
Template for Functional Specifications First Draft April 25, 1995

1

Template for Functional Specifications

Following is a template for Functional Specifications. It should be used in conjunction with the “Guidelines
for Functional Specifications” document to create functional specifications for Quarterdeck software.

The table of contents and index are quite important and should follow general compositional practices.

Any appendixes are not always considered part of the actual requirements specification and are not always
necessary. They may include

a) Sample I/O formats, descriptions of cost analysis studies, or results of user surveys
b) Supporting or background information that can help the readers of the FS
c) A description of the problems to be solved by the software
d) Special packaging instructions for the code and the media to meet security, export, initial loading,

or other requirements

When appendixes are included, the FS should explicitly state whether or not the appendixes are to be
considered part of the requirements.

Table of Contents
1. Introduction 2

1.1 Purpose 2
1.2 Definitions, acronyms, and abbreviations 2
1.3 References 2

2. Overall description 4
2.1 Product perspective 4
2.2 Product components 5
2.3 Product constraints 5
2.4 Proposed future requirements 8

3. Specific requirements 9
3.1 Specific requirement #1 pp
3.2 Specific requirement #2 pp
 •
 •
 •
3.n Specific requirement #n pp

Appendixes pp
Index pp

Template for Functional Specifications First Draft April 25, 1995

2

1. Introduction
The introduction of the FS should provide an overview of the entire FS. It should contain the following
subsections

a) Purpose
b) Definitions, acronyms, and abbreviations
c) References

1.1 Purpose

This subsection should

a) Describe briefly the purpose of the software
b) Identify the intended audience for the software

Example:

QEMM 7.53 provides the user with as much conventional memory as possible for running programs while
also providing all of the published memory management services used by DOS programs and devices. The
product also contains features to display the current DOS and Windows memory configurations to help the
end-user identify problems and opportunities for improving the system.

QEMM 7.53 is intended for retail distribution into the DOS and MS Windows utility market. It is expected to
be an attractive product to the power user, the computer game player, and the network and multimedia users
who need extra conventional memory to run their DOS programs.

1.2 Definitions, acronyms, and abbreviations

This subsection should provide the definitions of all terms, acronyms, and abbreviations required to
interpret properly the FS. This information may be provided by reference to one or more appendixes in the
FS or by reference to other documents.

Example:

CPU: the computer chip that is the Central Processing Unit of the PC. For example, the Intel 80386SX,
80386DX, i486SX, i486DX, or Pentium processors and the compatible processors made by AMD, Cyrix, and
others.

TSR: a “Terminate and Stay Resident” program, typically loaded in the AUTOEXEC.BAT file or other batch
file executed during the boot sequence, which loads into memory, but then terminates back to the command
processor prompt, leaving a portion of itself resident in memory to provide some service to the user.
Examples of TSRs are network drivers, sound drivers, mouse drivers, disk caches, etc.

V86 monitor: a DOS device driver that transitions the 80386 (or higher) CPU from real mode to virtual 8086
mode (V86 mode). The program maintains control of V86 mode via its code and data that resides and is
executed in the protected mode of the CPU.

[The list of terms used in describing the functionality of QEMM would be in alphabetical order and should
include all technical terms used in the FS.]

1.3 References

This subsection should

a) Provide a complete list of all documents referenced elsewhere in the FS
b) Identify each document by title, report number (if applicable), date, and publishing organization
c) Specify the sources from which the references can be obtained

This information may be provided by reference to an appendix or to another document.

Template for Functional Specifications First Draft April 25, 1995

3

Example:

The MRD for the product, QEMM 7.53, is available [give location].

