
A quick user guide to the

QCMaquis software suite for Molcas

Sebastian Keller, Stefan Knecht, Yingjin Ma, Christopher Stein,

and Markus Reiher

ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2,

CH-8093 Zürich

December 5, 2015

release version 1.0

We kindly request that, for reproducibility reasons, any use of the QCMaquis software

suite for density matrix renormalization group (DMRG) calculations in Molcas that results

in published material should cite the set-up steered by settings and warm-up procedures

described in:

Check for a preprint on arXiv.org (to appear soon).

Y. Ma, S. Keller, C. Stein, S. Knecht, R. Lindh, M. Reiher, in preparation .

The DMRG calculations are then conducted with the software QCMaquis that requires

a citation. It is described in the following paper:

Check for the journal article asap on arXiv.org.

S. Keller, M. Dolfi, M. Troyer, M. Reiher, arXiv:1510.02026 [physics.comp-ph] .

QCMaquis builds upon the ALPS MPS project. The ALPS MPS codes implement the

DMRG algorithm for variational ground and low-lying excited state search as well as time

http://arxiv.org/
http://arxiv.org/pdf/1510.02026.pdf
http://alps.comp-phys.org/static/mps_doc/index.html

evolution of arbitrary one- and two-dimensional models in a matrix-product-state representa-

tion. They have been developed at ETH Zurich by Michele Dolfi and Bela Bauer in the group

of Matthias Troyer with contributions from Sebastian Keller and Alexandr Kosenkov and at

the University of Geneva by Timothe Ewart and Adrian Kantian in the group of Thierry

Giamarchi.

For further information on the ALPS project, please visit alps.comp-phys.org.

Refer to the original ALPS MPS paper:

M. Dolfi, B. Bauer, S. Keller, A. Kosenkov, T. Ewart, A. Kantian, T. Giamarchi, M.

Troyer, Comp. Phys. Commun. 2014, 12, 3430. doi:10.1016/j.cpc.2014.08.019

ALPS is a general open-source framework for the description of strongly correlated many-

particle systems.

B. Bauer, et al. (ALPS Collaboration), The ALPS project release 2.0: open

source software for strongly correlated systems, J. Stat. Mech. 2011 P05001.

http://dx.doi.org/10.1088/1742-5468/2011/05/P05001.

ii

alps.comp-phys.org
doi:10.1016/j.cpc.2014.08.019
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001

Contents

1 Introduction to the QCMaquis Software Suite 1

1.1 Overview and Goals . 1

1.2 What features are included in the release version 1.0? 1

1.2.1 QCMaquis standalone version . 1

1.2.2 QCMaquis in Molcas . 2

1.3 Organization of this document . 2

2 Software Requirements & Registration 4

2.1 Prerequisites . 4

2.2 Registration . 4

2.2.1 QCMaquis standalone version . 4

2.2.2 QCMaquis in Molcas . 5

3 Installation 6

3.1 QCMaquis standalone version . 6

3.1.1 Download QCMaquis . 6

3.1.2 Setting up a build folder . 6

3.1.3 Configuration . 7

3.1.4 Building and installation . 8

3.1.5 Setting up the runtime environment . 8

3.2 QCMaquis as external module of Molcas 9

3.2.1 Download Molcas . 9

3.2.2 Switch to the Molcas-DMRG branch 10

3.2.3 Initialization of git submodules . 11

3.2.4 Setting up a build folder . 11

3.2.5 Configuration . 11

3.2.6 Building and installation . 13

3.2.7 Setting up the runtime environment . 13

3.3 Supported operating systems and compiler environments 14

3.4 First tests and verification of the installation 14

4 Maintenance 16

4.1 New versions and patches . 16

iii

4.2 Reporting bugs and user support . 16

5 General Considerations for Running a QCMaquis DMRG Calculation 17

5.1 Memory management and memory requirements 17

5.2 Files required and written by QCMaquis . 17

5.3 Typical workflow for a DMRG calculation including a post-processing analysis 18

6 Input Keywords 19

6.1 Keywords and Options for Molcas . 19

6.1.1 Compulsory keywords . 19

6.1.2 Optional keywords . 19

6.1.3 Inoperative keywords . 19

6.1.4 Molcas environment variables . 21

6.2 Keywords and Options for QCMaquis . 22

6.2.1 Compulsory keywords . 22

6.2.2 Optional keywords . 24

6.2.3 Keywords for expectation value calculations 27

6.3 QCMaquis tools . 28

6.4 QCMaquis python scripts for wave function analysis and visualization . . . 30

7 Examples of Molcas DMRG and QCMaquis DMRG Input Files 33

7.1 Example file for Molcas – DMRG-SCF(14,10) 33

7.2 Example file for QCMaquis– DMRG-CASCI(8,8) 34

iv

1 Introduction to the QCMaquis Software Suite

1.1 Overview and Goals

The QCMaquis software suite allows for an efficient optimization of a matrix product state

(MPS) wave function based on a second-generation DMRG algorithm [1]. The quantum-

chemical operators are represented as matrix product operators (MPOs) which provides the

necessary flexibility to accommodate abelian and non-abelian symmetries as well as the imple-

mentation of non-relativistic and relativistic quantum chemical Hamiltonians [2], respectively,

in a unified framework. We have implemented the special unitary group of degree 2 (SU(2))

in the MPO representation of the non-relativistic Hamiltonian to ensure spin conservation

[3]. The current implementation of QCMaquis allows for efficient full-CI-type calculations

of active space sizes beyond capabilities (“CAS(18,18)”) of standard CI approaches.

The QCMaquis software suite is also available [4] within the framework of Molcas

[5] where we have implemented a state-specific and state-average DMRG self-consistent field

(DMRG-SCF) algorithm, the possibility to include solvent effects in DMRG calculations and

provide analytic gradients for state-specific calculations. The latter enables structure opti-

mization within the QCMaquis DMRG framework.

Advice: The break-even point wrt computational cost for a DMRG-

CI/-SCF calculation compared to a “traditional” CAS-CI/-SCF calculation

is approximately reached for a CAS(14,14) space. For active spaces smaller

than CAS(14,14) we recommend to choose a traditional Molcas CAS

approach.

1.2 What features are included in the release version 1.0?

1.2.1 QCMaquis standalone version

The release version 1.0 of the QCMaquis software suite includes:

• optimization of spin-adapted SU(2) MPS wave functions with the DMRG algorithm

• non-relativistic and scalar-relativistic quantum-chemical Hamiltonians

1

• calculation of excited states

• a python tool set to analyze the MPS wave function and its quantum entanglement

1.2.2 QCMaquis in Molcas

The release version 1.0 of the QCMaquis software suite in Molcas supports:

• DMRG-CI and DMRG-SCF calculations w/wo reaction field (e.g. PCM)

• State-specific and state-averaged DMRG-SCF calculations

• Analytic gradients for state-specific DMRG-SCF calculations

1.3 Organization of this document

In the following we list and briefly summarize the remaining sections of this document.

