
June 2010 Doc ID 14153 Rev 2 1/25

AN2659
Application note

STM8 in-application programming (IAP)
using a customized user-bootloader

Introduction
This application note is intended for STM8 firmware and system designers who need to
implement an in-application programming (IAP) feature in the product they are developing
with the STM8 microcontroller.

The STM8 is an 8-bit microcontroller family with a Flash memory for storing the user
program code or firmware. IAP makes it possible to update the firmware ‘in situ’, after the
microcontroller has been embedded in the final product. The advantage is that the
microcontroller board can stay inside its product enclosure. No mechanical intervention is
needed to make the update.

IAP is extremely useful for distributing new firmware versions. It makes it easy to add new
product features and correct problems throughout the product life cycle.

The user-bootloader firmware source code provided with this application note shows an
example of how to implement IAP for the STM8 microcontroller. Use this code as a
reference when integrating IAP in your STM8 application. It includes the following features:

● Bootloader activated by external pin (jumper on PCB)

● Flash block programing by executable RAM code management

● Read while write (RWW) feature

● High level C-language usage

● Reduced size of the code (optimized code)

● Support for multiple communication interfaces (SPI , I2C, and UART)

● UART code compatible with ST Flash loader demonstrator software

www.st.com

http://www.st.com

Contents AN2659

2/25 Doc ID 14153 Rev 2

Contents

1 Operation theory . 5

2 STM8 devices with built-in ROM-bootloader . 6

2.1 Implementation details . 6

2.2 Adapting IAP master side to ROM-bootloader protocol 7

3 User-bootloader for STM8 devices . 8

3.1 User-bootloader firmware example description . 9

3.2 Configuring the user-bootloader firmware example 12

4 Memory management for IAP . 13

4.1 Memory protection . 13

4.1.1 Flash memory protection . 13

4.1.2 User boot code protection (UBC) . 13

4.1.3 Vector table redirection . 14

4.2 Block versus word programming . 15

4.3 RAM versus Flash programming code location . 15

4.3.1 Programming the data EEPROM area . 15

4.4 Library support for Flash programming . 16

4.4.1 Flash programming function list . 16

5 Configuring the Cosmic compiler for RAM code execution 18

5.1 Creating a segment in the STVD project . 18

5.2 Creating a memory segment in the Cosmic linker file 19

5.3 Finishing and checking the configuration . 20

6 Setting up your application firmware for user-bootloader use 22

7 Conclusion . 23

7.1 Features in the final user-bootloader application 23

8 Revision history . 24

AN2659 List of tables

Doc ID 14153 Rev 2 3/25

List of tables

Table 1. Document revision history . 24

List of figures AN2659

4/25 Doc ID 14153 Rev 2

List of figures

Figure 1. Typical bootloader application . 5
Figure 2. Example of STM8S208xx bootloader . 6
Figure 3. Example of user-bootloader implementation in the Flash memory. 8
Figure 4. Example of the user-bootloader package provided . 9
Figure 5. Bootloader flowchart . 11
Figure 6. User boot code area and user application area . 14
Figure 7. Define linker memory section in STVD . 19
Figure 8. Setting the project start and vector table addresses in STVD . 22

AN2659 Operation theory

Doc ID 14153 Rev 2 5/25

1 Operation theory

In practice, IAP requires a bootloader implemented in the STM8 firmware that can
communicate with an external master (such as a PC) via a suitable communication
interface. The new code can be downloaded into the microcontroller through this interface.
The microcontroller then programs this code into its Flash memory.

IAP can also be used to update the content of the internal data EEPROM memory, and the
internal RAM memory.

This operation is usefull when a microcontroler is already soldered in its final application and
needs a firmware update.

Figure 1 shows a typical bootloader application.

Figure 1. Typical bootloader application

The bootloader is that part of the code which runs immediately after a microcontroller reset
and which waits for an activation signal (for example, from grounding a specific pin or
receiving a token from a communication interface). If activation is successful the code enters
bootloader mode. If activation fails (for example due to a timeout or the jumper on the pin not
being present) the bootloader jumps directly to the user application code.

