of the Linux

VPN server, the fact that vulnerabilities are continually discovered and exploited by

malevolents must remain forefront in a system administrator’s mind. By taking the time

to understand the inner-workings of the Linux kernel and by updating vulnerable

services, a system administrator can more adequately decide how to secure a production

Linux system. The heart of any Linux system lies in the operating system kernel, and

great care must be taken while securing the kernel.

Updating the Linux Kernel

The Openwall Project provides security-related options for newer Linux kernels

via a kernel patch. The patch, once installed, adds several kernel configuration options

when compiling the kernel. The Openwall security options are available and

configurable while configuring a new kernel for compilation via the added ‘Security

options” configuration section.

The patch provides the following security options, as described by the patch’s

author, for kernels 2.2.x that will be used in the Linux VPN implementation:

Most buffer overflow exploits are based on overwriting a function's return address

on the stack to point to some arbitrary code also on the stack. By ensuring the stack area

is non-executable, buffer overflow vulnerabilities become harder to exploit. Further, a

malevolent can exploit a buffer overflow by pointing to the return address of a function in

libc, usually system(). In addition, the Openwall patch changes the default address shared

46

47

libraries are memory mapped to in order to make it always contain a zero byte. This

change makes it impossible to specify any more data parameters to the function, or more

copies of the return address when filling with a pattern. However, the Openwall patch is

not a complete solution; rather, it simply provides an extra layer of security. Many buffer

overflow vulnerabilities will remain exploitable a more complicated way, and some will

even remain unaffected by the patch. The reason for using such a patch is to protect

against some of the buffer overflow vulnerabilities that are yet unknown. Also, note that

some buffer overflows can be used for denial of service attacks (usually in non-

respawning daemons and network clients), and this patch cannot prevent such attacks.

Further, a system administrator must still stay abreast of new vulnerabilities as soon as

they become known, and address such vulnerabilities even with the patch installed.

Restricting links in the /tmp directory can prevent hackers from using a hard link

in an attack by not allowing regular users to create hard links to files they don't own or

have permission to access. Hard links to essential system files can be used in exploits of

other programs to make changes to the system files. The most well known exploit of this

type is in older versions of sendmail’s where undeliverable messages are appended to the

end of /var/tmp/dead.letter.

“All users can write to /var/tmp, so local attackers can create a hard link
between /etc/passwd and /var/tmp/dead.letter. They then send an
undeliverable message to the sendmail server. In the message body, the
attacker inserts a user account to be added to the password file (preferably
an account with UID 0 or root).

When the message is flagged as undeliverable, it gets appended to
/var/tmp/dead.letter, which is now a hard link to /etc/passwd. This results
in a new system account with root privileges.” (Anonymous, 1998)

48

In addition to restricting links, restricting writes into untrusted FIFOs (named

pipes) can make data spoofing attacks harder. Enabling this option of the Openwall patch

disallows writing into FIFOs not owned by the user, unless the owner is the same as that

of the directory or the FIFO is opened without the O_CREAT flag.

File descriptors 0, 1, and 2 have a special meaning for the C library and lots of

programs. Thus, programmers typically reference the file descriptors by number. As a

result, it is normally possible to execute a program with one or more of these fd's closed,

and any open(2) calls it might do will provide these fd numbers. The program (or the

libraries it is linked with) will continue using the fd's for their usual purposes, in reality

accessing files the program has just opened. If such a program is installed SUID and/or

SGID, then it may lead to a security problem. Enable this option to ensure that fd's 0, 1,

and 2 are always open on startup of a SUID/SGID binary. If any of the fd's is closed,

"/dev/null" will be opened for it (Openwall Readme, n.d.).

Download the Openwall patch from the Openwall project website at

http://www.openwall.org.To apply the patch to the kernel source located in /usr/src/linux

do the following:

 [root@turtledove /]# cd /usr/src/linux
 [root@turtledove linux/]# patch –p1 < /usr/src/linux-2.2.19-ow1/

linux2.2.19-ow1.diff

In addition, add the following line to the /etc/syslog.conf file to log security alerts

separately:

kern.alert /var/log/alert

Once the kernel patch is applied, the options will be available in the kernel configuration

options.

49

To install the ipchains package, change to the ipchains directory untarred into the

/usr/src directory and issue the following commands:

[root@turtledove ipchains/]# make all
[root@turtledove ipchains/]# make install

The ipchains package is now installed and further ipchains firewall configurations will be

discussed in Chapter 15.

Compiling and Installing the New Kernel

The Linux kernel handles interaction between programs and hardware by

allocating memory, talking directly to the hardware, and dividing processor time. The

kernel has many options that can be termed “user-configurable” by recompiling the

kernel. Before compiling the kernel, a configuration script allows the user to choose

which options to enable or disable in the new kernel configuration. Once the

configuration is finished, the kernel is compiled into an image file and can be used by

modifying the lilo.conf file to include access to that image.

Once the kernel archive is unpacked, the directory /usr/src/linux should contain

the downloaded kernel source for Linux kernel 2.2.19. Change into the /usr/src/linux

directory and issue the following command to begin configuring the new kernel:

 [root@turtledove linux/]# make menuconfig

The menuconfig script provides access to the kernel options in a text-based menu.

The options appear in hierarchies and can be navigated through using the keyboard. In

Appendix A is a list of the kernel configuration options for the Linux VPN

implementation. Each option is presented with a [Y/n/?] response. The appropriate

responses are listed in bold and underlined to aid in readability. The list was created

using the non-menu configuration utility “make config” and is presented in Appendix A

50

in that form. All options listed in Appendix A are available through the menuconfig

utility. Some options not directly related to the Linux VPN implementation have been

omitted for conciseness. Omissions are noted with the following text: [omission:

<reason>].

If the help descriptions are not sufficient to determine the function of a particular

option, refer to the configuration text by Axel Boldt for a more thorough discussion of

each option (Boldt, 2000).

To compile the kernel, first make sure all kernel dependencies are in place and

then clean any old sources left behind by previous kernels or configurations:

 [root@turtledove linux/]# make dep
 [root@turtledove linux/]# make clean

Now compile the kernel into a compressed image file. Use the following

command:

[root@turtledove linux/]# make bzImage.

The new kernel is in /usr/src/linux/arch/i386/boot/ and is labelled “bzImage.”

Change to the /boot directory and copy new “bzImage” file into the /boot directory as

vnlinuz-2.2.19: [root@turtledove boot/]# cp /usr/src/linux/arch/i386/boot/bzImage

vmlinuz-2.2.19.

The final step is to add an entry to lilo.conf to boot to the new kernel image.

Make certain not to remove the entries related to the previous kernel image in case the

new image does not work as expected. Add the following lines to the /etc/lilo.conf file:

image = /boot/vmlinuz-2.2.19 # the image file to boot
 root = /dev/hda1 # the location of the root partition
 label = linux # image name listed or used at boot: prompt
 read-only # mount root partition as read-only

51

Change the label for the old kernel image to something like “linuxold” and save

the lilo.conf file. Make sure to tell lilo about the changes by calling the /sbin/lilo script to

parse the new configuration. If the new kernel functions, no further changes are

necessary at this point. If the new kernel fails, reboot and type the label of the old linux

kernel image at the lilo prompt to boot to the known-good kernel.

After removing unnecessary and vulnerable packages, visit the Red Hat update

site http://www.redhat.com/support/errata/rh62-errata-general.html to gather up the Red

Hat provided updates to the Red Hat 6.2 distribution. Create a subdirectory in the /tmp

directory named RPMS using the following syntax:

[root@turtledove /]# mkdir /tmp/RPMS

 man-1.5i-0.6x.1.i386.rpm
logrotate-3.5.2-0.6.i386.rpm
rpm-4.0.2-6x.i386.rpm
inetd-0.16-7.i386.rpm
glibc-2.1.3-22.i386.rpm
glibc-devel-2.1.3-22.i386.rpm
pam-0.72-20.6.x.i386.rpm
modutils-2.3.21-0.6.2.i386.rpm
bash-1.14.7-23.6x.i386.rpm
ncurses-5.0-12.i386.rpm
iputils-20001010-1.6x.i386.rpm
traceroute-1.4a5-24.6x.i386.rpm
sysklogd-1.3.31-17.i386.rpm
gpm-1.19.3-0.6.x.i386.rpm
textutils-2.0e-6.i386.rpm

Figure 5-1. RedHat Update Packages

Gather the packages in Figure 5-1 from ftp://updates.redhat.com/6.2/en/os/i386/

and place them into the /tmp/RPMS/ directory. Get the OpenSSH RPMs listed in Figure

5-2 to provide secure shell logins and secure shell ftp from the OpenBSD ftp site:

ftp://ftp.openbsd.org/pub/OpenBSD/ OpenSSH/portable/rpm/RH62/. Also get the

OpenSSL RPMs to provide a secure web server from http://redhat.pacific.net.au/rawhide/

52

i386/RedHat/RPMS/. Make certain to put the OpenSSH and OpenSSL packages listed in

Figure 5-2 into the /tmp/RPMS/ directory:

 openssh-2.9p2-1.i386.rpm
openssh-askpass-2.9p2-1.i386.rpm
openssh-server-2.9p2-1.i386.rpm
openssh-clients-2.9p2-1.i386.rpm
openssl-0.9.6a-6.i386.rpm
openssl-devel-0.9.6a-6.i386.rpm
openssl-perl-0.9.6a-6.i386.rpm

Figure 5.2. OpenSSH and OpenSSL packages

Note: OpenSSH requires OpenSSL, so install OpenSSL before installing OpenSSH.

Grab the latest perl distribution, ActivePerl-5.6.1.626-i686-linux-thread-multi.rpm, from

the Activestate web site, http://aspn.activestate.com/ASPN/Downloads/ActivePerl/ .

Once /tmp/RPMS/ contains all of the necessary Red Hat updates and other

packages, use the following syntax to install each package:

[root@turtledove /]# rpm –Uvh /tmp/RPMS/*

The –Uvh command line options tell the RPM manager to upgrade(U) older existing

versions of the RPMs being installed or install RPMs that previously did not exist, use

verbose(v) mode, and display hashes(h) to show update progress.

In addition to the RPMs available to update the Linux VPN server, several

packages unavailable in RPM format at the time of this writing are needed for this VPN

implementation. The packages should be downloaded into the /usr/src/ directory; the

package names and locations are listed in Figure 5-3.

Once the packages are available in the /usr/src/ directory, use the gzip and tar

archive utilities to uncompress the packages. NOTE: If the directory /usr/src/linux

53

 gmp-3.1.1.tar.gz ftp://ftp.freesoftware.com/pub/gnu/gmp/
apache_1.3.20.tar.gz http://httpd.apache.org/dist/httpd/
mod_perl-1.25.tar.gz http://perl.apache.org/dist/
mod_ssl-2.8.4-1.3.20.tar.gz http://www.modssl.org/
mod_auth_external-2.1.13.tar.gz http://www.wwnet.net/~janc/
mod_auth_external.html
freeswan-1.91.tar.gz ftp://ftp.xs4all.nl/pub/crypto/freeswan/
linux-2.2.19.tar.gz http://www.kernel.org/pub/linux/kernel/v2.2/
ipchains-1.3.10.tar.gz http://netfilter.samba.org/ipchains/
bind-9.1.3.tar.gz ftp://ftp.nerdc.ufl.edu/pub/mirrors/
ftp.isc.org/isc/bind9/9.1.3/
linux-2.2.19-ow1.tar.gz http://www.openwall.com/linux/
Net_SSLeay.pm-1.05.tar.gz http://www.webmin.com/webmin/download/
webmin-0.88.tar.gz http://www.webmin.com/webmin/download/

Figure 5-3. Additional Linux packages

exists, rename the directory to /usr/src/linux/RH6.2. The syntax for dealing with .tar.gz

files is a series of two shell commands:

[root@turtledove /]# gunzip <package name>.tar.gz
[root@turtledove /]# tar –xvf <package name>.tar

The tar command uses the –xvf switches to extract(x) the archive file(f) in verbose(v)

mode. When each package is uncompressed, a new subdirectory labeled with the

package name will appear in the /usr/src/ directory.

 Once the Linux system has been updated with software revisions dealing with

known vulnerabilities, several additional steps must be taken to provide a secure Linux

production system. In chapter 6, a discussion of physical and terminal security is

provided. While in chapter 7, we address the vulnerabilities of file permissions and

system processes. Each of these issues are addressed to assist a system administrator in

structuring further rule sets to ensure the robustness of the server and to aid in the

detection of possible attacks.

CHAPTER 6
SERVER SECURITY

Physical security

Preventing intrusions into the VPN server must start with physically securing the

server. Begin by locating the server in a controlled access area. Ideally, only the system

administrator and a small number of assistants should have access to the server area. By

locking down the server room, simple console attacks are nearly eliminated. Only a

chosen few have access to the server, so an outsider, or even an insider, to the company

will not have access to force a reboot of the system to begin his or her attack.

In addition to the need for physically securing the VPN server in a limited access

area, the system administrator also needs consider adding as many security measures at

the actual system as possible. Most modern computers have a BIOS that allows

password protecting the system boot. This is a good idea in most situations; however,

administrators must recognize that after a power failure he or she must be there to

provide the boot password. This is not always feasible, but whenever it is, a BIOS

password should be used. In many computer BIOS configurations a password can be

placed on either the boot process or to access the setup menu. If available, place a

password on access to the setup menu rather than on the boot process, that way, in the

event of a reboot, the machine will reboot normally with the restricted setup.

Another often-overlooked security measure is to disable the floppy drive in the

BIOS and then password-protect the BIOS. This will ensure no one will be able to boot

54

55

from a floppy without first re-enabling the drive through the BIOS, and will allow a

system administrator the safety of booting from a floppy if an emergency should occur.

Terminal Security

Once a user or system administrator ceases activity but does not log out—whether

purposefully or not—access to the open terminal becomes a security risk. An intruder

could potentially hijack the session and use that terminal connection and the user’s

identity to attempt break-ins to other remote systems.

The bash shell can automatically log out a user after a predetermined period of

inactivity by employing the bash variable TMOUT. To set the default time out for all

users, edit the /etc/profile file and add the following line just after the line listing the

HISTFILESIZE variable and value:

 TMOUT=1800

Bash will then log out any user who has not made any input in 30 minutes. The TMOUT

command takes a value in seconds, so 30 minutes * 60 seconds/minute equals 1800

seconds. If a system administrator prefers to set the logout timeout on an individual user

basis, then she should add the TMOUT variable to each users’ individual .bashrc file in

their home directory.

The bash shell caches commands entered at the shell prompt. Each user’s bash

history is stored in their home directory in the .bash_history file. Mistakes are sometimes

made during a user’s session—a superuser command pointing to a sensitive file, or a

password entered instead of the command requiring the password—and a wise system

administrator will make sure those files are not stored once a user logs off. Add the

following line as the very last line of the /etc/profile file:

56

 trap “rm –f ~$LOGNAME/.bash_history” 0

This command will be processed when a user issues the exit command at the shell

prompt. It will force (-f) the removal (rm) of the .bash_history file from the user’s home

directory, effectively erasing their “tracks.”

In a typical Linux system, the key combination CTRL-ALT-DELETE will force a

restart of the system. A user need not be logged in to use the key combination—it is just

as effective at the login prompt. Disabling the key combination reboot in situations

where physical security is limited is vital, but disabling the key combination is a good

idea in any implementation of a secure server.

To disable the CTRL-ALT-DELETE shutdown command, edit the /etc/inittab file

and comment out the line that captures the key combination with a # symbol as shown:

 #ca::ctrlaltdel:/sbin/shutdown –t3 –r now

After saving the changes, issue the following command to allow the init process to

recognize the changes:

 [root@turtledove /]# /sbin/init q

One of the reasons an intruder would want to force a reboot is to attempt to start

the system in a different run level or in interactive mode in hopes of disabling certain

services from running. Do not allow interaction with the boot process by editing the

/etc/sysconfig/init file and changing the prompt value to no:

Set to anything other than ‘no’ to allow hotkey interactive startup…
 PROMPT=no

In addition to securing the terminal through init parameters and profile files, the

Linux boot loader (LILO) also provides several options for adding boot time security to a

Linux-based server

57

LILO – Linux Loader

Typically, LILO is installed as part of the master boot record and is always

located at cylinder 0, head 0, and sector 1, the first sector on the primary disk. When the

BIOS boots the machine, it will look at the master boot record for instructions and

information on how to boot the disk and load the operating system.

“The master boot record contains the following structures:

Master Partition Table: This small table contains the descriptions of the
partitions that are contained on the hard disk…One of the partitions is
marked as active, indicating that it is the one that the computer should use
for booting up.

Master Boot Code: The master boot record contains a small initial boot
program that the BIOS loads and executes to start the boot process. This
program eventually transfers control to the boot program stored on
whichever partition is used for booting the PC. “(Kozierok, 2001)

Once the BIOS hands control over to LILO, LILO uses a map file to locate the

boot sector and the image of the operating system to start. LILO cannot interact with the

file system, as a result the map file gives the exact location of the boot sector and OS

image on the physical disk sectors. Once LILO loads, it checks if the shift, control, or alt

key is pressed; if so, LILO provides a boot: prompt. LILO will also provide a boot:

prompt with a delay if instructed to do so in a configuration file. If none of the special

keys are pressed and no prompt delay is specified, LILO boots the default boot image

(Veselosky, 1999). LILO can also boot an alternate boot image if specified at the boot:

prompt. Once the boot prompt is available, the system administrator can press the tab

key to receive a list of possible images to load or just press the enter key to load the

default image. LILO is quite flexible, however, its flexibility allows a user with

knowledge of it internals to effectively enter a system with his or her preferences. In fact,

if a user enters “Linux single” at the boot: prompt, the “single” parameter is passed to the

58

init process and he or she will have access to the system in “single-user mode.” Granted,

no services start in single-user mode, but the user now has root access to the system.

Many of the LILO options can be specified and controlled by editing the

/etc/lilo.conf configuration file. By editing the configuration file, a system administrator

can control access to the various modes and command-line options that can be passed to

the kernel at boot time. A typical lilo.conf file might look something like that listed in

Figure 6-1 (note: line numbers have been added for reference only; the lilo.conf file

should not contain line numbers or extraneous characters except when part of an end-of-

line comment prefaced by a ‘#’ character).

 1 boot = /dev/hda # the location of the root partition
2 map = /boot/map # the location of the boot sector map
3 install = /boot/boot.b # the location of the boot sector

5 prompt # displays the boot: prompt
6 timeout = 50 # time before automatically loading default
7 password = jugaloo # password is set to “jugaloo”
8 restricted # restricts command line parameters
9 message = /etc/message_file # message displayed before LILO:
10 default = linux # default image to boot

12 image = /boot/vmlinuz-2.2.19 # the image file to boot
13 root = /dev/hda1 # the location of the root partition
14 label = linux # image name listed or used at boot: prompt
15 read-only # mount root partition as read-only

Figure 6-1. LILO configuration file – /etc/lilo.conf

The /etc/lilo.conf configuration file consists of three types of options containing

flag and string variables. The flag variables specify an option to turn on and do not take

values. The string variables also specify options to turn on but provide information

values as parameters for those options.

In the above example, Lines 1 through 10 define global options that apply to the

entire scope of the lilo.conf file. Line 1 contains the boot option that tells LILO where to

59

install the bootloader--/dev/hda points to the master boot record of the first hard disk, but

could easily be located on any disk or on a partition rather than in the master boot record.

Line 2 specifies where the sector map should be created and where LILO should look for

it. Line 3 specifies what kernel-created file to use as the new boot sector. Of the first

three options, only the boot option must be specified. The other two options default to the

values listed in the example configuration.

The “prompt” option in Line 5 forces LILO to display the boot prompt without

requiring a key-press. Specifying the prompt option without providing a timeout value

will cause LILO to wait indefinitely for a boot selection; and unattended reboots are

impossible in this configuration. Recognizing the need for unattended reboots, line six

specifies the timeout in tenths of a second, so in the example, LILO waits five seconds

before loading the default kernel image. At any time before the prompt times out,

pressing ENTER will cause LILO to go ahead and load the default kernel image.

The password option in Line 7 configures LILO to prompt the user for a password

before loading any kernel image. Passwords are stored unencrypted in the /etc/lilo.conf

file, so the file should have permissions allowing access only to the root user (chmod

1600 /etc/lilo.conf). However, always requiring a password at boot time means no

unattended reboots, so Line 8 specifies the restricted flag. The password option

combined with the restricted option allows for unattended reboots and for loading any

image specified in the /etc/lilo.conf file but restricts the use of command line parameters

at the boot prompt. If a user wants to specify additional parameters for the kernel or for

the init process, a password must be supplied before LILO will boot the specified image.

60

The restricted option provides a more secure boot without always requiring the system

administrator be present for reboots.

If the system administrator wants to display a message prior to the LILO prompt,

she can use the message option to specify a file to parse for the message. The maximum

message size is 64KB and if the message file changes or is moved, the map file must be

rebuilt to accommodate the change and avoid errors with LILO. The final global option

specified in Line 10 indicates which image to load if no intervention is made at boot time.

If the default option is left out, the first image listed in /etc/lilo.conf is used as the default.

Lines 12 through 15 contain general per-image options and per-image options for

the kernel loaded. The image option tells LILO where the kernel image to load is located

and the options following the image option specify image and kernel options for that

image only. The root option indicates the block device that should be mounted as root,

and the read-only option specifies that the root file system should be mounted in read-

only mode. Typically, a process later in the system startup will remount the root file

system in read-write mode after the volumes have been checked for errors. The last

option in the example configuration file is the image label. At the LILO prompt, a user

can press the TAB key to get the list of labels for each image loadable through LILO.

After modifying the /etc/lilo.conf file, apply the changes using the command:

 [root@turtledove /]# /sbin/lilo

If LILO was able to parse the lilo.conf file successfully, create or update a map

for each image listed, and register the images in the boot sectors, then LILO will respond

at the command prompt by listing the labels for each image prefaced by “Added” (ex.

61

“Added linux”). On the next reboot, the new LILO configuration will be used to start the

system and load a linux kernel (Almesberger, 1998).

Boot Process

LILO uses the system map to find and boot the selected image, and the kernel

calls the parent of all processes, init. Init starts the chain of events leading to the system

login prompt by initializing all devices, checking each file system volume, and spawning

all services, daemons, and essential system processes. Among these processes is the

getty process that provides the terminal services displaying the login prompt and allowing

user interaction with the operating system. Init gets its instructions for creating processes

from the /etc/inittab configuration file. A sample /etc/inittab file is presented in Figure 6-

2 (note: line numbers have been added for reference only; the lilo.conf file should not

contain line numbers or extraneous characters except when part of an end-of-line

comment prefaced by a ‘#’ character).

Control of what software processes run at boot time and while the system

continues to run is determined by choosing a “run-level” configuration. A run-level is a

system software configuration that allows only a group of predetermined processes to

exist. Choosing a run-level is done by editing the /etc/inittab file or by passing command

line arguments to LILO.

1 #
2 # inittab This file describes how the INIT process should set up
3 # the system in a certain run-level.
4 #
5 # Author: Miquel van Smoorenburg, miquels@drinkel.nl.mugnet.org
6 # Modified for RHS Linux by Marc Ewing and Donnie Barnes
7 #
9 # Default runlevel. The runlevels used by RHS are:
10 # 0 - halt (Do NOT set initdefault to this)

Figure 6-2. Run level configuration of /etc/inittab

62

11 # 1 - Single user mode
12 # 2 - Multiuser, without NFS (The same as 3, if you do not have networking)
13 # 3 - Full multiuser mode
14 # 4 – unused
15 # 5 - X11
16 # 6 - reboot (Do NOT set initdefault to this)
17 #
18 id:3:initdefault:
20 # System initialization.
21 si::sysinit:/etc/rc.d/rc.sysinit
22
23 l0:0:wait:/etc/rc.d/rc 0
24 l1:1:wait:/etc/rc.d/rc 1
25 l2:2:wait:/etc/rc.d/rc 2
26 l3:3:wait:/etc/rc.d/rc 3
27 l4:4:wait:/etc/rc.d/rc 4
28 l5:5:wait:/etc/rc.d/rc 5
29 l6:6:wait:/etc/rc.d/rc 6
30
31 # Things to run in every runlevel.
32 ud::once:/sbin/update
33
34 # Trap CTRL-ALT-DELETE
35 #ca::ctrlaltdel:/sbin/shutdown -t3 -r now
36
37 # When our UPS tells us power has failed, assume we have a few minutes
38 # of power left. Schedule a shutdown for 2 minutes from now.
39 # This does, of course, assume you have powerd installed and your
40 # UPS connected and working correctly.
41 pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"
42
43 # If power was restored before the shutdown kicked in, cancel it.
44 pr:12345:powerokwait:/sbin/shutdown -c "Power Restored”
46 # Run gettys in standard runlevels
47 1:2345:respawn:/sbin/mingetty --noclear tty1
48 #2:2345:respawn:/sbin/mingetty tty2
49 #3:2345:respawn:/sbin/mingetty tty3
50 #4:2345:respawn:/sbin/mingetty tty4
51 #5:2345:respawn:/sbin/mingetty tty5
52 #6:2345:respawn:/sbin/mingetty tty6

Run level configuration of /etc/inittab continued

In the example inittab file listed in Figure 6-2 all commands for init are given in

the form: id:run-levels:action:process. Where id is a unique set of one to four characters

63

identifying the entry in inittab. Init can run Linux in any one of eight possible run-levels.

Each Linux distribution can determine what the run-levels will be. Seven of the eight

run-levels in RedHat are listed in the comment Lines 10 through 16 of the example init

configuration file comments. The final but duplicate RedHat run-level is “S” or “s” for

single user mode. The action taken by init can be one of any of the actions listed in table

6-1. The process specified can be any binary executable or shell script.

Line 18 sets the default run-level to three using the initdefault action under the

identifier id. Next, in Line 21, init will run the sysinit action regardless of the run-level

specified in any other instruction. The sysinit action will start the /etc/rc.d/rc.sysinit

process to initialize the system and fork off other processes. In addition, Line 32

instructs init to start the /sbin/update process regardless of the run-level specified in any

other instruction. The /sbin/update process periodically updates the file system by

flushing data from memory to disk every 30 seconds. Lines 47 through 52 spawn virtual

terminals and will respawn them if they stop for any reason. In this particular Linux

server implementation, only one terminal will be needed so Lines 48 through 52 have

been commented out.

In addition, the /etc/securetty file contains a list of the tty devices on which the

root user can login. The login program parses the /etc/securetty file and the root user can

login to any virtual terminal, tty, listed. Edit the /etc/securetty file to allow the root user

to only login on the first terminal, tty1, by commenting out or removing any reference to

other virtual terminals. The other terminals are disabled in the inittab file, however, the

getty process can be run at any time. By also disabling the terminals in the /etc/securetty

file, root level access will be one step harder to acquire by an intruder.

64

Table 6-1. Inittab actions defined
respawn The process will be restarted whenever it terminates.
wait The process will be started once when the specified runlevel is

entered and init will wait for its termination.
once The process will be executed once when the specified runlevel is

entered.
boot The process will be executed during system boot.1
bootwait The process will be executed during system boot, while init waits for

its termination.1
off No action.
ondemand The process will be executed whenever the specified on demand

runlevel is called.
initdefault Specifies the runlevel which should be entered after system boot. If

none exists, init will prompt for one.2
sysinit The process will be executed during system boot. It will be executed

before any boot or bootwait entries.1
powerwait The process will be executed when init receives the SIGPWR signal.

Init will wait for the process to finish before continuing.
powerfail Same as powerwait but init does not wait for the process to complete
powerokwait The process will be executed when init receives the SIGPWR signal

provided there is a file called “/etc/powerstatus” containing the word
“OK.” This means the power has come back again.

ctrlaltdel The process is executed when init receives the SIGINT signal. This
means someone on the system has pressed the “CTRL-ALT-
DELETE” key combination.

kbrequest The process will be executed when init receives a signal from the
keyboard handler that a special key combination was pressed on the
console keyboard.

1
The runlevels field is ignored;

2
The process field is ignored

Lines 23 through 29 specify the instructions for init to perform for each run-level. For

each run-level init will make a call to /etc/rc.d/rc with the run-level number sent as a

command-line parameter; init will wait for the rc process to terminate before continuing

to process the inittab instructions. The rc process will execute a series of commands and

then process all scripts located in the /etc/rc.d/rc*.d directory where * represents the

current run-level. Within the /etc/rc.d/rc*.d directory, the rc process searches and

executes scripts whose names begin with the letter ‘S.’ Each script name will begin with

an ‘S’ followed by a number. The numbers tell the rc process in which order to execute

65

the scripts, and the ‘S’ instructs the rc process to start the script with “start” as a

command-line parameter. In addition to the “start” scripts, there are scripts in each run-

level directory that specify what to shut down in what order when leaving a run-level.

