

USER'S MANUAL

S3F80P9

8-Bit CMOS MICROCONTROLLERS

April, 2010 Revision 1.00

Confidential Proprietary of Samsung Electronics Co., Ltd Copyright © 2009 Samsung Electronics, Inc. All Rights Reserved

Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product.

S3F80P9 8-Bit CMOS Microcontrollers User's Manual, Revision 1.00 Publication Number: 20.10-S3F-80P9-032009

Copyright © 2008~2009 Samsung Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001 certification (BSI Certificate No. FM24653). All semiconductor products are designed and manufactured in accordance with the highest quality standards and objectives.

Samsung Electronics Co., Ltd. San #24 Nongseo-Dong, Giheung-Gu, Yongin-City, Gyunggi-Do, Korea C.P.O. Box #37, 446-711

TEL: (82)-(31)-209-3865 FAX: (82)-(31)-209-6494 Home-Page URL: Http://www.samsungsemi.com

Printed in the Republic of Korea

Preface

The S3F80P9 Microcontroller User's Manual is designed for application designers and programmers who are using S3F80P9 microcontroller for application development. It is organized in two main parts:

Part I Programming Model

Part II Hardware Descriptions

Part I contains software-related information to familiarize you with the microcontroller's architecture, programming model, instruction set, and interrupt structure. It has six chapters:

Chapter 1	Product Overview	Chapter 4	Control Registers
Chapter 2	Address Spaces	Chapter 5	Interrupt Structure
Chapter 3	Addressing Modes	Chapter 6	Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to *S3F80P9* with general product descriptions, as well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined stack operations.

Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the S3C8-series CPU.

Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read, alphabetically organized, register descriptions as a quick-reference source when writing programs.

Chapter 5, "Interrupt Structure," describes the S3F80P9 interrupt structure in detail and further prepares you for additional information presented in the individual hardware module descriptions in Part II.

Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3F8-series microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of each instruction are presented in a standard format. Each instruction description includes one or more practical examples of how to use the instruction when writing an application program.

A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in Part II. If you are not yet familiar with the S3F8-series microcontroller family and are reading this manual for the first time, we recommend that you first read Chapters 1-3 carefully. Then, briefly look over the detailed information in Chapters 4, 5, and 6. Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the *S3F80P9* microcontroller. Also included in Part II are electrical, mechanical, MTP, and development tools data. It has 13 chapters:

Chapter 7	Clock, Power and Reset Circuits
Chapter 8	RESET
Chapter 9	I/O Ports
Chapter 10	Basic Timer and Timer 0
Chapter 11	Timer 1
Chapter 12	Counter A
Chapter 13	Timer 2

Chapter 14Embedded Flash Memory InterfaceChapter 15Low Voltage DetectorChapter 16Electrical DataChapter 17Mechanical DataChapter 18Flash MCUChapter 19Development Tools

NOTIFICATION OF REVISIONS

ORIGINATOR:	Samsung Electronics, LSI Development Group, Gi-Heung, South Korea
PRODUCT NAME:	S3F80P9 Microcontroller
DOCUMENT NAME:	S3F80P9 User's Manual, Revision 1.00
DOCUMENT NUMBER:	S3-F80P9-032009
EFFECTIVE DATE:	April, 2010
SUMMARY:	As a result of additional product testing, evaluation and spelling mistakes, some specifications in the S3F80P9 User's Manual, Revision 0.10, have been changed. These changes for S3F80P9microcontroller, which are described in detail in the <i>Revision Descriptions</i> section below, are related to the followings:
DIRECTIONS:	Please note the changes in your copy (copies) of the S3F80P9 User's Manual, Revision 0.10 or simply attach the Revision Descriptions of the next page to

S3F80P9 User's Manual, Revision 1.00.

REVISION HISTORY

Revision	Remark	Author(s)	Date
0.00	Preliminary Spec for internal release only.	Minseok Jeong	Oct, 2008
0.10	Preliminary Spec for internal release only.	Fan Zhang	Mar, 2009
1.00	Final Spec	Fan Zhang	April, 2010

REVISION DESCRIPTIONS (Rev 0.10)

Item	ltomo	Re	Nata	
No.	Items	Rev0.00	Rev0.10	Note
1	Operating Voltage Range	-25°C to + 85 °C	0°C to + 70 °C	All chapters
2	Register	Revised: IMR register		Page 4-13
3	Register	Revised: IPR register		Page 4-15
4	Register	Revised: IRQ register		Page 4-16
5	Register	Revised: SYM register		Page 4-39
6	Flash ROM Feature	Revised: Fast programming Time:		Page 13-1
7	Pin Assignment	Added: Figure 17-3. Pin Assignment Diagram (44-Pin QFP Package)		Page 17-3
8	Table 17-1	Revised: Pin NO.		Page 17-4
9	Timer2	Added		Chapter13
10	Description of Back- up, LVD gap, Data retention voltage	Added note of page 16-4 and 16	-5	Chapter 16

REVISION DESCRIPTIONS (Rev 1.00)

In Page 19-4, table 19-1 is deleted.

In Page 19-5, table 19-2 is changed.

Table 19-2. Setting of the Jumper in TB80PB

JP#	Description	1-2 Connection		2-3 Connection	Default Setting
S1	Target board power source	Use JP7(VCC)		NOT connected	Join 1-2
JP1	Target board mode selection	H: Main-Mode	L: E	VA-Mode	Join 2-3
JP2	Operation Mode	H: User Mode	L: T	est-Mode	Join 1-2
JP3	MDS version	SMDS2	SM	DS2+,SK-1200,OPENIce I-500	Join 2-3
JP4 To User_Vcc	Target system is supplied V _{DD}	Target system is supplied V _{DD} from user system.			ON setting
JP5	Board peripheral power connection	Board peripheral power cor	necti	on	Connect
JP6	When supplied 5V in target board, generation of 3.3V using regulator.	In case of selection 3.3V o Emulator (Not use 3.3V regulator)	of In case of selection 5V of Emulator (Use 3.3V Regulator)		Join 2-3
JP7,JP9	POWER connector	JP7: VCC JP9:GND		-	
JP8	80PBX V _{DD} power connection	80PB V _{DD} power connection		Connect	
JP10	Clock source selection	When using the internal clock source which is generated from Emulator, join connector 2-3 and 4-5 pin. If user wants to use the external clock source like a crystal, user should change the jumper setting from 1-2 to 5-6 and connect Y1 to an external clock source.		Emulator 2-3 4-5	
JP11,12	NOT used for TB80PB	-		NOT connected	
SW1	Generation low active reset signal to S3F80PB EVA-chip	Push switch		-	
SW2	Smart option at address 3EH	Dip switch for smart option. This 1byte is mapped address 3EH for special function. Refer to the page 2-3.			
SW3	Smart option at address 3FH	Dip switch for smart option. This 1byte is mapped address 3FH for special function. Refer to the page 2-3.			
Y1	External clock source	Connecting points for external clock source			
J3	Header for flash serial programming signals	To program an internal flash, connect the signals with flash writer tool.		J3	
To User_Vcc	Target System is supplied V _{DD}	Target Board is not supplied V _{DD} from user System.	d	Target Board is supplied V _{DD} from user System.	Join 2-3

Item	Items	R	Nata		
No.	items	Rev0.10 Rev1.00		Note	
1	Operating Voltage Range	0°C to + 70 °C	-25°C to + 85 °C	All chapters	
2	I _{DD3}	1uA (typ)	0.7uA (typ)	Page 16-4	
3	R _{L2}	200 Ohm (min)	150Ohm (min)	Page 16-3	
4	V _{POR}	1.0 V (min.), 1.2 V (typ.)	0.8 V (min.), 1.1 V (typ.)	Table 16-4	
5	V _{ddddr}	1.0 V (min.)	0.8 V (min.)	Table 16-5	
6	nRESET pin description	Added 'It is recommended that add a 0.1uF capacitor between nRESET pin and VSS for better noise immunity.'		Table1-1, 1-2, 1-3	
7	TEST pin description	Added 'If on board programming is needed, It is recommended that add a 0.1uF capacitor between TEST pin and VSS for better noise immunity; otherwise, connect TEST pin to VSS directly.'		Table1-1, 1-2, 1-3	
8	ESD Characteristics	Added note 'If on board programming is needed, it is recommended that add a 0.1uF capacitor between TEST pin and VSS for better noise immunity; otherwise, connect TEST pin to VSS directly. It is recommended also that add a 0.1uF capacitor between nRESET pin and VSS for better noise immunity.'		Table16-11	

Table of Contents

Part I — Programming Model

Chapter 1 Product Overview

1
1
2
3
4
5
6
7
12

Chapter 2 Address Spaces

Overview	2-1
Program Memory	2-2
Register Architecture	
Register Page Pointer (PP)	
Register Set 1	
Register Set 2	2-8
Prime Register Space	2-9
Working Registers	2-10
Using the Register Pointers	
Register Addressing	
Common Working Register Area (C0H–CFH)	
4-Bit Working Register Addressing	
8-Bit Working Register Addressing	
System and User Stacks	
•	

Chapter 3 Addressing Modes

Overview	
Register Addressing Mode (R)	
Indirect Register Addressing Mode (IR)	
Indexed Addressing Mode (X)	
Direct Address Mode (DA)	
Indirect Address Mode (IÁ)	
Relative Address Mode (RA)	
Immediate Mode (IM)	

Chapter 4 Control Registers

Overview......4-1

Chapter 5 Interrupt Structure

Overview	5-1
Interrupt Types	5-2
Interrupt Vector Addresses	
Enable/Disable Interrupt Instructions (EI, DI)	5-6
System-Level Interrupt Control Registers	
Interrupt Processing Control Points	
Peripheral Interrupt Control Registers	5-8
System Mode Register (SYM)	5-9
Interrupt Mask Register (IMR)	5-10
Interrupt Priority Register (IPR)	5-11
Interrupt Request Register (IRQ)	5-13
Interrupt Pending Function Types	5-14
Interrupt Source Polling Sequence	5-15
Interrupt Service Routines	5-15
Generating interrupt Vector Addresses	
Nesting of Vectored Interrupts	5-16
Instruction Pointer (IP)	
Fast Interrupt Processing	5-16

Chapter 6 Instruction Set

Overview	6-1
Flags Register (FLAGS)	
Flag Descriptions	
Instruction Set Notation	
Condition Codes	6-12
Instruction Descriptions	6-13

Part I — Hardware Descriptions

Chapter 7 Clock, Power and Reset Circuits

Overview	7-1
System Clock Circuit	7-1
Clock Status During Power-Down Modes	7-3
System Clock Control Register (CLKCON)	7-4

Chapter 8 Reset

<i>r</i> iew	
Reset Sources	
Reset Mechanism	8-4
External RESET Pin	
Watch Dog Timer Reset	8-4
LVD Reset	8-4
Internal Power-On Reset	8-5
External Interrupt Reset	8-6
Stop Error Detection & Recovery	8-7
External Reset Pin	8-7
r-Down Modes	
Idle Mode	
Back-up Mode	8-9
Stop Mode	8-11
Sources to Release Stop Mode	8-12
System Reset Operation	8-14
Hardware Reset Values	8-15
Recommendation for Unusued Pins	8-19
Summary Table of Back-Up Mode, Stop Mode, and Reset Status	8-20
· · · ·	

Chapter 9 I/O Ports

Overview	
Port Data Registers	
Pull-Up Resistor Enable Registers	

Chapter 10 Basic Timer and Timer 0

Overview	
Basic Timer (BT)	
Timer 0	
Basic Timer Control Register (BTCON)	
Basic Timer Function Description	
Timer 0 Control Register (TOCON)	
Timer 0 Function Description	

Chapter 11 Timer 1

Overview	
Timer 1 Overflow Interrupt	
Timer 1 Capture Interrupt	
Timer 1 Match Interrupt	
Timer 1 Control Register (T1CON)	

Chapter 12 Counter A

Overview	12-1
Counter A Control Register (CACON)	
Counter A Pulse Width Calculations	

Chapter 13 Timer 2

Overview	
Timer 2 Overflow Interrupt	
Timer 2 Capture Interrupt	
Timer 2 Match Interrupt	
Timer 2 Control Register (T2CON)	

Chapter 14 Embedded Flash Memory Interface

Overview	14-1
ISP [™] (On-Board Programming) Sector	14-2
ISP Reset Vector and ISP Sector Size	14-4
Flash Memory Control Registers (User Program Mode)	14-5
Flash Memory Control Register (FMCON)	14-5
Flash Memory User Programming Enable Register (FMUSR)	14-5
Flash Memory Sector Address Registers	14-6
Sector Erase	14-7
Programming	14-11
Reading	14-16
Hard Lock Protection	14-17

Chapter 15 Low Voltage Detector

Overview	
LVD	
LVD FLAG	
Low Voltage Detector Control Register (LVDCON)	
Low Voltage Detector Flag Selection Register (LVDSEL)	

Chapter 16 Electrical Data

Overview	3-1
----------	-----

Chapter 17 Mechanical Data

Overview	l
----------	---

Chapter 18 S3F80P9 Flash MCU

Overview	
Pin Assignments (28-Pin SOP Package)	
Pin Assignments (32-Pin SOP Package)	
Pin Assignments (44-Pin QFP Package)	
Operating Mode Characteristics	

Chapter 19 Development Tools

Overview	19-1
Target Boards	19-1
Programming Socket Adapter	19-1
TB80PB Target Board	
OTP/MTP Programmer (Writer)	

List of Figures

Figure Number

Title

1-1	Block Diagram (28-pin)	1-3
1-2	Block Diagram (44/32-pin)	
1-3	Pin Assignment Diagram (28-Pin SOP Package)	1-5
1-4	Pin Assignment Diagram (32-Pin SOP Package)	1-6
1-5	Pin Assignment Diagram (44-Pin QFP Package)	1-7
1-6	Pin Circuit Type 1 (Port 0)	1-12
1-7	Pin Circuit Type 2 (Port 1)	1-13
1-8.	Pin Circuit Type 3 (Port 2)	
1-9	Pin Circuit Type 4 (P3.0)	1-15
1-10	Pin Circuit Type 5 (P3.1)	
1-11	Pin Circuit Type 7 (nRESET)	
2-1	Program Memory Address Space	2-2
2-2	Smart Option	2-3
2-3	Internal Register File Organization	2-6
2-4	Register Page Pointer (PP)	2-7
2-5	Set 1, Set 2, and Prime Area Register Map	2-9
2-6	8-Byte Working Register Areas (Slices)	2-10
2-7	Contiguous 16-Byte Working Register Block	
2-8	Non-Contiguous 16-Byte Working Register Block	
2-9	16-Bit Register Pair	2-13
2-10	Register File Addressing	
2-11	Common Working Register Area	
2-12	4-Bit Working Register Addressing	
2-13	4-Bit Working Register Addressing Example	
2-14	8-Bit Working Register Addressing	
2-15	8-Bit Working Register Addressing Example	
2-16	Stack Operations	
3-1	Register Addressing	3-2
3-2	Working Register Addressing	3-2
3-3	Indirect Register Addressing to Register File	
3-4	Indirect Register Addressing to Program Memory	3-4
3-5	Indirect Working Register Addressing to Register File	3-5
3-6	Indirect Working Register Addressing to Program or Data Memory	3-6
3-7	Indexed Addressing to Register File	3-7
3-8	Indexed Addressing to Program or Data Memory with Short Offset	3-8
3-9	Indexed Addressing to Program or Data Memory	3-9
3-10	Direct Addressing for Load Instructions	3-10
3-11	Direct Addressing for Call and Jump Instructions	
3-12	Indirect Addressing	3-12
3-13	Relative Addressing	3-13
3-14	Immediate Addressing	3-14
4-1	Register Description Format	4-4

