
 

3588 Plymouth Road, Box #272 
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 

New Eagle Confidential 

 

 

 

NEAT 
New Eagle Automated Testing 

 

User Manual 
 

Revision 007 

(Build 2.0.273.62) 

02/25/2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 2 

New Eagle Confidential 

 

Contents 

1. INTRODUCTION ...................................................................................................... 4 

2. NEAT SYSTEM ARCHITECTURE ......................................................................... 4 

3. CONFIGURATION .................................................................................................... 5 

3.1 CONFIGURATION SETTINGS .............................................................................................................................. 5 

4. NEAT CONSOLE ....................................................................................................... 5 

4.1 CREATING A NEAT SCRIPT .............................................................................................................................. 6 

4.2 SCRIPT EDITOR ................................................................................................................................................. 7 

4.3 TEST NAVIGATOR .............................................................................................................................................. 9 

4.4 TEST EDITOR ..................................................................................................................................................... 9 

4.4.1 SIGNAL ACTIONS .......................................................................................................................................................... 10 

4.4.2 CAN ACTIONS .............................................................................................................................................................. 11 

4.4.3 MACRO ACTIONS .......................................................................................................................................................... 12 

4.4.4 OTHER TOOLBOX ACTIONS ........................................................................................................................................ 14 

4.5 TEST RUNNER ................................................................................................................................................. 14 

5. COMMAND LINE INTERFACE ............................................................................ 16 

6. TEST SCRIPTS ........................................................................................................ 17 

6.1 TEST TARGET AND COORDINATOR SETTINGS ............................................................................................. 17 

6.1.1 MODEL BUILDING CONFIGURATION ......................................................................................................................... 18 

6.1.2 MODULE FLASH CONFIGURATION............................................................................................................................. 18 

6.1.3 XCP SLAVE CONFIGURATION ..................................................................................................................................... 18 

6.1.4 ERI CONFIGURATION .................................................................................................................................................. 19 

6.1.5 CAN CONFIGURATION ................................................................................................................................................ 19 

6.2 REFERENCE VALUES ....................................................................................................................................... 19 

6.3 INCLUDED SCRIPT FILES ................................................................................................................................ 19 

6.4 MACRO DEFINITIONS ..................................................................................................................................... 19 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 3 

New Eagle Confidential 

 

6.5 TEST DEFINITIONS ......................................................................................................................................... 20 

7. TEST ACTIONS ....................................................................................................... 20 

7.1 SET .................................................................................................................................................................. 20 

7.2 VERIFY ............................................................................................................................................................ 20 

7.3 CANTX ............................................................................................................................................................ 21 

7.4 VERIFYCANRX ............................................................................................................................................... 21 

7.5 VERIFYCANNORX .......................................................................................................................................... 21 

7.6 CANSTARTRX ................................................................................................................................................ 22 

7.7 MACRO ............................................................................................................................................................ 22 

7.8 REPEAT ........................................................................................................................................................... 22 

7.9 LOGMESSAGE .................................................................................................................................................. 23 

7.10 TODO ............................................................................................................................................................ 23 

7.11 PAUSE ........................................................................................................................................................... 23 

8. TEST RESULTS....................................................................................................... 23 

8.1 TEST STATUS .................................................................................................................................................. 23 

8.2 XML REPORT ................................................................................................................................................. 24 

8.3 PDF REPORT .................................................................................................................................................. 25 

9. TEST WRITING ...................................................................................................... 25 

9.1 ANATOMY OF A TEST ..................................................................................................................................... 25 

9.2 TEST WRITING BEST PRACTICES .................................................................................................................. 26 

10. TROUBLESHOOTING ......................................................................................... 27 

10.1 TEST/COORDINATOR TARGET MODEL HAS NOT BEEN BUILT YET .......................................................... 27 

 

  



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 4 

New Eagle Confidential 

 

1. Introduction 

The New Eagle Automated Test (NEAT) system is a PC-based tool that allows developers to 
write scripted, processor-in-the-loop tests for their Raptor and MotoHawk projects. These 
tests can be used for regression testing and test-driven development1. 

NEAT can be run either interactively or via the command line, so it is well suited for use in 
automated build systems such as Cruise Control. 

NEAT includes the ability to build models in MATLAB and flash an ECU. 

