
SICS Technical Report ISSN 1100-3154
T2006:05 ISRN:SICS-T�2006/05-SE

A Sensor Network Simulator for the

Contiki OS

Fredrik Österlind
fros@sics.se

February 2006

Abstract

This report introduces a new sensor network simulator for the Contiki OS
- the COOJA Simulator.

The Contiki OS is a portable operating system designed speci�cally for
resource limited devices such as sensor nodes. It is built around an event-
driven kernel but supports pre-emptive multithreading at a per-process basis.
It also supports a full TCP/IP stack via uIP and the programming abstraction
Protothreads.

The main design goal of the COOJA Simulator is extendibility, for which
Interfaces and Plugins are used. An Interface represents a sensor node property
or device, such as a position, a button or a radio transmitter. A Plugin is used
to interact with a simulation, for example to control the simulation speed or to
watch all network tra�c between the simulated nodes. Both new Plugins and
Interfaces can easily be created and added to the simulation environment. A
number of other parts of the simulator, for example a radio medium responsible
for forwarding radio network data, can also be implemented and added to the
simulator. And by supporting several di�erent simulation environments at the
same time in one simulation, di�erent underlying hardware platforms can be
simulated in heterogeneous networks.

Java Native Interface is used to connect the new simulator with Contiki,
allowing simulated applications to run in a real Contiki system. By using this
approach, any simulated application can then be run on a real sensor node
unaltered.

Keywords: Sensor Networks, Contiki, simulator.

CONTENTS

1 Introduction 1

1.1 Problem formulation . 1
1.2 Approach, Work phases and Results . 2
1.3 Report structure . 2

2 Background 4

2.1 About Wireless Sensor Networks . 4
2.2 The Contiki Operating System . 5

2.2.1 Event-based kernel . 5
2.2.2 Threads and Protothreads . 5
2.2.3 The system loop . 5
2.2.4 uIP . 6
2.2.5 Previous Contiki Simulator . 7

2.3 Process memory structures . 7
2.4 Java Native Interface . 8

3 Related work 10

3.1 TOSSIM and TinyViz . 10
3.2 PowerTOSSIM . 10
3.3 ATEMU . 11

4 Design choices 12

4.1 Extendibility . 12
4.2 Java and JNI . 12
4.3 Application simulator . 13
4.4 Automated Contiki environment setup . 13

5 Implementation 15

5.1 Design overview . 15
5.2 Core communications . 16
5.3 COOJA interfaces . 17
5.4 Ticking a node . 19
5.5 COOJA plugins . 19
5.6 Code generation and compilation . 21
5.7 Graphical User Interface . 21
5.8 Radio Mediums . 22
5.9 Positioners and IP distributors . 22
5.10 Con�guration system . 23

i

Contents

5.11 Extended simulation environment . 23
5.12 An extensive example . 24

5.12.1 The Contiki application . 24
5.12.2 Creating the node type . 25
5.12.3 Adding the nodes . 25
5.12.4 Starting the simulation . 25
5.12.5 Clicking the button . 26
5.12.6 Sending the radio packet . 28
5.12.7 Forwarding the radio packet . 28
5.12.8 Turning on the leds . 28

6 Evaluation 30

7 Results and Future work 32

7.1 Results . 32
7.2 Future work . 32

BIBLIOGRAPHY 33

APPENDIX 34

ii

LIST OF FIGURES

2.1 uIP's global bu�er usage . 6
2.2 Previous Contiki Simulator screenshot . 7
2.3 The typical memory structure of a process 8

4.1 Device drivers on a hardware vs. simulation platform 13

5.1 The simulation loop . 15
5.2 A simulated sensor node . 16
5.3 Java Native Interface usage . 17
5.4 The connection between simulation and core interfaces 19
5.5 Pseudo-code of a node tick from the simulation loop to the core 19
5.6 COOJA screenshot with started plugins . 20
5.7 Compilation of a new node type . 22
5.8 Compilation with or without a user platform 23
5.9 Example - creating the node type . 25
5.10 Example - adding 10 nodes . 26
5.11 Example - starting the simulation . 26
5.12 Example - clicking a button . 27
5.13 Example - radio medium forwarding packet 28
5.14 Example - the resulting leds . 29
5.15 Example - summary of events . 29

iii

CHAPTER

ONE

Introduction

An interesting research area which has gained a lot of attention lately is that of Wireless

Sensor Networks (WSN). Communication and electronics advances have opened up the
possibility to use these sensor networks in real-life situations, and there are numerous
possible application areas; for example military, medicine, disaster areas or smart homes.

A wireless sensor network consists of small devices with sensing abilities, connected over
the air via radio. The devices, called sensor nodes, often have limited resources in terms
of energy, memory and processing power. Given these circumstances and the problems
that arise, a lot of research is being performed in this area, and interesting questions
concern both hardware and software. For example, which communication protocols are
most energy-e�cient and enable the longest network lifetime, or how should a sensor node
operating system be designed?

When working with sensor networks, simulators are very useful. Developing, testing
and debugging code against an intended hardware is hard and time-consuming work.
Deployment of code and setup of networks are expensive, both in terms of time and money.
By using simulators code development time can be shortened - the code is uploaded only
once �nished. And the resulting programs can be evaluated in highly customized simulated
surroundings not feasible for real-life tests.

The Swedish Institute of Computer Science (SICS) conducts research in the area
of WSN, ranging from theoretical research such as sensor network lifetime modelling to
real applications developed together with industry. This requires a good development and
deployment environment.

One of the contributions from SICS in this area is the Contiki Operating System,
a lightweight and portable operating system designed for constrained environments such
as typical sensor nodes. Some interesting features of Contiki are the support for TCP/IP
and pre-emptive multithreading on a per-process basis.

1.1 Problem formulation

The purpose of this master thesis is to design and implement a simulator for Contiki OS -
theCOOJA Simulator (ContikiOS Java). Since the purpose of using a simulator varies
greatly between users, development phases and what kind of application is simulated, the
main design goal is extendibility.

A basic version must support the typical sensor node platforms, but more impor-
tant, new devices must be easily added by users. Interactions with simulations must be
customizable, from setup of networks to advanced analysis of certain properties of a com-
munication protocol. In fact, implementing new functionality should be encouraged by

1

Chapter 1. Introduction

the design of the simulator. The main bene�t of using the simulator should be during
code development and testing phases, as well as larger-scale tests such as communication
protocol behaviour. Other design goals are a usable, �exible and scalable simulator that
�ts into the surrounding development and deployment environment.

1.2 Approach, Work phases and Results

This master thesis can be divided into the following overlapping work phases:

• study

• design

• implementation

• test

• release

• report

The thesis began with gaining knowledge about Contiki as well as existing sensor
network simulators. The existing simulators have solved similar problems in many di�erent
ways depending on what they aim to accomplish, may it be e�ciency, scalability etc., and
there is much to be gained from studying their solutions. Early on, the main focus for
COOJA was set on extendibility, and eventually a simulator design was formed. During
the implementation phase, the system has been redesigned several times and additional
studying has been needed.

Both Windows and Unix-based systems have been used the entire implementation
phase. This is mainly because of the many external tools that are used from inside the
program, something that often causes problems when switching operating systems at a
late stage of development. By developing on both systems simultaneously, compability is
ensured from the start.

During the test and release phase, the COOJA Simulator has been demonstrated at sev-
eral occasions. Persons from several companies, such as Ericsson, SICS, KTH, EmwiTech
and ABB, have seen and tested the simulator. The response has been very positive and
the discussions have led to valuable feedback and suggestions, which in many cases have
been integrated into the resulting product. The COOJA Simulator is currently being used
by SICS in ongoing research, where both the basic functionality as well as the extendible
design are exploited and appreciated.

1.3 Report structure

This report is structured into background, related work, design choices, implementation
and evaluation. Please note that it is not intended as a user manual. For detailed infor-
mation and usage guides suitable for both users and developers, a user manual is available
at http://www.sics.se/~fros/cooja.