List of Figures (Continued)

Figure Number	Title	Page Number
5-1	S3C8/S3F8-Series Interrupt Types	5-2
5-2	S3F80P9 Interrupt Structure	5-3
5-3	ROM Vector Address Area	5-4
5-4	Interrupt Function Diagram	5-7
5-5	System Mode Register (SYM)	
5-6	Interrupt Mask Register (IMR)	
5-7	Interrupt Request Priority Groups	
5-8	Interrupt Priority Register (IPR)	
5-9	Interrupt Request Register (IRQ)	5-13
6-1	System Flags Register (FLAGS)	6-6
7-1	Main Oscillator Circuit (External Crystal or Ceramic Resonator)	
7-2	External Clock Circuit	
7-3	System Clock Circuit Diagram	
7-4	System Clock Control Register (CLKCON)	
7-5	Power Circuit (VDD)	
7-6	nRESET Circuit	
7-7	Guide Line of Chip Operating Voltage	7-6
8-1	RESET Sources of The S3F80P9	
8-2	RESET Block Diagram of The S3F80P9	
8-3	RESET Block Diagram by LVD for The S3F80P9 in Stop Mode	
8-4	Timing Diagram for Internal Power-On Reset Circuit	
8-5	Reset Timing Diagram for The S3F80P9 in STOP mode by IPOR	
8-6	Block Diagram for Back-up Mode	
8-7	Timing Diagram for Back-up Mode Input and Released by LVD	
8-8	Timing Diagram for Back-up Mode Input in Stop mode	8-10
9-1	S3F80P9 I/O Port Data Register Format	
9-2	Pull-up Resistor Enable Registers (Port 0 and Port 2 only)	9-4
10-1	Basic Timer Control Register (BTCON)	10-2
10-2	Timer 0 Control Register (T0CON)	10-5
10-3	Timer 0 DATA Register (T0DATA)	10-5
10-4	Simplified Timer 0 Function Diagram: Interval Timer Mode	
10-5	Simplified Timer 0 Function Diagram: PWM Mode	
10-6	Simplified Timer 0 Function Diagram: Capture Mode	
10-7	Basic Timer and Timer 0 Block Diagram	10-9
11-1	Simplified Timer 1 Function Diagram: Capture Mode	
11-2	Simplified Timer 1 Function Diagram: Interval Timer Mode	11-3
11-3	Timer 1 Block Diagram	
11-4	Timer 1 Control Register (T1CON)	
11-5	Timer 1 Registers (T1CNTH, T1CNTL, T1DATAH, T1DATAL)	11-6

List of Figures (Continued)

Figure Number	Title	Page Number
12-1	Counter A Block Diagram	
12-2	Counter A Control Register (CACON)	
12-3	Counter A Registers	12-3
12-4	Counter A Output Flip-Flop Waveforms in Repeat Mode	
13-1	Simplified Timer 2 Function Diagram: Capture Mode	
13-2	Simplified Timer 2 Function Diagram: Interval Timer Mode	
13-3	Timer 2 Block Diagram	
13-4	Timer 2 Control Register (T2CON)	
13-5	Timer 2 Registers (T2CNTH, T2CNTL, T2DATAH, T2DATAL)	
14-1	Program Memory Address Space	14-2
14-2	Smart Option	14-3
14-3	Flash Memory Control Register (FMCON)	
14-4	Flash Memory User Programming Enable Register (FMUSR)	
14-5	Flash Memory Sector Address Register (FMSECH)	
14-6	Flash Memory Sector Address Register (FMSECL)	
14-7	Sector Configurations in User Program Mode	
14-8	Sector Erase Flowchart in User Program Mode	
14-9	Byte Program Flowchart in a User Program Mode	
14-10	Program Flowchart in a User Program Mode	
15-1	Low Voltage Detect (LVD) Block Diagram	
15-2	Low Voltage Detect Control Register (LVDCON)	
15-3	Low Voltage Detect Flag Selection Register (LVDSEL)	
16-1	Stop Mode Release Timing When Initiated by an External Interrupt	
16-2	Stop Mode Release Timing When Initiated by a Reset	
16-3	Stop Timing Diagram for Back-up Mode Input in Stop mode	
16-4	Input Timing for External Interrupts (Port 0 and Port 2)	
16-5	Input Timing for Reset (nRESET Pin)	
16-6	Operating Voltage Range of S3F80P9	
17-1	44-Pin QFP Package Dimension	
17-2	32-Pin SOP Package Dimension	
17-3	28-Pin SOP Package Dimension	
18-1	Pin Assignment Diagram (28-Pin SOP Package)	
18-2	Pin Assignment Diagram (32-Pin SOP Package)	
18-3	Pin Assignment Diagram (44-Pin QFP Package)	
19-1	Development System Configuration	
19-2	TB80PB Target Board Configuration	
19-3	50-Pin Connector Pin Assignment for user system	
19-4	TB80PB Probe Adapter Cable	

List of Tables

Table Number	Title	Page Number
1-1	Pin Descriptions of 28-SOP	1-8
1-2	Pin Descriptions of 32-SOP	
1-3	Pin Descriptions of 44-QFP	1-10
2-1	The Summary of S3F80P9 Register Type	2-5
4-1	Mapped Registers (Bank0, Set1)	4-2
4-2	Mapped Registers (Bank1, Set1)	
4-3	Each Function Description and Pin Assignment of P3CON in 28/32 Pin Packag	e 4-34
5-1	S3F80P9 Interrupt Vectors	5-5
5-2	Interrupt Control Register Overview	
5-3	Vectored Interrupt Source Control and Data Registers	5-8
6-1	Instruction Group Summary	
6-2	Flag Notation Conventions	
6-3	Instruction Set Symbols	
6-4	Instruction Notation Conventions	
6-5	Opcode Quick Reference	
6-6	Condition Codes	6-12
7-1	Falling and Rising Time of Operating Voltage	7-6
8-1	Reset Condition in STOP Mode	
8-2	Set 1, Bank 0 Register Values After Reset	
8-3	Set 1, Bank 1 Register Values After Reset	
8-4	Reset Generation According to the Condition of Smart Option	
8-5	Guideline for Unused Pins to Reduced Power Consumption	
8-6	Summary of Each Mode	8-20
9-1	S3F80P9 Port Configuration Overview (32-SOP)	
9-2	S3F80P9 Port Configuration Overview (28-SOP)	
9-3	Port Data Register Summary	9-3

List of Tables (Continued)

Table Number	Title Page Number
14-1	ISP Sector Size14-4
14-2	Reset Vector Address14-4
16-1	Absolute Maximum Ratings16-2
16-2	D.C. Electrical Characteristics16-2
16-3	Characteristics of Low Voltage Detect Circuit16-4
16-4	Power On Reset Circuit *TBD16-5
16-5	Data Retention Supply Voltage in Stop Mode *TBD16-5
16-6	Input/Output Capacitance16-7
16-7	A.C. Electrical Characteristics
16-8	Oscillation Characteristics16-9
16-9	Oscillation Stabilization Time16-10
16-10	AC Electrical Characteristics for Internal Flash ROM16-11
16-11	ESD Characteristics16-12
18-1	Descriptions of Pins Used to Read/Write/Erase the Flash in Tool Program Mode18-4
18-2	Operating Mode Selection Criteria18-4
19-1	Components of TB80P919-4
19-2	Setting of the Jumper in TB80P919-5

List of Programming Tips

Description		Page Number
Chapter 2	Address Spaces	
Setting the	Register Pointers	2-11
	RPs to Calculate the Sum of a Series of Registers	
	the Common Working Register Area	
Standard S	Stack Operations Using PUSH and POP	2-21
Chapter 8	Reset	
To enter S	TOP mode	8-11
Chapter 10	Basic Timer and Timer 0	
Configuring	g the Basic Timer	
	ng Timer 0	
Chapter 12	Counter A	
To generate	e 38 kHz, 1/3duty signal through P3.1	
	e a one-pulse signal through P3.1	
To generate	e a one-pulse signal through P3.1	
Chapter 14	Embedded Flash Memory Interface	
Sector Frag	92	14-9

Sector Erase	. 14-9
Programming	. 14-14
Reading	
Hard Lock Protection	

List of Register Descriptions

Register Identifier	Full Register Name	Page Number
BTCON	Basic Timer Control Register	
CACON	Counter A Control Register	
CLKCON	System Clock Control Register	
EMT	External Memory Timing Register	
FLAGS	System Flags Register	4-10
FMCON	Flash Memory Control Register	4-11
FMSECH	Flash Memory Sector Address Register(High Byte)	4-12
FMSECL	Flash Memory Sector Address Register(Low Byte)	4-12
FMUSR	Flash Memory User Programming Enable Register	4-12
IMR	Interrupt Mask Register	4-13
IPH	Instruction Pointer (High Byte)	4-14
IPL	Instruction Pointer (Low Byte)	4-14
IPR	Interrupt Priority Register	
IRQ	Interrupt Request Register	
LVDCON	LVD Control Register	4-17
LVDCON	LVD Control Register	
LVDSEL	LVD Flag Level Selection Register	4-18
P0CONH	Port 0 Control Register (High Byte)	4-19
POCONL	Port 0 Control Register (Low Byte)	
POINT	Port 0 External Interrupt Enable Register	4-21
P0PND	Port 0 External Interrupt Pending Register	
POPUR	Port 0 Pull-up Resistor Enable Register	
P1CONH	Port 1 Control Register (High Byte)	
P1CONL	Port 1 Control Register (Low Byte)	
P1OUTPU	Port 1 Output Pull-up Resistor Enable Register	
P2CONH	Port 2 Control Register (High Byte)	
P2CONL	Port 2 Control Register (Low Byte)	
P2INT	Port 2 External Interrupt Enable Register	
P2OUTMD	Port 2 Output Mode Selection Register	
P2PND	Port 2 External Interrupt Pending Register	
P2PUR	Port 2 Pull-up Resistor Enable Register	
P3CON	Port 3 Control Register	
P3OUTPU	Port 3 Output Pull-up Resistor Enable Register	
PP	Register Page Pointer	
RESETID	Reset Source Indicating Register	
RP0	Register Pointer 0	4-38
RP1	Register Pointer 1	
SPL	Stack Pointer (Low Byte)	
STOPCON	Stop Control Register	
SYM	System Mode Register	
T1CON	Timer 1 Control Register	

List of Instruction Descriptions

Instruction Mnemonic **Full Register Name**

ADC	Add with corru	6 1 /
ADC	Add with carry Add	
AND	Logical AND	
BAND	Bit AND	
BCP	Bit Compare	
BITC	Bit Complement	
BITR	Bit Reset	
BITS	Bit Set	
BOR	Bit OR	
BTJRF	Bit Test, Jump Relative on False	
BTJRT	Bit Test, Jump Relative on True	
BXOR	Bit XOR	
CALL	Call Procedure	
CALL	Complement Carry Flag	
CLR		
COM	Clear	
CP	Complement	
CPIJE	Compare	
CPIJE CPIJNE	Compare, Increment, and Jump on Equal	
DA	Compare, Increment, and Jump on Non-Equal	
DA	Decimal Adjust	
DEC	Decimal Adjust	
DEC	Decrement	
DECW	Decrement Word	
	Disable Interrupts	
	Divide (Unsigned)	
DJNZ	Decrement and Jump if Non-Zero	
EI	Enable Interrupts	
ENTER	Enter	
EXIT	Exit	
IDLE	Idle Operation	
INC	Increment	
INCW	Increment Word	
IRET	Interrupt Return	
JP	Jump	
JR	Jump Relative	
LD	Load	
LD	Load	
LDB	Load Bit	
LDC/LDE	Load Memory	
LDC/LDE	Load Memory	
LDCD/LDED	Load Memory and Decrement	
	Load Memory and Increment	
LDCPD/LDEPD	Load Memory with Pre-Decrement	
LDCPI/LDEPI	Load Memory with Pre-Increment	
LDW	Load Word	6-58

List of Instruction Descriptions (Continued)

Instruction Mnemonic **Full Register Name**

MULT	Multiply (Unsigned)	6-59
NEXT	Next	
NOP	No Operation	
OR	Logical OR	
POP	Pop From Stack	
POPUD	Pop User Stack (Decrementing)	
POPUI	Pop User Stack (Incrementing)	
PUSH	Push To Stack	
PUSHUD	Push User Stack (Decrementing)	
PUSHUI	Push User Stack (Incrementing)	
RCF	Reset Carry Flag	
RET	Return	
RL	Rotate Left	
RLC	Rotate Left Through Carry	6-72
RR	Rotate Right	
RRC	Rotate Right Through Carry	
SB0	Select Bank 0	
SB1	Select Bank 1	
SBC	Subtract With Carry	6-77
SCF	Set Carry Flag	6-78
SRA	Shift Right Arithmetic	
SRP/SRP0/SRP1	Set Register Pointer	6-80
STOP	Stop Operation	6-81
SUB	Subtract	6-82
SWAP	Swap Nibbles	6-83
ТСМ	Test Complement Under Mask	6-84
ТМ	Test Under Mask	6-85
WFI	Wait For Interrupt	6-86
XOR	Logical Exclusive OR	6-87

PRODUCT OVERVIEW

S3C8/S3F8-SERIES MICROCONTROLLERS

Samsung's S3C8/S3F8-series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various flash memory ROM sizes. Important CPU features include:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Idle and Stop power-down mode release by interrupts
- Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more interrupt sources and vectors. Fast interrupt processing (within a minimum four CPU clocks) can be assigned to specific interrupt levels.