2. NEAT System Architecture 

 
Figure 1 - NEAT System Data Flow 

The hardware components of a NEAT system are: 

1. Windows based desktop computer for running NEAT 
2. A cable for connecting the Windows machine to the CAN bus (Kvaser, etc.) 
3. The module to test 
4. (optional) A “coordinator” module for testing I/O 
5. (optional) A wiring harness which connects the coordinator module to the module-

under-test 

The software components of a NEAT system are: 

1. The NEAT test executor software (on Windows based PC) 
2. The Raptor or MotoHawk model flashed onto the module-under-test 
3. (optional) The coordinator model flashed onto the coordinator module 

                                                        

1 http://en.wikipedia.org/wiki/Test_driven_development 

http://en.wikipedia.org/wiki/Test_driven_development


 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 5 

New Eagle Confidential 

 

3. Configuration 

A NEAT configuration executable is provided alongside NEAT to allow users to edit settings 

 
Figure 2 - NEAT Configuration Editor 

Note: you must press “Save” before exiting the NEAT Configuration editor or the new 
configuration settings will not be saved. 

3.1 Configuration Settings 

 A2L Base Path: Directory where .a2l files will be stored when Raptor models are 
built 

 ECU Flash Program: Path to the executable used to flash test and coordinator 
modules 

 Flash DLL: .dll file used by ECU flash utility 

 Flash Device Id: ID of device used to flash ECU’s 

 XCP Broadcast Address: XCP Address used to communicate with modules 
 Flash Timeout (sec): Number of seconds that NEAT will wait while waiting to 

flash an ECU (if applicable) 
 PDF Template: Path to file that NEAT will use as a template when generating pdf 

reports 
 MotoHawk TDBDLL Path: Directory where MotoHawk .dll files will be stored when 

MotoHawk models are built 
 MotoHawk Dump DLL Utility: Path to MotoHawk Dump DLL Utility 

4. NEAT Console 

The NEAT Console is where you can author, edit, and run tests interactively. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 6 

New Eagle Confidential 

 

Launch the NEAT Console from the Windows Start Menu or by double-clicking on a NEAT 
test script in Windows Explorer.  If you start NEAT via the Windows Start Menu, you will 
have the option of manually opening an existing NEAT file, creating a new file, or opening a 
recently used file. 

4.1 Creating a NEAT Script 

To create a new NEAT script, select the New option from the File menu. NEAT will show 
you a dialog box that lets you configure the new test script (See Figure 3 - Create Test File 
Dialog). 

Select the framework for the Test Target module (Raptor or MotoHawk) and the 
Coordinator module, if any. For both Raptor and MotoHawk, select the SimuLink model file 
(MDL or SLX) for the software that will be running on the module and select the Matlab 
version that should be used for automated building. The Raptor Version and MotoHawk 
Version fields are optional, and are intended for future use. 

For Raptor models: 

 Enter the flash address used for flashing the module for targets supporting the 
Vansco Flash Loader. This is a hexadecimal number ranging from 0x00 to 0xFF 
(255). Note that as of Raptor 2013b there is no way to change this value in the 
model from the default of 0xFD (253). 

 Enter the XCP address on which the model will receive XCP messages. This can be 
found and modified in the XCP Protocol Definition block in the Raptor model. 
NEAT uses XCP to communicate with Raptor models, so the model must contain an 
XCP Protocol Definition block to be used with NEAT. 

For MotoHawk models: 

 Enter the city id for the ECU. This is the value set in the MotoHawk CAN 
Definition block in the MotoHawk model. 

 Enter the city id for the tool (NEAT). The default value of this is 0x03, so as to not 
collide with MotoTune, which uses 0x02.  

 Select the access level at which to connect to the module. If the model has custom 
security settings, an appropriately authorized MotoTune dongle must be present 
when running scripts with NEAT. 

Additional Settings: 

 Verify Time: This is the default amount of time NEAT will wait before determining 
that a value does not match the required value in a Verify action (see Verify 7.27.2 
below). 

 Default Delta: This is the default value for floating-point equality comparisons. 

 CAN Channels: This is where the user may add CAN channels to use on the Kvaser 
device that connects to the test harness. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 7 

New Eagle Confidential 

 

 Baud Rate: This is the baud rate used on the designated CAN channel. 

 Name: Name of the CAN channel as defined in the model file. 

 
Figure 3 - Create Test File Dialog 

Note: These test script settings can be edited later by clicking the  button above the 
navigator pane on the left side of the NEAT console. 

4.2 Script Editor 

Once the script is loaded, you will be in the test editor, which looks like this: 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 8 

New Eagle Confidential 

 

 
Figure 4 - NEAT Console Test Editor 

There are several important regions on this screen (labeled in blue, above): 

 Test Navigator: this is a tree that shows all of your tests, groups, and macros. 
Tests are organized in a nested hierarchy. Search for a test or group by typing part 
of its name in the Search bar. 

 Test Editor: this is where a test’s actions are listed. To add actions to a test, drag 
the action in from the Action Toolbox or a signal in from the Signals List. 

