
Performance Motion Devices, Inc.
80 Central Street

Boxborough, MA 01719

Revision 2.5 June 2010

M a g e l l a n ® M o t i o n P r o c e s s o r
U s e r ’ s G u i d e

ii Magellan Motion Processor User’s Guide

N O T I C E

This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is pro-
tected by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied,
or duplicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of PMD.

Copyright 1998–2010 by Performance Motion Devices, Inc.

Magellan, ION, Magellan/ION, Pro-Motion, C-Motion, and VB-Motion are trademarks of Performance Motion
Devices, Inc.

Wa r r a n t y

PMD warrants performance of its products to the specifications applicable at the time of sale in accordance with
PMD’s standard warranty. Testing and other quality control techniques are utilized to the extent PMD deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Performance Motion Devices, Inc. (PMD) reserves the right to make changes to its products or to discontinue any
product or service without notice, and advises customers to obtain the latest version of relevant information to verify,
before placing orders, that information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty,
patent infringement, and limitation of liability.

S a f e t y N o t i c e

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe
property or environmental damage. Products are not designed, authorized, or warranted to be suitable for use in life
support devices or systems or other critical applications. Inclusion of PMD products in such applications is
understood to be fully at the customer's risk.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent procedural hazards.

D i s c l a i m e r

PMD assumes no liability for applications assistance or customer product design. PMD does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of PMD covering or relating to any combination, machine, or process in which such
products or services might be or are used. PMD’s publication of information regarding any third party’s products or
services does not constitute PMD’s approval, warranty or endorsement thereof.
Magellan Motion Processor User’s Guide iii

R e l a t e d D o c u m e n ts

Magellan Motion Processor Programmer’s Command Reference

Descriptions of all Magellan Motion Processor commands, with coding syntax and examples, listed
alphabetically for quick reference.

Magellan Motion Processor Electrical Specifications

Booklets containing physical and electrical characteristics, timing diagrams, pinouts, and pin descriptions of
each series:

MC58000 Series, for DC brush, brushless DC, Microstepping, and Pulse & Direction motion processors

MC55000 Series, for Pulse & Direction motion processors

Magellan Motion Processor Developer’s Kit Manual

How to install and configure the DK58000 series and DK55000 series developer’s kit PC board.

Pro-Motion User’s Guide

User’s guide to Pro-Motion, the easy-to-use motion system development tool and performance optimizer.
Pro-Motion is a sophisticated, easy-to-use program which allows all motion parameters to be set and/or
viewed, and allows all features to be exercised.

O t h e r D o c u m e n ts

ION Digital Drive User’s Manual

How to install and configure ION Digital Drives.

Prodigy-PCI Motion Card User’s Guide

How to install and configure the Prodigy-PCI motion board.

Prodigy-PC/104 Motion Card User’s Guide

How to install and configure the Prodigy-PC/104 motion board.
iv Magellan Motion Processor User’s Guide

Ta b l e o f C o n t e n ts

List of Figures .ix

1. The Magellan Family . 11
1.1 Family Summary . 11
1.2 Magellan Motion Processor Products . 12

2. System Overview . 13
2.1 Documentation Guide . 14
2.2 Product P/N Referencing Guide . 15
2.3 Control Modules . 17

3. Control Flow Overview . 17
3.1 Enabling and Disabling Control Modules . 18
3.2 Reset Command . 20
3.3 Setting the Cycle Time . 20
3.4 The Time Register . 21
3.5 GetVersion Command . 21

4. Trajectory Generation . 23
4.1 Trajectories, Profiles, and Parameters . 23
4.2 Trapezoidal Point-to-Point Profile . 24
4.3 S-curve Point-to-Point Profile . 26
4.4 Velocity-Contouring Profile . 28
4.5 Electronic Gear Profile . 29
4.6 The SetStopMode Command . 31
4.7 Disabling and Enabling the Trajectory Generator Module 31

5. Position Loop . 33
5.1 Overview . 33
5.2 Dual Encoder Support . 36
5.3 Biquad Output Filters . 38
5.4 Output Limit . 40
5.5 Motor Bias . 41
5.6 Disabling and Enabling the Position Loop Module . 41

6. Parameter Update and Breakpoints . 43
6.1 Parameter Buffering . 43
6.2 Breakpoints . 44

7. Status Registers . 51
7.1 Overview . 51
7.2 Event Status Register . 51
7.3 Activity Status Register . 53
7.4 Drive Status Register . 54
7.5 Signal Status Register . 54
Magellan Motion Processor User’s Guide v

Magellan
8. Motion Monitoring and Related Processing .57
8.1 SetEventAction Processing . 57
8.2 Motion Error . 59
8.3 Travel-limit Switches . 59
8.4 Tracking Window . 61
8.5 Motion Complete Indicator . 62
8.6 In-motion Indicator . 63
8.7 Settle Window . 63
8.8 Trace Capture . 64
8.9 Trace Buffer Architecture . 64
8.10 Host Interrupts . 69

9. Hardware Control Signals .73
9.1 The AxisOut Pin . 73
9.2 The AxisIn Pin . 73
9.3 Analog input . 74
9.4 The Synch Pin—Multiple Chip Synchronization . 74

10. Encoder Interfacing .77
10.1 Incremental Encoder Input . 77
10.2 High-speed Position Capture . 78
10.3 Parallel-word Position Input . 79

11. Motor Output .81
11.1 Disabling the Motor Output Module . 81
11.2 Enabling the Motor Output Module . 82
11.3 Motor Type . 82
11.4 Motor Command Output . 83
11.5 Setting PWM Frequency . 87
11.6 Multi-Phase Motor Interfacing . 87
11.7 Pulse & Direction Signal Generation . 89
11.8 Microstepping Motor Output . 91

12. Host Communication .95
12.1 Host I/O Commands . 96
12.2 Parallel Communication Port . 97
12.3 Serial Port . 100
12.4 Controller Area Network (CAN) . 104
12.5 Storing Communication Values . 107

13. Brushless DC Motor Control . 109
13.1 Overview . 109
13.2 Number of Phases . 110
13.3 Phasing Control Modes . 110
13.4 Phase Counts . 111
13.5 Phase Initialization . 111
13.6 Phase Initialization Programming . 113
13.7 Index Pulse Referencing . 114
13.8 Encoder Prescaler . 116
13.9 Sinusoidal Commutation . 116
13.10 Field Oriented Control . 117

14. Step Motor Control . 121
14.1 Overview . 121
14.2 Encoder Feedback . 122
Motion Processor User’s Guide vi

14.3 Stall Detection . 122
14.4 Pulse & Direction Motor Control . 123
14.5 Microstepping Motor Control . 124

15. Drive Control . 127
15.1 Current Loop . 127
15.2 Current Loop Parameters . 128
15.3 Enabling and Disabling Current Loop . 129
15.4 Reading Current Loop Values . 129
15.5 Drive Control Features . 130
15.6 Electrical Faults . 130
15.7 Drive Fault Status Register . 131
15.8 FaultOut Signal . 131
15.9 Overtemperature Sense . 132
15.10 Overvoltage Sense . 132
15.11 Undervoltage Sense . 133
15.12 Drive Enable . 133
15.13 Current Foldback . 134

16. External Memory and I/O . 135
16.1 Memory Configuration . 135
16.2 User I/O . 137

Index . 139
Magellan Motion Processor User’s Guide vii

1

This page intentionally left blank.
viii Magellan Motion Processor User’s Guide

L i s t o f F i g u r e s

2-1 Magellan system block diagram .13
3-1 Magellan internal block diagram .17
4-1 Simple trapezoidal point-to-point profiles .24
4-2 Trapezoidal profile with non-zero starting velocity .25
4-3 Simple trapezoidal point-to-point profile .25
4-4 Complex trapezoidal point-to-point profile, showing parameter changes 26
4-5 Typical S-curve point-to-point profile .27
4-6 S-curve that does not reach maximum acceleration .27
4-7 S-curve with no maximum-velocity segment .28
4-8 Velocity-contouring profile .29
4-9 Electronic gear profile .30
5-1 PID loop and biquad filters .33
5-2 Position loop flow .34
5-3 Magellan dual-loop flow .36
5-4 Magellan dual-loop digital filter .37
5-5 Biquad algorithm flow .38
5-6 Motor control paths, trajectory enabled/disabled .42
8-1 Directional limit switch operation .59
8-2 Tracking window .61
8-3 Settle window .63
10-1 Quadrature encoder timing .77
11-1 50/50 PWM encoding .85
11-2 Brushless motor (PWM mode) connection scheme .88
11-3 Brushless motor (DAC mode) connection scheme .88
11-4 Motor output waveform (Vout) .89
11-5 Step motor connection .90
11-6 Typical motor output waveform .91
11-7 Filtered PWM sign/magnitude waveform .92
11-8 Typical amplifier configuration for 2-phase motor .92
11-9 Typical amplifier current-control configuration .93
11-10 Typical amplifier configuration for 3-phase motor .94
12-1 Host to motion processor communications .95
12-2 Typical data frame format .101
13-1 Commutation waveforms .110
13-2 Hall-based phase initialization .112
13-3 Sinusoidal commutation .117
13-4 Control flow of FOC control .118
13-5 Algorithmic flow of FOC controller .119
14-1 Microstepping waveform generation .124
14-2 Microstepping waveforms .125
15-1 Current loop control flow .128
Magellan Motion Processor User’s Guide ix

L i s t o f F i g u r e s
This page intentionally left blank.
x Magellan Motion Processor User’s Guide

1

1 . T h e M a g e l l a n F a m i l y
In This Chapter
Family Summary
Magellan Motion Processor Products

The Magellan Motion Processor User’s Guide supports the Magellan Family of Motion Processors from PMD, including the
MC58000 Series (DC brush, brushless DC, microstepping, and step motor), the MC55000 Series (step motor), and the
Magellan/ION Motion Processor. In addition, Magellan processors are used in a number of card-level products,
including the Prodigy-PCI and Prodigy-PC/104 cards; the exact motion processor type can be determined from the
corresponding user’s guide.

Each Magellan is a complete chip-based motion processor, providing trajectory generation and related motion control
functions. Depending on the type of motor to be controlled, it provides servo loop closure, on-board commutation for
brushless motors, and high-speed pulse and direction outputs. Together, these products provide a software-compatible
family of dedicated motion processors that can handle a large variety of system configurations.

Each of the multi-chip versions of these products utilize a similar architecture, consisting of a high-speed computation
unit along with an ASIC (Application Specific Integrated Circuit). The computation unit contains special on-board
hardware that makes it well suited for the task of motion control. Single-axis/single-chip configurations of Magellan are
also available. In these products the logic provided in the ASIC is integrated directly with the high-speed computation
unit.

Along with similar hardware architecture, these chips also share most software commands. Therefore, software written
for one motion processor may be used with another, independent of motor type or hardware configuration.

1 . 1 F a m i l y S u m m a r y

The various members of the Magellan family are designed for different motor types and applications:

MC58000 Series (MC58420, MC58320, MC58220, MC58120, MC58110) - This series supports DC brush, brushless
DC, and step motors using both pulse and direction and microstepping output formats. For use with DC brush or
brushless DC with external commutation, it outputs in PWM or DAC-compatible format. With two-phase or three-
phase brushless DC motors it outputs in PWM or DAC-compatible format. With pulse and direction step motors it
outputs in pulse and direction format, and with microstepping step motors it outputs PWM or DAC-compatible format.

MC55000 Series (MC55420, MC55320, MC55220, MC55120, MC55110) - This series outputs pulse and direction
signals for use with step motors.

Magellan/ION—This single-chip motion processor is specifically designed to work with the ION family of digital
drives. It provides one axis of control, with an additional auxiliary axis of encoder input. It controls either a DC brush
motor, a three-phase brushless DC motor, or a step motor. Compared to the MC50000, it has additional amplifier
control features such as digital current control and overtemperature sense. The Magellan/ION is only available
embedded in the ION Digital Drive; it is not sold as a separate motion processor device.
Magellan Motion Processor User’s Guide 11

T h e M a g e l l a n F a m i l y1
1 . 2 M a g e l l a n M o t i o n P r o c e s s o r P r o d u c ts

The following table presents a feature summary of the products in the Magellan Motion Processor product family:

M C 5 8 0 0 0 S e r i e s M C 5 5 0 0 0 S e r i e s M a g e l l a n / I O N
of axes 1, 2, 3, 4 1, 2, 3, 4 1

Motor types supported
DC brush, brushless DC,

step motor
Step motor

DC brush,
brushless DC,

step motor
Output format PWM, DAC, Pulse & direction Pulse & direction PWM (internal to drive)
Parallel communication
Serial communication
CAN 2.0B communication
Incremental encoder input
Parallel word device input
Index & Home signals
Position capture
Directional limit switches
PWM output amplifier is internal
Parallel DAC output
SPI DAC output
Pulse & direction output
Digital current control
Field oriented control
Under/overvoltage sense

12T Current foldback
Trapezoidal profiling
Velocity profiling
S-curve profiling
Electronic gearing
On-the-fly changes
PID position servo loop brushed or brushless only
Dual biquad filters
Dual encoder loop

(multi-axis configurations only)

Programmable derivative
sampling time

Feedforward (accel & vel)
Data trace/diagnostics
Motion error detection

(requires encoder)

Axis settled indicator

(requires encoder)

Analog input
Programmable bit output
Software-invertible signals
User-defined I/O
External RAM support
Multi-chip synchronization
Chipset configurations MC58420 (4 axes, 2 ICs)

MC58320 (3 axes, 2 ICs)
MC58220 (2 axes, 2 ICs)
MC58120 (1 axis, 2 ICs)
MC58110 (1 axis, 1 IC)

MC55420 (4 axes, 2 ICs)
MC55320 (3 axes, 2 ICs)
MC55220 (2 axes, 2 ICs)
MC55120 (1 axis, 2 ICs)
MC55110 (1 axis, 1 IC)

Magellan/ION sold as part of
ION drive only.

Motion processor devel-
oper’s kit p/n’s

DK58420 (4 axes, 2 ICs)
DK58110 (1axis, 1 IC)

DK55420 (4 axes, 2 ICs)
DK55110 (1 axis, 1 IC)

Not available as motion pro-
cessor developer’s kit. Used
exclusively in ION digital
drive products.
12 Magellan Motion Processor User’s Guide

2

2 . S y s t e m O v e r v i e w
In This Chapter
Documentation Guide
Product P/N Referencing Guide

Figure 2-1 shows an interconnection diagram for the Magellan Motion Processor. For chip-level designs, you will
interface these interconnections with your own circuitry to create a complete motion card. For Magellan-based card and
module-level products, some of these connections (such as encoder, limit switches, etc.) are available externally to the
user, while some are connected to the internal card or module circuitry and do not require user interfacing. Refer to the
card user’s guide or module user’s manual for more information.

Regardless of the hardware configuration, the overall control approach is similar. Each axis inputs the actual location of
the axis using either incremental encoder signals or a parallel-word input device such as an absolute encoder, analog-to-
digital converter, resolver, or laser interferometer. If incremental signals are used, the incoming A and B quadrature data
stream is digitally filtered, and then passed on to a high-speed up/down counter. Using the parallel-word interface, a
direct binary-encoded position of up to 16 bits is read by the motion processor. Regardless of the encoder input method,
this position information is then used to maintain a 32-bit actual axis position counter.

Magellan contains a trajectory generator that calculates a new desired position at each cycle time interval, which is based
on the profile modes and parameters programmed by the host, as well as on the current state of the system. The cycle
time is the rate at which major system parameters (such as trajectory, servo compensation [if using the MC58000 or
Magellan/ION]) and other motion processor functions are updated.

For motion processors with servo motor support (MC58000, Magellan/ION), the output of the trajectory generator is
combined with the actual encoder position to calculate a 32-bit position error, which is passed through a PID position
loop.

Host
Magellan Motion Processor

Limit
switches

External memory

User I/O

Other user devices

CANOpen/CAN 2.0B network

Serial Network

8- or 16-bit Parallel Port

System clock
(40 MHz)

Motor
amplifier

Parallel
D/A

converter

A
xi

sO
u

t

N
e

g
at

iv
e

P
o

si
ti

ve

A
xi

s
In

A
n

al
o

g
 in

p
u

ts

A

H
o

m
e

In
d

exB

Encoder

S
P

I

Motor configuration

Serial configuration

CANbus configuration

Parallel word input

DAC
output

Serial
D/A

converter

P
W

M
 o

r
P

u
ls

e
&

 D
ir

ec
ti

o
n

 o
u

tp
u

t

16
-b

it
 d

at
a

 b
u

s

C
u

rr
e

n
t

A
,B

(M
ag

e
lla

n
/IO

N
 o

n
ly

)

H
a

ll
A

,B
,C

Figure 2-1:
Magellan
system block
diagram
Magellan Motion Processor User’s Guide 13

S y s t e m O v e r v i e w2
The resultant value is then output by the motion processor to an external amplifier using either PWM or DAC signals.
If the axis is configured for a brushless DC motor, then the output signals are commutated, meaning they are
combined with information about the motor phase angle to distribute the desired motor torque to two- or three-
phased output commands.

With an MC58000 axis configured for DC brush servo motors, the single-phase motor command is output directly.
For axes configured for step motors, the output of the trajectory generator is converted to either microstepping signals
(MC58000, Magellan/ION only), or pulse and direction signals, and is then output accordingly. Microstepping signals
are output in either PWM or DAC format.

For Magellan/ION, all motor output formats are utilized internally by the drive. In addition, ION provides a capability
for digital current or field oriented control, along with numerous monitoring and control features.

Communication to and from Magellan Motion Processors is accomplished using a parallel-bus interface, an
asynchronous serial port, or a CAN 2.0B interface. If parallel-bus communication is used, there is a further choice of
8-bit wide transfers or 16-bit wide transfers, allowing a range of microprocessors and data buses to be interfaced. If
serial communications are used, then the user selects parameters such as baud rate, number of stop/start bits, and the
transfer protocol. The transfer protocol may be either point-to-point (appropriate for single-motion processor
systems), or multi-drop (appropriate for serial communications to multiple motion processors). For CAN
communication, the user selects the desired CAN data bus rate and the CAN node address.

For card-product communications through the bus, the parallel-bus interface is fixed to a 16-bit format. For example,
the Prodigy-PCI card provides a complete PCI bus interface that connects on the card to the motion processor in its
16-bit parallel interface mode. PMD’s motion cards also provide serial and CANbus communication options.
Magellan/ION does not provide a parallel interface mode; it has serial or CANbus communications only.

Regardless of the hardware interface method, communication to and from Magellan Motion Processors occurs using
short commands sent or received as a sequence of bytes and words. These packets contain an instruction code word
that tells the motion processor which operation is being requested. It may also contain data sent to, or received from,
the motion processor.

These commands are sent by a host microprocessor or host computer executing a supervisor program that provides
overall system control. The Magellan Motion Processor is designed to function as the motion engine, managing high-
speed dedicated motion functions such as trajectory generation, safety monitoring, etc., while the host software pro-
gram provides the overall motion sequences.

2 . 1 D o c u m e n ta t i o n G u i d e

Many functions are common across all Magellan Motion Processors. However, some sections of this user’s guide
describe features that apply to specific motor types, or to certain Magellan products. For example, servo filtering
applies only to axes configured for DC brush or brushless DC motors. The following table cross-references the
applicable chapters for each motor type and Magellan-based product:

Current Loop and FOC are available only on Magellan/ION.
14 Magellan Motion Processor User’s Guide

S y s t e m O v e r v i e w 2
MC50000 Series Motion Processors

The following table describes the MC50000 Series Motion Processors.

Magellan/ION Motion Processors

The following table describes the Magellan/ION Motion Processors.

2 . 2 P r o d u c t P / N R e f e r e n c i n g G u i d e

Various chapters, sections, or paragraphs give descriptions such as “MC55000 only.” The following table indicates the
specific products that are referred to by each such reference:

Mo t o r Ty p e D e s c r i p t i o n A p p l i c a b l e C h a p t e r s

DC brush Servo motors with internal mechanical commutation, or
connected to a commutating amplifier.

1–12, 16

Brushless DC
(2 phase, 3 phase)

Servo motors requiring external electrical commutation. 1–13, 16

Microstepping motor Step motor with microstepping drive. 1–4, 6–12, 14, 16
Pulse & direction step
motor

Step motor with pulse & direction drive. 1–4, 6–12, 14, 16

Mo t o r Ty p e D e s c r i p t i o n A p p l i c a b l e C h a p t e r s

DC brush Servo motors with internal mechanical commutation. 1–12, 15
Brushless DC 3-phase brushless DC servo motors. 1–13, 15
Step motor 2-phase step motor. 1–12, 14, 15

R e f e r e n c e D e s c r i p t i o n P a r ts I n c l u d e d

MC58000 Indicates all MC58000 series Magellan Motion Processors. MC58420
MC58320
MC58220
MC58120
MC58110

MC55000 Indicates all MC55000 series Magellan Motion Processors. MC55420
MC55320
MC55220
MC55120
MC55110

MC50000 Indicates all Magellan Motion Processors except Magellan/ION. MC58420
MC58320
MC58220
MC58120
MC58110
MC55420
MC55320
MC55220
MC55120
MC55110

Magellan/ION Indicates all Magellan Motion Processors for the ION product family,
DC brush, brushless DC, and step motor.

Not sold as separate
motion processor. See the
ION Digital Drive User’s
Manual for a list of ION
digital drive product
numbers.
Magellan Motion Processor User’s Guide 15

S y s t e m O v e r v i e w2
This page intentionally left blank.
16 Magellan Motion Processor User’s Guide

3

3 . C o n t r o l M o d u l e s
In This Chapter
Control Flow Overview
Enabling and Disabling Control Modules
Reset Command
Setting the Cycle Time
The Time Register
GetVersion Command

3 . 1 C o n t r o l F l o w O v e r v i e w

Figure 3-1 provides a control flow overview for the Magellan Motion Processors. It shows how a final motor command
is generated, starting with the profile generator and ending with the motor output module that generates amplifier-
compatible output signals. Depending on the type of product and motor, some modules may not be used. For example,
step motors do not use a position PID loop. In addition, depending on the nature of the control problem, some modules
may be disabled by the user to tailor the control for their specific application.

Current Loop, FOC, and Current Feedback are available only on Magellan/ION.

Figure 3-1:
Magellan
internal block
diagram

Position
Loop

Trajectory
Generator

Motor
Output

Commutation/
Phasing

Current
Loop/ FOC

Motor
Command

Phase
Command

PWM
or DAC

output to
amplifier

Position Encoder

Current Feedback

Hall Sensors

Commanded
Position,
Velocity,

Acceleration
Magellan Motion Processor User’s Guide 17

C o n t r o l M o d u l e s3
Each of the major blocks within the control flow diagram is referred to as a module. The following table provides a
brief description of each module.

Each of these modules is described in detail in subsequent chapters. Beyond the functions provided by these major
control modules, Magellan also provides numerous additional capabilities such as breakpoints, trace, and PLC-style
signal control. These features are common to all motor types and motion processors, and are also described in detail
in subsequent chapters.

3 . 2 E n a b l i n g a n d D i s a b l i n g C o n t r o l
M o d u l e s

At various times during setup or operation of an axis, it may be desirable to selectively enable or disable specific control
modules. This is accomplished using the command SetOperatingMode. To read back the status set using this
command, the command GetOperatingMode is used. Generally speaking, if a module is disabled, Magellan skips
whatever features and calculations are associated with that module, and the input from the previous module is passed
directly to the subsequent module without modification.

The following table summarizes which modules may be disabled or enabled, and describes typical circumstances
under which this might be useful. In addition to these specific modules it is possible to enable or disable an entire
axis using the SetOperatingMode command. Note that the commutation/phasing module may not be disabled
or enabled by the user. If a multi-phase motor type such as brushless DC or microstepping is selected, this
module is always enabled.

M o d u l e N a m e F u n c t i o n

Trajectory Generator This module accepts user-specified parameters and generates a trajectory.
Position Loop This module is used with servo motors only. It inputs the commanded position (the

instantaneous desired axis position) and the actual position (the motor position mea-
sured by an encoder), and passes the resultant position error (the difference between the
commanded and the actual position) through a PID filter along with dual biquad filters
to generate a motor command.

Commutation/Phasing This module is used with multi-phase motors such as brushless DC motors or micro-
stepping step motors, and generates desired torque signals for each phase of the motor.

Current Loop/FOC This module is used with Magellan/ION only. It inputs the desired torque for each
motor phase along with the actual measured current through each phase, and passes
the resultant difference through a PI filter to generate a motor command.

Motor Output This module inputs the desired motor phase command and generates the appropriate
signals for the selected output format.
18 Magellan Motion Processor User’s Guide

C o n t r o l M o d u l e s 3
In addition to manually disabling modules, there are a number of circumstances where modules may be automatically
disabled due to event-related issues, or breakpoints. See Section 8.1, “SetEventAction Processing,” and Section 6.2,
“Breakpoints,” for more details.

GetOperatingMode returns the value set using the command SetOperatingMode, which sets the desired operating
mode under normal operational circumstances. However this may differ from the actual operating mode for the
reasons mentioned above. To determine the actual current status of the operating mode word use the command
GetActiveOperatingMode.

M o d u l e D e s c r i p t i o n Ty p i c a l U s e s

Trajectory Generator If disabled, the commanded position will stay
at its present value.

The trajectory generator is not usually dis-
abled manually. For trajectory control,
which requires an immediate stop, the
SetStopMode command with an argu-
ment of Abrupt Stop is used instead.

Position Loop Used with servo motors only. If disabled, this
module outputs from one of two sources,
depending on whether the trajectory genera-
tor module is enabled or disabled.
Trajectory generator enabled. If the trajectory
generator is enabled, then the position loop is
skipped, and the output of the profile generator
is input directly to the subsequent module.
Trajectory generator disabled. If the trajectory
generator is also disabled, the output comes
from the Motor Command register, which
can be manually set using the command
SetMotorCommand.
See Section 5.6, “Disabling and Enabling the
Position Loop Module,” in chapter 5 of this
user’s guide for details.

Disabling this module with trajectory gen-
erator enabled is useful if voltage or
current-proportional positioning devices
are used, such as certain kinds of galvanom-
eters. It may also be useful if amplifier cali-
bration with automated ramps is required.
With trajectory generator disabled,
disabling this module may be useful for
amplifier or motor calibration.

Current Loop
(Magellan/ION only)

If this module is disabled, the input motor
command will be passed unmodified to the
motor output module.

Disabling the current loop is useful when
you are using an external amplifier that
already provides torque or velocity-based
control.

Motor Output Disabling this module sets all motor genera-
tion to a value of zero (0). The actual states
of the associated motor output signals will
depend on the selected signalling method
(PWM sign/mag, PWM 50/50, parallel DAC,
or serial DAC) See Section 11.4, “Motor
Command Output,” for more information.

Disabling motor output is useful in connec-
tion with various safety-related conditions,
or for amplifier calibration.

Throughout this user’s guide various command mnemonics will be shown to clarify motion process or command
usage or provide specific examples. See the Magellan Motion Processor Programmer’s Command Reference for more
information on host commands, nomenclature, and syntax.
Magellan Motion Processor User’s Guide 19

C o n t r o l M o d u l e s3
3 . 3 R e s e t C o m m a n d

In addition to enabling and disabling control modules, it is possible to entirely reset the motion processor using the
Reset command. This command will bring all registers to their default values and reinitialize all motion control
functions. See the Magellan Motion Processor Programmer’s Command Reference for details on the default values of various
Magellan registers.

For MC50000 products a Reset command will have an equivalent effect as toggling the motion processor’s Reset
hardware signal. Also, in addition to manual resets or signal-based resets, a reset operation automatically occurs during
motion processors powerup. See the Magellan Motion Processor Electrical Specifications for details.

For Magellan/ION users, the product will be reset automatically upon powerup, and may also be manually reset using
the Reset command.

Due to the large number of operations required to complete a reset operation, Reset commands generally take
substantially longer to process than standard Magellan commands. See the Magellan Motion Processor Electrical
Specifications or ION Digital Drive User’s Manual for details.

Note that in normal operation resets are not required. They are generally used during development or debugging to
bring the system to a known initial state.

3 . 4 S e t t i n g t h e C y c l e T i m e

The motion processor calculates all trajectory and servo information on a fixed, regular interval. This interval is known
as the cycle time. For each enabled axis of the motion processor, there is a required “time slice” of either 51.2 (MC50000)
or 102.4 (Magellan/ION) microseconds. In addition, for some motion processors there may be added overhead
associated with the trace capture facility, and some internal overhead for multi-axis configurations. The minimum cycle
times for various configurations of the Magellan Motion Processor are provided in the following tables.

MC50000

The minimum cycle time for Magellan/ION does not depend on whether trace has been selected, or any other factors.
The following table summarizes this:

Executing a Reset command will result in the motor command for all axes immediately being set to zero (0), and
all motion processor activity restarting from a default condition. It is the responsibility of the user to determine
whether sending a Reset command is safe for a given operational condition.

E n a b l e d
A x e s

M i n i m u m
C y c l e T i m e

C y c l e T i m e
w / Tr a c e
C a p t u r e

T i m e
p e r A x i s

M a x i m u m C y c l e
F r e q u e n c y

1 (ION) 102.4 us 102.4 us 102.4 us 9.76 kHz
1 (Magellan

Single-axis)
51.2 µs 102.4 µs 51.2 µs 19.53 KHz (9.76 w/

trace capture)
1 (Magellan

Multi-axis)
102.4µs 102.4 µs 102.4 µs 9.76 kHz

2 (Magellan) 153.6 µs 153.6 µs 76.8 µs 6.51 KHz
3 (Magellan) 204.8 µs 204.8 µs 68.3 µs 4.88 KHz
4 (Magellan) 256 µs 256 µs 64 µs 3.91 KHz
20 Magellan Motion Processor User’s Guide

C o n t r o l M o d u l e s 3
Magellan/ION

The cycle rate determines the trajectory update rate for all motor types, as well as the servo loop calculation rate for
the servo products (MC58000, Magellan/ION). It does not necessarily determine the commutation rate, the PWM
rate, or the current loop rate (Magellan/ION only).

An enabled axis receives its cycle time slice whether or not it is in motion, and whether or not all the modules are
enabled. For multi-axis motion processors, if cycle time is critical, it is possible to reclaim that time slice by disabling
an unused axis, and then resetting the loop rate with the instructions SetOperatingMode and SetSampleTime.

For example, using an MC55240, four axes are available. If only three of the axes will be used in a specific application,
then the unused axis may be disabled using the command SetOperatingMode and a new, lower sample time may be
set using the SetSampleTime command. This would improve the cycle frequency from 3.90 kHz to 4.88 kHz.

SetSampleTime may also be used to increase the cycle time to a value greater than the allowed minimum when
required.

3 . 5 T h e T i m e R e g i s t e r

Magellan processors keep a 32-bit register that holds the current motion processor time, measured as the number of
cycles executed since powerup or reset. This continuously changing value can be read using the command GetTime.

The register has two primary purposes. It can be used as a comparison value for time-based breakpoints (See Section
6.2, “Breakpoints,” for details). In addition, it can be a useful way of keeping track of actual time elapsed by manually
querying the time.

The Time register increases by a value of 1 for each cycle that the motion processor executes until it reaches its largest
possible value of FFFF FFFFh or 4,294,967,295 dec, at which point it wraps back to zero (0). The point at which the
time wrap will occur depends on the cycle time set for the motion processor. For example, for a 4-axis MC58000 with
the default cycle time of 256 uSec, wrap will occur at 256 uSec * 4,294,967,295 = ~12.7 days. All motion processor
operations will continue normally, although if a time breakpoint has been set, care should be taken to correctly
calculate the comparison time including any potential wrap.

3 . 6 G e t Ve r s i o n C o m m a n d

All Magellan Motion Processors can be queried to provide a unique code that indicates the product type and (if
applicable) version code. To retrieve this information use the command GetVersion. For a detailed description of the
information provided, see the Magellan Motion Processor Programmer’s Command Reference.

Mi n i m u m C y c l e T i m e M a x i m u m C y c l e F r e q u e n c y

102.4 µs 9.76 KHz

SetSampleTime cannot be used to set a sample time lower than the required minimum cycle time for the
current configuration. Attempting to do so will set the required minimum as the sample time.
Magellan Motion Processor User’s Guide 21

C o n t r o l M o d u l e s3
This page intentionally left blank.
22 Magellan Motion Processor User’s Guide

4

4 . Tr a j e c t o r y G e n e r a t i o n
In This Chapter
Trajectories, Profiles, and Parameters
Trapezoidal Point-to-Point Profile
S-curve Point-to-Point Profile
Velocity-Contouring Profile
Electronic Gear Profile
The SetStopMode Command
Disabling and Enabling the Trajectory Generator Module

4 . 1 Tr a j e c t o r i e s , P r o f i l e s , a n d P a r a m e t e r s

The trajectory generator performs calculations to determine the instantaneous position, velocity, and acceleration of
each axis at any given moment. These values are called the commanded values. During a motion profile, some or all of
these parameters will continuously change. Once the move is complete, these parameters will remain at the same value
until a new move begins.

To query the instantaneous commanded profile values, use the commands GetCommandedPosition,
GetCommandedVelocity, and GetCommandedAcceleration.

The specific profile created by the Magellan Motion Processor depends on several factors, including the presently
selected profile mode, the presently selected profile parameters, and other system conditions such as whether a motion
stop has been requested. Four trajectory profile modes are supported: S-curve point-to-point, trapezoidal point-to-
point, velocity contouring, and electronic gearing. The operation of these profile modes will be explained in detail in
subsequent sections. The command used to select the profile mode is SetProfileMode. The command GetProfileMode
retrieves the programmed profile mode.

The profile mode may be programmed independently for each axis. For example, axis #1 may be in trapezoidal mode,
while axis #2 is in S-curve point-to-point mode.

Magellan Motion Processors can switch from one profile to another while an axis is in motion, with only one exception:
when switching to the S-curve point-to-point profile from any other profile, the axis must be at rest.

4 . 1 . 1 Tr a j e c t o r y P a r a m e t e r R e p r e s e n ta t i o n

The Magellan Motion Processor sends and receives trajectory parameters using a fixed-point representation. In other
words, a fixed number of bits is used to represent the integer portion of a real number, and a fixed number of bits is
used to represent the fractional component of a real number. The motion processor uses the following three formats.
Magellan Motion Processor User’s Guide 23

T r a j e c t o r y G e n e r a t i o n4
4 . 2 Tr a p e z o i d a l P o i n t - t o - P o i n t P r o f i l e

The following table summarizes the host-specified profile parameters for the trapezoidal point-to-point profile mode.

The host instructions SetPosition, SetStartVelocity, SetVelocity, SetAcceleration, and SetDeceleration load these
values. The commands GetPosition, GetStartVelocity, GetVelocity, GetAcceleration, and GetDeceleration retrieve
the programmed values.

For this profile, the host specifies an initial acceleration and deceleration, a velocity, and a destination position. The
profile gets its name from the resulting curve (see Figure 4-1). The axis accelerates linearly (at the programmed
acceleration value), until it reaches the programmed velocity. It continues in motion at that velocity, then decelerates
linearly (using the deceleration value) until it stops at the specified position.

F o r m a t Wo r d S i z e R a n g e D e s c r i p t i o n

32.0 32 bits –2,147,483,648 to
+2,147,483,647

Unity scaling. This format uses an integer-only representation of
the number.

16.16 32 bits –32,768 to 32,767
+ 65,535/65,536

Uses 1/216 scaling. The motion processor expects a 32-bit number
scaled by a factor of 65,536. For example, to specify a velocity of
2.75, 2.75 is multiplied by 65,536, and the result is sent to the
motion processor as a 32-bit integer (180,224 dec. or 0002C000h).

0.32 32 bits 0 to
+2,147,483,647/
4,294,967,296

Uses 1/232 scaling. The motion processor expects a 32-bit number

scaled by a factor of 4,294,967,296 (232). For example, to specify a
value of .0075, .0075 is multiplied by 4,294,967,296 and the result is
sent to the motion processor as a 32-bit integer (32,212,256 deci-
mal or 00EB8520h.).

P r o f i l e
P a r a m e t e r F o r m a t Wo r d S i z e R a n g e

Position 32.0 32 bits –2,147,483,648 to 2,147,483,647 counts.
Starting Velocity 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle.
Velocity 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle.
Acceleration 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle2.
Deceleration 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle2.

Figure 4-1:
Simple
trapezoidal
point-to-point
profiles

Time

V
e

lo
ci

ty

A = acceleration
D = deceleration
V = velocity

A

V

D

-A

-V

-D
24 Magellan Motion Processor User’s Guide

T r a j e c t o r y G e n e r a t i o n 4
Figure 4-1 illustrates a trapezoidal profile with the starting velocity set at the default value of zero (0). When whole-
stepping a step motor, it is sometimes desirable to define a non-zero starting velocity from which the motor will
instantaneously begin motion. This is to avoid passing through the resonant frequency of a step motor. In the
deceleration phase of the profile, rather than continuously decelerate to a velocity of zero (0), the velocity will
transition from the start velocity to zero (0) velocity with no deceleration phase in between. Figure 4-2 shows a typical
trapezoidal profile with non-zero starting velocity.

Note that a programmable starting velocity is supported in Trapezoidal and Velocity Contouring profile modes only.
It is not supported in Electronic Gear or S-curve profile modes.

If deceleration must begin before the axis reaches the programmed velocity, the profile will have no constant velocity
portion, and the trapezoid becomes a triangle, as shown in Figure 4-3.

