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Section I: Connectivity Models 
 

The present tutorial will describe the extended unified SEM (euSEM: Gates, Molenaar, Hillary, 

& Slobounov, 2011), a model for estimating relationships between multiple regions of interest in 

neuroimaging data. Before addressing the practical steps for preparing and analyzing datasets, it 

is important to have some background on the statistical principles underlying the euSEM. First, I 

introduce structural equation modeling (SEM) and vector auto-regression (VAR), two models 

commonly used to estimate connectivity and integrated under the euSEM. Next I outline the 

euSEM model and statistical assumptions necessary for applying it to neuroimaging data. Finally 

I describe some of the statistics used in evaluating and comparing euSEM models. The practical 

steps for implementing these statistical models are available in the next section. 

Structural equation modeling, or SEM, is a statistical tool for comparing causal models 

between multiple variables by estimating a set of linear regression equations. In the case of 

neuroimaging data, these variables represent regions of interest (ROIs) that are each measured as 

a time series. SEM allows researchers to propose a set of connections between the ROIs and 

estimate the regression equations describing these connections. The proposed set of connections 

constitutes the causal model (that is, a hypothesis about what regions cause changes in activity 

for other regions), and this causal model is compared to the observed data. The best fitting set of 

coefficients describing the weights of the proposed connections is estimated by solving the 

matrix form of these regression equations. The resulting covariance is compared to the 

covariance of the observed data to obtain a χ
2
 (chi-squared) statistic, a test for the significance of 

the model (covered in more detail later). 

To illustrate SEM conceptually, consider the hemodynamic activity measured in three ROIs X, Y, 

and Z repeatedly measured at time point t. The relationship between these three regions can be 

described as a set of three linear regression equations: 

Xt = β0 + β1Yt + β2Zt + ε 

Yt = β3 + β4Xt + β5Zt + ε 

Zt = β6 + β7Xt + β8Yt + ε 

 

Matrix notation: 

 
 

This model is the weakest (least specific) possible hypothesis. It assumes that every ROI has 

some causal influence on all of the other ROIs. A graphical representation of this model shows 

causal relationships (an arrow pointing from causal ROI to affected ROI) in every possible 

direction. 
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A more reasonable model might make use of some causal relationships that the researcher 

hypothesizes. For instance, perhaps activation is predicted to “flow” from X to Y to Z. This 

structural equation model would be described by the following regression equations and graphic: 

Xt = β0 + ε 

Yt = β3 + β4Xt + ε 

Zt = β6 + β8Yt + ε 

 

Matrix notation: 

 
 

Estimating the β coefficients in these regression equations yields the estimated connectivity 

between each region. Specifically β4 is the influence of X on Y, and β8 is the influence of Y on Z. 

Real connectivity studies, however, are unlikely to begin with such specific models. In this case, 

model comparison is necessary to determine which model (from either a set of competing 

hypotheses or through a search process) best fits the observed data. There are a number of 

statistics useful for comparing models which will be discussed in a subsequent section. 

One further benefit of SEM is the possibility of estimating exogenous influences on the ROIs. 

Exogenous variables are defined as those which may cause changes in other variables but are not 

themselves influenced by any other variable in the system. In the previous model, the ROI 

labeled A is technically an exogenous variable, but it is unconventional to think of brain 

measurements as exogenous because we want to maintain the possibility that A is influenced by 

some other region or by a truly exogenous variable. 

In event-related neuroimaging studies, a typical exogenous variable would be a stimulus, such as 

a checkerboard image projected into the participant’s visual field. (In a block design study, the 

exogenous variable is not necessary, as each block type may be independently modeled and 

compared). In this case, the variable would have a value 1 when the checkerboard is present and 

0 when the checkerboard is absent. If the checkerboard has a continuous property of some sort 

(such as contrast or luminance), its value might be anywhere between one and zero. The 

regression equations and graphical representation might then be as follows: 
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Xt = β0 + β9St + ε 

Yt = β3 + β4Xt + β10St + ε 

Zt = β6 + β8Yt + ε 

 

Matrix notation: 

 

 

While SEM is an extremely valuable tool for estimating connectivity for known or predicted 

models, it is critical to understand that connectivity estimates are based on causal assumptions of 

the estimated model. For example, in the third model, the researcher has explicitly assumed that 

activity in X causes the activity in Y and uses SEM to estimate the magnitude of that connection. 