 Clean Up Actions Pane: this area can be expanded by clicking the arrow next to 
“Clean Up Actions” label. It contains all of the actions that are executed in the clean-
up phase of the test. These actions are always executed, even if the test failed or was 
aborted due to an error. 

 Signals List: This lists all of the signals available in the ECU. If both a Test Target 
and Coordinator module are configured, then there will be a drop-down at the top of 
the Signals List that allows you to switch between the two modules. Search for a 
signal by typing part of its name in the Search bar. To set or verify a signal value, 
drag the signal name onto the Test Editor. 

 Action Toolbox: This contains test actions that can be put into your test that do 
not deal directly with an ECU signal. See Section 7: Test Actions, below (page 20), for 
a description of the operation of each action. 

 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 9 

New Eagle Confidential 

 

4.3 Test Navigator 

The Test Navigator allows you to organize your tests and create new tests, groups and 
macros. The toolbar at the top of the navigator contains several buttons: 

Icon Name Function 

 New Group 
Create a new group under the current group. If the Tests node is 
selected, creates a new root group. 

 New Test Creates a new test under the current group. 

 New Macro Creates a new macro 

 
NEAT 

Configuration 
Opens the test configuration editor 

 Run One 
Runs the selected test in the Test Runner (see section 4.5: Test 
Runner, page 14) 

 Run All Runs all of the tests in the Test Runner 

 Delete 
Deletes the currently selected group, test, or macro. If a group is 
deleted, all tests and groups under that group are also deleted. 

 

To view a test or macro, simply select it in the tree view and the test’s or macro’s actions 
will be displayed in the Test Editor. 

4.4 Test Editor 

This is where you can view and edit what occurs during a test. Actions can be reordered by 
dragging them up or down. To delete an action, simply select it in the Test Editor and 
press the Delete key. 

 
Figure 5 - Moving an Action 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 10 

New Eagle Confidential 

 

4.4.1 Signal Actions 

To set a value in the ECU, find the signal in the Signals List. Drop the signal where you want 
the action to occur in the action sequence. A small pop-up will appear where you can 
indicate if you want to set the value or verify the value. 

 
Figure 6 - Signal Actions 

Set or Verify actions can occur anywhere in the test, but Initial Condition actions 
must occur at the start of the test. NEAT will move Initial Condition actions to the 
start of the test to prevent an invalid sequence. 

 
Figure 7 - Signal Actions 

The signal action blocks contain a lot of information in a small amount of space: 

 The I, S and V labels on the left stand for “Initial Condition,” “Set,” and “Verify,” 
which is the action type.  

 The C and T labels on the right stand for “Coordinator” and “Test Target”. They 
indicate which ECU has the signal. If there is no coordinator module, these labels 
are not displayed, as all signals are on the test target. 

 Initial Condition actions have an operation selector, where you can choose =, 
<, >, and ~= (not equal) and an expected value. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 11 

New Eagle Confidential 

 

 Set actions have a Verify check box, if checked NEAT will perform a read after the 
write to verify that the value was written properly.  

 Verify actions have an operation selector, where you can choose =, <, >, and ~= 
(not equal) and an expected value. 

 Verify actions have a ⌚ check box, which optionally shows the Verify Time for 
this action. It is set to the default value specified when the script was created to 
start, but can be changed as needed for a test. When checked, the verify time is 
displayed as a text box below the expected value with the label within. 

 Verify actions can have a ± check box (when appropriate), which optionally shows 
the Delta for the operation. It is set to the default value specified when the script 
was created to start, but can be changed as needed for a test. When checked, the 
delta can be seen below the expected value. 

 The signal referenced in Set/Verify actions can be changed by double-clicking 
the signal name. 

4.4.2 CAN Actions 

NEAT supports sending and receiving raw CAN frames. These frames are sent or received 
from the CAN channel set when you created the script. 

 
Figure 8 - CAN Actions 

CAN frame ids are specified as hexadecimal with no prefix (e.g. - 0x or $). To use an 
extended CAN id, check the X checkbox. 

CAN data is specified as a series of bytes in hexadecimal, again with no prefix.  

 Each byte is represented by two digits, so zero pad small values (e.g. for the value 11 
(decimal) enter “0b”).  

 Each byte is separated by a single space. 
 If NEAT detects an error in the data format, it will show the error notification 

displayed above on the CAN Tx action (in this case, the 4th byte is missing a digit). 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 12 

New Eagle Confidential 

 

 The message length (either transmitted or expected) is set to the number of bytes 
specified (so the length for the CAN Rx action, above, would be 4). 