The slopes of the acceleration and deceleration segments may be symmetric (if acceleration is equal to deceleration),
or asymmetric (if acceleration is not equal to deceleration).

The acceleration parameter is always used at the start of the move. Thereafter, the acceleration value will be used when
the absolute value of velocity is increasing, and deceleration will be used when the absolute value of velocity is

Figure 4-2:
Trapezoidal
profile with
non-zero
starting
velocity

Time

V
e

lo
ci

ty

A = acceleration
D = deceleration
V = velocity

A

V

D

-A

-V

-D

Starting
Velocity

Starting
Velocity

Figure 4-3:
Simple
trapezoidal
point-to-point
profile

Time

V
e

lo
ci

ty

A = acceleration
D = deceleration

A D
Magellan Motion Processor User’s Guide 25

T r a j e c t o r y G e n e r a t i o n4
decreasing. If no motion parameters are changed during the motion, then the acceleration value will be used until the
maximum velocity is reached. The deceleration value will be used when ramping down to zero (0).

It is acceptable to change any of the profile parameters while the axis is moving in this profile mode. The profile
generator will always attempt to remain within the legal bounds of motion specified by the parameters. If, during the
motion, the destination position is changed in such a way that an overshoot is unavoidable, the profile generator will
decelerate until stopped, then reverse direction to move to the specified position. This is illustrated in Figure 4-4

If a deceleration value of zero (0) is programmed (or no value is programmed, leaving the motion processor’s default
value of zero[0]), then the value specified for acceleration (SetAcceleration) will automatically be used to set the
magnitude of deceleration.

4 . 3 S - c u r v e P o i n t - t o - P o i n t P r o f i l e

The following table summarizes the host-specified profile parameters for the S-curve point-to-point profile mode.

The host instructions SetPosition, SetVelocity, SetAcceleration, SetDeceleration, and SetJerk load these respective
values. The commands GetPosition, GetVelocity, GetAcceleration, GetDeceleration, and GetJerk retrieve the
programmed values.

P r o f i l e
P a r a m e t e r F o r m a t Wo r d S i z e R a n g e

Position 32.0 32 bits –2,147,483,648 to 2,147,483,647 counts.
Velocity 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle.
Acceleration 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle2.
Deceleration 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle2.
Jerk 0.32 32 bits 0 to 2,147,483,647/4,294,967,296 counts/cycle3.

In S-curve profile mode, the same value must be used for both acceleration and deceleration. Asymmetric profiles
are not allowed.

Time

V
e

lo
ci

ty

A = acceleration
D = deceleration
V1, V2 = velocity

A

V1

D
V2

-V2

D

-A
-D

change velocity

change target position

reverse direction

Figure 4-4:
Complex
trapezoidal
point-to-point
profile,
showing
parameter
changes
26 Magellan Motion Processor User’s Guide

T r a j e c t o r y G e n e r a t i o n 4
The S-curve point-to-point profile adds a limit to the rate of change of acceleration to the basic trapezoidal curve. A
new parameter (jerk) is added which specifies the maximum change in acceleration in a single cycle.

In this profile mode, the acceleration gradually increases from 0 to the programmed acceleration value, then the
acceleration decreases at the same rate until it reaches 0 again at the programmed velocity. The same sequence in
reverse brings the axis to a stop at the programmed destination position.

Figure 4-5 shows a typical S-curve profile. In Segment I, the S-curve profile drives the axis at the specified jerk (J) until
the maximum acceleration (A) is reached. The axis continues to accelerate linearly (jerk = 0) through Segment II. The
profile then applies the negative value of the jerk to reduce acceleration to 0 during Segment III. The axis is now at
maximum velocity (V), at which it continues through Segment IV. The profile will then decelerate in a manner similar
to the acceleration stage, using the jerk value first to reach the maximum deceleration (D) and then to bring the axis
to a halt at the destination.

An S-curve profile might not contain all of the segments shown in Figure 4-5. For example, if the maximum
acceleration cannot be reached before the “halfway” point to or from the velocity, the profile would not contain a
Segment II or a Segment VI. Such a profile is shown in Figure 4-6.

Similarly, if the position is specified such that velocity is not reached, there will be no Segment IV, as shown in Figure
4-7. There may also be no Segment II or Segment VI depending on where the profile is truncated.

A acceleration
D deceleration
V velocity
J jerk

Time

I II III IV V

J

-J

J

A D

V

Segments

-J

V
el

oc
ity

VI VII

Figure 4-5:
Typical S-
curve point-to
point profile

Figure 4-6:
S-curve that
does not
reach
maximum
acceleration

V velocity
J jerk

Time

I III

J

-J

J

V

Segments

-J

V
el

oc
ity

VIIVIV
Magellan Motion Processor User’s Guide 27

T r a j e c t o r y G e n e r a t i o n4
An axis may not be switched into S-curve profile mode while the axis is in motion. It is legal to switch from S-curve
mode to any other profile mode while in motion.

4 . 4 Ve l o c i t y - C o n t o u r i n g P r o f i l e

The following table summarizes the host-specified profile parameters for the velocity-contouring profile mode.

The host instructions SetStartVelocity, SetVelocity, SetAcceleration, and SetDeceleration load these respective
values. The commands GetStartVelocity, GetVelocity, GetAcceleration, and GetDeceleration retrieve the
programmed values.

Unlike the trapezoidal and S-curve profile modes where the destination position determines the direction of initial
travel, in the velocity-contouring profile mode, the sign of the velocity parameter determines the initial direction of
motion. Therefore, the velocity value sent to the motion processor can have positive values (for positive direction
motion), or negative values (for negative direction motion).

Unlike the trapezoidal profile mode, the S-curve profile mode does not support changes to any of the profile pa-
rameters while the axis is in motion.

P r o f i l e
P a r a m e t e r F o r m a t Wo r d S i z e R a n g e

Start Velocity 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle.
Velocity 16.16 32 bits –32,768 to 32,767 + 65,535/65,536 counts/

cycle.
Acceleration 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle2.
Deceleration 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle2.

Figure 4-7:
S-curve with
no maximum-
velocity
segment

J jerk

Time

I III

J

-J

J

Segments

-J

V
el

o
ci

ty

VIIV
28 Magellan Motion Processor User’s Guide

T r a j e c t o r y G e n e r a t i o n 4
In this profile, no destination position is specified. The motion is controlled entirely by changing the acceleration,
velocity, and deceleration parameters while the profile is being executed.

The trajectory is executed by continuously accelerating the axis at the specified rate until the velocity is reached. The
axis starts decelerating when a new velocity is specified with a smaller value (in magnitude) than the present velocity,
or a sign that is opposite to the present direction of travel. Figure 4-8 illustrates a more complicated profile, in which
both the velocity and the direction of motion change twice.

As was the case for the Trapezoidal Profile mode, in addition to a maximum velocity, a starting velocity value can be
specified which will cause the profile to instantly begin motion at that velocity, and instantly decelerate to zero (0) from
that starting velocity.

4 . 5 E l e c t r o n i c G e a r P r o f i l e

The following table summarizes the host-specified profile parameters for the electronic gear profile mode.

The host instructions SetGearRatio and SetGearMaster load these respective values. The commands
GetGearRatio and GetGearMaster retrieve the programmed values.

In this profile, the host specifies three parameters. The first is the master axis number. This is defined as the axis that
will be the source of position information used to drive the slave axis, which is the axis in gear mode. The second is
the gear source, which is either actual (the encoder position of the master axis), or commanded (the commanded

In velocity-contouring profile mode, axis motion is not bounded by a destination. It is the host's responsibility to
provide acceleration, deceleration, and velocity values that result in safe motion within acceptable position limits.

P r o f i l e
P a r a m e t e r F o r m a t Wo r d S i z e R a n g e

Gear Ratio 16.16 32 bits –32,768 to 32,767 + 65,535/65,536 counts/cycle.
Master Axis # - 2 bits 0–3*
Master Source - 1 bit 2 values; encoder or commanded (see below for details.)

Time

Ve
lo

ci
ty

change velocity,
acceleration

increase velocity

_

+

A1, A2 = acceleration
D1 = deceleration
V1 , V2 , V3 , V4 , V5 = velocity

A1

A1
V1

V2

V3
D1

D1

–D1
V4

–A2

A2

V5

decrease velocity decrease velocity

Figure 4-8:
Velocity-
contouring
profile
Magellan Motion Processor User’s Guide 29

T r a j e c t o r y G e n e r a t i o n4
position of the master axis). The third is the gear ratio, which specifies the direction and ratio of master gear counts
to slave counts.

Normally, the slave axis is set to an axis different than the master axis. One allowed exception is when step motors are
being used. In this case, the master axis may be set to the same axis as the slave, as long as the gear source is set to
encoder. For servo motors, the master axis must be a different axis than the slave axis.

Note that for Magellan/ION, the “auxiliary axis” is treated as the second axis.

Figure 4-9 shows the arrangement of encoders and motor drives in a typical electronic gearing application.

A positive gear ratio value means that during an increase in either the master axis actual or commanded position, the
slave commanded position will also increase. A negative gear ratio value has the opposite effect: increasing master
position will result in decreasing slave axis commanded position.

For example, assume the slave axis is axis #1 and the master axis is set to axis #4. Also, assume the source will be
actual with a gear ratio of –1/2. Then for each positive encoder count of axis 4, axis 1 commanded position will
decrease in value by 1/2 count, and for each negative encoder count of axis 4, axis 1 commanded position will increase
in value by 1/2 count.

The electronic gear profile requires two axes to be enabled. The single-axis motion processors do not support
electronic gearing.

If the master axis source is set to actual, then this axis need not have a physical motor attached to it. Frequently, it is used
only for its encoder input, for example, from a directly driven (open-loop) motor, or a manual control. It is possible to
drive a motor on the master axis by enabling the axis and applying a profile mode other than electronic gear to the axis.
The effect of this arrangement is that both master and slave can be driven by the same profile, even though the slave can
drive at a different ratio and in a different direction if desired. The master axis will operate the same, whether or not it
happens to be the master for some other geared axis. The “optional” components shown in Figure 4-9 illustrate this
arrangement. Such a configuration can be used to perform useful functions such as linear interpolation of two axes.

Magellan Motion Processor

Slave encoder

Motor

Amplifier

Amplifier

Motor

Master encoder

optional

Figure 4-9:
Electronic
gear profile
30 Magellan Motion Processor User’s Guide

T r a j e c t o r y G e n e r a t i o n 4
Note that unlike the trapezoidal, S-curve, and velocity contouring profile modes, electronic gearing profile mode does
not have an explicit sense of whether motion is “completed” or not. Therefore, the “motion complete” bit of the Event
Status register, as well as the “in-motion” bit of the Activity Status register, do not function when in this profile mode.

The SetStopMode Command

Normally, each of the trajectory profile modes will execute the specified trajectory, within the specified parameter limits, until
the profile conditions are satisfied. For example, for the point-to-point profile modes this means that the profile will move
the axis until the final destination position has been reached, at which point the axis will have a velocity of zero (0).

In some cases, it may be necessary to halt the trajectory manually, either for safety reasons, or simply to achieve a
specific profile. This may be accomplished using one of two methods: Abrupt Stop or Smooth Stop.

To perform a stop, the command SetStopMode is used. To retrieve the current stop mode, the command GetStopMode
is used. Using the SetStopMode command to set the mode to Abrupt Stop instantaneously stops the profile by setting the
target velocity of the designated axis to zero (0). This is, in effect, an emergency stop with instantaneous deceleration.

Setting the stop mode to Smooth Stop brings the designated axis to a controlled stop, using the current deceleration
parameter to reduce the velocity to zero (0).

In either mode, the target velocity is set to zero (0) after the SetStopMode command is executed. Before any other
motion can take place, the velocity must then be reset using the SetVelocity command.

Abrupt Stop functions in all profiles. Smooth Stop functions in all profiles except electronic gearing.

The gear ratio parameter may be changed while the axis is in motion, but care should be taken to select ratios so
that safe motion is maintained.

For ION 3000 users, Electronic gear can also be used with a pulse & direction input signal for the auxiliary
encoder axis. In this mode, all the standard electronic gear commands are used, with one master axis input ‘pulse’
being equivelent to one master axis input encoder ‘tick’. To operate the ION in this mode the master axis number
is set to #2 (auxiliary axis) and the encoder source is set to pulse & direction. See section 10.0 for more informa-
tion on the SetEncoderSource command.

Abrupt Stop must be used with care. Sudden deceleration from a high velocity can damage equipment or cause
injury.
Magellan Motion Processor User’s Guide 31

T r a j e c t o r y G e n e r a t i o n4
4 . 9 D i s a b l i n g a n d E n a b l i n g t h e Tr a j e c t o r y
G e n e r a t o r M o d u l e

There are a number of reasons why it might be desirable to disable the trajectory generator module. See Section 3.1,
“Control Flow Overview,” for more information on the functions of the Trajectory Generator. In addition, there are event-
related actions that may result in this module being disabled. See Section 8.1, “SetEventAction Processing,” for details.

If the trajectory generator module is disabled, the current commanded position will remain at its present value. All
profile and other commands will be ignored. In addition, if the position loop is enabled, at the time the trajectory
generator module is disabled, the position error will be set to 0 (equivalent to ClearPositionError command).

A previously disabled trajectory generator module may be re-enabled in a number of ways. If the module was disabled
using the SetOperatingMode command, then another SetOperatingMode command may be issued. If the trajectory
generator module was disabled as part of an automatic event-related action (see Section 8.1, “SetEventAction
Processing,” for more information) then the command RestoreOperatingMode is used.
32 Magellan Motion Processor User’s Guide

5

5 . P o s i t i o n L o o p
In This Chapter
Overview
Dual Encoder Support
Biquad Output Filters
Output Limit
Motor Bias
Disabling and Enabling the Position Loop Module

5 . 1 O v e r v i e w

For motion processors that provide servo motor support (MC58000 Series, Magellan/ION), a position loop is used as
part of the basic method of determining the motor command output. The function of the position loop is to match as
closely as possible the commanded position, which comes from the trajectory generator, and the actual motor position.
To accomplish this, the commanded value is combined with the actual encoder position to create position error, which
is then passed through a digital PID-type servo filter. The scaled result of the filter calculation is the motor command,
which is then passed to a “downstream” module, either the commutation/phasing module, the current loop/FOC
module, or the motor output module, depending on the motor type chosen and Magellan product being used.

The overall position loop is split into two major sections, the PID loop, and the biquad filters. The PID loop generates
an initial motor command, while the dual biquad filters can be used to perform various frequency-domain filtering such
as notch, lowpass, and bandpass. Once the output of the PID and biquad filters is generated, it can be further limited
to a prescribed range, thereby accommodating amplifiers, motors, or physical systems, as shown in Figure 5-1.

Motor
Command

Commanded
Position

Position
Error Biquad

1
PID

Filter+
-

+
+

Motor
Bias

Position Encoder

Biquad
2

+
+

+

Motor
Limit

Commanded Velocity

Commanded Acceleration
Magellan Motion Processor User’s Guide 33

P o s i t i o n L o o p5
To perform position control, all servo applications require that safe and stable PID loop parameters be specified. Use
of the dual biquad filters, on the other hand, is optional and will depend on the nature and complexity of the control
problem. The more demanding the application, the more likely that the biquads will be useful.

5 . 1 . 1 P I D L o o p

The servo filter used with the Magellan Motion Processors is a proportional-integral-derivative (PID) algorithm, with
velocity and acceleration feed-forward terms and an output scale factor. An integration limit provides an upper bound
for the accumulated error. An optional bias value may be added to the filter calculation to produce the final motor
output command. Figure 5-2 provides a control flow overview of the PID loop:

Figure 5-1:
PID loop and
biquad filters

Figure 5-2:
Position loop
flow

biquad
filters

Z -1

Z -1

+

-

- +X

X

X

X

÷

X

commanded velocity

output

commanded acceleration

commanded
position

encoder
feedback

derivative
time

integration
limit

65,536

X

÷

8

Kaff

Kout

Kp

Kd

Kvff

4

÷

256

X

Ki

-

34 Magellan Motion Processor User’s Guide

P o s i t i o n L o o p 5
The PID+Vff+Aff formula, including the scale factor and bias terms, is shown in the following equation:

where

All filter parameters are programmable, so that the filter may be fine-tuned to any application. The parameter ranges,
formats, and interpretations are shown in the following table.

To set servo parameters, use the command SetPositionLoop. To read back these same values, use the command
GetPositionLoop.

5 . 1 . 2 I n t e g r a t i o n L i m i t

The integration limit is used to place a boundary on the absolute value that is contributed to the PID output by the
integration term. Its default value after a reset is zero (0), which will result in the output from the integration term
of the PID filter evaluating to zero (0). In order to use the Ki value, the integration limit must be programmed with

a value greater than zero (0). For more information on the scaling of the integration limit, refer to the Magellan
Programmer’s Command Reference. As for other PID loop parameters, the integration limit can be set using the host
instruction SetPositionLoop. It can be read using the command GetPositionLoop.

k = n – modulus (n/derivative time)
En = position loop error at the derivative sampling interval (Commanded Position – Actual

Position)
Ek = position loop error at the derivative sampling interval

Ki = Integral Gain

Kd = Derivative Gain

Kp = Proportional Gain

Kaff = Acceleration feed-forward

Kvff = Velocity feed-forward

Kout = scale factor for the output command

Te r m N a m e R e p r e s e n ta t i o n & R a n g e

Ilimit Integration Limit unsigned 32 bits (0 to 2,147,483,647)
Ki Integral Gain unsigned 16 bits (0 to 32,767)

Kd Derivative Gain unsigned 16 bits (0 to 32,767)

Kp Proportional Gain unsigned 16 bits (0 to 32,767)

Kaff Acceleration feed-forward unsigned 16 bits (0 to 32,767)

Kvff Velocity feed-forward unsigned 16 bits (0 to 32,767)

Kout Output scale factor unsigned 16 bits (0 to 32,767)

DerivativeTime Derivative Sampling Time unsigned 16 bits (1 to 32,767)

Outputn KpEn Kd Ek Ek 1–– Ej
j 0=

n

+ +
Ki
256
--------- Kvff

CmdVel
4

 Kaff CmdAccel 8 + +

Kout

65 536
------------------=
Magellan Motion Processor User’s Guide 35

P o s i t i o n L o o p5
5 . 1 . 3 O u t p u t s c a l i n g

The Kout parameter can be used to scale down the output of the PID filter by multiplying the filter result by Kout/

65,536. It has the effect of increasing the usable range of Kp. The Kout value is set using the host instruction

SetPositionLoop. It is read by using the command GetPositionLoop.

Unlike the default value of most PID loop parameters, which is zero (0), Kout has a power-up default value of 65,535, or 100%.

5 . 1 . 4 D e r i v a t i v e S a m p l i n g T i m e

Normally, the derivative term of the PID loop is recalculated at every servo cycle. Under some circumstances,
however, it may be desirable to reduce the derivative sampling rate to a rate lower than this, to improve system stability,
or simplify tuning. This can be accomplished using the command SetPositionLoop, and the value set can be read back
using the command GetPositionLoop.

The specified value is the desired number of servo cycles per motion processor sample time. For example, if the
motion processor’s sample time (set using SetSampleTime command) has been set to 200 uSec (giving an effective
sampling time of 204.8 uSec), a value of 1 programmed in the DerivativeTime register will result in a derivative sample
time of 204.8 uSec, while a value of 10 will result in a sample time of 2.048 mSec, or once every 10 servo cycles.

Changing the derivative sample time has no effect on the overall motion processor sample time set using the command
SetSampleTime.

The default value for the derivative time is 1, meaning that by default the derivative term is calculated at each servo cycle.

5 . 2 D u a l E n c o d e r S u p p o r t

The multi-axis MC58000 motion processors (MC58420, MC58320, MC58220) and the Magellan/ION support a dual
encoder PID configuration, which may be useful for applications where the position of the load is critical, but cannot be
deterministically related to the motor position because of backlash or other forms of mechanical compliance. In this
configuration, the encoder input for a second axis (other than the one being controlled) is incorporated as the derivative term
in the servo loop as shown in Figure 5-3. For the Magellan/ION, this second axis is known as the auxiliary encoder input.

For axes driving brushless DC motors in dual encoder mode, the auxiliary axis encoder is used for sinusoidal commutation.

Figure 5-3 provides an overall connection scheme for axes used in the dual loop configuration.

Figure 5-3:
Magellan
dual-loop flow

B iquad
1

B iquad
2

D

P I

Load Encoder

M otor Encoder

M otor
C om m and

M otor
B ias

C om m anded
Position

C om m anded Velocity

C om m anded Acce leration

+
-

+ +
+

-
+

+

M otor
L im it
36 Magellan Motion Processor User’s Guide

P o s i t i o n L o o p 5
5 . 2 . 1 D u a l E n c o d e r P I D L o o p A l g o r i t h m

The structure of the servo filter used by the motion processor in dual-encoder mode is slightly different from that
used in single-encoder mode. The dual-encoder algorithm that follows is illustrated in Figure 5-4:

where

E1n = the accumulated error terms from the main encoder

Pn = position of the auxiliary encoder

Ki = Integral Gain

Kd = Derivative Gain

Kp = Proportional Gain

Kaff = Acceleration feed-forward

Kvff = Velocity feed-forward

Kout = scale factor for the output command

Outputn KpE1n Kd Pn Pn 1–– – E1j
j 0=

n

+
Ki

256
--------- Kvff

CmdVel
4

 Kaff CmdAccel 8 + +

Kout

65 536
------------------=

biquad
filters

Z -1

Z -1

+

-

÷

- +X

X

X

X

÷

X

commanded velocity

output

commanded acceleration

commanded
position

encoder
feedback

integration
limit

65,536

256

X

÷

8

Kaff

Kout

Kp

Kd

Kvff

4

auxiliary
encoder

X

Ki

-

Figure 5-4:
Magellan dual-
loop digital
filter
Magellan Motion Processor User’s Guide 37

P o s i t i o n L o o p5
5 . 2 . 2 C o n f i g u r i n g D u a l E n c o d e r S u p p o r t

The SetAuxiliaryEncoderSource command is used to enable dual encoder processing for an axis. The AuxiliaryAxis
parameter controls which axis’ encoder input will be used to augment the primary (Load) encoder. The mode
parameter enables or disables dual loop processing. Section 5.1.1, “PID Loop,” describes how the servo processing
loop functions when dual loop is disabled (the default condition).

If the application needs to determine the actual position of the auxiliary encoder, use the GetActualPosition
command, and specify the axis of the auxiliary encoder.

For MC50000 products the total number of encoder inputs supported by a given Magellan Motion Processor is equal
to the number of control axes supported. In other words, a four-axis motion processor has four input encoder
channels. Using an encoder channel for dual-loop, therefore, reduces the total number of available control axes by one.
Magellan/ION is different in that it is a single axis product, but has an additional “auxiliary” encoder input channel.

5 . 3 B i q u a d O u t p u t F i l t e r s

A biquad is a generic digital filter structure. With the proper coefficients, it can be programmed to be a low-pass filter,
high-pass filter, band-pass filter, notch filter, or custom filter. Programs such as Octave (www.octave.org) may be used
to find the coefficients.

The Magellan Motion Processor supports two programmable biquad output filters for each axis. These filters are chained.
When both are enabled, the output of Filter1 feeds the input of Filter2. If Filter1 is disabled (the default state), the entire
filter chain is bypassed, and the motion processor output passes unfiltered to the motor.

The auxiliary encoder should always have a resolution which is greater than or equal to the resolution of the main
encoder to avoid unstable operation in dual loop mode.

OutputInput
X

Z

X

Z

X

Z

X

Z

X

-1

-1-1

-1

+ + + +
+

A1

A2B2

B1

B0

X

KScalar

Figure 5-5:
Biquad
algorithm flow
38 Magellan Motion Processor User’s Guide

P o s i t i o n L o o p 5
Magellan Motion Processor User’s Guide 39

The output of the filter at time n is determined with the following equation:

where:

The following table shows biquad filter coefficients that are set using the command SetPositionLoop. They can be
read back using the command GetPositionLoop. The following table summarizes the representation and range for
the settable biquad parameters.

5 . 3 . 1 D e t e r m i n i n g B i q u a d C o e f f i c i e n ts

Typically, coefficients used in biquad filter equations are small floating point numbers. To avoid rounding errors when storing
these numbers as 16-bit values, the K coefficient is scaled by 227 to allow the other coefficients to be entered as integers.

For example, in Octave, the coefficients for a second-order butterworth filter can be found as:

[b,a] = butter(2,0.1)

This results in the coefficients:

b0 = 0.020083
b1 = 0.040167
b2 = 0.020083
a1 = –1.56102
a2 = 0.64135

If the motion processor’s filter equation (shown at the top of this page) is compared to the filter equation used by
Octave (type help filter in Octave), there is a slight difference in that the ax components are subtracted in Octave, as
opposed to being added in the motion processor. The result is that the a1 and a2 coefficients from Octave (or Matlab)
need to be multiplied by –1 before being sent to the motion processor. This results in:

b0 = 0.020083
b1 = 0.040167
b2 = 0.020083
a1 = 1.56102
a2 = –0.64135

Once the output scaling factor K is determined, these values will be scaled and set as the output filter coefficients.

Yn = output of the filter at time n

Xn = input to the filter at time n

K = positive scaling value used to avoid rounding errors
B0 = programmable biquad coefficient

B1 = programmable biquad coefficient

B2 = programmable biquad coefficient

A1 = programmable biquad coefficient

A2 = programmable biquad coefficient

Te r m N a m e R e p r e s e n ta t i o n & R a n g e

K biquad scalar unsigned 16 bits (0 to 32,767)
A1 coefficient A1 signed 16 bits (–32,768 to 32,767)

A2 coefficient A2 signed 16 bits (–32,768 to 32,767)

B0 coefficient B0 signed 16 bits (–32,768 to 32,767)

B1 coefficient B1 signed 16 bits (–32,768 to 32,767)

B2 coefficient B2 signed 16 bits (–32,768 to 32,767)

Yn K B0 Xn B1 Xn 1– B2 Xn 2– A1 Yn 1– A2 Yn 2–+++ =

P o s i t i o n L o o p5
5 . 3 . 2 D e t e r m i n i n g t h e B i q u a d S c a l i n g F a c t o r

To obtain maximum output precision, the programmable scaling value K should be set to a value which will scale the
largest absolute value of the set of coefficients (a1 in this case) closest to 32,767 (the largest positive value for a 16-bit
signed integer). Note that in this step, if the coefficients are not chosen correctly there is the potential to create an
overflow result. Using the coefficient values on the previous page (and accounting for the 227 internal scaling factor),
K is determined using this equation.

a1 = K * 32767 * 2–27

which can be easily resolved:

restated as: K = (a1 * 227) / 32767

substituting: K = (1.56102 * 227) / 32767

evaluates to: K = 6394

5 . 3 . 3 S c a l i n g B i q u a d C o e f f i c i e n ts

Once the optimal K scaling factor has been determined, the integer equivalents of the biquad coefficients must be
calculated. These integer values (named B0, B1, B2, A1, and A2) are calculated as shown in the following example.

b0 = B0 * K * 2–27

restated as: B0 = (b0* 227) / K

substituting: B0 = (0.020083 * 227) / 6394

evaluates to: B0 = 422

Using this formula (X = (x * 227) / K) for each of the coefficients yields:

B0 = 422

B1 = 843

B2 = 422

A1 = 32767

A2 = –13463

 K = 6394

5 . 4 O u t p u t L i m i t

The motor output limit prevents the filter output from exceeding a boundary magnitude in either direction. If the filter
produces a value greater than the limit, the motor command takes the limiting value. The motor limit value is set using
the host instruction SetMotorLimit. It is read by using the command GetMotorLimit. The value specified is a 16-bit
unsigned number with a range of 0 to 32,767. The specified value is the maximum magnitude that will be output to
the motor. For example, if the motor limit is set to 30,000 (or 91.6% output), then motor values greater than 30,000
will be output as 30,000, and motor values less than –30,000 will be output as –30,000.

The motor limit applies only when the position loop is enabled. In the case that the position loop is disabled, the
output limit does not affect either the value passed on from the trajectory generator, or the value specified from the
Motor Command register.

The default value of the motor command limit is 32,767, which corresponds to 100% output.
40 Magellan Motion Processor User’s Guide

P o s i t i o n L o o p 5
5 . 5 M o t o r B i a s

When an axis is subject to a net external force in one direction (such as a vertical axis pulled downward by gravity),
the servo filter can compensate for it by adding a constant DC bias to the filter output. As for the regular PID values,
the bias value is set using the host instruction SetMotorBias. It can be read using the command GetMotorBias.

The motor bias is applied at all times that the position loop is enabled. If the position loop is disabled but the trajectory
generator is enabled, the motor bias is also applied at all times.

If the position loop is disabled and the trajectory generator is also disabled, then the motor bias is applied only after a
transition to this state, and any subsequent setting of the Motor Command register will be applied without motor bias.
See Section 5.6, “Disabling and Enabling the Position Loop Module,” for more information on setting the Motor
Command register. For example, if a motor bias value of +1,000 (= ~+3%) has been set, at the time a
SetOperatingMode command is given to disable trajectory generator and position loop, or at the time a safety-related
response such as motion error occurs and these modules are automatically disabled, the output motor command will
be +1,000. If, in the process of recovering from this condition, a user sets the motor command to +2,000, this value,
unaffected by the motor bias, will be output.

The default value of motor bias is zero (0).

5 . 6 D i s a b l i n g a n d E n a b l i n g t h e P o s i t i o n
L o o p M o d u l e

There are a number of reasons why it might be desirable to disable the position loop module. See Section 3.1, “Control
Flow Overview,” for details. In addition, there are event-related actions that may result in this module being disabled.
See Section 8.1, “SetEventAction Processing,” for details.

If the position loop module is disabled, the overall control flow of the motion processor module will be altered in one
of two ways, depending on whether the trajectory generator is enabled or disabled when the position loop module is
disabled.

Trajectory generator disabled — If the trajectory generator module is disabled when the position loop is disabled,
the output of the position loop module will be a 16-bit word derived from a programmable motor command register,
set using SetMotorCommand, and read back using GetMotorCommand.

Trajectory generator enabled — If the trajectory generator module is enabled when the position loop is disabled,
then the position loop module is bypassed, and the output value of the trajectory generator becomes the motor
command value. Note that only the low word of the 32-bit commanded position is used. This is because the output
of the trajectory generator is a 32-bit commanded position, while the output of the position loop, and therefore the
input to subsequent modules, is a 16-bit motor command. Effectively this means that when used in this mode, the
range of the trajectory generator is limited to 16 bits (–32,768 to +32,767).

Regardless of whether the position loop module is enabled or disabled, the actual effective motor command value may
be queried using the command GetActiveMotorCommand. This value will indicate the motor command being sent
to “downstream” processing modules such as commutation, current control (Magellan/ION only), or motor output.

If the specified bias value does not properly compensate for the external force, the axis may move suddenly in one
direction or another after a SetOperatingMode command. It is the responsibility of the user to select a motor
bias value which will maintain safe motion.
Magellan Motion Processor User’s Guide 41

P o s i t i o n L o o p5
A previously disabled position loop module may be re-enabled in a number of ways. If the module was disabled using
the SetOperatingMode command, then another SetOperatingMode command may be issued. If the position loop
module was disabled as part of an automatic event-related action (see Section 8.1, “SetEventAction Processing,” for
more information) then the command RestoreOperatingMode is used.

Regardless of how the module is re-enabled, at the time that the re-enable operation is requested, certain special
processing occurs to avoid unexpected axis movement. In particular, all position loop state variables are set to zero(0).

5 . 6 . 1 R e a d i n g P o s i t i o n L o o p Va l u e s

As indicated in this chapter and others, there are a number of commands which can be used to read various position
loop-related values. These include GetCommandedPosition to read the input command of the position loop,
GetActualPosition to read the actual encoder position, GetPositionError to read the difference between these two
quantities, and GetActiveMotorCommand to read the output of the position loop module. In addition to being
readable through these commands, these variables can also be selected for tracing. See Section 8.8, “Trace Capture,”
for details on Magellan’s capture trace facility.

Beyond these registers, to further facilitate tuning, there are a number of internal position loop values that can be read
back as well as traced. To read back these values the command GetPositionLoopValue is used.

The variables within the position loop that can be read and traced are summarized in the following table.

Va r i a b l e N a me F u n c t i o n

Integrator Sum This register holds the sum of the integrator for the position PID loop.
Integral Contribution This register holds the overall contribution of the integrator to the position

PID loop.
Derivative This register holds the position error derivative value. That is, the difference

between the present position error and the previous one.
BiQuad1 Input This register holds the input value to biquad filter 1.
BiQuad2 Input This register holds the input value to biquad filter 2.

Figure 5-6:
Motor control
paths,
trajectory
enabled/
disabled

Motor command
register

Trajectory generator Position Loop

To commutation,
current loop or
motor output
module

Trajectory or
position loop

enabled

Trajectory &
position loop

disabled

Actual position (from encoder)
42 Magellan Motion Processor User’s Guide

6

6 . P a r a m e t e r U pd a t e a n d
B r e a k p o i n ts
In This Chapter
Parameter Buffering
Breakpoints

6 . 1 P a r a m e t e r B u f f e r i n g

Various parameters must be specified to the motion processor for an axis to be correctly controlled. Some situations
may require that a set of parameters take effect at the exact same time to facilitate precise synchronized motion. To
support this, all profile parameters, most position loop parameters, and most current loop parameters, are loaded into
the motion processor using a buffered scheme. These buffered commands are stored in an area of the motion processor
that does not affect the actual motion processor behavior until an Update event occurs. An Update results in buffered
registers being copied to the active registers, thereby causing the motion processor to act on the new parameters.

There are three separate types of buffered registers, each of which may be independently updated and made active. They
are the profile parameters, the position loop parameters, and the current loop parameters. The command
SetUpdateMask controls which of these three types will be copied upon receipt of an Update command. The command
GetUpdateMask is used to read back the specified mask value. Separately updateable parameters are useful because they
allow (for example) the profile parameters to be modified on-the-fly without affecting the servo parameters, or the
current loop parameters to be changed without altering the position loop parameters. Many applications will not need
this complexity, however, and it is not uncommon for the mask to be set just once, so that all three buffered register
types are always updated.

The following command sequence illustrates the loading and updating of a set of parameters. In this case, a new profile
mode, position, velocity, and acceleration (all of which are buffered commands) are loaded, followed by an update
command to make them active.

SetProfileMode Axis1, trapezoidal // set profile mode to trapezoidal for axis 1
SetPosition Axis1, 12345 // load a destination position for axis 1
SetVelocity Axis1, 223344 // load a velocity for axis 1
SetAcceleration Axis1, 1000 // load an acceleration for axis 1
SetUpdateMask Axis1, Profile // specify that an update of profile parameters only

// is to occur
Update // Double buffered registers are copied into

// the active registers, thereby initiating the move

In this sequence, the trajectory profile mode will actually be changed to trapezoidal and the specified parameters loaded
into the trajectory generator only when the Update occurs. At that point the trajectory generator will begin the
programmed motion.

The value set using the SetUpdateMask command is only altered by a subsequent SetUpdateMask command. That is,
its value is not affected by the Update command itself or by any other commands.

The default value of the update mask for MC50000 motion processors is to update profile parameters and servo
parameters. The default value for Magellan/ION is to update profile parameters, servo parameters, and current loop
parameters.
Magellan Motion Processor User’s Guide 43

P a r a me t e r U p d a t e a n d B r e a k p o i n t s6
6 . 1 . 1 U pd a t e s

Including the manual Update command described in Section 6.1, “Parameter Buffering,” there are three different ways
in which an update can occur.

1 Update command—The simplest way is to give an Update command as described in Section 6.1,
“Parameter Buffering.” This causes the parameters for the programmed axis to be updated immediately.

2 MultiUpdate command—The MultiUpdate command causes multiple axes to be updated simultaneously.
This can be useful when synchronized multi-axis profiling is desired. This command takes a one-word
argument which consists of a bit mask, with one bit assigned to each axis of the chipset. Note that for
Magellan/ION and single axis MC50000, this command will have no utility beyond the standard Update
command. Executing the MultiUpdate command has the same effect as sending a set of Update commands
to each of the individual axes selected in the MultiUpdate command mask. As was the case with the Update
command, the command SetUpdateMask is used for each separate axis to be updated to control which
parameters are copied from the buffered registers.

3 Breakpoints—A very useful facility supported by the motion processor which may be programmed to
generate an Update command automatically when a pre-programmed condition becomes true. The
breakpoint facility is useful for performing operations such as “automatically change the velocity when a
particular position is reached,” or “stop the axis abruptly when a particular external signal goes active.”
Unlike the standard manual Update command, however, transfer from buffered to active registers during a
breakpoint is controlled by the SetBreakpointUpdateMask command. See Section 6.2, “Breakpoints,” for
detailed information.

All three of the update methods execute in the same manner. At the time the update occurs, the selected type of
buffered registers and commands are copied to the active registers. While most commands take place instantaneously
upon an Update, it should be noted that depending on the calculations previously performed in the servo loop, these
values may not be used until the next cycle. Also, as was illustrated in the preceding example, before the update occurs,
sending buffered commands will have no effect on the system behavior.

In addition to profile generation, most servo parameter commands, most current control parameters, as well as a few
other commands are buffered. The following table provides a complete list of buffered commands and values.

Double Buffered Commands

*Note that SetStartVelocity is not double-buffered.

