
ASN1C

ASN.1 Compiler
Version 6.3

Java User’s Manual

Objective Systems, Inc. — March 2010





The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice

Copyright ©1997–2010 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information

Comments, suggestions, and inquiries regarding ASN1C may be submitted via electronic mail to info@obj-sys.com.





iii

Table of Contents
Overview of ASN1C for Java ......................................................................................................  1
Using the Compiler ......................................................................................................................  3

Running ASN1C ...................................................................................................................  3
ASN1C Java Command Line Options .................................................................................  3
Using the GUI Wizard to Run ASN1C ...............................................................................  9

Using Projects .............................................................................................................  10
Common Code Generation Options ...........................................................................  12
XSD Options ............................................................................................................... 16
Java Code Generation Options  ................................................................................  16
Compilation ................................................................................................................. 17

Compiler Configuration File ..............................................................................................  18
Compiler Error Reporting ................................................................................................... 22

Generated Java Source Code Overview .....................................................................................  25
General Form of a Generated Java Source File .................................................................  25
Package Specification .........................................................................................................  26
Class Declaration ................................................................................................................  27
Tag Constant ....................................................................................................................... 27
Public Member Variables ...................................................................................................  27
Constructors ........................................................................................................................  28
Decode Method ................................................................................................................... 28
Encode Method ...................................................................................................................  29
Other Methods ....................................................................................................................  30
Inner Classes ....................................................................................................................... 30

ASN.1 Type to Java Class Mappings ........................................................................................  33
BOOLEAN .......................................................................................................................... 33
INTEGER ............................................................................................................................ 33

Large Integer Support ................................................................................................. 34
BIT STRING ......................................................................................................................  35

Named Bits  ..............................................................................................................  36
OCTET STRING ................................................................................................................  36
Character String Types .......................................................................................................  37
ENUMERATED .................................................................................................................  38
NULL ..................................................................................................................................  39
OBJECT IDENTIFIER ....................................................................................................... 40
RELATIVE-OID ................................................................................................................. 40
REAL ..................................................................................................................................  41
SEQUENCE ........................................................................................................................ 42

Creation of Temporary Types  .................................................................................. 44
OPTIONAL keyword  ............................................................................................... 45
DEFAULT keyword  ................................................................................................  45
Extension Elements  .................................................................................................. 46
XSD <xsd:all> Type Mapping  ................................................................................. 46



ASN1C

iv

SET  ........................................................................................................................... 46
SEQUENCE OF .................................................................................................................  47

Generation of Temporary Types for SEQUENCE OF Elements  .............................  48
SEQUENCE OF Type Elements in Other Constructed Types  .................................  48

SET OF ...............................................................................................................................  49
CHOICE .............................................................................................................................. 49

Creation of Temporary Types  .................................................................................. 51
Populating Generated Choice Structures for Encoding  ............................................ 51
Accessing the Choice Element Value after Decoding  .............................................  52

Open Type ..........................................................................................................................  52
External Type .....................................................................................................................  54
EmbeddedPDV Type ..........................................................................................................  54
Parameterized Types ........................................................................................................... 55
Value Specifications ...........................................................................................................  56

INTEGER Value Specification  ................................................................................  57
BOOLEAN Value Specification  ..............................................................................  58
Binary String Value Specification  ...........................................................................  58
Hexadecimal String Value Specification  .................................................................  58
Character String Value Specification  ....................................................................... 58
Object Identifier Value Specification  ......................................................................  59
ENUMERATED Value Specification  ...................................................................... 59
REAL Value Specification  ......................................................................................  59
SEQUENCE Value Specification  ............................................................................  60
SET Value Specification  .......................................................................................... 60
SEQUENCE OF Value Specification  ......................................................................  60
SET OF Value Specification  ...................................................................................  61
CHOICE Value Specification  ..................................................................................  61

Generated BER/DER/CER Encode Methods .............................................................................  63
Memory-buffer Based Definite Length Encoders ..............................................................  63

Generated Java Method Format and Calling Parameters  .........................................  64
Populating Generated Variables for Encoding  ......................................................... 64
Procedure for Calling Java BER Encode Methods  ..................................................  65
Reuse of Java Encoding Objects  .............................................................................  67

Stream-Oriented Indefinite Length Encode Methods ......................................................... 68
Generated Java Method Format and Calling Parameters  .........................................  68
Procedure for Calling Java BER Stream-Oriented Encode Methods  .......................  69

Generated BER/DER/CER Decode Methods ............................................................................. 71
Generated Java Method Format and Calling Parameters ...................................................  71
Procedure for Calling Java BER Decode Methods ............................................................  72
Reuse of Java Decoding Objects ........................................................................................ 73

Generated PER Encode Methods ...............................................................................................  75
Generated Java Method Format and Calling Parameters ...................................................  75
Procedure for Calling Java PER Encode Methods ............................................................. 76
Reuse of Java Encoding Objects ........................................................................................  78

Generated PER Decode Methods ...............................................................................................  79



ASN1C

v

Generated Java Method Format and Calling Parameters ...................................................  79
Procedure for Calling Java PER Decode Methods ............................................................. 80
Reuse of Java Decoding Objects ........................................................................................ 81
Reuse of Java Decoding Objects ........................................................................................ 81

Generated XER / XML Encode Methods ..................................................................................  83
Generated Java Method Format and Calling Parameters ...................................................  83
Procedure for Calling Java XER Encode Methods ............................................................  84

Generated XER / XML Decode Methods ..................................................................................  89
Table Constraint Processing .......................................................................................................  93

CLASS specification ..........................................................................................................  93
Data Member Generation  ......................................................................................... 93
Method and Constructor Generation  ........................................................................ 94
ABSTRACT-SYNTAX  ............................................................................................ 96
TYPE-IDENTIFIER  ................................................................................................. 96

Information Object .............................................................................................................. 96
Information Object Set .......................................................................................................  98
Generated Information Object Table Structure ..................................................................  99

Simple Form Code Generation  ..............................................................................  100
Table Form Code Generation  ................................................................................  101
Additional Code Generated for the -tables Option  ................................................  102

Populating OpenType Variables for Encoding ................................................................. 104
Decoding Types with Table Constraints ..........................................................................  106

Generated Print Methods ..........................................................................................................  107
Generated Java Method Format and Calling Parameters  ...............................................  107

Generated Compare Methods ...................................................................................................  109
Generated Sample Programs ....................................................................................................  111
Generated Build Script .............................................................................................................  113
Event Handler Interface ............................................................................................................ 115

How It Works ...................................................................................................................  115
How to Use It ...................................................................................................................  116

Example 1: A Formatted Print Handler  .................................................................  117
Example 2: An XML Converter Class  ................................................................... 119

IMPORT/EXPORT of Types ...................................................................................................  123
Compact Code Generation .......................................................................................................  125
ROSE and SNMP Macro Support ............................................................................................ 127

ROSE OPERATION and ERROR ...................................................................................  127
SNMP OBJECT-TYPE ..................................................................................................... 130

Java Micro Edition Support .....................................................................................................  133



vi



1

Overview of ASN1C for Java
The ASN1C code generation tool translates an Abstract Syntax Notation 1 (ASN.1) or XML
Schema Definitions (XSD) source file into computer language source files that allow typed data
to be encoded/decoded. This release of ASN1C includes options to generate code in the following
languages: C, C++, C# or Java. This manual discusses the Java code generation capabilities. The
following manuals discuss the other language code generation capabilities:

• ASN1C C/C++ Compiler User's Manual : C/C++ code generation

• ASN1C C# Compiler User's Manual : C# code generation

Each module or namespace that is encountered in an ASN.1 or XSD source file results in the
generation of a series of Java source files. A separate Java file is generated for each production
(type or global element) in the source file. Additional files are generated for compiler-generated
productions and to hold value specification constants.

There is also a set of classes that form the run-time component of the Java package. These classes
provide the primitive component building blocks that are assembled by the compiler to encode/de-
code complex structures. They also provide support for managing message buffers that hold the
encoded message components.

ASN1C works with the version of ASN.1 specified in ITU-T international standards X.680 through
X.683. It generates code for encoding/decoding data in accordance with the following encoding
rules:

• Basic Encoding Rules (BER), Distinguished Encoding Rules (DER), and Canonical Encoding
Rules (CER) as published in the ITU-T X.690 standard.

• Packed Encoding Rules (PER) as published in the ITU-T X.691 standard.

• XML Encoding Rules (XER) as published in the ITU-T X.693 standard.

• XML Schema to ASN.1 translation as published in the ITU-T X.694 standard.

The compiler is capable of parsing all ASN.1 syntax as defined in the standards. It is capable
of parsing advanced syntax including Information Object Specifications as defined in the ITU-T
X.681 standard as well as Parameterized Types as defined in ITU-T X.683.

Note that XER support does not include support for the EXTENDED-XER syntax. This is accom-
plished through direct compilation of XSD files. An internal translation of XSD to ASN.1 based
on the rules in the X.694 standard is done within the compiler and the resulting ASN.1 syntax is
compiled into Java classes.

This release of the compiler contains a special compiler option (-asnstd x208) that is backward
compatible with deprecated features from the older X.208 and X.209 standards. These include the



2

ANY data type and unnamed fields in SEQUENCE, SET, and CHOICE types. This version can
also parse type syntax from common macro definitions such as ROSE and SNMP.



3

Using the Compiler

Running ASN1C
The ASN1C compiler distribution contains command-line compiler executables as well as a graph-
ical user interface (GUI) wizard that can aid in the specification of compiler options. Please refer
to the ASN1C C/C++ Compiler User's Manual for instructions on how to run the compiler. The
remaining sections describe options and configuration items specific to the Java version.

ASN1C Java Command Line Options
The following table shows a summary of the command line options that have meaning when Java
code generation is selected:

Option Argument Description

-asnstd x680 
x208 
mixed

This option instructs the com-
piler to parse ASN.1 syntax
conforming to the specified
standard. x680 (the default)
refers to modern ASN.1 as
specified in the ITU-T X.680-
X.690 series of standards. x208
refers to the now deprecat-
ed X.208 and X.209 standards.
This syntax allowed the ANY
construct as well as unnamed
fields in SEQUENCE, SET,
and CHOICE constructs. This
option also allows for pars-
ing and generation of code
for ROSE OPERATION and
ERROR macros and SNMP
OBJECT-TYPE macros. The
mixed option is used to specify
a source file that contains mod-
ules with both X.208 and X.680
based syntax.

-ber None This option instructs the com-
piler to generate functions that
implement the Basic Encoding
Rules (BER) as specified in the
ASN.1 standards.



ASN1C Java Command Line Options

4

Option Argument Description

-cer None This option instructs the com-
piler to generate functions that
implement the Canonical En-
coding Rules (CER) as speci-
fied in the ASN.1 standards.

-cldc None This option instructs the com-
piler to generate Java Micro
Edition Connected Limited De-
vice Configuration (CLDC) 1.1
compatible code. See the chap-
ter Java Micro Edition Support
for more information.

-compact None This option instructs the com-
piler to generate more compact
code at the expense of some
constraint and error checking.
This is an optimization option
that should be used after an ap-
plication is thoroughly tested.

-compare None This option is used to generate a
comparison method (Equals) in
the generated classes.

-compat <versionNumber> Generate code compatible with
an older version of the compil-
er. The compiler will attempt
to generate code more closely
aligned with the given previous
release of the compiler.

<versionNumber> is specified
as x.x (for example, -compat
5.2)

-config <filename> This option is used to speci-
fy the name of a file contain-
ing configuration information
for the source file being parsed.
A full discussion of the contents
of a configuration file is provid-
ed in the Compiler Configura-
tion File section.



ASN1C Java Command Line Options

5

Option Argument Description

-depends None This option instructs the com-
piler to generate a full set of Ja-
va source files that contain on-
ly the productions in the main
file being compiled and items
those productions depend on
from IMPORT files.

-der None This option instructs the com-
piler to generate functions that
implement the Distinguished
Encoding Rules (DER) as spec-
ified in the ASN.1 standards.

-dirs None This is a Java option that causes
a subdirectory to be created to
hold each of the generated Java
source files for each module in
an ASN.1 source file.

-events None Generate extra code to invoke
user defined event and error
handler callback methods (see
the Event Handlers section).

-genant None Generate a build script
(build.xml) that is compatible
with the Ant toolchain.

-genbuild None This option is used to generate a
build script for compiling gen-
erated classes.

-genPrint 
-print

None This option specifies that print
methods should be generated.
Print functions are debug func-
tions that allow the contents of
generated type variables to be
written to stdout.

-getset None This option is used to generate
protected member variables and
get/set methods for accessing
the variables. By default, mem-
ber variables are declared to be
public and they are accessed di-
rectly by application code.



ASN1C Java Command Line Options

6

Option Argument Description

-I <directory> This option is used to specify a
directory that the compiler will
search for ASN.1 source files
for IMPORT items. Multiple –I
qualifiers can be used to specify
multiple directories to search

-java4 None Generate Java source code com-
patible with the Java runtime
environment version 1.4.x. By
default, code is generated that
is compatible with versions 1.5
and higher.

-lax None This option instructs the com-
piler to not generate code to
check constraints. When used in
conjunction with the –compact
option, it produces the smallest
code base for a given ASN.1
specification

-list None Generate listing. This will
dump the source code to the
standard output device as it is
parsed. This can be useful for
finding parse errors.

-nodecode None This option suppresses the gen-
eration of decode functions.

-noencode None This option suppresses the gen-
eration of encode functions.

-noIndefLen None This option instructs the com-
piler to omit indefinite length
tests in generated decode func-
tions. These tests result in the
generation of a large amount
of code. If you know that your
application only uses definite
length encoding, this option can
result in a much smaller code
base size.

-noOpenExt None This option instructs the com-
piler to not add an open ex-
tension element in constructs



ASN1C Java Command Line Options

7

Option Argument Description
that contain extensibility mark-
ers. The purpose of the element
is to collect any unknown items
in a message. If an application
does not care about these un-
known items, it can use this op-
tion to reduce the size of the
generated code.

-o <directory> This option is used to specify
the name of a directory to which
all of the generated files will be
written.

-pdu <typeName> Designate given type name to
be a Protocol Definition Unit
(PDU) type. By default, PDU
types are determined to be types
that are not referenced by any
other types within a module.
This option allows that behavior
to be overridden.

The * wildcard character may
be specified for <typeName>
to indicate that all productions
within an ASN.1 module should
be treated as PDU types.

-per None This option instructs the com-
piler to generate functions that
implement the Packed Encod-
ing Rules (PER) as specified in
the ASN.1 standards.

-pkgname <packageName> This is a Java option that al-
lows the entire Java package
name to be changed. Instead
of the module name, the full
name specified using this option
will be used. This option can-
not be used in conjunction with
–pkgpfx option.

-pkgpfx <prefixName> This is a Java option for adding
a prefix in front of the assigned
Java package name. By default,



ASN1C Java Command Line Options

8

Option Argument Description
the Java package name is set to
the module name. If the pack-
age is embedded within a hier-
archy, this option can be used
to set the other directory names
that must be added to allow Ja-
va to find the .class files.

-reader None This option is used to generate
a sample reader program to de-
code data.

-shortnames None This option is used to change
the names generated by compil-
er for embedded types in con-
structed types. This option is re-
quired to handle the limit on
the size of filenames in cer-
tain situations. With this option,
the generated code filenames
would be shorter than without
this option.

-stream None This option instructs the com-
piler to generate stream-based
encoders/decoders instead of
memory buffer based. This
makes it possible to encode di-
rectly to or decode directly from
a source or sink such as a file
or socket. In the case of BER,
it will also cause forward en-
coders to be generated, which
will use indefinite lengths for all
constructed elements in a mes-
sage.

-tables None This option is used to generate
additional code for the handling
of table constraints as defined in
the X.682 standard.

-uniquenames None This option instructs the com-
piler to automatically generate
unique names to resolve name
collisions in the generated code.
Name collisions can occur, for



Using the GUI Wizard to Run ASN1C

9

Option Argument Description
example, if two modules are be-
ing compiled that contain a pro-
duction with the same name.
A un ique name is generat-
ed by prepending the module
name to one of the productions
to form a name of the form
<module>_<name>.

Note that name collisions can
also be manually resolved by
using the typePrefix, enumPre-
fix, and valuePrefix configura-
tion items (see the Compiler
Configuration File section for
more details)

-warnings None Output information on compiler
generated warnings.

-writer None This option is used to generate
a sample writer program to en-
code data.

-xer None This option instructs the com-
piler to generate functions that
implement the XML Encoding
Rules (XER) as specified in the
ASN.1 standards.

-xml None This option instructs the com-
piler to generate functions that
implement the XML Encod-
ing Rules (XML) as specified
in the World-Wide Consortium
(W3C). Related XML Schema
can be produced by using the -
xsd command line option.

Using the GUI Wizard to Run ASN1C
ASN1C includes a graphical user interface (GUI) wizard that can be used as an alternative to the
command-line version. It is a cross-platform GUI and has been ported to Windows and several
UNIXes. The GUI makes it possible to specify ASN.1 files and configuration files via file naviga-
tion windows, to set command line options by checking boxes, and to get online help on specific
options.



Using Projects

10

The Windows installation program should have installed an ‘ASN1C Compiler’ option on your
computer desktop and an ‘ASN1C’ option on the start menu. The wizard can be launched using
either of these items. The UNIX version should be installed in ASN1C_INSTALL_DIR/bin; no desk-
top shortcuts are created, so it will be necessary to create one or to run the wizard from the com-
mand-line.

The Java GUI differs little from the C/C++ GUI; screenshots may include references to C or C++
directories, but the common code options are identical.

Using Projects

The wizard is navigated by means of Next and Back buttons. Following is the initial window:

The status window will display the version of the software you have installed as well as report any
errors upon startup that occur, such as a missing license file.

The Project Wizard will allow you to save your compilation options and file settings into a project
file and retrieve them later. If you wish to make a new project, click the icon next to Create a
New Project:



Using Projects

11

Previously saved projects may be recalled by clicking the icon next to Open an Existing Project:

The project format has changed in ASN1C 6.3 to help accommodate the transition to Qt 4.5.
Changes to the interface necessitated changes to the underlying project file format. Projects made
with previous versions may be loaded with version 6.3, but new projects are incompatible with
previous versions. Additional metadata are stored in the project file to help with version tracking.

Files may be added to a project in the following window:



Common Code Generation Options

12

In this window, the ASN.1 file or files to be compiled are selected. This is done by clicking the Add
button on the right hand side of the top windows pane. A file selection box will appear allowing
you to select the ASN.1 or XSD files to be compiled. Files can be removed from the pane by
highlighting the entry and clicking the Remove button.

ASN.1 specifications and XML Schema Documents must not be compiled in the same project.
Once an ".asn" file has been added, no ".xsd" files may be added.

Include directories are selected in a similar manner in the middle pane. These are directories the
compiler will search for import files. By default, the compiler looks for files in the current working
directory with the name of the module being imported and extension ".asn" or ".xsd". Additional
directories can be searched for these files by adding them here.

User-defined configuration files are specified in the third pane. These allow further control of the
compilation process. They are optional and are only needed if the default compilation process is to
be altered (for example, if a type prefix is to be added to a generated type name). See the Compiler
Configuration File section for details on defining these files.

Common Code Generation Options

Code generation options common to all language types are specified in the following tabbed win-
dow:



Common Code Generation Options

13

Language options, pictured above, encompass not only the output language choice, but also input
specification type, encoding rules, and code compatibility options.

Certain options will be inactive (greyed out) depending on the file type selected. For example, if an
XSD file is selected, the option Generate ASN.1 file based on X.694 will be active and the option
Generate equivalent XML schema (XSD) file will be inactive.

Checking Generate code for all dependent imported type definitions will cause the compiler to
search and generate code for modules specified in the IMPORTS statement of an ASN.1 specification.

Basic encoding rules are selected by default. Only one of BER, DER, and CER can be checked at
any time. XML and XER are also mutually exclusive options.

Generated function options are shown in the following tab:



Common Code Generation Options

14

The options in this tab control which functions are generated and what modifications are made to
those functions.

By default, encoding and decoding functions are generated by the compiler. If the target applica-
tion does not require encoding or decoding capabilities (for example, if it is only intended to read
messages and does not need to write them), unchecking the corresponding checkbox will reduce
the amount of code generated.

Check Stream to modify generated encode and decode functions to use streams instead of memory
buffers. This allows encoding and decoding to a source or sink such as a file or socket. Stream-
based encoding and decoding cannot be combined with buffer-based.

As an aid to debugging, Print functions may also be generated. Three different different types exist:
print to stdout, print to string, and print to stream. These allow the contents of generated types to
be printed to the standard output, a string, or a stream (such as a file or socket).

Constraint checking may be relaxed or tightened depending on selected options. Constraints may be
ignored completely by checking Do not generate constraint checks. To tighten constraints, check
Enable strict constraint checks. ASN1C supports decoding and encoding values described by table
constraints; checking Generate code to handle table constraints will enable this behavior. This
option is a legacy option for C and C++ code generation: generating table constraints in unions is
the preferred method (see the following section).



Common Code Generation Options

15

To reduce the code footprint, several other options may be selected: Generate compact code, Do
not generate indefinite length processing code, Do not generate code to save/restore unknown
extensions, and Do not generate types for items embedded in information objects may all be used
to reduce the amount of generated code. Generate compact code cannot be used in conjunction
with Generate compatible code. If XML validation is not needed, check Do not generate XML
namespaces for ASN.1 modules. This will result in a smaller codebase as well as smaller output
XML data. Check Generate short form of type names if generated type names are too long for the
target language.

The following tab provides options for generating utility functions and applications:

The Sample Program Generation frame allows you to generate boilerplate reader and writer ap-
plications as well as randomized test data for populating a sample encoded message. The items in
the Protocol Data Units frame may be used in conjunction to select the appropriate PDU data type
to be used in the sample programs.

The Debugging and Event Handlers frame contains options that generate code for adding trace
diagnostics and event handling hooks into generated code. It is possible to generate a type parser
by generating only an event handler and no data types for the decoded messages. This grants a
great deal of flexibility in handling input data at the expense of generating pre-defined functions
for most common encoding and decoding tasks. Users of embedded systems may find this useful as
it will shrink the output considerably while allowing them fine control over decoding procedures.



XSD Options

16

The Other Options frame contains miscellaneous modifications to code output, including type
name resolution (avoiding duplicate names), date stamp removal (useful when generated code will
be stored in source control), and a line item for including any new command-line features not yet
represented in the GUI.

XSD Options

If the Generate equivalent XML schema (XSD) file option was checked in the Common Code Gen-
eration Options screen, the following window will be presented for modifying the contents of the
generated XSD:

These options are described in Running ASN1C from the command-line.

Java Code Generation Options

For information about code generation options for languages other than Java, please refer to the
appropriate language manual or the online documentation.