There are four CAN actions: 

 Start CAN Rx tells NEAT to start recording CAN frames. NEAT does not record 
CAN frames unless it has reached a CAN action. Normally this works fine and 
reduces clutter in the test execution log, especially if the CAN bus is busy. However, 
in some circumstances, the trigger for transmitting a CAN message in the target 
model occurs before the execution of a CAN action in NEAT (e.g. - a CAN message is 
only transmitted when a tracked value exceeds a threshold). In that case, NEAT may 
miss the message and the test may incorrectly fail. To prevent that scenario, place a 
Start CAN Rx action before the action that triggers the CAN message to start 
transmitting. 

 CAN Rx verifies that a particular CAN message is received within the specified time 
frame. Both the CAN id and the data payload must match in order for this action to 
pass.   

 CAN Tx transmits a CAN message on the bus. This message is only sent once (no 
repeating messages). 

 CAN No Rx verifies that a CAN message is not received within the specified time 
frame. Just the CAN id is checked for this action (the data payload is ignored). 

4.4.3 Macro Actions 

There are two kinds of macros supported by NEAT: Macros and Initial Condition 
Macros. 

 Macros can contain any action other than an Initial Condition Action or 
Initial Condition Macro Action (this means that macros can execute other 
macros). 

 Initial Condition Macros can only contain Initial Condition Actions or 
Initial Condition Macro Actions. 

To call a macro, drag Macro or Initial Condition Macro in from the Toolbox. A dialog 
will be displayed showing defined macros of the appropriate type. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 13 

New Eagle Confidential 

 

 
Figure 9 - Select Macro Dialog Box 

If you have lots of macros, you can enter part of a macro’s name in the search box to 
narrow down the listed macros. 

 

 
Figure 10 - Macro Actions 

Both types of macro actions have an arrow that you can click to see the actions in the 
macro. You cannot modify the actions in a macro directly in a test. In order to edit a macro, 
select it from the Test Navigator. Any changes made a macro will be reflected wherever 
it is called. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 14 

New Eagle Confidential 

 

4.4.4 Other Toolbox Actions 

There are several other actions that are useful for composing tests, though they do not 
interact with the ECU directly. 

 
Figure 11 - Utility Actions 

The To Do action is always placed at the start of the test and will always fail. It is intended 
to flag tests in progress and prevent one or more of the ECUs being put into an unknown 
state, which could cause other tests to fail unexpectedly. 

The Log Message action always passes. It simply inserts a message into the test run log. 
This is useful for explaining complicated behavior or non-obvious expectations. 

The Pause action always passes, pausing test execution for the specified number of 
milliseconds. Note: NEAT does not guarantee specific execution time, so the actual delay 
may be ±50 ms (or more, depending on the host system). If you need to measure precise 
timing, a better method is to implement that logic in the coordinator module and read the 
results from NEAT. 

4.5 Test Runner 

To run multiple tests, switch from the editor view to the Test Runner by clicking on either 
the Run One ( ) or Run All ( ) buttons in the Test Navigator toolbar. 

If the test script contains model building or flashing setting, then the “Build Model” and 
“Flash Target ECU” sections in the sidebar will contain the relevant information. 
Unchecking either box will cause NEAT to skip that step when running the tests. Note that 
if the “Build Model” section is enabled, the “Flash Target ECU” section cannot be disabled. 

If a model is built, then the output of the build is scanned to determine which file to use to 
flash the ECU. The file that is explicitly listed in the flash section is ignored, though the rest 
of the flash settings are used. 

Test groups and individual tests can be toggled on or off for an individual test run by 
checking or unchecking the box next to the test or group. 

To run the selected tests, click the “Run Test” button in the sidebar. 

During a test run, the list of tests will be updated as tests are run and pass or fail. The 
progress bar at the top of the window indicates how many tests remain to run. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 15 

New Eagle Confidential 

 

If any reference values were included in the scripts, the read values will be displayed in the 
sidebar once they are read at the start of the test run.  

 
Figure 12 - NEAT Console (during test run) 

Once the test is complete, there are several options for examining the results of the run: 

 
Figure 13 - NEAT Console (after test run) 

The full results can be exported in XML or PDF format with the “Save XML” and “Save PDF” 
buttons, respectively. 

The “Show Log” button will display the session log. This log does not contain any 
information about individual tests, but will be useful for diagnosing things like CAN 
connection issues and MATLAB build errors. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 16 

New Eagle Confidential 

 

 
Figure 14 - Log Dialog (NEAT Log) 

If there is a MATLAB build error, then consult the “MATLAB Log” to see the build error. 

 
Figure 15 - Log Dialog (MATLAB log) 

The log from each test is viewable by clicking on the “log” link next to the test. 

