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About This Manual

This manual contains information about the purpose of control design and 
the control design process. This manual also describes how to develop a 
control design system using the LabVIEW Control Design and Simulation 
Module.

This manual requires that you have a basic understanding of the LabVIEW 
environment. If you are unfamiliar with LabVIEW, refer to the Getting 
Started with LabVIEW manual before reading this manual.

This manual refers to control design and deployment concepts only. For 
information about using the Control Design and Simulation Module to 
simulate the behavior of dynamic systems, refer to the LabVIEW Help, 
available by selecting Help»Search the LabVIEW Help.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction 
to a key concept. Italic text also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames, and extensions.
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monospace bold Bold text in this font denotes the messages and responses that the computer 
automatically prints to the screen. This font also emphasizes lines of code 
that are different from the other examples.

Related Documentation
The following documents contain information that you might find helpful 
as you use the Control Design and Simulation Module.

• LabVIEW Help, available by selecting Help»Search the LabVIEW 
Help

• LabVIEW Real-Time Module documentation

• LabVIEW PID Control Toolkit User Manual

• Example VIs, located in the labview\examples\Control Design 
and Simulation directory. You also can access these VIs by 
selecting Help»Find Examples and selecting Toolkits and Modules»
Control and Simulation in the NI Example Finder window.

Note The following resources offer useful background information on the general 
concepts discussed in this documentation. These resources are provided for general 
informational purposes only and are not affiliated, sponsored, or endorsed by National 
Instruments. The content of these resources is not a representation of, may not correspond 
to, and does not imply current or future functionality in the Control Design and Simulation 
Module or any other National Instruments product.

• Åström, K., and T. Hagglund. 1995. PID Controllers: Theory, Design, 
and Tuning. 2d ed. ISA.

• Balbis, Luisella. 2006. Predictive Control Tool Kit. UKACC Control, 
2006. Mini Symposia. 87–96.

• Bertsekas, Dimitri P. 1999. Nonlinear Programming. 2d ed. Belmont, 
MA: Athena Scientific.

• Dorf, R. C., and R. H. Bishop. 2007. Modern Control Systems. 11th ed. 
Upper Saddle River, NJ: Prentice Hall.

• Franklin, G. F., J. D. Powell, and A. Emami-Naeini. 2005. Feedback 
Control of Dynamic Systems. 5th ed. Upper Saddle River, NJ: Prentice 
Hall.

• Franklin, G. F., J. D. Powell, and M. Workman. 1998. Digital Control 
of Dynamic Systems. 3d ed. Menlo Park, CA: Addison Wesley.

• Kuo, Benjamin C. 1995. Digital Control Systems. 2d ed. Oxford 
University Press.
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• Nise, Norman S. 2007. Control Systems Engineering. 5th ed. New 
York: Wiley.

• Ogata, Katsuhiko. 1994. Discrete-Time Control Systems. 2d ed. 
Englewood Cliffs, N.J.: Prentice Hall.

• Ogata, Katsuhiko. 2008. Modern Control Engineering. 5th ed. Upper 
Saddle River, NJ: Prentice Hall.

• Van Loan, C. 1978. Computing integrals involving the matrix 
exponential. IEEE Transactions on Automatic Control 
23 (3):395–404.

• Zhou, K., and J. C. Doyle. 1997. Essentials of Robust Control. Upper 
Saddle River, NJ: Prentice Hall.

The following books contain information about the ordinary differential 
equation (ODE) solvers the Control Design and Simulation Module uses.

• Ascher, U. M., and L. R. Petzold. 1998. Computer Methods for 
Ordinary Differential Equations and Differential-Algebraic 
Equations. Philadelphia: Society for Industrial and Applied 
Mathematics.

• Shampine, Lawrence F. 1994. Numerical Solution of Ordinary 
Differential Equations. New York: Chapman & Hall, Inc.
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1
Introduction to Control Design

Control design is a process that involves developing mathematical models 
that describe a physical system, analyzing the models to learn about their 
dynamic characteristics, and creating a controller to achieve certain 
dynamic characteristics. Control systems contain components that direct, 
command, and regulate the physical system, also known as the plant. In this 
manual, the control system refers to the sensors, the controller, and the 
actuators. The reference input refers to a condition of the system that you 
specify.

The dynamic system, shown in Figure 1-1, refers to the combination of the 
control system and the plant.

 

Figure 1-1.  Dynamic System

The dynamic system in Figure 1-1 represents a closed-loop system, also 
known as a feedback system. In closed-loop systems, the control system 
monitors the outputs of the plant and adjusts the inputs to the plant to make 
the actual response closer to the input that you designate.

One example of a closed-loop system is a system that regulates room 
temperature. In this example, the reference input is the temperature at 
which you want the room to stay. The thermometer senses the actual 
temperature of the room. Based on the reference input, the thermostat 
activates the heater or the air conditioner. In this example, the room is the 
plant, the thermometer is the sensor, the thermostat is the controller, and the 
heater or air conditioner is the actuator.

Controller Actuators

Sensors

Physical System
(Plant)

Reference

Control System
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Other common examples of control systems include the following 
applications:

• Automobile cruise control systems

• Robots in manufacturing

• Refrigerator temperature control systems

• Hard drive head control systems

This chapter provides an overview of model-based control design and 
describes how you can use the LabVIEW Control Design and Simulation 
Module to design a controller.

Model-Based Control Design
Model-based control design involves the following four phases: 
developing and analyzing a model to describe a plant, designing and 
analyzing a controller for the dynamic system, simulating the dynamic 
system, and deploying the controller. Because model-based control design 
involves many iterations, you might need to repeat one or more of these 
phases before the design is complete. Figure 1-2 shows how National 
Instruments provides solutions for each of these phases.

Figure 1-2.  Using LabVIEW in Model-Based Control Design

National Instruments also provides products for I/O and signal 
conditioning that you can use to gather and process data. Using these tools, 
which are built on the LabVIEW platform, you can experiment with 
different approaches at each phase in model-based control design and 
quickly identify the optimal design solution for a control system.

LabVIEW

Deployment

LabVIEW
Real-Time

Module

Control Design
and Simulation

LabVIEW
Control Design and
Simulation Module

Plant Modeling
and Analysis

LabVIEW System
Identification

Toolkit
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Developing a Plant Model
The first phase of model-based control design involves developing and 
analyzing a mathematical model of the plant you want to control. You can 
use a process called system identification to obtain and analyze this model. 
The system identification process involves acquiring data from a plant and 
then numerically analyzing stimulus and response data to estimate the 
parameters and order of the model.

The system identification process requires a combination of the following 
components:

• Signal generation and data acquisition—National Instruments 
provides software and hardware that you can use to stimulate and 
measure the response of the plant.

• Mathematical tools to model a dynamic system—The LabVIEW 
System Identification Toolkit contains VIs to help you estimate and 
create accurate mathematical models of dynamic systems. You can use 
this toolkit to create discrete linear models of systems based on 
measured stimulus and response data.

Note This manual does not provide a comprehensive discussion of system identification. 
Refer to the resources listed in the Related Documentation section of this manual for more 
information about developing a plant model.

Designing a Controller
The second phase of model-based control design involves two steps. 
The first step is analyzing the plant model obtained during the system 
identification process. The second step is designing a controller based on 
that analysis. You can use the Control Design VIs and tools to complete 
these steps. These VIs and tools use both classical and state-space 
techniques.

Figure 1-3 shows the typical steps involved in designing a controller.
 

Figure 1-3.  Control Design Process

Determine
Specifications

Create
Mathematical

Model

Analyze
System

Synthesize
Controller
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You often iterate these steps to achieve an acceptable design that is 
physically realizable and meets specific performance criteria.

Simulating the Dynamic System
The third phase of model-based control design involves validating the 
controller design obtained in the previous phase. You perform this 
validation by simulating the dynamic system. For example, simulating a jet 
engine saves time, labor, and money compared to building and testing an 
actual jet engine.

You can use the Control Design and Simulation Module to simulate linear 
time-invariant systems. This module also provides a variety of numerical 
integration schemes for simulating more elaborate systems, such as 
nonlinear systems. You also can use this module to determine how a system 
responds to complex, time-varying inputs.

Deploying the Controller
The fourth phase of model-based control design involves deploying the 
controller to a real-time (RT) target. LabVIEW and the LabVIEW 
Real-Time Module provide a common platform that you can use to 
implement the control system.

Refer to the National Instruments Web site at ni.com for information about 
the National Instruments products mentioned in this section.

Overview of LabVIEW Control Design
The Control Design and Simulation Module provides an interactive 
Control Design Assistant, a library of VIs, and a library of MathScript 
functions for designing a controller based on a model of a plant. You can 
use all these tools to complete the entire control design process from 
creating a model of the controller to synthesizing the controller on an 
RT target.

Control Design Assistant
You can use the Control Design Assistant to synthesize and analyze a 
controller for a user-defined model without knowing how to program in 
LabVIEW. You access the Control Design Assistant through the LabVIEW 
SignalExpress environment. LabVIEW SignalExpress is a framework that 
can host multiple interactive National Instruments tools and assistants.
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You also can use the Control Design Assistant to create a project. In one 
project, you can load or create a model of a plant into the Control Design 
Assistant, analyze the time or frequency response, and then calculate the 
controller parameters. With the Control Design Assistant, you immediately 
can see the mathematical equation and graphical representation that 
describe the model. You also can view the response data and the 
configuration of the controller.

Using the Control Design Assistant, you can convert a project to a 
LabVIEW block diagram and customize that block diagram in LabVIEW. 
You then can use LabVIEW to enhance and extend the capabilities of the 
application. Refer to the LabVIEW SignalExpress Help for more 
information about using the Control Design Assistant to analyze models 
that describe a physical system and design controllers to achieve specified 
dynamic characteristics.

Control Design VIs
The Control Design and Simulation Module also provides VIs that you can 
use to create and develop control design applications in LabVIEW. You 
can use these VIs to develop mathematical models of a dynamic system, 
analyze the models to learn about their dynamic characteristics, and create 
controllers to achieve specified dynamic characteristics. You use these VIs 
to customize a LabVIEW block diagram to achieve specific goals. You also 
can use other LabVIEW VIs and functions to enhance the functionality of 
the application. Refer to the LabVIEW Help, available by selecting Help»
Search the LabVIEW Help, for information about the Control Design 
VIs.

Unlike creating a project with the Control Design Assistant, creating a 
LabVIEW application using the Control Design VIs requires basic 
knowledge about programming in LabVIEW. Refer to the LabVIEW Help 
for more information about the LabVIEW programming environment.

Control Design MathScript Functions
The Control Design and Simulation Module also includes numerous 
functions that extend the functionality of the LabVIEW MathScript 
window. Use these functions to design and analyze controller models in a 
text-based environment. You generally can use the LabVIEW MathScript 
engine to execute scripts you have previously written using The 
MathWorks, Inc. MATLAB® application software. However, the 
MathScript engine is not intended to support all functions supported by the 
MATLAB application software.
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2
Constructing Dynamic System 
Models

Model-based control design relies upon the concept of a dynamic system 
model. A dynamic system model is a mathematical representation of the 
dynamics between the inputs and outputs of a dynamic system. You 
generally represent dynamic system models with differential equations or 
difference equations.

Obtaining a model of the dynamic system you want to control is the first 
step in model-based control design. You analyze this model to anticipate 
the outputs of the model when given a set of inputs. Using this analysis, you 
then can design a controller that affects the outputs of the dynamic system 
in a manner that you specify.

For example, consider the temperature-regulation example in the 
introduction of Chapter 1, Introduction to Control Design. You can analyze 
the open-loop dynamics of the plant to design an effective controller for this 
closed-loop dynamic system. A model for this closed-loop dynamic system 
describes the input to the plant as the air flow from the vent. The output of 
the plant is the temperature of the room. By analyzing the relationship 
between the inputs and output of the plant, you can predict how the plant 
reacts when given certain inputs. Based on this analysis, you then can 
design a controller for this dynamic system.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to create dynamic system models. This 
chapter also describes the different forms that you can use to represent a 
dynamic system model.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Model Construction directory for example VIs that demonstrate the concepts 
explained in this chapter.
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Constructing Accurate Models
To create a model of a system, think of the system as a black box that 
continuously accepts inputs and continuously generates outputs. Figure 2-1 
shows the basic black-box model of a dynamic system.

 

Figure 2-1.  Black-Box Model of a Dynamic System

You refer to this model as a black-box model because you often do not 
know the relationship between the inputs and outputs of a dynamic system. 
The model you create, therefore, has errors that you must account for when 
designing a controller.

An accurate model perfectly describes the dynamic system that it 
represents. Real-world dynamic systems, however, are subject to a variety 
of non-deterministic fluctuating conditions and interacting components 
that prevent you from making a perfect model. You must consider many 
external factors, such as random interactions and parameter variations. You 
also must consider internal interacting structures and their fundamental 
descriptions.

Because designing a perfectly accurate model is impossible, you must 
design a controller that accounts for these inaccuracies. A robust controller 
is one that functions as expected despite some differences between the 
dynamic system and the model of the dynamic system. A controller that is 
not robust might fail when such differences are present.

The more accurate a model is, the more complex the mathematical 
relationship between inputs and outputs. At times, however, increasing the 
complexity of the model does not provide any more benefits. For example, 
if you want to control the interacting forces and friction of a mechanical 
dynamic system, you might not need to include the thermodynamic effects 
of the system. These effects are complicated features of the system that do 
not affect the friction enough to impact the robustness of the controller. 
A model that incorporates these effects can become unnecessarily 
complicated.

H(s)Input Output
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Model Representation
You can represent a dynamic system using several types of dynamic system 
models. You also can represent each type of dynamic system model using 
three different forms. The following sections provide information about the 
different types and forms of dynamic system models that you can construct 
with the Control Design and Simulation Module.

Model Types
You base the type of dynamic system model on the properties of the 
dynamic system that the model represents. The following sections provide 
information about the different types of models you can create with the 
Control Design and Simulation Module.

Linear versus Nonlinear Models
Dynamic system models are either linear or nonlinear. A linear model 
obeys the principle of superposition. The following equations are true for 
linear models.

y1 = ƒ(x1)

y2 = ƒ(x2)

Y = ƒ(x1 + x2) = y1 + y2

Conversely, nonlinear models do not obey the principle of superposition. 
Nonlinear effects in real-world systems include saturation, dead-zone, 
friction, backlash, and quantization effects; relays; switches; and rate 
limiters. Many real-world systems are nonlinear, though you can linearize 
the model to simplify a design or analysis procedure. You can use the 
Trim & Linearize VIs to perform this linearization task.

The Control Design and Simulation Module supports both linear and 
nonlinear models.
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Time-Variant versus Time-Invariant Models
Dynamic system models are either time-variant or time-invariant. The 
parameters of a time-variant model change with time. For example, you can 
use a time-variant model to describe the mass of an automobile. As fuel 
burns, the mass of the vehicle changes with time.

Conversely, the parameters of a time-invariant model do not change with 
time. For an example of a time-invariant model, consider a simple robot. 
Generally, the dynamic characteristics of robots do not change over short 
periods of time.

The Control Design and Simulation Module supports time-invariant 
models only.

Continuous versus Discrete Models
Dynamic system models are either continuous or discrete. Both continuous 
and discrete system models can be linear or nonlinear and time-invariant or 
time-variant. Continuous models describe how the behavior of a system 
varies continuously with time, which means you can obtain the properties 
of a system at any certain moment from the continuous model. Discrete 
models describe the behavior of a system at separate time instants, which 
means you cannot obtain the behavior of the system between any two 
sampling points.

Continuous system models are analog. You derive continuous models of a 
physical system from differential equations of the system. The coefficients 
of continuous models have clear physical meanings. For example, you can 
derive the continuous transfer function of a resistor-capacitor (RC) circuit 
if you know the details of the circuit. The coefficients of the continuous 
transfer function are the functions of R and C in the circuit. You use 
continuous models if you need to match the coefficients of a model to some 
physical components in the system.

Discrete system models are digital. You derive discrete models of a 
physical system from difference equations or by converting continuous 
models to discrete models. In computer-based applications, signals and 
operations are digital. Therefore, you can use discrete models to implement 
a digital controller or to simulate the behavior of a physical system at 
discrete instants. You also can use discrete models in the accurate 
model-based design of a discrete controller for a plant.

The Control Design and Simulation Module supports continuous and 
discrete models.
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Model Forms
You can use the Control Design and Simulation Module to represent 
dynamic system models in the following three forms: transfer function, 
zero-pole-gain, and state-space. Refer to the Constructing Transfer 
Function Models section, the Constructing Zero-Pole-Gain Models 
section, and the Constructing State-Space Models section of this chapter 
for information about creating and manipulating these system models.

Table 2-1 shows the equations for the different forms of dynamic system 
models.

Note Continuous transfer function and zero-pole-gain models use the s variable to define 
time, whereas discrete models in these forms use the z variable. Continuous state-space 
models use the t variable to define time, whereas discrete state-space models use the 
k variable.

You can use these forms to describe single-input single-output (SISO), 
single-input multiple-output (SIMO), multiple-input single-output 
(MISO), and multiple-input multiple-output (MIMO) systems. The number 
of sensors and actuators determines whether a dynamic system is a SISO, 
SIMO, MISO, or MIMO system.

Table 2-1.  Definitions of Continuous and Discrete Systems

Model 
Form Continuous Discrete

Transfer
Function

Zero-Pole-
Gain

State-Space

H s( ) b0 b1s … bm 1– sm 1– bmsm
+ + + +

a0 a1s … an 1– sn 1– ansn
+ + + +

----------------------------------------------------------------------------------------------=

H Hi j=

H z( ) b0 b1z … bm 1– zm 1– bmzm
+ + + +

a0 a1z … an 1– zn 1– anzn
+ + + +

----------------------------------------------------------------------------------------------=

H Hi j=

H s( ) k s z1–( ) s z2–( )… s zm–( )
s p1–( ) s p2–( )… s pn–( )

-------------------------------------------------------------------------------=

H Hi j=

H z( ) k z z1–( ) z z2–( )… z zm–( )
z p1–( ) z p2–( )… z pn–( )

-------------------------------------------------------------------------------=

H Hi j=

x· Ax Bu+=

y Cx Du+=

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( ) Du k( )+=
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The following sections provide information about an example dynamic 
system and how to represent this dynamic system using all three model 
forms.

RLC Circuit Example
Figure 2-2 shows an example circuit consisting of a resistor R, an inductor 
L, a current i(t), a capacitor C, a capacitor voltage vc(t), and an input 
voltage vi(t).

 

Figure 2-2.  RLC Circuit

The following sections use this example to illustrate the creation of three 
forms of dynamic system models. 

Constructing Transfer Function Models
Transfer function models use polynomial functions to define the dynamic 
relationship between inputs and outputs of a system. You analyze transfer 
function models in the frequency domain. The following equations define 
continuous and discrete transfer function models.

Continuous Transfer Function Model

 

Discrete Transfer Function Model

 

L R

vc (t )vi (t )

i (t )

C
+

–

H s( ) numerator s( )
denominator s( )
--------------------------------------

b0 b1s … bm 1– sm 1– bmsm+ + + +

a0 a1s … an 1– sn 1– ansn+ + + +
---------------------------------------------------------------------------------= =

H z( ) numerator z( )
denominator z( )
--------------------------------------

b0 b1z … bm 1– zm 1– bmzm+ + + +

a0 a1z … an 1– zn 1– anzn+ + + +
---------------------------------------------------------------------------------= =
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Numerators of transfer function models describe the locations of the zeros 
of the system. Denominators of transfer function models describe the 
locations of the poles of the system.

Use the CD Construct Transfer Function Model VI to create continuous 
SISO, SIMO, MISO, and MIMO system models in transfer function form. 
This VI creates a data structure that defines the transfer function model and 
contains additional information about the system, such as the sampling 
time, input or output delays, and input and output names. Refer to the 
Obtaining Model Information section of this chapter for information about 
other properties of transfer function models.

SISO Transfer Function Models
Using the example in the RLC Circuit Example section of this chapter, you 
can describe the voltage of the capacitor vc using the following second 
order differential equation:

After taking the Laplace transform and rearranging terms, you then can 
write the transfer function between the input voltage Vi and the capacitor 
voltage Vc using the following equation.

You then can use H(s) to study the dynamic properties of the RLC circuit. 
The following equation defines a continuous transfer function where 
R = 20 Ω, L = 50 mH, and C = 10 μF.

LCv··c RCv·c vc+ + vi=

Vc s( )
Vi s( )
-------------

1
LC
-------

s2 Rs
L

------ 1
LC
-------+ +

------------------------------- H s( )= =

H s( ) 2 106×
s2 400s 2 106×+ +
----------------------------------------------=
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Figure 2-3 shows how you use the CD Construct Transfer Function Model 
VI to create this continuous transfer function model.

 

Figure 2-3.  Creating a Continuous Transfer Function Model

The Numerator and Denominator inputs are arrays with zero-based 
indexes. The ith element of the array corresponds to the ith order coefficient 
of the polynomial. You define the coefficients in ascending order.

Note The CD Construct Transfer Function Model VI does not automatically cancel 
polynomial roots appearing in both the numerator and the denominator of the transfer 
function. Refer to Chapter 10, Model Order Reduction, for information about cancelling 
pole-zero pairs.

The CD Construct Transfer Function Model VI creates a continuous model. 
You can create a discrete transfer function model in one of two ways. The 
method you use depends on whether you know the coefficients of the 
discrete transfer function model.

If you know the coefficients of the discrete transfer function model, you can 
enter in the appropriate values for Numerator and Denominator and set 
the Sampling Time (s) to a value greater than zero. Figure 2-4 shows this 
process using a sampling time of 10 μs.

Figure 2-4.  Using Coefficients to Create a Discrete Transfer Function Model
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If you do not know the coefficients of the discrete transfer function model, 
you must use the CD Convert Continuous to Discrete VI for the conversion. 
Set the Sampling Time (s) parameter of this VI to a value greater than 
zero. Figure 2-5 shows this process using a sampling time of 10 μs.

Figure 2-5.  Using the CD Convert Continuous to Discrete VI to Create a Discrete 
Transfer Function Model

Converting from a continuous model to a discrete model results in the 
following equation:

Refer to the Converting Continuous Models to Discrete Models section of 
Chapter 3, Converting Models, for more information about converting 
continuous models to discrete models.

SIMO, MISO, and MIMO Transfer Function Models
You can use the CD Construct Transfer Function Model VI to create 
SIMO, MISO, and MIMO dynamic system models. This section uses a 
MIMO dynamic system model as an example.

Consider the two-input two-output system shown in Figure 2-6.

H z( ) 9.9865 10 5– z 9.9732 10 5–×+×
z2 1.9958z– 0.996+

---------------------------------------------------------------------------=
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Figure 2-6.  MIMO System with Two Inputs and Two Outputs

You can define the transfer function of this MIMO system by using the 
following transfer function matrix H, where each element represents a 
SISO transfer function.

Suppose the following equations define the SISO transfer functions 
between each input-output pair.

  

 

Select the MIMO instance of the CD Construct Transfer Function Model 
VI to create a MIMO transfer function model. You then can specify each 
transfer function between the j th input and the i th output as the ij th element 
of the two-dimensional Transfer Function(s) input array. Figure 2-7 
shows that the numerator-denominator pair of the first row and first column 
corresponds to H11, the numerator-denominator pair of the first row and 
second column corresponds to H12, and so on.

H11

H21

H12

H22

Y1

Y2

U1

U2

MIMO System

H H11 H12

H21 H22

=

H11
1
s
---= H12

2
s 1+
-----------=

H21
s 3+

s2 4s 6+ +
--------------------------= H22 4=
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Figure 2-7.  Creating a MIMO Transfer Function Model

The elements in the Numerator and Denominator arrays correspond to 
the coefficients, in ascending order, of the numerator and denominator in 
the Hij transfer function model. For example, the numerator of H11 is 1, 
which corresponds to the zero-order coefficient. Therefore, the first 
element in the Numerator array for H11 is 1. The denominator of H11 is s, 
which means the value 0 corresponds to the zero-order coefficient and the 
value 1 corresponds to the first-order coefficient. Therefore the first 
element in the Denominator array for H11 is 0 and the second element is 1.

Symbolic Transfer Function Models
Symbolic models define the transfer function using variables rather than 
numerical values. If you want to change the value of R, for example, you 
only need to make the change in one location instead of several locations. 
Select the SISO (Symbolic) or MIMO (Symbolic) instance of the 
CD Construct Transfer Function Model VI to create a SISO or MIMO 
symbolic transfer function model, respectively.
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The following equation is a symbolic version of the transfer function 
originally defined in the SISO Transfer Function Models section of this 
chapter.

Specify the Symbolic Numerator and Symbolic Denominator 
coefficients using the variable names R, L, and C. You then specify values 
of the numerator and denominator coefficients in the variables input, 
as shown in Figure 2-8.

 

Figure 2-8.  Creating a SISO Symbolic Transfer Function Model

Constructing Zero-Pole-Gain Models
Zero-pole-gain models are rewritten transfer function models. When you 
factor the polynomial functions of a transfer function model, you get a 
zero-pole-gain model. This factoring process shows the gain and the 
locations of the poles and zeros of the system. The locations of these poles 
determine the stability of the dynamic system.

You analyze zero-pole-gain models in the frequency domain. The 
following equations define continuous and discrete zero-pole-gain models, 
where the numerators and denominators are products of first-order 
polynomials.

H s( )

1
LC
-------

s2 Rs
L

------ 1
LC
-------+ +

-------------------------------=
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Continuous Zero-Pole-Gain Model

 

Discrete Zero-Pole-Gain Model

 

In these equations, k is a scalar quantity that represents the gain, zi 
represents the locations of the zeros, and pi represents the locations of the 
poles of the system model.

Numerators of zero-pole-gain models describe the location of the zeros of 
the system. Denominators of zero-pole-gain models describe the location 
of the poles of the system.

Use the CD Construct Zero-Pole-Gain Model VI to create SISO, SIMO, 
MISO, and MIMO system models in zero-pole-gain form. This VI creates 
a data structure that defines the zero-pole-gain model and contains 
additional information about the system, such as the sampling time, input 
or output delays, and input and output names. Refer to the Obtaining Model 
Information section of this chapter for information about other properties 
of zero-pole-gain models.

SISO Zero-Pole-Gain Models
Using the example in the RLC Circuit Example section of this chapter, 
the following equation defines a continuous zero-pole-gain model where 
R = 20 Ω, L = 50 mH, and C = 10 μF.

Hi j s( ) k

s zi+

i 0=

m

∏

s pi+

i 0=

n

∏
----------------------

k s z1–( ) s z2–( )… s zm–( )
s p1–( ) s p2–( )… s pn–( )

----------------------------------------------------------------= =

Hi j z( ) k

z zi+

i 0=

m

∏

z pi+

i 0=

n

∏
----------------------

k z z1–( ) z z2–( )… z zm–( )
z p1–( ) z p2–( )… z pn–( )

----------------------------------------------------------------= =

H s( ) 2 106×
s 200 1400i+ +( ) s 200 1400i–+( )

-------------------------------------------------------------------------------------- 2 106×
s 200 1400i±+( )

------------------------------------------= =
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This equation defines a model with one pair of complex conjugate poles at 
–200 ± 1400i.

Figure 2-9 shows how you use the CD Construct Zero-Pole-Gain Model VI 
to create this continuous zero-pole-gain model.

 

Figure 2-9.  Creating a Continuous Zero-Pole-Gain Model

The CD Construct Zero-Pole-Gain Model VI creates a continuous model. 
You create a discrete zero-pole-gain model in the same way you create a 
discrete transfer function model. Refer to the SISO Transfer Function 
Models section of this chapter for more information about creating a 
discrete zero-pole-gain model.

SIMO, MISO, and MIMO Zero-Pole-Gain Models
You create SIMO, MISO, and MIMO zero-pole-gain models the same way 
you create SIMO, MISO, and MIMO transfer function models. Refer to the 
SIMO, MISO, and MIMO Transfer Function Models section of this chapter 
for information about creating these forms of system models.

Symbolic Zero-Pole-Gain Models
You create symbolic zero-pole-gain models the same way you create 
symbolic transfer function models. Refer to the Symbolic Transfer 
Function Models section of this chapter for information about creating a 
symbolic system model.

Constructing State-Space Models
Continuous state-space models use first-order differential equations to 
describe the system. Discrete state-space models use difference equations 
to describe the system. You analyze state-space models in the time domain.
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Note State-space models can be either deterministic or stochastic. Deterministic models 
do not account for noise, whereas stochastic models do. This chapter provides information 
about deterministic state-space models. Refer to Chapter 16, Using Stochastic System 
Models, for information about stochastic state-space models.

The following equations define a continuous and a discrete state-space 
model.

Continuous State-Space Model

Discrete State-Space Model

Table 2-2 describes the dimensions of the vectors and matrices of a 
state-space model.

Table 2-2.  Dimensions and Names of State-Space Model Variables

Variable Dimension Name

k — Discrete time

n — Number of states

m — Number of inputs

r — Number of outputs

A n × n matrix State matrix

B n × m matrix Input matrix

C r × n matrix Output matrix

D r × m matrix Direct transmission matrix

x n-vector State vector

u m-vector Input vector

y r-vector Output vector

x· Ax Bu+=

y Cx Du+=

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( ) Du k( )+=
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Use the CD Construct State-Space Model VI to create SISO, SIMO, MISO, 
and MIMO system models in state-space form. This VI creates a data 
structure that uses matrices to define the state-space model. The matrices 
are zero-based two-dimensional arrays of numbers where the ij th element of 
the array corresponds to the ij th element of matrices in a state-space model. 
You can assume that an nth order system with m inputs and r outputs has 
state, input, and output vectors as defined in the following equations:

State-space models also contain additional information about the system, 
such as the sampling time, input or output delays, and input and output 
names. Refer to the Obtaining Model Information section of this chapter for 
information about other properties that state-space models contain.