In bootloader mode, the microcontroller communicates with the external master device
through one of the serial communication interfaces available in it (UART, SPI, I2C, CAN)
using a set of commands. These commands are usually:

● Write to Flash

● Erase Flash

● Verify Flash

● Additional operations such as read memory and execute code from a given address
(jump to given address).

The ST proprietary bootloader can be used. It is embedded in the ROM memory of STM8
devices with a program memory greater than 8 Kbytes. In this case, no code development is
needed. To use the proprietary bootloader, enable it via the option bytes.

Alternatively, develop a customized bootloader using, for example, a serial communication
interface that is not supported in ST versions or in devices where the ST bootloader is not
present. Such a bootloader should be stored in the user boot code area (UBC) in the
microcontroller. This guarantees protection against unintentional write operations.

RS232

RS232/TTL
converter

STM8 board

STM8

Bootloader enable

PC

jumper

STM8 devices with built-in ROM-bootloader AN2659

6/25 Doc ID 14153 Rev 2

2 STM8 devices with built-in ROM-bootloader

Most STM8 devices have an internal bootROM memory which contains an ST proprietary
bootloader. Consequently, they already have a built in IAP implementation (see UM0560:
STM8 bootloader).

2.1 Implementation details
The built-in ROM-bootloader is located in a dedicated part of the memory called the
BootROM. The ROM-bootloader code is fixed (not rewritable) and is specific for each
device. The communication interface supported depends on the peripherals present in the
given STM8 device and whether they are implemented in the ROM-bootloader. For example,
some devices support firmware download through UART/LIN and CAN, some devices
support only UART, and others only SPI. Information concerning the supported interfaces
can be found in the relevant device datasheet.

Activation of the built-in ROM-bootloader is made by programming the BL[7:0] option byte
described in the option byte section of the device datasheet. The bootROM bootloader
checks this option byte and if it is enabled, it runs its own code (it waits for the host to send
commands/data). If the BL[7:0] option byte is inactive, the bootrom bootloader jumps to the
user reset address (0x8000).

Figure 2. Example of STM8S208xx bootloader

AN2659 STM8 devices with built-in ROM-bootloader

Doc ID 14153 Rev 2 7/25

2.2 Adapting IAP master side to ROM-bootloader protocol
To be able to download firmware into the device, the host and bootloader must communicate
through the same protocol. This bootloader protocol for STM8 devices is specified in the
STM8L/S bootloader (UM0560) and STM8A bootloader (UM0500) user manuals available
from http://www.st.com. The same protocol is used in the firmware example provided with
this application note. The UM0560 and UM0500 user manuals describe all bootloader
protocol properties including used interfaces, timeouts, command formats, packet formats,
and error management.

User-bootloader for STM8 devices AN2659

8/25 Doc ID 14153 Rev 2

3 User-bootloader for STM8 devices

For STM8 microcontrollers which do not include a built-in bootloader or which use a
communication protocol (I2C) not yet supported in the built-in bootloader, user-bootloader
firmware can be added and customized at the beginning of the Flash memory.

Figure 3. Example of user-bootloader implementation in the Flash memory

For this purpose, an example of a user-bootloader firmware is provided with this application
note. This package is divided into three main subdirectories, each one dedicated to one
STM8 family member (STM8A, STM8L, and STM8S). Each directory is composed of the
following components:

● Sources: containing the firmware source code

● Includes: containing the firmware header file (main.h). This file can be edited to
configure your user-bootloader (see Section 3.2: Configuring the user-bootloader
firmware example).

● Flash_loader_demonstrator_files: contain all map files to add in the Flashloader
demonstrator install directory to be compatible with the user-bootloader.

● STVD: containing a prebuilt project for STVD using a Cosmic or raisonance compiler

Figure 4 shows an example of the the user-bootloader firmware.

AN2659 User-bootloader for STM8 devices

Doc ID 14153 Rev 2 9/25

Figure 4. Example of the user-bootloader package provided

3.1 User-bootloader firmware example description
The basic program flow of a user bootloader application is described in Figure 5: Bootloader
flowchart.

After a device reset, a selected GPIO can be used as a bootloader activation signal.
Depending on its logical state (0 V or 5 V), the bootloader can be activated or not.