S3F80P9 MICROCONTROLLER

The S3F80P9 single-chip CMOS microcontroller is fabricated using a highly advanced CMOS process and is based on Samsung's newest CPU architecture.

The S3F80P9 is the microcontroller which has 32-Kbyte Flash Memory ROM.

Using a proven modular design approach, Samsung engineers developed S3F80P9 by integrating the following peripheral modules with the powerful SAM8 RC core:

- Internal LVD circuit and 16 bit-programmable pins for external interrupts.
- One 8-bit basic timer for oscillation stabilization and watchdog function (system reset).
- One 8-bit Timer/counter with three operating modes.
- Two 16-bit timer/counters with selectable operating modes.
- One 8-bit counter with auto-reload function and one-shot or repeat control.

The S3F80P9 is a versatile general-purpose microcontroller, which is especially suitable for use as remote transmitter controller. It is currently available in a 32-pin SOP, 28-pin SOP and 44-pin QPF package.

FEATURES

CPU

• SAM8 RC CPU core

Memory

- Program memory:
 - 32-Kbyte Internal Flash Memory
 - 10 years data retention
 - Endurance: 10,000 Erase/Program cycles
 - Byte Programmable
 - User programmable by 'LDC' instruction
- Executable memory: 1K-byte RAM
- Data memory: 272-byte general purpose RAM

Instruction Set

- 78 instructions
- IDLE and STOP instructions added for powerdown modes

Instruction Execution Time

• 500 ns at 8-MHz f_{OSC} (minimum)

Interrupts

• 22 interrupt sources with 16 vectors and 8 levels.

I/O Ports

- Three 8-bit I/O ports (P0–P2) and one 2-bit I/O port (P3) for a total of 26-bit programmable pins. (32-SOP, 44-QFP)
- Two 8-bit I/O ports (P0, P2), one 4-bit I/O ports (P1) and one 2-bit I/O port (P3) for a total of 22-bit programmable pins. (28-SOP)
- Two 8-bit n-channel open-drain pins (P1, P2) and one 2-bit n-channel open-drain pins (P3) (32-SOP, 44-QFP)
- One 8-bit n-channel open-drain pins (P2), one 4-bit n-channel open-drain pins (P1) and 2-bit n-channel open-drain pins (P3) (28-SOP)

Carrier Frequency Generator

 One 8-bit counter with auto-reload function and one-shot or repeat control (Counter A)

Basic Timer and Timer/Counters

- One programmable 8-bit basic timer (BT) for oscillation stabilization control or watchdog timer (software reset) function
- One 8-bit timer/counter (Timer 0) with three operating modes: Interval mode, Capture and PWM mode.
- One 16-bit timer/counter (Timer1) with two operating modes: Interval and Capture mode.
- One 16-bit timer/counter (Timer2) with two operating modes: Interval and Capture mode.

Back-up Mode

- When V_{DD} is lower than V_{LVD} and LVD is 'ON', the chip enters Back-up mode to block oscillation
- When reset pin is lower than Input Low Voltage(VIL), the chip enters Back-up mode to block oscillation and reduce the current consumption.

Low Voltage Detect Circuit

 Low voltage detect to get into Back-up mode and Reset

1.65V (Typ) ± 50mV

- Low voltage detect to control LVD_Flag bit
 1.88, 1.98, 2.53, 2.73V (Typ) ± 100mV (selectable)
- LVD-Reset is enabled in the operating mode: When the voltage at VDD is falling down and passing V_{LVD}, the chip goes into back-up mode. The voltage at VDD is rising up, the reset pulse is generated at "VDD>V_{LVD}".
- LVD is disabled in the stop mode: If the voltage at VDD is not falling down to V_{POR}, the reset pulse is not generated.

Operating Temperature Range

• -25°C to + 85 °C

Operating Voltage Range

1.60V to 3.6V at 1~8MHz

Package Types

- 44-pin QFP
- 32-pin SOP
- 28-pin SOP

BLOCK DIAGRAM (28-PIN PACKAGE)

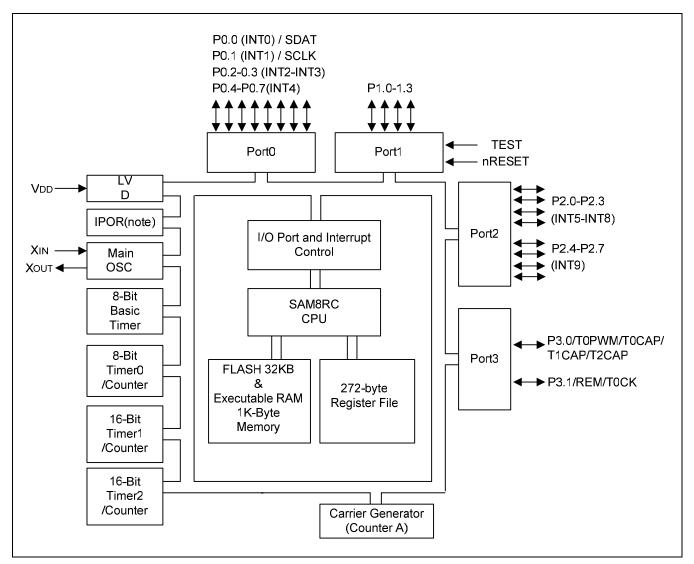


Figure 1-1. Block Diagram (28-pin)

BLOCK DIAGRAM (44/32-PIN PACKAGE)

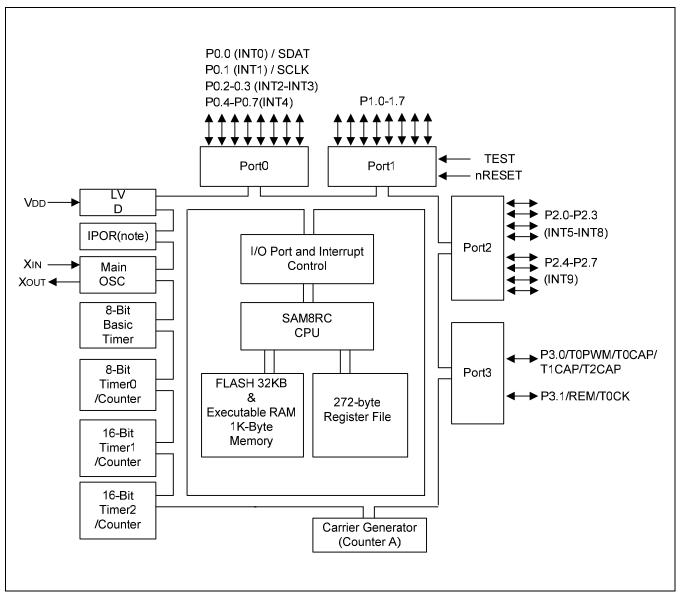


Figure 1-2. Block Diagram (44/32-pin)

PIN ASSIGNMENTS (28-PIN SOP PACKAGE)

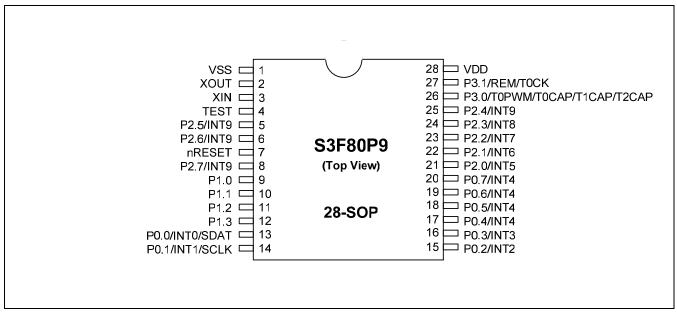


Figure 1-3. Pin Assignment Diagram (28-Pin SOP Package)

PIN ASSIGNMENTS (32-PIN SOP PACKAGE)

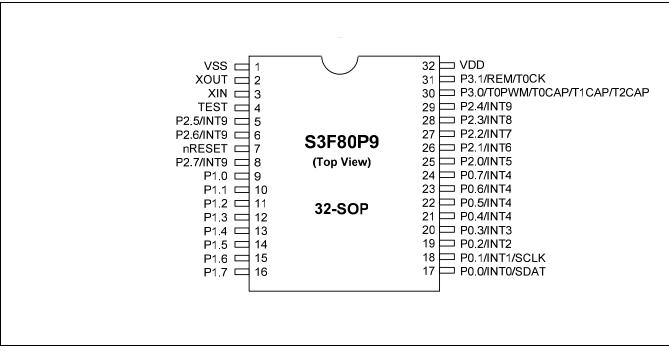


Figure 1-4. Pin Assignment Diagram (32-Pin SOP Package)

PIN ASSIGNMENTS (44-PIN QFP PACKAGE)

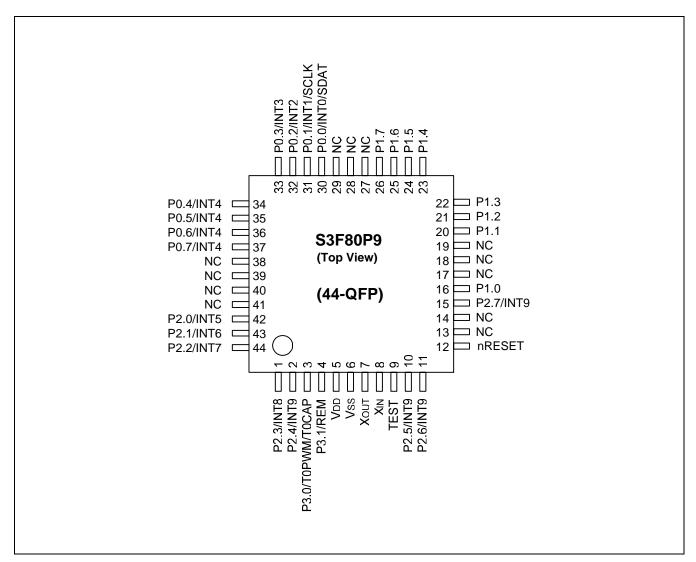


Figure 1-5. Pin Assignment Diagram (44-Pin QFP Package)

Pin Names	Pin Type	Pin Description	Circuit Type	28 Pin No.	Shared Functions
P0.0–P0.7	I/O	 I/O port with bit-programmable pins. Configurable to input or push-pull output mode. Pull-up resistors are assignable by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, and interrupt pending control. SED&R (note1) circuit built in P0 for STOP releasing. In the tool mode, P0.0 and P0.1 are assigned as serial MTP interface pin; SDAT and SCLK 	1	13–20	Ext. INT (INT0–INT3) (INT4) (SDAT) (SCLK)
P1.0-P1.3	I/O	I/O port with bit-programmable pins. Configurable to input mode or output mode. Pin circuits are either push-pull or n-channel open-drain type.	2	9–12	_
P2.0–P2.3 P2.4–P2.7	I/O	I/O port with bit-programmable pins. Configurable to input mode, push-pull output mode, or n- channel open-drain output mode. Pull-up resistors can be assigned by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/disable, and interrupt pending control. SED & R (note1) circuit built in P2.4-P2.7 for STOP releasing.	3	21–25 5,6,8	Ext. INT (INT5–INT8) (INT9)
P3.0	I/O	I/O port with bit-programmable pin. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with a pull-up resistor can be assigned by software. This port 3 pin has high current drive capability. Also P3.0 can be assigned individually as an output pin for T0PWM or input pin for T0CAP/T1CAP/T2CAP.	4	26	TOPWM/TOCAP/ T1CAP/T2CAP
P3.1	I/O	I/O port with bit-programmable pin. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with a pull-up resistor can be assigned by software. This port 3 pin has high current drive capability. Also P3.1 can be assigned individually as an output pin for REM or input pin for T0CK.	5	27	REM/T0CK
$X_{OUT,} X_{IN}$	-	System clock input and output pins	-	2,3	-
nRESET	Ι	System reset signal input pin and back-up mode input. It is recommended that add a 0.1uF capacitor between nRESET pin and VSS for better noise immunity.	7	7	_
TEST	I	Test signal input pin If on board programming is needed, It is recommended that add a 0.1uF capacitor between TEST pin and VSS for better noise immunity; otherwise, connect TEST pin to VSS directly.	_	4	_

otherwise, connect TEST pin to VSS directly.

Table 1-1. Pin Descriptions of 28-SOP

V _{DD}	_	Power supply input pin	-	28	_
V _{SS}	_	Ground pin	-	1	_

Pin Names	Pin Type	Pin Description	Circuit Type	32 Pin No.	Shared Functions
P0.0–P0.7	I/O	I/O port with bit-programmable pins. Configurable to input or push-pull output mode. Pull-up resistors are assignable by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, and interrupt pending control. SED&R (note1) circuit built in P0 for STOP releasing. In the tool mode, P0.0 and P0.1 are assigned as serial MTP interface pin; SDAT and SCLK	1	17–24	Ext. INT (INT0–INT3) (INT4) (SDAT) (SCLK)
P1.0-P1.7	I/O	I/O port with bit-programmable pins. Configurable to input mode or output mode. Pin circuits are either push-pull or n-channel open-drain type.	2	9–16	-
P2.0–P2.3 P2.4–P2.7	I/O	I/O port with bit-programmable pins. Configurable to input mode, push-pull output mode, or n- channel open-drain output mode. Pull-up resistors can be assigned by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/disable, and interrupt pending control. SED & R (note1) circuit built in P2.4–P2.7 for STOP releasing.	3	25–28 29,5,6,8	Ext. INT (INT5–INT8) (INT9)
P3.0	I/O	I/O port with bit-programmable pin. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with a pull-up resistor can be assigned by software. This port 3 pin has high current drive capability. Also P3.0 can be assigned individually as an output pin for T0PWM or input pin for T0CAP/T1CAP/T2CAP.	4	30	T0PWM/T0CAP/ T1CAP/T2CAP
P3.1	I/O	 I/O port with bit-programmable pin. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with a pull-up resistor can be assigned by software. This port 3 pin has high current drive capability. Also P3.1 can be assigned individually as an output pin for REM or input pin for T0CK. 	5	31	REM/T0CK
$X_{OUT,} X_{IN}$	_	System clock input and output pins	-	2,3	-
nRESET	I	System reset signal input pin and back-up mode input. It is recommended that add a 0.1uF capacitor between nRESET pin and VSS for better noise immunity.	7	7	-
TEST	I	Test signal input pin If on board programming is needed, It is recommended that add a 0.1uF capacitor between TEST pin and VSS for better noise immunity; otherwise, connect TEST pin to VSS directly.	_	4	_