SISO State-Space Models
Using the example in the RLC Circuit Example section of this chapter, 
the following equations define a continuous state-space model.

In these equations, y equals the voltage of the capacitor vc, and u equals the 
input voltage vi.

x equals the voltage of the capacitor and the derivative of that voltage .

x

x0

x1

...

xn 1–

= u

u0

u1

..

um 1–

= y

y0

y1

..

yr 1–

=

x· vc
·

vc
··

0 1
1

LC
-------– R

L
---–

vc

vc
·

0
1

LC
-------

vi+= =

y vc 1 0
vc

vc
· 0 vi+= =

vc

vc
·
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The following matrices define a state-space model where R = 20 Ω, 
L = 50 mH, and C = 10 μF.

 

 

When you plug these matrices into the equations for a continuous 
state-space model defined in the Constructing State-Space Models section 
of this chapter, you get the following equations:

Figure 2-10 shows how you use the CD Construct State-Space Model VI to 
create this continuous state-space model.

 

Figure 2-10.  Creating a Continuous State-Space Model

Note Although B is a column vector, C is a row vector, and D is a scalar, you must use the 
2D array data type when connecting these inputs to the VI.

A 0 1

2– 106× 400–
= B 0

2 106×
=

C 1 0= D 0=

x· 0 1

2– 106× 400–

vc

vc
·

0

2 106×
vi+=

y 1 0
vc

vc
· 0 vi+=
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The CD Construct State-Space Model VI creates a continuous model. You 
create a discrete state-space model in the same way you create a discrete 
transfer function model. Refer to the SISO Transfer Function Models 
section of this chapter for more information about creating a discrete 
state-space model.

SIMO, MISO, and MIMO State-Space Models
You construct a SIMO, MISO, or MIMO state-space model by ensuring the 
output matrix C and the input matrix B have the appropriate dimensions. 
For a SIMO system, construct an output matrix C with more than one row. 
For a MISO system, construct an input matrix B with more than one 
column. For a MIMO system, construct matrices C and B with more than 
one row and column, respectively.

When you create a SIMO, MISO, or MIMO system, ensure that the direct 
transmission matrix D has the appropriate dimensions. If you leave D 
empty or unwired, the Control Design and Simulation Module replaces the 
missing values with zeros.

Symbolic State-Space Models
You create symbolic state-space models the same way you create a 
symbolic transfer function model. Refer to the Symbolic Transfer Function 
Models section of this chapter for more information about creating a 
symbolic system model.

Obtaining Model Information
Each of the Model Construction VIs creates not only a data structure that 
defines the model, but also a set of properties that provide information 
about the system. These properties are common in all three model forms. 
Table 2-3 lists the properties and their corresponding data types.

Table 2-3.  Model Properties

Property Data Type Description

Model Name String Assigns a name to a specific model.

Input Names 1D array of strings The i th element of the array defines the 
name of the i th input to the model.

Output Names 1D array of strings The i th element of the array defines the 
name of the i th output of the model.
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You can use these data structures with every VI in the Control Design and 
Simulation Module that accepts a system model as an input. 

Note Delay information exists in the model properties and not in the mathematical model. 
Any analysis, such as time- or frequency-domain analysis, you perform on the model does 
not account for delay present in the model. If you want the analysis to account for delay 
present in the model, you must incorporate the delay into the model itself. Refer to 
Chapter 6, Working with Delay Information, for more information about accounting for 
model delay.

You can use the Model Information VIs to get and set various properties 
of the model. Refer to the LabVIEW Help, available by selecting Help»
Search the LabVIEW Help, for more information about using the Model 
Information VIs to view and change the properties of a system model.

Input Delays 1D array of double-precision, 
floating-point numeric values

The i th element of the array defines the time 
delay of the i th input of the model.

Output Delays 1D array of double-precision, 
floating-point numeric values

The i th element of the array defines the time 
delay of the i th output of the model.

Transport Delay 1D array of double-precision, 
floating-point numeric values

The ij th element of the array defines the time 
delay between the i th output and j th input of 
the model.

Notes String A string for storing additional data. The 
string can contain comments or other 
information that you want to store with the 
model.

Sampling Time Double-precision, 
floating-point numeric value

Represents the sampling time, in seconds, 
of the system. If a model represents a 
continuous system, the value of Sampling 
Time is zero. For discrete system models, 
the value must be greater than zero.

State Names Array of strings The i th element of the array defines the 
name of the i th state of the model. This 
property is available with state-space 
models only.

Table 2-3.  Model Properties (Continued)

Property Data Type Description
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3
Converting Models

Model conversion involves changing the representation of dynamic system 
models. For example, you can convert a zero-pole-gain model to a 
state-space model. You also can convert a model between continuous and 
discrete types.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to convert between model forms and to 
convert between continuous and discrete models.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Model Conversion directory for example VIs that demonstrate the concepts 
explained in this chapter.

Converting between Model Forms
You can use three different model forms—transfer function, 
zero-pole-gain, and state-space—to describe the same dynamic system. 
Refer to Chapter 2, Constructing Dynamic System Models, for more 
information about these model forms. You can use the Control Design and 
Simulation Module to convert from one form to another.

Converting between model forms is important because each form provides 
different information about the system. For example, state-space models 
use the states of a system to show physical information about the system. 
Thus, observing physical information about a dynamic system is less 
complicated when the model for that dynamic system is in state-space 
form.

You also can use different analysis and synthesis techniques depending on 
the form of the model. For example, if a model for a system is in transfer 
function form, you can synthesize a controller for that system using 
classical control design techniques such as the root locus technique. If the 
model is in state-space form, you can design a controller using state-space 
control design techniques such as the pole placement technique. Refer to 
Chapter 11, Designing Classical Controllers, and Chapter 12, Designing 
State-Space Controllers, for more information about classical and 
state-space control design techniques.
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The following sections discuss the Model Conversion VIs you can use to 
convert between model forms.

Converting Models to Transfer Function Models
Use the CD Convert to Transfer Function Model VI to convert a 
zero-pole-gain or state-space model to a transfer function model. This 
section uses a state-space model as an example.

Note Because transfer function models do not include state information, you lose the state 
vector x when you convert a state-space model to a transfer function model. Additionally, 
the Control Design and Simulation Module might not be able to recover the same states if 
you convert the model back to state-space form.

Consider the continuous state-space model defined in the Constructing 
State-Space Models section of Chapter 2, Constructing Dynamic System 
Models.

For continuous systems, you can use the Laplace transform to convert from 
the time domain to the Laplace domain model representation.

Note The equations in this section convert model forms within both the continuous and 
discrete domains. Refer to the Converting between Continuous and Discrete Models 
section of this chapter for information about converting between continuous and discrete 
domains.

Applying the Laplace transform to the state-space model results in the 
following equation:

In this equation, s is the Laplace variable, and I is the identity matrix with 
the same dimensions as A.

x· Ax Bu+=

y Cx Du+=

Y s( ) C Is A–( ) 1– B D+[ ]U s( )=
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The ratio between the output Y(s) and input U(s) defines the following 
matrix transfer function model H(s).

For example, consider the following second-order MISO state-space 
system model.

Using the Laplace transform, you obtain the transfer function matrix H(s).

Converting Models to Zero-Pole-Gain Models
Use the CD Convert to Zero-Pole-Gain Model VI to convert a transfer 
function or state-space model to a zero-pole-gain model. This section uses 
a transfer function model as an example.

Note When you convert a state-space model to a zero-pole-gain model, the CD Convert 
to Zero-Pole-Gain Model VI converts the state-space model to a transfer function model 
first.

To convert the transfer function matrix H(s) to the zero-pole-gain form, 
the Control Design and Simulation Module calculates the numerator and 
denominator polynomial roots and the gain of each SISO transfer function 
in H(s).

H s( ) Y s( )
U s( )
-----------≡ C Is A–( ) 1– B D+=

x· 1– 2
0 1–

x 1 0
0 1

u+=

y 1 0 x 0 0 u+=

H s( ) 1
s 1+
----------- 2

s2 2s 1+ +
--------------------------=
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When you convert the transfer function matrix from the Converting Models 
to Transfer Function Models section of this chapter, you obtain the 
following zero-pole-gain model:

This zero-pole-gain model is numerically identical to the transfer function 
model. The zero-pole-gain form, however, shows the locations of the zeros 
and poles of a system.

Converting Models to State-Space Models
Use the CD Convert to State-Space Model VI to convert a zero-pole-gain 
or transfer function model to a state-space model. This section uses a 
zero-pole-gain model as an example.

Note When you convert a zero-pole-gain model to a state-space model, the CD Convert 
to State-Space Model VI converts the zero-pole-gain model to a transfer function model 
first.

When converting a transfer function or zero-pole-gain model, you can 
specify whether you want the resulting state-space model to be full or 
minimal. A full state-space model does not reduce the number of states 
determined by a least common denominator calculation. A minimal 
state-space model reduces the number of states and produces a minimal 
representation of the original model. Use the Realization Type parameter 
of the CD Convert to State-Space Model VI to specify if you want the 
resulting model to be full or minimal. Refer to the Obtaining the Minimal 
Realization of Models section of Chapter 10, Model Order Reduction, 
for more information about minimizing state-space realizations. 

Using the example in the Converting Models to Transfer Function Models 
section of this chapter, the following equation gives the minimal realization 
when converting a zero-pole-gain model to a state-space model.

H s( ) 1
s 1+
----------- 2

s 1+( )2
------------------=

x· 0.33– 0.94
0.47– 1.67–

x 0.41– 0
0.29 0.87–

u+=

y 2.45– 0 x 0 0 u+=
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This model numerically differs from the initial state-space model. From the 
input-output model perspective, however, the state-space models are 
identical.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for more information about the Model Conversion VIs.

Converting between Continuous and Discrete Models
Continuous models are analog and operate using physical components. 
Discrete models are digital and operate on a computer or real-time (RT) 
target. To determine how an analog model performs on a digital target, you 
can convert the continuous model to a discrete model. You also can convert 
a discrete model to a continuous model.

Additionally, you can resample a discrete model. Resampling involves 
converting a discrete model to a discrete model with a different sampling 
time. Resampling is useful when the sampling time of a model does not 
match the sampling time of the target on which that model operates. In this 
situation, you resample the model to use the sampling time of the target.

The Model Conversion VIs provide a number of mathematical methods that 
perform these conversions. Table 3-1 summarizes these methods, which are 
substitutions between the continuous Laplace-transform operator and the 
discrete z-transform operator.

Table 3-1.  Mapping Methods for Converting between Continuous and Discrete

Method of Approximation Continuous to Discrete Discrete to Continuous

Forward Rectangular 
Method

Backward Rectangular 
Method

s z 1–
T

-----------→ z 1 sT+→

s z 1–
zT

-----------→ z 1
1 sT–
---------------→
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In these equations, T represents the sample time and w represents the 
prewarp frequency. T* is a modified sample time that the Prewarp method 
uses in converting between continuous and discrete models.

The following sections provide information about the methods that you can 
use to perform continuous to discrete conversions, discrete to continuous 
conversions, and discrete to discrete conversions.

Converting Continuous Models to Discrete Models
To convert a continuous model to a discrete one, first approximate the 
value of the derivative in the continuous equation over each change in time. 
Then find the area of the geometric region having width dt and height equal 
to the derivative.

For example, consider the following first-order continuous differential 
equation:

Tustin’s Method

Prewarp Method

Table 3-1.  Mapping Methods for Converting between Continuous and Discrete (Continued)

Method of Approximation Continuous to Discrete Discrete to Continuous

s 2 z 1–( )
T z 1+( )
--------------------→

z
1 sT

2
------+

1 sT
2

------–
---------------→

s z z 1–( )
T∗ z 1+( )
-----------------------→

T ∗
2 w T×

2
-------------⎝ ⎠
⎛ ⎞tan

w
-------------------------------=

z
1 sT ∗+
1 sT ∗–
-------------------→

T ∗
2 w T×

2
-------------⎝ ⎠
⎛ ⎞tan

w
-------------------------------=

y· f t( )=
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To convert this continuous model to a discrete model, evaluate the 
derivative function ƒ(t) at different points to approximate  at time t. 
Figure 3-1 illustrates the function ƒ(t) between t and t + T, where T is the 
sampling time.

Figure 3-1.  Discretizing a Differential Equation

Integrating between time t and t + T results in the following difference 
equation:

Integrating f(τ) for τ = t to t + T represents the area under the curve. 
The CD Convert Continuous to Discrete VI provides the following 
mathematical methods to approximate this area.

• Forward Rectangular

• Backward Rectangular

• Tustin’s

• Prewarp

• Zero-Order-Hold

• First-Order-Hold

• Z-Transform

• Matched Pole-Zero

The following sections provide information about each of these methods.

y·

f(t)

t t + T

y· τd

t

t T+

∫ y t T+( ) y t( )– f τ( ) τd

t

t T+

∫= =
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Forward Rectangular Method
The Forward Rectangular method considers ƒ(τ) constant and equal to 
ƒ(t + T) along the integration range. This consideration results in the 
following equation:

This method considers the incremental area term between sampling times t 
and t + T as a rectangle of width T and height equal to ƒ(t + T ), as shown 
in Figure 3-2.

Figure 3-2.  Forward Rectangular Method

Figure 3-2 shows that, for this example, the Forward Rectangular method 
overestimates the area under the curve. To minimize this overestimation, 
use a small sampling interval. Depending on the direction and size of the 
curve you are measuring, this overestimation might not occur.

Backward Rectangular Method
The Backward Rectangular method considers ƒ(τ) constant and equal to 
ƒ(t) along the integration range. This consideration results in the following 
equation:

y t T+( ) y t( ) f t T+( )T+=

f(t)

t t + T

Forward
f(t + T)

y t T+( ) y t( ) f t( )T+=
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This method considers the incremental area term between sampling times t 
and t + T as a rectangle of width T and height equal to ƒ(t), as shown in 
Figure 3-3.

Figure 3-3.  Backward Rectangular Method

Figure 3-3 shows that, for this example, the Backward Rectangular method 
underestimates the area under the curve. To minimize this underestimation, 
use a small sampling interval. Depending on the direction and size of the 
curve you are measuring, this underestimation might not occur.

Tustin’s Method
Tustin’s method, also known as the trapezoid method, uses trapezoids 
to provide a balance between the Forward Rectangular and Backward 
Rectangular methods. Tustin’s method takes the average of the rectangles 
defined by the Forward and Backward Rectangular methods and uses the 
average value as the incremental area to approximate the area under the 
curve.

Tustin’s method considers ƒ(τ) constant and equal to the average between 
ƒ(t) and ƒ(t + T) along the integration range, which results in the following 
equation:

f(t)

t t + T

Backward
f(t + T)

y t T+( ) y t( ) f t( ) f t T+( )+[ ]
2

-----------------------------------------T+=
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The last term in this equation is identical to the area of a trapezoid of height 
T and bases ƒ(t) and ƒ(t + T). Figure 3-4 shows the area under a curve using 
Tustin’s method.

Figure 3-4.  Tustin’s Method

Figure 3-4 shows that, for this example, Tustin’s method provides a balance 
between the overestimation of the Forward Rectangular and the 
underestimation of the Backward Rectangular method.

Prewarp Method
The Prewarp method is a trapezoidal type of transformation that uses the 
prewarp frequency ω to adjust the sampling time T. This adjustment results 
in a separate sampling time T*. This adjustment also compensates for errors 
introduced in the discretizing process.

This method also considers ƒ(τ) constant and equal to the average between 
ƒ(t) and ƒ(t + T*) along the integration range, which results in the 
following equation:

t t + T

Tustin

y t T+( ) y t( ) f t( ) f t T *+( )+[ ]
2

-------------------------------------------T+=
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The last term in this equation is identical to the area of a trapezoid of 
height T and bases ƒ(t) and ƒ(t + T*). Figure 3-5 shows the area under a 
curve using the Prewarp method.

 

Figure 3-5.  Prewarp Method

Figure 3-5 shows that, for this example, the Prewarp method compensates 
for the integration error by adjusting the sampling time to T*. The area 
between t + T and t + T* is roughly equal to the integration error, which is 
represented by the unshaded portion of the area under the curve.

Use a particular conversion method based on the model that you are 
converting and the requirements of the application for which you are 
designing a control system.

Zero-Order-Hold and First-Order-Hold Methods
The Zero-Order-Hold and First-Order-Hold methods assume properties of 
the continuous differential equation . The Zero-Order-Hold 
method assumes that ƒ(t) consists of an input that you can hold constant 
during the integration period between sampling times t and t + T. The 
First-Order-Hold method assumes that you can increase this input over 
time during this same period. These methods also integrate the remaining 
terms of ƒ(t) not related to the input because these terms refer to the internal 
state dynamics.

t t + T

Prewarp

t + T *

y· f t( )=
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You obtain the following equation after integrating a linear time-invariant 
system between sampling times t and t + T.

In this equation, u(t) is the input to the system and is not necessarily 
constant between sampling times t and t + T. The following equation shows 
the Zero-Order-Hold method approximating the input to a constant value 
u(t) during the integration time.

Conversely, the following equation shows the First-Order-Hold method 
ramping the input values with a constant slope [u(t + T) – u(t)]/T during 
integration time.

Refer to Digital Control of Dynamic Systems, as listed in the Related 
Documentation section of this manual, for more information about the 
Zero-Order-Hold and First-Order-Hold methods.

Z-Transform Method
The Z-Transform method is defined such that the continuous and discrete 
impulse responses maintain major similarities. You calculate the impulse 
response of the discrete transfer function by multiplying the inverse 
Laplace transform of the continuous transfer function by the sampling 
time T.

Refer to Discrete-Time Control Systems, as listed in the Related 
Documentation section of this manual, for more information about the 
Z-Transform method.

x t T+( ) eATx t( ) eA t T τ+ +( )Bu τ( )d τ

t

t T+

∫+=

y t( ) Cx t( ) Du t( )+=

x t T+( ) eATx t( ) eA t T τ+ +( )Bd τ u t( )

t

t T+

∫+=

x t T+( ) eATx t( ) eA t T τ+ +( )B u t( ) u t T+( ) u t( )–[ ] τ t–( )
T

---------------+
⎩ ⎭
⎨ ⎬
⎧ ⎫

d τ

t

t T+

∫+=
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Matched Pole-Zero Method
The Matched Pole-Zero method uses the following relationship between 
the continuous s and discrete z frequency domains.

In this equation, T is the sampling time used for the discrete system. The 
Matched Pole-Zero method maps continuous-time poles and finite zeros to 
the z-plane using this relation. This method also maps zeros at infinity to 
z = 0, so these zeros do not affect the frequency response.

After the algorithm maps the poles and zeros, the algorithm then attempts 
to make sure the system gains are equivalent at some critical frequency. If 
the systems have no poles or zeros at s = 0 or z = 1, the Matched Pole-Zero 
method selects a discrete-time gain such that the system gains match at 
these locations.

Alternatively, if the systems have no poles or zeros at s = p(i/T) or z = –1, 
where p is the location of a pole, this method equalizes the gains at that 
frequency. If the Matched Pole-Zero method cannot match either of these 
gains, the algorithm does not choose a gain.

Refer to Digital Control of Dynamic Systems, as listed in the Related 
Documentation section of this manual, for more information about the 
Matched Pole-Zero method.

Converting Discrete Models to Continuous Models
Use the CD Convert Discrete to Continuous VI to convert a discrete model 
to a continuous model. This VI supports the following conversion methods: 
Forward Rectangular, Backward Rectangular, Tustin’s, Prewarp, 
Z-Transform, and Zero-Order-Hold. This VI does not support the 
First-Order-Hold or Matched Pole-Zero methods. Refer to Table 3-1 for 
the equations for each mapping method.

The Z-Transform method also is a reverse calculation to map a model in the 
z-plane to the s-plane. You calculate the impulse response of the continuous 
transfer function by dividing the inverse z-transform of the discrete transfer 
function by the sampling time T. 

z esT=
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Resampling a Discrete Model
Use the CD Convert Discrete to Discrete VI to resample a discrete model. 
This VI converts the discrete model to a continuous model and then 
converts the continuous model back to a discrete model. The first 
conversion uses the initial sampling time T1. The second conversion uses 
the final sampling time T2.

The CD Convert Discrete to Discrete VI supports the following conversion 
methods: Forward Rectangular, Backward Rectangular, Tustin’s, Prewarp, 
Zero-Order-Hold, and Z-Transform. This VI does not support the 
First-Order-Hold or Matched Pole-Zero methods.
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4
Connecting Models

You typically create a dynamic system model by connecting many models, 
or subsystems, together. Connecting many models together makes 
developing a model of a complicated dynamic system less complicated 
because you can describe the dynamics of individual pieces.

You can connect continuous models only to other continuous models. To 
connect discrete models together, each model must have the same sampling 
time. Connected models might, however, be of any form. For example, 
you can connect a transfer function model to a state-space model or a 
state-space model to a zero-pole-gain model.

Furthermore, you can make connections between single-input 
single-output (SISO), single-input multiple-output (SIMO), multiple-input 
single-output (MISO), and multiple-input multiple-output (MIMO) 
systems.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to connect models in the following four 
ways: in series, by appending, in parallel, and with feedback.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Model Connection directory for example VIs that demonstrate the concepts 
explained in this chapter.

Connecting Models in Series
A series connection joins the outputs of the first model to the inputs of a 
second model. Use the CD Series VI to connect two models in series.

Note When connecting models of different forms, the Series Model output returns a 
model based on the following hierarchy: state-space>transfer function>zero-pole-gain. 
For example, if you connect a zero-pole-gain model to a state-space model, Series Model 
returns a state-space model.

The following sections provide information about the kinds of connections 
you can make with the CD Series VI.



Chapter 4 Connecting Models

Control Design User Manual 4-2 ni.com

Connecting SISO Systems in Series
Consider a valve that controls the flow rate of water into a tank. Figure 4-1 
represents this system.

 

Figure 4-1.  Flow of Water into a Tank

If you assume that the incoming water pressure to the valve is constant, 
only the valve input signal affects the level of the water in the tank. You can 
model the flow rate of water into the tank using the following transfer 
functions, where Hv(s) is a model of the valve and Ht(s) is a model of the 
tank.

I(s), Q(s), and L(s) represent the Laplace transform of the input signal, the 
flow rate, and the level of water in the tank, respectively. The constants Kv, 
τ, ζ, and Kt are parameters of the models that describe the valve and tank. 
To obtain the effect of the input signal on the water level, place the two 
systems in series and multiply their transfer functions.

Ht (s) L

L(s): Level

I(s): Input Signal

Hv(s)

Q(s): Flow Rate

Hv s( ) Q s( )
I s( )
-----------≡

Kv

τ2s2 2ζτs 1+ +
-------------------------------------= Ht s( ) L s( )

Q s( )
-----------≡

Kt

s
-----=

H s( ) L s( )
I s( )
----------≡ Hv s( ) Ht s( )⋅

Kv

τ2s2 2ζτs 1+ +
-------------------------------------

Kt

s
-----⋅= =
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This equation represents the output of Hv(s) connecting to the input of 
Ht(s). Figure 4-2 illustrates this relationship.

 

Figure 4-2.  Valve Model and Tank Model in Series

The resulting SISO system H(s) now represents the relationship between 
the input signal I(s) and the level of water L(s) in the tank.

Creating a SIMO System in Series
You can create a SIMO system by connecting two or more SISO systems 
with a SIMO subsystem. For example, adding another valve and tank to the 
example in the Connecting SISO Systems in Series section of this chapter 
results in a SIMO system that divides the flow rate between two different 
tanks. Figure 4-3 shows this system.

 

Figure 4-3.  Dividing the Flow of Water between Two Tanks

Hv(s) = Q(s)/I(s) Ht(s) = L(s)/Q(s)
Q(s)I(s) L(s)

H(s) = Hv(s)*Ht(s) = L(s)/I(s)
I(s) L(s)

Ht1(s) L1

L1(s): Level Tank 1

I(s): Input Signal

Hv 2(s)

Q1(s)

Ht 2(s) L2

L2(s): Level Tank 2

Q2(s)

Hv 1(s)

Q(s): Flow Rate
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Hv2(s) is a SIMO transfer function matrix that represents the relationship of 
the flow rates. By connecting Hv2(s) to Hv1(s) and Q(s), the entire system 
becomes SIMO. The total flow rate Q(s) is equal to the sum of the parts 
Q1(s) and Q2(s).

The constant λ represents the fraction of flow sent to the first tank, whereas 
(1 – λ) is the remaining fraction of flow sent to the second tank.

When you connect these models in series, the output of the first system 
Hv1(s) connects to the input of the second system Hv2(s). Figure 4-4 
illustrates this relationship.

 

Figure 4-4.  Two Valve Models and Two Tank Models in Series

This combined system, which now is a SIMO system, has one input I(s) and 
two outputs L1(s) and L2(s). Figure 4-5 is a LabVIEW block diagram that 
illustrates this system.

 

Figure 4-5.  Block Diagram of the Two Valves and Tanks in Series

Q s( ) Q1 s( ) Q2 s( )+ λQ s( ) 1 λ–( )Q s( )+= =

Hv2 s( ) λ
1 λ–

=

Ht2(s) = L2(s)/Q2(s)
Q2(s) = (1 – λ)Q(s) L2(s)

Ht1(s) = L1(s)/Q1(s)
Q1(s) = λQ(s) L1(s)

Hv 2(s)
Q(s)

Hv1(s) = Q(s)/I(s)
I (s)
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Connecting MIMO Systems in Series
When connecting MIMO systems, you can connect any output of the first 
model to any input(s) of the second model. Figure 4-6 shows an example 
of two MIMO system models connected in series.

 

Figure 4-6.  MIMO System Models in Series

Figure 4-6 shows how the outputs of Model 1 that are connected to the 
inputs of Model 2 do not appear as outputs of the resulting series model. 
For example, because z0 connects to the Model 2 inputs v1 and v2, z0 is no 
longer an output of the resulting series model. Similarly, because z2 
connects to v0, z2 is no longer an output of the resulting series model.

z0

z2

z1

zl

v0

v2

v1

vk

Model 2

y0

y2

y1

yi

u0

u2

u1

uj

z1

zl

Model 1
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This same principle applies to the inputs of Model 2. Inputs of Model 2 that 
are connected to an output of Model 1 no longer appear as inputs of the 
resulting series model. Because the input v0 of Model 2 is connected to the 
output of z2 of Model 1, neither v0 nor z2 appear in the resulting series 
model.

You define the connections between two models using the Connections 
control of the CD Series VI. Figure 4-7 shows the settings this control used 
to connect the models in Figure 4-6.

 

Figure 4-7.  Connection Definitions for Models in Series

The control in Figure 4-7 indicates that the Model 1 output z0 connects to 
the Model 2 inputs v1 and v2. You also can see how the Model 1 output z2 
connects to the Model 2 input v0.

Appending Models
You can append models together to compare the time or frequency 
response of two models in the same plot. Use the CD Append VI to produce 
an augmented model from connections between two models. This 
augmented model contains all inputs and outputs of both models. With 
state-space models, states of the first model are combined with states of the 
second model.
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Figure 4-8 shows two appended system models.

Figure 4-8.  Appended Models

For example, consider the two tanks from the Creating a SIMO System in 
Series section of this chapter. The following equations define the transfer 
functions of the tanks.

K1 and K2 are the gains of their respective transfer functions. Appending 
Ht1(s) and Ht2(s) results in the following appended matrix transfer 
function Ht.

Model 2

y0

y2

y1

yi

Model 1

z0

z2

z1

zl

v0

v2

v1

vk

u0

u2

u1

uj

Ht1 s( )
K1

s
------= Ht2 s( )

K2

s
------=

Ht
Ht1 s( ) 0

0 Ht2 s( )
=
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Figure 4-9 uses the block diagram from Figure 4-5 but replaces the Tanks 
input with Ht. As in Figure 4-5, the two valves are connected in series with 
each other. In Figure 4-9, however, the two tanks now are appended to each 
other.

 

Figure 4-9.  Appending the Two Tanks

Connecting Models in Parallel
A parallel connection creates a single model from two separate systems that 
share common inputs. You also can use a parallel connection to add or 
subtract outputs of two subsystems and represent them as a single output. 
Use the CD Parallel VI to connect systems in parallel.

For example, consider the circuit system in Figure 4-10.
 

Figure 4-10.  Circuit System
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The input of this system is the voltage v. The output of this system is the 
total current i, which is the sum of currents i1 and i2. R1 and R2 are resistors, 
and L1 and L2 are inductors. The following equations describe the 
individual currents for the circuit system in Figure 4-10.

The following equations give the resulting transfer functions for each 
circuit loop.

In Figure 4-11, H1(s) and H2(s) represent the transfer functions defined in 
the previous equations, and I1(s) and I2(s) are the respective outputs of these 
transfer functions. V(s) is the transfer function of the voltage input v that 
both circuit loops share.

 

Figure 4-11.  Each Circuit Loop in the Circuit System
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Figure 4-12 illustrates the relationship between the voltage input v and total 
current i by placing both models together in one larger system model. When 
the two models are in parallel, both models share the same input V(s) and 
provide a total output I(s), as shown in Figure 4-12.

 

Figure 4-12.  Entire Circuit System as a Parallel Model

The following equations describe the resulting transfer function as a 
second-order system.

H1(s)

H2(s)

V(s) I(s) 

I s( ) I1 s( ) I2 s( )+ V s( ) H1 s( ) H2 s( )+[ ]= =

H s( ) I s( )
V s( )
----------- H1 s( ) H2 s( )+= =
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Figure 4-13 illustrates how some inputs from Model 1 and Model 2 share 
the same inputs. The outputs of Model 1 are added to or subtracted from the 
outputs of Model 2 to provide one combined parallel model.

 

Figure 4-13.  MIMO Models in Parallel
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Use the CD Parallel VI to define the relationship between the inputs and 
outputs of the models. Figure 4-14 displays the Input Connections and 
Output Connections controls that define the parallel interconnections 
shown in Figure 4-13.