The “kill” or shutdown script names begin with a ‘K’ instead of an ‘S.’

The files in the /etc/rc.d/rc*.d directories are really just links to the actual scripts

located in the /etc/rc.d/init.d. The scripts contained in this directory are instructions for

how to start, stop, or restart, a particular subsystem or daemon. So any modifications to

existing scripts or the addition of new scripts should be performed in the /etc/rc.d/init.d

directory.

One way to secure the Linux VPN server is to remove unneeded services or

services vulnerable to known exploits from certain run-levels. One group of thinking

suggests that removing the services from the system entirely is the best way to secure the

system. Others believe that disabling the services is just as effective and will allow ease

of re-enabling the service later--allowing a much larger range of run-level options. To

remove the service from the system entirely, use the rpm command with the syntax:

[root@turtledove /]# rpm –e <package name>.

Here we identified measures to aid the system administrator in physically

securing the Linux system. By now, the reader should have a good understanding of the

fact that security is an ongoing issue in any production system and can best be addressed

initially with a solid, robust rule set for access to the server. In the next chapter, this

concept will be extended to include file permission and system process security.

CHAPTER 7
PROCESS AND FILE SYSTEM SECURITY

Setting Resource Limits on Processes

Even if an intruder cannot gain root-level access to the Linux system, if they can

gain access to the system as a user they may be able to mount a Denial of Service attack

on the system by spawning multiple processes that consume the process space, memory,

and the most CPU cycles. In such a case, no resources are left for the server’s main

functions and processes. To prevent such a user attack, edit the /etc/security/limits.conf

file and add or change the following:

* hard core 0
* hard rss 5000
* hard nproc 20

The /etc/security/limits.conf file consists of entries in the form <domain> <type of

limit> <item to limit> <value>. By adding the lines listed above with the domain *, these

rules apply to all users except the root, super, user. The type of limits for each of the

entries is a hard limit—a maximum limit. In setting a hard limit on core files to zero,

hard core 0, core files cannot be created by users. As a result, attempting to cause a core

dump to access valuable information in the dump file is not possible since no core file

will be created. The rss item restricts the amount of memory available to users to a hard

limit of 5MB, so no one user will be able to consume all available memory on the server

by launching many copies of a memory hungry program. Finally, the nproc item limits

any user to a maximum of 20 processes, so the system cannot be flooded with processes

that consume resources or use up all the file descriptors with a “fork bomb.”

66

67

In addition, in order to enable the limits at login, the following line must be added

as the last line in the /etc/pam.d/login file:

 session required /lib/security/pam_limits.so

This line applies whenever a user logs in or out of the system. The pam_limits.so

Pluggable Authentication Module (PAM) will read the /etc/security/limits.conf file

whenever a user session is opened or closed, and the limits listed in the file will be

applied to that user session.

Securing the cron daemon

In multi-user mode, the cron daemon is where all scheduled events are initiated.

Cron runs as a background process that wakes up every minute and scans all the stored

crontab files—configuration files known as cron tables—to check each of them for

commands needing to be executed at the current time. In Red Hat 6.2, the directories

/etc/cron.d, /etc/cron.daily, /etc/cron.hourly, /etc/cron.monthly, and /etc/cron.weekly

contain the commands for scheduled events. By default, the permissions on these

directories and their contained files are –rwxr-xr-x, which allows read and execute access

to all users. To tighten down the cron table locations so only the root user and admin

group can access the directories and files, change the directory and file permission to –

rwxr-x--- by executing the following commands:

 [root@turtledove /]# chmod –R 750 /etc/cron.hourly
 [root@turtledove /]# chmod –R 750 /etc/cron.hourly/*
 [root@turtledove /]# chmod –R 750 /etc/cron.daily
 [root@turtledove /]# chmod –R 750 /etc/cron.daily/*
 [root@turtledove /]# chmod –R 750 /etc/cron.weekly
 [root@turtledove /]# chmod –R 750 /etc/cron.weekly/*
 [root@turtledove /]# chmod –R 750 /etc/cron.monthly
 [root@turtledove /]# chmod –R 750 /etc/cron.monthly/*

68

In addition, the crontab file resides in the /etc directory and directs the cron daemon as to

when to execute the commands in the various cron directories. The crontab file should

have permissions set to –rw-r--r-- and should be owned by the root user so only the root

user and admin group have access to the file. Interestingly, the crontab file is not created

or maintained by editing the /etc/crontab file. Instead, the command crontab is used to

edit, list, create, or remove a crontab file. If not properly configured, all users can

execute the crontab command; even though the users can only create crontab files for

themselves, the potential for a seasoned user to use cron to violate the system security

still exists. System administrators should deny access to the crontab command in order to

prevent scheduling of system unfriendly, or security compromising tasks. When a user

invokes the crontab command, it searches for and examines the files /etc/cron.allow and

/etc/cron.deny to grant or deny the modification of the crontab file. If the cron.allow

exists, each user able to use the crontab command must be listed in the file. If the

cron.allow files does not exist but the cron.deny file does exist, the each user able to use

the crontab command must not be listed in this file. If neither cron.allow nor cron.deny

exist, then only the root user can invoke the crontab command. In the Linux VPN server

ensure the cron.allow and cron.deny files do not exist and the correct permissions are set

by the crontab command so only the root user and members of the root group can use the

crontab command. (Mourani & Madhusudan, 2000)

Console Apps Security Directory

The /etc/security/console.apps directory contains console-equivalent access to

common server commands for regular users on the server. A console command is one

that is generally only executed at the physical console in the server’s location. However,

69

if files linked to those commands exist in the console.apps directory, then the commands

may be executed from a remote terminal session. Disabling access to these commands is

a good idea, and only the root user should have access to these commands, which

includes the shutdown and halt commands. To disable console-equivalent access to these

commands, remove the files from the /etc/security/console.apps directory:

 [root@turtledove /]# rm –f /etc/security/console.apps/<command>

The rm command will delete the command files from the console.apps directory. All

commands except kbdrate should be deleted from this directory. The kbdrate command is

used to reset the keyboard repeat rate and delay time and is therefore relatively harmless.

Make sure to check the permissions for the directory so that only root has write access to

the folder.

In addition, to completely disable console access for all users other than root,

search through the files in the /etc/pam.d directory and comment out any reference to

pam_console.so. Use the grep command to find the files containing references to

pam_console.so:

 [root@turtledove /]# grep –ri pam_console.so /etc/pam.d/

The grep program searches through files and directories and returns lines matching a

specified pattern to the standard output. Once grep returns all references to

pam_console.so open each referenced file and place a “#” in front of the line(s)

containing pam_console.so.

Brief Explanation of Linux File Permissions

Linux, like all UNIX-based derivatives, separates access control on files and

directories by the owner, her group, and everyone else. For each file and directory there

70

is exactly one owner, but there may be many members in the group to which the owner

belongs so a system administrator must be aware of how and why groups are constructed.

In this Linux implementation, using Red Hat 6.2, each username is also the name of a

group, and each user is the only member of his or her group, so group permission errors

and maintenance is reduced.

The owner of a file or directory has control of permissions settings of the file or

directory and it parent. Permissions are set using three bits assigned to the owner, the

group, and everyone else for a total of nine bits plus one bit to indicate a directory, file, or

link. The extra bit is important for several reasons, but in relation to securing files and

directories the permissions for a directory sometimes have a different meaning than the

same set of permissions on files (Bandel, 2000).

The three bits per owner, group, or other, indicate read, write, and execute

permissions. Read access allows viewing the contents of a directory or file. Write access

allows additions or changes to existing files and the creation of new files. Write

permissions also allow deleting and moving directories or files. Execute access allows

running of binary programs or shell scripts. Execute permissions combined with read

permissions allow searching of directories. To list the contents of the current directory

and see the currently set permissions, use the command:

[root@turtledove /]# ls –l

In the above example, ls is the list contents of a directory command and the command

line switch –l specifies a long directory listing. A typical long directory listing with

permissions may look like the following:

total 1048
-rw-r--r-- 1 root root 2045 Nov 28 05:17 DIR_COLORS

71

drwxr-xr-x 2 root root 4096 Jan 9 14:07 codepages/
drwxr-x--- 2 root root 4096 Jan 9 14:04 default/
-r-------- 1 root root 299 Jan 9 14:07 gshadow
-rw------- 1 root root 1578 Nov 28 05:19 ipsec.conf
lrwxrwxrwx 1 root root 12 Jan 9 14:07 redhat-release -> /etc/release

From left to right, the first bit in a permissions listing is reserved for directories or links

and is set to either ‘d’ or ‘l’ respectively when the object is created. The second through

fourth bits are for the owner’s permissions, the fifth through seventh bits are the group

permissions, and the final three bits are for the “everyone else” permissions. In the above

listing, the DIR_COLORS permissions are -rw-r--r-- and indicates it is a file with the

owner retaining read/write permissions and the group and everyone else having read-only

permissions. The permissions can also be indicated by using a three digit number where

the hundreds digit represents the owner’s permissions, the tens digit the group

permissions, and the ones digit everyone else’s permissions. The number used for each

digit is one of the eight possible three-bit permutations for the read, write, and execute

permissions—where four represents read permission, two represents write permission,

and one represents execute permission. See Table 7-1 for an example.

Table 7-1. File Permissions
Number Permissions
400 Owner has read permission
200 Owner has write permission
100 Owner has execute permission
040 Group has read permission
004 Everyone has read permission
744

For example, the number 6 would represent –rw indicating read/write

permissions. The DIR_COLORS permissions could then be written as 644 indicating -

rw-r--r--. Using the three-digit representation, permissions can be set by using the chmod

command:

72

 [root@turtledove /]# chmod 0660 DIR_COLORS

The above command would set –rw-rw---- permissions, where the owner and any

member of the owner’s group have read and write privileges on the DIR_COLORS file.

 Notice in the above example the chmod command can take a four-digit number

instead of the three-digit number previously explained. A four in thousands position sets

the user ID (SUID) upon execution, a two sets group ID (SGID) upon execution or sets

manadatory locking, and a one sets the “sticky” bit.

 [root@turtledove /]# chmod 1755 codepages

A sticky bit set on a file has no effect, but when a sticky bit is set on a directory, files in

that directory can only be linked, unlinked, renamed, or deleted by their owner. The

common application of the sticky bit is on directories, such as /tmp, that are world

writeable—everyone can write to the directory. Enabling the sticky bit can prevent

security attacks involving creating links to delete important system files such as

/etc/password or /etc/shadow. When the sticky bit is set, it appears as a t in a long

directory listing.

Normally an executed binary runs as the user who invoked the command, but if

the SUID bit is set on the binary, the binary will run as the owner of the file. This means

any process that runs a binary with the SUID set will have access to system resources

based on the user who owns the file. Often, the SUID is the cause of many buffer

overflow exploits. In a buffer overflow exploit, the intruder attempts to overwrite

memory not allocated to the currently running process by overflowing user input

dependent buffers with her own code. Then the process is made to run the dangerous

73

code. If the process is running as a root process, then the hacker has just gained root

privileges to the system.

The SGID bit grants an executable binary the permissions of the file owner’s

group. If the SGID is set on a directory, all files in the directory will have the SGID set.

If the root group owns an executable and the executable is vulnerable to a buffer

overflow exploit, then a malevolent may gain root access to the system. A system

administrator should be wary of file permissions and their impact on a system’s security.

Securing File System Permissions

Begin by changing the default permissions (umask) set during file or directory

creation. By setting default permissions for future files and directories, the system

administrator ensures users will not receive the wrong permissions that may allow read

and write of vital or secure files and directories. The default permissions can be set in the

file /etc/profile. Before the line USER= add or change the line to read:

 umask 077

The umask is an octal number containing three digits. When setting the default user

permissions on files and directories, the umask is logically AND-ed with the octal 0777.

By setting the umask to 017, all files and directories created will have permissions set to

0770 thereby denying read, write, and execute permissions to anyone except the owner of

the file. Only the root user can change permissions using the chmod command. The

system administrator will now have greater control over file permissions and will be less

likely to unknowingly set vulnerable directory and file permissions.

Next, edit the /etc/fstab file to disable SUID and SGID permissions, control

mounting of devices, and restrict where executables may run. Inside the fstab file is a

74

listing of the user allowed mounts; any user other than the root user cannot mount any

partition or block or character device not listed here. In most cases, users need access to

the most partitions listed, however restricting actions a user can perform in those

partitions is a good step toward securing the Linux system. Figure 7-1 lists an

appropriately configured fstab file for a Linux VPN server implementation:

 /dev/hda8 / ext2 defaults 1 1
/dev/hda1 /boot ext2 defaults 1 2
/dev/hda10 /chroot ext2 defaults 1 2
/dev/hda12 /home ext2 defaults,noexec,nosuid,nodev 1 2
/dev/hda9 /opt ext2 defaults 1 2
/dev/had11 /tmp ext2 defaults,noexec,nosuid,nodev 1 2
/dev/hda7 /usr ext2 defaults 1 2
/dev/hda6 /var ext2 defaults,nosuid,noexec 1 2
/dev/hda5 swap swap defaults 0 0
/dev/hdc /mnt/cdrom iso9660 noauto,ro 0 0
/dev/fd0 /mnt/floppy ext2 defaults,noauto 0 0
none /proc proc defaults 0 0
none /dev/pts devpts gid=5,mode=620 0 0

Figure 7-1. Mountable file system table

The fstab file contains six columns of information specific about the partitions

and devices available for mounting. The first column specifies the device type; typically

ide drives (hd), SCSI drives (sd), and floppy drives (fd). In the second column is the

mount point in the filesystem for the device. Next is the filesystem type specific to the

device or OS filesystem. The fourth column specifies the options for users other than root

for mounting and using the filesystem. The defaults option implies: rw, suid, dev, exec,

auto, nouser, and async.

Users other than root can only mount file systems listed in the fstab file with the

user option, and the /home, /tmp, and /var mounts should be protected using the nosuid

option to avoid overflow exploits and the noexec option to restrict where users can

execute binaries. The /home and /tmp mounts should use the nodev option to ignore

75

attempts to mount character or block devices. Though these changes to /etc/fstab will not

stop a seasoned hacker, it can protect the system from hacker “kiddies”—new, non-

hackers with limited file system knowledge using exploit scripts and how-tos found on

the internet.

Check and set, if necessary, the appropriate permissions on the important and

protected files listed below. Note, use the chmod command to change the permissions to

match the listing in Figure 7-2 (Ranch, 2000).

 chmod 1600 /etc/inetd.conf chmod 750 /usr/bin/control-panel
 chmod 1600 /etc/lilo.conf chmod 750 /usr/bin/eject
 chmod 1644 /etc/services chmod 750 /usr/bin/glint
 chmod 1644 /etc/passwd chmod 750 /usr/bin/gpasswd
 chmod 1600 /etc/shadow chmod 750 /usr/bin/ipx*
 chmod 1644 /etc/group chmod 750 /usr/bin/kernelcfg
 chmod 1600 /etc/gshadow chmod 755 /usr/bin/lp*
 chmod 4755 /usr/bin/lpr
 chmod –R 700 /etc/rc.d/init.d/* chmod 750 /usr/bin/mformat
 chmod 750 /usr/bin/mtools
 chmod 644 /var/log/wtmp chmod 750 /usr/bin/netcfg
 chmod 644 /var/log/utmp
 chmod 750 /usr/sbin/am*
 chmod 660 /dev/lp* chmod 750 /usr/sbin/at*
 chmod 750 /usr/sbin/automount
 chmod 750 /bin/linuxconf chmod 750 /usr/sbin/bootp*
 chmod 750 /bin/mount chmod 750 /usr/sbin/crond
 chmod 750 /bin/ping chmod 750 /usr/sbin/dhc*
 chmod 750 /bin/rpm chmod 750 /usr/sbin/dip
 chmod 750 /bin/umount chmod 750 /usr/sbin/edquota
 chmod 750 /usr/sbin/fixmount
 chmod 750 /sbin/accton chmod 750 /usr/sbin/ftpshut
 chmod 750 /sbin/badblocks chmod 750 /usr/sbin/group*
 chmod 750 /sbin/ctrlaltdel chmod 750 /usr/sbin/grp*
 chmod 750 /sbin/chkconfig chmod 750 /usr/sbin/in.*
 chmod 750 /sbin/debugfs chmod 750 /usr/sbin/inetd
 chmod 750 /sbin/depmod chmod 750 /usr/sbin/klogd
 chmod 750 /sbin/fdisk chmod 750 /usr/sbin/logrotate
 chmod 750 /sbin/fsck* chmod 750 /usr/sbin/lp*
 chmod 750 /sbin/ftl* chmod 755 /usr/sbin/lsof
 chmod 750 /sbin/getty chmod 750 /usr/sbin/makemap
Figure 7-2. Default file permissions

76

 chmod 750 /sbin/halt chmod 750 /usr/sbin/mk-amd-map
 chmod 750 /sbin/hdparm chmod 750 /usr/sbin/named*
 chmod 750 /sbin/ide_info chmod 750 /usr/sbin/nmbd
 chmod 750 /sbin/if* chmod 750 /usr/sbin/newusers
 chmod 750 /sbin/init chmod 750 /usr/sbin/netreport
 chmod 750 /sbin/insmod chmod 750 /usr/sbin/ntp*
 chmod 750 /sbin/ipfwadm chmod 750 /usr/sbin/ntsysv
 chmod 750 /sbin/ipx* chmod 750 /usr/sbin/pppd
 chmod 750 /sbin/kerneld chmod 750 /usr/sbin/pw*
 chmod 750 /sbin/killall* chmod 750 /usr/sbin/quota*
 chmod 750 /sbin/klogd chmod 750 /usr/sbin/rdev
 chmod 750 /sbin/lilo chmod 750 /usr/sbin/rdist
 chmod 750 /sbin/mgetty chmod 750 /usr/sbin/rotatelogs
 chmod 750 /sbin/mingetty chmod 750 /usr/sbin/rpc*
 chmod 750 /sbin/mk* chmod 750 /usr/sbin/rwhod
 chmod 750 /sbin/mod* chmod 750 /usr/sbin/setup
 chmod 750 /sbin/netreport chmod 750 /usr/sbin/showmount
 chmod 750 /sbin/pam* chmod 750 /usr/sbin/snmp*
 chmod 750 /sbin/pcinitrd chmod 750 /usr/sbin/syslogd
 chmod 750 /sbin/portmap chmod 750 /usr/sbin/tcpd*
 chmod 750 /sbin/restore chmod 750 /usr/sbin/time*
 chmod 750 /sbin/runlevel chmod 750 /usr/sbin/tmpwatch
 chmod 750 /sbin/syslogd chmod 750 /usr/sbin/traceroute
 chmod 750 /sbin/swapon chmod 750 /usr/sbin/user*
 chmod 750 /sbin/tune2fs chmod 750 /usr/sbin/vi*
 chmod 750 /sbin/uugetty chmod 750 /usr/sbin/wire-test
 chmod 750 /sbin/vgetty
Default file permissions continued

Find and examine all root owned files and files with the SUID/SGID bit set to

make certain root owned SUID files are not writable by other users. To find such files use

the command:

[root@turtledove /]# find / -type f \(-perm –04000 –o –perm –02000 \) –ls

For any SUID file not needed, change the file permissions to 700 to ensure no one else

can write to the file. In addition, make note of the SUID files and regularly check that no

new SUID files have appeared.

Be wary of any world-writable files on the system, and know if and why those

files need to be world-writable. These files, particularly system files, can be dangerous

77

security holes if a malevolent gains access to the system and modifies them. Find all

world-writable files and directories:

 [root@turtledove /]# find / -perm 2 ! –type l ! –type b ! –type c –ls

The above command will list all files and directories that are world-writable excluding

symbolic links (! -type l), block special devices (! –type b), and character special devices

(! –type c). These types are excluded from the search since many of them will be world-

writable in the course of normal system operation.

R-command files relate to remote access or operation of the system and should be

regularly searched for and removed if not a part of the original installation. Use the

command:

 [root@turtledove /]# find / -grep –e “.rhosts” –e “hosts.equiv”

Neither .rhost files nor host.equiv files should reside on the system in the course of

normal operation and therefore need to be removed to prevent insecure accounts

vulnerable to intrustion.

System Logs

The system logs are important tools for detecting intrusions. Hackers typically

like to remove their traces from the system logs, and anyone skilled enough to get root

access to the system can and will cover their tracks. Locking down and splitting up the

system logs can provide another level of protection by making it somewhat more difficult

to find and access the system logs. Start by modifying /etc/syslog.conf by adding the

following lines:

 #Split logfiles according to function
 .warm;.err /var/log/syslog
 auth.*;user.*;daemon.none /var/log/loginlog
 kern.* /var/log/kernel

78

All space between the two columns must be tabs not spaces, otherwise the syslog daemon

will fail to load. Next, stop the syslog daemon:

 [root@turtledove /]# /etc/rc.d/init.d/syslog stop

Make sure all logfiles in the /var/log directory and its subdirectories have 0600

permissions set. In addition, set the permissions for any subdirectory of /var/log to 0700

to allow the creation of new files in those directories. Add the following lines to the

/etc/logrotate.d/syslog file to allow rotation of the new logs:

 /var/log/kernel {
 postrotate
 /usr/bin/killall –9 klogd
 /sbin/klogd &
 endscript
 }
/var/log/loginlog {
 postrotate
 /usr/bin/killall –HUP syslogd
 endscript
 }

/var/log/syslog {
 postrotate
 /usr/bin/killall –HUP syslogd
 endscript
}

Figure 7-3. System log configuration

Restart the syslog daemon:

 [root@turtledove /]# /etc/rc.d/init.d/syslog start

After the syslog daemon restarts, the principle steps to securing the file system are

complete. Each of the above recommendations will add another level of security to the

Linux VPN system implementation and will ease system administration. A good system

79

administrator will take the time to regularly review the system logs and check for changes

in permissions of protected files that may indicate system intrusions (Ranch, 2001).

 In this chapter, a file permission primer was provided to aid in the establishment

of a rule set for locking access to vital system files. In addition, limits were set on system

processes to aid in the prevention of certain denial of service type attacks. Further, the

reader was introduced to the system log as a means for monitoring system activity. With

a basic set of rules implemented to deal with basic system security in place, the following

chapters will identify further mechanisms to deal with authentication, encryption, and

security.

CHAPTER 8
ACCESS AUTHENTICATION

In a VPN environment, authentication is a vital service that must be provided.

Through a well-designed authentication mechanism, access to the system can be

restricted to users who can provide an appropriate level of information to substantiate

they are really who they claim to be. In the Linux environment, Pluggable

Authentication Modules can aid the system in thoroughly identifying valid users

requesting access to the system.

Pluggable Authentication Modules

The Pluggable Authentication Modules (PAM) for Linux is a suite of shared

libraries that control how applications authenticate users. Instead of building support for

the changing and evolving authentication schemes directly into a program and then

recompiling the program to use that authentication, a program can be compiled once to

enable the program as PAM-aware. Once a program is PAM-aware, then control of the

authentication method used is done using various authentication modules and can change

as authentication schemes evolve. In other words, the modules provide a library of

functions that a PAM-aware application may use to request user-authentication (Bandel,

2000).

Any authentication scheme may be used, including stacking authentication

schemes to require multiple levels of authentication. A module need only return to the

asking program SUCCESS, IGNORE, or FAILURE. The return value is determined by

the restrictions specified for the program as listed in its corresponding PAM file in the

80

81

/etc/pam.d directory. For example, if the login service is a restricted service requiring

authentication from an authentication module, then a file named login and containing the

service’s restrictions would be in the /etc/pam.d directory. A sample /etc/pam.d/login file

is provided in Figure 8-1.

 #%PAM-1.0
 auth required /lib/security/pam_securetty.so
 auth required /lib/security/pam_pwdb.so shadow md5
 auth required /lib/security/pam_nologin.so

 account required /lib/security/pam_pwdb.so

 password required /lib/security/pam_pwdb.so use_authtok md5 shadow

 session required /lib/security/pam_pwdb.so
 session required /lib/security/pam_limits.so
Figure 8-1. Configuration of /etc/pam.d/login

A typical service’s PAM file will contain as many as four columns: <module-

type> <control-flag> <module-path> <arguments>. If a particular service requires

authentication, then one or more auth module-type configuration lines will appear in the

service’s PAM file. In addition, the password module-type can be used to ensure

password changes are made when needed. The account module-type simply checks to

see that the user attempting to use the program or service is actually permitted to do so.

Finally, the session module-type performs actions when a user logs in or out; the actions

can include just about any command such as mounting or unmounting directories or

logging user activity.

The second column contains the control-flag for each configuration line. The

required control-flag indicates that a certain module is required for this service and may

not return FAILURE. As the PAM file is parsed, if a module marked required intends to

return FAILURE parsing of the remaining configuration lines continues before returning

82

the failure result. This ensures other required modules will be evaluated and the

appropriate actions defined for those modules taken. An optional control-flag is only

relevant if no other module of the same module-type is defined. Otherwise, a FAILURE

is ignored. For example, if the only listed session module-type has the optional control-

flag set, then the FAILURE is returned to the service; but if more than one session

module-type is listed, then the one with the optional flag will not determine whether a

SUCCESS or FAILURE is returned.

The third column in a configuration line of any service’s or program’s PAM file

contains the full path to the module to be used for authentication. The fourth column

would contain any necessary parameters needing to be passed to the module specified

(Bandel, 2000).

In the example /etc/pam.d/login file, authentication (auth) module-types are used

to ensure only the root user has access to login to the secure terminals listed in the

/etc/securetty file, check the /etc/passwd file to verify the user and user ID (UID) exist,

and check for the existence of the /etc/nologin file. If the /etc/nologin file exists, then

only the root user may login to the system. If all auth configuration-line restrictions are

met, then SUCCESS is returned by auth. The account configuration line checks the

user’s password against the /etc/shadow file and if it matches, account returns SUCCESS.

The password configuration line will check the user’s password to update any expired

authentication tokens. When a user logs in or out the session configuration lines check

the pwdb module to determine if the user is authorized to use the service and invoke any

limits listed in the /etc/limits.conf file.

83

The /etc/pam.d/other file is intended to catch other PAM-enabled services that do

not have a configuration file in the /etc/pam.d directory. Figure 8-2 lists a commonly

configured other file.

 #%PAM-1.0
auth required /lib/security/pam_deny.so
account required /lib/security/pam_deny.so
password required /lib/security/pam_deny.so
session required /lib/security/pam_deny.so

Figure 8-2. Configuration of /etc/pam.d/other

This configuration file denies access to any restriced service on the system by

calling the pam_deny.so module to always return FAILURE to the calling service.

The Pluggable Authentication Modules provide authentication for any PAM-

enabled services on the Linux server. Other PAM-enabled service configurations will be

covered as part of each service’s individual configuration section.

PAM and Super-User Commands

The su (Substitute User) command allows a user to become another user on the

system. For example, since the root user has super-user privileges, root can use the su

command to execute commands as any user on the system. This makes administration of

a particular user’s files easier since files can be created as that user rather than as root and

changing the ownership of the new files. The syntax of the su command is su <user>, and

typically issuing the su command with no arguments will default to the root user account.

In a secure environment access to the su command is restricted to the root user or

to a small, trusted group of users. Add the following lines before the other configuration

lines listed in the /etc/pam.d/su file:

auth sufficient /lib/security/pam_rootok.so
auth required /lib/security/pam_wheel.so group=wheel

84

These two lines allow the root user to always execute commands and allows any

member of the “wheel” group to use the su command if they know the root password. In

general, it is a good idea to keep the number of users in the wheel group small. Once the

additions are made, the /etc/pam.d/su file should look like that listed in Figure 8-3.

 #%PAM-1.0
auth required /lib/security/pam_pwdb.so shadow nullok
auth required /lib/security/pam_wheel.so group=root
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so
password required /lib/security/pam_pwdb.so shadow use_authtok nullok
session required /lib/security/pam_pwdb.so
session optional /lib/security/pam_xauth.so

Figure 8-3. Configuration of /etc/pam.d/su

Once the wheel group is added to the /etc/pam.d/su file, add the user accounts needing

root-level access to the wheel group:

[root@turtledove /]# usermod –G10 admin write read

The syntax used for adding users to any group is: usermod –G<group1,...,groupN)

<username>. The group can be specified by either group name or by the group ID (GID)

number. After modifying the /etc/pam.d/su configuration file and adding users needing

root access to the wheel group, the substitute user command is restricted and denied to all

other users (Mann, n.d.).

With the system configured to restrict access so changes and questionable activity

can more easily be identified in a standalone production system, the next step is to secure

the network configurations and software services. Once the server is put into production

on a network or on the Internet, an entire set of new issues evolves. Extreme care should

be taken when configuring any system on a network. What follows in the next chapters

are steps to make the server “safer” on a potentially dangerous wire.