The V86 monitor in the product will provide industry-standard memory services described in publicly
available documents. Following is a list of the documents that describe the memory services:

a) Expanded Memory Specification 4.0 (EMS 4.0): EMS 4.0 was published in August, 1987 by Lotus
Development Corporation, Intel Corporation, and Microsoft Corporation as document 300275-004
and can be obtained by [give source]. This specification was designed to allow DOS programs
(whether applications or device drivers or TSRs) to ask an Expanded Memory Manager (EMM) to
map pages from a (potentially 32 MB) expanded memory pool into a given place in the first
megabyte of address space. This allows applications to store more than 640K of their code and
data in expanded memory and access that part of their programs in a manner which will be
substantially faster than reading it in from disk.

b) Virtual Control Program Interface (VCPI): VCPI was published in [give year] by Quarterdeck and
PharLap and can be obtained by [give source]. [give explanation of the purpose of VCPI]

c) Virtual DMA Services: The VDS specification is available [give location]. The purpose of VDS is
to provide mechanisms for programs to find out the relationship between the linear address space
and the physical memory that is mapped into that address space and to control the V86 monitor’s
control of those addresses. For example, programs that do DMA (Direct Memory Access) must
give the address of the physical memory they are accessing, not the linear address, to the device
with which they interact.

[The list of references used in describing the memory management services provided by QEMM would be in
alphabetical order and should include all public specifications and documents.]

Template for Functional Specifications First Draft April 25, 1995

4

2. Overall description
This section of the FS should describe the general factors that affect the product and its requirements. This
section does not state specific requirements. Instead, it provides a background for those requirements,
which are defined in detail in section 3, and makes them easier to understand.

This section usually consists of four subsections

a) Product perspective
b) Product components
c) Product constraints
d) Proposed future requirements

Example:

QEMM is a utility program for the PC which works behind the scenes to provide as much memory as
possible for running programs. Not only do today’s computers have more power and memory, but PC
programs are larger and make greater demands on memory than ever before. A typical PC may be
simultaneously running a multitasking environment such as DESQview or Microsoft Windows, a disk
compression utility such as Stacker or DoubleSpace, multiple TSRs (such as anti-virus programs) and device
drivers for a network, mouse, CD ROM, sound board, and other peripheral devices. And, different programs
use different kinds of memory: conventional memory, upper memory, expanded memory, and extended
memory. QEMM manages all these kinds of memory and can automatically transform the PC’s memory into
whatever kind of memory a program needs.

2.1 Product perspective

This subsection of the FS should put the product into perspective with other related products. If the
product is independent and totally self-contained, it should be so stated here. If the FS defines a product
that is a component of a larger system, as frequently occurs, then this subsection should relate the
requirements of that larger system to functionality of the software and should identify interfaces between
that system and the software.

Example:

QEMM 7.53 will be sold in the retail channel as a stand-alone product. It will also be bundled with a number
of other Quarterdeck products, namely DESQview-386, DESQview/X, and Game Runner.

The bundling of QEMM with DESQview-386 and DESQview/X is designed to ensure that those multi-
tasking environments have access to the V86 monitoring and memory mapping services that QEMM
provides. In particular, some custom programming interfaces between the DESQview kernel and QEMM
shall exist to allow DESQview to

a) Virtualize the screen
b) Use its “protection level” feature
c) support hardware interrupt reflection to a specific set of addresses independent of the contents of

the real mode interrupt vector table.
The QEMM product bundled with DESQview-386 and DESQview/X will be identical to that sold separately,
with the exception of the installation program. The installation programs for DESQview-386 and
DESQview/X will be responsible for installing QEMM and the multitasking product together.

The QEMM product bundled with Game Runner will be identical to that sold separately, with the exception
that the V86 monitor will not include the QuickBoot feature, the MS Windows versions of QSETUP and
Manifest will not be included, and the installation program will be different.

QEMM 7.53 competes against other commercial memory managers and with EMM386, which ships with
DOS 5 and later.

Template for Functional Specifications First Draft April 25, 1995

5

2.1.1 User characteristics

This subsection of the FS should describe those general characteristics of the intended users of the product
including educational level, experience, and technical expertise. It should not be used to state specific
requirements but rather should provide the reasons why certain specific requirements are specified in later
portions of the FS.

2.2 Product components

This subsection of the FS should provide a summary of the major subsystems included in the software. For
example, a suite of utilities would list most or all of the executables in the suite in this section. An
application program would list those components of the application that might warrant a separate section in
the user manual. The components listed in this section should be described without mentioning the vast
amount of detail that each of those functions requires.