 

Figure 4-14.  Connection Definitions for Models in Parallel

These controls indicate that the input for u0 of Model 1 is the same as the 
input for v1 of Model 2, the input for u1 of Model 1 is the same as the input 
for v0 of Model 2, and so on. You can see how the y2 output of Model 2 
is subtracted from the z0 output of Model 1. You also can see how the 
z2 output of Model 1 is added to the y0 output of Model 2. You define 
addition and subtraction by specifying the output as a Positive (+) or 
Negative (–) connection.

In Figure 4-13, notice that any common inputs from the original models are 
replaced by a new input wn in the resulting model. Likewise, any combined 
outputs of the original models are replaced by a new output xn in the 
resulting model.

Placing Models in a Closed-Loop Configuration
Use the CD Feedback VI to place one or two models in a closed-loop 
configuration. The Feedback Connections and Output Connections 
parameters define the connections between the outputs of a model to the 
inputs of the same model or a second model. If the models have an unequal 
number of inputs and outputs, the CD Feedback VI establishes a number 
of connections equal to the smaller number of inputs or outputs. The 
remaining inputs or outputs remain unmodified.
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For example, a model with m inputs and r outputs, where m < r, has m 
number of reference inputs. Similarly, a model with m inputs and r outputs, 
where m > r, has r number of reference inputs. All original yr outputs 
remain in the resulting model.

The following sections provide information about how the CD Feedback VI 
configures the closed-loop feedback when you have one or two models in 
the closed-loop configuration. The following sections also describe the 
behavior of this VI when you leave connections undefined.

Single Model in a Closed-Loop Configuration
When you only have one model in a closed-loop configuration, the 
CD Feedback VI connects the outputs to the inputs of the same model. 
You define these connections using the Feedback Connections and the 
Feedback Sign parameters.

The following sections provide information about the configuration of the 
model when you define and do not define connections.

Feedback Connections Undefined
If you do not define Feedback Connections, all outputs from Model 1 are 
fed back to the inputs of Model 1. Additionally, the Feedback Sign input 
determines if these outputs are fed back negatively or positively. The 
resulting model, shown in Figure 4-15, contains new reference inputs r0 
and r1 for each feedback connection you specify.

 

Figure 4-15.  One Model with No Connections Defined
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Feedback Connections Defined
If you define Feedback Connections, each specified output in Model 1 is 
fed back to each specified input of Model 1. You also define whether the 
connection is positive or negative. In this situation, the CD Feedback VI 
ignores the Feedback Sign input. The resulting model, shown in 
Figure 4-16, contains a new reference input r0 for each feedback 
connection you specify.

 

Figure 4-16.  One Model with Connections Defined

Two Models in a Closed-Loop Configuration
When you have two models in a closed-loop configuration, the first model 
is always in the open-loop path, and the second model is always in the 
feedback path. You have the option to define feedback connections, output 
connections, both types of connections, or no types of connections.

Within the CD Feedback VI, Feedback Connections defines the 
connection between the outputs of Model 2 and the inputs of Model 1. 
Output Connections defines the connection between the outputs of 
Model 1 and the inputs of Model 2. By default, the CD Feedback VI 
connects the models with negative feedback.

The resulting model differs depending on the number of connections you 
define. The following sections provide information about the configuration 
of the models when you define or do not define connections.
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Feedback and Output Connections Undefined
If you do not define Feedback Connections or Output Connections, 
the CD Feedback VI tries to connect all the outputs of Model 1 to the 
corresponding inputs of Model 2. The CD Feedback VI also tries to 
connect all the outputs of Model 2 to the corresponding inputs of Model 1. 
The Feedback Sign input determines if these outputs are fed back 
negatively or positively. By default, the CD Feedback VI connects the 
models with negative feedback.

The resulting model, shown in Figure 4-17, contains new reference inputs 
r0 and r1 for each feedback connection.

 

Figure 4-17.  Two Models with No Connections Defined
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Feedback Connections Undefined, Output 
Connections Defined
If you do not define Feedback Connections but define Output 
Connections, the CD Feedback VI connects the specified outputs for 
Model 1 to the specified inputs for Model 2. You define whether each 
connection is positive or negative. Because you have not defined Feedback 
Connections, the CD Feedback VI connects all outputs of Model 2 to the 
corresponding inputs in Model 1 based on the Feedback Sign.

Note All outputs of Model 1, whether they are connected to Model 2 outputs or not, 
remain as outputs in the resulting model. Conversely, Model 2 outputs do not remain in the 
resulting model when fed back to Model 1 inputs.

The resulting model, shown in Figure 4-18, contains new reference inputs 
r0 and r1 for each feedback connection.

 

Figure 4-18.  Two Models with Output Connections Defined
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Feedback Connections Defined, Output Connections 
Undefined
If you define Feedback Connections but not Output Connections, 
the CD Feedback VI feeds the outputs specified for Model 2 back to 
the specified inputs for Model 1. You define whether the feedback 
connection is positive or negative. Because you have not defined Output 
Connections, the CD Feedback VI tries to connect all outputs of Model 1 
positively to the inputs in Model 2.

The resulting model, shown in Figure 4-19, contains a new reference input 
r0 for each feedback connection you have defined.

 

Figure 4-19.  Two Models with Feedback Connections Defined
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Both Feedback and Output Connections Defined
If you specify connections in both Feedback Connections and in 
Output Connections, you define all connections. Based on the 
connections you specified in Output Connections, the outputs specified 
for Model 1 are connected to the inputs specified for Model 2. You define 
whether the connection is positive or negative. 

Based on the connections you specified in Feedback Connections, the 
outputs specified for Model 2 are fed back to the inputs specified for 
Model 1. You also define whether the feedback connection is positive or 
negative. Outputs of Model 2 not specified in Feedback Connections 
are removed from the resulting model. Again, because you specified 
connections using the Feedback Connections, the CD Feedback VI 
ignores the Feedback Sign input.

In the resulting model, shown in Figure 4-20, you can see how the 
CD Feedback VI creates a new reference input r0 for each feedback 
connection you specified.

 

Figure 4-20.  Two Models with Feedback and Output Connections Defined
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5
Time Response Analysis

The time response of a dynamic system provides information about how 
the system responds to certain inputs. You analyze the time response to 
determine the stability of the system and the performance of the controller.

Obtaining the time response of a system involves numerically integrating 
the system model in time. The LabVIEW Control Design and Simulation 
Module provides VIs to help you find these time-domain solutions. You can 
use these Time Response VIs to analyze the response of a system to step 
and impulse inputs. You can apply initial conditions to both of these 
responses. You also can use the Time Response VIs to simulate the 
response of the system to an arbitrary input.

This chapter provides information about using the Control Design and 
Simulation Module to measure and analyze the time response of a system. 
This chapter also provides information about solving the time-domain 
equations and simulating arbitrary inputs.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Time Analysis directory for example VIs that demonstrate the concepts 
explained in this chapter.

Calculating the Time-Domain Solution
The following equation represents the time-domain solution for a 
continuous state-space model.

x0 represents any initial conditions of the states in the model. eAtx0 
represents the solution of the model at the initial conditions. This solution 
is known as the free response.

x t( ) eAtx0 eA t τ–( )Bu τ( )dτ

0

t

∫+=
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 represents the state response for stable systems over 

time as the inputs u(τ) drive the dynamic system from time t = t0 to t. This 
solution is the forced response.

The following equation represents the time-domain solution for a discrete 
state-space model.

In this equation,  denotes the discrete free response.

 denotes the discrete forced response.

Note The VIs discussed in this chapter automatically convert transfer function and 
zero-pole-gain models to state-space form before calculating the time-domain solution.

Spring-Mass Damper Example
To illustrate the different time responses you can obtain from a model, 
consider the following example of a spring-mass damper, shown in 
Figure 5-1.

eA t τ–( )Bu τ( )dτ

0

t

∫

x k( ) Akx 0( ) Ak j– 1– Bu j( )
j 0=

k 1–

∑+=

Akx 0( )

Ak j– 1– Bu j( )
j 0=

k 1–

∑
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Figure 5-1.  Spring-Mass Damper System

In this example, k is the spring constant, u is a force, m is the mass, and b 
is the damper coefficient. x is the displacement, which is the distance from 
the normal state of the spring to the current position of the spring. You can 
represent this spring-mass damper system with the following state-space 
model:

For this example, consider the following values:

The following equations define the state-space model.

u

x

b

k

m

x· Ax Bu+
0 1
k
m
----– b

m
----–

x
0
1
m
----

u+= =

y Cx Du+ 1 0 x 0 u+ x= = =

k 50kN
cm
------- m 100kg b 10kN s⋅

cm
-------------= = =

x· 0 1
0.5– 0.1–

x 0
0.01

u+=

y 1 0 x 0 u+ x= =



Chapter 5 Time Response Analysis

Control Design User Manual 5-4 ni.com

The following sections show how this system responds to different inputs.

Analyzing a Step Response
The step response of a dynamic system measures how the dynamic system 
responds to a step input signal. The following equations define a unit step 
input signal.

The Control Design and Simulation Module contains two VIs to help you 
measure the step response of a system and then analyze that response. The 
CD Step Response VI returns a graph of the step response. The CD 
Parametric Time Response VI returns the following response data that 
helps you analyze the step response.

• Rise time (tr)—The time required for the dynamic system response to 
rise from a lower threshold to an upper threshold. The default values 
are 10% for the lower threshold and 90% for the upper threshold.

• Maximum overshoot (Mp)—The dynamic system response value that 
most exceeds unity, expressed as a percent.

• Peak time (tp)—The time required for the dynamic system response to 
reach the peak value of the first overshoot.

• Settling time (ts)—The time required for the dynamic system 
response to reach and stay within a threshold of the final value. The 
default threshold is 1%.

• Steady state gain—The final value around which the dynamic system 
response settles to a step input.

• Peak value (yp)—The value at which the maximum absolute value of 
the time response occurs.

Note You can modify the default values for the rise time thresholds and the settling time 
threshold using the Rise Time Thresholds (%) and Settling Time Threshold (%) 
parameters of the CD Parametric Time Response VI. 

u t( ) 0= when t 0<
u t( ) 1= when t 0≥
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Figure 5-2 shows a sample step response graph and the locations of the 
parametric response data.

 

Figure 5-2.  Step Response Graph and Associated Parametric Response Data

For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 5-3 shows how you determine the 
step response and associated parametric response data of this system.

Figure 5-3.  Step Response Block Diagram of the Spring-Mass Damper System
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Figure 5-4 shows the Step Response Graph resulting from this block 
diagram.

 

Figure 5-4.  Step Response Graph of the Spring-Mass Damper System

You can see that the step input causes this system to settle at a steady-state 
value of 0.02 cm.

When you use the CD Parametric Time Response VI to analyze the step 
response of this system, you obtain the following response data:

• Rise time (tr)—1.42 seconds

• Maximum overshoot (Mp)—79.90%

• Peak time (tp)—4.54 seconds

• Settling time (ts)—89.89 seconds

• Steady state gain—0.02 cm

• Peak value (yp)—0.04 cm
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Figure 5-5 shows the output of the CD Parametric Time Response VI.

Figure 5-5.  Parametric Data of the Spring-Mass Damper System

Analyzing an Impulse Response
The impulse response of a dynamic system measures how the system 
responds to an impulse input signal. You define an impulse input signal in 
the following manner:

• Continuous systems—Also known as the Dirac delta function, 
a continuous impulse input is a unit-area signal with an infinite 
amplitude and infinitely small duration occurring at a specified time. 
At all other times, the input signal value is zero.

• Discrete systems—Also known as the Kronecker delta function, 
a discrete impulse input is a physical pulse that has unit amplitude 
at the first sample period and zero amplitude for all other times.

Use the CD Impulse Response VI to calculate the impulse response of a 
dynamic system to a standard impulse input. Because the impulse signal 
excites all frequencies and the duration of this signal is infinitely small, 
the impulse response is the natural response of the system.
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For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 5-6 shows how you determine the 
impulse response of this system.

Figure 5-6.  Impulse Response Block Diagram of the Spring-Mass Damper System

Figure 5-7 shows the Impulse Response Graph resulting from this block 
diagram.

 

Figure 5-7.  Impulse Response Graph of the Spring-Mass Damper System

Analyzing an Initial Response
The initial response of a dynamic system measures how the system 
responds to a set of non-zero initial conditions. Use the CD Initial 
Response VI to determine the initial response of a dynamic system.
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Note The CD Step Response VI and the CD Impulse Response VI support initial 
conditions. Use the Initial Conditions parameter of these VIs to see how a set of initial 
conditions affects the step and/or impulse responses.

For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 5-8 shows how you determine the 
response of this system to an initial condition of 0.3 cm.

Figure 5-8.  Initial Response Block Diagram of the Spring-Mass Damper System

Figure 5-9 shows the Initial Response Graph resulting from this block 
diagram.

Figure 5-9.  Initial Response Graph of the Spring-Mass Damper System

Notice that the displacement begins at the initial condition of 0.3 cm.
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Analyzing a General Time-Domain Simulation
A general time-domain simulation of a system involves input signals that 
are more general than step, impulse, or initial input signals. Refer to the 
Calculating the Time-Domain Solution section of this chapter for equations 
representing the time response of continuous and discrete systems. Use the 
CD Linear Simulation VI to solve these equations in response to an 
arbitrary input signal u into a system. This VI determines the response by 
numerically integrating these equations at the specified time steps. You can 
define the time steps with the Delta t input.

The system model can be continuous or discrete, but the CD Linear 
Simulation VI converts continuous models to discrete models using either 
the exponential Zero-Order-Hold or the First-Order-Hold method. Refer to 
the Converting Continuous Models to Discrete Models section of 
Chapter 3, Converting Models, for more information about these methods. 

If this conversion is necessary, you must specify Delta t, which becomes 
the sampling time. If no conversion is necessary, Delta t must be equal to 
the sampling time of the output data .

Note For accurate results, use a sampling interval that is small enough to minimize the 
effects of converting a continuous system to a discrete one. Select this sampling time based 
on the location of the poles of the system. Refer to Chapter 8, Analyzing Dynamic 
Characteristics, for more information about locating the poles of a system. Also, verify 
that the sampling interval matches the sampling time of the output data .

For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 5-10 shows how you simulate the 
response of this system to a square wave input.

u t( )

u t( )
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Figure 5-10.  Linear Simulation Block Diagram of the Spring-Mass Damper 
System Using a Square Wave Input

Notice that the CD Linear Simulation VI converts the continuous 
state-space model to a discrete model using the Zero-Order-Hold method. 
This conversion uses a Delta t input of approximately 0.3. This block 
diagram bundles the state-space model and the square wave as the input to 
the Linear Simulation Graph.

Figure 5-11 shows the Linear Simulation Graph resulting from this block 
diagram.

Figure 5-11.  Linear Simulation Graph of the Spring-Mass Damper System 
Using a Square Wave Input

The scale for the square wave input is on the right-hand side of the graph, 
whereas the scale for the linear simulation output is on the left-hand side of 
the graph. You can specify any input and use the CD Linear Simulation VI 
to observe how the system responds to that input.
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Obtaining Time Response Data
The Time Response VIs return time response data that contains information 
about the time response of all input-output pairs in the model. Use the 
CD Get Time Response Data VI to access this information for a specified 
input-output pair, a list of input-output pairs, or all input-output pairs of the 
system.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for more information about the CD Get Time Response 
Data VI.
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6
Working with Delay Information

Delays in a system model account for the fact that the inputs and outputs of 
a system often do not respond immediately to excitation. For example, 
chemical plants transfer fluid and materials between the process 
equipment, the actuators, and the sensors. This transportation process can 
cause long delays in the output response of the system. To fully represent 
this system, a model must incorporate this delay. If a model of this system 
does not incorporate delay, you cannot predict how well a controller based 
on that model performs.

A system model can have the following three types of delay:

• Input delay—The time a past input takes to affect the current output

• Output delay—The time an output takes to respond to the current 
system input

• Transport delay—The time the dynamics of a system take to respond 
to a particular excitation

The total delay of a system model is the sum of all delays between each 
input-output pair. The total delay includes all input, output, and transport 
delays in the system model. Another type of delay, residual delay, results 
from certain operations. Refer to the Residual Delay Information section of 
this chapter for more information about residual delay.

Constructing a model in the LabVIEW Control Design and Simulation 
Module sets delay information but does not make that information part of 
the mathematical model. The Control Design and Simulation Module 
provides several VIs that you can use to transfer delay information from the 
model properties into the mathematical model. After you incorporate delay 
into a mathematical model, the model properties no longer contain delay 
information, and the delay information appears in any analysis you perform 
on the model.

This chapter provides information about using the Control Design and 
Simulation Module to account for delay information in a model and to 
manipulate delay information within a model.
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Note Refer to the labview\examples\Control and Simulation\Control 
Design\Model Delay directory for example VIs that demonstrate the concepts explained 
in this chapter.

Accounting for Delay Information
Accounting for delay information in a model involves the following 
two steps: setting delay in the properties of a model, and transferring that 
delay from the model properties to the mathematical model. The following 
sections provide information about the Control Design VIs that you can use 
to accomplish these tasks.

Setting Delay Information
By default, when you construct a model in the Control Design and 
Simulation Module, the properties of that model have a delay of zero. Use 
the CD Set Delays to Model VI to define any non-zero delays in a model. 
You can use the Input Delays, Output Delays, and Transport Delays 
inputs of this VI to define the input, output, and transport delays in a model. 
The properties of the resulting Model Out output contain the original 
model with the delay information you defined.

You also can retrieve the delay information from the properties of a model 
with the CD Get Delays from Model VI. This VI returns the input, output, 
and transport delays of a model in the Input Delays, Output Delays, and 
Transport Delays outputs, respectively.

Incorporating Delay Information
After you define any delay information in a model, you then can make that 
delay a permanent part of the model. Incorporating delay information into 
a model works differently for continuous system models and discrete 
system models. In both cases, you represent a common delay factor and 
multiply the system model by this factor. The process by which you 
determine this factor, however, varies depending on the type of system 
model. With continuous system models, you apply the Laplace 
transformation to the system to represent the delay as an exponential factor. 
With discrete system models, you apply the shift operator to the system to 
represent the delay as a factor.

The delay factor for a continuous system is . The delay factor for a 
discrete system is . Refer to the Delay Information in Continuous 
System Models section and the Delay Information in Discrete System 

e std–

z n– d
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Models section of this chapter for information about these delay factors and 
incorporating them into system models.

Note These delay factors do not always have the same value in systems with more than 
one input-output pair. Single-input multiple-output (SIMO), multiple-input single-output 
(MISO), and multiple-input multiple-output (MIMO) system models have more than one 
input-output pair, and the delay might be different between each pair. Conversely, because 
single-input single-output (SISO) systems only have one input-output pair, the delay factor 
in a SISO system model always has the same value. Refer to the Residual Delay 
Information section of this chapter for more information about systems that do not have a 
common delay factor.

Use the CD Convert Delay with Pade Approximation VI to incorporate 
delay information into continuous models. Use the CD Convert Delay to 
Poles at Origin VI to incorporate delay information into discrete models. 
If you incorporate the delays in the model using one of these VIs, the 
Dynamic Characteristics VIs and the State Feedback Design VIs account 
for the delays in their results. Refer to the LabVIEW Help, available by 
selecting Help»Search the LabVIEW Help, for more information about 
which VIs account for delays.

The following sections provide information about using the Control Design 
and Simulation Module to incorporate delay into continuous and discrete 
system models.

Delay Information in Continuous System Models
Mathematically, incorporating delay into a continuous system model 
involves evaluating that model at td units in the past, where t is the current 
time. For example, consider the continuous SISO system model h(t). To 
represent this model at td units in the past, subtract td from t in the evaluation 
of the system model h(t). The expression h(t – td) represents this operation.

The first step in incorporating delay into a continuous system model is 
factoring a common delay out of the system model. Applying the Laplace 
transformation to the system model accomplishes this step. The following 
equation gives the Laplace transformation of h(t – td).

 L h t td–( )[ ] h t td–( )e s– t td
0

∞

∫≡ h t td–( )e
s– t td–( )

t td–( )e std–d
0

∞

∫ H s( )e std–= =
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This equation shows that the Laplace transform of a function delayed td 
units of time in the past is identical to the product of the Laplace transform 
of the original function and the factor , where s is the Laplace variable. 
Thus, you can incorporate delay into h(t) by multiplying H(s) by the delay 
factor .

For example, consider the continuous SISO transfer function H(s) with 
output Y(s) and input U(s). Because  represents the delay factor, 

 defines a system that has a transport delay.

You also can represent the delay as an input delay or output delay. Applying 
the delay factor  to the input U(s) results in an input delay as shown in 
the following equation:

Conversely, applying the delay factor to the output Y(s) results in an output 
delay shown in the following equation:

Figure 6-1 shows the mathematical representation of transport, input, and 
output delay factors for a continuous system.

Figure 6-1.  Mathematical Representation of Transport, Input, and 
Output Delay for a Continuous System

e std–

e std–

e std–
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H s( ) estdY s( )
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U(s)
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To accommodate the delay factor, you can convert  from exponential 
form to a rational polynomial function. You can perform this conversion 
using the Padé approximation method. Use the CD Convert Delay with 
Pade Approximation VI to calculate a Padé approximation. This VI 
incorporates the delay information of the input model into the 
Converted Model output model. The delay becomes a part of the output 
model and thus is not in the model properties. In the case of SIMO, 
MISO, and MIMO system models, the CD Convert Delay with Pade 
Approximation VI calculates the total delay in all the input-output pairs 
before incorporating the delay into the model.

This conversion process has several benefits. First, connecting models 
that contain all rational polynomial functions is less complicated than 
connecting models that contain a mixture of exponential factors and 
rational polynomial functions. Second, when you incorporate the delay into 
the polynomial function, the controller structure, analysis operations, and 
synthesis operations account for the delay.

Note The CD Convert Delay with Pade Approximation VI converts a state-space model 
to a transfer function model before incorporating the delay information. This VI then 
converts the resulting model back to a state-space model. As a result, the final states of the 
model might not directly correspond to the original states. Refer to Chapter 3, Converting 
Models, for more information about converting between model forms.

For example, consider a continuous SISO system with an input delay of 
25 seconds. The delay factor in this system is e–25s, so the following 
equation represents the system:

e std–

H s( ) Y s( )
e 25s– U s( )
-----------------------=
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Figure 6-2 shows the step response of this system.

Figure 6-2.  Step Response with a 25-Second Delay

You can see that incorporating e–25s into the input of H(s) delays the step 
response of H(s) by 25 seconds. Refer to the Analyzing a Step Response 
section of Chapter 5, Time Response Analysis, for information about a step 
response.

You can use the Polynomial Order input of the CD Convert Delay with 
Pade Approximation VI to affect the accuracy of the approximation. A 
larger Polynomial Order means a more accurate approximation but results 
in a higher-order system model. A large Polynomial Order can have the 
unintended side effect of making a model too complex to be useful.

Figure 6-3 shows the effects of polynomial orders on the accuracy of a Padé 
approximation of H(s).

 

Figure 6-3.  Effect of Polynomial Orders for a Padé Approximation
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Delay Information in Discrete System Models
Mathematically, incorporating delay into a discrete system model involves 
evaluating that model at nd units in the past. nd equals the delay divided by 
the sampling time T of the system. For example, consider the discrete SISO 
system model y(k). The equation y(kT – ndT ) provides the output of y(k) at 
nd units in the past, where k represents the current sample. Removing the 
sampling time T from this equation provides the simplified equation 
y(k – nd). This simplified equation produces the same result as y(kT – ndT ).

This equation shows the delay factor  for a discrete system model, 
where z represents time in the discrete domain. You use  to evaluate 
y(k) at nd samples in the past. The following equation shows this process, 
which also is known as applying the shift operator.

In transfer function models and zero-pole-gain models, incorporating delay 
information means adding poles at the origin. By applying  to a transfer 
function or zero-pole-gain model, you increase the order of the 
denominator polynomial by adding nd poles at the origin. In state-space 
models, incorporating delay information means creating nd additional 
states.

Use the CD Convert Delay to Poles at Origin VI to incorporate delays into 
discrete models. This VI incorporates the delay information of the input 
model into the Converted Model output model. The delay becomes a part 
of the output model and thus is not in the model properties. In the case of 
SIMO, MISO, and MIMO system models, the CD Convert Delay to Poles 
at Origin VI totals the delay in all the input-output pairs before 
incorporating the delay into the model.

Figure 6-4 shows how you can create a transfer function model, define an 
input delay for the model properties, and then incorporate that delay 
directly into the model.

 

Figure 6-4.  Adding Delay Information to a Discrete Transfer Function Model

z n– d

z n– d

y k nd–( ) y k( )= z nd–⋅

z n– d
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Figure 6-5 shows the resulting transfer function model. The CD Convert 
Delay to Poles at Origin VI accounted for the input delay by increasing the 
number of poles at the origin in the model. Accordingly, the Transfer 
Function Converted Model has a larger order denominator than the 
Transfer Function Model In.

 

Figure 6-5.  Additional Poles Accounting for the Input Delay

The Transfer Function Converted Model expresses the additional poles 
at the origin with two additional zeros in the denominator.

Representing Delay Information
To illustrate how the Control Design and Simulation Module represents 
delay in a system model, consider the following MIMO transfer function 
equation, where U is the input transfer function matrix and Y is the output 
transfer function matrix.

H Y
U
----=
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The following equations define this MIMO transfer function:

  

The following equations define the transport delay matrix Td, the input 
delay vector Id, and the output delay vector Od. Refer to the Delay 
Information in Continuous System Models section of this chapter for the 
definition of the continuous delay factor .

  

To incorporate this delay information into H, compute the product of the 
transfer function, input, and output matrices with their respective delay 
matrices or vectors. Hd, shown in the following equation, represents H with 
delay information included.

The following equations show the computation of these transfer functions 
to incorporate delay.

H H11 H12

H21 H22

= U U1

U2

= Y Y1

Y2

=

e std–

Td
e

st11–
e

st12–

e
st21–

e
st22–

= Id
e st1–

e st2–
= Od

esta

estb

=

Hd
Yd

Ud
------=

Hd
H11e

st11–
H12e

st12–

H21e
st21–

H22e
st22–

H Td⋅ H11 H12

H21 H22

e
st11–

e
st12–

e
st21–

e
st22–

⋅= = =

Ud
U1e st1–

U2e st2–
≡ U Id⋅ U1

U2

e st1–

e st2–
⋅= =

Yd
Y1esta

Y2estb

≡ Y Od⋅ Y1

Y2

esta

estb

⋅= =



Chapter 6 Working with Delay Information

Control Design User Manual 6-10 ni.com

To represent the delay of each element, you can use the following matrices:

  

Because the number of rows and columns of Td are the same as the 
dimension of vectors Id and Od, you can represent all the delay information 
of a model using the following structure:

In this delay matrix, the input delay vector Id is on top. Each input uses 
one column. The output delay vector Od is on the right-hand side. Each 
output uses one row.

Manipulating Delay Information
The Control Design and Simulation Module provides two VIs to help you 
manipulate the delay information of a system model. Use the CD Distribute 
Delay VI to minimize the transport delay of a system model by distributing 
the transport delay information to the inputs and outputs of a system model. 
Use the CD Total Delay VI to distribute the input and output delay of a 
model to the transport delay. The following sections provide information 
about using these VIs to manipulate delay information.

Accessing Total Delay Information
The CD Total Delay VI transfers delay information from the inputs and 
outputs of a system model to the transport delay of a system model by 
adding the input and output delays to the delay in the transport delay 
matrix. When you use the CD Total Delay VI, other Control Design VIs can 
access the total delay information of a system.

Td
t11 t12

t21 t22

= Id
t1

t2

= Od
ta

tb

=

t1 t2

t11 t12

t21 t22

ta

tb



Chapter 6 Working with Delay Information

© National Instruments Corporation 6-11 Control Design User Manual

For example, consider a model with the following delay information. Refer 
to the Representing Delay Information section of this chapter for the 
derivation of this matrix and these vectors.

The CD Total Delay VI first transfers the input delay information to the 
transport delay matrix. The following equations show this process:

The CD Total Delay VI then transfers the output delay information to the 
transport delay matrix. The following equations show this process:

Figure 6-6 shows the output of the CD Total Delay VI.

Figure 6-6.  Resulting Total Delay

The input and output delay vectors are now  and , respectively.

t1 t2

t11 t12

t21 t22

ta

tb

1 2
2 1
1 0

1
2

=

1 1– 2 2–

2 1+ 1 2+

1 1+ 0 2+
1
2

0 0
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2 2

1
2

≈

0 0

3 1+ 3 1+

2 2+ 2 2+
1 1–

2 2–

0 0
4 4
4 4

0
0
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Distributing Delay Information
The CD Distribute Delay VI calculates the total delay of a system model, 
then uses a common delay factor to distribute the total delay between the 
inputs and outputs. This operation minimizes the non-zero elements of 
the transport delay matrix. The CD Distribute Delay VI transfers delay 
information to the input delays before transferring delay information to the 
output delays.

Note Some Control Design VIs internally distribute the delay to preserve as much delay 
information as possible in the resulting model. Refer to the LabVIEW Help to determine 
which VIs manipulate the transport delay matrix to preserve delay information.

For example, consider the system model described in the Accessing Total 
Delay Information section of this chapter. If you apply the CD Distribute 
Delay VI to this system model, you get the following equation:

Because 4 is the common factor among the transport delay matrix, the CD 
Distribute Delay VI transferred a delay of 4 to the input delays.

Figure 6-7 shows the output of the CD Distribute Delay VI.
 

Figure 6-7.  Resulting Delay Distribution

The input and output delay vectors are now  and , respectively.
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Figure 6-8 shows how you implement this example using the Control 
Design and Simulation Module.

Figure 6-8.  Totaling and Distributing the Delay Information in a Model

Residual Delay Information
Residual delay information is transport delay information that remains 
when the CD Distribute Delay VI cannot distribute all of the transport delay 
to the inputs or outputs. This situation most often occurs in SIMO, MISO, 
and MIMO system models because each input-output pair can have 
different delay information.