The bootloader configures this GPIO as input mode with pull-up in order to detect any
voltage variation. If the pin voltage level is zero (jumper present), the bootloader is activated.
Otherwise, the bootloader jumps to the reset address of the user application (if this address
is valid).

In the case of bootloader activation, the chosen communication interface is initialized. A
timeout count is then activated (i.e. 1 second). If, during this timeout, nothing is received
from the given communication interface (UART, SPI, I2C) the bootloader jumps to the user
application reset address.

If the user-bootloader receive a valid activating token byte from the communication interface
before the timeout elapses, it then enters memory management mode to perform the
following operations:

1. Initialize the Flash programming routines by copying the programming functions to
RAM.

2. Wait in a loop for a valid command to be received from the master

3. Compute the received command (read, write, erase, version)

4. If a Go command is received, the user-bootloader jumps to the address given in the
command.

All commands have a specified format and must be followed by both the user-bootloader
and the master. The command specification handles all possibilities and covers error
management.

User-bootloader for STM8 devices AN2659

10/25 Doc ID 14153 Rev 2

Several specific processing methods must be taken into account to achieve the appropriate
action in the memory using the bootloader. These methods are explained in Section 4:
Memory management for IAP. They include:

● Protection management

● Code execution from RAM depending on memory write method (byte, word, or block
programming).

AN2659 User-bootloader for STM8 devices

Doc ID 14153 Rev 2 11/25

Figure 5. Bootloader flowchart

Reset

IO pin grounded

Init I/O pin
(pull-up)

Yes

User application start

Valid user reset
vector?

Received token
in timeout interval?

Perform command

Wait for command from Master

GO command?
(to run user code)

Jump to GO address

Parse commands
- WRITE
- ERASE
- READ
- VERSION

Copy write block routine into RAM

Communication

 interface
init protocol

No

No

No

No

Yes

Yes

Yes

User-bootloader for STM8 devices AN2659

12/25 Doc ID 14153 Rev 2

3.2 Configuring the user-bootloader firmware example
The provided package is configured for STM8S105xx devices with I2C protocol. The
package can be reconfigured easily, without any source code modification, by modifying
information in the main.h files (see package description).

The configuration file is divided into three sections (see below). Each section can be
modified depending on requirements.

/* USER BOOTLOADER PROTOCOL PARAMETERS */

This section is used to select a protocol. The user-bootloader firmware example supports
three protocols: UART, I2C, and SPI. Only one protocol can be selected.

/* USER USER BOOT CODE Customisation */

This section is used for defining byte values (acknowledge, non-acknowledge, and
identification), command numbers, and received data buffer structure.

/* USER BOOT CODE MEMORY PARAMETERS */

This section is used to describe the memory configuration of the STM8 microcontroller. It is
mandatory to set up some memory variables corresponding to the memory configuration of
the microcontroller, for example, memory size, block size, EEPROM size, and address
range. For more informations on these variables please refer to the appropriate device
datasheet).

AN2659 Memory management for IAP

Doc ID 14153 Rev 2 13/25

4 Memory management for IAP

4.1 Memory protection

4.1.1 Flash memory protection

To avoid accidental overwriting of the Flash code memory (for example in the case of a
firmware crash) several levels of write protection are implemented in the STM8
microcontroller family.

After an STM8 reset, write access to the Flash memory is disabled. To enable it, firmware
must write two unlock keys in a dedicated register. If the unlock keys are correct (0x56,
0xAE), write access to the Flash memory is enabled and it is possible to program the Flash
memory using either byte/word or block programming mode. If the unlock keys are incorrect,
write access to the Flash memory is disabled until the next device reset. After writing to the
Flash memory, it is recommended to enable write protection again by clearing a specific bit
in the Flash control register (to avoid accidental write). A similar protection mechanism
exists for the Data EEPROM memory, with a specific unlock register and unlock keys (0xAE,
0x56).