If a detailed MRD exists for the product, then most of this section of the FS can be taken directly from the
relevant section of the MRD. The components should be organized and described in a way that makes the
list understandable to anyone unfamiliar with the product. Textual or graphical methods can be used to
show the different functions and their relationships. Such a diagram is not intended to show a design of a
product but simply shows the logical relationships among components.

The component list should include a descriptive name for the component, and the component should be
referred to by that name for the rest of the document.

The “Specific Requirements” section of the FS should be organized in a way to match the list of components
in this section. It is important to choose the components and the order of the comp onents carefully, to
ensure that the “Specific Requirements” section is as clear as possible.

Example:

The QEMM product consists of the following components:

a) V86 monitor: a device driver providing various memory services;
b) DOS resource supplementers: a set of utilities for increasing DOS resources (BUFFERS, FCBS,

FILES, LASTDRIVE) after DOS has allocated the resources specified by the user in the
CONFIG.SYS;

c) Device driver converter: a utility to load device drivers as if they were TSRs, to allow loading of
device drivers from the shell command line;

d) Resident program loader: a loader program which can load TSRs and device drivers into memory
regions specified by configuration parameters;

e) Configuration optimizer: a program to automatically identify the optimal loading locations for a
user's device drivers and TSRs and will automatically configure the user's V86 monitor parameters
and boot files (CONFIG.SYS, AUTOEXEC.BAT and called .BAT files) to maximize the available
conventional memory while ensuring that the system functions;

[the list of components would continue here]

2.3 Product constraints

This subsection should also describe how the software operates inside various constraints. For example,
these could include:

a) User interfaces
b) Hardware interfaces
c) Software interfaces
d) Memory constraints
e) Other constraints
f) Assumptions and dependencies

Template for Functional Specifications First Draft April 25, 1995

6

2.3.1 User interfaces

This should specify the following:

a) The common characteristics of the user interface components of the product. This includes those
configuration characteristics (e.g., menu layout, colors, key usage and mouse usage; dialog box
layout, colors, key usage and mouse usage). Reference to one or more style guides might be
appropriate here.

b) All the aspects of optimizing the interface with the person who must use the system. This may
simply comprise a list of do’s and don’ts on how the system will appear to the user. One example
may be a requirement for the option of long or short error messages. Like all others, these
requirements should be verifiable, for example, “When the program is running on a 20mhz 386SX
with 4 MB RAM and no tasks other than Program Manager running, any menu will be completely
within 0.3 seconds of the user clicking on the menu bar” rather than “menus should be
responsive.” (This may also be specified in the Software System Attributes under a section titled
Ease of Use.)

Example:

The QEMM 7.53 contains a number of programs which are device drivers or TSR’s that do not require user
input other than command line switches. The parsing of the command line switches for all programs in the
product should be consistent. The output from each of these programs should be redirectable to DOS files
when possible.

The product consists of three programs which have both DOS and MS Windows implementations: Install,
Setup, and Manifest. When possible, both implementations of each program should have the same
keystroke and mouse actions to activate a command. However, the look of the output from these programs
should be appropriate for the respective environment, and should not be restricted by the need to have two
implementations. Any user interface components included in the product that look like (or are) standard
components of the MS Windows interface should comply with the April 1995 Microsoft Developers
Network Product Documentation / SDKs / The Windows Interface Guidelines on-line document. Other
sources of style guides are The Windows Interface - An Application Design Guide from Microsoft Press
and the Visual Design Guide on-line document shipped with Visual Basic 3.0 from Microsoft.

2.3.2 Hardware interfaces

This should specify the logical characteristics of each interface between the software product and the
hardware components of the system. This includes configuration characteristics (number of ports,
instruction sets, etc.) It also covers such matters as what devices are to be supported, how they are to be
supported, and protocols.

Example:

QEMM 7.53 is a utility designed exclusively for PC platforms with CPUs which are compatible with or a
superset of the Intel 386SX and at least 1 MB of extended memory. The software be compatible with all such
computers, including:

a) Diskless PCs
b) PCs with monochrome video adapters, CGA video adapters, or EGA/VGA compatible video

adapters
Any information gathering algorithms used by the product’s Manifest program that rely on hardware
interfaces must work reliably regardless of whether the hardware is installed.