For example, consider a system model with the following delay 
information:

0 0
5 3
4 4
3 5

0
0
0
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The CD Distribute Delay VI first distributes the delay in the transport delay 
matrix to the input delay vector by subtracting the minimum value from 
each column in the transport delay matrix. In this case, the minimum value 
in both columns is 3. This VI then distributes the delay to the output delay 
vector by subtracting the minimum value from each row in the resulting 
transport delay matrix. In this case, only the second row has a minimum 
value other than 0.

Because the CD Distribute Delay VI cannot fully distribute all the delays, 
the transport delay matrix contains the residual delay information.

0 0
5 3
4 4
3 5

0
0
0

3 3
2 0
1 1
0 2

0
0
0

3 3
2 0
0 0
0 2

0
1
0

≈ ≈
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7
Frequency Response Analysis

The frequency response of a dynamic system is the output of a system given 
unit-amplitude, zero-phase, sinusoidal inputs at varying frequencies. You 
can use the frequency response of a system to locate poles and zeros of a 
system. Using this information, you then can design a controller to improve 
unwanted parts of the frequency response.

When applied to the system, a sinusoidal input with unit amplitude, zero 
phase, and frequency ω produces the following sinusoidal output.

A is the magnitude of the response as a function of ω, and φ is the phase. 
The magnitude and phase of the system output vary depending on the 
values of the system poles, zeros, and gain.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to perform Bode frequency analysis, 
Nichols frequency analysis, and Nyquist stability analysis.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Frequency Analysis directory for example VIs that demonstrate the concepts 
explained in this chapter.

Bode Frequency Analysis
Use Bode plots of system frequency responses to assess the relative 
stability of a closed-loop system given the frequency response of the 
open-loop system. By analyzing the frequency response, you can determine 
what the open- and closed-loop frequency responses of a system imply 
about the system behavior. Use the CD Bode VI to create a Bode plot.

Note Use the CD Evaluate at Frequency VI to determine the frequency at specified values.

H iω( ) A ω( )e iφ w( )=
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For example, consider the following transfer function that represents a 
linear time-invariant system.

Applying the sinusoidal input x(t) = sin (ωt) to this previous system 
produces the following equation:

Using this equation, the following equation represents the complex 
frequency response.

You can separate the complex frequency response equation into 
two parts—the magnitude A(ω) and the phase φ(ω). You obtain the 
magnitude from the absolute value of the response. You obtain the phase 
value from the four-quadrant arctangent of the response. The following 
equations illustrate these operations:

These two equations represent the magnitude and the phase of the 
frequency response, respectively. Plotting these equations results in 
two subplots—the Bode magnitude plot and the Bode phase plot. The Bode 
magnitude plot shows the gain plotted against the frequency. The Bode 
phase plot shows the phase, in degrees, as a function of the frequency. 

Use a linear scale when dealing with phase information. When using a 
linear scale, you can add the individual phase elements together to 
determine the phase angle.

Because you can add the magnitude and phase plots for systems in series, 
you can add Bode plots of an open-loop plant and potential compensators 
to determine the frequency response characteristics of the dynamic system. 
Bode plots also illustrate the system bandwidth as the frequency at which 
the output magnitude is reduced by three decibels or attenuated to 
approximately 70.7% of its original value. You also can use the 
CD Bandwidth VI to determine the system bandwidth.

H s( ) Y s( )
U s( )
-----------=

y t( ) Y ωt φ+( )sin=

H iω( ) A ω( )e iφ w( )=

A ω( ) H iω( )=

φ ω( ) H∠ iω( ) Imaginary  H iω( )
Real  H iω( )

----------------------------------------------atan= =
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You can measure how close a system is to instability by examining the 
value of the magnitude and phase at critical values. These values, gain 
margin and phase margins, are important because real-life models and 
controllers are prone to uncertainties. Low gain or phase margins indicate 
potential instability.

The following sections provide information about gain and phase margins.

Gain Margin
The gain margin indicates how much you can increase the gain before the 
closed-loop system becomes unstable. This critical gain value, which 
causes instability, indicates the location of the closed-loop poles of the 
system on the imaginary axis. 

You often use this analysis on systems where G(s) consists of a gain K and 
a dynamic model H(s) in series. For cases where increasing the gain leads 
to system instability, the system is stable for a given value of K only if the 
magnitude of KH(s) is less than 0 dB at any frequency where the phase of 
KH(s) is –180°.

The Bode magnitude plot displays the gain margin as the number of 
decibels by which the gain exceeds zero when the phase equals –180°, 
as shown in Figure 7-1.

Phase Margin
The phase margin represents the amount of delay that you can add to a 
system before the system becomes unstable. Mathematically, the phase 
margin is the amount by which the phase exceeds –180° when the gain is 
equal to 0 dB. The phase margin also indicates how close a closed-loop 
system is to instability. A stable system must have a positive phase margin.
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Figure 7-1 shows Bode plots with corresponding gain and phase margins.

Figure 7-1.  Gain and Phase Margins

Depending on the complexity of the system, a Bode plot might return 
multiple gain and/or phase margins.
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Nichols Frequency Analysis
Use Nichols frequency analysis to obtain the closed-loop frequency 
response of a system from the open-loop response. Open-loop response 
curves, or loci, of constant magnitude and phase often provide reference 
points that help you analyze a Nichols plot. Each point on the open-loop 
response curve corresponds to the response of the system at a given 
frequency. You then can read the closed-loop magnitude response at that 
frequency from the Nichols plot by identifying the value of the magnitude 
locus at which the point on the curve intersects. Similarly, you can 
determine the closed-loop phase by identifying the phase locus at which the 
open-loop curve crosses.

Use the CD Nichols VI to create a Nichols plot and examine system 
performance in dynamic systems. The CD Nichols VI calculates and plots 
the open-loop frequency response against the gain and phase on the Nichols 
plot. Different points on the plot correspond to different values of the 
frequency ω. Examine the Nichols plot to determine the gain and phase 
margins, bandwidth, and the effect of gain variations on the closed-loop 
system behavior.

Nyquist Stability Analysis
Use Nyquist stability analysis to examine the system performance of 
dynamic systems. Nyquist plots consist of the real part of the frequency 
response plotted against the imaginary part of the response. Nyquist plots 
indicate the stability of a closed-loop system, given an open-loop system, 
which includes a gain of K. Use the CD Nyquist VI to create a Nyquist plot.

The Nyquist stability criterion relates the number of closed-loop poles of 
the system to the open-loop frequency response. On the Nyquist plot, the 
number of encirclements around (–1, 0) is equal to the number of unstable 
closed-loop poles minus the number of unstable open-loop poles.
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You can use this criterion to determine how many encirclements the plant 
requires for closed-loop stability. For example, if the plant has all 
open-loop stable poles, there are no encirclements. If the plant has 
one open-loop unstable pole, there is one negative, counter-clockwise 
encirclement. Figure 7-2 shows a system with one unstable pole.

 

Figure 7-2.  Nyquist Plot of One Unstable Pole

Often you want to determine a range of gain values for which the system is 
stable, rather than testing the stability of the system at a specific value of K. 
To determine the stability of a closed-loop system, you must determine how 
a range of gain values affects the stability of the system.

Consider the following closed-loop transfer function equation with output 
Y(s) and input U(s), where K is the gain.

The closed-loop poles are the roots of the equation 1 + KH(s) = 0. The 
complex frequency response of KH(s), evaluated for s = iω in continuous 
systems and eiωT for discrete systems, encircles (–1, 0) in the complex 
plane if 1 + KH(s) encircles (0, 0). If you examine the Nyquist plot of H(s), 
you can see that an encirclement of (–1/K, 0) by H(s) is the same as an 
encirclement of (–1, 0) by KH(s). Thus, you can use one Nyquist plot to 
determine the stability of a system for any and all values of K.

Y s( )
U s( )
----------- KH s( )

1 KH s( )+
-------------------------=



Chapter 7 Frequency Response Analysis

© National Instruments Corporation 7-7 Control Design User Manual

Obtaining Frequency Response Data
The Frequency Response VIs discussed in this chapter return frequency 
response data that contains information about the frequency response of all 
input-output pairs in the model. The frequency response information for the 
CD Bode VI returns information about the Bode magnitude and Bode 
phase. The frequency response information for the CD Nichols VI returns 
information about the real and imaginary parts of the frequency response. 
The frequency response information for the CD Nyquist VI returns 
information about the open-loop gain and open-loop phase. Use the CD Get 
Frequency Response Data VI to access this information for a specified 
input-output pair, a list of input-output pairs, or all input-output pairs of the 
system.

The CD Get Frequency Response Data VI uses the Frequency Response 
Data input, which contains the frequency response information for all the 
input-output pairs of a system model. For state-space models, the CD Get 
Frequency Response Data VI returns the frequency response of the 
input-state pair(s). Because transfer function and zero-pole-gain models do 
not have states, the frequency response data for an input-state pair of these 
forms is an empty array.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for more information about using the CD Get Frequency 
Response Data VI.
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8
Analyzing Dynamic 
Characteristics

Any given dynamic system has numerous dynamic characteristics such as 
stability, DC gain, damping ratio, natural frequency, and norm. You can 
use the LabVIEW Control Design and Simulation Module to analyze a 
system in terms of these characteristics.

This chapter provides information about using the Control Design and 
Simulation Module to analyze the stability of a dynamic system. This 
chapter also describes how to use the root locus method to analyze the 
stability of a system.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Dynamic Characteristic Analysis directory for example VIs that 
demonstrate the concepts explained in this chapter.

Determining Stability
The stability of a system depends on the locations of the poles and zeros 
within the system. To design an effective controller, you must take these 
locations into account.

A continuous system is stable if all poles are on the left half of the complex 
plane. A discrete system is stable if all poles are within a unit circle 
centered at the origin of the complex plane. Additionally, both types of 
systems are stable if they do not contain any poles.

A continuous system is unstable if it contains at least one pole in the right 
half of the complex plane. A discrete system is unstable if at least one pole 
is outside of the unit circle in the complex plane. Additionally, both types 
of systems are unstable if they contain more than one pole at the origin.

In terms of the dynamic response associated with the poles and zeros of a 
system, a pole is stable if the response of the pole decays over time. If the 
response becomes larger over time, the pole is unstable. If the response 
remains unchanged over time, the pole is marginally stable. To describe a 
system as stable, all the closed-loop poles of a system must be stable.
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Continuous and discrete systems are marginally stable if they contain only 
one pole at the origin and no positive poles.

Use the CD Pole-Zero Map VI to obtain all the poles and zeros of a system 
and plot their corresponding locations in the complex plane. Use the CD 
Stability VI to determine if a system is stable, unstable, or marginally 
stable.

Using the Root Locus Method
The root locus method provides the closed-loop pole positions for all 
possible changes in the loop gain K. Root locus plots provide an important 
indication of what gain ranges you can use to keep the closed-loop system 
stable. The root locus is a plot on the real-imaginary axis showing the 
values of s that correspond to pole locations for all gains, starting at the 
open-loop poles, K = 0 and ending at K = ∞.

You can rewrite the characteristic equation of a closed-loop system using 
the following equation, where N(s) is the numerator and D(s) is the 
denominator.

This equation restates the fact that the open-loop system poles, which 
correspond to K = 0, are the roots of the transfer function denominator, 
D(s). As K becomes larger, the roots of the previous characteristic equation 
approach either the roots of N(s), the zeros of the open-loop system, or 
infinity. For a closed-loop system with a non-zero, finite gain K, the 
solutions to the preceding equation are given by the values of s that satisfy 
both of the following conditions:

Use the CD Root Locus VI to compute and draw root locus plots for 
continuous and discrete SISO models of any form. You also can use this VI 
to synthesize a controller. Refer to the Root Locus Design Technique 
section of Chapter 11, Designing Classical Controllers, for information 
about using the CD Root Locus VI to design a controller.

1 KH s( )+ D s( ) KN s( )+ 0= =

KH s( ) 1= H s( )∠ 2k 1+( )π±= k 0 1 …, ,=( )
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9
Analyzing State-Space 
Characteristics

State-space analysis involves analyzing the state variables of a system. 
State variables describe the relationship between the inputs and outputs of 
a system. These variables often have physical meaning and represent some 
internal state of the system under analysis. For example, consider a motor 
that has power as its input and speed as its output. If you represent this 
system as a state-space model, the state variables are speed and rotation 
angle.

To design an effective controller, you must perform a state-space analysis 
on the controller model. State-space analysis determines whether a system 
is stable, controllable, observable, stabilizable, or detectable. You can use 
state-space analysis to balance a system model. Balancing a system model 
is useful in both analyzing and synthesizing a controller. You also can use 
state-space analysis to define different representations of the same system.

Because you can choose a variety of state variables to represent a single 
system, the state-space form for a given linear time-invariant multiple-input 
multiple-output (MIMO) system is not unique. You must determine which 
state variables are best for the analysis and design of a state-space 
controller.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to perform state-space analysis.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\State-Space Analysis directory for example VIs that demonstrate the 
concepts explained in this chapter.
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Determining Stability
In state-space form, the time evolution of the states determines the stability 
of the system. If you have initial conditions and you eliminate all inputs to 
the system, only the state matrix A governs the response of the system. You 
then apply control theory to find the counterparts of poles, which you can 
use in transfer function and pole-zero analysis.

The counterparts of poles are the eigenvalues of the state matrix A. 
The location of these eigenvalues determines the stability of the system. 
A continuous system is stable if all eigenvalues of A have negative real 
parts. A discrete system is stable if these eigenvalues fall within the unit 
circle.

Determining Controllability and Stabilizability
A system is controllable if all the states that describe the system respond to 
an input of the system, that is, you can influence the states of the system 
independently by adjusting the inputs. A system is not controllable if the 
system contains states that remain unaffected by any input.

If a system is controllable, there is an input that forces the system states, or 
linear combination of states, to go from any initial condition at t = 0 to zero 
at any time t > 0. If a system is open-loop unstable, you can adjust the input 
to affect the response of the states.

You can confirm the controllability of a system by verifying that the 
controllability matrix Q, shown in the following equation, has full row rank 
or is nonsingular.

The state matrix A and the input matrix B determine the controllability 
properties of a state-space model. You use these matrices to calculate Q, 
as shown in the following equation:

A system is controllable if Q has full row rank or is nonsingular. 
For example, if B is an n-dimensional column vector that is colinear to an 
eigenvector of null eigenvalues of A, you obtain the following matrix:

Q B  AB … An 1– B[ ]=

Q B  0 0 … 0[ ]=
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This matrix is row rank deficient for n > 1. The null eigenvalue represents 
an uncontrollable mode of the system.

From the definition of a controllable system you can conclude that to place 
the system states at zero at any time t > 0 indicates that you can place all 
system poles anywhere to make the closed-loop response reach zero at time 
t as quickly as possible.

When you can adjust all system poles locations to a point you want, you can 
calculate a full state-feedback controller gain K to arbitrarily place the 
eigenvalues of the closed-loop system, A' = A – BK. Conversely, the 
eigenvalues associated with modes that are not controllable cannot be 
adjusted, regardless of the value you choose for K.

Stabilizability is related to controllability. A system is stabilizable if all the 
unstable eigenvalues are controllable. Controllability implies 
stabilizability, but stabilizability does not imply controllability.

Use the CD Controllability Matrix VI to calculate the controllability matrix 
of the model and determine if the system is controllable and/or stabilizable. 
Use the CD Controllability Staircase VI to transform a state-space model 
into a model that you can use to identify controllable states in the system. 
You also can use the CD Controllability Staircase VI to inspect the A and 
B matrices of the transformed model to determine the controllable states.

Determining Observability and Detectability
A system is observable if you can estimate each state of the system by 
looking only at the output response. If you can determine the states at 
time t0 by observing the output from time t0 to t1, the system is observable.

Observability depends on the output matrix C and the state matrix A of the 
system. You can check observability by verifying that the observability 
matrix O, defined in the following equation, is full column rank or is 
nonsingular for a SISO system.

O

C
CA

:·

CAn 1–

=
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Use a state estimator to calculate the states of any observable system with 
a column-deficient matrix C. Refer to Chapter 13, Defining State Estimator 
Structures, for information about state estimators.

Detectability is related to observability. A system is detectable if all the 
unstable eigenvalues are observable. Observability implies detectability, 
but detectability does not imply observability.

Use the CD Observability Matrix VI to calculate the observability matrix 
of a model and determine if the system is observable and/or detectable. Use 
the CD Observability Staircase VI to transform a state-space model into a 
model that you can use to identify observable states in the system. Use the 
CD Observability Staircase VI to calculate the observability matrix of the 
transformed model. You also can use the CD Observability Staircase VI to 
inspect the A and C matrices of the transformed model to determine the 
observable states.

Analyzing Controllability and Observability Grammians
An alternative and numerically more stable approach to assessing 
controllability and observability is to compute the Grammians of the 
state-space matrices. The controllability Grammian is an n × n matrix that 
determines how dependent the state responses are on the different inputs of 
the system. Independent state responses indicate that there always is a set 
of inputs that can drive the states to zero at a certain time. In this case, the 
system is controllable.

Calculate the eigenvalues of the controllability Grammian to check the 
dependency of the state responses. If the controllability Grammian is 
positive-definite, meaning all eigenvalues are real and greater than zero, 
the chosen state-space form is controllable.

Similarly, the observability Grammian is an n × n matrix that determines 
how dependent the state effects are on the different outputs of the system. 
Independent state effects indicate that there always is a set of outputs that 
you can use to estimate the states at time t = 0. In this case, the system is 
observable.

Calculate the eigenvalues of the observability Grammian to check the 
dependency of the responses of the states. If the observability Grammian is 
positive-definite, meaning all eigenvalues are real and greater than zero, the 
chosen state-space form is observable.
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Use the CD Grammians VI to calculate the controllability and observability 
Grammians of a state-space model for a stable system.

Balancing Systems
A system is balanced if the controllability and observability diagonal 
Grammians of that system are identical. A balanced model simplifies the 
analysis and use of model order reduction. Refer to Chapter 10, Model 
Order Reduction, for more information about model order reduction.

In model order reduction, balancing highlights the relative importance of 
the state to the input/output performance of the system. Balancing consists 
of finding a similarity transformation from the original model to generate a 
state-space representation. Use the CD Balance State-Space Model 
(Diagonal) VI and the CD Balance State-Space Model (Grammians) VI to 
balance a state-space system.

If you use the CD Balance State-Space Model (Grammians) VI, the 
Balanced Model output of this VI has equal and diagonal controllability 
and observability Grammians. To use this VI, the system must be stable, 
controllable, and observable.

If you use the CD Balance State-Space Model (Diagonal) VI, the balanced 
state-space model has an even eigenvalue spread for the state matrix A or 
the composite matrix, which contains the natural composition of A, B, 
and C.
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10
Model Order Reduction

In most cases, different models of a dynamic system can represent the same 
input-output behavior of that system. For example, you can have two 
state-space models with different numbers of states that represent the same 
input-output behavior at varying degrees of accuracy. Often you can 
simplify, or reduce, these models to obtain a less complicated 
representation of the system.

How you reduce a model depends on the representation of the model. If the 
model is a state-space model, reducing the number of states reduces the 
order of the model. If the model is a transfer function or zero-pole-gain 
model, cancelling matching poles and zeros reduces the order of the model. 
Use the Model Reduction VIs to reduce the order of a model.

This chapter provides information about the minimal realization and model 
order reduction techniques you can use to simplify a model.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Model Reduction directory for example VIs that demonstrate the concepts 
explained in this chapter.

Obtaining the Minimal Realization of Models
The minimal realization of a system model involves cancelling all pairs of 
poles and zeros at the same location. You refer to these pairs as pole-zero 
pairs. Use the CD Minimal Realization VI to calculate the minimal 
realization of a model.

For example, consider the following transfer function model H(s).

This model has a pole and zero in the same location, –4. Wire this model 
into the CD Minimal Realization VI to cancel this pole-zero pair. This VI 
returns the minimal realization of the model in the Reduced Model output. 

H s( ) s2 6s 8+ +

s3 8s2– 21s 108+–
------------------------------------------------ s 2+( ) s 4+( )

s 4+( ) s 3–( ) s 9–( )
------------------------------------------------- s 2+( )

s 3–( ) s 9–( )
--------------------------------= = =

⎭
⎬
⎫

Minimal Realization
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This VI also returns the number of pole-zero locations removed. For 
state-space models, this VI returns the number of states removed.

Minimal realizations are minimal because the only modes represented in 
the model are those modes that you can infer by observing the inputs and 
outputs of the system. The modes that you eliminate to obtain a minimal 
transfer function or zero-pole-gain model still exist in the system, but you 
cannot infer their existence by simply observing the input and outputs of 
the model. For this reason, you do not want to cancel unstable pole-zero 
pairs.

For example, consider the following transfer function model G(s).

G(s) has the same minimal realization as H(s), but G(s) contains an unstable 
pole-zero pair at 4. If you cancel this pole-zero pair, you no longer can 
observe any effects the pair has on the stability of the system.

A minimal realization for a state-space model is a state-space 
representation in which you remove all states that are not observable 
or controllable. Use the CD Minimal State Realization VI to determine the 
minimal realization for a state-space model. Refer to Chapter 9, Analyzing 
State-Space Characteristics, for information about controllability and 
observability.

Reducing the Order of Models
In certain situations, you might want to work with a lower-order model of 
the system. The goal of model order reduction is to remove stable states that 
have the smallest impact on the input-output model representation. You 
might want to reduce a model order when the real part of stable system 
poles differ significantly. From an input-output standpoint, you usually 
ignore fast dynamic modes, which are modes that correspond to stable 
eigenvalues far from the imaginary axis, because you only see the effects 
of these modes over a short initial period of time. Use the CD Model Order 
Reduction VI to reduce high-order models.

Note Model order reduction applies only to a state-space model of a system.

G s( ) s2 2s– 8–

s3 16s2 75s 108–+–
--------------------------------------------------- s 2+( ) s 4–( )

s 4–( ) s 3–( ) s 9–( )
------------------------------------------------- s 2+( )

s 3–( ) s 9–( )
--------------------------------= = =

⎭
⎬
⎫

Minimal Realization
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You can reduce the order of the model by decreasing the order of the stable 
modes. Reducing stable modes of the model does not affect the unstable 
modes of the model.

You have several options for reducing the order of a model. You can match 
the DC gain between the reduced order model and the original model. You 
also can delete the states directly.

Balancing the original state-space model can make the model order 
reduction process easier. When you balance the state-space model, the 
Grammian matrices are diagonal and you avoid computing the eigenvalues.

Given a state-space model, complete the following steps to reduce the 
model order:

1. Balance the state-space model.

2. Compute the Grammians.

3. Remove stable states corresponding to small eigenvalues, in 
proportion to the other eigenvalues, of the Grammian matrix.

4. Repeat steps 1 through 3 until the model is of the order you want.

Refer to the CDEx Model Reduction with Grammians VI, located in the 
labview\examples\Control and Simulation\Control Design\

Model Reduction directory, for an example of this procedure.

Refer to the Analyzing Controllability and Observability Grammians 
section and the Balancing Systems section of Chapter 9, Analyzing 
State-Space Characteristics, for more information about computing 
controllability and observability Grammians and balancing a model.

Selecting and Removing an Input, Output, or State
Manipulating the system representation involves ignoring certain inputs 
and outputs of a model, such as those connected by a unit gain. In a 
state-space model, manipulating the system representation involves 
removing unwanted states from the description. Use the CD Select IO from 
Model VI and the CD Remove IO from Model VI to reduce a model by 
directly removing inputs, outputs, or states.

Manipulating a model is useful for building new models from old ones 
and for quickly removing zero states from a large state-space model 
representation. Zero states are states for which the state matrix A has zeros 
in an input row and the corresponding output column. Use the CD Minimal 
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State Realization VI to perform this operation. Figure 10-1 shows an 
example of a zero-state.

Figure 10-1.  A Zero-State in A

If the matrix has no zero rows or columns, consider using another method 
to reduce the model order.

Note When you work with transfer function and zero-pole-gain models, you generally do 
not select and remove specific inputs and outputs to reduce the model order. You mainly 
use this method with state-space models.

0 0 0

0

0

0

0

x1

x2

= A
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Designing Classical Controllers

Classical control design involves creating controllers based on the 
input-output behavior of a system. In classical control design, you select 
one or more specific gain values to achieve one or more control objectives. 
The first step in designing a controller is identifying a control objective. For 
example, you might focus on the rise time, overshoot, and damping ratio of 
a controller model. Based on this objective, you specify the location of the 
poles of the system. You then select an appropriate set of parameters, such 
as the gain, to satisfy the stated objectives. You use these parameters to 
design a controller.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to implement the root locus design 
technique. This chapter also describes the proportional-integral-derivative 
(PID) controller and how to design a PID controller analytically.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Classical Control Design directory for example VIs that demonstrate the 
concepts explained in this chapter.

Root Locus Design Technique
Root locus is a technique that shows how the roots of a system vary with 
respect to the gain K. Taking into account a control objective, you decide 
on the locations of the roots of the system. From the locations of these 
roots, you infer the optimal value of K. You then can use the gain K to 
design a controller for a single-input single-output (SISO) system. Use the 
CD Root Locus VI to apply the root locus technique to a system.

You can use the root locus technique to design SISO systems by analyzing 
the variation of closed-loop pole positions for all possible changes in a 
controller variable. The closed-loop zeros of a system, between any two 
points in the control system, are a subset of the open-loop zeros and poles 
of the feedback element. The root locus plot depicts the path that the roots 
follow as you vary the gain. You use this relationship to analyze the 
closed-loop behavior in terms of the value of a variable in the feedback 
transfer function.
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For example, consider a system with the following open-loop transfer 
function:

If a simple proportional feedback controller controls this system, the 
following equation describes the characteristic equation.

Figure 11-1 illustrates the root locus plot of this system.
 

Figure 11-1.  Root Locus

This graph shows the locations of the closed-loop poles. The pole locations 
are –1, –2, and –3.

You can use root locus design to synthesize a variety of different controller 
configurations, including the following types:

• Lead compensator—Lowers the rise time and decreases the transient 
overshoot.

• Lag compensator—Improves the steady-state accuracy of the system. 

• Notch compensator—Achieves stability in the system with lightly 
damped flexible modes. This compensator adds a zero near the 
resonance point of the flexible mode.

H s( ) 1
s 1+( ) s 2+( ) s 3+( )

--------------------------------------------------=

1 H s( )K+ 1 K
s 1+( ) s 2+( ) s 3+( )

--------------------------------------------------+ 0= =
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• proportional-integral-derivative (PID) controller—Forms a 
controller using the most common architecture. Refer to the 
Proportional-Integral-Derivative Controller Architecture section 
of this chapter for more information about PID controllers.

The difference in these controller configurations is the form of the transfer 
function equations you use to synthesize the controller. Different transfer 
function models result in different dynamic characteristics of the controlled 
system.

For example, consider a controller transfer function model D(s) defined by 
the form of the following equation:

If z < p, this transfer function results in a lead compensator. You typically 
place this lead compensator in series with the plant H(s) in the feed-forward 
path. If z > p, this transfer function results in a lag compensator.

Refer to the CDEx Interactive Root Locus VI, located in the labview\
examples\Control and Simulation\Control Design\Dynamic 

Characteristic Analysis directory, for an example that demonstrates 
root locus analysis.

You also can use other frequency domain tools, such as Bode, Nyquist, and 
Nichols plots, to design a system. These plots show the specific locations 
and shape of key points. You examine these locations to modify the 
controller parameters iteratively to meet these specifications. The number 
and nature of the controller parameters depends on the topology of the 
controller.

Refer to Feedback Control of Dynamic Systems and Modern Control 
Engineering, as listed in the Related Documentation section of this manual, 
for more information about using the root locus technique to design 
controllers.

D s( ) K s z+
s p+
-----------=
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Proportional-Integral-Derivative Controller Architecture
The PID controller, also known as the three-term controller, is the most 
widely-used controller architecture. PID controllers compare the output 
against the reference input and initiate the appropriate corrective action. 
PID controllers combine proportional P, integral I, and derivative D 
compensation. Use the CD Construct PID Model VI to construct a PID 
controller.

The following equation defines control action for a general PID controller.

In this equation, Kc is the gain, τd is the derivative time constant, and τI is 
the integral time constant. The following equation defines the error.

e(t) = R(t) – B(t)

In this equation, R(t) is the reference input and B(t) is the output.

Because the control action is a function of the error, the following equation 
defines the transfer function for the PID controller.

This transfer function is improper, which means the transfer function has 
more zeros than poles. You cannot physically realize an improper transfer 
function. You can place a pole at –1/ατd to make the transfer function 
proper. α is a small number, typically between 0.05 and 0.2, such that the 
pole has a negligible effect on the system dynamics.

u t( ) Kc e t( ) 1
τI
---- e t*( ) t*d

0

t

∫ τd
de t( )

dt
------------+ +=

U s( )
E s( )
----------- Kc 1 1

τIs
------ τds+ +⎝ ⎠

⎛ ⎞=
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The Control Design and Simulation Module supports the PID controller in 
the following four forms: PID Academic, PID Parallel, PID Parallel 
Discrete, and PID Serial. Table 11-1 shows the equations for each of these 
forms.

Each PID form produces the same result but incorporates information in a 
different manner. For example, you can adjust each term independently 
using the PID Parallel form. The PID form you use depends on the design 
decisions you make, such as how you need to manipulate the output of the 
controller. Use the polymorphic VI selector of the CD Construct PID 
Model VI to implement a PID controller using one of these four PID forms.

Note In some applications, you specify the gain in the PID Academic transfer function in 
terms of a proportional band (PB). 

A proportional band, defined by the previous equation, is the percentage of the input range 
of the controller that causes a change equal to the maximum range of the output.