If, in fact, activity in B is the cause of activity in A, SEM may still yield a significant connection 

weight (  coefficient) in the wrong (X→Y) direction. Two approaches for reducing these errors 

are searching a wide variety of models to compare which direction best explains the observed 

data (comparing the model X→Y to the model Y→X) or using time sequence as a causal 

constraint by regressing Yt over Xt-1 since activity in Y could not cause a change in X backwards 

in time. This second approach is known as vector auto-regression. 

Vector autoregression (VAR), like SEM, uses a system of linear regression equations to 

estimate the connections between ROIs. However, unlike SEM, VAR compares the lagged (or 

delayed in time) relationships between ROIs. To illustrate this method statistically, consider only 

one ROI X. Because X’s activation has been measured repeatedly through time, it could be 

described by a time series. Many time series have a property called autocorrelation which means 

that the value of X at time point t is correlated with the value of X at a previous time point. In the 

following discussion, we will look only at the immediately preceding time point t-1, denoted as a 

VAR(1) model. Autoregression reveals the systematic changes that occur in a variable over time, 

and this relationship is represented by the following regression equation: 

Xt = β0 + β1 Xt-1 + ε 

Vector autoregression generalizes this equation to allow the regression of several time series 

over themselves and each other. Extending the regression equation for Xt, we could describe X in 

relation to all three ROIs: 

Xt = β0 + β1Xt-1 + β2Yt-1 + β3Zt-1+ ε 

The same autoregression equations can also be estimated for each ROI, and vector 

autoregression provides a tool for solving them all simultaneously: 
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The graphical representation of this vector autoregression (depicted above) highlights that each 

ROI has a time-lagged relationship (denoted by the dashed lines) with every ROI, including on 

itself. 

As was the case in SEM, the β matrix in the foregoing VAR equation is not very useful because 

it allows each ROI to have a lagged influence over every ROI (including itself), making practical 

interpretation difficult. Also like SEM, VAR is suitable for comparing competing hypotheses or 

may be searched iteratively to add only connections which significantly improve the model (as 

will be described in detail for the euSEM model). In this way, the β matrix may be sparsely 

populated with only the hypothetically relevant or statistically best fitting connections. The 

following regression equation and graphic represent one possible model: 

 

 

One considerable advantage to examining lagged relationships is the additional causal evidence 

provided. Autoregression utilizes a form of causal inference known as Granger Causality which 

simply states that if two events happen sequentially in time, the causal relationship cannot occur 

backwards in time and must occur forwards in time. For example, if activity in ROI Y is 

correlated with activity in ROI X at a previous time point, the activity in Y could not have caused 

the past activity in X. Consequently, one may infer that activity in X is the cause of activity in Y. 

This inference ignores the third-variable problem (that X and Y may both be caused by 

something else and do not influence each other at all), but it remains a stronger inference than 

correlation of simultaneous measurements (as inferred in SEM). 
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Extended Unified SEM (euSEM) is a functional connectivity modeling technique designed to 

integrate the properties of both structural equation modeling (SEM) and vector autoregression 

(VAR). To this end, euSEM estimates both contemporaneous connections (as in SEM) and time-

lagged connections (as in VAR) for both endogenous variables (other ROIs) and exogenous 

variables (stimuli). Finally, euSEM also provides for interactions between exogenous and 

endogenous variables, such that stimuli may modulate the connections between ROIs (as 

opposed to modulating activity within an ROI).  

