
FOR VERSION 1.6

PSAlter
User

Manual

Page 2

Copyright © 1996, 2001 A. W. Inston and Quite Software

This document is the user manual for PSAlter, a software product.
Both manual and software are supplied under the terms of a
license, and may only be used or copied according to the terms of
the license.

The name PostScript® is used in this document to mean the Post-
Script language as defined by Adobe Systems Incorporated in various
documents, unless otherwise stated. PostScript is also used as a prod-
uct trademark for Adobe Systems’ Implementation of the PostScript
language interpreter. While this document may from time to time
refer to PostScript interpreters it makes no representations that
PSAlter is in any sense the Adobe product defined above.

PostScript and Adobe Type Manager are registered trademarks and
Adobe is a trademark of Adobe Systems Inc. Microsoft® is a regis-
tered trademark and Windows is a trademark of Microsoft Corpora-
tion. Macintosh and LaserWriter are trademarks of Apple Computer,
Inc. CorelDRAW is a registered trademark of Corel Corporation. Mac-
romedia and Freehand are registered trademarks of Macromedia, Inc.
Helvetica, Palatino and Times are trademarks of Linotype AG and/or
its subsidiaries. Times New Roman is a trademark of The Monotype
Corporation plc.

Table of Contents

Page 3

Table of Contents

Table of Contents . 3

Part 1:
Getting started . 9
Installing PSAlter . 10

What you will need: system requirements 10
Running the installation . 10
Uninstalling (removing) PSAlter 11
Support . 11
Registration . 12

Introducing PostScript® and PSAlter 13
What is PostScript? . 13

Level 1, level 2 and level 3 PostScript 14
What can PSAlter do? . 15
The four modes of operation 15
Example — viewing a PostScript file 16
PostScript errors . 18
Font substitution . 20
Finding out more . 20

Other books . 21

Part 2:
Using PostScript . 23
Viewing PostScript documents with PSAlter 24

Zooming options . 25
Handling multiple pages . 28

Moving whole pages . 28
Moving part of a page . 29

Other options in view mode 30
Exporting and copying the image 30

 Table of Contents

Page 4

Updating the image . 31
Searching for the picture . 31

The status line in View Mode 32
Translating PostScript to other formats 34

The formats PSAlter uses 34
Windows Bitmap . 34
TIFF . 34
Encapsulated PostScript . 34

Using Translate . 35
A simple translation session 35
Multi-page documents . 37
Options for cropping the picture 37

Using translated files . 38
Windows Paint . 38
Word for Windows . 38
CorelDRAW . 38

Choosing setup options . 38
Using the “Where Am I” Function 40

Where - text information . 42
Where - path information 43
Where - bounding box . 45
Where - recent comments 47

Setup options for PSAlter . 49
Imaging setup . 50

Imaging model . 51
Paper size . 52
Custom size option . 53
Orientation . 54
Resolution . 54
Use bounding box for EPS option 55
Typical memory sizes per page 56

Limits setup . 57
Path length . 57
Truncate large co-ordinates 58

Emulation setup . 58
Language version choice 59
Garbage collection option 60

Table of Contents

Page 5

Stricter Checking option . 60
Colour images option . 60
Limited level 2 option . 61
Advertise level 2 option . 61
Serial/Parallel option (‘ASCII’) 61
Binary option . 62
BCP option . 62
TBCP/PJL option . 62

Encapsulated PostScript and PSAlter 63
How an application uses EPS 63
About EPS previews . 65

EPSI format . 65
How PSAlter reads EPS . 66

If the page is blank . 66
How PSAlter writes EPS . 67

EPS export wrapper details 67
EPS export problems . 69
EPS Export is not PostScript conversion 70

PSAlter and fonts . 71
What is a font? . 71
PostScript fonts . 71
Fonts and Windows . 72
How PSAlter keeps the look of fonts 74
Using Windows fonts to add extra fonts to PSAlter
74
Handling missing fonts . 80
Other font setup options . 82

Working with user packages 82
Using all ATM fonts . 82
Using font directories . 83
Using font metrics . 84

Part 3:
 Programming PostScript . 87
Introducing the PSAlter Workbench 88

Handling child windows . 88
Using the Workbench — a tutorial 89

 Table of Contents

Page 6

Starting up . 89
Pausing, viewing the image 90
Watching the image build 91
Walking through the program 91
Looking at some data . 92
Adding a ‘watch’ . 92
Setting a breakpoint . 93
Some help . 93

Program and file viewers . 95
The main program window 95

The current position options 96
The output log (%stdout) 97
Other file windows . 98
Hints for large files . 99

Controlling execution . 101
Running and walking . 101
Single stepping . 103

Image viewers . 105
Starting image viewers . 105
Overlay options . 106
Selecting a cutout box . 107

Data viewers . 109
Stack viewers . 109

Which way up? . 110
Expanding values . 110
Finding out more about an object 111

Watch viewer . 112
Array and dictionary viewers 114

Vanishing viewers . 114
String viewers . 115
Graphics state viewers . 115

Current font viewer . 115
Path items . 116
Graphics state stack . 116

Current path viewer . 116
Current halftone viewer 117
Font name viewers . 117

Table of Contents

Page 7

Operator count viewer . 118
Memory info viewer . 118
Last error info . 119

Breakpoints . 120
The breakpoint control panel 121
Operator breakpoints . 121
Name breakpoints . 123
Source breakpoints . 124
Image breakpoints . 125
Editing breakpoint options 126

Breakpoint actions . 126
Breakpoint skipping . 127
Breakpoint labels . 127

Using executive mode . 128
Executive mode in a printer 128
Executive mode in PSAlter workbench 128
Combining executive mode with a program window
129
Additional notes . 131

Entering executive mode 131
Leaving executive mode 131
Controlling flow of executive commands 131
Side effects . 132
Changing the command 132

Restrictions . 132
Implementation notes for PostScript programmers . 134

Adding header files . 134
Calling additional header files 134
Error reporting in header files 135
Additional notes and restrictions 135

Device dependent operators 136
The file operator . 137
Windows fonts . 137
Error handling . 139
Execution stack . 140

Problems with restore . 140

 Table of Contents

Page 8

Problems with recursion 140
A note on arithmetic accuracy 141
Restrictions and limits . 141

Missing operators . 141
Limits . 142
Emulations . 142
Failures . 143

Extensions . 143
@popup operator . 143
@yes? operator . 144
Other new operators . 144

Appendices . 145
Appendix A: Built-in fonts . 146
Appendix B: Keyboard shortcuts 149

Common shortcuts . 149
View mode / Workbench image windows . . . 150
Workbench, other than image windows 151

Part 1:
Getting started

 Installing PSAlter

Page 10

Installing PSAlter

Please make sure you understand the license agreement
supplied with PSAlter. In particular, this does not normally
allow you to give the software to friends or colleagues to run
on their computer, unless you are removing it from your
system.

What you will need: system requirements
PSAlter is a program for IBM-compatible PCs running
Microsoft Windows 95 or later, including Windows 98,
Windows Me, Windows NT 4.0, and Windows 2000.

If you have not used Microsoft Windows, you should become
familiar with it before trying to use PSAlter.

You will need a modest amount of hard disk space: about 4
megabytes to install. You will need a CDROM drive to install
from CD.

16 megabytes of memory (RAM) is recommended - more will
improve performance and allow larger or higher resolution
files to be viewed.

To use Windows fonts, PSAlter must have access to the set of
fonts which are supplied with Windows. If you have not
changed anything, these will be available.

Running the installation
Note: if you are not installing from CDROM, for instance if
you are installing a download from our web site, please check
whether different instructions apply.

You should be running Microsoft Windows (as noted above).

Installing PSAlter

Page 11

Insert the CDROM into the drive. The simplest way to start the
installer is to open your My Computer icon, and right click on
the icon for the CDROM drive. A menu will appear; simply
select Install PSAlter from the menu.

If you can prefer, you can navigate to the folder
English\Products\PSAlter on the CDROM, and double click on
the setup.exe file.

The setup program will ask a number of questions, then will
complete the installation. In some cases it will be necessary to
reboot your computer. This only happens when you do not
have a software component called the “Windows Installer”
already on your system. This is standard with Windows 2000.

After set up is completed, you will see an icon on your
desktop. Double click to start PSAlter for the first time. Now,
you will be asked to enter your serial number, your name and
organisation. Check what you type carefully as it can be
difficult to correct later.

Uninstalling (removing) PSAlter
You can easily remove PSAlter from your system in the usual
way. Use Settings > Control Panels and select the
Add/Remove programs control panel. PSAlter should appear
in the list of software you can remove

Support
At Quite Software, we are proud of the quality of our products
and want to help you get the best out of them. We do
everything we can to make sure that they will work ‘out of the
box’ and that you won’t have to waste any time contacting us
for assistance. But things do go wrong, so there are a number
of options for getting help.

• On the internet, check our web site for the latest support
information. Your problem may already be described on:

http://www.quite.com/psalter/support.htm

 Installing PSAlter

Page 12

• If a browser such as Netscape or Internet Explorer is
installed on your system, you should be able to use Help |
PSAlter home page to reach our pages.

• Send us e-mail to help@quite.com.

• You can fax us on +44 1631 574089 (in the UK: 01631
574089).

• Phone us on +44 20 8553 6574 (in UK: 020 8553 6574.) We
can’t guarantee instant technical support over the phone,
and we recommend you use one of the above methods if
you can.

• Write to us at Support, Quite Software, Carraig Thura,
Lochawe, Argyll, PA33 1AF, United Kingdom.

Try to include relevant details of your problem don’t assume
that we will have seen it before. Do check the manual, and the
release notes. But also, please don’t e-mail large supporting
files except on request. Please include your PSAlter serial
number with your message.

We regret that we can’t offer a training service for people
learning PostScript. There are a number of excellent ‘teach
yourself’ PostScript books available. On the internet, you may
find the comp.lang.postscript usenet group a valuable
resource; also visit our web site at http://www.quite.com/ps/
for hints, tips, and pointers to other useful sites.

Registration
Please register your copy of PSAlter for two key benefits:

• If you lose your serial number we will be able to help you.

• We will be able to e-mail you with news of new releases.

You can register on the web at
http://www.quite.com/register.htm.

Introducing PostScript® and PSAlter

Page 13

Introducing PostScript® and
PSAlter

What is PostScript?
PostScript is a programming language which was specifically
designed for use in computer printers. It provides a powerful
way of describing what you want on the printed page. It is
also portable: you should get identical results printing to a
variety of PostScript compatible printers, including the high-
end phototypesetters used in professional printing.

PostScript is a trademark of Adobe Systems Inc., who devised
the language and continue to own it. However, they do not
restrict other companies from using it. (There is one exception
to this: only a printer with Adobe’s software should be called a
‘PostScript printer’. All others are ‘PostScript-compatible’.)

PostScript (and PostScript-compatible) printers would be no
use unless there was PostScript to send to them. Fortunately,
there is now a large body of applications which understand
how to write PostScript, and which can therefore print to a
PostScript printer. This includes almost all Microsoft Windows
and Macintosh applications. If a PostScript program is put in a
file rather than sent straight to a printer, it can be printed later,
or given to others to print.

You can also look at the contents, and may be able to read
some of it. It is usually difficult to understand: most
applications write their PostScript for efficient printing, and
make no allowance for the fact that someone may want to read
it. PostScript can be simple though. The following is a piece of
PostScript which could be sent to a printer.

%!
72 72 scale % coordinates now in inches

 Introducing PostScript® and PSAlter

Page 14

1 1 moveto
2 1 lineto 2 2 lineto 1 2 lineto
closepath
fill
showpage

This will draw a 1 inch (2.5 cm) square black box, 1 inch across
and 1 inch up from the bottom left of the page.

Writing PostScript has usually been difficult, mainly because if
you make any sort of mistake, the printer doesn’t do anything
very helpful. If you’re lucky, a cryptic error message will
appear on a control panel for the printer, but that’s about it.

PSAlter makes writing PostScript easy. But you don’t have to
write PostScript for PSAlter to be useful. You can put PSAlter
to work whether you have a PostScript printer or not.

Level 1, level 2 and level 3 PostScript
Level 1 PostScript is the PostScript language originally defined
by Adobe Systems in 1985. In 1990, Adobe systems released
level 2 PostScript, which added a great many new facilities to
the language. And in 1999, Adobe released the documentation
on level 3 PostScript.

PSAlter does not fully support level 3 PostScript, so you may
be wondering how useful it will be.

Because of the huge body of existing PostScript printers, most
of them level 1 or 2 and not capable of being upgraded, almost
all programs which produce PostScript files can write level 1
PostScript files, or at least level 2. They either always do this,
or have an option to do it. So you could almost always
produce level 1 or 2 PostScript to work with.

Almost all PostScript level 1 files will work correctly on level 2
printers, since the language was designed to be upwards
compatible.

Introducing PostScript® and PSAlter

Page 15

Similarly, most PostScript files made publicly available are
level 1 PostScript. This is so they are compatible with existing
printers.

There will always be exceptions to this; and some people may
not realise they are producing level 3 PostScript which is
unsuitable for many printers, if it works with their existing
printers.

What can PSAlter do?
PSAlter can read PostScript and turn it into pages of pictures,
text, or whatever. It can do this because it contains a
PostScript-compatible interpreter. This is similar to the
software found in a PostScript printer.

Once PSAlter has a page, it can show it on the screen, or write
it out to a file. It can write files in a number of formats which
can be read by other programs. If a PostScript file consists of
more than one page, you can move backwards and forwards
to view them in any order.

PSAlter also has a Workbench mode of operation. In this you
can view a PostScript program, and watch as it puts a page
together. It can be paused at any time, and you can check up
on all aspects of its environment — like the current values of
variables.

The Workbench helps you write PostScript and get it right.
You can also use it to look at other people’s PostScript to see
how it works. All of section 3 of this manual, starting on page
87, is concerned with the Workbench.

The four modes of operation
Once PSAlter is started you will see a screen like this one:

You can choose between four modes: View, Translate, Report
and Workbench.

View shows each page on the screen as soon as it is completed.
You get the chance to zoom in or out (to magnify, or to see the

 Introducing PostScript® and PSAlter

Page 16

whole of a large picture), and to ‘export’ in one of the formats
used by Translate.

Translate will turn the PostScript into another graphics
format, without showing it on the screen. If this is a multi-
page document, you will get the chance to save each page.

Report will not show any pictures or PostScript code. Instead
it generates a report on the file, including number of pages,
fonts used, and any errors. The report may be viewed or
copied to the clipboard. (Note that you can also use View |
Report in the View or Workbench modes to view the same
report).

Workbench lets you write PostScript programs, or open
existing ones. You can run them full speed, or one instruction
at a time, and can open extra windows to view data and other
information. The workbench still allows you to view pages —
even as they are being constructed. Using executive mode you
can enter extra PostScript commands at any time.

You can also use Setup to change the behaviour of PSAlter.
For instance, when PSAlter is first started all pictures will be
viewed at 72 dpi (pixels per inch), since this uses less memory.
Using Setup it is easy to switch to show more detail.

Example — viewing a PostScript file
PSAlter includes a number of samples, and we will use one
now. Start PSAlter and choose View from the initial screen
(click on View, or press the V key).

You will now get a File Open box. If you have just installed
PSAlter, it will be in the directory c:\psalter\demos and you can
just type the file name sal.ps and click OK.

Introducing PostScript® and PSAlter

Page 17

After a few seconds you should see the result. This is just what
you would get if the file was printed on a PostScript printer.

 Introducing PostScript® and PSAlter

Page 18

You might not be able to see the entire picture. If you can’t,
first maximise the window by clicking on the triangle button
(▲) at the top right of the window.

If the entire image is still not visible, you can zoom out to
show the whole page. Choose Zoom out from the View menu
— or just press the minus (–) key.

PostScript errors
Unfortunately, not all PostScript is as well behaved as the
examples supplied with PSAlter. PostScript is a complex

Introducing PostScript® and PSAlter

Page 19

programming language, and errors can be made. PostScript
differs subtly between different printers, so what works on
one may not work on all the others. Also, PostScript can hit
various limitations of the interpreters.

Diagnosing PostScript errors is usually a difficult job, partly
because of the cryptic messages, and partly because it is very
difficult to find exactly where in the program it has gone
wrong. PSAlter is designed to help with both of these.

This is a typical error message from PSAlter, for a fairly
common error (limitcheck) which often prevents files from
printing. The dots (...) at the end of the error message tell you
that there is more detailed information available. You can click
More>>> to see:

This may be enough information to diagnose the error. You
can try ignoring the error by clicking Ignore; sometimes it
works, but only rarely. This is most likely to be the case if the

 Introducing PostScript® and PSAlter

Page 20

program is using features specific to a printer — say
setduplex to ask for printing on both sides of the paper.

More often, you have to click Stop. Handle the same as Stop
in most cases — only PostScript programmers are likely to be
concerned about the difference. Once you have stopped, you
will also be able to see how much, if any, of the page has
already been produced.

If you want to find more about the error, you can click
Workbench, and you will be able to see exactly what is
happening at the time of the error. Once in the workbench you
can also enter Executive mode, which may allow you to type
individual commands to ‘fix’ the error.

If you are not a PostScript programmer, the most useful
function is likely to be the Where button. This aims to help
you locate the error in terms which relate to the original
document. For details of the Where Am I function, see Using
the �Where Am I� Function on page 40.

Font substitution
Font substitution is another area where PSAlter can help you.
Most printers will simply substitute the font Courier for any
missing font, but with PSAlter you have full control over this
process. For instance, you may get a PostScript file which uses
the font ‘Stone Sans’. If you don’t have that font, you can tell
PSAlter that ‘Arial’ is a good substitute for it. The document
will not be perfect, but it will look better than it would if
Courier was used. You can try different substitutions until you
get an acceptable one. (There are many thousands of fonts, so
it is not possible for PSAlter to make this decision for you.)

PSAlter can make use of your Windows fonts. By default,
PSAlter uses the fonts already installed in your system to give
you the appearance of the basic 35 fonts found in a typical
PostScript printer.

Introducing PostScript® and PSAlter

Page 21

Finding out more
If you want to know more about PSAlter, and its capabilities,
you should start with the book currently in your hands! There
is also no substitute for exploring PSAlter — look out for
these:

• Hints will pop-up the first time you do something. They try
to point out when something may not be immediately
obvious. If you don’t like hints, just click the No Hints box
the first time you see one.

• Read the status line at the bottom of the screen for
information, especially when moving the mouse through a
menu.

• In the PSAlter workbench, the right mouse button is very
important — click it over different types of window, and
you will see different pop-up menus.

• PSAlter also has an extensive online help, with more
extensive descriptions of many parts of PSAlter.

• For PostScript programmers, and those hoping to find out
more about PostScript, PSAlter has context-sensitive help
on all level 1 PostScript operators. If you are in the
workbench, click the mouse over an operator then press
Ctrl+F1. A help window will appear with detailed
information, including any notes specific to PSAlter’s
implementation. If you are already reading PSAlter’s help,
you will see an Operator button that can be used at any
time.

PostScript is not a hard language to learn, but it is different
from most other programming languages in its approach. It is
also very hard to get right unless you have a tool like PSAlter
to help you, because of the very limited or non-existent error
messages from most printers.

