
Converting METAFONT Sources to Outline Fonts Using METAPOST

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences
182 21 Prague
Czech Republic
piska@fzu.cz

http://www-hep.fzu.cz/~piska/

Abstract

The paper describes a multistep conversion process from METAFONT sources to
outline fonts (Adobe Type 1 format). An important step, finding contours, is
based on an accurate algorithm fitting the envelope curve of a stroke drawn by
a pen along a cubic Bézier curve by the least square method, specially extended
(adapted) for a rotated elliptical pen applied, for instance, in the Devanagari font
design. After converting the EPS files produced by METAPOST to the correspond-
ing outline representation the FontForge font editor is used for removing overlap,
simplification, autohinting, generating outline fonts, and necessary manual mod-
ifications. The result of conversion, the faithful Indic Type 1 fonts (significantly
close, precise and optimal than earlier attempts made by autotracing bitmaps)
will be released.
Keywords: font conversion, bitmap fonts, METAFONT, METAPOST, outline
fonts, PostScript, Type 1 fonts, approximation, Bézier curves.

Introduction

In 2001 I experimented with approximate conver-
sion METAFONT Indic fonts to the Type 1 format
by autotracing bitmaps with the TEXtrace program
[11]. I was not satisfied with results and decided to
apply another, analytic approach, to achieve results
more precise and also more optimized.

Conversion Process

A procedure consists of study of font definitions in
METAFONTand preparing encoding files; then the
glyph strokes produced by METAPOST are converted
to outlines, the font is assembled, optimized, auto-
hinted, and finally, generated as a Type 1 binary file
with FontForge. After verification of visual proof-
sheet pages some steps are often repeated to correct
or improve the final results.

Analysis of METAFONT sources We analyze the
METAFONT source texts [7] of a font to select an ap-
propriate strategy of conversion, to find the crucial
parameters, like the font size, the italic angle, defini-
tions of pens and strokes. Some parameters may be
also hidden inside macros. Sometimes, a possibility
of an efficient conversion is not apparent. There-
fore it is also important to know about presence and
quantity of METAFONT commands not available in

METAPOST([5]), for example, using operations with
bitmap picture variables.

Creating encoding files Encoding files and en-
coding vectors define a mapping between the glyph
names and their number codes. METAFONT defi-
nitions usually do not contain unique glyph names
in an explicit form but only comments. The glyph
names have been taken from these comments to pro-
duce unambiguous list of PostScript names, i.e. we
must to find the same names and to change them
to be different. Our preliminary solution inherits
METAFONT comments closely to make finding glyph
identification easier.

Running METAPOST Invoking METAPOST pro-
cesses the METAFONT sources and produces the EPS
files. METAPOST together with a macro package
mfplain ([5], p. 79) allows to process the original
or modified (to eliminate METAFONT-specific com-
mands) font sources written in METAFONT and to
generate for each glyph a single file in the Encap-
sulated PostScript format, consisting only of Post-
Script commands like curves, strokes, affine trans-
formations representing pens, etc., but no bitmap
images contradictory to the METAFONT standard
output. Some metric data, e.g. the glyph widths

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1001



Karel Ṕı̌ska

Figure 1: Result of METAPOST.

and also the italic angles, may be lost, we shall re-
store them later. We need also define a magnifica-
tion factor. Because we have to transform the glyph
images to a 1000-unit glyph coordinate system (we
use this usual space) with the units in PostScripts
big points (the transformation factor is 1.00375) and
the font designsize in pt units. Then the magnifi-
cation factor will be 1000 ∗ 1.00375/designsize. For
the designsize = 10 pt it equals 1000∗1.00375/10 =
100.375, for 8 pt 125.46875, for 17.28 pt 58.087384,
etc. Then a typical command to call METAPOST is:
mpost ’&mfplain \mode=localfont;’ \
mag=100.375’; input’ dvng10.mf

These files may contain various stroked paths (see
figures 1, 9). It is necessary to find contour curves
for single strokes and then also common envelope
curves for overlapping strokes.