6 . 2 B r e a k p o i n ts

Breakpoints are a convenient way of programming a motion processor event based upon a specific condition.
Depending on the breakpoint instruction’s arguments, a breakpoint can cause an update, an abrupt stop, a smooth
stop, it can disable specific modules, or it can cause no action at all.

Tr a j e c t o r y P o s i t i o n L o o p C u r r e n t L o o p

SetProfileMode
ClearPositionError
SetStopMode
SetPosition
SetVelocity*
SetAcceleration
SetDeceleration
SetJerk
SetGearMaster
SetGearRatio

SetPositionLoop
SetMotorCommand

SetCurrentLoop
SetFOCLoop
SetCurrentControlMode
44 Magellan Motion Processor User’s Guide

P a r a m e t e r U p d a t e a n d B r e a k p o i n t s 6
Each Magellan axis contains two breakpoints that may be programmed for that axis. In this manner, two completely
separate conditions may be monitored and acted upon. These two breakpoints are known as breakpoint 1 and
breakpoint 2. In addition, the buffered registers that are to be copied can be independently specified for each
breakpoint using the command SetBreakpointUpdateMask. This value can be read back using the command
GetBreakpointUpdateMask.

6 . 2 . 1 D e f i n i n g a B r e a k p o i n t

Each breakpoint consists of six components: the breakpoint axis, the source axis for the triggering event, the event
itself, the action to be taken, the breakpoint update mask associated with the action, and the comparison value. These
components are described in the following table.

These parameters provide great flexibility in setting breakpoint conditions. By combining these components, almost
any event on any axis can cause a breakpoint.

The command used to send the breakpoint axis, the trigger, the source axis, and the action is SetBreakpoint. To
retrieve these values, the command GetBreakpoint is used.

Upon receipt of the SetBreakpoint command, the breakpoint will become active. That is, the motion processor will
begin to compare the conditions specified by the breakpoint with the actual conditions present in the motion
processor. This means that any other required information for the breakpoint to function (such as comparison value
and breakpoint update mask) should already be loaded before this command is sent. See Section 6.2.7, “Breakpoint
Examples,” for examples of how to program breakpoints.

To set the comparison value, the command SetBreakpointValue is used. This comparison value can be retrieved using
the command GetBreakpointValue. For each of these commands, the breakpoint number (1 or 2) must be specified.
To specify the breakpoint update mask for a given breakpoint, the command SetBreakpointUpdateMask is used. This
value can be read back using the command GetBreakpointUpdateMask.

B r e a k p o i n t c o m p o n e n t D e s c r i p t i o n

Breakpoint axis The axis on which the specified action is to be taken.
Source axis The axis on which the triggering event is located. It can be the same as or

different than the breakpoint axis. Any number of breakpoints may use the same
axis as a source axis.

Trigger The event that causes the breakpoint.
Action The sequence of operations executed by the motion processor when the break-

point is triggered. After a breakpoint is triggered, the action is performed on the
breakpoint axis, using the breakpoint update mask specified for the breakpoint axis.

Breakpoint update mask The mask that controls whether profile and/or position loop and/or current loop
parameters will be transferred into the active registers upon occurrence of a
breakpoint trigger.

Comparison value The value used in conjunction with the action to define the breakpoint event.

The SetBreakpointMask and SetBreakpointValue commands should always be sent before the SetBreakpoint
command when setting up a particular breakpoint.
Magellan Motion Processor User’s Guide 45

P a r a me t e r U p d a t e a n d B r e a k p o i n t s6
6 . 2 . 2 B r e a k p o i n t Tr i g g e r s

The Magellan Motion Processors support the following breakpoint trigger conditions.

To de-activate a breakpoint, specify “none” for the breakpoint trigger. Only one of the triggers listed in the preceding
table may be selected at a time. See Section 6.2.4, “Level-Triggered Breakpoints,” for detailed information.

6 . 2 . 3 T h r e s h o l d - Tr i g g e r e d B r e a k p o i n ts

Threshold-triggered breakpoints use the value set by the SetBreakpointValue command as a single 32-bit threshold
value to which a comparison is made. When the comparison is true, the breakpoint is triggered.

For example, if it is desired that the trigger occur when the commanded position is equal to or greater than 1,000,000,
then the comparison value loaded using SetBreakpointValue would be 1,000,000, and the trigger selected would be
GreaterOrEqualCommandedPosition.

6 . 2 . 4 L e v e l - Tr i g g e r e d B r e a k p o i n ts

To set a level-triggered breakpoint, the host instruction supplies two 16-bit data words: a trigger mask, and a sense
mask. These masks are set using the SetBreakpointValue instruction. The high word of data passed with this
command is the trigger mask value and the low word is the sense mask value.

The trigger mask determines which bits of the selected status register are enabled for the breakpoint. A value of one
in any position of the trigger mask enables the corresponding status register bit to trigger a breakpoint. A value of zero
(0) in the trigger mask disables the corresponding status register bit. If more than one bit is selected, then the
breakpoint will be triggered when any selected bit enters the specified state.

Tr i g g e r C o n d i t i o n
L e v e l o r
T h r e s h o l d D e s c r i p t i o n

Greater or equal commanded position threshold Satisfied when the current commanded position is equal to or
greater than the programmed compare value.

Lesser or equal commanded position threshold Satisfied when the current commanded position is equal to or
less than the programmed compare value.

Greater or equal actual position threshold Satisfied when the current actual position is equal to or
greater than the programmed compare value.

Lesser or equal actual position threshold Satisfied when the current actual position is equal to or less
than the programmed compare value.

Commanded position crossed threshold Satisfied when the current commanded position crosses (is
equal to) the programmed compare value.

Actual position crossed threshold Satisfied when the current actual position crosses (is equal to)
the programmed compare value.

Time threshold Satisfied when the current motion processor time (in number
of cycles since power-up) is equal to the programmed com-
pare value.

Event status level Satisfied when the Event Status register matches bit mask and
high/low pattern in programmed compare value.

Activity status level Satisfied when the Activity Status register matches bit mask
and high/low pattern in programmed compare value.

Drive status level Satisfied when the Drive Status register matches bit mask and
high/low pattern in programmed compare value.

Signal status level Satisfied when the Signal Status register matches bit mask and
high/low pattern set in programmed compare value.

None — Disables any previously set breakpoint.
46 Magellan Motion Processor User’s Guide

P a r a m e t e r U p d a t e a n d B r e a k p o i n t s 6
The sense mask determines which state of the corresponding status bits causes a breakpoint. Any status bit that is in
the same state (i.e., 1 or 0) as the corresponding sense bit, is eligible to cause a breakpoint (assuming that it has been
selected by the trigger mask).

For example, if the Activity Status register breakpoint has been selected, and the trigger mask contains the value 0402h
and the sense mask contains the value 0002h, then the breakpoint will be triggered when bit 1 (the “at max velocity”
indicator) assumes the value 1, or bit 10 (the “in motion” indicator) assumes the value zero (0).

6 . 2 . 5 B r e a k p o i n t A c t i o n s

Once a breakpoint has been triggered, the motion processor may be programmed to perform one of the following
instruction sequences.

For the Update action, the SetBreakpointUpdateMask determines which type of double buffered register will be
updated upon occurrence of the breakpoint. The value set using SetBreakpointUpdateMask is not altered by
occurrence of a breakpoint, thus it may be set once and left at the same value, or changed any number of times as the
application requires.

For MC50000, the default value of SetBreakpointUpdateMask is to update trajectory and position loop parameters.
For Magellan/ION, the default value of SetBreakpointUpdateMask is to update trajectory, position loop, and current
loop parameters.

For specified actions that alter the operating mode, to restore normal operation the user must send a RestoreOperatingMode
command.

Once a breakpoint condition has been satisfied, the Event Status bit that corresponds to the breakpoint is set, and the
breakpoint is deactivated.

6 . 2 . 6 B r e a k p o i n t L a t e n c i e s

The latency after a breakpoint condition exists and before the breakpoint occurs depends on the condition selected.
Breakpoints that are conditional on internal Magellan registers will have a latency equivalent to the sample time.
Breakpoints that are conditional on external Magellan signals will have a latency equivalent to twice the sample time.

A c t i o n D e s c r i p t i o n

None No action taken, however breakpoint bit in Event Status register still set.
Update Will transfer the double buffered registers specified by the

SetBreakpointUpdateMask command.
Smooth Stop Causes a smooth stop to occur at the current active decelaration rate.

Velocity command will be set to zero (0) after breakpoint occurs.
Abrupt Stop Causes an instantaneous halt of the trajectory generator. Velocity com-

mand will be set to zero (0) after breakpoint occurs.
Abrupt Stop with Position Error Clear Causes an instantaneous halt of the trajectory generator as well as a zero-

ing of the position error (equivalent to ClearPositionError command).
Velocity command will be set to zero (0) after breakpoint occurs.

Disable Position Loop & Higher Modules Disables trajectory generator and position loop module.
Disable Current Loop & Higher Modules Disables trajectory generator, position loop, and current loop modules.
Disable Motor Output & Higher Modules Disables trajectory generator, position loop, current loop, and motor

output modules.
Magellan Motion Processor User’s Guide 47

P a r a me t e r U p d a t e a n d B r e a k p o i n t s6
6 . 2 . 7 B r e a k p o i n t E x a m p l e s

Here are a few examples to illustrate how breakpoints may be used.

Example #1: The host would like axis 1 to change velocity when the encoder position reaches a particular value.
Breakpoint #1 should be used.

This is accomplished using the following command sequence. Note that this sequence assumes that the UpdateMask
has been left at its default value of trajectory and position loop update.

SetPosition Axis1, 123456 // Load destination
SetVelocity Axis1, 55555 // Load velocity
SetAcceleration Axis1, 500 // Load acceleration
SetDeceleration Axis1, 1000 // Load deceleration
Update Axis1 // Make the move. Profile and position loop parameters are

// updated, of which only profile parameters have been changed.
SetVelocity Axis1, 111111 // Load a new velocity of 111,111 but do not send an Update
SetBreakpointValue Axis1, // Load 100,000 into the comparison register for breakpoint 1

0, 100000
SetBreakPointUpdateMask Axis 1, // Update profile parameters only

0, Profile
SetBreakpoint Axis1, // Specify a positive actual position breakpoint on axis 1

0, Axis1, Update, // which will result in an Update when satisfied for
GreaterOrEqualActualPosition // breakpoint 1. Note that this is the last command in the

// breakpoint definition sequence, since this is the command
// that results in the breakpoint comparison being initiated.

This sequence makes an initial move, and loads a breakpoint after the first move has started. The defined breakpoint
will result in the velocity being updated to 111,111 when the actual position reaches a value of 100,000. Therefore, at
100,000, the axis will accelerate from a velocity of 55,555 to 111,111 with an acceleration value of 500. Note that any
buffered values that are not re-sent will remain in the buffered registers. When the breakpoint performs an Update,
the values for position, acceleration, and deceleration are unchanged and are therefore copied over to the active
registers without modification.

Example #2: The host would like axis 1 to perform an emergency stop whenever the AxisIn signal for axis 3 goes high.
In addition, the axis 1 acceleration and derivative gain factor should change whenever a particular commanded posi-
tion is achieved on axis 4. This is accomplished using the following command sequence.

SetPosition Axis1, 123456 // Load destination
SetVelocity Axis1, 55555 // Load velocity
SetAcceleration Axis1, 500 // Load acceleration
SetDeceleration Axis1, 1000 // Load deceleration
Update Axis1 // Make the move (assumes that

// updatemask already set)

SetBreakpointValue Axis1, // Load mask and sense word of 0x40, 0x40
0, 0x400040 // (bit 6 must be high) for breakpoint 1
48 Magellan Motion Processor User’s Guide

P a r a m e t e r U p d a t e a n d B r e a k p o i n t s 6
SetBreakPointUpdateMask Axis 1, // Update profile parameters
0, Profile

SetBreakpoint Axis1, 0, Axis3, // Specify a breakpoint to monitor the signal
AbruptStop, SignalStatus // status register of axis 3 to trigger when bit 6

//(AxisIn) goes high for breakpoint 1
SetAcceleration Axis1, 111111 // Load a new acceleration of 111,111 but do

// not send an Update
SetPositionLoop Axis1, Kd, 1250 // Load a new Kd
SetBreakpointValue Axis1, 1, 100000 // Load 100,000 into the comparison register

// for breakpoint 2
SetBreakPointUpdateMask // Update profile parameters & Position Loop

Axis1, 1, Profile 1 Position Loop // for breakpoint 2

SetBreakpoint Axis1, 1, Axis4, // Specify a positive commanded position
Update, PositiveCommandedPosition // breakpoint on axis 4 which will result in an

// Update when satisfied for breakpoint 2

This sequence is similar to the previous example, except that an additional breakpoint has been defined which causes
the abrupt stop. In addition, these breakpoints have been set to be triggered by events on axes 3 and 4. Both of these
breakpoints were defined after the primary move was started. This may not be necessary depending on when the
breakpoint is expected to occur. Breakpoints should be set to occur after the primary move, because there is only one
set of buffered registers. It is impossible to load primary move parameters (position, velocity, etc.), and also breakpoint
profile parameters (the profile parameters that take effect once the breakpoint occurs) before the primary move is
updated.
Magellan Motion Processor User’s Guide 49

P a r a me t e r U p d a t e a n d B r e a k p o i n t s6
This page intentionally left blank.
50 Magellan Motion Processor User’s Guide

7

7 . S ta t u s R e g i s t e r s
In This Chapter
Event Status Register
Activity Status Register
Drive Status Register
Signal Status Register

7 . 1 O v e r v i e w

The Magellan Motion Processor can monitor almost every aspect of the motion of an axis. There are various numerical
registers that may be queried to determine the current state of the motion processor, such as the current actual position
(GetActualPosition command), the current commanded position (GetCommandedPosition command), etc.

In addition to these numerical registers, there are four bit-oriented status registers that provide a continuous report on
the state of a particular axis. These status registers conveniently combine a number of separate bit-oriented fields for the
specified axis. These four 16-bit registers are Event Status, Activity Status, Drive Status, and Signal Status.

The host may query these four registers, or the contents of these registers may be used in breakpoint operations to define
a triggering event such as “trigger when bit 8 in the Signal Status register goes low.” These registers are also the source
of data for the AxisOut mechanism (see Section 8.1, “SetEventAction Processing,”), which allows one or more bits
within these four registers to be output as a hardware signal.

7 . 2 E v e n t S ta t u s R e g i s t e r

The Event Status register is designed to record events that do not continuously change in value but rather tend to occur
once due to a specific event. As such, each bit in this register is set by the motion processor and cleared by the host.

The Event Status register is defined in the following table.

B i t N a m e D e s c r i p t i o n

0 Motion complete Set when a trajectory profile completes. The motion being considered complete may
be based on the commanded position, or the actual encoder position.

1 Position wraparound Set when the actual motor position exceeds 7FFF FFFFh (the most positive position),
and wraps to 8000 0000h (the most negative position), or vice versa.

2 Breakpoint 1 Set when breakpoint #1 is triggered.
3 Capture received Set when the high-speed position capture hardware acquires a new position value.
4 Motion error Set when the actual position differs from the commanded position by an amount more

than the specified maximum position error. The motion processor can be configured
to stop motion automatically when this flag is set.

5 Positive limit Set when a positive limit switch event occurs.
6 Negative limit Set when a negative limit switch event occurs.
7 Instruction error Set when an instruction error occurs.
Magellan Motion Processor User’s Guide 51

S t a t u s R e g i s t e r s7
The command GetEventStatus returns the contents of the Event Status register for the specified axis.

Bits in the Event Status register are latched. Once set, they remain set until cleared by a host instruction or a system
reset. Event Status register bits may be reset to 0 by the instruction ResetEventStatus, using a 16-bit mask. Register
bits corresponding to 0s in the mask are reset; all other bits are unaffected.

The Event Status register may also be used to generate a host interrupt signal using the SetInterruptMask command.
See Section 8.10, “Host Interrupts,” for more information.

7 . 2 . 1 I n s t r u c t i o n E r r o r

Bit 7 of the Event Status register indicates an instruction error. Such an error occurs if an otherwise valid instruction
or instruction sequence is sent when the Magellan’s current operating state makes the instructions invalid. Instruction
errors can occur at the time the instruction is issued or at the time of an update.

Should an instruction error occur, the invalid parameters are ignored, and the Instruction Error indicator of the Event
Status register is set. While invalid parameters checked at the time of the update are ignored, valid parameters are sent
on. This can have unintended side effects depending on the nature of the motion sequence, so all instruction error
events should be treated seriously.

In the following example, the negative velocity is not valid in the new profile mode.

SetProfileMode (axis2, Velocity) // Set the profile mode to velocity contouring
SetVelocity (axis2, –4387) // Set the velocity to a negative value
SetUpdateMask(axis2, Trajectory) // Set the update mask
Update (axis2) // Perform the Update
SetProfileMode (axis2, Trapezoidal) // Change the profile mode to trapezoidal
SetPosition (axis2, 123456) // Load a position
Update (axis2) // Perform the Update

The Update is executed, but the Instruction Error bit is set. Legitimate parameters such as position are updated, and
profile generation continues.

8 Disable Set when the user disables the controller by making the enable signal inactive
(Magellan/ION only). See Section 15.12, “Drive Enable,” for more information.

9 Overtemperature fault Set when an overtemperature fault occurs (Magellan/ION only).
10 Bus voltage fault Set when an over or undervoltage fault occurs with the main supply bus voltage

(Magellan/ION only).
11 Commutation error Set when a commutation error occurs (MC58000, Magellan/ION only).
12 Current foldback Set when current foldback occurs (Magellan/ION only).
13 Reserved May contain 1 or 0.
14 Breakpoint 2 Set when breakpoint #2 is triggered.
15 Reserved May contain 0 or 1.

B i t N a m e D e s c r i p t i o n
52 Magellan Motion Processor User’s Guide

S t a t u s R e g i s t e r s 7
7 . 3 A c t i v i t y S ta t u s R e g i s t e r

Like the Event Status register, the Activity Status register tracks various motion processor fields.

Activity Status register bits are not latched, however. They are continuously set and reset by the motion processor to
indicate the status of the corresponding conditions.

The Activity Status register is defined in the following table.

The command GetActivityStatus returns the contents of the Activity Status register for the specified axis.

B i t N a m e D e s c r i p t i o n

0 Phasing initialized Set (1) when the motor's commutation hardware has been initialized. Cleared (0) if not
yet initialized. Valid only for the MC58000 series motion processors.

1 At maximum velocity Set (1) when the commanded velocity is equal to the maximum velocity specified by the
host. Cleared (0) if it is not. This bit functions only when the profile mode is trapezoidal,
velocity contouring, or S-curve. It will not function when the motion processor is in
electronic gearing mode.

2 Position tracking Set (1) when the servo is keeping the axis within the Tracking Window. Cleared (0)
when it is not. See Section 7.2, “Event Status Register,” for more information.

3–5 Current profile mode These bits indicate the profile mode currently in effect, which might be different from
the value set using the SetProfileMode command if an Update command has not yet
been issued. These three bits define the profile mode as follows:
bit 5 bit 4 bit 3 Profile Mode
0 0 0 trapezoidal
0 0 1 velocity contouring
0 1 0 S-curve
0 1 1 electronic gear

6 Reserved May contain 0 or 1.
7 Axis settled Set (1) when the axis has remained within the settle window for a specified period of

time. Cleared (0) if it has not. See Section 7.5, “Signal Status Register,” for more informa-
tion.

8 Position Loop Enabled Set (1) when either the position loop or trajectory generator is enabled. Cleared (0)
when both the trajectory generator and position loop are disabled. The
SetOperatingMode command is normally used to select what modules are enabled or
disabled; however, modules can be automatically disabled by event actions
(SetEventAction command) or breakpoints.

9 Position capture Set (1) when a new position value is available to read from the high speed capture hard-
ware. Cleared (0) when a new value has not yet been captured. While this bit is set, no
new values will be captured. The command GetCaptureValue retrieves a captured
position value and clears this bit, thus allowing additional captures to occur.

10 In-motion indicator Set (1) when the trajectory profile commanded position is changing. Cleared (0) when
the commanded position is not changing. The value of this bit may or may not corre-
spond to the value of the motion complete bit of the Event Status register, depending on
whether the motion complete mode has been set to commanded or actual.

11 In positive limit Set (1) when the motor is in a positive limit condition. Cleared (0) when it is not.
12 In negative limit Set (1) when the motor is in a negative limit condition. Cleared (0) when it is not.
13–15 Profile segment Indicates the S-curve segment number, 1–7. See Section 4.3, “S-curve Point-to-Point

Profile,” for more information. A value of 0 in this field indicates the trajectory is not in
motion. This field is undefined for other profile modes and may contain 0s or 1s.
Magellan Motion Processor User’s Guide 53

S t a t u s R e g i s t e r s7
7 . 4 D r i v e S ta t u s R e g i s t e r

The Drive Status register functions similarly to the Activity Status register in that it continuously tracks various motion
processor fields. In other words, Drive Status register bits are not latched; they are continuously set and reset by the
motion processor to indicate the status of the corresponding conditions. The specific status bits provided by the Drive
Status register are defined in the following table.

See Chapter 15, “Drive Control,” for more information on undervoltage, in foldback, overtemperature, and
overvoltage. See Chapter 14, “Step Motor Control,” for more information on holding current.

The command GetDriveStatus returns the contents of the Drive Status register for the specified axis.

7 . 5 S i g n a l S ta t u s R e g i s t e r

The Signal Status register provides real-time signal levels for various motion processor I/O pins. The Signal Status
register is defined in the following table.

B i t N a m e D e s c r i p t i o n

0 Reserved May contain 0 or 1.
1 In foldback Set (1) when in foldback, cleared (0) if not in foldback.

Note: Depending on the application, when this condition occurs it may be neces-
sary to power down the system and check for proper operation or service.

2 Overtemperature Set (1) when the axis is currently in an overtemperature condition. Cleared (0) if
the axis is currently not in an overtemperature condition.
Note: Depending on the application, when this condition occurs it may be neces-
sary to power down the system and check for proper operation or service.

3 Reserved May contain 0 or 1.
4 In holding Set (1) when the axis is in a holding current condition, cleared (0) if not.
5 Overvoltage Set (1) when the axis is currently in an overvoltage condition. Cleared (0) if the

axis is currently not in an overvoltage condition.
Note: Depending on the application, when this condition occurs it may be neces-
sary to power down the system and check for proper operation or service.

6 Undervoltage Set (1) when the axis is currently in an undervoltage condition. Cleared (0) if the
axis is currently not in an undervoltage condition.
Note: Depending on the application, when this condition occurs it may be neces-
sary to power down the system and check for proper operation or service.

7–15 Reserved May contain 0 or 1.

B i t N a m e D e s c r i p t i o n

0 A encoder A signal of quadrature encoder input.
1 B encoder B signal of quadrature encoder input.
2 Index encoder Index signal of quadrature encoder input.
3 Home/Capture For MC50000, this bit holds the home signal input.

For Magellan/ION, this bit holds the home signal, the HighSpeedCapture signal, or
the Index signal, depending on which was set as the high speed capture. See Section
10.2, “High-speed Position Capture,” for details on setting high speed capture.

4 Positive limit Positive limit switch input.
5 Negative limit Negative limit switch input.
6 AxisIn Generic axis input signal.
7 Hall1 Hall effect sensor input number 1.
8 Hall2 Hall effect sensor input number 2.
9 Hall3 Hall effect sensor input number 3.
10 AxisOut Programmable axis output signal.
54 Magellan Motion Processor User’s Guide

S t a t u s R e g i s t e r s 7
The command GetSignalStatus returns the contents of the Signal Status register for the specified axis. All Signal Status
register bits are inputs except bit 10 (AxisOut) and bit 14 (FaultOut).

The bits in the Signal Status register represent the actual hardware signal level combined with the state of the signal
sense mask described in the next section. That is, if the signal level at the motion processor is high, and the
corresponding signal mask bit is 0 (do not invert), then the bit read using GetSignalStatus will be 1. Conversely, if the
signal mask for that bit is a 1 (invert), then a high signal on the pin will result in a read of 0 using the GetSignalStatus
command.

The actual interpretation of the signal is dependent on its function. For example, Index, Home, Negative Limit, and Positive
Limit are interpreted as active low, meaning that if a 0 is read using the GetSignalStatus command, the signal is active.
Using the Negative Limit signal as an example, if GetSignalStatus indicates a value of 0, the motion processor interprets
this to mean that the axis is in the negative limit switch. Other signals such as HallA, HallB, HallC, AxisIn, and AxisOut do
not have an active high or active low interpretation as such. Refer to the sections of the manual that describe these
hardware functions for details on how these signals are used by the motion processor.

7 . 5 . 1 S i g n a l S e n s e M a s k

The bits in the Signal Status register represent the high/low state of various signal pins on the motion processor. It is
possible to invert the incoming signal under software to match the signal interpretation of the user’s hardware. This
function is accessed via the command SetSignalSense, and can be read back using the command GetSignalSense.

The default value of the signal sense mask is “not inverted” except for the Index signal, which has a default value of
“inverted.” The bits of the signal sense mask register are defined in the following table.

11–12 Reserved May contain 0 or 1.
13 /Enable Enable signal input (Magellan/ION only).
14 FaultOut Fault signal output (Magellan/ION only).
15 Reserved May contain 0 or 1.

B i t N a m e I n t e r p r e ta t i o n

0 A encoder Set (1) to invert quadrature A input signal. Clear (0) for no inversion.
1 B encoder Set (1) to invert quadrature B input signal. Clear (0) for no inversion.
2 Index encoder Set (1) to invert, clear (0) for no inversion. This means that for active low interpre-

tation of index signal, set to 0; and for active high interpretation, set to 1.
3 Home/Capture Set (1) to invert, clear (0) for no inversion. This means that for active low interpre-

tation of Home/Capture signal, set to 0; and for active high interpretation, set to 1.
4 Positive limit Set (1) to invert, clear (0) for no inversion. This means that for active low interpre-

tation of positive limit switch, set to 0; and for active high interpretation, set to 1.
5 Negative limit Set (1) to invert, clear (0) for no inversion. This means that for active low interpre-

tation of negative limit switch, set to 0; and for active high interpretation, set to 1.
6 AxisIn Set (1) to invert AxisIn signal. Clear (0) for no inversion.
7 Hall A Set (1) to invert HallA signal. Clear (0) for no inversion.
8 Hall B Set (1) to invert HallB signal. Clear (0) for no inversion.

B i t N a m e D e s c r i p t i o n
Magellan Motion Processor User’s Guide 55

S t a t u s R e g i s t e r s7
9 Hall C Set (1) to invert HallC signal. Clear (0) for no inversion.
10 AxisOut Set (1) to invert AxisOut signal. Clear (0) for no inversion.
11 Step Output Set (1) to define active transition as low-to-high. Clear (0) to define active transiont

as high-to-low (MC50000 only).
12 Motor Direction Set (1) to invert Motor Direction. Clear (0) for no inversion (MC50000 only).
13–15 Reserved

When the capture source is set to Index with the SetCaptureSource command, the Index signal sense (bit 2)
should be used to control the polarity of the index.

B i t N a m e I n t e r p r e ta t i o n
56 Magellan Motion Processor User’s Guide

8

8 . M o t i o n M o n i t o r i n g a n d
R e l a t e d P r o c e s s i n g
In This Chapter
SetEventAction Processing
Motion Error
Travel-limit Switches
Tracking Window
Motion Complete Indicator
In-motion Indicator
Settle Window
Trace Capture
Trace Buffer Architecture
Host Interrupts

8 . 1 S e t E v e n t A c t i o n P r o c e s s i n g

The Magellan Motion Processors provide a programmable mechanism for reacting to various safety or performance-
related conditions.

The command SetEventAction is used to specify what action should be taken for a given condition. To define an event-
related response, both a condition and an action must be specified. The following table lists the possible Event Status

register conditions that can be used to define an event-related action.

Both motion error processing and limit switch processing are described in detail later in this chapter. See Section 15.13,
“Current Foldback,” for more information on current foldback. In addition to these four monitored conditions it is

C o n d i t i o n N a m e D e s c r i p t i o n

Motion error A motion error occurs when the position error exceeds
a programmable threshold.

Positive limit A positive limit event occurs when the corresponding
signal goes active while the motor velocity is positive.

Negative limit A negative limit event occurs when the corresponding
signal goes active while the motor velocity is negative.

Current foldback (Magellan/ION only). A current foldback event occurs
when the amplifier current output goes into a foldback
condition.
Magellan Motion Processor User’s Guide 57

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
possible to request an immediate safety action. See the Magellan Motion Processor Programmer’s Command Reference for more
information.

The following table describes the actions that can be programmed for these conditions..

Once the event condition is programmed, the motion processor monitors the specified condition continuously and
executes the programmed action if it occurs. Upon occurrence, the programmed action is executed, and related actions
may occur such as setting the appropriate bit in the Event Status register.

To recover from an event action, the command RestoreOperatingMode is used. This command will reset the motion
processor to the operating mode previously specified using SetOperatingMode command. Note that if the event
condition is still present, then the event action will immediately occur again.

If the event action programmed was either No Action, Abrupt Stop, or Smooth Stop, then the RestoreOperatingMode
command will have no effect. It is intended to restore disabled modules only, and has no effect on trajectory generator
parameters.

Once programmed, an event action will be in place until reprogrammed. The occurrence of the event condition does
not reset the programmed event action.

Magellan provides default values for event-related processing. These defaults are intended to provide safe operation
for many typical motion systems. Whether or not these defaults are appropriate must be determined by the user.

The default event actions are summarized in the following table.

A c t i o n N a m e D e s c r i p t i o n

No Action No action taken.
Smooth Stop Causes a smooth stop to occur at the current active deceleration rate.

The velocity command will be set to zero after event action occurs.
Abrupt Stop Causes an instantaneous halt of the trajectory generator. The velocity

command will be set to zero (0) after event action occurs.
Abrupt Stop with Position Error Clear Causes an instantaneous halt of the trajectory generator as well as a zeroing

of the position error (equivalent to ClearPositionError command).
The velocity command will be set to zero (0) after event action occurs.

Disable Position Loop & Higher Modules Disables trajectory generator and position loop module.
Disable Current Loop & Higher Modules Disables trajectory generator, position loop, and current loop modules.
Disable Motor Output & Higher Modules Disables trajectory generator, position loop, current loop, and motor

output modules.

 It is the responsibility of the user to safely and thoroughly investigate the cause of event-related events, and only
restart motion operations when appropriate corrective measures have been taken.

C o n d i t i o n D e f a u l t A c t i o n

Motion Error Disable position loop and trajectory generator.
Positive & Negative Limit Abrupt Stop with Position Error Clear.
Current Foldback Disable motor output and higher modules.
58 Magellan Motion Processor User’s Guide

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g 8
8 . 2 M o t i o n E r r o r

Under certain circumstances, the actual axis position (encoder position) may differ from the commanded position
(instantaneous output of the profile generator) by an excessive amount. Such an excessive position error often
indicates a potentially dangerous condition such as motor failure, encoder failure, or excessive mechanical friction.

To detect this condition, as well as increasing safety and equipment longevity, the Magellan Motion Processors include
a programmable maximum position error.

The maximum position error is set using the command SetPositionErrorLimit, and read using the command
GetPositionErrorLimit. To determine whether a motion error has occurred, the position error limit is continuously
compared against the actual position error. If the position error limit value is exceeded, then the axis is said to have
had a motion error.

At the moment a motion error occurs, several events occur simultaneously. The motion error bit of the Event Status
register is set. If the default event action for motion error has not been modified, then the trajectory generator and
position loop are disabled. For servo axes this means the manually-set Motor Command register will be used as the
motor output value. For step motors this means the axis will immediately stop. If a new event action for motion error
has been specified, then whatever programmed action was entered will occur.

To recover from a motion error, the cause of motion error should be determined, and the problem corrected (this may
require human intervention). If the event response resulted in a disabling of control modules, the host should then
issue a RestoreOperatingMode command.

If an event action of No Action was programmed, then only the motion error status bit is set. In this case, no recovery
sequence is required to continue operating the motion processor. However, for safety reasons, the user may still want
to manually stop motion, and determine the cause of the motion error.

Generally speaking, after a motion error the corresponding bit in the Event Status register is cleared using the
command ResetEventStatus. For event actions of Smooth Stop, Abrupt Stop, and Abrupt Stop with Position Error Clear,
clearing this bit is required to make a subsequent move. Although recommended, for event actions that disable
modules, clearing this bit is not required to make a further move, nor is it required for an event action of No Action.

8 . 3 Tr a v e l - l i m i t S w i t c h e s

The Magellan Motion Processors support motion travel limit switches which may be used to automatically recognize
an end-of-travel condition. This is an important safety feature for systems with a defined range of motion.

The following figure shows a schematic representation of an axis with travel-limit switches installed, indicating the
legal motion area and the over-travel, or illegal region.

Figure 8-1:
Directional
limit switch
operation

negative
over-travel region

positive
over-travel region

Legal travel region

negative
limit switch

positive
limit switch
Magellan Motion Processor User’s Guide 59

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
For detailed information on interfacing to these signals, see the Magellan Motion Processor Electrical Specification (motion
processor users), or the motion card or ION Digital Drive User’s Manual (card and module users).

At the moment a positive or negative limit switch event occurs, several events occur simultaneously. The corresponding
overtravel bit of the Event Status register is set, along with a bit in the Activity Status register. If the default event action
for positive and negative limits has not been modified, then the trajectory generator will undergo an abrupt stop and the
position error will be cleared. If a new event action for overtravel has been defined, then whatever programmed action
was entered will occur.

If an event action of No Action was programmed, then only the limit status bit is set. In this case, no recovery sequence
is required to continue operating the motion processor. However, for safety reasons, the user may still want to
manually stop motion, and determine the cause of the position limit.

To process limit switch events, the motion processor will constantly monitor the limit switch input pins looking for a
limit switch event. A limit switch event occurs when a limit switch goes active while the axis commanded position or
torque is moving that motor in that limit switch’s direction. If the axis is not moving, or if the trajectory generator (or
torque command) is moving the motor in the opposite direction, then a limit switch event will not occur. For example,
a positive limit switch will occur when the axis commanded position is moving in the positive direction, and the
positive limit switch goes active. However, it will not occur if the axis commanded position is moving in the negative
direction or is stationary.

The sense of the limit switch inputs (active high or active low) may be controlled using the SetSignalSense
command.

Once an axis has entered a limit switch condition, the following steps should be taken to clear the limit switch
event.

1 Unless limit switch events can occur during normal machine operation, the cause of the event should be
investigated and appropriate safety corrections made.

2 The limit switch bit(s) in the Event Status register should be cleared by issuing the ResetEventStatus
command. Unless the programmed action was set to No Action, no motion is possible in any direction
while either of the limit switch bits in the Event Status register are set.

3 If the default event action of Abrupt Stop with Position Error Clear is not altered, a move should be made in
the direction opposite to that which caused the limit switch event. This can be any profile move that
backs the axis out of the limit. If the host attempts to move the axis further into the limit, a new limit
event will occur, and an instruction error will be generated. See Section 12.2.5, “Instruction Errors,” for
more information on instruction errors. Note that as part of the event action associated with the abrupt
stop, the Velocity register is loaded with zero (0). Thus a SetVelocity command must be sent along with
any other desired profile parameters.

4 If the event action is altered from the default value such that a module is disabled, the host should issue
a RestoreOperatingMode command to restore normal operation of the control loop. Then a reversing
move should be made as described in step #3.

If an event action of No Action is defined for limit switches, then only step 1 is required.

For axes in elecronic gearing mode, the above steps are modified slightly. After the ResetEventStatus, a SetGearRatio
command followed by an Update command are required. This is because the limit event sets GearRatio to zero (0).

If the limit switches are wired to separate switches, then it should not be possible for both limit switches to be active
at the same time. However, if this does occur (presumably due to a special wiring arrangement), then both limit switch
bits in the Activity Status register will be set, thus disabling moves in either direction. In this case, the SetEventAction
command should be used with a value of No Action to temporarily disable limit switch processing while the motor is
moved off of the switches.

Limit switch processing generally is used with the trajectory generator module enabled. When the trajectory generator
is disabled (for example during amplifier calibration), limit switch processing still occurs but the possible event actions
60 Magellan Motion Processor User’s Guide

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g 8
are limited to disabling other modules. The trajectory generator must be enabled for Smooth Stop, Abrupt Stop, or Abrupt
Stop with Position Error Clear to be automatically executed by a limit event.

8 . 4 Tr a c k i n g W i n d o w

The Magellan Motion Processor provides a programmable tracking window to monitor servo performance
outside the context of a motion error. The functionality of the tracking window is similar to the motion error in
that there is a programmable position error limit within which the axis must remain. Unlike the motion error
facility, should the axis move outside of the tracking window, the axis is not stopped. The tracking window is
useful for external processes that rely on the motor’s correct tracking of the desired trajectory within a specific
range. The tracking window may also be used as an early warning for performance problems that do not yet
qualify as a motion error.

To set the size of the tracking window (the maximum allowed position error while remaining within the tracking
window), the command SetTrackingWindow is used. The command GetTrackingWindow retrieves this value.

When the position error is less than or equal to the window value, the tracking bit in the Activity Status register
is set. When the position error exceeds the tracking window value, the tracking bit is cleared. See Figure 8-2 for
details.