CHAPTER 9
NETWORK CONFIGURATION

As a word of caution, placing a server, or computer of any kind, on a network

means that server will become vulnerable to an entirely different set of exploits. The best

defense to such attacks is to keep computers off of networks altogether. As infeasible as

it may be, the only true way to secure the Linux VPN server from network attacks is to

isolate it from the network as a whole. Obviously in providing VPN services this is

impossible, however, ways exist to make the presence of the server on the network less

well known. One certain way to “hide” the server is in the network configuration

settings. As a primer, this chapter will discuss basic network configurations and move on

to more advanced techniques to thwart commonly known attacks.

 DEVICE=eth0 # First ethernet device; use for external net
IPADDR=209.33.129.114 # Static IP address for connection
NETMASK=255.255.255.240 # Subnet mask for external network
GATEWAY=209.33.129.113 # IP address of the external router or modem
ONBOOT=yes # Enable the adapter at boot time

Figure 9-1. Network configuration of etc/sysconfig/network-scripts/ifcfg-eth0

Network Configuration

To enable the Linux VPN server’s networking functions, several configuration

files must be set up to allow access to the network hardware and software. To begin

with, the ethernet adapters must be set up with static IP addresses and other information

needed to communicate using TCP/IP. Edit the /etc/sysconfig/network-scripts/ifcfg-eth0

file to add information about the external network connection similar to that listed in

Figure 9-1.

85

86

Edit the /etc/sysconfig/network-scripts/ifcfg-eth1 file for the internal network

settings to appear similar to the listing in Figure 9-2.

 DEVICE=eth1 # Second ethernet device; use for internal net
 IPADDR=192.168.6.1 # Static IP address for connection
 NETMASK=255.255.255.0 # Subnet mask for internal network
 ONBOOT=yes # Enable the adapter at boot time
Figure 9-2. Network configuration of /etc/sysconfig/network-scripts/ifcfg-eth1

Next, make sure network support is enabled and the server has a unique hostname by

editing the /etc/sysconfig/network file like the listing in Figure 9-3.

 NETWORKING=yes # Network support enabled
 HOSTNAME=turtledove.destinationearth.net # Unique server hostname
 FORWARD_IPV4=yes # Allow forwarding from LAN

to WAN
Figure 9-3. Configuration of /etc/sysconfig/network

In addition, edit the /etc/HOSTNAME file to make sure the HOSTNAME variable is set

to the correct hostname for the server:

turtledove.destinationearth.net

The HOSTNAME variable will be used in several startup events, so if the hostname is

not correct, those startup events may fault or fail.

The Linux server contains a hosts file in the /etc directory. The hosts file contains

the IP address to hostname translation of any local hosts not available by DNS. The

/etc/hosts file must contain a reference to the local host in order for various programs to

function correctly. Make sure the file contains the following entry:

 127.0.0.1 locahost.localdomain localhost

This entry refers to the standard IP address of the server and hostname whether or not the

server is connected to the network. In addition, the /etc/host.conf file must be configured

to provide the resolver service—a basic lookup service for hostnames and IP addresses—

87

with the correct order in which to lookup host information. Add the entries listed in

Figure 9-4 to the /etc/host.conf file.

 order hosts
multi on
nospoof on
spoofalert on

Figure 9-4. Configuration of /etc/host.conf

The order option instructs the resolver service to check the hosts file to resolve

any local host to IP address requests. The multi option is set to on so the resolver will

return all valid valid addresses for a host that appears in the /etc/hosts file, instead of only

the first. The nospoof option enables the resolver service to try and prevent hostname

spoofing--after performing a host address lookup, resolver will perform a hostname

lookup for that address. If the two hostnames do not match, the query will fail. Finally,

the spoofalert option is turned on to log potential spoofing to the system log.

In addition to the /etc/host.conf file, the resolver service uses information stored

in the /etc/resolv.conf file to perform lookups of non-local hosts and IP addresses. The

/etc/resolv.conf files should contain the internal nameserver IP address followed by all

nameserver addresses provided on the Internet Service Provider’s network. Refer to

Figure 9-5 for a sample configuration.

 search destinationearth.net # local domain suffix to search
nameserver 192.168.6.10 # internal DNS
nameserver 204.177.208.1 # ISP primary nameserver
nameserver 204.177.210.39 # ISP secondary nameserver
nameserver ... # Any additional namerservers

Figure 9-5. Configuration of /etc/resolv.conf

The entries in the /etc/resolv.conf file instruct the resolver to “search” for any

hostnames without domain suffixes using the default local domain suffix. If this fails,

88

then each nameserver is then queried by IP address in listed order until a resolution is

made.

 Once the network configuration changes are made, issue the following command:

 [root@turtledove /]# /etc/rc.d/init.d/network restart

This will restart the network services to allow any changes to take effect. Once the

network restarts, verify network connectivity by using the “ping” command to talk to IP

addresses and hostnames.

Settings for the /proc/sys Directory

Once the kernel is re-compiled to employ firewall software or to masquerade an

interal network from the Internet, a new directory in the /proc directory is created. The

/proc/sys directory contains subdirectories in which kernel-tunable paramater files reside.

These files are used to alter the state of the running kernel; allowing changes to compiled

defaults for certain variables that can alter the system state. The /proc/sys/net/ipv4

directory contains files related to network security kernel options such as ignoring ping

requests or filtering rouge packets. Each of these files relates directly to a kernel

variable. The /usr/doc/kernel-doc-<version>/sysctl directory contains files describing the

valid types and values for the individual variables. Control of the variable values can be

managed by adding entries to the /etc/sysctl.conf configuration file. The system control,

sysctl, settings are loaded from this file at each boot before the /etc/rc.d/rc.local file is

loaded.

In order to combat several known attacks and to provide essential network

services for the internal network, several of these parameters need to be set or changed

89

(Mourani & Madhusudan, 2000). The /etc/sysctl.conf file for the Linux VPN server

should contain the parameter specifications listed in Figure 9-6.

 # Ignore all ICMP(ping)requests
net.ipv4.icmp_ip_echo_ignore_all = 1
Ignores broadcast requests
net.ipv4.icmp_echo_ignore_broadcasts = 1
Disable ICMP Redirect Acceptance
net.ipv4.conf.all.accept_redirects = 0
Disables IP source routing
net.ipv4.conf.all.accept_source_route = 0
Enables source address verification
and Enables spoofing protection
net.ipv4.conf.all.rp_filter = 1
Log spoofed packets, source routed packets, and redirect packets
net.ipv4.all.log_martians = 1
Disables automatic defragmentation (needed for masquerading, LVS)
net.ipv4.ip_always_defrag = 1
Disables packet forwarding
net.ipv4.ip_forward = 1
Enables TCP SYN Cookie Protection
net.ipv4.tcp_syncookies = 1
Disables the magic-sysrq key
kernel.sysrq = 0

Figure 9-6. Configuration of /etc/sysctl.conf

To prevent ping flooding, a basic form of a Denial of Service (DoS) attack where

an IP address is flooded with ICMP requests to effectively close down any services

provided on that IP address, the net.ipv4.icmp_ip_echo_ignore_all parameter should be

set to one so the server will ignore all ICMP (ping) requests. Ignoring an ICMP request

is considerably better than simply denying the request—no response from an IP address

typically indicates no link at that address, but a denied response is an acknowledgement

to the sender that a link does exist.

In addition, set the net.ipv4.icmp_echo_ignore_broadcasts parameter to one to

prevent intentional or unintentional ping flooding. When a packet is sent to the network

broadcast address, it is sent to all machines on that network. The machines on the

90

network then respond to that request and the responses can result in network congestion

or a DoS attack. Most routers, as a rule, will not forward packets destined for a broadcast

address but an exception to that rule most certainly exists. By ignoring broadcast ICMP

requests, the Linux server will be less apt to suffer from ping attacks.

When a host uses a non-optimal or stale route to a destination, the routers to

inform the host what the correct route should be by returning an ICMP redirect packet. If

an attacker is able to forge ICMP redirect packets, he or she may be able to alter the

routing table on the host. By altering the host’s routing table, the malevolent may gain

access to sensitive traffic by diverting traffic via another path. In order to prevent such

an attack, set the net.ipv4.conf.all.accept_all_redirects equal to zero.

Like a letter dropped in a mailbox, an IP packet has a destination address and a

return address. In Internet communication, the return address is known as the source

address where the packet originated. When a packet requires a reply, the reply is sent

back to the source address. Often, attackers will create packets with a source address

different from their actual IP address. This is known as IP spoofing and it is common to

protect the attacker’s identity in DoS attacks. The attacker does not require a reply since

the real intention is to deny access to any services the destination computer offers. In

other cases, the attacker sends a packet with a source address of a trusted internal IP to

the external IP of a gateway host. The gateway host, if not prepared, will read the packet

as an internal secure communication and may allow the attacker into the system. In order

to combat IP spoofing attacks, setting the Linux kernel parameter

net.ipv4.conf.all.rp_filter to one enables spoofing protection thereby preventing the

server from being the source of spoofed communications (Anonymous, 1998).

91

IP source routing, where an IP packet contains details about what path to take to

its destination, can be potentially problematic. When source routing is enabled, the

receiving host is required to reply using the same route as the received packet. This can

become a source of attack if a secure host receives a source-routed packet. When the host

replies, an attacker can then intercept the reply and make the host believe it is

communicating with a trusted host. If this occurs, the security implemented for an

insecure connection can be circumvented. To protect the Linux server from this hole, set

the net.ipv4.conf.all.accept_source_route to zero. Setting the

net.ipv4.conf.all.log_martians parameter to one will send a record of each occurrence of

source-routed packets, spoofed-address packets, or redirect requests to the system log.

In order to allow the Linux VPN server to act as a gateway computer that

masquerades all internal traffic to the Internet, set the parameter

net.ipv4.ip_always_defrag to one. Since not all information sent to the host can always

be contained in a single packet, often data is fragmented into multiple packets. The

problem with this is that only the first packet contains the port numbers of the

communication pipe. It is possible to insert potentially harmful information into the

remaining packets. In a normal configuration, fragments are passed through the interface

and reassembled later—sometimes with an attacker’s code. By enabling IP

defragmentation, the packets are reassembled and put into the correct order, discarding

any extraneous packets that may have been added, and then passed through the interface.

The net.ipv4.ip_forward parameter should be set to one to enable IP

masquerading of Internet requests from the internal network. This protects computers on

the internal network so all requests appear to be coming from one and only one host. In

92

additions, all computers on the internal network have access to Internet resources without

becoming vulnerable to attack.

A more serious DoS attack than ping flooding is the SYN attack. Traditionally,

systems would employ a SYN-ACK handshake to confirm a TCP connection and move it

from the waiting queue. If the SYN-ACK handshake does not complete, an attacker

makes a request but ignores the returned packet with the SYN bit set, the server would

wait for a long period for the ACK packet that never comes. While waiting for the packet

with the ACK bit set, the server would not move the request from the wait queue until a

timeout occurs and would allow no one else to connect. An attacker could take

advantage of this by continuing to make requests and thereby denying anyone else access

to the server. To protect the server, the net.ipv4.tcp_syncookies parameter should be set

to one so a SYN attack cannot take place (Bandel, 2000)

 Finally, the SysRQ key sequence is a “magic” key combo that the kernel will

always respond to regardless of what else it is doing. This can be dangerous if someone

can gain access to a terminal session or physical access to the server. The SysRQ

sequence combined with a key indicating a command can force shutdown the system

without unmounting the file systems and possible causing disk corruption among other

things. It is best to disable this option by setting the kernel.sysrq parameter to zero.

 Once a good level of secure network services is implemented on the Linux VPN

server, it is time to address what services the server should offer, and how those services

will interact in a production VPN system. The next chapter introduces several common

network services provided in production environments, and offers advice about which

93

services to provide. Overall, security is still in the forefront of considerations in the

design of the VPN system and will be addressed with each offered service.

CHAPTER 10
DAEMON SECURITY

This chapter identifies basic services the VPN server should provide, and also

offers solutions to problems that may arise in offering such services. Further, a means for

remotely accessing the server will be provided in as secure a manner as possible. Most

network environments take advantage of dynamic IP addressing, name resolution

services, and remote logins. We begin by discussing the Dynamic Host Configuration

Protocol.

 subnet 192.168.6.0 netmask 255.255.255.0 { # LAN network and mask
 range 192.168.6.128 192.168.6.254; # Range of IP addresses
 default-lease-time 86400; # Default address lease sec.
 max-lease-time 86400; # Maximum lease time sec.
 option routers 192.168.6.1; # Default Gateway

option broadcast-address 192.168.6.255;
option subnet-mask 255.255.255.0;
option domain-name-servers 24.221.30.3, 24.221.30.4, 192.168.6.1
option netbios-name-servers 192.168.1.10, 192.168.1.1;
option netbios-dd-server 192.168.6.1;
option netbios-node-type 8;
option netbios-scope "";

}
Figure 10.1. Configuration of /etc/dhcpd.conf

Dynamic Host Configuration Protocol

The Dynamic Host Configuration Protocol, dhcp, daemon package will allow

LAN clients to get their network configuration information from the Linux VPN server.

The dhcp package will provide IP addresses, subnetmasks, gateway addresses, and DNS

servers to the computers on the LAN. DHCP makes it easier to administer a large

network since changes to IP addresses and other configuration data will be propagated to

94

95

each workstation without having to “touch” each individual machine. In addition, DHCP

will provide information about DNS servers on the other side of the VPN tunnel. Edit the

/etc/dhcpd.conf file so it appears similar to listing in Figure 10-1.

Once the server is connected to the LAN and the DHCP server is started, the

Linux server will begin handing out IP addresses and other configuration data to all

clients on the LAN configured to use DHCP.

Securing Name Resolution Services

As an option, the Linux server can offer hostname to IP address lookups for the

internal network. However, a stand-alone DNS server is strongly recommended instead.

General configuration of the Berkley Internet Nameserver Daemon (BIND) named

daemon will be left for the reader. Help is available from the “DNS HOW TO” by

Nicolai Langfeldt and Jamie Norrish, et al at http://www.linuxdoc.org/HOWTO/DNS-

HOWTO.html.

For the Linux VPN server to securely offer Name Resolution services on the

internal network, the named daemon should be run from a secure partition. Historically,

the complex BIND server has been the target of many well-documented exploits to gain

root access resulting from bugs in the software. A good security measure is to isolate the

named daemon in its own area and not run it as the root user. If a new security exploit

comes out and an attacker gains access through the exploit, she will be limited in where

she can go and what she can do. (Welte, 2001)

This Linux implementation will only offer DNS services to the internal network,

and will forward any requests for names not on the local network to the Internet Service

Provider’s primary or secondary name servers.

96

If an appropriate user does not already exist for the named daemon, create one by

adding the following line to the /etc/passwd file:

 named:x:200:200:Nameserver:/chroot/named:/bin/false

In addition, add a group for the named daemon in the /etc/group file:

 named:x:200

In these commands the UID and GID are set to 200; they could easily be set to any

available ID number. Notice the shell for the new named user is set to /bin/false since the

user will never need to login.

During the initial installation of the Linux VPN server, a separate partition /chroot

was created for the chroot jail. The jail name means to change the daemon from running

as root to a normal user and separate the daemon from other areas of the system. On the

/chroot partition set up a directory structure like the one in Figure 10-2.

 /chroot
|_int_dns
 |_dev
 |_etc
 |_lib
 |_usr
 |_sbin
 |_var
 |_named
 |_run

Figure 10-2. Directory structure of /chroot

Change to the directory /usr/src/bind-9.1.3 that was created when the update

packages were downloaded and unzipped and issue the following command to run the

configure script:

 [root@turtledove bind-9.1.3]# ./configure --prefix= --exec-prefix=/usr \
--datadir=/usr/share --includedir=/usr/include --infodir=/usr/share/info \
--mandir=/usr/share/man --disable-threads

97

An explanation of the various options is available in the configure script itself. The

options specified will set up the correct compile options for a 2.2.x kernel. Next, compile

the named daemon:

 [root@turtledove bind-9.1.3]# make

Once the system has finished compiling the BIND package, install the new version:

 [root@turtledove bind-9.1.3]# make install

Next copy the documentation files to appropriate location. Change into the /usr/src/bind-

9.1.3/doc/man/bin directory and copy the man pages as shown below:

 [root@turtledove bin]# cp *.1 /usr/share/man/man1/
 [root@turtledove bin]# cp *.5 /usr/share/man/man5/
 [root@turtledove bin]# cp *.8 /usr/share/man/man8/

Recursively change the permissions on the int_dns directory so only the owner has full

permissions and the group has read and execute permissions:

 [root@turtledove /]# chmod –R 750 /chroot/int_dns

Set up a null block device and a time keeper for use by the named daemon by using the

following command in the int_dns directory:

 [root@turtledove int_dns]# mknod –m 666 dev/null c 1 3
 [root@turtledove int_dns]# cp /etc/localtime /chroot/int_dns/etc/

Finally, copy all the required libraries and executable files for the named daemon to run

into the int_dns directory:

 [root@turtledove int_dns]# cp /usr/sbin/named* /chroot/int_dns/usr/sbin
 [root@turtledove int_dns]# cp /lib/libc.so.6 /chroot/int_dns/lib
 [root@turtledove int_dns]# cp /lib/ld-linux.so.2 /chroot/int_dns/lib

Change the permissions on the files in the /int_dns/usr/sbin directory to the same

permissions as the /int_dns directory and then remove the named files from the /usr/sbin

directory:

98

 [root@turtledove int_dns]# chmod 750 /chroot/int_dns/usr/sbin/named*
 [root@turtledove int_dns]# rm –f /usr/sbin/named*

Lastly, copy any additional necessary configuration files such as the named.conf file to

the /chroot/int_dns/etc directory and change the owner and group settings for the entire

/chroot/int_dns directory:

 [root@turtledove int_dns]# chown -R named:named /chroot/int_dns

 #!/bin/sh
named This shell script takes care of starting and stopping
named (BIND DNS server).

chkconfig: - 55 45
description: named (BIND) is a Domain Name Server (DNS) \
that is used to resolve host names to IP addresses.
probe: true
Source function library.
. /etc/rc.d/init.d/functions
Source networking configuration.
. /etc/sysconfig/network
Check that networking is up.
[${NETWORKING} = "no"] && exit 0
[-f /chroot/int_dns/usr/sbin/named] || exit 0
[-f /chroot/int_dns/etc/named.conf] || exit 0
RETVAL=0
See how we were called.
case "$1" in
 start)
 # Start daemons.
 echo -n "Starting named: "
 daemon /chroot/int_dns/usr/sbin/named -u named –t /chroot/int_dns
 –c /chroot/int_dns/etc/named.conf
 RETVAL=$?
 [$RETVAL -eq 0] && touch /var/lock/subsys/named
 echo
 ;;
 stop)

 Figure 10-3. Configuration of /etc/rc.d/init.d/named

The initialization script for the named daemon, /etc/rc.d/init.d/named, should be

modified to point to the new location and to start the daemon as the correct user (Mourani

99

& Madhusudan, 2000). An example named script with changes highlighted is listed in

Figure 10-3.

 # Stop daemons.
 echo -n "Shutting down named: "
 killproc named
 RETVAL=$?
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/named
 echo
 ;;
 status)
 /usr/sbin/ndc status
 exit $?
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 reload)
 /usr/sbin/ndc reload
 exit $?
 ;;
 probe)
 # named knows how to reload intelligently; we don't want linuxconf
 # to offer to restart every time
 /usr/sbin/ndc reload >/dev/null 2>&1 || echo start
 exit 0
 ;;

 *)
 echo "Usage: named {start|stop|status|restart}"
 exit 1
esac
exit $RETVAL

Configuration of /etc/rc.d/init.d/named continued

To make certain all DNS activities are logged to the system log, change the line

starting the daemon syslogd to read:

 daemon syslogd -a /chroot/int_dns/dev/log -m 0

One last step can be taken to protect the server from spoofing. Modify the

/chroot/int_dns/etc/named.conf file to disable any queries for domains not owned by or

100

not covered within the scope of the Linux VPN server. In addition, remove any non-local

IP addresses or network addresses from the “allow-recursion” option to decrease the risk

of cache poisoning attacks where false data is fed to the DNS server to capture

information intended for another host. The best step for reducing attacks through exploits

in BIND is to not use BIND on any host attached to the Internet. Choose well-known

nameservers to forward lookup requests to, and always update the root.hints file to

contain the most current data.

 #
inetd.conf This file describes the services that will be available
through the INETD TCP/IP super server. To re-configure
the running INETD process, edit this file, then send the
INETD process a SIGHUP signal.

<service_name> <sock_type> <proto> <flags> <user> <server_path> <args>

Echo, discard, daytime, and chargen are used primarily for testing.

To re-read this file after changes, just do a 'killall -HUP inetd'

#echo stream tcp nowait root internal
#echo dgram udp wait root internal
#discard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal
#chargen stream tcp nowait root internal
#chargen dgram udp wait root internal
#time stream tcp nowait root internal
#time dgram udp wait root internal

These are standard services.

ssh stream tcp nowait root /usr/sbin/tcpd in.sshd
#ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l –a
#telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

Figure 10.4. Configuration of /etc/inetd.conf

101

 # Shell, login, exec, comsat and talk are BSD protocols.
#shell stream tcp nowait root /usr/sbin/tcpd in.rshd
#login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd in.comsat
#talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait nobody.tty /usr/sbin/tcpd in.ntalkd
#dtalk stream tcp wait nobody.tty /usr/sbin/tcpd in.dtalkd

Pop and imap mail services et al

#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd

The Internet UUCP service.

#uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/lib/uucp/uucico -l

Tftp service is provided primarily for booting. Most sites
run this only on machines acting as "boot servers." Do not uncomment
this unless you *need* it.

#tftp dgram udp wait root /usr/sbin/tcpd in.tftpd
#bootps dgram udp wait root /usr/sbin/tcpd bootpd

Finger, systat and netstat give out user information which may be
valuable to potential "system crackers." Many sites choose to disable
some or all of these services to improve security.

#finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd
#cfinger stream tcp nowait root /usr/sbin/tcpd in.cfingerd
#systat stream tcp nowait guest /usr/sbin/tcpd /bin/ps -auwwx
#netstat stream tcp nowait guest /usr/sbin/tcpd /bin/netstat -f inet

Authentication

identd is run standalone now

#auth stream tcp wait root /usr/sbin/in.identd in.identd -e -o

End of inetd.conf
#linuxconf stream tcp wait root /bin/linuxconf linuxconf --http
#swat stream tcp nowait.400 root /usr/sbin/swat swat

Configuration of /etc/inetd.conf continued

102

The inetd Daemon

The “super server”, inetd, will load a network program based upon a request from

the network. The /etc/inetd.conf file configures what network programs can be requested

and loaded across the network. Each entry tells the inetd daemon what services will

listen and accept requests. The /etc/services file lists all possibly available services and

the port on which each service listens. Before connecting the Linux server to the

network, disable unnecessary services to lock down ports that would normally allow

connections for those services. The services can be disabled by finding the configuration

line in the /etc/inetd.conf refering to the service and inserting a ‘#’ to comment out the

line. A sample inetd.conf file for a Linux VPN server is provided in Figure 10-4.

Notice, the only service available on the Linux VPN server is ssh. The ssh

service will provide secured ftp and telnet access to the server so usernames and

passwords are not transmitted across the network in plain text.

Once the configuration changes are made to the /etc/inetd.conf file, ensure the

owner is root, and if not, use the chown command to make root the file owner. In

addition, the permissions on the file should allow only root read and write privileges

(600). The final step in configuring the inetd daemon is to activate the changes. Use the

following syntax to restart the inetd daemon:

 [root@turtledove /]# killall –HUP inetd

When the inetd daemon has restarted and activated the changes from the /etc/inetd.conf

file, any request to an offered service will be sent to the tcpd daemon instead of the actual

service’s daemon. By configuring the inetd daemon to send requests to the tcpd, tcp

wrappers are employed to secure access to all available network servers.

103

TCP Wrappers

TCP wrappers is a program that will “wrap” a tcp listener (a service listening on a

TCP port) for a service server, such as ftp or telnet, to help protect the Linux server from

exploits via that server. TCP-based servers started via the Internet super server daemon,

inetd, typically use TCP wrappers. Any TCP server available and listening through the

inetd daemon will call the TCP wrapper daemon, tcpd, instead of the actual server’s

program. Once the requests are passed to the TCP wrapper, the wrapper can then allow

or deny access to the original program.

The TCP wrappers daemon is controlled by the /etc/hosts.allow and

/etc/hosts.deny files. Each of the files contain entries in the following format:

 daemon(s) : client(s) : option : option ...

For each entry the first column of the entry specifies which daemon(s) to protect; the

second column of the entry specifies the client(s) to protect by hostname, domain name,

or IP address; the final columns are reservered for options that may be configurations or

actions to take.

When a request is sent to the TCP wrapper daemon, access to the server will be

granted when a daemon, client pair matches an entry in the /etc/hosts.allow file. Access

to the server will be denied when the pair matches an entry in the /etc/hosts.deny file. If

the pair does not match entries in either file, access is granted.

For the purpose of the Linux VPN server, no options will be specified since the

enabled TCP servers do not require options. Begin by editing the /etc/hosts.deny file to

 # Deny access to everyone
ALL:ALL@ALL

Figure 10-5. Configuration of /etc/hosts.deny

104

contain the lines listed in Figure 10-5. The line entry ALL:ALL@ALL translates to all

services and all locations; access to any service will be denied to anyone not listed in the

/etc/hosts.allow file. Edit the /etc/hosts/allow to contain the lines listed in Figure10-6.

 # Allow all access from the administrative workstation
ALL:192.168.6.2 # the IP address of the interal admin computer
sshd:<remote vpn server> # for access through ftp and secure telnet

Figure 10-6. Configuration of /etc/hosts.allow

The Linux VPN server will now allow access to all servers from an IP address on

the internal network, and will allow secure ftp and secure telnet access from any remote

vpn server. No other hosts or IP addresses will have access to any of the TCP servers

offered by the VPN server. To check for configuration errors, execute the tcpdchk utility:

 [root@turtledove /]# tcpdchk

The tcpdchk utility checks for syntax errors in the /etc/hosts.allow and /etc/hosts.deny

files and will report any potential and real problems it can find.

Secure Shell Configuration

Ssh (Secure Shell) is a program that allows remote logins to computers over a

network. Once logged in, the ssh suite of utilities can also execute commands in a remote

machine and move files from one machine to another. A secure shell provides strong

authentication and allows for encrypted secure communications over unsecure channels

such as the Internet. It is intended as a replacement for remote access programs such as

rlogin, rsh, and rcp, which traditionally pass information in clear text. When information

such as passwords and usernames are transmitted in clear text, anyone with the ability to

sniff packets along the connection used can get the passwords, usernames, and any other

information transmitted. Ssh can also provide secure access to normally insecure

105

programs such as telnet, ftp, and pop3 mail. Additionally, ssh provides secure

forwarding of arbitrary TCP connections.

The traditional Berkley Software Designs (BSD) 'r' - commmands (rsh, rlogin,

rcp) and telnet and ftp programs are vulnerable to different kinds of attacks because of

the use of unencrypted transmissions. Ssh, on the other hand, never sends any

information in clear text. Once the ssh protocol establishes a TCP connection with a host

providing ssh services, the ssh protocol immediately exchanges public keys to create an

encrypted tunnel. Once the tunnel is established a user can perform remote logins and

other remote functions while all information is protected within the encrypted tunnel.

In general, ssh can protect against IP spoofing, IP source routing, DNS spoofing,

sniffing of cleartext passwords and other data or manipulation of such data by hosts with

access to the same wire, and attacks based on listening to X authentication data and

spoofed connection to the X11 server. In other words, ssh never trusts the network; a

hostile who has taken over the network can only force ssh to disconnect, but cannot

decrypted, play back the traffic, or hijack the connection.

The OpenSSH package from OpenBSD provides, in addition to other programs, a

secure shell server. The OpenSSH package supports both SSH protocol version 1 and

SSH protocol version 2. According to the OpenBSD manual page for sshd, the secure

shell daemon, for the server side of secure shell communications, the two protocols differ

in their key negotiation and encryption schemes.