The following window contains the Java-specific code-generation options:



Compilation

17

The options in this window allow users to change the way the generated code is organized, what
files are generated to assist compiling the generated code, and to set parameters for the generated
code.

Changing the code organization can be particularly helpful for using generated code with IDEs like
Netbeans or Eclipse. IDEs typically impose a directory structure for projects, so ASN1C can try
to organize code to conform to such a hierarchy.

There are several different tools available for building Java files; ASN1C provides a few basic
generated files to help simplify the build process. A list of generated files can be provided for use
with command-line tools like make; Ant and shell scripts may also be generated.

Code may also be generated that is compatible with Java 1.4; get and set methods may also be
generated for users desiring Bean-style encapsulation.

These options are detailed further in the Running ASN1C from the Command Line section.

Compilation

When all options have been specified, the final screen may be used to execute the compilation
command:



Compiler Configuration File

18

Included in the window are the compiler command, an option to save the project, and the output
from compilation. Selected options are reflected in the command line.

It is also possible to generate a printed listing of the input specifications. Warnings encountered
during compilation will also be printed if the appropriate check box is marked.

Click Finish to terminate the program. The wizard will ask whether or not to save any changes
made, whether a new project has been created or not.

Compiler Configuration File
In addition to command line options, a configuration file can be used to specify compiler options.
These options can be applied not only globally but also to specific modules and productions.

A simple form of the Extended Markup Language (XML) is used to format items in the file. This
language was chosen because it is fairly well known and provides a natural interface for repre-
senting hierarchical data such as the structure of ASN.1 modules and productions. The use of an
external configuration file was chosen over embedding directives within the ASN.1 source itself
due to the fact that ASN.1 source versions tend to change frequently. An external configuration
file can be reused with a new version of an ASN.1 module, but internal directives would have to
be reapplied to the new version of the ASN.1 code.



Compiler Configuration File

19

At the outer level of the markup is the <asn1config> </asn1config> tag pair. Within this tag pair,
the specification of global items and modules can be made. Global items are applied to all items
in all modules. An example would be the <storage> qualifier. A storage class such as dynamic
can be specified and applied to all productions in all modules. This will cause dynamic storage
(pointers) to be used to any embedded structures within all of the generated code to reduce memory
consumption demands.

The specification of a module is done using the <module></module> tag pair. This tag pair can
only be nested within the top-level <asn1config> section. The module is identified by using the
required <name></name> tag pair or by specifying the name as an attribute (for example, <module
name="MyModule">). Other attributes specified within the <module> section apply only to that
module and not to other modules specified within the specification. A complete list of all module
attributes is provided in the table at the end of this section.

The specification of an individual production is done using the <production></production> tag
pair. This tag pair can only be nested within a <module> section. The production is identified by
using the required <name></name> tag pair or by specifying the name as an attribute (for example,
<production name="MyProd">). Other attributes within the production section apply only to the
referenced production and nothing else. A complete list of attributes that can be applied to individ-
ual productions is provided in the table at the end of this section.

When an attribute is specified in more than one section, the most specific application is always
used. For example, assume a <typePrefix> qualifier is used within a module specification to specify
a prefix for all generated types in the module and another one is used to specify a prefix for a single
production. The production with the type prefix will be generated with the type prefix assigned to
it and all other generated types will contain the type prefix assigned at the module level.

Values in the different sections can be specified in one of the following ways:

1. Using the <name>value</name> form. This assigns the given value to the given name. For
example, the following would be used to specify the name of the "H323-MESSAGES" module
in a module section:

<name>H323-MESSAGES</name>

2. Flag variables that turn some attribute on or off would be specified using a single <name/>
entry. For example, to specify a given production is a PDU, the following would be specified
in a production section:

<isPDU/>

3. An attribute list can be associated with some items. This is normally used as a shorthand form
for specifying lists of names. For example, to specify a list of type names to be included in the
generated code for a particular module, the following would be used:

<include types="TypeName1,TypeName2,TypeName3"/>

The following are some examples of configuration specifications



Compiler Configuration File

20

   <asn1config><storage>dynamic</storage></asn1config>

This specification indicates dynamic storage should be used in all places where its use would result
in significant memory usage savings within all modules in the specified source file.

   <asn1config>
      <module>
         <name>H323-MESSAGES</name>
         <sourceFile>h225.asn</sourceFile>
         <typePrefix>H225</typePrefix>
      </module>
      ...
   </asn1config>

This specification applies to module 'H323-MESSAGES' in the source file being processed. For
IMPORT statements involving this module, it indicates that the source file 'h225.asn' should be
searched for specifications. It also indicates that when C or C++ types are generated, they should be
prefixed with the 'H225'. This can help prevent name clashes if one or more modules are involved
and they contain productions with common names.

The following tables specify the list of attributes that can be applied at all of the different levels:
global, module, and individual production:

Global Level

There are no attributes that are specific to Java that can be specified at the global level.

Module Level

These attributes can be applied at the module level by including them within a <module> section:

Name Values Description

<name>
</name>

module name This attribute identifies the
module to which this section ap-
plies. It is required.

<include types="names"
values="names"/>

ASN.1 type or values names are
specified as an attribute list

This item allows a list of ASN.1
types and/or values to be includ-
ed in the generated code. By
default, the compiler generates
code for all types and values
within a specification. This al-
lows the user to reduce the size
of the generated code base by
selecting only a subset of the
types/values in a specification
for compilation.

Note that if a type or value is in-
cluded that has dependent types
or values (for example, the el-



Compiler Configuration File

21

Name Values Description
ement types in a SEQUENCE,
SET, or CHOICE), all of the de-
pendent types will be automati-
cally included as well.

<include
importsFrom="name" />

ASN.1 module name(s) speci-
fied as an attribute list.

This form of the include direc-
tive tells the compiler to only in-
clude types and/or values in the
generated code that are import-
ed by the given module(s).

<exclude types="names"
values="names"/>

ASN.1 type or values names are
specified as an attribute list

This item allows a list of ASN.1
types and/or values to be ex-
cluded in the generated code.
By default, the compiler gener-
ates code for all types and val-
ues within a specification. This
is generally not as useful as in
include directive because most
types in a specification are ref-
erenced by other types. If an at-
tempt is made to exclude a type
or value referenced by another
item, the directive will be ig-
nored.

<sourceFile>
</sourceFile>

source file name Indicates the given module
is contained within the giv-
en ASN.1 source file. This is
used on IMPORTs to instruct
the compiler where to look for
imported definitions. This re-
places the module.txt file used
in previous versions of the com-
piler to accomplish this func-
tion.

<pkgName> Java package name Name of the Java package as-
sociated with this module. This
will cause a Java import state-
ment to be generated for the
module if this name is not the
same as that of the package be-
ing compiled.

Production Level



Compiler Error Reporting

22

These attributes can be applied at the production level by including them within a <production>
section:

Name Values Description

<name>
</name>

module name This attribute identifies the
module to which this section ap-
plies. It is required.

<isBigInteger/> n/a This is a flag variable (an 'emp-
ty element' in XML terminolo-
gy) that specifies that this pro-
duction will be used to store an
integer larger than the Java long
type (64 bits). A Java BigInte-
ger class will be used to hold the
value.

This qualifier can be applied to
either an integer or constructed
type. If constructed, all integer
elements within the constructed
type are flagged as big integers.

Compiler Error Reporting
Errors that can occur when generating source code from an ASN.1 source specification take two
forms: syntax errors and semantics errors.

Syntax errors are errors in the ASN.1 source specification itself. These occur when the rules spec-
ified in the ASN.1 grammar are not followed. ASN1C will flag these types of errors with the error
message 'Syntax Error' and abort compilation on the source file. The offending line number will
be provided. The user can re-run the compilation with the '-l' flag specified to see the lines listed
as they are parsed. This can be quite helpful in tracking down a syntax error.

The most common types of syntax errors are as follows:

• Invalid case on identifiers: module name must begin with an uppercase letter, productions (types)
must begin with an uppercase letter, and element names within constructors (SEQUENCE, SET,
CHOICE) must begin with lowercase letters.

• Elements within constructors not properly delimited with commas: either a comma is omitted at
the end of an element declaration, or an extra comma is added at the end of an element declaration
before the closing brace.

• Invalid special characters: only letters, numbers, and the hyphen (-) character are allowed. Pro-
grammers tend to like to use the underscore character (_) in identifiers. This is not allowed in



Compiler Error Reporting

23

ASN.1. Conversely, C or C# does not allow hyphens in identifiers. To get around this problem,
ASN1C converts all hyphens in an ASN.1 specification to underscore characters in the gener-
ated code.

Semantics errors occur on the compiler back-end as the code is being generated. In this case, parsing
was successful, but the compiler does not know how to generate the code. These errors are flagged
by embedding error messages directly in the generated code. The error messages always begin with
an identifier with the prefix '%ASN-',. A search can be done for this string in order to find the
locations of the errors. A single error message is output to stderr after compilation on the unit is
complete to indicate error conditions exist.



24



25

Generated Java Source Code Overview
A separate Java source file with extension '.java' is generated for each production encountered
within an ASN.1 source file. Every ASN.1 type is mapped to a Java class. This is true even at the
lowest levels – types such as BOOLEAN, INTEGER, and NULL all have wrapper classes.

General Form of a Generated Java
Source File
The following items may be present in a generated java file:

• Package specification

• Import statements

• Class declaration

• A tag constant object declaration

• Public member variables

• Constructors

• Public decode() method

• Public encode() method

• Other methods

• Inner SAX Handler class (XER or XML only)

Additional specialized items may be present as well depending on the base type of the target pro-
duction. These specialized items are discussed in the sections on ASN.1 to Java mappings for the
various ASN.1 types.

A complete generated Java source file for the 'EmployeeNumber' production within the production
within the ASN.1 sample file 'employee.asn' can be found on the following page. The ASN.1 pro-
duction from which this file was generated is as follows:

   EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

The generated code is as follows:

   package sample_ber.Employee;

   import com.objsys.asn1j.runtime.*;
   import java.io.*;
   import java.util.*;



Package Specification

26

   public class EmployeeNumber extends Asn1Integer {
     public final static Asn1Tag TAG =
        new Asn1Tag (Asn1Tag.APPL, Asn1Tag.PRIM, 2);

     public EmployeeNumber() {
        super();
     }

     public EmployeeNumber (int value_) {
        super (value_);
     }

     pubilc void decode
        (Asn1BerDecodeBuffer buffer, boolean explicit, int implicitLength)
         throws Asn1Exception, java.io.IOException
     {
         final int llen = (explicit) ?
            matchTag (buffer, TAG) : implicitLength;

         super.decode (buffer, false, llen);

         if (explicit && llen == Asn1Status.INDEFLEN) {
             matchTag (buffer, Asn1Tag.EOC);
         }
     }

     public int encode (Asn1BerEncodeBuffer buffer, boolean explicit)
        throws Asn1Exception
     {
        int aal = super.encode (buffer, false);

        if (explicit) {
           aal += buffer.encodeTagAndLength (TAG, aal);
        }

        return (aal);
     }
   }

Package Specification
The package specification is the first item in the file and is declared using the 'package' keyword.
By default, this is set to the name of the ASN.1 module that is being compiled. However, this
can be modified by using the –pkgpfx and – pkgname command line options. The –pkgpfx option
adds the specified prefix before the module name. For example, if an ASN.1 module named 'Em-
ployee' is being compiled and '-pkgpfx test.' is specified on the command line, the package name
in the generated source files would be 'test.Employee'. The –pkgname switch takes this a step fur-
ther. It allows specification of the full package name. In the sample specification above, '-pkgpfx
sample_ber.' was specified on the compiler command line.

Standard import statements are added for the ASN1C Java run-time classes and Java utility classes.
Import statements may also be added for items imported from other ASN.1 modules if they don't
exist within the package being generated.



Class Declaration

27

Class Declaration
Next comes the class declaration. It is of the following form:

   public class <ProdName> extends <BaseClass>

<ProdName> is the name of the production in the ASN.1 source file. <BaseClass> is a class from
which the type is derived. This can either be a standard run-time or compiler-generated class. In
our example, the EmployeeNumber is an INTEGER, so we can directly extend the Asn1Integer
run-time base class. If we had a declaration such as the following:

   EmployeeSSNumber ::= [APPLICATION 22] EmployeeNumber

Our EmployeeSSNumber class would be derived from the compiler-generated EmployeeNumber
class as follows:

   public class EmployeeSSNumber extends EmployeeNumber

Note: the preceding example is not true if –compact is specified. In that case, all intermediate
classes would be removed so EmployeeSSNumber would extend Asn1Integer as in the first case.

Tag Constant
The next item in the generated source file is a tag constant. This is only generated if the production
is tagged. The runtime class Asn1Tag is used for this constant. This class contains methods for
operating on ASN.1 tag values. In the sample above, the [APPLICATION 2] tag that is present in
the ASN.1 production definition is represented by the generated tag constant.

Public Member Variables
The next section of the file would be public member variables. In our example above, no member
variables are present. This is because INTEGER is a primitive type, so the member variable in
which the integer value is stored can be found in the Asn1Integer base class from which this class
is derived. This is true for all primitive types – the value will be contained within the run-time
base class.

Constructed types will contain public member variables to represent the elements that make up the
type. For example, the following SEQUENCE production:

   Name ::= [APPLICATION 1] IMPLICIT SEQUENCE {
      givenNameIA5String,
      initial IA5String,
      familyNameIA5String
   }

will result in the following public member variables being added to the generated class:

   public Asn1IA5String givenName;
   public Asn1IA5String initial;



Constructors

28

   public Asn1IA5String familyName;

Note that the member variables are public. They were declared this way to make access easier.
A trade-off existed between ease-of-use and secure encapsulation. The ease-of-use approach was
chosen because it was felt that the repeated use of get/set methods within deeply nested structures
would be too clumsy and bulky in most applications. Therefore, the variables were made public
to make the encapsulated values easier to set and retrieve. Consistency checks have been added
in some methods to make sure values of the correct types are specified for these elements. These
checks are discussed in the sections on the specific constructed types.

This behavior can be overridden by using the -getset command-line option. This will cause the
member variables to be declared as protected variables and accessor/mutator methods (i.e. get/set)
methods added to access the variables.

Constructors
Constructors are generated to allow an object to be initialized in a number of different ways. All
productions have a default constructor with no parameters. This creates an empty object that can
be populated at a later time. Constructors are also created that take a parameter of the base type
value to allow direct population upon creation of an object. In our example code, two constructors
were generated:

   public EmployeeNumber () {
      super();
   }

   public EmployeeNumber (int value_) {
      super (value_);
   }

More complex constructed ASN.1 types such as a SEQUENCE would have a constructor that
would have an argument for each defined element. A CHOICE on the other hand would have a
unique constructor for each of the possible choice items. See the sections on specific ASN.1 types
to find out exactly what constructors are generated for a given type.

Decode Method
The generated decode method for BER/DER has the following general form:

   public void decode (Asn1BerDecodeBuffer buffer,
                       boolean explicit, int implicitLength);

Users of the C and C++ version of the product might recognize this form. It is very similar to the
C function prototype. A reference to an Asn1BerDecodeBuffer object is passed that specifies the
message being decoded. This is similar to the context variable in the C version of the product.

The explicit and implicitLength arguments should be of no concern to the average user. The explicit
argument should be set to true and the implicitLength argument set to zero. These arguments are



Encode Method

29

only used in internal calls generated by the compiler when implicit tagging is used. In this case,
the decoder will at times only be concerned with decoding the contents of a field and not the tag
information. At the outer levels, it will always be necessary to decode a tag and length.

The Java decode method reports errors by throwing exceptions. This is a change from the C/C++
version that returned a status value. The method signature includes the following throws clause:

   throws Asn1Exception, java.io.IOException

The Asn1Exception class is the base class for all exceptions defined for ASN1C. A complete list
of these exceptions can be found in the ASN1C Exceptions section.

For PER, the signature is similar:

   public void decode (Asn1PerDecodeBuffer buffer);

In this case, the explicit and implicitLength arguments are not required since PER has no tagging.
The only required argument is a reference to a decode buffer object.

For XER or XML, two overloaded decode methods are generated:

   public void decode (XMLReader reader, String xmlURI);

   public void decode (XMLReader reader, InputStream byteStream);

These take as arguments an XML reader object reference and a reference to an input source object.
The XML reader object is a standard class within an XML parser that reads and parses an XML
document. The input source can either be a URI (this can be a local filename) or an in-memory
byte stream.

Encode Method
The generated encode method for BER/DER has the following general form:

   public int encode (Asn1BerEncodeBuffer buffer, boolean explicit);

The Asn1BerEncodeBuffer argument specifies the buffer into which the message will be encoded.
The explicit argument is primarily for use by the compiler for generating internal calls to handle
implicitly tagged elements in constructed types. Users should always set this argument to true.

The encode method returns the length of the encoded component. Unlike the C /C++ version, this
return value does no double as a status value as well. Any errors that occur in the encode process
are reported by throwing an ASN1C exception. A complete list of these exceptions can be found
in the ASN1C Exceptions section.

The general form of a PER encode method is as follows:

   public void encode (Asn1PerEncodeBuffer buffer);

In this case, the explicit argument is not required since PER has no tagging. The only required
argument is a reference to an encode buffer object. Also note that the return value is void instead



Other Methods

30

of int. No intermediate lengths are returned during the encoding of a PER message. Any errors that
occur are reported as an exception; hence there I no need for a return value.

The general form of an XER or XML encode method is as follows:

   public void encode (Asn1XerEncoder buffer, String elemName);

In this case, the buffer reference is to an XER encoder object and an element name argument is
added. The Asn1XerEncoder reference is to an interface that allows either a message buffer or
output stream object to be passed into the method. In the case of XML, this object reference would
be to an Asn1XmlEncoder interface.

The element name is the name of the element that is to bracket the XML encoded value (i.e.
<elemName>value</ elemName>).

The method return type is void because errors are reported through the exception mechanism.

Other Methods
Other generated methods include the following:

get<Element>/set<Element>  - Public get/set methods are generated for each element within a
container type (SEQUENCE, SET, CHOICE) if the -getset command-line switch is specified.

print()  - A public print() method. This is only generated if the –print option is specified. This pro-
vides a formatted printout of the contents of the object. The output can be directed to a PrintStream
object.

getElemName()  - A public getElemName method (CHOICE only). This method retrieves the
name of an element within a CHOICE construct give its assigned identifier value.

set_<element>  - Public set_<element> methods (CHOICE only). These are generated for each
element in a CHOICE construct to allow the CHOICE value to be set. Note that this method is not
generated if -getset is specified. In this case, the standard set method is used to set the choice option.

Inner Classes
The generation of code for XER or XML may cause the following inner class definition to be
generated:

   public class SaxHandler extends Asn1XerSaxHandler {
      Asn1XerSaxHandler mElemSaxHandler;
      StringBuffer mCurrElemValue;

      SaxHandler() {
         <code ..>
      }



Inner Classes

31

      public void startElement (String namespaceURI, String localName,
                                String qName, Attributes atts)
         throws SAXException
      {
         <code ..>
      }

      public void characters (char[] ch, int start, int length)
         throws SAXException
      {
         <code ..>
      }

      public void endElement (String namespaceURI,
                              String localName, String qName)
         throws SAXException
      {
         <code ..>
      }
   }

This is an implementation of a standard SAX content handler class. As the XML parser software
parses messages, the methods within this class are invoked with the parsed content. The startEle-
ment method is invoked after a start element tag (<tag>) is parsed. The characters method is in-
voked one or more times to pass the content between tags into the application. The endElement
method is invoked when an end element tag (</tag>) is encountered.

The ASN1C compiler generates custom code for each ASN.1 type within a given specification to
parse the XML contents and fill in the generated Java objects.



32



33

ASN.1 Type to Java Class Mappings
The following sections discuss the specific mappings of ASN.1 and XSD types to Java classes.

BOOLEAN
The ASN.1 BOOLEAN type is converted to a Java class that extends the Asn1Boolean run-time
class. This base class encapsulates the following public member variable:

   public boolean value;

This is where the Boolean value to be encoded is stored. It also contains the result of a decode
operation. Since it is public, it can be accessed directly to get or set the value. The generated
constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

   <name> ::= BOOLEAN

XSD Type

   <xsd:boolean>

Generated Java class

   public class <name> extends Asn1Boolean { 
      public <name> ()
      { 
         super(); 
      } 
   
      public <name> (boolean value_) 
      { 
         super (value_); 
      }
   }

This definition assumes a simple assignment of the form "<name> ::= BOOLEAN" (i.e., no tagging
or subtypes have been added to the BOOLEAN declaration). In this case, no specific encode or
decode methods are generated – calls to these methods pass through to the generic calls defined in
the base class. This is true of all other primitive type declarations as well unless otherwise noted.

INTEGER
The ASN.1 INTEGER type is converted to a Java class that extends the Asn1Integer run-time class.
This base class encapsulates the following public member variable:

   public long value;



Large Integer Support

34

This is where the integer value to be encoded is stored. It also contains the result of a decode
operation. Since it is public, it can be accessed directly to get or set the value. The generated
constructors can also be used to set the value.

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

   <name> ::= INTEGER

XSD Types

<xsd:integer>, <xsd:byte>, <xsd:short>, <xsd:int>, <xsd:long>, <xsd:unsignedByte>,

<xsd:unsignedShort>, <xsd:unsignedInt>, <xsd:unsignedLong>, <xsd:positiveInt>,

<xsd:nonPositiveInt>, <xsd:negativeInt>, <xsd:nonNegativeInt>

Generated Java class:

   public class <name> extends Asn1Integer {
      public <name> () {
         super();
      }
      public <name> (long value_) {
         super (value_);
      }
   }

This shows the class generated for a simple INTEGER assignment. If a tagged or constrained type
is specified, specific encode and decode methods will be generated as well.

Large Integer Support
The maximum size for a Java long integer type is 64 bits. ASN.1 has no such limitation on integer
sizes and some applications (security key values for example) demand larger sizes. In order to
accommodate these types of applications, the ASN1C compiler allows an integer to be declared
a "big integer" via a configuration file variable (the <isBigInteger/ > setting is used to do this –
see the section describing the configuration file for full details). When the compiler detects this
setting, it will declare the integer class to be derived from the Asn1BigInteger class instead of the
Asn1Integer class. The Asn1BigInteger class encapsulates an object of the Java BigInteger class.
This provides full support for working with integers of arbitrary lengths.

For example, the following INTEGER type might be declared in the ASN.1 source file:

   SecurityKeyType ::= [APPLICATION 2] INTEGER

Then, in a configuration file used with the ASN.1 definition above, the following declaration can
be made:

   <production>
      <name>SecurityKeyType</name>



BIT STRING

35

      <isBigInteger/>
   </production>

This will cause the compiler to generate the following class header:

   class SecurityKeyType extends Asn1BigInteger

The value field is populated by creating a Java BigInteger object and either passing it in through
the constructor or using it to directly populate the public member variable named value declared
in the base class.