As in the preceding time series models, euSEM relies on the assumption of stationarity for each 

of the time series measured at each ROI. Stationarity entails a mean value for the time series that 

is constant over time. In graphical terms, the time series should not drift up or down but should 

center around a single mean value. Variance must also be constant for the time series to maintain 

stationarity. Graphically, the width of the distribution of observations around the mean should be 

equally wide over time. If either of these conditions is not met, the assumptions for performing 

the regression over a time series are invalid and may produce spurious results.  

The matrix form of the regression equation for euSEM becomes quite large, and some shorthand 

will be necessary to present it on the page. Let the endogenous variables (ROIs such as X, Y, and 

Z) be represented by the vector η at time points t and t-1. Exogenous variables (like S) will be 

represented by the vector u also at time points t and t-1. The β matrix will be composed of 

several sub-matricies:  

 The lagged relationships (previously described in VAR) for endogenous variables will be 

described in the Φ (phi) matrix.  

 The contemporaneous relationships (previously described in SEM) for endogenous 

variables will be described in the Α (alpha) matrix.  

 Γ1 will describe the lagged relationships between the endogenous and exogenous 

variables, and Γ0 will describe the contemporaneous relationships.  

 The bilinear (interaction) terms between the exogenous and endogenous variables will be 

described as τ0 and τ1 for time points t and t-1, respectively. 

Finally, the ε matrix will be described as ζ matrices for each η, u, and bilinear term. 

 

 
 

Notice, however, that the number of free parameters in the β matrix is relatively small compared 

to the size of the matrix. Since we hold S as exogenous (a stimulus, unaffected by brain activity), 

all regressors of S are set to zero. Similarly, since we maintain that causality cannot take place 

backwards in time, all regressors of an ROI at time point t-1 (e.g., Xt-1) over ROIs at time point t 
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(e.g., Xt) are also set to zero. That is, activity at Xt could not possibly influence activity at Xt-1. 

What remains is only predictors of ηt (the vector of observations at the ROIs for time point t). 

 

As in the previous models, solving this regression equation is unlikely to yield an interesting 

result if we attempt to estimate a parameter at every allowable connection. Instead, we can 

search the model iteratively by opening a single parameter at a time and comparing the resulting 

model to a preceding model without that parameter. When a new model ceases to yield a 

significant improvement by the addition of new open parameters, we conclude that the most 

parsimonious model has been generated. An example model may look like this: 

 

 
 

 
 

 
 

 

 
 

 

 

Diagnostic statistics for euSEM model provide a quantitative evaluation of the model's 

improvement over a baseline model, such as the model immediately prior to freeing an additional 

parameter. The chi-squared test compares the likelihood of two models to test the null hypothesis 

that two models are equally fit to the data. If we reject this null hypothesis, we can conclude that 

the model with the new parameter significantly improves the model. The χ
2 

test is performed by 

the LISREL software package each time a model is estimated. If you want to estimate a 

connectivity model without using the GIMME package, you will have to manually update your 

model by freeing individual parameters, re-running LISREL, and checking the χ
2 

test for the 

significance of the improvement.  

Other diagnostics computed by LISREL such as the Root Mean Square Error of Approximation 

(RMSEA), Standardized Root Mean square Residual (Standardized RMR), Non-Normed Fit 

Index (NNFI), and Comparative Fit Index (CFI) also provide information on the fit of the model. 

In general, a well-fit model should produce RMSEA and Standardized RMR values around or 

below 0.05, and NNFI and CFI values should be above 0.95. It is possible to continue improving 

a model (as indicated by significant chi-squared scores) that satisfies these other diagnostic 
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criteria, but it remains in the judgment of the researcher to what extent to pursue increased fit 

versus parsimony of the model. 

Using GIMME, however, this process of model evaluation is automated. The script will 

automatically search the parameters, freeing one at a time until the model is no longer 

significantly improved. GIMME performs this analysis first at the group level (searching for 

parameters that, when freed, will improve the fit of the majority of participants models) and then 

refine each participant’s model to account for individual differences. The procedure performing 

this search it outlined in the next section. A brief GIMME user’s manual written by the software 

author (Prof. Kathleen Gates, kmgates@unc.edu) is also available. 