Table 1-2. Pin Descriptions of 32-SOP

V _{DD}	_	Power supply input pin	_	32	_
V _{SS}	_	Ground pin	Ι	1	_

Pin Names	Pin Type	Pin Description	Circuit Type	44 Pin No.	Shared Functions
P0.0-P0.7	I/O	I/O port with bit-programmable pins. Configurable to input or push-pull output mode. Pull-up resistors can be assigned by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, and interrupt pending control. SED & R(note1)circuit built in P0 for STOP releasing. In the tool mode, P0.0 and P0.1 are assigned as serial MTP interface pins; SDAT and SCLK	1	30–37	Ext. INT (INT0–INT3) (INT4) (SDAT) (SCLK)
P1.0-P1.7	I/O	I/O port with bit-programmable pins. Configurable to input mode or output mode. Pin circuits are either push-pull or n-channel open-drain type.	2	16 20–26	_
P2.0–P2.3 P2.4–P2.7	I/O	I/O port with bit-programmable pins. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Pull-up resistors can be assigned by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, and interrupt pending control. SED & R(note1) circuit built in P2.4-P2.7 for STOP releasing.	3	42–44 1, 2, 10,11, 15	Ext. INT (INT5–INT8) (INT9)
P3.0	I/O	I/O port with bit-programmable pin. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with a pull-up resistor can be assigned by software. This port 3pin has high current drive capability. Also P3.0 can be assigned individually as an output pin for T0PWM or input pin for T0CAP/T1CAP/T2CAP.	4	3	T0PWM/T0CAP/T1CA P/T2CAP

Table 1-3. Pin Descriptions of 44-QFP

Pin Names	Pin Type	Pin Description	Circuit Type	44 Pin No.	Shared Functions
P3.1	I/O	 I/O port with bit-programmable pin. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with a pull-up resistor can be assigned by software. This port 3pin has high current drive capability. Also P3.1 can be assigned individually as an output pin for REM or input pin for T0CK. 	5	4	REM/T0CK
X _{OUT} , X _{IN}	-	System clock input and output pins		7,8	_
nRESET	I	System reset signal input pin and back-up mode input. It is recommended that add a 0.1uF capacitor between nRESET pin and VSS for better noise immunity.	7	12	-
TEST	I	Test signal input pin If on board programming is needed, It is recommended that add a 0.1uF capacitor between TEST pin and VSS for better noise immunity; otherwise, connect TEST pin to VSS directly.	_	9	-
V _{DD}	_	Power supply input pin	_	5	_
V _{SS}	-	Ground pin	-	6	_

Table 1-3. Pin	Descriptions of	f 44-QFP	(Continued)
----------------	-----------------	----------	-------------

NOTE: SED & R means "STOP Error Detect & Recovery". The Stop Error Detect & Recovery Circuit is used to release stop mode and prevent abnormal-stop mode.

PIN CIRCUITS

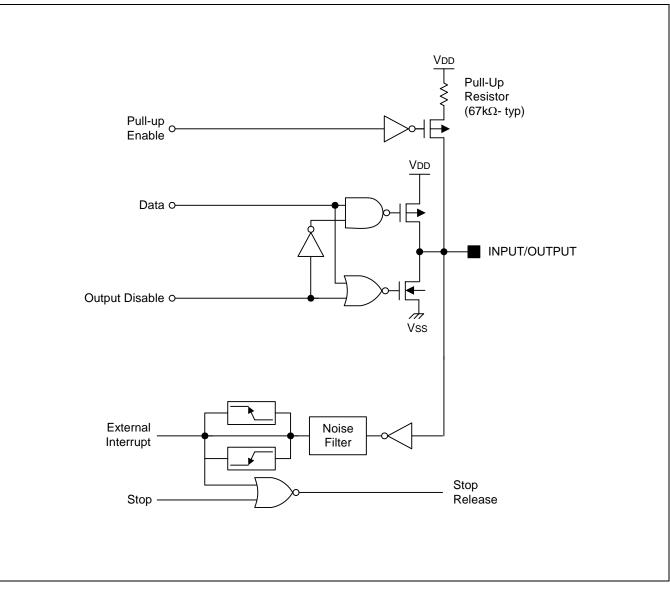


Figure 1-6. Pin Circuit Type 1 (Port 0)

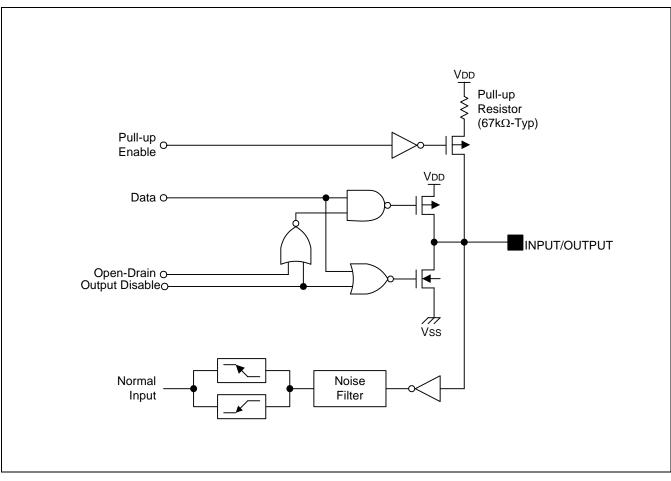


Figure 1-7. Pin Circuit Type 2 (Port 1)

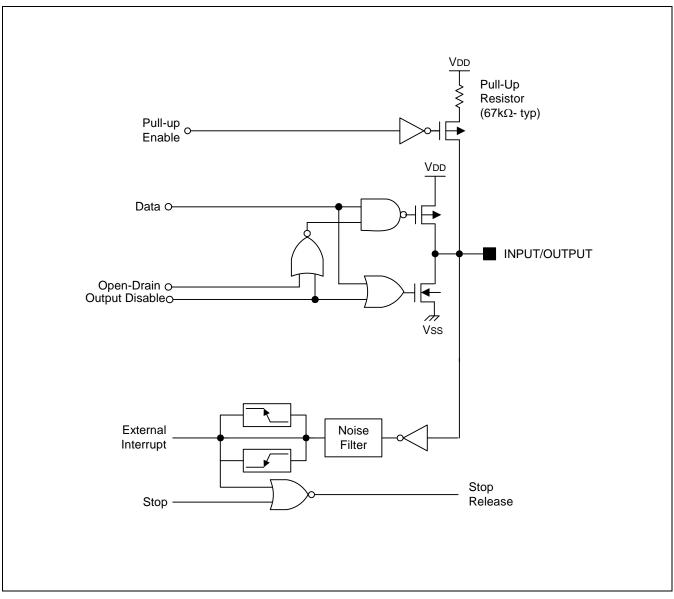


Figure 1-8. Pin Circuit Type 3 (Port 2)

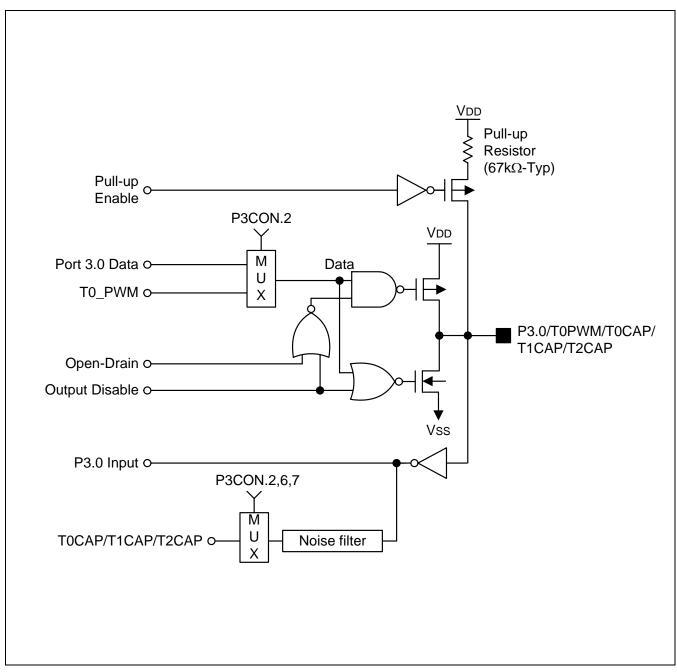


Figure 1-9. Pin Circuit Type 4 (P3.0)

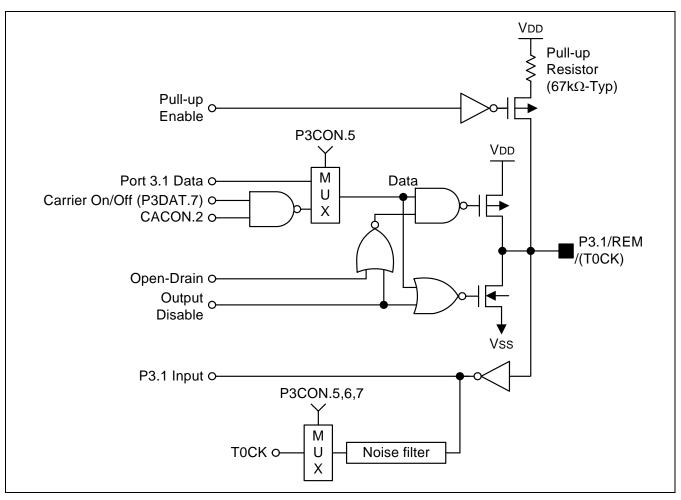


Figure 1-10. Pin Circuit Type 5 (P3.1)

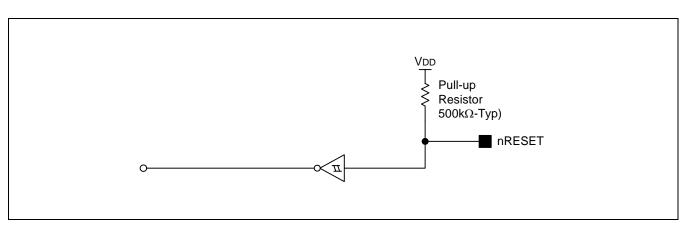


Figure 1-11. Pin Circuit Type 7 (nRESET)

2 ADDRESS SPACE

OVERVIEW

The S3F80P9 microcontroller has two types of address space:

- Internal program memory (Flash memory)
- Internal register file

A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and data between the CPU and the register file.

The S3F80P9 has a programmable internal 32-Kbytes Flash ROM. An external memory interface is not implemented.

There are 333 mapped registers in the internal register file. Of these, 272-byte are for general-purpose use. (This number includes a 16-byte working register common area that is used as a "scratch area" for data operations, a 192-byte prime register area, and a 64-byte area (Set 2) that is also used for stack operations). Twenty-two 8-bit registers are used for CPU and system control and 39 registers are mapped peripheral control and data registers.

PROGRAM MEMORY

Program memory stores program code or table data. The S3F80P9 has 32-Kbyte of internal programmable Flash memory and 1-Kbyte of executable RAM. The program memory address range is therefore 0000H–FFFFH of Flash memory (See Figure 2-1).

The first 256 bytes of the program memory (0H–0FFH) are reserved for interrupt vector addresses. Unused locations (0000H – 00FFH except 03CH, 03DH, 03EH and 03FH) in this address range can be used as normal program memory. The location 03CH, 03DH, 03EH and 03FH is used as smart option ROM cell. If you use the vector address area to store program code, be careful to avoid overwriting vector addresses stored in these locations.

The program memory address at which program execution starts after reset is 0100H(default). If you use ISPTM sectors as the ISPTM software storage, the reset vector address can be changed by setting the Smart Option. (Refer to Figure 2-2).

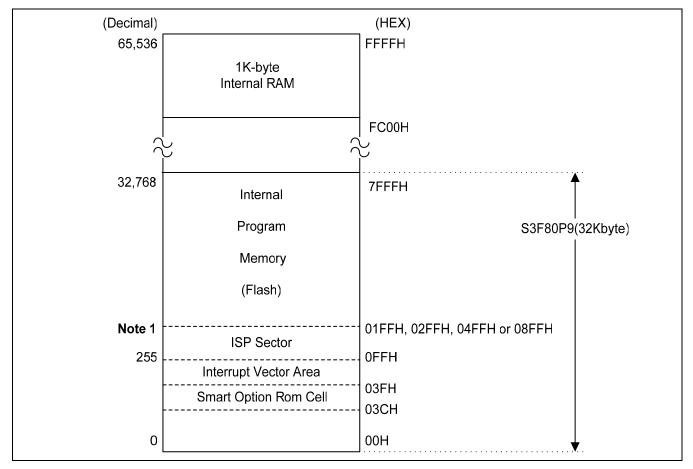


Figure 2-1. Program Memory Address Space

NOTES:

- 1. The size of ISPTM sector can be varied by Smart Option. (Refer to Figure 2-2). According to the smart option setting related to the ISP, ISP reset vector address can be changed one of addresses to be select (200H, 300H, 500H or 900H).
- 2. ISPTM sector can store On Board Program Software (Refer to chapter 13. Embedded Flash Memory Interface).

SMART OPTION

Smart option is the program memory option for starting condition of the chip. The program memory addresses used by smart option are from 003CH to 003FH. The S3F80P9 only use 003EH and 003FH. User can write any value in the not used addresses (003CH and 003DH). The default value of smart option bits in program memory is 0FFH (Normal reset vector address 100H, ISP protection disable). Before execution the program memory code, user can set the smart option bits according to the hardware option for user to want to select.

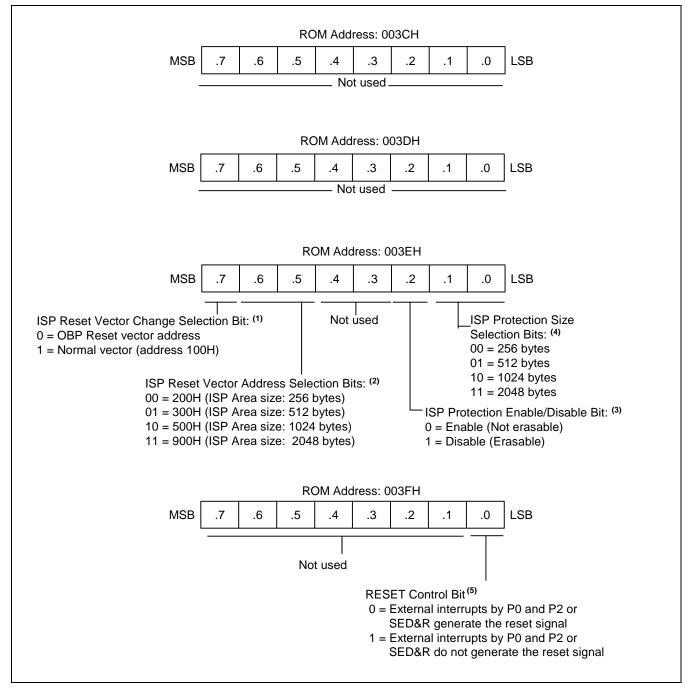


Figure 2-2. Smart Option

NOTES

1. By setting ISP Reset Vector Change Selection Bit (3EH.7) to '0', user can have the available ISP area.

If ISP Reset Vector Change Selection Bit (3EH.7) is '1', 3EH.6 and 3EH.5 are meaningless.