BIT STRING
The ASN.1 BIT STRING type is converted to a Java class that extends the Asn1BitString run-time
class. This base class encapsulates the following two public member variables:

   public int numbits;
   public byte[] value;

These describe the bit string to be encoded or decoded.

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

<name> ::= BIT STRING

Generated Java class:

   public class <name> extends Asn1BitString {
      public <name> () {
         super();
      }
      
      public <name> (int numbits_, byte[] data) {
         super (numbits_, data);
      }
      
      public <name> (boolean[] bitValues) {
         super (bitValues);
      }
      
      public <name> (String value_)
      throws Asn1ValueParseException {
         super (value_);
      }
   }

This shows the class generated for a simple BIT STRING assignment. If a tagged or constrained
type is specified, specific encode and decode methods will be generated as well.

The constructors generated for this type provide additional options for populating the member
variables in the base class. In addition to passing the string using the numbits and data arguments



Named Bits 

36

to specify a bit string in native format, the string can be specified as an array of boolean values or
as a string. The string form expects the string to be passed in the ASN.1 value notation format for
either a binary string (i.e., 'xxxx'B) or a hexadecimal string (i.e., 'xxxx'H).

Named Bits
In the ASN.1 standard, it is possible to define an enumerated bit string that specifies named con-
stants for different bit positions. ASN1C provides support for this type of construct by generating
symbolic constants that can be used to set, clear, or test these named bits. These symbolic constants
are simply the bit names and values in the following general form:

   public final static int <name> = <value>;

The base class contains the following methods for using these generated constants:

• set : This method can be used to set a bit in the bit string to be set. There is also an overloaded
version that takes a boolean value argument that can be used to set the bit to the given boolean
value.

• clear : This method can be used to clear the named bit in the bit string.

• isSet : This method can be used to test if the named bit is set or clear.

See the Asn1BitString class description in the run-time section for more details on these methods.

OCTET STRING
The ASN.1 OCTET STRING type is converted to a Java class that extends the Asn1OctetString
run-time class. This base class encapsulates the following public member variable:

   public byte[] value;

The number of octets to be encoded or that were decoded is specified in the built-in length com-
ponent of the array object (i.e., value.length).

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

   <name> ::= OCTET STRING

XSD Types

<xsd:hexBinary>, <xsd:base64Binary>

Generated Java class



Character String Types

37

   public class <name> extends Asn1OctetString {
      public <name> () {
         super();
      }
     
      public <name> (byte[] data) {
         super (data);
      }
    
      public <name> (byte[] data,
                        int offset,
                        int nbytes)
      {
         super (data, offset, nbytes);
      }

      public <name> (String value_)
      throws Asn1ValueParseException {
         super (value_);
      }
   }

This shows the class generated for a simple OCTET STRING assignment. If a tagged or constrained
type is specified, specific encode and decode methods will be generated as well.

The constructors generated for this type provide additional options for populating the member vari-
ables in the base class. In addition to passing the string directly using the data argument, the string
form can be used. The string is passed in ASN.1 value notation format for either a binary string
(i.e., 'xxxx'B), hexadecimal string (i.e., 'xxxx'H), or a character string (i.e., 'xxxx'). A constructor
also exists that allows a portion of a byte array starting at a given offset and consisting of a given
number of bytes to be used to populate the variable.

Character String Types
The Java version of the compiler contains support for the various ASN.1 character string types
including the BMP, Universal and UTF-8 string types. All character strings in Java are based on
16-bit Unicode characters except for UniversalString which is based on a 32-bit character set.

All character string types are derived from the Asn1CharString base class (except the Universal-
String). This class contains the following public member variable that holds the character string
contents:

   public String value;

Each of the specific ASN.1 character string types except UniversalString has an associated Java
class that is derived from the Asn1CharString base class. The general form of the Java class name
for each of the ASN.1 string types is Asn1 followed by the ASN.1 string type name. For example,
IA5String is represented by the Asn1IA5String class, NumericString by the Asn1NumericString, etc.

The UniversalString associated Java class is derived from Asn1Type and it contains the following
public member that holds the character string contents:



ENUMERATED

38

   public int value[];

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

   <name> ::= <CharStrType>

XSD Types

<xsd:string> and all related types including date/time types and duration.

Generated Java class

   public class <name> extends Asn1<CharStrType> {
      public <name> () {
         super();
      }
      public <name> (String value_) {
         super (value_);
      }
   }

ENUMERATED
The ASN.1 ENUMERATED type is converted into a Java class that extends the Asn1Enumerated
run-time class. In version 6.1, the generated code was changed to conform to Joshua Bloch's static
enumeration pattern (as explained in Effective Java). Enumerated values are created as singletons
to allow for lazy initialization. A specially named object, dec, is created to hold decoded values. In
combination, these changes improve application performance, since only a fixed number of objects
are allocated for any execution of the application.

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

   <name> ::= ENUMERATED { <e1>, <e2>, ..., <en> }

XSD Types

Any type with an <xsd:enumeration> restriction.

Generated Java class

   public class <name> extends Asn1Enumerated {
      private static <name> <e1> = null;
      private static <name> <e2> = null;
      ...
      private static <name> dec = new <name> (-1);
      
      protected <name> (int value_) {



NULL

39

         super (value_);
      }

      public static <name> <e1>() {
         if (<e1> == null) <e1> = new <name>(<v1>);

         return <e1>;
      }
      ...

      public static <name> valueOf(int value_) { ... }

      protected static <name> dec() { return dec; }

      public void decode () { ... }
      public int encode () { ... }
      public void print () { ... }
   }

Note

1. The ... notation used in the ASN.1 definition above does not represent the ASN.1 exten-
sibility notation. It is used to show a continuation of the enumerated sequence of values.

2. The <e1>, <e2>, etc. items denote enumerated constants. These can be in identifier only
format or identifier(value) format. The <v1>, <v2>, etc. items denote the enumerated
values. These are sequential numbers starting at zero if no values are provided. Other-
wise, the actual enumerated values are used.

3. The public methods that are generated are shown without arguments or function bodies
for brevity.

In the case of the enumerated type, encode/decode methods are always generated. These verify that
the given value is within the defined set. An Asn1InvalidEnumException is thrown if the value is
not in the defined set unless the enumeration is extensible. In this case, no exception is thrown.

If an extensibility marker (...) is present in the ASN.1 definition, it will not affect the generated
constants. A constant will be generated for all options – both root and extended. However, in the
ValueOf method, an "undefined" constant will be returned to indicate that the value is not in the
original specification.

NULL
The ASN.1 NULL type is converted into to a Java class that extends the Asn1Null run-time class.
This base class does not contain a public member variable for a value because the NULL type has
no associated value.

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production



OBJECT IDENTIFIER

40

   <name> ::= NULL

Generated Java class

   public class <name> extends Asn1Null {
      public <name> () {
         super();
      }
   }

This shows the class generated for a simple NULL assignment. If a tagged type is specified, specific
encode and decode methods will be generated as well.

OBJECT IDENTIFIER
The ASN.1 OBJECT IDENTIFIER type is converted to a Java class that extends the
Asn1ObjectIdentifier run-time class. This base class encapsulates the following public member
variable:

   public int[] value;

The number of subidentifiers to be encoded or that were decoded is specified in the built-in length
component of the array object (i.e., value.length).

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

   <name> ::= OBJECT IDENTIFIER

Generated Java class

   public class <name> extends Asn1ObjectIdentifier {
      public <name> () {
         super();
      }
      public <name> (int[] value_) {
         super (value_);
      }
   }

This shows the class generated for a simple OBJECT IDENTIFIER assignment. If a tagged or
constrained type is specified, specific encode and decode methods will be generated as well.

RELATIVE-OID
The ASN.1 RELATIVE-OID type is converted to a Java class that extends the Asn1RelativeOID
run-time class. This class extends the Asn1ObjectIdentifier class defined above. The storage of
the relative OID value is the same as described for OBJECT IDENTIFIER. The only difference is



REAL

41

the extended class defines different implementations of the encode/decode methods that apply the
rules associated with the RELATIVE-OID type.

REAL
The ASN.1 REAL type is converted to a Java class that extends the Asn1Real run-time class.

The Asn1Real base class is used for standard ASN.1 REAL specifications or XSD float or double
types. This class encapsulates the following public member variable:

   public double value;

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

<name> ::= REAL

XSD Types

<xsd:float>, <xsd:double>

Generated Java class

   public class <name> extends Asn1Real {
      public <name> () {
         super();
      }
      public <name> (double value_) {
         super (value_);
      }
   }

This shows the class generated for a simple REAL assignment. If a tagged or constrained type is
specified, specific encode and decode methods will be generated as well.

REAL (Base 10)

The ASN.1 Base 10 REAL type is converted to a Java class that extends the Asn1Real10 run-
time class. A base 10 real is specified in ASN.1 using a WITH COMPONENTS clause such as
the following:

   REAL(WITH COMPONENTS {
      ...,
      base (10)
   })

It is also used for XSD decimal type specifications.

In this case, the real number is stored as a Java character string in the character string base class:



SEQUENCE

42

   public String value;

ASN.1 Production:

   <name> ::= REAL (WITH COMPONENTS { base(10) })

XSD Types

   <xsd:decimal>

Generated Java class

   public class <name> extends Asn1Real10 {
      public <name> () {
         super();
      }
      
      public <name> (String value_) {
         super (value_);
      }
   }

SEQUENCE
The ASN.1 SEQUENCE type is converted to a Java class that extends the Asn1Type run-time base
class. Public member variables are generated for each of the elements defined in the SEQUENCE.
Each of these member variables represents an object reference since all of the ASN.1 types are
mapped to Java objects.

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

<name> ::= SEQUENCE {
   <element1-name> <element1-type>,
   <element2-name> <element2-type>,
   ...
}

XSD Types

<xsd:sequence>, <xsd:all>

Generated Java class

   public class <name> extends Asn1Type {
      public <type1> <element1-name>
      public <type2> <element2-name>
      ...
      
      public <name> () {
         super();
      }



SEQUENCE

43

      public <name> (<type1> <arg1>, <type2> <arg2>, ...) {
         super();
         <element1-name> = <arg1>;
         <element2-name> = <arg2>;
         ...
      }

      public <name> (<basetype1> <arg1>,
                        <basetype2> <arg2>, ...)
      {
         super();
         <element1-name> = new <type1> (<arg1>);
         <element2-name> = new <type2> (<arg2>);
         ...
      }

      private void init () { ... }
      public void decode () { ... }
      public int encode () { ... }
      public void print () { ... }

Note

1. The ... notation used in the ASN.1 definition above does not represent the ASN.1 exten-
sibility notation. It is used to show a continuation of the sequence elements.

2. The <type1>, <type2>, etc. items denote the equivalent Java types generated from the
ASN.1 <element-type1>, <element-type2>, etc. definitions.

3. The public and private methods that are generated are shown without arguments or func-
tion bodies for brevity.

The compiler first generates a public member variable for each of the elements defined in the SE-
QUENCE. The decision was made to make these variables public to make them easier to populate
for encoding. The alternative was to use protected or private variables with get/set methods for
setting or examining the values. It was felt that this approach would be too cumbersome for setting
values in deeply nested constructed types.

A default constructor is then generated followed by overloaded constructors for setting the element
values. The first form is simply a direct mapping of each of the element types to a constructor
argument. The second form only contains arguments for the required types in the SEQUENCE (i.e.
OPTIONAL and DEFAULT elements are omitted). The third form uses the base type of each of
the elements as the type for each argument. This makes it possible to construct a SEQUENCE or
SET using literal variables instead of always having to create an object. Finally, another variant of
this constructor with primitive types is generated for required elements only. It is possible that you
will not see all of these variations in a given generated class. It depends on a) whether or not the
SEQUENCE or SET contains optional items and b) whether or not it contains primitive data items.

For example, the following shows how a variable of a generated class containing two IA5String
elements could be constructed:



Creation of Temporary Types 

44

   v1 = new HelloWorld ("hello", "world");

Without this second form of constructor, the following would need to be done:

   v1 = new HelloWorld (new Asn1IA5String("hello"),
                        new Asn1IA5String("world"));

Also note that since all member variables are public, it is not necessary to use any of the argu-
ment-based constructors at all. A variable can be created using the default constructor and each of
the elements populated directly.

Creation of Temporary Types
Temporary types are created when a SEQUENCE (or any other constructed type) definition con-
tains other embedded constructed types. An example of this is as follows:

   A ::= SEQUENCE {
            x SEQUENCE {
               a1 INTEGER,
               a2 BOOLEAN
            },
            y OCTET STRING SIZE (10)
         }

In this example, the production has two elements: x and y. The nested SEQUENCE x has two
additional elements: a1 and a2.

The ASN1C compiler first recursively pulls all of the embedded constructed elements out of the
SEQUENCE and forms new temporary types. The names of the temporary types are of the form
<name>_<element-name1>_<element-name2>_ ... <element-nameN>. Using this algorithm, the
ASN.1 type defined above would be reduced to the following equivalent ASN.1 types:

   A-x ::= SEQUENCE {
      a1 INTEGER,
      a2 BOOLEAN
   }

   A ::= SEQUENCE {
      x A-x,
      y OCTET STRING SIZE (10)
   }

The mapping of the ASN.1 types to Java classes would then be done.

In the case of nesting levels greater than two, all of the intermediate element names are used to
form the final name. For example, consider the following type definition that contains three nesting
levels:

   X ::= SEQUENCE {
      a SEQUENCE {
        aa SEQUENCE { x INTEGER, y BOOLEAN },
        bb INTEGER
      }



OPTIONAL keyword 

45

   }

In this case, the generation of temporary types results in the following equivalent type definitions:

   X-a-aa ::= SEQUENCE { x INTEGER, y BOOLEAN }

   X-a ::= SEQUENCE { aa X-a-aa, bb INTEGER }

   X ::= SEQUENCE { X-a a }

Note that the name for the aa element type is X-a-aa. It contains both the name for a (at level 1)
and aa (at level 2). This is a change from v5.1x and lower where only the production name and
last element name would be used (i.e., X-aa). The change was made to ensure uniqueness of the
generated names when multiple nesting levels are used.

OPTIONAL keyword
Elements within a sequence can be declared to be optional using the OPTIONAL keyword. This
indicates that the element is not required in the encoded message.

Optional elements are accounted for in the Java version of the compiler by simply using null object
references to denote the absence of an element. Remember that even the simplest primitive ASN.1
type definitions are wrapped in a Java class definition. Therefore an object must be created for any
type defined as an element within a SEQUENCE.

To populate a SEQUENCE object for encoding that contains optional elements, the special
constructor(s) for required elements only can be used. The default constructor also can be used
followed by the manual creation and setting of the individual element values. The default construc-
tor will initialize all element object references to null, so only the items to be encoded need be
populated.

DEFAULT keyword
The DEFAULT keyword allows a default value to be specified for elements within the SE-
QUENCE. ASN1C will parse this specification and treat it as it does an optional element. Note
that the value specification is only parsed in simple cases for primitive values. It is up to the pro-
grammer to provide the value in complex cases. For BER encoding, a value must be specified be
it the default or other value.

For DER or PER, it is a requirement that no value be present in the encoding for the default value.
For integer and boolean default values, the compiler automatically generates code to handle this
requirement based on the value in the structure. For other values, the default value is handled the
same as an optional element (i.e., a null object reference indicates that nothing should be transmit-
ted). The programmer must set the element object reference to null on the encode side to specify
default value selected. If this is done, a value is not encoded into the message. On the decode side,
the developer must test for a null object reference. If this is the case, the default value specified
in the ASN.1 specification is used.



Extension Elements 

46

Extension Elements
If the SEQUENCE type contains an open extension field (i.e., a ... at the end of the specification
or a ..., ... in the middle), a special element will be inserted to capture encoded extension elements
for inclusion in the final encoded message. This element will be of type ASN1OpenExt and have
the name extElem1. This field will contain the complete encoding of any extension elements that
may have been present in a message when it is decoded. On subsequent encode of the type, the
extension fields will be copied into the new message.

If the SEQUENCE type contains an extension marker and extension elements, then the open ex-
tension type field will not be added. Instead, the actual extension elements will be present. These
elements will be treated as optional elements whether they were declared that way or not. The
reason is because a version 1 message could be received that does not contain the elements.

XSD <xsd:all> Type Mapping
As per the X.694 standard, the XSD all type is mapped to an ASN.1 SEQUENCE type with a special
element add named order. This is added as a special element to the generated Java class with the
name _order. This contains an index entry for each element that identifies the order to elements are
to be serilaized in when encoded in XML. By default, the array is initialized to encode the elements
in the same order as specified in the type. When an XML document of this type is decoded, the
order in which the elements are received in recorded in this array. If the data is serialized out in
binary form (BER or PER) the array is included in the encoding. If is only transparent in XML
encode/decode operations to mimic the behavior of its handling in XSD.

An example of how this is used might be a gateway application that read XML data and then
translated to binary form for transmission over a low bandwidth network. When received on the
other end, the receiving application would transcode back from binary to XML. Suppose the item
being transmitted was described using an xsd:all type that had three elements: a, b, and c. When
the original XML document was received by the sending application, suppose the elements were
received in the order c, b, a. The order array would record this fact and it would be included in the
binary serialization. When the receiver decoded the message on the other end, the order information
would be available along with the element data. The receiver could then reconstruct the XML
document with the items in the same order as received.

SET
The ASN.1 SET type is converted into a Java class that is identical to that for SEQUENCE as
described in the previous section. The only difference between SEQUENCE and SET is that ele-
ments may be transmitted in any order in a SET whereas they must be in the defined order in a
SEQUENCE. The only impact this has on ASN1C is in the generated decoder for a SET type.

The decoder must take into account the possibility of out-of-order elements. This is handled by
using a loop to parse each element in the message. Each time an item is parsed, an internal mask



SEQUENCE OF

47

bit within the decoder is set to indicate the element was received. The complete set of received
elements is then checked after the loop is completed to verify all required elements were received.

SEQUENCE OF
The ASN.1 SEQUENCE OF type is converted to a Java class that extends the Asn1Type run-time
base class. An array public member variable named elements is generated to hold the elements of
the defined type.

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

<name> ::= SEQUENCE OF <type>

XSD Types

Elements or content group definitions containing the minOccurs and/or maxOccurs facets. Also,
<xsd:list> types use this model.

Generated Java class

   public class <name> extends Asn1Type {
      public <type>[] elements

      public <type> () {
         elements = null;
      }
      
      public <type> (int numRecords) {
         elements = new <type> [numRecords];
      }
      
      public void decode () { ... }
      public int encode () { ... }
      public void print () { ... }
   }

The compiler first generates a public member variable to hold the SEQUENCE OF elements. The
decision was made to make the variable public to make it easier to populate for encoding. The
alternative was to use protected or private variables with get/set methods for setting or examining
the values. It was felt that this approach would be too cumbersome for setting values in deeply
nested constructed types.

Two constructors are generated: a default constructor and a constructor that takes a number of
elements argument. The default constructor will set the elements variable to null. The second con-
structor will allocate space for the given number of elements. The recommended way to populate
a variable of this type for encoding is to use the second form of the constructor to allocate the
required number of elements and then directly set the element object values. For example, to pop-
ulate the following construct:



Generation of Temporary Types
for SEQUENCE OF Elements 

48

   IntSeq ::= SEQUENCE OF INTEGER

with 3 integers, the following code could be used:

   IntSeq intSeq = new IntSeq (3);
   intSeq.elements[0] = new Asn1Integer (1);
   intSeq.elements[1] = new Asn1Integer (2);
   intSeq.elements[2] = new Asn1Integer (3);

Note that each of the integer element values is wrapped in an Asn1Integer wrapper class.

Generation of Temporary Types for SE-
QUENCE OF Elements
As with other constructed types, the <type> variable can reference any ASN.1 type, including
other ASN.1 constructed types. Therefore, it is possible to have a SEQUENCE OF SEQUENCE,
SEQUENCE OF CHOICE, etc.

When a constructed type is referenced, a temporary type is generated for use in the final production.
The format of this temporary type name is as follows:

   <prodName>_element

In this definition, <prodName> refers to the name of the production containing the SEQUENCE
OF type.

For example, a simple (and very common) single level nested SEQUENCE OF construct might
be as follows:

   A ::= SEQUENCE OF SEQUENCE { INTEGER a, BOOLEAN b }

In this case, a temporary type is generated for the element of the SEQUENCE OF construct. This
results in the following two equivalent ASN.1 types:

   A-element ::= SEQUENCE { INTEGER a, BOOLEAN b }

   A ::= SEQUENCE OF A-element

These types are then converted into the equivalent Java classes using the standard mapping that
was previously described.

SEQUENCE OF Type Elements in Other Con-
structed Types
Frequently, a SEQUENCE OF construct is used to define an array of some common type in an
element in some other constructed type (for example, a SEQUENCE). An example of this is as
follows:

   SomePDU ::= SEQUENCE {



SET OF

49

      addresses SEQUENCE OF AliasAddress,
      ...
   }

Normally, this would result in the addresses element being pulled out and used to create a tempo-
rary type with a name equal to "SomePDU-addresses" as follows:

   SomePDU-addresses ::= SEQUENCE OF AliasAddress

   SomePDU ::= SEQUENCE {
      addresses SomePDU-addresses,
      ...
   }

However, when the SEQUENCE OF element references a simple defined type as above with no
additional tagging or constraint information, an optimization is done to cut down on the size of the
generated code. This optimization is to generate a common name for the new temporary type that
can be used for other similar references. The form of this common name is as follows:

   _SeqOf<elementProdName>

So instead of this:

   SomePDU-addresses ::= SEQUENCE OF AliasAddress

The following equivalent type would be generated:

   _SeqOfAliasAddress ::= SEQUENCE OF AliasAddress

The advantage is that the new type can now be easily reused if "SEQUENCE OF AliasAddress" is
used in any other element declarations. Note the (illegal) use of an underscore in the first position.
This is to ensure that no name collisions occur with other ASN.1 productions defined within the
specification.

An example of the savings of this optimization can be found in H.225. The above element reference
is repeated 25 different times in different places. The result is the generation of one new temporary
type that is referenced in 25 different places. Without this optimization, 25 unique types with the
same definition would have been generated.

SET OF
The ASN.1 SET OF type is converted into a Java class that is identical to that for SEQUENCE
OF as described in the previous section.

CHOICE
The ASN.1 CHOICE type is converted to a Java class that extends the Asn1Choice run-time base
class. This base class contains protected member variables to hold the choice element object and
a selector value to specify which item in the CHOICE was chosen. Methods are generated to get
and set the base class members.