The background chapter will give the reader an understanding of techniques used during
development, relevant to the implementation chapter. It is followed by related work, which
compares features and techniques of the COOJA Simulator with a few other common
sensor network simulators.

In the design choices chapter, overall design choices such as programming language
and simulator features are explained and motivated, to later be evaluated and discussed
in the evaluation chapter.

2

http://www.sics.se/~fros/cooja

1.3. REPORT STRUCTURE

The implementation chapter's purpose is to explain how the simulator actually works.
The report ends with results and future work.

3

CHAPTER

TWO

Background

This chapter will introduce various techniques and systems used in and during development
of the COOJA Simulator, directly relevant for understanding the implementation chapter.

2.1 About Wireless Sensor Networks

There is a wide range of application areas in which sensor networks can be used. Military
applications include surveillance and reconnaissance, and in the health area sensor nodes
could help monitor and aid patients. As deployment time can be very short, sensor
networks can be used for monitoring disaster areas. Another example is to use sensor
nodes in smart homes, as alarms or controlling devices [1].

Advances in wireless communication and electronics enable development of cheaper
and smaller sensor nodes. Basically, a sensor node has processing power, wireless commu-
nication abilities and sensing devices. But to minimize costs they are often very limited,
a typical sensor node has a short communication range, low initial amount of energy and
low processing power. Of these, the especially limiting factor is the energy source, as that
often is the main factor corresponding to the length of the sensor node life [1].

A sensor network may consist of up to thousands or even millions of sensor nodes,
densely deployed and without pre-determined positions. The network has to be fault
tolerant, scalable and of low production costs. These circumstances demand a new set of
ad-hoc protocols and algorithms to be developed. Those used in traditional networks are
often not well suited for sensor networks, for reasons such as the larger amount of nodes
in communication range, high failure rates and limited resources of individual nodes [1].

Sensor networks are very application-speci�c, di�erent networks' ideal nodes may di�er
in both hardware and algorithms. And of course, sensor node hardware can be constructed
in several di�erent ways. A simulator should therefore be adjustable to easily simulate
di�erent software as well as di�erent underlying hardware platforms.

Also, similar wireless sensor networks may include di�erent kinds of sensor nodes,
with di�erent purposes. As an example consider a network with two di�erent types of
nodes, a cheap type and an expensive type. The cheap nodes are simple, they only gather
temperature data and forwards it to the nearest expensive node. The expensive nodes
analyse all data from their cheap node neighbours, and present the average temperature
on the Internet. Note that these sensor node types di�er not only in their running software,
but also in their hardware platforms. To simulate the above example, a simulator must
support such heterogeneous networks, with several node types di�ering in both hardware
and software.

4

2.2. THE CONTIKI OPERATING SYSTEM

2.2 The Contiki Operating System

Contiki is an operating system designed for memory constrained environments, such as
the nodes used in WSN. It is built around an event-driven kernel, and features include
dynamic loading and unloading of individual programs and services, and optional per-
process pre-emptive multi-threading. It also supports a full TCP/IP stack via the uIP
library, as well as the programming abstraction Protothreads. Contiki is implemented in
the C language and has been designed to be easily portable to new platforms. It has been
ported to more then 20 di�erent platforms since its release 2003 [3].

2.2.1 Event-based kernel

In a purely event-based system, a process is implemented as an event handler, letting
di�erent blocks of code execute depending on which event is given. These blocks are
always allowed to run to completion once called. Since a single code block will never
be interrupted, these blocks can be designed so that they may all share the same stack.
Compared to a multi-threaded model this requires less memory and computation overhead
when having several concurrent processes. In Contiki, a process consists of an event
handler and an optional poll handler function. The Contiki kernel holds the event scheduler
that dispatches events to processes and periodically polls processes that registered a poll
handler function. It uses a single stack for all processes, which is rewound between each
invocation of an event handler [6].

2.2.2 Threads and Protothreads

Unlike most other event-based systems, Contiki supports pre-emptive multithreading [6].
This is performed via a library which can optionally be linked with programs that require
it. This allows nodes to run applications that normally do not �t well in purely event-
based systems, such as cryptographic computations. Such a computation would otherwise
occupy the entire systems for a long time [6].

Apart from pre-emptive threads, Contiki also supports Protothreads [7]. Normally
when writing programs for event-driven systems, these have to be written as explicit state
machines with a resulting code that can be hard to understand and maintain. Protothreads
is a programming abstraction used on top of these systems, with the purpose to simplify
implementations of high-level functionality. By using Protothreads, programs can perform
conditional blocking without the overhead of regular threads; Protothreads are stackless
and require only 2 bytes of RAM each [7]. A regular Contiki process consists of one single
Protothread [2].

2.2.3 The system loop

At a regular start-up of Contiki the system, among other things, initializes a few processes.
It then repeatedly calls the system function process_run() [2]. This function calls all
registered poll handlers, and then processes one event from the current system event queue.
After the single event is processed, the function returns the number of unhandled events
still in the queue. If the event queue is emptied, a system may choose to go to sleep in
order to save energy. If an external interrupt awakes the system later, it loops around the
same function process_run() again and until all new events are handled.

int

main(void)

{

...

5

Chapter 2. Background

beep();

while(1) {

/* watchdog_restart();*/

while(process_run() > 0);

LPM_SLEEP();

}

return 0;

}

The above code snippet is from the Contiki main source �le of a speci�c hardware
platform, and demonstrates a common usage of process_run(). The call to LPM_SLEEP()
returns when the node wakes up again, often due to an external interrupt triggers calling
LPM_AWAKE().

2.2.4 uIP

uIP (micro IP) is a small TCP/IP implementation suitable for sensor nodes and other
resource limited devices. It is designed to have only the absolute minimum of required
features for a full TCP/IP stack, and focuses on the TCP, ICMP and IP protocols [4]. uIP
uses a single global bu�er for holding packets, large enough to contain only one maximum
sized packet. When a new data packet arrives from the network, the network device driver
puts it in the global bu�er and calls upon uIP to handle the new data. After analysing the
incoming packet data, uIP noti�es the intended application. Because of the single bu�er,
this application must act on it right away to avoid the data being overwritten by another
incoming packet. At this point the application may also choose to immediately send a
response using the same global bu�er. Similarly, when an application wants to send data,
it passes a pointer to the data as well as the length to uIP, which writes the headers and
�nally calls the network device driver to send the packet out on the network. Figure 2.1
shows an overview of the connections between the device driver, uIP and the application,
and how they use the global bu�er.

uip_buf

uip_len

device driver uIP application

uip_input()
uip_periodic()

uip_send()
…

Figure 2.1: uIP's global bu�er usage

The global bu�er variable is named uip_buf, and its current data content size is
stored in the integer variable uip_len [2]. The device driver operates against uIP by
two functions. The �rst function, uip_input(), should be called when the device driver
has received a packet and stored it in the global bu�er. When it returns, the device

6

2.3. PROCESS MEMORY STRUCTURES

driver must check if there now is any outbound packet in the bu�er. The second function,
uip_periodic(), should be called periodically by the device driver to discover if any
retransmissions are needed. The application may use several di�erent functions to operate
against uIP, among them the simple send data function named uip_send [2].

2.2.5 Previous Contiki Simulator

Previous to this master thesis, a basic Contiki simulation environment already existed.
Contiki was ported to run as a user-level process in FreeBSD, each simulated node was
represented by its own started process, and they were all connected by a simulated network
layer [5]. However, since all nodes were represented by their own running process without
any synchronization, the resulting simulations were not deterministic. In order to evaluate
and compare di�erent protocols simulations must be reproducible. Also, there was no
support for heterogeneous networks and adding new functionality required a lot of work.
Figure 2.2 shows a screenshot of the simulator.