 Introducing PostScript® and PSAlter

Page 22

Other books
The documentation with PSAlter is not intended to be a course
or self-teaching guide to PostScript. There are many good
books on PostScript available from larger book shops.

The serious programmer may well want the official reference
to PostScript. This is in the book PostScript Language Reference
Manual, now in its third edition. This 870 page book covers
level 1 and level 2 PostScript in great detail, but it is not a good
book to learn from (any more than the help in PSAlter is good
to learn from). This book is published by Addison Wesley with
ISBN 0-201-37922-8.

For working with PSAlter the second edition may be
especially helpful. This defines the original level 2 language
implemented by PSAlter, and has useful appendixes missing
in the third edition. ISBN 0-201-18127-4.

But there are many other books available on PostScript,
suitable for learning from. It is probably best to visit a large
bookstore and see which book suits your style best.

Introducing PostScript® and PSAlter

Page 23

Part 2:
Using PostScript

 Viewing PostScript documents with PSAlter

Page 24

Viewing PostScript documents with
PSAlter

The previous section, Introducing PostScript and PSAlter,
included an example of using PSAlter’s view mode to preview
a PostScript file. This section has more detail on using the view
mode.

You will find many keyboard shortcuts described in this
chapter. They may be difficult to remember, so they are
summarised in a table at the end of this book, on page 150.

You can also view documents in Workbench mode, and do
much more besides. View mode is designed to be simpler and
easier to use than the Workbench, if you are only interested in
the end results. You can switch from View mode to Workbench
mode at any time by using File | Switch to Workbench
mode.

When you select view mode from the PSAlter startup screen,
you will be prompted for a file name. Once you have viewed
this file, you can view another by using File | Open and Run.

You can also simply view files using ‘drag and drop’. In
Windows 3.1 you can drag files from File Manager onto the
PSAlter icon in Program Manager, or the window or icon for a
running copy of PSAlter. In Windows 95 you can also drag
files from the windows desktop.

When you have viewed the image, you might decide to
change the setup options. You can do this with Special |
Setup. For instance you can change the resolution to see more
detail; you can change the orientation if the picture is not
upright; or you can switch between colour and black-and-

Viewing PostScript documents with PSAlter

Page 25

white. Choosing setup options is covered in more detail in
Setup Options for PSAlter on page 49.

Zooming options
On the View menu are two selections for zooming the picture
in or out. Both of these can also be accessed by pressing a
single character.

Initially pictures are considered to be shown at 100%. If you
have picked a resolution larger than your screen, the image
will actually be much larger than life size, with one pixel (dot)
in the image being one pixel on your screen.

View | Zoom in (or press +) magnifies the picture. You can
scroll around it. You can zoom in to 200%, 400% and 800% of
the original size. At 800% the individual pixels in the image
are clearly visible.

View | Zoom out (or press –) looks at more of the picture. For
instance, if you are at 400%, Zoom out will change to 200%. If
you are already at 100%, Zoom out will ‘zoom to fit’ so that all
of the picture is visible. This is done by scaling by an
appropriate percentage (but never more than 100%). If you

 Viewing PostScript documents with PSAlter

Page 26

change the size of the PSAlter window, the picture is resized
again.

Normally, when you zoom, the top left point of the window
stays fixed, and so the detail you wanted to see may not be
visible. To get around this you can use directed zooming. Just
drag the mouse over the part of the image you are interested
in, and a cutout box will appear. Now, each time you zoom,
PSAlter will try to keep the detail in the cutout box visible.

Viewing PostScript documents with PSAlter

Page 27

To remove a cutout box, simply click once on the image.

Undirected zooming. The top left of
the window is kept fixed each time
you zoom in (hit +)

Directed zooming. The picture
moves so the top left of the cutout
box remains visible.

 Viewing PostScript documents with PSAlter

Page 28

When you zoom to fit, some detail may be obscured by areas
of black or white, or stripes. This occurs when the image
model is black and white (see Setup Options for PSAlter: Imaging
Setup on page 50), and is unavoidable (except by running
again with a different image model).

Handling multiple pages
Many PostScript files are multi-page documents, and PSAlter
will handle these for you. What it will do by default is follow
the latest complete page.

• The image will stay blank while the first page is being
worked on.

• As soon as the first page is finished, PSAlter will display it
for you.

• As each subsequent page is finished, PSAlter will show you
that one.

• When the program is complete, PSAlter will show you the
final page.

PSAlter will always work through the pages in the order that
they would print, and keeps a copy of each page before
moving to the next. You can look at any available page.

In other words, you can go back and forwards within the
pages already processed, but you cannot go forwards beyond
the page PSAlter is currently working on.

As soon as you change page you break the connection with
latest complete page, and PSAlter won’t update automatically,
though it continues to process pages and hold them for you to
look at later. To get this link (with latest page) back, press
Ctrl+End.

Moving whole pages
The View menu includes a number of items for choosing the
page to view.

Viewing PostScript documents with PSAlter

Page 29

View | Next page and View | Previous page move you
forwards and back within the available pages. As soon as you
move pages, PSAlter will no longer keep updating for you. For
Next Page you can press Ctrl+PageDn. For Previous page
you can press Ctrl+PgUp.

View | Another page allows you to pick any page in the
document from a list. It also allows you to choose to zoom out
to view the entire page (as if you had used View | Zoom out).
A shortcut for this is to press the ‘@’ key (which may also
require the Shift key).

When you use Another page you can also choose the special
values Current or Latest. Latest connects you back to the
latest complete page (same as pressing Ctrl+End).

Current lets you view the current page (rather than the latest
complete page). This is not very useful by itself. It moves to
the (possibly incomplete) current page, and keeps following
whichever page is current. Used with the Keep updating
images option (see Updating the images, below) Current is
much more useful.

Moving part of a page
When you are reading a document containing text, you often
won’t be able to see the whole of a page at once (except by
zooming out, which may make the text too small to read).

The easiest way to step through a document like this is the
PgDn (page down) and PgUp (page up) keys. PgDn shows
you the next screen of data, from the same page, or moves to
the next page if you are at the bottom of the current page.
PgUp moves in the reverse direction.

Normally this skips the top and bottom margin on each page
— see Searching for the Picture, on page 31, for more
information.

You can also use the arrow keys to move within a page. They
never change page. The four arrow keys scroll slowly across

 Viewing PostScript documents with PSAlter

Page 30

the page, but by holding down the Ctrl key, they move one
entire screen of data.

Other options in view mode
Exporting and copying the image

You can export images from View mode, as if you had used
Translate mode. (Translate mode, and choices in exporting
images, are described in more detail in Translating PostScript to
other Formats on page 34.) You can either use File | Export this
image when looking at a particular page, or use the File |
Export image option and pick a page. These are equivalent
when there is only one page. You can use this at any time, but
you will be warned if you may be about to export a page that
is not yet complete.

You can also copy images to the Windows clipboard. Make
sure you are viewing the image you want to copy, then choose
Edit | Copy (or use Ctrl+C). A preview of the image will
appear (the copy dialog), just as when you are exporting. You
can choose to copy the bounding box or the whole page, or to
use the mouse to cutout part of the image. When you click OK
the image is placed on the clipboard.

Memory requirements for copy. Note that when you copy to the
clipboard two complete copies of the image are placed in
memory, for other applications to paste. One of them uses the
same image model as your screen. For example, if the image is
monochrome but you have a 256-colour screen, one of the
images will be eight times larger. The copy dialog will show
you how much memory will be needed.

Some images will be too large to copy, so for these you should
use export. Remember that after using Paste in another
application the images are still on the clipboard, using
memory. To empty it you can use the Clipboard Viewer
application, or just Copy a small piece of text.

Viewing PostScript documents with PSAlter

Page 31

Updating the image
Normally, PSAlter will update an image only when it is
complete. If a page seems to be taking a long time, you might
like to use the View | Update Image menu item (or press F7).
This will show you the page as it currently is (and has no effect
unless the page is the current page — see Moving whole pages
on page 28).

You can also use the View | Keep updating images selection
(Shift+F7). Each time you select this it is switched on or off.
When switched on, PSAlter repaints the image about once a
second as the program is running. This will slow it down
enormously, but can be interesting.

There are some complications to this that are only important
when viewing multi-page documents.

When you select View | Keep updating images, PSAlter
checks to see if you have chosen to view the latest complete
page. If so, it switches to follow the current page instead. If it
didn’t do this, you would never see the updates being made to
the current page.

Similarly, if you switch off View | Keep updating images, and
you are following the current page, then PSAlter switches back
to following the latest complete page. To avoid a sudden jump,
it waits until the current page is complete.

Searching for the picture
When working with high resolutions, or zoomed in, it is
possible to lose the picture completely. If this happens use Edit
| Find picture (or press the Home key). This will first work
out the rectangle containing the image, then move to the top
left of the rectangle. With an irregular shape, it is possible that
you still might not see anything.

You can also think of Find Picture as meaning ‘find first line’
if viewing a text file. There is no menu item for ‘find last line’
but you can press the End key to move to the left of the final
line.

 Viewing PostScript documents with PSAlter

Page 32

The menu item Edit | Always find picture is switched
alternatively on and off each time you use it. If on, the
equivalent of Find picture is done each time a page is shown
for the first time.

When using PgUp and PgDn to navigate through a multi-page
document (see page 29), the Always find picture option is
important too; if switched on then PgUp and PgDn ignore the
blank margin at the top and bottom of each page. They may
also move to ignore the left margin, if that means more text
will be visible.

The status line in View Mode

Along the bottom of the screen in view mode is a status line.
This can be switched on or off using Special | Status line. The
line serves several purposes, including telling you what a
menu item would do, as you scroll through any menu. Watch
the line for messages. When not displaying messages, it has
three buttons on it.

The Pause button may be used to pause execution. You can do
this to take a close look at a picture part way through running
(in which case use F7 to update the image on screen). You can
also use pause if you want to run another Windows program
which does not want to share resources with PSAlter (for
instance a modem program). If you are paused, press Run to
continue.

The Stop button can be used to stop execution of a program. It
cannot be resumed, but the Run button will make PSAlter
start again. When a program is stopped you can look at all the
pages it has produced (and no F7 is necessary to update them).
But if you run again, all of the pages already produced are lost
until you produce them again.

There are equivalents of Run, Pause and Stop on the Special
menu.

Viewing PostScript documents with PSAlter

Page 33

The status line also includes a percentage gauge. This shows
how far you are into the PostScript program. Unlike most
graphics formats, it is impossible to predict the rate at which
PostScript will execute — in some cases it may reach 99% in
seconds, then take minutes to complete. Still, the percentage
gauge is a useful indication, especially if you are familiar with
the type of file you are using.

The percentage gauge changes colour too, as a visual reminder
of the program status. It is blue while running, green when
finished, red for an error, and grey if paused.

The count of ‘items’ is another measure of how far PostScript
has executed. It is how many items (or tokens) have been
executed in the program, and should advance even when the
percentage bar seems stuck.

 Translating PostScript to other formats

Page 34

Translating PostScript to other for-
mats

The formats PSAlter uses
PSAlter can write files in three formats: Windows Bitmap
(BMP), Tagged Image File Format (TIFF), and Encapsulated
PostScript (EPS). Each of these has particular uses.

Windows Bitmap
This is a simple format designed by Microsoft. It is the format
used by Windows Paintbrush and is understood by a wide
variety of Windows applications. Support is less common
outside Windows.

A windows bitmap file contains a ‘bitmap’, which can be
thought of as a rectangular grid divided up into small squares.
Each square has a single colour. You can see this when you
choose ‘Zoom In’ in Paintbrush.

TIFF
TIFF is another bitmap format, though it is more complicated
than Windows Bitmap. It is widely understood by graphics
applications, both in and out of Windows, though not by
Paintbrush.

A disadvantage of TIFF is that there are several allowed
‘varieties’ of TIFF, and not all applications can understand all
varieties. PSAlter writes the simplest formats it can, to increase
the chance it will be understood.

Encapsulated PostScript
An EPS file is a special PostScript file for use primarily in
desktop publishing applications (though some word
processors can also use EPS). It is a less general format than

Translating PostScript to other formats

Page 35

the others, being aimed at users with PostScript printers, but
can also be higher quality than the others. It contains three key
things:

• A PostScript program, for printing. This will not normally
be printed on a page by itself, but included as part of a
larger program to make up a more complicated page.

• Information in the PostScript program telling the
application the size and position of the image. It needs this
to know how large a space to allow for the image on its
page.

• An optional ‘preview’. This is what the application uses to
show you the picture on the screen. The preview is good
enough quality for the screen, but not for printing.

PSAlter can make EPS files from some, but not all, PostScript
files. For instance, it can’t make an EPS file from a multi-page
document.

The subject of EPS is covered in more detail in the section
Encapsulated PostScript and PSAlter on page 63.

Using Translate
A simple translation session

Translating with PSAlter is quite simple. Just do the following
steps:

1 Start PSAlter by double clicking on its icon

2 Click on the Translate button (or press T)

3 You will get a File Open box. Choose the file to be translated

 Translating PostScript to other formats

Page 36

4 PSAlter will show a Translating box with a progress indicator
(percentage bar).
At any time you can click on Cancel to give up — PSAlter will
stop immediately (and no translated version is written)

5 You will get an ‘Export Image options’ box.
This box gives a preview of the image so you can check that
it’s the file you want. You can choose between BMP, EPS, and
TIFF format. (Ignore the other options for now).

Click OK.

6 Next, you will get a Save File As box. Type the name you
want the translated file to have, check the directory is suitable,

Translating PostScript to other formats

Page 37

and click OK.

Multi-page documents
Things are slightly more complicated if you want to translate a
PostScript document which prints as more than one page. All
of the graphics formats PSAlter can write can only hold a
single page per file.

• Using TIFF or BMP formats, you can choose to write more
than one translated file. You will get the chance to save
each page in turn.

• Don’t try to add pages to the end of a previously saved
image. This doesn’t work. You will end up only with a copy
of the last image saved. Choose a different name for each
page.

• A multi-page PostScript document cannot be saved as EPS.

• If a page is not the last page, an extra button Skip Page
appears on the Export Image Options box. If you do not
want to save this page, but want to save a later one, click
Skip Page.

Options for cropping the picture
The Export Image Options box has three options for choosing
how to crop the image before saving it. The default is usually
Bounding Box. This saves a rectangle which completely
encloses the image, but has no white space around it. This is
worthwhile because image files can be quite large.

You can choose Full Page if you want to save the page exactly
as you see it with all white space.

A third option is Cutout box. This is usually greyed out and
cannot be selected.

To use it, move the mouse over the preview of the picture and
drag a rectangle. (That is, imagine a rectangle superimposed over
the picture. Move to one corner of the imaginary rectangle. Press and

 Translating PostScript to other formats

Page 38

hold down the left mouse button, and move the mouse to the opposite
corner of the imaginary rectangle. Release the mouse button and you
will see the rectangle superimposed.) You can repeat the cutout
operation until you are happy with the results.

Using translated files
Once you have translated a file you can use it in various
applications, such as painting programs, desktop publishing
and (some) word processors.

There are too many of these to give detailed instructions, but
here are some typical examples.

Windows Paint
This is provided with Microsoft Windows. It can read BMP
files saved by PSAlter (File | Open). Once opened, you can
modify the image with the Paintbrush tools, or print it.

Word for Windows
Use Insert | Picture. BMP, TIFF and EPS files can be placed in
a Word document. Some releases of Word have problems with
certain TIFF and EPS files. Use an EPS file only if you are
printing to a PostScript printer or if you are creating a PDF file
with Adobe Acrobat Distiller.

CorelDRAW
CorelDRAW can insert bitmapped images in BMP or TIFF
format using File | Import. Versions before CorelDRAW 5
cannot, in general, place EPS files. Figures can be scaled,
rotated and cropped but not modified.

Choosing setup options
When PSAlter is started, you will see there is a button marked
Setup. The options you choose on the setup screen are very
important to how PSAlter works.

For instance, you can choose between black and white, grey
scale, or several colour options. You can also choose the

Translating PostScript to other formats

Page 39

resolution (dots per inch or dpi). This affects the size of the
image and the amount of RAM and disk space needed. If the
values chosen are too large, you may not be able to process the
image at all.

Always check the ‘memory per page’ figure shown on the
setup screen; as a rough guide make sure this is no more than
50% of the amount of RAM installed.

For more details see Setup Options for PSAlter, on page 49.

 Using the “Where Am I” Function

Page 40

Using the “Where Am I” Function

One of the most common problems which affects users of
PostScript is PostScript errors. The most common question
asked once PSAlter has given a detailed explanation of an
error is “where am I?”. In a complex document containing
many graphics, it may be a struggle to identify the original
document or file causing the error. Often, this identification is
the most important factor. Once identified, that part of the job
can be redone, solving or circumventing the problem.

When PSAlter displays a PostScript error, it now gives a new
button Where?

This button opens the first of a series of screens designed to
help you identify the source of the error. You can also use
View | Where am I? in the Workbench or View mode even if
there is no error

Using the “Where Am I” Function

Page 41

.

Information on subsequent screens includes:

1 Current font.

2 Recent text written, and the location on screen.

3 Current path and cutout.

4 If in a nested EPS graphic, its location on screen.

5 The location on screen of the current or most recent bitmap

6 Document structure information - e.g. name of current nested
EPS file.

7 If none of this helps, recent PostScript comments.

Remember that the full power of the workbench remains
available.

 Using the “Where Am I” Function

Page 42

Where - text information
The ‘Where - text information’ screen contains information on
text. This gives the name of the current font, and shows the
text most recently added to the current page.

The recent text is shown in two ways. On the left the text is
shown in quotes, while on the right the text is shown in its
position on the page. The recent text will be underlined,
normally in red.

If it is difficult to locate the text, click the Show picture option
off. This will remove the picture, leaving only the underlining.
Make sure the Show text location option is on.

You can zoom in on the picture by simply clicking the mouse.
This zooms in on the area of the page you click, so that area is
shown at 100% magnification (the amount of detail shown
depends on the resolution). Click again to zoom out.

Using the “Where Am I” Function

Page 43

Notes

1 If there is no text on the current page, this screen will not show
anything useful, except possibly the current font.

2 Some programs identify their fonts with unhelpful names like
F12.

3 The information shown on the left will only be accurate if the
font follows a standard ordering. Some fonts might, for
instance, have the letter ‘a’ in the slot we’d expect to find
‘z’.This may include TrueType fonts printed in Windows 95. In
these cases, looking at the page should help.

4 As this example illustrates, text is not necessarily written from
top to bottom, or even from left to right. In most cases the
order makes sense, though.

5 The text shown on the left of the screen does not show any line
breaks. Text which is very loosely placed may appear to have
spaces in it.

6 The red underlines may appear above rather than below the
text, because some applications place their text this way (with
the ‘base line’ above).

7 For this (and similar) screens the colours shown can be
affected by changing the settings in the Options | Colours
menu in the workbench.

Where - path information
The ‘Where - path information’ screen contains information on
paths. As a PostScript file runs it constructs invisible paths
which will then be filled in or outlined to make them visible.
Paths can also be turned into cutouts, which are like a window

 Using the “Where Am I” Function

Page 44

on the page: until the cutout is changed marks cannot be made
outside the cutout.