 If ISP Reset Vector Change Selection Bit (3EH.7) is '0', user must change ISP reset vector address from 0100H to some address which user want to set reset address (0200H, 0300H, 0500H or 0900H).

If the reset vector address is 0200H, the ISP area can be assigned from 0100H to 01FFH (256bytes). If 0300H, the ISP area can be assigned from 0100H to 02FFH (512bytes). If 0500H, the ISP area can be assigned from 0100H to 04FFH (1024bytes). If 0900H, the ISP area can be assigned from 0100H to 08FFH (2048bytes).

- 3. If ISP Protection Enable/Disable Bit is '0', user can't erase or program the ISP area selected by 3EH.1 and 3EH.0 in flash memory.
- 4. User can select suitable ISP protection size by 3EH.1 and 3EH.0. If ISP Protection Enable/Disable Bit (3EH.2) is '1', 3EH.1 and 3EH.0 are meaningless.
- 5. External interrupts can be used to release stop mode. When RESET Control Bit (3FH.0) is '0' and external interrupts is enabled, external interrupts wake MCU from stop mode and generate reset signal. Any falling edge input signals of P0 or P2.4-P2.7 can wake MCU from stop mode and generate reset signal.

When RESET Control Bit (3FH.0) is '1', S3F80P9 is only released stop mode and is not generated reset signal.

REGISTER ARCHITECTURE

In the S3F80P9 implementation, the upper 64-byte area of register files is expanded two 64-byte areas, called set 1 and set 2. The upper 32-byte area of set 1 is further expanded two 32-byte register banks (bank 0 and bank 1), and the lower 32-byte area is a single 32-byte common area.

In case of S3F80P9 the total number of addressable 8-bit registers is 333. Of these 333 registers, 22 bytes are for CPU and system control registers, 39 bytes are for peripheral control and data registers, 16 bytes are used as shared working registers, and 272 registers are for general-purpose use.

The extension of register space into separately addressable areas (sets, banks) is supported by various addressing mode restrictions: the select bank instructions, SB0 and SB1.

Specific register types and the area occupied in the S3F80P9 internal register space are summarized in Table 2-1.

Register Type	Number of Bytes
General-purpose registers (including the 16-byte common working register area, the 64-byte set 2 area and 192-byte prime register area of page 0)	272
CPU and system control registers	22
Mapped clock, peripheral, and I/O control and data registers (bank 0: 27 registers, bank 1: 12 registers)	39
Total Addressable Bytes	333

Table 2-1. The Summary of S3F80P9 Register Type

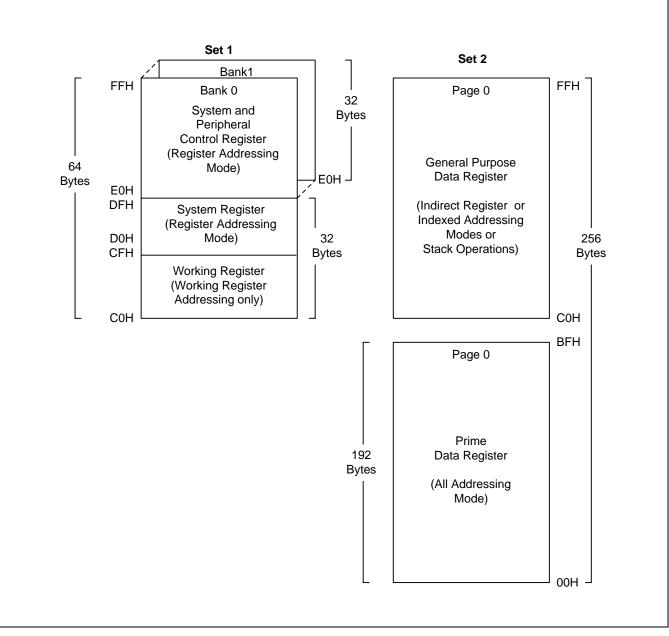


Figure 2-3. Internal Register File Organization

REGISTER PAGE POINTER (PP)

The S3C8/S3F8-series architecture supports the logical expansion of the physical 333-byte internal register files (using an 8-bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by the register page pointer PP (DFH, Set 1, Bank0). In the S3F80P9 microcontroller, a paged register file expansion is not implemented and the register page pointer settings therefore always point to "page 0".

Following a reset, the page pointer's source value (lower nibble) and destination value (upper nibble) are always '0000'automatically. Therefore, S3F80P9 is always selected page 0 as the source and destination page for register addressing. These page pointer (PP) register settings, as shown in Figure 2-4, should not be modified during normal operation.

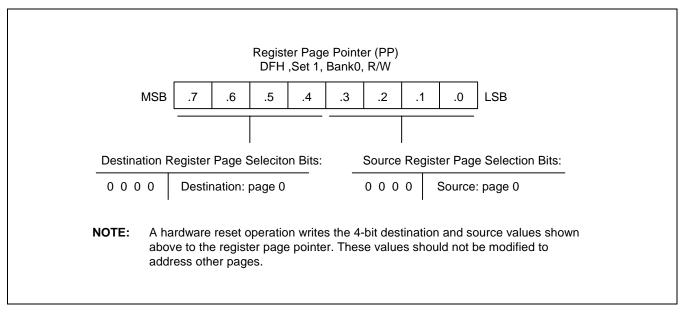


Figure 2-4. Register Page Pointer (PP)

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations C0H-FFH.

The upper 32-byte area of this 64-byte space (E0H–FFH) is divided into two 32-byte register banks, bank 0 and bank 1. The set register bank instructions SB0 or SB1 are used to address one bank or the other. In the S3F80P9 microcontroller, bank 1 is implemented. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware reset operation always selects bank 0 addressing.

The upper two 32-byte area of set 1, bank 0, (E0H–FFH) contains 31mapped system and peripheral control registers. Also, the upper 32-byte area of set1, bank1 (E0H–FFH) contains 16 mapped peripheral control register. The lower 32-byte area contains 15 system registers (D0H–DFH) and a 16-byte common working register area (C0H–CFH). You can use the common working register area as a "scratch" area for data operations being performed in other areas of the register file.

Registers in set 1 locations are directly accessible at all times using the Register addressing mode. The 16-byte working register area can only be accessed using working register addressing. (For more information about working register addressing, please refer to Chapter 3, "Addressing Modes,")

REGISTER SET 2

The same 64-byte physical space that is used for set 1 locations C0H–FFH is logically duplicated to add another 64 bytes of register space. This expanded area of the register file is called set 2. The set 2 locations (C0H–FFH) is accessible on page 0 in the S3F80P9 register space.

The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions: You can use only Register addressing mode to access set 1 locations; to access registers in set 2, you must use Register Indirect addressing mode or Indexed addressing mode.

The set 2 register area is commonly used for stack operations.

PRIME REGISTER SPACE

The lower 192 bytes of the 256-byte physical internal register file (00H–BFH) are called the prime register space or, more simply, the prime area. You can access registers in this address using any addressing mode. (In other words, there is no addressing mode restriction for these registers, as is the case for set 1 and set 2 registers.). The prime register area on page 0 is immediately addressable following a reset.

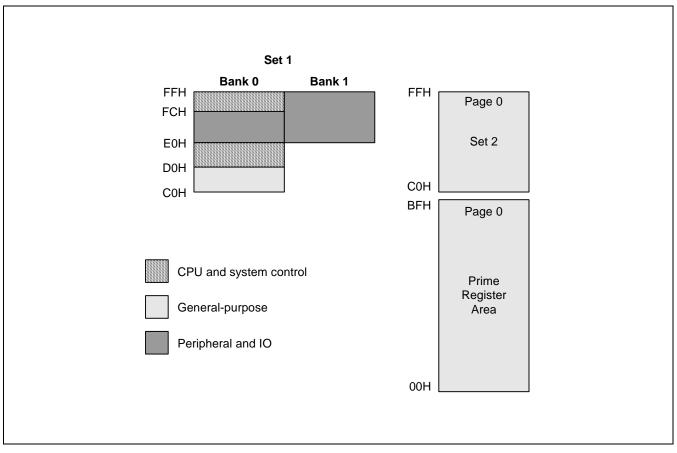


Figure 2-5. Set 1, Set 2, and Prime Area Register Map

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields. When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as consisting of 32 8-byte register groups or "slices." Each slice consists of eight 8-bit registers.

Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block anywhere in the addressable register file, except for the set 2 area.

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected working register spaces:

- One working register *slice* is 8 bytes (eight 8-bit working registers; R0–R7 or R8–R15)
- One working register *block* is 16 bytes (sixteen 8-bit working registers; R0–R15)

All of the registers in an 8-byte working register slice have the same binary value for their five most significant address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file. The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.

After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).

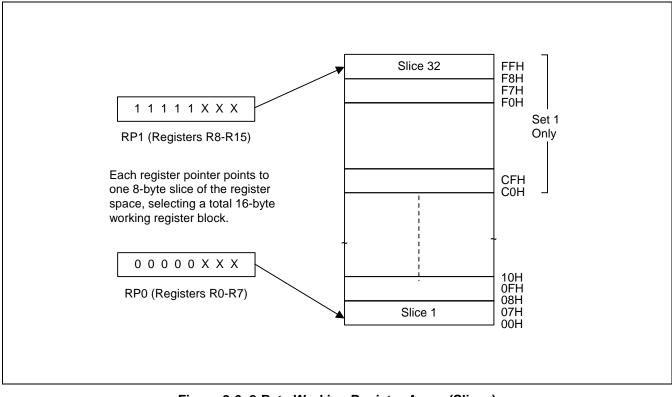


Figure 2-6. 8-Byte Working Register Areas (Slices)

USING THE REGISTER POINTERS

Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable 8-byte working register slices in the register file. After a reset, they point to the working register common area: RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.

To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction (see Figures 2-6 and 2-7).

With working register addressing, you can only access those two 8-bit slices of the register file that are currently pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed addressing modes.

The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general programming guideline, we recommend that RP0 point to the "lower" slice and RP1 point to the "upper" slice (see Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-contiguous) areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.

Because a register pointer can point to the either of the two 8-byte slices in the working register block, you can define the working register area very flexibly to support program requirements.

PROGRAMMING TIP — Setting the Register Pointers

SRP	#70H	; RP0 ← 70H, RP1 ← 78H
SRP1	#48H	; RP0 \leftarrow no change, RP1 \leftarrow 48H,
SRP0	#0A0H	; RP0 \leftarrow A0H, RP1 \leftarrow no change
CLR	RP0	; RP0 \leftarrow 00H, RP1 \leftarrow no change
LD	RP1,#0F8H	; RP0 \leftarrow no change, RP1 \leftarrow 0F8H

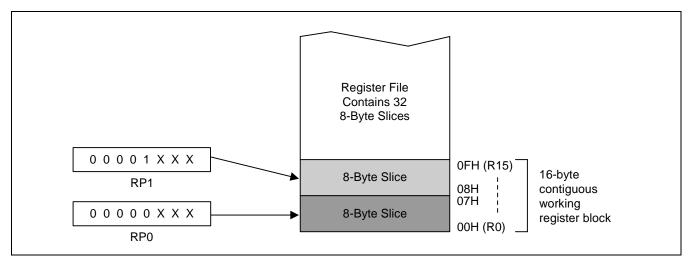


Figure 2-7. Contiguous 16-Byte Working Register Block

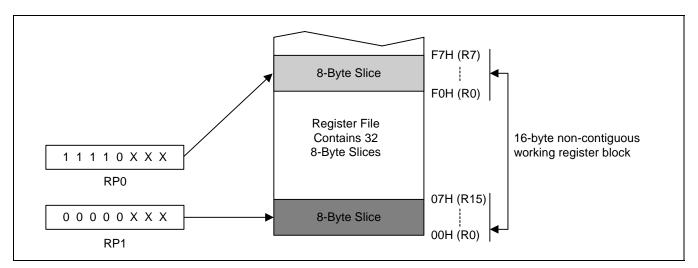


Figure 2-8. Non-Contiguous 16-Byte Working Register Block

PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of registers 80H–85H using the register pointer. The register addresses 80H through 85H contains the values 10H, 11H, 12H, 13H, 14H, and 15 H, respectively:

SRP0	#80H	; RP0 ← 80H
ADD	R0,R1	; R0 ← R0 + R1
ADC	R0,R2	; R0 \leftarrow R0 + R2 + C
ADC	R0,R3	; $R0 \leftarrow R0 + R3 + C$
ADC	R0,R4	; R0 \leftarrow R0 + R4 + C
ADC	R0,R5	; R0 \leftarrow R0 + R5 + C

The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to calculate the sum of these registers, the following instruction sequence would have to be used:

ADD	80H,81H	; 80H ← (80H) + (81H)
ADC	80H,82H	; 80H \leftarrow (80H) + (82H) + C
ADC	80H,83H	; 80H ← (80H) + (83H) + C
ADC	80H,84H	; 80H ← (80H) + (84H) + C
ADC	80H,85H	; 80H ← (80H) + (85H) + C

Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of instruction code instead of 12 bytes, and its execution time is 50 cycles instead of 36 cycles.

REGISTER ADDRESSING

The S3C8-series register architecture provides an efficient method of working register addressing that takes full advantage of shorter instruction formats to reduce execution time.

With Register (R) addressing mode, in which the operand value is the content of a specific register or register pair, you can access all locations in the register file except for set 2. With working register addressing, you use a register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that space.

Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register pair, the address of the first 8-bit register is always an even number and the address of the next register is always an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant byte is always stored in the next (+ 1) odd-numbered register.

Working register addressing differs from Register addressing because it uses a register pointer to identify a specific 8-byte working register space in the internal register file and a specific 8-bit register within that space.