Figure 2.2: Previous Contiki Simulator screenshot

2.3 Process memory structures

A regular process memory consists of several di�erent memory areas, or memory sections.
Each section is a range of addresses without gaps and all data in a section is treated the
same. Which sections exist varies between platforms but simpli�ed there are at least three
sections, these are the "`text"', "`data"' and "`bss"' section. The text section holds the
program code and constants, and is usually unalterable when the program is executing.
The data section holds initialized variables and is alterable. The bss section is similar to
the data section but holds uninitialized variables. The reason for having a bss section is
to save space in compiled binaries. Since all of the data in the section is zeroed when the
program is started, only the length of the section has to be saved in the binary, not all
the zeroes.

7

Chapter 2. Background

Additional memory areas are the heap and the stack. The heap enables dynamic
memory. During an execution a program may want to allocate new memory, and this
memory is placed in the heap. The stack is used for storing local non-static variables and
function call parameters. See Figure 2.3 for an overview of the typical memory structure
of a process.

BSS

program code

Data

Text

initialized variables

uninitialized variables

Stack

Heap

Figure 2.3: The typical memory structure of a process

2.4 Java Native Interface

Java Native Interface (JNI) is built into the Java virtual machine (VM) and provides a
way to locate and invoke native methods on a platform. This way code running inside the
JVM can interoperate with applications written in other programming languages such as
C or Assembly. Reasons for using JNI may be to reuse libraries and APIs not implemented
in Java, or to speed up calculations by using Assembly code.

A library is loaded in a Java class using the System.loadLibrary method, and cer-
tain Java methods, native, are then mapped to functions in the library. As a simple
example we may have a native method "`tick"' in the class "`Lib1"' residing in package
"`se.sics.cooja.corecomm"'. The Java side code would look something like this:

package se.sics.cooja.corecomm;

...

public class Lib1 ... {

static {

System.loadLibrary("mySharedLibrary");

}

native void tick();

}

Then the corresponding C function in the library would look like the following:

JNIEXPORT void JNICALL

Java_se_sics_cooja_corecomm_Lib1_tick(JNIEnv *env, jobject obj)

{

...

...

}

8

2.4. JAVA NATIVE INTERFACE

As can be seen in the Java code the library identi�ed by "`mySharedLibrary"' is loaded.
Which actual �le this corresponds to is platform speci�c; usually on Unix/Linux it is
mapped to "`libmySharedLibrary.so"' and on Windows "`mySharedLibrary.dll"'. The C
function name is constructed by the string Java, the packages, the class name and �nally
the method name. In this example, every call to the Java method tick is forwarded to
the corresponding C function Java_se_sics_cooja_corecomm_Lib1_tick.

In the Java 2 SDK, the VM maintains a list of every loaded native library for each
class loader. Once loaded, a library will not be unloaded until the class loader is garbage
collected.

Several libraries can be loaded by the same class loader if they are named di�erently.
However, once loaded the function names will be "`occupied"' and any later loaded library
cannot implement functions of the same signature. Looking at the example above, assume
we also want to load another library "`mySharedLibrary2"', which implements another
tick function with the same signature. If both of these libraries were loaded, only the �rst
library's native function would be executed by calling the native Java tick method. This
implies that if several libraries implementing di�erent functions must be loaded, either the
function names must be di�erent ("`tick1"', "`tick2"' etc) or they must be loaded from
di�erent classes (which also generates a di�erent signature).

9

CHAPTER

THREE

Related work

Several simulators exist that are either adjusted or developed speci�cally for wireless sensor
networks. The COOJA Simulator's main contribution is that of an application simulator
for the Contiki OS, with the purpose to ease and speed-up development and testing phases.
It is designed to be extendible and usable, with less focus on e�ciency. A few commonly
used simulators are discussed in this chapter, to point out similar and distinct features.

3.1 TOSSIM and TinyViz

The simulator TOSSIM [9] is in many ways similar to COOJA. It simulates the event-
driven operating system TinyOS. The visualization tool TinyViz provides a graphical user
interface, and is connected to TOSSIM over a TCP socket. In COOJA, the simulator and
the user interface are not separated, and the corresponding communication between the
executed Contiki code and the surroundings is via JNI. (This is explained in greater detail
in 5.2.) Both TOSSIM and COOJA support adding plugins for customized simulation
control as well as selecting di�erent or creating new radio mediums.

The main di�erence between TOSSIM and COOJA is how several nodes are represented
in the di�erent simulators. In TOSSIM, the problem of simulating several nodes is solved
by changing the sensor node code. All variables are replaced with arrays, where each
element in an array belongs to a corresponding node. This is done automatically when the
code is compiled for the simulator environment with the result that all nodes are simulated
in the same process [9].

In COOJA, the executed code remains unchanged, and when simulating several nodes
(of the same type) all of these are executed one by one in the same process. Which node is
currently active is identi�ed only by the current process memory; di�erent sets are copied
back and forth when switching between nodes. Although the latter approach requires more
overhead during node-switches, it gives a less complex structure where the code executed
during a simulation is equal to the code executed on a real node. This makes for example
debugging simulated code very intuitive. And since the entire memory of each node is
available in the simulator at all times, advanced memory interactions are made possible
such as saving a node memory and restoring it at a later time.

3.2 PowerTOSSIM

PowerTOSSIM [10] is an extension to TOSSIM for estimating per-node power consump-
tion. Each TinyOS component corresponding to a hardware peripheral (such as a LED),

10

3.3. ATEMU

reports its actions during the simulation. This is later translated to how much energy
the device required. For simulating the CPU power consumption, PowerTOSSIM uses
a code-transformation technique to estimate the number of CPU cycles of executed code
blocks [10]. The generation and processing of the power data is decoupled due to e�ciency
and �exibility; the gathered data is analysed o�ine to calculate for example how much
energy the node used during the simulation.

In COOJA, interfaces (explained in 5.3) represent the simulated hardware peripherals
and report how much energy they use during simulations. But opposite to PowerTOSSIM
there is no analysis of the code executing on the simulated CPU, the estimated power
consumption of the CPU is instead a value only depending on what current energy state
the node is in (dead, low power mode or active). Also, the energy calculations are per-
formed directly in COOJA since the focus on e�ciency is not as central. An advantage of
performing calculations immediately is to test how protocols perform when central nodes
run out of energy and are therefore shut down. The network then has to �nd new routes.

3.3 ATEMU

The simulator/emulator ATEMU [8] (ATmel EMUlator) uses a hybrid approach; the oper-
ations of individual nodes are emulated and the communication between them is simulated.
The emulation supports the MICA2 platform but can be extended to support other plat-
forms [8]. COOJA does not emulate nodes; a better description is that COOJA simulates
Contiki applications, compiled for a port of Contiki. The port for which Contiki applica-
tions are compiled can instead easily be adjusted to represent a target hardware platform,
having di�erent hardware devices and power consumption settings.

11

CHAPTER

FOUR

Design choices

In this chapter overall design goals and choices will be discussed. The di�erent parts of
the simulator that are mentioned here will be explained in more detail in the next chapter.

4.1 Extendibility

The purpose of simulating a sensor network di�ers greatly between di�erent simulations.
During development and implementation of a routing protocol, a user wants to con�rm
that the code is executing properly. When the protocol is implemented, factors such as
network lifetime or total number of packets sent become more important.

But the same user may also want to investigate some protocol speci�cs or properties.
For example, consider a routing protocol that needs an algorithm which automatically
�gures out the relative positions of all nodes in a network. A user may then want to
graphically show these positions in comparison with their "`real"' simulated positions.
Therefore, while already having support for base-functionality in the simulator, it is im-
portant that a user can easily extend that functionality, concerning both hardware and
software.

To achieve such extendibility the simulator mainly uses two di�erent parts - plugins
and interfaces, both of which can easily be created and added to the simulator. The
plugins interact with a simulation, or parts of a simulation. An interface interacts with
a sensor node - it simulates hardware peripherals or monitors interesting values. Both of
these will be explained in Chapter 5.