2.3.3 Software interfaces

This should specify the use of other required software products (for example, an operating system, a
software library, a network stack, or other device driver), and interfaces with other application systems (for
example, DDE or OLE). For each interface supplied, supported or used by the product, the following should
be provided:

Template for Functional Specifications First Draft April 25, 1995

7

a) Name
b) Mnemonic
c) Specification number
d) Version number
e) Source
f) Discussion of the purpose of the interfacing software as related to this software product.
g) Definition of the interface in terms of message content and format. It is not necessary to detail any

well-documented interface, but a reference to the document defining the interface is required.
Example:

QEMM 7.53 requires DOS 3.1 or later. The QEMM 7.53 device drivers and TSRs are designed exclusively
for DOS-compatible operating environments where a DOS driver can gain control of the computer’s
protected mode. This means that the memory management parts of the product need not be compatible with
running in OS/2 or Windows NT or Unix or other such environment, except in that they should exit elegantly
when run in such an environment. Also, the product need execute properly when run in a DOS environment
where some other program (such as another memory manager) has already grabbed control of protected
mode.

The Manifest software should run in any DOS-compatible operating environment, even those running
within a non-DOS protected mode operating system. Manifest should provide accurate information in those
environments. It is acceptable for Manifest to use unpublished or unofficial interfaces to gather its
information, when necessary.

QEMM will support the following set of public software interfaces (for more detail on these interfaces, see
the References section of this document, above):

a) Expanded Memory Specification 4.0 (EMS 4.0)
b) Virtual Control Program Interface (VCPI)
c) Virtual DMA Services (VDS)

[the complete list of specs would be included above, in alphabetical order]

2.3.4 Memory constraints

This should specify any applicable characteristics and limits on primary and secondary memory.

Example:

Each of the components of QEMM should be able to execute reliably when there is as little as 384K available
conventional memory and no extended or expanded memory, which the following exceptions:

a) The QEMM device driver may require as much as 1 MB of available extended memory and 448K of
available conventional memory.

b) The DPMI device driver may require as much as 640K of available extended memory.

2.3.5 Other constraints

This subsection of the FS should provide a general description of any other items that will limit the
developer’s options. These include

a) Regulatory policies
b) Hardware limitations (for example, signal timing requirements)
c) Interfaces to other applications
d) Parallel operation
e) Audit functions
f) Control functions
g) Higher-order language requirements
h) Signal handshake protocols (for example, XON-XOFF, ACK-NACK)
i) Reliability requirements
j) Criticality of the application

Template for Functional Specifications First Draft April 25, 1995

8

k) Safety and security considerations
Example:

QEMM 7.53 will be compatible with the WDEB386 debugger, which relies on certain hookouts to share the
protected mode environment with QEMM.

2.3.6 Assumptions and dependencies

This subsection of the FS should list each of the factors that affect the requirements stated in the FS. These
factors are not design constraints on the software but are, rather, any changes to them that can affect the
requirements in the FS. For example, an assumption may be that a specific operating system will be available
on the hardware designated for the software product. If, in fact, the operating system is not available, the
FS would then have to change accordingly.

Example:

Certain components of QEMM 7.53 contain assumptions and dependencies. Should any of these
assumptions or dependencies prove incorrect for future versions of hardware and software, then the FS will
have to change to address the problems. Known assumptions are

a) The DOS kernel relocator component assumes certain things about the initialization sequence and
internal structure of the DOS kernel

b) The DOS resources relocator component assumes certain things about the structures internal to
the DOS kernel which describe the DOS resources

c) The DBLSPACE/DRVSPACE relocator component assumes certain things about the initialization,
structures and interfaces of the MS-DOS disk compression driver

[Myriad other assumptions in the QEMM product would follow]

2.4 Proposed future requirements

This subsection of the FS should identify requirements that may be delayed until future versions of the
system.

Template for Functional Specifications First Draft April 25, 1995

9

3. Specific requirements
This section of the FS should contain all the software requirements to a level of detail sufficient to enable
designers to design a system to satisfy those requirements, and testers to test that the system satisfies
those requirements. The contents of this section, when combined with a product prototype, should be
sufficient to guide a technical writer to write the end-user documentation for the product.