4.1.2 User boot code protection (UBC)

Additional write protection exists for the programming code itself, to protect the user-
bootloader code from being overwritten during IAP. The STM8 family has a user boot code
(UBC) area which is permanently write protected. This UBC area starts from the Flash
memory start address (0x8000) and its size can be changed by the UBC option byte (see
device reference manuals and product datasheets). The boot code area also includes an
interrupt vector table (0x8000 to 0x8080). An important point to highlight in order to modify
the vector table via IAP, is that the main vector table should be redirected to another vector
table located in the rewritable application code area (see Figure 6). The only drawback of
such redirection, is the increase of the interrupt latency because of the execution of a double
jump.

Memory management for IAP AN2659

14/25 Doc ID 14153 Rev 2

Figure 6. User boot code area and user application area

More detailed information about memory map of specific STM8 device type can be found in
the STM8 reference manuals and datasheets.

4.1.3 Vector table redirection

As the initial interupt vector table (address 0x8000 to 0x8080) is write protected by the UBC
option, it is mandatory to create another interrupt vector table to be able to modify it by IAP.
Vector table redirection is performed in the following way:

● The start of the user application area contains its own interrupt table with the same
format as the primary interrupt table.

● The primary interrupt table contains a set of jumps to the user interrupt table. If an
interrupt occurs, the user application is automatically redirected from the primary
interrupt table to the user interrupt table by one jump.

● The only requirement for the user application is that the user interrupt table must be
located at a fixed address. This is because the primary interrupt table is not rewritable
and jumps to the user interrupt table at a fixed address value (see Section 6: Setting up
your application firmware for user-bootloader use).

AN2659 Memory management for IAP

Doc ID 14153 Rev 2 15/25

4.2 Block versus word programming
STM8 microcontrollers contain a Flash type program memory where firmware can be
writen. There are two methods for writing (or erasing) Flash program memory:

● Byte/word programming (1 or 4 bytes)

– Advantages: offers small area programming, code can be executed directly on the
Flash program.

– Disadvantages: program stops during programming, programming speed is slow

● Block programming (128 bytes or 1 Flash block for a given STM8 device)

– Advantages: offers large area programming with high speed (large blocks)

– Disadvantages: programming routine must run from the RAM (need to copy
programming routine into the RAM).

4.3 RAM versus Flash programming code location
Depending on the selected programming method (see Section 4.2: Block versus word
programming), the programming code must run from the RAM or from the Flash memory.

If the programming code runs from the Flash memory, use only byte/word programming to
program the Flash memory. During Flash memory programming, the code cannot access
the Flash memory (the Flash is in programming mode). Therefore, program execution from
the Flash is stopped during programming (for several milliseconds) and then continues. This
mode is useful in situations where only a small part (a few bytes) of the Flash memory
needs to be updated or when it does not matter that programming is (very) slow.

To program a large Flash memory area with optimum speed, block programming mode has
to be used. Block programming mode can be performed only by a code located in the RAM.
First, copy the programming code into the RAM and then run (jump to) this code. The RAM
code can then use block mode to program the Flash. In this mode, programming one block
takes the same time as programming one byte/word in byte/word mode. Consequently,
programming speed is faster and code execution is not stopped (because it is running from
RAM). The only disadvantage of this method is the RAM code management:

– Copying the executable code to the RAM

– Storing the RAM code

– Allocating RAM space for the code

– Compiling the code to be able to run from the RAM

4.3.1 Programming the data EEPROM area

For data EEPROM programming, the programming code does not have to be executed from
the RAM. It can be located in the Flash program memory, even if block programming is
used. This read-while-write (RWW) feature speeds up microcontroller performance during
IAP. Only the data loading phase, the part of code which loads data into the EEPROM buffer,
must execute from the RAM. However, during the physical programming phase, which takes
more time (several milliseconds), the code runs from the Flash while the data EEPROM
memory is programmed in the background. Completion of data EEPROM programming is
indicated by a flag. An interrupt can be generated when the flag is set.