4.2 Java and JNI

Common programming languages for similar simulators such as COOJA include C and
Java. Java o�ers a quick and easy way both to develop and to later extend applications,
hence a good choice for the COOJA Simulator.

The ability to compile and execute real Contiki OS code in the simulator minimizes
the step between simulating and actually running the code on real platforms. Java Native
Interface (JNI) o�ers a connection between the C language of Contiki code and the pure
Java part of the simulator. But by using JNI, the otherwise platform independent Java part
will now need a platform that can compile and execute Contiki code. An alternative could
be using a TCP connection between the Java part and a proxy calling the compiled Contiki
OS code. This way the Java part would still be platform independent and simulations could
be run remotely on any platform able to compile Contiki and the proxy.

12

4.3. APPLICATION SIMULATOR

After comparing the di�erent alternatives, JNI was chosen mainly due to extendibility
reasons. For example, when using JNI the entire simulation is run in the same process. A
COOJA plugin (explained in 5.5) is able to, without adding any new intelligence to the
JNI connection or any other part of the simulator, start up a common debugger in a new
process, set relevant breakpoints and then start debugging Contiki code running in the
simulator process. The same thing would be impossible with a TCP connection without
adding debugging support to the interface between the Java part and the proxy. Hence, in
this case a regular user can easier add new functionality when JNI is used. Also, to run a
simulation on two di�erent hosts over a TCP socket would introduce a major performance
bottleneck, which means that in most cases the Java part would still need to run on the
same platform as the native code.

4.3 Application simulator

The COOJA Simulator is a Contiki OS application simulator as opposed to a sensor node
emulator. When a user creates a new node type, the resulting Contiki system is compiled
for the simulation platform, in the regular Contiki environment. While the drivers of
a hardware platform operate on hardware, the drivers of the simulation platform work
against the Java part of the simulator. But since the simulation platform supports the same
devices as any hardware platform, there is no di�erence between them from an application
viewpoint. The same application code compiles and executes on both platforms. So the
hardware peripherals of a platform are not emulated, they are replaced by other simulated
devices. An alternative would be to emulate all hardware of a sensor node, which could give
more precise results but also would limit the simulator to one or a couple of supported
hardware platforms. By using the above method, di�erent hardware platforms can be
supported simply by puzzling together all wanted drivers. Figure 4.1 shows a comparison
of device drivers on a hardware platform and in the simulator. The left part illustrates
how an application uses a driver to interact with hardware, whereas in the right part the
driver pretends to be hardware but instead communicates with the simulator.

application

drivers

HW

application

drivers

temporary storage

simulator

Hardware platform
Simulator platform

Figure 4.1: Device drivers on a hardware vs. simulation platform

4.4 Automated Contiki environment setup

In order to simplify usage, as much as possible should be controlled from inside the simu-
lator.

13

Chapter 4. Design choices

This includes setting up and loading the Contiki system. For example, since the Contiki
applications are central to the node types, and they are started from the Contiki main
�le at start-up, the main �le should automatically be generated and compiled from the
simulator. This way a user chooses which processes the node should run and then the
simulator generates the needed source �les, compiles them and �nally loads the created
library. Apart from the Contiki applications, the generated main �le also speci�es which
interfaces and sensors each node has, as well as contains the entire JNI interface towards
the Java part. All of this should be easily controlled and altered by the user.

14

CHAPTER

FIVE

Implementation

This chapter explains the main parts of the COOJA Simulator and how they are connected.
Earlier in this report, Interfaces and Plugins have been mentioned. An Interface represents
a sensor node property or hardware peripheral, whereas a Plugins is used to interact with
a simulation. Both of these will be explained in this chapter, as well as how the simulator
uses the process memory structure (2.3) to simulate several nodes of the same type.

An extended version of this chapter intended for developers is available in the user
manual, available from http://www.sics.se/~fros/cooja. The chapter ends with an
extensive example of what happens when the user interacts with a simulation. The example
gives the reader an easier explanation of how the earlier discussed parts are connected.

5.1 Design overview

Simpli�ed, a COOJA simulation consists of a number of nodes being simulated. Each
node is connected to a node type, or "`of a node type"'. When the simulation is running,
all of the nodes get to act in turn. And when all nodes have acted once the simulation
time is updated and then the process is repeated (the simulation loop). See Figure 5.1.

increase simulation time

let node 1 act
let node 2 act
let node 3 act

let node x act
…

simulation running simulation paused

Figure 5.1: The simulation loop

More speci�cally, each node also has its own node memory and a number of node
interfaces. The memory consists of one or several memory segments, each with a start
address and data. Together the memory segments must de�ne all interesting and needed
parts of an entire simulated Contiki OS (explained in 5.2).

15

http://www.sics.se/~fros/cooja

Chapter 5. Implementation

The interfaces act on the memory and simulate node devices such as a clock or a radio
transmitter. For example, when the time changes a clock interface should update some
speci�c time variable. And that variable resides in the node memory of that node.

The node type is the bridge between the node explained above, and a loaded Contiki
OS executing node speci�c code. This is from where the simulated Contiki OS ("`the
core"') is initialized, and the initial memory is created. And all nodes of the same type
are linked to the same loaded Contiki OS. The node type also performs variable name to
address mapping. This implies that if the above clock interface wants to change the core
time variable "`timevar"', the node type is asked what address that variable is at. When
a node gets to act, the node type is responsible for linking the node to its corresponding
Contiki OS. See Figure 5.2 (note that the node type can also be connected to other nodes).

node type

simulated node

node memorynode interface handler

interface

interface

interface
memory segment

memory segment
compiled and loaded

Contiki OS

Figure 5.2: A simulated sensor node

There is one running Contiki OS for each existing node type. This means that all
nodes of the same type share the same Contiki OS. It consists of Contiki code compiled as
a shared library towards a simulation platform, and the communication between the Java
part and the core is via Java Native Interface. Observe the di�erence between a Contiki
OS process and a Contiki application process; the �rst one is the entire Contiki operating
system compiled and executed, while the latter is a process existing only inside the Contiki
environment. When referring to the Contiki OS process the term "`core"' will be used, and
when referring to the rest of the simulator the term "`simulator"' will be used. Obviously
the core is also a part of the simulator but to simplify the text this distinction will be
made. There are only a few native functions connecting the core to the simulator, of which
the most important three are a "`set memory"' function, a "`get memory"' function and
a function that is called when a node gets to act (the "`tick"' function - see below).

The simulator is pure Java based while the core is implemented in the C language (as
Contiki OS itself). As a rule, the simulator is responsible for everything external to a
speci�c node such as how the surrounding radio medium works or the current simulation
time. The core is responsible for the inner workings of the node; it executes real Contiki
code, allowing the same simulated application code to be used unaltered on real physical
nodes. The process of letting a node act will be called letting a node "`tick"', or "`ticking"'
a node, and is explained in 5.4.

5.2 Core communications

A Contiki application is always compiled for a speci�c platform, such as the ESB platform.
The platform de�nes, among other things, which devices (leds, buttons etc.) are available.

16

5.3. COOJA INTERFACES

When Contiki is compiled to be used in the COOJA Simulator (the platform "`cooja"'),
the main source �le de�nes a number of JNI functions. On a "`regular"' Contiki plat-
form, this main part processes events from the event queue until empty. In COOJA, a
node is initialized at startup, and then all the processing of events is performed remotely
via the JNI functions. There are only �ve JNI functions, these are an initialization

function, a get memory function, a set memory function, a function that returns the
absolute memory address of a special reference variable and �nally a tick function.
The initialization function starts up the process handler, networking and the pre-speci�ed
application processes, much like on any other platform. Get and set memory functions
are very simple, without any error checking they just set or return a speci�ed byte array
from the current process memory.