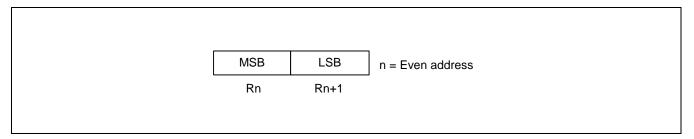


Figure 2-9. 16-Bit Register Pair

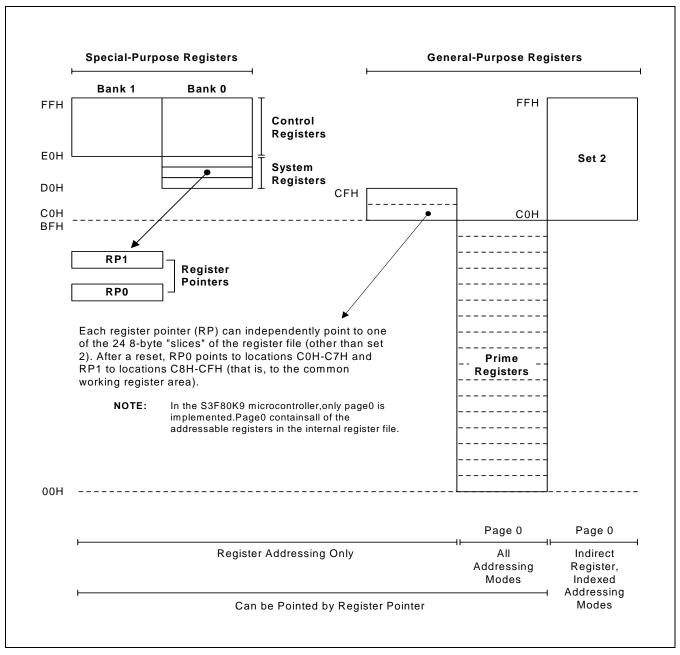


Figure 2-10. Register File Addressing

COMMON WORKING REGISTER AREA (C0H-CFH)

After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations C0H–CFH, as the active 16-byte working register block:

 $\mathsf{RP0} \ \rightarrow \ \mathsf{C0H-C7H}$

 $\mathsf{RP1} \ \rightarrow \ \mathsf{C8H-CFH}$

This 16-byte address range is called *common area*. That is, locations in this area can be used as working registers by operations that address any location on any page in the register file. Typically, these working registers serve as temporary buffers for data operations.

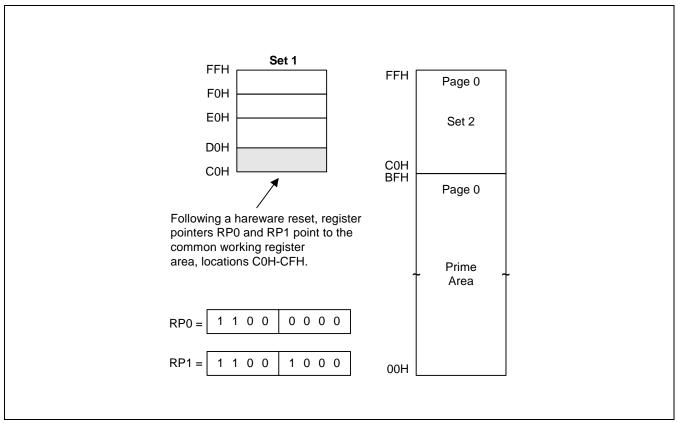


Figure 2-11. Common Working Register Area

PROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations C0H–CFH, using working register addressing mode only.

Example 1:

	LD	0C2H,40H	;	Invalid addressing mode!
Use working	register addr	essing instead:		
	SRP	#0C0H		
	LD	R2,40H	;	R2 (C2H) \leftarrow the value in location 40H
Example 2:				
	ADD	0C3H,#45H	;	Invalid addressing mode!
Use working register addressing instead:				
	SRP	#0C0H		
	ADD	R3,#45H	;	R3 (C3H) ← R3 + 45H

4-Bit Working Register Addressing

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in a register pointer serves as an addressing "window" that makes it possible for instructions to access working registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected working register area, the address bits are concatenated in the following way to form a complete 8-bit address:

- The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0; "1" selects RP1);
- The five high-order bits in the register pointer select an 8-byte slice of the register space;
- The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are concatenated with the three low-order bits from the instruction address to form the complete address. As long as the address stored in the register pointer remains unchanged, the three bits from the address will always point to an address in the same 8-byte register slice.

Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction 'INC R6' is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

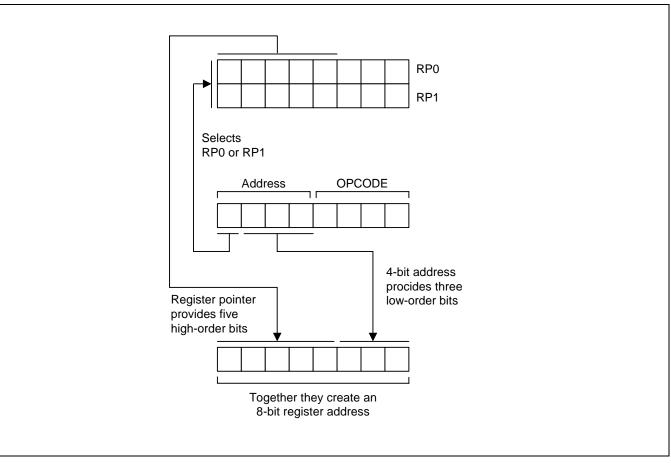


Figure 2-12. 4-Bit Working Register Addressing

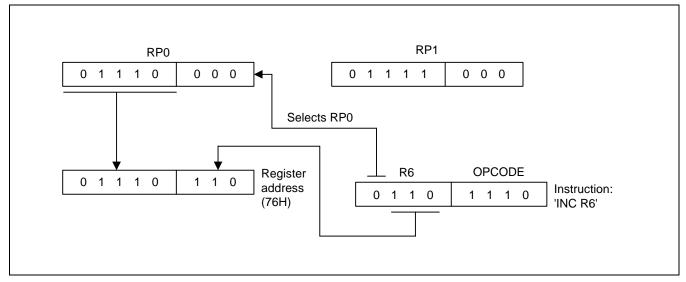


Figure 2-13. 4-Bit Working Register Addressing Example

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. To initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value 1100B. This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working register addressing.

As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address. The three low-order bits of the complete address are provided by the original instruction.

Figure 2-14 shows an example of 8-bit working register addressing. The four high-order bits of the instruction address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register address (011) are provided by the three low-order bits of the 8-bit instruction address. The five-address bits from RP1 and the three address bits from the instruction are concatenated to form the complete register address, 0ABH (10101011B).

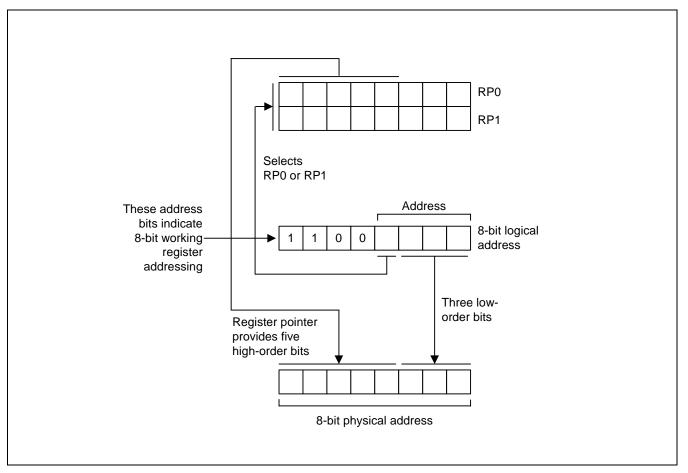


Figure 2-14. 8-Bit Working Register Addressing

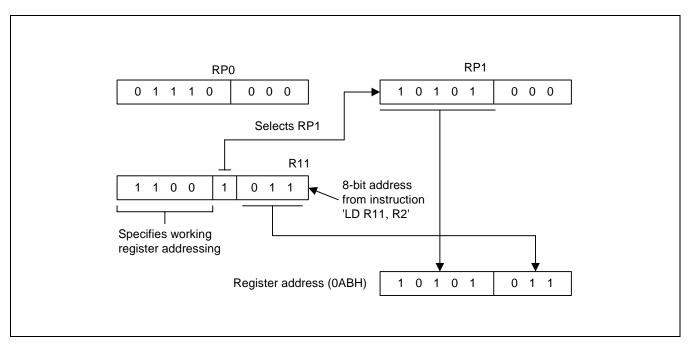


Figure 2-15. 8-Bit Working Register Addressing Example

SYSTEM AND USER STACKS

S3C8-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH and POP instructions are used to control system stack operations. The S3F80P9 architecture supports stack operations in the internal register file.

Stack Operations

Return addresses for procedure calls, interrupts and data are stored on the stack. The contents of the PC are saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents of the PC and the FLAGS registers are pushed to the stack. The IRET instruction then pops these values back to their original locations. The stack address value is always decreased by one before a push operation and increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in Figure 2-15.

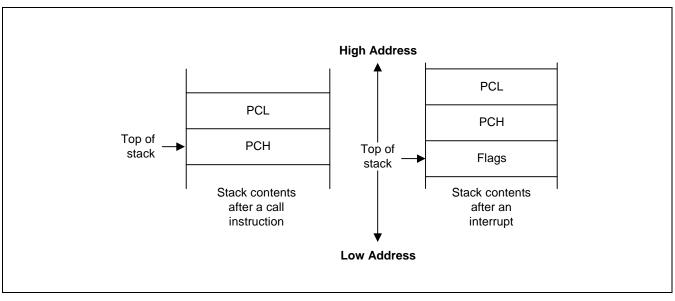


Figure 2-16. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI, PUSHUD, POPUI, and POPUD support user-defined stack operations.

Stack Pointers (SPL)

Register location D9H contains the 8-bit stack pointer (SPL) that is used for system stack operations. After a reset, the SPL value is undetermined. Because only internal memory 256-byte is implemented in The S3F80P9, the SPL must be initialized to an 8-bit value in the range 00–FFH.

PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and POP instructions:

LD •	SPL,#0FFH	 ; SPL ← FFH ; (Normally, the SPL is set to 0FFH by the initialization ; routine)
•		
•		
PUSH	PP	; Stack address 0FEH \leftarrow PP
PUSH	RP0	; Stack address 0FDH \leftarrow RP0
PUSH	RP1	; Stack address 0FCH \leftarrow RP1
PUSH	R3	; Stack address 0FBH \leftarrow R3
•		
•		
•		
POP	R3	; R3 \leftarrow Stack address 0FBH
POP	RP1	; RP1 \leftarrow Stack address 0FCH
POP	RP0	; RP0 \leftarrow Stack address 0FDH
POP	PP	; PP \leftarrow Stack address 0FEH

NOTES

3 ADDRESSING MODES

OVERVIEW

The program counter is used to fetch instructions that are stored in program memory for execution. Instructions indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to determine the location of the data operand. The operands specified in instructions may be condition codes, immediate data, or a location in the register file, program memory, or data memory.

The S3C8/S3F8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are available for each instruction:

- Register (R)
- Indirect Register (IR)
- Indexed (X)
- Direct Address (DA)
- Indirect Address (IA)
- Relative Address (RA)
- Immediate (IM)

REGISTER ADDRESSING MODE (R)

In Register addressing mode, the operand is the content of a specified register or register pair (see Figure 3-1). Working register addressing differs from Register addressing because it uses a register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that space (see Figure 3-2).

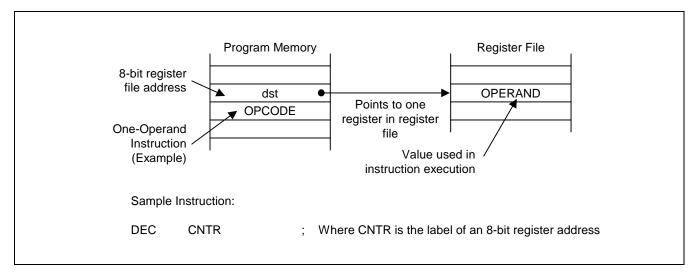


Figure 3-1. Register Addressing

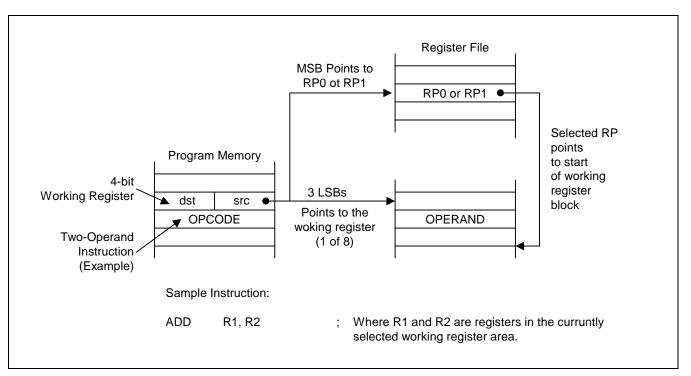


Figure 3-2. Working Register Addressing

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the operand. Depending on the instruction used, the actual address may point to a register in the register file, to program memory (ROM), or to an external memory space, if implemented (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to indirectly address another memory location. Remember, however, that locations C0H–FFH in set 1 cannot be accessed using Indirect Register addressing mode.