5. Command Line Interface 

When NEAT is invoked from the command line, there are various command line arguments 
to control its behavior. This mode is useful for automating test execution. NEAT is found in 
one of two places, depending on the host OS: 

 For 32-bit Windows: C:\Program Files\NewEagle\NEAT\NEAT.exe 

 For 64-bit Windows: C:\Program Files (x86)\NewEagle\NEAT\NEAT.exe 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 17 

New Eagle Confidential 

 

Option Description Required 

-t Test file Yes 

-r XML report file No* 

-p PDF report file No* 

-s Short PDF report (ignored if –p is omitted) No 

-l[N] Logging level (defaults to 0): 

0. Normal logging 
1. Trace logging 
2. Trace and Communications logging 

No 

* At least one of –r or –p must be specified 

Figure 16 - Command Line Options 

Examples: 

Generating an XML report: 

NEAT.exe –t C:\tests\test.xml –r C:\results\test_results.xml 

Generating a PDF report: 

NEAT.exe –t C:\tests\test.xml –p C:\results\test_results.pdf 

Running with full logging: 

NEAT.exe –t C:\tests\test.xml –r C:\results\test_results.xml –l2 

6. Test Scripts 

NEAT test scripts are XML files that conform to the NEATTestScript or 
NEATTestScriptV2 schema. The XSD files for these schemas can be found installed with 
NEAT. 

A test script consists of several sections, in order: 

 Test Target configuration (build, flash, and connection settings) 
 (optional) Test Coordinator configuration (build, flash, and connection settings) 
 Included script files 
 Test run reference values 
 Macro definitions 
 Test definitions 

6.1 Test Target and Coordinator Settings 

Each of the ECUs can be configured separately, including building the model, flashing the 
ECU, and connection information (XCP or ERI). The coordinator ECU is optional. For both 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 18 

New Eagle Confidential 

 

ECUs, the build and flash settings are optional. The two ECUs do not have to use the same 
framework (MotoHawk or Raptor). 

6.1.1 Model Building Configuration 

The RaptorModel and MotoHawkModel elements indicate which version of MATLAB and 
Raptor or MotoHawk to use to build the model file. It also indicates which model file to 
build. 

NOTE: The Raptor/MotoHawk version option is not currently supported. The model will be 
built with whichever version of Raptor or MotoHawk is configured to run with the 
indicated version of MATLAB. 

This section is optional. If no model should be built for the tests, simply omit the Model 
element entirely. 

6.1.2 Module Flash Configuration 

The VanscoFlash and MotProg elements indicate which VSF or SR file to use when 
flashing the module-under-test. For Raptor projects use VanscoFlash; for MotoHawk 
projects use MotProg. Note that when a model is built by NEAT, the MATLAB output is 
parsed to find the file to flash onto the ECU and any file specified in those elements is 
ignored. 

For VanscoFlash, the target source address is set as an attribute. This allows multiple 
modules to be on the same CAN bus as the module-under-test. 

For MotProg, only the source file is specified. The connection settings will be taken from 
the EriConfig element. 

This section is optional. If no file should be flashed for the tests, simply omit the element 
entirely. However, if a MotoHawkModel or RaptorModel element is supplied, then the test 
script must also contain a corresponding MotProg or VanscoFlash element. 

6.1.3 XCP Slave Configuration 

The XcpConfig element sets the XCP request id for the module-under-test. All requests to 
read or write values from the module are sent to this id. It is important that each ECU on 
the CAN bus have a different request id, but the same broadcast id. For example: 

ECU Request Id Broadcast Id 

Module Under Test 0x100 0x200 

Coordinator Module 0x101 0x200 

Figure 17 - Sample XCP Configuration 

The XCP broadcast id is an application setting, which can be configured with the NEAT 
Configuration tool. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 19 

New Eagle Confidential 

 

6.1.4 ERI Configuration 

The EriConfig element sets the source (tool) city id, destination (ECU) city id, and access 
level to use for communicating with the ECU. It is advisable to use a source id other than 
0x02, so as to not interfere with MotoTune. If the test contains both a module-under-test 
and coordinator, the destination city ids should be different, but the source city ids should 
be the same: 

ECU Source City Id Destination City Id 

Module Under Test 0x03 0x0b 

Coordinator Module 0x03 0x0c 

Figure 18 - Sample ERI Configuration 

6.1.5 CAN Configuration 

The CanConfig element configures the CAN connection. Set the CAN channel and baud rate 
for use with this ECU. NEAT currently only supports one configuration for both ECUs, so 
any CAN configuration set for the Test Target takes precedence over a CAN configuration 
set for the Coordinator. Future releases may allow different CAN configurations for the two 
ECUs (e.g. - connect to the Test Target over CAN1 and the Coordinator over CAN2). If no 
CAN configuration is included, then the default values of CAN1 at 250,000 baud will be 
used. 