CHOICE

50

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production

   <name> ::= CHOICE {
      <element1-name> <element1-type>,
      <element2-name> <element2-type>,
      ...
   }

XSD Types

<xsd:choice>, <xsd:union>

Generated Java class

   public class <name> extends Asn1Choice {
      public final static byte _<ELEMENT1-NAME> 1
      public final static byte _<ELEMENT2-NAME> 2
      ...

      public <name> () { super(); }
    
      public String getElemName() { ... }

      public void set_<element1-name> () { ... }
      public void set_<element2-name> () { ... }
      ...
      public void decode () { ... }
      public int encode () { ... }
      public void print () { ... }
   }

Note

1. The ... notation used in the ASN.1 definition above does not represent the ASN.1 exten-
sibility notation. It is used to show a continuation of the sequence elements.

2. The public and private methods that are generated are shown without arguments or func-
tion bodies for brevity.

The compiler generates sequential identification constants for each of the defined elements in the
CHOICE construct. The format used is the element names converted to all uppercase characters and
preceded by an underscore. The constants represent the values returned by the base class getChoi-
ceID method can therefore be used to determine what type of choice element was received in a
decode operation.

The getElemName method is generated by the compiler and returns the name of the selected ele-
ment.

A series of set_<element> methods are generated for setting the element value. In these declara-
tions, <element> would be replaced with the actual element names. This is the only way an ele-



Creation of Temporary Types 

51

ment value can be set for encoding; these methods ensure a consistent setting of both the element
identifier and object reference values.

To access the value of a generated CHOICE object, the getChoiceID and getElement methods
within the base class are used. This is generally done with an if or switch statement as follows:

   Asn1BMPString element;
   if (aliasAddress.getChoiceID() == AliasAddress._H323_ID) {
      element = (Asn1BMPString) aliasAddress.getElement();
   }

In this case, getChoiceID is invoked and the result tested to see if the expected value was received.
If it was, the element is assigned using getElement with a cast operation.

Creation of Temporary Types
The rules for the generation of CHOICE temporary type variables are the same as they were for
SEQUENCE and SET variables. Complex nested types are pulled out of the definitions and used
to create additional types to reduce the nesting levels. An example of this is as follows:

   TestChoice ::= CHOICE {
      a INTEGER,
      b BOOLEAN,
      c SEQUENCE { aa IA5String, bb NULL }
   }

This would be reduced to the following equivalent ASN.1 productions:

   TestChoice-c ::= SEQUENCE { aa IA5String, bb NULL }

   TestChoice ::= CHOICE {
      a INTEGER,
      b BOOLEAN,
      c TestChoice-c
   }

In this case, the embedded constructed element for option c was pulled out to form the TestChoice-
c production and then this new production is referenced in the original definition.

Populating Generated Choice Structures for
Encoding
The only way a CHOICE construct can be populated for encoding is by using one the generated
set_<element> methods. It is necessary to do it this way because the base class contains two pro-
tected member variables (choiceID and element) that must be set consistently. This is the only
instance of a mapped type where the mapped element values do not have public access.

The following demonstrates setting a variable of the TestChoice structure defined above to use
the first option:



Accessing the Choice Ele-
ment Value after Decoding 

52

   TestChoice testChoice = new TestChoice ();
   testChoice.set_a (new Asn1Integer (222));

Accessing the Choice Element Value after De-
coding
To access the element in a choice construct after decoding, the following two methods can be used
(both are defined in the Asn1Choice base class):

1. getChoiceID – this returns an identifier equal to one the generated choice identifier constants,
and

2. getElement – this returns a reference to the decoded element object. It is of type Asn1Type but
it can be upcast to the correct element type using information from the getChoiceID call.

In addition, the compiler generates a getElemName method that can be used to get the textual name
of the decoded element.

XSD <xsd:union> Type Mapping

The <xsd:union> type is handled in a similar fashion to a choice type. The main difference is that
the items in a union are not tagged. As per X.694, special element names are generated for these
items for use in an ASN.1 CHOICE type. These names are based on the base name alt and progress
with sequential digits added for each addional union item (alt-1, alt- 2, etc.). XML decoding is
accomplished by attempting to decode the content of each alternative in the union and setting the
value to the first alternative that can be decoded successfully.

Open Type
Note: The X.680 Open Type replaces the X.208 ANY or ANY DEFINED BY constructs. An ANY
or ANY DEFINED BY encountered within an ASN.1 module will result in the generation of code
corresponding to the Open Type described below.

The ASN.1 Open Type is converted into a Java class that extends the Asn1OpenType class. This
class in turn extends the Asn1OctetString class and provides the following public member variable
for storing the encoded message component:

   public byte[] value;

The number of octets to be encoded or that were decoded is specified in the built-in length com-
ponent of the array object (i.e., value.length).

The following shows the basic mapping from ASN.1 type to Java class definition:

ASN.1 Production



Open Type

53

<name> ::= <openType>

Generated Java class

   public class <name> extends Asn1OpenType {
      public <name> () {
         super();
      }

      public <name> (byte[] data) {
         super (data);
      }

      public <name> (byte[] data,
                        int offset,
                        int nbytes)
      {
         super (data, offset, nbytes);
      }

      public <name> (Asn1EncodeBuffer buffer) {
         super ();
      }
   }

The <openType> placeholder is to be replaced with any type of open type specification. It could
be the ANY or ANY DEFINED BY keywords from the X.208 specification or an open type from
X.681 (for example, TYPEIDENTIFIER.& Type).

The last form of the constructor shown above is for an optimized form of Open Type encoding.
When encoding is done using BER, an open type header can be directly added to the beginning
of an encoded message component. By using this form of the constructor, you are indicating to
the run-time encoder that the encoded message component onto which a header is to be added is
already present in the message buffer. The advantage is that binary copies of the encoded message
components are avoided both from the encode buffer to the open type object and from the open
type object back to the encode buffer.

For XER, a new class derived from the Asn1OpenType class was created. This is the
Asn1XerOpenType class and this must be used whenever an open type is required for XER. The
reason for creating a special derived class is because of dependencies on XML parser classes de-
fined within this class. If these were added directly to the Asn1OpenType class, a user would need
to always have XML parser .jar files included in their classpath – even if working with BER, DER,
or PER only.

If the –tables command line option is selected and the ASN.1 type definition references a table
constraint, the code generated is different. In this case, Asn1OpenType above is replaced with
Asn1Type. This the base class for all ASN.1 types. This allows a value of any ASN.1 type to be
specified. On the encoding side, a user can assign an object of any ASN.1 type to this variable and
the encoding routine will call the appropriate encoder according to the table index value. If the
variable type is not present in the table and the Object Set is extensible, than it can be encoded as an
open type. Otherwise an exception will be thrown. On the decoding side, the appropriate variable



External Type

54

type is populated from the table based on the decoded index parameters. The user can determine
the variable type from the table index value. If the variable type is not present in table, then it will
be decoded as an open type if the Object Set is extensible; otherwise and exception will be thrown.

<xsd:any> Handling

The XSD any wildcard item is similar to an ASN.1 open type in semantics in that it allows any
valid content to be present in that position in an XML document. However, an ASN.1 open type
is not used to model an <xsd:any>. Instead, a character string variable is used. This stores the
full XML text of the field in native XML form (i.e. angle brackets and the like are not escaped).
Note that the XML text is not converted to different form when using binary encoding rules - it
is maintained as XML text.

External Type
The ASN.1 EXTERNAL type is a useful type used to include non-ASN.1 or other data within an
ASN.1 encoded message. The type is described using the following ASN.1 SEQUENCE:

   EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {
      direct-reference OBJECT IDENTIFIER OPTIONAL,
      indirect-reference INTEGER OPTIONAL,
      data-value-descriptor ObjectDescriptor OPTIONAL,
      encoding CHOICE {
         single-ASN1-type   [0] ANY,
         octet-aligned      [1] IMPLICIT OCTET STRING,
         arbitrary          [2] IMPLICIT BIT STRING
      }
   }

The ASN.1 compiler is used to create a meta-definition for this structure. The definition is stored in
the file Asn1External.java (or Asn1XerExternal.java for XER). An object created from the resulting
Java class is populated just like any other compiler-generated structure for working with ASN.1
data.

EmbeddedPDV Type
The ASN.1 EMBEDDED PDV type is a useful type used to include non-ASN.1 or other data
within an ASN.1 encoded message. It was introduced in 1994 to replace EXTERNAL by removing
unneeded fields and adding a few new ones to hold information that was missing. This type is
described using the following ASN.1 SEQUENCE:

   EmbeddedPDV ::= [UNIVERSAL 11] IMPLICIT SEQUENCE {
      identification CHOICE {
         syntaxes SEQUENCE {
            abstract OBJECT IDENTIFIER,
            transfer OBJECT IDENTIFIER },
         syntax OBJECT IDENTIFIER,
         presentation-context-id INTEGER,
         context-negotiation SEQUENCE {



Parameterized Types

55

            presentation-context-id INTEGER,
            transfer-syntax OBJECT IDENTIFIER },
         transfer-syntax OBJECT IDENTIFIER,
         fixed NULL
      },,
      data-value OCTET STRING }
   ( WITH COMPONENTS {
               ... ,
               data-value-descriptor ABSENT } )

The ASN.1 compiler is used to create a meta-definition for this structure. The definition is stored
in the file Asn1EmbeddedPDV.java (or Asn1XerEmbeddedPDV.java for XER). An object creat-
ed from the resulting Java class is populated just like any other compiler-generated structure for
working with ASN.1 data.

Parameterized Types
The ASN1C compiler can parse parameterized type definitions and references as specified in the
X.683 standard. These types allow dummy parameters to be declared that will be replaced with
actual parameters when the type is referenced. This is similar to templates in C++.

A simple and common example of the use of parameterized types is for the declaration of an upper
bound on a sized type as follows:

   SizedOctetString{INTEGER:ub} ::= OCTET STRING (SIZE (1..ub))

In this definition, 'ub' would be replaced with an actual value when the type is referenced. For
example, a sized octet string with an upper bound of 32 would be declared as follows:

   OctetString32 ::= SizedOctetString{32}

The compiler would handle this in the same way as if the original type was declared to be an octet
string of size 1 to 32. In the case of Java, this would result in size constraint checks being added
to the generated encode and decode methods for the type.

Another common example of parameterization is the substitution of a given type inside a common
container type. For example, security specifications frequently contain a 'signed' parameterized
type that allows a digital signature to be applied to other types. An example of this would be as
follows:

   SIGNED { ToBeSigned } ::= SEQUENCE {
      toBeSigned ToBeSigned,
      algorithmOID OBJECT IDENTIFIER,
      paramS Params,
      signature BIT STRING
   }

An example of a reference to this definition would be as follows:

   SignedName ::= SIGNED { Name }

where 'Name' would be another type defined elsewhere within the module.



Value Specifications

56

ASN1C performs the substitution to create the proper Java class definition for SignedName:

   public class SignedName extends Asn1Type {
     public Name toBeSigned;
     public Asn1ObjectIdentifier algorithmOID;
     public Params paramS;
     public Asn1BitString signature;
     ...
   }

When processing parameterized type definitions, ASN1C will first look to see if the parameters are
actually used in the final generated code. If not, they will simply be discarded and the parameter-
ized type converted to a normal type reference. For example, when used with information objects,
parameterized types are frequently used to pass information object set definitions to impose table
constraints on the final type. Since table constraints do not affect the code that is generated by the
compiler, the parameterized type definition is reduced to a normal type definition and references to
it are handled in the same way as defined type references. This can lead to a significant reduction
in generated code in cases where a parameterized type is referenced over and over again.

For example, consider the following often-repeated pattern from the UMTS 3GPP specs:

   ProtocolIE-Field {RANAP-PROTOCOL-IES : IEsSetParam} ::= SEQUENCE {
      id RANAP-PROTOCOL-IES.&id ({IEsSetParam}),
      criticality RANAP-PROTOCOL-IES.&criticality ({IEsSetParam}{@id}),
      value RANAP-PROTOCOL-IES.&Value ({IEsSetParam}{@id})
   }

In this case, IEsSetParam refers to an information object set specification that constrains the val-
ues that are passed for any given instance of a type referencing a ProtocolIE-Field. The compiler
does not add any extra code to check for these values, so the parameter can be discarded. After
processing the Information Object Class references within the construct (refer to the Information
Objects section for information on how this is done), the reduced definition for ProtocolIE-Field
becomes the following:

   ProtocolIE-Field ::= SEQUENCE {
      id ProtocolIE-ID,
      criticality Criticality,
      value ASN.1 OPEN TYPE
   }

References to the field are simply replaced with a reference to the generated ProtocolID-Field class.

Value Specifications
The ASN1C compiler can parse any type of ASN.1 value specification, however, the basic version
will only generate code for the following types of value specifications:

• BOOLEAN

• INTEGER



INTEGER Value Specification 

57

• ENUMERATED

• Binary String

• Hexadecimal String

• Character String

• OBJECT IDENTIFER

The Pro version of the compiler will generate code for the following remaining types of value
specifications:

• Enumerated

• Real

• Sequence

• Set

• Sequence Of

• Set Of

• Choice

If any of the above types of value specifications are detected in an ASN.1 module, the compiler
will generate a Java source file with a special class to hold the values. The name of the source file
and class is of the following format:

   _<ModuleName>Values

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which
the values are defined.

The following sections provide details on the Java constants generated for the various types of
ASN.1 value specifications.

INTEGER Value Specification
An INTEGER value specification causes a Java integer constant to be generated.

ASN.1 production:

   <name> INTEGER ::= <value>

Generated Java constant:

   public static final long <name> = <value>;



BOOLEAN Value Specification 

58

BOOLEAN Value Specification
A BOOLEAN value specification causes a Java boolean constant to be generated.

ASN.1 production:

   <name> BOOLEAN ::= <value>

Generated Java constant:

   public static final boolean <name> = <value>;

Binary String Value Specification
This value specification causes two Java constants to be generated: a 'numbits' constant specifying
the number of bits in the string and a 'data' constant that hold the actual bit values.

ASN.1 production:

   <name> BIT STRING ::= 'bbbbbbb'B

Generated Java constants:

   public static final int <name>_numbits = <numbits>;
   public static final byte[] <name>_data = { 0xhh, 0xhh, ... };

In the ASN.1 production definition, the lowercase 'b's above represent binary digits (1's or 0's). The
generated code contains a numbits constant set to the number of bits (binary digits) in the string.
The data constant specifies the binary data using hexadecimal byte values.

Hexadecimal String Value Specification
This value specification causes a Java constant to be generated containing a byte array of the hex-
adecimal byte values.

ASN.1 production:

   <name> OCTET STRING ::= 'hhhhhh'H

Generated Java constants:

   public static final byte[] <name> = { 0xhh, 0xhh, ... };

In the ASN.1 production definition, the lowercase 'h's above represent hexadecimal digits (0-9, a-
f, or A-F). The generated constant specifies the binary data using hexadecimal byte values.

Character String Value Specification
A character string declaration causes a Java String constant to be generated.



Object Identifier Value Specification 

59

ASN.1 production:

   <name> <StringType> ::= 'ccccccc'

Generated Java constants:

   public static final String <name> = "ccccccc";

In the ASN.1 production definition, <StringType> would be replaced with one of the ASN.1 char-
acter string types (for example, IA5String). The lowercase 'c's represent string characters. The gen-
erated constant is simply the string in Java form.

Object Identifier Value Specification
An object identifier value specification causes a Java integer array to be generated containing the
subidentifier values.

ASN.1 production:

   <name> OBJECT IDENTIFIER ::= <oidvalue>

Generated Java constants:

   public static final int[] <name> = { id1, id2, ..., idn };

For example, consider the following declaration:

   oid OBJECT IDENTIFIER ::= { ccitt b(5) 10 }

This would result in the following Java constant being generated:

   public static final int[] oid = { 0, 5, 10 };

ENUMERATED Value Specification
An ENUMERATED value specification causes a Java integer constant to be generated.

ASN.1 production:

   <name> <enumtype> ::= <enumitem>

Generated Java constants:

   public static final int <name> = <enumvalue>;

enumvalue will be the sequential integer value corresponding to the enumitem in enumtype.

REAL Value Specification
A REAL value specification causes a Java double constant to be generated.



SEQUENCE Value Specification 

60

ASN.1 production:

   <name> REAL ::= <value>

Generated Java constants:

   public static final double <name> = <value>;

SEQUENCE Value Specification
A SEQUENCE value specification causes a final static instance of the Java class generated for the
SEQUENCE to be generated.

ASN.1 production:

   <name> <SequenceType> ::= <value>

Generated Java constants:

   public static final <SequenceType> <name> =
      new <SequenceType> ( new <Elem1Type> (<elem1value>),
                           new <Elem2Type> (<elem2value>),
                           ... );

For example, consider the following declaration:

   SeqType ::= SEQUENCE {
      oid OBJECT IDENTIFIER,
      id INTEGER
   }

   value SeqType ::= { oid { 0 1 1 }, id 12 }

This would result in the following Java constant being generated for value:

   public static final SeqType value = new SeqType (
      new Asn1ObjectIdentifier( new int[]{0, 1, 1}),
      new Asn1Integer(12)
   );

SET Value Specification
The value code generation for the ASN.1 SET type is that same as that for SEQUENCE described
above.

SEQUENCE OF Value Specification
A SEQUENCE OF value specification causes a Java array constant to be generated.

ASN.1 production:

   <name> <SequenceOfType> ::= <value>



SET OF Value Specification 

61

Generated Java constants:

   public static final <SequenceOfType> <name> =
      new <SequenceOfType>[] {
      new <ElemType> (<elem1value>),
      new <ElemType> (<elem2value>),
      ... };

For example, consider the following declaration:

   SeqOfType ::= SEQUENCE OF INTEGER

   value SeqOfType ::= { 1, 2 }

This would result in the following Java constant being generated for value:

   public static final SeqOfType value = new SeqOfType[] {
      new Asn1Integer(1),
      new Asn1Integer(2)
   };

SET OF Value Specification
The value code generation for the ASN.1 SET OF type is that same as that for SEQUENCE OF
described above.

CHOICE Value Specification
A CHOICE value specification causes a final static instance of the Java class generated for the
CHOICE to be generated.

ASN.1 production:

   <name> <ChoiceType> ::= elemname : <elemvalue>

Generated Java constants:

   public static final <ChoiceType> <name> =
      new <ChoiceType> (<ElemCode>,
                        new <ElemType> (<elemvalue>));

For example, consider the following declaration:

   ChoiceType ::= CHOICE { oid OBJECT IDENTIFIER, id INTEGER }

   value ChoiceType ::= id: 1

This would result in the following Java constant being generated:

   public static final ChoiceType value =
      new ChoiceType (ChoiceType._ID, new Asn1Integer(1));



62



63

Generated BER/DER/CER Encode
Methods
Two different types of BER (Basic Encoding Rules) encode methods may be generated using the
ASN1C compiler:

• Memory-buffer based definite length backward encoders

• Stream-based indefinite length forward encoders

For DER (Distinguished Encoding Rules), only the first option is available because a requirement
of DER is that all lengths must be in definite form. For CER (Canonical Encoding Rules), only
the second option is available because all constructed element lengths must be in indefinite length
form. Each of these methods are described in the following sections.

Memory-buffer Based Definite Length
Encoders
For each ASN.1 production defined in an ASN.1 source file, a Java encode method may be gen-
erated. This function will convert a populated variable of the given type into an encoded ASN.1
message.

An encode method is only generated if it is required to alter the encoding of the base class method.
The Java model is built on inheritance from a set of common run-time base classes. These run-time
classes contain default implementations of encode/decode methods that handle the encoding/de-
coding of the basic types. These default implementations include support for adding the universal
tags associated with the types as defined in the X.680 standard.

So for simple assignments, the generation of an encode method is not necessary. For example, the
following production will not result in the generation of an encode method:

   X ::= INTEGER

In this case, the generated Java class extends the Asn1Integer base class and the default encode
method within this class is sufficient to encode a value of the generated type.

However, if the type is altered to contain a tag or constraint, then a custom encode method would
be generated:

   X ::= [APPLICATION 1] INTEGER

In this case, special logic is necessary to apply the tag value.



Generated Java Method For-
mat and Calling Parameters 

64

Some types will always cause encode methods to be generated. At the primitive level, this is true
for the ENUMERATED type. This type will always contain a custom set of enumerated values.
All constructed types (SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will cause encode
methods to be added to the generated classes.

Generated Java Method Format and Calling Pa-
rameters

The signature for a Java BER encode method is as follows:

public int encode (Asn1BerEncodeBuffer buffer, boolean explicit)
throws Asn1Exception

The buffer argument is a reference of an Asn1BerEncodeBuffer object that describes the buffer into
which a message is being encoded. This must be created and initialized before calling any encode
method. See the description of this class in the Java Run-Time Classes section for details on how
this class is used.

The return value is the length in octets of the encoded message component. Unlike the C/C++
version, a negative value is never returned to indicate an encoding failure. That is handled by the
exception mechanism. All ASN1C Java exceptions are derived from the Asn1Exception base class.
See the section on exceptions for a complete list and description of the various exceptions that
can be thrown.

Populating Generated Variables for Encoding

Populating generated variables for encoding can be done in most cases either through the object
constructors or directly by assigning an object reference to a public member variable.

Constructors are provided for most generated types to allow direct population of the encapsulated
member variable(s) on initialization. The exception is the classes generated for SEQUENCE OF
or SET OF. These only allow the size of an array to be specified – population of the array elements
must be done manually.

All of the base run-time classes except Asn1Null contain public member variables. In practically
all cases there is a single variable called value that is of the base type that needs to be populated.
For example, the Asn1Integer base class contains the following item:

   public long value;

Therefore, population of any class variable derived from INTEGER can be done by adding.value to
the end of the lefthand side of the assignment and an integer value on the right. So for the following
assignment:

   X ::= INTEGER



Procedure for Calling Ja-
va BER Encode Methods 

65

A variable of the type can either be populated using the constructor with the following statement:

   X x = new X (25);

or via direct access of the member variable as follows:

   X x = new X ();
   x.value = 25;

The only primitive type that does not have a single member called value to represent its value is
BIT STRING. In this case, the Asn1BitString class contains a second variable called numbits to
specify the number of bits in the string.

Procedure for Calling Java BER Encode Meth-
ods

Once an object's member variables have been populated, the object's encode method can be invoked
to encode the value. The general procedure to do this involves the following three steps:

1. Create an encode message buffer object into which the value will be encoded.

2. Invoke the encode method.

3. Invoke encode message buffer methods to access the encoded message component.

The first step is the creation of an encode message buffer object. Unlike the C/C++ version of
the product, there is no choice to be made between a static or dynamic encode buffer. In Java,
everything is dynamic. There are two forms of the constructor: a default constructor and one that
allows specification of a message buffer size increment. The size increment will determine how
often the buffer will need to be resized to hold large messages. If you know that you will be encod-
ing large messages, then this object should be constructed with a large value for the increment. If
you know that you will be encoding small messages in a constrained environment, then this value
can be set very low. The default constructor sets the value to a reasonable mid-range value (see
SIZE_INCREMENT in Asn1EncodeBuffer.java, as of this writing the value was set to 1024).