Section II: Data Analysis 
 

Connectivity analysis of functional neuroimaging data is conducted in several steps. Here we 

will outline the procedure for fMRI data using the SPM software package (Friston & Holmes, 

1995). This procedure is conceptually applicable across different software packages, but given 

the ubiquity of SPM, we will focus on this example. 

The three main steps which will compose this analysis are:  

1. Extraction of the time series data 

2. Preparation of the data set for connectivity analysis 

3. Estimation of the connectivity map with the GIMME package 

Extraction of Time Series Data (using Marsbar) 

Time series data, that is, repeated measurements of the same region of interests (ROI, one or 

more voxels in an anatomically circumscribed region of the brain) through time, are the basic 

observations used in the connectivity analysis. The locations of these ROIS are arbitrary, defined 

by the researcher depending on her interests. In order to extract the time series data, it will be 

necessary to define these ROIs in SPM. 

ROIs can be defined in SPM by selecting anatomical regions using the Pick Atlas tool and saving 

the resulting mask file. Alternately, ROIs can be defined manually by inputting MNI coordinates 

and defining the radius of a sphere surrounding the voxel at those coordinates. In either case, the 

Matlab package Marsbar is used to extract these time series data from your SPM files. 

Marsbar is launched by selecting “Marsbar” from SPM8's Toolbox menu. At the initial screen, 

open “ROI definition” and select “Build”. At this stage, you will decide whether to define the 

ROI anatomically (based on the a mask you defined using the Pick Atlas) or manually (based on 

a sphere around MNI coordinates). In the third menu (Type of ROI) select “Image” for an 

anatomical mask or select “Sphere” for a manual ROI. 

For anatomically defined ROIs: Select the saved mask for the contrast you have defined in SPM. 

After selecting the mask, respond “Yes” to “Maintain binary image” and “No” to “Apply 

function to image.” 
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For manually defined ROIs: Enter the MNI coordinates for the center of your sphere and the 

radius of the sphere in millimeters (mm). 

In both cases, save the file by entering a name in “Label for ROI” field, opening the Save 

dialogue and clicking Save. To extract the time series data, select “Extract ROI Data (default)” 

from the Data menu. Select the ROI mask that you just saved, and then select the SPM.mat 

(design file) for the participant whose time series you are trying to extract. Once the data have 

been extracted you can select “Export data” from the Data menu, choose “Summary times 

series”, and save the time series to an MS Excel format file. 

Preparation of the Data Set 

Having acquired the time series from Marsbar, some work will be required to insure these files 

follow a format compatible with the GIMME software. In brief, GIMME requires each 

participant's time series data to be saved in a separate file as a t-by-r matrix, where the vertical 

dimension t is the set of time points (the length of a single time series) and the horizontal 

dimension r is the number of ROIs. It's most convenient to edit these files in Microsoft Excel (or 

LibreOffice Calc) and save them to one of several file formats accepted by GIMME: csv (comma 

separated variable), txt (text), or xls/xlsx (Excel). 

Marsbar outputs time series data in the t-by-r matrix format, correct dimensions for use in 

GIMME. However, Marsbar starts every column with a label for the ROI from which 

measurements are taken. For that reason, it is necessary to open the Marsbar output in Excel, 

remove the first row (containing labels) and save the data again in an acceptable format, one file 

for each participant. 

If you are performing an extended unified SEM analysis (including stimulus events in the 

connectivity analysis) you will also need to build an onset matrix for these events. This matrix 

must be saved in *.mat format (Matlab workspace) in a filed called onsets.mat containing a 

variables onsets1. This variable is a t-by-n matrix, where the vertical dimension t is the set of 

time points (in either units of either scans or seconds) and the horizontal dimension n is the 

number of participants. Each column of this matrix should be filled with zeros, except for ones at 

the time-points when a stimulus was presented for that particular participant. If a second stimulus 

type is included in the analysis, a second variable named onsets2 maybe be included in the 

onsets.mat file, following the same convention as onsets1. This onsets.mat file should be 

stored in another directory outside the source directory, titled output. 