Throughout this section, every stated requirement should be externally perceivable by users or should be
demonstrable by other external systems. These requirements should include at a minimum a description of
every input (stimulus) into the system, every output (response) from the system and all functions performed
by the system in response to an input or in support of an output.

As this is often the largest and most important part of the FS, careful organization of the section is
important. The goal would be for a user of the FS to be able to find quickly the specific requirements of a
particular component. An important organizational guideline is to avoid nesting too far down in the outline
structure. For example, you don’t want to have the sub-component of a sub-component of a sub-
component of a component of the screen layout described in the screen layout section. Doing so would
make it difficult to identify the high level screen layout components (as there would be hundreds of low-
level items described in between the high-level items).

Another good guideline is to only identify any component in one location. Even if a dialog box can be
brought up by many different events, the specific requirements of the dialog box should only be described
once. The events that bring up the dialog could be detailed in the descriptions of higher level components.
For example, the File/Open dialog could be brought up by selecting the Open item from the File menu or by
typing Ctrl+O in the document window. The File/Open dialog should be described in its own section, with
cross-references to the sections describing the File menu and the document window.

The exact structure of this section will vary depending upon the nature of the product. There are likely to be
three distinct types of entries that will be used in the section

a) A sequence of functions that are executed without user interaction and which create little user
output except under error conditions (e.g. the program initialization sequence)

b) A screen layout component which is generally visible on the screen during program execution (e.g.
a status bar or document window)

c) A user interface component that appears when some input, or one of various events, occurs (e.g. a
particular dialog box or menu)

Based on the above, a possible organization for this section of the FS would be

3.1 Initialization sequence
3.1.1 Function #1 and potential error messages
3.1.2 Function #2 and potential error messages
 •
3.1.n Function #n and potential error messages

3.2 Screen layout
3.2.1 Application area

3.2.1.1 Application area component #1
 •
3.2.1.n Application area component #2

3.2.2 Tool bar
3.2.2.1 Tool bar component #1
 •
3.2.2.n Tool bar component #2

3.2.3 Menu bar
3.2.3.1 Menu bar component #1
 •

Template for Functional Specifications First Draft April 25, 1995

10

3.2.3.n Menu bar component #2
3.2.4 Status line

3.2.4.1 Status line component #1
 •
3.2.4.n Status line component #2

 •
3.2.n Screen area #n and components

3.2.n.1 Screen area #n component #1
 •
3.2.n.n Screen area #n component #2

3.3 Particular components
3.3.1 Dialog boxes

3.3.1.1 Dialog box #1
 •
3.3.1.n Dialog box #n

3.3.2 Menu items
3.3.2.1 Menu item #1
 •
3.3.2.n Menu item #n

3.3.3 Error messages
3.3.3.1 Error message #1
 •
3.3.3.n Error message #n

3.4 Termination sequence
3.4.1 Function #1 and potential error messages
3.4.2 Function #2 and potential error messages
 •
3.4.n Function #n and potential error messages

Each item in the Specific Requirements section should contain a picture of the item and details about the
item, including both content and format as follows:

a) Name of item
b) Description of purpose
c) Events that can invoke this item
d) Items that can be invoked by this item
e) Valid responses to the item
f) Effects of invalid responses to the item

Items that are inappropriate to the particular component should not be included in the description.

Example:

3.1 Initialization sequence

 3.1.1 Copyright message

QEMM386.SYS displays its copyright message, for purposes of protecting the company’s copyright:

 Quarterdeck Expanded Memory Manager 386 V7.5
 Copyright (c) 1986-1995 by Quarterdeck Corporation
 U.S. Patent Numbers 5,237,669 and 5,367,658
Serial number: 123-QDK-12345-6789

Registered to: For QDK Internal Use Only !!!!

Template for Functional Specifications First Draft April 25, 1995

11

3.1.2 Bogus registration message

QEMM386.SYS verifies that it has been registered. If the registration information seems bogus,
QEMM386.SYS terminates after displaying the following message:
 Cannot load because QEMM is not registered.
 Run the INSTALL program to register.