The current path and cutout path are overlaid on a miniature
version of the current page. The current path, if any, will
usually be shown in red. The cutout path will usually be
shown in blue. As with the text information screen, you can
clear the Show Picture option to show only the paths. You can
also click the mouse to zoom in.

The current path information is most useful in cases where
you are getting a limitcheck error, which often means a path is
too complicated. It is usually easy to work out which graphic
is involved.

The cutout information is more often useful than you might
think. Many applications set a cutout to the size of the current
graphic before starting it, so this is a valuable way to find out
which graphic is in use.

This is the
cutout

This portion is the current
path and can extend outside cutout

Using the “Where Am I” Function

Page 45

Notes

1 If you can’t see the current path (red), this is normal. Many
activities, such as drawing text, do not require a path.

2 If you can’t see the cutout path even with the picture off, first
look for it around the border of the page. If it is there then no
special cutout has been set - each page starts out with a cutout
the size of the page.

3 If you still can’t see the cutout path, switch off the Show path
option. The path is sometimes directly on top of the cutout,
and may obscure it.

4 If you still can’t see the cutout path there probably isn’t one!
That is, no marks can currently be made on the page. This is
unusual, but won’t cause an error in itself.

Where - bounding box
The ‘Where - bounding box’ screen shows the position of two
kinds of bounding box, both of which can convey useful
information. They are shown overlaying the page, and as with
similar screens you can switch off the Show Picture option to
make the overlays clearer, or click the mouse to zoom in.

The bounding box of an EPS graphic is the smallest rectangle
which completely encloses it. When an error occurs within an
EPS graphic, PSAlter can often show its position, typically as a
blue box.

Look at the caption to the left of the picture if no blue box is
shown, as this will tell you whether or not EPS information is
available. Not all applications include EPS graphics with the
extra comments PSAlter uses to find out their bounding box.
However, QuarkXPress and Adobe PageMaker do so.

PSAlter can also show the bounding box of the most recent
bitmap. The notes to the left of the picture indicate the size of

 Using the “Where Am I” Function

Page 46

the bitmap and whether the bitmap was finished, or if it was
still being painted. The ioerror error can occur during a
corrupt picture. The undefined, stackoverflow and typecheck
errors can occur shortly after a corrupt picture.

Notes

1 Some applications use bitmaps for non-obvious purposes like
gradients or text, so look closely at the area if it does not obvi-
ously seem to be a bitmap.

2 If an EPS contains a bitmap only, you will usually only be able
to see one of the bounding boxes at a time as they are often the
same.

Where - document structure
Document structure is one of the simplest and most powerful
tools for locating which graphic causes a problem. Well
written applications include special comments in a PostScript
file such as

Using the “Where Am I” Function

Page 47

%%BeginDocument: name

when the EPS file name is started. PSAlter keeps track of these
and will report the information on the ‘Where - document
structure’ screen.

PSAlter shows only the currently active graphics - that is, you
will not see more than one EPS name unless one EPS is placed
within another. It will show other types of object such as fonts,
if you are within them.

The document structure screen also shows the current page
number, and if the page is part of a separated job, its plate
colour.

Where - recent comments
This is getting on for the last resort. If none of the other screens
have helped, the ‘Where - Recent comments’ screen shows the
most recent comments found in the PostScript program.
Comments serve no function in most printers, but reading
them can give you valuable clues as to what was going on.

 Using the “Where Am I” Function

Page 48

Remember to scroll to the bottom of the list to see the most
recent comments.

If this is still no use, it may be necessary to use the Workbench
to try and isolate the problem, or revert to the traditional
approach of changing parts of the job to see when the
problems disappear.

Setup options for PSAlter

Page 49

Setup options for PSAlter

There are a number of options available for setting up PSAlter.
It is worth spending some time to understand them, since an
inappropriate setting may mean that a PostScript file is not
processed correctly, or that your system does not have enough
resources to handle it.

The setup options are available when PSAlter is started, by
clicking on the Setup button. In Workbench mode, they are
also available from the Options menu, and in View mode
from the Special menu. There are four setup screens, and you
can switch between them by clicking the tabs (buttons) at the
top of each screen. The four screens are:

• Imaging setup: defines how your image will look (is it
colour?) and how large, among other things. This is the
most important to understand.

• Limits setup: adjust limits which could affect whether the
file will be processed.

• Emulation setup: various options relating to what kind of
PostScript device PSAlter pretends to be (because there is
no universal PostScript printer which will work in all
cases).

• Fonts setup: this is covered in the separate section, PSAlter
and Fonts, on page 71.

When experimenting with PSAlter, it may be convenient to
reset the options to their initial values, rather than work out
the details of what has been changed. For this reason, each
setup screen has a Reset button to allow options to be set back
to their initial values. You can reset all the options in a specific
category (like imaging setup), or in all categories.

 Setup options for PSAlter

Page 50

Imaging setup

On the Imaging Setup screen there are four selections: imaging
model, paper size, orientation, and resolution. As well as
affecting the appearance of anything you work on, most of
these have a substantial effect on the amount of memory
(RAM) that PSAlter will need.

As you change the values on the screen, PSAlter will show you
how much memory is needed per page. PSAlter has to keep
the current page in RAM, and any pages currently being
viewed. Other pages are written out to disk.

Small changes can have a large effect. 256 colours or greys uses
8 times as much memory as black and white; 24-bit colour uses
24 times as much. Also, each time the resolution is doubled,
the memory requirements increase fourfold.

It is possible to use pages larger than the amount of RAM you
have, because in most Windows systems, Windows will
automatically swap data to and from disk itself. This will,
however, have a dramatic effect on performance — PSAlter

Setup options for PSAlter

Page 51

may well appear to come to a halt (except that the hard disk
will be active). As a very rough guide, any image larger than
50% of available RAM will cause poor performance.
Completed pages are written to your TEMP directory (check
what this is with the SET command in DOS). If this is on a disk
with little free space (especially a RAM disk), PSAlter may fail.
At the end of this section, on page 56, is a table of typical sizes,
depending on the other settings.

Imaging model
The imaging model lets you decide what sort of ‘device’
PSAlter is. A particular printer is normally only one thing. For
instance, a typical laser printer can print black dots only: if you
choose black and white, PSAlter will work like this. On the
other hand, some devices can do full colour, and if you want to
convert PostScript to graphics for use in other applications,
you will probably want to choose colour.

This is what the main colour choices or imaging model are.
They not only affect how the image appears on screen, but
how it will be exported.

• Black and white uses only black and white for the picture.
Areas of grey or colour are represented by more or less
black dots. This is how almost all black and white printers
work, but the detail can be less clear.

• 256 greys uses only shades of grey for the picture. Colours
are turned into grey.

• 256 colours shows up to 256 colours, chosen from a fixed
‘palette’ covering a broad spectrum. This includes over 30
shades of grey, so is a good compromise for most types of
work.

• ‘Millions of colours’ or 24-bit colour produces an accurate
representation of the colours. If your screen can show 256
or less colours, the image is translated when it is shown,
and this can be very slow.

 Setup options for PSAlter

Page 52

Not only the appearance, but the memory requirements are
dramatically affected by the image model. Most of the image
models use one byte for each pixel. However, black and white
puts eight pixels in each byte, so is 1/8 the size. And 24-bit
colour uses three bytes for each pixel and is 3 times the size, or
24 times the size of black and white.

One other thing affected by the image model is what happens
when you zoom out (that is, to view the whole picture, by
shrinking it to fit the screen). With most image models, the
effect is as you might expect. However, with black and white
you will see that shades of grey are simulated by using black
and white dots. If you zoom out on this it is possible that
either all of the black, or all of the white dots in an area are
lost, leading to a loss of detail: in some cases all the detail
becomes completely obscured by a black area, or by stripes.
This is unavoidable when working with black and white only.

Note that the image model has no effect on the PostScript
accepted. In all cases, a colour drawing is accepted, and it will
if necessary be turned to greys or black and white. Depending
on the setting in the Emulation Setup screen (see page 58),
colour images (typically photographs) may or may not be
accepted; again the image model makes no difference.

Most modern PCs now have enough memory and processing
speed, that starting with version 1.6 “millions of colours” is
the default.

Paper size
PostScript was designed for use in printers, and will always
work to a specific ‘paper size’. PSAlter allows you to choose
between the common paper sizes. In the US, the most common
paper size is ‘letter’ (8.5 x 11 inches). In the UK, it is ‘a4’ (210 x
297 mm).

If a program tries to make marks outside the area of the paper,
this is ignored. It is not an error, and the only indication that
something is wrong is that part (or all) of the image does not
print.

Setup options for PSAlter

Page 53

Printers differ in how they handle paper. Some automatically
detect what size paper has been loaded. Others assume or
have to be told what size. Some printers have more than one
paper tray, and can make a choice of sizes available.

To complicate matters still further, the PostScript itself often
asks for a specific paper size. For instance, by including the
operator ‘letter’ as part of the file, a PostScript file indicates it
wants to print on letter sized paper. Again, printers will vary
in how they handle this request. Some will simply refuse to
print unless the correct sized paper is used.

If a program asks for a specific page size, PSAlter will honour
the request, and ignore what you choose in the setup screen.
Be aware that this can increase (or decrease) the amount of
memory required for each page.

Custom size option
The Custom size option
for page size allows you
to select a page size other
than one of those listed.
When you click Custom
size, a screen similar to
the one on the right
appears.

This allows you to select
any size up to PSAlter’s
maximum of 100 inches (2540mm), subject to available
memory.

Tip: each time you select a unit (mm, inches or points), the
value in width and height is converted. Make sure to choose
the correct units before you type the size.

PSAlter supports up to four different custom sizes to match
the sizes you use most often. Normally, when you click
Custom Size, you are changing Custom Size 1. To change or
select other sizes, choose them from the Paper Size list first.

 Setup options for PSAlter

Page 54

Remember that most PostScript files include page size
requests, and PSAlter will always honour these requests.
Custom page sizes only affect files with no page size request
included, which includes all EPS files. However, custom sizes
have no effect if the file is an EPS file and Use Bounding Box
for EPS (see below) has been selected.

Orientation
Conventionally, programs offer two ways to use a piece of
paper. The names (corresponding to museum art conventions)
are portrait and landscape. Portraits are normally tall and
landscapes are normally wide.

Most printers only have a single paper tray, though. When a
program prints a ‘landscape’ page it usually does so by
rotating the image and printing it sideways. The person
picking up the paper will allow for this without a thought.

On screen, it is less easy for you to ignore the fact that an
image is sideways. Because of this, PSAlter allows you to
decide in advance that the image is to be rotated.

Unfortunately, there is no universal agreement on which way
a landscape picture is rotated (clockwise or anticlockwise). So
you can choose between rotating by 90 degrees and 270
degrees in Orientation setup. Of the two, 270 degrees seems
more often correct.

You can also rotate by 180 degrees: this will turn the image
upside-down.

Resolution
The resolution of an image is how many dots (pixels) per inch
it has. Dots per inch is abbreviated dpi. No matter what
resolution you choose, PSAlter will usually display it so one
pixel in the image matches one pixel on the screen. This means
that as you increase the resolution, the image appears to
become larger, and you may have to scroll around to find parts
of it.

Setup options for PSAlter

Page 55

The resolution has an immediate effect on the amount of
memory needed. For instance, using 256 colours, an a4 page at
75 dpi will require 533 kilobytes. But increase resolution to 300
dpi, and you will need 8.5 megabytes per page, too much for
many systems to handle. The size of an exported image also
depends on the resolution, though usually the white space
trimmed from around the image means that the space on disk
is reduced

If you are producing pictures for export and eventually
printing, you might think you have to choose the resolution of
the printer to get good results. If you have a colour printer the
memory required can be enormous: for instance a single 24-bit
colour page at 720 dpi would require almost 150 megabytes of
RAM (and the same amount of disk space to export it).
Fortunately this is almost never necessary. For pictures, a
resolution of 100 dpi or less is adequate for almost all desktop
colour or black and white printers. The only exception to this
is text and line art, which benefits from higher resolutions. You
should experiment to find the best results for you, and
remember that the type of image you work on will make a lot
of difference.

Use bounding box for EPS option
If you select the Use bounding box for EPS option, special
processing is performed for each EPS file that you use with
PSAlter. All EPS files contain a ‘bounding box’, which gives its
size if used as a graphic. When the option is on, the page size
is automatically adjusted to contain the bounding box stated
in the file.

If you work much with EPS files it is convenient to switch this
on. An important disadvantage, however, is that if you
intended to print the file directly by sending it to a printer, you
will not necessarily see problems that may occur, such as if the
image is off the visible page.

Note that PSAlter does not use the file name to decide if a file
is EPS. Instead, it looks at the first line, which must contain

 Setup options for PSAlter

Page 56

%!PS-Adobe-x.x EPSF-x.x

where x.x is the version number of the file format. If creating
PostScript files yourself, make sure to only use this form on
files intended for use as EPS graphics.

A small margin is added around the stated size of the EPS file
to allow for any overrun. This may result in an unexpected
white ‘frame’ around a picture.

Note: Even if this option is off, PSAlter will notice if you are
trying to view an EPS file that is too large for the current page
size, and give you a chance to increase the size for the current
file.

Typical memory sizes per page
This table shows examples of memory sizes for various
resolutions and image models. The paper size is a4, which is
similar to letter in requirements.

75 dpi 150 dpi 300 dpi

Black and white 67k 267k 1070k

256 colours/greys 533k 2129k 8510k

24 bit colour 1598k 6382k 25530k

Setup options for PSAlter

Page 57

Limits setup

This screen allows you to adjust limits in PSAlter. At the
moment there are only two items, Path length and Truncate
large co-ordinates.

Path length
This allows you to choose the maximum number of items in a
PostScript path. Because many printers have a limit of 1500
items, PSAlter uses this as a default. As you increase the limit,
more memory will be required, so check the amount shown.

Path elements come from drawing operations such as moveto,
lineto, curveto. In some implementations, curve elements may
use three path elements. In all implementations, paths are
‘flattened’ before painting, so that curves are turned into a
series of straight lines. This is the point at which the limit is
often reached. If the limit is reached, the error limitcheck is
given. A few PostScript programs detect limitcheck errors
and attempt to simplify and try again, but most just give up.

 Setup options for PSAlter

Page 58

Because the number of lines needed to approximate curves
depends on resolution, on the value of the currentflat operator,
and the particular implementation in use, the fact that PSAlter
does, or does not, reach this limit cannot be taken as proof that
a particular file will succeed, or fail, in printing. But it does
give a rough idea.

Truncate large co-ordinates
A few PostScript programs use very large co-ordinates (a
metre or so off the page!). PSAlter can only properly handle
co-ordinates up to around 30,000 pixels, and this option allows
you to decide what to do with larger ones. Truncation allows
the program to proceed, and is the default. If truncation is off,
an error message is reported, which can aid in diagnosing
problems.

Emulation setup
There is no single PostScript language which every printer

understands, unfortunately. Over the years, the language has
been extended, and so older printers may not understand
newer programs. The way a printer is connected makes a
difference too.

Setup options for PSAlter

Page 59

One set of options controls the PostScript language accepted
by PSAlter (those under Language extensions).

The other set of options is less obvious — those under
Emulated Comms. There are several different ways a printer
can be connected to a computer. In some cases this means that
not all characters can be sent to the printer. To get around this,
several different ‘protocols’ have been invented. When you get
a PostScript file, it may have been written with a particular
protocol, and you may have to tell PSAlter which one. For
instance, files created for a Hewlett-Packard laser printer may
use the ‘TBCP’ protocol, and get errors in PSAlter if any other
protocol is chosen.

Language version choice
PSAlter supports three variants of the PostScript language,
which correspond to commonly available printers.

• Level 1 is the original PostScript printer. A large number of
black and white laser printers, including all those made
before 1990, and many made since, are level 1. These
printers accept requests for coloured text and drawings, but
not coloured bitmaps (e.g. photographs). Choose this
option if you want to ensure the file works on the widest
possible range of printers.

• Level 1 + Colour images corresponds to the older colour
printers, including all those produced before 1990. When
this option is selected, PSAlter will accept coloured
bitmaps. However, this option does not force PSAlter to
display in colour; this is controlled by the Imaging Setup.
PostScript programmers may wish to note that this option
allows PSAlter to use the CMYK extension operators,
including the colorimage operator.

• Level 2 was an enhancement to PostScript which Adobe
first published in 1990. It includes all of level 1. Recent
PostScript printers are level 2, though some manufacturers
who do not use Adobe interpreters continue to supply level
1 printers. With this option selected, PSAlter will handle

 Setup options for PSAlter

Page 60

the widest range of PostScript files.

Note: In 1997, Adobe announced PostScript 3, which can be
thought of as level 3. PSAlter does not support PostScript 3.
Just as PostScript level 1 printers are still supported by almost
all applications, we believe it will be a long, long time before
level 2 is obsolete.

Garbage collection option
Garbage collection enables a feature of level 2 PostScript that
allows unused memory to be reclaimed. This reduces memory
requirements and can allow a program to run faster. It is
largely transparent to the PostScript program.

Because this option is so useful, it is on by default in PSAlter
even for level 1, even though a level 1 printer would not do
this. Only programmers who are monitoring the exact
memory usage of their programs are likely to want to switch
this option off.

Stricter Checking option
There are a few errors which are made in PostScript files and
fonts so often that PSAlter is best to ignore them. One example
is fonts which are more than 2000 units wide (the widths of
two 'M' characters). Such fonts are wrong by the definition of
PostScript but they are not uncommon. However,
programmers may want to discover these errors, as the file is
more likely to fail on some of a wide range of printers.

If this option is set, PSAlter does extra checking, and is
recommended for PostScript developers. Anyone just
interested in results should leave Stricter Checking switched
off. Programmers requiring full details can find them in the
on-line help.

Colour images option
If the colour images option is set, PSAlter will be able to
accept and display coloured images (such as photographs).

Setup options for PSAlter

Page 61

They will be displayed in black and white if the imaging setup
is not colour.

Not all printers allow this, so the option is off by default. All
colour printers, and all level 2 printers allow it. This option
does not affect most colour drawings, which all printers
accept.

Programmer’s note: Strictly speaking this option allows PSAlter
to use the CMYK Extension operators, including the
colorimage operator.

Limited level 2 option
If the limited level 2 option is set, a number of features of
PostScript level 2 are allowed. This does not turn PSAlter into
a full level 2 emulator, but it can be useful in many cases, as it
can cope with the output of many common PostScript drivers.
For details of what features are supported, see the PSAlter
help file.

Advertise level 2 option
If limited level 2 is switched on, a number of programs may
produce a page containing the message ‘this job requires a
level 2 printer’. If this happens, switch on the Advertise Level
2 option. The program will now believe that it has a level 2
printer. (Programmers should note that this causes the
languagelevel operator to be set to 2).

The reason this is optional is that there may be programs that
work out whether they are on a level 1 or level 2 printer, and
work correctly in either case, but if they believe they are on a
level 2 printer may cause PSAlter to fail (because its level 2
support is incomplete).