In SSH protocol version 1 “[e]ach host has a host-specific RSA key
(normally 1024 bits) used to identify the host. Additionally, when the
daemon starts, it generates a server RSA key (normally 768 bits). This key
is normally regenerated every hour if it has been used, and is never stored
on disk. Whenever a client connects, the daemon responds with its public
host and server keys. The client compares the RSA host key against its

106

own database to verify that it has not changed. The client then generates a
256 bit random number. It encrypts this random number using both the
host key and the server key, and sends the encrypted number to the server.
Both sides then use this random number as a session key which is used to
encrypt all further communications in the session. The rest of the session
is encrypted using a conventional cipher, currently Blowfish or 3DES,
with 3DES being used by default. The client selects the encryption
algorithm to use from those offered by the server. Next, the server and the
client enter an authentication dialog. The client tries to authenticate itself
using .rhosts authentication, .rhosts authentication combined with RSA
host authentication, RSA challenge-response authentication, or password
based authentication. Rhosts authentication is normally disabled because it
is fundamentally insecure…”

In SSH protocol version 2 “[e]ach host has a host-specific key (RSA or
DSA) used to identify the host. However, when the daemon starts, it does
not generate a server key. Forward security is provided through a Diffie-
Hellman key agreement. This key agreement results in a shared session
key. The rest of the session is encrypted using a symmetric cipher,
currently 128 bit AES, Blowfish, 3DES, CAST128, Arcfour, 192 bit AES,
or 256 bit AES. The client selects the encryption algorithm to use from
those offered by the server. Additionally, session integrity is provided
through a cryptographic message authentication code (hmac-sha1 or
hmac-md5). Protocol version 2 provides a public key based user
(PubkeyAuthentica- tion) or client host (HostbasedAuthentication)
authentication method, conventional password authentication and
challenge response based methods. “ (Tevesk, 2001)

During the install of the OpenSSH packages, the installer will have created the ssh

client and server configuration files in the /etc/ssh directory. The /etc/ssh/sshd_config

file is the system-wide configuration file for the OpenSSH secure shell server. The

secure shell daemon reads configuration data from this file at startup. Edit the

/etc/ssh/sshd_config file to appear similar to the one listed in Figure10-7.

The Port option specifies the port number on which sshd listens. The default port

is 22 and is listed that way in most ‘services’ files. The Protocol option specifies that sshd

will support both protocol 1 and protocol 2. The ListenAddress option specifies the local

addresses sshd should listen on. In this implementation, sshd will listen on both the

external and internal network interfaces. The HostKey option specifies the file containing

107

 # This is ssh server systemwide configuration file.

Port 22 # Listen for connections on port 22
Protocol 2,1 # Support SSH protocols 1 and 2
ListenAddress 24.231.21.43 # Server’s External IP address
ListenAddress 192.168.6.1 # Server’s Internal IP address
HostKey /etc/ssh/ssh_host_key # File containing private host keys
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
ServerKeyBits 1024 # Number of bits in server key
 # for SSH protocol 1
LoginGraceTime 90 # Timeout in seconds if nologin
KeyRegenerationInterval 3600 # SSH protocol 1 server key
 # regeneration in x seconds
PermitRootLogin no # Deny root user login
IgnoreRhosts yes # Don't read.rhosts and .shosts files
IgnoreUserKnownHosts yes # don't trust
~/.ssh/known_hosts for
RhostsRSAAuthentication
StrictModes yes # Check file modes and ownership
X11Forwarding no # Do not allow X11 forwarding

KeepAlive yes # Send keepalive messages
SyslogFacility AUTH # Log messages with AUTH code
LogLevel INFO # Level of log messages
RhostsAuthentication no # Don’t authenticate using .rhosts or
/etc/hosts.equiv
RhostsRSAAuthentication no # Don’t use rhosts or
/etc/hosts.equiv together with
RSA authentication
RSAAuthentication yes # Use RSA Authentication
PasswordAuthentication yes # Allow password authentication
PermitEmptyPasswords no # Don’t allow empty passwords
AllowUsers admin read write # allow only these users

Figure 10-7. Configuration of /etc/ssh/sshd_config

the private host keys (default /etc/ssh_host_key) used by SSH protocol versions 1 and 2.

Note that sshd will refuse to use a file if it is group/world-accessible, so the permissions

for the files specified should be 700. The Linux server implementation will support

typical host keys as well as RSA and DSA generated keys. The ServerKeyBits option

defines the number of bits in the ephemeral protocol version 1 server key. The minimum

108

value is 512 and here it is doubled create a longer key. The LoginGraceTime is the time

in seconds allowed for a successful login. After this time if the user has not successfully

logged in, the server will disconnect and terminate the session. The KeyRegeneration-

Interval is used only in protocol version 1. If the ephemeral server key has been used, it is

automatically regenerated after the specified number of seconds. The purpose of

regeneration is to prevent decrypting captured sessions by later breaking into the machine

and stealing the keys. In addition, the key is never written to a file. The PermitRootLogin

option specifies whether the root user can login. If this option is set to “no” root is not

allowed to login. IgnoreRhosts set to yes specifies that .rhosts and .shosts files will not

be used in RhostsAuthentication, RhostsRSAAuthentication or HostbasedAuthentication.

However, the files /etc/hosts.equiv and /etc/shosts.equiv are still used. Setting the

IgnoreUserKnownHosts to “yes” tells the secure shell daemon to ignore the user's

$HOME/.ssh/known_hosts during RhostsRSAAuthentication or Hostbased-

Authentication. The strict StrictModes option specifies whether sshd should check file

modes and ownership of the user's files and home directory before accepting login. This

is a good idea since novices sometimes accidentally leave their directory or files world-

writable, and, as a reminder, the sshd daemon will not open a connection if the files are

world-readable or writable. The X11Forwarding option is disabled since this

implementation will not use any X11 programs. Enabling the KeepAlive option allows

the system to send keepalive messages to the other side so the death of the connection or

crash of one of the machines will be properly noticed. If keepalives are not sent, sessions

may hang indefinitely on the server and unecessarily consume server resources. The sshd

daemon can log messages to the system log when a login occurs. Setting the

109

SyslogFacility option to AUTH enables this function. The LogLevel option gives the

verbosity level that is used when logging messages from sshd. Disabling the

RhostsAuthentication option does not allow authentication using rhosts or

/etc/hosts.equiv files only. This is a good idea, since these files are notoriously insecure.

Turning off the RhostsRSAAuthentication option does not allow authentication using

rhosts or /etc/hosts.equiv authentication together with successful RSA host

authentication. Again, the files are not considered secure. The RSAAuthentication

option enables using pure RSA authentication for SSH protocol one. The Password-

Authentication option allows password authentication, however keep in mind, even

though the tunnel is encrypted, the passwords are sent through the tunnel in clear text

form. Do not enable PermitEmptyPasswords. When password authentication is allowed,

the PermitEmptyPasswords option set to no allows login to accounts with empty

password strings. The AllowUsers keyword is followed by a list of user names, separated

by spaces, that can login to the system through ssh. In this implementation, the list of

users is crucial. No other users should be allowed remote access to this host.

The OpenSSH package also comes with its own secure shell client. In the Linux

VPN implementation, the ssh client will be used only in scripted sessions to dynamically

configure VPN connection. Other clients such as TeraTerm are available for download

for the system administrator’s workstation. The OpenSSH client supports both SSH

protocols, and the manual page describes the implementations in detail:

In SSH protocol version 1 “if the machine the user logs in from is listed in
/etc/hosts.equiv or /etc/shosts.equiv on the remote machine, and the user
names are the same on both sides, the user is immediately permitted to log
in. Second, if .rhosts or .shosts exists in the user's home directory on the
remote machine and contains a line containing the name of the client
machine and the name of the user on that machine, the user is permitted to

110

log in. This form of authentication alone is normally not allowed by the
server because it is not secure. The second authentication method is the
rhosts or hosts.equiv method combined with RSA-based host
authentication. It means that if the login would be permitted by
$HOME/.rhosts, $HOME/.shosts, /etc/hosts.equiv, or /etc/shosts.equiv,
and if additionally the server can verify the client's host key (see
/etc/ssh_known_hosts and $HOME/.ssh/known_hosts in the FILES
section), only then login is permitted. This authentication method closes
security holes due to IP spoofing, DNS spoofing and routing spoofing.
[Note to the administrator: /etc/hosts.equiv, $HOME/.rhosts, and the
rlogin/rsh protocol in general, are inherently insecure and should be
disabled if security is desired.] As a third authentication method, ssh
supports RSA based authentication. The scheme is based on public-key
cryptography: there are cryptosystems where encryption and decryption
are done using separate keys, and it is not possible to derive the decryption
key from the encryption key. RSA is one such system. The idea is that
each user creates a public/private key pair for authentication purposes. The
server knows the public key, and only the user knows the private key. The
file $HOME/.ssh/authorized_keys lists the public keys that are permitted
for logging in. When the user logs in, the ssh program tells the server
which key pair it would like to use for authentication. The server checks if
this key is permitted, and if so, sends the user (actually the ssh program
running on behalf of the user) a challenge, a random number, encrypted by
the user's public key. The challenge can only be decrypted using the
proper private key. The user's client then decrypts the challenge using the
private key, proving that he/she knows the private key but without
disclosing it to the server. Ssh implements the RSA authentication
protocol automatically… If other authentication methods fail, ssh prompts
the user for a pass-word. The password is sent to the remote host for
checking; however, since all communications are encrypted, the password
cannot be seen by someone listening on the network.”

In SSH protocol version 2 “[w]hen a user connects using the protocol
version 2 different authentication methods are available. Using the default
values for PreferredAuthentications, the client will try to authenticate first
using the hostbased method; if this method fails public key authentication
is attempted, and finally if this method fails keyboard-interactive and
password authentication are tried. The public key method is similar to
RSA authentication described in the previous section and allows the RSA
or DSA algorithm to be used…The session identifier is derived from a
shared Diffie-Hellman value and is only known to the client and the
server. If public key authentication fails or is not available a password can
be sent encrypted to the remote host for proving the user's identity.
Additionally, ssh supports hostbased or challenge response authentication.
Protocol 2 provides additional mechanisms for confidentiality (the traf- fic
is encrypted using 3DES, Blowfish, CAST128 or Arcfour) and integrity

111

(hmac-md5, hmac-sha1). Note that protocol 1 lacks a strong mechanism
for ensuring the integrity of the connection. “(Ylonen, 2001)

Since all ssh activity initiating from the Linux VPN activity will be initiated from

the server itself, a system-wide configuration should be setup. Edit the

/etc/ssh/ssh_config to appear as in Figure 10-8.

 # $OpenBSD: ssh_config,v 1.9 2001/03/10 12:53:51 deraadt Exp $
This is ssh client systemwide configuration file. See ssh(1) for more
information. This file provides defaults for users, and the values can
be changed in per-user configuration files or on the command line.
Configuration data is parsed as follows:
1. command line options
2. user-specific file
3. system-wide file
Any configuration value is only changed the first time it is set.
Thus, host-specific definitions should be at the beginning of the
configuration file, and defaults at the end.
Site-wide defaults for various options

Host *
Port 22
Protocol 2,1
ConnectionAttempts 3
KeepAlive yes
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
PasswordAuthentication yes
FallBackToRsh no
UseRsh no
BatchMode no
CheckHostIP yes
StrictHostKeyChecking no

Figure 10-8. Configuration of /etc/ssh/ssh_config

Most of the options specified in the /etc/ssh/ssh_config file are similar to the

options used in the /etc/ssh/sshd_config file. Refer to the previous section for

information about those options.

112

Several of the options are specific only to the ssh client. The ConnectionAttempts

option specifies the number of attempts made to connect to a secure shell server before

giving up. The FallBackToRsh and UseRsh options are disabled since the protocols are

not installed in this implementation. In addition, the rsh protocol is inherently insecure

and should not be used even if installed on the system. If the BatchMode option is set to

yes password querying will be disabled. While this can be useful when scripting ssh

sessions, if someone were to gain access to usernames on the system, access can be

gained without a password. With the CheckHostIp option set to “yes”, ssh will check the

host IP address in the known_hosts file in order to detect if a host key changed due to

DNS spoofing. Finally, the StrictHostKeyChecking option set to no enables automatic

adding of new host keys to the known_host file.

 #%PAM-1.0
auth required /lib/security/pam_pwdb.so shadow nodelay
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_pwdb.so
password required /lib/security/pam_cracklib.so
password required /lib/security/pam_pwdb.so shadow nullok use_authtok
session required /lib/security/pam_pwdb.so
session required /lib/security/pam_limits.so

Figure 10-9. Configuration of /etc/pam.d/sshd

The OpenSSH package also provides a secure file transfer program, sftp. The sftp file

will be used to transfer configuration files securely between VPN servers to enable

dynamic configurations when changes need to be made.

After configuring the secure shell client and server, the Pluggable Authentication

Module needs to know how to handle authentication for the secure shell daemon. Edit

the /etc/pam.d/sshd file to include the configuration entries listed in Figure 10-9. For

113

information about the entries listed see the section on Pluggable Authentication Modules

in Chapter 8.

Lastly, “wrap” the sshd daemon so that the TCP wrappers program will start and

stop the OpenSSH server. Edit the inetd.conf file by commenting out both the telnet and

ftp configuration lines. Add the following line:

 ssh stream tcp nowait root /usr/sbin/tcpd sshd –i

This entry will allow the super server, inetd, to listen for connections for the sshd server.

Note, the –i option is vital because it signals sshd that it is being run from the inetd

server.

With the basic services identified and implemented, the remaining chapters of this

document will deal directly with establishing secure mechanisms for remote management

of the Linux system, and will detail the design of the VPN functionality of the system.

Finally, the server will be locked down using a packet firewall and by removing

unnecessary binaries from the production system.

CHAPTER 11
SECURE SOCKETS LAYER

OpenSSL

The secure socket layer, SSL, is a presentation layer service located between the

transport and application layers of the operating system. It is platform and application

independent. As such, SSL is responsible for the management of a secure

communications channel between clients employing such applications as ftp, http, and

mail services, and a secure server providing those services. It uses TCP/IP on behalf of

the higher-level protocols, and in the process allows an SSL-enabled server to

authenticate itself to an SSL-enabled client and vice-versa. In addition, the secure socket

layer allows for the establishment of an encrypted connection between a client and a

server across an insecure medium.

SSL provides a strong cryptography mechanism for encrypting data transferred

between a client and a server. The SSL protocol uses a combination of asymmetric

public-key and symmetric key encryption. A symmetric key encryption system is when

both the client and server use the same key for encryption and decryption. Symmetric

key encryption is much faster than public-key encryption since only one key is used, but

public-key encryption provides better authentication techniques, hence the reason for

using a combination of both. Public Key Infrastructure, PKI, is a system to verify and

authenticate the validity of each party involved in an Internet transaction. PKI is an

asymmetric key system that consists of a pair of keys consisting of a public key and a

private key. The public key is sent out to clients and the private key stays local to the

114

115

server and is never made public. Data that is encrypted with the public key can be

decrypted only with the private key, and data encrypted with the private key can be

decrypted only with the public key. Whitfield Diffie and Martin Hellman invented public

key cryptography in 1976, and for this reason, it is sometimes called Diffie-Hellman

encryption.

How PKI Works

In an Internet transaction, the client's Internet browser, or other Internet

application, randomly creates a public and private key pair for the SSL session. The client

uses the generated private key to encrypt a message, thereby providing for a means of

source authentication of the message. The encrypted message is then encrypted with the

server’s public key to provide confidentiality since only the server is able to do the initial

decryption of the message using its private key. The server then uses the client's public

key to decrypt the encrypted message. Only the client has access to its private key, and

therefore, the server is assured that the encrypted message was actually sent from the

client.

A message digest is also applied at the time of the initial encryption of the

message. The message digest is used to verify no one has tampered with the message’s

contents. To create a message digest, the sender applies a hash function, the part of the

private key known as the fingerprint, to the message. The digest is appended to the

original message, thereby providing a message signature. No matter how long the

message, the signature's length is constant. Making any change in the message will

change the length of the signature and will provide proof of the changes in the message

(OpenSSL core team, n.d.).

116

How SSL Works

The SSL protocol includes the SSL record protocol and the SSL handshake

protocol. The SSL record protocol defines the format, such as TCP, used to transmit data.

During the establishment of an SSL connection, the SSL handshake protocol uses the

SSL record protocol to exchange a series of messages between an SSL-enabled server

and an SSL-enabled client.

An SSL session always begins with an exchange of messages called the SSL

handshake. The handshake allows the server to authenticate itself to the client using

public-key techniques, and then allows the client and the server to cooperate in the

creation of symmetric keys used for rapid encryption, decryption, and tamper detection

during the session that follows.

During the handshake certificates in the form of asymmetric keys are exchanged

between the client and server. The server then sends its public key to the client; if the

server requires client authentication via a certificate, the client will send its public key to

the server. The dates on the certificates are verified as valid and then are checked for a

digital signature of a trusted certificate authority. If either check fails, the Internet

application will issue a warning explaining the failure to the user. At this point, it is up to

the user whether to trust the server certificate.

Next, the client generates a random symmetric key to use for encryption. The

random symmetric key is encrypted using the server's public key and sent to the server.

Once, decrypted by the server, the new symmetric key is used for encrypting the data sent

between the client and server. In addition, message encryption algorithm and a hash

function are negotiated for connection integrity purposes. This negotiation process could

117

be carried out on either the client or server side. For additional security, the server can

require certain encryption algorithms the client must use. (Netscape Communications

Corporation, 1999). Apendix B lists the possible cipher specifications as defined in the

OpenSSL protocol suite.

Server Certificates

Typically, the certificates provided during the SSL handshake protocol are issued

and digitally signed by a well-known, trusted certificate authority such as Verisign. In

this Linux VPN implementation, SSL services will be provided only on the LAN side, so

the Linux server will also act as a certificate authority. To set up the Linux server to not

require a Certificate Authority, CA, use the OpenSSL program to create a private key and

a “self-signed” certificate.

Create a private key using RSA authentication using the following command:

 [root@turtledove /]# openssl genrsa –out /etc/ssl/keys/serverrsa.key 1024

Optionally, create a private key using the triple des encryption standard in addition to the

rsa authentication by using the following command:

[root@turtledove /]# openssl genrsa -des3 -out /etc/ssl/keys/serversrsa.key
 1024

If choosing to use triple des encyption, a password must be supplied during the key

generation. In addition, the password is required each time the SSL server starts. To

avoid manually entering the password each time the server starts, create a file with the

first line containing only the password. Secure the file permissions on the file so only the

root user and the wheel group can read the file. Point the server to this file when the

server is started.

118

Next, create a Certificate Signing Request (CSR) to obtain a signed certificate.

The purpose is to send the certificate authority enough information to create the

certificate without sending the entire private key or compromising any sensitive

information. Use the following command to generate the CSR:

[root@turtledove /]# openssl req -new -key /etc/ssl/keys/serverrsa.key –out \
/etc/ssl/keys/servercsr.csr

Sign the certificate by creating a self-signed certificate using the following command:

[root@turtledove /]# openssl req –new –key /etc/ssl/keys/serverrsa.key –x509 \
–days 1095 –out /etc/ssl/keys/servercrt.crt

Now secure these keys and certificates by changing the permissions so only the root user

can read or write the files. The permissions should be set to 600, giving root read and

write permissions.

Using SSL on the LAN side of the server will help to protect the server from

attacks initiating from the internal network. In addition, it will provide a secure means

for the system administrator to interact with the Linux server (Ng, 2001).

CHAPTER 12
APACHE WEB SERVICE

Apache is a very common, powerful, efficient and freely available Web server.

The Apache Web server is HTTP/1.1 compliant web server implementing the latest

protocols, including HTTP/1.1 (RFC2616). In addition, it is highly configurable and

extensible with third-party modules can be customized by writing modules using the

Apache module API and provides full source code an unrestrictive license. In the Linux

VPN implementation, Apache will listen only on the internal LAN interface in order to

provide system administrators convenient access to common system features through the

Webmin CGI scripts. This implementation requires the mod_perl package, the mod_ssl

package, and OpenSSL.

Apache is the most widely used HTTP-server in the world today. It surpasses all

free and commercial competitors on the market, and provides a myriad of features; more

than the nearest competitor could give you on a UNIX variant. It is also the most used

web server for a Linux system. A web server like Apache, in its simplest function, is

software that displays and serves HTML pages hosted on a server to a client browser that

understands the HTML code. Mixed with third party modules and programs, it can

become powerful software, which will provide strong and useful services to a client

browser (Sigle, 2001).

Apache Modules

To include Perl programming language support in your Apache web server,

119

120

change into the mod_perl source directory, /usr/src/mod_perl-1.25/, and use the following

commands to add the mod_perl source to the Apache source:

 [root@turtledove mod_perl-1.25/]# perl Makefile.PL \
 EVERYTHING=1 \
 APACHE_SRC=../apache_1.3.12/src \
 DO_HTTPD=1

[root@turtledove mod_perl-1.25/]# make
[root@turtledove mod_perl-1.25/]# make install

The above commands use perl to configure the make file for the mod_perl package to

include all options, “EVERYTHING”, and apply the source to the Apache source

directory listed. The “make” command compiles the mod_perl package, and the “make

install” command installs the mod_perl module.

The mod_SSL package is an Apache web server module that provides strong

cryptography for web sessions via the Secure Socket Layer protocol library provided by

OpenSSL. In order to allow Apache to configure and respond to secure requests, the

mod_ssl package must be installed. To install the mod_ssl package, change into the

/usr/src/mod_ ssl-2.8.4-1.3.20 directory and use the following command to make the

Apache source aware of the mod_ssl package:

 [root@turtledove mod_ ssl-2.8.4-1.3.20/]# ./configure \
 --with-apache=/usr/src/apache_1.3.20 \
 --with-crt=/etc/ssl/keys/servercrt.crt \
 --with-key=/etc/ssl/keys/serverrsa.key

This command adds the mod_ssl source to the Apache source tree so it will be compiled

in with the Apacher server. The “--with-apache” option specifies the location of the

Apache source directory, the “--with-crt” option specifies the location of your existing

signed certificate (public key) for SSL encryption, and the “--with-key” option specifies

the location of your existing private key for SSL encryption.

121

Once mod_ssl source has been added to the Apache source and Apache compiled,

SSL configuration entries must be added to the Apache configuration file. The mod_ssl

package provides its own custom commands that can be defined both globally for all sites

provided by the server and for individual virtual hosts. The global configuration for SSL

will begin with a check to see if the mod_ssl module is available to Apache: “<IfModule

mod_ssl.c>.” If the mod_ssl module is available, the configuration directives are loaded

by Apache at startup. Figure 12-1 provides a sample of one possible global configuration

for Apache.

Initially, the SSLEngine option is turned off in the global context. The

SSLEngine option will be turned on only for specific virtual hosts on specific IP

addresses and port numbers. This directive toggles the usage of the SSL/TLS Protocol

Engine. By default the SSL/TLS Protocol Engine is disabled for both the main server

and all configured virtual hosts.

When Apache starts up it has to read the various certificate and private key files

of the SSL-enabled virtual servers. Since the private key files are usually encrypted for

security reasons, mod_ssl needs to query the administrator for a Pass Phrase in order to

decrypt those files. Here the SSLPassPhraseDialog is set to builtin. This is the default

where an interactive terminal dialog occurs at startup requiring the system administrator

to manually enter the pass phrase for each encrypted private key file. Mod_ssl will

attempt to reuse any previously entered passwords before prompting for a new one. If

one of the previous passwords works, then the prompt is not needed.

The SSLSessionCache option configures the storage facility, or cache, for SSL

sessions that can speed up parallel request processing. Since modern clients can make up

122

 ##
SSL Global Context Configuration

All SSL configuration in this context applies both to
the main server and all SSL-enabled virtual hosts
(unless overridden by virtual hosts)

<IfModule mod_ssl.c>
SSL Support
When we also provide SSL we have to listen to the
standard HTTPS port - 443

Listen 192.168.1.32:443
SSLEngine off
SSLPassPhraseDialog builtin
SSLSessionCache dbm:/var/log/ssl/ssl_scache
SSLSessionCacheTimeout 300
SSLMutex file:logs/ssl_mutex
SSLRandomSeed startup file:/dev/urandom 512
SSLRandomSeed connect builtin
SSLCipherSuite
ALL:!ADH:!NULL:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP
SSLLog /var/log/ssl/ssl_engine_log
SSLLogLevel info
CustomLog /var/log/ssl/ssl_request_log \
 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"
SSLProtocol all
</IfModule>

END OF SSL GLOBAL CONTEXT CONFIGURATION

Figure 12-1. Apache web server SSL global context configuration

to four parallel requests for data, the mod_ssl module can respond to those requests

through different pre-forked server processes to avoid unneccessary session handshakes.

In this implementation, the mod_ssl module makes use of a DBM type database hashfile

on the local system to synchronize the server processes.

To ensure that unused or abandoned SSL sessions are closed and disabled, the

SSLSessionCacheTimeout directive will turn off the SSL Protocol Engine after a

123

predetermined number of seconds. In addition, the SSLSessionCacheTimeout will

provide session cache cleaning of stale information.

The SSLMutex option configures the SSL engine's semaphore that is used for

mutual exclusion of operations that have to be done in a synchronized manner between

the pre-forked Apache server processes. Here the SSLMutex option is configured to use

the lock file in the Apache logs directory.

The SSLRandomSeed option configures one or more sources for seeding the

Pseudo-Random Number Generator (PRNG) in OpenSSL. This directive can be used to

configure Apache’s initial startup and when any connection attempt is made.

“The following source variants are available: builtin This is the always
available builtin seeding source. It's usage consumes minimum CPU
cycles under runtime and hence can be always used without drawbacks.
The source used for seeding the PRNG contains the current time, the
current process id and (when applicable) a randomly choosen 1KB extract
of the inter-process scoreboard structure of Apache. The drawback is that
this is not really a strong source and at startup time (where the scoreboard
is still not available) this source just produces a few bytes of entropy. So
you should always, at least for the startup, use an additional seeding
source.

file:/path/to/source

This variant uses an external file /path/to/source as the source for seeding
the PRNG. When bytes is specified, only the first bytes number of bytes of
the file form the entropy (and bytes is given to /path/to/source as the first
argument). When bytes is not specified the whole file forms the entropy
(and 0 is given to /path/to/source as the first argument). Use this especially
at startup time, for instance with an available /dev/random and/or
/dev/urandom devices (which usually exist on modern Unix derivates like
FreeBSD and Linux).

But be careful: Usually /dev/random provides only as much entropy data
as it actually has, i.e. when you request 512 bytes of entropy, but the
device currently has only 100 bytes available two things can happen: On
some platforms you receive only the 100 bytes while on other platforms
the read blocks until enough bytes are available (which can take a long
time). Here using an existing /dev/urandom is better, because it never
blocks and actually gives the amount of requested data. The drawback is

124

just that the quality of the received data may not be the best.” (Engelschall
& Ralf, 2001)

The complex SSLCipherSuite directive uses a colon-separated string of OpenSSL

cipher specifications to configure the cipher suites clients can negotiate in the SSL

handshake phase. The SSL cipher specification should contain at least the following four

attribute algorithms: Key Exchange, Authentication, Cipher/Encryption, MAC Digest.

The default cipher-specification string is “ALL:!ADH:RC4+RSA:+HIGH:

+MEDIUM:+LOW:+SSLv2:+EXP.” This string translates to the following: Use all

ciphers (ALL) but remove any ciphers that do not authenticate (!ADH). Next, in order,

use ciphers employing RC4 encoding and RSA key exchange (RC4+RSA), use ciphers

employing Triple-DES encoding (+HIGH), use ciphers employing 128 bit encryption

(+MEDIUM), use low strength ciphers employing single DES, but not export ciphers

(+LOW), use SSL protocol version 2 ciphers (+SSLv2), and, lastly, use export only

ciphers (+EXP).

This implementation uses the default cipher-specification string with one

addition: do not use ciphers employing no encryption (!NULL). For secure

communications, all handshaking should be done with encryption of information passed

between the client and server.

The SSLLog directive sets the path and name for the dedicated SSL protocol

engine logfile. Either an absolute path or relative path can be used. Generally, error type

messages are sent to the general Apache error log file as specfied in the Apache

configuration file, so information logging is more than adequate for this implementation.

Therefore, the SSLLogLevel directive is set to info to log major processing steps. The log

files should be stored in a subdirectory of the /var directory. The /var directory is used

125

for dynamic data and is segregated from other directories on a separate partition, so

create a subdirectory /var/logs/ssl/ to store the logs and set the access permissions so only

root can write. By doing this, the logs should be safeguarded so they cannot be used for

symlink attacks on a real server.

In this implementation of the Linux VPN server, only the system administrator

needs access to the web services provided on the LAN side. Therefore, it is a good idea

to log all the requests made to the server through the mod_ssl CustomLog directive. The

CustomLog directive will create a log of all SSL requests made to the server and should

be checked regularly for suspicious activity. In addition, it can be a useful tool to see

what ciphers and protocols are being used during the SSL handshake.

Finally, the SSLProtocol directive can be used to control the SSL protocols

mod_ssl uses to allow client connectivity. Clients can only connect with one of the

protocols specified in the SSLProtocol directive.