Figure 8-2:
Tracking
window

Settle
window

Tracking window

Moved outside
window

Moved back
inside window

Trajectory
finished

Axis settled

Actual
trajectory

Calculated
trajectory

In motion

Motion complete

Settled

Tracking
Magellan Motion Processor User’s Guide 61

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
8 . 5 M o t i o n C o m p l e t e I n d i c a t o r

In many cases, it may be advantageous to have the motion processor signal that a given motion profile is complete.
This functionality is available in the motion complete indicator.

The motion complete indicator appears in bit 0 of the Event Status register. Like all bits in the Event Status register,
the motion complete bit is set by the motion processor and cleared by the host. When a motion is complete, the
motion processor sets the motion complete bit to on. The host can examine this bit by polling the Event Status
register, or the host can program an automatic follow-on function using a breakpoint, a host interrupt, or an AxisOut
signal. In either case, once the host has recognized that the motion has been completed, the host should clear the
motion complete bit. This action will enable the bit to indicate the end of motion for the next move.

Motion complete can indicate the end of the trajectory motion in one of two ways. The first is commanded: the motion
complete indicator is set based on the profile generator registers only. The other method is actual: the motion complete
indicator is based on the actual encoder. The host instruction SetMotionCompleteMode determines which condition
controls the indicator.

When set to commanded, the motion is considered complete when both trajectory generator registers for commanded
velocity and acceleration become zero (0). This normally happens at the end of a move when the destination position
has been reached. It may also happen as the result of a stop command (SetStopMode command), a change of velocity
to zero (0), or when a limit switch event occurs, or after a motion error occurs.

When set to actual, the motion is considered complete when all of the following actions have occurred:

The profile generator (commanded) motion is complete.

The difference between the actual position and the commanded position is less than or equal to the value of
the settle window. The settle window is set using the command SetSettleWindow. This same value may be
read back using the command GetSettleWindow. See Section 8.7, “Settle Window,” for more information
on the settled window.

The two previous conditions have been met continuously for the last N cycles, where N is the programmed
settle time. The settle time is set using the command SetSettleTime. This same value may be read back using
the command GetSettleTime.

At the end of the trajectory profile, the cycle timer for the actual-based motion complete mechanism is cleared, so
there will always be at least an N cycle delay (where N is the settle time) between the profile generator being completed
point-to-point, and the motion complete bit being set. The motion complete bit functions in the S-curve point-to-
point trapezoidal point-to-point, and velocity contouring profile modes only. It does not function when the profile
mode is set to electronic gearing.

Appropriate software methods should be used with the actual motion complete mode, because it is possible that
the motion complete bit will never be set if the servo is not tracking well enough to stay within the programmed
position error window for the specified settle time.
62 Magellan Motion Processor User’s Guide

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g 8
Magellan Motion Processor User’s Guide 63

8 . 6 I n - m o t i o n I n d i c a t o r
The motion processor can indicate whether or not the axis is moving. This function is available through the in-motion
indicator.

The in-motion indicator appears in bit 10 of the Activity Status register. The in-motion bit is similar to the motion
complete bit, however, there are two important differences. The first is that (like all bits in the Activity Status register)
the in-motion indicator continuously indicates its status without interaction with the host. In other words, the in-
motion bit cannot be set or cleared by the host. The other difference is that this bit always indicates the profile
generator (commanded) state of motion, not the actual encoder.

The in-motion indicator bit functions in the S-curve point-to-point, trapezoidal point-to-point, and velocity
contouring profile modes only. It does not function when the profile mode is set to electronic gearing.

8 . 7 S e t t l e W i n d o w
The motion processor can also continuously indicate whether or not the axis has settled.

The settled indicator appears in bit 7 of the Activity Status register. The settled indicator is similar to the motion
complete bit when the motion complete mode is set to actual. The differences are that the settled indicator
continuously indicates its status (cannot be set or cleared).

The axis is considered to be settled when the axis is at rest (i.e., not performing a trajectory profile), and when the
actual motor position has settled at the commanded position for the programmed settle time.

The settle window and settle time used with the settled indicator are the same as the motion complete bit when set to
actual. Correspondingly, the same commands are used to set and read these values: Set/GetSettleWindow and Set/
GetSettleTime.

It is recommended that the motion complete bit be used for determining when a motion profile has finished.

Figure 8-3:
Settle window

Settle
window

Tracking window

Axis settled

Actual
trajectory

Calculated
trajectory

Trajectory finished;
settle timer started

Axis out of
window; settle
timer stopped

and reset

Axis back
inside window;
settle timer
restarted

In motion

Motion complete

Settled

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
64 Magellan Motion Processor User’s Guide

8 . 8 Tr a c e C a p t u r e

Trace capture is a powerful feature of the Magellan Motion Processor that allows various motion processor parameters
and registers to be continuously captured and stored to a memory buffer. The captured data may later be downloaded
by the host using standard memory buffer access commands. Data traces are useful for optimizing servo performance,
verifying trajectory behavior, capturing sensor data, or to assist with any type of monitoring where a precise time-based
record of the system’s behavior is required.

Trace data capture (by the motion processor) and trace data retrieval (by the host) are executed as two separate
processes. The host specifies which parameters will be captured, and how the trace will be executed. Then the motion
processor performs the trace. Finally, the host retrieves the data after the trace is complete. It is also possible to
perform continuous data retrieval, even as the motion processor is continuing to collect additional trace data.

8 . 9 Tr a c e B u f f e r A r c h i t e c t u r e

The Magellan’s powerful trace feature relies on the availability of a data memory pool which can be accessed by the
motion processor. For MC55000 series and MC58000 series card level designs, this memory is located externally to
the motion processor, and typically takes the form of single or dual ported static RAM. How much RAM, and what
type of RAM, is up to the user that is designing the card, and generally is determined by the number of desired trace
elements multiplied by the desired time duration of the trace.

For PMD’s off-the-shelf motion cards using the MC55000 or MC58000 processors, the amount of external RAM is
fixed, and is described in the corresponding user’s guide for that product. Most of these cards provide the trace RAM
in a dual port architecture, so that data can be read from the port at high speed directly through the parallel bus, even
while the motion processor is writing trace data to the buffer.

Magellan/ION also supports a trace buffer, however it is located within the motion processor itself, and has a fixed
size of 1536 Bytes (1.5 KBytes).

To start a trace, the host must specify a number of parameters. They are:

Maintaining the trace buffer requires the motion processor to perform extra work during each cycle. In very high-
performance scenarios (such as a single axis configuration running at maximum speed), the user may have to in-
crease the chip cycle (servo loop) time. See Section 3.4, “Setting the Cycle Time,” for more information on cycle
time requirements. Most applications should disable trace capture once the motion profile has been debugged.

P a r a m e t e r D e s c r i p t i o n

Trace buffer The host must initialize the data trace buffer memory. The Magellan Motion Processor provides
special instructions to initialize external memory into buffers, allowing various sizes and start loca-
tions of external memory to be used for tracing. For Magellan/ION, buffer initialization is not
required, as its size and location is fixed.

Trace variables Depending on the motion processor type, there are many dozens of separate items within the
motion processor that may be traced; for example, actual position, Event Status register, position
error, etc. The user must specify the variables and the axes from which data will be recorded.

Trace period The motion processor can capture the value of the trace variables for every single motion processor
cycle, every other cycle, or at any programmed frequency. The period of data collection and storage
must be specified.

Trace mode The motion processor can trace in one of two modes: one-time, or rolling mode. This determines
how the data is stored, and whether the trace will stop automatically or whether it must be
stopped by the host.

Trace start/stop
conditions

To allow precise synchronization of data collection, it is possible to define the start and stop con-
ditions for a given trace. The motion processor monitors these specified conditions and starts or
stops the trace automatically without host intervention.

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g 8
8 . 9 . 1 T h e Tr a c e B u f f e r

The Magellan Motion Processor organizes external memory into data buffers. Each buffer is given a numerical ID.
The trace buffer must always be ID 0 (zero). For MC55000 and MC58000 series processors, before parameter traces
may be used, memory buffer 0 must be programmed with a valid base address and length. For Magellan/ION,
memory buffer 0 has been pre-configured. No initialization is required, and the remaining comments in this section
on the trace buffer do not apply.

The size of the trace buffer determines the maximum number of data points that can be captured. The maximum size
of the trace buffer is only limited by the amount of physical memory in the system. The addressable memory space
allows up to 2,048 megawords of RAM to be installed, all of which may be used to store trace information.

While trace data is being collected, it is not legal to change the trace buffer configuration. If an attempt is made to
change the base address, length, or write pointer associated with buffer 0 while a trace is running, the change will be
ignored and an error will be flagged. It is possible to change the read pointer and read data from the trace buffer while
a trace is running. This allows the buffer to be constantly emptied while the trace runs.

8 . 9 . 2 T h e Tr a c e P e r i o d

The tracing system supports a configurable period register that defines the frequency at which data is stored to the
trace buffer. The tracing frequency is specified in units of motion processor cycles, where one cycle is the time required
to process all enabled axes.

The command SetTracePeriod sets the trace period, and the command GetTracePeriod retrieves it.

8 . 9 . 3 Tr a c e Va r i a b l e s

When traces are running, one to four motion processor parameters may be stored to the trace buffer for every trace
period. The four trace variable registers are used to define which parameters are stored. The following commands are
used to configure the trace variables.

The command SetTraceVariable selects which traceable parameter will be stored by the trace variable specified. The
command GetTraceVariable retrieves this same value.

The value passed and returned by the two preceding commands specifies the variable number, axis, and type of data
to be stored. The first 16-bit word specifies the variable number, and the second 16-bit word specifies the axis number
and variable ID as follows:

The supported variable ID values are defined in the following table:

B i ts N a m e D e s c r i p t i o n

0–3 TraceAxis Selects the source axis for the parameter.
4–7 Reserved Must be written as zero.
8–15 VariableID Selects the parameter to be stored.

I D N a m e D e s c r i p t i o n

Trajectory Generator
2 Commanded Position The commanded position output from the profile generator.
3 Commanded Velocity The commanded velocity output from the profile generator.
4 Commanded Acceleration The commanded acceleration output from the profile generator.
Encoder
5 Actual Position The actual position of the motor.
6 Actual Velocity The actual velocity (calculated using a simple low-pass filter).
9 Capture Register The contents of the high-speed Capture register.
Magellan Motion Processor User’s Guide 65

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
15 Phase Angle The motor phase angle.
16 Phase Offset The phase offset.
Position Loop
1 Position Error The difference between the actual and commanded position.
10 Position Loop Integral The integral value used in the position loop PID filter.
11 Position Loop Derivative The derivative value of the position loop PID filter.
57 Position Loop Integral Contribution The contribution of the integral portion of the PID filter.
64 Biquad 1 Input The value input to biquad 1 filter.
65 Biquad 2 Input The value input to biquad 2 filter.
Status Registers
12 Event Status The Event Status register.
13 Activity Status The Activity Status register.
14 Signal Status The Signal Status register.
56 Drive Status The Drive Status register.
Commutation/Phasing
7 Active Motor Command The instantaneous motor command.
17 Phase A Command The output command for Phase A.
18 Phase B Command The output command for Phase B.
19 Phase C Command The output command for Phase A.
29 Phase Angle Scaled The phase angle, scaled from 0 to 360 deg rather than in encoder

counts.
Current Loop
66 Phase A Reference The current loop reference for phase A.
67 Phase B Reference The current loop reference for phase B.
30 Phase A Error The current loop Error for phase A.
35 Phase B Error The current loop Error for phase B.
31 Phase A Actual Current The current loop actual current for phase A.
36 Phase B Actual Current The current loop actual current for phase B.
32 Phase A Integrator Sum The current loop integral sum for phase A.
37 Phase B Integrator Sum The current loop integral sum for phase B.
33 Phase A Integral Contribution The current loop integrator contribution to PI filter for phase A.
38 Phase B Integral Contribution The current loop integrator contribution to PI filter for phase B.
34 Phase A Current Loop Output The current loop output for phase A.
39 Phase B Current Loop Output The current loop output for phase B.
Field Oriented Control
40 D Reference The FOC reference for D (direct) loop.
46 Q Reference The FOC reference for Q (quadrature) loop.
41 D Error The FOC D (direct) loop error.
47 Q Error The FOC Q (quadrature) loop error.
42 D Feedback The FOC D (direct) feedback current.
48 Q Feedback The FOC Q (quadrature) feedback current.
43 D Integrator Sum The FOC integral for D (direct) loop.
49 Q Integrator Sum The FOC integral for Q (quadrature) loop.
44 D Integral Contribution The FOC integrator contribution for D (direct) loop.
50 Q Integral Contribution The FOC integrator contribution for Q (quadrature) loop.
45 D Output The FOC output for D (direct) loop.
51 Q Output The FOC output Q (quadrature) loop.
52 FOC A Output The FOC output for phase A.
53 FOC B Output The FOC output for phase B.
31 Phase A Actual Current The FOC actual current for phase A (same ID # as in current loop).
36 Phase B Actual Current The FOC actual current for phase B (same ID # as in current loop).

I D N a m e D e s c r i p t i o n
66 Magellan Motion Processor User’s Guide

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g 8
Setting a trace variable’s parameter to zero will disable that variable and all subsequent variables. Therefore, if N
parameters are to be saved each trace period, trace variables 0 to (N–1) must be used to identify the parameters to be
saved, and trace variable N must be set to zero. Note that N 4.

For example, assume that the actual and commanded position values are to be stored for axis three for each cycle
period. The following commands would be used to configure the trace variables.

SetTraceVariable 0, 0202h // Sets trace variable 0 to store parameter 2 (commanded
// position) for axis 3.

SetTraceVariable 1, 0502h // Sets trace variable 1 to store parameter 5 (actual
// position) for axis 3.

SetTraceVariable 2, 0002h // Disables trace variables 2 (and higher).

8 . 9 . 4 Tr a c e M o d e s

As trace data is collected, it is written to sequential locations in the trace buffer. When the end of the buffer is reached,
the trace mechanism will behave in one of two ways, depending on the selected mode.

If one-time mode is selected, then the trace mechanism will stop collecting data when the buffer is full.

If rolling-buffer is selected, then the trace mechanism will wrap around to the beginning of the trace buffer and
continue storing data. Data from previous cycles will be overwritten by data from subsequent cycles. In this mode, the
diagnostic trace will not end until the conditions specified in a SetTraceStop command are met.

Use the command SetTraceMode to select the trace mode. The command GetTraceMode retrieves the trace mode.

8 . 9 . 5 Tr a c e S ta r t / S t o p C o n d i t i o n s

The command SetTraceStart is used to specify the conditions that will cause the trace mechanism to start collecting
data. A similar command (SetTraceStop) is used to define the condition that will cause the trace mechanism to stop
collecting data. Both SetTraceStart and SetTraceStop require a 16-bit word of data, which contains four encoded
parameters. This is detailed in the following tables.

Motor Output
54 Bus Voltage The bus voltage.
55 Temperature The temperature of the drive’s output stage.
Analog inputs
20 Analog input 1 The most recently read value from analog input 1.
21 Analog input 2 The most recently read value from analog input 2.
22 Analog input 3 The most recently read value from analog input 3.
23 Analog input 4 The most recently read value from analog input 4.
24 Analog input 5 The most recently read value from analog input 5.
25 Analog input 6 The most recently read value from analog input 6.
26 Analog input 7 The most recently read value from analog input 7.
27 Analog input 8 The most recently read value from analog input 8.
Miscellaneous
0 None No trace variable selected.
8 Motion Processor Time The motion processor time (units of servo cycles).

B i ts N a m e D e s c r i p t i o n

0–3 Trigger Axis For trigger types other than Immediate, this field determines which axis will be used as the
source for the trigger. Use 0 for axis 1, 1 for axis 2, etc.

4–7 Condition Defines the type of trigger to be used. See the following table for a complete list of trigger
types.

I D N a m e D e s c r i p t i o n
Magellan Motion Processor User’s Guide 67

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
The Trigger Type field must contain one of the following values.

8 . 9 . 6 D o w n l o a d i n g Tr a c e D a ta

Once a trace has executed and the trace buffer is full (or partially full) of data, the captured data may be downloaded by the
host using the standard commands to read from the external buffer memory. See Section 16.1.2, “External Memory
Commands,” for a complete description of external memory buffer commands.

When a trace stops running (either because of a SetTraceStop command or because the end of the trace buffer has
been reached), the trace buffer's read pointer will be adjusted to point to the oldest word of data in the trace. If the
trace buffer did not wrap, then this will be location 0. If a wrap occurred in the trace buffer, then the read pointer will
be set to the memory location that would have been overwritten by the next trace sample.

This behavior is tailored for the case where the desire is to download the trace data after the trace has stopped.
However, if the host will be downloading data while the trace is running, the following steps must be taken to avoid
reading data as the read pointer is modified. First, assign bufferID 1 with the same start address and length as the trace
buffer. Second, use this buffer to read the data. BufferID 1’s read pointer will not be modified when the trace stops.
To read the location where the data is currently being stored, read the write pointer from bufferID 0.

At any time, the command GetTraceCount may be used to get the number of 32-bit words of data stored in the trace
buffer. This value may be used to determine the number of ReadBuffer commands that must be issued to download the
entire contents of the trace buffer. Since the read pointer is automatically set to the oldest word of data in the trace buffer
when the trace ends, and since the read pointer will automatically increment and wrap around the buffer as data is read,
reading the entire contents of the trace buffer is as easy as issuing N ReadBuffer commands (where N is the value
returned by GetTraceCount).

During each trace period, each of the trace variables is used in turn to store a 32-bit value to the trace buffer. Therefore,
when data is read from the buffer, the first value read would be the value corresponding to trace variable 1, the second
value will correspond to trace variable 2, up to the number of trace variables used.

Both the length of the trace buffer and the number of trace variables set directly affect the number of trace samples that
may be stored. For example, if the trace buffer is set to 1000 words (each 32-bits), and two trace variables are initialized
(variables 0 and 1), then up to 500 trace samples will be stored. However, if three trace variables are used, then 333 full
trace samples may be stored. In this case, the remaining word of data will store the first variable from the 334th sample.

8–11 Trigger bit For trigger types based on a status register, this field determines which bit (0–15) of the sta-
tus register will be monitored.

12–15 Trigger State For trigger types based on a status register, this field determines which state (0 or 1) of the
specified bit will cause a trigger.

I D N a m e D e s c r i p t i o n

0 Immediate This trigger type indicates that the trace starts (stops) immediately when the SetTraceStart
(SetTraceStop) command is issued. If this trigger type is specified, the trigger axis, bit num-
ber, and bit state value are not used.

1 Update The trace will start (stop) on the next update of the specified trigger axis. This trigger type
does not use the bit number or bit state values.

2 Event Status The specified bit in the Event Status register will be constantly monitored. When that bit
enters the defined state (0 or 1), then the trace will start (stop).

3 Activity Status The specified bit in the Activity Status register will be constantly monitored. When that bit
enters the defined state (0 or 1), then the trace will start (stop).

4 Signal Status The specified bit in the Signal Status register will be constantly monitored. When that bit
enters the defined state (0 or 1), then the trace will start (stop).

5 Drive Status The specified bit in the Drive Status register will be constantly monitored. When that bit
enters the defined state (0 or 1), then the trace will start (stop).

B i ts N a m e D e s c r i p t i o n
68 Magellan Motion Processor User’s Guide

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g 8
If the trace mode is set to RollingBuffer, then the 334th trace sample will store the first word in the last location of the trace
buffer, and the second and third words will be stored in locations 0 and 1, respectively. In this case, the first two words of
sample 333 have been overwritten by the last two words of sample 334. When the trace is stopped, the read pointer will point
to the oldest word of data in the buffer. This word may not correspond to the first word of a trace sample.

Therefore, it is recommended that the length of the trace buffer be set so that it is an even multiple of the number of
trace variables being used. This will ensure that the read index is pointing to the first word in a complete trace sample;
whether or not the trace buffer wraps. The simplest solution is to verify that the trace buffer length is an even multiple
of 12 (since 12 is evenly divisible by all possible numbers of trace variables: 1, 2, 3, or 4).

8 . 9 . 7 R u n n i n g Tr a c e s

The following is a summary of data trace operations to assist in getting started.

1 Specify the data to be stored. The command SetTraceVariable is used to specify up to four variables to
be stored for each trace period. The location of trace variables must be used contiguously. For example,
to trace two variables, use trace variables 1 and 2. To trace three variables, use trace variables 1, 2, and 3.
The first trace variable found that is set to none (refer to SetTraceVariable in the Magellan Motion Processor
Programmer's Command Reference) is assumed to be the last variable being traced. If trace variable 1 is set to
none and trace variable 2 is set to actual position, then no variables will be traced since the first variable
(set to none) specifies the end of variables being traced. If four variables are being traced, do not set any
variables to none since all variable locations are being used.

2 (MC50000 only) Set up the trace buffer. Using the commands SetBufferStart and SetBufferLength,
define the location in external RAM where trace data should be stored, and the amount of RAM to be
used to hold the trace data. The trace data will be stored in the buffer with an ID of zero. Be careful not
to extend the buffer beyond the amount of available physical RAM. Keep in mind that SetBufferStart
and SetBufferLength specify values based on a 32-bit word size.

3 Set the trace period. The command SetTracePeriod sets the interval between trace samples in units of
chip cycles. The minimum is one cycle.

4 Set the trace mode. If the trace is to be started on a specific event, then the One Time mode should probably
be used. This will allow one buffer full of trace data to be stored, beginning with the starting event (set using
SetTraceStart). Alternatively, if the trace is to stop on an event (as specified using SetTraceStop), then the
rolling buffer mode should be used. This will cause the system to constantly record data until the stopping
event occurs. At that point, the data leading up to the event will be saved in the trace buffer.

5 Set the stopping mode (if desired). If a specific event will cause the trace to stop, then it should be programmed
using the SetTraceStop command. However, if the trace is to be programmed to stop when the buffer fills
up (by setting the trace mode to One Time), then it is not necessary to set another stopping event. Also, at any
time while the trace is running, the SetTraceStop command may be issued to immediately stop the trace.

6 Start the trace. The SetTraceStart command may be used to start the trace directly (by specifying the
Immediate trigger type). Alternatively, a triggering event may be specified to start the trace when this
command occurs.

8 . 1 0 H o s t I n t e r r u p ts

Interrupts allow the host to become aware of a special motion processor condition without the need for continuous
monitoring or polling of the status registers. The Magellan Motion Processors provide this service in the form of a
host interrupt.

The actual signal generated to indicate an interrupt condition depends on the communication mode being used. For
parallel communications, a physical signal on the motion processor or motion card indicates the event. For more
information on this HostIntrpt signal, see the Magellan Motion Processor Electrical Specifications (if using the motion
processor directly) or the appropriate Magellan Motion Controller Card User’s Guide (if using an off-the-shelf motion card).
Magellan Motion Processor User’s Guide 69

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
For CANbus communications, host interrupt events cause a CAN message to be sent. See Section 12.4, “Controller
Area Network (CAN),” for more information on CANbus communications. If serial communication is being used,
then host interrupts are not sent out, which generally means that the host interrupt mechanism will not be used for
processors running in that communication mode.

The events that trigger a host interrupt are the same as those that set the assigned bits of the Event Status register.
Those events are outlined in the following table.

Using a 16-bit mask, the host may condition any or all of these bits to cause an interrupt. This mask is set using the
command SetInterruptMask. The value of the mask may be retrieved using the command GetInterruptMask. The
mask bit positions correspond to the bit positions of the Event Status register. If a 1 is stored in the mask, then a 1 in
the corresponding bit of the Event Status register will cause an interrupt to occur. Each axis supports its own interrupt
mask, allowing the interrupting conditions to be different for each axis.

The motion processor continually and simultaneously scans the Event status register and interrupt mask to determine
if an interrupt has occurred. When an interrupt occurs, the HostIntrpt signal is made active.

At this point, the host can respond to the interrupt (although the execution of the current host instruction, including
the transfer of all associated data packets, should be completed), but it is not required to do so.

Since it is possible for more then one axis to be configured to generate interrupts at the same time, the motion
processor provides the command GetInterruptAxis. This command returns a bitmasked value with one bit set for
each axis currently generating an interrupt. Bit 0 will be set if axis 1 is interrupting, bit 1 is set for axis 2, etc. If no
interrupt is currently pending, then no bits will be set.

To process the interrupt, normal motion processor commands are used. The specific commands sent by the host to
process the interrupt depend on the nature of the interrupting condition. At minimum, the interrupting bit in the
Event Status should be cleared using the ResetEventStatus command. If this is not done, then the same interrupt will
immediately occur once interrupts are re-enabled.

Once the host has completed processing the interrupt, it should send a ClearInterrupt command to clear the interrupt
line, and re-enable interrupt processing. Note that if another interrupt is pending, the interrupt line will only be cleared
momentarily and then reasserted.

B i t E v e n t O c c u r s w h e n

0 Motion complete The profile has reached its endpoint, or motion is otherwise stopped.
1 Position wraparound The axis position has wrapped.
2 Breakpoint 1 Breakpoint 1 condition has been satisfied.
3 Capture received Encoder index pulse or home pulse has been captured.
4 Motion error Maximum position error set for a particular axis has been exceeded.
5 Positive limit Positive over-travel limit switch violation has occurred.
6 Negative limit Negative over-travel limit switch violation has occurred.
7 Instruction error Host instruction causes an error.
8 Disable User enable signal has been brought inactive (Magellan/ION only).
9 Overtemperature fault Over temperature condition has occurred in drive (Magellan/ION only).
10 Bus voltage fault Bus voltage fault has occurred (Magellan/ION only).
11 Commutation error Index pulse does not match actual phase (MC58000, Magellan/ION only).
12 Current foldback Current foldback has occurred (Magellan/ION only).
14 Breakpoint 2 Breakpoint 2 condition has been satisfied.

When the motion processor is communicating with the host via the CAN interface, motion processor events that
generate interrupts via the parallel interface are reported as CAN messages. See Section 12.4, “Controller Area
Network (CAN),” for further information.
70 Magellan Motion Processor User’s Guide

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g 8
The following provides a typical sequence of interrupts and host responses. In this example, an axis has hit a limit
switch in the positive direction, causing a limit switch event and an abrupt stop. The abrupt stop causes a motion error.
Assume that these events all occur more or less simultaneously. In this example, the interrupt mask for this axis has
been set so that either motion errors or limit switch trips will cause an interrupt.

At the end of this sequence, all status bits are cleared, the interrupt line is inactive, and no interrupts are pending.

E v e n t H o s t a c t i o n

Motion error & limit switch trip
generates interrupt.

Sends GetInterruptAxis instruction. Note that for Magellan/ION, this com-
mand is not necessary since there is only one axis.

A bitmask identifying all interrupting
axes is returned by the motion proces-
sor. This value identifies one axis as gen-
erating the interrupt.

Sends GetEventStatus instruction, detects motion error, and limit switch
flags are set.

Issues a ResetEventStatus command to clear both bits.

Returns the axis to closed loop mode by issuing a RestoreOperatingMode
command.

Issues a ClearInterrupt command to reset the interrupt signal.

Motion Processor clears motion error
bit and disables host interrupt line.

Generates a negative direction move to clear the limit switch.

Motor moves off limit switch. Activity
status limit bit is cleared.

None
Magellan Motion Processor User’s Guide 71

M o t i o n M o n i t o r i n g a n d R e l a t e d P r o c e s s i n g8
This page intentionally left blank.
72 Magellan Motion Processor User’s Guide

9

9 . H a r d w a r e C o n t r o l S i g n a l s
In This Chapter
The AxisOut Pin
The AxisIn Pin
Analog Input
The Synch Pin–Multiple Chip synchronization

There are a number of signals that may be used to coordinate motion processor activity with events outside the motion
processor, card, or module. In this section, these signals will be discussed.

9 . 1 T h e A x i s O u t P i n

Each axis has a general purpose axis output pin which can be programmed to track the state of any of the assigned bits
in the Event Status, Activity Status, Drive Status, or Signal Status registers. One or more bits can be output using a
selection mask, and their senses can be programmed using a sense mask. The command SetAxisOutMask is used to
program these conditions, and the command GetAxisOutMask retrieves the programmed values.

The tracked bit(s) in one of these registers may be in the same axis or in a different axis as the axis of the AxisOut signal
itself. This function is useful for triggering external peripherals by outputting hardware signals. For example, it allows
the AxisOut signal to be driven when conditions such as “Drive AxisOut when motion complete bit is low, or when
commutation error bit is high” occur. Whether AxisOut drives the signal with a high or low signal can be controlled using
the command SetSignalSense.

It is possible to use the AxisOut pin as a software-programmed direct output bit under direct host control. This may be
done by selecting zero as the register in the SetAxisOutMask command, and by adjusting the level of the resulting
inactive output state to either high or low by using the SetSignalSense command.

For detailed information on interfacing to this signal, see the Magellan Motion Processor Electrical Specifications (for motion
processor users), the Magellan Motion Controller Card User’s Guide (for card users), or the ION Digital Drive User’s Manual
(for module users).

9 . 2 T h e A x i s I n P i n

Each axis has an input pin (AxisIn signal) that can be used as a general purpose input. This is read using the
GetSignalStatus command. It can also be used to trigger automatic events such as performing a motion change (stop,
start, change of velocity, etc.) upon a signal transition using breakpoints.

For detailed information on interfacing to this signal, see the Magellan Motion Processor Electrical Specifications (for motion
processor users), the Magellan Motion Controller Card User’s Guide (for card users), or the ION Digital Drive User’s Manual
(for module users).

No special commands are required to set up or enable the AxisIn signals.
Magellan Motion Processor User’s Guide 73

H a r d w a r e C o n t r o l S i g n a l s9
9 . 3 A n a l o g i n p u t

(MC50000 only)

The Magellan Motion Processors provide eight general-purpose analog inputs. These eight inputs are connected to
internal circuitry that converts the analog signal to a digital word with a precision of 10 bits. The conversions are
performed on a 21.6 microsecond period (at the nominal motion processor clock frequency), with no action required
by the user for the conversion to occur.

To read the most recent value converted by any of the eight channels, the command ReadAnalog is used. The value
returned by this command is the result of shifting the converted 10-bit value six bits to the left. For MC50000 and
related card products, the analog data are general-purpose and are not used by the motion processor in any
calculations.

For detailed information on interfacing to these signals, see the Magellan Motion Processor Electrical Specifications (for
motion processor users), or Magellan Motion Controller Card User’s Guide (for card users).

9 . 4 T h e S y n c h P i n — M u l t i p l e C h i p
S y n c h r o n i z a t i o n

(MC58000 only)

The Magellan Motion Processors contain support for synchronizing their internal cycle time across multiple motion
processors. This allows the start/stop and modification of motion profiles to be synchronized across more than one
motion processor when precise timing of movement is required. This may be necessary because the motion processors
are remotely located, or the application may require greater than four axes of synchronized motion. In the most
common configuration, one motion processor is assigned as a master node, and the other motion processors are set
into slave mode.

Other configurations, however, are also possible, including using an external hardware device to generate timing
signals for all motion processors that are set to slave mode. Alternatively, it is possible to use the signals from the
master motion processor to synchronize external user hardware.

When an axis is run in slave mode, the cycle time is explicitly controlled by the master, as are external parallel-word
position encoder reads. Communications and PWM generation are not affected, however.

The input/output state of the Synch pin and its function are set using the command SetSynchronizationMode. The
modes are summarized in the following table.

Multi-chip synchronization is not available if any axis is configured for a Pulse & Direction motor type. Therefore
synchronization is not available with the MC55000 motion processor.

E n c o d i n g Mo d e D e s c r i p t i o n

0 Disabled In the disabled mode, the pin is configured as an input and is not used. This is the default
mode after reset or power-up.

1 Master In the master mode, the pin outputs a synchronization pulse that may be used by slave
nodes or by other devices to synchronize with the internal chip cycle of the master node.

2 Slave In the slave mode, the pin is configured as an input, and a pulse on the pin synchronizes
the internal chip cycle.
74 Magellan Motion Processor User’s Guide

H a r d w a r e C o n t r o l S i g n a l s 9
For detailed information on interfacing to these signals, see the Magellan Motion Processor Electrical Specifications (motion
processor users) or Magellan Motion Controller Card User’s Guide (card users).

When synchronizing multiple motion processors, the following rules must be observed:

 All motion processors must have their sample time set to the same value. For example, if an MC58420 and
MC58220 are to be synchronized, the sample time must be at least equal to the greater of the two sample
times. See Section 3.4, “Setting the Cycle Time,” for details on the motion processor cycle time.

 Only one node in the network may be a master. For example, with three motion processors in a network,
one motion processor must be designated the master and the other two must be slaves.

 Slave nodes must be set into slave mode before the master is set. This ensures that the slave(s) cycle starts
at precisely the moment that the master assumes its state as master.
Magellan Motion Processor User’s Guide 75

H a r d w a r e C o n t r o l S i g n a l s9
This page intentionally left blank.
76 Magellan Motion Processor User’s Guide

10

1 0 . E n c o d e r I n t e r f a c i n g
In This Chapter
Incremental Encoder Input
High-speed Position Capture
Parallel-word Position Input

All Magellan Motion Processors provide incremental quadrature encoder input, while the MC50000 processors also
provide parallel-word feedback, which allows devices such A/D (Analog to Digital) converters, R/D (resolver to digital)
converters, parallel encoders, and other devices to be used as the motor position source. In addition, ION 3000 users
can select an input encoding format of pulse and direction for the auxiliary axis which is useful when operating the ION
with a motion controller that outputs pulse and direction signals. See Section 4.5 “Electronic Gear Profile,” for more
information on using the ION with pulse and direction command input.

To set the feedback type, the command SetEncoderSource is used. This value can be read using the command
GetEncoderSource.

1 0 . 1 I n c r e m e n ta l E n c o d e r I n p u t

Incremental encoder feedback provides two square-wave signals: A quadrature and B quadrature. There is also an
optional index pulse, which indicates when the motor has made one full rotation. The A and B signals are offset from
each other by 90°, as shown in Figure 10-1.

For the quadrature incremental position to be properly registered by the motion processor with the motor moving in
the positive direction, QuadA should lead QuadB. When the motor moves in the negative direction, QuadB should lead
QuadA. Due to the 90° offset, four resolved quadrature counts occur for one full phase of each A and B channel.

Figure 10-1:
Quadrature
encoder
timing

(= ~QuadA * ~QuadB * ~Index)
Index

Quad A

Quad B

~Index
Magellan Motion Processor User’s Guide 77

E n c o d e r I n t e r f a c i n g10
1 0 . 1 . 1 A c t u a l P o s i t i o n R e g i s t e r

The motion processor continually monitors the position feedback signals, and accumulates a 32-bit position value
called the actual position. At power-up, the default actual position is zero. The actual position can be set with one of
two commands: SetActualPosition, and AdjustActualPosition. The current actual position can be retrieved using the
command GetActualPosition.

SetActualPosition sets the position to an absolute specified 32-bit value. Particularly when using incremental
feedback, the actual position is generally set shortly after power-up, using a homing procedure to reference the actual
position to a physical hardware location. AdjustActualPosition changes the current actual position by a signed relative
value. For example a value of –25 specified using this command will subtract 25 from the current actual position.

In addition to retrieving the actual axis position, it is also possible to retrieve an estimation for the instantaneous
velocity of the axis. This is accomplished using the command GetActualVelocity. Note that the provided velocity is
an estimated quantity, created by subtracting the current position from the previous cycle’s position. It is therefore
subject to jitter or noise, particularly at low velocity.

1 0 . 1 . 2 D i g i ta l F i l t e r i n g

All encoder inputs, as well as both the index and home capture inputs, are digitally filtered to enhance reliability. The filter
requires that a valid transition be accepted only if it remains in its new (high or low) state for at least 175nSec. This insures
that brief noise pulses will not be interpreted as an encoder transition.

Although this digital filtering scheme can increase the overall reliability of the quadrature data, to achieve the highest
possible reliability, additional techniques may be required. Techniques such as differential line drivers/receivers, or
analog filtering have been proven in this area. Whether these additional schemes are required depends on the specific
system, and the amount and type of noise sources.

1 0 . 2 H i g h - s p e e d P o s i t i o n C a p t u r e

Each axis of the Magellan Motion Processors supports a high-speed Position Capture register that allows the current axis
location (as determined by an attached encoder) to be captured when triggered by an external signal. For MC50000
motion processors, two signals may be used as the capture trigger: the Index signal or the Home signal. For Magellan/
ION, there is an additional available input source called HighSpeedCapture.

These input triggers differ in how a capture is recognized. For all products except the MC58110 and MC55110, when
the Index signal is used as the trigger, a capture will be triggered when the A, B, and Index signals achieve a particular
state (defined by the Signal Sense register using the SetSignalSense command). If the Home or HighSpeedCapture signal
is selected as the capture trigger source, then only that signal need be in a particular state for the capture to be triggered.
For the single chip motion processors (MC5x110), the Index operates like the Home or HighSpeedCapture.

The command SetCaptureSource determines whether the Index signal, the Home signal, or the HighSpeedCapture signal
will be used as the position capture trigger. The command GetCaptureSource retrieves this same value. When Index
is selected as the trigger source, use the Index bit in the Signal Sense register to set the trigger state. When either Home
or HighSpeedCapture are selected as the trigger source, use the Capture bit to set the trigger state.