Serial/Parallel option (‘ASCII’)
If the serial/parallel option is set, PSAlter behaves like most
PostScript printers when connected to a serial or parallel port.
Such printers use special characters to control communication
— such as Ctrl+D (ASCII 004) for ‘reset’. This is often referred
to as the ‘ASCII protocol’. It is not possible to send binary data

 Setup options for PSAlter

Page 62

to such a printer. Because many PostScript drivers produce
these control characters, this is the default option.

Binary option
If the binary option is set, PSAlter behaves like a binary
printer. Any character can be sent and there are no ‘special’
characters. Because many printer drivers include Ctrl+D at the
beginning or end of a job, which will reset a printer on a
serial/parallel port (but cause errors on a binary printer), this
option is not the default.

Usually, PostScript printers on an Apple Macintosh network
are binary. Binary printers are rarer in the IBM-compatible
environment.

BCP option
BCP is short for ‘binary communications protocol’. It is similar
to the ASCII protocol, but allows binary data to be sent as
escaped characters — for instance Ctrl+A followed by D sends
the Ctrl+D character, which would otherwise reset the printer.

TBCP/PJL option
TBCP is a more recent development of BCP, and is short for
‘tagged binary communications protocol’. It is similar to BCP,
but must be switched on by the sequence Ctrl+A followed by
M. If not switched on a printer-specific default is used —
PSAlter assumes ASCII. If you see the sequence ‘escape’
followed by ‘%-12345X’, this is a sure sign that TBCP is in use,
as this is a TBCP reset string.

In some printers, TBCP is combined with special instructions
starting ‘@PJL’. This is a special language devised by Hewlett-
Packard for printer control, and it is not PostScript. PSAlter
does not understand PJL instructions, but in TBCP mode it
will skip and ignore them.

Encapsulated PostScript and PSAlter

Page 63

Encapsulated PostScript and
PSAlter

PSAlter can both read and write Encapsulated PostScript
(EPS) files. As mentioned in the section on Translating
PostScript to other formats on page 34, an EPS file is basically a
PostScript file which satisfies several requirements:

• It is only a single page, and has no ‘side effects’ (see EPS
Export Wrapper Details on page 67).

• It contains extra information so an application knows the
size and position of the image.

• It might have an attached ‘preview’ showing what the
PostScript will look like when printed.

The full specification of EPS files is in the PostScript Language
Reference Manual, 2nd edition, but you do not need that to
use EPS. (Note: it has been removed from the 3rd edition of that
book. At the time of writing, you may find a copy among the “tech
notes” on http://partners.adobe.com/.)

You should be aware that the term ‘EPS’ is often used freely —
and incorrectly — for any PostScript file printed from an
application. In practice few applications ‘print’ true EPS,
though sometimes it is usable as such. When an application
writes EPS it is usually through an Export or Save as EPS
option. Provided a file is only one page, PostScript can often
turn it into valid EPS — see How PSAlter Writes EPS, below.

How an application uses EPS
In Windows an EPS file is recognised by its .eps type.

 Encapsulated PostScript and PSAlter

Page 64

EPS files are intended to be used as a high quality graphics
format for users with PostScript printers. It is supported by
DTP — Desk Top Publishing — applications and some others
(such as some word processors). Most common graphics
formats are based on bitmaps, so they are at a fixed resolution.
Once this resolution is reached, the quality will not improve.
EPS graphics, however, use PostScript instructions so should
scale to any size. They are often smaller than a bitmap of the
same quality.

Assuming the application is going to print to a PostScript
printer, all it has to do when printing an EPS graphic is copy
the PostScript out to the printer at the appropriate place in the
job. It will include PostScript operators to scale the image and
to place it at the required position in the page, but it does not
need to understand the PostScript in the EPS file to do that.

Since most applications do not have the ability to interpret
PostScript, so they don’t know what the PostScript will look
like when printed. This is where the preview part of the file
comes in.

EPS files do not have to have a preview. In this case most
applications will show a box on the screen to indicate the
position of the graphic, but no indication of what it looks like.
Most people expect more than this!

The preview is an attached file giving a picture of the graphic.
This can be at screen resolution, so the combined size of
PostScript and preview can be less than a high resolution
bitmap.

As an extra bonus, the preview gives the application a chance
to print an EPS graphic to a non-PostScript printer. The quality
may not be as good, because the bitmap is typically low
resolution, but it is better than nothing.

Sometimes you may be able to print an EPS file directly,
especially if it has no preview. But they are not intended for
printing; the image may be blank or the wrong size, or nothing
may print at all.

Encapsulated PostScript and PSAlter

Page 65

About EPS previews
We have described previews as an optional file ‘attached’ to an
EPS. There are several types of preview, and how they are
attached depends on the system in use.

On the Macintosh, a preview is part of the ‘resource fork’ of
the file. This means that the basic part of the file contains only
PostScript, and the preview follows it around in the resource
fork. Macintosh previews are in PICT format, a native
Macintosh drawing format.

This is convenient, but only Macintosh files have a separate
resource fork, so a different solution is needed for the DOS
environment. So, in Windows, a typical EPS has both
PostScript and preview combined in the same file. There is a
special header which tells applications how to find the two
parts of the file. This works fine, but it does mean that a DOS
EPS file cannot be sent direct to a printer, since the preview
will cause errors.

There are two allowed formats for the preview part of a DOS
EPS file. The most commonly found format is a bitmap, TIFF.
This is the only format PSAlter will write, at present. The other
format is Windows Metafile (WMF). This is a set of drawing
instructions which are understood by Windows and can be
sent to the screen or printed.

EPSI format
EPSI stands for Encapsulated PostScript Interchange. This is
another variant of EPS. It is less powerful than the other
formats above (for instance, the image cannot be held in
colour), but has the advantage that it is a single file containing
only printable characters, which can therefore be transferred
to many systems. It is the most common format in Unix
systems.

EPSI holds the preview in the PostScript code as a series of
comments. These would be ignored if printed, but can be
understood by the application using the EPSI file.

 Encapsulated PostScript and PSAlter

Page 66

 PSAlter can read EPSI files, but it cannot generate them. It
sees the preview as comments, just as a printer would.

How PSAlter reads EPS
PSAlter can open EPS files to view or translate. It does not use
the preview, however. PSAlter recognises a DOS EPS file and
effectively removes the preview from the file it is reading.

That is, it becomes invisible; the file is not changed unless you
save it. If you do save the file the preview part will be lost,
which may not be desirable. There is a reason for this, though:
if PSAlter did save the original preview, it might be wrong and
misleading if you changed the PostScript code. (You can make
a new preview: see the next section).

To avoid accidentally overwriting the preview in an EPS file,
while working in the Workbench, PSAlter takes these
precautions if you open an EPS with header:

• The File | Save option is disabled; you must use File |
Save As to save with a new name (and without preview).

• The automatic prompt asking you if you want to save a
modified file if you exit is disabled.

If the page is blank
There is one problem which is specific to reading EPS files.
This is where an apparently correct graphic produces a
completely blank page. This occurs when the image is painted
outside the boundary of the page. As described below, an EPS
file includes a %%BoundingBox line with four numbers on it.
The bottom left of the image is at the position given by the first
two figures. When used by an application, this is
automatically adjusted so the image is visible, but when
PSAlter reads it, it does not adjust the figures unless the Use
Bounding Box For EPS option is in effect (see page 55.)

For instance, a file might have at the start:

%%BoundingBox: 2000 3000 2200 3300

Encapsulated PostScript and PSAlter

Page 67

This indicates a 200-unit square picture starting at (2000,3000).
Since each unit is 1/72 inch, this is well outside the visible
page.

Fortunately, this can be remedied in PSAlter by the Use
Bounding Box For EPS option. Remember that such a fix
will not be reflected if the PostScript file is sent directly to the
printer.

Some applications habitually produce EPS files outside the
visible page, including some releases of CorelDRAW.

How PSAlter writes EPS
Once PSAlter has interpreted a PostScript file, it can export it
in a variety of formats, as described in an earlier section. This
can be done using the Translate button from the PSAlter
startup screen; from an image view by using the right button
menu and Export this image, and from the Workbench File |
Export menu item.

If you choose to export as EPS, PSAlter writes out the entire
PostScript program and the current page image as a DOS EPS
with a TIFF preview. The preview reflects the current image
model and resolution; if you want a colour preview, for
instance, you must choose a colour image model from PSAlter
Setup.

The PostScript part of an EPS file must conform to certain
requirements, and your original PostScript code may not. To
get around this, PSAlter writes extra PostScript before and
after the original program — this ‘wrapper’ tries to make sure
it is valid EPS.

EPS export wrapper details
The wrapper will include a correct EPS PostScript header,
looking like this:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: llx lly urx ury

 Encapsulated PostScript and PSAlter

Page 68

The first line tells an application this is an EPS file, and what
version it is. Some older applications may not understand the
latest — version 3 — EPS format.

The second line tells the importing application the bounding
box of the picture. The bounding box is the smallest rectangle
to completely enclose the picture. (llx,lly) is the lower left of
this rectangle and (urx,ury) is the upper right. All
measurements are in points (1/72 inch) from the bottom left of
the page.

The wrapper will also include a list of all of the fonts required
by the page. This is the list of fonts shown in the Workbench
by View | Info | Fonts Used.

The original PostScript is enclosed by %%BeginDocument and
%%EndDocument lines, which makes sure any lines in the
original file are ignored by any application using the EPS.

The wrapper may include extra code if you chose an
orientation other than 0 degrees (upright portrait) from
PSAlter Setup. The code rotates the PostScript so that it
matches the preview.

The wrapper may also include extra code to disable page size
operations. An EPS file must not include instructions to set
page size — for instance the operator a4 to choose a4 page
size. This is because it would override any page size selection
made by the application using the EPS, as well as losing any
marks placed on the page before the call to a4. However, a
great number of PostScript files intended for printing do
include page size requests, which would normally make them
unsuitable for use as an EPS.

To get around this, PSAlter checks to see if a page size is
requested. If it is, the request is processed normally and affects
the size of the image which may be cut down for preview. But
when the EPS file is exported, PSAlter adds extra lines to the
wrapper which have the effect of disabling the page size
request that follows. This means PSAlter can make EPS files
from more PostScript files than it otherwise could.

Encapsulated PostScript and PSAlter

Page 69

EPS export problems
Creating an EPS file from a PostScript file can have some
problems, though PSAlter does its best to minimise them.

Some PostScript files are simply unsuitable for use as EPS files,
because they have side-effects on the rest of the page. For
instance, they might use the erasepage operator, which
would remove any marks made on the page before the EPS
was included.

Adobe define a list of ‘forbidden’ and ‘dangerous’ operators
for EPS files. PSAlter watches out for them, and will warn you
when you export, if any were used. You have the option of
exporting anyway, but this should alert you to possible
problems later.

Unfortunately, some PostScript can be written to have side
effects, without using any of the forbidden operators. In such
cases, PSAlter cannot detect this but an EPS file may still not
work properly.

Another potential problem is that some applications expect to
find additional lines in the EPS header — for instance a list of
the colours used in the file — and may not work completely
otherwise.

One thing which should not be a problem is ‘Control D’
characters. These are shown as [Ctrl+D] in the Workbench
editor and are present in most DOS PostScript files at the
beginning and/or the end, to reset the printer. It would not be
good if an EPS graphic reset the printer, so PSAlter discards
any Ctrl+D characters as it exports. (Note: PSAlter does not
discard Ctrl+D characters if the protocol is set to binary in the
Emulation setup screen — see page 62).

It is quite possible to use PSAlter to read EPS files it has
written, and re-export them, again and again. However, this is
not recommended, since each time this is done, another
wrapper will be put around the code. These use resources and

 Encapsulated PostScript and PSAlter

Page 70

eventually the file may cause errors (such as
dictstackoverflow) in PSAlter or in a printer.

EPS Export is not PostScript conversion
In the past few years, a number of programs have appeared or
been improved so that they can “open” EPS files rather than
(or as well as) place them.

This can lead to interesting problems, because almost all of
these programs are limited in the PostScript files they can
accept. It is common to accept only level 1 PostScript, for
instance. Unfortunately, these programs often give the most
minimal error messages too.

Some programs also interpret EPS files when they are placed.

Programs that have some ability to open EPS files include
Adobe Illustrator, Adobe Photoshop, Adobe InDesign,
CorelDraw, and Macromedia Freehand.

If you have a PostScript or EPS file that cannot be opened by a
particular program, it may be tempting to try to use PSAlter to
simplify it. In general this will not work, because the same
PostScript is still there, in PSAlter’s wrapper.

However, if an application only places EPS files, but places a
grey box only - this is where EPS export may be very useful.

PSAlter and fonts

Page 71

PSAlter and fonts

As it is supplied, PSAlter will produce reasonable results for
each of the 35 fonts which are built into a PostScript printer. It
uses the fonts already installed into your Windows system to
do this, and you do not have to change anything.

PSAlter does give extensive control over fonts, to cope with a
variety of situations.

What is a font?
A ‘font’, as we use it here, is a collection of character shapes.
These are used to produce the text which PSAlter shows as
part of pages. Most PostScript documents contain text, so a
proper handling of fonts is essential.

There are many different fonts. They are grouped into families.
For instance, the Times family includes at least four variants:
roman (the normal characters), italic, bold, and bold italic.
Some systems synthesise italic by slanting characters, and bold
by overprinting. PostScript does not do that: it has four sets of
outlines for the Times family, with subtly different shapes and
spacing.

PostScript fonts
PostScript supports two main types of fonts: type 1 and type 3.
To the user there is no difference, except that type 1 fonts are
often better quality. Type 3 fonts are only rarely found these
days.

PostScript fonts do not come in specific sizes. Instead, the
outlines they describe are used to make characters at whatever
size is required.

 PSAlter and fonts

Page 72

All fonts used with PostScript have names. For instance, the
Times family has four members, and their names are Times-
Roman, Times-Italic, Times-Bold and Times-BoldItalic. A
PostScript program must use the names exactly right
(including all punctuation and upper/lower case).

The fonts which a PostScript program uses in a printer come
from three places:

• The font can be built-in to the printer.

• The font can be ‘downloaded’ to the printer — that is
previously sent to the printer and held in its memory until
switched off. Some printers have hard disks which allow
downloaded fonts to be kept permanently.

• The font can be included in the program. An included
(‘embedded’) font can only be used by that program, as it is
thrown away when the program finished.

If a program uses a font which cannot be found, a printer will
usually substitute a different built-in one. Most often, this is
Courier, which will often give a completely different look to a
document. Missing fonts are an all-too common problem
when PostScript is moved between printers.

PostScript printers most commonly have 35 fonts, listed in
Appendix A on page 146. Almost all have a basic set of 13 fonts.
These are the families Times, Helvetica and Courier (each in
four variations), and the font Symbol, which contains
mathematical and Greek symbols. As PSAlter is initially
installed it provides the 35 fonts and no others. However, if a
font is embedded, PSAlter will make use of it, in the same way
a printer would.

Fonts and Windows
PSAlter will use the fonts in your Windows system in making
up its pages. An understanding of Windows fonts is helpful in
setting up PSAlter to use fonts properly. Windows supports
several different types of fonts. Some of them (‘screen fonts’)

PSAlter and fonts

Page 73

are designed only for use on screen at a single size. PSAlter
cannot use these on a page.

More useful are TrueType fonts, which were introduced with
Windows 3.1. These are similar to PostScript fonts, in that they
contain a set of outlines and can be scaled to any size.

Windows is supplied with three main families of TrueType
fonts: Times New Roman (similar to the PostScript font family
Times), Arial (similar to Helvetica) and Courier New (similar
to Courier).

Although PostScript and TrueType fonts often appear the
same, they rarely have the same names. This is a major
complication in using Windows TrueType fonts to substitute
for missing PostScript fonts.

Windows versions before Windows 2000 cannot use PostScript
fonts directly. However, there is an add-in product called
Adobe Type Manager (ATM). This can use PostScript type 1
fonts, provided they are prepared in a special way. The
PostScript fonts can then be used like any other Windows font.

This is especially useful to Windows users with PostScript
printers, as Windows will automatically include any of the
fonts which are required into PostScript sent to a printer.
(TrueType fonts are also included, but they normally have to
be translated into a PostScript font as part of the printing
process.)

PSAlter works with ATM, if it is present, to use PostScript
fonts installed in your Windows system. PSAlter does not
require ATM, however, as it can work entirely with TrueType
fonts.

If ATM is present but you do not want PSAlter to use it, you
can prevent this. Click Windows on the Font Setup screen to
get the option to switch off the Use ATM Fonts option. On
some windows systems, PSAlter will determine that it does
not need to use ATM and this option may be disabled.

 PSAlter and fonts

Page 74

How PSAlter keeps the look of fonts
PSAlter can keep the appearance of a document, even though
it may not have all of the fonts used in it. It does this using
three techniques, which are automatic for the basic 35 fonts.

1 Choose a similar looking font. PostScript has built-in lists of
what fonts to substitute if the requested font is not available.
These include fonts available in several popular font packages,
so if they are installed, PSAlter will be able to make use of
them with no changes. You can build your own lists for fonts
beyond the 35.

2 Adjust character spacing. The spacing of letters is potentially
different for each font. If another font is substituted without
adjusting the spacing, this will mean that the characters may
not fit the gap left for them on the page. There may be extra
spaces between letters, or letters may overlap. PSAlter has
built-in tables of the sizes of each character in the basic 35
fonts. These ensure that characters fit the space available to
them. You can add tables for other fonts.

3 Horizontal scaling. In some cases the substitute font is too
wide or too narrow to be used effectively, even if the character
spacing is adjusted. This is especially noticeable if the substi-
tute characters are too wide, and overlap. To get over this,
PSAlter can stretch or shrink characters horizontally. This is
done for the entire font, not individual characters, but usually
produces reasonable results. For instance, if the font Helvetica-
Narrow is not available, PSAlter may use Arial at 82% of its
width.

These techniques are acceptable in many cases. However, they
will not look exactly the same as the original font, and for
some applications close is not good enough.

The accompanying file addfonts.txt (described in Appendix A
on page 146) lists the options which you have for providing
fonts which are a perfect match. Appendix A also shows
samples of the effect of substitution.

Using Windows fonts to add extra fonts to

PSAlter and fonts

Page 75

PSAlter
If you have a windows font which you know is a good match
for a PostScript font used in a document you can add it. Once
you have done this, PSAlter may no longer be a good tool for
previewing before printing, unless the font is also in your
printer, simply because it will not highlight missing fonts
which will cause trouble when printed.

Use these steps to add a Windows font for PSAlter.

1 Install the font in Windows. For TrueType fonts, this is done
with the Fonts Control Panel. For PostScript fonts, if ATM is
installed, this is done with the ATM control panel. Note that
Windows places an upper limit on the number of fonts which
can be used; above that Windows may not work properly. This
will be different for each person, but may be around 300–400
fonts. (Note: PSAlter can use PostScript fonts without install-
ing them in Windows, but this will not produce such good
results).

2 Enter the Font Setup dialog. This is done from the startup
screen (Setup button), from the Options | Font Setup menu
selection in the workbench, or from the Special menu in view
mode.

For now, we are concerned with the buttons down the left side
of the Font setup dialog (Font sources).

 PSAlter and fonts

Page 76

3 Click on User Font Lists. You will now get a list of font pack-
ages. Unless you have added more, there will be two pack-

PSAlter and fonts

Page 77

ages: ‘User fonts (not saved)’ and ‘User fonts (saved)’.