In this implementation, the server will accept all available SSL protocols

supported by the mod_ssl module: SSLv2, SSLv3, and TLSv1.

To add additional client authentication features for the Apache secure services,

the mod_auth_external module will be used to authenticate the client after the SSL

handshake. The mod_auth_external module allows Apache to call an external password

authentication program; this way, Apache need not have access to the password or

shadow password files. The mod_auth_external module will be configured to pass the

user's login and password to the external authentication program via a pipe. The external

authentication program will access the shadow password file to authenticate the client. If

successful, the external authentication program will return SUCCESS to Apache and

126

Apache will service the request from the client. For security reasons, do not allow the

external authentication file to directly access the shadow password file. Rather, allow the

pluggable authentication modules to do the work instead.

Install the mod_auth_external module

Copy the mod_auth_external source file from the unzipped directory to the

Apache extra modules directory:

cp mod_auth_external-2.1.9/mod_auth_external.c \
apache_1.3.20/src/modules/extra

Next, make modifications to the pwauth source code before the install. Edit the config.h

file to enable PAM support as shown in Figure 12-2.

 /* #define SHDOW_NONE /**/
/* #define SHADOW_BSD /**/
#define SHADOW_SUN /**/
/* #define SHADOW_JFH /**/
/* #define SHADOW_MDW /**/
/* #define SHADOW_AIX /**/
#define PAM /**/
/* #define PAM_SOLARIS_26 /**/

Figure 12-2. Modify pwauth source code

Edit the Makefile to include the libraries required for PAM support:

CC=gcc
LOCALFLAGS= -g
For PAM on Redhat Linux
LIB=-lpam –ldl

Finally, issue the “make” command in the source directory to build the executable binary.

Once the executable is built, move it to the /usr/local/libexec/pwauth/ directory. Make

sure the permissions are set so only root can access the program. Once this is complete,

the interface to PAM must be written. Create the file /etc/pam.d/pwauth and add the lines

listed in Figure 12-3.

127

 #%PAM-1.0
auth required /lib/security/pam_pwdb.so shadow nullok
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_pwdb.so

Figure 12-3. Configuration of /etc/pam.d/pwauth

The pwauth program is an external suid-root program that is run by mod_auth_external to

do authentications through PAM. To configure Apache to use pwauth for secure

authentications, add the following lines to the http.conf file

AddExternalAuth pwauth /full/path/to/pwauth
 SetExternalAuthMethod pwauth pipe

Place the secure authentication directives above the SSL Global Context

Configuration directives. Now Apache can provide secure access to web pages and

provide secure authentication of clients attempting to view the secure pages.

Compiling and Installing Apache

To install the Apache web server onto the Linux server, change into the source

directory, /usr/src/apache_<version>, and use the following commands:

 [root@turtledove apache_1.3.20/]# configure
[root@turtledove apache_1.3.20/]# make
[root@turtledove apache_1.3.20/]# make install
[root@turtledove apache_1.3.20/]# rm -f /usr/sbin/apachectl
[root@turtledove apache_1.3.20/]# rm -f /usr/man/man8/apachectl.8
[root@turtledove apache_1.3.20/]# rm -rf /home/httpd/icons/
[root@turtledove apache_1.3.20/]# rm -rf /home/httpd/htdocs/

The “configure” command will configure the Makefile for the Linux server install. The

“make” command compiles all files in the source tree into executable binaries, and the

“make install” command installs the binaries and any supporting files into the appropriate

locations. The “rm -f” commands remove extraneous files from the install directories.

128

Define a Secure Virtual Host

The next step in providing secure web services is to create a virtual host that will

respond to requests through the SSL protocol. Configuring a virtual host for Apache is

relatively straightforward, so the focus of this discussion will be on the implementation of

the SSL services provided through the virtual host. The global SSL directives for all

hosts offered by the Apache server are defined as above before defining a specific virtual

host. Traditionally, a secure host will listen for secure communication requests only on

port 443. Most web browsers will default to making requests on port 443 when a URL is

addressed using the secure http protocol, https. In any case, secure services can be

offered on any port number, and in order to contact the host, the port number, preceeded

by a colon, would need to be appended to the end of a URL. For example,

https://www.destinationearth.net:12431, would be a valid means to request secure

services on port 12341. In the Apache virtual host directive the site is not addressed using

a URL, rather it is addressed by the IP address and port number to listen for requests:

<VirtualHost 192.168.6.1:443>. The format and directives for a secure virtual host in

this implementation are listed in Figure 12-4.

The most importation directives for SSL are the SSLEngine, SSLCertificateFile,

and SSLCertificateKeyFile. As described previously, the SSLEngine directive turns on

the SSL protocol for only the virtual host containing the directive. The

SSLCertificateFile directive points Apache to the certificate file, saved in the /etc/ssl/keys

directory, to be used for secure handshaking. The SSLCertificateKeyFile directive points

Apache to the private key file, also contained in the /etc/ssl/keys directory. The private

key file should not be readable or writeable by anyone other than root. The permission

129

should have been set correctly after creating the files, but a quick look at the file

permissions is a good idea to ensure the security of the private key.

 <VirtualHost 192.168.6.1:443>
 ServerName secure.destinationearth.net
 ServerAlias destinationearth.net www.destinationearth.net
 # primary content
 DocumentRoot /home/httpsd/configuration/html
 ScriptAlias /cgi-bin /home/httpsd/configuration/cgi-bin
 # alias for Apache icons
 Alias /icons/ /var/www/icons/
 # SSL Directives
 SSLEngine on
 SSLCertificateFile /etc/ssl/keys/servercrt.crt
 SSLCertificateKeyFile /etc/ssl/keys/serverrsa.key
 # End SSL Directive
 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0
</VirtualHost>

Figure 12-4. Apache Secure Virtual Host Configuration

The Apache web server should not run as super-user, and indeed in most recent

versions it cannot be run that way. Earlier the httpsd user and group were created for the

Apache server. The Apache directives, User and Group, are thus set to “httpsd.”

The SSLRequireSSL directive denies access to SSL-enabled virtual hosts or

directories unless HTTP over SSL (HTTPS) is enabled for the current connection. When

this directive is present all requests are denied that are not using SSL.

The SSLRequire directive specifies criteria that have to be fulfilled in order to

allow access to a virtual host or directory. Here, the server will only accept requests

using a minimum cipher key size of 128 bits or greater. Requests must be made from a

browser supporting 128-bit encryption, otherwise access to the server will be denied.

In addition, many configuration directives exist for the configuring the Apache

server, however, these directives fall well beyond the scope of this document. For further

130

information regarding the configuration of the Apache server, see the “Apache Overview

HOWTO” by Daniel Lopez Ridruejo available from http://www.linuxdoc.org/HOWTO/

Apache-Overview-HOWTO.html and the Apache server reference manual available from

http://httpd.apache.org/docs/.

Starting Apache

Create the script file /etc/rc.d/init.d/httpd to start and stop the Apache web server (Bowen,

Coar, Grip-Jansson, Marlowe, & Chinnappan, 2000). To create the httpd script file issue

the command: touch /etc/rc.d/init.d/httpd. Next, open the file and add the listing from

Figure 12-5.

To make the script executable and ensure only the root user can run it, change the

permissions on the script file:

[root@turtledove /]# chmod 700 /etc/rc.d/init.d/httpd

Finally, ensure that Apache will start at boot time by creating the symbolic links in each

necessary run level:

[root@turtledove /]# chkconfig --add httpd

Note: the -startssl option will start Apache in SSL mode. Do not remove this option,

otherwise, secure communications will not be possible.

Securing Apache

To add additional security to the Apache server, change the file permissions as

listed below:

 [root@turtledove /]# chmod 511 /usr/sbin/httpd
[root@turtledove /]# chmod 750 /etc/httpd/conf/
[root@turtledove /]# chmod 750 /var/log/httpd/

131

 #!/bin/sh
 # Startup script for the Apache Web Server
 # chkconfig: 345 85 15
 # description: Apache is a World Wide Web server. It is used to serve \
 # HTML files and CGI.
 # processname: httpd
 # pidfile: /var/run/httpd.pid
 # config: /etc/httpd/conf/httpd.conf
 # Source function library.
 . /etc/rc.d/init.d/functions
 # See how we were called.
 case "$1" in
 start)
 echo -n "Starting httpd: "
 daemon httpd -startssl
 echo
 touch /var/lock/subsys/httpd
 ;;
 stop)
 echo -n "Shutting down http: "
 killproc httpd
 echo
 rm -f /var/lock/subsys/httpd
 rm -f /var/run/httpd.pid
 ;;
 status)
 status httpd
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 reload)
 echo -n "Reloading httpd: "
 killproc httpd -HUP
 echo
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|reload|status}"
 exit 1
 esac
 exit 0

Figure 12-5. Configuration of /etc/rc.d/init.d/httpd

132

This sets the binary program readable by only root, and executable by everyone.

Further, these commands lock down the /etc/httpd/conf/ and /var/log/httpd from others

outside the root user and the httpsd user and group.

To test the Apache install, point a web browser to the following address:

https://my-web-server/private/. Where <my-web-server> is the fully qualifed host name

of the server, and </private/> is the protected directory.

CHAPTER 13
WEBMIN

The Webmin package will be used for remote configuration of the Linux VPN

server. It provides a web-based interface with modules that allow interaction with system

files and settings. This service will be provided exclusively on the internal network, and

only the IP address of the system administator’s workstation will be permitted access. In

addition, SSL services will be used to require password authentication before using the

service. Webmin can use SSL to secure connections between a SSL-enabled web

browser and the Webmin server. Before installing the Webmin package, install the

Table 13-1. Webmin Configuration
Prompt Response
Config file directory /etc/webmin
Log file directory /var/webmin
Full path to perl /usr/bin/perl
Operating System 4 (Redhat Linux)
Version 9 (Redhat Linux 6.2)
Webserver port 8443
Login name admin
Login password <password>
Webserver hostname turtledove.destinationearth.net
Use SSL y
Start Webmin at boot time n

Net::SSLeay perl module downloaded earlier and extracted to /usr/src/Net_SSLeay.pm-

1.05/:

[root@turtledove /]# cd /usr/src/Net_SSLeay.pm-1.05
[root@turtledove Net_SSLeay.pm-1.05]# perl Makefile.PL
[root@turtledove Net_SSLeay.pm-1.05]# make install

NOTE: since the OpenSSL package was intalled from an RPM, it may be necessary to

use the following command to find the OpenSSL library properly:

133

134

[root@turtledove Net_SSLeay.pm-1.05]# perl Makefile.PL /usr

To test the Net_SSLeay.pm install, use the command “perl -e 'use Net::SSLeay” to see if

any error messages are output (Sampo, 2001). If no errors are output, then the SSL

support that Webmin needs is properly installed.

 <VirtualHost 192.168.6.1:443>

 SetEnv WEBMIN_CONFIG /etc/webmin
 SetEnv WEBMIN_VAR /var/webmin
 SetEnv MINISERV_C0NFIG /etc/webmin/miniserv.conf

 ServerName secure.destinationearth.net
 ServerAlias destinationearth.net www.destinationearth.net

 # primary content

 DocumentRoot /home/httpsd/configuration/html/webmin-0.88
 ScriptAlias /cgi-bin /home/httpsd/configuration/html/cgi-bin

 # alias for Apache icons

 Alias /icons/ /var/www/icons/

 # SSL Directives
 SSLEngine on
 SSLCertificateFile /etc/ssl/keys/servercrt.crt
 SSLCertificateKeyFile /etc/ssl/keys/serverrsa.key
 # End SSL Directives

 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

 </VirtualHost>
Figure 13-1. Apache Webmin virtual host

Installation

To install the Webmin package extracted to /usr/src/ webmin-0.88, use the

following set of commands:

[root@turtledove /]# cp –R /usr/src/webmin-0.88 /home/httpsd/
configuration/html

135

[root@turtledove /]# cd /home/httpsd/configuration/html/webmin-0.88
[root@turtledove webmin-0.88]# ./setup.sh

As the “setup.sh” shell script runs, it will prompt for several items. The prompts and the

corresponding responses are listed in Table 13-1.

The setup script will give the URL and port number to use to access Webmin.

Enter the URL, substituting the IP address for the hostname, into a web browser and

login at the login prompt with the username and password specified at install time. Once

logged in, the browser will load the main Webmin page, on which is an icon for each

module installed.

To allow Apache to server the Webmin pages, add the virtual host configuration listed in

Figure 13.1 to the httpd.conf file.

Next, add the directory configuration listed in Figure 13.2 to the httpd.conf file.

 <Directory /home/httpsd/configuration/html/webmin-0.88>
 SSLRequireSSL
 SSLRequire %{SSL_CIPHER_USEKEYSIZE} >= 128
 DirectoryIndex index.cgi
 Options Includes, ExecCGI
 AllowOverride None
 order deny,allow
 deny from all
 allow from all
 AuthName "Webmin-0.88 administration"
 AuthType Basic
 AuthUserFile /etc/webmin/miniserv.users
 AuthExternal pwauth
 require valid-user
</Directory>

Figure 13-2. Apache Webmin web directory

Configuration

To allow the Webmin programs to function correctly, make all the Webmin programs

owned by root and setuid with the commands:

136

chown -R root:root /usr/local/webmin-0.88
chmod -R 6755 /usr/local/webmin-0.88

Finally, add the -U flag to the perl line in all the Webmin scripts. This can be easily done

with the following command run from the webmin-0.88 directory:

find . -name "*.cgi" -o -name "*.pl" | perl perlpath.pl "/usr/bin/perl -U" –

Restart Apache and login to Webmin at the virtual host configured for Apache:

192.168.6.1:443. Note that the Webmin Users and Webmin Configuration modules will

not work, as they configure miniserv.pl and cannot deal with Apache.

CHAPTER 14
FREES/WAN IPSEC

FreeS/WAN IPSEC Configuration

The FreeS/WAN IPSEC package is the heart of the Linux VPN server. This

package will negotiate and establish a secure virtual private network between Linux

servers across the unsafe Internet. The FreeS/WAN package makes use of the character

device random to generate encryption schemes. Typically, the number of random 32 bit

words used to generate a random number is set low for speed’s sake. Instead, edit the

/usr/src/linux/drivers/char/random.c file and change the randomness pool size to 512 32

bit words rather than 128: #define POOLWORDS 512

Save the changes to the file, and the increase in randomness pool size will be

compiled into the new kernel after adding support for the IPSEC protocol.

Next, change into the /usr/src/freeswan-1.91 directory and issue the following

command:

 [root@turtledove freeswan-1.91]# make menugo

This command invokes the kernel configuration utility menuconfig and adds support for

the IPSEC protocol to the kernel. While configuring the kernel, make certain the

following options are configured correctly (Note: the correct configuration options are

bold and underlined):

 Loadable module support
Enable loadable module support (CONFIG_MODULES) [Y/n/?]
IP: tunneling (CONFIG_NET_IPIP) [N/y/?]

137

138

A common tool for attackers is a "rootkit", a set of tools used once they have

become root. A rootkit is a collection of tools (programs) that an attacker can use to mask

intrusion and obtain administrator-level access to a computer or network. If an intruder

can obtain user-level access via password cracking or through exploiting a known

vulnerability, then she can install a rootkit. The goal of the rootkit is to collect userids and

passwords to other machines on the network. With these passwords, the attacker hopes to

gain root or privileged access and to introduce assorted additional compromises so that

they "own" the system despite most recovery efforts. A rootkit may consist of utilities

that also: monitor traffic and keystrokes; create a "backdoor" into the system for the

hacker's use; alter log files; attack other machines on the network; and alter existing

system tools to circumvent detection. With modules disabled, an attacker cannot install a

rootkit module or other bogus module. The only way to achieve the same effects is to

install a new kernel and force a reboot which is considerably more likely to be noticed

(Retallack, 2001).

Save the configuration even if no changes are made to ensure that the

FreeS/WAN changes are actually seen by the system. Once the configuration is saved,

the ipsec utilites are compiled. Next, compile the new kernel. The ipsec utilities are

installed automatically, but the new kernel image must be installed. See the section on

compiling the kernel for a refresher on how to compile and install a new kernel.

The “make menugo” also automatically builds an RSA authentication key pair, a

public key and the matching private key, in the /etc/ipsec.secret file. The public key does

not need to be kept secure. In fact, once the public key is created, a copy is provided to

any client wanting to communicate with the Linux VPN server. On the other hand, the

139

private key must be kept secure on the Linux server; no one else should have access to

the server’s private key. For FreeS/WAN, both the public and private keys are stored in

the /etc/ipsec.secrets file. This file must be kept secure at all times since it holds the

server’s private key. The public keys for systems communicating with the VPN server are

placed in the /etc/ipsec.conf file. Security for the /etc/ipsec.conf file is less vital since the

public key is made publicly available, and is worthless without the private key. This does

not mean that the file’s permissions should be lax; it also contains information about the

VPN connections and so should be secured from non-root users.

Setting up RSA Authentication Keys

The RSA authentication key pair generated by the “make menugo” is not

sufficient for a production system and is intended only for testing purposes. To generate

a new RSA key pair use the following command:

[root@turtledove /]# ipsec rsasigkey --verbose 2048 > /tmp/#rsakey#

This will generate a 2048-bit signature key using the /dev/random character device and

put it in the file /tmp/#rsakey#. The file contents can be inserted as is into an entry in the

ipsec.secrets file and the public key can then be extracted and placed into the ipsec.conf

file. The /tmp/#rsakey# will contain both the public and private keys.

Create a new /etc/ipsec.secrets file and copy the entire contents of the #rsakey#

file into the new file. Wrap the entire contents of the file with the wrapper shown below:

: RSA {
 <contents of the #rsakey# file>
 }

It is important to note the ":" must be unindented and all other lines, including the "}",

must be indented. The spaces are needed to separate tokens so “:RSA” would not be a

140

valid entry for the ipsec.secrets file. See Figure 14-1 for a sample /etc/ipsec.secrets file

(Note: the public key is highlighted in bold typeface):

 # This file holds shared secrets or RSA private keys for inter-Pluto
 # authentication. See ipsec_pluto(8) manpage, and HTML documentation.

 # Shared secret (an arbitrary character string, which should be both long
 # and hard to guess, enclosed in quotes) for a pair of negotiating hosts.
 # Must be same on both; generate on one and copy to the other.
 #10.1.1.1 10.1.1.10 #"jxR5kS55l2ulmn11WU3uU21U1j3ku

WS3ljkS4uWkk3nRV2uWljjUmkSuSj1WVkW#Uu1mWmk31l"

 # RSA private key for this host, authenticating it to any other host
 # which knows the public part. Put ONLY the "pubkey" part into connection
 # descriptions on the other host(s); it need not be kept secret.
 : RSA {
 # 2048 bits, Wed Jun 28 12:59:57 2000
 # for signatures only, UNSAFE FOR ENCRYPTION
 #pubkey=0x0103af2bff44f443007bc6d3d56fd1f8037414f4040c1a

70979d27f78bf886418a3587044110adae378e75c927e90897d77285ae2ae0bb
5ce3ea3ff383dae36d87aa07c9461e7e19e78c2d8ce40d55e433b42b8c80560c2
dae8c5730399093e22ec5bd389447ef0fad9697f60957c17917341ad970ecbe9a
273d421e9b645525278b99fdd185161146cc8390a5d7a65216a334e2e0dec886
082e39356b45bedef03f0a586691529a035b4cb5838c29a9251ff1506f9dba149
9c22b6db4b157e450fb91a464378c0581f27dc7ee86db2429991d0df65abeab6
510d4789b7f0ff5196d3c15cb1fb90a4f81b3bccfde93f4c9d9ec289a3a7099ad9
906422af98b2a87f5

 #IN KEY 0x4200 4 1 AQOvK/9E9EMAe8bT1W/R+AN0FPQEDBpwl5
0n94v4hkGKNYcEQRCtrjeOdckn6QiX13KFrirgu1zj6j/zg9rjbYeqB8lGHn4Z5
4wtjOQNVeQztCuMgFYMLa6MVzA5kJPiLsW9OJRH7w+tlpf2CVfBeRc0Gt
lw7L6aJz1CHptkVSUni5n90YUWEUbMg5Cl16ZSFqM04uDeyIYILjk1a0W+
3vA/ClhmkVKaA1tMtYOMKaklH/FQb526FJnCK220sVfkUPuRpGQ3jAWB8
n3H7obbJCmZHQ32Wr6rZRDUeJt/D/UZbTwVyx+5Ck+Bs7zP3pP0ydnsKJo6
cJmtmQZCKvmLKof1

 # (0x4200 = auth-only host-level, 4 = IPSec, 1 = RSA)
 Modulus: 0xaf2bff44f443007bc6d3d56fd1f8037414f4040c1a70979d27f

78bf886418a3587044110adae378e75c927e90897d77285ae2ae0bb5ce3ea3ff383
dae36d87aa07c9461e7e19e78c2d8ce40d55e433b42b8c80560c2dae8c573039909
3e22ec5bd389447ef0fad9697f60957c17917341ad970ecbe9a273d421e9b645525
278b99fdd185161146cc8390a5d7a65216a334e2e0dec886082e39356b45bedef0
3f0a586691529a035b4cb5838c29a9251ff1506f9dba1499c22b6db4b157e450fb9
1a464378c0581f27dc7ee86db2429991d0df65abeab6510d4789b7f0ff5196d3c15c
b1fb90a4f81b3bccfde93f4c9d9ec289a3a7099ad9906422af98b2a87f5

 PublicExponent: 0x03
Figure 14-1. Configuration of /etc/ipsec.secrets

141

 # everything after this point is secret
 PrivateExponent: 0x74c7ff834d820052848d38f536a557a2b8a2ad5d66f5b

a68c54fb2a5aed65c23af582b6073c97a5ef930c54605ba8fa1ae741c95d23ded46d5
4d0291ecf3afc6afdb8414541145081e5ded5e3942cd22c7b300395d73c9b2e4cad10
b0d417483d37b0d854a0a73b9baa4063a80fb64cd673ba09dd466c4d38169bced8e1
8c5069f076f8832227f752b6b3aa36a6cdefbc6620b8017c917cf92d09da5241b2340
e74f22fd116c38e693b629abb75a4f0f71846c069e35abff1df17ca4e25c16d411f08b
2860b8beea30093e0a7ac8e3d123d17f11d2d595a8577278128a46012ff7b6ed884f8
fec4897b2c9937acc5adbc0e68fed2aa26c3b4d7834375eac18b3

 Prime1: 0xf29a11a5479676a1b909fc7e29c452bc5c952caae8cbab02c0e620
3a14a717633b569860c57bcf2f5d04924a1a76da79984fc656e502df337595f385a43
bd9629bc346efdc22d53659b0cf9642c1e567c13622aa04164cb72213c26330bec99
75da8804b8d42c344ec8d47186515f54207e4c83366c855c2d9daacbb485b9e57

 Prime2: 0xb8d89893834710fb0965d1645cea756d2ebaa2f3bc0cb9741c165
e93f40f23fa740b19b4f2fbded2121fb2c07c2ad40f2eba073ce7c1389008ed8634601e
555adaf84c8b1ecd8e5cdc0941e0e034ee77a61d9515fe54b7dd2f3925000fcd4e0dead
ae687b46fa9cfe3a35a68f6ac4c4e42e9fa2349ddb57d38332feb34ccc493

 Exponent1: 0xa1bc0bc3850ef9c12606a8541bd837283db8c871f087c7572b4
4157c0dc4ba42278f104083a7df74e8adb6dc11a491a6658a8439ee01ea224e63f7ae6
d7d3b9712822f4a92c1e37991208a642c81439a80cec1c6ad643324c162819775d486
64e91b00325e2c822df308da104363f8d6afeddaccef30392c913c73278592698f

 Exponent2: 0x7b3b10625784b5fcb0ee8b983df1a39e1f27174d28087ba2bd6
43f0d4d5f6d51a2b211234ca7e9e1616a772afd71e2b4c9d15a289a80d06005f3aecd9
5698e3c91faddb2148909933d5b814095789efa6ebe6363fee3253e1f7b6e000a88deb
3f1e7445a784a7135426ce6f0a472dd8981f1516cdbe923a8d0221ff223332db7

 Coefficient: 0x80079ef72e2bd39d36fb2ff6acb881758ea7a8082638077f24a
36911f2d38a5bc7d51e06ecfcdc511ed8544a935e3a6a6f00723e4b107749cad66085f
bd06833d27aba0f7b636e6ede3ef9fe79c28e5eccf39000245cc81a1f32ee9cf2d5c5bf
af0d3cf331d5ea223859d122ffb26ea7c071eb0d78d924ab0ad186545dfac3e3

 }
 # do not change the indenting of that "}"
Configuration of /etc/ipsec.secrets continued

Even though the new keys are stronger than the orginal keys, the FreeS/WAN

generated RSA keys are suitable only for authentication, and must not be used for

encryption. Encryption for the VPN tunnel will be provided by using the block cipher—a

symmetric cipher that operates on fixed-size blocks of plaintext, giving a block of

ciphertext for each—Triple DES. Triple DES (3DES) uses three DES—the Data

Encryption Standard which is a block cipher with 64-bit blocks and a 56-bit key

142

encryptions on a single data block—passes with at least two different keys, to get higher

security than is available from a single DES pass (FreeS/WAN documentation).

Exchanging authentication keys

The public key used to negotiate IPSEC connection is the line contained in the

output of the rsasigkey command starting with “#pubkey=0x“. Public keys remain

public, and the FreeS/WAN configuration system is designed to work even if an enemy

knows all the public keys used. However, for the integrity of the system to remain sound,

remember to always authenticate the public key. If an attacker can forge a public key and

the server is tricked into trusting the forged key, then the attacker can gain access to the

previously secure communications. For example, consider the following example from

the FreeS/WAN documentation.

“[A husband] wants to communicate with his mistress, keeping messages
secret from his wife:

· If the wife obtains the mistress' public key, that is not a problem.
As long as she does not get the private key, she can neither read things
sent to the mistress nor authenticate herself as the mistress.

· If the mistress has any sense, she protects her private key carefully.
So long as she does that, and the husband encrypts his messages correctly,
there should be no (cryptographic!) problem.

· However, imagine that the wife is somewhat devious. She
generates a public/private key pair and sends the husband that public key,
forging the message to look as if it came from the mistress. Of course this
fails if the husband has enough sense to check the key's validity before
using it.

· However, if the husband blindly accepts that key without
verification, it is extremely unlikely that he will be pleased with the
results.

· If he accepts that key, the wife can read every message he sends to
it.

143

· She can also pose as the mistress and send him whatever messages
she likes. “(FreeS/WAN documentation, n.d.).

Authentication of a public key’s origin is an essential step in providing a secure VPN

server. Exchange keys encrypted with a message digest to confirm the integrity of the

key and from whom it came.

computer1=========Left-----------------Right=========computer2
local net untrusted net remote net

Figure 14.2. Virtual private network connection

IPSEC configuration file

For example purposes, consider the network configuration listed in Figure 14.2.

The network consists of two Linux servers, Left and Right, two networks behind the

Linux servers, and two computers, computer1 and computer2, on separate networks,

separated by an insecure, or untrusted network such as the Internet. The goal is to

connect the Left server and the Right server through an IPSEC VPN and forward traffic

between the network behind each server. The /etc/ipsec.conf file is used to provide

configuration parameters for a connection to the IPSEC server. A sample configuration

file is listed in Figure 14-3. (Note: the RSA public keys have been shortened for

readablility).

The config setup section describes the machine configuration for the server. The

interfaces variable tells the KLIPS—Kernel IP Security, the Linux FreeS/WAN project's

changes to the Linux kernel to support the IPSEC protocols—IPSEC code in the Linux

kernel which network interface to use. The interface(s) used for communication between

VPN servers should be listed in the following format: interfaces="ipsec0 =eth0.” If the

144

 ###

 # /etc/ipsec.conf - FreeS/WAN IPSEC configuration file
 ###

 # basic configuration
 config setup
 # THIS SETTING MUST BE CORRECT or almost nothing will work;
 # %defaultroute is okay for most simple cases.
 interfaces="ipsec0=eth0"
 # Use auto= parameters in conn descriptions to control startup actions.
 plutoload=%search
 plutostart=%search
 # Close down old connection when new one using same ID shows up.
 uniqueids=yes

 # defaults for subsequent connection descriptions
 conn %default
 # How persistent to be in (re)keying negotiations (0 means very).
 keyingtries=0
 # Use RSA keys for authentication
 authby=rsasig

 # connection from home office to remote office in Arrington
 conn home-arrington
 # Left security gateway, subnet behind it, next hop toward right.
 leftrsasigkey=0x01034db9045c0fd89ac1e7c2787c79632747...
 left=209.86.84.125
 leftnexthop=209.86.84.124
 leftsubnet=192.168.6.0/24
 leftfirewall=yes

 # Right security gateway, subnet behind it, next hop toward left.
 rightrsasigkey=0x0103af2bff44f443007bc6d3d56fd1f80374...
 right=207.33.129.114
 rightnexthop=207.33.129.113
 rightsubnet=192.168.3.0/24
 rightfirewall=yes

 auto=add
Figure 14-3. Configuration of /etc/ipsec.conf

correct interfaces are not specified, then nothing will work with the IPSEC protocol and

no VPN connections can be established.