Memory management for IAP AN2659

16/25 Doc ID 14153 Rev 2

4.4 Library support for Flash programming
The STM8 firmware libraries, available from www.st.com, provide developed and verified
functions for programming the Flash memory of every STM8 microcontroller family. The
functions support byte/word and block programming and make it easier for developers to
write their own programming code. The library also includes functions for managing the
programming code execution from RAM. These functions are: copy to RAM, execution from
RAM, and storing functions in the Flash memory. They are contained in the following files:

● \library\scr\stm8x_flash.c

● \library\inc\stm8x_flash.h

These files contain the complete source code for Flash programming. Refer to the library
user manual “\FWLib\stm8s_fwlib_um.chm” for help using the STM8 library.

4.4.1 Flash programming function list

This list gives a short description of the STM8S Flash programming functions (which are the
same for STM8A and STM8L devices):

void FLASH_DeInit (void)
Deinitializes the FLASH peripheral registers to their default reset values.

void FLASH_EraseBlock (u16 BlockNum, FLASH_MemType_TypeDef MemType)
Erases a block in the program or data EEPROM memory.

void FLASH_EraseByte (u32 Address)
Erases one byte in the program or data EEPROM memory.

void FLASH_EraseOptionByte (u32 Address)
Erases an option byte.

u32 FLASH_GetBootSize (void)
Returns the boot memory size in bytes.

FlagStatus FLASH_GetFlagStatus (FLASH_Flag_TypeDef FLASH_FLAG)
Checks whether the specified Flash flag is set or not.

FLASH_LPMode_TypeDef FLASH_GetLowPowerMode (void)
Returns the Flash behavior type in low power mode.

FLASH_ProgramTime_TypeDef FLASH_GetProgrammingTime (void)
Returns the fixed programming time.

void FLASH_ITConfig (FunctionalState NewState)
Enables or disables the Flash interrupt mode.

void FLASH_Lock (FLASH_MemType_TypeDef MemType)
Locks the program or data EEPROM memory.

void FLASH_ProgramBlock (u16 BlockNum, FLASH_MemType_TypeDef MemType,
FLASH_ProgramMode_TypeDef ProgMode, u8 * Buffer)
Programs a memory block.

void FLASH_ProgramByte (u32 Address, u8 Data)
Programs one byte in the program or data EEPROM memory.

void FLASH_ProgramOptionByte (u32 Address, u8 Data)
Programs an option byte.

http://www.st.com

AN2659 Memory management for IAP

Doc ID 14153 Rev 2 17/25

void FLASH_ProgramWord (u32 Address, u32 Data)
Programs one word (4 bytes) in the program or data EEPROM memory.

u8 FLASH_ReadByte (u32 Address)
Reads any byte from the Flash memory.

u16 FLASH_ReadOptionByte (u32 Address)
Reads one option byte.

void FLASH_SetLowPowerMode (FLASH_LPMode_TypeDef LPMode)
Select the Flash behavior in low power mode.

void FLASH_SetProgrammingTime (FLASH_ProgramTime_TypeDef ProgTime)
Sets the fixed programming time.

void FLASH_Unlock (FLASH_MemType_TypeDef MemType)
Unlocks the program or data EEPROM memory.

FLASH_Status_TypeDef FLASH_WaitForLastOperation (FLASH_MemType_TypeDef
MemType)
Waits for a Flash operation to complete.

Note: The STM8 library package also contains examples that show how to use these functions in
the final source code. Write your own code based on these examples.

Configuring the Cosmic compiler for RAM code execution AN2659

18/25 Doc ID 14153 Rev 2

5 Configuring the Cosmic compiler for RAM code
execution

Block programming must be executed from the RAM memory. Therefore, the code to be
copied into the RAM must be compiled and linked to be run in the RAM address space but it
is stored in the Flash memory.

It is possible to write a simple programming code assembly, taking care with the RAM
addressing and then storing this code in the Flash (example, the code uses only relative
addressing or RAM addresses). However, it is more efficient to use compiler support for this
purpose. Cosmic compiler support (described below) has these features built-in. Two
processing methods can be used:

● Creating a segment in the STVD project

● Creating a memory segment in the Cosmic linker file

5.1 Creating a segment in the STVD project
The first step to create a segment in the STVD project is to define one section in your code,
example ”FLASH_CODE”, and put your Block programming function inside. This is done
using the following code:

...
//set code section to FLASH_CODE placement
#pragma section (FLASH_CODE)
void FlashWrite(void)
{
...
}
void FlashErase(void)
{
...
}
//set back code section to default placement
#pragma section ()
...