The second step is the invocation of the encode method. The calling arguments were described
earlier. As per the Java standard, this method must be invoked from within a try/catch block to
catch the possible Asn1Exception that may be thrown. Alternatively, the method from which the
encode method is called can declare that it throws an Asn1Exception leaving it to be dealt with
at a higher level.

Finally, encode buffer methods can be called to access the encoded message component. The en-
code method itself returns the length of the component, so this item is already known (however,
there is a getMsgLength method available if you want to access this length from a different lo-
cation). Unlike C or C++, a pointer to where the message starts in the encode buffer cannot be



Procedure for Calling Ja-
va BER Encode Methods 

66

returned (recall that BER encoding is done from back to front, so a message rarely starts at the
beginning of a buffer). However, the Java API provides an object called a ByteArrayInputStream
that provides a way to look at the encoded component as a stream. The encode buffer object there-
fore provides a method called getByteArrayInputStream which is the preferred way to access the
encoded component.

In addition to getByteArrayInputStream there is a getMsgCopy function that will retrieve a copy of
the generated message into a byte array object. This is somewhat slower because a copy needs to
be done. The encode buffer class also contains other methods for operating directly on the encoded
component (for example, the write method can be used to write it to a file or other medium).
And of course, one could derive their own special encode buffer class from this class to add more
functionality. See the description of the Asn1BerEncodeBuffer class in the run-time section for a
full description of the available methods.

A complete example showing how to invoke an encode method is as follows:

   // Note: personnelRecord object was previously populated with data

   // Step 1: Create a message buffer object. This object uses the
   // default size increment for buffer expansion..

   Asn1BerEncodeBuffer encodeBuffer = new Asn1BerEncodeBuffer();

   // Step 2: Invoke the encode method. Note that it must be done
   // from within a try/catch block..

   try {
       personnelRecord.encode (encodeBuffer, true);

       if (trace) {
           System.out.println ("Encoding was successful");
           System.out.println ("Hex dump of encoded record:");
           encodeBuffer.hexDump ();
           System.out.println ("Binary dump:");
           encodeBuffer.binDump ();
       }

       // Step 3: Access the encoded message component. In this
       // case, we use methods in the class to write the component
       // to a file and output a formatted dump to the message.dmp
       // file..

       // Write the encoded record to a file

       encodeBuffer.write (new FileOutputStream (filename));

       // Generate a dump file for comparisons

       encodeBuffer.hexDump
          (new PrintStream (new FileOutputStream ("message.dmp")));
   }
   catch (Exception e) {
      System.out.println (e.getMessage());
      e.printStackTrace();
      return;
   }



Reuse of Java Encoding Objects 

67

Reuse of Java Encoding Objects
The simple example above showed the procedure to encode a single record. But what if you had
to decode a series of the same record over and over again? This is a common occurrence in a BER
encoding application.

You would not want to recreate the data holder and message buffer objects on each pass of the loop.
This would have an adverse effect on the performance of the application. What you would want to
do is only create the objects a single time and then reuse them to encode each message instance.

It turns out that this is an easy thing to do. The public member variable access to the data holder
object makes it easy to change the variables on each given pass. And the encode buffer object
contains a reset method for resetting the encode buffer for subsequent encodings. The use of this
method has the advantage of not releasing any of the memory that had been accumulated to this
point for previous encodings.

To show an example of object reuse, suppose we were going to encode a series of names. The
ASN.1 type for the names would be as follows:

   Name ::= [APPLICATION 1] IMPLICIT SEQUENCE {
      givenNameIA5String,
      initial IA5String,
      familyNameIA5String
   }

The generated Java class would contain public member variables for each of the string objects:

   public Asn1IA5String givenName;
   public Asn1IA5String initial;
   public Asn1IA5String familyName;

The most efficient way to repopulate these variables within a loop would be simply to assign each
of the new strings to be encoded directly to the public value member variables contained within
the Asn1IA5String objects (i.e., the Name or Asn1IA5String objects should not be reconstructed
each time).

A code snippet showing how this could be done is as follows:

   // Step 1: Create Name and Asn1BerEncodeBuffer objects for use in
   // the loop..

   Name name = new Name ("", "", ""); // creates empty string objects
   Asn1BerEncodeBuffer encodeBuffer = new Asn1BerEncodeBuffer ();

   for (;;) {

      // logic here to read name components from a DB or other medium

      ...

      // populate string variables (assume string1, 2, and 3 are string
      // variables read from DB above)..



Stream-Oriented Indefi-
nite Length Encode Methods

68

      name.givenName.value = string1;
      name.initial.value = string2;
      name.familyName.value = string3;

      // encode

      try {
         len = name.encode (encodeBuffer, true);

         // do something with the encoded message component

         ...

         // reset encode buffer for next pass

         encodeBuffer.reset ();
      }
      catch (Asn1Exception e) {
         // handle error ..
      }
   }

Stream-Oriented Indefinite Length En-
code Methods
BER messages can be encoded directly to an output stream such as a file, network or memory
stream. The ASN1C compiler has the –stream option to generate encode functions of this type. For
each ASN.1 production defined in the ASN.1 source file, a Java encode method may be generated.
This function will convert a populated variable of the given type into an encoded ASN.1 message.

The basic principles of the generation of the encode methods are the same as for ordinary BER/
DER encode methods. Stream-oriented BER encoding starts from the beginning of the message
until the message is complete. This is sometimes referred to as "forward encoding". This differs
from regular BER where encoding that is done from back-tofront. Indefinite lengths are used for
all constructed elements in the message. Also, there is no permanent buffer for stream-oriented
encoding, all octets are written directly to the output stream.

Generated Java Method Format and Calling Pa-
rameters
The signature for a Java BER stream-oriented encode method is as follows:

   public void encode (Asn1BerOutputStream out, boolean explicit)
      throws Asn1Exception, java.io.IOException

The out argument is a reference of an  Asn1BerOutputStream  object that describes the output
stream into which a message is being encoded. This must be created and initialized before calling
any encode method. See the description of this class in the Java Run-Time Classes section for
details on how this class is used



Procedure for Calling Java BER
Stream-Oriented Encode Methods 

69

The explicit argument specifies whether or not an explicit tag should be applied to the encoded
contents. The average user will almost always want to set this argument to true. The only time it
would not be set to true is if a user wanted to just encode a contents field with no tag. This argument
is used primarily by the compiler when generating internal calls to properly handle implicit and
explicit tagging.

Unlike the C/C++ version, a negative value is never returned form encode methods to indicate
an encoding failure. That is handled by the exception mechanism. All ASN1C Java exceptions
are derived from the Asn1Exception base class. See the section on exceptions for a complete
list and description of the various exceptions that can be thrown. If I/O error occurs then the
java.io.IOException is thrown.

Procedure for Calling Java BER Stream-Orient-
ed Encode Methods
Once an object's member variables have been populated, the object's encode method can be invoked
to encode the value. The general procedure to do this involves the following three steps:

1. Create an output stream object into which the value will be encoded

2. Invoke the encode method

3. Close the output stream.

The first step is the creation of an output stream object. There are two forms of the constructor:
a constructor with one parameter (OutputStream reference) and one that allows specification of
an internal buffer size. A larger internal buffer size generally provides better performance at the
expense of increased memory consumption. The first constructor sets the value to a reasonable
mid-range value.

The second step is the invocation of the encode method. The calling arguments were described
earlier. As per the Java standard, this method must be invoked from within a try/catch block to
catch the possible Asn1Exception and java.io.IOException, which may be thrown. Alternatively,
the method from which the encode method is called can declare that it throws Asn1Exception and
java.io.IOException leaving it to be dealt with at a higher level.

Finally, close the output stream.

A complete example showing how to invoke a stream-based encode method is as follows:

   // Note: personnelRecord object was previously populated with data

   Asn1BerOutputStream out = null;

   try {
      // Step 1: Create an output stream object. This object uses the
      // default size increment for buffer expansion..



Procedure for Calling Java BER
Stream-Oriented Encode Methods 

70

      out = new Asn1BerOutputStream
         (new FileOutputStream (filename));

      // Step 2: Invoke the encode method. Note that it must be done
      // from within a try/catch block..

      personnelRecord.encode (out, true);

      if (trace) {
          System.out.println ("Encoding was successful");
          System.out.println ("Hex dump of encoded record:");
          encodeBuffer.hexDump ();
          System.out.println ("Binary dump:");
          encodeBuffer.binDump ();
      }
   }
   catch (Exception e) {
      System.out.println (e.getMessage());
      e.printStackTrace();
      return;
   }
   finally {

      // Step 3: Close the output stream, if opened

      try {
          if (out != null)
              out.close ();
      }
      catch (Exception e) {}
   }

If you compare this example with the BER encoding example in Figure 2, you will see the encoding
procedure is almost identical. This makes it very easy to switch encoding methods should the need
arise. All you need to do is change Asn1BerEncodeBuffer to Asn1BerOutputStream and remove the
explicit code that writes the messages into the stream. Also closing of the stream should be added.



71

Generated BER/DER/CER Decode
Methods
For each ASN.1 production defined in the ASN.1 source file, a Java decode method may be gen-
erated. This method will decode an ASN.1 message into public member variables within the Java
object.

As was the case for encode methods, a decode method is only generated if it is required to alter the
default method in the base class. The Java model is built on inheritance from a set of common run-
time base classes. These run-time classes contain default implementations of encode/decode meth-
ods that handle the encoding/decoding of the basic types. These default implementations include
support for handling the universal tags associated with the types as defined in the X.680 standard.

Generated Java Method Format and
Calling Parameters
The signature for a Java BER decode method is as follows:

   public void decode (Asn1BerDecodeBuffer buffer, boolean explicit,
                       int implicitLength)
      throws Asn1Exception, java.io.Exception

The buffer argument is a reference of an Asn1BerDecodeBuffer object that describes the message
that is being decoded. This must be created and initialized before calling any decode method. See
the description of this class in the Java Run- Time Classes section for details on how this class
is used.

The explicit and implicitLength arguments specify whether or not an explicit tag should be parsed
from the encoded contents. The average user will almost always want to set explicit to true and
implicitLength to zero. The only time these arguments would not be set this way is if a user wanted
to directly decode contents with no tag/length information. These arguments are used primarily by
the compiler when generating internal calls to properly handle implicit and explicit tagging.

The decode method returns no result. Unlike the C/C++ version, a negative status value is not re-
turned to indicate a failure. That is handled by the exception mechanism. All ASN1C Java excep-
tions are derived from the Asn1Exception base class. See the section on exceptions for a complete
list and description of the various ASN.1 exceptions that can be thrown. The java.io.Exception that
can be thrown is in the read method within the decode buffer base class. This method attempts to
read data from an input stream using the methods in the java.io package.



Procedure for Calling Ja-
va BER Decode Methods

72

Procedure for Calling Java BER De-
code Methods
The general procedure to decode an ASN.1 BER message involves the following three steps:

1. Create a decode message buffer object to describe the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

The first step is the creation of a decode message buffer object. The Asn1BerDecodeBuffer object
contains constructors that can either accept a message as a byte array or as an I/O input stream.
The input stream option makes it possible to decode messages directly from other mediums other
than a memory buffer (for example, a message can be decoded directly from a file).

The Asn1BerDecodeBuffer object contains a method called peekTag that can be used to determine
the outer-level tag on a message. This can be used to determine the type of message received in
applications that must deal with multiple message types.

The generated decode method can then be invoked to decode the message. The calling arguments
were described earlier. As per the Java standard, this method must be invoked from within a try/
catch block to catch the possible exceptions that may be thrown. Alternatively, the method from
which the decode method is called can declare that it throws the exceptions leaving them to be
dealt with at a higher level.

The final step is to process the data. All data is contained within public member variables so access
is quite easy. And of course Java has the distinct advantage of not requiring any clean-up once
you are done with the data. The garbage collector will collect the unused memory when it is no
longer referenced.

A complete example showing how to invoke a decode method is as follows:

   try {

      // Step 1: create a decode message buffer object to describe the
      // message to be decoded. This example will use a file input
      // stream to decode a message directly from a binary file..

      // Create an input file stream object

      FileInputStream in = new FileInputStream (filename);

      // Create a decode buffer object

      Asn1BerDecodeBuffer decodeBuffer = new Asn1BerDecodeBuffer (in);

      // Step 2: create an object of the generated type and invoke the
      // decode method..



Reuse of Java Decoding Objects

73

      PersonnelRecord personnelRecord = new PersonnelRecord ();
      personnelRecord.decode (decodeBuffer);

      // Step 3: process the data

      if (trace) {
         System.out.println ("Decode was successful");
         personnelRecord.print (System.out, "personnelRecord", 0);
      }
   }
   catch (Exception e) {
      System.out.println (e.getMessage());
      e.printStackTrace();
      return;
   }

Reuse of Java Decoding Objects
The sample above showed the BER decoding of a single message. In a typical application, a loop
would be involved to decode a series of messages. While it would be possible to use the code shown
above in a loop, it would not be the most efficient way to decode the messages. Objects should
be reused where possible to avoid the overhead of excessive memory allocations and garbage col-
lection.

A single decode buffer object can be used to process a stream of messages. If the decode message
buffer is created using an input stream object that contains a series of messages (for example, a file
containing multiple records or a communications device), all that needs to be done is the continuous
invocation of the BER decode method for the given message type.

Nothing special needs to be done to reuse the generated type object for decoding. The decoder
will automatically all the internal init() method before decoding to make sure all items are reset
to their starting state.

In the example above, all that would need to be done to decode a series of personnel records is the
inclusion of a loop after the PersonnelRecord object was created in step 2:

   for (;;) {
      personnelRecord.decode (decodeBuffer);

      if (trace) {
         System.out.println ("Decode was successful");
         personnelRecord.print (System.out, "personnelRecord", 0);
      }
   }



74



75

Generated PER Encode Methods
The generation of methods to encode data in accordance with the Packed Encoding Rules (PER)
is similar to how methods were generated in the BER/DER case discussed previously. For each
ASN.1 production defined in the ASN.1 source file, a Java encode method may be generated. This
function will convert a populated variable of the given type into an encoded ASN.1 message.

An encode method is only generated if it is required to alter the encoding of the base class method.
The Java model is built on inheritance from a set of common run-time base classes. These run-time
classes contain default implementations of encode/decode methods that handle the encoding/de-
coding of the basic types.

For simple assignments, the generation of an encode method is not necessary. For example, the
following production will not result in the generation of an encode method:

   X ::= INTEGER

In this case, the generated Java class extends the Asn1Integer base class and the default encode
method within this class is sufficient to encode a value of the generated type.

In the case of BER/DER, a custom encode method was generated if a) the type was tagged, or b)
it contained a testable constraint. In the case of PER, only the latter condition will cause a custom
method to be generated. The reason is because PER basically ignores the tags on tagged types and
they therefore have no effect on the final decoded message component.

For example, the following declaration will cause a custom encode method to be generated because
the value range constraint is a PER-visible that will alter the encoding:

   X ::= INTEGER (1..255)

In this case, special logic is necessary to apply the value range constraint.

Some types will always cause encode methods to be generated. At the primitive level, this is true
for the ENUMERATED type. This type will always contain a custom set of enumerated values.
All constructed types (SEQUENCE, SET, SEQUENCE/SET OF, and CHOICE) will cause encode
methods to be added to the generated classes.

Generated Java Method Format and
Calling Parameters
The signature for a Java PER encode method is as follows:

   public void encode (Asn1PerEncodeBuffer buffer)
      throws Asn1Exception, java.io.IOException

The buffer argument is a reference of an Asn1PerEncodeBuffer object that describes the buffer into
which a message is to be encoded. This must be created and initialized before calling any encode



Procedure for Calling Ja-
va PER Encode Methods

76

method. See the description of this class in the Java Run-Time Classes section for details on how
this class is used.

The PER encode methods do not return a value. This is different than the C/C++ version that
returns a negative status value to indicate an encoding failure. For Java, errors are reported via
the exception mechanism. All ASN1C Java exceptions are derived from the Asn1Exception base
class. See the section on exceptions for a complete list and description of the various exceptions
that can be thrown.

Procedure for Calling Java PER En-
code Methods
The Java class variables corresponding to each of the ASN.1 types and method of population are
the same as they were in the BER encoding case. See the section on BER encoding for instructions
on how to populate the variables prior to encoding.

Once an object's member variables have been populated, the object's encode method can be invoked
to encode the value. The general procedure to do this involves the following three steps:

1. Create an encode message buffer object into which the value will be encoded

2. Invoke the encode method

3. Invoke encode message buffer methods to access the encoded message component

The first step is the creation of an encode message buffer object. For PER encoding, this is an
object of the Asn1PerEncodeBuffer class. The following constructors are available for creating a
PER encode buffer object:

   public Asn1PerEncodeBuffer (boolean aligned);

   public Asn1PerEncodeBuffer (boolean aligned, int sizeIncrement);

The first argument indicates whether PER aligned or unaligned encoding should be done. The sec-
ond form of the constructor contains a size increment argument. This argument will determine how
often the buffer will need to be resized to hold large messages. If you know that you will be encod-
ing large messages, then this object should be constructed with a large value for the increment. If
you know that you will be encoding small messages in a constrained environment, then this value
can be set very low. The default constructor sets the value to a reasonable mid-range value (see
SIZE_INCREMENT in Asn1EncodeBuffer.java, as of this writing the value was set to 1024).

The second step is the invocation of the encode method. The calling arguments were described
earlier. As per the Java standard, this method must be invoked from within a try/catch block to
catch the possible exceptions that may be thrown. Alternatively, the method from which the encode
method is called can declare that it throws an Asn1Exception leaving it to be dealt with at a higher
level.



Procedure for Calling Ja-
va PER Encode Methods

77

Finally, encode buffer methods can be called to access the encoded message component. The Java
API provides an object called a ByteArrayInputStream that provides a way to look at the encoded
component as a stream. The encode buffer object provides a method called getInputStream that
returns a byte array input stream representing the message component. This is the preferred way
to access the encoded component.

In addition to getInputStream there is a getMsgCopy function that will retrieve a copy of the gen-
erated message into a byte array object. This is somewhat slower because a copy needs to be done.
Another option that is only available when doing PER encoding is the getBuffer method. This re-
turns a reference to the actual message buffer into which the message was encoded. Since a PER
message is encoded front-to-back (unlike the back-to-front used in BER/DER encoding), the buffer
reference returned will point to the start of the encoded message. The getMsgByteCnt method can
then be used to get the message length in bytes or the getMsgBitCnt method can be called to get
the length in bits.

The encode buffer class also contains other methods for operating directly on the encoded com-
ponent (for example, the write method can be used to write it to a file or other medium). And of
course, one could derive their own special encode buffer class from this class to add more func-
tionality. See the description of the Asn1PerEncodeBuffer class in the runtime section for a full
description of the available methods.

A complete example showing how to invoke a PER encode method is as follows:

   // Note: personnelRecord object was previously populated with data

   // Step 1: Create a message buffer object. This object uses the
   // default size increment for buffer expansion..

   Asn1PerEncodeBuffer encodeBuffer = new Asn1PerEncodeBuffer();

   // Step 2: Invoke the encode method. Note that it must be done
   // from within a try/catch block..

   try {
       personnelRecord.encode (encodeBuffer);

       if (trace) {
           System.out.println ("Encoding was successful");
           System.out.println ("Hex dump of encoded record:");
           encodeBuffer.hexDump ();
           System.out.println ("Binary dump:");
           encodeBuffer.binDump ("personnelRecord");
       }

       // Step 3: Access the encoded message component. In this
       // case, we use methods in the class to write the component
       // to a file and output a formatted dump to the message.dmp
       // file..

       // Write the encoded record to a file

       encodeBuffer.write (new FileOutputStream (filename));



Reuse of Java Encoding Objects

78

       // Generate a dump file for comparisons

       encodeBuffer.hexDump
          (new PrintStream (new FileOutputStream ("message.dmp")));

       // We can also directly access the buffer as follows:

       byte[] buffer = encodeBuffer.getBuffer();
       int msglen = encodeBuffer.getMsgByteCnt();
   }
   catch (Exception e) {
       System.out.println (e.getMessage());
       e.printStackTrace();
       return;
   }

If you compare this example with the BER encoding example in Figure 2, you will see the encoding
procedure is almost identical. This makes it very easy to switch encoding methods should the need
arise. All you need to do is change Asn1BerEncodeBuffer to Asn1PerEncodeBuffer and remove
the explicit argument from the encode method call.

Reuse of Java Encoding Objects
The concept of reusing Java objects for PER encoding is the same as was described previously for
BER encoding. Basically, all that needs to be done is the creation of a single PER encode buffer
object and an object corresponding to the ASN.1 data type to be encoded outside of the processing
loop. These objects can then be reused to encode each instance of the messages to be sent. After
each message is encoded, the PER buffer must be reset for the next message by using the reset
method. See the section on reuse of objects in the BER encoding section for a more thorough
discussion and sample code on using this capability.



79

Generated PER Decode Methods
For each ASN.1 production defined in the ASN.1 source file, a Java decode method may be gen-
erated. This method will decode an ASN.1 message into public member variables within the Java
object.

As was the case for encode methods, a decode method is only generated if it is required to alter
the default method in the base class. The Java model is built on inheritance from a set of common
run-time base classes. These run-time classes contain default implementations of encode/decode
methods that handle the encoding/decoding of the basic types.

For primitive types, a custom PER decode method is only generated if one or more of the following
is true:

1. The type contains a PER-visible constraint

2. The generation of event handlers was specified

The exception to this rule is the ENUMERATED primitive type (or likewise, INTEGER type with
a named number list) that will always cause a decode method to be generated.

Constructed types will always cause custom PER decode methods to be generated.

Generated Java Method Format and
Calling Parameters
The signature for a Java PER decode method is as follows:

   public void decode (Asn1PerDecodeBuffer buffer)
      throws Asn1Exception, java.io.Exception

The buffer argument is a reference of an Asn1PerDecodeBuffer object that describes the message
that is being decoded. This must be created and initialized before calling any decode method. See
the description of this class in the Java Run- Time Classes section for details on how this class
is used.

The decode method returns no result. Unlike the C/C++ version, a negative status value is not re-
turned to indicate a failure. That is handled by the exception mechanism. All ASN1C Java excep-
tions are derived from the Asn1Exception base class. See the section on exceptions for a complete
list and description of the various ASN.1 exceptions that can be thrown. The java.io.Exception that
can be thrown is in the read method within the decode buffer base class. This method attempts to
read data from an input stream using the methods in the java.io package.