6.2 Reference Values 

There can be as a many ReferenceValue elements as is desired. Each is a value that will 
be read from the module-under-test at the start of the test run and reported in the XML and 
PDF reports. 

6.3 Included Script Files 

Use the Include element to import the contents of other script files. Each file is included 
only once, even if it is referenced multiple times, and can include additional scripts through 
the use of the Include element. Everything in an included script is imported, except the 
Model and Flash elements, which are ignored in all scripts except the original script. 
Macros, test groups, etc., all must have unique names or ids across all scripts included. 

6.4 Macro Definitions 

There are two types of macros: normal macros and initial condition macros. Both are 
named sets of actions that are run in sequence with the other actions in a test. Each type of 
macro can contain references to other macros of the same type. These actions are executed 
in order when the macro is referenced in a test. There is no support for parameters or 
return values. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 20 

New Eagle Confidential 

 

6.5 Test Definitions 

Tests are grouped into a hierarchy under TestGroup elements. 

A test consists of: 

 (optional) Initial condition verification 
 A sequence of actions that perform the test 
 (optional) clean up actions 

During a test run, if any action fails or encounters an error, the test fails and execution is 
aborted. If there is a CleanUp section defined, those actions will be executed even if the test 
fails. 

7. Test Actions 

7.1 Set 

The Set action sets a value in a module. In Raptor, this is done via the XCP protocol and the   
value must be set up as an Adjustment in the model. In MotoHawk, this is done via the ERI 
protocol, and the value must be set up as a calibration in the model with an appropriate 
access level. 

Options: 

 Target: Indicates which module the value should be set in: the module-under-test 
or the coordinator module. If no target is specified, then the value will be set in the 
module-under-test. 

Examples: 

<Set Adjustment="CompleteDriveCycle" Value="1"/> 
<Set Adjustment="CompleteDriveCycle" Value="1" Target="TestTarget"/> 
<Set Adjustment="Target_DigInput1" Value="1" Target="Coordinator"/> 

7.2 Verify 

Reads a value in a module and compares it to an expected value. In Raptor, this is done via 
the XCP protocol and the value must be set up as an Adjustment or Measurement in the 
model. In MotoHawk, this is done via the ERI protocol and the value must be set up as a 
calibration or probe in the model with an appropriate access level. 

Options: 

 Target: Indicates which module the value should be read from: the module-under-
test or the coordinator module. If no target is specified, then the value will be read 
from the module-under-test. 

 VerifyTime: Indicates how long, in milliseconds, NEAT should wait for the value in 
the ECU to match the expected value. NEAT will poll the value approximately every 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 21 

New Eagle Confidential 

 

50 ms. If at the end of this time the value in the ECU does not match the expected 
value, then the test will fail. If this option is not specified, NEAT will use the default 
value specified on the root NEATScript element. 

 Delta: Indicates how close a floating-point value can be to the expected value and 
be considered equal. This is only applied to floating point values; integer and string 
values must be an exact match. If this option is not specified, NEAT will use the 
default value specified on the root NEATScript element. 

Examples: 

<Verify Measurement="OilPressure" Value="12"/> 
<Verify Measurement="OilPressure" Value="12" VerifyTime="200"/> 
<Verify Measurement="OilPressure" Value="12.4" Delta="0.01"/> 
<Verify Measurement="Target_DigOutput" Value="1" Target="Coordinator"/> 

7.3 CANTx 

Sends a raw CAN message onto the bus. Multi-packet is not supported, so if a long message 
needs to be sent, include multiple CANTx elements. Standard and Extended CAN ids are 
supported. CAN ids are always specified in hexadecimal, even if the “0x” prefix is omitted. 

Message data is specified as a series of two-digit hexadecimal values, one for each byte of 
data. The length of the message is determined from the number of bytes specified. The data 
will show up in Kvaser CANKing exactly as it is written in the CANTx element.  

 

Examples: 

<CANTx Id="0x131" Ext="0" Data="01 ba"/> 
<CANTx Id="0x3000" Ext="1" Data="12 34 56 78 90 ab cd ef"/> 

7.4 VerifyCANRx 

Waits for a CAN message to be transmitted on the bus. A message id and the expected 
message data are specified. The first message that matches the id is assumed to be the 
intended message, and that message’s data is checked against the expected data. If the data 
does not match, this action fails. If a message with the expected id is not received within the 
amount of time specified in VerifyTime, then this action fails. 