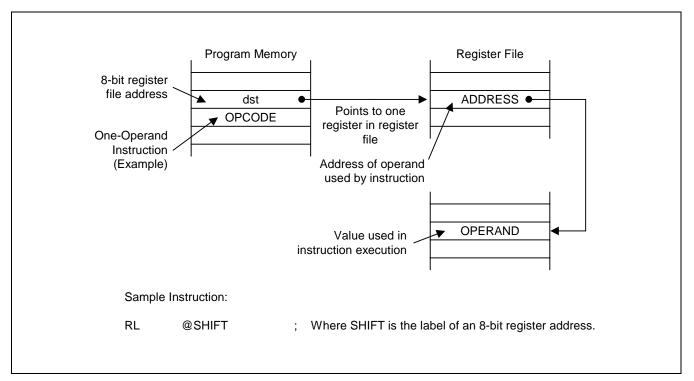


Figure 3-3. Indirect Register Addressing to Register File

INDIRECT REGISTER ADDRESSING MODE (Continued)

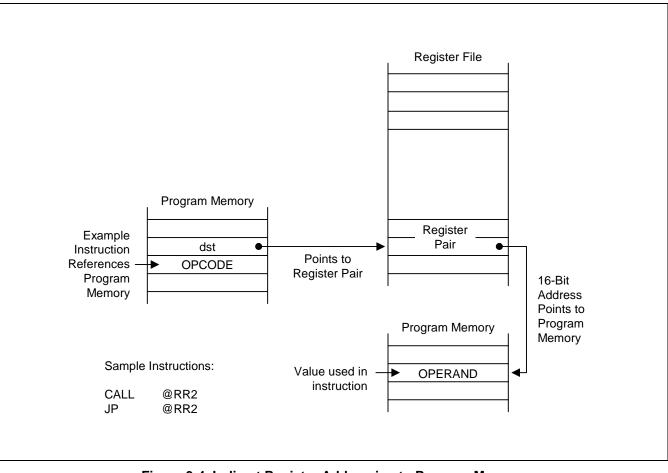
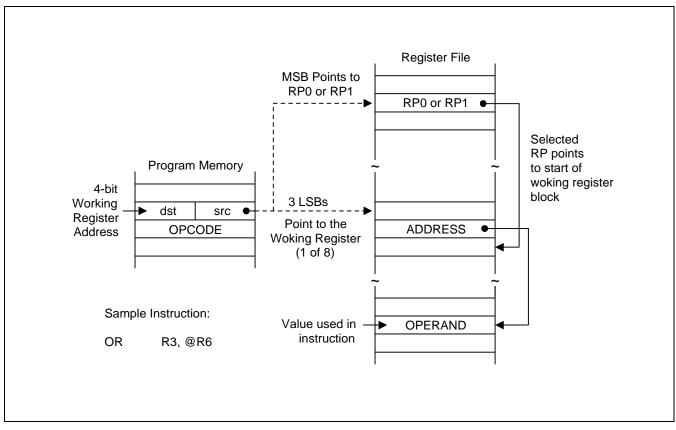



Figure 3-4. Indirect Register Addressing to Program Memory

INDIRECT REGISTER ADDRESSING MODE (Continued)

Figure 3-5. Indirect Working Register Addressing to Register File

INDIRECT REGISTER ADDRESSING MODE (Continued)

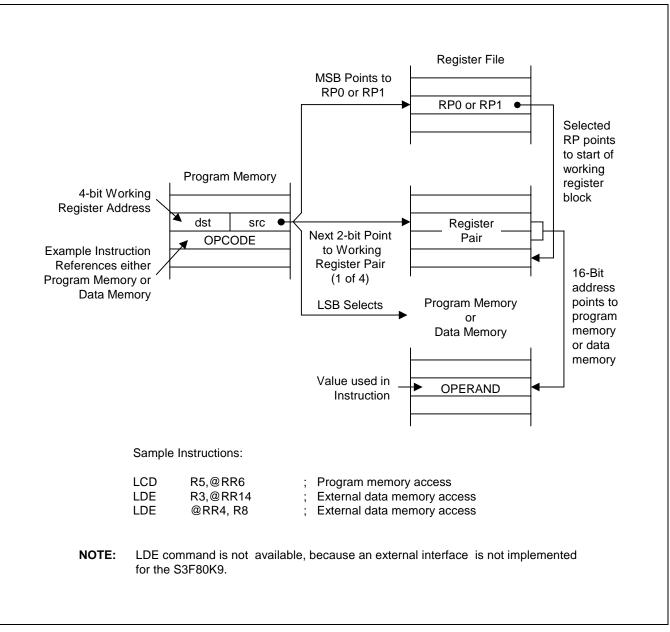


Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to calculate the effective operand address (see Figure 3–7). You can use Indexed addressing mode to access locations in the internal register file or in external memory (if implemented). You cannot, however, access locations C0H–FFH in set 1 using indexed addressing.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128 to +127. This applies to external memory accesses only (see Figure 3–8).

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained in a working register. For external memory accesses, the base address is stored in the working register pair designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address (see Figure 3-9).

The only instruction that supports indexed addressing mode for the internal register file is the Load instruction (LD). The LDC and LDE instructions support indexed addressing mode for internal program memory and for external data memory (if implemented).

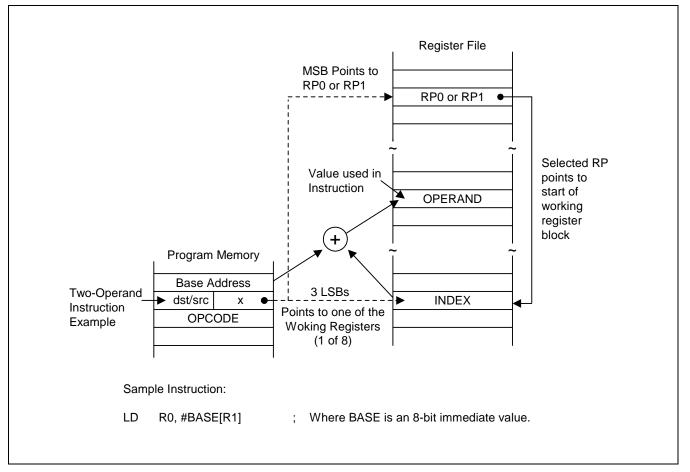


Figure 3-7. Indexed Addressing to Register File

INDEXED ADDRESSING MODE (Continued)

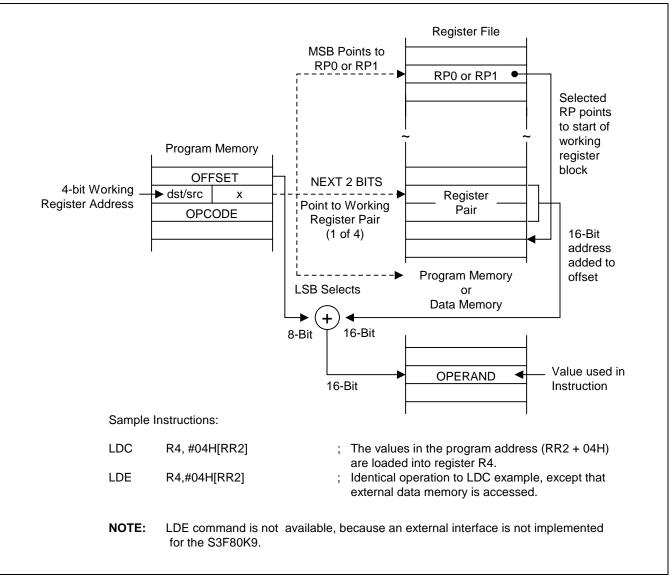


Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

INDEXED ADDRESSING MODE (Continued)

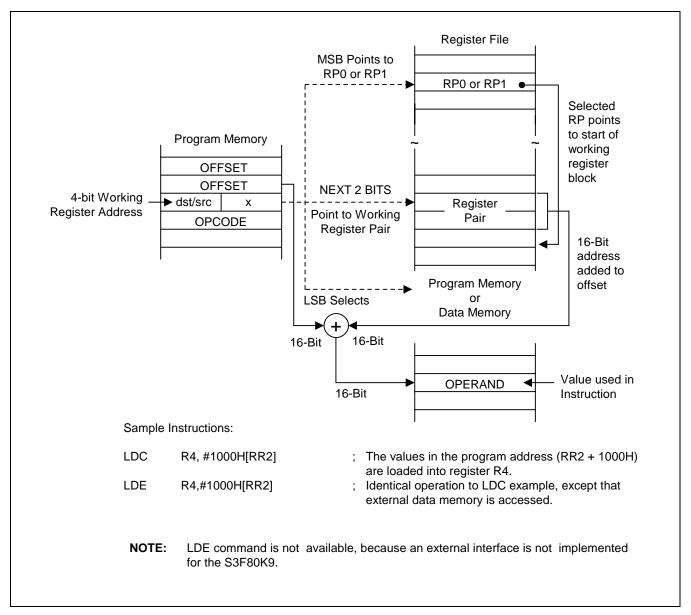


Figure 3-9. Indexed Addressing to Program or Data Memory

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call (CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

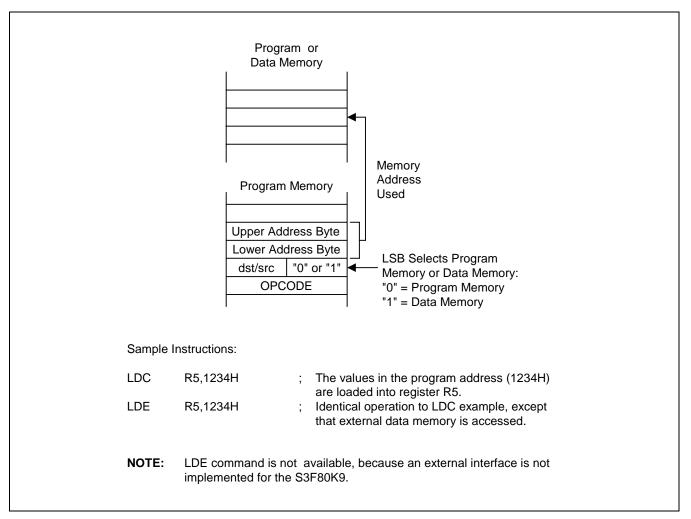


Figure 3-10. Direct Addressing for Load Instructions

DIRECT ADDRESS MODE (Continued)

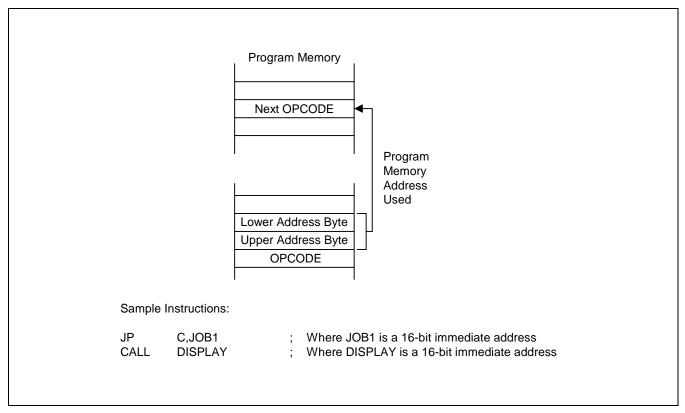


Figure 3-11. Direct Addressing for Call and Jump Instructions

INDIRECT ADDRESS MODE (IA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program memory. The selected pair of memory locations contains the actual address of the next instruction to be executed. Only the CALL instruction can use the Indirect Address mode.

Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are assumed to be all zeros.

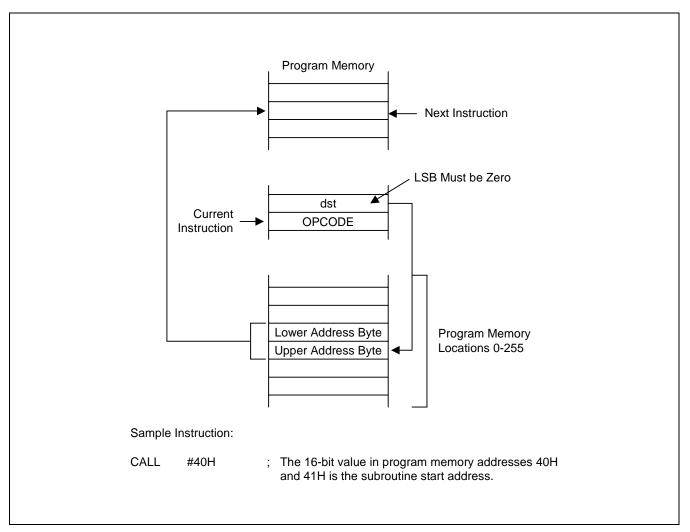


Figure 3-12. Indirect Addressing

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a two's-complement signed displacement between -128 and +127 is specified in the instruction. The displacement value is then added to the current PC value. The result is the address of the next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction immediately following the current instruction.

Several program control instructions use the Relative Address mode to perform conditional jumps. The instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.

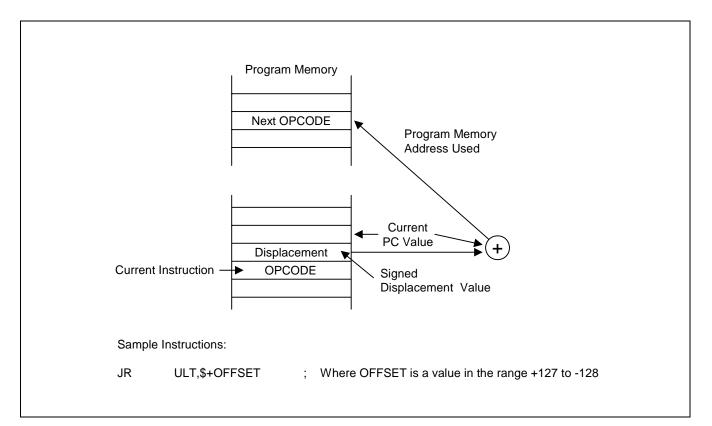


Figure 3-13. Relative Addressing

IMMEDIATE MODE (IM)

In Immediate (IM) mode, the operand value used in the instruction is the value supplied in the operand field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate addressing mode is useful for loading constant values into registers.

	Program Memory
-	OPERAND
	OPCODE
(The ope	rand value is in the instruction)
	Sample Instruction:
	LD R0,#0AAH

Figure 3-14. Immediate Addressing

4 CONTROL REGISTERS

OVERVIEW

In this section, detailed descriptions of the S3F80P9 control registers are presented in an easy-to-read format. You can use this section as a quick-reference source when writing application programs. Figure 4-1 illustrates the important features of the standard register description format.

Control register descriptions are arranged in alphabetical order (A-z) according to the register mnemonic. More detailed information about control registers is presented in the context of the specific peripheral hardware descriptions in Part II of this manual.

Data and counter registers are not described in detail in this reference section. More information about all of the registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this manual.