The second step is to set the linker in your project settings window by clicking on
Project>Settings, then clicking on access to Linker tab, and then selecting ”input”
category. In this way you can dedicate a memory area to your defined section,
“.FLASH_CODE”, in the RAM . Option “-ic” must also be associated with this section (see
Figure 7: Define linker memory section in STVD).

AN2659 Configuring the Cosmic compiler for RAM code execution

Doc ID 14153 Rev 2 19/25

Figure 7. Define linker memory section in STVD

5.2 Creating a memory segment in the Cosmic linker file
The second way to configure the Cosmic compiler for RAM code execution is to create a
special memory segment which is defined in the linker file (*.lkf) and marked by the flag “-ic”.
An example of a RAM space segments definition in the linker file is as follows:

Segment Ram:
+seg .data -b 0x100 -m 0x500 -n .data
+seg .bss -a .data -n .bss
+seg .FLASH_CODE -a .bss -n FLASH_CODE -ic

This example defines a RAM space from address 0x100. Firstly, the .data and .bss sections
are defined. Then, the code defines a moveable .FLASH_CODE section where the routines
for Flash memory erase and write operations are located. This section must be marked by
option “-ic” (moveable code).

Into the marked “-ic” section, put functions which should be compiled/linked for RAM
execution but which are stored in the Flash memory. This is done in the source code by
definiting a section as shown below:

Configuring the Cosmic compiler for RAM code execution AN2659

20/25 Doc ID 14153 Rev 2

...
//set code section to FLASH_CODE placement
#pragma section (FLASH_CODE)
void FlashWrite(void)
{
...
}
void FlashErase(void)
{
...
}

//set back code section to default placement
#pragma section ()
...

5.3 Finishing and checking the configuration
By using either one of the above processes (Creating a segment in the STVD project or
Creating a memory segment in the Cosmic linker file), the “FlashWrite()” and “FlashErase()”
functions are compiled and linked for RAM execution (in the section “FLASH_CODE”) but
their code is placed in the Flash memory (after the“.text” and “.init” sections). This can be
seen in the generated map file:

Example of final map file:

 Segments

start 00008080 end 00008500 length 1152 segment .text
start 00000000 end 00000000 length 0 segment .bsct
start 00000000 end 00000003 length 3 segment .ubsct
start 00000003 end 00000098 length 149 segment .RAM
start 00000098 end 00000098 length 0 segment .share
start 00000100 end 00000100 length 0 segment .data
start 00000100 end 00000100 length 0 segment .bss
start 00000100 end 000001F0 length 240 segment .FLASH_CODE, initialized
start 00008510 end 00008600 length 240 segment .FLASH_CODE, from
start 00008000 end 00008080 length 128 segment .const
start 00008500 end 00008510 length 16 segment .init

The map file shows the location of the “FLASH_CODE” sections. One section is for storage
in the Flash (it is stored in the map file marked “from”). The other section is for execution (it
is stored in the map file marked “initialized”).

Finally, the microcontroller firmware must copy these sections from the Flash to the RAM
before calling the RAM functions. The Cosmic compiler supports this copying by a built-in
function “int _fctcpy(char name)” which copies a whole section from a source location in the
Flash to a destination location in the RAM using the following code:

AN2659 Configuring the Cosmic compiler for RAM code execution

Doc ID 14153 Rev 2 21/25

void main(void)
{
 ...
 //copy programming routines to Flash
 _fctcpy('F');

 /* Define flash programming Time*/
 FLASH_SetProgrammingTime(FLASH_PROGRAMTIME_STANDARD);

 /* Unlock Program & Data memories */
 FLASH_Unlock(FLASH_MEMTYPE_DATA);
 FLASH_Unlock(FLASH_MEMTYPE_PROG);

...
}

Just after the program starts, the RAM section is copied from the Flash into the RAM by the
function “_fctcpy('F')”. The function parameter ‘b’ is the first character of the section name
defined in the linker file (“F” as “FLASH_CODE” - see linker file on page 19) .