• Section 2, Software Requirements & Registration, guides through the software require-

ments and the registration process for QCMaquis.

• Section 3, Installation, guides through the installation process for QCMaquis (and

possibly the host program Molcas).

• Section 4, Maintenance, summarizes general information concerning the QCMaquis

software suite including how to ask for user support, retreive future patches for the code

and where to send bug reports.

• Section 5, General Considerations for Running a QCMaquis DMRG Calculation, in-

troduces the basic workflow for QCMaquis DMRG calculations and provides details

about memory requirements as well as input and output data required and generated

by QCMaquis, respectively.

• Section 6, Input Keywords, provides in the first part a list of keywords and options

to control QCMaquis DMRG calculation in Molcas. The second part explains in

detail all mandatory and optional QCMaquis keywords and their usage. In addition

we introduce several tools that are part of the QCMaquis software suite which can be

used to analyze and visualize the resulting DMRG wave function(s).

2

• Section 7, Examples of Molcas DMRG and QCMaquis DMRG Input Files, then

shows two example input files for QCMaquis DMRG calculations in Molcas and

with the QCMaquis standalone suite, respectively.

3

2 Software Requirements & Registration

2.1 Prerequisites

In order to install either QCMaquis or the developers version of the quantum chemistry

package Molcas with DMRG support through the QCMaquis software suite [1, 4], requires

the following libraries/programs:

• Git

• Python version 2.x with x ≥ 5

• HDF5 (http://www.hdfgroup.org/HDF5)

• GNU Scientific Library GSL (http://www.gnu.org/software/gsl/)

• CMake version 3.x with x ≥ 0 (https://cmake.org/)

Please make sure that these libraries/programs are available and their location is visible in

your $PATH and $LD LIBRARY PATH, respectively. Note that these libraries are NOT part of

the installation package of the QCMaquis software suite (see Section 3 for further details).

Warning! The combined installation of Molcas and QCMaquis requires

to follow the CMake installation of Molcas, whereas a “configure”-based

installation is NOT possible. A detailed step-by-step installation guide is

provided in Section 3.2.

2.2 Registration

QCMaquis can be installed either as standalone version (Section 3.1) or as external module

of the quantum chemistry software Molcas (Section 3.2). In the former case proceed with

the registration as described in Section 2.2.1 else with Section 2.2.2.

2.2.1 QCMaquis standalone version

The use of the standalone version of the QCMaquis software suite requires a registration

at http://tc-gitlab.ethz.ch. To sign up at http://tc-gitlab.ethz.ch please send an

e-mail to dmrg@phys.chem.ethz.ch. After confirmation of your registration, login to http:

4

http://www.hdfgroup.org/HDF5
http://www.gnu.org/software/gsl/
https://cmake.org/
http://tc-gitlab.ethz.ch
http://tc-gitlab.ethz.ch
mailto:dmrg@phys.chem.ethz.ch
http://tc-gitlab.ethz.ch
http://tc-gitlab.ethz.ch

//tc-gitlab.ethz.ch and upload your local public ssh key to your gitlab profile. Verify that

you have been granted access to the following projects, for example, they should be listed on

the right as projects you are enrolled at:

• QCMaquis/QCMaquis-public

• QCMaquis/QCMaquis-src .

If this is not the case, please send a notification to dmrg@phys.chem.ethz.ch.

2.2.2 QCMaquis in Molcas

The use of the QCMaquis software suite in Molcas requires (apart from a valid Molcas

developers license) a registration at http://tc-gitlab.ethz.ch. To sign up at http://

tc-gitlab.ethz.ch please send an e-mail to dmrg@phys.chem.ethz.ch. After confirmation

of your registration, login to http://tc-gitlab.ethz.ch and upload your local public ssh

key to your gitlab profile. Verify that you have been granted access to the following projects,

for example, they should be listed on the right as projects you are enrolled at:

• QCMaquis/QCMaquis-public

• QCMaquis/QCMaquis-src

• molcas-dev/hdf5-utils

• molcas-dev/dmrg-interface-utils .

If this is not the case, please send a notification to dmrg@phys.chem.ethz.ch.

5

http://tc-gitlab.ethz.ch
http://tc-gitlab.ethz.ch
mailto:dmrg@phys.chem.ethz.ch
www.molcas.org
http://tc-gitlab.ethz.ch
http://tc-gitlab.ethz.ch
http://tc-gitlab.ethz.ch
mailto:dmrg@phys.chem.ethz.ch
http://tc-gitlab.ethz.ch
mailto:dmrg@phys.chem.ethz.ch

3 Installation

Section 3.1 describes in details the installation process for a standalone version of QCMaquis.

Ton install QCMaquis as external module of the quantum chemistry software Molcas

proceed to Section 3.2.

3.1 QCMaquis standalone version

In the following steps 3.1.1-3.1.5 we describe how to successfully build and install the QC-

Maquis software suite. The installation of QCMaquis has been tested for different operating

systems and compiler/math libraries environments. Their list can be found in Section 3.3.

While other combinations might work equally well they are not officially supported.

The installation of the QCMaquis software suite will comprise several libraries which are

automatically downloaded and installed during the QCMaquis build process

• QCMaquis

• Boost

• ALPS

All of the above libraries will be installed locally in the user-defined build folder my-QCMaquis-build.

3.1.1 Download QCMaquis

Type

git clone git@tc-gitlab.ethz.ch:qcmaquis/qcmaquis-public.git my-QCMaquis-src

to download a new local QCMaquis repository in the source folder my-QCMaquis-src.

3.1.2 Setting up a build folder

Create a build folder my-QCMaquis-build – note that this folder does not necessarily have to

be a subfolder of my-QCMaquis-src – and change to this new folder:

mkdir /path/to/my-QCMaquis-build && cd /path/to/my-QCMaquis-build

6

3.1.3 Configuration

Table 1 in Section 3.3 summarizes the list of tested and supported operating system and com-

piler combinations for the installation of QCMaquis. Below we will show the configuration

steps for the most popular compiler suites GNU (Section 3.1.3.1) and Intel (Section 3.1.3.2),

respectively. How to setup and use a shared-memory OMP installation of QCMaquis is

described in Section 3.1.3.3.