Procedure for Calling Ja-
va PER Decode Methods

80

Procedure for Calling Java PER De-
code Methods
The general procedure to decode an ASN.1 PER message involves the following three steps:

1. Create a decode message buffer object to describe the message to be decoded

2. Invoke the decode method

3. Process the decoded data values

The first step is the creation of a decode message buffer object. The Asn1PerDecodeBuffer object
contains constructors that can either accept a message as a byte array or as an I/O input stream.
The input stream option makes it possible to decode messages directly from other mediums other
than a memory buffer (for example, a message can be decoded directly from a file or a socket).

Unlike BER or DER, no mechanism exists in PER to peek at an outer level tag or identifier to
identify the message type. This type must be known beforehand. Most protocols that employ PER
have a specific outer level type know as a "Protocol Data Unit" (PDU) that encompasses all of the
different message types that might be received. This is typically a CHOICE construct with each
option representing a different type of message.

The generated decode method for the PDU is invoked to decode the message. The calling arguments
were described earlier. As per the Java standard, this method must be invoked from within a try/
catch block to catch the possible exceptions that may be thrown. Alternatively, the method from
which the decode method is called can declare that it throws the exceptions leaving them to be
dealt with at a higher level.

The final step is to process the data. All data is contained within public member variables so access
is quite easy. All of the primitive data type classes contain a public member variable called value
that contains decoded data. This can be accessed in nested structures by prefixing value with each
of the element names from the top down. For example, the given name element in the Name type
shown earlier would be accessed as follows: name.givenName.value (this assumes an instance of
the Name class was created using the variable name name).

A complete example showing how to invoke a decode method is as follows:

   try {

      // Step 1: create a decode message buffer object to describe the
      // message to be decoded. This example will use a file input
      // stream to decode a message directly from a binary file..

      // Create an input file stream object

      FileInputStream in = new FileInputStream (filename);



Reuse of Java Decoding Objects

81

      // Create a decode buffer object

      Asn1PerDecodeBuffer decodeBuffer = new Asn1PerDecodeBuffer (in);

      // Step 2: create an object of the generated type and invoke the
      // decode method..

      PersonnelRecord personnelRecord = new PersonnelRecord ();
      personnelRecord.decode (decodeBuffer);

      // Step 3: process the data

      if (trace) {
         System.out.println ("Decode was successful");
         personnelRecord.print (System.out, "personnelRecord", 0);
      }
   }
   catch (Exception e) {
      System.out.println (e.getMessage());
      e.printStackTrace();
      return;
   }

Reuse of Java Decoding Objects
Java objects can be reused for decoding PER messages in the same way they were for BER mes-
sages. The decode buffer and message type objects are created outside of the main decoding loop.
Then in the main loop these objects are reused to process each input message. Data must be saved
from the message type object after each iteration because the contents of the object will be over-
written on each consecutive loop iteration. Nothing special needs to be done at the bottom of the
loop to ready the decoder for the next message. All necessary initialization will be handled inter-
nally.

Reuse of Java Decoding Objects
Java objects can be reused for decoding PER messages in the same way they were for BER mes-
sages. The decode buffer and message type objects are created outside of the main decoding loop.
Then in the main loop these objects are reused to process each input message. Data must be saved
from the message type object after each iteration because the contents of the object will be over-
written on each consecutive loop iteration. Nothing special needs to be done at the bottom of the
loop to ready the decoder for the next message. All necessary initialization will be handled inter-
nally.



82



83

Generated XER / XML Encode Methods
The generation of methods to encode data in accordance with the XML Encoding Rules (XER)
or for XSD-compliant XML is similar to how methods were generated in the BER/DER and PER
cases discussed previously. For each ASN.1 production defined in the ASN.1 source file, a Java
encode method may be generated. This function will convert a populated variable of the given type
into an encoded ASN.1 message.

An encode method is only generated if it is required to alter the encoding of the base class method.
The Java model is built on inheritance from a set of common run-time base classes. These run-time
classes contain default implementations of encode/decode methods that handle the encoding/de-
coding of the basic types.

For simple assignments, the generation of an encode method is not necessary. For example, the
following production will not result in the generation of an encode method:

   X ::= INTEGER

In this case, the generated Java class extends the Asn1Integer base class and the default encode
method within this class is sufficient to encode a value of the generated type.

In the case of XER or XML, a custom encode method is only generated if:

1. The ASN.1 type is constructed (SEQUENCE, SET, SEQUENCE OF, SET OF, or CHOICE).

2. The ASN.1 type contains a testable constraint (for example, INTEGER (1..100))

3. The ASN.1 type is enumerated. This includes an INTEGER type with named numbers, a BIT
STRING with named bit constants, or the ENUMERATED built-in type.

Generated Java Method Format and
Calling Parameters
The signature for a Java XER encode method is as follows:

   public void encode (Asn1XerEncoder buffer, String elemName)
      throws Asn1Exception, java.io.IOException

The signature for a Java XML encode method is similar:

   public void encode (Asn1XmlEncoder buffer, String elemName)
      throws Asn1Exception, java.io.IOException

The buffer argument is a reference to an Asn1XerEncoder or Asn1XmlEncoder derived object that
describes the buffer or output stream into which a message is to be encoded. Asn1XerEncoder



Procedure for Calling Ja-
va XER Encode Methods

84

is a base interface for the Asn1XerEncodeBuffer and Asn1XerOutputStream classes. Similarly,
Asn1XmlEncoder is an interface to a pure XML version of these base classes. There is no differ-
ence which encode method is used: output stream or message buffer. The generated logic is the
same, the difference is only in the first parameter of the encode method. This must be created and
initialized before calling any encode method. See the description of this class in the Java Run-Time
Classes section for details on how this class is used.

The elemName argument is a reference to a string containing the element name text. This text
is used to form the standard XML angle-bracketed wrapper that is applied to each element in a
message. Note the name passed must not contain the angle-brackets (i.e. the < > characters). These
will be added by the encode method.

The elemName can be passed in different ways to control how the name is applied. The normal
way is to pass a name that is applied as the element name of the element. If null is passed, then the
default element name for the referenced ASN.1 built-in type is used. For example, <BOOLEAN>
is the default element name for the ASN.1 BOOLEAN type. The complete list of default element
names can be found in the X.693 standard. If an empty string is passed (i.e. ""), this tells the encode
method to omit the element name string all together and just encode the value (this is similar to
implicit tagging in the BER case).

The XER or XML encode methods do not return a value. This is different than the C/C++ version
that returns a negative status value to indicate an encoding failure. For Java, errors are reported via
the exception mechanism. All ASN1C Java exceptions are derived from the Asn1Exception base
class. See the section on exceptions for a complete list and description of the various exceptions
that can be thrown. If I/O error occurs then the java.io.IOException is thrown.

Procedure for Calling Java XER En-
code Methods
The Java class variables corresponding to each of the ASN.1 types and method of population are
the same as they were in the BER encoding case. See the section Populating Generated Variables
for Encoding for instructions on how to populate the variables prior to encoding.

Once an object's member variables have been populated, the object's encode method can be invoked
to encode the value. The general procedure to do this involves the following three steps:

1. Create an encode message buffer or output stream object into which the value will be encoded

2. Invoke encode methods. These include the encodeStartDocument and encodeEndDocument
methods from the Asn1XerEncodeBuffer class and the encode method from the ASN1C gener-
ated class.

3. If the encode message buffer is used: invoke encode message buffer methods to access the
encoded message component. If the output stream is used: close the stream.



Procedure for Calling Ja-
va XER Encode Methods

85

The first step is the creation of an encode message buffer object. For XER encoding, this is an
object of the Asn1XerEncodeBuffer class. The following constructors are available for creating an
XER encode buffer object:

   public Asn1XerEncodeBuffer ();

   public Asn1XerEncodeBuffer (boolean canonical, int sizeIncrement);

The default constructor sets all internal buffer control variables to default values. Canonical XER
is set to false and size increment is set to 1024. The other forms of the constructor allow these vari-
ables to be changed. Canonical XER specifies that the canonical form of XER encoding (CXER
as specified in X.693) should be used. Size increment specifies the amount by which the dynam-
ic encode buffer should be expanded when it fills up. This should be set lower for small, memo-
ry-constrained environments and higher if large messages are being encoded.

If the output stream method is used then the first step is the creation of an output stream. For
XER encoding, this is an object of the Asn1XerOutputStream class. The following constructors are
available for creating an XER encode buffer object:

   public Asn1XerOutputStream (OutputStream os);

   public Asn1XerOutputStream (OutputStream os, boolean canonical, int bufSize);

The first constructor creates a buffered XER output stream with default size of an internal buffer.
Canonical XER is set to false. The other form of the constructor allows these variables to be
changed. Canonical XER specifies that the canonical form of XER encoding (CXER as specified
in X.693) should be used. The buffer size argument specifies the size of the internal buffer of the
stream. Larger buffer sizes typically provide better performance at the expense of increased mem-
ory consumption.

Similar classes exist for XML encode buffer and streams:

   public Asn1XmlEncodeBuffer ()
   public Asn1XmlEncodeBuffer (int sizeIncrement)
   public Asn1XmlOutputStream (OutputStream os)
   public Asn1XmlOutputStream (OutputStream os, int bufSize)

The main difference is the XML classes to not have a canonical XML option; therefore, there is
not cxer or canonical boolean argument.

The second step is the invocation of the encode methods. The calling arguments were described
earlier. As per the Java standard, this method must be invoked from within a try/catch block to
catch the possible Asn1Exception or java.io.IOException that may be thrown. Alternatively, the
method from which the encode method is called can declare that it throws Asn1Exception and
java.io.IOException leaving it to be dealt with at a higher level.

Finally, if a message buffer is used, encode buffer methods can be called to access the encoded
message component. The Java API provides an object called a ByteArrayInputStream that provides
a way to look at the encoded component as a stream. The encode buffer object provides a method



Procedure for Calling Ja-
va XER Encode Methods

86

called getInputStream that returns a byte array input stream representing the message component.
This is the preferred way to access the encoded component.

In addition to getInputStream, there is a getMsgCopy method that will retrieve a copy of the gen-
erated message into a byte array object. This is somewhat slower because a copy needs to be done.
Another option that is available when doing XER encoding is the getBuffer method. This returns a
reference to the actual message buffer into which the message was encoded. Since an XER message
is encoded front-to-back (unlike the back-to-front used in BER/DER encoding), the buffer refer-
ence returned will point to the start of the encoded message. The getMsgLength method can then be
used to get the message length (in bytes). Note that the byte count may not correspond to the actual
character count as UTF-8 encoding is used and some characters may be multiple bytes in length.

If an output stream is used, the stream should be closed when encoding is complete to ensure all
buffered data is flushed to the output device.

The Asn1XerEncodeBuffer encode buffer class also contains other methods for operating directly
on the encoded component (for example, the write method can be used to write it to a file or other
medium). A user could also derive their own special encode buffer class from this class to add
more functionality. See the description of the  Asn1XerEncodeBuffer  class in the run-time section
for a full description of the available methods.

A complete example showing how to invoke an XER encode method is as follows:

   // Note: personnelRecord object was previously populated with data

   // Step 1: Create a message buffer object. This object uses
   // standard XER (non-canonical) and the default size increment
   // for buffer expansion..

   Asn1XerEncodeBuffer encodeBuffer = new Asn1XerEncodeBuffer();

   // Step 2: Invoke the encode methods. These include
   // encodeStartDocument to encode the XML document header,
   // the generated Java encode method to encode the document body,
   // and the encodeEndDocument method to complete the message.
   // Note that these methods must be invoked from within a
   // try/catch block..

   try {
      encodeBuffer.encodeStartDocument ();

      personnelRecord.encode (encodeBuffer, null);

      encodeBuffer.encodeEndDocument ();

      if (trace) {
         System.out.println ("Encoding was successful");
         encodeBuffer.write (System.out);
      }

      // Step 3: Access the encoded message component. In this
      // case, we use methods in the class to write the encoded
      // XML document to a file..



Procedure for Calling Ja-
va XER Encode Methods

87

      encodeBuffer.write (new FileOutputStream (filename));

      // We can also directly access the buffer as follows:

      byte[] buffer = encodeBuffer.getBuffer();
      int msglen = encodeBuffer.getMsgByteCnt();
   }
   catch (Exception e) {
      System.out.println (e.getMessage());
      e.printStackTrace();
      return;
   }

An example showing stream-based encoding is as follows:

   // Note: personnelRecord object was previously populated with data

   Asn1XerOutputSteram out = null;

   try {

      // Step 1: Create an output stream object. This object
      // uses standard XER (non-canonical) and the default
      // internal buffer's size.

      out = new Asn1OutputStream(new FileOutputStream (filename));

      // Step 2: Invoke the encode methods. These include
      // encodeStartDocument to encode the XML document header,
      // the generated Java encode method to encode the document body,
      // and the encodeEndDocument method to complete the message.
      // Note that these methods must be invoked from within a
      // try/catch block..

      out.encodeStartDocument ();

      personnelRecord.encode (out, null);

      out.encodeEndDocument ();

      if (trace) {
         System.out.println ("Encoding was successful");
         encodeBuffer.write (System.out);
      }
   }
   catch (Exception e) {
      System.out.println (e.getMessage());
      e.printStackTrace();
      return;
   }
   finally {
      // Step 3: Close the stream.

      try {
         if (out != null)
            out.close ();
      }
      catch (Exception e) {}
   }



Procedure for Calling Ja-
va XER Encode Methods

88

If you compare these examples with the other encoding examples, you will see the procedures are
similar. This makes it very easy to switch encoding methods should the need arise.

In the case of XML encode, the procedure is very similar. The only difference is that it is not
necessary to call the encodeStartDocument and encodeEndDocument methods. The are built into
the generated encode method for PDU data types.

The resulting XML document from running the program above is as follows:

   <?xml version="1.0" encoding="UTF-8"?>
   <PersonnelRecord>
      <name>
         <givenName>John</givenName>
         <initial>P</initial>
         <familyName>Smith</familyName>
      </name>
      <number>51</number>
      <title>Director</title>
      <dateOfHire>19710917</dateOfHire>
      <nameOfSpouse>
         <givenName>Mary</givenName>
         <initial>T</initial>
         <familyName>Smith</familyName>
      </nameOfSpouse>
      <children>
         <ChildInformation>
            <name>
               <givenName>Ralph</givenName>
               <initial>T</initial>
               <familyName>Smith</familyName>
            </name>
            <dateOfBirth>19571111</dateOfBirth>
         </ChildInformation>
         <ChildInformation>
            <name>
               <givenName>Susan</givenName>
               <initial>B</initial>
               <familyName>Jones</familyName>
            </name>
            <dateOfBirth>19590717</dateOfBirth>
         </ChildInformation>
      </children>
   </PersonnelRecord>



89

Generated XER / XML Decode Methods
The code generated to decode XML messages is different than that of the other encoding rules. This
is because off-theshelf XML parser software is used to parse the XML documents to be decoded.
This software contains a common interface known as the Simple API for XML (or SAX) that is a
de-facto standard that is supported by most parsers. ASN1C generates an implementation of the
content handler interface defined by this standard. This implementation receives the parsed XML
data and uses it to populate the structures generated by the compiler.

The default XML parser used for Java is the XERCES parser developed by the Apache Software
Foundation ( http:// xml.apache.org ). This is open source software and implementations of the
parser are available for both C++ and Java. As mentioned, since SAX is a de-facto standard, it
should be a relatively straightforward process to use the generated handlers with any other parser.

A diagram showing the components used in the XML decode process is as follows:

Step 1: Generate code:

Step 2: Build Application:



90

ASN1C generates code to implement the following methods defined in SAX content handler in-
terface:

   startElement

   characters

   endElement

The interface defines other methods that can be implemented as well, but these are sufficient to
decode XER encoded data. These methods are added to an inner SAX handler class generated for
each ASN.1 production.

The procedure to invoke the generated decode method is similar to that for the other encoding
rules. It is as follows:

1. Instantiate an XMLReader object. The XML parser interface should provide a factory method
for creating an object of this type for any vendor-specific XML parser implementation.

2. Instantiate a generated Java <ProdName> object to hold the decoded message data.

3. Invoke the <ProdName> object decode method passing the reader created in step 1 and the URI
of the XML document to be parsed. This method initiates and invokes the XML parser's parse
method to parse the document. This, in turn, invokes the generated SAX handler methods.

4. Methods within the <ProdName> object can now be used to access the decoded data. The mem-
ber variables that were declared to be public can be accessed directly.

5. Error handling is accomplished using a try-catch block to catch SAX exceptions.

A program fragment that could be used to decode an employee record is as follows:

   public class Reader {
     public static void main (String args[]) {
        String filename = "employee.xml";
        String vendorParserClass =
           "org.apache.xerces.parsers.SAXParser";

        try {
           // Create an XML reader object

           XMLReader reader =
              XMLReaderFactory.createXMLReader (vendorParserClass);

           // Read and decode the message

           PersonnelRecord personnelRecord = new PersonnelRecord ();
           personnelRecord.decode (reader, filename);
           if (trace) {
              System.out.println ("Decode was successful");
              personnelRecord.print (System.out, "personnelRecord", 0);
           }
        }
        catch (Exception e) {



91

           System.out.println (e.getMessage());
           e.printStackTrace();
           return;
        }
     }
   }



92



93

Table Constraint Processing
The ASN1C Java code generator can generate code to process ASN.1 table constraints as specified
in the X.681 and X.682 ASN.1 standards. This code is generated through the use of the -tables
option. This instructs the compiler to generate additional methods and tables to allow multi-level
message types specified using table constraints to be encoded or decoded with a single method call.

Special code is generated for the CLASS, Information Object, and Information Object Set items
to create the table necessary to for table constraint processing. Then additional encode and decode
methods are generated that use these tables to branch to the multiple message levels.

CLASS specification
NOTE: Class code generation is done only when -tables is specified.

This additional code is generated to support the processing required to verify table constraints,
which is intended for use only in compiler-generated code. Therefore, it is not necessary for the
average user to understand the mappings in order to use the product. The information presented here
is informative only to provide a better understanding of how the compiler handles table constraints.

The Java class generated to model an ASN.1 class contains member variables for each of the fields
within the class. To create an instance of this class, an information object is required to populate
these variables with the values defined in the ASN.1 information object specification.

Java code will be generated for each ASN.1 CLASS definition in a separate Java source file con-
taining a Java class corresponding to the ASN.1 CLASS definition. The name of the source file
and class is of the following format:

<ClassName>.java

In this definition, <ClassName> would be replaced with the name of the ASN.1 CLASS for which
this file is generated.

Data Member Generation
For each of the following ASN.1 CLASS fields, a corresponding member variable is generated in
the Java class definition:

For a value field:

   public <TypeName> <FieldName>;

For a type field:

   public Asn1Type <FieldName>;



Method and Constructor Generation 

94

For an information object field:

   public <ClassName> <FieldName>;

For an information object set field:

public <ClassName> <FieldName>;

where:

<FieldName> is replaced with the name of the field.

<TypeName> is replaced with the generated runtime Java classname for the ASN.1 Type.

<ClassName> is replaced with the name of the information object class.

For a type field definition, an element with type Asn1Type is generated which is the base class for
all types in the Java runtime package. A type field can hold a value of any type.

Method and Constructor Generation
Each generated Java class will have two constructors. The first constructor will be the default
constructor. This will initialize each member variable value to null. The second constructor will
accept values for all the data members.

Example

As an example, consider the following ASN.1 class definition :

   ATTRIBUTE ::= CLASS {
      &Type,
      &id        OBJECT IDENTIFIER UNIQUE
   }
   WITH SYNTAX { WITH SYNTAX &Type ID &id }

A file named ATTRIBUTE.java is generated with following definition:

   public class ATTRIBUTE {
     public Asn1Type Type;
     public Asn1ObjectIdentifier id;

     public ATTRIBUTE() {
        Type = null;
        id = null;
     }

     public ATTRIBUTE(
        Asn1Type Type_,
        Asn1ObjectIdentifier id_
        ) {
        Type = Type_;
        id = id_;
     }
   }



Method and Constructor Generation 

95

NOTE: If the ASN.1 type name is same as the ASN.1 class name (ignoring case) in a single module
definition, then the ASN.1 class name will be changed to following:

   <ClassName>_CLASS

In this definition, <ClassName> would be replaced with the name of the ASN.1 CLASS and the
literal token "_CLASS" would be appended.

For example:

   Test DEFINITION ::= BEGIN
      Attribute ::= INTEGER
      ATTRIBUTE ::= ABSTRACT-SYNTAX
   END

ASN1C will change the ATTRIBUTE class name to ATTRIBUTE_CLASS to avoid conflicts with
the Attribute type.

This automated feature will help users to successfully compile the generated code without having
to manually change the name via a configuration file setting.

Additional Java classes are generated to create types for fields within the class definitions as fol-
lows:

1. New type assignments are created for TypeField type definitions as follows:

   _<ClassName>_<FieldName> ::= <Type>

Here ClassName is replaced with name of the Class Assignment and FieldName is replaced
with name of the field. Type is the type definition in the ASN.1 CLASS's TypeField.

This type is used as a defined type in the information object definition for absent values of the
TypeField. It is also useful for the user to generate a value for a related OpenType definition
in a table constraint.

2. New type assignments are created for ValueField or ValueSetField type definitions if the type
is with a constraint definition and/or the type is Sequence / Set / Choice / Sequenceof / SetOf
definition.

   _<ClassName>_<FieldName> ::= <Type>

Here ClassName is replaced with name of the Class Assignment and FieldName is replaced with
name of the ValueField or ValueSetField. Type is the type definition in The ASN.1 CLASS's
ValueField or ValueSetField. This type will appear as a defined type in the ASN.1 CLASS's
ValueField or ValueSetField.

This new type assignment is used for compiler internal code generation purpose. It is not de-
signed for use by the end user.

3. New value assignments are created for ValueField default value definitions as follows:

   _<ClassName>_<FieldName>_default <Type> ::= <Value>



ABSTRACT-SYNTAX 

96

Here ClassName is replaced with name of the Class Assignment and FieldName is replaced
with name of the ValueField. Value is the default value in the ASN.1 CLASS's ValueField &
Type is the type in the ASN.1 CLASS's ValueField.

This value is used as a defined value in the information object definition for an absent value of
the field. This new value assignment is used for compiler internal code generation purpose. It
is not designed for use by the end user.