Table 11-1.  PID Controller Forms in the Control Design and Simulation Module

PID Controller Form Equation

PID Academic

PID Parallel

PID Parallel Discrete

PID Series

U s( )
E s( )
----------- Kc 1 1

Tis
-------

Tds
αTds 1+
---------------------+ +⎝ ⎠

⎛ ⎞=

U s( )
E s( )
----------- Kc

Ki

s
-----

Kds
αKds 1+
----------------------+ +=

D z( )
2KpT KiT

2 2Kd+ +( )z2 KiT
2 2KpT– 4Kd–( )z 2Kd++

2Tz z 1–( )
-------------------------------------------------------------------------------------------------------------------------------------=

U s( )
E s( )
----------- Kc 1 1

Tis
-------+⎝ ⎠

⎛ ⎞ Tds 1+

αTds 1+
---------------------⎝ ⎠
⎛ ⎞=

PB 1
Kc
------ 100%×=
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You can use the root locus and Bode design methods to determine 
appropriate gain values for the PID controller. Refer to PID Controllers: 
Theory, Design, and Tuning, as listed in the Related Documentation section 
of this manual, for more information about these techniques. Refer to 
the LabVIEW PID Control Toolkit User Manual for information about 
determining controller gain parameters experimentally.

You also can determine appropriate PID gain values analytically by using 
the CD Design PID for Discrete Systems VI. The following section 
describes how to use this VI.

Designing PID Controllers Analytically
Finding the proper values for the PID gains is a process known as tuning 
the PID controller. PID tuning typically is an ad-hoc process that involves 
trial and error. However, the Control Design and Simulation Module 
provides the CD Design PID for Discrete Systems VI. You can use this VI 
to find tuples of stable PID gain values automatically for a given model or 
family of models.

The input to this VI is one or more discrete system models in transfer 
function, zero-pole-gain, or state-space form. These models must be 
single-input single-output (SISO) and discrete. This VI returns the 
following information:

• The boundary between the set of stable PID gain values and all 
unstable gain values.

• Tuples of PID gain values within this boundary. Each tuple guarantees 
closed-loop stability.

• The centroid, or average, of these tuples.

Note You can specify options relating to how this VI searches for tuples of stable values. 
You also can specify performance criteria, in the form of minimum gain and phase margins, 
that these stable values must satisfy.
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For example, consider the following discrete transfer function models H(z), 
I(z), and J(z).

Whereas traditional tuning provides one tuple of PID gains for one model, 
the CD Design PID for Discrete Systems VI provides the set of all stable 
PID gains for all three models. This set is the Stable Set Interior Points 
parameter of the VI.

Figure 11-2 shows an example Stable Set Interior Points output that 
corresponds to these models.

Figure 11-2.  Set of Stable PID Gain Values for the Three Specified Models

In Figure 11-2, each point on the graph represents a stable tuple of 
proportional, integral, and derivative gain values. These points also satisfy 
any performance criteria you specify.

H z( ) 1
z2 0.25–
---------------------=

I z( ) 1
z2 0.5–
------------------=

J z( ) 1
z2 0.75–
---------------------=
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This VI also finds the centroid of these points and returns the point closest 
to this centroid. This point is the Design PID Gains parameter. Figure 11-3 
shows the Design PID Gains output that corresponds to the set of points in 
Figure 11-2.

Figure 11-3.  Most Stable Tuple of PID Gain Values

Therefore, the design PID gains are 0.224462, 0.460137, and 
0.108035, respectively. These values guarantee simultaneous closed-loop 
stability of H(z), I(z), and J(z).

You can use these design PID gains with the PID VI, included with the 
LabVIEW PID Control Toolkit, to implement a PID controller on a 
real-time (RT) target.

Note Refer to the LabVIEW Help, available by selecting Help»Search the LabVIEW 
Help, for more information about the algorithms the CD Design PID for Discrete Systems 
VI uses. Refer to the labview\examples\Control and Simulation\Control 
Design\Analytical PID Design directory for examples that demonstrate the concepts 
explained in this section.
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12
Designing State-Space 
Controllers

State-space control design uses state-space models to synthesize and 
analyze controllers based on the relationship between the inputs, states, and 
outputs of a system. Because all states are not directly measurable, you 
sometimes need to use an estimator. An estimator infers the states with 
which you are working, based on measurements of the outputs and known 
states.

Similar to classical control design, the process of designing a controller 
begins with one or more control objectives. Typical objectives include 
minimizing a cost function and placing the poles and zeros of a system in 
specific locations. You use this process to achieve a specific dynamic 
response. You then select the architecture of the controller, such as whether 
the feedback is based only on outputs or on all the states of the system. With 
this information, you can synthesize a controller by selecting an appropriate 
set of parameters to satisfy the stated objectives.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to determine estimator and controller gain 
matrix values. This chapter also describes the difference between measured 
outputs, known inputs, and adjustable inputs.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\State-Space Synthesis directory for example VIs that demonstrate the 
concepts explained in this chapter.

Calculating Estimator and Controller Gain Matrices
Before you can implement an estimator or a controller, you need to 
calculate their respective gain matrices. These gain matrices define the 
structure of the estimator or the controller. The Control Design VIs help 
you calculate the gain matrix for an estimator or controller.
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The following sections provide information about using the Control Design 
and Simulation Module to perform the pole placement technique and 
design a linear quadratic regulator. The following sections also describe 
how to use the Kalman gain function and how to construct a linear quadratic 
Gaussian controller.

Pole Placement Technique
Pole placement is a technique in which you specify the locations of the 
closed-loop poles of a system and calculate the gain matrix based on these 
locations. You can use the pole placement technique to calculate either the 
observer gain matrix L or the controller gain matrix K.

Use the CD Ackermann VI to apply this technique in the following 
situations:

• A single-input single-output (SISO) system

• A single-input multiple-output (SIMO) system if you are defining the 
controller gain matrix K

• A multiple-input single-output (MISO) system if you are defining the 
observer gain matrix L

Use the CD Pole Placement VI in all other situations, for example, a 
multiple-input multiple-output (MIMO) system. The computation of the 
gain for these systems is more complex and based on a Sylvester matrix 
equation. Refer to the LabVIEW Control Design Algorithm Reference 
manual for information about the Sylvester matrix equation.

Use the Gain Type parameter of the CD Ackermann VI and the CD Pole 
Placement VI to determine which kind of gain matrix these VIs return. This 
section uses the controller gain matrix K as an example.

Note The Control Design and Simulation Module refers to the pole placement technique 
as an observer, because this technique does not estimate measurements given random 
noise. This distinction does not affect the interaction between the CD Ackermann VI or the 
CD Pole Placement VI and other VIs.

Consider the following SISO state-space system with u = –Kx as the 
control action.

x· Ax Bu+=

y Cx Du+=
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Figure 12-1 shows how you apply the gain matrix K to a controller.

Figure 12-1.  Using K to Regulate the Input of a State-Feedback System

Given a specification of the closed-loop pole locations, λ1, λ2, … λn, you 
can calculate the controller gain matrix K that achieves this goal. The 
system in question must be controllable.

For example, consider a closed-loop continuous system that has the 
following form:

Because  satisfies the characteristic polynomial equation that the 
specified closed-loop pole locations λ1, λ2, … λn define, you can state the 
following relationships:

The locations of αn are based on the locations of λn. s is the Laplace 
variable. You can use these equations to calculate Ackermann’s formula, 
defined by the following equation:

Combine the controller gain matrix K with the CD State-Space Controller 
VI to define a controller structure for the system. Refer to Chapter 14, 
Defining State-Space Controller Structures, for more information about 
defining a controller structure. If you use the pole placement technique to 
calculate the estimator gain matrix L, combine L with the CD State 

x = Ax + Bu

y = Cx + Du

K

u y+
–

x

x· Ãx=

Ã A BK–=

Ã

sn α1sn 1– … αn 1– s αnI+ + + + s λ1–( ) s λ2–( ) … s λn–( )≡

φ Ã( ) Ãn α1Ãn 1– … αn 1– Ã αnI+ + + + 0= =

K 0 0 … 1 B AB … An 1– B
1–
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Estimator VI to define an estimator structure for the system. Refer to 
Chapter 13, Defining State Estimator Structures, for more information 
about defining an estimator structure.

Linear Quadratic Regulator Technique
The linear quadratic regulator (LQR) technique calculates the controller 
gain matrix K that minimizes a quadratic cost function. Unlike the pole 
placement technique, you cannot use the LQR technique to calculate a 
estimator gain matrix L.

The design process for LQR requires specifying matrices Q and R, which 
specify weights on the states and inputs, respectively. You also can specify 
a matrix N that penalizes the cross product between the inputs and states. 
Typically, the selection of these gain matrices is an iterative process.

Use the CD Linear Quadratic Regulator VI to apply the LQR technique to 
a model with any number of inputs and outputs. Use the Weighting Type 
parameter to choose the cost function you want to minimize. You can 
choose from the following cost functions:

• State Weighting—This cost function weights the model states.

• Output Weighting, Dim[Q] = Ny—This cost function weights the 
model outputs y when Q is in terms of y. If you choose this cost 
function, the dimensions of Q must equal the number of model outputs.

• Output Weighting, Dim[Q] = Nx—This cost function weights the 
model outputs when Q is in terms of the model states x. If you choose 
this cost function, the dimensions of Q must equal the number of 
model states.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for more information about the cost functions this VI 
minimizes and for the equations of each of these cost functions.

This VI returns the value of K that minimizes the cost functions you choose. 
Because calculating K involves solving the continuous or discrete algebraic 
Riccati equation, this VI also returns the solution to the appropriate Riccati 
equation.

You can use the CD Linear Quadratic Regulator VI with continuous and 
discrete models. If you wire a continuous model to the State-Space Model 
input of this VI, this VI returns a continuous version of K. If you wire a 
discrete model to this input, this VI returns a discrete version of K. You also 
can configure the this VI to return a discretized version of K for a 
continuous model.
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To calculate this discretized gain matrix, select the Discretized Linear 
Quadratic Regulator instance of the CD Linear Quadratic Regulator VI. 
This instance automatically converts a continuous model to a discrete 
model before calculating K that minimizes the discrete version of the cost 
function you specified. This VI first discretizes the A, B, C, and D matrices 
using the Zero-Order-Hold method. This VI then calculates the discrete 
equivalents of the Q, R, and N matrices using the numerical integration 
method proposed by Van Loan. You specify the Sampling Time (s) this VI 
uses for both conversions.

Refer to the Zero-Order-Hold and First-Order-Hold Methods section of 
Chapter 3, Converting Models, for information about the Zero-Order-Hold 
conversion method. Refer to IEEE Transactions on Automatic Control, as 
listed in the Related Documentation section of this manual, for information 
about the numerical integration method proposed by Van Loan.

Q is a symmetric, positive, semi-definite matrix that penalizes the state 
vector x in the control objective. R is a positive definite matrix, usually 
symmetric, that penalizes the input vector u in the control objective. N is a 
matrix that penalizes the cross product between input and state vectors.

Combine the controller gain matrix K with the CD State-Space Controller 
VI to define a controller structure for the system. Refer to Chapter 14, 
Defining State-Space Controller Structures, for more information about 
defining a controller structure.

Kalman Gain
The Kalman gain is the value of L that minimizes the covariance of 
estimation error for a given continuous or discrete state-space model 
affected by noise. An estimator that uses the Kalman gain is called a 
Kalman filter. Kalman filters estimate model states despite the presence of 
noise. Use the CD Kalman Gain VI to calculate the optimal steady-state 
value of L.

The following sections provide information about calculating the Kalman 
gain matrices to apply to continuous and discrete Kalman filters.
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Continuous Models
For continuous models, the Kalman filter estimates the model states at 
time t. The following equation defines the estimated state vector  the 
Kalman filter calculates.

In these equations, L is the gain matrix of the Kalman filter. The Kalman 
filter estimates the accuracy of the estimated states by calculating the 
steady-state covariance of the estimation error. The following equations 
define this covariance matrix P and the estimation error e(t).

where E{} denotes the expected mean of the enclosed terms.

You calculate the Kalman gain L that minimizes P. Use the CD Kalman 
Gain VI to calculate the value of L for a given model affected by noise. If 
the noise affecting the model is Gaussian, then L is the optimal gain. If the 
noise affecting the model is not Gaussian, L results in the optimal 
linear least-square estimates.

Discrete Models
For discrete models, the Kalman filter not only estimates the current state 
vector at time k, but also predicts the state vector at time k + 1. The 
following sections describe the gain matrices you calculate in these 
situations.

Updated State Estimate
The updated state estimate, which is the current state estimate, is given by 

. This notation translates as the estimated state vector at time k 
given all measurements up to and including k. The following equation 
defines the updated state estimate for a discrete Kalman filter.

x̂ t( )

x'ˆ t( ) Ax̂ t( ) Bu t( ) L y t( ) ŷ t( )–[ ]+ +=

ŷ t( ) Cx̂ t( ) Du t( )–=

P E eT t( ) e t( )⋅{ }
t ∞→
lim=

e t( ) x t( ) x̂ t( )–=

x̂ k k( )

x̂ k k( ) x̂ k k 1–( ) M y k( ) ŷ k( )–[ ]+=

ŷ k( ) Cx̂ k k 1–( ) Du k( )–=
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In these equations, M is the innovation gain matrix of the Kalman filter. The 
Kalman filter estimates the accuracy of the updated states by calculating 
the steady-state covariance of the updated estimation error. The following 
equations define this covariance matrix Z and the updated estimation error 
e(k|k).

You calculate the innovation gain matrix M that minimizes Z. Use the CD 
Kalman Gain VI to calculate the value of M for a given model affected by 
noise.

Predicted State Estimate
The discrete Kalman filter also predicts states at time k + 1 given all 
measurements up to and including time k. The following equation defines 
defines the predicted state estimate.

In these equations, L is the Kalman prediction gain matrix of the Kalman 
filter. The Kalman filter estimates the accuracy of the updated states by 
calculating the steady-state covariance of the predicted estimation error. 
The following equations define this covariance matrix P and the predicted 
estimation error e(k + 1|k).

You calculate the Kalman prediction gain L that minimizes P. Use the CD 
Kalman Gain VI to calculate the value of L for a given model affected by 
noise.

Refer to the LabVIEW Help for more information about the equations this 
VI uses to calculate M, Z, L, and P for continuous and discrete models.

Z E eT k k( ) e k k( )⋅{ }
k ∞→
lim=

e k k( ) x k( ) x̂ k k( )–=

x̂ k 1 k+( ) Ax̂ k k 1–( ) Bx̂ k k 1–( ) L y k( ) ŷ k( )–[ ]+ +=

ŷ k( ) Cx̂ k k 1–( ) Du k( )–=

P E eT k 1+ k( ) e k 1+ k( )⋅{ }
k ∞→
lim=

e k 1+ k( ) x k( ) x̂ k 1+ k( )–=
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Discretized Kalman Gain
If you wire a continuous model to the CD Kalman Gain VI, the VI returns 
a continuous version of L. If you wire a discrete model to the CD Kalman 
Gain VI, the VI returns discrete versions of L and M. You also can 
configure this VI to calculate discrete versions of L and M for a continuous 
model.

To calculate these discretized gain matrices, select one of the 
Discretized Kalman Gain instances of the CD Kalman Gain VI. These 
instances automatically convert a continuous model to a discrete model 
before calculating L and M. This VI first discretizes the A, B, C, and D 
matrices using the Zero-Order-Hold method. This VI then calculates the 
discrete equivalents of the Q, R, and N matrices using the numerical 
integration method proposed by Van Loan. You specify the 
Sampling Time (s) this VI uses for both conversions.

Refer to the Zero-Order-Hold and First-Order-Hold Methods section of 
Chapter 3, Converting Models, for information about the Zero-Order-Hold 
conversion method. Refer to IEEE Transactions on Automatic Control, as 
listed in the Related Documentation section of this manual, for information 
about the numerical integration method proposed by Van Loan.

Defining Kalman Filters
After you use the CD Kalman Gain VI to calculate L and/or M, you can use 
those values with the CD State Estimator VI to define a Kalman filter. 
Refer to Chapter 13, Defining State Estimator Structures, for more 
information about the different estimator configurations.

The Control Design and Simulation Module also includes the Discrete 
Kalman Filter function and the CD Continuous Recursive Kalman Filter 
function. These functions implement Kalman filters for discrete and 
continuous models, respectively. These functions also calculate the 
appropriate gain matrices internally. However, you can use these functions 
only with stochastic state-space models. Refer to the Using a Kalman Filter 
to Estimate Model States section of Chapter 16, Using Stochastic System 
Models, for more information about using a Kalman filter with stochastic 
state-space models.
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Linear Quadratic Gaussian Controller
A linear quadratic Gaussian (LQG) controller utilizes the LQR technique 
to build the controller and the Kalman gain technique to filter out any 
system noise. Use the CD Linear Quadratic Regulator VI and the 
CD Kalman Gain VI together with the CD State-Space Controller VI 
to synthesize a LQG controller.

Using an arbitrary estimator with a design such as LQR might not result in 
the most optimal design of the controller. If the estimator starts with the 
same initial condition as the unmeasured states, , and if the 
system satisfies a number of controllability and observability conditions, 
the closed-loop system with the observer-based controller has the same 
response as the LQR design. This form of state feedback controller, when 
combined with a estimator defined with the Kalman gain function, is called 
the LQG controller.

Certainty equivalence is the property that enables this combined usage of 
optimal estimator and controller. Certainty equivalence is important 
because you can synthesize a controller gain matrix K and estimator gain 
matrix L independently. You can build a controller assuming all states are 
measurable and then estimate unmeasured states using an optimal 
estimator. The resulting design is optimal for the specified problem.

Note Because an LQG controller uses an estimator, the robustness properties of an LQG 
controller are not the same as that of an LQR controller. You have no guarantee that 
robustness properties can be established for an estimated state feedback controller. You 
only can guarantee robustness by changing the way you measure the states of the system 
to remove the need for an estimator.

x̂ 0( ) x 0( )≡
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13
Defining State Estimator 
Structures

State estimators reconstruct unmeasurable state information. To define 
the structure of a state estimator, you need a model of the system and 
an estimator gain matrix L. You can calculate L using the CD Pole 
Placement VI, the CD Ackermann VI, or the CD Kalman Gain VI. Refer 
to Chapter 12, Designing State-Space Controllers, for more information 
about these VIs.

You use L to define the structure of an estimator. You can design an 
estimator structure to take various factors, such as input noise or input 
disturbances, into consideration.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to define the structure of a state estimator. 
This chapter also discusses known inputs and measurable outputs.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\State-Space Synthesis directory for example VIs that demonstrate the 
concepts explained in this chapter.

Measuring and Adjusting Inputs and Outputs
The estimator gain L considers all inputs u and outputs y, which are known 
and measured. Also, some inputs and outputs might be unavailable. You 
therefore can divide the system into adjustable inputs, measured outputs, 
unknown inputs, and unmeasured outputs. You base this division on 
diagonal matrices, such as Λu and Λy.

Diagonal matrices incorporate the effect of known, unknown, measured, 
and unmeasured inputs and outputs into the equation. A diagonal element 
in these matrices equals unity for the known and measured inputs and 
outputs, and zero for the unknown and unmeasured inputs and outputs or 
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states. The following equation describes how you incorporate the diagonal 
elements for the inputs and outputs in the controller model.

In this equation, B* = BΛu, D* = DΛu, and L* = LΛy. These substitutions 
apply to both estimators and controllers. Controllers have an additional 
substitution when inputs are not adjustable. For a controller, the controller 
gain K* is given by K* = KΛz, where Λz is a diagonal matrix with the same 
characteristics as Λu and Λy. Therefore, a diagonal element in Λz equals 
unity for the adjustable input and zero for the nonadjustable or system 
disturbances.

By default, matrices Λu and Λz are identity matrices whose size equals the 
number of inputs. Λy is an identity matrix whose size equals the number of 
outputs.

Adding a State Estimator to a General System 
Configuration

Use the CD State Estimator VI to define an estimator structure. This VI 
integrates L into a dynamic system so you can analyze and simulate the 
estimator performance.

Note To simplify the equations in the rest of this chapter, assume that all inputs are known 
and all outputs are measurable. This assumption means B* = B, L* = L, and D* = D.

Consider the following equations that represent a continuous state-space 
system.

Assume that L is based on this system, some estimator performance 
specifications, and the output noise ry covariance. You then can calculate 
the estimated states  using the following equations for dynamic models:

x̂ 
·

Ax̂ B*u L* y ŷ–( )+ +=

ŷ Cx̂ D*u+=

x· Ax Bu+=

y Cx Du ry+ +=

x̂

x̂ 
·

Ax̂ Bu L y ŷ–( )+ +=

ŷ Cx̂ Du+=
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The state-space system and dynamic model equations share the same 
system matrices and input u. The states x and  are different because the 
initial conditions of the system might differ from the model and because 
of the noise input ry. Without a noise input, however, the model states track 
the system states, making the difference x –  converge asymptotically to 
zero. The following equation shows how the estimator gain L enhances the 
convergence of the error  to zero. 

Without the noise input, the following equation defines the error 
convergence.

L is designed to place the poles of the matrix A – LC in the specified 
complex-plane location.

To include the estimator in the composed system model, you append the 
original model states x to the estimated model states . The following 
equations show this process:

Given this general system configuration, the following sections provide 
information about deriving the possible configurations of a state estimator.

x̂

x̂

e·

e·x x̂ 
·

x·–≡ A x̂ x–( ) L y ŷ–( )+ A LC–( )ex Lry+= =

e·x A LC–( )ex=

x̂

x̂ 
·

x·  
A 0
0 A

x̂
x

B L
B 0

u
y ŷ–

+=

 ŷ
 y

C 0
0 C

x̂
x

D 0
D 0

u
y ŷ–

0
ry

+ +=
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Configuring State Estimators
Use the Configuration parameter of the CD State Estimator VI to define 
the structure of an estimator using one of the following three 
configurations:

• System Included—Appends the actual states of the system to the 
estimated states.

• System Included with Noise—Incorporates noise ry into the system 
included configuration.

• Standalone—Defines a structure of the estimator that analyzes a 
system-model mismatch.

Table 13-1 summarizes the different state estimator configurations and 
their corresponding states, inputs, and outputs.

The following sections discuss each of these configuration types in detail.

System Included Configuration
You can use the system included configuration to analyze and simulate the 
estimated states and the original states at the same time. For example, the 
following equation defines the output estimator error in a system included 
configuration.

Table 13-1.  State Estimator Configurations

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone

x̂
x

u ŷ
y

x̂
x

u
ry

ŷ
y

x̂ u
y

ŷ

y ŷ– C x x̂–( )=



Chapter 13 Defining State Estimator Structures

© National Instruments Corporation 13-5 Control Design User Manual

By substituting the output estimator error in the general system 
configuration and removing the sensor noise ry, you obtain the following 
equations that describe the system included configuration.

Figure 13-1 represents the dynamic system that these equations describe.
 

Figure 13-1.  System Included State Estimator

The states, inputs, and outputs of the estimator are , u, and , 
respectively.

System Included with Noise Configuration
The system included with noise configuration incorporates noise ry into the 
system included configuration. The following equation defines the output 
estimator error.

x̂ 
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x̂
x
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By substituting the output estimator error in the general system 
configuration, you obtain the following equations that describe the system 
included with noise configuration.

Figure 13-2 represents the dynamic system that these equations describe.
 

Figure 13-2.  System Included with Noise State Estimator

The states, inputs, and outputs of the estimator are , , and , 
respectively.

Standalone Configuration
In the standalone configuration, the system model detaches from the 
estimator. The system outputs y become inputs to the estimator. Unlike the 
system included and system included with noise configurations, the 
standalone configuration does not account for output noise ry.

The primary purpose of the standalone configuration is to implement the 
estimator on a real-time (RT) target. A secondary purpose of the standalone 
configuration is to perform offline simulation and analysis of the estimator. 
Offline simulation and analysis are useful for testing the estimator with 
mismatched models and systems. Mismatched models and systems have 
a calculated estimator gain that applies to a model with uncertainties.
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The following equations describe the standalone configuration.

This configuration does not include the original system. This configuration 
does not generate the system output internally but considers the output as 
another input to the estimator. Figure 13-3 represents the dynamic system 
that these equations describe.

 

Figure 13-3.  Standalone State Estimator

The states, inputs, and outputs of the estimator are , , and , 
respectively.

Example System Configurations
The following equations define an example second-order SISO state-space 
model with poles at –0.2 and –0.1.

You can implement a full state estimator for this system because this system 
is observable. To implement a state estimator for this system, you must 
calculate the estimator gain matrix L for the model of the system. Use the 
CD Ackermann VI to calculate L by placing the poles of the matrix A – LC 
at [–1, –1]. This location is to the left of the original pole location in the 
complex plane. You can use this estimator gain matrix L, along with the 
CD State Estimator VI, to study the performance of the estimator.
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Note Use the CD Observability Matrix VI to verify that this system is observable. Use the 
CD Pole-Zero Map VI to determine the initial location of the system poles.

The following sections use this example system model to illustrate the 
different state estimator configurations. The examples in these sections use 
the CD Ackermann VI to calculate the estimator gain matrix L. You also 
can calculate L using the CD Pole Placement VI or the CD Kalman 
Gain VI.

Example System Included State Estimator
Figure 13-4, shown below, uses the CD Ackermann VI to determine the 
estimator gain matrix L of the second-order SISO State-Space Model. 
You then use L with the CD State Estimator VI to create the state estimator, 
represented by the Estimator Model, for the system.

Figure 13-4.  System Included State Estimator

Note You can study the performance of the state estimator with the CD Initial 
Response VI.
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This configuration creates an Estimator Model that represents the 
original, or actual, states of the system and the estimated states in the same 
model. The Estimator Model consists of four states because this 
configuration appends the original second-order SISO state-space model to 
the state estimator, as shown in the following expression:

Note The direct transmission matrix D is not part of the expression because it is null in 
this example.

The system included configuration monitors the response of the actual 
states of the system to a set of initial conditions. The CD Initial 
Response VI uses [0, 0, 2, 1] as the initial conditions. These initial 
conditions mean that the initial conditions of the actual states are [2, 1], 
whereas the initial conditions of the estimated states are [0, 0]. Therefore, 
the Initial Conditions vector of the Estimator Model is [0, 0, 2, 1]. 

The State Trajectory Graph, as shown in Figure 13-5, displays the 
response of the system and state estimator to the initial conditions 
[0, 0, 2, 1].

 

Figure 13-5.  State Trajectory of System Included State Estimator
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The initial conditions of the actual states are [2, 1]. The response of the 
actual states, therefore, starts at 2 and 1. The initial conditions of the 
estimated states are [0, 0]. The response of the estimated states, therefore, 
starts at the origin. The estimated states promptly begin to track the actual 
states as the response of the actual system settles to steady state. This state 
estimator takes approximately six seconds to track the response of the 
system.

Example System Included with Noise State Estimator
In theory, you can place the poles of the state estimator as far left of the 
complex plane as necessary. This placement leads to very aggressive state 
estimators. Noise and system uncertainties, however, prevent you from 
configuring such aggressive estimators. To account for noise and system 
uncertainties, you can implement a state estimator using the system 
included with noise configuration. Consider the following system included 
with noise configuration.

The configuration of this system is essentially the same as the system in the 
Example System Configurations section of this chapter. The only addition 
is the measurement noise ry. Assume that the measurement noise in this 
example is a Gaussian noise in the system. The output noise influences the 
estimated model dynamics through the estimator gain matrix L. 
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Figure 13-6 shows how to account for a Gaussian noise of 0.1 standard 
deviation in the Estimator Model.

 

Figure 13-6.  System Included with Noise State Estimator

The example in Figure 13-6 uses the state-space model and the 
CD Ackermann VI to determine the estimator gain matrix L. The CD State 
Estimator VI then uses the system included with noise configuration to 
implement the state estimator, represented by the Estimator Model. Use 
the Gaussian White Noise VI to view the effects of Gaussian noise on the 
system and the state estimator. 

Note The CD Linear Simulation VI provides the response to a Gaussian noise with the 
same initial conditions as in Figure 13-4.
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The State Trajectory Graph, as shown in Figure 13-7, displays the 
response of the system and state estimator to the same initial conditions 
[0, 0, 2, 1] used in the Example System Included State Estimator section of 
this chapter.

 

Figure 13-7.  State Trajectory of System Included with Noise State Estimator

Similar to the graph in the Example System Included State Estimator 
section of this chapter, this State Trajectory Graph shows the response of 
the actual states starting at 2 and 1. The graph also shows the response of 
the estimated states starting at the origin. Notice the effect of the output 
noise ry on the state estimation. Without noise, the state estimator took 
approximately six seconds to begin tracking the actual system. With noise, 
the state estimator takes much longer to track the actual system and the state 
estimator cannot track the actual system perfectly.

You can place the estimator poles closer to the origin to reduce the effect of 
the noise. However, when you move the estimator poles closer to the origin 
on the left side of the complex plane, you diminish the performance of the 
estimator in tracking the actual states.

One solution is to use the Kalman gain function to obtain an estimator gain 
matrix that effectively tracks the system states with an acceptable level of 
noise rejection. Refer to the Kalman Gain section of Chapter 12, Designing 
State-Space Controllers, for information about using the Kalman gain 
function to find an optimal solution to this state estimator problem.
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Example Standalone State Estimator
Most systems are complex and have many parameters and uncertainties. 
You often do not know all the parameters of a system when you create a 
model of that system, or you cannot create a model that encompasses all the 
uncertainties of the system. Thus, the actual system and the model of the 
system do not match.

When you build a state estimator based on a model that does not match the 
actual system, the result is a system-model mismatch. In this situation, you 
need to use the standalone configuration. This configuration detaches the 
system from the model so you can determine the effect of the system-model 
mismatch. Consider the following state-space model:

This model is similar to the model in the Example System Configurations 
section of this chapter. For this example, however, assume that the actual 
system contains uncertainties that cause this state-space model to be an 
inaccurate representation of the system. The difference is in the first entry 
of the system matrix A, –0.1.