3.1.3.1 Configuration with the GNU compiler suite

To configure QCMaquis with the GNU compiler suite type

FC=gfortran CC=gcc CXX=g++ cmake -DQCM_standalone=ON /path/to/my-QCMaquis-src

where we assumed that the Intel Math Kernel Library (MKL) is available (recommended

option). If the MKL libraries are not available QCMaquis will search for other suitable

math libraries installed on the operating system. If none are found the configuration step will

stop with an appropriate message.

3.1.3.2 Configuration with the Intel compiler suite

To configure QCMaquis with the Intel compiler suite including MKL type

FC=ifort CC=icc CXX=icpc cmake -DQCM_standalone=ON /path/to/my-QCMaquis-src

3.1.3.3 Shared-memory OMP parallel configuration

By default QCMaquis is built as shared-memory OMP parallelized version which should

work with either compiler suite, GNU or Intel.

In order to exploit the shared-memory OMP parallelization of QCMaquis the user is

strongly encouraged to set at runtime the environment variable

export OMP_NUM_THREADS=XX

where XX specifies the number of shared-memory cores to be used. The default (depending

on the operating system!!!) is to use a single core.

7

3.1.4 Building and installation

After a successful configuration, type

make

or

make -j8

to compile QCMaquis (in parallel on 8 cores) and install all its components in the build

folder my-QCMaquis-build. In the same folder Boost and Alps will be downloaded and

installed, respectively. The installation process thus requires a working internet connection.

3.1.5 Setting up the runtime environment

After having successfully passed the QCMaquis installation step as indicated by CMake

messages like

[xxx%] Built target alps

...

[xxx%] Built target qcmaquis

and

[xxx%] Installation of QCMaquis, ALPS and Boost was successful!

adjust your runtime environment variables (assuming a bash environment) as follows:

export PATH=/path/to/my-QCMaquis-build/alps/bin:$PATH

export PATH=/path/to/my-QCMaquis-build/qcmaquis/bin:$PATH

export PYTHONPATH=/path/to/my-QCMaquis-build/alps/lib:$PYTHONPATH

export PYTHONPATH=/path/to/my-QCMaquis-build/qcmaquis/lib/python/pyeval:$PYTHONPATH

export PYTHONPATH=/path/to/my-QCMaquis-build/qcmaquis/lib/python:$PYTHONPATH

On Linux systems (x86 64) set in addition

export LIBRARY_PATH=/path/to/my-QCMaquis-build/alps/lib:$LIBRARY_PATH

export LD_LIBRARY_PATH=/path/to/my-QCMaquis-build/alps/lib:$LD_LIBRARY_PATH

whereas on Mac OS X set

8

export LIBRARY_PATH=/path/to/my-QCMaquis-build/alps/lib:$LIBRARY_PATH

export DYLD_LIBRARY_PATH=$LIBRARY_PATH:$DYLD_LIBRARY_PATH

Full instructions ready for copy+paste will also be printed on the screen and shall be copied

to either your local $HOME/.bashrc file, or be executed in the QCMaquis bash session.

Alternative: use the “sourceable” configuration file qcmaquis.sh that is created after the

build/install step succeeded. To do so type

source /path/to/my-QCMaquis-build/qcmaquis/bin/qcmaquis.sh

3.2 QCMaquis as external module of Molcas

In the following steps 3.2.1-3.2.7 we describe how to successfully build and install the Molcas

program together with the QCMaquis software suite. The installation of QCMaquis has

been tested for different operating systems and compiler/math libraries environments. Their

list can be found in Section 3.3. While other combinations might work equally well they are

not officially supported.

The installation of the QCMaquis software suite within Molcas will comprise several li-

braries which are automatically downloaded and installed during the Molcas build process

provided that DMRG support within Molcas is requested by the user. The list of external

libraries comprises:

• QCMaquis

• QCMaquis-driver-utils

• Boost

• ALPS

All of the above libraries will be installed locally in the user-defined build folder my-Molcas-build

of Molcas.

3.2.1 Download Molcas

If you already have a local Molcas repository in my-Molcas-src that points to the remote

repository git@molcas:molcas skip this section, otherwise choose either to download a new

local Molcas repository (Section 3.2.1.1) or add a new remote repository to an existing local

9

Molcas repository (in my-Molcas-src) that does NOT yet have a pointer to the remote

repository git@molcas:molcas (Section 3.2.1.2).

3.2.1.1 Cloning a new local Molcas repository

Type

git clone --recursive git@molcas:molcas my-Molcas-src

to download a new local Molcas repository in the source folder my-Molcas-src.

3.2.1.2 Adding a new remote repository to an existing local Molcas repository

Type

git remote add gitsrc_molcas git@molcas:molcas

to add the additional remote repository gitsrc molcas that hosts the Molcas-DMRG

branch to your local Molcas repository (which we assume in the following to be located

in my-Molcas-src). To obtain all remote informations from gitsrc molcas type next

git fetch gitsrc_molcas

3.2.2 Switch to the Molcas-DMRG branch

QCMaquis is available on the master branch of Molcas which is the default branch that

you currently reference if you “git cloned” a new local Molcas repository in the previous

step. Typing

git branch

should then yield something like

* master

The “∗” in front of the branch name indicates which local branch you are currently tracking.

In this particular case you are tracking the branch master.

If you added a new remote repository (“gitsrc molcas”) to your existing local Molcas

repository (see Section 3.2.1.2) type

git checkout -b dmrg-master gitsrc_molcas/master

10

Typing next

git branch

should then yield something like

master

*dmrg-master

The “∗” in front of the branch name indicates which local branch you are currently tracking. In

this particular case you successfully switched to track the development branch dmrg-master.

3.2.3 Initialization of git submodules

Type

git submodule update --init --recursive

to initialize (and possibly download) the necessary git submodules of Molcas.

3.2.4 Setting up a build folder

Create a build folder my-Molcas-build – note that this folder does not necessarily have to

be a subfolder of my-Molcas-src – and change to this new folder:

mkdir /path/to/my-Molcas-build && cd /path/to/my-Molcas-build

3.2.5 Configuration

Table 1 in Section 3.3 summarizes the list of tested and supported operating system and

compiler combinations for the simultaenous installation of Molcas and QCMaquis. Below

we will show the configuration steps for the most popular compiler suites GNU (Section 3.2.5.1)

and Intel (Section 3.2.5.2), respectively. How to setup an MPI-parallel Molcas installation

is described in Section 3.2.5.3.

Note! We strongly recommend to configure QCMaquis (and Molcas)

with the Intel Math Kernel Library (MKL) to ensure the best numerical

performance.