ABSTRACT-SYNTAX
The ASN.1 ABSTRACT-SYNTAX class is a useful class definition used to declare the top-level
protocol data units (PDU's) defined within a specification. The class is described using the follow-
ing ASN.1 definition:

   ABSTRACT-SYNTAX ::= CLASS {
      &id OBJECT IDENTIFIER UNIQUE,
      &Type,
      &property BIT STRING { handles-invalid-encoding(0)} DEFAULT {}
   }
   WITH SYNTAX {
      &Type IDENTIFIED BY &id [HAS PROPERTY &property]
   }

ASN1C is used to create a meta-definition for this structure. The definition is stored in the file
Asn1AbstractSyntax.java (or Asn1XerAbstractSyntax.java for XER). An object created from the
resulting Java class is populated just like any other compiler-generated structure for working with
ASN.1 data.

TYPE-IDENTIFIER
The ASN.1 TYPE-IDENTIFIER class is a useful class definition for uniquely identifying typed
data at runtime. The class is described using the following ASN.1 definition:

   TYPE-IDENTIFIER ::= CLASS {
      &id OBJECT IDENTIFIER UNIQUE,
      &Type
   }
   WITH SYNTAX { &Type IDENTIFIED BY &id }

The ASN.1 compiler is used to create a meta-definition for this structure. The definition is stored in
the file Asn1TypeIdentifier.java (or Asn1XerTypeIdentifier.java for XER). An object created from
the resulting Java class is populated just like any other compiler-generated structure for working
with ASN.1 data.

Information Object
NOTE: Information Object code generation is only done when the -tables option is selected.



Information Object

97

This additional code is generated to support the processing required to verify table constraints,
which is intended for use only in compiler-generated code. Therefore, it is not necessary for the
average user to understand the mappings in order to use the product. The information presented here
is informative only to provide a better understanding of how the compiler handles table constraints.

Information Object code will be generated in a Java source file with a special class to hold the
values. The name of the source file and class is of the following format:

   _<ModuleName>Values.java

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which
the values are defined.

For each Information Object defined within a specification, a Java constant is generated which is
an instance of the ASN.1 CLASS definition for the object. Each Information Object constant calls
the Class constructor with the field value specified in the ASN.1 information object definition.

If the ASN.1 CLASS field is optional and the field value is absent in the Information Object defi-
nition, then its corresponding member variable will be initialized to "null". If the ASN.1 CLASS
field has a default value and its field value is absent in the Information Object, then the generated
code for the Information Object will set the Class field's value to the default value.

ASN.1 definition:

   <name> <ClassName> ::= <InfoObject>

Generated Java constants:

   public final static <ClassName> <name> =
      new <ClassName> (<InfoObject values>>);

For example, consider the following Information Object declaration for the above ATTRIBUTE
class:

   name ATTRIBUTE ::= {
      WITH SYNTAX VisibleString
      ID { 0 1 1 }
   }

This would result in the following Java constant being generated:

   public static final ATTRIBUTE name =
      new ATTRIBUTE (
         new Asn1VisibleString(),
         new Asn1ObjectIdentifier(new int[]{0, 1, 1}));

NOTE: The following new Type Assignment is created for each TypeField's type definition if the
type is one of the following ASN.1 built-in types: Sequence / Set / SequenceOf / SetOf / Choice /
Constrained Type / Enumerated Type / NamedInteger Type / NamedBitList Type / Parameterized-
Type:

   _<ObjectName>_<FieldName> ::= <Type>



Information Object Set

98

Here ObjectName is replaced with name of the Object Assignment. If Object is defined in Object-
Set, then ObjectName is replaced with the name of the ObjectSet Assignment. FieldName is re-
placed with name of this type field. Type is the type definition in Object's typefield.

This type is used as Defined Type in the information object definition for type field. It is also useful
for the user to generate value for related OpenType definition in table constraint.

Information Object Set
NOTE: Information Object Set code generation is only done when the -tables option is selected.

This additional code is generated to support the processing required to verify table constraints
which is intended for use only in compiler-generated code. Therefore, it is not necessary for the
average user to understand the mappings in order to use the product. The information presented here
is informative only to provide a better understanding of how the compiler handles table constraints.

Information Object code will be generated in a Java source file with a special class to hold the
values. The name of the source file and class is of the following format:

   _<ModuleName>Values.java

In this definition, <ModuleName> would be replaced with the name of the ASN.1 module in which
the Information Object Sets are defined.

Each Information Object Set specification causes a Java constant to be generated containing an
array of Information Object values. Each object in the array is an instance of the equivalent Java
class representing the corresponding ASN.1 information object

As of this writing, a static array is used to hold the objects, but this could be changed to something
like a linked list or hash.

ASN.1 definition:

   <name> <ClassName> ::= { <Information Object1> | <Information Object2> }

Generated Java constants:

   public static final <ClassName> <name> =
      new <ClassName> {<Information Object1>, <Information Object1> };

For example, consider the following Information Object Set declaration for above ATTRIBUTE
definition:

   SupportedAttributes ATTRIBUTE ::= { name | commonName }

This would result in the following Java constant being generated:

   public static final ATTRIBUTE[] SupportedAttributes =



Generated Information Object Table Structure

99

      new ATTRIBUTE[] {
         _TestValues.name,
         _TestValues.commonName
   };

Generated Information Object Table
Structure
Information Objects and Classes are used to define multi-layer protocols in which "holes" are de-
fined within ASN.1 types for passing message components to different layers for processing. These
items are also used to define the contents of various messages that are allowed in a particular ex-
change of messages. The ASN1C compiler extracts the types involved in these message exchanges
and generates encoders/decoders for them. The "holes" in the types are accounted for by adding
open type holders to the generated structures. These open type holders consist of a byte array for
storing information on an encoded message fragment for processing at the next level.

The ASN1C compiler is capable of generating code in one of two forms for information in an
object specification:

1. Simple form: in this form, references to variable type fields within standard types are simply
treated as open types and an open type placeholder is inserted.

2. Table form: in this form, all of the classes, objects, and object sets within a specification result
in the generation of code for parsing and formatting the information field references within
standard type structures.

The second form is selected by specifying the –tables command line option.

To better understand the support in this area, the individual components of Information Object
specifications are examined. We begin with the "CLASS" specification that provides a schema for
Information Object definitions. A sample class specification is as follows:

   OPERATION ::= CLASS {
      &operationCode CHOICE { local INTEGER,
                     global OBJECT IDENTIFIER }
      &ArgumentType,
      &ResultType,
      &Errors ERROR OPTIONAL
   }

Users familiar with ASN.1 will recognize this as a simplified definition of the ROSE OPERATION
MACRO using the Information Object format. When a class specification such as this is parsed,
information on its fields is maintained in memory for later reference. In the simple form of code
generation, the class definition itself does not result in the generation of any corresponding Java
code. It is only an abstract template that will be used to define new items later on in the specification.
In the table form, a Java container class is generated to hold the Information Object instances of
the ASN.1 CLASS.



Simple Form Code Generation 

100

Fields from within the class can be referenced in standard ASN.1 types. It is these types of refer-
ences that the compiler is mainly concerned with. These are typically "header" types that are used
to add a common header to a variety of other message body types. An example would be the fol-
lowing ASN.1 type definition for a ROSE invoke message header:

   Invoke ::= SEQUENCE {
      invokeID INTEGER,
      opcode OPERATION.&operationCode,
      argumentOPERATION.&ArgumentType
   }

This is a very simple case that purposely omits a lot of additional information such as Information
Object Set constraints that are typically part of definitions such as this. The reason this information
is not present is because we are just interested in showing the items that the compiler is concerned
with. We will use this type to demonstrate the simple form of code generation. We will then add
table constraints and discuss what changes when the –tables command line options is used.

The opcode field within this definition is an example of a fixed type field reference. It is known as
this because if you go back to the original class specification, you will see that operationCode is
defined to be of a specific type (namely a choice between a local and global value). The generated
typedef for this field will contain a reference to the type from the class definition.

The argument field is an example of a variable type field. In this case, if you refer back to the class
definition, you will see that no type is provided. This means that this field can contain an instance
of any encoded type (note: in practice, table constraints can be used with Information Object Sets to
limit the message types that can be placed in this field). The generated typedef for this field contains
an "open type" (Java Asn1OpenType class) reference to hold a previously encoded component to
be specified in the final message.

Simple Form Code Generation
In the simple form of information object code generation, the Invoke type above would result in
the following Java typedefs being generated:

   public class Invoke extends Asn1Type {
      public Asn1Integer invokeID;
      public OPERATION_operationCode opcode;
      public Asn1OpenType argument;

      ...
   }

The following would be the procedure to add the Invoke header type to an ASN.1 message body:

1. Encode the body type

2. Get the message bytes and length of the encoded body

3. Plug the bytes into the "data" argument of the open type constructor in the Invoke type variable.



Table Form Code Generation 

101

4. Populate the remaining Invoke type fields.

5. Encode the Invoke type to produce the final message.

In this case, the amount of code generated to support the information object references is minimal.
The amount of coding required by a user to encode or decode the variable type field elements,
however, can be rather large. This is a trade-off that exists between using the compiler generated
table constraints solution (as we will see below) and using the simple form.

Table Form Code Generation
If we now add table constraints to our original type definition, it might look as follows:

   Invoke ::= SEQUENCE {
      invokeID INTEGER,
      opcode OPERATION.&operationCode ({My-ops}),
      argument OPERATION.&ArgumentType ({My-ops}{@opcode})
   }

The "{My-ops}" constraint on the opcode element specifies an information object set (not shown)
that constrains the element value to one of the values in the object set. The {My-ops}{@opcode}
constraint on the argument element goes a step further – it ties the type of the field to the type
specified in the row that matches the given opcode value. ASN1C generates an in-memory table
for each of the items in the information object sets defined in a specification. In the example above,
a table would be generated for the My-ops information object set. The code generated for the type
would then use this table to verify that the given items in a structure that reference this table match
the constraints. The Java type generated for the SEQUENCE above when –tables is specified would
be as follows:

   public class Invoke extends Asn1Type {
     public Asn1Integer invokeID;
     public OPERATION_operationCode opcode;
     public Asn1Type argument;

     ...
   }

This is almost identical to the type generated in the simple case. The difference is that ASN1Type is
used instead for the argument element instead of ASN1OpenType. This type is defined as the base
class for all the generated ASN.1 types. It holds the value to be encoded or decoded. The way a
user Would use this to encode a value of this type is as follows:

1. Populate a variable of the type to be used as the argument to the invoke type.

2. Assign it to the argument member variable in the structure above.

3. Populate the remaining Invoke type fields.

4. Encode the Invoke type to produce the final message.



Additional Code Generat-
ed for the -tables Option 

102

Note that in this case, the intermediate type does not need to be manually encoded by the user.
The generated encoder has logic built-in to encode the complete message using the information
in the generated tables.

Additional Code Generated for the -tables Op-
tion
Following additional code is generated for type definition when the -tables command line option is
used. The code generated to support table constraints is intended for use only in compiler-generated
code. Therefore, it is not necessary for the average user to understand the mappings in order to use
the product. The information presented here is informative only to provide a better understanding
of how the compiler handles table constraints.

Additional equals() method will be generated for Sequence, Set, Sequence Of, Set Of or Choice
types if required for table constraint processing. This method will be an implementation of
Asn1Type.equals() virtual method. These methods are used by the generated code to verify that
data in a generated structure to be encoded (or data that has just been decoded) matches the table
constraint values.

An additional table constraint check method is also generated for each type that contains table
constraints. These functions have the following prototypes:

BER/DER:

   void checkTC (boolean decode);

PER:

   void checkTC (boolean decode, boolean aligned);

The decode argument is used to decide if this method is to used for encoding or decoding. The
aligned argument is for PER and specified whether aligned or unaligned encoding/decoding is in
effect.

The purpose of these methods is to verify that the fixed values within the table constraints are
what they should be and to encode or decode the open type fields using the encoder or decoder
methods from the Asn1Type objects assigned to the given table row. Calls to these functions are
automatically built into the standard encode or decode functions for the given type. They should
be considered hidden functions not for use within an application that uses the API.

The checkTC method will have different logic for relative and simple table constraints. The logic
to invoke this method is as follows:

On the encode side:

Relative Table Constraint:



Additional Code Generat-
ed for the -tables Option 

103

1. The table constraint key is searched in the object set array to find the class object for the data
in the populated type variable to be encoded.

2. If the key element value is NOT found and the table constraint object set is extensible, the
checkTC method will do no further processing (i.e. a value field match will not be performed).
The user will have had to populate the type field using an Asn1OpenType object in order for it
to be decoded because the generated table contains no information on how to encode the value.

3. If the key element value is found, the method will verify all fixed type values match what is
defined in the key row of the object set and will also verify that the type of any variable type
fields matches the expected type.

4. If the key element value is not found in the table (or object set) and the objectset is NOT exten-
sible, then a table constraint violation exception will be thrown.

Simple Table Constraint:

1. The checkTC method will verify that all of the fixed type values match what is defined in the
table constraint object set. If the element value does not exist in the table (or object set) and the
object set is NOT extensible, then a table constraint violation exception will be thrown.

After the checkTC method call, the normal encode logic is performed.

For decoding, the logic is reversed:

The normal decode logic is performed first to populate the standard and open type fields in the
generated structure. After that, the checkTC method is invoked to perform following table con-
straint checks:

Relative Table Constraint:

1. The table constraint key is searched in the object set array to find the class object for the data
in the populated type variable to be encoded.

2. If the key element value is NOT found and the table constraint object set is extensible, the
checkTC method will do no further processing (i.e. a value field match will not be performed)
and the variable type fields will be stored as open types (i.e. as instances of Java Asn1OpenType
classes). The user will be responsible for further decoding of the open type value.

3. If the key element value is found, the checkTC method will verify all fixed type values match
what is defined in the key row of the object set and will fully decode all type fields according
to the key row type and store the resulting decoded type in the ASN1Type fields.

4. If the key element value is NOT found in the table (or object set) and the object set is NOT
extensible, then a table constraint violation exception will be thrown.



Populating OpenType Variables for Encoding

104

Simple Table Constraint:

1. This function will verify all the fixed type values match what is defined in the table constraint
object set. If an element value does not exist in the table (or object set) and the object set is NOT
extensible, then a table constraint violation exception will be thrown.

Populating OpenType Variables for En-
coding
When -tables option is used, open type fields are generated as Asn1Type fields. The general pro-
cedure to populate the value for these fields is as follows:

1. Check the possible Type in ObjectSet from index element value.

2. Populate the value for this type and assign it to the open type member variable.

3. Follow the common encode procedure.

A complete example showing how to assign open type values when table constraint code is gen-
erated is as follows:

   ATTRIBUTE ::= CLASS {
        &Type,
        &id             OBJECT IDENTIFIER UNIQUE }
   WITH SYNTAX {
        WITH SYNTAX &Type ID &id }

   name ATTRIBUTE ::= {
        WITH SYNTAX   VisibleString
        ID            { 0 1 1 } }

   commonName ATTRIBUTE ::= {
        WITH SYNTAX   INTEGER
        ID            { 0 1 2 } }

   SupportedAttributes ATTRIBUTE ::= { name | commonName }

   Invoke ::= SEQUENCE {
      opcode ATTRIBUTE.&id ({SupportedAttributes}),
      argument ATTRIBUTE.&Type ({SupportedAttributes}{@opcode})
   }

In the above example, the Invoke type contains a relative table constraint. Its element opcode refers
to the ATTRIBUTE class's id field and the argument element refers to ATTRIBUTE class's Type
field. The opcode element is the index element into the {SupportedAttributes} information object
set. The argument element is an open type but its type must match that specified at the location in
the {SupportedAttributes} information object set indexed by opcode.

In this example, opcode can have only two possible values { 0 1 1 } or { 0 1 2 }. If the opcode
value is { 0 1 1} then argument must be a value of type VisibleString. If the opcode value is { 0



Populating OpenType Variables for Encoding

105

1 2 } then argument will have an INTEGER value. Any other value of the opcode element will
be a violation of the Table Constraint.

If the SupportedAttributes object set was extensible (in this example, it is not), then the argument
element can be a value of any type. In this case, if the user is using an index element value outside
the object set, then the user will have to encode the argument element as an Asn1OpenType.

The following sample code populates the open type value:

   // Step 1: populate the "Invoke" type with data
   Invoke pdu = new Invoke();
   pdu.opcode = new Asn1ObjectIdentifier(new int[]{0, 1, 1});
   pdu.argument = new Asn1VisibleString("objsys");
   // note: opcode value is {0 1 1 }, so argument must be
   // Asn1VisibleString type

   // note: the rest of the encode method will be same as general
   // PER/DER/BER encoding rules

   // Step 2: Create a message buffer object.
   Asn1PerEncodeBuffer encodeBuffer = new Asn1PerEncodeBuffer();

   // Step 3: Invoke the encode method. Note that it must be done
   // from within a try/catch block..
   try {
      pdu.encode (encodeBuffer);
      if (trace) {
         System.out.println ("Encoding was successful");
         System.out.println ("Hex dump of encoded record:");
         encodeBuffer.hexDump ();
         System.out.println ("Binary dump:");
         encodeBuffer.binDump ("Invoke");
      }
      // Step 3: Access the encoded message component. In this
      // case, we use methods in the class to write the component
      // to a file and output a formatted dump to the message.dmp
      // file..
      // Write the encoded record to a file
      encodeBuffer.write (new FileOutputStream (filename));
      // Generate a dump file for comparisons
      encodeBuffer.hexDump
         (new PrintStream (new FileOutputStream ("message.dmp")));
      // We can also directly access the buffer as follows:
      byte[] buffer = encodeBuffer.getBuffer();
      int msglen = encodeBuffer.getMsgByteCnt();
   }
   catch (Exception e) {
      System.out.println (e.getMessage());
      e.printStackTrace();
      return;
   }

The important thing to note is that not much changes from the normal procedure. The only signifi-
cant difference is that now the argument field can be directly populated with an instance of its target
type. Without table constraint checking logic, this value would have to have been first encoded and
then placed in an Asn1OpenType container object.



Decoding Types with Table Constraints

106

Decoding Types with Table Constraints
The general procedure to decode an ASN.1 message with table constraints is the same as without
table constraints. The only difference is that after decoding, variable type fields will be replaced
with instances of the actual types they are specified to contain in the associated object set instead
of with generic Asn1OpenType fields.



107

Generated Print Methods
The -print option causes print methods to be generated. These functions can be used to print the
contents of variables of generated types. A print method is generated in each of the generated Java
source files.

Generated Java Method Format and
Calling Parameters
The signature for a Java print method is as follows:

   public void print (PrintStream out, String varName, int level)

The out argument specifies a PrintStream object to which the output should be written. The Java
class System.out should be specified to write to standard output.

The varName argument is used to specify the top-level variable name of the item being printed.
Normally, this would be set to the same name as the variable declared in your program that holds
the object being printed. For example, if you declared a variable called personnelRecord to hold a
PersonnelRecord object, the varName object would be set to "personnelRecord".

The level argument is used to specify the indentation level for printing nested types. The user would
always want to set this to zero at the outer-level.

For example, the call to print the personnelRecord from the previous examples would be as follows:

   personnelRecord.print (System.out, "personnelRecord", 0);

The output would be formatted as follows:

   personnelRecord {
      name {
         givenName = 'John'
         initial = 'P'
         familyName = 'Smith'
      }
      number = 51
      title = 'Director'
      dateOfHire = '19710917'
      nameOfSpouse {
         givenName = 'Mary'
         initial = 'T'
         familyName = 'Smith'
      }
      children[0] {
         name {
            givenName = 'Ralph'
            initial = 'T'
            familyName = 'Smith'
         }



Generated Java Method For-
mat and Calling Parameters 

108

         dateOfBirth = '19571111'
      }
      children[1] {
         name {
            givenName = 'Susan'
            initial = 'B'
            familyName = 'Jones'
         }
         dateOfBirth = '19590717'
      }
   }



109

Generated Compare Methods
The -compare command line option causes an equals method to be added to each generated class.
The signature of this method is as follows:

   public boolean equals (ClassName rhs);

where ClassName is the name of the generated class to which the member function belongs. The
method returns a boolean result of true if the object instances are equal and false if not.

Note that for classes extended from the Asn1Choice class, no equals member function is generated.
This is because the Asn1Choice class already has an equals member function, which is inherited
by classes extending the Asn1Choice class.



110



111

Generated Sample Programs
The –writer and -reader options cause writer and reader sample programs to be generated.

The writer program contains sample code to populate and encode an instance of ASN.1 data. The
main purpose is to provide a code template to users for writing code to populate objects. This is
quite useful to users because generated classes can become very complex as the ASN.1 schemas
become more complex. The writer code also shows users how to instantiate an encode buffer object
and how to use encode functions. The writer program writes the encoded data to a file. If the writer
program is generated by using both -writer and -getset options, then the generated writer program
uses getset functions to populate data.

The reader program on the other hand reads the encoded data from a file. It shows users how to use
a decode buffer object to decode data and populate the corresponding class object. On successful
decode, it prints the decoded data to standard output.



112



113

Generated Build Script
The -genbuild option causes a build script to be generated. This script can be used to Java compile
the generated source files.

For Windows, the -w32 command line option should be specified along with -genbuild to generate
a DOS batch file (.bat). This file is named build.bat.

For Linux/UNIX, a shell script is generated. The name of this file is build.sh.

When a build script is generated, it is assumed that the ASN1C project exists within the ASN1C
installation directory tree. The generation logic tries to determine the root directory of the instal-
lation by traversing upward from the project directory in an attempt to locate the java subdirectory
which is assumed to be the installation root directory. If the project is located outside of the ASN1C
hierarchy, the user can set the OSROOTDIR environment variable to point at the root directory.

If the root directory is located successfully, the generated build script will use that directory; how-
ever, if the compiler fails to find the installation root directory, it will use @ROOT_DIR@ instead
and print an error message. Users will have to manually replace @ROOT_DIR@ with the actual
compiler installation root directory. Also, for the -xer or -xml option along with -genbuild, an XML
parser is required. The compiler will try to locate a parser and use it if found. However, if a parser
is not found, then the compiler will use @XERCES_ROOT@ instead of the parser root directory.
An error message will be printed and the user will update the file accordingly.



114



115

Event Handler Interface
The –events command line switch causes hooks for user-defined event handlers to be inserted into
the generated Java decode methods. What these event handlers do is up to the user. They fire when
key message-processing events occur during the course of parsing an ASN.1 message. They are
similar in functionality to the Simple API for XML (SAX) that was described earlier for parsing
XML messages.

How It Works
Users of XML parsers are probably already quite familiar with the concepts of SAX. Significant
events are defined that occur during the parsing of a message. As a parser works through a message,
these events are 'fired' as they occur by invoking user defined callback functions. These callback
functions are also known as event handler functions. A diagram illustrating this parsing process
is as follows:

The events are defined to be significant actions that occur during the parsing process. We will
define the following events that will be passed to the user when an ASN.1 message is parsed:

1. startElement – This event occurs when the parser moves into a new element. For example, if we
have a SEQUENCE { a, b, c } construct (type names omitted), this event will fire when we begin
parsing a, b, and c. The name of the element is passed to the event handling callback function.