Figure 13-8 shows how the CD State Estimator VI uses the mismatched 
model, State-Space Model, to create the standalone estimator. This 
configuration connects the actual system, System, and the mismatched 
model, State-Space Model, in series so the actual system can provide the 
output y to the standalone state estimator.

Figure 13-8.  Standalone State Estimator
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The example uses the CD Initial Response VI to evaluate the effectiveness 
of the state estimator. The State Trajectory Graph in Figure 13-9 shows 
the response of the actual and estimated states to the same set of initial 
conditions as in the Example System Included State Estimator section of 
this chapter.

 

Figure 13-9.  State Trajectory of Standalone State Estimator

Notice that a mismatch in the actual system and the model of the system 
greatly impacts the estimation of the second state. After 20 seconds, the 
state estimator still cannot track the actual state. Therefore, you must study 
the system and model mismatch to determine the effect of the mismatch on 
the state estimation.
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14
Defining State-Space Controller 
Structures

State controllers use state information to calculate the control action. 
To define the structure of a state controller, you need a model of the system 
and a controller gain matrix K. You can calculate K using the CD Pole 
Placement VI, the CD Ackermann VI, or the CD Linear Quadratic 
Regulator VI. Refer to Chapter 12, Designing State-Space Controllers, 
for information about these VIs.

You use K to define the structure of a controller. You can design a controller 
structure to take various factors, such as input noise or input disturbances, 
into consideration.

The following sections provide information about using the LabVIEW 
Control Design and Simulation Module to incorporate the gain matrix K 
into the control system. The controllers in the following sections assume 
that all inputs are known and all outputs are measurable. Refer to the 
Measuring and Adjusting Inputs and Outputs section of Chapter 13, 
Defining State Estimator Structures, for information about measuring 
inputs and outputs.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\State-Space Synthesis directory for example VIs that demonstrate the 
concepts explained in this chapter.

Configuring State Controllers
Use the CD State-Space Controller VI to define a controller structure. This 
VI integrates K into a dynamic system for analyzing and simulating the 
controller performance. Use the polymorphic VI selector to define one of 
the following three controller types:

• Compensator—Places a reference on the state. Defines the control 
action using u = K(rx – x), where rx is a state reference. If you estimate 
any states, u = K(rx – ) defines the state compensator control action.x̂
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• Regulator—Places a reference on the input. Defines the control action 
using u = ru – Kx, where ru is an input reference. If you estimate any 
states, u = ru – K  defines the state regulator control action.

• Regulator with Integral—Uses the following equation to define the 
control action.

In this equation, yref is the output reference, or setpoint.

The difference in these controllers is in how you calculate the control 
action u.

You can implement any of these controller types using one of four different 
configurations. Use the Configuration parameter of the CD State-Space 
Controller VI to define a controller structure using one of the following 
four configurations:

• System Included—Appends the actual states of the system to the 
estimated states. This configuration is useful for analyzing and 
simulating the original and estimated states at the same time.

• System Included with Noise—Incorporates noise ry into the system 
included configuration.

• Standalone with Estimator—Defines an estimator structure with the 
controller target. This configuration is useful for performing offline 
simulations and analyses of the controller. You can use offline 
simulations and analyses to test the controller with mismatched models 
and systems. Mismatched models and systems have a calculated 
estimator and controller gain that applies to the mismatched model, or 
to the model with uncertainties. To select this configuration, choose a 
standalone configuration and then wire an estimator with output L to 
the Estimator Gain (L) input of the CD State-Space Controller VI.

• Standalone without Estimator—Bases the control action u on the 
actual states x instead of using an estimator to reconstruct the states. 
This configuration is useful for analyzing a closed-loop system. To 
select this configuration, choose a standalone configuration, but do not 
wire anything to the Estimator Gain (L) input of the CD State-Space 
Controller VI.
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Note Both the system included and system included with noise configurations 
automatically include an estimator.

The following sections show the implementation of all four configurations 
for all three controller types.

State Compensator
A general system configuration appends the original model states x to the 
estimation model states  to represent the compensator with an estimator. 
The following equations show this process:

Table 14-1 summarizes the different state compensator configurations and 
their corresponding states, inputs, and outputs.

The following sections show how to define each configuration of a state 
compensator.

Table 14-1.  State Compensator Configurations

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone with Estimator

Standalone without Estimator
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System Included Configuration
In the system included configuration, the following equation defines the 
output error.

By substituting the output error in the general system configuration and 
removing the sensor noise ry from the system, you obtain the following 
equations that describe the system included configuration.

The reference vector rx has as many elements as the number of states. Also, 
this configuration calculates the control action u internally and then gives 
u as an output of the state compensator.

Figure 14-1 represents the dynamic system that these equations describe.
 

Figure 14-1.  System Included State Compensator

The states, inputs, and outputs of the state compensator are , rx, and , 
respectively.
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System Included with Noise Configuration
The system included configuration with noise incorporates noise ry into the 
system included configuration. The following equation defines the output 
error.

By substituting the output error in the general system configuration, you 
obtain the following equations that describe the system included with noise 
configuration.

The reference vector rx has as many elements as the number of states. Also, 
this configuration calculates the control action u internally and then gives 
u as an output of the compensator.

Figure 14-2 represents the dynamic system that these equations describe.
 

Figure 14-2.  System Included with Noise State Compensator
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The states, inputs, and outputs of the state compensator are , , and 

, respectively.

Standalone with Estimator Configuration
In the standalone with estimator configuration, the system model detaches 
from the controller. The system outputs y become inputs to the estimator. 
Unlike the system included and system included with noise configurations, 
the standalone with estimator configuration does not account for output 
error. You must wire a value to the Estimator Gain (L) input of the CD 
State-Space Controller VI to include the estimator in the standalone state 
compensator.

The following equations describe the standalone configuration.

This configuration does not include the original system. This configuration 
considers the system output y as another input to the estimator.

Figure 14-3 represents the dynamic system that these equations describe.
 

Figure 14-3.  Standalone with Estimator State Compensator

The states, inputs, and outputs of state compensator are , , and , 
respectively.
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Standalone without Estimator Configuration
In the standalone without estimator configuration, you calculate the control 
action u using the states. As such, you do not need an estimator. In the 
CD State-Space Controller VI, do not wire a value to the Estimator 
Gain (L) input to exclude the estimator in the standalone state 
compensator.

The following equations describe the standalone configuration.

The states and outputs of the standalone without estimator compensator 
correspond to the states and outputs of the actual system.

Figure 14-4 represents the dynamic system that these equations describe.
 

Figure 14-4.  Standalone without Estimator State Compensator

The states, inputs, and outputs of the state compensator are x, rx, and , 
respectively.
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State Regulator
A general system configuration appends the original model states x to the 
estimation model states  to represent the state regulator with an estimator. 
The following equations show this process:

Table 14-2 summarizes the different state regulator configurations and their 
corresponding states, inputs, and outputs.

The following sections show how to define each configuration.

Table 14-2.  State Regulator Configuration Types

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone with Estimator

Standalone without Estimator
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System Included Configuration
In the system included configuration, the following equation defines the 
output error.

By substituting the output error in the general system configuration and 
removing the sensor noise ry from the system, you obtain the following 
equations that describe the system included configuration.

The reference vector, or actuator noise, ru has as many elements as the 
number of inputs. Also, this configuration calculates the control action u 
internally and then gives u as an output of the state regulator.

Figure 14-5 represents the dynamic system that these equations describe.
 

Figure 14-5.  System Included State Regulator

The states, inputs, and outputs of the state regulator are , ru, and , 
respectively.
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System Included Configuration with Noise
The system included with noise configuration incorporates noise ry into the 
system included configuration. The following equation defines the output 
error.

By substituting the output error in the general system configuration, you 
obtain the following equations that describe the system included with noise 
configuration.

The reference vector, or actuator noise, ru has as many elements as the 
number of inputs. Also, this configuration calculates the control action u 
internally and then gives u as an output of the state regulator.

Figure 14-6 represents the dynamic system that these equations describe.
 

Figure 14-6.  System Included with Noise State Regulator

The states, inputs, and outputs of the state regulator are , , and , 
respectively.
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Standalone with Estimator Configuration
In the standalone with estimator configuration, the system model detaches 
from the controller. The system outputs y become inputs to the estimator. 
Unlike the system included and system included with noise configurations, 
the standalone with estimator configuration does not account for output 
error. You must wire a value to the Estimator Gain (L) input of the 
CD State-Space Controller VI to include the estimator in the standalone 
state compensator.

The following equations describe the standalone with estimator 
configuration.

This configuration does not include the original system. This configuration 
considers the system output y as another input to the estimator.

Figure 14-7 represents the dynamic system that these equations describe.
 

Figure 14-7.  Standalone with Estimator State Regulator

The states, inputs, and outputs of the state regulator are , , and , 
respectively.
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Standalone without Estimator Configuration
The standalone without estimator configuration uses states to calculate 
the control action u. As such, you do not need an estimator. In the 
CD State-Space Controller VI, do not wire a value to the Estimator 
Gain (L) input to exclude the estimator in the standalone state regulator.

The following equations describe the standalone configuration.

The states and outputs of the standalone without estimator state regulator 
correspond to the states and outputs of the actual system. 

Figure 14-8 represents the dynamic system that these equations describe.
 

Figure 14-8.  Standalone without Estimator State Regulator

The states, inputs, and outputs of the state regulator are x, ru, and , 
respectively.
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State Regulator with Integral Action
A general system configuration appends the output error integrator z to the 
estimation model states . A general system configuration also augments 
the resulting vector ( , z) with the original model states x to represent the 
state regulator with integral action and an estimator. The following 
equations show this process:

In these equations, Kx is the gain, Ki is the integral action, yref is the 
reference variable that you are tracking, and y is the output variable that you 
use to track yref. In these equations, Γ varies depending on whether the 
model describes a continuous or discrete system. If the system is 
continuous, Γ = 0. If the system is discrete, Γ = I.

When you define the control action for a state regulator with integral action 
using the output error integrator z, you obtain the following control action 
equation.

Substituting the control action into state dynamics of the general system 
configuration defined in the previous equation, you obtain the following 
equation that also defines the general system configuration.
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Table 14-3 summarizes the different state regulator with integral action 
configurations and their corresponding states, inputs, and outputs.

The following sections show how to derive each configuration.

System Included Configuration
In the system included configuration, the following equations define the 
output error and system output.

By substituting the output error and system output in the general system 
configuration and removing the sensor noise ry from the system, you obtain 
the following equations that describe the system included configuration.

Table 14-3.  State Regulator with Integral Action Configuration Types

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone with Estimator

Standalone without Estimator
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The reference vector yref has as many elements as the number of outputs. 
Also, this configuration calculates the control action u internally and then 
gives u as an output of the state regulator with integral action.

Figure 14-9 represents the dynamic system that these equations describe.
 

Figure 14-9.  System Included Regulator with Integral Action

The states, inputs, and outputs of the state regulator with integral action are 

, yref , and , respectively.
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System Included with Noise Configuration
The system included with noise configuration incorporates noise ry into the 
system included configuration. The following equations define the output 
error and system output.

By substituting the output error and system output in the general system 
configuration, you obtain the following equations that describe the system 
included with noise configuration.

The reference vector yref has as many elements as the number of outputs. 
Also, this configuration calculates the control action u internally and then 
gives u as an output of the state regulator with integral action.

y ŷ– C– x̂ Cx ry+ +=

y D– Kx x̂ Kiz+( ) Cz ry+ +=

x̂ 
·

z·  
x·  

A BKx– LC– BKi– LC
DKx Γ DKi+ C–

B– Kx B– Ki A

x̂
z
x

0 L
I 0
0 0

yref

ry

+=

 u
 ŷ
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Figure 14-10 represents the dynamic system described by these equations.
 

Figure 14-10.  System Included with Noise State Regulator with Integral Action

The states, inputs, and outputs of the state regulator with integral action are 

, , and , respectively.

Standalone with Estimator Configuration
In the standalone with estimator configuration, the system model detaches 
from the controller. The system outputs y become inputs to the estimator. 
Unlike the system included and system included with noise configurations, 
the standalone configuration with estimator does not account for output 
error. You must wire a value to the Estimator Gain (L) input of the 
CD State-Space Controller VI to include the estimator in the standalone 
state regulator with integral action.
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The following equations describe the standalone configuration.

Use the following substitution to make the input independent.

This process results in the following equations that describe the standalone 
configuration.

This configuration does not include the original system. This configuration 
considers the system output y as another input to the estimator.

Figure 14-11 represents the dynamic system that these equations describe.
 

Figure 14-11.  Standalone with Estimator State Regulator with Integral Action
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The states, inputs, and outputs of the state regulator with integral action are 

, , and , respectively.

Standalone without Estimator Configuration
The standalone without estimator configuration uses states to calculate of 
the control action u. As such, you do not need an estimator. In the 
CD State-Space Controller VI, do not wire a value to the 
Estimator Gain (L) input to exclude the estimator in the standalone state 
regulator with integral action.

The following equations describe the standalone configuration.

Use the following substitution to make the inputs independent.

This process results in the following equations that describe the standalone 
without estimator configuration.

Using this configuration, the states and outputs of the standalone state 
regulator with integral action correspond to the states and outputs of the 
actual system.
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Figure 14-12 represents the system that these equations describe.

Figure 14-12.  Standalone without Estimator State Regulator with Integral Action

The states, inputs, and outputs of the state regulator with integral action are 

, , and , respectively.

Example System Configurations
The following equations define an example second-order SISO state-space 
model with poles at –0.2 and –0.1.

You can implement a full state controller for this system because this 
system is controllable. To implement a state controller for this system, you 
must calculate the controller gain matrix K for the model of the system. Use 
the CD Ackermann VI to calculate K by placing the poles of the matrix 
A – BK at [–1, –1]. This location is to the left of the original pole location 
in the complex plane. You can use this controller gain matrix K, along with 
the CD State-Space Controller VI, to study the performance of the 
compensator.

Note Use the CD Controllability Matrix VI to verify that this system is observable. 
Use the CD Pole-Zero Map VI to determine the initial location of the system poles.
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Figure 14-13 shows the response of the example system to initial 
conditions of [2, 1]. This system is unstable because the response increases 
exponentially and does not settle at a steady-state value.

 

Figure 14-13.  Unstable Open-Loop System

Even though this system is unstable, the system is still controllable. 
Because the system is controllable, you can use a state compensator to 
place the closed-loop poles in the left-hand side of the complex plane to 
make the response stable. You can calculate the controller gain matrix K by 
using the CD Ackermann VI to place the poles of the matrix A – BK at 
[–1, –1]. You can use K to study the performance of the compensator by 
selecting the Compensator instance of the CD State-Space Controller VI.

The following sections use this example system model to illustrate the 
different state controller configurations. These examples are state 
compensators. You can define a state regulator or state regulator with 
integral action by selecting the Regulator or Regulator with Integral 
instance of the CD State-Space Controller VI, respectively.

The examples in these sections use the CD Ackermann VI to calculate the 
controller gain matrix K. You also can calculate K using the CD Pole 
Placement VI or the CD Linear Quadratic Regulator VI.



Chapter 14 Defining State-Space Controller Structures

Control Design User Manual 14-22 ni.com

Example System Included State Compensator
In theory, you cannot always measure the system states directly for control 
purposes. Therefore, you must synthesize a controller using the system 
outputs. To calculate the control action based on the estimated states, the 
estimator needs to approach the actual states faster than the controller. 
Therefore, you can calculate an estimator gain matrix such that A – LC has 
eigenvalues at [–5, –5], which is farther to the left of the origin than the 
poles of the controller located at [–1, –1].

The system included configuration takes both the estimator gain matrix L 
and the controller gain matrix K and uses them to synthesize a state 
compensator. Figure 14-14 shows the implementation of a state 
compensator using the system included configuration.

 

Figure 14-14.  System Included State Compensator
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The CD Initial Response VI uses [0, 0, 2, 1] as the initial conditions. As in 
the Example System Included State Estimator section of Chapter 13, 
Defining State Estimator Structures, these initial conditions mean that the 
initial conditions of the actual states are [2, 1], whereas the initial 
conditions of the estimated states are [0, 0]. Figure 14-15 shows the 
response of the system to those initial conditions.

 

Figure 14-15.  State Trajectory of a System Included State Compensator

Notice that the time the estimator takes to track the actual states is much 
shorter than the time the actual states take to reach a steady state. The 
estimator takes between 1 and 1.5 seconds to track the actual states, 
whereas the actual states take approximately six seconds to reach a steady 
state. The estimator tracks the actual states faster than the controller 
stabilizes the system because the estimator poles are at [–5, –5] and the 
controller poles are at [–1, –1]. Placing the poles of the estimator farther to 
the left than the controller poles makes the performance of the estimator 
faster than the controller.
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Example System Included with Noise State Compensator
In general, the compensator accepts two inputs, rx and ry. The input rx 
represents state references. The input ry represents measurement noise and 
is available only in the system included with noise configuration. 
Figure 14-16 shows the use of both types of inputs for the compensator.

 

Figure 14-16.  System Included with Noise State Compensator

The system included with noise configuration analyzes the effect of output 
noise on the system. This example has a total of three inputs to the 
compensator structure. The first two inputs are setpoints to the controller, 
given by rx = [1, 0]. The last input represents the output noise ry, which has 
a standard deviation of 0.01. Figure 14-17 shows the response to these 
inputs.

 

Figure 14-17.  State Trajectory of System Included State Compensator with Noise
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Notice that the state compensator lacks integral action, which originates the 
offsets on the state responses with respect to their respective setpoints. 
Therefore, the states do not reach the specified setpoints rx = [1, 0].

Example Standalone with Estimator State Compensator
Most systems are complex and have many parameters and uncertainties. 
You often do not know all the parameters of a system when you create a 
model of that system, or you cannot create a model that encompasses all the 
uncertainties of the system. Thus, the actual system and the model of the 
system do not match.

When you build a state compensator based on a model that does not match 
the actual system, the result is a system-model mismatch. In this situation, 
you need to use the standalone with estimator configuration. This 
configuration detaches the system from the model so you can determine the 
effect of the system-model mismatch. Consider the following state-space 
model:

This model is similar to the model in the Example System Configurations 
section of this chapter. For this example, however, assume that the actual 
system contains uncertainties that cause this state-space model to be an 
inaccurate representation of the system. The difference is in the last entry 
of the system matrix A, –0.2.

Figure 14-18 shows how this configuration uses the mismatched model, 
State-Space Model, to create the standalone with estimator state 
compensator. Note that the CD State-Space Controller VI uses the 
Compensator instance. This configuration connects the actual system, 
System, and the mismatched model, State-Space Model, in series. System 
uses this connection to provide the output y to the state compensator.

x· 0.2– 0.5
0.1 0.2–

x 0
1

u+=

y 1 0 x 0 u+=
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Figure 14-18.  Standalone with Estimator State Compensator

This example sends the input u, which the compensator calculates, to the 
actual system using the CD Feedback VI. The CD Initial Response VI uses 
the same initial conditions to test the effectiveness of the controller and 
estimator. Figure 14-19 shows the effect of a using a model that does not 
match the actual system.

 

Figure 14-19.  State Trajectory of Standalone with Estimator State Compensator

Notice how Figure 14-15 and Figure 14-19 respond differently even though 
both figures represent responses to the same system with the same initial 
conditions. The example in Figure 14-15 takes 1 to 1.5 seconds to track the 
actual states. The example in Figure 14-19, however, takes approximately 
four seconds to track the actual states. The system-model mismatch in the 
latter example accounts for this difference.
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This example is similar to real-world applications where you do not know 
what the actual system is. Therefore, these tests are important in 
determining how sensitive the controller is to the system-model 
mismatches. You perform these tests before deploying the controller to a 
real-time (RT) target. Using a design method called robust control design, 
you can create model-based controllers that take into account possible 
modeling errors. Refer to Essentials of Robust Control, as listed in the 
Related Documentation section of this manual, for information about 
robust control design.

Example Standalone without Estimator State Compensator
This state compensator uses the standalone without estimator 
configuration, which indicates that you do not need a state estimator 
because the states are directly available for control. The following 
equations describe the compensator model.

Note The direct transmission matrix D is not part of this expression because D is null in 
this example.

The poles, or the eigenvalues of A – BK, of the closed-loop system are in 
the left side of the complex plane. If you set the output noise rx to zero, the 
controller gain matrix K immediately drives the states to zero.

Figure 14-20 shows how you use the CD Ackermann VI to calculate the 
controller gain matrix K, which you then use to study the performance of 
the state compensator.

x· A BK–( )x BKrx+=

y Cx=
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Figure 14-20.  Standalone without Estimator Compensator

Note To view both the original response of the actual system and the response of the 
system controlled by the state compensator, you must append the model of the actual 
system, State-Space Model, to the model of the state compensator. Therefore, in the 
State Trajectory Graph, shown in Figure 14-21, you can see the difference in the system 
response due to the effect of the compensator gain K. 

By adding a state compensator to the actual system, you create a 
closed-loop model of the resulting system. The actual system, without a 
state compensator, is an open-loop system. Figure 14-21 shows the 
response of the open-loop and closed-loop systems to initial conditions 
of [2, 1].

 

Figure 14-21.  State Trajectory for Standalone without Estimator Compensator
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Notice that despite the instability of the actual system, the state 
compensator is able to drive the closed-loop states toward zero. Thus the 
addition of a state compensator to the actual system stabilizes the resulting 
system.

Because the standalone state compensator stabilizes the actual system, 
you must use a state compensator with this system.
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15
Estimating Model States

Observers estimate the states of state-space system models by using the 
model information, any known inputs, and measured outputs. Use an 
observer when you cannot measure one or more model states directly. You 
can use observers only with state-space models because transfer function 
and zero-pole-gain models do not specify state information.

Note Observers do not take noise into account when estimating system states. If there is 
noise present in the system, that is, if the system is stochastic, you use an estimator instead 
of an observer. A Kalman filter is one type of estimator. Refer to Chapter 16, Using 
Stochastic System Models, for more information about stochastic systems and Kalman 
filters.

The LabVIEW Control Design and Simulation Module includes two types 
of observers for discrete models. Predictive observers use only information 
from the previous time step to estimate state information. Current observers 
use not only information from the previous time step, but also information 
from the current time step. This additional information improves the 
accuracy of current observers. Use a current observer only when the extra 
computation time does not interfere with the next sampling time.

The Control Design and Simulation Module also includes an observer for 
continuous models. However, estimating state information of continuous 
models requires solving a differential equation over time. Therefore, you 
can use a continuous observer only with a Simulation Loop.

Note The examples in this chapter compare actual model states with the estimated states. 
These comparisons are for example purposes only because in real-world control systems 
you rarely have all state information. However, if you are able to measure all state 
information, you do not need an observer.

This chapter provides information about using predictive, current, and 
continuous observers.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Implementation directory for example VIs that demonstrate the concepts 
explained in this chapter.
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Predictive Observer
At each time step k, a predictive observer estimates the state information 
for the next time step, or k + 1| k. This notation translates as the estimated 
states at time step k + 1 given all measurements up to and including time 
step k.

Consider an example at time step k = 5. At this time step, the predictive 
observer estimates , or . Estimating this information 
requires , or the current state estimate given all measurements 
up to and including time step k – 1, which is . The predictive 
observer also uses measured output y(5), estimated output , and 
known input u(5).

The following equations show this estimation:

In these equations, the predictive observer applies the observer gain Lp to 
the difference between the measured output y(k) and the estimated output 

. You can use the CD Ackermann VI or the CD Pole Placement VI 
to calculate Lp. Refer to the Pole Placement Technique section of 
Chapter 12, Designing State-Space Controllers, for more information 
about using these VIs.

At the next time step k = 6, the state estimate  becomes the 
predicted state estimate , The predictive observer uses this 
information to estimate the model states at time k = 7, or .

Use the Discrete Observer function to implement a predictive observer. 
For example, consider the following discrete state-space model:

where T is a sampling time of 0.1 seconds.

x̂ k 1+ k( ) x̂ 6 5( )
x̂ k k 1–( )

x̂ 5 4( )
ŷ 5( )

x̂ k 1+ k( ) x̂ 6 5( ) Ax̂ 5 4( ) Bx̂ 5 4( ) Lp y 5( ) ŷ 5( )–[ ]+ += =

ŷ 5( ) Cx̂ 5 4( ) Du 5( )–=

ŷ k( )

x̂ 6 5( )
x̂ k k 1–( )

x̂ 7 6( )

x k 1+( ) 1 T
0 1

x k( )=

y k( ) 1 0 x k( )=
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Figure 15-1 shows the front panel controls that define this state-space 
model.

Figure 15-1.  Defining the Discrete State-Space Model

This model has two states x1 and x2. Figure 15-2 shows a block diagram 
that implements a predictive observer for this model.

Figure 15-2.  Implementing a Predictive Observer for the State-Space Model
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The example in Figure 15-2 uses the Discrete State-Space function to 
calculate the actual states of this model. At each time step, this example 
compares the actual State x(k) to the Predicted State Estimate 
xhat(k|k-1), which is the state this function estimated at the previous time 
step. The difference between these two values is the Error e(k). This 
example also uses the CD Pole Placement VI to calculate the observer gain 
Lp such that the Poles of the predictive observer are in a location you define. 
In this example, the predictive observer poles are located at 0.4 ± 0.4i. 
Because this example has an Initial State x(0) value of [0, 0]T, both 
model states return a constant value of zero. The Wait Until Next ms 
Multiple function determines the speed at which the While Loop executes.

Note This model is adapted from pp. 292–93 of Digital Control of Dynamic Systems, 
as listed in the Related Documentation section of this manual.
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If you execute this example with an Initial State Estimate xhat(0|–1) of 
[0, –1]T, this example returns the graphs shown in Figure 15-3.

Figure 15-3.  Actual Model States vs. Estimated Model States
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In Figure 15-3, notice the predictive observer starts estimating both 
model states correctly after about one second. To confirm this analysis, you 
can look at the Error e(k) graph, defined as x(k) – xhat(k|k–1) for each 
model state. Figure 15-4 shows the error graph of this example.

Figure 15-4.  Estimation Error of a Predictive Observer

Figure 15-4 confirms the estimation error of this predictive observer 
becomes zero after about one second.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for information about the general forms of the equations 
the Discrete Observer function uses to calculate the outputs.
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Current Observer
The difference between a predictive and current observer is that a 
predictive observer uses measured output y(k) to estimate the predicted 
state . However, a current observer uses y(k) to estimate the 
current state  and uses that information to estimate . 
This extra calculation means that a current observer is more accurate than 
a predictive observer.

Consider an example at time step k = 5. At this time step, the Discrete 
Observer function estimates  using , measured output y(5), 
estimated output , and known input u(5). The following equations 
show this estimation:

In these equations, the current observer applies the observer gain Lc to the 
difference between the measured output y(k) and the estimated output 

. You can use the CD Ackermann VI or the CD Pole Placement VI to 
calculate Lc.

After estimating , the Discrete Observer function uses u(5) to 
estimate the model states for the next time step , or . 
The following equation shows this estimation:

At the next time step k = 6, the state estimate  becomes . 
The Discrete Observer function corrects  to become . The 
Discrete Observer function then uses  information to estimate 

.

x̂ k 1 k+( )
x̂ k k( ) x̂ k 1 k+( )

x̂ 5 5( ) x̂ 5 4( )
ŷ 5( )

x̂ k k( ) x̂ 5 5( ) x̂ 5 4( ) Lc y 5( ) ŷ 5( )–[ ]+= =

ŷ 5( ) Cx̂ 5( ) Du 5( )–=

ŷ k( )

x̂ 5 5( )
x̂ k 1 k+( ) x̂ 6 5( )

x̂ 6 5( ) Ax̂ 5 5( ) Bu 5( )+=

x̂ 6 5( ) x̂ k k 1–( )
x̂ 6 5( ) x̂ 6 6( )

x̂ 6 6( )
x̂ 7 6( )
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Figure 15-5 shows a block diagram that implements a current observer for 
this model.

Figure 15-5.  Implementing a Current Observer for the State-Space Model
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Figure 15-6 shows the error graph of a current observer for the same model 
described in the Predictive Observer section of this chapter.

Figure 15-6.  Estimation Error of a Current Observer

In Figure 15-6, notice the error oscillates less than the error of the 
predictive observer shown in Figure 15-4. Also, the current observer error 
generally is less than the predictive observer error at a given time step. This 
decrease in error occurs because the current observer uses the current 
output y(k) to estimate the current states xhat(k|k), whereas the predictive 
observer uses the current output y(k) to predict the next state estimate 
xhat(k+1|k).

Refer to the LabVIEW Help for the general forms of the equations the 
Discrete Observer function uses to calculate the outputs.

Continuous Observer
Estimating the states of a continuous state-space model requires solving the 
following ordinary differential equation:

x̂ 
·

t( ) Ax̂ t( ) Bu t( ) L y t( ) ŷ t( )–[ ]+ +=

ŷ t( ) Cx̂ t( ) Du t( )+=
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To estimate the states, you must integrate this equation over time. To 
perform this integration, you must use the CD Continuous Observer 
function with an ordinary differential equation (ODE) solver. You specify 
the ODE solver to use and parameters of the ODE solver by placing the 
CD Continuous Observer function inside a Simulation Loop.

For example, consider the following continuous state-space model:

This model has two states x1 and x2. Figure 15-7 shows a LabVIEW block 
diagram that implements a continuous observer for this model.

Figure 15-7.  Implementing a Continuous Observer for a State-Space Model

The example in Figure 15-7 uses the State-Space function to calculate the 
actual states of this model. At each time step, this example compares the 
Actual state x(t) to the Estimated state xhat(t). The difference between 
these two values is the Error e(t). This example also uses the CD Pole 
Placement VI to calculate the observer gain L such that the Poles of the 
continuous observer are in a location you define. In this example, the 
observer poles are located at –10 ± 0i.

x· t( ) 0 1
1– 0

x t( ) 0
1

u t( )+=

y t( ) 1 0 x t( )=
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Note This model is adapted from Feedback Control of Dynamic Systems, as listed in the 
Related Documentation section of this manual.