11

3.2.5.1 Configuration with the GNU compiler suite

To configure Molcas and QCMaquis with the GNU compiler suite type

FC=gfortran CC=gcc CXX=g++ cmake -DDMRG=ON -DLINALG=MKL /path/to/my-Molcas-src

where we assumed (-DLINALG=MKL) that the MKL libraries are available (recommended op-

tion). If the MKL libraries are not available internal math libraries of Molcas can be

requested with -DLINALG=Internal (default option for LINALG in Molcas).

3.2.5.2 Configuration with the Intel compiler suite

To configure Molcas and QCMaquis with the Intel compiler suite including MKL type

FC=ifort CC=icc CXX=icpc cmake -DDMRG=ON -DLINALG=MKL /path/to/my-Molcas-src

3.2.5.3 MPI-parallel and shared-memory OMP parallel configurations

Installing an MPI-parallel version of Molcas with DMRG support is possible although QC-

Maquis itself is by default shared-memory OMP but not yet MPI-parallelized. To configure

Molcas for an MPI-installation type

FC=mpif90 CC=mpicc CXX=mpiCXX cmake -DDMRG=ON /path/to/my-Molcas-src

A shared-memory OMP parallelized version of Molcas can be activated with the option

-DOPENMP=ON passed to cmake during the configuration step, for example

FC=... CC=... CXX=... cmake -DDMRG=ON -DOPENMP=ON /path/to/my-Molcas-src

It should work with either compiler suite, GNU or Intel, but the user may want to consult

the Molcas user manual for further information.

In order to exploit the shared-memory OMP parallelization of QCMaquis which is

enabled by default the user is strongly encouraged to set at runtime the environment variable

export QCMaquis_CPUS=XX

where XX specifies the number of shared-memory cores to be used. The default is to use a

single core.

12

3.2.6 Building and installation

After a successful configuration, type

make

or

make -j8

to compile Molcas (in parallel on 8 cores) and install all its components in the build folder

my-Molcas-build. In the same folder QCMaquis as well as the required Boost and Alps

libraries will be downloaded and installed, respectively. The installation process thus requires

a working internet connection.

3.2.7 Setting up the runtime environment

After having successfully passed the QCMaquis installation step as indicated by CMake

messages like

[xxx%] Built target alps

...

[xxx%] Built target qcmaquis

and

[xxx%] Installation of QCMaquis, ALPS and Boost was successful!

adjust your runtime environment variables (assuming a bash environment) as follows:

export PATH=/path/to/my-Molcas-build/alps/bin:$PATH

export PATH=/path/to/my-Molcas-build/qcmaquis/bin:$PATH

export PYTHONPATH=/path/to/my-Molcas-build/alps/lib:$PYTHONPATH

export PYTHONPATH=/path/to/my-Molcas-build/qcmaquis/lib/python/pyeval:$PYTHONPATH

export PYTHONPATH=/path/to/my-Molcas-build/qcmaquis/lib/python:$PYTHONPATH

On Linux systems (x86 64) set in addition

export LIBRARY_PATH=/path/to/my-Molcas-build/alps/lib:$LIBRARY_PATH

export LD_LIBRARY_PATH=/path/to/my-Molcas-build/alps/lib:$LD_LIBRARY_PATH

whereas on Mac OS X set

13

export LIBRARY_PATH=/path/to/my-Molcas-build/alps/lib:$LIBRARY_PATH

export DYLD_LIBRARY_PATH=$LIBRARY_PATH:$DYLD_LIBRARY_PATH

Full instructions ready for copy+paste will also be printed on the screen and shall be copied

to either your local $HOME/.bashrc file, or be executed in the Molcas bash session.

Alternative: use the “sourceable” configuration file qcmaquis.sh that is created after the

build/install step succeeded. To do so type

source /path/to/my-Molcas-build/qcmaquis/bin/qcmaquis.sh

3.3 Supported operating systems and compiler environments

Table 1 summarizes tested and officially supported operating system/compiler/math library

combinations for building Molcas together with the QCMaquis software suite. Note that

other combinations might work equally well but they are not officially supported at present.

See the Molcas manual at www.molcas.org for details on supported operating systems and

compiler environments of a “plain” Molcas installation.

Table 1: Supported operating system/compiler/math library combinations for the combined

installation of Molcas and QCMaquis.

operating system compiler math library

Mac OS X (10.11 “El Capitan”) GNU 5.2 “Accelerate” (Xcode)

Mac OS X (10.11 “El Capitan”) Intel XE 15 (patch 0) MKL 11.2

x86 64 Intel XE 15 (patch 0) MKL 11.2

x86 64 GNU 4.8 MKL 11.1

x86 64 GNU 4.7.2 MKL 11.1

x86 64 Intel XE 13 MKL 11.1

x86 64 Intel XE 13 (sp 1) MKL 11.1

x86 64 OpenMPI 1.6.5 + Intel XE 13 (sp 1) MKL 11.1

3.4 First tests and verification of the installation

To verify that your installation of Molcas and QCMaquis was successful, type in your

build folder my-Molcas-build

14

www.molcas.org

molcas verify qcmaquis

A message like

Verification has been completed

indicates that all tests passed correctly and your installation is good to go for production

work.

Note that all test inputs can be found in my-Molcas-build/test/qcmaquis. They may also

serve as sample inputs for your actual calculation. Table 2 comprises a short summary of

the seven tests for QCMaquis covering different computational aspects within the Molcas

framework.

Table 2: List of test inputs that are stored in my-Molcas-build/test/qcmaquis.

file type details

001.input State-specific introduces the DMRG keyword under the RASSCF card

002.input State-average two-state (S0/S1) DMRG-SCF of N2

003.input DMRG-CI dynamic list of renormalized states m

004.input State-specific structure optimization of the ground state of dioxetanone

005.input State-specific structure optimization of the S1 state of N2

006.input PCM model DMRG-SCF for a non equilibrium state

007.input State-specific DMRG-SCF with manual orbital ordering

15

4 Maintenance

4.1 New versions and patches

New versions of the QCMaquis and/or QCMaquis-driver software suite as well as possible

bug fixes will be announced on the QCMaquis homepage. The latter patches will be made

available as git commit(s) on the QCMaquis repository at http://tc-gitlab.ethz.ch that

can be directly applied (“git merge”d) to the user’s release version of QCMaquis.

4.2 Reporting bugs and user support

The QCMaquis program suite is distributed to the Molcas community with no obligations

on the side of the authors. The authors thus take no responsibility for the performance of

the code nor for the correctness of the results. This distribution policy gives the authors no

responsibility for problems experienced by the users when using the QCMaquis program in

Molcas.