The following lines from the PostScript pro-
duced by METAPOST correspond to fig. 1:

0 79.06227 dtransform truncate idtransform

setlinewidth pop [] 0 setdash

1 setlinecap 1 setlinejoin 10 setmiterlimit

gsave newpath 119.50958 284.54501 moveto

398.36119 284.54501 lineto

[-0.98387 0.98387 -0.17888 -0.17888 0 0] concat

stroke grestore

The lineto operator describes the line segment,
the concat operator applies the affine transforma-
tion represented by the preceding normalized matrix
(in brackets) denoting the rotated elliptical pen, and
79.06227 . . . setlinewidth is the scale factor defin-
ing the stroke width.

Converting METAPOST products to outlines The
results of METAPOST (strokes) are converted to “pri-
mary” outlines. To fit curves with the least square
method is a typical approach to calculate a curve
approximation. This method is nothing new and
probably it has been used in conversion programs
developed by Richard Kinch (MetaFog, [6]), Basil
Malyshev [9], George Williams (FontForge, [13]) and
other. We only apply a few additional conditions.
We try to be more precise, but our attempts are
still more fragile and unstable than programs listed
above.

Figure 2: Primary conversion to outlines.

All the calculations are in the non-integer value
space. We check each segment for accuracy and sub-
divide it if a chosen limit exceed; insert all hori-
zontal and vertical extrema nodes; keep all horizon-
tal/vertical straight lines and control vectors to be
exactly horizontal/vertical. The inner part of a con-
tour curve of drawing a rotated elliptical pen even
along a simple Bézier path without any intersection
may have selfintersections. Therefore we try to find
a selfintersection points if it is possible and as precise
as possible. Unfortunately, sometimes this iteration
does not converge. A simplest conversion to outlines
shows figure 2.

For a given time of the path segment using the
affine transformation matrix and its inverse matrix
(for a usual pen they are always regular) we can cal-
culate the displacement corresponding to the point
lying on the right parallel outline curve (the left one
is located symmetrically). Knowing the coordinates
of points on the outline curves and also on the pen
boundary we can fit them by a cubic Bézier approx-
imation. But a problem is we do not know whether
the points are an the envelope curve or not because
parts of the outline curves may create loops of arbi-
trary size being inside a closed area. It depends on
complex correlations between the path and the pen.

We also recognize quarter-circles usually rep-
resented in METAFONT by two segments because
METAFONT tends to divide curves to octants. To
avoid further simplification problems we do not pre-
serve the 45 degree middle nodes and change the
quarter-circles to the accurate single-segment Post-
Script representation with relative lengths of control
vectors 4/3(

√
2− 1) ' 0.552285, compare also with

R. Kinch [6] (p. 236) or Luc Devroye [2]. For an ex-
ample of our approximation circles see figure 3.

In summary, in the primary approximation the
straight lines and the circles are represented by the
minimal number of segments (because other nodes
are unnecessary), and, on the other hand, other out-
line curves have redundant node points (to preserve
a maximal starting accuracy). The intermediate re-
sults of the primary conversion to outline demon-
strate figures 2 and 10.

1002 August 1, 2005 18:34 Preprint: Proceedings of the 2005 Annual Meeting



Converting METAFONT Sources to Outline Fonts Using METAPOST

Figure 3: Representation of circles.

Creating a font with FontForge FontForge is a
powerful open source font editor. Among its wide
range of useful abilities we can find a background
layer. It may contain bitmap images and line draw-
ings. Therefore, we generate by METAFONT a high
resolution bitmap 7254 dpi or 2400 dpi (supre) for a
given font. The “7254 dpi” device corresponds to
a relation 1 pixel in PK ∼ 1 unit in the PS glyph
space for the 10 pt

% (72.27*1000.375/10dpi)=7254.1
mode_param (pixels_per_inch,4000+3254.1);
mode_param (blacker, 0);
mode_param (fillin, 0);
mode_param (o_correction, 1);

Sometimes, METAFONT with the very high resolu-
tion may fail (if the author did not design a font
for an arbitrary resolution). The the PK or GF files
can be imported to the background as a set of gray
pixels to cover glyph images.

Font composition We also run mftrace [10]
with an appropriate encoding to make a PFB font
file. From this file we build a frame for the created
font, copy the glyph widths and the glyph names and
move the outlines to the background layer (visible
as green lines). During a subsequent processing of
the font with FontForge we use its internal Spline
Font Database format (SFD). The high resolution
bitmap is always huge, we import it only before a
comparison. But the outline contours of the font
produced by mftrace are not large and we can store
them in the working SFD files permanently. To the
foreground layer we import the outlines from the
EPS files calculated in the previous step from the
original EPS files generated by METAPOST.