Examples: 

<VerifyCANRx Id="0x150" Ext="0" Data="12 34 56 78" VerifyTime="200"/> 
<VerifyCANRx Id="0x3000" Ext="1" Data="" VerifyTime="200"/> 

7.5 VerifyCANNoRx 

Waits for a CAN message with the specified id to be transmitted on the bus. If the message 
is transmitted, this action fails. If no such message is received, then execution continues. No 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 22 

New Eagle Confidential 

 

data is specified for this action, it simply checks for receipt of any CAN message with the 
specified id. The amount of time to wait is specified with the VerifyTime attribute. 

Examples: 

<VerifyCANNoRx Id="0x170" Ext="0" VerifyTime="250"/> 
<VerifyCANNoRx Id="0x3200" Ext="1" VerifyTime="1000"/> 

7.6 CANStartRx 

This action forces NEAT to begin processing CAN messages. Normally, NEAT does not begin 
processing CAN messages until a CAN action (CANTx, VerifyCANRx, VerifyCANNoRx) is 
executed. This is done for performance and to keep noise in the log down in situations 
where there is a lot of CAN traffic on the bus. However, in some circumstances, a test needs 
to verify receipt of a CAN message that may have been sent before NEAT gets to a CAN 
action. In this case, use the CANStartRx action. 

Example: 

<CANStartRx/> 
<Set Adjustment="StatusMessage_Enable" Value="1"/> 
<VerifyCANRx Id="0x230" Ext="0" Data="12 34 56 78 90 ab cd ef" /> 

Here, CAN processing would not normally start until the VerifyCANRx action is executed, 
but the model may have sent the message immediately upon having 
StatusMessage_Enable set to 1, so NEAT would miss the message. The CANStartRx 
action forces NEAT to begin listening to the CAN bus, so the message will be properly 
received. 

7.7 Macro 

Invokes a normal macro by name. All actions in the macro must pass in order for this action 
to pass. The macro may be defined in this script file or in another file that is included. 
Macros do not support parameterization or return values, they are simply an easy way to 
execute common sets of commands without having to copy and paste. 

Example:  

<Macro Name="ClearFaults"/> 

7.8 Repeat 

Executes a set of actions a specified number of times. This action contains other actions. 
The entire sequence is executed the specified number of times. If any of the actions fail 
during any iteration, then the Repeat action fails. 

Example: 

<Repeat Iterations="3"> 
<Macro Name="CompleteDriveCycle"/> 

</Repeat> 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 23 

New Eagle Confidential 

 

7.9 LogMessage 

Enters a message into the log. This is useful for debugging complicated tests. The 
LogMessage action does not support any variables or parameters; it just writes a fixed text 
message into the log. The log message always shows up in the log, regardless of what log 
detail is specified. 

Example: 

 <LogMessage>Faults should be clear by now</LogMessage> 

7.10 ToDo 

Enters a message in the log and sets the test status to NotRun.  This must be the first action 
in a test. A test with this action is not run, but is not failed. This is useful for test-driven-
development, where tests have been written for functionality that is not yet implemented. 
The test run will not have a Pass status if everything else passes, but it will not fail. 

Example: 

<Test Id="Test_001" Desc="Verify Empty DM1 Response"> 
<ToDo Message="Waiting on implementation of lamp status"/> 

… 
</Test> 

7.11 Pause 

Pauses test execution for a fixed amount of time. The Time attribute specifies the amount of 
time to wait in milliseconds. This action cannot fail. 

Example: 

<Pause Time="2500"/> 

8. Test Results 

The results of a test run are reported in two different forms, based on the command line 
options used to invoke NEAT or based on what button is used in the NEAT Console: 

 An XML report (using the –r option) 

 A PDF report (using the –p option) 

Each of these contains the same data, just in different formats. 

8.1 Test Status 

A test can have one of four statuses depending on what happened during the execution of 
the test (see Table 1 - Test Statuses). The statuses of tests and subgroups in a test group 
accumulate to determine the status of the test group. The status of the group is set to the 
lowest priority status of any test or subgroup in the group. The results of an entire script 
are compiled in the same manner from the statuses of all test groups. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 24 

New Eagle Confidential 

 

Table 1 - Test Statuses 

Status Description Priority 

Passed All checks in the test passed and all actions completed without 
error 

4 

NotRun The test was not run. This can happen if the test has a ToDo 
action or if the user is running NEAT interactively and chose 
not to run certain tests. 

3 

Failed One of the checks in the test failed. When a test has this status, 
the results will contain details about what caused the failure. 

2 

Error An error occurred during test execution that rendered the 
results invalid. This could be a missing value in the ECU, a 
communications failure, etc. 