Bugs/suggestions for improvements are to be reported as issues on the gitlab server. Please

open an issue concerning:

• QCMaquis on the project page QCMaquis/QCMaquis-public

• QCMaquis in Molcas on the project page molcas-dev/dmrg-interface-utils

Any issue will be dealt with by one of the authors, although no responsibility on the prompt-

ness of response is given. In general, serious bugs that have been reported and fixed will lead

to a new patch of the QCMaquis program, announced and distributed from the QCMaquis

homepage.

16

http://www.reiher.ethz.ch/software/maquis.html
http://tc-gitlab.ethz.ch
http://tc-gitlab.ethz.ch
http://www.reiher.ethz.ch/software/maquis.html
http://www.reiher.ethz.ch/software/maquis.html

5 General Considerations for Running a QCMaquis DMRG

Calculation

Running a QCMaquis DMRG calculation — either DMRG-CI or DMRG-SCF — within the

framework of Molcas involves the QCMaquis host program driver described in Ref. [4].

In doing so, Molcas-DMRG calculations are easily accessible since they are integrated in

the RASSCF module of Molcas. Hence, if the user considers to run a Molcas-DMRG

calculation rather than doing a standalone QCMaquis DMRG calculation section 5.3 may

be skipped.

5.1 Memory management and memory requirements

The memory layout of QCMaquis is designed for large multinode architectures and therefore

the memory consumption on a single node is not consequently minimized.

Note that if you run a Molcas-QCMaquis DMRG calculation, the memory consump-

tion and memory allocation of QCMaquis is entirely disconnected from the host program

Molcas. This in turn means that the amount of core memory assigned to the host program

should be carefully chosen. For example, DMRG-SCF calculations for large active spaces

will not require a considerably larger amount of memory in the RASSCF module (apart from

memory for reduced one- and two-particle density matrices that scale approximately with the

number of active orbitals Nact as N2
act and N4

act, respectively) than regular CASSCF calcula-

tions with modest-sized active spaces. The reason being that in the former case we do not

need to reserve memory for CI vector(s) expansions which grow roughly factorily with the

number of electrons and Nact.

5.2 Files required and written by QCMaquis

QCMaquis requires only two files to start a calculation, (i) an input file, named for example

dmrg-input that includes all keywords and options as specified in Section 6.2 and (ii) an

integral file in the FCIDUMP format as described in Ref. [6]. The latter can be produced for

example with the Molcas/QCMaquis-host program driver described in Ref. [4]. Different

types of reference orbitals may be used as starting orbitals for a QCMaquis DMRG calcula-

tion.

17

QCMaquis produces two types of files, (i) a result-file in which all information on, e.g.

the energies and expectation values, is stored and (ii) a checkpoint-folder which contains

the matrix product state (MPS) wave function. The checkpoint-folder is required for a

later restart of the calculation, while the tools and the analysis scripts described in Sections

6.3 and 6.4, respectively, require either a result-file or a checkpoint-folder or both. All

data is stored in the hdf5 format.

5.3 Typical workflow for a DMRG calculation including a post-

processing analysis

The usual workflow to set up, run and analyze a DMRG calculation proceeds as follows:

• prepare an FCIDUMP integral file [6] using the Molcas-QCMaquis host program

driver [4]) starting from a set of previously computed reference orbitals

• prepare an input file dmrg-input starting for example from the template input file

provided in Section 7.2 and adjust all molecular system and wave function specific

parameters (for example nelec, spin, irrep, L, ..., see Sections 6.2.1-6.2.3 for a

list of all compulsory and optional input arguments)

• run the DMRG calculation with

dmrg dmrg-input (| tee out)

• compute expectation values with

dmrg meas dmrg-input

• analyze the results using the Python tools provided with the QCMaquis package (see

Sections 6.3 and 6.4, respectively, for a list of utility programs and scripts)

18

6 Input Keywords

Caution! Be aware of underscores “ ” in some of the QCMaquis or

Molcas keywords. They might get lost when you copy+paste keywords

from this pdf to your input file.

6.1 Keywords and Options for Molcas

6.1.1 Compulsory keywords

This section describes the QCMaquis input to the RASSCF program within the Molcas

program system. The minimal input to run a DMRG-SCF calculation with QCMaquis in

the framework of the RASSCF program is

&RASSCF

DMRG

where the keyword DMRG is compulsory to activate the DMRG functionality in Molcas.

6.1.2 Optional keywords

Table 3 summarizes optional keywords under the RASSCF input card that allow to control

the type of DMRG calculation, that is, DMRG-SCF, DMRG-CI or just a dump of information

(input, one- and two-electron integrals) to perform a DMRG calculation outside of Molcas.

The detailed input control for QCMaquis in Molcas is designed such that parameters

between the RGINput and ENDRG section of the RASSCF input card only affect QCMaquis

that is, they have no effect within the RASSCF module of Molcas. These parameters are

described in Section 6.2.

6.1.3 Inoperative keywords

Table 4 comprises a list of keywords under the RASSCF input card which are have no meaning

when a DMRG calculation is requested.

19

Table 3: Optional keywords under the RASSCF card to control the DMRG calculation.

keyword description

RGINput

RGInput marks the beginning of the QCMaquis parameter

control section while ENDRG marks its end. Any

QCMaquis-internal keyword can be forwarded directly to

QCMaquis by replacing the XXX with a list of keywords, each

keyword in a new line. A list of compulsory, optional, and

property calculation keywords for QCMaquis are described in

Sections 6.2.1-6.2.3.

Notable exceptions are the active-space and wave function

symmetry dependent parameters L, nelec, spin, irrep that

will be forwarded automatically by Molcas.

XXX

ENDRG

CIONLY
This keyword disables orbital optimization. A single DMRG-CI

calculation is performed instead.

FCIDUMP

This keyword disables orbital and wave function optimization,

that is, input information and transformed integrals are written to

a formatted integral file named “FCIDUMP” (see Ref. [6] for a

detailed description of the format) which can be used in

subsequent QCMaquis DMRG calculations.

SOCCupy

Initial electronic configuration for the calculated state(s). For the

calculation of a single state this is equivalent to the hf occ card

in the QCMaquis input (see Section 6.2). The occupation is

inserted as a string of blank space separated aliases of occupations

of the active (RAS2) orbitals with the aliases 2 = full, u = up,

d = down, 0 = empty.

20

Table 4: Inoperative keywords in the RASSCF section when DMRG is active.

keyword description

RASScf
This keyword is not available because it is not possible to restrict

the excitation level between subspaces in DMRG calculations.

TIGHt

This keyword is not available because the Jacobi-Davidson

diagonalization is independent and can be controlled with the

ietl jcd tol and ietl jcd maxiter parameters (see Section 6.2)

in the RGINPUT section.