P r o d u c t Av a i l a b l e p o s i t i o n c a p t u r e s i g n a l t r i g g e r s

MC50000 Index
Home

Magellan/ION Index
Home
HighSpeedCapture
78 Magellan Motion Processor User’s Guide

E n c o d e r I n t e r f a c i n g 10
When a capture is triggered, the contents of the Actual Position registers (derived from an attached encoder) are
transferred to the Position Capture register, and the capture-received indicator (bit 3 of the Event Status register) is
set. To read the Capture register, the command GetCaptureValue is used. The Capture register must be read before
another capture can take place. Reading the Position Capture register causes the trigger to be re-armed, allowing for
more captures to occur. As for all Event Status register bits, the Position Capture indicator may be cleared by using
the command ResetEventStatus.

1 0 . 3 P a r a l l e l - w o r d P o s i t i o n I n p u t

(MC50000 only)

For feedback systems that do not provide incremental signals, but instead use a digital binary word, Magellan supports
a parallel-word input mechanism that can be used with a large variety of devices including resolvers (after resolver to
digital conversion), absolute optical encoders, laser interferometers with parallel word read-out, incremental encoders
with external quadrature decoder circuit, and A/D converters reading an analog feedback signal.

In this position-input mode, the encoder position is read through the motion processor’s external bus by reading a 16-
bit word. One word is read for each axis set to this mode. Depending on the nature of the feedback device, fewer than
16 bits of resolution may be available, in which case the unused high order data bits should be arranged to indicate a
0 value when read by the motion processor. It is also acceptable to sign-extend these bits. Under no circumstances
should unused bits of the parallel-word be left floating.

The value input by the motion processor should be binary coded. The Magellan Motion Processors assume that the
position data provided by the external device is a two's complemented signed number. If the value returned ranges

from 0 to 2n–1 (where n is the number of bits provided by the feedback device), then the difference in behavior will
be the interpretation of the start location. This will be shifted by one-half of the full scale feedback range. If desired,
this initial position may be altered using the SetActualPosition command.

When the encoder source is set to parallel, the first value read from the external bus is assumed to be an absolute
position, and is directly stored in the Actual Position register.

1 0 . 3 . 1 M u l t i - Tu r n S y s t e m s

In addition to supporting position tracking across the full numeric feedback range of a particular device, the ability to
support multi-turn systems is also provided. The parallel encoder values are continuously examined, and a position
wrap condition is automatically recognized. This ranges from the largest encoder value to the smallest encoder value
(negative wrap), or from smallest value to largest value (positive wrap).

Using this virtual multi-turn counter, the Magellan Motion Processors continuously maintain the axis location to a full
32-bit value. If the axis does not wrap around (non multi-turn system), the range will stay within a 16-bit value.

As the motor moves in the positive direction, the input value should increase to a maximum value, at which point it
may wrap back to zero and continue increasing from there. Likewise, when the motor moves in the negative direction,
the value should decrease to zero, at which point it may wrap back to its maximum. The value at which the parallel
input device wraps is called the device’s modulus, and should be set using the SetEncoderModulus command. Note
that the SetEncoderModulus command takes as a parameter one-half of the value of the modulus.

Magellan/ION only supports high-speed Index capture when an incremental encoder is attached.
Magellan Motion Processor User’s Guide 79

E n c o d e r I n t e r f a c i n g10
For example, if a rotary motor uses a 12-bit resolver for feedback, the encoder modulus is 4,096 and therefore, the
value sent to the SetEncoderModulus command would be 2,048. Once this is done, then each time the motor rotates
and the binary word value jumps from the largest binary output to the smallest, the Magellan Motion Processor will
properly recognize the motor wrap condition, and accumulate actual encoder position with values larger than 4,096
or smaller than 0.

For systems using a position counter with a modulo smaller than the encoder counts per revolution, set the counts/
rev value equal to the position counter size. For example, if a rotary laser interferometer is being used that provides a

16-bit output value, but provides 16,777,216 counts per revolution, use a counts/rev value of 32,768 (216/2).

The encoder modulus should always be set prior to setting the encoder source to parallel.

1 0 . 3 . 2 P a r a l l e l - W o r d D e v i c e I n t e r f a c i n g

For each axis set for parallel-word input, the motion processor will use its peripheral bus to read the position feedback
value for that axis. The motion processor will perform a peripheral read at the corresponding address, but axes not in
parallel-word mode will not be addressed. This read occurs every 50µs. See the Magellan Motion Processor Electrical
Specification for details on parallel-word addresses and interfacing.

Motion cards such as Prodigy-PCI and Prodigy-PC/104 do not directly provide the ability to connect parallel-word
encoder devices; however, it is possible to purchase or construct a daughtercard that plugs into the main motion card
and supports this interface.

No high-speed position capture is supported in the parallel-word device input mode. Therefore the Index and
Home signals, as well as the QuadA and QuadB signals are unused.
80 Magellan Motion Processor User’s Guide

11

11 . M o t o r O u t p u t
In This Chapter
Disabling the Motor Output Module
Enabling the Motor Output Module
Motor Type
Motor Command Output
Setting PWM Frequency
Multi-Phase Motor Interfacing
Pulse & Direction Signal Generation
Microstepping Motor Output

Magellan Motion Processors contain a motor output module to control how motor command signals are generated and
output to the amplifier. For MC50000, these signals are output through the motion processor and are used to interface
to external circuitry. For Magellan/ION, these signals remain internal to the drive. This chapter will detail how to enable
and disable the motor output module, how to select a motor type, and how to select and interface to different amplifier
signaling techniques.

11 . 1 D i s a b l i n g t h e M o t o r O u t p u t M o d u l e

There are a number of reasons why it might be desirable to disable the motor output module. See Section 3.2, “Enabling
and Disabling Control Modules,” for an overall discussion of module enabling and disabling. In particular, the motor
output module is generally disabled for safety-related condition, or for system calibration. To disable the motor output
module the command SetOperatingMode is used. The value set using this command can be read using
GetOperatingMode.

If the motor output module is disabled, a “zero” command will be sent to the motor, or to each phase of the motor for
multi-phase motors such as brushless DC or microstepping motor. Depending on the motor output signal format, this
zero command will be represented in different ways. See the subsequent sections of this chapter for more information
on motor output signal representation.

Note that disabling the motor output module may or may not immediately stop the motor. Disabling this module has
the effect of “free-wheeling” the motor, which means the motor may stop, coast, or even accelerate (if a constant
external force exists such as on a vertical axis) depending on the load, inertia, and configuration of the axis mechanics.

For MC50000 products the default condition of the motor output module is enabled.

For Magellan/ION the default condition is disabled, therefore to begin drive operations, a SetOperatingMode
command must be sent to enable the motor output module.
Magellan Motion Processor User’s Guide 81

M o t o r O u t p u t11
11 . 2 E n a b l i n g t h e M o t o r O u t p u t M o d u l e

A previously disabled motor output module may be re-enabled in a number of ways. If the module was disabled using
the SetOperatingMode command, then another SetOperatingMode command may be issued. If this module was
disabled as part of an automatic event-related action (see Section 8.1, “SetEventAction Processing,” for more
information), then the command RestoreOperatingMode is used.

Regardless of how the module is re-enabled, at the time that the reenable operation is requested, the desired motor
commands for each phase of the motor will immediately be output to the amplifier. Care should therefore be taken to re-
enable this module when the axis is in a stable condition, such that no abrupt motion occurs. Along these lines, it is
recommended that if additional modules are to be enabled such as the current loop, the position loop, and the trajectory
generator, all modules be enabled at the same time, thereby insuring that internal current loop or position loop values
(such as integrators) will be zeroed at the time of enabling.

11 . 3 M o t o r Ty p e

Magellan Motion Processors provide support for a number of motor types, including DC brush, brushless DC and
step motors. In addition, in the case of Brushless DC and microstepping motors, both two and three phase motors
are supported for some products. The following table shows this.

For products such as Magellan/ION, which support one motor type, selection of the correct motor type is not
necessary since the motor type is already set to its default condition. For products such as MC58000 motion processors
or MC58000-based cards, the motor type for each axis must be selected, and this value is used to determine a number
of default operating conditions such as which control modules are enabled and the default amplifier interface format.

During powerup, the Magellan processor reads a motor configuration word at a specific memory address on its
external bus to determine the default motor type setting for each axis. For motion processor designs, see the Magellan
Motion Processor Electrical Specifications for more details. For MC58000-based cards, the logic used to respond to this read
operation accesses on-card user-specified DIP switches. See the Magellan Motion Controller Card User’s Guide for details.

The value of the motor type read during powerup can also be set at a later time via the command SetMotorType. The
value set can be read back using the command GetMotorType. If the motor type is to be set by the user in this way,
the motor type should be sent first if a series of commands are to be used to configure the output method and amplifier
interface format. This is because a number of default operational values are set upon receipt of this command. See the
Magellan Motion Processor Programmer’s Command Reference for more information.

P r o d u c t Mo t o r Ty p e s S u p p o r t e d

MC58000 Motion Processor DC brush
Brushless DC, 2-phase
Brushless DC, 3-phase
Microstepping, 2-phase
Microstepping, 3-phase
Step

MC55000 Motion Processor Step
Magellan/ION (DC brush) DC brush
Magellan/ION (brushless DC) Brushless DC, 3-phase
Magellan/ION (microstepping) Microstepping, 2-phase
82 Magellan Motion Processor User’s Guide

M o t o r O u t p u t 11
11 . 4 M o t o r C o m m a n d O u t p u t

In addition to selection of the motor type, to correctly interface to an amplifier or amplifier circuit, the motor
command output format must be chosen. The Magellan Motion Processors provide a variety of methods to generate
signals used to interface to the motor amplifier; however, the methods available vary with each product series. The
following table shows the motor output options available for each supported motor type and motion processor. For
Magellan/ION products, the motor amplifier is located internally, and the motor command output format need not
be selected.

* Card products directly output PWM through the connector interface. Analog output uses the parallel DAC - offset binary output mode,
and appears at the connector as a standard +/– 10V signal compatible with external amplifiers.

** Only when 2-phases are selected. This format is not supported for 3-phase motors.

Sign/magnitude PWM, 50/50 PWM, parallel DAC, and SPI DAC all output a signed numerical motor command value
while using different signal formats. Each of these signal formats encodes this signed numerical value, which
represents the torque or velocity at which the motion processor is commanding the motor.

Pulse and direction is fundamentally different from the other output formats, because it makes no attempt to encode
a motor torque. Instead, pulse and direction interfaces directly with step motor amplifiers which accept this popular
format. It should be noted that pulse and direction is generally used to drive step motors, but can also be used with
servo motors for amplifiers designed with this capability.

Choice of output mode generally determines the nature of the amplifier you will use. PWM output formats are most
commonly used with IC-based switching circuits. Analog output formats such as parallel DAC or SPI DAC are most
often used to generate a +/10V signal which is then connected to an external amplifier.

When working with PMD’s Magellan-based card products, you have a choice of PWM or +/–10V analog output.
PWM can be either sign/magnitude or 50/50. If analog output is desired, select the parallel DAC - offset binary option
rather than the parallel DAC - sign magnitude or SPI DAC options.

The command SetOutputMode controls which of the available output formats will be used. The command
GetOutputMode retrieves this value.

M a g e l l a n M o t o r Ty p e
P h a s e s

p e r A x i s Av a i l a b l e O u t p u t f o r m a ts

MC58000 DC brush or brushless DC with
external commutation

1 Sign/magnitude PWM

50/50 PWM

Parallel DAC - offset binary*

Parallel DAC - sign magnitude

SPI DAC - offset binary

SPI DAC - two’s complement
MC58000 Brushless DC 2 or 3 Sign/magnitude PWM**

50/50 PWM

Parallel DAC - offset binary*

Parallel DAC - sign magnitude
MC58000 Microstepping 2 or 3 Sign/magnitude PWM**

50/50 PWM

Parallel DAC - offset binary*

Parallel DAC - sign magnitude
MC55000, MC58000 Step 1 Pulse and Direction
Magellan/ION All (DC Servo, brushless DC,

microstepping)
Not applicable

Amplifier is internal. No motor command
signal output through hardware.
Magellan Motion Processor User’s Guide 83

M o t o r O u t p u t11
11 . 4 . 1 S i g n M a g n i t u d e P W M

In sign magnitude PWM mode, two pins are used to output the motor command information for each motor phase.
One pin carries the PWM magnitude, which ranges from 0 to 100%. This signal expresses the absolute magnitude of
the desired motor command. A high signal on this pin means the motor coil should be driven with voltage. A second
pin outputs the sign of the motor command by going high for positive sign, and low for negative.

In this mode, output is resolvable to one part per 2,048. The total range of the Motor Command register
(–32,768 to +32,767) is scaled to fit the PWM output range.

For example, if the motor commands that the motion processor outputs for a given phase is +12,345, then the sign
bit will be output as a high level, and the magnitude pin will output with a duty cycle of 2,048*12,345/32,768 = 771.56
= 772. This indicates that the magnitude signal will be high for 772 cycles, and low for the remaining 1,276 cycles. If
it were desired that the output value be –12,345, then the magnitude signal would be the same, but the sign bit would
be low instead of high.

Sign magnitude PWM output is typically used with H-bridge type amplifiers. Most amplifiers of this type have separate
sign and magnitude inputs, which allows the Magellan signals to be connected directly.

11 . 4 . 2 5 0 / 5 0 P W M

In 50/50 PWM mode, only one pin is used per motor output or per motor phase. This pin carries a variable duty cycle
PWM signal, much like the magnitude signal for sign magnitude PWM. This PWM output method differs in that a
50% output signal (high half the time, low half the time) indicates a desired motor command of zero. Positive motor
commands are encoded as duty cycles greater than 50% duty cycles, and negative motor commands are encoded as
duty cycles less than 50%. In this mode, a full-on positive command is encoded as a 100% duty cycle (always high),
and a full on negative command is encoded as a 0% duty cycle (always low).

For example, if the motor commands that the motion processor outputs for a given phase is +12,345, then the
magnitude pin will output with a duty cycle of 1,024 + 1,024*12,345/32,768 = 771.56 = 1,409.78 = 1,410. This
indicates that the magnitude signal will be high for 1,410 cycles, and low for the remaining 638 cycles. If it were desired
that the output value be –12,345, then the magnitude signal would have a duty cycle of 1,024 + 1,024*–12,345/32,768
= 638.2 = 638; indicating that the magnitude signal will be high for 638 cycles, and low for the remaining 1,410.

50/50 magnitude PWM output is used with two different types of amplifiers. When driving a brushless PM
(permanent magnet) motor, the magnitude signal is connected to a half-bridge driver. When driving a DC brushed
motor, an H-bridge type amplifier is used. The magnitude signal of the H-bridge is always turned on, and the
magnitude output of the motion processor is connected to the sign input of the H-bridge. This alternative method of
controlling an H-bridge is useful in situations where motor back-EMF during deceleration is a problem using the
standard sign magnitude schemes.

Figure 11-1 illustrates typical 50/50 PWM output waveforms.
84 Magellan Motion Processor User’s Guide

M o t o r O u t p u t 11
11 . 4 . 3 P a r a l l e l D A C - O f f s e t B i n a r y

In parallel DAC - offset binary mode, the motor command for a given phase is output directly to the motion
processor's peripheral bus where it is assembled into an analog voltage using a DAC (Digital to Analog Converter).
The motion processor chip writes the DAC output value to each enabled channel in this mode at the commutation
frequency of 10 kHz. For example, on an MC58420 with all four axes set to parallel DAC mode, DAC output will be
written for each axis once per 100 µsec, with the writes in pairs separated by 50 µsec.

For one- or two-phase motors, one DAC output is used for each phase. For three-phase motors, only two DAC
outputs are used. The third phase will always be an analog signal equal to –1 * (P1 + P2), where P1 is the output for
phase 1, and P2 is the output for phase 2. If necessary, this third phase signal may be realized using an inverting
summing amplifier in the external circuitry. Generally this is not necessary, since the majority of three-phase off-the-
shelf amplifiers accept two phases and internally construct the third. The written output value has a 16-bit resolution.
This value is offset by 8000h, so a value of 0 will correspond to the most negative output. A value of 8000h

corresponds to zero output, and a value of FFFFh corresponds to the most positive output.

DACs with resolutions lower than 16-bit may be used. In this case, output values must be scaled to the high-order bits
of the 16-bit data word. For example, to connect to an 8-bit DAC, pins Data8–15 are used. The contents of the low-
order 8 bits (Data0–7) are transferred to the data bus, but are ignored.

The motion processor writes the DAC values using the external peripheral bus described in the Magellan Motion Processor
Electrical Specifications.

For more information on DAC signal timing and conditions, see the DAC pin descriptions and peripheral write
interface timing diagram in the Magellan Motion Processor Electrical Specifications document for your motion processor.

If using a Magellan-based card, all interfacing circuitry and decoding are handled by the card, and a direct analog +/– 10V
for each desired output phase will be provided through a connector. To interface to the signals, see the Magellan Motion
Controller Card User’s Guide.

0 / 1024
(off)

1 / 1024
(minimum)

(duty cycle)

1

0
1

0

512 / 1024
(50% duty cycle)

1023 / 1024
(maximum)

 (duty cycle)

1024 / 1024
(full on)

1

0

1

0
1

0

Figure 11-1:
50/50 PWM
encoding
Magellan Motion Processor User’s Guide 85

M o t o r O u t p u t11
11 . 4 . 4 P a r a l l e l D A C - S i g n M a g n i t u d e

Parallel DAC - sign magnitude mode is very similar to parallel DAC - offset binary mode, however the encoding of the
16-bit word sent to each DAC channel has a different format. As indicated in the previous section, in offset binary
mode the number output is a 16-bit two’s complemented representation of the desired motor or phase command
shifted by a value of 8000h. In sign magnitude mode, the encoding is different. In this format the representation is
split into a 1 bit sign field and a 15 bit magnitude field.

This is encoded as follows: the top bit (bit 15) of the output DAC word represents the sign, with a 1 value indicating
a negative output signal, and a 0 value indicating a positive output value. The low 15 bits (DAC outputs 0–14) encode
an unsigned 15-bit magnitude of the desired motor or phase command. For example, in this scheme, the most negative
possible command (–32,767) is encoded as a FFFFh, a zero output value is encoded as 0, and the most positive
possible output value (+32,767) is encoded as 7FFFh.

In all other respects, this mode is identical to offset binary mode, and all other comments in the section above for that
mode apply to parallel DAC - sign magnitude mode.

11 . 4 . 5 S P I D A C - O f f s e t B i n a r y

This mode is used with motion processor designs only. PMD motion cards that are run with analog output should
select the parallel DAC- offest binary mode.

In SPI DAC mode, single-phase drive data for DC brush motors (or brushless DC motors with external commutation)
is output using the motion processor’s SPI (Serial Peripheral Interface) output port. The Magellan SPI output is a high-
speed, synchronous serial I/O port that allows a serial bit stream of 16-bit data words to be shifted out of the motion
processor at a 10 Mbps rate. The SetSPIMode command controls the four possible output clocking schemes via the
mode parameter as described in the following table.

The output value is offset by 8000h, so a value of 0 will correspond to the most negative output. A value of 8000h
corresponds to zero output, and a value of FFFFh corresponds to the most positive output.

Drive data for each axis is interleaved on the single SPI output pin. When the SPI data for an axis is being output, the
corresponding SPIEnable line (SPIEnable for single-axis configurations, SPIEnable1 – SPIEnable4 for multiple axis
configurations) is high; at all other times it is low.

For Magellan cards, sign magnitude mode may not be used. Parallel DAC - offset binary mode must be selected
for +/– 10V analog output.

S e t S P I M o d e s e t t i n g D e s c r i p t i o n

RisingEdge Rising edge without phase delay: the SPIClock signal is active low. The SPIXmt pin trans-
mits data on the rising edge of the SPIClock signal.

RisingEdgeDelay Rising edge with phase delay: the SPIClock signal is active low. The SPIXmt pin transmits
data one half-cycle ahead of the rising edge of the SPIClock signal.

FallingEdge Falling edge without phase delay: the SPIClock signal is active high. The SPIXmt pin trans-
mits data on the falling edge of the SPIClock signal.

FallingEdgeDelay Falling edge with phase delay: the SPIClock signal is active high. The SPIXmt pin transmits
data one half-cycle ahead of the falling edge of the SPIClock signal.
86 Magellan Motion Processor User’s Guide

M o t o r O u t p u t 11
11 . 4 . 6 S P I D A C - Tw o ’s C o m p l e m e n t

This mode is identical to the SPI DAC - offset binary mode described above except for the format of the output value.
In this mode, the value is in standard two’s complement format where zero (0) corresponds to zero output, 7FFFh
corresponds to the most positive output and 8000h corresponds to the most negative output.

In all other respects, this mode is identical to offset binary mode, and all other comments in the section above for that
mode apply to SPI DAC - two’s complement mode.

11 . 5 S e t t i n g P W M F r e q u e n c y

If using the PWM output mode, under some circumstances, and for some products, the PWM output frequency may
be specified using the command SetPWMFrequency. The value set using this command may be retrieved using
GetPWMFrequency.

Choice of one of these frequencies over another depends on motor type and application. For MC50000, 20kHz should
be selected for all motor types and PWM modes except if a low pass filter will be used to generate analog from the
PWM output signals. In this case 80kHz should be selected.

For Magellan/ION, 20kHz is the default PWM rate, and is recommended for most applications. 40kHz may be used
effectively with some low-inductance motors, however the overall efficiency is lower, and the linearity of the current
through the zero crossing point will not be as high.

11 . 6 M u l t i - P h a s e M o t o r I n t e r f a c i n g

(MC50000 only)

The general concepts of PWM or analog signal output apply for both single (DC brush) and multi-phase motors
(brushless DC, step motors). Depending on the waveform and the motor output mode selected (PWM, Parallel DAC
or SPI DAC), either two or three output signals per axis will be provided by the motion processor. This is detailed in
the following table.

For specific pin assignments of the PWM and DAC motor output signals, see the Pin Descriptions section of the
Magellan Motion Processor Electrical Specifications (motion processor users), or the Magellan Motion Controller Card User’s
Guide (card users).

P r o d u c t P WM f r e q u e n c y c h o i c e s

MC50000 20kHz 10 bits (1/1,024) output resolution.
80kHz at 8 bits (1/256) output resolution.

Magellan/ION 20kHz 10 bits (1/1,024) output resolution.
40kHz 9 bits (1/512) output resolution.

Mo t o r Ty p e M o t o r O u t p u t M o d e
N u m b e r o f O u t p u t

S i g n a l s & N a m e

3-phase PWM5050 3 (A, B, C)
3-phase PWMSign/Mag 2 (A, B)
3-phase DAC 2 (A, B)
2-phase PWM5050 2 (A, B)
2-phase PWMSign/Mag 2 (A, B)
2-phase DAC 2 (A, B)
Magellan Motion Processor User’s Guide 87

M o t o r O u t p u t11
For DC brush motors, which are single phase devices, each PWM or analog output drives the motor’s single coil. For
multi-phase motors the connections scheme differs somewhat depending on whether PWM or analog output has been
chosen.

Figure 11-2 illustrates a typical amplifier configuration for a three-phase brushless motor using the PWM output
mode. In this configuration, the motion processor outputs three phased PWM magnitude signals per axis. These
signals are then fed directly into three half-bridge type voltage amplifiers.

Figure 11-3 illustrates a typical amplifier configuration for a three-phase brushless motor using the DAC output mode.

When using DAC output mode, the digital word provided by the motion processor must first be converted into a
voltage using an external DAC. Two DAC channels are required per axis. To construct the third phase for a brushless
motor (C phase), the sum of the A and B signals must be negated using C = –(A+B). This is usually accomplished
with an op-amp circuit. In addition, if current loop control is desired, the three output signals are usually arranged so
that the sum of the currents flowing through the windings of the motor are zero.

Figure 11-2:
Brushless
motor (PWM
mode)
connection
scheme

MC58000

Axis #1 phase A

Axis #1 phase B

Axis #1 phase C

Axis #2 phase A

Axis #2 phase B

Axis #2 phase C

Motor #1

Motor #2

Amplifiers

MC58000

Axis #1 phase A

Axis #1 phase B

Axis #1 phase C

Axis #2 phase A

Axis #2 phase B

Axis #2 phase C

Motor #1

Motor #2

Amplifiers

DAC 1A

DAC 1B

DAC 2A

DAC 2B

Axis #1
C= -(A+B)

Axis #2
C= -(A+B)

Figure 11-3:
Brushless
motor
(DAC mode)
connection
scheme
88 Magellan Motion Processor User’s Guide

M o t o r O u t p u t 11
11 . 6 . 1 M u l t i - p h a s e M o t o r C o m m a n d I n t e r p r e ta t i o n

As for single-phase output, the commands for multi-phase motor phases represent a desired voltage or torque through
the coil, and this command can be positive or negative. Unlike single-phase motors, the output waveforms for multi-
phase motors are sinusoidal in shape, with the magnitude of the sinusoid reflecting the overall motor torque desired,
and the angle of the sinusoid reflecting phasing requirements to correctly excite the motor coils. Figure 11-4 shows
the desired output voltage waveform for a single phase of a multi-phase motor.

The waveform is centered around a value of 0V. Depending on what control modules are enabled, the magnitude of
the generated waveform is proportional to either the output of the position loop, the current loop, or the Motor
Command register.

For example, if the motion processor is connected to a DAC with output range of –10V to +10V, and the motion
processor has both the trajectory generator and position loop disabled with a motor command value of 32,767 (which
is the maximum allowed value) loaded into the Motor Command register (SetMotorCommand), then as the motor
rotates through a full electrical cycle, a sinusoidal waveform centered at 0V will be output with a minimum voltage of
–10V and a maximum voltage of +10V.

11 . 7 P u l s e & D i r e c t i o n S i g n a l G e n e r a t i o n

(MC50000 only)

For step motors, step pulse and direction signals are provided to directly interface to amplifiers utilizing this format.

The step pulse signal, which is output by the motion processor, consists of a precisely controlled series of individual
pulses, each of which represents an increment of movement. This signal is always output as a square wave pulse train
By default, a step pulse is considered to have occurred when the signal transitions from a low to a high output value.
While not necessarily a 50% duty cycle, the square wave’s rising edges are precisely timed. To invert the interpretation
of the pulse signal, use the SetSignalSense command. See Section 7.5.1, “Signal Sense Mask,” for more information.

The direction signal is synchronized with the pulse signal at the moment each pulse transition occurs. The direction
signal is encoded so that a high value indicates a positive direction pulse, and a low value indicates a negative direction
pulse. To invert this interpretation, use the SetSignalSense command. See Section 7.5.1, “Signal Sense Mask,” for more

Figure 11-4:
Motor output
waveform
(Vout)

0

+ motor command

- motor command
Magellan Motion Processor User’s Guide 89

M o t o r O u t p u t11
information. Note that if the direction signal is inverted, then if the position feedback mode is internal loop-back, the
“A” encoder signal must be inverted also to preserve the correspondence between direction and actual motor motion.

The Magellan series of motion processors support separate pulse rate modes using the command SetStepRange. The
following table shows the values and resultant step ranges available using this command.

The ranges in the preceding example show the maximum and minimum ranges that can be generated by the motion
processor for the specified mode. For example, if the desired maximum step rate is 200 K steps per second, then the
appropriate setting is SetStepRange 4.

For full-step and half-step applications, as well as pulse and direction applications that will have a maximum velocity
of approximately 38 ksteps/sec, SetStepRange 8 should be used. For applications requiring higher pulse rates, one of
the higher speed ranges should be specified.

A different step range can be programmed for each axis. To read the current step range setting, use the command
GetStepRange.

C o m m a n d F r e q u e n c y r a n g e o f o u t p u t p u l s e s

SetStepRange 1 0 to 4.98 M steps per second.
SetStepRange 4 0 to 622.5 K steps per second.
SetStepRange 6 0 to 155.625 K steps per second.
SetStepRange 8 0 to 38.90625 K steps per second.

The maximum pulse output rate on the MC55110 and MC58110 is 100k steps per second. On these two devices
the SetStepRange command cannot be used.

MC55220

Amplifier

Amplifier

Motor #1

Motor #2

Pulse

Pulse

Direction

Direction

Figure 11-5:
Step motor
connection
90 Magellan Motion Processor User’s Guide

M o t o r O u t p u t 11
See Chapter 14, “Step Motor Control,” for more information on step motor control.

11 . 8 M i c r o s t e p p i n g M o t o r O u t p u t

The MC58000 supports two motor output methods, PWM and DAC, for use with microstepping drives. The motor
output method is host-selectable and may be selected individually for each axis. The command to select the output
mode is SetOutputMode with the parameter specifying the desired output method.

11 . 8 . 1 M o t o r O u t p u t S i g n a l I n t e r p r e ta t i o n

Figure 11-6 shows a typical waveform for a single output phase of the MC58000 motion processor. Each phase has a
similar waveform; although the phase of the B channel output is shifted relative to the A channel output by 90 or 120
degrees (depending on the selected waveform).

The waveform is centered around an output value of 0. The magnitude of the overall generated waveform is controlled
by the Motor Command register (SetMotorCommand).

For example, if the motion processor is connected to a DAC with an output range of –10Vto +10V, and the motion
processor is set to a motor command value of 32,767 (which is the maximum allowed value), then as the motor rotates
through a full electrical cycle, a sinusoidal waveform centered at 0V will be output with a minimum voltage of – 10,
and a maximum voltage of +10.

The pulse generator is designed so that a step occurs when the pulse transitions from low to high. Systems using step
motor drivers which interpret a pulse as a high-to-low transition should use the SetSignalSense command to
invert the signal sense. SetSignalSense can also be used to set the polarity of the Direction output. Refer to the
Magellan Motion Processor Programmer's Command Reference for information on SetSignalSense command.

Figure 11-6:
Typical motor
output
waveform

0

+ motor command

- motor command
Magellan Motion Processor User’s Guide 91

M o t o r O u t p u t11
11 . 8 . 2 P W M D e c o d i n g

The sign magnitude PWM output mode also outputs a sinusoidal desired voltage waveform for each phase; however, the
method by which these signals encode the voltage differ substantially from the DAC digital word. The PWM mode uses a
magnitude signal and a sign signal. The magnitude signal encodes the absolute value of the output sinusoid, and the sign signal
encodes the polarity of the positive or negative output. The following diagram shows the magnitude and sign signals for a single
output phase.

In this diagram, the PWM magnitude signal has been filtered to convert it from a digital variable duty cycle waveform
to an analog signal.

Before filtering, this signal contains a pulse-width encoded representation of the analog desired voltage. In this
encoding, the duty cycle of the waveform determines the desired voltage. The PWM cycle has a frequency of 78.124
kHz. Its resolution is 8-bit, or 1/256.

11 . 8 . 3 M o t o r D r i v e C o n f i g u r a t i o n s

Figure 11-8 illustrates a typical amplifier configuration for a two-phase step motor, using either the PWM or DAC

output modes.

PWM sign

PWM magnitude
(low-pass filtered)

0

+

-

max

Figure 11-7:
Filtered PWM
sign/
magnitude
waveform

Figure 11-8:
Typical
amplifier
configuration
for 2-phase
motor

MC58220

Axis #1 phase A

Axis #2 phase A

Motor #1

Motor #2

Amplifiers

Axis #2 phase B

Axis #1 phase B
92 Magellan Motion Processor User’s Guide

M o t o r O u t p u t 11
Using the DAC output mode, the digital motor output word for each phase is typically converted into a DC signal with
a value ranging between –10V to +10V. This signal can then be input into an off-the-shelf DC-Servo type amplifier
(one amplifier for each phase), or into any other linear or switching amplifier that performs current control and
provides a bipolar, two-lead output.

In this scheme, each amplifier drives one phase of the step motor, with the motion processor generating the required
sinusoidal waveforms in each phase to perform smooth, accurate motion.

If the motion processor’s PWM output mode is used, the PWM magnitude and sign signals are typically connected to
an H-bridge type device. For maximum performance, current control should be performed by the amplifier. This
minimizes the coil current distortion due to inductance and back-EMF. Although there are several methods which may
be used to achieve current control with the PWM output mode, a common method is to pass the PWM magnitude
signal through a low pass filter. This creates an analog reference signal that can be directly compared with the current
through the coil.

Several single-chip amplifiers are available that are compatible with these input signals. These amplifiers require an
analog reference input (low-passed PWM signal from the motion processor), as well as a sign bit (PWMSign signal from
the motion processor). The amplifier performs current control; typically using a fixed off-time PWM drive scheme.
See the Magellan Motion Processor Electrical Specifications manual for a circuit example.

Figure 11-9 illustrates this amplifier configuration.

Relative to the DAC output method, the PWM output mode used with this amplifier scheme has the advantage of high
performance with a minimum of external parts.

Figure 11-10 illustrates a typical amplifier configuration using the MC58220 in DAC mode for a three-phase step
motor, or for a brushless DC motor with three phases.

Figure 11-9:
Typical
amplifier
current-
control
configuration

MC58220

Low pass filter

Low pass filter

Current control
H-bridge

Current control
H-bridge

Amplifier

PWM Mag A

PWM Sign A

PWM Mag B

PWM Sign B

Motor
Magellan Motion Processor User’s Guide 93

M o t o r O u t p u t11
When using DAC output mode, the digital word provided by the motion processor must first be converted into a
voltage using an external DAC. Two DAC channels are required per axis. The third phase is constructed externally,
using the expression C = –(A+B). This is usually accomplished with an op-amp circuit.

MC58220

Axis #1 phase A

Axis #1 phase B

Axis #1 phase C

Axis #2 phase A

Axis #2 phase B

Axis #2 phase C

Motor #1

Motor #2

Amplifiers

DAC 1A

DAC 1B

DAC 2A

DAC 2B

Axis #1
C= -(A+B)

Axis #2
C= -(A+B)

Figure 11-10:
Typical
amplifier
configuration
for 3-phase
motor
94 Magellan Motion Processor User’s Guide

12

1 2 . H o s t C o m m u n i c a t i o n
In This Chapter
Host I/O Commands
Parallel Communication Port
Serial Port
Controller Area Network (CAN)
Storing Communication Values

The Magellan Motion Processor communicates with its host(s) through one of three methods: a bi-directional parallel
port, an asynchronous serial port, or via CANbus 2.0 standard. All Magellan processors support serial and CANbus
communications, while only the MC50000 processors support bi-directional parallel communications.

Card products that use the MC55000 or MC58000 connect to the bus type supported by the card using the motion
processor’s bi-directional parallel port in 16-bit mode, while also supporting direct connections for serial or CANbus
operation.

Magellan/ION supports serial and CANbus communications only.

Figure 12-1:
Host to motion
processor
communication

Host

Magellan Motion Processor

H
o

st
D

at
a0

 -
 1

5

~
H

os
tS

lc
t

H
os

tR
dy

~
H

os
tW

rit
e

~
H

os
tR

e
ad

H
os

tC
m

d

H
os

tI
nt

pt

CAN 2.0B network

Serial network

System
clock

(40 MHz)

P
a

ra
lle

l p
or

t

Magellan Motion Processor User’s Guide 95

H o s t C o m mu n i c a t i o n12
The motion processor accepts commands from the host in a packet format. By sending sequences of commands, the
host can control the behavior of the motion system as desired, while monitoring the status of the motion processor
and the motors.

1 2 . 1 H o s t I / O C o m m a n d s

All communications to and from the chipset, whether parallel, serial, or CANbus, are in the form of packets. A packet
is a sequence of transfers to and from the host, resulting in a chipset action or data transfer. Packets may consist of a
command with no data (dataless command), a command with associated data that are written to the chipset (write
command), or a command with associated data that are read from the chipset (read command).

Every command sent by the host has a structured format that does not change, even if the amount of data and nature
of the command vary. Each command has an instruction word (16 bits) that identifies the command. There may be
zero or more words of data associated with the command that the host writes to the motion processor. This is followed
by zero or more words of data that the host reads from the motion processor. Finally, there is an optional checksum
that may be read by the host to verify that communications are occurring properly. The type of command determines
whether there are data written to the motion processor and to the host.

Most commands with associated data (read or write) have one, two, or three words of data. See the Magellan Motion
Processor Programmer's Command Reference for more information on the length of specific commands. If a read or a write
command has two words of associated data (a 32-bit quantity), the high word is loaded/read first, and the low word
is loaded/read second.

The following tables show the generic command packet sequence for a dataless command, a write command, and a
read command. The columns at the right of the tables list the corresponding hardware communication operation.
These are either a command write, a data read, or a data write. See the Magellan Motion Processor Electrical Specifications
for detailed information on the signal names and electrical operations required to perform about operations. For card
users, see the appropriate user’s guide or manual for information on parallel bus I/O.

Design Note: While some users will develop their own low-level libraries for interfacing to MC50000 motion
processors and cards, PMD’s higher-level language tools, such as C-Motion and VB-Motion, provide convenient APIs
(Application Programmmer Interface) for all Magellan commands.

D a ta l e s s C o m m a n d D a ta Tr a n s f e r

1 Command Write: Command Word
2 (optional) Data Read: Packet Checksum

Wr i t e C o m m a n d D a ta Tr a n s f e r

1 Command Write: Command Word
2 Data Write: Word 1
3 (optional) Data Write: Word 2
4 (optional) Data Write: Word 3
5 (optional) Data Read: Packet Checksum

R e a d C o m ma n d D a ta Tr a n s f e r

1 Command Write: Command Word
2 (optional) Data Write: Word 1
3 Data Read: Word 1
4 (optional) Data Read: Word 2
5 (optional) Data Read: Packet Checksum
96 Magellan Motion Processor User’s Guide

H o s t C o m mu n i c a t i o n 12
1 2 . 2 P a r a l l e l C o m m u n i c a t i o n P o r t

(MC50000 only)

The bi-directional parallel port is configured to operate in one of two modes, 16-bit and 8-bit, as described in the
following table. Note that bus-based card communications always operate the Magellan in 16-bit mode. Although 16-
bit communication is faster and simpler to implement, 8-bit communication may be useful for direct interface with
microprocessors that have an 8-bit external interface.