The function which returns an absolute address of a reference variable is used for
mapping between relative and absolute memory addresses. Each node type knows the
relative addresses of all memory sections and variables in its core. When the simulator
switches between di�erent nodes, all of the node relevant process memory has to be re-
placed. COOJA does this by copying the entire BSS and DATA memory sections back
and forth between the simulator and the core (the stack and heap sections are not needed,
as explained in 2.2). By comparing the reference variable absolute address with the known
relative address (via node type), the absolute addresses of the memory sections (as well as
all variables) can be calculated. See Figure 5.3 for an illustration of all the JNI functions
and their purposes.

Node type Core

BSS Data

set memoryMemory sections

JNI

get memory

init
start system processes

…

get reference address

tick

&refVar

…

process_run();

…

Simulation loop

BSS
Data

Figure 5.3: Java Native Interface usage

The last JNI function is the tick function. This is as the name suggests called during
a node tick, and this is where the Contiki system function process_run() (that processes
an event from the event queue) is called. For more information about the JNI tick function
see Section 5.4.

5.3 COOJA interfaces

The COOJA interfaces are the main and preferred way to analyse and interact with
simulated nodes. Not only do they simulate all the hardware devices, but by exploiting
the way the interfaces are treated, highly customized simulation behaviour can be achieved.
Instead of strictly being interfaces to node devices, a better explanation may be that they
are interfaces to node properties. For example, one of those properties is the node position.
Often a node does not even know its actual position - these kinds of interfaces are called
virtual. By customizing the position interface, a simulation with moving nodes can be

17

Chapter 5. Implementation

created. This could be useful if one were to simulate nodes rolling down a hill or on
moving robot arms.

COOJA interfaces exist both in the core and in the simulator. Interfaces implemented
in the simulator ("`simulation interfaces"') have full access to the node memory, and
interfaces implemented in the core ("`core interfaces"') can access Contiki system functions.
Often relationships and dependencies exist between core and simulator interfaces. One
example is the radio transmitter, a radio interface must exist both in the simulator and
in the core. When radio data is transmitted or received the interfaces communicate with
each other rather than with the Contiki OS system directly. When the node is ticked, the
core interface can then deliver incoming radio data to the Contiki system the same way
as a regular hardware device driver would, by storing it in the global bu�er and calling
uip_input() (see 2.2.4).

A distinction of simulator interfaces can also be made; active and passive, and has to
do with the node state. The only node property not handled via interfaces is the node
state, which is either active, sleeping (to save energy) or dead. A dead node still exists,
but will never be ticked and can never leave that state. When a sleeping node is ticked,
only passive interfaces are allowed to act, and the tick is not delivered to the core. An
example of an interface that should be passive is the battery interface. That interface
must act even though the node is sleeping (the node still requires battery energy). On the
other hand, the active interface representing a PIR sensor may not discover light changes
if the node is sleeping. Active interfaces may still wake up a sleeping node by triggering
an external interrupt. A button interface is such an example - it is active but wakes up a
sleeping node whenever the button is pressed.

When a node interface wants access to a variable, it is the node type that actually
performs the mapping between the variable name and the memory address. To get an
extendable design, each interface is responsible for its own dependencies. Thus, when
an interface is constructed, it should check that all needed variables and interfaces are
available.

All simulation interfaces can also be observed. Any entity of the simulator can register
as an observer, and is noti�ed whenever the interface decides so. For example, a radio
interface may choose to notify its observers when it is about to send data. A standard
observer of radios is the radio medium, it can then fetch the new data and decide which
of the other radios should receive it.

The observer-observable approach enables very dynamic interactions between di�erent
parts of the simulator, and not only simulation interfaces use this approach. For example
a simulation can be observed, it noti�es all observers when the simulation is started or
paused, when new node types have been created or when nodes have been added or
removed. The simulation loop can also be observed, it noti�es its observers whenever it
has completed one loop.

A simulation interface optionally also has a graphical representation, where it o�ers
information and interaction with a user. These graphical representations are implemented
as regular Java panels and can be displayed in a COOJA plugin (see Section 5.5). Figure
5.4 shows how simulation and core interfaces are connected. As can be seen in the �gure,
interfaces only interact with the node memory. When that node memory later is copied
to the core, the core interfaces can discover any changes made.

Which interfaces a certain node type has is chosen at compilation time, see Section
5.6 for more information. The easiest way is to select which simulation interfaces should
be supported, all dependency core interface will automatically be added (although these
highly recommended interfaces also can be manually con�gured).

18

5.4. TICKING A NODE

Node 1
Core interface:
button driver

Core interface:
leds driver

JNI

Core

Simulation interface:
button

Simulation interface:
leds

Node typeNode memory

Figure 5.4: The connection between simulation and core interfaces

5.4 Ticking a node

During a node tick the Contiki system function process_run() is called once, which
handles one event and polls a process once. In order to tick the "`right node"', the
memory of that node has to be set before going down to the core. Also both before and
after this function is run node interfaces are allowed to act, which ones depend on the
node state as discussed earlier.

Information about pending events and timers are returned from the core back to the
simulator. This is used for deciding if a node should go to sleep. Figure 5.5 contains
pseudo-code following a tick from the simulation loop down to the core.

Simulation loop

tick node x

abort if dead

if sleeping, time to wake up?

pre-tick (passive/all) sim interfaces

if active:

- set memory

- tick core

- get new memory

post-tick (passive/all) sim interfaces

should node sleep?

- set wakeup time

node type JNI

pre-tick all core interfaces

poll event timers

call process_run()

save number of unhandled events

post-tick all core interfaces

save next event expiration time

Figure 5.5: Pseudo-code of a node tick from the simulation loop to the core

5.5 COOJA plugins

Whereas the COOJA interfaces are the best way to interact with simulated nodes, plugins
are the best way for a user to interact with a simulation. The plugins are registered
at runtime before they can be used, often at startup of the simulator. The user then
creates instances of the available registered plugins during simulations. The plugins are
implemented like a regular Java panel, and hence a user can create new advanced graphical
interfaces in a straight-forward way. Plugins can be of four di�erent types, and they are
treated slightly di�erent.

19

Chapter 5. Implementation

The �rst and simplest type is the GUI plugin type. The GUI plugin type only needs
a running GUI to be constructed, and this is passed as an argument when a user initializes
the plugin. Via the GUI, relevant information such as the current simulation (if any) as
well as all simulated nodes can be accessed. Since this plugin only depends on the GUI, it
is not removed when the current simulation is removed. Plugins of this type are the ones
that can outlive a simulation. And since only one simulation can be active at the same
time in COOJA, this plugin type may be used to transfer information between di�erent
simulations. An example of a GUI plugin may be a testrun controller which loads up a
simulation, performs some tests, saves the data and loads another simulation.

The second and third types both depend on a simulation, the Simulation plugin

types. When such a plugin is created, the current simulation is passed as an argument,
and if that simulation is removed, so will the plugin be. An example of a simulation plugin
may be displaying information about the current active simulation, such as the number of
simulated nodes and types or the current simulation status. Another very useful example
is a graphical representation of the positions of all simulated nodes. The di�erence between
the two simulation plugin types is that one of them (called the simulation standard plugin)
will automatically be created when a new simulation is created, the other is optionally
started by a user.

The last plugin type depends on a simulated node, and if that node is removed, so will
the plugin be. It is called the Mote plugin type. An example of this plugin may be to
watch a certain node variable, and stop the simulation whenever that variable changes.
Another example is an energy usage history plugin, which monitors the amount of energy
left in the battery of a node and presents a graph over time using this data. See Figure
5.6 for a screenshot with some di�erent types of plugins started.

text

Figure 5.6: COOJA screenshot with started plugins

Most plugin types should be loaded at startup and be available until COOJA is termi-
nated. However, COOJA also supports registering and un-registering plugins - depending
on the current simulation. These plugins are called dynamic plugins and the only dif-
ference is the way they are registered, i.e. any plugin type can be registered as a dynamic
plugin. The reason for supporting dynamic plugins is that some parts of a simulation may
want to register a plugin of their own. An example is radio mediums (see Section 5.8).