Changes made to the first of these are not saved automatically,
so can be used to test changes. On exit from PSAlter you will
be asked if you want to save changes. Click on one of these
packages to select it.

4 When you have selected a package, the fonts currently in it are
shown at the bottom of the screen. Also, the Add Fonts button
(below OK) becomes available. To add a new font, click Add
Font.

5 You will now be able to choose a font. There are two screens
you may get now: aliases and windows fonts.

 Switch between the screens using the Define as Alias and
Define as Windows Font buttons. In either case you must fill

 PSAlter and fonts

Page 78

in the exact name which will be used in the PostScript
program to reference the font. (Note that names usually
appear in programs with a ‘/’ in front, e.g. /Helvetica. The ‘/’
is not a part of the name and must be left off.)

6 If you want to define an alias of an existing font, select a font
from the list and click OK (or double click on the font).

7 If you want to define a windows font, select it using the
options familiar from other applications (font name and style).
There are three items on this screen which are unique to
PSAlter.

PSAlter and fonts

Page 79

(a) Metrics from. This allows you to choose a font whose
metrics — spacing — are better for this font than the
Windows font you are using. Metrics are covered in
more detail in Using font metrics on page 84. In most
cases, just leave this as Use font name.

(b) Symbol font. Windows and PostScript put the charac-
ters of a font in different orders, though this does not
affect the common characters — letters and numbers.
Normally, PSAlter will automatically adjust for this.
But for some fonts — usually those which do not con-
tain conventional letters at all — this mapping is not
needed. Select Symbol font if the windows font is
already in the order you need — that usually means if
the font does not contain letters.

(c) Width. This allows you to choose the horizontal scal-
ing for the font. By default it is 100%, meaning normal
width. 50% is half width. Note that changes to the
width are not reflected in the font preview shown.

 PSAlter and fonts

Page 80

Handling missing fonts
If a PostScript printer uses a font which is not available, most
printers will substitute a font such as Courier instead. There is
no control over this mechanism. In PSAlter, however, you can
choose a number of ways to handle this. You choose options
from the Font setup dialog. Here we are concerned with the
buttons down the right hand side, and the Default font section
beneath.

You can choose to get an error (Give error). A few printers
may give the error invalidfont if a font is not found. This
will be treated like any other PostScript error. Usually a
program will stop, but a few programs may recover from an
error and continue.

You can chose to use the default font (Use default). When
PSAlter is installed, the default font is Courier, just like most
printers, but you can change this by clicking on the Set button
next to the default font name. Using the default is convenient
where you are not especially concerned with the look of text in
a document. There is also an option Use default this session.

PSAlter and fonts

Page 81

If you check this, the default font will apply until you exit
PSAlter (or change this option with font setup). This is best if
you want to check a particular file quickly, but normally want
to be prompted.

You can choose to be prompted (Prompt). This is the default
action. If a reference is made to a missing font, you will see a
dialog box giving the name of the font and some choices.

You can choose Stop to stop, Return error to give the
invalidfont error, Use default to use the default font, or
Substitute to choose a substitute font. You can also run font
setup. If you select Use default you can check For rest of run
or Always. These set the corresponding options in Font setup.

If you choose a substitute font, this is identical to steps 6 (for
an alias) or 7 (for a Windows font) above in Using Windows
fonts, except that the PostScript name is fixed and cannot be
changed. Substitutes added in this way are automatically
placed in the font package ‘User fonts (not saved)’. On exit
from PSAlter you will be asked if you want to save these, and
if you reply Yes, they will be moved to the ‘User fonts (saved)’
package for next time.

At the end of execution, the workbench option View | Font
names | Used by program can be used to see all of the font
names (not substitutes) which a program referred to, and
which were not embedded in the program.

 PSAlter and fonts

Page 82

Other font setup options
Working with user packages

If you have many fonts or more than one printer, you may
want to organise your fonts into packages. Otherwise all your
definitions go in the single package ‘User fonts (saved)’. To
add a new package, click the Add button beneath the list of
user packages. You can then choose a name for the package.

When adding fonts, you can select what package to put them
in. Also, by selecting a package, then some fonts within it, you
can copy fonts to other packages, or delete them from the
package, by using the buttons beneath the font list.

Using the buttons beneath the package list you can rearrange
the packages (as they are searched in the order shown), delete
packages, or disable them. A disabled package no longer
appears in the list and is not used. To get it back, select Show
Disabled Packages (above OK). This now shows both
enabled and disabled packages, and you can select the
disabled packages before clicking Enable.

Note that the built in ‘User fonts (saved)’ and ‘User fonts (not
saved)’ packages are special and should not normally be
rearranged or disabled.

Deleting fonts and packages has no effect on Windows; it only
affects PSAlter’s lists.

Using all ATM fonts
If you have purchased Adobe Type Manager, you may want
all of its fonts to be available automatically to PSAlter. As

PSAlter and fonts

Page 83

noted above, Windows fonts and PostScript fonts do not
usually have the same name so automatic mapping is difficult.
However, PSAlter can usually work out the internal
(PostScript) name of an ATM font and use that. To switch this
option on start Font Setup, then click Windows Fonts and
choose Use Any ATM Font by PostScript Name.

The list of ATM fonts will be updated each time PSAlter starts.
To view it, from Font Setup choose System Font lists. Scroll
down to and click on ‘atmlist: ATM installed fonts’. If a font
name is shown as a negative number, it means that PSAlter
could not work out the font name and will not use the font.

Note: on some Windows systems, PSAlter does not need to
use ATM to access fonts. Unfortunately, this has the side-effect
of disabling this option.

Using font directories

PSAlter can use PostScript fonts without using ATM, but the
results are usually better if ATM is used. To use PostScript
fonts directly, first put them in a directory accessible to
PSAlter. Then from Font Setup, choose Font Directories. Click
the Add button under the list of font packages and you can
specify a new directory.

 PSAlter and fonts

Page 84

Make sure you check Files contain: fonts (PFB). PFB is the
qualifier ATM gives to PostScript fonts. Your fonts do not have
to end PFB, and do not have to be in special ATM format.

What you specify is not actually a directory, it is a pattern. For
instance, to use all of the files in directory c:\myfonts, you must
type c:\myfonts*.*. You can only use an asterisk (*) after the
final backslash (\), not as part of the directory name.

You can have as many font directories as you like. If a
directory is not found it is automatically disabled, but not
deleted.

If PSAlter cannot recognise a font, its name will appear as a
negative number. In some cases you can fix this by adding the
line

%!FontType1-1.0: fontname

(using the appropriate value for fontname) at the start of the
font. Keep a copy of the original font. You must not make this
change if the font starts with 6 undisplayable characters: that
is binary information used by ATM, and the file size must not
change.

Using font metrics
‘Metrics’ is a term for the size of each character in a font.
PSAlter has built-in metrics for the base 35 fonts, and you can
add metrics for other fonts. In general, if you have the font you
do not need the metrics. But if you are using a lookalike font,
having the metrics can help improve the appearance.

To add metrics you need to obtain the Adobe Font Metric
(AFM) file for the font, from the font manufacturer. These are
often available online, from Adobe’s FTP site.

Place the AFM files into a directory and go through the same
procedure as for adding a font directory, above. Type a pattern
for the files, e.g. c:\myfonts*.afm, and select Files Contain:
metrics (AFM).

PSAlter and fonts

Page 85

Note that the AFM files supplied with PSAlter are cut down to
reduce space and may not be usable with other applications.

There is one case where an AFM file is useful even if you do
have the correct font. That is where a font has an unusual
encoding (arrangement of characters), and the PostScript
program rearranges them. This is rare, however.

 PSAlter and fonts

Page 86

PSAlter and fonts

Page 87

Part 3:
 Programming

PostScript

 Introducing the PSAlter Workbench

Page 88

Introducing the PSAlter Workbench

The PSAlter Workbench provides a complete environment for
developing, testing and debugging PostScript. You can also
use it to view or translate PostScript, but most people will find
it easier to use the View or Translate modes for that, since there
are fewer choices to make.

Handling child windows
The Workbench is basically a window with a number of child
windows, which can each be moved and in most cases resized
or iconized. Child windows are so called because they cannot
be moved outside the boundary of their parent window — the
Workbench.

There is one child containing the program you are running,
one or more image viewers showing pages produced (see page
105), and possibly one or many data viewers (see page 109)
showing information on the running program.

There are also special purpose windows, such as file viewers
or windows for setting breakpoints.

 It is easy to get a large number of child windows and lose
track of them. To help you with this PSAlter offers various
features:

• You can close or minimize (iconize) each of the most
common classes of child window. See the Window | Close
or Window | Minimize menus.

• The Window menu itself is extended to show the name of
each active child, and can be used to select them, provided
there are not too many.

Introducing the PSAlter Workbench

Page 89

• You can step through windows with Ctrl+Tab or Ctrl+F6.

• PSAlter will not usually start more than one identical
window, so you can go through the motions of starting one
you have ‘lost’ in order to find it. For instance, if you are
viewing the operand stack but can’t see the window for it,
choose View | Stack | Operand stack again.

Moving between Windows is not only important for when you
lose them. Some menu items, or keyboard shortcuts, only
work when an appropriate child window is active. For
instance Edit | Copy may copy text from a file window or a
picture from an image window; if neither type of window is
active, it may do nothing.

Normally, the title bar of the active window will be a different
colour from all the other (inactive) windows. There are other
visual cues for which window is active — for instance a scroll
bar disappears from most types of window when they are not
active.

Using the Workbench — a tutorial
The only way to get to know the Workbench properly is to use
it. Once you have an idea of what to do, you can read the fol-
lowing sections to see the details. First, a whirlwind tour of
some of the features.

So, start PSAlter and click on Workbench (or press W) to
begin.

Starting up
You will see the PSAlter workbench, with status line at the
bottom and a smaller ‘Untitled program’ child window. This
will be blank.

Look at the status line along the bottom of the PSAlter
window. This has various buttons (Run, Pause etc.) that we
will be using, though if you have no mouse there are

 Introducing the PSAlter Workbench

Page 90

equivalent entries on the Run menu at the top. If you don’t see
a status line choose View | Status line.

Click on the Run button (or use Run | Start). PSAlter sees
there is no program, so it gives you the chance to open a
program and run it. Choose the file tiger.ps from the PSAlter
demo files, typically in c:\psalter\demo. PSAlter will start to
run the program, but first it will open up an image viewer
which may partly obscure the program.

Pausing, viewing the image
Watch the percentage bar in the status line. When it is about
30% done click on the Pause button. The program will pause,
and you can see what it is doing. If the program runs too fast
and finishes, you can restart it with Run as often as you like.

(If you have a fast PC and everything is too fast, try the sample
program allnight.ps instead. Since this was first created, PCs
have become must faster and it no longer takes all night.)

Click the right mouse button over the image viewer (not on
the title) and choose Update | Update images now (shortcut:
F7) from the menu which appears. You can now see how far
the drawing has gone. Scroll about the image or resize it if you
want to see more.

Is the image in black and white? You can start again and have
it in colour. Click Stop. Choose Options | Imaging setup and
then choose Image As: 256 colours (not 256 greys). Check
also that you set Resolution: 75 dpi. Now click OK, then Run
again. Pause when 30% done as before.

Make sure you can see a reasonable amount of the picture. You
can maximise the Workbench and the image viewer within it
by clicking on their respective maximise buttons (triangle ▲ in
the top right corner; in Windows 95 a button containing a
square).

Introducing the PSAlter Workbench

Page 91

Watching the image build
From the right button menu for the image, choose Update |
Keep updating images. This is a ‘switch’ option — when it is
switched on, it will show a tick mark next to it. So if there is
already a tick next to Keep updating images, this was already
on. Unlike most PSAlter options, this option is not
remembered and will always be off when PSAlter starts.

Now click Run again. The program will continue, but this time
much more slowly. You should be able to see the parts of the
picture being added. If you can’t see anything changing, scroll
around the picture in search of some action.

While updating the picture, PSAlter might take a little while to
respond to your instructions, like clicking on Pause, but it will
process your requests in the end; there is no need to keep
trying.

Now, while it is running, choose Overlay | Show current path
(another switch option: you should be switching it on) from
the image right button menu. This will show a red line for the
current path. The path is the (normally) invisible construction
lines used to put together the image, a piece at a time. There is
not always a path to see; if you have any trouble finding it,
click Stop then Run again — it is easier to see on a blank
screen.

Walking through the program
We will now look at the program itself. But first, remember to
switch off Overlay | Show current path and Update | Keep
updating images, since they will slow everything else down.

If you switched to using allnight.ps, because your PC is too
fast, now is the time to switch back to tiger.ps.

You can close down the image window or resize it so the
program is visible. Never be tempted to close the program
window so you can see more of the image, since that will stop
everything! You can minimize (iconize) it though.

 Introducing the PSAlter Workbench

Page 92

Click on Walk in the status line. The program will slow to a
crawl, and you will be able to see each item as it is executed.
Many of the items executed are constants, which are put on the
operand stack so, while it is running choose View | Stack |
Operand stack. This will show items being added, and then
removed, by operators.

Looking at some data
Another important stack is the dictionary stack, though it
doesn’t change very much in this program. Choose View |
Stack | Dictionary stack while in the middle of the tiger.ps
program and you should see a list of three dictionaries. Stretch
the dictionary viewer to make it wider so you can see the
names.

The three items will probably be systemdict, userdict,
and Adobe_Illustrator_1.2d1. Double click on the last of
these and a dictionary viewer will open showing the contents
of it. (Don’t worry if you see globaldict too - this is normal
in PostScript Level 2.)

Press and hold the mouse over any item in the viewer and you
will see the contents expanded in the status line. You can also
double click on the dictionaries and arrays to open more
viewers.

Adding a ‘watch’
It is often convenient to be able to see the value of particular
variables as a program runs. You can do this with a dictionary
viewer, but this may have too many entries to fit on the screen
all at once. You can use a Watch viewer instead, to keep watch
on the variables of your choice, even if they are in different
dictionaries.

Look at the program and click on a name somewhere in it. For
instance, Adobe_Illustrator_1.2d1 near the top of the
program. Now press Ctrl+W. A new ‘watch’ viewer will open,
showing the specified name and its current value. If the value
has not yet been defined, as at the start of the program, the
word ‘undefined’ is used.

Introducing the PSAlter Workbench

Page 93

You can add as many watches as required using this technique
or View | Object | Add watch or view.

Setting a breakpoint
Breakpoints are all about pausing a program automatically at
important moments. Most programs will take far too long to
run if you walk through every part of them.

We will set an operator breakpoint. Choose Window |
Breakpoint control. On the window which opens, click Add
Operator, then type ‘fill’ and press Enter.

Make sure you can see the program window, then click Run to
go at full speed. Fairly soon, the program will pause, and you
should see fill highlighted. Using this technique you can
pause before or after any operator. You can also set
breakpoints on a variety of other actions, but that’s almost all
for this tutorial. You’re about ready to read the remaining
sections of this manual.

Some help
But first, let’s take a look at the online help. Click on Stop to
stop the program. Go to the top of the program (scroll, or press
Ctrl+Home). No scroll bar? Remember to click on the window first.
Look for a PostScript operator such as exch, add or def. Click
on the operator name, then use Help on PostScript operator
from the program’s right button menu.

You should see help on the operator. Try again, first clicking
on something which is not an operator — for instance
anywhere on the first line. You should now see the index of
operators, and you can click on any of them to see the help for
that operator. (You can return to the index from any page in
PSAlter help, with the special Operator button.)

Don’t forget that the help is not intended to teach PostScript
from scratch, but as a reference for programmers who already
have some knowledge of PostScript. Turn back to Finding out
more on page 20 if you missed that.

 Introducing the PSAlter Workbench

Page 94

PSAlter is designed to be just as useful to the beginner typing
in a few lines of PostScript as to the professional trying to
debug large programs.

If you are just starting, be warned — examining other
PostScript programs, like the sample programs, may seem a
good starting point. But most of them are generated for
efficiency and are very hard to read. The sample program
7star.ps is intended as a fairly simple example to start with,
though.

Program and file viewers

Page 95

Program and file viewers

PSAlter uses several file viewer windows. In at least one of
these — the program window — you are likely to be doing
editing. PSAlter’s file viewer windows (a program window
and a file window are really different names for the same
thing) are designed so as to be familiar to Windows users. The
editing actions and keystrokes are the same as in typical
Windows editors, like Notepad.

Unlike Notepad, PSAlter can handle very large files with ease.
There are some hints on how to work effectively with large
files later on.

How to edit text, copy and paste, and the various keyboard
shortcuts for selecting text and moving around the file, are not
described here because they should be familiar; however there
are some details in the online help file.

The main program window
The most important file viewer is that for the main program.
You can open up a file with File | Open Program. Once it is
open, if you can’t see it because of other windows, use
Window | Main program (or Ctrl+G) to make sure it is visible.

Once you have opened a program, you can make changes to it
until you choose to run it. From then, until the program ends,
or is stopped, the program is locked and cannot be changed.

The program window cannot be closed while the program is
running. You must use the Stop button if you do want to close
it. But beware — if the program window is closed, you lose all
the other information belonging to it. That includes all images
and any data you are viewing. The same applies if you use

 Program and file viewers

Page 96

File | New program or File | Open program — everything
related to the current program is cleared first.

The right mouse button, used on a program window, gives a
menu. Some of the things on it are convenient shortcuts for
items defined elsewhere — such as Find and Next.

Help on PostScript
operator was described
earlier. Click the left
button first to select an
operator in the program.

Toggle source
breakpoint here sets a
breakpoint on the item at
the current position
(again, click the left

button first to identify the item). It will be outlined with a
dotted line. If the item is already a breakpoint, the breakpoint
is switched off. There is more detail on source breakpoints on
page 124.

The current position options
Two further items, Move to current file position and Find
current token can be used to find where the program is
executing.

An interpreter reads a program once from top to bottom, but it
will frequently go back and execute procedures defined
earlier. This is why there are two positions.

Move to current file position shows the ‘high water mark’,
that is the point which the interpreter has reached. This will
never move backwards. PSAlter will move the cursor (flashing
vertical line) to the current point, and make sure it is visible.
Sometimes a PostScript program contains data embedded in it,
which the program reads, for example as an image. Move to

Program and file viewers

Page 97

current file position will show you how far this process has
gone.

Find current token shows the current token in the program.
(A token is a single element in a PostScript program, such as a
number, name, or string.) This may be at the current file
position, but is more often in a procedure.

The token will be highlighted. This is also done automatically
at various times: when walking through the program,
following a single step, or when the program stops.

The output log (%stdout)
All PostScript interpreters potentially write to an error log. In
most cases though, it is thrown away by the printer with no
opportunity to view it. The output log contains messages
written by the interpreter, for instance when an error occurs. A
PostScript program can also write to the log using the print
operator, among others.

By connecting a printer on a serial port, and using a special
communications program, it is possible to send information to
the printer, and have the log sent back and displayed on the
computer. This is one of the few debugging techniques
available without PSAlter.

The output log is a named device in PostScript terms, and its
name is %stdout. This term may be more familiar to
PostScript programmers.