The high resolution pixel image gives a close
visual bitmap representation of the original META-
FONT source. Of course, an information about con-

tour curves, intersection points, corners, etc., vir-
tually calculated by METAFONT has been lost. The
font outlines autotraced by mftrace from similar bit-
maps, despite of the artifacts (bumps, holes, un-
recognized corners, . . . ) give a correct information
about glyphs. And our aim is to obtain another
outline representation: more accurate and more op-
timal, to minimize the number of defects and a space
amount.

Having a font in the SFD format built from
the mftrace output our next step with FontForge is
removing overlap and optimization (simplifi-
cation). We continue processing in the non-integer
value space to keep accuracy, especially do not change
the slopes of the neighbor control vectors to preserve
smooth transition between segments.

Rounding to integer, hinting and Type 1
font generation FontForge allows generating Post-
Script fonts with non-integer point coordinates and,
maybe, many PostScript RIP devices render these
fonts properly. But we have three significant reasons
to round coordinates to integer and to generate the
Type 1 fonts in integer representation:

• Non-integer values in the PostScript charstring
occupy 3 items. Therefore the integer repre-
sentation saves storage and the PFB files are
smaller.

• The final Type 1 fonts do not need such accu-
racy after removing overlap and simplification.

• For hinting it would be inconvenient and im-
practicle to use a different discrete grid than
integer.

In the following example the non-integer Type 1
command occupies 19 items:

18153 100 div 212 100 div
14437 100 div -407 100 div
7208 100 div -243 100 div
rrcurveto

and after rounding only 7 items:

182 2 144 -4 72 -2 rrcurveto

It is reasonable to minimize the number of items
because the PostScript interpreters have internal mem-
ory limits per glyph. Exceeding limits causes a limicheck
error and a crash of rendering.

The coordinates of the segments are rounded
to integer by more complex algorithm than a triv-
ial rounding of all the values. First we round the
node points. Then we transform the control vec-
tors according the changes of then nodes and try to
find the control points in the integer grid near the
transformed control vectors. Even this sophisticated

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1003



Karel Ṕı̌ska

Figure 4: Final font in an outline form and a
hinted proofsheet (clip).

rounding to integer is not without problems. Some-
times, if the change in x or y in the segment is very
small (e.g. about 1 unit) or a segment is too short (in
both directions) no good selection may exist and a
manual adjustment is then necessary, probably with
the lose of closeness, accuracy or symmetry of ap-
proximation.

No special additional program for hinting have
been developed or applied. An automatic autohint-
ing tool of FontForge is used and any unsatisfactory
events should be corrected manually.

Finally, FontForge generates the Type 1 binary
font, usually rounded to integer and (auto)hinted.

Results

To make font audit and verification more quick and
efficient we developed tools for generation of visual
proofsheets in PDF: to allow fast overlook all glyph
images, outlines curves with node and control points
and vectors, hinting zones, and also to detect some
situations like missing nodes at extremes, presence
of inflection inside a segment, connection between
segments is not smooth, etc., and to append spe-
cial warning signs. Our aim is to fulfill the Type 1
conventions [1]. Therefore we include the extrema
nodes (they may be omitted if they are really re-
dundant), exclude other unnecessary node points,
preserve smooth connections between the adjacent
segments. and also keep the straight lines, corners
and arcs after conversion, do not append any false
bumps, holes or steps absent in the original META-
FONT sources. In some selected figures the node
points (squares), the control points (bullets) and the
control vectors have been enlarged to be visible in
the printed version of the paper. In a real working
process they are colored and small as in other proof-
sheets when we zoom interesting details only if we
need to check them.

The crucial and auxiliary algorithms have been
under development and adaptations for new fonts

Figure 5: dvng10: tta of Frans Velthuis.

and the programs are still written in awk or gawk
[3]. For Type 1 font handling t1utils [8] are used.

Several pictures illustrate intermediate and fi-
nal results of conversion METAFONT fonts to the
Type 1 format: figures 2, 4, 10, 11, 15, and 16.