6.1.4 Molcas environment variables

As described in Section 3.2.5.3 QCMaquis is built by default with a shared-memory OMP

parallelization. To speedup calculations the user can thus set at runtime the environment

variable

export QCMaquis_CPUS=XX

where XX specifies the number of shared-memory cores to be used. The default is to use a

single core.

21

6.2 Keywords and Options for QCMaquis

In the following we describe (i) compulsory keywords (Section 6.2.1), (ii) optional keywords

(Section 6.2.2) for QCMaquis DMRG calculations as well as (iii) keywords for property

calculations (Section 6.2.3). Most of the QCMaquis keywords have default settings that

guarantee convergence in the general case and are inserted automatically by the host program

(Molcas in this case). A reasonable choice of default values for optional keywords is given

in our example QCMaquis input file in Section 7.2.

Caution! Maquis has many features beyond quantum chemistry, e.g. re-

lated to solid state physics. Some keywords listed in the example file in

Section 7.2 are therefore not explained in the following and are not to be

changed, if a quantum chemical calculation is desired.

6.2.1 Compulsory keywords

The keywords in Table 5 have to be set for every DMRG calculation since they may crucially

affect the accuracy of the final result. Their choice depends for example on the molecule under

consideration (do you expect strong static electron correlation and/or dynamical correlation

to play a major role), the nature of the reference orbitals (Hartree-Fock orbitals, natural

orbitals of some kind, . . .), the size of the active space, and many other aspects.

Note! We strongly encourage any new user of QCMaquis or QCMaquis-

in-Molcas to carefully read first Ref. [7] which gives a detailed intro-

duction to DMRG calculations in quantum chemistry. Further quantum

chemical DMRG sample calculations starting from different computational

setups are discussed for example in Refs. [4, 8, 9, 10].

Some of the compulsory keywords listed in Table 5 are indeed automatically set if you run

a QCMaquis DMRG calculation through the QCMaquis host program driver which is the

case for Molcas-QCMaquis DMRG calculations. In this case skip the upper part of Table

5 and proceed immediately to the lower part marked by “Keywords NOT set by the host

program Molcas”.

22

Table 5: Compulsory keywords to be set in all QCMaquis DMRG calculations.

keyword description

Keywords set by the host program Molcas

nelec Total number of electrons.

irrep

Irreducible representation of the point group symmetry of the

target state. Note: Counting starts with 0 which has to be the

totally symmetric representation.

spin
Total spin (2× S) of the target state, for example:

spin=0 (singlet), spin=1 (doublet), spin=2 (triplet), . . .

L Length of lattice = number of orbitals in the active space.

integral file
Path and filename of the integral file, for example

integral file = /path/to/file/FCIDUMP

chkpfile Path and name of the folder in which the MPS is stored.

resultfile Path and filename of the result file.

n ortho states

If an excited state calculation is desired, the number of states the

current wave function is to be orthogonalized against shall be

specified here.

ortho states

Path(s) and filename(s) of the MPS checkpoint file(s) that store

the lower lying states to which the current MPS shall be

orthogonal to.

23

Table 5 – continued from previous page

keyword description

init state

Possible options are default, thin and hf. The default and

thin initializations fill the initial MPS with random numbers, the

difference being that a singular value decomposition reduces the

bond dimension to init bond dimension in the case of thin.

Usage of hf generates an MPS consisting of only the determinant

defined on the hf occ card. Note that the CI-DEAS procedure

[11, 4] (as invoked by dmrginit.py, see Section 6.4) behaves like a

restart from the newly generated CI-DEAS MPS.

default in Molcas: init state = "default"

Keywords NOT set by the host program Molcas

max bond dimension

Maximum number of renormalized states (commonly referred to

as m-value or virtual bond dimension) kept during each

microiteration step of a forward- or backward sweep.

nsweeps

Maximum number of DMRG sweeps. Please be aware that

nsweeps sets the number of combined forward and backward

sweeps. Thus, the actual number of sweeps is 2 × nsweeps.

6.2.2 Optional keywords

The keywords summarized in Table 6 may be exploited by the more experienced user but can

be safely ignored by those who just want to get started. They may affect the convergence

and accuracy of the final result, though. For the inexperienced user however, we advise to not

change these settings and accept the default values provided by QCMaquis.

24

Table 6: Optional keywords for QCMaquis calculations.

keyword description

orbital order

Manual ordering of the orbitals along the one dimensional lattice.

The order has to be entered as a string of comma separated

orbital numbers. We recommend the Fiedler ordering based on

the mutual information [4, 12] which can be obtained by means of

the python script fiedler.py (see Section 6.4).

default: orbital order = "1,2,3,4,5,6,..."

sweep bond dimensions

Sets max bond dimension for each sweep separately.

Note: Replaces max bond dimension which does NOT need to be

specified in this case.

Example (nsweeps=3): sweep bond dimensions=“300,400,500”

init bond dimension
Adjusts the maximal bond dimension of the MPS produced by the

CI-DEAS procedure [11, 4].

conv thresh

Sets the energy convergence threshold (in Hartree). If the lowest

energy from the previous sweep differs from the lowest energy of

the current sweep by less than conv thresh, the DMRG

calculation stops.

Note: Requires to set also truncation final and ietl jcd tol.

Numerical format: xe-y with x and y being integers.

Example: conv thresh = 1e-6.

ietl jcd tol

Convergence threshold for the Jacobi-Davidson diagonalization.

Numerical format: xe-y with x and y being integers.

Example: ietl jcd tol = 1e-6.

ietl jcd maxiter
Maximum number of iterations in the Jacobi-Davidson

diagonalization.

25

Table 6 – continued from previous page

keyword description

truncation initial

If during the ngrowsweeps, the sum of the discarded singular

values for m retained states is lower than the value defined here,

more block states will be discarded until the discarded sum

increases to truncation initial.

Numerical format: xe-y with x and y being integers.

Example: truncation initial = 1e-6.

truncation final

If during the nmainsweeps, the sum of the discarded singular

values for m retained states is lower than the value defined here,

more block states will be discarded until the discarded sum

increases to truncation final.

Numerical format: xe-y with x and y being integers.

Example: truncation final = 1e-6.

measure each
Tells the program to compute the expectation values every

2 × measure each sweeps.

symmetry

Defines the total symmetry group. Default is the combined spin-

(SU2) and point symmetry group (PG) su2u1pg, where the

pg-suffix should be omitted for better performance if the molecule

is C1-symmetric. For test purposes, it is possible to switch off

spin-adaptation, again with or without point group symmetry:

2u1(pg) . In the latter case the keywords spin and nelec (see

Section 6.2.1) have no meaning. Instead u1 total charge1 and

u1 total charge2 corresponding to the number of up and down

electrons have to be specified.

chkp each
Tells the program to update the checkpoint file every

2 × chkp each sweeps.