3.1.3 Serial number and registered to message

QEMM386.SYS prints out the registered serial number and user name to identify the soft copy-protection
information gathered by the Install program:
 Serial number: [serial number is displayed here]
 Registered to: [user name is displayed here]

3.1.4 Invalid CPU message

QEMM386.SYS checks if it is running on a 386 or above CPU. If it is not, it terminates after displaying the
message:
 Cannot load because this is not an 80386.

3.1.5 Interface with WDEB386 debugger

QEMM386.SYS interfaces with WDEB386 (if loaded) to allow remote debugging.

3.1.6 Option to abort QEMM message

QEMM386.SYS checks if an {Alt} key is depressed. If one is (and no {Shift} or {Ctrl} is pressed) then it
prints the message:
 QEMM386: Press <ESC> to unload QEMM or any other key
 to continue with QEMM...
The cursor will be immediately following the ellipsis. The program then waits for a key to be pressed. When
a key is pressed, the program writes a CRLF to the screen. If the key pressed is an {Esc} key, then
QEMM386.SYS terminates; else, the initialization process continues.

3.1.7 QDMEM hooked up

QEMM386.SYS checks for another QDMEM driver (using the published QDMEM driver identification
routine described in the "QEMM Progamming Interface" document). The function value for the QDMEM
hookup is logged.

3.1.8 AVAIL_MAP initialized

QEMM386.SYS has a list of the use of each 4K page of the first megabyte of address space. This list will
hereafter be referred to as the AVAIL_MAP. The AVAIL_MAP has the initial value of "unknown" for each
4K page. At this point in initialization, if QEMM386.SYS is on a 386 CPU (i.e. not a 486 or above), then it will
mark the first 64K of memory as "excluded."

3.1.9 Command line parsed

QEMM386.SYS parses its command line. The command line takes the form of:
 DEVICE=path_to_QEMM386.SYS [white_space parm1 [white_space parm2 [white_space parm3
 [...]]]] end_of_line_char

a) "white_space" can be any combination of: {Space} {Tab} {/} {,} {Null}
b) Any of the following are considered end-of-line characters: {;} {CR} {LF}
c) All switches are case-insensitive.
d) Switch keywords must match up to the first white space, end-of-line character, or any of the word

separator characters: {-} {=} {:}
 Colon and equal-sign are usually synonymous (the exception being that colon is the only valid

separator between a beginning address of a range and the length of the range). However, a dash is
treated differently, in that it is re-examined during the parameter option parsing, whereas colon and

Template for Functional Specifications First Draft April 25, 1995

12

equal-sign are not. This means that dash is not really valid when used to separate parameters, and
should only be used when defined as a sub-parameter separator (i.e. in ranges, as defined below).

e) If the command line contains an unknown parameter, then QEMM386.SYS will display the Illegal
QEMM386 parameter message (see 3.1.10).

f) Parsing syntax will not be enforced very strictly, so various weird constructs may be ignored (with
no warning message) or misconstrued. For example, parameters that take subparameters are often
ignored if their subparameter is missing, but will post an error if their subparameter is there but
invalid.

The following command-line parameters will be supported:

3.1.9.1 ADAPTERRAM=range | ARAM=range

This will mark as type Adapter RAM the entries in AVAIL_MAP for the given range of addresses. The
value "range" may be of any of the following formats:

a) hex_segment-hex_segment
 where hex_segment is a one to four digit hex number indicating the segment at which the range

starts followed by the segment at which the range ends.
b) hex_segment:hex_length_in_segments
 where hex_length_in_segments is a one to four digit hex number indicating the number of

contiguous segments of to be marked starting at hex_segment.
c) hex_segment
 where the 4K page on which the hex_segment is located is marked.

The range is inclusive, but if it ends on a 4K boundary, then the ending segment is considered the one
before the start of the next 4K page.
The range subparameter is used by other of QEMM386’s parameters, including ADAPTERROM (3.1.9.2),
EXCLUDE (3.1.9.?), INCLUDE (3.1.9.?), RAM (3.1.9.?), ROM (3.1.9.?), STEALTHTHUNK (3.1.9.?)