20

5.6. CODE GENERATION AND COMPILATION

When a radio medium is used, that is the only part in COOJA responsible for and with
information about how radio data should be handled - which nodes can reach and inter-
fere with other nodes, transmission bit errors etc. And since radio mediums can be very
advanced, simply implementing a generic visual interface to all of them is not enough. By
using dynamic plugins, a radio medium can register one or several plugins of its own and
let a user see or alter radio medium speci�c parameters using them. In Figure 5.6 the radio
medium used is named "`Radio Medium - Standard"', and it registered a dynamic plugin
of the same name. This plugin simply allows a user to view and change transmission and
interference ranges.

5.6 Code generation and compilation

A node type is de�ned by a number of parameters such as which Contiki processes are
loaded at start-up, which standard sensors the Contiki environment knows about and
which core interfaces have been registered. Another important factor is which Contiki en-
vironment the library is compiled against, di�erent node types may use di�erent versions
of Contiki. When a user creates a new node type he must enter the Contiki OS path,
against which the shared library will be compiled. Available processes, sensors and inter-
faces are automatically detected by scanning the simulation platform and can be chosen
from. These settings de�ne how the resulting Contiki main source �le will look.

When the con�guring is done, COOJA generates the source �le and compiles it. The
output from this compilation is a map �le and the shared library with the JNI functions
(see Section 5.2). The map �le is outputted from the linker and is a text �le that contains
names and addresses of all memory sections and variables of the compiled library. This
�le is parsed when the node type is created, and enables variable address lookups.

The compiled library corresponds to the newly created node type. But due to JNI (see
Section 2.4), each new library must be loaded from a unique class, they can not all be
loaded from a single node type class. COOJA supports a limited number of simultaneously
loaded libraries each via its own class, called library classes. Since the contribution of a
library class only is its unique name, it is extremely simple. It has the native functions
and when constructed it just loads a given library �le. During node type creation, before
the library is compiled, a free library class is allocated and the JNI functions in the source
�le are named with regard to that class. See Figure 5.7.

5.7 Graphical User Interface

The core Graphical User Interface (GUI) is kept as simple as possible. It is based on
a desktop pane and by using menus and dialogs a user may create new, load or save
simulations. The user can also create new node types, add nodes, change simulator settings
and create instances of registered plugins.

When loading a simulation, stored values are recommended to the user, but can be
altered. For example, if a user loads a simulation with two di�erent node types and 100
nodes, he must recompile both node types before the nodes are added. At this point the
user may for example choose to change which Contiki processes are run on each node. This
can be useful if he wants to compare di�erent algorithms while using the same network
setup, or how routing protocols behave when di�erent radio mediums are used.

All windows in the desktop pane are started plugins, so without plugins there is no
way to interact with a simulation, except for creating and adding nodes. A number of
plugins that o�er basic functionality is implemented in the basic version of COOJA. This

21

Chapter 5. Implementation

text

free library class

library

map file

new node type

generated source file

name

Figure 5.7: Compilation of a new node type

includes viewing and moving nodes, observing radio tra�c, watching node interfaces and
node log outputs as well as controlling simulations.

5.8 Radio Mediums

As network communication is central to a WSN, the COOJA Simulator supports adding
and using di�erent radio mediums.

Each radio medium is listening to a number of registered radio transmitters. Every
radio transmitter has its own position, and the radio medium discovers whenever new data
arrives at any of the radios. It is then responsible for calculating which of the other radios
should hear the data. And the current radio medium used during a simulation is the only
part forwarding radio data in the network. By using this approach a radio medium can
be made arbitrarily advanced. For example bit errors can be introduced depending on
distance, or obstacles can be simulated in order to block or corrupt data between di�erent
radios. As mentioned above, to increase user interaction each radio medium may register
dynamic COOJA plugins.

In the basic version of COOJA there are only two simple radio mediums implemented
and registered at the simulator start-up. The �rst one is completely silent, no data is
transferred. The second uses two distance parameters, one for transmission range and the
other for interference range. Data packets actually delivered to a receiving radio device
are never corrupted in any way.

5.9 Positioners and IP distributors

Positioners and IP distributors are both registered the same way as radio mediums - this
means that it is easy to create and add new ones. They are used when new nodes are
added to a simulation, and enable a user to distribute positions and IP addresses using
customized schemes.

Positioners determine node positions; included in the basic COOJA is random, linear
and positioning in an ellipse shaped form. Examples of positioners may be to read positions
from an external �le, or to distribute them according to some algorithm.

22

5.10. CONFIGURATION SYSTEM

IP distributors determine the node IP addresses, those already included are random,
de�ned from a unique node ID and de�ned from the node position (spatial IP addressing).

5.10 Con�guration system

The con�guration system is used by the Java part of the simulator, including both the base
simulator system and added implemented plugins. Con�guration �les are read at startup
or during a node type creation, and by creating new a user may add extra or override the
default con�guration. The base simulator system reads for example which positioners, IP
distributors, interfaces, plugins and radio mediums should be registered at start-up. The
user may choose only between these when the simulator is started, but by loading another
con�guration �le new ones can be made available.

An example of what a battery interface may use the con�guration system for is to read
its initial energy. In the same way a led interface may read how much energy it requires
during its di�erent states. This way, by only changing con�guration �les, the simulated
hardware can di�er signi�cantly depending on which con�guration �les are loaded. A typ-
ical usage is to create di�erent con�guration �les depending on which hardware platform
should be simulated, either loading these �les at simulation startup or when the node type
is created.

5.11 Extended simulation environment

The preferred way to use COOJA is to create a customized working environment. The
working environment, called user platform, is a directory where users can extend COOJA
functionality without changing the base system. A working environment can add both
Contiki implemented devices (in C language), and Java classes. This means that the
simulated hardware platform can be extended to have new core interfaces (peripherals)
depending only on which directory is chosen as current user platform.

At the Java side, plugins and simulation interfaces should extend certain abstract
classes in the base system. When compiled against COOJA they can be loaded and used
by the simulator, without the need to recompile the base system.

Which of the new interfaces and plugins are available up is speci�ed the usual way - by
the earlier explained con�guration system. See Figure 5.8 for a comparison when creating
node types with or without a user platform.

text

user platform defined

extends available sources

no user platform

USER PLATFORM

MAIN PLATFORM

compiles against available sources

Figure 5.8: Compilation with or without a user platform

23

Chapter 5. Implementation

5.12 An extensive example

In this section a simple example will be run and explained. The simulation will contain
several simulated nodes, all running the same Contiki application on the same simulated
hardware. Note that this example is run using a speci�c con�guration and the results
would be di�erent if another was used, such as other interfaces, plugins, radio mediums,
uIP versions, MAC protocols etc.

The Contiki application is very simple - if the onboard button is pressed the node will
send a network broadcast message to all other nodes. And when such a packet is received
all three leds will be turned on.

5.12.1 The Contiki application

The Contiki process is implemented in cooyah.c using Protothreads, and is named
cooyah_example_process. Pseudo code of the process body follows (for the real code
see Appendix):

PROCESS BODY OF cooyah_example_process

LOG "Example process started"

ACTIVATE NETWORK

ACTIVATE BUTTON SENSOR

LOOP FOREVER {

- wait for incoming event

* if shut down event

LOG "An event occurred: shutting down"

shut down

* if button was pressed

LOG "An event occurred: the button is pressed, sending packet"

send network packet containing "cooyah COOJA"

* if button was released

LOG "An event occurred: the button was released again, doing nothing"

* if network packet was received

LOG "An event occurred: a packet was received, turning on leds"

LOG "PACKET DATA:" + packet_data

turn on all three leds

}

END OF PROCESS BODY

As can be seen in the code, four di�erent events are handled; an exit event, a button
down event, a button up event and a received network data event. The source �le was
placed in the main simulation platform in order for the simulator to �nd it.