26

Table 6 – continued from previous page

keyword description

hf occ

Occupation of the starting orbitals (e.g. Hartree-Fock occupation)

to be entered as a comma separated string of occupation aliases.

The aliases are defined as follows: 4 = full, 3 = up, 2 = down,

1 = empty. This information has to be entered in case of hf as

init state and for the CI-DEAS procedure [11, 4] as invoked by

dmrginit.py.

example: hf occ = "4,4,4,2,2,1" for a CAS(8,6) triplet state

setup where the unpaired electrons are “located” in orbital # 4

and # 5.

nmainsweeps
Number of sweeps in which truncation final is used in the

singular value decomposition.

ngrowsweeps
Number of sweeps in which truncation initial is used in the

singular value decomposition.

6.2.3 Keywords for expectation value calculations

QCMaquis can (in principle) compute expectation values for any one- or two-particle oper-

ator that can be formulated in second quantization. Table 7 comprises a list of the available

property keywords in the release version of QCMaquis. For further updates/other properties

please contact dmrg@phys.chem.ethz.ch. The one-particle reduced density matrix as well as

the one-particle spin-density matrix are implicitly computed from the expectation values of

some of the operators contained in MEASURE[ChemEntropy].

27

mailto:dmrg@phys.chem.ethz.ch

Table 7: Expectation value calculations available in the release version of QCMaquis.

keyword description

MEASURE[ChemEntropy]

All expectation values over the operators required to

calculate the mutual information (as specified in Ref. [13])

will be computed. Please note that this is available only for

SU2 symmetry.

MEASURE[1rdm]

Computes the one-particle reduced density matrix, without

the additional correlators contained in the ChemEntropy

measurement.

MEASURE[2rdm] Computes the two-particle reduced density matrix.

MEASURE LOCAL[name] = "op "

Computes 〈ψ|opi|ψ〉, i = 1 . . . L. Nup, Ndown and Nup*Ndown

are meaningful choices for op. Available for 2u1(pg) only.

Note: name defines the name under which the expectation

values are stored on the resultfile.

MEASURE HALF CORRELATIONS

[name] = "op1:op2"

Computes 〈ψ|op1iop2j|ψ〉, i = 1 . . . L, j = i+ 1 . . . L. Nup,

Ndown, Nup*Ndown, cdag up, cdag down, c up, c down,

cdag up*Ndown, c up*Ndown, cdag down*Nup, c down*Nup,

cdag up*cdag down, c up*c down, cdag up*c down, and

cdag down*c up, as op1 and op2 are recognized by the

program. Available for 2u1(pg) only.

Note: name defines the name under which the expectation

values are stored on the resultfile.

6.3 QCMaquis tools

QCMaquis comes with several tools that allow for example further manipulation of the MPS

or to acquire additional wave function analysis information. The tools det2mps "symmetry",

28

mps2ci and mps transform("pg") will be briefly described in the following. These tools are

provided in the my-Molcas-build/qcmaquis/bin folder.

Table 8: Overview of QCMaquis tools.

tool description

mps transform(pg)

This tool allows for a transformation of an su2u1(pg) MPS

wave function to 2u1(pg) symmetry.

Command line:

mps transform(pg) chkpfile

Note: for an su2u1(pg) MPS with S > 0 2u1(pg) MPSs for

all Sz components are generated.

det2mps symmetry

This tool generates determinants based on the CI-DEAS

procedure [11] and inserts them in an MPS from which a

new DMRG calculation can be started. Starting from such

an MPS is likely to improve convergence behaviour and is

less prone to get stuck in local minima. The current

implementation is described in Ref. [4]. The number of

determinants will be chosen such that the maximal bond

order at any site does not exceed the value set in

init bond dimension. The new MPS will be stored in the

checkpoint folder specified in chkpfile.

Command line:

det2mps "symmetry" dmrg-input

Note: ”symmetry” must equal the total symmetry specified

in the input file dmrg-input.

mps overlap symmetry(pg)

This tool calculates the overlap between two MPS Θ1 and

Θ2, respectively, according to 〈Θ1|Θ2〉.

Command line:

mps overlap "symmetry"(pg) chkpfile 1 chkpfile 2

Note: ”symmetry” must equal the full symmetry specified in

the input file dmrg-input.
29

Table 8 – continued from previous page

tool description

mps2ci 2u1(pg)

Given a text file determant list.txt containing a list of

determinant strings, this tool calculates the CI-coefficients of

the respective determinants [14]. The determinant strings

have to encode the occupation of the orbitals as described

for the hf occ keyword (4 = full, 3 = up, 2 = down,

1 = empty).

Command line:

mps2ci 2u1(pg) chkpfile determinant list.txt

Note: with the conversion tool mps transform(pg) this

analysis becomes possible also for MPS of the full symmetry

su2u1(pg).

6.4 QCMaquis python scripts for wave function analysis and visu-

alization

The python scripts of QCMaquis are helpful to analyze and visualize the results of a DMRG

calculation. Their usage should be evident from the documentation strings in the Python

files. However, those that are most frequently used will be briefly explained here. All scripts

except dmrginit.py take the QCMaquis output file resultfile as input. They are located

in the folder my-Molcas-build/qcmaquis/lib/python/pyeval.

Table 9: Overview of QCMaquis Python analysis and visualization scripts.

script description

sweeps.py

Plots the energy for each microiteration.

Command line:

sweeps.py resultfile

Note: use this tool to check the convergence wrt the number

of sweeps.

30

Table 9 – continued from previous page

script description

dmrginit.py

Starts a QCMaquis DMRG calculation with

max bond dimension = 200 and nsweeps = 2, measures the

entropy information [15, 13] from this unconverged

calculation and based on this, generates a new MPS with

the CI-DEAS procedure according to all settings specified in

the input file dmrg-input. We recommend to use this script

for the preparation of calculations for active spaces that are

larger than those that can be handled with traditional CAS

methods.

Command line:

dmrginit.py dmrg-input

fiedler.py

Optimizes the ordering based on entropy information as

proposed in Ref. [12]. The current implementation is

described in Ref. [4]. The ordering ensures that highly

entangled orbitals are close to each other in the one

dimensional lattice. The first ordering in the output ignores

the point group symmetry of the orbitals, while the second

version orders the orbitals within each irreducible

representation and then reorders these symmetry blocks.

Command line:

fiedler.py resultfile

Note: we recommend to use the second option.

input.py

This script recovers the complete QCMaquis input file

dmrg-input from a given resultfile.