Indic Fonts A basic goal of the work are more
precise outline versions of the free METAFONT In-
dic fonts available from CTAN: Devanagari, San-
skrit, Gurmukhi, Punjabi, Bangla, Sinhala, Malay-
alam, Telugu, Kannada, Tamil, and Tibetan is also
included. During preparing this text not all the
present fonts have been converted and also the Oriya
fonts are still missing because of they widely use
METAFONT bitmap picture commands. Next re-
sults are shown in figures 12, 13 (Devanagari), 14
(Malayalam).

Chinese Fonts We have also tried to convert two
small single fonts with Chinese signs created in META-
FONT: the Hóng-Z̀ı font (128 glyphs) designed by
Javier Rodŕıguez Laguna [12] (version 0.5 of 050323):
fig. 7; and china10, one font from the the china2e
package [4] containing Chinese calendar symbols pro-
duced by Udo Heyl (1997): fig. 8.

Conclusion

In the article we describe a conversion process and
shortly discuss some selected problems. Creating
precise fonts is always difficult, time consuming and
never ending work independently of the approach
we choose. We plan to verify again all the glyphs to
improve hinting and polish the outlines to remove
tiny artifacts. It is useful to make the glyph names
of the Indic glyphs common for all languages, it is
not trivial because the fonts contain many various

1004 August 1, 2005 18:34 Preprint: Proceedings of the 2005 Annual Meeting



Converting METAFONT Sources to Outline Fonts Using METAPOST

Figure 6: dvngbi10: lla of Frans Velthuis.

Figure 7: Hóng-Z̀ı: xing1 of Javier Rodŕıguez.

Figure 8: china10: yeu of Udo Heyl.

ligatures, special signs or variants not covered in the
Unicode standards.

Acknowledgements

I would like to thank all the authors of the free con-
version programs, the authors of the public META-
FONT fonts for Indic languages, other sources and
program packages used in the contribution,

References

[1] Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley, 1990.

[2] Luc Devroye. “Formatting Font Formats”,
TUGboat, 24(3), pp. 588–596, 2003.

[3] Free Software Foundation. GNU awk, http://
www.gnu.org/software/gawk.

[4] Udo Heyl. CTAN:macros/latex/contrib/
china2e, 1997.

[5] John D. Hobby. A User’s Manual for META-
POST. AT&T Bell Laboratories, Computing
Science Technical Report 162, 1994.

[6] Richard J. Kinch. “MetaFog: Converting
METAFONT Shapes to Contours”, TUGboat,
16(3), pp. 233–243, 1995.

[7] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986. Volume C of Computers
and Typesetting.

[8] Eddie Kohler. t1utils (Type 1 tools), http://
freshmeat.net/projects/t1utils.

[9] Basil K. Malyshev, “Problems of the conver-
sion of METAFONT fonts to PostScript Type 1”,
TUGboat, 16(1), pp. 60–68, 1995.

[10] Han-Wen Nienhuys. mftrace, http://www.cs.
uu.nl/~hanwen/mftrace.

[11] Karel Ṕı̌ska. “A conversion of public Indic fonts
from METAFONT into Type 1 format with TEX-
trace.” TUGboat, 23(1), pp. 70–73, 2002.

[12] Javier Rodŕıguez Laguna. Hong-Zi – A Chinese
METAFONT. http://hongzi.sourceforge.
net, 2005.

[13] George Williams. FontForge: A PostScript Font
Editor, http://fontforge.sourceforge.net.

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1005



Karel Ṕı̌ska

Figure 9: dvng10 l h: METAPOST output.

Figure 10: dvng10 l h: primary outlines.

Figure 11: dvng10 l h: Type 1 font proofsheet.

Figure 12: dvng10: om of Frans Velthuis..

Figure 13: dvngbi10: om of Frans Velthuis.

Figure 14: mm10: a of Jeroen Hellingman.

1006 August 1, 2005 18:34 Preprint: Proceedings of the 2005 Annual Meeting



Converting METAFONT Sources to Outline Fonts Using METAPOST

Figure 15: mm10 j juu: METAPOST output converted to primary outlines.

Figure 16: mm10 j juu: Type 1 font proofsheet with hints.

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1007