24

5.12. AN EXTENSIVE EXAMPLE

5.12.2 Creating the node type

A simulation was created using the standard radio medium, and a node type was created
with the above process selected (see Figure 5.9). All simulation interfaces were used,
although only a few are really needed for the above application.

Figure 5.9: Example - creating the node type

When the "`Test current settings"'-button was pressed, the free library class "`Lib1"'
was selected, and a Contiki main source code �le was generated; mtype1.c. This �le
contains the JNI functions tuned to be called from the "`Lib1"'-class, all start-up pro-
cesses including the above, and �nally all core interfaces and sensors. It was compiled
against the main simulation platform which resulted in both the library �le and the map
�le. Later when the "`Create"'-button was pushed, the library class loaded the library
"`mtype1.library"' and the node type was created. Also, the map �le was loaded and
the variable and memory section addresses parsed. Finally the JNI function "`init"' was
called upon the newly created library and the current memory was fetched. This memory
represents a newly started node, and is stored in the node type to be used when adding
new nodes.

5.12.3 Adding the nodes

10 nodes of the above node type were randomly added. All of these nodes received the
basic startup memory from the node type, and all interfaces speci�ed in the node type
were created for each of the new nodes. See Figure 5.10.

5.12.4 Starting the simulation

When the simulation is started by using the plugin "`Control Panel"', the simulation loop
begins. After just a few ticks, the initial log messages (speci�ed in the Contiki code above)
can be seen in the plugin "`Log Listener"'. Also, all of the node states are set to be sleeping,
because there are no unhandled events or pending event timers. Some of the simulation
interfaces (the passive) are still allowed to act; one example is the battery interface. A
sleeping node can now only be awoken by an external interrupt, such as a clicked button.
In this simulation, incoming radio tra�c also triggers external interrupts.

25

Chapter 5. Implementation

Figure 5.10: Example - adding 10 nodes

By using the plugin "`Mote Interface Viewer"' we can view and interact with simulation
interfaces. In Figure 5.11 we can see that node 2 and node 8 both have all their leds turned
o�, and we also have the option to click the button of node 8.

Figure 5.11: Example - starting the simulation

5.12.5 Clicking the button

Now we, by using the graphical representation of the button simulation interface, click the
button on node 8. The interface operates on the node memory and changes the character
variables "`simButtonIsDown"' to 1 and "`simButtonHasChanged"' to 1. It also changes
the node state to active, imitating an external interrupt. The following Java code is from
the button simulation interface, and is run when the button is pressed. (Note that this
code also checks if the button sensor is activated at all.)

/**

* Presses the button and flags a change.

*/

public void pressButton() {

moteMem.setByteValueOf("simButtonIsDown", (byte) 1);

if (moteMem.getByteValueOf("simButtonIsActive") == 1) {

26

5.12. AN EXTENSIVE EXAMPLE

moteMem.setByteValueOf("simButtonChanged", (byte) 1);

// If mote is inactive, wake it up

if (RAISES_EXTERNAL_INTERRUPT)

mote.setState(Mote.STATE_ACTIVE);

}

}

The simulation loop continues as before but now node 8 is active. This causes the tick
to go down to the core, and there the corresponding button core interface is allowed to
act. The following code is from the button core interface - the driver of the simulated
button. Note that both the simulation interface and the core interface operate on the
same variables.

doInterfaceActionsBeforeTick(void)

{

// Check if button value has changed

if (simButtonChanged && simButtonIsActive) {

sensors_changed(&button_sensor);

simButtonChanged = 0;

}

}

The core interface now discovers that the simulated button has been pressed, and
signals a change to the Contiki system - the exact same way a hardware driver would;
by calling sensors_changed(&button_sensor). The Contiki system adds an unhandled
event to its list, and deals with it during the next process_run() function call, which is
when all core interfaces have acted.

After a few ticks, that event has been passed on to the cooyah application which now
sends a packet onto the network. The button simulation interface automatically releases
the simulated button one tick after it has been pressed. That causes another event to be
passed to the application, which can be seen in the "`Log Listener"' plugin, Figure 5.12.

Figure 5.12: Example - clicking a button

27

Chapter 5. Implementation

5.12.6 Sending the radio packet

The cooyah application sends the packet by calling a uIP function:
uip_send("cooyah COOJA", 12), which only copies the data into the global bu�er. A few
ticks later, the running Contiki default uIP process discovers that it has unhandled data in
the global bu�er. Eventually that data is passed down to the device driver; implemented
in the core radio interface.

The radio core interface copies data from the global bu�er to a bu�er of its own. The
same way the core and simulation button interfaces communicate with each other, this
packet is later transferred to the radio simulation interface. And the simulation radio
interface then noti�es all its observers that new data is available.

5.12.7 Forwarding the radio packet

The radio medium used in this simulation has registered as an observer on all radio sim-
ulation interfaces. When the above interface received a packet, the radio medium was
informed of this and fetched the new data. It then decides on which other radio interfaces
should receive this data - in this example the two nearest neighbours; node 2 and node 5.
In the plugin registered by the radio medium, "`Radio Medium - Standard"', the current
transmission and interference ranges are visualized as well as the current connections. See
the lower-left corner of Figure 5.13 for a screenshot of when the radio medium forwards
the network packet.

Figure 5.13: Example - radio medium forwarding packet

Since the radio interface was allowed to trigger external interrupts in this simulation,
it will wake up both nodes 2 and 5. The received data is passed down to the radio core
interfaces in the same fashion as before, and after being handled by the uIP process, the
cooyah process is eventually given an "`incoming network data"' event.

5.12.8 Turning on the leds

The simulation and core interfaces representing leds are connected in a similar way as
buttons, radios etc. In Figure 5.14 the resulting leds and logs are displayed. A summary
of the events during this example can be seen in Figure 5.15.

28

5.12. AN EXTENSIVE EXAMPLE

Figure 5.14: Example - the resulting leds

t

Node 2+5
radio packet

Memory sections

Node 8
button down

event

Initial log
messages

Node 8 log
message

Node 8
button up

event

Node 8 log
message

Node 8
radio packet

Node 2+5 log
messages

Node 2+5
leds on

Figure 5.15: Example - summary of events

29

CHAPTER

SIX

Evaluation

In this chapter an overall evaluation of the simulator will be discussed, considering di�erent
potential users and the design choices in Chapter 4. As argued earlier, the simulator may be
used for di�erent purposes; a user may just want to test and debug some application code,
develop entirely new applications or evaluate algorithms and routing protocols in highly
customized simulated surroundings. There may also be a need for adding new functionality,
such as new radio mediums or advanced interactions and analyses of simulated nodes and
networks.

COOJA's main design goal is to be extendable, and at the same time usable. For a �rst-
time user the windowing system should be easy and intuitive to understand and navigate
in. When he creates a new node type, the simulator automatically �nds his applications
that he may select from. Since the basic simulator supports the most common hardware
peripherals, chances are very good that his applications can be simulated right away. The
simulator then generates sources, compiles and loads the generated library. When adding
nodes he is presented with alternatives of how to position them, and how the IP addresses
of the new nodes should be distributed. And plugins included in the basic simulator allows
the user to interact with and view information about the simulation.

For the user that wants to create new applications, the create node type dialog may
also be used to test-compile the code. However, since created node types never can be
removed, and COOJA only supports a limited number of simultaneous node types, the
simulator has to be restarted once and a while. A faster way to test code, and to avoid
too many node types, is to after creating a node type and adding one or several nodes,
save the current simulation. When the simulator is restarted and the previous simulation
is loaded, all settings will already be preset which gives a short time-overhead between
code changes.