PSAlter always keeps an output log window in workbench
mode. It can be minimized (iconized), but never closed.
PSAlter automatically adds a few messages, such as a record
of the time taken to execute a program. You can open the log
window or bring it to the top with Window | Output log or by
pressing Ctrl+L.

The output log window is a file viewer like any other. While
the program is running text may be selected in it and copied to

 Program and file viewers

Page 98

the clipboard. When the program is stopped, the text may be
edited, though it will not be saved.

The log is not remembered
between sessions, so it starts
empty. If you later want to
empty it, you can use the right
mouse button to pop-up a menu

in the log window. The Clear log now option empties the
output log at any time, and Clear log each run is a switch,
which allows you to start with an empty log each time you run
a program.

Other file windows
Each time the file or run operator is used in a program, a file
window is opened (if one was not open already). If the
corresponding file exists, the viewer will have its contents.
When the program is running, the contents of other file
windows are only changed if the PostScript file writes to them.
Once the program has finished, or is stopped, you can edit the
text in them.

A file, once opened, might be executed or treated as data. This
is up to the PostScript program. Because of this, file viewer
windows cannot be closed while the PostScript program is still
running. This allows PSAlter to make use of the window, for
example in showing the source of an object from a stack
viewer, even after PostScript has closed the file. This also
ensures that if a program writes a file, then tries to read it later,
the data will be available.

There is no automatic saving of file windows. This means that
PSAlter cannot update external files without your knowledge,
which is a security problem with some interpreters.

However, all file windows (including the log window) have a
Save as option on the pop-up (right button) menu. This

Program and file viewers

Page 99

allows a copy to be saved at any time. Even following Save
as, there is no automatic saving or prompting to save.

How the file operator interacts with file viewers is described
further in Implementation notes: The file operator on page 137.

Hints for large files
PSAlter’s file viewers are designed to handle very large files
(up to hundreds of megabytes) without imposing long delays
on the user. This is because PostScript files can be very large,
yet you may only be interested in the first few or last few lines.

No matter how large the file, it should open immediately. By
dragging the scroll bar you can quickly position to any part of
the document. Don’t click on the arrow buttons in the scroll
bar, as that will move through the whole document. Ctrl+End
will move directly to the end of the document. (If the screen is
blank after Ctrl+End, use PgUp once - often files have blank
lines at the end).

Saving a large file will inevitably take time. Remember that
because PSAlter always saves the old file as a backup, twice
the disk space is required. A search for text can also take a long
time. Both saving and searching give an indication of their
progress on the status line. The Esc key can be pressed to
cancel either activity. (Note: if you cancel a save the original
file is either unaltered or completely saved, never half saved).

As you change a file, modifications are written to a temporary
file. This is in the TEMP directory (type SET in a DOS session
to check this). Some systems are set up with a RAM drive for
TEMP which is fast, but very limited in size. You may have to
disable this feature (usually in c:\autoexec.bat) if working on
very large files.

PSAlter is written in the expectation that there will be a disk
cacheing utility such as SMARTDRV in effect, so that reads
from the disk are reduced. (This will normally be installed
along with Windows, unless it has been removed). If no such

 Program and file viewers

Page 100

software, or equivalent hardware, is in use, screen display may
be very slow.

PSAlter can handle very long lines as well. This can also cause
slow display where there are lines many thousands of bytes
long — for instance in the middle of binary data, where there
are no lines but PSAlter is looking for them.

Controlling execution

Page 101

Controlling execution

There are plenty of options to control execution, but if you just
want to run the program hit the Run button. You do not even
have to open a program; if you haven’t chosen a program yet,
Run will let you pick one.

Running and walking
When you hit the Run button, the program executes ‘full
speed’. That does not mean you lose control. PSAlter checks
for mouse and keyboard activity frequently, so you can use
menus and buttons, and about once a second will update any
data viewers which are open. Also, if you have selected Keep
Updating Images, it updates any image viewers which are
looking at an incomplete page. These updates slow down
PSAlter, so you may want to close all data viewers if you are
trying to execute as quickly as possible.

If you want to see what the program is doing, you use the
Walk button. It then steps through each item in the program,
following into each procedure called. It is as if you are single
stepping through each item, as described below.

You can switch between Run and Walk as often as you like.
There is no need to pause to do this. While walking, the {}+
button is useful for running at full speed until the end of a
procedure you have seen before — see Single stepping, below.

If you want to pause, hit the Pause button. You can resume
with either Run or Walk. Also, at any time you can use Stop.
Once you have stopped, the program cannot be continued;
Run or Walk will start again from the beginning, throwing
away any pages so far produced. Breakpoints (see Breakpoints
on page 120) will also result in pausing.

 Controlling execution

Page 102

There are keyboard and menu equivalents for most of these.
The Run button is equivalent to Run | Start or Run |
Continue (the label changes depending on which is relevant),
or F5. The equivalent of Walk is Run | Walk, or Ctrl+F5. Pause
is Run | Pause, or press the Pause key (usually at the right
hand end of the top line of keys, if it is present). Stop is Run |
Stop.

For convenience, both Walk and Run will check if there is no
program. The window may be closed, or it may be empty,
following File | New program. In either case, rather than
trying to run nothing they will prompt for a file name to run.
This is then opened as if by File | Open program.

You can choose the speed at which PSAlter walks through a
program. This is determined by the delay after each step.

When PSAlter is first installed the delay is one second. You can
adjust the delay using Run | Walk delay (or Ctrl+Shift+F5).
This opens a window containing a scroll bar which you can
drag to the left to decrease the delay (and speed up walking)
and to the right to increase the delay (and slow down
walking). The delay you choose is shown on the title of the
window.

The scale is logarithmic, not linear. This means that the further
right you go the larger the time increase for dragging the same
distance. At the far left it is 0.03 seconds — too fast to follow
detail. At the far right it is 30 seconds. The centre is 1 second.

This window can be kept open: it does not interfere with the
running of the program. This allows you to change the speed
depending on how closely you want to look at parts of the
program. Unlike most of PSAlter’s windows it is not a child
window. This means it is always on top of the other PSAlter
windows, and it can be dragged outside the PSAlter
workbench.

Controlling execution

Page 103

Single stepping
There are three buttons on the status bar for single stepping,
with corresponding entries in the Run menu, and keyboard
shortcuts.

The simplest is the button (also Run | Step 1 or F8). This
executes a single item, then pauses. The next token to be
executed will be highlighted. This item might result in
running a procedure, in which case the item highlighted will
be the first one in that procedure. You might also encounter a
procedure in-line. In that case the final ‘}’ is highlighted.

An example should illustrate this...

Step 1 can only be used when you are currently paused. The
other two items in this section can be used when paused or
when walking. In either case, they cause you to run at full
speed (usually briefly), then either pause or resume walking.
Although the term ‘skip’ may be used, all of the procedure is
executed: it is the displaying of each step that is skipped. If
you pause for any reason while skipping, PSAlter forgets that
you have asked to skip the rest of the procedure; Run or Walk
function as normal.

It is often the case that you are executing a procedure and
want to exit it without viewing all of the remaining items,

especially if you’ve seen them before. The button (Run |
Step Out, or Ctrl+F8) will skip until the procedure is exited.

true { pop } if pop

true { pop } if pop

true { pop } if pop

true { pop } if pop

true { pop } if pop

 Controlling execution

Page 104

If the currently highlighted item would result in a procedure
being entered (either a procedure call, or an operator such as

if, repeat, exec), the button (Run | Step Over, or
Shift+F8) will not display the contents of the procedure,
although they are executed.

Image viewers

Page 105

Image viewers

You should read the section Viewing PostScript documents on
page 24 before reading this one, as many of the concepts are
the same. The main difference is that in the workbench you
can have more than one image viewer, and each image viewer
is a separate child window in the workbench.

Like other child windows in workbench mode, image viewers
are controlled by a right button menu. Many of the options
duplicate those found in the View menu in view mode and are
not covered here.

You should make sure the image viewer is the current window
before using keyboard shortcuts like + to zoom in, for example
by clicking on the window first with the left button or another
method described in Handling child windows on page 88. For
background viewers (see below), click on the background.

Starting image viewers
When you start to run a program, PSAlter checks to see if there
is an image viewer open. If there is not, one is automatically
opened. This is a ‘latest complete page’ viewer which will
follow pages, though you can change that at any time.

You can close that or any other viewer without affecting the
program. Similarly, you can start more viewers without
affecting the program.

You start a new viewer with View | Image | New viewer. You
will be given a list of all the pages produced so far by the
program which is running (or completed). You also have the
choice of current or latest complete page. When you start a
viewer, you can check the Zoom to fit box if you want the
initial view to be zoomed out so the whole page is visible.

 Image viewers

Page 106

Another way to start a new viewer is View | Image | Image on
background. This opens a viewer which fills the whole
workbench viewer, but which is behind the other windows
(including, possibly, other image viewers). Because there is no
system menu for this background viewer, there is a special
way to close it — use View | Image | Remove background
image. When you switch from view mode to workbench
mode, the viewer automatically becomes a background image,
so the appearance is maintained (though the program window
becomes visible on top of it).

PSAlter will not normally start more than one viewer per
page. This is not enforced rigidly, however. The background
image and another image can be of the same page. Also, by
changing page to view, you can end up with several views on
the same page. Using this you can view a ‘thumbnail’ of an
entire zoomed out page in one window, while examining
detail in another.

You can close all the image viewers quickly with Windows |
Close | All image viewers, or minimize (iconize) them all
with Windows | Minimize | All data viewers.

Overlay options
The Overlay item on the right button menu contains a number
of items which allow you to overlay data on top of image
viewers. Each overlay has a default colour, which can be
changed from Options | Colours. (Only an approximation of the
colour can be chosen.)

Overlay | Show current path allows you to see the current
PostScript path, as constructed by lineto, curveto, and similar
operators. These paths are normally invisible until filled in (at
which point the actual path is no longer accessible). See also
View | Graphics | Current path viewer on page 116, which
gives a list of the co-ordinates of the path items. The default
colour is red.

Overlay | Show clip path shows the clip path. All painting
operations are ‘clipped’ so they lie within this path. Initially,

Image viewers

Page 107

the clip path follows the edge of the page, and may be hard to
see. The default colour is blue.

The options to overlay paths are usually only useful if you are
viewing an image before a program has completed, e.g. if
using Update | Keep updating images.

Overlay | Show grid lines causes the whole page to be
covered with crossed lines at 50-pixel intervals. These are the
pixels in the PostScript device, so grid lines get farther apart as
you zoom in. The default colour is yellow.

Overlay | Set image breakpoint, Overlay | Clear image
breakpoint, and Search | Find image breakpoint are
described in Image breakpoints on page 125.

Selecting a cutout box
You can use the mouse to define a ‘cutout’ for the image. The
cutout is

• used as the default area to export or copy when you use
Export this image or Edit | Copy, and allows more
accuracy than doing the same thing with the preview
shown when exporting;

• used as the target when zooming in or out.

Just move the mouse to one corner of a rectangle, and drag the
mouse to the other corner. To ‘drag’, keep the mouse button
pressed while you move the mouse.

You can cutout when zoomed in or out. If you drag to the edge
of the image, it will automatically scroll. To remove the cutout,
click on the image without dragging the mouse.

Search | Cutout bounding box discovers the bounding box
of the image (the smallest rectangle to enclose it) and
superimposes that on the image as a cutout box.

While selecting, the position in device co-ordinates (pixels) is
reported in the status line. This is also a convenient way of

 Image viewers

Page 108

discovering the exact co-ordinates at a location. If, and only if,
a resolution of 72 dpi is in use, these correspond to the default
user co-ordinates of 1/72 inch.

Data viewers

Page 109

Data viewers

PSAlter has a large number of windows which can be opened
to view data about the running program. In most cases, these
windows will update continuously once they are open to give
up-to-date information. Most of these will be meaningful only
to the PostScript programmer.

The viewers are designed to work consistently. Read the
description of stack viewers carefully, because much of what it
says applies to the other types of viewers too.

Because it is easy to open many data viewers, there are options
to manage them as a group. Window | Close | All data
viewers will shut them all down. And Window | Minimize |
All data viewers will close then down to icons within the
PSAlter workbench.

Stack viewers
There are four types of stack viewer: for operand, dictionary,
execution or graphics state stack (this last is discussed under
Graphics state viewers, below). They are opened from the View |
Stack menus.

Stack viewers have a pop-up menu (right button or Shift+F10),
with several functions.

 Data viewers

Page 110

Which way up?
There are two ways to write a stack. One way puts the most
recently added entry first (top down), and the other puts the
oldest entry first. Although top down is more often used when
writing down a stack, it can be awkward in a scrolling
window. You can choose either way in PSAlter.

The following examples show the stack after running the
PostScript program ‘1 2 3 4’.

The default will place the value 1 (the stack base) as the first
line in the window.

If you switch Stacks Top Down on using the pop-up menu, it
affects all stacks. The value 4 (stack top) will now be the first
line in the window.

Expanding values
Each item in the stack is shown as a representation of its value.
Simple values like integers, reals, or booleans are shown in
full. Arrays and dictionaries however, do not show their
values.

Data viewers

Page 111

There are two ways to get more information on an array or
dictionary. For brief information, press and hold the left mouse
button over the item in the stack window. The status bar at the
bottom of the screen will show an expanded view of the
contents, which may be adequate for small items. If this is not
adequate you can open a new viewer for the item as well as, or
instead of, the stack viewer.

To open a new viewer, click on the item with the left mouse
button to highlight it. Then, use the right mouse button over
the item to get the pop-up menu. This menu includes View as
well or View instead, both of which will open a new viewer if
the object is of an appropriate type. In the case of View
instead, the stack viewer will close. Because this is a frequent
action, there are several shortcuts.

• Double clicking the left button is equivalent to View as
well.

• You can scroll in the viewer with the arrow keys, and use
the Enter key as another alternative for View as well.

• If you hold down the Ctrl key while double clicking or
pressing Enter, this is equivalent to View instead.

New viewers may overlay the existing one, so you might have
to rearrange windows to see everything

Finding out more about an object
PSAlter records information on objects and can often tell you
more about them than a conventional interpreter. The
information it records is name and position. The name recorded is
the first name given to the object (if it is an array, dictionary or
string). Often this is enough to identify an object when it is
otherwise ‘lost’. The data viewers will give a name where available.
For example, it is always easy to spot userdict and
systemdict wherever they occur on the dictionary stack.

The position information records the current position in the
program when an object was created; this applies to all types

 Data viewers

Page 112

of object. This may be where the object appeared in the
program, if it is a simple constant. If it was the result of
calculation, sometimes the operator which produced the result
is shown; in other cases no position is known. It will take some
experimentation to find out how useful this is.

The stack viewers include (on the right button menu) the item
Find element source. This will open the program viewer and
highlight the object at the position where the object was
created, if it can find it. Where the object is a procedure, the
closing ‘}’ is usually highlighted.

Watch viewer
The idea of a watch was introduced in Adding a ‘watch’ on page
92. This is a special viewer that lets you see the current value
of the variables of your choice.

You can add a watch in two ways.

The simplest way to add a watch is using the program viewer.
Click on any name, and press Ctrl+W. The Watch viewer is
automatically opened, and the current value of the name will
be shown. You can do this at any time; if the name is not yet
known, the value is shown as -undefined-.

Alternatively, you can add a watch by typing the name of a
variable. Use View | Object | Add watch or view. This is also
accessed by Ctrl+W from any window other than a file viewer.

Data viewers

Page 113

Most objects are found by searching the dictionary stack - in
this case leave the From dict field alone. Otherwise, you can
type the name of a dictionary to search for the object. The most
recent names and dictionary names are remembered between
sessions of PSAlter.

You can use entries
from the pop-up
menu to affect the
list of items to
watch. To add just
after an existing
entry, click on it then
use Add or press the
Insert key. To delete
an entry, click on it
and use Delete or
press the Delete key.
The watch viewer
treats the objects

shown in just the same way as a stack viewer so that you can
(among other things):

• Hold the mouse down over a dictionary or string to expand
it in the status line.

• Double click to open a viewer for an object.

• Use Find object source to locate the origin of the object,
and highlight it in a file viewer.

 Data viewers

Page 114

Array and dictionary viewers
These are similar to stack viewers, but
present information on the contents
of an array or dictionary object.
Dictionaries are shown alphabetically
by key, and arrays in order of
element. They can be opened in
various ways.

Some built-in objects are available on
the View | Object menu
(systemdict, userdict,
FontDirectory, errordict and
$error). You can view an arbitrary
object by using View | Object | Add
watch or view. Normally this will
add a watch, but if you click Open a
viewer instead, then an array or
dictionary viewer is opened; the list

of watches is not affected.

Most often, though, you open one viewer from another. As
described in ‘Stack viewers’, above, you can open an array or
dictionary viewer from a stack viewer. You can do the same
from an array or dictionary viewer, if you position the mouse
over the required element, using the right button menu or any
of the shortcuts (e.g. double click).

There are also options to find the source (original position) of
objects. For a dictionary, you can find the source of the key or
value for any item, or of the dictionary itself. For an array, you
can find the source of each element, or of the array itself.

Vanishing viewers
An array or dictionary can cease to exist because of the
restore operator. When this happens viewers will close. If
all your viewers close at the end of execution but you want to
check them, you may need to stop before the end, for example
by setting a breakpoint before the restore operator.

Data viewers

Page 115

Even if no restore operator is used, most array and
dictionary viewers will close when you use Run to restart the
program or start a new one. This is because all data left over
from the previous run is automatically tidied up before
starting.

String viewers
In the current release, if you double click on a string object in a
viewer it is interpreted as an encrypted font string, as
described in the book ‘Adobe Type 1 Font Format’ (published
by Addison Wesley, ISBN 0-201-57044-0). This is fairly
specialised.

Graphics state viewers
The graphics state contains various information used by the
interpreter. View | Graphics | Graphics State will open a
viewer on the current graphics state, which will update
continually. Most of the information should be self
explanatory to a PostScript programmer.

Current font viewer
The second item shown in the graphics state viewer is always
the current font, and you can open a viewer on the font
dictionary using the methods to open an extra viewer from the
stack viewers (e.g. by double clicking on the second line).

 Data viewers

Page 116

Path items
The viewer shows an entry for ‘path items’. Path items are
used to store information about the current path; it is this
value that is set with Limit setup and that produces a
limitcheck error if it is exceeded.

Although there is a single limit, PSAlter uses this to set up two
tables. The raw table contains the basic paths (moveto, lineto,
as specified in the program), while the fill table is used in
painting the paths.

The viewer shows for both tables the number of elements
currently in use, and the maximum number of elements used.
Note that paths saved by the gsave and save operators count
towards the number of elements.

Note that the structure of paths, and the number of elements
used, is implementation dependent. It will also vary with the
resolution in use. As a result, PSAlter cannot be used to
precisely determine whether a limitcheck error will occur
on a particular printer.

Graphics state stack
The gsave and save operators save the graphics state on a
stack. The View | Stack | Graphics state stack item opens a
view for this stack. You can view items on the stack by (for
example) double clicking. Items can be placed on the stack
either by the gsave or the save operator, and the viewer
indicates which was used.

The order (top down or not) for this stack is set in the same
way as for operand and other stacks - see page 110.