145

FreeS/WAN’s Pluto is an IKE, IPsec Key Exchange, protocol and daemon that is

used to automatically build shared security associations between VPN servers. According

to the FreeS/WAN documentation, a “Security Association (SA) is an agreement between

two network nodes on how to process certain traffic between them. This processing

involves encapsulation, authentication, encryption, or compression.”

IKE is used to negotiate Security Associations between connecting servers. If

both servers can find an agreeable set of characteristics for a Security Association

through the Pluto IKE daemon, and both recognize each other’s authenticity, they can set

up a Security Association. Refer to RFC 2409, http://www.ietf.org/rfc/rfc2409.txt, for

further information about the Internet Key Exchange protocol.

The plutoload and plutostart variables will contain a list of connections to be

automatically loaded into memory or started when Pluto starts. Rather than specify each

individual connection to load or start, the plutoload and plutostart variables can be set to

“%search”. In this case, the any connection with auto=add in its connection definition is

then loaded, and any connection with auto=start is started.

Be aware, that only one of the Linux servers should be configured to

automatically start VPN connections when Pluto starts. Having a server attempt to

rebuild tunnels to systems that are unavailable will waste considerable resources. In

genral, the server in the home office should have auto=add for all connections in its

ipsec.conf file, and the remote server should use auto=start to initiate connection

negotiations. This will ensure that the home office server will be able to continue

providing services to other VPN connections without bogging down trying to contact a

down remote server.

146

The uniqueids variable should be set to “yes” so when a connection is dropped

and re-established Pluto will automatically remove the old connection to allow the new

connection to function correctly.

The conn default section specifies the default parameters to apply to all

connections. The keyingtries variable tells Pluto how persistent to be in (re-) keying

negotiations. This variable takes an integer value where “0” instructs the Pluto daemon

to be persistent, retry forever, in re-keying the connections. The authby variable is set to

authenticate server using PKI negotiation with RSA signatures.

The conn section describes the network and keying parameters for each server in

the connection defined. A string describing the connection should follow the conn key

word. The string should be just informative enough to describe the type of connection

made. For example, “home-arrington” would suggest a connection from the home office

to the remote office in Arrington. In the connection description section, it does not

matter which server is the left connection and which server is the right connection. For

clarity’s sake the server defined in the left connection should be the central server to

which all other VPN connections are made. In this case, the left connection would be the

home office server.

The left variable defines the IP address of the external network adapter, eth0. The

leftnexthop variable points to the default gateway left should send packet addressed to

right. Typically, this is the IP address of the router providing access to the Internet. It is

important to note that FreeS/WAN’s kernel instructions, KLIPS, bypasses the normal

routing machinery, so KLIPS must have the routing information even though the routing

services already have the information. The leftsubnet variable lists the IP addresses for

147

the internal network that left is protecting. The leftfirewall variable must be set to “yes”

if masquerading is set up on the server since a firewall of that type will suppress IP

forwarding of non-routable IP addresses. The auto variable works as specified in config

setup section of this document. Finally, the leftrsasigkey variable contains the entire

public key for the left server. For each left connection variable, there is a corresponding

right connection variable.

“Note that a connection to a subnet behind left does not include left itself. The

tunnel described…protects packets going from one subnet to the other. It does not apply

to packets that either begin or end their journey on one of the gateways. If you need to

protect those packets, you must build separate tunnel descriptions for them.

It is a common error to attempt testing a subnet-to-subnet connection by pinging

from one of the gateways to the far end or vice versa. This does not work, even if the

connection is functioning perfectly, because traffic to or from the gateway itself is not

sent on that connection” (FreeS/WAN documentation, n.d.).

To enable the machine on the other end of the VPN connection, after installing

the FreeS/WAN package and generating the RSA keys, copy the /etc/ipsec.conf to the

other server. Once the servers reboot, Pluto should take over to load and start the VPN

connection. For additional information about configuring the FreeS/WAN package, refer

to the FreeS/WAN documentation available at the FreeS/WAN website.

Once the left and right server pass the authentication stage, the connections are set

to be automatically (re-) keyed; the keys will change regularly so an opponent who gets

one key cannot gain access to a large amount of data. However, when an opponent does

obtain a private key he cannot automatically gain access to any encryption keys or any

148

data. Be aware that once the authentication mechanism is subverted there is no way to

prevent the attacker from getting keys and data, but the attacker still has to work for

them. In this case, new public and private keys must be generated and exchanged to

prevent further system intrusion.

Securing the IPSEC Configuration and Key Files

Check the modes and permissions of the /etc/ipsec.secrets file to be sure that the

super-user “root” owns the file, and its permissions are set to block all access by others

bot included in the wheel group:

 [root@turtledove /]# chmod 660 /etc/ipsec.secrets

This will add another layer of protection for the private keys stored on the server. In

addition, make sure to remove the #rsakey# file created in the /tmp directory.

Next, edit the /etc/services file and add the following (if not there already):

 isakmp 500/tcp isakmp
 isakmp 500/udp isakmp

Configuring Remote Gateways for IPSEC Communication

The system administrator can use the read and write accounts created on each

Linux gateway to remotely enable a similarly configured Linux gateway to provide VPN

access to the local network. The SSH and SFTP tools were included in the Linux VPN

implementation to facilitate secure configuration of remote systems.

To begin with, gather the network configuration information from the remote

location. Be sure to get the external network IP address, the default gateway and subnet

mask. In addition, make note of the internal LAN subnet addresses and subnet masks.

This information will be used for connecting the local and remote gateway together

through the VPN.

149

Use the following steps on the local machine to remotely configure a new VPN

gateway:

1. Generate a set of public and private keys for the remote gateway machine.
2. Create a new ipsec.secrets file for the remote gateway name

ipsec.secrets.remotenetwork where “remotenetwork” corresponds to the name
of the remote network.

3. Copy the existing ipsec.conf file to a new file named
ipsec.conf.remotenetwork.

4. Edit the ipsec.conf.remotenetwork file and remove any connection
descriptions related to other established VPNs.

5. Add a new connection description for the local gateway and the remote
gateway. Make sure to include the appropriate public keys.

6. Once the files are configured appropriately, contact the system administrator
at the remote site for secure shell access and read and write account
passwords.

7. Log into the remote machine using SSH and the write user account and
password. Initiate a SFTP session with the remote system and copy the
IPSEC configuration files to the remote system.

8. Edit the firewall configuration to add the new VPN connection to the allowed
services.

9. Once the transfer of files and firewall changes have been made, issue a remote
restart command.

10. Once the remote gateway machine restarts, the IPSEC protocols will negotiate
a connection.

11. Verify the VPN connection by pinging an address on the remote network’s
LAN.

The VPN connection should then be complete.

CHAPTER 15
FINAL CONFIGURATION

The final steps for securing the Linux VPN server involve locking down all

network access and then re-opening access to only a few, pre-determined services. A

packet filtering firewall will be used to deny access to all other services. In addition, all

source code, compilers, and compiler tools will be removed from the system. Combined

with a final check to lock down file permissions, the removal of all compilers will deny

access to tools an attacker could use to gain further access to the system.

Firewall

A filtering firewall works at the network level. Data is only allowed to leave the

system rules specified in a configuration file allow it. As packets arrive at both the

internal and external interfaces they are filtered by the type, source address, destination

address, and port information contained in each packet. The firewall applies rules to

decide whether to forward or block packets crossing between the two interfaces. Since

very little data is analyzed and logged, filtering firewalls take less CPU and create less

latency in your network. Filtering firewalls are more transparent to the user. The user

does not have to setup rules in their applications to use the Internet.

A simple firewall setup is sometimes called a bastion firewall and is often the

main line of defense against attack from external sources. The firewall's purpose is to

enforce the site’s security policies. Security policies reflect access control and

authenticated use of private or protected services, programs and files on the network

computers.

150

151

A strong firewall should consist of rules limiting connections to specific system

ports. There are two classes of port numbers. The ranges from 0 through 1023 are

reserved ports. These ports are reserved and well known in order to provide particular

standardized services. An incoming connection to one of these ports is routed to the

appropriate service by inetd, portmap, or some other server such as sshd or httpd listening

on that port. The ports are defined in /etc/services and are well established in the network

community (Ziegler, 1999).

The range from 1024 through 65535 represents the system’s unprivileged ports.

When a client program initiates a connection to a server, a port is selected from the

unprivileged pool on the client's end. The combination of the client machine's IP address,

port number, and transport protocol (TCP or UDP) defines the client's socket. On the

server side, the combination of host IP address, the server's well-known service port

number, and the transport protocol (TCP or UDP) form the server's socket. This socket

pair uniquely defines the connection between client and server (Ziegler, 1999).

The tool ipchains is used to establish firewall rules and talk to the kernel to tell it

what packets to filter based on those rules. Ipchains uses a chain approach to creating

rules. Within ipchains there are three built-in chains that define rules for input to the

firewall, output from the firewall, and forwarding traffic between the internal and

external interfaces. New rules are appended to the ends of each chain to filter, allow, or

forward specific packets. More information about the specific options for the ipchains

tool are available from the IPCHAINS-HOWTO document (Russell, 2000).

152

Installing the VPN firewall

Create an /etc/rc.d/init.d/rc.firewall script and and /etc/firewall.conf file using the

configurations listed in Appendix D. Change the permissions on both files so they are

owned by the root and readable and writeable by the wheel group. Upon reboot, the

firewall will be implemented and the system should be secure to external traffic.

Final Lockdown

Remove all source files and directories from the /usr/src and /var/temp directories.

In addition, use the rpm command to remove the C compilers and libraries installed

earlier. These procedures will complete the configuration of the LINUX VPN server and

will ready the server to for production.

Power down the server and connect it to the external network and the internal

LAN. Power on the system and look for any messages relating to firewall configuration

and VPN errors. If errors appear, remove the connection to the external network and

review previous chapters to resolve the errors.

Conclusion

Once a system administrator takes the time to analyze and develop rules by which

to implement a Linux VPN server, her job of detecting changes to the system becomes

easier. In protecting any server from attack, whether originating internally or externally,

the most important requirement is regular close inspection of the system. This close

inspection of the system makes identifying differences in the system from one period to

the next a much more maintainable task. Vulnerabilities and exploits are constantly

being discovered and, in my opinion, no one can stay abreast of each one. Rather, the

familiarity with the system will allow a system administrator to better protect a system by

153

noticing changes or anomalies in the system quickly is a much more robust means of

defending against attacks.

APPENDIX A
KERNEL CONFIGURATION OPTIONS

Code maturity level options
Prompt for development and/or incomplete code/drivers (CONFIG_EXPERIMENTAL) [N/y/?]
Processor type and features
Processor family (386, 486/Cx486, 586/K5/5x86/6x86, Pentium/K6/TSC/CyrixIII, PPro/6x86MX)
[PPro/6x86MX]
Intel IA32 CPU microcode support (CONFIG_MICROCODE) [N/y/m/?]
Model-specific register support (CONFIG_X86_MSR) [N/y/m/?]
CPU information support (CONFIG_X86_CPUID) [N/y/m/?]
Maximum Physical Memory (1GB, 2GB) [1GB]
Math emulation (CONFIG_MATH_EMULATION) [N/y/?]
MTRR (Memory Type Range Register) support (CONFIG_M RR) N/y/?] T [
Symmetric multi-processing support (CONFIG_SMP) [Y/n/?]
Loadable module support
Enable loadable module support (CONFIG_MODULES) [Y/n/?]
General setup
Networking support (CONFIG_NET) [Y/n/?]
PCI support (CONFIG_PCI) [Y/n/?]
PCI access mode (BIOS, Direct, Any) [Any]
PCI quirks (CONFIG_PCI_QUIRKS) [Y/n/?]
PCI bridge optimization (experimental) [Y/n/?]
Backward-compatible /proc/pci (CONFIG_PCI_OLD_PROC) [Y/n/?]
MCA support (CONFIG_MCA) [N/y/?]
SGI Visual Workstation support (CONFIG_VISWS) [N/y/?]
System V IPC (CONFIG_SYSVIPC) [Y/n/?]
BSD Process Accounting (CONFIG_BSD_PROCESS_ACCT) [N/y/?]
Sysctl support (CONFIG_SYSCTL) [Y/n/?]
Kernel support for a.out binaries (CONFIG_BINFMT_AOUT) [Y/n/?]
Kernel support for ELF binaries (CONFIG_BINFMT_ELF) [Y/n/?]
Kernel support for MISC binaries (CONFIG_BINFMT_MISC) [Y/n/?]
Parallel port support (CONFIG_PARPORT) [N/y/?]

[omission: specific to user preference]

Plug and Play support
Plug and Play support (CONFIG_PNP) [N/y/?]
Block devices
Normal PC floppy disk support (CONFIG_BLK_DEV_FD) [Y/n/?]
Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support (CONFIG_BLK_DEV_IDE) [Y/n/?]

[omission: specific to hardware configuration]

Additional Block Devices
Loopback device support (CONFIG_BLK_DEV_LOOP) [N/y/m/?]
Network block device support (CONFIG_BLK_DEV_NBD) [N/y/m/?]

 [omission: specific to hardware configuration]

Networking options
Packet socket (CONFIG_PACKET) [Y/n/?]
Kernel/User netlink socket (CONFIG_NETLINK) [N/y/?]
Network firewalls (CONFIG_FIREWALL) [N/y/?]
Socket Filtering (CONFIG_FILTER) [N/y/?]
Unix domain sockets (CONFIG_UNIX) [Y/n/?]
TCP/IP networking (CONFIG_INET) [Y/n/?]
IP: multicasting (CONFIG_IP_MULTICAST) [N/y/?]
IP: advanced router (CONFIG_IP_ADVANCED_ROUTER) [N/y/?]
IP: kernel level configuration support (CONFIG_IP_PNP) [N/y/?]
IP: firewalling (CONFIG_IP_FIREWALL) [N/y/?] Y
IP: firewall packet netlink device (CONFIG_IP_FIREWALL_NETLINK) [N/y/?]

154

155

IP: transparent proxy support (CONFIG_IP_TRANSPARENT_PROXY) [N/y/?]
IP: masquerading (CONFIG_IP_MASQUERADE) [N/y/?]
IP: optimize as router not host (CONFIG_IP_ROUTER) [N/y/?]
IP: tunneling (CONFIG_NET_IPIP) [N/y/?]
IP: GRE tunnels over IP (CONFIG_NET_IPGRE) [N/y/?]
IP: aliasing support (CONFIG_IP_ALIAS) [N/y/?]
IP: TCP syncookie support (not enabled per default) (CONFIG_SYN_COOKIES) [N/y/?]
IP: Reverse ARP (CONFIG_INET_RARP) [N/y/?]
IP: Allow large windows (CONFIG_SKB_LARGE) [Y/n/?]
The IPX protocol (CONFIG_IPX) [N/y/?]
Appletalk DDP (CONFIG_ATALK) [N/y/?]
QoS and/or fair queueing (CONFIG_NET_SCHED) [N/y/?]

 [omission: specific to hardware configuration]

Network device support
N

etwork device support (CONFIG_NETDEVICES) [Y/n/?]

 [omission: specific to hardware configuration]

Character devices
Virtual terminal (CONFIG_VT) [Y/n/?]
Support for console on virtual terminal (CONFIG_VT_CONSOLE) [Y/n/?]
Standard/generic (dumb) serial support (CONFIG_SERIAL) [Y/n/?]
Support for console on serial port (CONFIG_SERIAL_CONSOLE) [N/y/?]
Extended dumb serial driver options (CONFIG_SERIAL_EXTENDED) [N/y/?]
Non-standard serial port support (CONFIG_SERIAL_NONSTANDARD) [N/y/?]
Unix98 PTY support (CONFIG_UNIX98_PTYS) [Y/n/?]
Maximum number of Unix98 PTYs in use (0-2048) (CONFIG_UNIX98_PTY_COUNT) [128]
M

ouse Support (not serial mice) (CONFIG_MOUSE) [Y/n/?]

[omission: specific to hardware configuration]

Filesystems
Quota support (CONFIG_QUOTA) [N/y/?]
Kernel automounter support (CONFIG_AUTOFS_FS) [Y/n/?]
Amiga FFS filesystem support (CONFIG_AFFS_FS) [N/y/?]
Apple Macintosh filesystem support (experimental) (CONFIG_HFS_FS) [N/y/?]
DOS FAT fs support (CONFIG_FAT_FS) [N/y/?]
 MSDOS fs support (CONFIG_MSDOS_FS) [N/y/?]
 VFAT (Windows-95) fs support (CONFIG_VFAT_FS) [N/y/?]
ISO 9660 CDROM filesystem support (CONFIG_ISO9660_FS) [Y/n/?]
Microsoft Joliet CDROM extensions (CONFIG_JOLIET) [N/y/?]
Minix fs support (CONFIG_MINIX_FS) [N/y/?]
NTFS filesystem support (read only) (CONFIG_NTFS_FS) [N/y/?]
OS/2 HPFS filesystem support (read only) (CONFIG_HPFS_FS) [N/y/?]
/proc filesystem support (CONFIG_PROC_FS) [Y/n/?]
/dev/pts filesystem for Unix98 PTYs (CONFIG_DEVPTS_FS) [Y/n/?]
ROM filesystem support (CONFIG_ROMFS_FS) [N/y/?]
Second extended fs support (CONFIG_EXT2_FS) [Y/n/?]
System V and Coherent filesystem support (CONFIG_SYSV_FS) [N/y/?]
UFS filesystem support (CONFIG_UFS_FS) [N/y/?]
Network File Systems
Coda filesystem support (advanced network fs) (CONFIG_CODA_FS) [N/y/?]
NFS filesystem support (CONFIG_NFS_FS) [Y/n/?]
SMB filesystem support (to mount WfW shares etc.) (CONFIG_SMB_FS) [N/y/?]
NCP filesystem support (to mount NetWare volumes) (CONFIG_NCP_FS) [N/y/?]
Partition Types
BSD disklabel (BSD partition tables) support (CONFIG_BSD_DISKLABEL) [N/y/?]
Macintosh partition map support (CONFIG_MAC_PARTITION) [N/y/?]
Minix subpartition support (CONFIG_MINIX_SUBPARTITION) [N/y/?]
SMD disklabel (Sun partition tables) support (CONFIG_SMD_DISKLABEL) [N y/?] /
Solaris (x86) partition table support (CONFIG_SOLARIS_X86_PARTITION) [N/y/?]

 [omission: specific to user preference]

Console drivers
VGA text console (CONFIG_VGA_CONSOLE) [Y/n/?]
Video mode selection support (CONFIG_VIDEO_SELECT) [N/y/?]

 [omission: specific to hardware configuration]

156

Security options
Non-executable user stack area (CONFIG_SECURE_STACK) [Y]
Restricted links in /tmp (CONFIG_SECURE_LINK) [Y]
Restricted FIFOs in /tmp (CONFIG_SECURE_FIFO) [Y]
Restricted /proc (CONFIG_SECURE_PROC) [N]
Special handling of fd 0, 1, and 2 (CONFIG_SECURE_FD_0_1_2) [Y]
Enforce RLIMIT_NPROC on execve(2) (CONFIG_SECURE_RLIMIT_NPROC) [N]
Destroy shared memory segments not in use (CONFIG_SECURE_SHM) [N]
Kernel hacking
Magic SysRq key (CONFIG_MAGIC_SYSRQ) [N/y/?]

APPENDIX B
OPENSSL CIPHER SPECIFICATIONS

Table B-1. SSL RSA Ciphers
Cipher-Tag ProtocolKey Ex. Auth. Enc. MAC Type
DES-CBC3-SHA SSLv3 RSA RSA 3DES(168) SHA1
DES-CBC3-MD5 SSLv2 RSA RSA 3DES(168) MD5
IDEA-CBC-SHA SSLv3 RSA RSA IDEA(128) SHA1
RC4-SHA SSLv3 RSA RSA RC4(128) SHA1
RC4-MD5 SSLv3 RSA RSA RC4(128) MD5
IDEA-CBC-MD5 SSLv2 RSA RSA IDEA(128) MD5
RC2-CBC-MD5 SSLv2 RSA RSA RC2(128) MD5
RC4-MD5 SSLv2 RSA RSA RC4(128) MD5
DES-CBC-SHA SSLv3 RSA RSA DES(56) SHA1
RC4-64-MD5 SSLv2 RSA RSA RC4(64) MD5
DES-CBC-MD5 SSLv2 RSA RSA DES(56) MD5
EXP-DES-CBC-SHA SSLv3 RSA(512) RSA DES(40) SHA1 export
EXP-RC2-CBC-MD5 SSLv3 RSA(512) RSA RC2(40) MD5 export
EXP-RC4-MD5 SSLv3 RSA(512) RSA RC4(40) MD5 export
EXP-RC2-CBC-MD5 SSLv2 RSA(512) RSA RC2(40) MD5 export
EXP-RC4-MD5 SSLv2 RSA(512) RSA RC4(40) MD5 export
NULL-SHA SSLv3 RSA RSA None SHA1
NULL-MD5 SSLv3 RSA RSA None MD5

Table B-2. SSL Diffie-Hellman Ciphers
Cipher-Tag Protocol Key Ex. Auth. Enc. MAC Type
ADH-DES-CBC3-SHA SSLv3 DH None 3DES(168) SHA1
ADH-DES-CBC-SHA SSLv3 DH None DES(56) SHA1
ADH-RC4-MD5 SSLv3 DH None RC4(128) MD5
EDH-RSA-DES-CBC3-SHA SSLv3 DH RSA 3DES(168) SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 DH DSS 3DES(168) SHA1
EDH-RSA-DES-CBC-SHA SSLv3 DH RSA DES(56) SHA1
EDH-DSS-DES-CBC-SHA SSLv3 DH DSS DES(56) SHA1
EXP-EDH-RSA-DES-CBC-
SHA

SSLv3 DH(512) RSA DES(40) SHA1 export

EXP-EDH-DSS-DES-CBC-
SHA

SSLv3 DH(512) DSS DES(40) SHA1 export

EXP-ADH-DES-CBC-SHA SSLv3 DH(512) None DES(40) SHA1 export
EXP-ADH-RC4-MD5 SSLv3 DH(512) None RC4(40) MD5 export

157

158

Table B-3. OpenSSL Cipher Specification Tags
Algorithm Tag Description
Key Exchange:
 kRSA RSA key exchange
 kDHr Diffie-Hellman key exchange with RSA key
 kDHd Diffie-Hellman key exchange with DSA key
 kEDH Ephemeral (temp.key) Diffie-Hellman key exchange (no cert)
Authentication:
 aNULL No authentication
 aRSA RSA authentication
 aDSS DSS authentication
 aDH Diffie-Hellman authentication
Cipher Encoding:
 eNULL No encoding
 DES DES encoding
 3DES Triple-DES encoding
 RC4 RC4 encoding
 RC2 RC2 encoding
 IDEA IDEA encoding
MAC Digest:
 MD5 MD5 hash function
 SHA1 SHA1 hash function
 SHA SHA hash function

Table B-4. OpenSSL Aliases
SSLv2 all SSL version 2.0 ciphers
SSLv3 all SSL version 3.0 ciphers
TLSv1 all TLS version 1.0 ciphers
EXP all export ciphers
EXPORT40 all 40-bit export ciphers only
EXPORT56 all 56-bit export ciphers only
LOW all low strength ciphers (no export, single DES)
MEDIUM all ciphers with 128 bit encryption
HIGH all ciphers using Triple-DES
RSA all ciphers using RSA key exchange
DH all ciphers using Diffie-Hellman key exchange
EDH all ciphers using Ephemeral Diffie-Hellman key exchange
ADH all ciphers using Anonymous Diffie-Hellman key exchange
DSS all ciphers using DSS authentication
NULL all ciphers using no encryption

APPENDIX C
APACHE WEB SERVER CONFIGURATION

httpd.conf -- Apache HTTP server configuration file

This is the main server configuration file. See URL http://www.apache.org/
for instructions.
Do NOT simply read the instructions in here without understanding
what they do, if you are unsure consult the online docs. You have been
warned.
Originally by Rob McCool

BindAddress: You can support virtual hosts with this option. This option
is used to tell the server which IP address to listen to. It can either
contain "*", an IP address, or a fully qualified Internet domain name.
See also the VirtualHost directive.

BindAddress 192.168.6.1

HostnameLookups: Log the names of clients or just their IP numbers
e.g. www.apache.org (on) or 204.62.129.132 (off)
The default is off because it'd be overall better for the net if people
had to knowingly turn this feature on.

HostnameLookups off

Port: The port the standalone listens to. For ports < 1023, you will
need httpd to be run as root initially.

Port 443

ServerRoot: The directory the server's config, error, and log files
are kept in.
NOTE! If you intend to place this on a NFS (or otherwise network)
mounted filesystem then please read the LockFile documentation,
you will save yourself a lot of trouble.

ServerRoot /etc/httpd

ServerType is either inetd, or standalone.

159

160

ServerType standalone

User/Group: The name (or #number) of the user/group to run httpd as.

User httpsd
Group httpsd

ErrorLog: The location of the error log file. If this does not start
with /, ServerRoot is prepended to it.

ErrorLog /var/log/httpd/error_log

LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

LogLevel warn

Dynamic Shared Object (DSO) Support

To be able to use the functionality of a module which was built as a DSO you
have to place corresponding `LoadModule' lines at this location so the
directives contained in it are actually available _before_ they are used.
Please read the file README.DSO in the Apache 1.3 distribution for more
details about the DSO mechanism and run `httpd -l' for the list of already
built-in (statically linked and thus always available) modules in your httpd
binary.

Example:
LoadModule foo_module libexec/mod_foo.so

Documentation for modules is in "/home/httpd/manual/mod" in HTML format.

LoadModule env_module modules/mod_env.so
LoadModule config_log_module modules/mod_log_config.so
LoadModule agent_log_module modules/mod_log_agent.so
LoadModule referer_log_module modules/mod_log_referer.so
LoadModule mime_module modules/mod_mime.so
LoadModule negotiation_module modules/mod_negotiation.so
LoadModule status_module modules/mod_status.so
LoadModule info_module modules/mod_info.so
LoadModule includes_module modules/mod_include.so
LoadModule dir_module modules/mod_dir.so
LoadModule cgi_module modules/mod_cgi.so
LoadModule asis_module modules/mod_asis.so
LoadModule imap_module modules/mod_imap.so

161

LoadModule action_module modules/mod_actions.so
LoadModule userdir_module modules/mod_userdir.so
LoadModule proxy_module modules/libproxy.so
LoadModule alias_module modules/mod_alias.so
LoadModule rewrite_module modules/mod_rewrite.so
LoadModule access_module modules/mod_access.so
LoadModule auth_module modules/mod_auth.so
LoadModule anon_auth_module modules/mod_auth_anon.so
LoadModule db_auth_module modules/mod_auth_db.so
LoadModule digest_module modules/mod_digest.so
LoadModule expires_module modules/mod_expires.so
LoadModule headers_module modules/mod_headers.so
LoadModule usertrack_module modules/mod_usertrack.so
LoadModule setenvif_module modules/mod_setenvif.so

Extra Modules
LoadModule perl_module modules/libperl.so
LoadModule external_auth_module modules/mod_auth_external.so

LoadModule ssl_module /usr/lib/apache/libssl.so

Reconstruction of the complete module list from all available modules
(static and shared ones) to achieve correct module execution order.
[WHENEVER YOU CHANGE THE LOADMODULE SECTION ABOVE
UPDATE THIS, TOO]

ClearModuleList

AddModule mod_env.c
AddModule mod_log_config.c
AddModule mod_log_agent.c
AddModule mod_log_referer.c
AddModule mod_mime.c
AddModule mod_negotiation.c
AddModule mod_status.c
AddModule mod_info.c
AddModule mod_include.c
AddModule mod_dir.c
AddModule mod_cgi.c
AddModule mod_asis.c
AddModule mod_imap.c
AddModule mod_actions.c
AddModule mod_userdir.c
AddModule mod_proxy.c
AddModule mod_alias.c
AddModule mod_rewrite.c

162

AddModule mod_access.c
AddModule mod_auth.c
AddModule mod_auth_anon.c
AddModule mod_auth_db.c
AddModule mod_auth_external.c
AddModule mod_digest.c
AddModule mod_expires.c
AddModule mod_headers.c
AddModule mod_usertrack.c
AddModule mod_so.c
AddModule mod_setenvif.c

Extra Modules
AddModule mod_perl.c

AddModule mod_ssl.c
AddExternalAuth pwauth /usr/lib/apache/pwauth
SetExternalAuthMethod pwauth pipe

SSL Global Context Configuration

All SSL configuration in this context applies both to
the main server and all SSL-enabled virtual hosts
(unless overridden by virtual hosts)

<IfModule mod_ssl.c>

SSL Support
When we also provide SSL we have to listen to the
standard HTTPS port - 443

Listen 192.168.1.32:443

SSLEngine off

SSLPassPhraseDialog builtin

SSLSessionCache dbm:/var/log/ssl/ssl_scache

SSLSessionCacheTimeout 300

SSLMutex file:logs/ssl_mutex

SSLRandomSeed startup file:/dev/urandom 512

163

SSLRandomSeed connect builtin

SSLCipherSuite
ALL:!ADH:!NULL:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP

SSLLog /var/log/ssl/ssl_engine_log

SSLLogLevel info

CustomLog /var/log/ssl/ssl_request_log \
 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

SSLProtocol all
</IfModule>

END OF SSL GLOBAL CONTEXT CONFIGURATION

The LockFile directive sets the path to the lockfile used when Apache
is compiled with either USE_FCNTL_SERIALIZED_ACCEPT or
USE_FLOCK_SERIALIZED_ACCEPT. This directive should normally be left
at
its default value. The main reason for changing it is if the logs
directory is NFS mounted, since the lockfile MUST BE STORED ON A
LOCAL
DISK. The PID of the main server process is automatically appended to
the filename.