Estimation of the Connectivity Map 

With all of the time series data and stimulus data coded into matrices and saved in the proper 

locations, GIMME makes estimation of a connectivity map very easy. Before enumerating the 

steps for doing this estimation, though, it is valuable to have some understanding of the 

underlying process. GIMME is a set of Matlab functions which assist the user by composing 

LISREL syntax to describe the time series data and guide the iterative search process for the best 

fitting model over the group data. To complete this process, GIMME will use Matlab's operating 
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system interface to call the LISREL program and execute the commands that GIMME has 

composed for LISREL. It is therefore necessary to have LISREL installed in the location where 

GIMME expects to find it. 

In the following steps, the procedure for estimating the connectivity map is outlined. For 

additional technical details about the design and use of GIMME, see the GIMME users' manual 

(Gates, 2012). 

1. Add GIMME to Matlab's executable path. 

addpath(‘C:\path\to\GIMME\scripts\’) 

2. Start the top-level script by typing “GIMME” into the Matlab command line. 

3. A window will appear with several parameters that need to be defined: 

Number of ROIs: Enter the number of regions that you have specified in the time series 

data for each participant. If you participant time series data have 3 columns, you have 3 

ROIs (one time series for each region). In that case, you would enter “3”. 

Indicate directory where your data are: This is the directory which contains the time 

series data files for each participant (may be *.csv, *.xls, or *.txt format). Make sure that 

every participant’s data file is in that directory (no additional directories), and make sure 

there are no other files in that directory, as GIMME will attempt to open each of the files 

it finds. 

Indicate directory where your results should go: This directory will be populated with 

*.mat files for each participant. Critically, if you are estimated an euSEM, your 

onsets.mat file must also be stored in this directory before you start GIMME. 

TR: The value you enter here should be the length of a single scan (one TR) measured in 

seconds. 

What type of files are your data in? Here you will select the integer value that 

corresponds to the data type you saved your participants’ time series data files in. The 

correct choice here is the file type that you used in “Preparation of the Data Set” when 

you saved the time series matrices. 

Put “0” to conduct a uSEM, “1” for a euSEM: If you have a stimulus with specified 

onsets (in the onsets.mat file) that you would like to include in the estimation of the 

connectivity map, select the euSEM by entering a 1. If you do not want to include 

stimulus data, enter 0. 

If this is an euSEM, how many inputs are there? If you selected “1” for the previous 

question, you must now enter the number of inputs (stimuli) which you wish to estimate. 
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At this time, GIMME only supports 1 or 2 stimuli, so these are the only possible stimuli. 

If you selected “0” for the previous question, leave this question blank. 

If euSEM, are you input vectors in seconds (1) or TRs (2)? If you are including stimuli 

(inputs) in the connectivity map, you must specify whether the variables in onsets.mat 

were defined by seconds (one observation per second) or TRs (one observation per TR). 

Another way to ask this question is whether the input matrix’s vertical dimension t is the 

number of seconds in the study or the number of scans. If you are estimating a uSEM, 

and therefore have no stimuli to input, enter 0 for this value. 

Would you like to start with the autoregressive terms estimated? The connectivity 

analysis is expedited by first estimating the effect of each ROI on itself over time by 

performing an independent autoregression at each ROI. This speeds up the later 

estimation of the connectivity map between ROIs, but the effects of doing so are not fully 

understood (i.e., whether this will introduce error into the connectivity analysis). 

After selecting all of the appropriate options for your analysis, click GIMME 

4. GIMME may take several minutes to complete the individual and group level analyses. 

When it is finished, the specified output folder will be populated with: 

 finalALL.mat describing the best fit group connectivity map 

 final[subj#].mat files for each individual participant, describing that 

participant’s individual connectivity map 

Within each output file, you will find data structures containing the regression weights described 

for Extended Unified SEM in Section I. 
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