If you execute this example using an Initial State Estimate xhat(0) of 
[0 –1]T and an input of 0, this function returns the graphs shown in 
Figure 15-8.

Figure 15-8.  Actual Model States vs. Estimated Model States
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In Figure 15-8, notice the continuous observer starts estimating both model 
states correctly after about one second. To confirm this fact, you can look 
at the Error e(t) graph, defined as x(t) – xhat(t) for each model state. 
Figure 15-9 shows the error graph of this example.

Figure 15-9.  Estimation Error of a Continuous Observer

Figure 15-9 confirms that the observation error for both states converges to 
zero after about one second.

This example uses the Runge-Kutta 23 ODE solver with an initial time 
step of 0.01 seconds. Refer to the LabVIEW Help for information about 
this and other ODE solvers.
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16
Using Stochastic System 
Models

The model forms in Chapter 2, Constructing Dynamic System Models, 
are deterministic. Deterministic models do not account for random 
disturbances, or noise, present in the system. Because noise affects most 
real-world systems, deterministic models might not represent these systems 
sufficiently.

Stochastic system models are models that represent the effects of noise on 
the plant, actuators, and/or sensors. Each stochastic system model has an 
associated noise model that characterizes the first- and second-order 
statistical behavior of the noise affecting the system. You use stochastic 
system models and noise model to test that a controller performs 
adequately in the presence of noise.

This chapter provides information about constructing and converting 
stochastic state-space models and noise models. This chapter also describes 
simulating stochastic models and implementing a Kalman filter to estimate 
model states in the presence of noise.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\Implementation directory for example VIs that demonstrate the concepts 
explained in this chapter.

Constructing Stochastic Models
In addition to the state-space matrices A, B, C, and D, stochastic models 
contain the following variables:

• Vectors w and v represent process noise and measurement noise, 
respectively. Process noise reflects errors introduced by the model 
you defined, disturbances in the system states, and actuator errors. 
Measurement noise reflects sensor reading errors and disturbances 
directly affecting the sensor readings.

• Matrices G and H relate w to the states and outputs, respectively.
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The following equations define continuous and discrete stochastic 
state-space models.

Continuous Stochastic State-Space Model

Discrete Stochastic State-Space Model

Table 16-1 describes these variables.

Refer to the Constructing State-Space Models section of Chapter 2, 
Constructing Dynamic System Models, for information about the A, B, C, 
D, x, u, and y variables.

Use the CD Construct Stochastic Model VI to construct a stochastic 
state-space model. Refer to the LabVIEW Help, available by selecting 
Help»Search the LabVIEW Help, for information about this VI.

Table 16-1.  Dimensions and Names of Stochastic State-Space Model Variables

Variable Dimension Name

q — Length of process noise vector w.

r — Number of outputs.

n — Number of states.

w q × 1 vector Process noise vector.

v r × 1 vector Measurement noise vector.

G n × q matrix Weighting matrix relating the 
process noise vector w to the 
system states.

H r × q matrix Weighting matrix relating the 
process noise vector w to the 
system outputs.

x· t( ) Ax t( ) Bu t( ) Gw t( )+ +=

y t( ) Cx t( ) Du t( ) Hw t( ) v t( )+ + +=

x k 1+( ) Ax k( ) Bu k( ) Gw k( )+ +=

y k( ) Cx k( ) Du k( ) Hw k( ) v k( )+ + +=
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Constructing Noise Models
A noise model characterizes the first- and second-order statistical behavior 
of the noise vectors w and v. You construct a noise model by specifying the 
expected mean and auto-covariance of each noise vector. You also can 
specify any cross-covariance between the two vectors.

A noise model is of the following form:

Table 16-2 describes these variables.

Use the CD Construct Noise Model VI to construct a noise model for a 
given stochastic state-space model. Refer to the LabVIEW Help for 
information about this VI.

Converting Stochastic Models
A noise model is associated with a particular stochastic model. If the 
stochastic model is continuous, the noise model is continuous, whereas if 
the stochastic model is discrete, the noise model is discrete.

You can convert continuous stochastic models to discrete models, and 
vice-versa. You also can convert stochastic models to deterministic models, 
and vice-versa. The following sections provide information about these 
conversions.

Table 16-2.  Dimensions and Names of Noise Model Variables

Variable Dimension Name

Q q × q matrix Auto-covariance matrix of w.

R r × r matrix Auto-covariance matrix of v.

N q × r matrix Cross-covariance between w and v.

E{w} q × 1 vector Mean vector of w.

E{v} r × 1 vector Mean vector of v.

Q E w wT⋅{ } E w{ } ET w{ }⋅–=

R E v vT⋅{ } E v{ } ET v{ }⋅–=

N E w vT⋅{ } E w{ } ET v{ }⋅–=



Chapter 16 Using Stochastic System Models

Control Design User Manual 16-4 ni.com

Converting between Continuous and Discrete Stochastic Models
Use the CD Convert Continuous Stochastic to Discrete VI to discretize a 
continuous stochastic model and the associated noise model. This VI 
first converts the deterministic matrices A, B, C, and D using the 
Zero-Order-Hold method. Refer to Chapter 3, Converting Models, 
for information about this method.

This VI then converts the G, H, Q, R, and N matrices according to the 
Method you specify. You can choose either the Numerical Integration 
method as proposed by Van Loan or the Truncation of Taylor Series 
Expansion (TSE) method. Refer to the LabVIEW Help and to IEEE 
Transactions on Automatic Control, as listed in the Related Documentation 
section of this manual, for information about the equations these methods 
use.

Converting between Stochastic and Deterministic Models
Use the CD Convert Stochastic to Deterministic Model VI to convert a 
stochastic state-space model to a deterministic state-space model. This VI 
removes G and H from the stochastic model equations.

Use the CD Convert Deterministic to Stochastic Model VI to convert a 
deterministic state-space model to a stochastic state-space model. When 
you execute this VI, you specify matrices G and H. This VI then 
incorporates G and H into the deterministic model equations.

Note When using either of these VIs, if the model you are converting is discrete, the 
resulting model has the same sampling time.

Simulating Stochastic Models
Before you deploy a controller to an RT target, you can test that the 
controller performs as expected in the presence of noise. To perform this 
test, you can simulate the behavior of a stochastic system model.

Use the Internal Noise instance of the Discrete Stochastic State-Space 
function to simulate the behavior of a discrete stochastic state-space model. 
This function uses the Second-Order Statistics Noise Model to generate 
values of w(k) and v(k). 

You also can use the External Noise instance of the Discrete Stochastic 
State-Space function and wire values of w(k) and v(k) to the Process Noise 
w(k) and Measurement Noise v(k) inputs, respectively. In this situation, 
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you can use the CD Correlated Gaussian Random Noise VI to generate 
Gaussian-distributed values of w(k) and v(k) that fit a statistical profile you 
specify.

In either instance, you test a controller model by wiring the output of the 
controller model to the Input u(k) input of the Discrete Stochastic 
State-Space function. You also can provide initial state information by 
wiring values to the Initial State x(0) input.

This function accepts changes to the stochastic model and the noise model 
as long as the dimensions of the A, B, C, D, G, H, Q, R, and N matrices 
remain the same. Because of this functionality, you can use the Discrete 
Stochastic State-Space function to simulate the behavior of linear  
time-variant (LTV) models. 

Refer to the LabVIEW Help for more information about these functions.

Using a Kalman Filter to Estimate Model States
In the real world, controllers typically receive measurements that are 
corrupted by noise. Also, you typically do not or cannot measure all state 
values. If you want to calculate state values, the only information you have 
is these noisy measurements and the known inputs. In this situation, you 
can use a Kalman filter to estimate the state values given noisy sensor 
measurements.

Use the Discrete Kalman Filter function to implement a Kalman filter for a 
discrete stochastic state-space model. This function calculates the filtered 
state estimate using only known inputs and noisy measurements of the 
plant. The Discrete Kalman Filter function returns the filtered state 
estimate, which is defined as . This notation translates as the 
estimated state vector at time k given all measurements up to and 
including k.

Calculating the filtered state estimate involves applying a gain matrix M(k) 
to the difference between the measured output and the estimated output. 
The Discrete Kalman Filter function calculates and returns the value of 
M(k) that minimizes the covariance of the estimation error. This covariance 
is a matrix P(k|k).

The Discrete Kalman Filter function also calculates the predicted state 
estimate . Calculating the predicted state estimate involves 
applying a gain matrix L(k) to the difference between the measured output 
and the estimated output. This function calculates and returns the value of 

x̂ k k( )

x̂ k 1+ k( )
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L(k) that minimizes the covariance of the prediction estimation error. This 
covariance is a matrix P(k+1|k).

You can assist the Kalman filter by specifying the Initial State Estimate 
xhat(0|–1). This parameter specifies the state values you think the 
stochastic model returns at the first time step k = 0. Providing this function 
with initial state estimates helps this function converge on the true state 
values quicker than if you do not provide an initial estimate. If you do not 
wire a value to this parameter, this function sets all initial state values to 
zero.

You also can specify the Initial Estimation Error Covariance P(0|–1). 
This parameter defines the covariance of the estimation error at the first 
time step. A low value of this parameter indicates you have a high degree 
of confidence in any Initial State Estimate xhat(0|–1) you provide, 
and vice versa. If you do specify the Initial Estimation Error 
Covariance P(0|–1) parameter, this function sets this parameter as the 
identity matrix.

Refer to the Discrete Models section of Chapter 12, Designing State-Space 
Controllers, for more information about how a Kalman filter uses the gain 
and estimation error covariance matrices. Refer to LabVIEW Help for the 
equations the Discrete Kalman Filter function uses to calculate the outputs.

The LabVIEW Control Design and Simulation Module also includes the 
CD Continuous Recursive Kalman Filter function. Use this function to 
implement a Kalman filter for a continuous stochastic model. Because 
continuous Kalman filters must solve differential equations over time, you 
only can place the CD Continuous Recursive Kalman Filter function inside 
a Simulation Loop.
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Noisy RL Circuit Example
This example in this section modifies the RLC circuit from the RLC Circuit 
Example section of Chapter 2, Constructing Dynamic System Models, by 
removing the capacitor, adding process noise n(t), and adding measurement 
noise e(t). Figure 16-1 shows this noisy RL circuit.

Figure 16-1.  Noisy RL Circuit

In this example, L is the inductor, i(t) is the current, vi(t) is the input voltage, 
vo(t) is the output voltage, and R is the resistor. n(t) is process noise that 
affects the resistor R, and e(t) is measurement noise that affects the sensor 
that measures vo(t). The result of this noise is a corrupted measurement 
vo,n(t).

The process noise n(t) is modeled as a white, Gaussian, stochastic process 
with spectral density Sn(ω) = 2kTR, where k is the Boltzmann constant1, 
T is the absolute temperature of the resistor, and R is the nominal resistance 
of the noiseless resistor.

The measurement noise e(t) is modeled as a white, Gaussian, stochastic 
process with spectral density Se(ω) = s2, where s is the standard deviation 
of the measurement noise. In this example, e(t) is uncorrelated with n(t).

The following sections construct a stochastic state-space model and noise 
model for this example, simulate the model output, and implement a 
Kalman filter to estimate the model states.

1   In this example, the Boltzmann constant equals 1.38 × 10–23 Joules per Kelvin.
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Constructing the System Model
Constructing a model for this system involves defining the values of the A, 
B, C, D, G, and H matrices. To define these matrices, you can write 
equations that describe the system behavior and transform those equations 
into stochastic state-space form. After the equations are in this form, you 
can derive the values of the necessary matrices.

Applying Kirchoff’s Voltage Law to the example in Figure 16-1 yields the 
following equations that represent the system input and output.

To obtain the values of the state-space matrices, transform these equations 
into the stochastic state-space equations, defined as the following:

You can transform these equations by substituting equivalent terms and 
then rearranging those terms. Table 16-3 shows the equivalent terms in both 
sets of equations.

Substituting variables with equivalent terms yields the following equations:

Table 16-3.  Equivalent Terms

Variable Represents Equivalent Term

i(t) State vector x(t)

vi(t) Input vector u(t)

vo,n(t) Output vector y(t)

n(t) Process noise vector w(t)

e(t) Measurement noise vector v(t)

vi t( ) Ri t( ) Ldi t( )
dt

----------- n t( )+ +=

vo n, t( ) Ri t( ) n t( ) e t( )+ +=

x· t( ) Ax t( ) Bu t( ) Gw t( )+ +=

y t( ) Cx t( ) Du t( ) Hw t( ) v t( )+ + +=

u t( ) Rx t( ) Lx· t( ) w t( )+ +=

y t( ) Rx t( ) w t( ) v t( )+ +=
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Rearranging the terms in the first equation yields the following equations:

From these equations you can obtain the following values of the state-space 
matrices:

The next step is constructing the noise model associated with this stochastic 
model.

Constructing the Noise Model
Because w(t) and v(t) are white, these variables have a mean of zero and are 
temporally uncorrelated. Therefore, the auto-covariance matrices Q(t) and 
R(t) are equivalent to the inverse Fourier transform of the respective 
spectral densities Sw(ω) and Sv(ω). Additionally, E{w(t)} = 0 and 
E{v(t)} = 0. The following equations show the definition of the noise 
model.

where δ(t) is the Dirac delta function. N(t) is 0 because w(t) and v(t) are 
uncorrelated with each other.

x· t( ) R
L
---– x t( ) 1

L
---u t( ) 1

L
---w t( )–+=

y t( ) Rx t( ) w t( ) v t( )+ +=

A R
L
---–≡ B 1

L
---≡ G 1

L
---–≡

C R≡ D 0≡ H 1≡

E w t( ){ } 0=

E v t( ){ } 0=

Q t( ) F 1– Sw ω( ){ } 2kTRδ t( )= =

R t( ) F 1– Sv ω( ){ } s2δ t( )= =

N t( ) 0=
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Figure 16-2 shows a block diagram that constructs this noise model and the 
stochastic system model when R = 1 kΩ, L = 500 μH, s = 0.000001, and 
T = 290 K.

Figure 16-2.  Constructing the Stochastic State-Space Model and a Noise Model for 
the Noisy RL Circuit Example
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Converting the Model
Before you can simulate this stochastic model using the Control Design 
and Simulation Module, you must discretize the stochastic model and the 
associated noise model. Use the CD Convert Continuous Stochastic to 
Discrete to discretize these models.

Figure 16-3 shows a block diagram that discretizes both models using a 
Sampling Time (s) of 0.000001.

Figure 16-3.  Discretizing the Stochastic State-Space Model and the Noise Model

The example in Figure 16-3 uses the conversion Method of Numerical 
Integration to discretize the models.
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Simulating The Model
Figure 16-4 shows a block diagram that simulates the discrete Stochastic 
State-Space Model defined in the Converting the Model section of this 
chapter. The Input u(k) to this model is a sine wave with an 
Amplitude of 0.01 volts and a Frequency of 1 KHz.

Figure 16-4.  Simulating the Discrete Stochastic State-Space Model

In Figure 16-4, the Construct and Discretize Models subVI contains the 
block diagram code shown in Figure 16-3. The Wait Until Next ms 
Multiple function adjusts the speed of the simulation. Also, this example 
uses Property Nodes to adjust the scale of the resulting graphs based on the 
Frequency of the sine wave.
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Figure 16-5 shows the Output y(k) and the State x(k) of the model when 
you run this example.

Figure 16-5.  Output and State Trajectories of the Discrete Stochastic 
State-Space Model

In Figure 16-5, notice the noise present in the graph of Output y(k).
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Implementing a Kalman Filter
As defined in Table 16-3, the state in this example represents the current 
flowing through the RL circuit. If this example were a real-world circuit, 
you could use an ammeter to measure the current flowing through the 
circuit. However, for the purposes of this example, assume you do not have 
an ammeter or cannot connect an ammeter to the circuit. In this situation, 
you can use a Kalman filter to estimate the current given only the noisy 
voltage measurements Output y(k) that Figure 16-5 shows.

Figure 16-6 shows a block diagram that demonstrates a Kalman filter for 
this discrete stochastic state-space model.

Figure 16-6.  Implementing a Kalman Filter
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Figure 16-7 compares the actual model State x(k) with the Corrected 
State Estimate xhat(k|k) the Discrete Kalman Filter function calculates.

Figure 16-7.  Actual Model States vs. Corrected State Estimates
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In Figure 16-7, notice the actual state appears to equal the corrected state at 
every time step. To confirm this analysis, you can look at the graph of the 
estimation error e(k), defined as x(k) – xhat(k|k). Figure 16-8 shows the 
graph of e(k) for this example.

Figure 16-8.  Estimation Error of Kalman Filter

In Figure 16-8, notice the estimation error is extremely small. This small 
error confirms the ability of the Kalman filter to estimate model states 
despite the presence of noise.

Refer to the Example State-Space Controller with Kalman Filter for 
Stochastic System Code section of Chapter 17, Deploying a Controller to a 
Real-Time Target, for example block diagram code that implements a 
Kalman filter on a real-time (RT) target.
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17
Deploying a Controller to a 
Real-Time Target

After you design a controller using the techniques this manual describes, 
you then can deploy the block diagram code for that controller to a 
real-time (RT) target. The RT target acquires sensor measurements, 
executes the controller code, and sends the appropriate output to the 
actuators.

The LabVIEW Control Design and Simulation Module includes functions 
that you use to deploy discrete linear time-invariant (LTI) system models to 
National Instruments RT Series hardware. You can use these functions to 
define discrete controller models in transfer function, zero-pole-gain, or 
state-space form. To deploy continuous controller models to an RT target, 
you must use a Simulation Loop. Refer to the Example Continuous 
Controller Model with Kalman Filter Code section of this chapter for more 
information about deploying continuous models to an RT target.

Note Deploying controller code to an RT target involves the LabVIEW Real-Time 
Module. This chapter is not intended to provide a a comprehensive discussion of using the 
Real-Time Module. If you installed the Real-Time Module, refer to the LabVIEW Help, 
available by selecting Help»Search the LabVIEW Help, for information about deploying 
a VI to an RT target, using the Timed Loop, and creating I/O code to and from 
RT hardware.
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Figure 17-1 shows where you place a controller in a closed-loop dynamic 
system.

Figure 17-1.  Closed-Loop Dynamic System

In Figure 17-1, the controller represents an RT target running a VI that 
contains the controller code you designed. Because the RT target is digital, 
you need a digital-to-analog converter (DAC) to convert the digital 
controller output into an analog signal the actuator recognizes. If the sensor 
is analog, you also need an analog-to-digital converter (ADC) to convert the 
analog sensor measurement into a digital signal the controller hardware 
recognizes. You can eliminate the need for a separate ADC by using a 
digital sensor, such as a digital multimeter (DMM).

The wire leading to the controller in Figure 17-1 represents block diagram 
code that acquires a sensor measurement. The wire leading away from the 
controller represents block diagram code that sends the controller output to 
the actuator. Depending on the hardware installed in the RT target, these 
wires represent different code. For example, if the RT target is using 
National Instruments DAQ devices, these wires represent NI-DAQmx 
code.

Note National Instruments provides hardware and software to test and implement 
controllers, actuators, analog sensors, DMMs, DACs, and ADCs. Refer to the National 
Instruments Web site at ni.com for information about these products.

To deploy a controller on an RT target, you must define the controller 
model and then write the block diagram code that implements that 
controller model on an RT target. This chapter provides information about 
both of these steps.

Controller
Digital to Analog
Converter (DAC) Actuators

Sensors
Analog to Digital
Converter (ADC)

Physical System
(Plant)

Reference 

Control System 

+ 

– 
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Note Refer to the labview\examples\Control and Simulation\Control 
Design\Implementation directory for example VIs that demonstrate the concepts 
explained in this chapter.

Defining Controller Models
The Control Design and Simulation Module includes the following three 
functions you use to define a controller model.

• Discrete Transfer Function

• Discrete State-Space

• Discrete Zero-Pole-Gain

You use these functions to deploy a controller model on an RT target. You 
also can use these functions to perform an offline simulation that does not 
involve an RT target. Refer to the LabVIEW Help for information about 
these functions.

You can define a controller model interactively or programmatically. The 
following sections use the Discrete Transfer Function function to provide 
information about each of these methods.

Defining a Controller Model Interactively
Place the Discrete Transfer Function function on the block diagram and 
double-click the function icon to launch the Discrete Transfer Function 
Configuration dialog box. After you launch this dialog box, complete the 
following steps to define the controller model.

1. Specify whether the model is single-input single-output (SISO) or 
multiple-input multiple-output (MIMO) by selecting the appropriate 
option from the Polymorphic instance pull-down menu.

2. Select the Transfer Function parameter from the Parameters listbox. 
The Parameter Information section updates to show the 
configuration options for the model.

3. Select Configuration Dialog Box from the Parameter source 
pull-down menu.

4. If the model is MIMO, define the dimensions of the model using the 
Inputs and Outputs text boxes in the Model Dimensions section. 
This section is dimmed if you configure a SISO model because SISO 
models have only one input and one output.



Chapter 17 Deploying a Controller to a Real-Time Target

Control Design User Manual 17-4 ni.com

5. Enter numerator and denominator coefficients in the Numerator and 
Denominator text boxes. Notice the Preview window updates to 
display the model equation. For MIMO models, use the Input-Output 
Model control to select different input/output pairs. You can enter 
unique Numerator and Denominator coefficients for each 
input/output pair.

6. Click the OK button to save the model definition and return to the 
block diagram. If you defined a SISO model, the function icon updates 
to show the model equation. You also can resize the function icon.

Defining a Controller Model Programmatically
Launch the Discrete Transfer Function Configuration dialog box, select 
Transfer Function from the Parameters listbox, and select Terminal 
from the Parameter source pull-down menu. After you click the OK 
button, the Transfer Function input appears on the function icon. You 
then can use the CD Construct Transfer Function VI, or a block diagram 
constant, to define a transfer function model. Wire this model definition to 
the Transfer Function input of the Discrete Transfer Function function.

Writing Controller Code
The examples in this section use a Timed Loop to implement the feedback 
configuration Figure 17-1 shows. This structure also ensures the controller 
code you write executes in real time. Refer to the LabVIEW Help for 
information about configuring and executing a Timed Loop.

Note If you designed a continuous controller model, you must convert that model to a 
discrete one before deploying that model to an RT target. The sampling time you use in this 
conversion must equal the Period of the Timed Loop. Refer to Chapter 3, Converting 
Models, for more information about converting models.

The following sections show example transfer function, state-space, and 
zero-pole-gain controller code. These examples also define and convert 
models in different ways. The following sections also describe how to 
implement observers and Kalman filters on an RT target.
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Example Transfer Function Controller Code
The example in Figure 17-2 constructs a continuous transfer function 
model in the form of a phase-lead controller. This example then converts 
the model to a discrete one using the Zero-Order-Hold Method and 
implements that discrete controller model on an RT target. Refer to 
Chapter 3, Converting Models, for more information about the 
Zero-Order-Hold method.

Figure 17-2.  Implementing a Discrete Transfer Function Controller on an RT Target

Note In Figure 17-2, and throughout the following sections, the Sensor Measurement 
subVI represents block diagram code that acquires a measurement from a hardware sensor. 
The Controller Output subVI represents block diagram code that sends the controller 
output to the actuator.

When you click the Run button in this example, LabVIEW downloads the 
VI to the RT target and executes the following steps:

1. Acquires a Sensor Measurement from a hardware sensor that 
measures the plant output.

2. Subtracts the Sensor Measurement from a Reference Input you 
define.

3. Applies the result of step 2 to the controller the Discrete Transfer 
Function function defines. This example uses the CD Construct 
Lead-Lag Controller VI to define the controller model 
programmatically. The Discrete Transfer Function function returns 
the Controller Output.

4. Sends the Controller Output to the hardware actuator.

Steps 1 through 4 repeat until you stop the VI.
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Example State Compensator Code
Figure 17-3 shows a block diagram that implements a state compensator.

Figure 17-3.  Implementing a State Compensator on an RT Target

The example in Figure 17-3 uses the CD Construct State-Space Model VI 
to construct a model of the system to be controlled. The controller consists 
of the block diagram code inside the Timed Loop. The control action is 
defined as u = K(xRef – x), where xRef is the reference state you specify, 
x is the measured state information, and K is the controller gain matrix.

This example assumes you can measure all state information. If you cannot 
measure all state information, you can use a predictive or current observer 
to estimate state information. Refer to the Example State-Space Controller 
with Predictive Observer Code and Example State-Space Controller with 
Current Observer Code sections of this chapter for information on 
implementing predictive and current observers.
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Example SISO Zero-Pole-Gain Controller with Saturation Code
Figure 17-4 shows a block diagram that implements a SISO zero-pole-gain 
controller and takes saturation into account.

Figure 17-4.  Implementing a Discrete Zero-Pole-Gain Controller on an RT Target

The example in Figure 17-4 defines a SISO controller model interactively. 
Notice that the model equation appears on the Discrete Zero-Pole-Gain 
function icon. Also notice the In Range and Coerce function. You can use 
this function to account for saturation effects in the dynamic system.



Chapter 17 Deploying a Controller to a Real-Time Target

Control Design User Manual 17-8 ni.com

Example State-Space Controller with Predictive Observer Code
Figure 17-5 shows a LabVIEW block diagram that implements a 
state-space controller that depends on estimated state information.

Figure 17-5.  Implementing a Predictive Observer on an RT Target

The example in Figure 17-5 uses the Discrete Observer function to estimate 
state information  during execution. This example also uses the 
CD Pole Placement VI to calculate the predictive observer gain Lp such 
that the current Observer Poles are in the location you specify. Another 
CD Pole Placement VI calculates the controller gain K based on the 
Controller Poles you specify.

This example calculates the control action to apply at the next time step, or 
u(k + 1), which is defined as . At the next iteration of the 
Timed Loop, u(k + 1) becomes u(k), which the Discrete Observer function 
uses to estimate state information for the next time step. The feedback node 
transfers this value from one iteration to the next.

Refer to Chapter 15, Estimating Model States, for more information about 
observers.

x̂ k 1 k+( )

Kx̂ k 1 k+( )–
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Example State-Space Controller with Current Observer Code
The example in Figure 17-6 shows a block diagram that implements a 
state-space controller that depends on estimated state information.

Figure 17-6.  Implementing a Current Observer with Feedthrough on an RT Target

The example in Figure 17-6 implements a current observer with 
feedthrough, that is, when . Because this example has feedthrough, 
you cannot use the current state estimate, , to calculate the control 
action at the current time step, u(k). Instead, you must use the predicted 
state estimate, , to calculate the control action at the next time 
step, u(k+1). The Discrete Observer function calculates u(k+1) at the 
current time step, k, but applies this control action at the next time step, k+1. 
Because this example has feedthrough, you can initialize u(k+1) and ensure 
a bumpless start by wiring an initial value to the initializer terminal of the 
Feedback Node.

D 0≠
x̂ k k( )

x̂ k 1+ k( )
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The example in Figure 17-7 implements a current observer without 
feedthrough, that is, when D = 0.

Figure 17-7.  Implementing a Current Observer without Feedthrough on an RT Target

Because the example in Figure 17-7 does not have feedthrough, you must 
select the Indirect option in the Feedthrough pull-down menu in the 
configuration dialog box of the Discrete Observer function. You then can 
use the current state estimate, , to calculate the control action at the 
current time step, u(k). The Discrete Observer function calculates u(k) at 
the current time step, k, and applies this control action at the current time 
step, k.

Refer to Chapter 15, Estimating Model States, for more information about 
observers.

x̂ k k( )



Chapter 17 Deploying a Controller to a Real-Time Target

© National Instruments Corporation 17-11 Control Design User Manual

Example State-Space Controller with Kalman Filter for Stochastic 
System Code

The example in Figure 17-8 shows a block diagram that implements a 
state-space controller that depends on estimated state information. Because 
the controller must take noise into account, this example uses a Kalman 
filter instead of a predictive or current observer.

Figure 17-8.  Implementing a Kalman Filter with Feedthrough on an RT Target

The example in Figure 17-8 implements a Kalman filter with feedthrough, 
that is, when . Because this example has feedthrough, you cannot use 
the current state estimate, , to calculate the control action at the 
current time step, u(k). Instead, you must use the predicted state estimate, 

, to calculate the control action at the next time step, u(k+1). 
The Discrete Kalman Filter function calculates u(k+1) at the current time 
step, k, but applies this control action at the next time step, k+1. Because 
this example has feedthrough, you can initialize u(k+1) and ensure a 
bumpless start by wiring an initial value to the initializer terminal of the 
Feedback Node.

D 0≠
x̂ k k( )

x̂ k 1+ k( )
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The example in Figure 17-9 implements a Kalman filter without 
feedthrough, that is, when D = 0.

Figure 17-9.  Implementing a Kalman Filter without Feedthrough on an RT Target

Because the example in Figure 17-9 does not have feedthrough, you must 
select the Indirect option in the Feedthrough pull-down menu in the 
configuration dialog box of the Discrete Kalman Filter function. You then 
can use the current state estimate, , to calculate the control action at 
the current time step, u(k). The Discrete Kalman Filter function calculates 
u(k) at the current time step, k, and applies this control action at the current 
time step, k.

Refer to the Implementing a Kalman Filter section of Chapter 16, Using 
Stochastic System Models, for more information about the Discrete Kalman 
Filter function.

Example Continuous Controller Model with Kalman Filter Code
You must use a Simulation Loop to deploy a continuous controller model 
to an RT target. The Simulation Loop uses ordinary differential equation 
(ODE) solvers to integrate continuous differential equations over time. You 
use the Simulation Loop to configure the ODE solver and time step settings 
to use.

x̂ k k( )
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Figure 17-10 shows a LabVIEW simulation diagram that uses the 
Simulation Loop to deploy a continuous controller model and Kalman filter 
to an RT target.