LockFile /var/lock/httpd.lock

PidFile: The file the server should log its pid to
PidFile /var/run/httpd.pid

ScoreBoardFile: File used to store internal server process information.
Not all architectures require this. But if yours does (you'll know because
this file is created when you run Apache) then you *must* ensure that
no two invocations of Apache share the same scoreboard file.
ScoreBoardFile /var/run/httpd.scoreboard

UseCanonicalName: (new for 1.3) With this setting turned on, whenever
Apache needs to construct a self-referencing URL (a url that refers back
to the server the response is coming from) it will use ServerName and
Port to form a "canonical" name. With this setting off, Apache will
use the hostname:port that the client supplied, when possible. This
also affects SERVER_NAME and SERVER_PORT in CGIs.
UseCanonicalName off

164

The following directives define some format nicknames for use with
a CustomLog directive (see below).

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%v %h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-
Agent}i\"" combined_virtual
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

The location of the access file (Common Logfile Format).
If this does not start with /, ServerRoot is prepended to it.
CustomLog logs/access_log common
CustomLog /var/log/httpd/access_log combined_virtual

KeepAlive: Whether or not to allow persistent connections (more than
one request per connection). Set to "Off" to deactivate.

KeepAlive On

MaxKeepAliveRequests: The maximum number of requests to allow
during a persistent connection. Set to 0 to allow an unlimited amount.
We reccomend you leave this number high, for maximum performance.

MaxKeepAliveRequests 100

KeepAliveTimeout: Number of seconds to wait for the next request

KeepAliveTimeout 15

Limit on total number of servers running, i.e., limit on the number
of clients who can simultaneously connect --- if this limit is ever
reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.
It is intended mainly as a brake to keep a runaway server from taking
Unix with it as it spirals down...

MaxClients 150

MaxRequestsPerChild: the number of requests each child process is
allowed to process before the child dies.
The child will exit so as to avoid problems after prolonged use when
Apache (and maybe the libraries it uses) leak. On most systems, this
isn't really needed, but a few (such as Solaris) do have notable leaks
in the libraries.

165

MaxRequestsPerChild 100

ServerName allows you to set a host name which is sent back to clients for
your server if it's different than the one the program would get (i.e. use
"www" instead of the host's real name).

Note: You cannot just invent host names and hope they work. The name you
define here must be a valid DNS name for your host. If you don't understand
this, ask your network administrator.

ServerName destinationearth.net

Server-pool size regulation. Rather than making you guess how many
server processes you need, Apache dynamically adapts to the load it
sees --- that is, it tries to maintain enough server processes to
handle the current load, plus a few spare servers to handle transient
load spikes (e.g., multiple simultaneous requests from a single
Netscape browser).

It does this by periodically checking how many servers are waiting
for a request. If there are fewer than MinSpareServers, it creates
a new spare. If there are more than MaxSpareServers, some of the
spares die off. These values are probably OK for most sites ---

MinSpareServers 8
MaxSpareServers 20

Number of servers to start --- should be a reasonable ballpark figure.

StartServers 10

Timeout: The number of seconds before receives and sends time out

Timeout 300

DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.

DocumentRoot /home/httpsd/configuration/html

AccessFileName: The name of the file to look for in each directory
for access control information.

AccessFileName .htaccess

166

DefaultType is the default MIME type for documents which the server
cannot find the type of from filename extensions.

DefaultType text/plain

AddType application/x-x509-ca-cert .crt

The following directives disable keepalives and HTTP header flushes.
The first directive disables it for Netscape 2.x and browsers which
spoof it. There are known problems with these.
The second directive is for Microsoft Internet Explorer 4.0b2
which has a broken HTTP/1.1 implementation and does not properly
support keepalive when it is used on 301 or 302 (redirect) responses.

BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

AddHandler allows you to map certain file extensions to "handlers",
actions unrelated to filetype. These can be either built into the server
or added with the Action command (see below)
Format: AddHandler action-name ext1

To use CGI scripts:
AddHandler cgi-script .cgi
AddHandler server-parsed .shtml

#===
Aliases for primary secure web site and secure virtual domains
#===

NameVirtualHost 192.168.6.1:443

<VirtualHost 192.168.6.1:443>

 ServerName secure.destinationearth.net
 ServerAlias destinationearth.net www.destinationearth.net

 # primary content

 DocumentRoot /home/httpsd/configuration/html
 ScriptAlias /cgi-bin /home/httpsd/configuration/cgi-bin

 # alias for Apache icons

 Alias /icons/ /var/www/icons/

167

 # SSL Directives
 SSLEngine on
 SSLCertificateFile /etc/ssl/keys/servercrt.crt
 SSLCertificateKeyFile /etc/ssl/keys/serverrsa.key
 # End SSL Directives

 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown \

downgrade-1.0 force-response-1.0

</VirtualHost>

#===
End of aliases
#===

First, we configure the "default" to be a very restrictive set of
permissions.

<Directory />
 Options None
 AllowOverride None
 order deny,allow
 deny from all
 allow from none
</Directory>

Note that from this point forward you must specifically allow
particular features to be enabled - so if something's not working as
you might expect, make sure that you have specifically enabled it
below.

#--
primary directories
#--

<Directory /home/httpsd/configuration/html>
 SSLRequireSSL
 SSLRequire %{SSL_CIPHER_USEKEYSIZE} >= 128
 Options Includes
 AllowOverride None
 order deny,allow
 deny from all
 allow from all
 AuthName "trial access"

168

 AuthType Basic
 AuthExternal pwauth
 require valid-user
</Directory>

<Directory /var/www/icons>
 Options Includes
 AllowOverride None
 order deny,allow
 deny from all
 allow from all
</Directory>

<Directory /home/httpsd/configuration/cgi-bin>
 SSLRequireSSL
 SSLRequire %{SSL_CIPHER_USEKEYSIZE} >= 128
 Options ExecCGI
 AllowOverride None
 order deny,allow
 deny from all
 allow from all
</Directory>

#===
End http.conf Configuration
#===

APPENDIX D
FIREWALL CONFIGURATION SCRIPT

IPChains firewall

/etc/firewall.conf

Loopback Device
LOOPBACKIF="lo"
LOOPBACKIP="auto"

External (Public) Interface
EXTIF="eth0"
EXTIP="auto"
EXTBROAD="auto"

Default Gateway
DEFAULTGW="auto"

Internal (Private) Interface
INTIF="eth1"
INTIP="auto"
INTNM="255.255.255.0"
INTLAN="192.168.6.0/24"

Other reserved and well-known addresses
ANYWHERE="any/0"
UNIVERSE="0.0.0.0/0"
LOOPBACK="127.0.0.0/0"
CLASS_A="10.0.0.0/8"
CLASS_B="172.16.0.0/12"
CLASS_C="192.168.0.0/24"
CLASS_D_MULTICAST="224.0.0.0/4"
CLASS_E_RESERVED="240.0.0.0/5"
BROADCAST_SRC="0.0.0.0"
BROADCAST_DEST="255.255.255.255"

Ports range from 0:65535
PRIVPORTS="0:1023"
UNPRIVPORTS="1024:65535"

Ports for specific services
TRACEROUTE_SRC_PORTS="32769:65535"
TRACEROUTE_DEST_PORTS="33434:33523"
SSH_PORTS="1020:1023"

Enable kernel IP Forwarding
IP_FORWARD="Y"

IPSec Gateway
Space separated list of remote gateways
IPSECSG="209.33.129.114 24.12.43.211"

Space separated list of virtual interfaces for FreeS/Wan IPSEC
implementation. Only include those that are actually used. If
you want to limit the traffic that flows through the tunnels, you
you must manually edit the rules that are put in place using this
variable in /etc/rc.d/rc.firewall
FREESWANVI="ipsec0 ipsec1"

Settings for internal Interface

169

170

Allow open access on the internal interface. If you answer "N" and you
want to allow some machines access to the internal interface or access to
some services on the internal interface, you must edit /etc/rc.d/rc.firewall
and enter rules in the INTERNAL_UNSECURE section. There are examples in the
file
INTERNAL_UNSECURE="N"

INTERNAL_SECURE="192.168.6.12" ## Administrator workstation IP address

Settings for External Interface

Does the external interface use DHCP/BOOTP to get its address
EXTERNAL_DYNAMICIP="N"

This machine is a public SSH server
EXTERNAL_SERVICES_SSH="Y"

/etc/rc.d/rc.firewall

#!/bin/sh
#+++
This configuration assumes the following:

1) The external interface is running on "eth0"
2) The external IP address is statically assigned
3) The internal IP network interface is "eth1"
4) The internal network is addressed within the private
192.168.6.x TCP/IP addressing scheme per RFC1918

NOTE: All 2.2.x Linux kernels prior to 2.2.11 have a fragmentation
**** bug that renders all strong IPCHAINS rulesets void. It
is CRITICAL that users upgrade the Linux kernel to 2.2.11+
for proper firewall security.

#++

#++
Initializing
#++
echo -e "\n\nLoading IPCHAINS Firewall"
echo "--"

Load the configuration
[-f /etc/firewall.conf] || exit 0
. /etc/firewall.conf

#++
Network Parameters
#++

The loopback interface and address
#--
 if ["$LOOPBACKIP" = "auto"]; then
 echo -e "- Auto detecting loopback interface IP..."
 LOOPBACKIP=`/sbin/ifconfig | grep -A 4 $LOOPBACKIF | awk '/inet/ { print $2 } ' |
sed -e s/addr://`
 echo $LOOPBACKIP
 fi
#--

External interface device.

eg: EXTIP="100.200.0.212"
#--
 if ["$EXTIP" = "auto"]; then
 echo -e "- Auto detecting External interface IP..."

171

 EXTIP=`/sbin/ifconfig | grep -A 4 $EXTIF | awk '/inet/ { print $2 } ' | sed -e
s/addr://`
 echo $EXTIP
 fi
#--

Broadcast address of the external network

eg: EXTBROAD="100.200.0.255"
#--
 if ["$EXTBROAD" = "auto"]; then
 echo -e "- Auto detecting External broadcast address..."
 EXTBROAD=`/sbin/ifconfig | grep -A 1 $EXTIF | awk '/Bcast/ { print $3 }' | sed -e
s/Bcast://`
 echo $EXTBROAD
 fi
#--

Gateway for the external network

eg: DGW="100.200.0.1"
#--
 if ["$DEFAULTGW" = "auto"]; then
 echo -e "- Auto detecting default gateway...."
 DEFAULTGW=`/sbin/route | grep default | awk '{ print $2}'`
 echo $DEFAULTGW
 fi
#--

IP address on the internal interface
#--
 if ["$INTIP" = "auto"]; then
 echo -e "- Auto detecting Internal interface IP..."
 INTIP=`/sbin/ifconfig | grep -A 4 $INTIF | awk '/inet/ { print $2 } ' | sed -e
s/addr://`
 echo $INTIP
 fi
#--

Netmask of internal interface to calculate internal network
#--
 if ["$INTNM" = "auto"]; then
 echo -e "- Auto detecting internal netmask..."
 INTNM=`/sbin/ifconfig | grep -A 4 $INTIF | awk '/inet/ { print $4 } ' | sed -e
s/Mask://`
 echo $INTNM
 fi
#--

IP network address of the internal network
#--
 if ["$INTLAN" = "auto"]; then
 echo -e "- Auto calculating address of internal network..."
 INTLAN=`/bin/ipcalc --network $INTIP $INTNM | sed -e s/NETWORK=//`
 echo $INTLAN
 fi
#--

#++
IPCHAINS Logging
#++
The output of this logging can be found in the /var/log/messages
file. If you need to reduce some of the logging, edit the rulesets and
delete the "$LOGGING" syntax from the ruleset that you aren't
interested in.

172

#++

LOGGING="-l"

#++
Configuration Logging
#++
Log all configuration setting to a file.
This script will dump all configuration
settings to a file called
/tmp/rc.firewall.dump
#++

echo "Writing /tmp/rc.firewall.dump."
rm -f /tmp/rc.firewall.dump
echo Local TCP/IP Configuration from rc.firewall > /tmp/rc.firewall.dump
echo --- >> /tmp/rc.firewall.dump
echo Loopback interface name: $LOOPBACKIF >> /tmp/rc.firewall.dump
echo Loopback IP: $LOOPBACKIP >> /tmp/rc.firewall.dump
echo --- >> /tmp/rc.firewall.dump
echo Internal interface name: $INTIF >> /tmp/rc.firewall.dump
echo Internal interface IP: $INTIP >> /tmp/rc.firewall.dump
echo Internal LAN address: $INTLAN >> /tmp/rc.firewall.dump
echo --- >> /tmp/rc.firewall.dump
echo External interface name: $EXTIF >> /tmp/rc.firewall.dump
echo External interface IP: $EXTIP >> /tmp/rc.firewall.dump
echo External interface broadcast IP: $EXTBROAD >> /tmp/rc.firewall.dump
echo ___ >> /tmp/rc.firewall.dump
echo Default gateway/route: $DEFAULTGW >> /tmp/rc.firewall.dump
echo --- >> /tmp/rc.firewall.dump

#++
Output for TCP/IP Configuration
#++
Output TCP/IP Configuration from rc.firewall
to standard out
#++

echo Local TCP/IP Configuration from rc.firewall
echo ---
echo Loopback interface name: $LOOPBACKIF
echo Loopback IP: $LOOPBACKIP
echo ---
echo Internal interface name: $INTIF
echo Internal interface IP: $INTIP
echo Internal LAN address: $INTLAN
echo ---
echo External interface name: $EXTIF
echo External interface IP: $EXTIP
echo External interface broadcast IP: $EXTBROAD
echo ___
echo Default gateway/route: $DEFAULTGW
echo ---

#++
General
#++
Performs general processing
#++

#--
Enable IP Forwarding

#The net.ipv4.ip_forward parameter should be set to one to enable IP
masquerading of Internet requests from the internal network. This
protects computers on the internal network so all requests appear to
be coming from one and only one host. In additions, all computers on
the internal network have access to Internet resources without

173

becoming vulnerable to attack.
#--
if ["$IP_FORWARD" = "Y"]; then
 echo " - Enabling IP forwarding."
 echo "1" > /proc/sys/net/ipv4/ip_forward
fi
#--

#--
Disable IP spoofing attacks.

This drops traffic addressed for one network though it is being received on a
different interface.
#--
echo " - Disabling IP Spoofing attacks."
for file in /proc/sys/net/ipv4/conf/*/rp_filter
do
 echo "1" > $file
done
#--

#--
Ignore all ICMP requests

In order to prevent ping flooding, a basic form of a Denial of Service (DoS)
attack where an IP address is flooded with ICMP requests to effectively
close down any services provided on that IP address. The
net.ipv4.icmp_ip_echo_ignore_all parameter should be set to one so the
server will ignore all ICMP (ping) requests. Ignoring an ICMP request is
considerably better than simply denying the request-no response from
an IP address typically indicates no link at that address, but a denied
response is an acknowledgement to the sender that a link does exist.
#--
#echo " - Ignoring all ICMP requests."
#echo "1" > /proc/sys/net/ipv4/icmp_ip_echo_ignore_all
#--

#--
Ignore all broadcast requests

prevent intentional or unintentional ping flooding. When a packet is
sent to the network broadcast address, it is sent to all machines on that
network. The machines on the network then respond to that request and
the responses can result in network congestion or a DoS attack. Most
routers, as a rule, will not forward packets destined for a broadcast
address but an exception to that rule most certainly exists. By ignoring
broadcast ICMP requests, the Linux server will be less apt to
suffer from ping attacks.
#--
echo " - Ignoring all broadcast requests."
echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
#--

#--
Disable ICMP Redirect Acceptance

When a host uses a non-optimal or stale route to a destination an
ICMP redirect packet is returned by the routers to inform the host
what the correct route should be. If an attacker is able to forge ICMP
redirect packets, he or she may be able to alter the routing table on
the host. By altering the host's routing table, the malevolent may
gain access to sensitive traffic by diverting traffic via another path.
In order to prevent such an attack, set the
net.ipv4.conf.all.accept_all_redirects equal to zero.
#--
echo " - Disabling ICMP Redirect Acceptance."
for file in /proc/sys/net/ipv4/conf/*/accept_redirects

174

do
 echo "0" > $file
done

for file in /proc/sys/net/ipv4/conf/*/send_redirects
 do
 echo 0 > $file
 done
#--

#--
Disable IP source routing

Often, attackers will create packets with a source address different
from their actual IP address. This is known as IP spoofing and it is
common to protect the attacker's identity in DoS attacks. The attacker
does not require a reply since the real intention is to deny access to
any services the destination computer offers. In other cases, the
attacker sends a packet with a source address of a trusted internal IP
to the external IP of a gateway host. The gateway host, if not prepared,
will read the packet as an internal secure communication and may allow
the attacker into the system. In order to combat IP spoofing attacks,
setting the Linux kernel parameter net.ipv4.conf.all.rp_filter to one
enables spoofing protection thereby peventing the server from being
the source of spoofed communications.
#--
echo " - Disabling IP source routing."
for file in /proc/sys/net/ipv4/conf/*/accept_source_route
do
 echo "0" > $file
done
#--

#--
Enable automatic defragmentation

Since not all information sent to the host can always be contained in a
single packet, often data is fragmented into multiple packets. The problem
with this is that only the first packet contains the port numbers of the
communication pipe. It is possible to insert potentially harmful information
into the remaining packets. In a normal configuration, fragments are
passed through the interface and reassembled later-sometimes with an
attacker's code. By enabling IP defragmentation, the packets are
reassembled and put into the correct order, discarding any extraneous
packets that may have been added.
#--
echo " - Enabling automatic defragmentation."
echo "1" > /proc/sys/net/ipv4/ip_always_defrag
#--

#--
Enable TCP SYN cookie protection

A more serious DoS attack than ping flooding is the SYN attack.
Traditionally, systems would employ a SYN-ACK handshake to confirm
a TCP connection and move it from the waiting queue. If the SYN-ACK
handshake does not complete, an attacker makes a request but
ignores the returned packet with the SYN bit set, the server would wait
for a long period for the ACK packet that never comes. While waiting
for the packet with the ACK bit set, the server would not move the
request from the wait queue until a timeout occurs and would allow
no one else to connect. An attacker could take advantage of this by
continuing to make requests and thereby denying anyone else access
to the server. To protect the server, the ip.ipv4.tcp_syncookies
parameter should be set to one so a SYN attack cannot take place.
#--
echo " - Enabling TCP SYN cookie protection."
echo "1" > /proc/sys/net/ipv4/tcp_syncookies

175

#--

#++
Default Policies
#++
Change default policies to DENY input and reject all other traffic REJECT.
We want to only EXPLICTLY allow what traffic is allowed IN and OUT of the
firewall. All other traffic will be implicitly blocked.
#++
echo " - Flushing all old rules and setting all default policies to DENY and REJECT "

/sbin/ipchains -P input DENY
/sbin/ipchains -P output REJECT
/sbin/ipchains -P forward REJECT

/sbin/ipchains -F input
/sbin/ipchains -F output
/sbin/ipchains -F forward

#++
Loopback interface policy
#++
Enable all traffic on the loopback interface
#++

echo "--"
echo " - Allow all traffic from loopback interface $LOOPBACKIP"
/sbin/ipchains -A input -j ACCEPT -i $LOOPBACKIF -s $UNIVERSE -d $UNIVERSE
/sbin/ipchains -A output -j ACCEPT -i $LOOPBACKIF -s $UNIVERSE -d $UNIVERSE

#++
IPSec VPN
#++
If you are using an IPSec VPN product, you will need to fill in the
addresses of the gateways in the IPSECSG
#++

Disable IP spoofing protection to allow IPSEC to work properly
--
echo "0" > /proc/sys/net/ipv4/conf/ipsec0/rp_filter
echo "0" > /proc/sys/net/ipv4/conf/eth0/rp_filter

for CURGW in $IPSECSG; do
 echo " - Allow ISAKMP from $IPSECSG to external interface $EXTIF"
 ipchains -A input -j ACCEPT -i $EXTIF -p udp -s $CURGW isakmp
 ipchains -A output -j ACCEPT-i $EXTIF -p udp -d $CURGW isakmp
 echo " - Allow IPSEC protocol from $IPSECSG on external interface $EXTIF"
 ipchains -A input -j ACCEPT -i $EXTIF -p 50 -s $CURGW
 ipchains -A output -j ACCEPT-i $EXTIF -p 50 -d $CURGW
 ipchains -A input -j ACCEPT-i $EXTIF -p 51 -s $CURGW
 ipchains -A output -j ACCEPT-i $EXTIF -p 51 -d $CURGW
done

for CURIF in $FREESWANVI; do
 echo " - Allow all traffic to FreeS/WAN Virtual Interface $CURIF"
 ipchains -A input -j ACCEPT -i $CURIF -s $UNIVERSE -d $UNIVERSE
done

for CURIF in $FREESWANVI; do
 echo " - Allow all trafic from FreeS/WAN virtual interface $CURIF"
 ipchains -A output -j ACCEPT -i $CURIF -s $UNIVERSE -d $UNIVERSE
done

for CURIF in $FREESWANVI; do
 echo " - Forward anything from FreeS/WAN virtual interface $CURIF"
 /sbin/ipchains -A forward -j ACCEPT -i $CURIF -s $UNIVERSE -d $UNIVERSE
done

176

#++
OpenSSH
#++
SSH policies between IPSEC Gateways
#++

echo " - Setting OpenSSH input filters for specific internal hosts."
/sbin/ipchains -A input -j ACCEPT -i $INTIF -p tcp -s $INTERNAL_SECURE -d $INTIP ssh

echo " - Setting OpenSSH output filters for specific internal hosts."
/sbin/ipchains -A output -j ACCEPT -i $INTIF -p tcp -s $INTERNAL_SECURE -d $INTIP ssh

SSH server: Allow specific IPSEC computers to connect to the Linux server ITSELF
for SSH access.
--
if ["$EXTERNAL_SERVICES_SSH" = "Y"]; then
 echo " - Allow SSH to external interface $EXTIF"
 /sbin/ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $IPSECSG $UNPRIVPORTS -d $EXTIP
ssh
 /sbin/ipchains -A output -j ACCEPT -i $EXTIF -p tcp ! -y -s $EXTIP ssh -d $IPSECG
$UNPRIVPORTS
 /sbin/ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $IPSECSG $SSH_PORTS -d $EXTIP ssh
 /sbin/ipchains -A output -j ACCEPT -i $EXTIF -p tcp ! -y -s $EXTIP ssh -d $IPSECG
$SSH_PORTS
fi

#++
Secure HTTP (https)
#++
HTTPS policy for access from internal LAN
#++

echo " - Setting HTTPS input filters for specific internal hosts."
/sbin/ipchains -A input -j ACCEPT -i $INTIF -p tcp -s $INTERNAL_SECURE -d $INTIP https

echo " - Setting HTTPS output filters for specific internal hosts."
/sbin/ipchains -A output -j ACCEPT -i $INTIF -p tcp -s $INTERNAL_SECURE -d $INTIP https

#++
DHCP Server
#++
If you have configured a DHCP server on this Linux machine, you
will need to enable the following ruleset.
#++

echo " - Allowing DHCP requests on internal network."
/sbin/ipchains -A output -j ACCEPT -i $INTIF -p udp -s $INTIP/32 bootps -d $BROADCAST/0
bootpc
/sbin/ipchains -A output -j ACCEPT -i $INTIF -p tcp -s $INTIP/32 bootps -d $BROADCAST/0
bootpc

#++
Incoming Traffic from the External Interface
#++
This ruleset will control specific traffic that is allowed in from
the external interface.
#++

echo "--"
echo " - Setting input filters for traffic from the external interface."

--
SPOOFING & BAD ADDRESSES
Refuse spoofed packets.
Ignore blatantly illegal source addresses.
Protect yourself from sending to bad addresses.
--

177

Remote interface, claiming to be external IP, IP spoofing
Remote interface, claiming to be local machines, IP spoofing, get lost & log
--
echo " - Reject and log spoofing."
/sbin/ipchains -A input -j DENY -i $EXTIF -s $EXTIP -d $UNIVERSE $LOGGING
/sbin/ipchains -A input -j DENY -i $EXTIF -s $INTLAN -d $UNIVERSE $LOGGING

Refuse incoming packets claiming to be from a Class A, B or C private network
--
/sbin/ipchains -A input -j DENY -i $EXTIF -s $CLASS_A -d $UNIVERSE $LOGGING
/sbin/ipchains -A input -j DENY -i $EXTIF -s $CLASS_B -d $UNIVERSE $LOGGING
/sbin/ipchains -A input -j DENY -i $EXTIF -s $CLASS_C -d $UNIVERSE $LOGGING
/sbin/ipchains -A input -j DENY -i $EXTIF -s $UNIVERSE -d $CLASS_A $LOGGING
/sbin/ipchains -A input -j DENY -i $EXTIF -s $UNIVERSE -d $CLASS_B $LOGGING
/sbin/ipchains -A input -j DENY -i $EXTIF -s $UNIVERSE -d $CLASS_C $LOGGING

Refuse outgoing packets claiming to be from a Class A, B, or C private network
--
/sbin/ipchains -A output -j DENY -i $EXTIF -s $CLASS_A -d $UNIVERSE $LOGGING
/sbin/ipchains -A output -j DENY -i $EXTIF -s $CLASS_B -d $UNIVERSE $LOGGING
/sbin/ipchains -A output -j DENY -i $EXTIF -s $CLASS_C -d $UNIVERSE $LOGGING
/sbin/ipchains -A output -j DENY -i $EXTIF -s $UNIVERSE -d $CLASS_A $LOGGING
/sbin/ipchains -A output -j DENY -i $EXTIF -s $UNIVERSE -d $CLASS_B $LOGGING
/sbin/ipchains -A output -j DENY -i $EXTIF -s $UNIVERSE -d $CLASS_C $LOGGING

Refuse packets claiming to be from the loopback interface
--
/sbin/ipchains -A input -j DENY -i $EXTIF -s $LOOPBACKIP -d $UNIVERSE $LOGGING
/sbin/ipchains -A ouput -j DENY -i $EXTIF -s $LOOPBACKIP -d $UNIVERSE $LOGGING

Refuse broadcast address SOURCE packets
--
/sbin/ipchains -A input -j DENY -i $EXTIF -s $BROADCAST_DEST -d $UNIVERSE $LOGGING
/sbin/ipchains -A input -j DENY -i $EXTIF -s $BROADCAST_SRC -d $UNIVERSE $LOGGING

Refuse Class D multicast addresses
Multicast is illegal as a source address.
Multicast uses UDP.
--
/sbin/ipchains -A input -j DENY -i $EXTIF -s $CLASS_D_MULTICAST -d $UNIVERSE $LOGGING
/sbin/ipchains -A output -j REJECT -i $EXTIF -s $CLASS_D_MULTICAST -d $UNIVERSE $LOGGING
/sbin/ipchains -A output -j REJECT -i $EXTIF -d $CLASS_D_MULTICAST $LOGGING

Refuse Class E reserved IP addresses
--
ipchains -A input -j DENY -s $CLASS_E_RESERVED_NET-d $UNIVERSE $LOGGING

Refuse special addresses defined as reserved by the IANA.
Note: The remaining reserved addresses are not included.
Filtering them causes problems as reserved blocks are
being allocated more often now.
--
ipchains -A input -j DENY -s 127.0.0.0/8 $LOGGING
ipchains -A input -j DENY -s 169.254.0.0/16 $LOGGING
ipchains -A input -j DENY -s 192.0.2.0/24 $LOGGING
ipchains -A input -j DENY -s 224.0.0.0/3 $LOGGING

#++
ICMP
#++
To prevent denial of service attacks based on ICMP bombs, filter
incoming Redirect (5) and outgoing Destination Unreachable (3).
Note, however, disabling Destination Unreachable (3) is not
advisable, as it is used to negotiate packet fragment size.