3.1.9.2 ADAPTERROM=range | AROM=range

This will mark as type Adapter ROM the entries in AVAIL_MAP for the given range of addresses. The
syntax is identical to that for ADAPTERRAM (see 3.1.9.2).

3.1.9.3 AUTO

Makes QEMM386.SYS put the system into V86 mode only when necessary to provide a feature (such as
EMS). This parameter will be ignored if the user specifies other parameters that force QEMM into an ON
state (such as the RAM parameter).

[The document would list the syntax and meaning of the rest of the valid QEMM386.SYS parameters.]

3.1.10 Illegal QEMM386 parameter message

If, during the Command line parsed sequence (3.1.9), QEMM386 detects an illegal parameter, it continues
after displaying the message:
 Illegal QEMM386 parameter: [user's unknown parameter]

3.1.11 TSR load detected

QEMM386.SYS checks if it is being loaded as a TSR (for example, if the user is using DEVICE.COM to load
it). If QEMM386.SYS is being loaded as a TSR, then it will abort without printing any error message.

3.1.12 Already loaded message

QEMM386.SYS checks if a copy of QEMM386.SYS is already resident. If it is, then this copy terminates
after displaying the following message:

 QEMM is already loaded.

Template for Functional Specifications First Draft April 25, 1995

13

3.1.13 Microchannel bus initialization

QEMM386.SYS checks if it is on a microchannel bus. If it is, then it processes a data file called MCA.ADL.
See the Specific Requirements of MCA.ADL for the format of that data file.

3.1.13.1 Cannot find MCA.ADL file message

QEMM386.SYS loads the MCA.ADL file out of the same directory as the one from which QEMM386.SYS
was loaded. If the file cannot be opened, QEMM386.SYS prints the message:
 QEMM: Cannot find file MCA.ADL
QEMM386 logs that it should Pause-on-error and continues initialization without processing the MCA.ADL
file.

3.1.13.2 MCA.ADL file parsed

QEMM386.SYS checks each of the entries in the MCA.ADL against the POS information of the 8 adapter
slots. Any matches cause QEMM386.SYS to parse the command line parameters associated with that
MCA.ADL entry just as if those parameters had been passed on the device line (except note the order in
which they are parsed relative to the command line parameters!). QEMM386.SYS will parse until it reaches
the end of the MCA.ADL or until it gets a read error on that file. The user will not be warned of read errors,
and critical errors will be handled by DOS.

3.1.13.3 Microchannel adapter unknown message

Once the MCA.ADL file has been fully examined, QEMM386.SYS will check if any of the 8 adapter slots did
not have an MCA.ADL entry matching its ID. If there is an unmatched adapter, then QEMM386.SYS will
log that it should Pause-on-error and will print the message:
 QEMM: Unknown MicroChannel Adapter ID: nnnn
where nnnn is the ID of the adapter whose info is not contained in the MCA.ADL.

 3.1.13.4 Command line re-parsed

QEMM386.SYS parses its command line once again. This is so that the parameters in the MCA.ADL file will
be overridden by the user's command line parameters. Note that the fact that the command line is parsed
twice means that all QEMM386.SYS parameters must be unaffected by being processed twice (e.g. a
parameter which increments an internal counter would incorrectly increment that counter twice; a parameter
which toggles a flag would incorrectly untoggle it; etc.).

3.1.14 Pause on error message

If the Pause-on-Error flag has been set (either due to a command line error or the PAUSE parameter), then
QEMM386.SYS will display the message:

 QEMM386: Press <ESC> to unload QEMM or any other key
 to continue with QEMM...
The cursor will immediately follow the ellipsis. QEMM386.SYS will wait for input. When a key is pressed,
QEMM386.SYS will abort on an {Esc} key and will continue with its initialization on any other key.

3.1.15 Existing EMM message

If QEMM386.SYS has been asked to provide EMS services (i.e. unless the EMS:N switch is used), then
QEMM will check for an existing EMM driver. If one is found, QEMM will terminate after displaying the
message:
 Cannot load because an expanded memory manager is already loaded.

3.1.n [The real functional spec would continue for another hundred pages or so.]