Command line:

input.py resultfile

31

Table 9 – continued from previous page

script description

mutinf.py

Produces mutual information plots [13] given that an

expectation value calculation for MEASURE[ChemEntropy]

has been performed.

Command line:

mutinf.py resultfile

Note: if orbital images (in .png format) named 1.png, 2.png,

. . . , L.png (with L being the number of active orbitals) are

present in the same folder where mutinf.py is executed,

they can be added to the mutual information plot by

providing the optional argument -i to mutinf.py.

32

7 Examples of Molcas DMRG and QCMaquis DMRG

Input Files

7.1 Example file for Molcas – DMRG-SCF(14,10)

&GATEWAY

2

Angstrom

N 0.000000 0.000000 -0.54880

N 0.000000 0.000000 0.54880

basis=cc-pvdz

&SEWARD

&SCF

&RASSCF

DMRG

RGinput !!!! QCMaquis Keywords input

conv thresh = 1.0E-07

nsweeps = 4

max bond dimension = 100

endRG !!!! End of QCMaquis Keywords input

inactive= 0 0 0 0 0 0 0 0

RAS2= 3 1 1 0 3 1 1 0

ITER= 10,100

&Grid it

all

33

7.2 Example file for QCMaquis– DMRG-CASCI(8,8)

//active-space dependent parameters

L = 8

nelec = 8

// target symmetry (spin and spatial) of the wave function:

// 2*spin = 0 (singlet) + totally symmetric point group irrep

spin = 0

irrep = 0

//parameter to control the actual DMRG calculation

nsweeps = 8

max bond dimension = 256

conv thresh = 1e-6

// initialization procedure

init state = ’default’

// technical parameters

symmetry = ’su2u1pg’

integral cutoff = 1e-40

truncation initial = 1e-50

truncation final = 1e-7

chkpfile = ’chkp.h5’

resultfile = ’result.h5’

integral file = “FCIDUMP”

storagedir = ’/scratch/$USER/boundaries’

LATTICE = “orbitals”

lattice library = “coded”

MODEL = “quantum chemistry”

model library = “coded”

//all expectation value calculations required for entropy measures

MEASURE[ChemEntropy]

34

References

[1] S. Keller, M. Dolfi, M. Troyer, M. Reiher, arXiv:1510.02026.

“An efficient matrix product operator representation of the quantum-chemical Hamiltonian”

[2] S. Battaglia, A. Muolo, S. Keller, S. Knecht, and M. Reiher, in preparation.

[3] S. Keller and M. Reiher, in preparation.

[4] Y. Ma, S. Keller, C. Stein, S. Knecht, R. Lindh, M. Reiher, in preparation.

[5] www.molcas.org

[6] P. J. Knowles, N. C. Handy, Comp. Phys. Commun. 1989, 54, 75.

”A determinant based full configuration interaction program“

[7] S. F. Keller and M. Reiher, Chimia 2014, 68, 200–203, arXiv:1401.5497.

”Determining Factors for the Accuracy of DMRG in Chemistry.“

[8] L. Freitag, S. Knecht, S. F. Keller, M. G. Delcey, F. Aquilante, T. Bondo Ped-

ersen, R. Lindh, M. Reiher, and L. González, Phys. Chem. Chem. Phys. 2015,

DOI:10.1039/C4CP05278A.

”Orbital entanglement and CASSCF analysis of the RuNO bond in a Ruthenium nitrosyl

complex.“

[9] T. Dresselhaus, J. Neugebauer, S. Knecht, S. Keller, Y. Ma, and M. Reiher, J. Chem.

Phys. 2015, 142, 044111. arXiv:1409.1953.

”Self-consistent embedding of density-matrix renormalization group wavefunctions in a den-

sity functional environment.“

[10] E. D. Hedegaard, S. Knecht, J. S. Kielberg, H. J. Aa. Jensen, and M. Reiher, J. Chem.

Phys. 2015, 142, 224108. arXiv:1502.06157.

”Density matrix renormalization group with efficient dynamical electron correlation through

range separation.“

[11] Ö. Legeza, J. Sólyom, Phys. Rev. B 2003, 68, 195116.

“Optimizing the density-matrix renormalization group method using quantum information

entropy”

35

http://arxiv.org/abs/1510.02026
www.molcas.org
http://arxiv.org/abs/1401.5497
http://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C4CP05278A#!divAbstract
http://arxiv.org/abs/1409.1953
http://arxiv.org/abs/1502.06157

[12] G. Barcza, Ö. Legeza, K. H. Marti, M. Reiher, Phys. Rev. A 2011, 83, 012508.

”Quantum-information analysis of electronic states of different molecular structures“

[13] K. Boguslawski, P. Tecmer, Ö. Legeza, M. Reiher, J. Phys. Chem. Lett. 2012, 3, 3129.

”Entanglement measures for single- and multireference correlation effects“

[14] G. Moritz, M. Reiher, J. Chem. Phys. 2007, 126, 244109.

”Decomposition of density matrix renormalization group states into Slater determinant

basis“

[15] J. Rissler, R. M. Noack, S. R. White, Chem. Phys. 2006, 323, 519.

”Measuring orbital interaction using quantum information theory“

36

	Introduction to the QCMaquis Software Suite
	Overview and Goals
	What features are included in the release version 1.0?
	QCMaquis standalone version
	QCMaquis in Molcas

	Organization of this document

	Software Requirements & Registration
	Prerequisites
	Registration
	QCMaquis standalone version
	QCMaquis in Molcas

	Installation
	QCMaquis standalone version
	Download QCMaquis
	Setting up a build folder
	Configuration
	Building and installation
	Setting up the runtime environment

	QCMaquis as external module of Molcas
	Download Molcas
	Switch to the Molcas-DMRG branch
	Initialization of git submodules
	Setting up a build folder
	Configuration
	Building and installation
	Setting up the runtime environment

	Supported operating systems and compiler environments
	First tests and verification of the installation

	Maintenance
	New versions and patches
	Reporting bugs and user support

	General Considerations for Running a QCMaquis DMRG Calculation
	Memory management and memory requirements
	Files required and written by QCMaquis
	Typical workflow for a DMRG calculation including a post-processing analysis

	Input Keywords
	Keywords and Options for Molcas
	Compulsory keywords
	Optional keywords
	Inoperative keywords
	Molcas environment variables

	Keywords and Options for QCMaquis
	Compulsory keywords
	Optional keywords
	Keywords for expectation value calculations

	QCMaquis tools
	QCMaquis python scripts for wave function analysis and visualization

	Examples of Molcas DMRG and QCMaquis DMRG Input Files
	Example file for Molcas – DMRG-SCF(14,10)
	Example file for QCMaquis– DMRG-CASCI(8,8)