The firmware can then call any of the FLASH_xxx() functions in the RAM and execution is
done only from RAM.

Setting up your application firmware for user-bootloader use AN2659

22/25 Doc ID 14153 Rev 2

6 Setting up your application firmware for user-
bootloader use

The application firmware and the user-Bootloader firmware must be developped as two
different projects. The user-bootloader firmware occupies the UBC part of the memory (with
an address range at the beginning of the Flash memory, see Figure 6: User boot code area
and user application area). To correctly program your application firmware using the user-
bootloader, you need to shift the start and vector table addresses of your application. This
avoids any Flash memory write in the area reserved for the user-bootloader. This is done in
STVD by modifying the linker configuration. You can access the linker by clicking on
Project>Settings, then clicking on access to Linker tab, and then selecting the ”input”
category. In this way, you can move your vector table and the “Code,Constants” section
according to the size of the user-bootloader being used (see Figure 8).

Figure 8. Setting the project start and vector table addresses in STVD

To finish the setup, your new vector table address must be in line with the define variable
(MAIN_USER_RESET_ADDR) in your user-bootloader project main.h. This is done using the
following code:

...
#define MAIN_USER_RESET_ADDR 0x9000ul
...

AN2659 Conclusion

Doc ID 14153 Rev 2 23/25

7 Conclusion

The STM8 microcontroller fully supports IAP programming. This feature allows the internal
STM8 firmware to erase and write to any of its internal memories including the Flash
program memory, data EEPROM memory, and RAM memory. The short programming times
(inherent in such advanced technology) can be further decreased by using fast
programming mode (if the destination memory is erased). The STM8 RWW feature allows
the microcontroller to stay at a high performance level even during Flash and/or EEPROM
memory programming.

The user-bootloader application presented here, provides designers with an IAP
implementation that they can use to add IAP support into their own final products. The
bootloader code is designed to run in the STM8 family of microcontrollers.

7.1 Features in the final user-bootloader application
● Bootloader activated by an external pin (jumper on PCB)

● Interrupt table redirection

● Executable RAM code management

● Library support for easier programming

● RWW feature

● High level C-language usage

● Support for multiple communication interfaces (UART, SPI, I2C)

Revision history AN2659

24/25 Doc ID 14153 Rev 2

8 Revision history

Table 1. Document revision history

Date Revision Changes

20-Feb-2010 1 Initial release

10-Jun-2010 2
Document updated to include the whole STM8 family
(STM8A, STM8L, and STM8S).

Content of document restructured and rewritten.

AN2659

Doc ID 14153 Rev 2 25/25

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Operation theory
	Figure 1. Typical bootloader application

	2 STM8 devices with built-in ROM-bootloader
	2.1 Implementation details
	Figure 2. Example of STM8S208xx bootloader

	2.2 Adapting IAP master side to ROM-bootloader protocol

	3 User-bootloader for STM8 devices
	Figure 3. Example of user-bootloader implementation in the Flash memory
	Figure 4. Example of the user-bootloader package provided
	3.1 User-bootloader firmware example description
	Figure 5. Bootloader flowchart

	3.2 Configuring the user-bootloader firmware example

	4 Memory management for IAP
	4.1 Memory protection
	4.1.1 Flash memory protection
	4.1.2 User boot code protection (UBC)
	Figure 6. User boot code area and user application area

	4.1.3 Vector table redirection

	4.2 Block versus word programming
	4.3 RAM versus Flash programming code location
	4.3.1 Programming the data EEPROM area

	4.4 Library support for Flash programming
	4.4.1 Flash programming function list

	5 Configuring the Cosmic compiler for RAM code execution
	5.1 Creating a segment in the STVD project
	Figure 7. Define linker memory section in STVD

	5.2 Creating a memory segment in the Cosmic linker file
	5.3 Finishing and checking the configuration

	6 Setting up your application firmware for user- bootloader use
	Figure 8. Setting the project start and vector table addresses in STVD

	7 Conclusion
	7.1 Features in the final user-bootloader application

	8 Revision history
	Table 1. Document revision history