Current path viewer
The View | Graphics | Current path menu item opens a
viewer showing (in text form) the elements of the current path.
All positions are shown in device co-ordinates (number of
pixels). You can also get a graphical display of the current path

Data viewers

Page 117

by using the Overlay | Current path right button menu item
on any image viewer.

Current halftone viewer
Halftones are used to approximate colour tones when fewer

colours are available. PSAlter uses them only when the
imaging mode is ‘black and white’. The halftone viewer is
opened by View | Graphics | Current halftone. This gives
information on the halftone cells which are used to
approximate the greyscales, and may be of interest to
programmers experimenting with the setscreen operator.

Font name viewers
You can open two font name viewers. View | Info | Font
names used shows those fonts used in a program but not
defined within it. This will tell you the fonts which must be
present in a printer for the file to print correctly. When
exporting an EPS file these names are used to generate an EPS
header. See EPS export wrapper details on page 67.

 Data viewers

Page 118

View | Info | Font names defined shows the fonts which are
defined within the program (whether or not they are used).
Many programs generate their own font names, so do not be
surprised to see some odd names.

Operator count viewer
View | Info | Operator counts opens a viewer giving the
number of times each PostScript operator has been used in the
current program. This may be useful for performance
measurements. Note that the order of operators is the same as
that in Appendix F of the PostScript Language Reference
Manual, and is not strictly alphabetical.

Some operators are implemented internally as procedures.
These may not appear in the list of operators.

Memory info viewer
View | Info | Memory usage opens the memory info viewer.
This may be blank if the program is not yet started, but
otherwise it gives up-to-date information as a program is
executed.

It is mainly concerned with VM — the memory used to store
composite objects including arrays, dictionaries, strings,
procedures and fonts.

The viewer may differ from the illustration, as the contents

depend on the PostScript emulation in use (for instance, global
VM is only shown if Level 2 is in effect).

Data viewers

Page 119

It shows the current amount of memory (VM) used, the
maximum used so far and the number of save operators in
effect. PSAlter does not use the same amount of memory as
other interpreters; in some cases the amount of VM shown
may be twice what would be used in a printer (because of the
debugging and other information held).

Garbage collections reclaim VM, and occur automatically.
Information on this is also shown.

Information is also given on the font cache and (in level 2 only)
pattern cache; and how much memory is occupied by pages
currently being worked on, or viewed. Pages not in use are
written out to disk, and the file name and disk space required
are also shown.

Last error info
The selection View | Info | Show last error will pop-up a box
containing information on the last PostScript error that
occurred. All of the text from the original error message will be
repeated. You must click OK to remove this box, as you cannot
do anything else in PSAlter while it is displayed.

The last error info box also includes a Copy button. This
allows the full text shown to be copied to the clipboard (since
the Edit | Copy menu item is inaccessible).

 Breakpoints

Page 120

Breakpoints

Breakpoints are a useful tool for discovering what is going on
in a program. You can make PSAlter check for particular
events, then pause when they occur. It is also possible to use
the breakpoint system for profiling programs, e.g. counting
how often a particular procedure is used.

PSAlter supports four kinds of breakpoint.

• Operator breakpoints are triggered when particular
PostScript operators are executed. For instance, by setting a
breakpoint before the fill operator, you could check the
path before it is filled (and deleted).

• Name breakpoints are triggered when names are used.
More precisely, you can set a breakpoint for when a
particular name is used as a key to a dictionary, either for
fetching or storing. This would allow you to discover when
particular names are being set, or variables referenced.

• Source breakpoints are set using the program editor. You
can highlight specific tokens in the program, and the
breakpoint is triggered each time that token is executed.

• Image breakpoints are set using the mouse on an image
viewer. You define a rectangle. Each time any operator
makes a mark within that rectangle, the program will
pause. You can use this to find out which part of a program
was drawing part of a diagram, for example.

When a breakpoint is hit the program will normally pause,
and an explanation is shown in the status line. You can view
stacks, variables, etc. and then continue, with Run or Walk.

Breakpoints

Page 121

The breakpoint control panel
Display the breakpoint control panel with Window |
Breakpoints (Ctrl+B).

This allows you to inspect the breakpoints you have set
(except the single image breakpoint), remove, and modify
them, and add operator and name breakpoints. By clicking on
Find, you can locate a source breakpoint in the original
program.

Operator breakpoints
When you click on Add Operator in the breakpoint control
panel you can choose any operator by typing its name. You

 Breakpoints

Page 122

can choose to pause before executing the operator, after
executing it, or both.

If you want to add more than one breakpoint, click Add rather
than Add and Close, then the window will remain open.

Notes. Some ‘operators’ in PostScript are not implemented as
true operators. Instead, they are built-in procedures, even
though they in some cases appear to the program as operators.
Examples include sethsbcolor and pstack. Also some
‘operators’ are built-in constants, such as true and
systemdict. Operator breakpoints cannot be set on these
(but you could use name breakpoints). Also, because there are
a number of built-in procedures, which themselves contain
other operators, you may get unexpected pauses for
breakpoints, especially on common operators like exch or
add.

In the list of operators you will see a number of names starting
‘@’. These are for special purposes in PSAlter. You may be able
to use them, but they are not documented and may change in
future releases.

Breakpoints

Page 123

Name breakpoints
When you click on Add Name in the breakpoint control panel,
you get the following screen. You can type any name and
choose Fetch, Store, or Both. The name is not checked
(because virtually anything is a valid name). The breakpoint is
triggered whenever it is used to access a
dictionary.

Note. Just as with operator breakpoints, you may get
unexpected name breakpoints from built-in procedures. The
bind operator can also trigger unexpected breakpoints, as it
has to look up all the names in the arrays it binds.

 Breakpoints

Page 124

Source breakpoints

Although source breakpoints can be viewed from the
breakpoint control panel (and searched for by clicking on
Find), they are not set from there. Instead, scroll to the
required point in the program window. Click anywhere in the
required token. Then use the right mouse button, and select
Toggle source breakpoint here. F9 is a convenient shortcut
for this. The program will pause before executing the token.
The token will be outlined to show that a breakpoint is set.

To switch it off, click anywhere within the breakpoint, and
repeat the process for setting it — say, press F9. A ‘token’ is
recognised as a name (possibly an operator), a number, or a
string. A token is recognised properly only if it starts in the
current line (so that you must go to the first line of a continued
string).

You can set a breakpoint on a procedure: to do this click on the
closing ‘}’ first. This is triggered when the procedure is
processed (first encountered, when it is placed on the stack),
but not when it is subsequently executed. To break when a
procedure is executed, set a breakpoint on the first token in it.

Breakpoints

Page 125

There are several more options on the pop-up menu for the
program window. You can search for source breakpoints, or
you can clear all of them.

Image breakpoints
You can set exactly one image breakpoint. It applies to all
pages: whenever a mark is made in the specified rectangle, the
program will pause. The mark does not even have to be
visible: for example white text on a white background will
trigger it. However, if the marks are not visible because they
are clipped, no breakpoint occurs.

To set the breakpoint use the right-button menu in any image
viewer. It is often helpful to run the program once to establish
the exact area required. Use Overlay | Select Image
Breakpoint. Then move the mouse to one corner of the
rectangle and drag it to the other corner. The rectangle will
then be highlighted in green.

Image breakpoints are also cleared with the right button menu
on any image viewer: use Overlay | Clear Image Breakpoint.
Using Search | Find Image Breakpoint from the same menu
will make the breakpoint visible, if the image is large and you
have lost the breakpoint.

Whenever the image breakpoint is triggered, the current
image is always refreshed. This is not the case for the other
classes of breakpoint.

An image breakpoint is also triggered after a page is cleared
by a page size request. For instance, the operator a4 will clear
the page even if the page size is already a4. The grestore
operator can also clear the page if there was a page size
request since the gsave. PSAlter does not trigger an image
breakpoint, though, if the page was completely blank (as it
would be when a page size request appears at the start of a job,
or when grestore follows showpage).

 Breakpoints

Page 126

Editing breakpoint options
In the breakpoint control panel (picture on page 121) there is
an Edit button, which can be used after clicking on an existing
breakpoint in the list. This allows options for an existing
breakpoint to be changed. Some options can only be set in this
way.

You cannot use the functions described for image breakpoints,
as they do not appear in the breakpoint control panel.

This illustration is for a name breakpoint, and you can see it
repeats the Fetch Store or Both choice from setting the
original name breakpoint (picture on page 123).

In addition you have options for actions, skipping, and a label,
which are described below.

Breakpoint actions
The action defines what is to happen when a breakpoint is triggered.
When you add a breakpoint the action is always Pause, but you
can change it to Log or Count with the Edit function from the
breakpoint control panel.

Pause, the default action, causes the program to be paused, as
previously described.

Breakpoints

Page 127

Log means that the program does not pause, but an entry is
written to the output log (%stdout) each time the breakpoint is
encountered. This may slow down a program substantially if
the breakpoint is often hit.

Count simply adds to the counter which is displayed in the
breakpoint control panel. This does not slow the program
down much, and is a convenient way of profiling the actions
of a program: answering questions like: how often do
particular operators, names, or portions of the program get
executed?

Breakpoint skipping
Sometimes, you do not want to trigger a breakpoint every time
an event occurs. For instance, you may know from experience
that the 60th time the fill operator is used is the interesting
one.

Using the skip options allows you to handle this case
efficiently. Click Edit in the breakpoint control panel to view
or change the skip options.

Skip before is the number of times the breakpoint is ignored
before it is finally triggered. This will always be 0 when a
breakpoint is first created. Note that in the example above
(60th fill operator) you would need to set Skip before to 59.

After a breakpoint is hit, the value from Skip after is copied to
Skip before (but not itself altered). This value is initially 0, but
if, for instance you set it to 10, the breakpoint is triggered
every tenth time.

Breakpoint labels
When working with many breakpoints, especially in the
program source, it may be hard to keep track of which is
which. Using the Edit function from the breakpoint control
panel, you can change the default label assigned by PSAlter to
something more meaningful, and this is used in all contexts
where the breakpoint is reported.

 Using executive mode

Page 128

Using executive mode

Many PostScript printers allow an operator executive,
which is useful for experimenting with PostScript. Although it
is not necessary with PSAlter, it can occasionally be useful, so
PSAlter supports something similar to the printer facility.

Executive mode in a printer
You would use executive mode in a printer like this:

• Connect to the printer on a two-way connection, for
instance a serial cable using a communications program.

• Type the word executive and press return. The printer
won’t echo this back, so you will be typing ‘blind’.

• The printer will put out a prompt such as

• PostScript printer version 47.0
PostScript>

• You can now type PostScript commands and receive back
whatever responses the printer sends to the standard
output file. For instance, to find out what is on the stack,
you could type pstack.

• When finished, type quit to return the printer to its
normal state.

Executive mode in PSAlter workbench
This describes the basics of using PSAlter’s executive mode.

At any time while in the workbench you can enter executive
mode. Use the Run | Executive menu option or press its
keyboard shortcut Ctrl+E. An enlarged status line will appear

Using executive mode

Page 129

at the bottom of the screen, including an extra line for typing
commands (the ‘Executive line’).

You can type PostScript commands and press Return. The
commands you have typed are now ‘locked’ and cannot be
changed while they are running.

Once the commands have been run, PSAlter will return to the
Executive line and allow you to type more commands. The
previous command will still be in the line, but it will be
selected (highlighted). To type a new command there is no
need to delete the old one; it will replace it.

To leave executive mode press the Escape (Esc) key while the
cursor is in the Executive line. Once you have left executive
mode, any previously running program will resume.

The commands you type are logged in the output log, unless
you type false echo.

Combining executive mode with a program
window

You can start using executive at any time, whether or not a
program is currently running. If a program is running it will
be suspended as long as you are in executive mode. When you
leave executive mode the program will resume.

 Using executive mode

Page 130

There are several different possibilities for PSAlter interacting
with the program window.

• If the program was actually running, it will resume. If it
was walking, it will continue walking.

• If a program was paused (possibly at a breakpoint), on exit
from executive mode the program will still be paused, and
can be continued.

• If a program has finished (either because it reached the end,
or because it was stopped), executive mode will be able to
use the information left behind by the program
(procedures, data etc.). Note that many programs will end
with a restore operator and remove all the definitions
they have set up; in this case you may need to put a
breakpoint on restore if you want to work with those
definitions. Once you leave executive mode, Run | Start (or
the Run button) will start the program from the beginning
as a new job.

• If a program is open but not yet started, you cannot use
executive mode to set up data for the program, since when
you use Run | Start, the program is started as a new job.

It is possible to run external programs from executive mode.
For instance, you could type

(c:\\psalter\\demos\\tiger.ps) run

(Notice that PostScript requires backslashes \ to be doubled
up \\). You can do this even when another program is
running, though this may not do the first program any good.
One of the features of the run operator is that it will not report
any errors. To receive error reports normally, replace ‘run’ with
(r) file cvx exec, for instance

(c:\\psalter\\demos\\tiger.ps) (r) file cvx
exec

Using executive mode

Page 131

Additional notes
Entering executive mode

You can enter executive mode using Run | Executive or
Ctrl+E. You will also enter executive mode if the operator
executive is included in a program.

This can be used to go ‘interactive’ at critical parts of a
program you are debugging. By including it at the start of a
program, you will have the opportunity to change the
program’s environment before it gets started.

If you use Run | Executive or Ctrl+E when already in
executive mode it will return the cursor to the executive line.
This is especially useful if working without a mouse. If the
previous line has not finished running, you will be given the
chance to stop it and enter a new command.

Leaving executive mode
The easiest way to leave executive mode is to press the Escape
key which the cursor is in the executive line. You may have to
press Ctrl+E first if the cursor is not in this line.

You can also leave executive mode by typing quit, or by
running quit as part of a procedure.

Finally, you can leave executive by Run | Quit executive.

Controlling flow of executive commands
Most commands typed in executive finish almost immediately.
You can tell it has finished because while the command is
running it is written in grey text and cannot be changed.

Sometimes, though, a command will run for some time. In this
case you can use the full range of PSAlter’s control facilities.
This includes pausing, breakpoints, and single stepping, and
you can use Stop to end the command early. If you have a
suspended program in a window it is not affected by any of
these options.

 Using executive mode

Page 132

Side effects
If you use executive mode while a program is running, any
changes made in executive mode are persistent — that is, they
affect the program when it is resumed. This includes any
changes to stacks, data, and graphics state, as well as any
marks left on the page.

This is deliberate; it allows executive mode to be used to ‘fix
up’ a program, to save modifying it and starting again. You
should be aware, though, that you may stop the program from
working if, for instance, you clear the operand stack.

Some operators have unexpected side effects too — for
instance if you use ‘showpage’ you cannot rely on the program
carrying on as before on a fresh page, since showpage may
change the graphics state (such as scaling).

The only change which is completely undone on leaving
executive mode is any change to the execution stack. The
execution stack is also restored at the start of each new
executive command.

Changing the command
If you don’t change the command that has just executed, then
use Run or press return again, PSAlter prompts you to
confirm that you want to run the command again. This is to
stop ‘accidents’ caused by running a command twice.

To avoid the prompt, while running the same command again,
click on the command text once. If the highlighting is removed
(which clicking will do), the prompt is not issued.

Restrictions
You should be aware of these restrictions on executive mode.

• You can use cut, paste, copy and undo with the executive
line. But you cannot paste in multi-line text; it is cut off at
the first carriage return.

• You cannot re-enter executive mode when you are already

Using executive mode

Page 133

using it. Any attempt to use the executive operator when in
executive mode will get an error. Some printers will allow
this.

• You cannot type a command longer than 255 characters.

• You cannot define only the first part of a procedure, then
finish it on a subsequent line — all { } brackets must match
in the line you type.

• You cannot use commands which expect in-line data —
such as (typically) image.

• You can use Run | Walk (the Walk button) as well as Run |
Start (the Run button) to run an executive command.
However, PSAlter will not walk through the command you
type. It will, however, walk through any procedures you
refer to in an active program. When you press Return in the
executive line, it is equivalent to Run | Start.

 Implementation notes for PostScript programmers

Page 134

Implementation notes for Post-
Script programmers

Some of the details of PSAlter have subtle effects on the way
PostScript programs run. This section has details on a few of
them. You should be aware, however, that all of these details
may change in future releases; don’t build complex
applications which rely on the precise way PSAlter works.

Adding header files
When PSAlter starts, it reads a file called psalter.hdr. This is an
essential part of the setup, and without it the implementation
of PostScript would not be complete. Although psalter.hdr
should not be changed, it can be convenient to have your own
files read when PSAlter starts.

These are called header files, and can contain definitions of
procedures, emulations of particular printer features, or other
appropriate setup commands. If you create a file called user.ps
in the same directory as the PSAlter program psalter.exe, it will
automatically be run after psalter.hdr is finished.

Calling additional header files
If you do not want to put everything in user.ps, you can run
additional files from there. This can be done using the run or
file operators. Although run is easier to use, this means that no
error messages are reported, which can make problems hard
to find.

The following examples give three calls to additional header
files:

(test2.ps) run

Implementation notes for PostScript programmers

Page 135

This runs the file test2.ps, in the same directory as user.ps. No
errors will be reported, it will just stop reading test2.ps on the
first error, and continue with the next commands in the
current file.

(C:\\utils\\h2.ps) (r) file cvx exec

This runs the file c:\utils\h2.ps. Errors will be reported. Notice
that PostScript requires backslashes (\) to be doubled (\\).

{ (test2.ps) (r) file } stopped
not { cvx exec } if

This runs test2.ps, and detects any errors in it. It does not,
however, require that test2.ps exist, and will quietly ignore it if
the file is missing.

Error reporting in header files
Errors in header files are treated in the same way as in normal
files. Note, however, that the error pop-up has fewer choices -
essentially only Stop and Ignore.

The error message box is also modified to include the name of
the current file being read.

Additional notes and restrictions
• If you redefine existing operators in a header file, it is easy

to make PSAlter interpret PostScript wrongly. Take care.

• Don’t use any operators that attempt to draw on the
current device, or that try to set the device size. These may
cause PSAlter to fail.

• The header files may be read after PSAlter has started, if
certain setup options are changed (e.g. if switching from
level 1 to level 2).

• Test header files using level 1, since they will be used
whatever the emulation settings.

• You can use @yes?, a PSAlter extension to PostScript, to

 Implementation notes for PostScript programmers

Page 136

do conditional setup in the header. This is described in
Extensions on page 143.

• File viewer windows are never opened for files accessed
via the file operator while reading headers (see next
section).

Device dependent operators
Because the PostScript language originally did not include any
way to directly influence the device (e.g. printer) it was
running on — for instance to select a paper size — printers
each have a selection of device dependent operators.

There is no single standard for these operators, and they are
best avoided in any PostScript program intended to be
portable. PSAlter does not implement most of the device
dependent operators, so that it provides a better test for
portability.

However, some device dependent operators have been used in
so many printers, or are so useful, that they are in common
use. PSAlter implements a basic set, so that most programs
will work successfully.

Most of the operators in this class that PSAlter implements are
concerned with selecting a paper size. These operators will
override the page size selected in Imaging setup. The
operators implemented for paper size include: 11x17
11x17tray a3 a3tray a4 a4tray a5 b5 b5tray
folio ledger ledgertray legal legaltray letter
lettertray note quarto, and the typesetter operators
setpage and setpageparams. Very few printers would
have all of these operators, so portability is not guaranteed.