The advanced user may add new customized interfaces, extending both hardware pe-
ripherals (core and simulation interfaces) and property interactions (virtual simulation
interfaces only), without the need to change anything in the base simulator. He can create
di�erent con�guration �les, or even di�erent user platforms, for each hardware node that
is being simulated, and then simulate all of these di�erent node types in the same simu-
lation. By extending existing plugins, new functionality can be added quickly, or he may
create entirely new plugins working with the usual Java tools for creating graphical user
interfaces - a simulation interface is implemented the same way as a JPanel. And because
of the observer-observable-approach, all parts of a simulation can be controlled. Finally,
since simulated code is regular Contiki application code, the step between simulating and
uploading applications to real nodes is small.

However, a drawback of the simulator is its relatively low e�ciency. Simulating many

30

nodes with several interfaces each requires a lot of calculations, especially when plugins
are started and registered as observers to those interfaces.

31

CHAPTER

SEVEN

Results and Future work

7.1 Results

The resulting simulator works well for the intended usage. It helps new users to quickly
and easily start up a simulation, and is very useful during development and test phases.
It supports heterogeneous networks, concerning both simulated hardware and software.
Larger-scale behaviour protocols and algorithms can be observed by using the basic set of
plugins or by easily extending them. However, due to its extendibility it is not extremely
e�cient.

7.2 Future work

An interesting future add-on to the simulator is a more advanced radio medium. The
radio medium implemented in the basic simulator is very simple - it only depends on the
distance between the radio devices. An interesting and more realistic radio medium could
introduce radio absorbing obstacles such as walls and transmission error probabilities.

A feature that would improve the base system is the ability to "`skip to the next
event"'. By temporarily disabling a user from triggering simulated external interrupts,
the simulation would be a lot faster. Instead of ticking a node a thousand times, waiting
for something to happen, the simulation would be sure that nothing could happen and
immediately calculate how much energy is needed during those thousand ticks etc. This
feature can also support only watching subsets of interfaces and nodes, as an example the
simulation can run until the �rst node battery is dead.

Another useful add-on would be, implemented as a GUI plugin, a test case controller.
By reading a pre-de�ned speci�cation it loads and starts simulations, logs interesting data,
loads another simulation and repeats. By using this plugin, extensive and time-demanding
tests could be performed during nights and holidays.

To fully minimize the step between simulating and deploying code on real nodes, and
since the current way of compiling and uploading code to di�erent sensor node platforms
is standardized in Contiki, this functionality can be added to the simulator, either as a
base functionality or as a plugin. This way a user may, inside the simulator, choose to
compile and upload the applications of a node type to a currently connected real node.

32

BIBLIOGRAPHY

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks, 2002. IEEE Commun. Mag. 40.

[2] A. Dunkels. The contiki operating system 2.x online documentation (webpage). http:
//contiki.sourceforge.net/html/; accessed January 22, 2006.

[3] A. Dunkels. The contiki operating system (webpage). http://www.sics.se/~adam/
contiki/; accessed January 22, 2006.

[4] A. Dunkels. Full TCP/IP for 8 Bit Architectures. In Proceedings of the First
ACM/Usenix International Conference on Mobile Systems, Applications and Services
(MobiSys), San Francisco, May 2003.

[5] A. Dunkels, L. M. Feeney, B. Grönvall, and T. Voigt. An integrated approach to devel-
oping sensor network solutions. In Proceedings of the Second International Workshop
on Sensor and Actor Network Protocols and Applications, Boston, Massachusetts,
USA, Aug. 2004. Invited paper.

[6] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and �exible operating
system for tiny networked sensors. In Proceedings of the First IEEE Workshop on
Embedded Networked Sensors, Tampa, Florida, USA, Nov. 2004.

[7] A. Dunkels, O. Schmidt, and T. Voigt. Using Protothreads for Sensor Node Program-
ming. In Proceedings of the REALWSN'05 Workshop on Real-World Wireless Sensor
Networks, Stockholm, Sweden, June 2005.

[8] M. Karir. Atemu - sensor network emulator / simulator / debugger. Center for
Satellite and Communication Networks, Univ. of Maryland, 2003. http://www.isr.
umd.edu/CSHCN/research/atemu/.

[9] P. Levis. TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications.
In Proceedings of the First ACM Conference on Embedded Networked Sensor Systems
(SenSys 2003), 2003.

[10] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh. Simulating the
power consumption of large-scale sensor network applications. In Sensys, 2004.

33

http://contiki.sourceforge.net/html/
http://contiki.sourceforge.net/html/
http://www.sics.se/~adam/contiki/
http://www.sics.se/~adam/contiki/
http://www.isr.umd.edu/CSHCN/research/atemu/
http://www.isr.umd.edu/CSHCN/research/atemu/

APPENDIX

Basic support of the COOJA Simulator

Positioners

• EllipsePositioner

• LinearPositioner

• RandomPositioner

IP Distributors

• IdIPDistributor

• RandomIPDistributor

• SpatialIPDistributor

Plugins

• LogListener

• MoteInformation

• MoteInterfaceViewer

• SimControl

• SimInformation

• VariableWatcher

• VisBattery

• VisState

• VisTra�c

Radio Mediums

• SilentRadioMedium

• StandardRadioMedium

34

BIBLIOGRAPHY

Interfaces

• Battery (virtual)

• Beeper

• Button

• IPAddress

• Led

• Log

• MoteID

• Pir

• Position (virtual)

• RS232

• Radio

• Time

• Vib

Contiki application code - cooyah.c

#include <stdio.h>

#include <stdlib.h>

#include "net/uip.h"

#include "lib/sensors.h"

#include "dev/leds.h"

#include "dev/button-sensor.h"

#include "sys/log.h"

#include "node-id.h"

#define COOYAH_PORT 1234

PROCESS(cooyah_example_process, "Example process for report");

AUTOSTART_PROCESSES(&cooyah_example_process);

static struct uip_udp_conn *broadcast_conn;

/*---*/

PROCESS_THREAD(cooyah_example_process, ev, data)

{

PROCESS_BEGIN();

log_message("Example process started", "");

broadcast_conn = udp_broadcast_new(COOYAH_PORT , NULL);

button_sensor.activate();

35

Bibliography

while(1) {

PROCESS_WAIT_EVENT();

log_message("An event occurred: ", "");

if(ev == PROCESS_EVENT_EXIT) {

log_message("shutting down\n", "");

break;

}

if(ev == sensors_event && data == &button_sensor && button_sensor.value()) {

log_message("the button is pressed, sending packet\n", "");

tcpip_poll_udp(broadcast_conn);

PROCESS_WAIT_UNTIL(ev == tcpip_event && uip_poll());

uip_send("cooyah COOJA", 12);

}

if(ev == sensors_event && data == &button_sensor && !button_sensor.value()) {

log_message("the button was released again, doing nothing\n", "");

}

if(ev == tcpip_event && uip_newdata()) {

log_message("a packet was received, turning on leds\n", "");

log_message("PACKET DATA: ", uip_appdata);

leds_on(LEDS_ALL);

}

}

PROCESS_END();

}

/*---*/

36

	Introduction
	Problem formulation
	Approach, Work phases and Results
	Report structure

	Background
	About Wireless Sensor Networks
	The Contiki Operating System
	Event-based kernel
	Threads and Protothreads
	The system loop
	uIP
	Previous Contiki Simulator

	Process memory structures
	Java Native Interface

	Related work
	TOSSIM and TinyViz
	PowerTOSSIM
	ATEMU

	Design choices
	Extendibility
	Java and JNI
	Application simulator
	Automated Contiki environment setup

	Implementation
	Design overview
	Core communications
	COOJA interfaces
	Ticking a node
	COOJA plugins
	Code generation and compilation
	Graphical User Interface
	Radio Mediums
	Positioners and IP distributors
	Configuration system
	Extended simulation environment
	An extensive example
	The Contiki application
	Creating the node type
	Adding the nodes
	Starting the simulation
	Clicking the button
	Sending the radio packet
	Forwarding the radio packet
	Turning on the leds

	Evaluation
	Results and Future work
	Results
	Future work

	
	