For bi-directional ping.
Message Types: Echo_Reply (0), Echo_Request (8)
To prevent attacks, limit the src addresses to your ISP range.

For outgoing traceroute.

178

Message Types: INCOMING Dest_Unreachable (3), Time_Exceeded (11)
default UDP base: 33434 to base+nhops-1

For incoming traceroute.
Message Types: OUTGOING Dest_Unreachable (3), Time_Exceeded (11)
To block this, deny OUTGOING 3 and 11

0: echo-reply (pong)
3: destination-unreachable, port-unreachable, fragmentation-needed, etc.
4: source-quench
5: redirect
8: echo-request (ping)
11: time-exceeded
12: parameter-problem
#++

echo " -Setting ICMP filtering policies."

ipchains -A input -j ACCEPT -i $EXTIF -p icmp --icmp-type echo-reply -d $EXTIP
ipchains -A input -j ACCEPT-i $EXTIF -p icmp --icmp-type destination-unreachable -d
$EXTIP
ipchains -A input -j ACCEPT -i $EXTIF -p icmp --icmp-type source-quench -d $EXTIP
ipchains -A input -j ACCEPT -i $EXTIF -p icmp --icmp-type time-exceeded -d $EXTIP
ipchains -A input -j ACCEPT -i $EXTIF -p icmp --icmp-type parameter-problem -d $EXTIP
ipchains -A output -j ACCEPT -i $EXTIF -p icmp -s $EXTIP fragmentation-needed
ipchains -A output -j ACCEPT -i $EXTIF -p icmp -s $EXTIP source-quench
ipchains -A output -j ACCEPT -i $EXTIF -p icmp -s $EXTIP echo-request
ipchains -A output -j ACCEPT -i $EXTIF -p icmp -s $EXTIP parameter-problem

#++
Incoming Traffic on all Interfaces
#++
This will control input traffic for all interfaces. This is
usually used for what could be considered as public services.
#++

echo "--"
echo " - Setting input filters for public services (all interfaces)."

AUTH: Allow the authentication protocol, ident, to function on all
interfaces but disable it in /etc/inetd.conf. The reason to
allow this traffic in but block it via Inetd is because some
legacy TCP/IP stacks don't deal with REJECTed "auth" requests
properly.

echo " - Allow AUTH on all interfaces"
/sbin/ipchains -A input -j ACCEPT -p tcp -s $UNIVERSE -d $UNIVERSE auth

#++
Outgoing Traffic on the External Interface
#++
This ruleset will control what traffic can go out on the external interface.
#++

echo "--"
echo " - Setting output filters for traffic from the external interface."

Reject outgoing traffic to the local net from the remote interface,
stuffed routing; deny & log
--
echo " - Reject outgoing traffic from external interface $EXTIF to internal network
$INTLAN - Stuffed Routing"
/sbin/ipchains -A output -j REJECT -i $EXTIF -s $UNIVERSE -d $INTLAN $LOGGING

Reject outgoing traffic from the local net from the external interface,
stuffed masquerading, deny and log
--
echo " - Reject outgoing traffic from internal network $INTLAN to external interface
$EXTIF - Stuffed Masquerading"

179

/sbin/ipchains -A output -j REJECT -i $EXTIF -s $INTLAN -d $UNIVERSE $LOGGING

AUTH: Allow authentication tap indent on all interfaces (but disable it
in /etc/inetd.conf).
#+ --
echo " - Allow ident traffic from external interface $EXTIF"
/sbin/ipchains -A output -j ACCEPT -i $EXTIF -p tcp -s $UNIVERSE auth -d $UNIVERSE

#++
Enable logging for selected denied packets
#++
 ipchains -A input -j DENY -i $EXTIF -p tcp $LOGGING
 ipchains -A input -j DENY -i $EXTIF -p udp --destination-port $PRIVPORTS $LOGGING
 ipchains -A input -j DENY -i $EXTIF -p udp --destination-port $UNPRIVPORTS $LOGGING
 ipchains -A input -j DENY -i $EXTIF -p icmp --icmp-type 5 $LOGGING
 ipchains -A input -j DENY -i $EXTIF -p icmp --icmp-type 13:255 $LOGGING
 ipchains -A output -j REJECT-i $EXTIF $LOGGING

#++
Catch All INPUT Rule
#++
echo "--"
echo " - Deny and log all input not specifically allowed."

All other incoming is denied and logged.
/sbin/ipchains -A input -j DENY -s $UNIVERSE -d $UNIVERSE $LOGGING

#++
Catch All OUTPUT Rule
#++
echo "--"
echo " - Reject and log all output not specifically alllowed"

All other outgoing is denied and logged. This ruleset should catch
everything including samba that hasn't already been blocked.

/sbin/ipchains -A output -j REJECT -s $UNIVERSE -d $UNIVERSE $LOGGING

#++
Catch All FORWARDING Rule
#++
echo "--"
echo "Forwarding Rules:"
Catch all rule, all other forwarding is denied.

echo " - Deny and log anything not specifically allowed to be forwarded"
/sbin/ipchains -A forward -j REJECT -s $UNIVERSE -d $UNIVERSE $LOGGING

#++
Finish
#++
echo "--"
echo -e "Firewall implemented. \n\n"

LIST OF REFERENCES

Adams, R., & Erickson, C. (1999 August). Users and groups. CS 437 Distributed
Computing, Grand Valley State University. Retrieved June 20, 2001 from
http://www.csis.gvsu.edu/ class/cs437/Notes/OS/09users.html

Allen, M. (2000, June 1). How Linux works CTDP guide version 0.6.0. The Computer
Technology Documentation Project. Retrieved June 17, 2001 from
http://ctdp.tripod.com/os/linux/howlinuxworks/

Almesberger, W. (1998, December 4). LILO: generic boot loader for Linux. Version 21.
Generic Books. Retrieved June 17, 2001 from http://genericbooks.com/Literature/
Documents/pdf/Books/lilo_tech.pdf

Ball, W., & Pitts, D. (1996). Red Hat Linux unleashed. SunSite: Sun Software,
Information, and Technology Exchange. Retrieved July 27, 2001 from
http://sunsite.net.edu.cn/ tutorials/linux/httoc.htm

Bandel, D. A. (2000, May). Linux security toolkit. Foster City, Califonria. M&T Books

Bauer, B. & Bowden, T. (2001). SuSE Linux - guide for geeks. Retrieved August 21,
2001 from www.bb-zone.com Web site: http://www.bb-
zone.com/zope/bbzone/docs/slgfg

Beekmans, G. (2001). Linux from scratch version 3.0-rc2. Linux From Scratch
Organization Web site. http://www.linuxfromscratch.org/view/3.0-rc2/

Boldt, A. (2000). Linux configuration help texts: help texts for kernels 2.2.x. Personal
Web site. Retrieved from July 29, 2001 http://math-www.uni-
paderborn.de/~axel/Configure.help-2.2

Boran, S. (1999, December 13). An overview of corporate information security:
combining organisational, physical, and IT security. Network Security Library.
GFI Software Ltd. Retrieved September 5, 2001 from http://secinf.net/info/policy/
coverstory19991213.html

Bowen, R., Coar, K. A. L., Grip-Jansson, P., Marlowe, M., & Chinnappan, M. (2000,
March 9). Apache server unleashed. Indianapolis, Indiana. Sams

180

181

Brandt, K., Green, S., & Zúñiga, E. (2001 March). Cracker exploits: battle plans, 15
cracker exploits every security professional should know about-and how to
defend against [Electronic version]. Information Security. Retrieved from
Information Security Magazine:
http://www.infosecuritymag.com/articles/march01/ features4_battle_plans.shtml

Carella, F. (1999, March). Understanding the Linux boot sequence. Sault College of
Applied Arts and Technology, Sault Ste Marie, Ontario Canada. Retrieved June
17, 2001 from
http://apollo.saultc.on.ca/~fcarella/PersonalHowtos/boot.slave/bootsequence.html

Cavalli, A. (1996, September 4). Dynamic virtual private networks: a security solution
for enabling business intranets. TradeWave Corporation White Paper. Retrieved
May 12, 2001 from: http://www.adimpleo.com/library/trwave/securvpn.pdf

Chae, L. (1998, October 1). Virtual private networks. Network Magazine. Retrieved May
12, 2001 from: http://www.networkmagazine.com/article/NMG20000727S0029

DeClario, N. (2001, September 19). Building a secure web server using Apache and
OpenSSL. Linux Security.com. Retrieved June 24, 2001 from
http://www.linuxsecurity.com/feature_stories/feature_story-67.html

Denker, J. S., Bellovin, S. M., Daniel, H., Mintz, N. L., Killian, T., & Plotnick, M. A.
(1999, November 12). Moat: a virtual private network appliance and services
platform. Paper presented at the 13th Systems Administration Conference.
Retrieved May 25, 2001, from:
http://www.usenix.org/publications/library/proceedings/lisa99/full_papers/denker
/denker.pdf

Drake, J. (2000). Linux networking HOWTO - docbook rev .02. Linux Documentation
Project. Commandprompt, Inc. Retrieved August, 16, 2000 from
http://www.linuxdoc.org/HOWTO/Net-HOWTO/index.html

Drakos, N. (1997) Luvisetto, M. (2001, May 3 trans.).Linux administrator guide.
Retrieved from the World Wide Web: http://www.bo.infn.it/alice/alice-doc/mll-
doc/linux/admin/

Engelschall, R. S. & Ralf S. (2001). User manual: the Apache interface to OpenSSL.
Mod_ssl homepage. Retrieved August 26, 2001 from
http://www.modssl.org/docs/2.8/

Fenzi, K., & Wreski, D. (2000, March). Linux security HOWTO. Linux Documentation
Project. Retrieved August 11, 2000 from
http://www.linuxdoc.org/HOWTO/Security-HOWTO

Ferguson, N. & Schneier, B. (2000, January). A cryptographic evaluation of IPSec.
http://citeseer.nj.nec.com/ferguson00cryptographic.html

182

Ferguson, P., & Huston, G. (1998, April). What is a VPN? The Internet Protocol Journal,
Cisco, vol. 1, no. 1, June 1998

Fraser, B. (Ed). (1997, September). Site security handbook. Request For Comments
2196. Internet Network Internet Engineering Task Force (IETF) Working Group.
Retrieved August 13, 2001 from http://www.faqs.org/rfcs/rfc2196.html

FreeS/WAN documentation. Retrieved May 26, 2001 from
http://www.freeswan.org/freeswan_trees/freeswan-1.9/doc/HowTo.html

Global network provider innovates with VPN service. Packet Magazine Archives,
Second Quarter 1998. Retrieved May 12, 2001, from Cisco's Packet Magazine
Web site: http://www.cisco.com/warp/public/784/packet/april98/12.html

Gortmaker, P. (1999, May 5). Linux ethernet-HOWTO. Linux Documentation Project.
Retrieved August 17, 2000 from http://www.linuxdoc.org/HOWTO/Ethernet-
HOWTO.html

Gortmaker, P. (1999, May). The Linux bootprompt-HOWTO. Linux Documentation
Project. Retrieved June 16, 2001 from:
http://www.linuxdoc.org/HOWTO/BootPrompt-HOWTO.html

Grennan, M. (2000, February 26). Firewall and proxy server-HOWTO. Linux
Documentation Project. Retrieved August 2, 2000 from
http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html

Guttman, B. & Bagwill, R. (1997 July, 21). Internet security policy: a technical guide
[DRAFT]. Information Technology Laboratory Computer Security Division.
National Institute of Standards and Technology. Gaithersburg, MD 20899-0001.
Retrieved August 23, 2001 from http://csrc.nist.gov/isptg/

Guttman, E., Leong, L., & Malkin, G. (1999, February). Users' security handbook.
Request For Comments 2504. Internet Network Internet Engineering Task Force
(IETF) Working Group. Retrieved August 13, 2001 from
http://www.faqs.org/rfcs/ rfc2504.html

Hardin, J. D. (2000, October 22). Linux VPN masquerade howto. Linux Documentation
Project. Retrieved August 11, 2000 from
http://www.linuxdoc.org/HOWTO/VPN-Masquerade-HOWTO.html

Harris, T. & Koehntopp, K. (2000). Linux partition HOWTO. Linux Documentation
Project. Retrieved August 11, 2000 from
http://www.ibiblio.org/pub/Linux/docs/HOWTO/mini/ other-
formats/html_single/Partition.html

InternetWeek Online. (n.d.). Exclusive vpn research. InternetWeek Online. Retrieved
May 12, 2001 from: http://www.internetweek.com/VPN/812VPNcharts.htm

183

Ioannidis, S., Keromytis, A., Bellovin, S., & Smith, J. (2000). Implementing a distributed
firewall. In Proceedings of Computer and Communications Security (CCS) 2000,
November 2000. http://citeseer.nj.nec.com/ioannidis00implementing.html

Jackson, M. H. (1996, April 3). Linux shadow password HOWTO. Linux Documentation
Project [no pagination]. Retrieved June 16, 2001 from
http://linuxdocs.org/HOWTOs/Shadow-Password-HOWTO.html

Jackson, S., & Birdwell, J.D (1997, August). Definitive user access on a secure web
server. Laboratory for Information Technologies. University of Tennessee.
Retreived July 27, 2001 from Laboratory for Information Technologies Web site:
http://www.lit.net/lit/ PDF/whosinit.pdf

Jordan, M. (n.d.). What is Linux? Linux Online. Retrieved June 23, 2001from
http://www.linux.org/info/.

Kent, S. & Atkinson, R. (1998, November). Security architecture for the internet
protocol. Technical Report Request for Comments 2401 IETF. Internet
RFC/STD/FYI/BCP Archives. http://www.faqs.org/rfcs/rfc2401.html

Kerberos: the network authentication protocol (n.d.). Retrieved June 23, 2001 from the
Massachusetts Institute of Technology Web site:
http://web.mit.edu/kerberos/www/

Klein, D. V. (1990). Foiling the cracker: a survey of, and improvements to, password
security. Technical report. Software Engineering Institute, Carnegie Mellon
University. Retrieved May 12, 2000 from
http://www.ja.net/CERT/Klein/D.Klein.Foiling.the.Cracker.txt

Knight, E. (2000, March 20). Computer vulnerabilities. Retrieved July 27, 2001 from
Security Paradigm Web site:
http://www.securityparadigm.com/compvuln_draft.pdf

Kozierok, C. M. (2001, April 17). The PC guide. Version: 2.2.0. The PC Guide home
page. Retrieved May 19, 2001 from http://www.PCGuide.com.

Langfeldt, N. & Norrish, J. (2001, January 18). version 3.1. DNS HOWTO. Linux
Documentation Project. Retrieved August 22, 2001 from
http://www.ibiblio.org/pub/ Linux/docs/HOWTO/DNS-HOWTO.html

Lowes, M. (2001, April 21). v0.8.1. Professional FTP daemon FSQ. www.proftpd.org
web site. Retrieved July 13, 2001 from http://ppd.sourceforge.net/faq/proftpdfaq-
full.html

MacKenzie, D. (2001, May). Manpage of CHMOD. Free Software Foundation, Inc.
Linux on-line manual pages

184

Magosanyi, A. (1997, August 7). The VPN HOWTO. Linux Documentation Project.
Retrieved July 28, 2000 from http://www.ibiblio.org/pub/Linux/docs/HOWTO/
mini/other-formats/html_single/VPN.html

Mann, S. (n.d.). Limiting su to root with PAM. 101 Security Solutions. Retrieved July 21,
2001 from http://www.101.com/solutions/security/article.asp?ArticleID=528

Miller, D. (2001, February 4). OpenBSD reference manual SFTP: secure file transfer
program. OpenBSD Manual Pages. Retrieved August 24, 2001 from
http://www.openbsd.org/cgi-bin/man.cgi?query=sftp

Mourani, G & Madhusudan, M. (2000, June 7). Securing and optimizing Linux RedHat
edition--a hands on guide. Open Network Architecture. Retrieved May 24, 2001
from http://www.openna.com

Netscape Communications Corporation. (1999). How SSL works. Security Developer
Central. Retrieved September 3, 2001 from http://developer.netscape.com/tech/
security/ssl/

Ng, Pheng Siong. (2001, March 31). HOWTO: Creating your own CA with OpenSSL.
Revision 1.1. Personal Web site. Retrieved September 3, 2001 from
http://www.pobox.org.sg/home/ngps/m2/howto.ca.html

O'Keefe, G. (2000, November). From power up to bash prompt. Personal Web site.
http://www.netspace.net.au/~gok/power2bash/power2bash/power2bash.html.

OpenSSL core team. (n.d.). OpenSSL command line tool. OpenSSL project. Retrieved
August 26, 2001 from http://www.openssl.org/docs/apps/openssl.html

Openwall readme. Retrieved September 2, 2001 from Openwall Web site:
http://www.openwall.com/linux/README

Parker, T. (1999, December 20). Linux system administrator's survival guide, second
edition. Sams

Peek, J. (2000, January 27). Protecting files with the sticky bit. O'Reilly network.
Retrieved July 2, 2001 from O'Reilly Network: http://linux.oreillynet.com/pub/a/
linux/lpt/ 22_06.html

The ProFTPD project: directive list. (2001, February 12). The ProFTPD Project.
Retrieved July 13, 2001 from http://www.proftpd.net/docs/configuration.html

Rader, M., & Birdwell, J. D. (1997, August). Public/private/wireless information
security: a blueprint for safeguarding sensitive information. Laboratory for
Information Technologies. University of Tennessee. Retreived July 27, 2001 from
Laboratory for Information Technologies Web site:
http://www.lit.net/ondcp/wireless.html

185

Ramsey, P. (2000, June 22). Red Hat Linux 6.x as an internet gateway for a home
network. Linux Documentation Project. Retrieved August 30, 2000 from
http://www.ibiblio.org/ pub/Linux/docs/HOWTO/ mini/other-
formats/html_single/Home-Network-mini-HOWTO.html

Ranch, D. A. (2001, June 10). TrinityOS: a guide to configuring your Linux server for
performance, security, and manageability. Dranch's HomePage. Retrieved June
24, 2001 from http://www.ecst.csuchico.edu/~dranch/LINUX/TrinityOS/cHTML/
TrinityOS-c.html

Ranch, D. A. (2001, June 10). v2.00.0610. Linux IP masquerade HOWTO. Linux
Documentation Project. Retrieved July 29, 2001 from http://www.ibiblio.org/
pub/Linux/docs/HOWTO/IP-Masquerade-HOWTO

Red Hat Documentation Team. (2000). Red Hat Linux 6.2: The official Red Hat Linux
reference guide. Red Hat, Inc. 2600 Meridian Parkway, Durham, NC, 27709.
http://www.redhat.com/support/manuals/RHL-6.2-Manual/ref-guide/

Retallack, R. (2001, June 15). Securing Linux installations. SANS Institute Information
Security Reading Room. Retrieved August 22, 2001 from http://www.sans.org/
infosecFAQ/linux/sec_install.htm

Rivest, R. (1992, April). The MD5 message-digest algorithm. MIT Laboratory for
Computer Science, and RSA Data Security, Inc.

Russell, R. (2000, July 4). Linux ipchains HOWTO. Linux Documentation Project.
Retrieved August 14, 2000 from http://www.linuxdoc.org/HOWTO/IPCHAINS-
HOWTO.html

Russell, R., & Quinlan, D. (Eds.). (2001). Filesystem hierarchy standard. Filesystem
Hierarchy Standard Group. Retrieved May 28, 2001 from the Filesystem
Hierarchy Standard Group Web site: http://www.pathname.com/fhs/pub/fhs-
2.2.pdf

Sampo, K. (2001, May 16). Net::SSLeay.pm installation. Net::SSLeay.pm Home Page.
Retrieved May 26, 2001 from http://www.bacus.pt/Net_SSLeay/

Sax, D. (2000, November 12). DNS spoofing (malicious cache poisoning). Institute
Information Security Reading Room. Retrieved August 22, 2001 from
http://www.sans.org/infosecFAQ/firewall/DNS_spoof.htm

Schenk, T. (n.d.). Linux: Its history and current distributions. PartnerWorld for
Development Library. IBM Web site. Retrieved June 23, 2001 from
http://www.developer.ibm.com/library/articles/schenk1.html.

Seifried, K. (2001, June). Linux administrator's security guide. Security Portal. Retrieved
July 14, 2001 from http://www.securityportal.com/lasg/

186

Semeria, C. (n.d.). Securing your network against source IP spoofing attacks. Retrieved
August 21, 2001 from http://www.indy.net/~sabronet/secure/895inet.html

Sigle, R. (2001, February 6). Building a secure RedHat Apache server HOWTO. Linux
Documentation Project. Retrieved September 3, 2001 from
http://www.linuxdoc.org/ HOWTO/SSL-RedHat-HOWTO.html

Skoric, M. (2001, May 13). LILO mini-HOWTO. Linux Documentation Project.
Retrieved June 16, 2001 from http://www.linuxdoc.org/HOWTO/mini/LILO.html

Spafford, E. H. (1991, June). OPUS: preventing weak password choices. Purdue
Technical Report CSD-TR 92-028

Spitzner, L. (2000, September 19). Armoring Linux. Personal Web site. Retrieved June
8, 2001 from http://www.enteract.com/~lspitz/linux.html

Spitzner, L. (2001, January). What is MD5 and why do I care? Personal Web site.
Retrieved January 15, 2001 from http://www.enteract.com/~lspitz/md5.html

Stocksdale, G. (1998, April). NSA glossary of terms used in security and intrusion
detection. SANS Institute Resources Retrieved August, 23, 2001 from SANS
Institution Resources: http://www.sans.org/newlook/resources/glossary.htm

Tevesk, S. (2001, February 24). OpenSSH security. OpenBSD: security Web site.
Retrieved August 24, 2001 from http://www.openssh.com/security.html

Thorpe, J. (2001). BYO Linux 1.0 text version. Retrieved May 30, 2001 from BYOLinux
Web site: http://www.byolinux.org/

Toomey, W. (2001, February 28). Users and user administration. School of Computer
Science, University of New South Wales, Australian Defence Force Academy.
Retrieved June 20, 2001 from http://www.cs.adfa.oz.au/teaching/studinfo/sa3/
Lectures/user_admin.html

Veselosky, V. (1999). Configuring LILO, the Linux loader. Retrieved June 16, 2001
from Control-Escape: Alternative Software Web site: http://www.control-
escape.com/lilo-cfg.html

Vuksan, V. (2000, July 3). DHCP mini-HOWTO. Linux Documentation Project.
Retrieved August 16, 2000 from
http://www.linuxdoc.org/HOWTO/mini/DHCP/index.html

Ward, B. (2001, July 15). version 3.0 . The Linux kernel HOWTO. Linux Documentation
Project. Retrieved July 29, 2001 from http://www.linuxdoc.org/HOWTO/Kernel-
HOWTO.html

187

Welte, H. (2001, October 14). v1.2. How to set up a chroot environment with Red Hat
Linux 6.2. Personal Web site. Retrieved June 16, 2001 from
http://www.gnumonks.org/ ftp/pub/doc/chroot-howto.html

Wreski, D. (1998, August 22). Linux security administrator's guide. Network Information
Center. Retrieved July 14, 2001 from
http://www.nic.com/~dave/SecurityAdminGuide/ SecurityAdminGuide-all.html

Writing buffer overflow exploits--a tutorial for beginners (n.d.). Retrieved July 2, 2001
from Mixter Security: http://members.tripod.com/mixtersecurity/exploit.txt

Wunsch, S. (2001, February 24). v1.3. Chroot-BIND HOWTO. Linux Documentation
Project. Retrieved March 28, 2001 from
http://www.linuxdoc.org/HOWTO/Chroot-BIND-HOWTO.html

Ylonen, T. (2001, August 1). v 1.14 OpenBSD reference manual ssh: OpenSSH ssh
client. OpenSSH Manual Pages. http://www.openssh.com/manual.html Retrieved
August 24, 2001 from http://www.openbsd.org/cgi-bin/man.cgi?query=ssh

Ylonen, T. (2001, August 1). v 3.0 OpenBSD system manager's manual SSHD:
OpenSSH ssh client. OpenSSH Manual Pages.
http://www.openssh.com/manual.html Retrieved August 24, 2001 from
http://www.openbsd.org/cgi-bin/man.cgi?query=sshd

Ziegler, R. L. (1999, November 3). Linux firewalls. Indianapolis, Indiana. New Riders
Publishing.

BIOGRAPHICAL SKETCH

William Valella was born June 28, 1971, in Belle Glade, Florida. As a native

Floridian, he received a bachelor's degree in English from the University of Florida in

June 1993 and a master’s degree in English education through the University of Florida’s

PROTEACH program in June 1994. He began teaching English at the middle school

level in a small southwestern Florida city in August 1994. He then moved to the high

school level and taught TV productions, debate, speech, drama, and produced the the

daily news program.

In 1998, he decided to return to the University of Florida to pursue a master’s

degree in computer science. After a year fulfilling the prerequisites, he was admitted to

the graduate program in computer science in 1999. During the summer of 2000, he

traveled to San Jose, California, for a summer internship with a leading ATE company.

At the end of the summer he and his wife decided to relocate to San Jose. He completed

the remainder of his graduate requirements through the University of Florida’s FEEDs

program under the direction of Dr. Manuel Bermudez.

188

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1 INTRODUCTION
	Virtual Private Networks
	Virtual Private Network Design Issues
	Virtual Private Network Implementations
	Application Layer
	Link Layer
	Network Layer
	Transport Layer

	IPSEC Implementation
	Outline of Thesis

	CHAPTER 2 LINUX
	Introduction to Linux
	History
	Linux Virtual Private Network Solution

	CHAPTER 3 PRE-IMPLEMENTATION CONSIDERATIONS
	Hardware Requirements
	Network Addresses
	File System Structure
	Filesystem Hierarchy Standard Directory Requirements
	Secondary Hierarchy
	Linux VPN File System Structure

	User Accounts and Groups
	Passwords

	CHAPTER 4 INSTALLING LINUX
	Application Packages
	Devlopment Packages
	System Environment Packages
	Final Configurations

	CHAPTER 5 UPDATING THE LINUX DISTRIBUTION
	Updating the Linux Kernel
	Compiling and Installing the New Kernel

	CHAPTER 6 SERVER SECURITY
	Physical security
	Terminal Security
	LILO – Linux Loader
	Boot Process

	CHAPTER 7 PROCESS AND FILE SYSTEM SECURITY
	Setting Resource Limits on Processes
	Securing the cron daemon
	Console Apps Security Directory
	Brief Explanation of Linux File Permissions
	Securing File System Permissions
	System Logs

	CHAPTER 8 ACCESS AUTHENTICATION
	Pluggable Authentication Modules
	PAM and Super-User Commands

	CHAPTER 9 NETWORK CONFIGURATION
	Network Configuration
	Settings for the /proc/sys Directory

	CHAPTER 10 DAEMON SECURITY
	Dynamic Host Configuration Protocol
	Securing Name Resolution Services
	The inetd Daemon
	TCP Wrappers
	Secure Shell Configuration

	CHAPTER 11 SECURE SOCKETS LAYER
	OpenSSL
	How PKI Works
	How SSL Works
	Server Certificates

	CHAPTER 12 APACHE WEB SERVICE
	Apache Modules
	Install the mod_auth_external module
	Compiling and Installing Apache
	Define a Secure Virtual Host
	Starting Apache
	Securing Apache

	CHAPTER 13 WEBMIN
	Installation
	Configuration

	CHAPTER 14 FREES/WAN IPSEC
	FreeS/WAN IPSEC Configuration
	Setting up RSA Authentication Keys
	Exchanging authentication keys

	IPSEC configuration file
	Securing the IPSEC Configuration and Key Files
	Configuring Remote Gateways for IPSEC Communication

	CHAPTER 15 FINAL CONFIGURATION
	Firewall
	Installing the VPN firewall
	Final Lockdown
	Conclusion

	APPENDIX A KERNEL CONFIGURATION OPTIONS
	APPENDIX B OPENSSL CIPHER SPECIFICATIONS
	APPENDIX C APACHE WEB SERVER CONFIGURATION
	APPENDIX D FIREWALL CONFIGURATION SCRIPT
	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