For MC50000 motion processors designs, the parallel port configuration is determined by HostMode1 and
HostMode0 pins on the I/O chip. For more information see the Magellan Motion Processor Electrical Specifications.

For MC50000-based motion cards, the parallel interface is fixed at 16-bits and need not be specified. See the Magellan
Motion Processor Electrical Specifications or the Magellan Motion Controller Card User’s Guide for more information on
communications setup.

1 2 . 2 . 1 I n t e r f a c i n g

Five control signals synchronize communications through the parallel port: ~HostSlct, HostRdy, ~HostWrite,
~HostRead, and HostCmd. The descriptions of these signals are as follows.

16-bit mode The motion processor transfers instructions and data as full 16-bit words, using the entire 16-bit data
path.

8-bit mode The motion processor transfers instructions and data as full 16-bit words, using an 8-bit data path.
Words are transferred in two successive bytes; the high-order byte of each word is transferred first in
all cases. This mode allows access to all features of the Magellan instruction set, even when the host is
limited to an 8-bit data path.

S i g n a l D e s c r i p t i o n

~HostSlct Set by host—when this signal is asserted (low), the host parallel port is selected for operations.
HostRdy Set by motion processor—when high, indicates to the host that the motion processor's host

port is available for operations.
~HostWrite Set by host—when asserted low, allows a data transfer from the host to the motion processor.
~HostRead Set by host—when asserted low, allows a data word to be read by the host from the motion

processor.
HostCmd Used in conjunction with the ~HostRead and ~HostWrite signals as follows:

When and HostCmd is Then
~HostWrite is low low write data word to motion processor

high write instruction word to motion processor.

~HostRead is low low read data word from motion processor.

high read status word from motion processor (see
Section 12.2.3, “The St a t u s R e a d Opera-
tion,” for more information).
Magellan Motion Processor User’s Guide 97

H o s t C o m mu n i c a t i o n12
1 2 . 2 . 2 P a r a l l e l p o r t I / O O p e r a t i o n s

Using the five parallel port control signals of ~HostSlct, HostRdy, ~HostWrite, ~HostRead, and HostCmd, it is
possible to perform all necessary operations to send commands to the motion processor.

The three operations are: the instruction word write, the data word write, and the data word read. By performing these operations
in the correct sequence, the complete command packets can be assembled and sent to the motion processor. Command
format is discussed in the Magellan Motion Processor Programmer’s Command Reference.

instruction word write — In 16-bit bus mode, this is accomplished by asserting ~HostSlct and ~HostWrite low,
asserting HostCmd high, and loading the data bus with the desired 16-bit instruction word value. In 8-bit
bus mode, the control signals are the same, except that only the low 8 bits of the data bus hold data, and the
operation is performed twice. On the first 8-bit write, the data bus should contain the high byte of the
instruction word. On the second 8-bit write, the data should contain the low byte of the instruction word.

data word write —In 16-bit bus mode this is accomplished by asserting ~HostSlct, and ~HostWrite low,
asserting HostCmd low, and loading the data bus with the desired 16-bit data word value. In 8-bit bus mode,
the control signals are the same, except that only the low 8 bits of the data bus hold data, and the operation
is performed twice. On the first 8-bit write, the data bus should contain the high byte of the data word. On
the second 8-bit write, the data should contain the low byte of the data word.

data word read—In 16-bit bus mode this is accomplished by asserting ~HostSlct, and ~HostRead low,
asserting HostCmd low, and storing the value asserted by the motion processor on the 16-bit data bus. On
the first 8-bit read, the data bus will contain the high byte of the data word. On the second 8-bit read, the
data will contain the low byte of the data word.

At the beginning of each of these operations, the HostRdy signal must be high. This indicates that the motion
processor is ready to receive or transmit a new data or instruction word. In between 8-bit transfers, the HostRdy does
not need to be checked. For example, after checking the HostRdy for the high byte of any of these 2-byte transfers
(instruction word write, data word write, or data word read), the HostRdy does not have to be checked again to transfer the
low byte.

For more detailed electrical information on these operations, see the pin descriptions and timing diagrams in the
Magellan Motion Processor Electrical Specifications document for your motion processor model.

1 2 . 2 . 3 T h e S ta t u s R e a d O p e r a t i o n

There is a special operation called a status read, which is not directly related to reading or writing to the motion
processor. The status read allows the user to determine the state of some of the motion processor's host interface
signals and flags without having to develop special decode logic.

A status read operation is performed by asserting ~HostRead and ~HostSlct low, HostCmd high, and reading the
data bus. The resultant data word sent by the motion processor contains the following information:

Before any parallel host I/O operation is performed, the user must make sure that the HostRdy signal is high
(motion processor ready). After each word (instruction or data) is read or written, this signal will go low (motion
processor busy). It will return to ready when the motion processor is ready to transfer the next word.
98 Magellan Motion Processor User’s Guide

H o s t C o m mu n i c a t i o n 12

.

1 2 . 2 . 4 C h e c k s u m

It is possible to retrieve a checksum at the end of each read and/or write command. The checksum may enhance
reliability for critical applications, particularly in very noisy electrical environments. Checksums may also be helpful in
situations where the communication signals are routed over a medium that may have data losses. The checksum
consists of the low-order 16 bits of the sum of all preceding words transmitted in the command. For example, if a
SetVelocity instruction (which takes two 16-bit words of data) is sent with a data value of FEDCBA98 (hex), the
checksum would be:

 0011h code for SetVelocity instruction
+ FEDCh first data word
+ BA98h second data word
= 1B985h checksum = B985 (low-order 16 bits only)

Reading the checksum is optional. Recovery from an incorrect command transfer (bad checksum) will depend on the
nature of the packet. Buffered operations can always be re-transmitted, but a non-buffered instruction (one that causes
an immediate action) might or might not be re-transmitted, depending on the instruction and the state of the axis.

1 2 . 2 . 5 I n s t r u c t i o n E r r o r s

There are a number of checks made by the motion processor on the commands sent to it. These checks improve safety
of the motion system by eliminating incorrect command data values. All such checks associated with host I/O
commands are referred to as instruction errors. If any such error occurs, bit 13 of the I/O status read word is set. (See
Section 12.2.3, “The St a t u s R e a d Operation,” for the definition of this word.) To determine the error’s cause,
the command GetInstructionError is used. Executing the GetInstructionError command also clears both the error
code and the I/O error bit in the I/O status read word.

I/O error codes that are returned by the GetInstructionError command are detailed in the following table.

B i t n u m b e r D e s c r i p t i o n

0–12 Not used.
13 Indicates whether an instruction error has occurred (see Section 12.2.5, “Instruction Errors,” for

more information).
14 Holds value of HostIntrpt signal. A value of one indicates the signal level is high.

15 Holds value of HostRdy signal. A value of one indicates the signal level is high.

Status reads may be performed at any time regardless of the state of the HostRdy signal.

C o d e I n d i c a t i o n C a u s e

0 No error No error condition.
1 Magellan reset Default value of error code on reset or power-up.
2 Invalid instruction An illegal instruction code has been detected.
3 Invalid axis The axis number contained in the upper bits of the instruction word is not

supported by this motion processor.
4 Invalid parameter The parameter value sent to the motion processor was out of its acceptable

range.
Magellan Motion Processor User’s Guide 99

H o s t C o m mu n i c a t i o n12
1 2 . 3 S e r i a l P o r t

All Magellan Motion Processors provide an asynchronous serial connection. This serial port may be configured to
operate at baud rates ranging from 1200 baud to 460,800 baud and may be used in point-to-point or multi-drop mode.

1 2 . 3 . 1 C o n f i g u r a t i o n

After reset, the motion processor reads a 16-bit value from its peripheral bus (location 200h), which it uses to set the
default configuration of the serial port. If the serial port is to be used, then external hardware should be used to decode
this access and provide a suitable configuration word as described in the following table. See the Magellan Motion
Processor Electrical Specifications for details on peripheral bus I/O.

The motion processor’s serial port can also be configured using the SetSerialPortMode command. Refer to the
Magellan Motion Processor Programmer’s Command Reference for more information.

5 Trace running An instruction was issued that would change the state of the tracing mechanism
while the trace is running. Instructions that can return this error are
SetTraceVariable, SetTraceMode & SetTracePeriod.

6 Reserved
7 Block bound exceeded 1. The value sent by SetBufferLength or SetBufferStart would create a

memory block that extends beyond the allowed limits of the product.

2. Either SetBufferReadIndex or SetBufferWriteIndex sent an index value
greater than or equal to the block length.

8 Trace zero SetTraceStart Immediate was issued, but the length of the trace buffer is
currently set to zero.

9 Bad checksum (Serial port only) The checksum received by Magellan does not match the
checksum that was sent by the host.

10 Reserved
11 Negative velocity An attempt was made to set a negative velocity without the axis being in velocity

contouring profile mode.
12 S-curve change The axis is currently executing an S-curve profile move and an attempt was

made to change the profile parameters. This is not permitted.
13 Invalid move after event

action
A move was commanded after occurrence of an event action set using
SetEventAction command without first clearing the appropriate bit in the
Event Status register.

14 Move into limit An attempt was made to execute a move without first clearing the limit bit(s) in
the Event Status register.

15 Reserved
16 Invalid operating mode

change after event action
An attempt was made to restore the operating mode using
RestoreOperatingMode command or SetOperatingMode command
without first clearing the limit bit(s) in the Event Status register.

17 Invalid instruction context Instruction not valid in current Operating Mode, system state or context.

C o d e I n d i c a t i o n C a u s e
100 Magellan Motion Processor User’s Guide

H o s t C o m mu n i c a t i o n 12
The serial port configuration word is organized as follows:

For MC50000 users, this word is read by the motion processor at address 200h.

For Prodigy-PC/104 Motion Card users, this 16-bit value is set using a DIP switch. For more information refer to the
Prodigy-PC/104 Motion Card User’s Guide.

For Magellan/ION users, the default communication parameters come from one of two sources, they are either fixed
(RS-232), or they come from the Magellan/ION’s non-volatile memory (RS-485). The following table illustrates this:

The basic unit of serial data transfer (both transmit and receive) is the asynchronous frame. Each frame of data consists
of the following components.

l One start bit.

l Eight data bits.

l An optional even/odd parity bit.

l One or two stop bits.This data frame format is shown in the following figure.

B i t P a r a m e t e r I n d i c a t i o n s

0 – 3 Transmission rate selector 0 1,200 bits per second
1 2,400 bps
2 9,600 bps
3 19,200 bps
4 57,600 bps
5 115,200 bps
6 230,400 bps
7 460,800 bps

4 – 5 Parity Selector 0 None
1 Odd parity
2 Even parity
3 Reserved (do not use)

6 Number of stop bits 0 1 stop bit
1 2 stop bits

7 – 8 Protocol type 0 Point-to-point
1 Multi-drop (idle line mode)
2 Reserved (do not use)
3 Reserved (do not use)

9 – 10 Reserved --
11 – 15 Multi-drop address selector

Should be zero in point-to-
point mode

0 Address 0
1 Address 1
...
31 Address 31

C o m m u n i c a t i o n s M o d e D e f a u l t Va l u e

RS-232 Fixed at 57.6K, 1 stop bit, no parity.
RS-485 Initially set at 57.6K, 1 stop bit, no parity, point-to-point mode.

Thereafter set using SetDefault command. See Section 12.5,
“Storing Communication Values,” for more information.

Figure 12-2:
Typical data
frame format

LSB 2 3 4 5 6 7 MSB Parity StopStart
Magellan Motion Processor User’s Guide 101

H o s t C o m mu n i c a t i o n12
1 2 . 3 . 2 C o m m a n d F o r m a t

The command format that is used to communicate between the host and motion processor consists of a command
packet sent by the host processor, followed by a response packet sent by the motion processor. The host must wait
for, receive, and decode the response packet.

Command packets sent by the host contain the following fields.

In response to the command packet, the motion processor will respond with a packet in the following format.

* Note that the address byte is only present in the response packet when in multi-drop mode. In this case, its is also
included in the checksum calculation.

1 2 . 3 . 3 I n s t r u c t i o n E r r o r s

There are a number of checks made by the chip on commands it receives. These checks improve safety of the motion
system by eliminating some obviously incorrect command data values. All such checks associated with host I/O
commands are referred to as instruction errors. The status byte in the response packet will contain one of the error
codes. See the table in Section 12.2.5, “Instruction Errors,” for more information.

1 2 . 3 . 4 C h e c k s u m s

As for parallel communications, both command and response packets contain a checksum byte. The checksum is used
to detect transmission errors, and allows the motion processor to identify and reject packets that have been corrupted
during transmission or were not properly formed.

Unlike the parallel interface however, checksums are mandatory when using serial communications. Any command
packets sent to the motion processor containing invalid checksums will not be processed and will result in a data packet
being returned containing an error status code.

The serial checksum is calculated by summing all bytes in the packet (not including the checksum) and negating (i.e.,
taking the two’s complement of) the result. The lower eight bits of this value are used as the checksum. To check for

F i e l d B y t e # D e s c r i p t i o n

Address 1 One byte identifying the motion processor to which the command packet is being
sent. This field should always be zero in point-to-point mode.

Checksum 2 One byte value used to validate packet data. See the table in Section 12.3.4, “Check-
sums,” for detailed information.

Instruction code 3–4 Two byte instruction, sent upper byte (axis number) first. The command codes are
the same as those used in the parallel communication mode.

Data 5 Zero to six bytes of data, sent most significant byte (MSB) first. See the individual
command descriptions for details on data required for each command.

F i e l d B y t e # D e s c r i p t i o n

Address (1)* One byte identifing the motion processor sending the response. Present in multi-drop
mode only.

Status 1 (2) Zero if the command was completed correctly; otherwise, an error code specifying the
nature of the error. See Section 12.2.5, “Instruction Errors,” for more information.

Checksum 2 (3) A one-byte checksum value used to validate the packet's integrity. See details in the pre-
ceding table.

Data 3 (4) Zero to six bytes of data. No data will be sent if an error occurred in the command (i.e.
the status byte was non-zero). If no error occurred, then the number of bytes of data
returned would depend on the command to which the motion processor was responding.
Data are always sent MSB first.
102 Magellan Motion Processor User’s Guide

H o s t C o m mu n i c a t i o n 12
a valid checksum, all bytes of a packet should be summed (including the checksum byte), and if the lower eight bits of
the result are zero, then the checksum is valid.

For example, if a command packet is sent to motion processor address 3, containing command 0177h
(SetMotorCommand for axis 2) with the one-word data value 1234h, then the checksum will be calculated by
summing all bytes of the command packet (03h + 01h + 77h + 12h + 34h = C1) and negating this to find the
checksum value (3Fh). On receipt, the motion processor will sum all bytes of the packet, and if the lower eight bits of
the result are zero, then it will accept the packet (03h + 3Fh + 01h + 77h + 12h + 34h = 100h).

1 2 . 3 . 5 Tr a n s m i s s i o n P r o t o c o l s

The Magellan Motion Processors support the ability to have more than one motion processor on a serial bus, thereby
allowing a chain, or network of motion processors, to communicate on the same serial hardware signals.

There are two methods supported by the serial port to resolve timing problems, transmission conflicts, and other
issues that may occur during serial operations. These are point-to-point (used when there is only one device connected
to the serial port) and multi-drop idle-line mode (used when there are multiple devices on the serial bus). The
following sections describe these transmission protocols.

1 2 . 3 . 6 P o i n t - t o - P o i n t M o d e

Point-to-point serial mode is intended to be used when there is a direct serial connection between one host and one
motion processor. In this mode, the address byte in the command packet is not used by the motion processor (except
in the calculation of the checksum), and the motion processor responds to all commands sent by the host.

When in point-to-point mode, there are no timing requirements on the data transmitted within a packet. The amount
of data contained in a command packet is determined by the command code in the packet. Each command code has
a specific amount of data associated with it. When the motion processor receives a command code, it waits for all data
bytes to be received before processing the command. The amount of data returned from any command is also
determined by the command code. After processing a command, the motion processor will respond with a data packet
of the necessary length. No address byte is sent with this response packet.

When running in point-to-point mode, there is no direct way for the motion processor to determine the beginning of
a new command packet, except by context. Therefore, it is important for the host to remain synchronized with the
motion processor when sending and receiving data. To ensure that the processors remain synchronized, it is
recommended that the host processor implement a time limit when waiting for data packets to be sent by the motion
processor. The suggested minimum timeout period is the amount of time required to send one byte at the selected baud
rate plus one millisecond. For example, at 9600 baud each bit takes 1/9600 seconds to transfer, and a typical byte
consists of 8 data bits, 1 start bit, and 1 stop bit. Therefore, one byte takes just over 1 millisecond, and the recommended
minimum timeout is 2 milliseconds.

If the timeout period elapses between bytes of received data while the host is waiting on a data packet, then the host
should assume that it is out of synchronization with the motion processor. To resynchronize, the host should send a
byte containing zero data and wait for a data packet to be received. This process should be repeated until a data packet
is received from the motion processor; at which point the two processors will be synchronized.

1 2 . 3 . 7 M u l t i - d r o p I d l e - l i n e M o d e

This multi-drop protocol is intended to be used on a serial bus in which a single host processor communicates with
multiple motion processors (or other subordinate devices). In this mode, the address byte that starts a command
packet is used to indicate the device for which the packet is intended. Only the addressed device will respond to the
packet. Therefore, it is important to properly set up the motion processor address (using the serial configuration word
Magellan Motion Processor User’s Guide 103

H o s t C o m mu n i c a t i o n12
previously described) and to include this address as the first byte of any command packet destined for the motion
processor.

When the idle-line mode is used, the motion processor imposes tight timing requirements on the data sent as part of
a command packet. In this mode, the motion processor will interpret the first byte received after an idle period as the
start of a new packet. Any data already received will be discarded.

The timeout period is equal to the time required to send ten bits of serial data at the configured baud rate—for
example, roughly 1 millisecond at 9600 baud. If a delay of this length occurs between bytes of a command packet, then
the bytes already received will be discarded, and the first character received after the delay will be interpreted as the
address byte of a new packet.

Once the motion processor receives an address byte and a command code, it waits for all data bytes to be received
before processing the command. The amount of data returned from any command is also determined by the
command code. After processing a command, the motion processor will respond with a data packet of the necessary
length. In multi-drop mode, the first byte of every response packet contains the address of the responding motion
processor. This prevents other devices on the network from interpreting the response as a command sent to them.

Note that this multi-drop protocol may also be used when the host and motion processor are wired in a point-to-point
configuration, as long as the host always transmits the correct address byte at the start of a packet and follows any
additional rules for the selected protocol. This mode of operation allows the host to ensure that it will remain
synchronized with the motion processor without implementing the timeout and re-synch procedure previously
outlined.

1 2 . 4 C o n t r o l l e r A r e a N e t w o r k (C A N)

CAN is a serial bus system especially suited for networking “intelligent” devices as well as sensors and actuators within
a system or sub-system.

1 2 . 4 . 1 O v e r v i e w

All Magellan Motion Processors provide a CAN 2.0B network and will coexist (but not communicate) with CANOpen
nodes on that network. Magellan uses CAN to receive commands, send responses, and (optionally) send asynchronous
event notifications. Each message type has an address, as shown in the following table.

M e s s a g e Ty p e C A N A d d r e s s

Command received 0x600 + nodeID
Command response 0x580 + nodeID
Event notification 0x180 + nodeID
104 Magellan Motion Processor User’s Guide

H o s t C o m mu n i c a t i o n 12
CAN nodes communicate via messages. Each message may carry a data payload of up to 8 bytes. The CAN interface
layer automatically corrects transmission errors. Unlike the serial and parallel protocols, a checksum is not a part of
the motion processor’s CAN interface protocol.

1 2 . 4 . 2 M e s s a g e F o r m a t

Messages are transmitted and received using the standard format identifier length of 11 bits. All network messages that
use the extended format 29-bit identifier are ignored by the motion processor. The data formats for the three message
types listed in the previous table are expressed in terms of the byte sequences for the parallel interface. Commands
have varying data lengths; see the Magellan Motion Processor Programmer’s Command Reference for the data formats of
particular commands. In the following table, bytes that will always be present independent of the command being
processed are marked as Required.

The corresponding byte sequences in the CAN protocol for the three message types are described in the following
tables.

The first word in a response will contain a value of zero in the upper byte, and the lower byte will contain a value that
will also be zero in a no-error condition, but will be non-zero if an error occured while processing the instruction. (See
Section 12.2.5, “Instruction Errors,” for more information.) The byte following the status byte will be the high byte
of the 1st data word, followed by the low byte of the 1st data word and continuing as shown in the preceding table.

C o m m a n d R e c e i v e d

M e s s a g e
d a t a b y t e R e q u i r e d ?

C o r r e s p o n d i n g p a r a l l e l
b y t e

1 Y Command word, high byte
2 Y Command word, low byte
3 N 1st data word, high byte
4 N 1st data word, low byte
5 N 2nd data word, high byte
6 N 2nd data word, low byte
7 N 3rd data word, high byte
8 N 3rd data word, low byte

C o m m a n d R e s p o n s e

M e s s a g e
d a ta b y t e R e q u i r e d ?

C o r r e s p o n d i n g
pa r a l l e l b y t e

1 Y Reserved (always zero)
2 Y Instruction status code
3 N 1st data word, high byte
4 N 1st data word, low byte
5 N 2nd data word, high byte
6 N 2nd data word, low byte
7 N 3rd data word, high byte
8 N 3rd data word, low byte
Magellan Motion Processor User’s Guide 105

H o s t C o m mu n i c a t i o n12
The actual number of bytes returned is determined by the instruction that was issued; see the Magellan Motion Processor
Programmer’s Command Reference for the data lengths and formats of each command.

The first byte in a notification message will contain a value of zero with the second byte indicating the axis from which
the notification was sent. The 3rd and 4th bytes are the high and low byte of the Event Status register from the
notifying axis.

1 2 . 4 . 3 C o n f i g u r i n g t h e C A N I n t e r f a c e

After reset, the motion processor reads a 16-bit value from its peripheral bus (location 400h), which it uses to set the
default configuration of the CAN interface. Refer to the Magellan Motion Processor Electrical Specifications for details on
peripheral bus I/O.

The motion processor’s CAN interface may also be configured via the command SetCANMode. This command is
used to set the CAN nodeID of a particular motion processor (0–127), as well as the transmission rate of the
connected CAN network. The supported transmission rates are as follows:

1 2 . 4 . 4 C A N E v e n t N o t i f i c a t i o n

When communicating via the CAN interface, the motion processor may (optionally) send messages when selected bits
in the Event Status register are set active. This facility directly corresponds to the motion processor’s host interrupt
facility when using the parallel interface. (See Section 8.10, “Host Interrupts,” for more information.) These messages
are sent with a CAN address of 0x180 + nodeID.

This CAN notification facility is controlled with the command SetInterruptMask. For each on bit in the notify mask,
a CAN message will be generated whenever the corresponding bit in the Event Status register becomes 1. See Section
8.10, “Host Interrupts,” for more information.

E v e n t N o t i f i c a t i o n

M e s s a g e
d a ta b y t e D a ta I n t e r p r e ta t i o n

1 reserved (always zero)
2 axis number (0–3)
3 Event Status register value, high byte
4 Event Status register value, low byte

S e t C a n M o d e
E n c o d i n g C A N Tr a n s m i s s i o n R a t e (b ps)

0 1,000,000
1 800,000
2 500,000
3 250,000
4 125,000
5 50,000
6 20,000
7 10,000
106 Magellan Motion Processor User’s Guide

H o s t C o m mu n i c a t i o n 12
1 2 . 5 S t o r i n g C o m m u n i c a t i o n Va l u e s

(Magellan/ION Only)

Particularly when configuring the motion processor for its production connectivity, it is useful to be able to store
communications parameters permanently, so that upon the next powerup, the motion processor will utilize new
communication parameters. This can be accomplished using the command SetDefault. The values set using this
command can be read back using the command GetDefault.

The new communication parameters will take effect only after the next power cycle or reset. Therefore communication will
continue at the present settings until this has occurred.

The following table defines which parameters can be stored using SetDefault.

P a r a m e t e r D e s c r i p t i o n

CANMode This parameter specifies the CAN configuration information, as described in
Section 12.4.3, “Configuring the CAN Interface.”

SerialPortMode For RS485 only, this parameter specifies the serial port configuration word, as
described in Section 12.3.1, “Configuration.”
Magellan Motion Processor User’s Guide 107

H o s t C o m mu n i c a t i o n12
This page intentionally left blank.
108 Magellan Motion Processor User’s Guide

13

13. Brushless DC Motor Control
In This Chapter
Overview
Number of Phases
Phasing Control Modes
Phase Counts
Phase Initialization
Phase Initialization Programming
Index Pulse Referencing
Encoder Prescaler
Sinusoidal Commutation
Field Oriented Control

1 3 . 1 O v e r v i e w

Magellan Motion Processors provide a number of special features for support of brushless motors. These include input
of Hall sensors, support for sinusoidal commutation, and support for 2- or 3-phase motors. Magellan Motion Processors
provide additional features including field oriented control (FOC).

There are two overall approaches used to generate the correct phasing and motor excitation signal to drive brushless DC
motors. The first is known as commutation, using either Hall sensors or encoder feedback signals to generate the desired
output waveforms. The second is field oriented control, which is appropriate for designs that integrate an amplifier into the
overall motion controller. Note that a “third” option for driving a brushless DC motor is using an amplifier that provides
its own commutation. This effectively converts the controller into a single-phase DC brush motor type.

The following table shows the control modes available for various Magellan Motion Processors.

Broadly speaking, the control tasks that are specific to multi-phase motors can be broken down into an initialization
phase, when the exact correct phase angle may not yet be known, and motor operation, when phase initialization is
complete and the motor is rotating and operating normally. For both of these modes, before correct phasing can occur,
a number of parameters must be setup correctly. The following sections describe these parameters.

M a g e l l a n P r o d u c t C o n t r o l M o d e s Av a i l a b l e C u r r e n t C o n t r o l Av a i l a b l e

MC58000 Hall-based commutation
Sinusoidal commutation

No

Magellan/ION Hall-based commutation
Sinusoidal commutation
Field Oriented control

Yes
Magellan Motion Processor User’s Guide 109

B r u s h l e s s D C Mo t o r C o n t r o l13
1 3 . 2 N u m b e r o f P h a s e s

The MC58000 supports two commutation waveforms: a 120-degree offset waveform appropriate for 3-phase
brushless motors, and a 90-degree offset waveform appropriate for 2-phase brushless motors. Magellan supports a
single waveform consisting of a 120-degree offset waveform appropriate for 3-phase brushless motors.

To specify the waveform, the command SetMotorType is used. This command is not required for Magellan/ION,
which defaults to the specific motor and waveform type that it supports.

Figure 13-1 illustrates the phase A, B, and C commutation signals for a 3-phase brushless motor, and the phase A and
phase B signals for a 2-phase brushless motor.

1 3 . 3 P h a s i n g C o n t r o l M o d e s

To drive a brushless DC motor correctly, the motor’s rotor angle must be known as it continually changes. This is
accomplished using one of two methods. The first is by using Hall sensors, and the second is by using a position
encoder. In both cases these sensors must be directly connected to the motor shaft. Generally speaking, if an encoder
is available it should be used, as it will provide smoother motion and higher overall performance than Hall sensors.

To select whether the phasing of the motor will be Hall-based or encoder-based, the command SetCommutationMode
is used. The value set can be read back using the command GetCommutationMode.

For Magellan/ION users, if field oriented control is desired, then the command SetCurrentControlMode is used
with a value of FOC. The value set may be read back using the command GetCurrentControlMode. Selection of
field oriented control does not affect selection of Hall-based or encoder-based phasing, although if an encoder is
available, it is recommended that it be used rather than Hall sensors.

Note that frequently both Hall sensors and encoder feedback signals are used. The Hall sensors are used during phase
initialization, and the encoder is used thereafter to determine correct waveform phasing during regular motor
operation. See Section 13.5, Phase Initialization, for more information on phase initialization.

Figure 13-1:
Commutation
waveforms

Phase A Phase B Phase C

3-Phase Brushless

120°

2-Phase Brushless

Phase A Phase B

90°
110 Magellan Motion Processor User’s Guide

B r u s h l e s s D C M o t o r C o n t r o l 13
1 3 . 4 P h a s e C o u n ts

If the motor phasing will be determined by an encoder, the number of encoder counts per electrical cycle must be
specified. This parameter indicates to the motion processor the number of encoder counts required to complete a
single full electrical rotation cycle. It is thus a way of indicating the relationship between mechanical motor rotation
and electrical waveform generation.

To determine this value, the number of electrical cycles of the motor and the number of encoder counts per motor
revolution must be known. The number of encoder counts per electrical cycle is then determined using the following
equation:

Counts per cycle = Counts_per_rot/electrical cycles

where

Counts_per_rot is the number of encoder counts per motor rotation

electrical cycles is the number of motor electrical cycles

The number of electrical cycles can usually be determined by examining the motor manufacturer's specification. The
number of electrical cycles is exactly half the number of poles. Note: Care should be taken not to confuse poles with
pole pairs. For example, if a motor is documented as having 1,024 encoder counts per rotation and 4 poles, then it has
a Counts per cycle value of:

Counts per cycle = 1,024 counts_per_rot/2 electrical cycles per rotation

Counts per cycle = 512

The command used to set the number of encoder counts per electrical cycle is SetPhaseCounts. To read this value,
use the command GetPhaseCounts.

1 3 . 5 P h a s e I n i t i a l i z a t i o n

In addition to specifying the counts per electrical cycle, if the encoder will be used for motor phasing, then the motion
processor must determine the proper initial phase angle of the motor relative to the encoder position. This
information is determined using a procedure called phase initialization. Note that a phase initialization procedure is
not necessary if Hall-based commutation is selected.

The Magellan Motion Processors provide three methods to perform phase initialization: Hall sensor-based,
algorithmic, and direct-set.

1 3 . 5 . 1 H a l l - B a s e d P h a s e I n i t i a l i z a t i o n

The most common, and the simplest, method of phase initialization is Hall-based. To set the motion processor for
Hall-based initialization, use the command SetPhaseInitializeMode and specify Hall-based as the parameter.

In this mode, three Hall sensor signals are used to determine the motor phasing. Sinusoidal commutation begins
automatically after the motor has moved through a Hall state transition.

The Hall sensor signals are fed back into the motion processor through the signals Hall1A-C (axis #1) and Hall2A-C
(axis #2), etc. Care should be taken to connect these sensors properly. To read the current status of the Hall sensors,
use the command GetSignalStatus.
Magellan Motion Processor User’s Guide 111

B r u s h l e s s D C Mo t o r C o n t r o l13
Figure 13-2 illustrates the relationship between the state of the three Hall sensor inputs, the sinusoidally commutated phase
current commands, and the motor phase-to-phase back EMF waveforms during forward motion of the motor. The motion
processor expects 120-degree separation between Hall signal transitions. To commutate using Hall sensors located 60
degrees apart, swap and invert the appropriate Hall signals and motor phases to generate the expected Hall states. This Hall
to BEMF phasing diagram is the most common way of specifying the required alignment and a similar diagram is typically
provided by the motor supplier.

With Hall-based phase initialization, no special motor setup procedures are required. Initialization is performed using
the command InitializePhase, and occurs immediately, without any motor motion.

To accommodate varying types of Hall sensors, or sensors containing inverter circuitry, the signal level/logic
interpretation of the Hall sensor input signals may be set through the host. The command SetSignalSense accepts a
bit-programmed word that controls whether the incoming Hall signals are interpreted as active high or active low. To
read this Hall interpretation value, use the command GetSignalSense. For details on the programming of this control
word, see the Magellan Motion Processor Programmer's Command Reference.

1 3 . 5 . 2 A l g o r i t h m i c P h a s e I n i t i a l i z a t i o n

To set the motion processor for algorithmic initialization, use the command SetPhaseInitializeMode and specify
Algorithmic as the parameter.

In the algorithmic initialization mode, no additional motor sensors beyond the position encoder are required. To
determine the phasing, the motion processor performs a sequence that briefly stimulates the motor windings and sets
the initial phasing using the observed motor response. From the resulting motion, the motion processor can
automatically determine the correct motor phasing.

Depending on the size and speed of the motor, the time between the start of motor phasing and the motor’s coming
to a complete rest (settling time) will vary. To accommodate these differences, the amount of time to wait for the motor
to settle is programmable using the command SetPhaseInitializeTime. To read this value, use the command
GetPhaseInitializeTime.

A CB

180 240 300 0 60 120 180

A-B B-C C-A

Phase
Currents

Phase-to-
phase BEMF

Voltages

Hall A

Hall B

Hall C

Figure 13-2:
Hall-based
phase
initialization
112 Magellan Motion Processor User’s Guide

B r u s h l e s s D C M o t o r C o n t r o l 13
To minimize the impact on the system mechanics, this method utilizes a motor command value set by the host
processor to determine the overall amount of power to introduce into the motor during phase initialization. Typically,
the amount of power should be in the range of 5–25% of full-scale output, yet should be at least three times the
breakaway starting friction. For best results, the initialization motor command value can be determined experimentally.
The command used to set the motor output level is SetMotorCommand. To read this value, use the command
GetMotorCommand.

To execute the initialization procedure, the host command InitializePhase is used. Upon executing this command, the
phasing procedure will immediately be executed.

Before the phase initialization command is given (InitializePhase command), the trajectory generator and position
loop must be disabled (SetOperatingMode command), a motor command output must be specified
(SetMotorCommand command), and an initialization duration must be specified (SetPhaseInitializeTime command).

1 3 . 5 . 3 D i r e c t - S e t P h a s e I n i t i a l i z a t i o n

If, after power-up, the location of the motor phasing is known, the phase angle can be directly set using the
SetPhaseAngle command.

This typically occurs when sensors such as resolvers are used where the returned motor position information is
absolute in nature (not incremental), and can then be used to generate a quadrature data stream, which is directly read
by the host.

1 3 . 6 P h a s e I n i t i a l i z a t i o n P r o g r a m m i n g

The following examples illustrate typical host command sequences to initialize the commutation of a brushless motor
for all three initialization methods.

1 3 . 6 . 1 H a l l - b a s e d I n i t i a l i z a t i o n S e q u e n c e

SetMotorType xx // Set the motor type to 3 or 2-phase brushless
SetOutputMode m // Set the motor output mode.
SetPhaseCounts uuuu // Set number of encoder counts per electrical cycle.
SetSignalSense vvvv // Set Hall sensor signal interpretation.
SetPhaseInitializeMode Hall // Set phase initialization method to Hall based.
InitializePhase // Perform the initialization.

This sequence will cause the motion processor to read the Hall sensor signals and initialize the phasing immediately.
The motor will not move as a result of this sequence, and no delay is required for performing further motor operations.

During algorithmic phase initialization, the motor may suddenly move in either direction. Proper safety precau-
tions should be taken to prevent damage from this movement. To provide accurate results, motor movement
must be unobstructed in both directions and the motor must not experience excessive starting friction.
Magellan Motion Processor User’s Guide 113

B r u s h l e s s D C Mo t o r C o n t r o l13
114 Magellan Motion Processor User’s Guide

1 3 . 6 . 2 A l g o r i t h m i c I n i t i a l i z a t i o n S e q u e n c e

SetMotorType xx // Set the motor type to 3 or 2-phase brushless
SetOutputMode m // Set the output mode.
SetPhaseCounts uuuu // Set number of encoder counts per electrical cycle.
SetPhaseInitializeMode Algorithmic // Set phase initialization method to algorithmic.
SetOperatingMode zz // set operating mode to “trajectory and position loop

 disabled”
SetPhaseInitializeTime wwww // Set algorithmic phase init duration.
SetMotorCommand yyyy // Set initialization motor command level.
InitializePhase // Perform the initialization.

This sequence will cause the motor to begin the initialization procedure immediately, which will last for “wwww” servo
loops. To determine if the procedure is completed, use the command GetActivityStatus. The phase initialization bit
will indicate completion of the procedure. After the initialization procedure is complete, the postion loop should be
enabled using SetOperationMode if the motion processor is to be run in closed-loop mode.

1 3 . 6 . 3 D i r e c t - S e t I n i t i a l i z a t i o n S e q u e n c e

SetMotorType xx // Set the motor type to 3 or 2-phase brushless.
SetOutputMode m // Set the output mode.
SetPhaseCounts xxxx // Set the number of encoder counts per electrical cycle (hex).
SetPhaseAngle yyyy // Set phase angle based on information from external sensor.

This sequence will directly set the phase angle to a value determined by another sensor. The set value must be between
0 and the number of encoder counts per electrical cycle.

1 3 . 7 I n d e x P u l s e R e f e r e n c i n g

To enhance long-term commutation reliability, the Magellan Motion Processors provide the ability to utilize an index
pulse input from the motor encoder as a reference point during commutation. By using an index pulse during the
phase calculations, any long-term loss of encoder counts that might otherwise affect the accuracy of the commutation
is automatically eliminated. This feature is provided for encoder-based phasing. Note that if Hall-based phasing is used,
this feature is not necessary.