1 

 

Example: 

Test Status Status Priority Accumulated Status 

Test 1 Passed 4 Passed 

Test 2 Passed 4 Passed 

Test 3 Failed 2 Failed 

Test 4 NotRun 3 Failed 

Test Group Failed 2 Failed 

Figure 2 - Sample Test Group Status 

Here, Test 3’s status of Failed has the lowest priority of any test in the group, so the 
entire group has that status. 

8.2 XML Report 

The generated XML report adheres to the NEATScriptResults schema. The XSD file 
defining this schema can be found installed next to the NEAT executable. 

Each test group and test in the script has a corresponding test group or test entry in the 
results file. 

Within each test result entry is a copy of the log for what happened during the test. The 
amount of information in the log depends on what log level was set at the command line 
with the –l option or what log level was set in the sidebar in the NEAT Console. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 25 

New Eagle Confidential 

 

8.3 PDF Report 

The PDF contains the status of all tests run. It is built on a PDF template that is installed 
with NEAT. An alternative PDF template can be set with the NEAT Configuration tool. The 
PDF template should be a single-page PDF (US Letter size) with header and footers 
approximately the same size as the default template. 

9. Test Writing 

9.1 Anatomy of a Test 

As a general rule, a test should have four distinct phases: 

1. Setup 
2. Trigger 
3. Verify 
4. Clean-Up 

The Setup phase is exactly that: do whatever needs to be done to get the ECU in the state 
needed to test the target functionality. This can include setting overrides on ECU inputs, 
disabling certain periodic messages, setting calibration values, etc. It is good practice to use 
a macro for setup actions that will be common across multiple tests. 

The Trigger phase is where the target functionality is triggered. This can be done by 
setting values in the ECU or by sending CAN messages. In some tests, such as when testing 
steady-state values, there will not be an explicit action needed to trigger the target 
functionality. 

The Verify phase is where the target functionality is tested. This is usually done by reading 
one or more values from the ECU or by listening for a specific CAN Message. 

The Clean-Up phase is where the ECU is returned to a known state. This phase is the only 
one explicitly supported by NEAT tests, because this phase needs to occur regardless of 
what happens in the other phases. It is good practice to use a macro for clean-up actions 
that will be common across multiple tests. 

Example: 

This test is from a set of tests for Raptor’s J1939 block library. The model should respond to 
receiving the 0x18EAFDF9 CAN message with the 0x18FECAFD CAN message. 

<Test Id="Test_001" Desc="Verify Empty DM1 Response"> 
<!-- Setup Phase --> 
<InitialConditionMacro Name="LampsAreClear"/> 
<Macro Name="DisablePeriodicMessages"/> 
<Macro Name="ClearFaults"/> 
 
<!-- Trigger Phase --> 
<CANTx Id="0x18EAFDF9" Ext="true" Data="CA FE 00"/> 
 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 26 

New Eagle Confidential 

 

<!-- Verify Phase --> 
<VerifyCANRx Id="0x18FECAFD" Ext="true" 
Data="00 FF 00 00 00 00 FF FF" VerifyTime="1250"/> 
 
<!-- Clean-Up Phase --> 
<CleanUp> 

<Macro Name="ClearFaults"/> 
<Macro Name="EnablePeriodicMessages"/> 

</CleanUp> 
</Test> 

9.2 Test Writing Best Practices 

These are guidelines for making tests robust, reliable, and useful. 

 Each test should be as narrowly written as possible. Test just one piece of 
functionality. It is common to have several tests that share common setup and clean-
up code and have just a couple of differences in the test actions. 

 Each test should be independent. Do not rely on the behavior of other tests, as NEAT 
does not guarantee execution order or that other tests will be executed at all. 

 Every value that is modified during a test should be reset to a neutral value during 
the Clean-Up phase. This will help prevent side-effects that could influence other 
tests. 

 When dealing with CAN messages, it is useful to add hooks to the model that allow 
periodic messages to be selectively disabled. This will cut down on CAN traffic and 
makes debugging issues in unrelated functionality easier. 

 Tests should be grouped logically. For instance, if the script is testing J1939 
functionality, a logical grouping would be one test group for each message type 
(DM1, DM2, etc.) 

 Each test should have a unique, concise description that indicates what is being 
tested. This will help speed debugging when a test fails. 



 

3588 Plymouth Road, Box #272,  
Ann Arbor, MI  48105-2603     
Phone 877.234.1410, Fax 928.395.2114 Page 27 

New Eagle Confidential 

 

10. Troubleshooting 

10.1 Test/Coordinator Target Model has not been built yet 

 

This dialog will be shown when creating a new NEAT test suite for a Raptor model if the 
model has not yet been built with Simulink. If the model has been built and this dialog is 
still showing, make sure verify the NEAT configuration (section 3). 