There are a few other operators too, including
setjobtimeout and resolution. For full details and a
complete list, check the online help file.

Note that these operators are mostly found in statusdict
and userdict, rather than the more usual systemdict.

Implementation notes for PostScript programmers

Page 137

The file operator
The file operator is used to access external files from
PostScript programs. Its behaviour is implementation
dependent.

Except when reading header files (which are handled as
described above) PSAlter implements the file operator using
file viewer windows. Remember that any use of the file
operator stops a PostScript file from being portable, and will
probably stop it from printing altogether.

With the file operator, file names have two parts, a device
and a file name. The device name always comes first, and is
surrounded by ‘%’ signs. Either can be omitted. Examples of
names — as PostScript strings — are
(%os%c:\\psalter\\demo\\tiger.ps) (file1)
(%stdout).

PSAlter currently ignores the device name. But if referring to
an external file, the device %os% is recommended. Notice that,
by the rules of PostScript, any backslash (\) appearing in the
name must be doubled up.

When reading a file for the first time, PSAlter requires a valid
file name, whatever the device. A window is opened viewing
that file; if the file does not exist the undefinedfilename
error is generated. When writing, the name can be anything;
subsequent attempts to read from the same name will succeed.

Remember that PSAlter does not save the contents of file
viewers. However, what is written into a named PostScript file
can be read in subsequent runs within the same session of
PSAlter, provided the file viewer is not closed.

Windows fonts
Windows fonts can be used as substitutes for PostScript fonts.
They are very similar to PostScript fonts, but have some
differences.

 Implementation notes for PostScript programmers

Page 138

Windows fonts look like Type 1 PostScript fonts, but only
superficially. The Private dictionary is empty and the
CharStrings dictionary contains special values. There are
also extra keys in the dictionary which PSAlter requires for
correct operation.

Windows fonts can be used for all operations a type 1 font
could be used for, including all show variants and charpath.

Windows fonts can also be re-encoded by providing a new
Encoding array. There are some limitations to this, though it
will work for most conventional (alphabetic) fonts and for
most symbol fonts if you check Symbol font when setting
them up. The limitations are as follows:

• You can only access characters in the normal Windows
character set. An attempt has been made to provide a
character for every glyph in StandardEncoding and
ISOLatin1Encoding. This includes the characters
lslash and Lslash, and the ligatures fi and fl. These
are simulated using existing characters.

• PSAlter normally assumes that the font follows the
Windows character encoding, with the characters named
according to the Adobe standard encoding. This means that
the default character ordering of the PSAlter font is not the
same as that of the Windows font.

• If you check Symbol font when setting up the substitution,
the font is assumed to have the same character names as
the font Symbol, and that all of the character positions are
correct.

• If an AFM (font metric) file can be found when setting up
the font, the information in it is used to build both the
initial Encoding array and the reverse mapping used to
find a windows character. All the basic 35 fonts have AFM
files supplied.

Implementation notes for PostScript programmers

Page 139

Where a Windows font is used, the Metrics, Metrics2,
CDevProc and WMode entries cannot be used to change
character spacing. They will be ignored.

 Also, when charpath is used, fonts are not ‘normalised’ so
that they are defined with outer paths anticlockwise; some
code may depend on fonts being defined in that order.

Error handling
PSAlter allows you to ignore PostScript errors. However, this
is at odds with the conventional PostScript error handling.

In most implementations, each error has an error handler in
errordict, which performs various functions then executes
stop. When the interpreter stops after an error, it will then
execute HandleError from errordict to produce any error
messages.

A program can stop errors from being fatal in two ways. Most
commonly, the stopped operator is used, so that if an error is
found, and stop is executed, the program can continue. The
second approach is to replace one or all of the error handlers in
errordict, to take its own recovery procedures.

PSAlter will report an error and allow you to ignore it if

• no stopped (or run) operator is in effect, and

• the error handler has not been modified.

This leaves one case where an error may not be detected
properly; where an error handler is replaced and still executes
stop.

Note that the error handlers included with many print jobs do
not use either of these techniques. Instead, they replace
HandleError, so that once an error has occurred, and the
program has stopped, they can report details of the error.
PSAlter will use these only if Handle rather than Stop is
chosen when an error is encountered. The default PSAlter
error handler logs a special error message.

 Implementation notes for PostScript programmers

Page 140

Execution stack
(This is very specialised and should be ignored if you don’t
understand it!)

The definition of the execution stack calls for a procedure to be
removed before executing the last item. While this does allow
unlimited recursion, such programs are rare. In fact far more
common are programs which, due to an error, would loop
forever. PSAlter does not remove items until after they are
executed, so that the execution stack can always be used to
trace back called procedures.

This potentially causes two problems.

Problems with restore
The restore operator will give the invalidrestore error
if any composite object on any stack is newer than the save
object. Given that PSAlter does not remove a procedure before
executing its last element, this code should fail:

save true { restore } if

However, this does not fail because of a special rule applied by
PSAlter: invalidrestore will never be reported for an
empty procedure. As the execution stack contains a procedure
with only the items remaining to be executed (i.e., none, in this
case), no error will occur.

Problems with recursion
A very few programs might legitimately use this feature for
recursion and would fail with the execstackoverflow
error. To avoid this, PSAlter checks before giving
execstackoverflow to see if the top element on the stack is
an empty procedure. If it is, then a message is issued.

The message box gives a choice of tidying up the execution
stack (Yes), or giving an error (No). If you choose Yes, all
empty procedures are removed from the top of the stack.
Furthermore, once you have chosen Yes, you will not be asked
again for the current session of PSAlter.

Implementation notes for PostScript programmers

Page 141

To demonstrate this effect for a file which will loop forever if
you reply Yes, try:

/zap { zap } def zap

A note on arithmetic accuracy
PSAlter 1.5 and above may give different results from earlier
versions, for work that includes complex arithmetic
calculations. Both may give different results from any
particular printer.

If you are performing calculation in PostScript you should be
aware that the accuracy in most implementations is very
limited, and rounding errors can quickly accumulate. It is best
to avoid complex calculations in PostScript.

PSAlter uses a slightly more accurate maths library than most
PostScript implementations. This means, of course, that it can
give different results.

PSAlter 1.5 was compiled with a different maths library from
earlier versions. This gives equally valid, but again possibly
different results.

The main culprit when PostScript programs are giving
radically different answers to calculations is the apparently
innocent cvi operator, which always truncates towards zero
rather than rounding, as many people expect.

Restrictions and limits
Missing operators

PSAlter implements all of the PostScript level 1 or level 2
operators which a printer must have.

It does, however, leave out a number of operators which might
be found in a typical printer, but which are not appropriate to
an interactive environment. These are device specific
extensions, to change such things as baud rate, time-outs,

 Implementation notes for PostScript programmers

Page 142

paper tray, or cover sheets. (The most common operators to set
page size are supported, however).

Other extensions to PostScript, including level 3 and some
operators which were added to some level 2 printers (e.g.
those related to CID fonts) are not included.

If any existing operators have restrictions, these are noted in
the online help for that operator.

Limits
The limitations in PSAlter are those of a typical level 1
interpreter, with some exceptions. Most obviously, the path
size can be increased using Limits setup.

If you select the Level 2 Emulation setup option, dictionaries
can grow beyond their original size. In all cases userdict can
grow, so you will not get the dictfull error for userdict.
The dictionary and operand stacks will also be able to grow.

The amount of VM available to a program depends on the
amount of memory available to Windows. No attempt is made
to reserve VM, so other running programs, or other parts of
PSAlter may reduce the maximum VM.

Device co-ordinates cannot exceed about 30000. This is far
outside the printable area, but a few programs use very large
co-ordinates. Using Limits Setup you can choose whether to
truncate large co-ordinates (which works in most cases) or to
get the limitcheck error. In a few cases, especially when
working with Windows fonts, overflow may not be detected,
and co-ordinates may wrap around with unwelcome
consequences.

Emulations
In ASCII, as opposed to binary, mode PSAlter should detect
Ctrl+D characters in images. At the time of writing it does not,
and so PSAlter may fail to complain about a file that would
not print (since a printer may treat Ctrl+D as end-of-file).

Implementation notes for PostScript programmers

Page 143

Failures
If an arithmetic overflow occurs on a real operation, PSAlter
may fail or issue an error message. Some interpreters may
return the rangecheck error when this occurs; others may
produce a meaningless large number.

Like many other programs, PSAlter is sometimes unable to
recover properly when running out of memory. It will usually
have become unacceptably slow before this happens. Often it
will manage to recover and give a VMerror message; if this
happens you would be well advised to restart PSAlter, and
possibly Windows itself, before trying to run anything else.

Extensions
PSAlter has avoided adding any extensions to PostScript, as
these make programs less portable. There are two extensions,
however, that are particularly suited to running and testing
programs in a Windows environment, and which have an
effect that cannot be achieved in standard PostScript. They are
the operators @popup and @yes? (notice that the latter name
includes a question mark). Both are actually procedures,
though they are described as operators.

In the examples given here, a test is made to ensure that the
operator actually exists. This is good practice and ensures that
the file can still be sent to a printer successfully.

@popup operator
This operator takes a single string as operand. A message box
pops up in the PSAlter window, containing the string. The
user must click OK to continue.

@popup is useful for noting exceptional events while
developing programs. For instance

currentlinewidth 0 eq
{ /@popup where
 { pop % excess results from where
 (Line width is zero!) @popup

 Implementation notes for PostScript programmers

Page 144

 } if
} if

@yes? operator
The @yes? operator can be used for simple interaction as a
program runs. Like @popup, it takes a single string as
operand. Unlike it, a boolean is returned. The message will be
displayed in a box, and the user must click Yes or No to
continue. If they click Yes, then @yes? will return true;
otherwise false.

For example:

/@yes? where
{ pop
 (Do you want to clear the path?)
 @yes?
 { newpath } if
} if

Other new operators
You will discover other new operators if you explore PSAlter.
Use them at your own risk; they will not be documented or
supported, and may change.

Implementation notes for PostScript programmers

Page 145

Appendices

 Appendix A: Built-in fonts

Page 146

Appendix A: Built-in fonts

Although each printer can in theory have a different set of
fonts, there is a set of 35 which is a recognised standard. It is
this set which PSAlter provides.

The 35 fonts include eight font families, each with normal,
italic, bold and bold italic variations, and three additional
fonts. They are listed in this table.

The section PSAlter and Fonts on page 71 describes how you
can add and modify font definitions in PSAlter, and how it

Font or family name Family?

Avant Garde yes

Bookman yes

Courier yes

Helvetica yes

Helvetica Narrow yes

New Century Schoolbook yes

Palatino yes

Symbol no

Times yes

Zapf Chancery no

Zapf Dingbats no

Appendix A: Built-in fonts

Page 147

uses the fonts installed in Windows to maintain the
appearance of a document.

When Windows is installed it only has three font families:
Arial (similar to Helvetica); Times New Roman (similar to
Times); and Courier New. It also has the single fonts Symbol
and Wingdings.

On the next page are examples of fonts as produced by
PSAlter. The first is using Adobe fonts (with Adobe Type
Manager); the second uses only the built in Windows fonts.
Although the appearance changes, you can see that the
spacing remains the same, so that the basic appearance and
readability of documents is preserved.

You can add more fonts to windows to make the fonts PSAlter
uses closer to the ‘real thing’. PSAlter recognises the fonts from
several popular font and graphics packages, and will
automatically use them if they are there. If you don’t have one
of these packages you can define your own lookalike fonts, but
it is more laborious.

Because the information is subject to change, the options you
have for installing third party fonts are described in a separate
document addfonts.txt in the PSAlter install directory
(typically c:\program files\quite\psalter.) At the time of writing,
several Adobe and Microsoft font packages are covered,
together with CorelDRAW versions 3, 4 and 5 (later versions
of CorelDRAW include the same fonts, but it is important to be
selective in installing them, as installing the full set of 1000+
fonts will make Windows unstable).

 Appendix A: Built-in fonts

Page 148

Font sample using real Adobe fonts

Font sample using basic Windows fonts

Appendix B: Keyboard shortcuts

Page 149

Appendix B: Keyboard shortcuts

If you do not use a mouse or other pointing device, almost all
of the functions in PSAlter are still available. The main
exceptions are those functions which require dragging the
mouse over an image viewer.

Even if you have a mouse, you may prefer to use the keyboard
for the common activities.

Because a number of operations apply to the current child
window in the workbench, you should make sure that the
current child is appropriate before using any function. For
instance Ctrl+C (copy) might apply to a program viewer or to
an image. Other functions will have no effect if used with the
wrong child active.

You can step between child windows using Ctrl+F6 or
Ctrl+Tab; some windows have a special code such as Ctrl+G
for the main program.

To access items from the main menu, click and release Alt or
F10, then use arrow keys or the underlined letters to navigate. The
right mouse menus are accessed by Shift+F10.

The next pages have a brief summary of keyboard shortcuts.
There is more detail in the online Help.

Common shortcuts

Keystroke(s) Function

F1 Open Help

Alt+F4 Exit PSAlter

 Appendix B: Keyboard shortcuts

Page 150

View mode / Workbench image windows

Ctrl+Ins or Ctrl+C Copy text or image to clipboard

F5 Start/resume execution, full speed

Pause Pause execution

Keystroke(s) Function

F7 Bring all images up-to-date

Shift+F7 Keep updating images (on/off)

arrow keys Scroll image slowly

Ctrl+arrow keys Scroll image to next screen

Home Find top left of picture/first line

End Find last line on page

PgDn Next screen down or next page

PgUp Next screen up or previous page

Ctrl+PgUp Next page

Ctrl+PgDn Previous page

Ctrl+Home First page

Ctrl+End Latest complete page (follow page)

^ (usually Shift-6) Current page (follow page)

@ Choose page to view (dialog)

+ Zoom in

Appendix B: Keyboard shortcuts

Page 151

Workbench, other than image windows

- Zoom out

= Zoom to natural size (100%)

* Zoom to fit window

Keystroke(s) Function

Ctrl+F1 Help on PostScript operator

Ctrl+F Search for text (Find)

Ctrl+S Save program

Ctrl+A Select all text

Ctrl+W Add a new watch

Ctrl+G Open/find main program window

Ctrl+B Open/find breakpoint window

Ctrl+L Open/find output log window

Ctrl+F4 Close current child window

Ctrl+F6 or Ctrl+Tab Move to next child window

Shift+Ins or Ctrl+V Paste from clipboard

Shift+Del or Ctrl+X Cut to clipboard

Alt+BackSpace Undo last edit

Ctrl+F5 Start/resume walking

Ctrl+Shift+F5 Walk speed control

F8 Single step

 Appendix B: Keyboard shortcuts

Page 152

Shift+F8 Single step, skip procedure full speed

Ctrl+F8 Single step, exit procedure full speed

F9 Set/clear source breakpoint

	Table of Contents
	Part 1: Getting started
	Installing PSAlter
	What you will need: system requirements
	Running the installation
	Uninstalling (removing) PSAlter
	Support
	Registration

	Introducing PostScript® and PSAlter
	What is PostScript?
	Level 1, level 2 and level 3 PostScript

	What can PSAlter do?
	The four modes of operation
	Example — viewing a PostScript file
	PostScript errors
	Font substitution
	Finding out more
	Other books

	Part 2: Using PostScript
	Viewing PostScript documents with PSAlter
	Zooming options
	Handling multiple pages
	Moving whole pages
	Moving part of a page

	Other options in view mode
	Exporting and copying the image
	Updating the image
	Searching for the picture

	The status line in View Mode

	Translating PostScript to other formats
	The formats PSAlter uses
	Windows Bitmap
	TIFF
	Encapsulated PostScript

	Using Translate
	A simple translation session
	Multi-page documents
	Options for cropping the picture

	Using translated files
	Windows Paint
	Word for Windows
	CorelDRAW

	Choosing setup options

	Using the “Where Am I” Function
	Where - text information
	Where - path information
	Where - bounding box
	Where - recent comments

	Setup options for PSAlter
	Imaging setup
	Imaging model
	Paper size
	Custom size option
	Orientation
	Resolution
	Use bounding box for EPS option
	Typical memory sizes per page

	Limits setup
	Path length
	Truncate large co-ordinates

	Emulation setup
	Language version choice
	Garbage collection option
	Stricter Checking option
	Colour images option
	Limited level 2 option
	Advertise level 2 option
	Serial/Parallel option (‘ASCII’)
	Binary option
	BCP option
	TBCP/PJL option

	Encapsulated PostScript and PSAlter
	How an application uses EPS
	About EPS previews
	EPSI format

	How PSAlter reads EPS
	If the page is blank

	How PSAlter writes EPS
	EPS export wrapper details
	EPS export problems
	EPS Export is not PostScript conversion

	PSAlter and fonts
	What is a font?
	PostScript fonts
	Fonts and Windows
	How PSAlter keeps the look of fonts
	Using Windows fonts to add extra fonts to PSAlter
	Handling missing fonts
	Other font setup options
	Working with user packages
	Using all ATM fonts
	Using font directories
	Using font metrics

	Part 3: Programming PostScript
	Introducing the PSAlter Workbench
	Handling child windows
	Using the Workbench — a tutorial
	Starting up
	Pausing, viewing the image
	Watching the image build
	Walking through the program
	Looking at some data
	Adding a ‘watch’
	Setting a breakpoint
	Some help

	Program and file viewers
	The main program window
	The current position options

	The output log (%stdout)
	Other file windows
	Hints for large files

	Controlling execution
	Running and walking
	Single stepping

	Image viewers
	Starting image viewers
	Overlay options
	Selecting a cutout box

	Data viewers
	Stack viewers
	Which way up?
	Expanding values
	Finding out more about an object

	Watch viewer
	Array and dictionary viewers
	Vanishing viewers

	String viewers
	Graphics state viewers
	Current font viewer
	Path items
	Graphics state stack

	Current path viewer
	Current halftone viewer
	Font name viewers
	Operator count viewer
	Memory info viewer
	Last error info

	Breakpoints
	The breakpoint control panel
	Operator breakpoints
	Name breakpoints
	Source breakpoints
	Image breakpoints
	Editing breakpoint options
	Breakpoint actions
	Breakpoint skipping
	Breakpoint labels

	Using executive mode
	Executive mode in a printer
	Executive mode in PSAlter workbench
	Combining executive mode with a program window
	Additional notes
	Entering executive mode
	Leaving executive mode
	Controlling flow of executive commands
	Side effects
	Changing the command

	Restrictions

	Implementation notes for PostScript programmers
	Adding header files
	Calling additional header files
	Error reporting in header files
	Additional notes and restrictions

	Device dependent operators
	The file operator
	Windows fonts
	Error handling
	Execution stack
	Problems with restore
	Problems with recursion

	A note on arithmetic accuracy
	Restrictions and limits
	Missing operators
	Limits
	Emulations
	Failures

	Extensions
	@popup operator
	@yes? operator
	Other new operators

	Appendices
	Appendix A: Built-in fonts
	Appendix B: Keyboard shortcuts
	Common shortcuts
	View mode / Workbench image windows
	Workbench, other than image windows