To utilize index pulse referencing, the motor encoder must provide an index pulse signal to the motion processor once
per rotation.

Index pulse referencing is recommended for all rotary brushless motors with quadrature encoders on the motor shaft.
For linear brushless motors, it is generally not used. However, it may be used as long as the index pulses are arranged
so that each pulse occurs at the same phase angle within the commutation cycle, assuming the encoder is mounted to
the motor shaft.

When using an index pulse, the number of encoder counts per electrical cycle is not required to be an exact integer.
In the case that this value is not an integer, the nearest integer should be specified for the value of SetPhaseCounts.
Conversely, if index pulses are not being used, then the number of counts per electrical cycle must be an exact integer
with no remainder.

For example, if a 6-pole brushless motor is to be used with an encoder without an index pulse, then an encoder with
1200 counts per rotation would be an appropriate choice, but an encoder with 1024 would not, as 1024 cannot be
evenly divided by 3.

The command SetPhaseCorrectionMode is used to enable/disable index pulse phase correction.

Index pulse referencing is performed automatically by the motion processor, regardless of the initialization scheme
(algorithmic, Hall-based, microstepping, or direct set).

B r u s h l e s s D C M o t o r C o n t r o l 13
1 3 . 7 . 1 P h a s i n g E r r o r D e t e c t i o n

With an index signal properly installed, the motion processor will automatically correct any small losses of encoder
counts that may occur.

If the loss of encoder counts becomes excessive, or if the index pulse does not arrive at the expected location within
the commutation cycle, a commutation error is said to occur. The commutation error bit (11) in the Event Status
register is set whenever a commutation error occurs. This bit is set if the required correction is greater than
(PhaseCounts/128)+4.
Commutation errors are caused by a number of circumstances. The most common are:

 noise on the A or B encoder lines.

 noise on the index line.

 incorrect setting of encoder counts per electrical cycle.

For each commutation error occurrence, phase referencing will not occur for that index pulse. Depending on the cause
of the error, the commutation error may be a one-time event, or it may occur continuously after the first event.

When a commutation error occurs, bit 11 of the Event Status register is set to 1. This condition can also be used as a
source of host interrupts so that the host can be automatically notified of a phasing error. To recover from a phasing
error, this bit is cleared by the host. Depending on the nature of the error, it is possible that phasing errors will continue
to be generated.

1 3 . 7 . 2 A d j u s t i n g t h e P h a s e A n g l e

Magellan supports the ability to change the motor’s phase angle directly, both when the motor is stationary and when
it is in motion. Although this is not generally required, it can be useful during testing, or during phase initialization
when the microstepping or direct-set methods are used.

To change the phasing angle when the motor is stationary, use the command SetPhaseAngle. To change the phasing
angle while the motor is moving, the index pulse is required; and a different command, SetPhaseOffset, is used.
SetPhaseOffset takes effect only when an index pulse occurs.

After phase initialization has occurred, the phase angle of the index pulse is stored in the phase offset register. This
16-bit offset register can be read using the command GetPhaseOffset.

For a given motor, the index pulse may be located anywhere within the commutation cycle, since it will usually vary in
position from motor to motor. Only motors that have been mechanically assembled so that the index position is
referenced to the motor windings will have a consistent index position relative to the commutation zero location.

Before phase initialization has occurred, the Phase Offset register will have a value of FFFFh. Once phase initialization
has occurred and the motor has been rotated so that at least one index pulse has been received, the phase offset value
will be stored as a positive number with a value between 0 and the number of encoder counts per electrical cycle.

Note that when an axis is in dual encoder loop mode with an auxiliary axis, the SetPhaseAngle, SetPhaseOffset, and
SetPhaseCounts commands must be directed towards the main axis.

A phasing error may indicate a serious problem with the motion system, potentially resulting in unsafe motion. It
is the responsibility of the host to determine and correct the cause of commutation errors.
Magellan Motion Processor User’s Guide 115

B r u s h l e s s D C Mo t o r C o n t r o l13
To convert the phase offset value, which is in encoder counts, to degrees, the following formula is used:

Offsetdegrees = 360 * Offsetcounts/counts_per_cycle

where

Offsetdegrees is the phase offset in degrees

Offsetcounts is the phase offset in encoder counts

counts_per_cycle is the # of counts per electrical cycle set using the SetPhaseCounts command

The phase offset value may also be changed any number of times while the motor is in motion. The changes that are
made should be small; this will prevent sudden jumps in the motor motion.

The SetPhaseOffset and GetPhaseOffset commands may only be used when an index pulse from the encoder is
connected. If no index pulse is used, the phase offset angle cannot be adjusted or read by the host.

Setting the phase offset value does not change the relative phasing of phases B and C to phase A. These phases are
still set at either 90- or 120-degree offsets from phase A, depending on the selected waveform.

1 3 . 8 E n c o d e r P r e s c a l e r

Particularly when used with linear motors, the range in the value of the number of encoder counts per electrical cycle
can vary widely. Typical rotary motors can have a value between 1 and 32,767. Linear brushless motors can have values
of 1,000,000 counts per cycle (or higher), because they often use high-accuracy laser-based encoders.

To accommodate this large range, the MC58000 and Magellan/ION Motion Processor series supports a prescaler
function which, for the purposes of commutation calculations, divides the incoming encoder counts by 64, 128, or
256. With the prescaler enabled, the maximum range for the number of encoder counts per electrical cycle is 8,388,352.

To enable the prescaler, use the command SetPhasePrescale.

The prescaler function only affects the commutation of the motion processor. It does not affect the position used
during servo filtering or requested by the command GetActualPosition.

1 3 . 9 S i n u s o i d a l C o m m u ta t i o n
Figure 13-3 provides an overview of the motion processor control sequence when sinusoidal commutation is selected. To
select sinusoidal commutation, encoder-based phasing should be selected using the SetCommutationMode command, and
field oriented control should not be selected. For MC58000 users field oriented control is not available, and thus need not
be deselected. For Magellan/ION users, the command SetCurrentControlMode should be used to deselect FOC mode.

Relative to Hall-based commutation, sinusoidal commutation provides improved smoothness and improved positioning
stability due to lack of commutation torque discontinuities.

The sinusoidal commutation logic of the motion processor uses as its input the motor command signal from either the position
servo loop or the Motor Command register (depending on whether the position loop module is enabled or disabled). This pre-
commutated command signal is then multiplied by commutation values derived from an internal lookup Sin/Cos table.

The prescaler function should not be enabled or disabled once the motor has been set in motion.
116 Magellan Motion Processor User’s Guide

B r u s h l e s s D C M o t o r C o n t r o l 13
The commutation angle used in the Sin/Cos lookup is determined by the position encoder, as well as parameters set
by the host processor that relate the specific encoder to the motor magnetic poles, such as counts per electrical cycle.

Two commutation waveforms are provided: one appropriate for 3-phase devices with 120-degree separation between
phases (such as brushless motors), and one appropriate for 2-phase devices with 90-degree separation between phases
(such as step motors). Some motion processors support both of these waveforms, while others, such as Magellan/ION,
support only 3-phase waveforms. See Section 1.1, Family Summary, for more information.

Once commutated, the individual motor commands for the A, B, and C phases (3-phase motor) are output either directly
to the amplifier or to the current control module. If output to the motor, they are converted to one of the hardware output
formats such as PWM or DAC output. See Chapter 11, Motor Output for details. If output to the current control module
(Magellan/ION only), then additional calculations are performed using the measured current through each winding to
determine a final amplifier command for each winding. See Section 15.1, Current Loop, for details.

To read these individual phase commands, the command GetPhaseCommand is used.

1 3 . 1 0 F i e l d O r i e n t e d C o n t r o l
(Magellan/ION only)

Figure 13-4 provides an overview of an alternate method for determining the commands for each motor coil, known
as field oriented control (FOC). This technique is similar to sinusoidal control, but combines digital current control
with phase calculation, whereas sinusoidal commutation separates these two operations. Practically speaking, this
means that sinusoidal commutation can be used with external amplifiers, while FOC is better for systems that integrate
the motion controller and the amplifier. Magellan/ION provides exactly this configuration, and thus FOC is the
recommended control approach when using this product. Note that Magellan/ION also supports sinusoidal
commutation, should this control method be preferred for a particular application.

PhaseA
command

Motor command register
(SetMotorCommand)

PhaseB
command

Trajectory & Position
Loop disabled

Position
Loop

Actual position
 from encoder

PhaseC
commandCommanded

position

Actual
position

Motor output
(PWM or DAC)

To
current
loop or
motor
output
module

Trajectory or Position
Loop enabled

Figure 13-3:
Sinusoidal
commutation
Magellan Motion Processor User’s Guide 117

B r u s h l e s s D C Mo t o r C o n t r o l13
Compared to sinusoidal commutation, FOC uses an entirely different algorithmic method to determine the phase command
for each motor winding. Instead of separating the phase lookup and current control operations as sinusoidal commutation
does, it combines them and “re-references” them to what are known as D (direct torque) and Q (quadrature torque)
reference frames. This difference in approach provides FOC with performance advantages over sinusoidal commutation at
high motor speeds. At lower speeds there is very little performance difference between these two techniques.

Like sinusoidal control, FOC uses as its command input the motor command signal from either the position servo loop or the
motor command register (depending on whether the position loop and trajectory modules are enabled or disabled). In addition
to the motor command, however, FOC utilizes analog input signals to determine the instantaneous current flow through two of
the three motor coils and combines this with the motor’s rotor position to determine exact output commands for each motor coil.

These calculations and subsequent update of the phase commands are performed at 20 kHz, regardless of the motion
processor’s PWM output rate, which can be either 20 kHz or 40 kHz. See Section 11.5, Setting PWM Frequency, for
details on setting the PWM rate.

To enable field oriented control mode, the command SetCurrentControlMode should be used with an argument of
FOC. The value set using this command can be read back using GetCurrentControlMode.

1 3 . 1 0 . 1 F O C A l g o r i t h m

Figure 13-5 details the algorithmic flow of the FOC controller. For each current loop (D & Q), three parameters are
set by the user, Kp, Ki, and Ilimit. Two of these are gain factors for the PI (proportional, integral) controller that
comprises the heart of the FOC controller, and the other is a limit for the integral contribution. These three parameters
have the following ranges and formats.

Te r m N a m e R e p r e s e n ta t i o n & R a n g e

KpD, KpQ D, Q proportional gain unsigned 16 bits (0 to 32,767)
KiD, KiQ D, Q integral gain unsigned 16 bits (0 to 32,767)
IlimitD, IlimitQ D, Q integration limit unsigned 32 bits (0 to 2,147,483,647)

Motor
Command

Q Loop
Error

Transform

PI

Inverse
Transform

A Output
+
-

PI+
-

B Output

Phase A Current

Phase B Current

Position Encoder

0 (zero)

D Loop
Error

Figure 13-4:
Control flow of
FOC control
118 Magellan Motion Processor User’s Guide

B r u s h l e s s D C M o t o r C o n t r o l 13
To set any of these parameters, the command SetFOC is used. To read back these parameters, the command GetFOC
is used. The values set using this command are buffered and may be activated using the Update command. See Section
6.1, Parameter Buffering, for details.

Determining correct parameters for the FOC controller gains can be done in a number of ways. The easiest is to utilize
the auto-tuning facility provided within PMD’s Pro-Motion software package. Parameters derived using this procedure
may or may not be optimized for your system.

Clarke,
Park

Transform

Inverse
Park

Transform

BOutput

AOutput

Phase A Actual Current

0 (zero)
+

-

QError QOutput

DError

QFeedback

DOutput

DFeedback
Position
Encoder

Motor
Command

QReference

2

DReference

+
-

__.
.

+

KpQ

__.
.X +

X

64

KiQ
Z

-1

ILimitQ

X 256

__.
.

256

+

KpD

__.
.X +

X

64

KiD
Z

-1

ILimitD

X 256

__.
.

256

Phase B Actual Current

Figure 13-5:
Algorithmic
flow of FOC
controller
Magellan Motion Processor User’s Guide 119

B r u s h l e s s D C Mo t o r C o n t r o l13
Another method is through trial and error using the Magellan’s built-in trace facility. Finally, it is possible to model
your system and determine the best settings through simulation or analysis; however, a discussion of this approach is
beyond the scope of this manual.

1 3 . 1 0 . 2 R e a d i n g F O C L o o p Va l u e s

To facilitate tuning, there are a number of internal FOC loop values that can be read back as well as traced. To read
back these values the command GetFOCValue is used. To specify these values for trace during automatic trace capture
see the Magellan Motion Processor Programmer’s Command Reference.

Refer to the diagram in Section 13.10.1, FOC Algorithm, for an overview of the FOC loop. The variables within the
FOC loop that can be read or traced are summarized as follows:

1 3 . 1 0 . 3 F O C w i t h 2 - p h a s e M o t o r s

Magellan/ION’s field oriented control algorithm is designed to work with both 3-phase brushless DC motors and 2-phase
microstepping motors. When operating the microstepping motor in this mode (see Chapter 14, Step Motor Control for more
information on Magellan operations with step motors), the basic method is identical. The same three FOC parameters
described in Section 13.13 of this manual, “FOC Algorithm,” are set, and the readable parameters are also the same.

1 3 . 1 0 . 4 H a l l - b a s e d F O C

Magellan/ION’s FOC controller can operate with both Hall-based motor position sensing and encoder-based motor
position sensing. The former would only be used in the case that no encoder is available, as use of an encoder
substantially improves smoothness and performance. To set the FOC controller for use with Hall sensors, use the
command SetCommutationMode. The value set can be read back using the command GetCommutationMode.

Please note that it is the responsibility of the user to determine the suitability of all parameters, including those
determined by auto-tuning, for use in a given application.

Va r i a b l e N a m e F u n c t i o n

Q Reference, D Reference Are the commanded values input into the Q and D loops. Note that D is always set
to 0 (zero).

Q Feedback, D Feedback Are the measured values for the Q (quadrature) and D (direct) force after re-referencing
from the actual measured current in the phase A, phase B coils.

Q Error, D Error Are the differences, for the Q loop and the D loop, between the loop reference and
the loop measured value.

Q Integrator Sum,
D Integrator Sum

Are the integrator sums for the D and Q loops.

Q Integral Contribution,
D Integral Contribution

Are the contributions of the integral to the overall PI sum for the Q and D loop.

Q Output, D Output Are the output commands of the Q and the D loops.
FOC A Output,
FOC B Output

Are the phase A and phase B coil commands before output to the motor output
module and PWM generator.

Phase A Actual Current,
Phase B Actual Current

Are the measured currents for the phase A and phase B coils.
120 Magellan Motion Processor User’s Guide

14

1 4 . S t e p M o t o r C o n t r o l
In This Chapter
Overview
Encoder Feedback
Stall Detection
Pulse & Direction Step Motor Control
Microstepping Motor Control

1 4 . 1 O v e r v i e w

Magellan Motion Processors provide a number of special features for support of step motors. These include pulse and
direction output, microstep signal generation, and a holding current feature. Broadly speaking, two types of step motors
are supported, pulse and direction motors and microstepping motors. Pulse and direction motors are step motors that
are driven by an amplifier that accepts pulse and direction input signals. Microstepping motors are motors that are
connected to an amplifier that controls the current through each phase explicitly, much like the way a brushless DC
motor is controlled.

Overall, the control features of the Magellan when used with a step motor are similar to that used with servo motors.
In particular trajectory generation, breakpoints, trace, and a number of other features are entirely unaffected by choice
of motor type. The primary differences between servo motors and step motors however is that there is no position loop
module used for step motors and that motor output signal generation differs from that of servo motors in some respects.

There are also a number of other features that are similar in concept, but different in implementation between servo
motors and step motors. Motion error, which is equivalent to stall detection for step motors, is an example of this.

All of these differences will be explained in the upcoming sections of this chapter.

MC58000 Motion Processor users are able to select between pulse and direction and microstepping motor modes. This
choice will affect amplifiers interfacing and a number of other functions. MC55000 motion processors are dedicated to
pulse and direction output, and external amplifiers should be chosen accordingly. ION uses a microstepping motor
mode. However, since the amplifier is located internally, there are no external amplifier choice issues.

1 4 . 1 . 1 Tr a j e c t o r y C o n t r o l U n i ts

For servo motors, the units for measuring position are encoder steps, and for time they are cycles. For step motors, position units
are measured as either steps or microsteps, depending on whether the motor type is pulse and direction step motor, or
microstepping motor. The following table lists various commands and their corresponding units.

C o m m a n d S e r v o a x e s M i c r o s t e p p i n g a x e s P u l s e & D i r e c t i o n a x e s

Set/GetPosition counts microsteps steps
Set/GetVelocity counts/cycle microsteps/cycle steps/cycle
Set/GetAcceleration counts/cycle2 microsteps/cycle2 steps/cycle2

Set/GetDeceleration counts/cycle2 microsteps/cycle2 steps/cycle2
Magellan Motion Processor User’s Guide 121

S t e p M o t o r C o n t r o l14
1 4 . 2 E n c o d e r F e e d b a c k

For MC50000, each step motor axis supports position feedback in one of the two standard ways, either by incremental
encoder input, or parallel-word input. See Chapter 10, “Encoder Interfacing,” for more information on position feedback.
The command SetEncoderSource selects the type of position feedback. If no position feedback is used (something that is
not unusual for step motors), then a value of none should be entered using SetEncoderSource. Doing so will allow the
position feedback value to be ignored, thereby disabling stall detection, a feature that will be discussed in an upcoming
section.

Magellan/ION can input position using incremental encoder information only. See the ION Digital Drive User’s Manual
for details on interfacing to incremental quadrature encoders.

Regardless of the input method, most encoder commands operate as for servo motors. For example the current
position is retrieved using the command GetActualPosition, the position capture location is retrieved using
GetCaptureValue, and the AdjustActualPosition and SetActualPosition commands may be used to alter the current
position. The default units of this command are encoder counts. To simplify program design and debugging, actual
position units can be changed to steps/microsteps. This is done using the command SetActualPositionUnits. The
following table lists the affected commands.

The SetActualPositionUnits command also affects the units of the trace variable Actual Position.

In many step motor systems, the ratio of steps to encoder counts is not necessarily exactly one. Magellan
accommodates this by allowing the ratio of encoder counts to steps to be explicitly specified using the command
SetEncoderToStepRatio. This value can be read back using the command GetEncoderToStepRatio.

If the units are set to counts, then the actual position commands are referenced to the encoder. If the units are set to
steps, then the encoder input is converted to steps using the value specified by GetEncodertoStepRatio command.

See Chapter 10, “Encoder Interfacing,”for additional information on interfacing to encoders.

1 4 . 3 S ta l l D e t e c t i o n

In addition to passively returning the position to the host with the GetActualPosition command, Magellan Motion
Processors can actively monitor the target and actual position, and detect a motion error that results in a stall condition.
Automatic stall detection allows the motion processor to detect when the step motor has lost steps during motion. This
typically occurs when the motor encounters an obstruction, or otherwise exceeds its rated torque specification.

Set/GetJerk counts/cycle3 microsteps/cycle3 steps/cycle3

Set/GetStartVelocity - microsteps/cycle steps/cycle
GetCommandedPosition counts microsteps steps
GetCommandedVelocity counts/cycle microsteps/cycle steps/cycle
GetCommandedAcceleration counts/cycle2 microsteps/cycle2 steps/cycle2

Set/GetPositionErrorLimit counts microsteps steps
GetPositionError counts microsteps steps

C o m m a n d P o s i t i o n U n i ts = c o u n ts
P o s i t i o n U n i ts =
s t e ps

Set/GetActualPosition counts steps/microsteps
AdjustActualPosition counts steps/microsteps
GetCaptureValue counts steps/microsteps

C o m m a n d S e r v o a x e s M i c r o s t e p p i n g a x e s P u l s e & D i r e c t i o n a x e s
122 Magellan Motion Processor User’s Guide

S t e p M o t o r C o n t r o l 14
Automatic stall detection operates continuously once it is initiated. The current desired position (commanded
position) is compared with the actual position (from the encoder), and if the difference between these two values
exceeds a specified limit, a stall condition is detected. The user-programmed register SetPositionErrorLimit
determines the threshold at which a motion error is generated.

To initiate automatic stall detection, the host must specify the number of encoder counts per output step/microstep.
This is accomplished using the command SetEncoderToStepRatio. This command accepts two parameters: the first
parameter is the number of encoder counts per motor rotation, and the second parameter is the number of steps/
microsteps per motor rotation.

For example, if a step motor with a 1.8 degree full step size is used with an encoder with 4,000 counts per motor
rotation, the parameters would be:

SetEncoderToStepRatio 4000 200 // where the number of steps per rotation is derived
// from 360/1.8.

In cases where the number of steps, microsteps, or encoder counts per rotation exceeds the allowed maximum of
32,767, the parameters may be specified as fractions of a rotation, as long as the ratio is accurately maintained. In other
words specifying the ratio for a fraction of a rotation has the same accuracy as specifying it for a full rotation, as long
as the ratio of counts to steps is correctly specified.

Processing of a motion error while using a step motor is identical to that for servo motors. See Section 8.2, “Motion
Error,” for details.

1 4 . 4 P u l s e & D i r e c t i o n M o t o r C o n t r o l
(MC50000 only)

If the motor type is set to pulse and direction motor, then the pulse generation circuitry of the Magellan Motion
Processor will be activated, and it will be used by the motor output module to drive the external amplifier. To set the
motor type the command SetMotorType is used. The value set using this command can be read using
GetMotorType.

The pulse signal output by the motion processor consists of a precisely controlled series of individual pulses; each of which
represents an increment of movement. This signal is always output as a square wave pulse train. By default, a step, or pulse,
is considered to have occurred when the pulse signal transitions from a low to a high output value. (While the square wave
is not guaranteed to have a 50% duty cycle, the rising edges will be correctly timed.) The direction signal is synchronized with
the pulse signal at the moment each pulse transition occurs. The direction signal is encoded so that a high value indicates a
positive direction pulse, and a low value indicates a negative direction pulse.

The rate of pulse output is usually determined by the particular trajectory profile parameters being requested by the
host processor. However the Magellan Motion Processors support several ranges of pulse generation, to maximize
accuracy for a given speed range. The overall pulse generation range can be specified using the command
SetStepRange. The following table shows the values and resultant step ranges available using this command.

P a r a m e t e r F o r m a t Wo r d s i z e R a n g e

Encoder counts per rev 16.0 16-bit 0 to 32,767
Steps/microsteps per rev 16.0 16-bit 0 to 32,767

C o m m a n d F r e q u e n c y r a n g e o f o u t p u t p u l s e s

SetStepRange 1 0 to 4.98 M steps per second
SetStepRange 4 0 to 622.5 K steps per second
SetStepRange 6 0 to 155.625 K steps per second
SetStepRange 8 0 to 38.90625 K steps per second
Magellan Motion Processor User’s Guide 123

S t e p M o t o r C o n t r o l14
The ranges in the preceding table show the maximum and minimum ranges which can be generated by the motion
processor for the specified mode. For example, if the desired maximum step rate is 200 Ksteps per second, then the
appropriate setting is SetStepRange 4.

For full-step and half-step applications, as well as for pulse and direction applications which will have a maximum
velocity of 38 Ksteps/sec, SetStepRange 8 should be used. For applications requiring higher pulse rates, one of the
higher speed ranges should be specified.

A different step range can be programmed for each axis. To read the current step range setting, use the command
GetStepRange.

1 4 . 5 M i c r o s t e p p i n g M o t o r C o n t r o l
If the motor type is set to microstepping motor, rather than pulse and direction signals, multi-phase output signals will be
generated for each axis set to this mode. Typical step motors have two phases, but some have three. MC58000 supports two or
three phase drive, while Magellan/ION supports only two-phase. To set the motor type the command SetMotorType is used.
The value set using this command can be read using GetMotorType.

Note that for step motor ION Digital Drives, the motor type is automatically set to 2-phase microstepping. It is not
necessary to specify the motor type manually.

Figure 14-1 shows an overview of the control flow of the microstepping scheme.

Similar to sinusoidal commutation, the microstepping portion of the motion processor generates a sinusoidal
waveform with a number of distinct output values per full step (one full step is one quarter of an electrical cycle). The
number of microsteps per full step is set using the command SetPhaseCounts. The parameter used for this command

The maximum pulse output rate on the MC55110 and MC58110 is 100k steps per second. On these two devices
the SetStepRange command cannot be used.

Figure 14-1:
Microstepping
waveform
generation

Phase A
command

Motor command register
(SetMotorCommand)

Phase B
command

Trajectory
generator

X

X

To current
loop or
motor output
module
124 Magellan Motion Processor User’s Guide

S t e p M o t o r C o n t r o l 14
Magellan Motion Processor User’s Guide 125

represents the number of microsteps per electrical cycle (four times the desired number of microsteps). For example,
to set 64 microsteps per full step, the command SetPhaseCounts 256 should be used. The maximum number of
microsteps that can be generated per full step is 256, resulting in a maximum parameter for this command of 1024.

The output frequency of the microstepping signals are controlled by the trajectory generator, while the Motor Command
register controls the amplitude of the microstepping signals. To set this register use the command SetMotorCommand. A value
between 0 and 32,767 is set, representing an amplitude of zero to 100 percent. Since SetMotorCommand is double buffered,
it requires an Update or a breakpoint to occur before it takes effect. This feature can be advantageous when the motor power
changes are to be synchronized with other profile changes, such as at the start or the end of a move.

As described in a subsequent section, a special holding command limit can also be defined to allow different output levels for
active and non-active operational modes of the motor. This is useful for reducing heat output while the motor is not moving.

1 4 . 5 . 1 M i c r o s t e p p i n g Wa v e f o r m s

For MC58000, two microstepping motor types with associated waveforms are provided, one appropriate for traditional two-
phase step motors with 90 degrees of separation between phases and one appropriate for three-phase step motors with 120
degree separation between phases. Magellan/ION provides only two-phase microstep operation. To specify one of these two
motor types the command SetMotorType is used. To read the value set using this command, use GetMotorType.

In addition, various motor output modes are available with different motor types. The following table summarizes this.

For specific pin assignments of the PWM and DAC motor output signals, see the Magellan Motion Processor Electrical Specifications.

M o t o r t y p e M o t o r o u t p u t m o d e N u m b e r o f o u t p u t s i g n a l s & n a m e

2-phase microstepping PWMSign/Mag 2 (A, B)
2-phase microstepping DAC 2 (A, B)
3-phase microstepping PWM50/50 3 (A, B, C)
3-phase microstepping DAC 2 (A, B)

S t e p M o t o r C o n t r o l14
Figure 14-2 illustrates the phase A/phase B/phase C signals for a two-phase step motor, and the phase A/phase B
signals for a three-phase step motor.

0 64 128 192 256

2-Phase Microstepping

320

Phase A Phase B

Phase A Phase B Phase C

3-Phase Microstepping

Microsteps

120°

90°

Figure 14-2:
Microstep-
ping wave-
forms
126 Magellan Motion Processor User’s Guide

S t e p M o t o r C o n t r o l 14
1 4 . 5 . 2 H o l d i n g C u r r e n t F u n c t i o n s

In addition to the standard pulse and direction output signals, MC50000 processors provide a signal output for each
axis known as the AtRest signal, which indicates when the trajectory generator is in motion. This signal can be useful
when interfacing with amplifiers that support a separate torque output level during motion as opposed to while it is
holding (not moving).

For Magellan/ION and MC58000 processors used with microstepping motor mode, a related facility exists to allow
a specific holding current to be specified. Normally, the drive current used during microstepping operation motion is
specified using SetMotorCommand. If desired, it is possible to have the output waveform be limited to a lower level
while the motor is at rest. This current limit value can be set using the command SetHoldingCurrent. To read the
value set use the command GetHoldingCurrent. Note that the value specified represents the limit of the output
current while the motor is in a holding condition. For example if the current value normally output specified using
SetMotorCommand is already lower than the at rest current limit, the lower motor command value will be used.

Whether represented as an AtRest signal, or output as a motor command reduction, the holding current condition
will go active when the trajectory generator velocity is zero for a user-programmable amount of time. This parameter,
if set to a non-zero value, allows a delay to be introduced between the time the trajectory finished, and the external
signal goes active. Typically this is used to allow the motor to settle or come to a complete stop. This time delay can
be set using the command SetHoldingCurrent. The value specified can be read back using GetHoldingCurrent.

A bit indicating whether the axis is currently in the holding condition or not is available in the Drive Status register.
To read this register use the command GetDriveStatus.

1 4 . 5 . 3 F i e l d O r i e n t e d C o n t r o l a n d C u r r e n t C o n t r o l

For Magellan/ION users, current control of the step motor is achieved using either a field-oriented control technique,
or a current control technique. See Section 13.10, “Field Oriented Control,” for a detailed description of field-oriented
control, and see Section 15.1, “Current Loop,” for a detailed description of Magellan’s current loop. To select field
oriented control or current control the command SetCurrentControlMode is used. The value set can be read back
using GetCurrentControlMode.

Once the overall current control mode has been selected, the specific loop gain and other parameters can be specified.

When the current loop is enabled, MotorCommand defines the amplitude of the phase current as a percentage of full-
scale.

Determining correct parameters for the FOC or current control modules can be done in a number of ways. The easiest
is to utilize the auto-tuning facility provided within PMD’s Pro-Motion software package. Parameters derived using
this procedure may or may not be optimized for your system.

Another method is through trial and error using the Magellan’s built-in trace facility. Finally, it is possible to model
your system and determine the best settings through simulation or analysis; however, a discussion of this approach is
beyond the scope of this manual.

Please note that it is the responsibility of the user to determine the suitability of all parameters, including those
determined by auto-tuning, for use in a given application.
Magellan Motion Processor User’s Guide 127

S t e p M o t o r C o n t r o l14
128 Magellan Motion Processor User’s Guide

15

1 5 . D r i v e C o n t r o l
In This Chapter
Current Loop
Current Loop Parameters
Enabling and Disabling Current Loop
Reading Current Loop Values
Drive Control Features
Electrical Faults
Drive Fault Status Register
FaultOutSignal
Overtemperature Sense
Overvoltage Sense
Undervoltage Sense
Drive Enable
Current Foldback

(Magellan/ION only)

In addition to profiling, servo control, and other standard Magellan motion functions, Magellan/ION Motion
Processors provide digital current control and digital drive control features. These additional capabilities provide the
capability to integrate a complete intelligent drive using a Magellan/ION-based controller.

Digital current control is a technique used for DC brush, brushless DC, and step motors for controlling the current
through each winding of the motor. By controlling the current, response times improve and motor efficiency can be
increased.

Magellan/ION’s digital current loop utilizes the desired current for each motor winding along with the actual measured
current, which is input by analog feedback into the motion processor. This desired current and measured current are
then subtracted to develop a current error, which is passed through a PI (proportional, integral) filter to generate an
output voltage for each motor coil. The output command for each coil is then passed through additional motor output
logic to generate the precise PWM (pulse width modulation) timing outputs signals, which are connected to external
switching drives.

In addition to digital current control, Magellan/ION integrates a number of drive control features such as
overtemperature sense, overvoltage sense, undervoltage sense, and others. These features will be described later in this
chapter.

1 5 . 1 C u r r e n t L o o p

Figure 15-1 provides an overview of the current control loop for each phase of motor axis. For single-phase motors such
as DC brush, one current loop per axis will be used. For 3-phase brushless DC motors, two current loops are used, one
for the A phase and one for the B phase, and the voltage of phase C is driven using the formula C = –(A+B), reflecting
Magellan Motion Processor User’s Guide 129

D r i v e C o n t r o l15
the fact that current entering any two coils must exit from the third. When driving 2-phase step motors, two current
loops are used, one for the phase A coil, and the other for the phase B coil.

For safety reasons the default status of the current loop module as well as motor output module after power-on is
disabled. To enable (or disable) current control as well as motor output, use the command SetOperatingMode.

There are two overall types of current control provided by the Magellan/ION Motion Processors. The first is Field
Oriented Control, which is described in Section 13.12, “Field Oriented Control.” The other method is referred to as
“current loop” and is an alternate current control method that can be used with both single phase and multi-phase
motors. This technique is described in detail in Section 15.2.

DC brush motors can use current control, however they cannot use FOC. To select which type of current control will be used,
use the command SetCurrentControlMode. To read the value set using this command, use GetCurrentControlMode. If
FOC is selected, then Sections 15.2 through 15.4 do not apply.

1 5 . 2 C u r r e n t L o o p P a r a m e t e r s

To control the current loop correctly, three parameters are set by the user, Kpcurrent, Kicurrent, and Ilimitcurrent. Two

of these are gain factors for the PI (proportional, integral) controller, and the other is a limit for the integral
contribution. These three parameters have the following ranges and formats:

To set any of these three parameters, the command SetCurrentLoop is used. To read back these parameters, the
command GetCurrentLoop is used. Note that for multi-phase motors, the values for the phase A and B loops can be
set independently while for single-phase DC brush motors, only the phase A loop parameters are used. The values set
using this command are buffered, and may be activated using the Update command. See Section 6.1, “Parameter
Buffering,” for details.

Determining correct parameters for the current loop controller gains can be done in a number of ways. The easiest is to
utilize the auto-tuning facility provided within PMD’s Pro-Motion software package. Parameters derived using this procedure
may or may not be optimized for your system but will be adequate for most applications and a good starting point.

Te r m N a m e R e p r e s e n ta t i o n & R a n g e

Kpcurrent Current loop proportional gain Unsigned 16 bits (0 to 32,767)

Kicurrent Current loop integrational gain Unsigned 16 bits (0 to 32,767)

Ilimitcurrent Current loop integration limit Unsigned 16 bits (0 to 32,767)

Figure 15-1:
Current loop
control flow

Phase A Actual Current

Phase A
Error

Phase A
OutputMotor Command

or Phase A
Command

Phase A
Reference

2

+
-

__.
.

+

KpCurrentA

__.
.X +

X

64

KiCurrentA
Z

-1

ILimitCurrentA

X 256

__.
.

256

Integral
Contribution
130 Magellan Motion Processor User’s Guide

D r i v e C o n t r o l 15
Another method is through trial and error using the Magellan’s built-in trace facility (see Section 8.8, “Trace Capture,”
for details). Finally, it is possible to model your system and determine the best settings through simulation or analysis;
however, a discussion of this approach is beyond the scope of this manual.

1 5 . 3 E n a b l i n g a n d D i s a b l i n g C u r r e n t L o o p

If during normal operation the current loop is disabled, then the output from the previous module will pass directly
to the motor output module, with no current control being performed. The most common use of this configuration
is to run the drive in voltage mode, which may be useful under some conditions for calibration or testing. Use the
command SetOperatingMode to enable or disable the current loop module.

1 5 . 4 R e a d i n g C u r r e n t L o o p Va l u e s

To facilitate tuning, there are a number of internal current loop values that can be read back as well as traced. To read
back these values the command GetCurrentLoopValue is used. To specify these values for trace during automatic
trace capture, see the Magellan Motion Processor Programmer’s Command Reference.

The variables within the current loop that can be read or traced are summarized in the following table. Refer to Figure
15-1 for an overview of the current loop.

Please note that it is the responsibility of the user to determine the suitability of all parameters, including those
determined by auto-tuning, for use in a given application.

Va r i a b l e N a me F u n c t i o n

Phase A Reference,
Phase B Reference

Brushless DC & microstepping motor:
These registers hold the commanded (reference) currents for the phase A
and phase B coils.
DC brush motor:
Phase A Current holds the commanded (reference) current for the motor.

Phase A Current, Phase B Current Brushless DC & microstepping motor:
These registers hold the measured currents for the phase A and phase B
coils.
DC brush motor:
Phase A Current holds the measured current for the motor.

Phase A Error, Phase B Error Brushless DC & microstepping motor:
These registers hold the difference between the current loop reference and
the measured current value (Phase A Current, Phase B Current).
DC brush motor:
The Phase A Error register holds the difference between the current refer-
ence and the measured current value (Phase A Current).

Phase A Integrator Sum,
Phase B Integrator Sum

Brushless DC & microstepping motor:
These registers hold the sum of the integrator for the phase A and B current
loops.
DC brush motor:
Phase A Integrator Sum holds the sum of the integrator for the current loop
Magellan Motion Processor User’s Guide 131

D r i v e C o n t r o l15
1 5 . 5 D r i v e C o n t r o l F e a t u r e s

In addition to current control, Magellan/ION provides a number of drive control features that improve safety or reduce
external circuitry required to build a complete drive. Primarily, the features are used to insure that the drive will be shut
down in the case of an event that may damage the drive. Some of these features are built into the product and are not
under user control, while other events can be detected that are less severe, and the response to them is under user control.

The subsequent sections of this chapter describe these features.

1 5 . 6 E l e c t r i c a l F a u l ts

The Magellan/ION supports automatic detection of major drive, voltage supply, or other electrical hardware
problems. These serious fault conditions result in the ION module requiring the power to be cycled (turned off then
on), and are described in the following table:

An electrical fault will cause the following events:

 The motor output module is disabled, thereby halting further motor output.

 The Magellan/ION’s FaultOut signal is set to active (see Section 15.7, “Drive Fault Status Register,” for de-
tails).

 The cause of the fault is saved in non-volatile memory.

 The motion processor enters a special state that requires that power be cycled. Until power is cycled, no
commands will be accepted by the motion processor and no further motion processing of any kind occurs.