Figure 17-10.  Implementing a Continuous Controller Model and 
a Continuous Kalman Filter on an RT Target

In Figure 17-10, the blue D on the Sensor Measurement and Controller 
Output subVI icons indicate these subVIs execute as discrete functions. 
You can configure the sample period and sample skew, or offset, of these 
functions individually. The black C on the A x B VI icon indicates this VI 
executes continuously. Also, notice this example does not need feedback 
nodes or shift registers to feed the output of the A x B VI back to the 
Input u(t) input of the CD Continuous Recursive Kalman Filter function.

Finding Example NI-DAQmx I/O Code
If you installed NI-DAQmx, refer to the labview\examples\DAQmx\
Control\Control.llb for examples of writing I/O block diagram code 
for National Instruments DAQ devices.
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18
Creating and Implementing a 
Model Predictive Controller

Traditional feedback controllers operate by adjusting control action in 
response to a change in the output setpoint of a system, also called a plant. 
Model predictive control (MPC) is a technique that focuses on constructing 
controllers that can adjust the control action before a change in the output 
setpoint actually occurs. This predictive ability, when combined with 
traditional feedback operation, enables a controller to make adjustments 
that are smoother and closer to the optimal control action values.

For example, consider a cruise control system in a car. This controller 
adjusts the amount of gas sent to the engine. The amount of gas is based on 
the following two values:

• The velocity at which you set the cruise control system

• The velocity of the car

The velocity of the car is based on the slope of the road along which the car 
moves. Therefore, a change in slope, or disturbance, affects the velocity of 
the car, which affects the amount of gas the controller sends to the engine.

Table 18-1 shows the terms this example uses, where k is discrete time.

Table 18-1.  Example Terms and Definitions

Term Physical Component Variable

Controller Cruise control system —

Control action Amount of gas sent to the engine u(k)

Plant Car —

Plant output Velocity of the car y(k)

Plant output 
setpoint

Velocity at which you set the 
cruise control system

r(k)

Disturbance Slope of the road d(k)
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Consider what happens when the slope of the road increases as the car 
moves up a hill. This slope increase reduces the velocity of the car. This 
decrease in velocity causes the controller to send more gas to the engine.

If the cruise control system is a traditional feedback controller, this 
controller reacts to the disturbance only after the velocity of the car drops. 
To match the output setpoint, this controller might increase the control 
action sharply. This sharp increase can result in oscillation or even 
instability.

If the cruise control system has predictive ability, this controller knows in 
advance that the velocity of the car will drop soon. The controller might 
obtain this information from sensors on the front of the car that measure the 
slope of the road ahead. A feedback controller with this predictive ability is 
called an MPC controller.

To match this predicted output setpoint, the MPC controller gradually 
increases the control action as the car approaches the change in slope. This 
increase can be smoother and more stable than the increase a traditional 
feedback controller provides.

This chapter provides information about using the LabVIEW Control 
Design and Simulation Module to design and implement a predictive 
controller.

Note Refer to the labview\examples\Control and Simulation\Control 
Design\MPC directory for examples that demonstrate the concepts explained in this 
chapter. Refer to UKACC Control, 2006. Mini Symposia, as listed in the Related 
Documentation section of this manual, for information about the algorithms these VIs use.
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Creating the MPC Controller
You use the CD Create MPC Controller VI to create an MPC controller. 
This VI bases the MPC controller on a state-space model of the plant that 
you provide.

Note If you want to create an MPC controller for a transfer function model or a 
zero-pole-gain model, you must first convert the model to a state-space model.

Providing an accurate model improves the performance of the MPC 
controller this VI creates. You can specify that the MPC controller 
incorporates integral action to compensate for any differences between the 
plant model and the actual plant.

You can use the State Estimator Parameters input of this VI to define a 
state estimator that is internal to the MPC controller model. You also can 
estimate model states by using the Discrete Observer function outside the 
MPC controller. Refer to the Current Observer section of Chapter 15, 
Estimating Model States, for more information about estimating model 
states.

The following sections provide information about other parameters you use 
to define the MPC controller.

Defining the Prediction and Control Horizons
When constructing an MPC controller, you must provide the following 
information:

• Prediction horizon (Np)—The number of samples in the future during 
which the MPC controller predicts the plant output. This horizon is 
fixed for the duration of the execution of the controller.

• Control horizon (Nc)—The number of samples within the prediction 
horizon during which the MPC controller can affect the control action. 
This horizon is fixed for the duration of the execution of the controller. 

Note The value you specify for the control horizon must be less than the value you specify 
for the prediction horizon.
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Figure 18-1 shows these horizons.

Figure 18-1.  Prediction and Control Horizons

In Figure 18-1, notice that at time k the MPC controller predicts the plant 
output for time k + Np. Also notice that the control action does not change 
after the control horizon ends.

At the next sample time k + 1, the prediction and control horizons move 
forward in time, and the MPC controller predicts the plant output again. 
Figure 18-2 shows how the prediction horizon moves at each sample time k.

Figure 18-2.  Moving the Prediction Horizon Forward in Time

Note The control horizon moves forward along with the prediction horizon. Before 
moving forward, the controller sends the control action u(k) to the plant.

Because you cannot change the length of the prediction or control horizons 
while the controller is executing, National Instruments recommends you set 
the prediction horizon length according to the needs of the control problem. 
In general, a short prediction horizon reduces the length of time during 
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which the MPC controller predicts the plant outputs. Therefore, a short 
prediction horizon causes the MPC controller to operate more like a 
traditional feedback controller.

For example, consider the cruise control system again. If the prediction 
horizon is short, the controller receives only a small amount of information 
about upcoming changes in the road slope and speed limit. This small 
amount of information reduces the ability of the controller to provide the 
correct amount of gas to the engine.

A long prediction horizon increases the predictive ability of the MPC 
controller. However, a long prediction horizon decreases the performance 
of the MPC controller by adding extra calculations to the control algorithm.

Because the control action cannot change after the control horizon ends, 
a short control horizon results in a few careful changes in control action. 
Consider the cruise control system again. After the control horizon ends, 
the flow of gas to the engine remains constant, which means the velocity of 
the car keeps changing until the velocity setpoint is reached.

If the control horizon is short, the controller attempts to meet the velocity 
setpoint by changing the flow of gas only a few times and in small amounts. 
A large control action in a short control horizon might overshoot the 
velocity setpoint after the control horizon ends. However, as the controller 
continues to execute, the velocity eventually settles around the setpoint.

Conversely, a long control horizon produces more aggressive changes in 
control action. These aggressive changes can result in oscillation and/or 
wasted energy. For example, if you set the control horizon of the cruise 
control system too long, the cruise control system wastes gas due to 
constant accelerating and decelerating.

Note You can reduce these aggressive changes by using weight matrices in the cost 
function. Refer to the Specifying the Cost Function section of this chapter for information 
about weight matrices.

You provide horizon information by using the MPC Controller 
Parameters parameter of the CD Create MPC Controller VI.

Specifying the Cost Function
The MPC controller calculates a sequence of future control action values 
such that a cost function is minimized. You can specify weight matrices in 
this cost function. These weight matrices adjust the priorities of the control 
action, rate of change in control action, and plant outputs.
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For specified prediction and control horizons Np and Nc, the MPC controller 
attempts to minimize the following cost function J(k):

where

• k is discrete time

• i is the index along the prediction horizon

• Np is the number of samples in the prediction horizon

• Nw is the beginning of the prediction horizon

• Nc is the control horizon

• Q is the output error weight matrix

• R is the rate of change in control action weight matrix

• N is the control action error weight matrix

•  is the predicted plant output at time k + i, given all 
measurements up to and including those at time k

•  is the output setpoint profile at time k + i, given all 
measurements up to and including those at time k

•  is the predicted rate of change in control action at time 
k + i, given all measurements up to and including those at time k

•  is the predicted optimal control action at time k + i, given 
all measurements up to and including those at time k

•  is the input setpoint profile at time k + i, given all 
measurements up to and including those at time k

You specify soft constraints Q, R, and N by using the MPC Cost Weights 
parameter of the CD Create MPC Controller VI. Refer to the Implementing 
the MPC Controller section of this chapter for information about 
specifying  and . The CD Implement MPC Controller 
VI calculates the values of , , and .
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Specifying Constraints
In addition to weight matrices in the cost function, you can specify 
constraints on the parameters of an MPC controller. Remember that weight 
matrices adjust the priorities of the control action, rate of change in control 
action, and plant outputs. Constraints are limits on the values of each of 
these parameters.

Use the CD Create MPC Controller VI to specify constraints for a 
controller. You can specify constraints using either the dual optimization or 
the barrier function method. The following sections describe each of these 
two methods.

Note You also can update the constraints of a controller at run time. Refer to the Modifying 
an MPC Controller at Run Time section of this manual for information about updating a 
controller at run time.

Dual Optimization Method
Use the Dual instance of the CD Create MPC Controller VI to set 
constraints using the dual optimization method. You can specify these 
constraints in the MPC Constraints (Dual) parameter of the CD Create 
MPC Controller VI.

The dual optimization method specifies initial and final minimum and 
maximum value constraints for the control action, the rate of change in 
control action, and the plant output. Use these constraints to represent 
real-world limitations on the values of these parameters.

For example, consider the cruise control system again. In this example, 
the control action, or the amount of gas provided to the engine, is 
unconstrained. In reality, however, cars can send only a certain amount of 
gas to the engine at once. You can design an MPC controller to take this 
constraint into account, which is equivalent to placing a hard constraint on 
the maximum value of the control action. Additionally, the road might have 
speed limits at certain intervals. If you know these limits in advance, you 
can specify that the car cannot exceed the speed limits. This specification 
is equivalent to placing hard constraints on the maximum value of the plant 
output.

When you use the dual optimization method, all constraints are weighted 
equally and above any cost weightings you specify. For example, in the 
cruise control system, the MPC algorithm places equal emphasis on trying 
not to exceed the specified maximum amount of gas or the specified 
maximum velocity. If you also specify an output error weighting, the 
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algorithm prioritizes the control action and plant output constraints over the 
output error weighting. In other words, the algorithm tries not to exceed the 
specified amount of gas or the specified maximum velocity, even if meeting 
these constraints results in a large difference between the desired and actual 
velocity of the car. When you use the dual optimization method, the MPC 
algorithm adjusts the controller such that the specified constraints are never 
exceeded.

Because all constraints are weighted equally when you use the dual 
optimization method, you cannot reflect differences in cost or importance 
for different parameters. For example, suppose you want to build a 
controller that maintains the car at a specific velocity. You want to prioritize 
minimizing the output error above meeting any other constraints. With the 
dual optimization method, you cannot specify this priority. Similarly, if you 
have two conflicting constraints, the controller cannot prioritize one over 
the other. If you want to prioritize the constraints and cost weightings for a 
controller, use the barrier function method instead of the dual optimization 
method. Refer to the Barrier Function Method section of this chapter for 
more information about the barrier function method.

Refer to the CDEx MPC with Dual Constraints VI, located in the 
labview\examples\Control and Simulation\Control 

Design\MPC directory, for an example of using the dual optimization 
method to set constraints for a controller. Refer to the CDEx MPC Dual vs 
Barrier Constraints VI in this same directory for a comparison of the dual 
optimization and barrier function methods.

Refer to Nonlinear Programming, as listed in the Related Documentation 
section of this manual, for more information about the dual optimization 
method.

Barrier Function Method
Use the Barrier instance of the CD Create MPC Controller VI to set 
constraints using the barrier function method. You can specify these 
constraints in the MPC Constraints (Barrier) parameter of the CD Create 
MPC Controller VI.

Like the dual optimization method, the barrier function method specifies 
initial and final minimum and maximum value constraints for the control 
action, the rate of change in control action, and the plant output. However, 
the barrier function method also associates a penalty and a tolerance with 
each of these constraints. The penalty on a constraint specifies how much 
the MPC algorithm attempts to avoid reaching the constrained value. The 
tolerance specifies the distance from the constrained value at which the 
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penalty becomes active. By specifying penalties on constraints, you can 
prioritize the constraints and cost weightings of a controller.

Relationship Between Penalty, Tolerance, and Parameter 
Values
If the distance between a parameter value z and its constrained value zj is 
greater than or equal to the tolerance tolj, the penalty Pj is 0. The penalty 
becomes active when z reaches zj – tolj, if zj is a maximum constraint, 
or zj + tolj, if zj is a minimum constraint. The penalty then increases 
quadratically as z approaches zj. When z equals zj, that is, when the 
parameter value reaches the constrained value, Pj equals the specified 
penalty constant pj. If z exceeds the constrained value, the penalty 
continues to increase quadratically.

Figure 18-3 illustrates this behavior for a maximum constraint.

Figure 18-3.  Penalty Profile for Parameter z with Maximum Constraint zmax

For example, consider a plant output y with a maximum constraint ymax, 
tolerance ytol, and a penalty constant pmax of 5. Table 18-2 shows how the 
penalty P increases as y approaches ymax.

Table 18-2.  Increasing Penalty as a Function of Plant Output

Value of y Value of P for pmax = 5

0

0 < P < 5. The value of P 
increases quadratically between 0 
and 5.

Parameter Value, z
P

en
al

ty
, P

m
ax

zmaxzmax–tolmax

pmax

0

y  ymax ytol–( )≤

ymax ytol–( ) y ymax< <
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Consider again the cruise control system. Suppose the speed limit in an area 
is 70 miles per hour. You therefore specify a maximum constraint of 
71 miles per hour on the velocity of the car. Also suppose you impose a 
penalty constant of five on this constraint. The penalty specifies the priority 
the MPC algorithm places on keeping the velocity below 71 miles per hour.

If you specify a tolerance of five miles per hour on this constraint, the 
tolerance range begins at 66 miles per hour. The penalty on the maximum 
output constraint therefore becomes active when the velocity of the car 
reaches 66 miles per hour. The penalty then increases from 0 to 5 over a 
tolerance range of five miles per hour.

If you reduce the tolerance to two miles per hour, the penalty on the 
maximum output constraint becomes active when the car reaches 69 miles 
per hour. The penalty then increases from 0 to 5 in a shorter velocity 
interval than before. In this case, the MPC algorithm responds to the 
penalty and almost immediately tries to prevent the velocity from 
increasing above 69 miles per hour. Because the penalty profile is steeper 
than in the previous case when the tolerance was five, the MPC algorithm 
has a shorter interval in which to prevent the velocity from exceeding the 
constrained value.

Prioritizing Constraints and Cost Weightings
Remember that all constraints you specify using the dual optimization 
method are weighted equally and above any cost weightings you specify. 
With the barrier function method, you can prioritize the constraints against 
each other and against any cost weightings you specify. When an MPC 
algorithm recognizes that the penalty on a constraint is active, the algorithm 
incorporates the penalty in the cost function and adjusts the control action 
accordingly. For each constrained variable, the MPC algorithm must 
balance the penalty with any cost weightings.

5

P continues increasing 
quadratically.

Table 18-2.  Increasing Penalty as a Function of Plant Output (Continued)

Value of y Value of P for pmax = 5

y ymax=

y ymax>
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The following expression illustrates this behavior in the case of a maximum 
constraint.

where

•  is the penalty constant for zmax

• zmax is the maximum constraint on z

• tolmax is the tolerance for zmax

• z is the value of the control action or of the plant output

• zsp is the setpoint value of z

• q is the cost weighting on z

Note Refer to the Specifying Input Setpoint, Output Setpoint, and Disturbance Profiles 
section of this chapter for information about providing setpoint information for a 
controller.

When z is the control action, this expression becomes:

where

•  is the penalty constant for 

•  is the maximum constraint on 

• tolmax is the tolerance for 

•  is the value of the rate of change in control action

• r is the cost weighting on 

The first term in the previous expression represents the cumulative effect of 
the penalty. The second term represents the cumulative effect of the cost 
weightings.

Consider again the cruise control system in which ymax is 71 miles per hour, 
with a penalty constant of five and a tolerance of five miles per hour. 
Suppose the desired plant output is 70 miles per hour, and the output error 
weighting is one. If the velocity of the car is 60 miles per hour, the MPC 
algorithm attempts to increase the velocity to 70 miles per hour, thereby 
reducing the output error. When the velocity of the car reaches 66 miles per 
hour, the penalty on ymax becomes active. Because the penalty constant is 

pzmax
zmax tolmax–( ) z–[ ]2 z zsp–( )2q z zmax tolmax–( )≥;+

pzmax

pΔumax
Δumax tolmax–( ) Δu–[ ]2 Δu( )2r Δu Δumax tolmax–( )≥;+

pΔumax
Δumax

Δumax Δu
Δumax

Δu
Δu
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significantly greater than the output error weighting, the MPC algorithm 
prioritizes the output constraint above the output error. Therefore, the 
controller attempts to reduce the velocity of the car to a level above but 
close to 66 miles per hour. Suppose instead that the output error weighting 
is 100. Because the output error weighting is significantly greater than the 
penalty constant, the MPC algorithm prioritizes the output error above the 
plant output. Therefore, the controller attempts to increase the velocity of 
the car to a level closer to 70 miles per hour, despite the active penalty on 
the plant output. Note that the velocity that best balances the penalty and 
the output error might even be greater than the constrained maximum 
velocity of 71 miles per hour. 

The barrier function method also balances constraints against each other. 
Consider a situation where you specify a maximum constraint on both the 
plant output and the control action of a controller. The penalty you specify 
for ymax is relative to the penalty you specify for umax. If you specify a larger 
penalty for ymax than for umax, the MPC algorithm prioritizes the plant 
output constraint above the control action constraint. Therefore, in a 
situation where both penalties are active, the MPC algorithm attempts to 
minimize the penalty on ymax before minimizing the penalty on umax. If you 
also specify an output error weighting larger than either constraint penalty, 
the MPC algorithm prioritizes minimizing the output error above 
minimizing either constraint penalty.

The barrier function method is useful when you need to prioritize the 
constraints on different parameters in order to reflect a more realistic 
system. However, tuning all the necessary constraints, penalties, and 
tolerances for the barrier function can become complicated. To reduce this 
complexity, use the dual optimization method instead. Refer to the Dual 
Optimization Method section of this chapter for more information about the 
dual optimization method.

Refer to the CDEx MPC with Barrier Constraints VI, located in the 
labview\examples\Control and Simulation\Control 

Design\MPC directory, for an example of using the barrier function 
method to set constraints for a controller. Refer to the CDEx MPC Dual vs 
Barrier Constraints VI in this same directory for a comparison of the dual 
optimization and barrier function methods.
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Specifying Input Setpoint, Output Setpoint, and 
Disturbance Profiles

MPC controllers operate by comparing plant input and plant output values 
to setpoint profiles. These setpoint profiles contain predicted values of the 
control action and plant output setpoints at certain points in time. You send 
these profiles to the MPC controller, which calculates error by comparing 
the predicted plant inputs and outputs to the setpoint profiles. The MPC 
controller then attempts to reduce this error by minimizing a cost function 
that takes this error into account. Refer to the Specifying the Cost Function 
section of this chapter for information about the cost function the MPC 
controller attempts to minimize. If you know how disturbances affect the 
plant outputs and/or states, you also can provide future profiles of these 
disturbances to the MPC controller.

The Control Design and Simulation Module supports creating and using an 
MPC controller for multiple-input multiple-output (MIMO) plants. 
However, the profiles are one-dimensional arrays, or vectors. If you are 
providing profile information for a MIMO plant, the profile vectors are 
interleaved.

For example, consider a plant with two inputs. The first element of the input 
setpoint profile corresponds to the first input at the first sample time. The 
second element of this profile corresponds to the second input at the first 
sample time. The third element of this profile corresponds to the first input 
at the second sample time. The fourth element of this profile corresponds 
to the second input at the second sample time, and so on. The output 
setpoint and disturbance profiles also are interleaved.

You can use the Interleave 1D Arrays function to interleave setpoint or 
disturbance profiles for a MIMO plant. You can use the Decimate 1D Array 
function to divide an interleaved array into the component profiles.
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Implementing the MPC Controller
After you create the MPC controller, you then can implement this 
controller either in a simulation or a real-world scenario. You implement 
the controller by using the CD Implement MPC Controller VI with a Timed 
Loop or Simulation Loop. The examples in this chapter use a Simulation 
Loop.

Note Refer to Chapter 17, Deploying a Controller to a Real-Time Target, for more 
information about implementing controllers in real-world scenarios.

You provide the following information to this VI.

• Profiles of the input setpoints, output setpoints, and/or disturbances. 
Refer to the Defining the Prediction and Control Horizons section of 
this chapter for information about these profiles.

• The measured output of the plant.

The CD Implement MPC Controller VI then returns the following 
information:

• The control action necessary to react to the change in the output 
setpoint profile.

• The predicted output of the plant along the prediction horizon.

• The rate of change in control action.

You can provide setpoint and disturbance profile information either in 
advance of controller execution or dynamically as the controller executes. 
The following sections describe each of these methods.

Note The examples in the following sections use the Simulation Loop. Refer to the 
labview\examples\Control and Simulation\Control Design\MPC directory 
for examples that use the Timed Loop.

Providing Setpoint and Disturbance Profiles to the MPC Controller
Providing information in advance is useful if you already know the 
disturbances that affect the system or if you know certain setpoints for the 
controller. You might have this information, for example, if you are 
performing an offline simulation of the MPC controller. To provide these 
values to the MPC controller, use the CD Update MPC Window VI. This 
VI provides the appropriate portion, or window, of the setpoint or 
disturbance profile of a signal from time k to time k + Prediction Horizon. 
You then can wire the Predicted Profile Window output of this VI to the 
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CD Implement MPC Controller VI for the current sample time k. The size 
of the window is based on the length of the prediction horizon.

At the next sample time k + 1, the prediction horizon moves forward one 
value. The CD Update MPC Window VI then sends the next window to the 
CD Implement MPC Controller VI.

Figure 18-4 shows how you use these VIs together.

Figure 18-4.  Providing Profile Information in Advance

The example in Figure 18-4 executes the following steps:

1. This example sends an Initial Profile Window and an array of 
Predicted Values to the Single instance of the CD Update MPC 
Window VI. The Initial Profile Window specifies the profile of the 
signal for a time period equivalent to the Prediction Horizon prior to 
the current time. The Predicted Values input specifies the interleaved 
values of the setpoint profile from time k to time k + Prediction 
Horizon.

2. At each sample time k, the CD Update MPC Window VI parses the 
Predicted Values and sends the Predicted Profile Window to the 
Output Reference Window input of the CD Implement MPC 
Controller VI. 

The size of the window is based on the length of the prediction horizon. 
You specify these lengths when you create the MPC controller.

Note This example provides a setpoint profile of plant output values to the MPC 
controller. If you also want to provide a disturbance profile or a different setpoint profile to 
the MPC controller, use a separate instance of the CD Update MPC Window VI for each 
profile and wire the appropriate output of each instance to the corresponding input of the 
CD Implement MPC Controller VI.
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3. The CD Implement MPC Controller VI predicts the output of the plant 
and sends the necessary control action u(k) to the input u(k) input of 
the Discrete State-Space function, which represents the plant.

4. The Discrete State-Space function returns the actual output y(k) of the 
plant and sends these values to the Measured Output y(k) input of 
the CD Implement MPC Controller VI. This VI uses y(k) to estimate 
the model states and account for any integral action. Accounting for 
integral action involves calculating the error, which is the difference 
between y(k) and the output setpoint.

The CD Implement MPC Controller VI uses the estimated model 
states, calculated error, and output of the internal controller model to 
adjust the control action for the next time step.

5. Because u(k) and y(k) consist of interleaved values, the Index Array 
functions separate the interleaved arrays into their component profiles. 
After the For Loop finishes executing, this example returns Control 
Action Response and Closed Loop Response arrays so you can plot 
the data on XY graphs.

At the next sample time k + 1, the CD Update MPC Window VI accepts a 
new element corresponding to the setpoint at time k + Prediction 
Horizon + 1 from the Predicted Values control. This example then 
executes steps 2–5 again. The repetition occurs until the For Loop stops 
executing.

Note Right-click the VI or function and select Help for detailed information about these 
VIs and functions.

Updating Setpoint and Disturbance Information Dynamically
When implementing an MPC controller on a real-time (RT) target, you 
typically cannot provide setpoint and/or disturbance profile information in 
advance. To address this issue, you can configure the MPC controller to 
receive profile information dynamically.

Note Updating profile information dynamically also is useful when the MPC controller 
might execute for such a long time that a computer cannot handle millions of output 
setpoints at once.

To accomplish this task, you use either a LabVIEW queue or a real-time RT 
FIFO. The Control Design and Simulation Module provides four VIs for 
this purpose: one VI each that creates, reads from, writes to, and deletes the 
queue/FIFO. You write to the queue/FIFO in a While Loop that executes in 
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parallel with the loop in which the MPC controller reads from the 
queue/FIFO. This parallelism enables the MPC controller to receive new 
profile information at any time during execution.

Note This VI creates a queue when running on a Windows computer. This VI creates an 
RT FIFO when running on a real-time (RT) target.

Use the CD Write MPC FIFO to construct a profile dynamically. Use the 
CD Read MPC FIFO to send portions, or windows, of the profile to the 
CD Implement MPC Controller VI.

Figure 18-5 shows how you use these VIs together.

Figure 18-5.  Updating Profile Information Dynamically

Note The example in Figure 18-5 is similar to the CDEx MPC with RT
FIFO VI, located in the labview\examples\Control and Simulation\Control 
Design\MPC directory.

The example in Figure 18-5 executes the following steps:

1. The CD Create MPC FIFO VI creates a FIFO for the specified MPC 
Controller. The Signal Type parameter specifies that this FIFO 
contains information about the output setpoint profile. You also can 
create a FIFO for input setpoint and disturbance profiles.

2. The CD Write MPC FIFO VI writes values of the Interleaved Profile 
to the FIFO. This profile contains output setpoint values you specify.

3. The CD Read MPC FIFO VI reads values from the FIFO, removes 
these values from the FIFO, and sends these values to the Output 
Reference Window input of the CD Implement MPC Controller VI. 
This step occurs in parallel with step 2.
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4. The CD Implement MPC Controller VI predicts the output of the plant 
and sends the necessary control action u(k) to the input input of the 
Discrete State-Space function, which represents the plant.

5. The Discrete State-Space function returns the actual output y(k) of the 
plant and sends these values to the Measured Output y(k) input of the 
CD Implement MPC Controller VI. This function also sends the 
measured plant states x(k) to this VI. This VI then uses the difference 
between the plant output and the output setpoint to adjust the control 
action for the next time step.

6. The Collector function builds an array of control action and output 
values during the entire simulation. After the Simulation Loop finishes 
executing, this function returns the array so you can plot the data on an 
XY graph.

7. At the final sample time of the simulation, the CD Delete MPC FIFO 
VI deletes the FIFO.

Tip Notice that the CD Delete MPC FIFO VI has an F in the top-right corner of the VI 
icon. This letter indicates that the VI is configured with Final step only behavior. You 
configure this behavior in the SubVI Node Setup dialog box, available by right-clicking a 
subVI icon on the block diagram and selecting SubVI Node Setup from the shortcut menu.

Modifying an MPC Controller at Run Time
During the implementation of an MPC controller, the model might become 
out of date, or the objectives of the controller might change. For example, 
some parameters might become more costly than others, and you therefore 
must update the cost weightings of those parameters accordingly. You also 
might receive data during implementation that can help you improve your 
understanding of the plant model or of other parameters related to the 
controller. If you do not want to stop execution to update the controller with 
this data, you can modify the controller at run time instead.

Use the CD Set MPC Controller VI to update an MPC controller at run 
time. You can update any aspect of the controller, such as the input model, 
the prediction and control horizons, or the parameter constraints. When you 
click the Reset? button, the controller updates with the changes that you 
specify. You can use the Dual or Barrier instances of the CD Set MPC 
Controller VI to update a controller whose constraints are determined using 
the dual optimization method or the barrier function method, respectively. 
Refer to the Specifying Constraints section of this chapter for information 
about each of these methods.
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Figure 18-6 illustrates how to use the CD Create MPC Controller VI and 
the CD Set MPC Controller VI to create an MPC controller and allow for 
controller updates at run time.

Figure 18-6.  Modifying an MPC Controller at Run Time

In the previous figure, the CD Create MPC Controller VI creates an MPC 
controller according to the specified MPC controller parameters, input 
model, cost weightings, and parameter constraints. The CD Create MPC 
Controller VI passes the created controller to a While Loop containing the 
CD Set MPC Controller VI. If you do not click the Reset? button, the CD 
Set MPC Controller VI does not modify the controller. If you specify 
different parameters for the controller and then click the Reset? button, the 
VI updates the controller accordingly and passes the updated information 
to a shared variable. Another VI can read this shared variable and 
implement the controller.

The VI in Figure 18-6 is similar to the CDEx MPC Basic AirHeater VI 
located in the labview\examples\Control and 
Simulation\Control Design\MPC directory.
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A
Technical Support and 
Professional Services

Visit the following sections of the award-winning National Instruments 
Web site at ni.com for technical support and professional services:

• Support—Technical support resources at ni.com/support include 
the following:

– Self-Help Technical Resources—For answers and solutions, 
visit ni.com/support for software drivers and updates, a 
searchable KnowledgeBase, product manuals, step-by-step 
troubleshooting wizards, thousands of example programs, 
tutorials, application notes, instrument drivers, and so on. 
Registered users also receive access to the NI Discussion Forums 
at ni.com/forums. NI Applications Engineers make sure every 
question submitted online receives an answer.

– Standard Service Program Membership—This program 
entitles members to direct access to NI Applications Engineers 
via phone and email for one-to-one technical support as well as 
exclusive access to on demand training modules via the Services 
Resource Center. NI offers complementary membership for a full 
year after purchase, after which you may renew to continue your 
benefits. 

For information about other technical support options in your 
area, visit ni.com/services, or contact your local office at 
ni.com/contact. 

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, National Instruments 
Alliance Partner members can help. To learn more, call your local 
NI office or visit ni.com/alliance.
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If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.
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