2. endElement – This event occurs when the parser leaves a given element space. Using the ex-
ample above, these would occur after the parsing of a, b, and c are complete. The name of the
element is once again passed to the event handling callback function.



How to Use It

116

3. characters method – This method is defined to pass all of the different types of primitive
values that are encountered when parsing a message. The primitive values are passed out in a
stringified form.

The methods corresponding to these events are defined in Asn1NamedEventHandler interface.

The start and end element methods are invoked when an element is parsed within a constructed
type. The start method is invoked as soon as the tag/length is parsed in a BER or DER message.
The end method is invoked after the contents of the field are processed. The signature of these
methods is as follows:

   void startElement (String name, int index);
   void endElement (String name, int index);

The name argument is used pass the element name. The index argument is used for SEQUENCE
OF/SET OF constructs only. It is used to pass the index of the item in the array. This argument
is set to –1 for all other constructs.

The characters method is used to pass out ASN.1 primitive data. This is a departure from the C
++ event handler methodology in which separate methods are defined for all of the different data
types. This implementation is more closely aligned with the standard SAX implementation for
XML. The reason it is done this way in Java and not C++ is because it is much easier to stringify
values. Since memory management is built-in to Java, it is easy to create a string and pass it out.
This is a problem in C++ because it becomes a performance issue if too many malloc's are done
and it also places a burden on the user to free the memory for the allocated strings.

The signature for the characters method is as follows:

   void characters (String svalue, short typeCode);

The svalue argument contains the stringified value. The format of this value is ASN.1 value notation
for the value as defined in the X.680 standard. The typeCode argument contains an identifier that
specifies the ASN.1 type of the value. The identifier corresponds to the universal identifier values
(the ID number in the universal tags) for each of the primitive data types. The only exception to
this rule is that the identifier 99 was added to represent an Open Type construct. Constants for all
of the identifier values are provided in the Asn1Type class. See the javadoc documentation for this
class for a list of the constants.

How to Use It
To define event handlers, two things must be done:

1. One or more new classes must implement the Asn1NamedEventHandler interface.

2. Objects of these classes must be created and registered prior to calling the generated decode
method for a particular type.



Example 1: A Formatted Print Handler 

117

The best way to illustrate this procedure is through examples. We will first show a simple event
handler application to provide a customized formatted printout of the fields in a BER message.
Then we will show a simple XML converter class that will convert the data in a BER message
to XML.

Example 1: A Formatted Print Handler
The ASN1C evaluation and distribution kits include a sample program for doing a formatted print
of parsed data. This code can be found in the java/sample_ber/EventHandler directory. Parts of the
code will be reproduced here for reference, but refer to this directory to see the full implementation.

The format for the printout will be simple. Each element name will be printed followed by an equal
sign (=) and an open brace ({) and newline. The value will then be printed followed by another
newline. Finally, a closing brace (}) followed by another newline will terminate the printing of the
element. An indentation count will be maintained to allow for a properly indented printout.

We will first create a class called PrintHandler that implements the Asn1NamedEventHandler in-
terface and handles the formatted printing of the data. The rule for the implementation of interfaces
is that you must provide an implementation for each of the methods listed. That is it. You can add
as many additional methods, member variables, etc., that you like.

The PrintHandler implementation that we created is as follows:

   class PrintHandler implements Asn1NamedEventHandler {
      protected String mVarName;
      protected int mIndentSpaces = 0;

      public PrintHandler (String varName) {
         mVarName = varName;
         System.out.println (mVarName + " = {");
         mIndentSpaces += 3;
      }

      public void startElement (String name, int index) {
         indent();
         System.out.print (name);
         if (index >= 0)
             System.out.print ("[" + index + "]");
         System.out.println (" = {");
         mIndentSpaces += 3;
      }

      public void endElement (String name, int index) {
         mIndentSpaces -= 3;
         indent ();
         System.out.println ("}");
      }

      public void characters (String svalue, short typeCode) {
         indent ();
         System.out.println (svalue);
      }



Example 1: A Formatted Print Handler 

118

      private void indent () {
         for (int i = 0; i < mIndentSpaces; i++)
            System.out.print (" ");
      }
   }

In this definition, we chose to add the mVarName and mIndentSpaces member variables to keep
track of these items. The user is free to add any type of member variables he or she wants. The
only firm requirement in defining this class is the implementation of the methods defined in the
interface.

We implement these methods as follows:

   public void startElement (String name, int index) {
      indent();
      System.out.print (name);
      if (index >= 0)
          System.out.print ("[" + index + "]");
      System.out.println (" = {");
      mIndentSpaces += 3;
   }

In this simplified implementation, we simply indent (this is another private method within the class)
and print out the name, equal sign, and opening brace. We then increment the indent level. Logic
is also present to check the index value to see if it is zero or greater. If it is, an array subscript is
added to the element name.

In endElement, we simply terminate our brace block as follows:

   public void endElement (String name, int index) {
      mIndentSpaces -= 3;
      indent ();
      System.out.println ("}");
   }

The characters method simply indents and prints the stringified value:

   public void characters (String svalue, short typeCode) {
      indent ();
      System.out.println (svalue);
   }

That completes the PrintHandler class implementation.

Next, we need to create an object of the class and register it prior to invoking the decode method.
In the Reader.java program, the following lines do this:

   // Register event handler object

   PrintHandler printHandler = new PrintHandler ("personnelRecord");
   decodeBuffer.addNamedEventHandler (printHandler);

The addEventHandler method defined in the Asn1DecodeBuffer base class is the mechanism used
to do this. Note that event handler objects can be stacked. Several can be registered before invoking



Example 2: An XML Converter Class 

119

the decode function. When this is done, the entire list of event handler objects is iterated through and
the appropriate event handling callback function invoked whenever a defined event is encountered.

The implementation is now complete. The program can now be compiled and run. When this is
done, the resulting output is as follows:

   employee = {
      name = {
         givenName = {
            "John"
         }
         initial = {
            "P"
         }
         familyName = {
            "Smith"
         }
      }
      ...

This can certainly be improved. For one thing it can be changed to print primitive values out in a
"name = value" format (i.e., without the braces). But this should provide the general idea of how
it is done.

Example 2: An XML Converter Class
The ASN1C XML Encoding Rules (XER) encode and decode capabilities were presented in an
earlier section of this document. An alternate way to create an XML document from ASN.1 data
is through the event handler interface.

It turns out that with event handlers, this conversion is fairly easy. As the handler events fire, all of
the required symbolic data is passed out to generate an XML document. The programmer is free to
massage this data any way he or she wants to comply with whatever DTD or XML Schema is in use.

The ToXML sample program demonstrates the conversion of ASN.1 data to XML using event
handlers. The sample is not intended to be a robust implementation – it is merely designed to
provide guidance in how one would go about doing this transformation.

The sample program can be found in the java/sample_ber/ToXML subdirectory within the ASN1C
installation. The complete class definition for the XMLHandler class is as follows:

   class XMLHandler implements Asn1NamedEventHandler {
      protected String mVarName;
      protected int mIndentSpaces = 0;

   public XMLHandler (String varName) {
      mVarName = varName;
      System.out.println ("<" + mVarName + ">");
      mIndentSpaces += 3;
   }

   public void startElement (String name, int index) {
      indent();



Example 2: An XML Converter Class 

120

      System.out.println ("<" + name + ">");
      mIndentSpaces += 3;
   }

   public void endElement (String name, int index) {
      mIndentSpaces -= 3;
      indent ();
      System.out.println ("</" + name + ">");
   }

   public void characters (String svalue, short typeCode) {
      indent ();
      String typeName = new String (Asn1Type.getTypeName(typeCode));
      typeName.replace (' ', '_');
      System.out.print ("<" + typeName + ">");
      System.out.print (svalue);
      System.out.println ("</" + typeName + ">");
   }

   public void finished () {
      System.out.println ("</" + mVarName + ">");
   }

   private void indent () {
      for (int i = 0; i < mIndentSpaces; i++)
         System.out.print (" ");
      }
   }

This is very similar to the PrintHandler class defined earlier. The startElement method simply
opens an XML element block:

   public void startElement (String name, int index) {
      indent();
      System.out.println ("<" + name + ">");
      mIndentSpaces += 3;
   }

The endElement method closes it:

   public void endElement (String name, int index) {
      mIndentSpaces -= 3;
      indent ();
      System.out.println ("</" + name + ">");
   }

The characters method outputs the data with a type wrapper:

   public void characters (String svalue, short typeCode) {
      indent ();
      String typeName = new String (Asn1Type.getTypeName(typeCode));
      typeName.replace (' ', '_');
      System.out.print ("<:" + typeName + ">");
      System.out.print (svalue);
      System.out.println ("</:" + typeName + ">");
   }

This illustrates the use of the typeCode argument for obtaining information on the ASN.1 type of
the data. Note that this is a simplified version of an XER formatting method. A true implementation



Example 2: An XML Converter Class 

121

would need to do some massaging of the stringified data to fit the XER rules which, in general, do
not follow the ASN.1 value formatting rules. The implementation would also need some logic to
check if the type wrapper should be output or not; it is not always done in certain cases.

Finally note the constructor and finished method. The constructor prints out the outer-level wrapper
tag. Since Java does not have destructors, a finished method is defined to terminate this tag. This
method must be called manually from within the application program after the Java decode method.
See the Reader.java program to see how this is done.

Object registration is done as before in the PrintHandler example. The only difference is that an
object of the XMLHandler class is created instead of the PrintHandler class.

When compiled and executed, the output from the Reader program looks like this:

   <PersonnelRecord>
      <name>
         <givenName>
            <IA5String>'John'</IA5String>
         </givenName>
         <initial>
            <IA5String>'P'</IA5String>
         </initial>
         <familyName>
            <IA5String>'Smith'</IA5String>
        </familyName>
      </name>
      <number>
         <INTEGER>51</INTEGER>
      </number>
      <title>
         <IA5String>'Director'</IA5String>
      </title>
      <dateOfHire>
         <IA5String>'19710917'</IA5String>
      </dateOfHire>
      <nameOfSpouse>
         <givenName>
            <IA5String>'Mary'</IA5String>
         </givenName>
         <initial>
            <IA5String>'T'</IA5String>
         </initial>
         <familyName>
            <IA5String>'Smith'</IA5String>
         </familyName>
      </nameOfSpouse>
      <children>
         <element>
            <name>
               <givenName>
                  <IA5String>'Ralph'</IA5String>
               </givenName>
               <initial>
                  <IA5String>'T'</IA5String>
               </initial>
               <familyName>
                  <IA5String>'Smith'</IA5String>



Example 2: An XML Converter Class 

122

               </familyName>
            </name>
            <dateOfBirth>
               <IA5String>'19571111'</IA5String>
            </dateOfBirth>
         </element>
         <element>
            <name>
               <givenName>
                  <IA5String>'Susan'</IA5String>
               </givenName>
               <initial>
                  <IA5String>'B'</IA5String>
               </initial>
               <familyName>
                  <IA5String>'Jones'</IA5String>
               </familyName>
            </name>
            <dateOfBirth>
               <IA5String>'19590717'</IA5String>
            </dateOfBirth>
         </element>
      </children>
   </PersonnelRecord>

Add an XML document header and you should be able to display this data in XML-enabled brows-
er.



123

IMPORT/EXPORT of Types
ASN1C allows productions to be shared between different modules through the ASN.1 IM-
PORT/EXPORT mechanism. The compiler parses but ignores the EXPORTS declaration within
a module. As far as it is concerned, any type defined within a module is available for import by
another module.

When ASN1C sees an IMPORT statement, it first checks its list of loaded modules to see if the
module has already been loaded into memory. If not, it will attempt to find and parse another source
file containing the module. The logic for locating the source file is as follows:

1. The configuration file (if specified) is checked for a <sourceFile> element containing the name
of the source file for the module.

2. If this element is not present, the compiler looks for a file with the name <ModuleName>.asn
where module name is the name of the module specified in the IMPORT statement.

In both cases, the –I command line option can be used to tell the compiler where to look for the files.

The other way of specifying multiple modules is to include them all within a single ASN.1 source
file. It is possible to have an ASN.1 source file containing multiple module definitions in which
modules IMPORT definitions from other modules. An example of this would be the following:

   ModuleA DEFINITIONS ::= BEGIN
      IMPORTS B From ModuleB;

      A ::= B

   END

   ModuleB DEFINITIONS ::= BEGIN

      B ::= INTEGER

   END

This entire fragment of code would be present in a single ASN.1 source file.

.



124



125

Compact Code Generation
The -compact command line switch can be used to reduce the amount of source code generated
for a given ASN.1 specification. This is done by generating the code for simple definitions inline
within structured type definitions instead of creating separate classes.

For example, consider the following definition:

   X ::= [APPLICATION 1] INTEGER

   Y ::= [APPLICATION 2] OCTET STRING (SIZE (1..32))

   Z ::= [APPLICATION 3] SEQUENCE {
         x     [0] X,
         y     [1] Y
   }

In normal mode, the compiler would generate three classes for these productions: one correspond-
ing to X, Y, and Z respectively. But in compact mode, it is recognized that a user would normally
not be interested in encoding or decoding X and Y on their own. They would primarily be inter-
ested in encoding or decoding the more complex structured types (i.e. the PDU's) that make up
fully formed messages. Taking this into account, when –compact is specified, the compiler will
not generate separate classes for X and Y in the above definition. Instead, it will include only the
base types for X and Y in the generated code for the SEQUENCE Z. All logic to handle the tags
and constraints will be built directly into the Z encode and decode methods.

So the result will be only a single class generated (Z) that will contain an Asn1Integer object to
represent X and an Asn1OctetString object to represent Y. The logic to process the application
tags and the size constraint on the octet string will be generated inline in the encode and decode
methods in Z.

.



126



127

ROSE and SNMP Macro Support
The ASN1C compiler has a special processing mode that contains extensions to handle items in
the older 1990 version of ASN.1 (i.e. the now deprecated X.208 and X.209 standards). This mode
is activated by using the -asnstd x208 commandline option.

Although the X.208 and X.209 standards are no longer supported by the ITU-T, they are still in
use today. This version of ASN1C contains logic to parse some common MACRO definitions that
are still in widespread use despite the fact that MACRO syntax was retired with this version of
the standard. The types of MACRO definitions that are supported are ROSE OPERATION and
ERROR and SNMP OBJECT-TYPE.

ROSE OPERATION and ERROR
ROSE stands for "Remote Operations Service Element" and defines a request/response transaction
protocol in which requests to a conforming entity must be answered with the result or errors defined
in operation definitions Variations of this are used in a number of protocols in use today including
CSTA and TCAP.

The definition of the ROSE OPERATION MACRO that is built into the ASN1C90 version of the
compiler is as follows:

   OPERATION MACRO ::=
   BEGIN
      TYPE NOTATION             ::= Parameter Result Errors LinkedOperations
      VALUE NOTATION            ::= value (VALUE INTEGER)
      Parameter                 ::= ArgKeyword NamedType | empty
      ArgKeyword                ::= "ARGUMENT" | "PARAMETER"
      Result                    ::= "RESULT" ResultType | empty
      Errors                    ::= "ERRORS" "{"ErrorNames"}" | empty
      LinkedOperations          ::= "LINKED" "{"LinkedOperationNames"}" | empty
      ResultType                ::= NamedType | empty
      ErrorNames                ::= ErrorList | empty
      ErrorList                 ::= Error | ErrorList "," Error
      Error                     ::= value(ERROR)        -- shall reference an error value
                                    | type              -- shall reference an error type
                                                        -- if no error value is specified
      LinkedOperationNames      ::= OperationList | empty
      OperationList             ::= Operation | OperationList "," Operation
      Operation                 ::= value(OPERATION)    -- shall reference an operation value
                                    | type              -- shall reference an operation type
                                                        -- if no operation value is specified
      NamedType                 ::= identifier type | type

   END

This MACRO does not need to be defined in the ASN.1 specification to be parsed. In fact, any
attempt to redefine this MACRO will be ignored. Its definition is hard-coded into the compiler.

What the compiler does with this definition is uses it to parse types and values out of OPERATION
definitions. An example of an OPERATION definition is as follows:



ROSE OPERATION and ERROR

128

   login OPERATION
   ARGUMENT SEQUENCE { username IA5String, password IA5String }
   RESULT SEQUENCE { ticket OCTET STRING, welcomeMessage IA5String }
   ERRORS { authenticationFailure, insufficientResources }
   ::= 1

In this case, there are two embedded types (an ARGUMENT type and a RESULT type) and an
integer value (1) that identifies the OPERATION. There are also error definitions.

The ASN1C compiler generates two types of items for the OPERATION:

1. It extracts the type definitions from within the OPERATION definitions and generates equiva-
lent Java classes and encoders/decoders, and

2. It generates value constants for the value associated with the OPERATION (i.e., the value to
the right of the '::=' in the definition).

The compiler does not generate any structures or code related to the OPERATION itself (for exam-
ple, code to encode the body and header in a single step). The reason is because of the multi-layered
nature of the protocol. It is assumed that the user of such a protocol would be most interested in
doing the processing in multiple stages, hence no single function or structure is generated.

Therefore, to encode the login example the user would do the following:

1. At the application layer, the Login_ARGUMENT structure would be populated with the user-
name and password to be encoded.

2. The encode function for Login_ARGUMENT would be called and the resulting message pointer
and length would be passed down to the next layer (the ROSE layer).

3. At the ROSE layer, the Invoke structure would be populated with the OPERATION value,
invoke identifier, and other header parameters. The open type object used to hold the encoded
parameter value from step 2 is populated by creating an Asn1OpenType object using the length
of the encoded component.

4. The encode function for Invoke would be called resulting in a fully encoded ROSE Invoke
message ready for transfer across the communications link.

The following is a picture showing this process:



ROSE OPERATION and ERROR

129

On the decode side, the process would be reversed with the message flowing up the stack:

1. At the ROSE layer, the header would be decoded producing information on the OPERATION
type (based on the MACRO definition) and message type (Invoke, Result, etc..). The invoke
identifier would also be available for use in session management. In our example, we would
know at this point that we got a login invoke request.

2. Based on the information from step 1, the ROSE layer would know that the Open Type field
contains a pointer and length to an encoded Login_ARGUMENT component. It would then
route this information to the appropriate processor within the Application Layer for handling
this type of message.

3. The Application Layer would call the specific decoder associated with the Login_ARGUMENT.
It would then have available to it the username/password the user is logging in with. It could
then do whatever application-specific processing is required with this information (database
lookup, etc.).

4. Finally, the Application Layer would begin the encoding process again in order to send back a
Result or Error message to the Login Request.

A picture showing this is as follows:



SNMP OBJECT-TYPE

130

The login OPERATION also contains references to ERROR definitions. These are defined using
a separate MACRO that is built into the compiler. The definition of this MACRO is as follows:

   ERROR MACRO ::=
   BEGIN
      TYPE NOTATION        ::= Parameter

      VALUE NOTATION       ::= value (VALUE INTEGER)

      Parameter            ::= "PARAMETER" NamedType | empty

      NamedType            ::= identifier type | type

   END

In this definition, an error is assigned an identifying number as well as on optional parameter type
to hold parameters associated with the error. An example of a reference to this MACRO for the
authenticationFailure error in the login operation defined earlier would be as follows:

   applicationError ERROR
   PARAMETER SEQUENCE {
      errorText IA5String
   }
   ::= 1

The ASN1C90 compiler will generate a type definition for the error parameter and a value constant
for the error value. The format of the name of the type generated will be "<name>_PARAMETER"
where <name> is the ERROR name (applicationError in this case) with the first letter set to upper-
case. The name of the value will simply be the ERROR name.

SNMP OBJECT-TYPE
The SNMP OBJECT-TYPE MACRO is one of several MACROs used in Management Information
Base (MIB) definitions. It is the only MACRO of interest to ASN1C because it is the one that
specifies the object identifiers and data that are contained in the MIB.

The version of the MACRO currently supported by this version of ASN1C can be found in the
SMI Version 2 RFC (RFC 2578). The compiler generates code for two of the items specified in
this MACRO definition:

1. The ASN.1 type that is specified using the SYNTAX command, and

2. The assigned OBJECT IDENTIFIER value

For an example of the generated code, we can look at the following definition from the UDP MIB:

   udpInDatagrams OBJECT-TYPE
      SYNTAX       Counter32
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
         "The total number of UDP datagrams delivered to UDP users."



SNMP OBJECT-TYPE

131

      ::= { udp 1 }

In this case, a type definition is generated for the SYNTAX element and an Object Identifier value is
generated for the entire item. The name used for the type definition is "<name>_SYNTAX" where
<name> would be replaced with the OBJECT-TYPE name (i.e., udpInDatagrams). The name used
for the Object Identifier value constant is the OBJECTTYPE name. So for the above definitions,
the following two Java items would be generated:

1. A "udpInDatagrams_SYNTAX.java" file. This would contain the udpInDatagrams_SYNTAX
class definition, and

2. A udpInDatagrams value definition in the _UDP_MIBValues class.



132



133

Java Micro Edition Support
If your ASN1C license purchase includes support for BER or PER encoding, it may also in-
clude support for Java Micro Edition. You may find the following additional JAR files in your
installation's java folder:

• asn1rt-jme-ber.jar: ASN1C Java ME runtime with support for BER

• asn1rt-jme-per.jar: ASN1C Java ME runtime with support for PER

When using ASN1C generated code on a Java Micro Edition platform, observe the following:

• Use option -cldc instead of -java. The generated code should be compatible with CLDC 1.1.

• Do NOT use any of the following ASN1C compiler options: -print -events -trace. These are not
supported with CLDC 1.1.

• Your client code may use either one of two approaches for referring to classes such as ArrayList,
which are not present in CLDC 1.1:

1. explicitly import objsys.asn1j.runtime.ArrayList. Your code will only be compatible with our
Java ME support jar.

2. import java.util.* and objsys.asn1j.runtime.*. You code may be used in Java SE or Java ME
environment. You must make sure that only one class named ArrayList is available on your
classpath when compiling. If compiling for Java SE, do not include the ASN1C Java ME
runtime JAR. If compiling for Java ME, use the CLDC 1.1 JAR (from the Java ME SDK) in
your bootclasspath and include the ASN1C Java ME runtime JAR in your classpath.

• Asn1BigInteger and Asn1BigDecimal are not supported.

• Using the same generated code on both Java SE and Java ME CLDC 1.1 is not supported. Com-
pile your ASN.1 specification once for Java SE and once for Java ME.

• Note that we have not tested using Java ME Connected Device Configuration (CDC) rather than
CLDC.



134