Phase A Integral Contribution,
Phase B Integral Contribution

Brushless DC & microstepping motor:
These registers hold the overall contribution of the integrator for the phase
A and B current loops.
DC brush motor:
Phase A Integral Contribution holds the overall contribution of the integra-
tor for the current loop

Phase A Output, Phase B Output Brushless DC & microstepping motor:
These registers hold the output command for the phase A and B current loop.
DC brush motor:
Phase A Output holds the output command for the current loop.

F a u l t N a m e D e s c r i p t i o n

Overcurrent An overcurrent fault across the drive output is detected. This fault occurs when
the motor, the wiring leading from the drive, or the internal circuitry of the drive
becomes short circuited.

Ground fault This fault indicates that one or more of the motor connections are short circuited
to the power supply ground. This fault occurs when the motor, the wiring leading
from the digital drive to the motor, or the internal circuitry of the drive becomes
short circuited to ground.

External logic fault This fault indicates that the supply voltage for drive logic components external to
the motion processor is too low. This can occur when there is problem with the
circuitry external to the motion processor.

Internal logic fault This fault indicates that there may be a failure with the internal logic of the motion
processor. This can occur when the motion processor has experienced anomalous
electrical conditions such as excessive supply voltage or excessive voltage on input
or output signals.

Va r i a b l e N a me F u n c t i o n
132 Magellan Motion Processor User’s Guide

D r i v e C o n t r o l 15
To recover from this condition, the user should determine the nature of the fault using the GetDriveFaultStatus
command and, once the cause of the fault has been corrected, use the ClearDriveFaultStatus command to clear the
condition. Although it is not required that this command be sent, it is often useful for safety and diagnostic reasons.

1 5 . 7 D r i v e F a u l t S ta t u s R e g i s t e r

To simplify recovery from an electrical fault, as well as to read other drive-related faults, Magellan provides a Drive
Fault Status register that can be read using the command GetDriveFaultStatus. The bits in this register operate
similarly to the bits in the Event Status register in that they are set by the motion processor, and cleared by the user.
The following table indicates the contents of this register:

To clear the bits in this register the command ClearDriveFaultStatus is used. Unlike all other registers in the Magellan
Motion Processor, a portion of the contents of this register are saved after a power cycle. Thus electrical faults (bits 0,
1, 2, and 4), which cause all communications with the drive to cease, and require the unit power to be cycled, can still
be diagnosed once the condition has been corrected and the unit has been powered up normally. The Overvoltage and
Undervoltage status bits are not saved but are rather cleared during a power cycle so they always reflect the latest
voltage fault status.

1 5 . 8 F a u l t O u t S i g n a l

The Magellan/ION FaultOut signal is used to indicate an occurrence of one or more of the electrical faults indicated in
the previous section. This signal is always active high. Its sense cannot be changed using the command SetSignalSense.
It is, however, possible to use this signal to indicate additional motion processor conditions. In particular, any bit
condition of the Event Status register may be used to trigger activation of the fault signal. This is done using the command
SetFaultOutMask. The value set using this command can be read back using GetFaultOutMask.

Electrical faults are serious conditions and warrant the utmost precaution before repowering and re-enabling the
drive. It is the responsibility of the user to determine the cause and corrective action of an electrical fault. Refer
to the ION Digital Drive User’s Manual for details on the procedure used to recover from an electrical fault.

In addition to providing electronically readable registers and commands, the ION drive provides visual information
on the status of the drive in the form of two separate LEDs. For information on the display of these LEDs during
various drive fault conditions, refer to the ION Digital Drive User’s Manual.

B i t N a m e D e s c r i p t i o n

0 Overcurrent Indicates an electrical fault due to a short circuit or overload in the drive output.
1 Ground fault Indicates an electrical fault due to a short in the drive output.
2 External Logic fault Indicates an electrical fault located in the drive's output circuitry.
3 Reserved May contain 0 or 1.
4 Internal Logic fault Indicates an electrical fault located in the drive's internal logic circuitry.
5 Overvoltage Indicates an overvoltage condition of the external bus voltage input.
6 Undervoltage Indicates an undervoltage condition of the external bus voltage input.
7–15 Reserved May contain 0 or 1.
Magellan Motion Processor User’s Guide 133

D r i v e C o n t r o l15
The additional conditionals specified using this command are logically ORed with the electrical fault conditions. See
Section 15.6, “Electrical Faults,” for additional information. That is, it is possible to add additional conditions that
trigger the FaultOut signal, but it is not possible to disable activation of the FaultOut signal due to non-programmable
conditions.

For example, programming SetFaultOutMask with a value of 20 (14 hex) configures the FaultOut signal to be driven
high upon a Motion Error, BreakPoint1, or an electrical fault.

1 5 . 9 O v e r t e m p e r a t u r e S e n s e

Magellan/ION provides the capability to continually monitor internal drive temperatures using sensors. A programmable
value set using the command SetOvertemperatureLimit is compared to a value read from external temperature sensors,
and if the value read from the sensors exceeds the programmed threshold, an overtemperature fault occurs. To read the
value set using SetOverTemperatureLimit, the command GetOverTemperatureLimit is used.

The value set using this threshold must have a value less than or equal to the rated maximum for the ION drive. See
the ION Digital Drive User’s Manual for details.

The value set using the SetOverTemperatureLimit command is in units of deg C/256. For example, a value of 12,800
indicates a threshold of 50 deg C.

An overtemperature fault will cause the following events:

 The motor output module is automatically disabled.

 The overtemperature bit in the Event Status register is set active.

To recover from this condition, the user should determine the reason for the fault and correct accordingly. It is always
the responsibility of the user to maintain safe operating conditions of the drive and associated electronics. Once this
has occurred, the overtemperature bit of the Event Status register should be cleared. This can be accomplished using
ResetEventStatus. The normal operation of the control modules can then be restored using RestoreOperatingMode.

The instantaneous status of the overtemperature threshold comparison can be read using the command
GetDriveStatus. If the overtemperature fault condition is still occurring at the time the overtemperature bit of the
Event Status register is cleared, this bit will immediately be set again, and the recovery sequence must be executed
again.

To read the current value of the temperature sensor, the command GetTemperature is used.

1 5 . 1 0 O v e r v o l ta g e S e n s e

Magellan/ION provides the capability to sense overvoltage conditions in the incoming main bus voltage. A
programmable threshold set using the command SetBusVoltageLimits is compared to the value read from the drive
DC bus supply, and if the value read exceeds the programmed threshold, an overvoltage fault occurs. To read the value
set using SetBusVoltageLimits, the command GetBusVoltageLimits is used.

Overtemperature faults indicate that the internal safe limits of the drive temperature range has been exceeded.
This potentially serious condition can result from incorrect motor connections or from excessive torque demands
placed on the ION drive.
134 Magellan Motion Processor User’s Guide

D r i v e C o n t r o l 15
The value set using this threshold must have a value equal to or less than a prescribed maximum for the drive. See the
ION Digital Drive User’s Manual for details..

An overvoltage fault will cause the following events:

 The motor output module is disabled.

 The bus voltage sense bit in the Event Status register becomes active

To recover from this condition, the user should determine the reason for the fault and correct accordingly. It is always
the responsibility of the user to maintain safe operating conditions for the ION drive and associated electronics. Once
this has occurred, the bus voltage bit of the Event Status register should be cleared. This can be accomplished using
ResetEventStatus. The normal operation of the control modules can then be restored using RestoreOperatingMode.

The instantaneous value of the overvoltage threshold comparison can be read using the command GetDriveStatus.
If the overvoltage fault condition is still occurring while the overvoltage bit of the Event Status register is being
cleared, this bit will immediately be set again, and the recovery sequence described above must be executed again.

The drive supply voltage can be monitored using the GetBusVoltage command. It returns the current supply voltage
reading.

1 5 . 11 U n d e r v o l ta g e S e n s e

Magellan/ION provides a capability very similar to the overvoltage sense except that it monitors undervoltage. To set
the programmable threshold the command SetBusVoltageLimits is used. This value is compared to the value read
from the drive DC bus, and if the value read is less than the programmed threshold, an undervoltage fault occurs. The
value set using this threshold must have a value equal to or greater than a prescribed minimum for the ION drive. See
the ION Digital Drive User’s Manual. To read the value set using SetBusVoltageLimits, the command
GetBusVoltageLimits is used.

Threshold units, recovery procedure, and all other aspects of this feature are the same as for overvoltage sense except
that the bit status location in the Drive Fault Status register is different. And just as for overvoltage conditions, it is
the user's responsibility to determine the seriousness of, and appropriate response to, an undervoltage condition.

1 5 . 1 2 D r i v e E n a b l e

The Magellan/ION supports a separate /Enable input signal that must be active for proper drive operation. This signal
is useful for allowing external hardware to indicate a fault to the drive and thereby automatically shutting it down. The
signal has an active low interpretation, which can not be changed by the SetSignalSense command.

If the /Enable signal becomes inactive (goes high) the following events occur:

 The motor output module is disabled.

 The disable bit in the Event Status register becomes active.

To recover from this condition, the user should determine the reason for the enable becoming inactive, and correct
accordingly. It is always the responsibility of the user to maintain safe operating conditions of the drive and associated
electronics. Once this has occurred, the disable bit of the Event Status register should be cleared. This can be
accomplished using ResetEventStatus. The normal operation of the control modules can then be restored using
RestoreOperatingMode.

If the /Enable signal is still inactive while the disable bit of the Event Status register is being cleared, this bit will
immediately be set again, and the recovery sequence must be executed again.
Magellan Motion Processor User’s Guide 135

D r i v e C o n t r o l15
The status of the /Enable signal can be read using the command GetSignalStatus.

1 5 . 1 3 C u r r e n t F o l d b a c k

Magellan/ION supports a current foldback feature, sometimes referred to as an I2t foldback, which can be used to
protect the drive output stage or motor windings from excessive current. I2t current foldback works by integrating,

over time, the difference of the square of the actual motor current and the square of the user-settable
continuous current limit.

When this integrated value reaches a user-settable energy limit, the ION module goes into current foldback. When in
current foldback, the current is clamped to the continuous current limit value. The ION module will stay in foldback
until the integrator returns to zero.

Each ION drive has particular default values as well as maximum allowed settings for the continuous current limit and
energy limit. These values are designed to protect the ION drive from excessive heat generation. See the ION Users
manual for detailed information.

Setting continuous current limit and energy limit to less than the maximum supported by the ION drive is useful if
the required current limit is due to the motor, rather than to the ION drive. Continuous Current Limit and Energy
Limit can be set using the command SetCurrentFoldback. The values set using this command can be read back using
GetCurrentFoldback.

The instantaneous state of current foldback (whether the foldback limit is active or not) is available in the Drive Status
register and can be read using the command GetDriveStatus. In addition, if a foldback event has occurred, this event
is recorded in the Event Status register and can be read back using GetEventStatus.

As detailed in Section 8.1, “SetEventAction Processing,” if desired, an event action can be programmed for current
foldback using the command SetEventAction. Whether this is appropriate must be determined by the user.

Example I2T calculations

A particular motor has an allowed continuous current rating of 3 amps. In addition, this motor can sustain a
temporary current of 5 amps for 2 seconds.

In this example the continuous current limit would be set to 3 amps, and the energy limit would be set to:

Energy Limit = (peak current2 - continuous current limit2) * time

Energy Limit = (5A2 - 3A2) * 2 Sec

Energy Limit = 32A2Sec
To determine the actual parameter values that will be sent to the SetCurrentFoldback Command, consult the ION

Users Manual for Amp and Amp2Sec conversion scaling values for the particular ION drive that you are using.

Current foldback, when it occurs, may indicate a serious condition affecting motion stability, smoothness, and per-
formance. It is the responsibility of the user to determine the appropriate response to a current foldback event.
136 Magellan Motion Processor User’s Guide

16

1 6 . E x t e r n a l M e m o r y a n d I / O
In This Chapter
Memory configuration, User I/O

1 6 . 1 M e m o r y C o n f i g u r a t i o n

The Magellan Motion Processor is capable of accessing external memory for the storage of trace data. In addition, it is
possible to access the external memory independent of the trace function. This allows the external memory to be used
for generic storage purposes, such as product configuration information. For MC50000 users, the amount of external
space available to the motion processor is selected and designed into the card by the user. For card users, the amount of
memory is fixed. See the Magellan Motion Controller Card User’s Guide for details. Magellan/ION users also have access to
a fixed amount of internal trace buffer storage. See the ION Digital Drive User’s Manual for details.

1 6 . 1 . 1 E x t e r n a l M e m o r y B u f f e r s

The Magellan Motion Processor provides a number of commands that may be used to access the external memory
space. This space is broken up into individual buffers to provide increased access flexibility. Magellan/ION predefines
a single buffer, while MC50000 allows up to 32 memory buffers to be defined. In this multi-buffer scheme, a buffer
describes a contiguous block of memory by defining a base address for the block and a block length. Once a buffer’s
base address and length have been defined, data values may be written to and read from the buffer. For Magellan/ION,
the buffer address and size are fixed. See the ION Digital Drive User’s Manual for details.

When defining memory buffers, the external memory space is treated as a sequence of 32-bit memory locations. Each
32-bit value takes up two 16-bit memory locations in physical memory. Buffer base addresses and lengths both deal with
32-bit quantities and therefore must be doubled to get the corresponding physical addresses.

When defining memory buffers, the motion processor will allow any values to be used for the base address and length,
as long as the values result in legal addresses. Legal memory addresses range from 0 to 3FFF FFFFh (corresponding to
physical address 7FFF FFFEh). Unless the full two gigawords of physical memory are present, it is possible to map a
buffer to a memory location that does not contain physical memory.

In addition to the base address and length, each memory block maintains a read index and a write index. The read index
may be assigned a value between 0 and L-1 (where L is the buffer length). It defines the location from which the next
value will be read. Similarly, the write index ranges from 0 to L-1 and defines the location at which the next value will
be written. When a value is read from the memory buffer, the read index is automatically incremented, thus selecting
the next value for reading. The write index is incremented whenever a value is written to a buffer. If either index reaches
the end of the buffer, it is automatically reset to 0 on the next read/write operation.

For Magellan/ION, all circuitry to access the memory buffer is contained within the processor. For detailed information
on interfacing external memory for MC50000-based designs, see the Magellan Motion Processor Electrical Specifications.

1 6 . 1 . 2 E x t e r n a l M e m o r y C o m m a n d s

This section details host I/O commands that set up, access, and monitor the external memory. Note that for Magellan/
ION users, these commands are not necessary, as the location and size of the available buffer are already set.
Magellan Motion Processor User’s Guide 137

E x t e r n a l M e m o r y a n d I / O16
SetBufferStart bufferID, address
(MC50000 only) Sets the base address of a buffer. bufferID is a 16-bit integer in the range 0–31 that specifies the
buffer to be modified. The variable address is a 32-bit integer in the range 0 to 3FFF FFFFh that defines the
new base address of the buffer.

The motion processor adds address to the current buffer length (as set by the SetBufferLength instruction) to
ensure that the buffer will not extend beyond the addressable memory limit. If it would extend beyond the limit,
the instruction is ignored and the instruction error bit is set. This command is not required for Magellan/ION.
The base address is always zero (0).

GetBufferStart bufferID
Returns the base address of the specified buffer.

SetBufferLength, bufferID, length
(MC50000 only) Sets the length of a buffer. bufferID is a 16-bit integer in the range 0–31. length is a 32-bit inte-
ger in the range 1 to 3FFF FFFFh.

The motion processor adds length to the current buffer base address (as set by the SetBufferStart instruction)
to ensure that the buffer will not extend beyond the addressable memory limit. If the buffer would extend
beyond the limit, the instruction is ignored and the instruction error bit is set. This command is not required for
Magellan/ION because the buffer size is fixed (see the ION Digital Drive User’s Manual for details).

GetBufferLength bufferID
Returns the length of the specified buffer.

SetBufferReadIndex bufferID, index
Sets the read index for the specified buffer. index is a 32-bit integer in the range 0 to length–1, where length is
the current buffer length. If index is not in this range, it is not set, and an instruction error is generated.

GetBufferReadIndex bufferID
Returns the value of the read index for the specified buffer.

SetBufferWriteIndex bufferID, index
Sets the write index for the specified buffer. index is a 32-bit integer in the range 0 to length–2, where length is
the current buffer length. If index is not in this range, it is not set, and an instruction error is generated.

GetBufferWriteIndex bufferID
Returns the value of the write index for the specified buffer.

ReadBuffer bufferID
Returns a 32-bit value from the specified buffer. The location from which the value is read is determined by add-
ing the base address to the read index. After the value has been read, the read index is incremented. If the result
is equal to the current buffer length, the read index is set to zero (0).

WriteBuffer bufferID, value
Writes a 32-bit value to the specified buffer. The location to which the value is written is determined by adding
the base address to the write index. After the value has been written, the write index is incremented. If the result
is equal to the current buffer length, the write index is set to zero (0).

SetBufferStart and SetBufferLength reset the buffer indexes to zero (0).
138 Magellan Motion Processor User’s Guide

E x t e r n a l M e m o r y a n d I / O 16
1 6 . 2 U s e r I / O

Magellan implements a peripheral device address space that is accessed with the ReadIO and WriteIO commands.
This address space is used to access hardware peripherals external to the Magellan chipset. For a complete memory
map of the peripheral address space see MC5X00 Series Electrical Specifications.

ReadIO and WriteIO take an address parameter which is is an offset from location 1000h of the motion processor's
hardware peripheral device address space.

The format and interpretation of the 16-bit data word are dependent on the user-defined device being addressed. User-
defined I/O can be used to implement a number of features, including additional parallel I/O, flash memory for non-
volatile configuration information storage, or display devices such as LED arrays.

Note that User I/O commands use a different signalling protocol and different timing than external memory access
commands. (See the MC55000 Series Electrical Specifications or the MC58000 Series Electrical Specifications for details).

1 6 . 2 . 1 U s e r I / O C o m m a n d s

This section details host I/O commands that cause Magellan to access its peripheral device address space.

ReadIO address
Reads one 16-bit word of data from the device at address, where address is an offset from location 1000h of
the motion processor's peripheral device address space.

WriteIO address, data
Writes one 16-bit word of data to the device at address, where address is an offset from location 1000h of the
motion processor's peripheral device address space.
Magellan Motion Processor User’s Guide 139

E x t e r n a l M e m o r y a n d I / O16
140 Magellan Motion Processor User’s Guide

This page intentionally left blank.

I n d e x
I n d e x

Numerics
50/50 PWM mode 84

A
A/D converters 79
abrupt stop 31
absolute encoder 13
absolute magnitude 84
absolute optical encoders 79
acceleration and deceleration slopes 25
acceleration parameter 25
acceleration value 25
active registers 43
Activity Status 51
Activity Status register 53
actual motor position 33
actual position 62, 78, 122
actual position units 122
additional trace data 64
addressable memory limit 136
addressable memory space 65
algorithmic initialization mode 112
algorithmic initialization sequence 114
analog filtering 78
analog input 74
analog reference input 93
analog reference signal 93
analog signal 74
analog-to-digital converter 13
ASIC 11
asychronous frame 101
asynchronous event notifications 104
asynchronous serial connection 100
asynchronous serial port 14, 95
at max velocity indicator 47
at rest indicator 126
automatic stall detection 122
auxiliary axis parameter 38
axis input pin 73
axis output pin 73
axis position 59
axis settled 63

B
backlash 36
bad checksum 99
band-pass filter 38
bi-directional parallel port 95
binary-encoded position 13
bi-quad 38
bi-quad coefficient scaling 40
bi-quad coefficients 39
bi-quad output filter 38
bit mask 44
Magellan Motion Processor User’s Guide 139

140

I n d e x
bitmasked value 70
bit-oriented fields 51
bit-oriented status registers 51
bit-programmed word 112
breakaway starting friction 113
breakpoint 62, 70
breakpoint 1 45
breakpoint 2 45
breakpoint axis 45
breakpoint instruction 44
breakpoint number 45
breakpoint operations 51
breakpoint, deactivate 47
breakpoint, level-triggered 46
breakpoint, threshold triggered 46
breakpoint, threshold-triggered 46
breakpoints 44
breakpointupdatemask 45
buffer base address 136
buffer length 136
buffer read index 136
buffer write index 136
buffered commands 43, 44
buffered operations 99
butterworth filter 39

C
CAN 104
CAN 2.0B interface 14
CAN 2.0B network 104
CAN address 106
CAN interface 106
CAN interface layer 105
CAN interface protocol 105
CAN message 106
CAN network 106
CAN node ID 106
CAN notification 106
CANOpen 104
capture received 70
capture register 79
captured data 64, 68
checksum 96, 99
checksum byte 102
checksum value 103
checksum, calculation 103
checksum, valid 103
checksums, invalid 102
chipset action 96
clear interrupt 70
coefficients 39
coil current distortion 93
command format 96, 102
command packet 103
command packet fields 102
command packet sequence 96
Magellan Motion Processor User’s Guide

I n d e x
command packets 98, 102
commanded position 59, 62, 122
commanded values 23
commutation angle 117
commutation error 70
commutation error bit 115
commutation frequency 85
commutation rate 21
commutation reliability 114
commutation signals 110
commutation waveforms 110, 117
comparison value 45
continuous data retrieval 64
control signals 97, 98
controlled stop 31
current control 93
current loop control 88
custom filter 38
cycle frequency 21
cycle rate 21
cycle time 20
cycle timer 62

D
DAC 14, 85
DAC channels 88
DAC output 91
DAC outputs 85
DAC signal timing 85
DAC values 85
data buffers 65
data collection synchronization 64
data frame format 101
data packet 102
data packets, time limit 103
data trace operations 69
data traces 64
data transfer 96
dataless command 96
debugging 122
defined breakpoint 48
derivative term, servo loop 36
differential line drivers/receivers 78
digital filtering 78
digital motor output word 93
direct output bit 73
direct set phase initialization 113
direction of motion 29
direction signal, encoded 123
direction signal, encoding 89
drive data 86
dual encoder processing 38
dual loop processing 38
dual-encoder mode 37

E
electrical cycles 111
Magellan Motion Processor User’s Guide 141

142

I n d e x
electronic gear profile 30
electronic gear profile mode 29
electronic gearing 23, 62
emergency stop 31
EMF 84, 93
encoder counts 114, 122
encoder counts, loss of 115
encoder modulus 80
encoder prescaler 116
encoder to step ratio 123
end-of-travel condition 59
error codes 102
event 45
event status 51
event status bit 47
Event Status register 70
event status register, clearing 70
external buffer memory 68
external memory 135
external memory buffers 135
external memory commands 136
external memory, generic storage 135
external peripherals 73
external quadrature decoder circuit 79

F
falling edge 86
feedback type 77
filter parameters 35
fixed off-time PWM drive scheme 93
fixed-point representation 23
follow-on function 62
full scale feedback range 79

G
gear ratio 30
generic command packet sequence 96

H
half-bridge 88
half-bridge driver 84
Hall interpretation value 112
Hall-based initialization 111
Hall-based initialization sequence 113
hardware communication operation 96
H-bridge amplifiers 84
H-bridge device 93
high-pass filter 38
high-speed position capture register 78
home signal 78
host I/O commands 102, 136, 137
host instructions 26
host interrupt 62, 70
host interrupt events 70
host interrupt facility 106
host interrupts 115
host-specified profile parameters 24, 26
Magellan Motion Processor User’s Guide

I n d e x
I
I/O errors codes 99
idle-line protocol 104
in motion indicator 47
incorrect command transfer 99
incremental encoder feedback 77
incremental encoder signals 13
incremental encoders 79
incremental feedback 78
incremental signals 13
index pulse 114
index pulse input 114
index pulse phase correction 114
index pulse referencing 114
index pulse signal 114
index signal 78
inductance 93
initialization 112
initialization duration 113
initialization motor command value 113
initialization procedure 113
in-motion bit 63
in-motion indicator 63
instantaneous commanded profile values 23
instantaneous deceleration 31
instruction error 52, 70
instruction error bit 136
instruction word 96
integration limit 35
integration limit scaling 35
integration term 35
interconnection diagram 13
interface signals 98
internal scaling factor 40
interrupt 70
interrupt mask 70
inverter circuitry 112
inverting summing amplifier 85

J
jerk 27

K
Ki value 35
Kout parameter 36
Kout value 36
Kp 36

L
laser interferometer 13
laser interferometers 79
level-triggered breakpoint 46
limit switch event 60, 62, 71
limit switches 14
linear amplifier 93
linear interpolation 30
low pass filter 93
low-pass filter 38
Magellan Motion Processor User’s Guide 143

144

I n d e x
M
Magellan family 12
master axis 29
master axis number 29
master node 74
Matlab 39
maximum position error 59
MC55000 Series 11
MC58000 Series 11
memory buffer 64
memory buffers 135
microstepping control flow 124
microstepping output values 124
microstepping signal output frequency 125
microstepping signals, amplitude 125
minimum timeout 103
modulo 80
modulus 79
motion complete 70
motion complete bit 62
motion complete indicator 62
motion error 14, 59, 70
motion error bit 59
motion error cause 59
motion error recovery 59
motion error status bit 59
motion processor address 103
motion profile 23
motion profile complete 62
motor bias 41
motor command output 83, 113
motor command register 116, 118, 125
motor command value 89
motor limit 40
motor output limit 40
motor output options 83
motor output waveform 89, 91
motor phasing 113
motor’s phase angle 115
multi-drop idle-line mode 103
multi-turn systems 79
MultiUpdate command 44

N
negative gear ratio value 30
negative limit 70
noise pulses 78
noise sources 78
non-buffered instruction 99
notch filter 38
notify mask 106

O
Octave 39
offset 115
one-time trace mode 64
op-amp circuit 94
Magellan Motion Processor User’s Guide

I n d e x
optional bias value 34
output clocking 86
output filter coefficients 39
output formats 83
output mode selection 91
output scale factor 34
output scaling factor 39
overshoot 26
over-travel 59

P
packet 96, 102
packet format 96
parallel port configuration 97
parallel port control signals 98
parallel-bus interface 14
parallel-word 79
parallel-word feedback 77
parallel-word input 13
parallel-word input mechanism 79
parameter ranges, filter 35
parameter traces 65
parity bit 101
peripheral bus 85, 100
peripheral read 80
phase angle 111
phase cycle 115
phase initialization 111, 113, 115
phase initialization bit 114
phase initialization command 113
phase initialization, algorithmic 111
phase initialization, direct-set 111
phase initialization, Hall sensor-based 111
phase offset register 115
phase offset value 115
phase referencing, commutation error 115
phasing error 115
phasing procedure 113
phasing zero location 115
PID algorithm 34
PID filter 13
PID-type servo filter 33
point-to-point 14
point-to-point configuration 104
point-to-point mode 100
point-to-point protocols 103
point-to-point serial mode 103
position capture register 79
position encoder 117
position error 59, 61
position error limit 61
position feedback value 80
position loop 33
position tracking 79
position wraparound 70
positive gear ratio value 30
positive limit 70
Magellan Motion Processor User’s Guide 145

146

I n d e x
positive limit switch 60
pre-commutated command signal 116
prescaler 116
prescaler function 116
product summary 12
profile generator 26, 62
profile generator registers 62
profile mode 23
profile parameters 23, 26
programmable tracking window 61
programmed acceleration value 27
proportional-integral-derivative algorithm 34
pulse output rate 123
pulse rate modes 90
PWM 14
PWM magnitude 84
PWM magnitude signal 92
PWM output 91
PWM resolution 92
PWM sign signal 92

Q
quadrature counts 77
quadrature data 78
quadrature data stream 113
quadrature incremental position 77

R
ratio, encoder to step 123
read buffer 68
read command 96
read data 65
read index 69
read pointer 65, 68
resetting the loop rate 21
resolver 13
resolvers 79, 113
response packet 102
response packets 102
resynchronize 103
rising edge 86
rolling buffer 69
rolling trace mode 64

S
S-curve mode 28
S-curve point-to-point 23
S-curve point-to-point profile 26
S-curve profile 27
second-order butterworth filter 39
sense mask 47
separate pulse rate modes 90
serial checksum 102
serial data transfer 101, 102
serial hardware signals 103
serial operations 103
serial peripheral interface 86
serial port, default configuration 100
Magellan Motion Processor User’s Guide

I n d e x
servo filter 37
servo loop 116, 118
servo loop calculation rate 21
servo parameter commands 44
servo performance 61
servo processing loop 38
settle time 62, 63
settle window 62, 63
settled indicator 63
sign bit signal 93
sign magnitude PWM 84
signal interpretation 55
signal sense mask 55
signal status 51
signal status mask 55
Signal Status register 54
signed numerical value 83
single output phase 92
sinusoidal desired voltage waveform 92
sinusoidal waveform generation 93, 124
slave axis 29
slave mode 74
smooth stop 31
source axis 45
SPI DAC mode 86
SPI data 86
SPI output 86
SPI output pin 86
square wave pulse train 89, 123
stall condition 122
stall detection 122
starting velocity 25
status bit 47
status read operation 98
step motor support 122
stop bits 101
stop command 62
switching amplifier 93
synchronization pin 74
synchronization sample time 75
synchronized motion 74
synchronized power changes 125
synchronizing multiple motion processors 75

T
three-phase AC induction motor 93
three-phase step motor 125
threshold triggered breakpoints 46
time slice 21
time-out period 103
timeout period 104
trace buffer 64, 65, 69
trace buffer configuration 65
trace buffer wrap 68
trace capture 64
trace capture overhead 20
trace data 65
Magellan Motion Processor User’s Guide 147

148

I n d e x
trace data capture 64
trace data retrieval 64
trace data storage 135
trace mode 67, 69
trace period 69
trace samples 68
trace start 69
trace start/stop 67
trace stop 69
traceable parameter 65
tracing frequency 65
tracing system 65
tracking bit 61
tracking window 61
tracking window, size 61
trajectory generator 13, 23, 33, 43, 59
trajectory generator registers 62
trajectory motion 62
trajectory parameters 23
trajectory profile 62
trajectory profile mode 43
trajectory profile modes 23
trajectory update rate 21
transfer protocols 14
transmission errors 102
transmission protocols 103
trapezoidal mode 28
trapezoidal point to point 23
trapezoidal point-to-point profile mode 24
trigger 45
trigger mask 46
triggering event 51
two-phase step motor 125

U
update command 44
User I/O 137

V
velocity contouring 23
velocity-contouring profile mode 28

W
waveform, magnitude 89
write command 96
write index 135
Magellan Motion Processor User’s Guide

Magellan Motion Processor User’s Guide 149

For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at http://www.pmdcorp.com

Performance Motion Devices
80 Central Street

Boxborough, MA 01719

	Magellan® Motion Processor User's Guide
	NOTICE
	Warranty
	Safety Notice
	Disclaimer
	Related Documents
	Other Documents
	Table of Contents
	List of Figures
	1. The Magellan Family
	1.1 Family Summary
	1.2 Magellan Motion Processor Products

	2. System Overview
	2.1 Documentation Guide
	2.2 Product P/N Referencing Guide

	3. Control Modules
	3.1 Control Flow Overview
	3.2 Enabling and Disabling Control Modules
	3.3 Reset Command
	3.4 Setting the Cycle Time
	3.5 The Time Register
	3.6 GetVersion Command

	4. Trajectory Generation
	4.1 Trajectories, Profiles, and Parameters
	4.1.1 Trajectory Parameter Representation

	4.2 Trapezoidal Point-to-Point Profile
	4.3 S-curve Point-to-Point Profile
	4.4 Velocity-Contouring Profile
	4.5 Electronic Gear Profile
	4.9 Disabling and Enabling the Trajectory Generator Module

	5. Position Loop
	5.1 Overview
	5.1.1 PID Loop
	5.1.2 Integration Limit
	5.1.3 Output scaling
	5.1.4 Derivative Sampling Time

	5.2 Dual Encoder Support
	5.2.1 Dual Encoder PID Loop Algorithm
	5.2.2 Configuring Dual Encoder Support

	5.3 Biquad Output Filters
	5.3.1 Determining Biquad Coefficients
	5.3.2 Determining the Biquad Scaling Factor
	5.3.3 Scaling Biquad Coefficients

	5.4 Output Limit
	5.5 Motor Bias
	5.6 Disabling and Enabling the Position Loop Module
	5.6.1 Reading Position Loop Values

	6. Parameter Update and Breakpoints
	6.1 Parameter Buffering
	6.1.1 Updates

	6.2 Breakpoints
	6.2.1 Defining a Breakpoint
	6.2.2 Breakpoint Triggers
	6.2.3 Threshold-Triggered Breakpoints
	6.2.4 Level-Triggered Breakpoints
	6.2.5 Breakpoint Actions
	6.2.6 Breakpoint Latencies
	6.2.7 Breakpoint Examples

	7. Status Registers
	7.1 Overview
	7.2 Event Status Register
	7.2.1 Instruction Error

	7.3 Activity Status Register
	7.4 Drive Status Register
	7.5 Signal Status Register
	7.5.1 Signal Sense Mask

	8. Motion Monitoring and Related Processing
	8.1 SetEventAction Processing
	8.2 Motion Error
	8.3 Travel-limit Switches
	8.4 Tracking Window
	8.5 Motion Complete Indicator
	8.6 In-motion Indicator
	8.7 Settle Window
	8.8 Trace Capture
	8.9 Trace Buffer Architecture
	8.9.1 The Trace Buffer
	8.9.2 The Trace Period
	8.9.3 Trace Variables
	8.9.4 Trace Modes
	8.9.5 Trace Start/Stop Conditions
	8.9.6 Downloading Trace Data
	8.9.7 Running Traces

	8.10 Host Interrupts

	9. Hardware Control Signals
	9.1 The AxisOut Pin
	9.2 The AxisIn Pin
	9.3 Analog input
	9.4 The Synch Pin—Multiple Chip Synchronization

	10. Encoder Interfacing
	10.1 Incremental Encoder Input
	10.1.1 Actual Position Register
	10.1.2 Digital Filtering

	10.2 High-speed Position Capture
	10.3 Parallel-word Position Input
	10.3.1 Multi-Turn Systems
	10.3.2 Parallel-Word Device Interfacing

	11. Motor Output
	11.1 Disabling the Motor Output Module
	11.2 Enabling the Motor Output Module
	11.3 Motor Type
	11.4 Motor Command Output
	11.4.1 Sign Magnitude PWM
	11.4.2 50/50 PWM
	11.4.3 Parallel DAC - Offset Binary
	11.4.4 Parallel DAC - Sign Magnitude
	11.4.5 SPI DAC - Offset Binary
	11.4.6 SPI DAC - Two’s Complement

	11.5 Setting PWM Frequency
	11.6 Multi-Phase Motor Interfacing
	11.6.1 Multi-phase Motor Command Interpretation

	11.7 Pulse & Direction Signal Generation
	11.8 Microstepping Motor Output
	11.8.1 Motor Output Signal Interpretation
	11.8.2 PWM Decoding
	11.8.3 Motor Drive Configurations

	12. Host Communication
	12.1 Host I/O Commands
	12.2 Parallel Communication Port
	12.2.1 Interfacing
	12.2.2 Parallel port I/O Operations
	12.2.3 The Status Read Operation
	12.2.4 Checksum
	12.2.5 Instruction Errors

	12.3 Serial Port
	12.3.1 Configuration
	12.3.2 Command Format
	12.3.3 Instruction Errors
	12.3.4 Checksums
	12.3.5 Transmission Protocols
	12.3.6 Point-to-Point Mode
	12.3.7 Multi-drop Idle-line Mode

	12.4 Controller Area Network (CAN)
	12.4.1 Overview
	12.4.2 Message Format
	12.4.3 Configuring the CAN Interface
	12.4.4 CAN Event Notification

	12.5 Storing Communication Values

	13. Brushless DC Motor Control
	13.1 Overview
	13.2 Number of Phases
	13.3 Phasing Control Modes
	13.4 Phase Counts
	13.5 Phase Initialization
	13.5.1 Hall-Based Phase Initialization
	13.5.2 Algorithmic Phase Initialization
	13.5.3 Direct-Set Phase Initialization

	13.6 Phase Initialization Programming
	13.6.1 Hall-based Initialization Sequence
	13.6.2 Algorithmic Initialization Sequence
	13.6.3 Direct-Set Initialization Sequence

	13.7 Index Pulse Referencing
	13.7.1 Phasing Error Detection
	13.7.2 Adjusting the Phase Angle

	13.8 Encoder Prescaler
	13.9 Sinusoidal Commutation
	13.10 Field Oriented Control
	13.10.1 FOC Algorithm
	13.10.2 Reading FOC Loop Values
	13.10.3 FOC with 2-phase Motors
	13.10.4 Hall-based FOC

	14. Step Motor Control
	14.1 Overview
	14.1.1 Trajectory Control Units

	14.2 Encoder Feedback
	14.3 Stall Detection
	14.4 Pulse & Direction Motor Control
	14.5 Microstepping Motor Control
	14.5.1 Microstepping Waveforms
	14.5.2 Holding Current Functions
	14.5.3 Field Oriented Control and Current Control

	15. Drive Control
	15.1 Current Loop
	15.2 Current Loop Parameters
	15.3 Enabling and Disabling Current Loop
	15.4 Reading Current Loop Values
	15.5 Drive Control Features
	15.6 Electrical Faults
	15.7 Drive Fault Status Register
	15.8 FaultOut Signal
	15.9 Overtemperature Sense
	15.10 Overvoltage Sense
	15.11 Undervoltage Sense
	15.12 Drive Enable
	15.13 Current Foldback

	16. External Memory and I/O
	16.1 Memory Configuration
	16.1.1 External Memory Buffers
	16.1.2 External Memory Commands

	16.2 User I/O
	16.2.1 User I/O Commands

	Index