Register Name	Mnemonic	Decimal	Hex	R/W
Timer 0 Counter	TOCNT	208	D0H	R (NOTE)
Timer 0 Data Register	TODATA	209	D1H	R/W
Timer 0 Control Register	TOCON	210	D2H	R/W
Basic Timer Control Register	BTCON	211	D3H	R/W
Clock Control Register	CLKCON	212	D4H	R/W
System Flags Register	FLAGS	213	D5H	R/W
Register Pointer 0	RP0	214	D6H	R/W
Register Pointer 1	RP1	215	D7H	R/W
Loc	cation D8H is not mappe	d.		
Stack Pointer (Low Byte)	SPL	217	D9H	R/W
Instruction Pointer (High Byte)	IPH	218	DAH	R/W
Instruction Pointer (Low Byte)	IPL	219	DBH	R/W
Interrupt Request Register	IRQ	220	DCH	R (NOTE)
Interrupt Mask Register	IMR	221	DDH	R/W
System Mode Register	SYM	222	DEH	R/W
Register Page Pointer	PP	223	DFH	R/W
Port 0 Data Register	P0	224	E0H	R/W
Port 1 Data Register	P1	225	E1H	R/W
Port 2 Data Register	P2	226	E2H	R/W
Port 3 Data Register	P3	227	E3H	R/W
	Reserved E4H			
Port 2 Interrupt Enable Register	P2INT	229	E5H	R/W
Port 2 Interrupt Pending Register	P2PND	230	E6H	R/W
Port 0 Pull-up Resistor Enable Register	P0PUR	231	E7H	R/W
Port 0 Control Register (High Byte)	P0CONH	232	E8H	R/W
Port 0 Control Register (Low Byte)	P0CONL	233	E9H	R/W
Port 1 Control Register (High Byte)	P1CONH ^{(note1,2})	234	EAH	R/W
Port 1 Control Register (Low Byte)	P1CONL	235	EBH	R/W
Port 2 Control Register (High Byte)	P2CONH	236	ECH	R/W
Port 2 Control Register (Low Byte)	P2CONL	237	EDH	R/W
Port 2 Pull-up Enable Register	P2PUR	238	EEH	R/W
Port 3 Control Register	P3CON	239	EFH	R/W
	Reserved F0H			
Port 0 Interrupt Enable Register	POINT	241	F1H	R/W
Port 0 Interrupt Pending Register	P0PND	242	F2H	R/W

 Table 4-1. Mapped Registers (Bank0, Set1)

NOTES:

1. P1CONH is available in case of S3F80P9's 32-pin, not 28-pin.

2. P1CONH's reset value is 0FFH. After reset, P1.4-.7 becomes CMOS input with pull-up mode.

	happed register.	(continuou)		
Register Name	Mnemonic	Decimal	Hex	R/W
Counter A Control Register	CACON	243	F3H	R/W
Counter A Data Register (High Byte)	CADATAH	244	F4H	R/W
Counter A Data Register (Low Byte)	CADATAL	245	F5H	R/W
Timer 1 Counter Register (High Byte)	T1CNTH	246	F6H	R (NOTE)
Timer 1 Counter Register (Low Byte)	T1CNTL	247	F7H	R (NOTE)
Timer 1 Data Register (High Byte)	T1DATAH	248	F8H	R/W
Timer 1 Data Register (Low Byte)	T1DATAL	249	F9H	R/W
Timer 1 Control Register	T1CON	250	FAH	R/W
STOP Control Register	STOPCON	251	FBH	W
Loca	ation FCH is not m	apped.		
Basic Timer Counter	BTCNT	253	FDH	R (NOTE)
External Memory Timing Register	EMT	254	FEH	R/W
Interrupt Priority Register	IPR	255	FFH	R/W

 Table 4-1. Mapped Registers (Continued)

NOTE: You cannot use a read-only register as a destination for the instructions OR, AND, LD, or LDB.

Register Name	Mnemonic	Decimal	Hex	R/W
LVD Control Register	LVDCON	224	E0	R/W
Rese	erved E1H			
Rese	erved E2H			
Rese	erved E3H			
Timer 2 Counter Register (High Byte)	T2CNTH	228	E4	R (NOTE)
Timer 2 Counter Register (Low Byte)	T2CNTL	229	E5	R (NOTE)
Timer 2 Data Register (High Byte)	T2DATAH	230	E6	R/W
Timer 2 Data Register (Low Byte)	T2DATAL	231	E7	R/W
Timer 2 Control Register	T2CON	232	E8	R/W
Location E9	H is not mapped	J.		
Location EA	H is not mapped	d.		
Location EB	H is not mapped	d.		
Flash Memory Sector Address Register (High Byte)	FMSECH	236	EC	R/W
Flash Memory Sector Address Register (Low Byte)	FMSECL	237	ED	R/W
Flash Memory User Programming Enable Register	FMUSR	238	EE	R/W
Flash Memory Control Register	FMCON	239	EF	R/W
Reset Indicating Register	RESETID	240	F0	R/W
LVD Flag Selection Register	LVDSEL	243	F1	R/W
PORT1 Output Mode Pull-up Enable Register	P1OUTPU	244	F2	R/W
PORT2 Output Mode Selection Register	P2OUTMD	245	F3	R/W
PORT3 Output Mode Pull-up Enable Register	P3OUTPU	246	F4	R/W
Not mapped in a	address F5H to (OFFH		

Table 4-2. Mapped Registers (Bank1, Set1)

NOTE: You cannot use a read-only register as a destination for the instructions OR, AND, LD, or LDB.

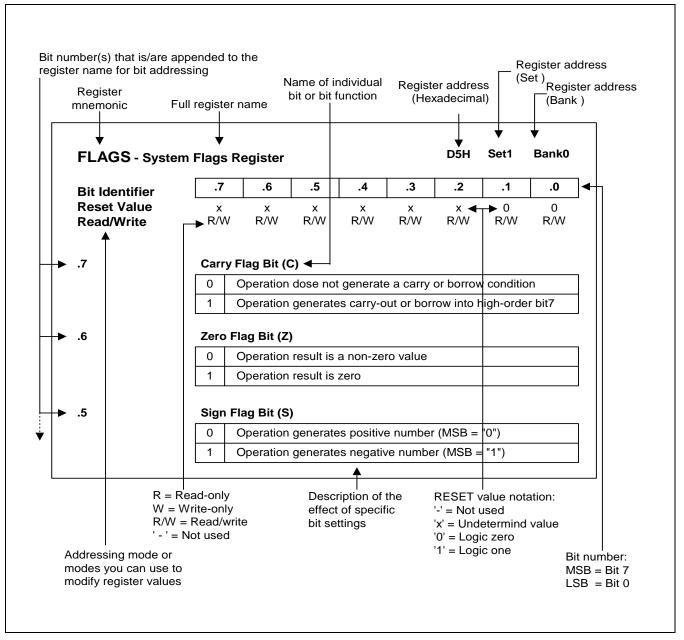


Figure 4-1. Register Description Format

BTCON — Basic	Tim	er Co	ontrol	Re	gister			D3	BH Set1	Bank0	
Bit Identifier		7	.6		.5	.4	.3	.2	.1	.0	
Reset Value		0			0	0	0	0	0	0	
Read/Write	R	/W	R/W	/	R/W	R/W	R/W	R/W	R/W	R/W	
Addressing Mode	Reg	ister a	address	ing	mode only						
.7– .4	Watchdog Timer Function Enable Bits (for System Reset)										
	1		0 1 0 Disable watchdog timer function								
	F	Any other value Enable watchdog timer funct									
.3 and .2	Basic Timer Input Clock Selection Bits										
	0	0	0 f _{OSC} /4096								
	0	1	1 f _{OSC} /1024								
	1	0	f _{OSC} /1	28							
	1	1	f _{OSC} /1	638	34						
		1	1								
.1	Bas	ic Tin	ner Cou	unte	er Clear Bi	t (1)					
	0	No e	effect								
	1	Clea	ar the ba	asic	timer coun	iter value					
.0	Clo	ck Fre	equenc	y Di	ivider Clea	ar Bit for B	asic Timeı	r and Time	r 0 ⁽²⁾		
	0	T	effect	-							
	1	Clea	ar both k	oloc	k frequenc	y dividers					

NOTES:

- 1. When you write a "1" to BTCON.1, the basic timer counter value is cleared to '00H'. Immediately following the write operation, the BTCON.1 value is automatically cleared to "0".
- 2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to '00H'. Immediately following the write operation, the BTCON.0 value is automatically cleared to "0".

	unter A	Col	ntrol Reg	F3	F3H Set1 Bank						
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0		
Reset Value		0	0	0	0	0	0	0	0		
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Reg	jister a	addressing	mode only							
7 and .6	Οοι	Counter A Input Clock Selection Bits									
	0	0	f _{OSC}								
	0	1	f _{OSC} /2								
	1	0	f _{OSC} /4								
	1	1	f _{OSC} /8								
.5 and .4		Counter A Interrupt Timing Selection Bits 0 0 Elapsed time for Low data value									
	0	0	· ·								
	0	1	-		h data valu						
	1	0									
	1	1	Not used	TOF 53F80F	-9.						
3	Counter A Interrupt Enable Bit										
	0	Disa	able interrup								
	1	Ena	ble interrup	t							
2	Col	untor	A Start Bit								
2	0	1	counter A								
	1	-	t counter A								
		• • •									
1	Οοι	Inter	A Mode Se	lection Bi	t						
	0	One	e-shot mode	;							
	1	Rep	eating mod	le							
0	Сог	Inter	A Output F	lip-Flop C	ontrol Bit						
0	Cοι	1	A Output F								

	ystem Cloc	k Contro	D4	D4H Set1 Bank0						
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0		
Reset Value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Register a	Register addressing mode only								
.7– .5	Not used for S3F80P9									
.4 and .3	CPU Cloo	ck (System	n Clock) Se	election Bi	ts ⁽¹⁾					

(

(Jy

0	0	f _{OSC} /16
0	1	f _{OSC} /8
1	0	f _{OSC} /2
1	1	f _{OSC} (non-divided)

.2– .0

Subsystem Clock Selection Bits (2)

1	0	1	Not used for S3F80P9.
Oth	ner va	lue	Select main system clock (MCLK)

NOTES:

- 1. After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load the appropriate values to CLKCON.3 and CLKCON.4.
- 2. These selection bits CLKCON.0, .1, .2 are required only for systems that have a main clock and a subsystem clock. The S3F80P9 uses only the main oscillator clock circuit. For this reason, the setting '101B' is invalid.

EMT — External	Mem	ory 1	Timing R	egister ^{(†}	NOTE)		FE	EH Set1	Bank0		
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0		
Reset Value		0	1	1	1	1	1	0	_		
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	_		
Addressing Mode	Register addressing mode only										
.7	External WAIT Input Function Enable Bit										
	0	0 Disable WAIT input function for external device									
	1 Enable WAIT input function for external device										
.6	Slow Memory Timing Enable Bit										
	0 Disable slow memory timing										
	1 Enable slow memory timing										
	_										
.5 and .4	-	<u> </u>	Memory A	utomatic	Wait Contr	ol Bits					
	0		0 No wait								
	0		1 Wait one cycle								
	1	0	Wait two o	•							
	1	1	Wait three	ecycles							
.3 and .2	Data Memory Automatic Wait Control Bits										
	0	0	No wait								
	0	1	Wait one	cycle							
	1	0	Wait two o	cycles							
	1	1	Wait three	e cycles							
.1	Sta	1	ea Selectio								
	0	-	ect internal	-							
	1 Select external data memory area										
.0	Not	used	for S3F80F	9							
NOTE: The EMT register is	not us	ed for	S3F80P9, be	ecause an e	xternal perip	heral interfa	ce is not imp	plemented in	the		

NOTE: The EMT register is not used for S3F80P9, because an external peripheral interface is not implemented in the S3F80P9. The program initialization routine should clear the EMT register to '00H' following a reset. Modification of EMT values during normal operation may cause a system malfunction.

FLAGS — Syst	em Fla	igs R	egister	D	5H Set1	Bank(
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0			
Reset Value		х	х	х	х	х	х	0	0			
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R	R/W			
Addressing Mode	Reg	ister a	ddressing	mode only								
7	Carry Flag Bit (C)											
	0	0 Operation does not generate a carry or borrow condition										
	1	Oper	ration gene	erates a ca	ry-out or be	orrow into h	nigh-order l	oit 7				
6	Zero	Zero Flag Bit (Z)										
	0 Operation result is a non-zero value											
	1											
5	Sign Flag Bit (S)											
	0 Operation generates a positive number (MSB = "0")											
	1	1 Operation generates a negative number (MSB = "1")										
4	Overflow Flag Bit (V)											
	0 Operation result is \leq +127 or \geq -128											
	1	Oper	ation resul	t is > +127	7 or < -12	28						
3	Decimal Adjust Flag Bit (D)											
	0 Add operation completed											
	1	Subt	raction ope	eration com	pleted							
2	Half	-Carry	y Flag Bit ((H)								
	0	No c	arry-out of	bit 3 or no	borrow into	bit 3 by ac	ddition or s	ubtraction				
	1	Addi	tion genera	ated carry-o	out of bit 3	or subtracti	on generat	ed borrow i	nto bit 3			
1	Fast Interrupt Status Flag Bit (FIS)											
	0	Inter	rupt return	(IRET) in p	orogress (w	hen read)						
	1	Fast	interrupt s	ervice rout	ine in progr	ess (when	read)					
0	Bank Address Selection Flag Bit (BA)											
	0	Bank	0 is selec	ted								
	1	1 Bank 1 is selected										

FMCON — Flas	E	EFH Set1 Bank1									
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0		
Reset Value	()	0	0	0	_	_	_	0		
Read/Write	R/	W	R/W	R/W	R/W	-	_	_	R/W		
Addressing Mode	Register addressing mode only										
.7– .4	Flash Memory Mode Selection Bits										
	0	0101 Programming mode									
	1	1010 Erase mode									
	0	0110 Hard Lock mode (NOTE)									
	Ot	Others Not used for S3F80P9									
.3– .1	Not	used fo	r S3F80F	9							
.0	Flas	h Oper	ation Sta	art Bit (ava	ilable for I	Erase and	Hard Locl	k mode on	ly)		
	0	Opera	tion stop								
	1	1 Operation start (auto clear bit)									

NOTE: Hard Lock mode is one of the flash protection modes. Refer to page 13-17.

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0				
Reset Value	0	0	0	0	0	0	0	0				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Addressing Mode	Register a	addressing	mode only									
.7– .0	Flash Memory Sector Address (High Byte)											
	Note: The high-byte flash memory sector address pointer value is the higher e bits of the 16-bit pointer address.											

FMSECH — Flash Memory Sector Address Register(High Byte) ECH Set1 Bank1

FMSECL — Flash Memory Sector Address Register(Low Byte) EDH Set1 Bank1

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	addressing	mode only					

.7– .0

Flash Memory Sector Address (Low Byte)

Note: The low-byte flash memory sector address pointer value is the lower eight bits of the 16-bit pointer address.

FMUSR — Flash Memory User Programming Enable Register EEH Set1 Bank1

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	ddressing	mode only					

Flash Memory User Programming Enable Bits

1	0	1	0	0	1	0	1	Enable user programming mode
		C	Other	value	s			Disable user programming mode

NOTES:

.7-.0

1. To enable flash memory user programming, write 10100101B to FMUSR.

2. To disable flash memory operation, write other value except 10100101B into FMUSR.

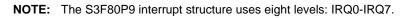
Bit Identifier		7.6	.5	.4	.3	.2	.1	.0		
Reset Value		x x	х	x	x	х	x	х		
Read/Write	R	/W R/V	V R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Reg	ister address	sing mode only							
7	Inte	rrupt Level	7 (IRQ7) Enab	le Bit; Exte	ernal Interr	upts P0.7-	-P0.4			
	0	Disable (ma	ask)							
	1 Enable (un-mask)									
6	Inte	rrupt Level	6 (IRQ6) Enab	le Bit; Exte	ernal Interr	upts P0.3-	-P0.0			
	0	0 Disable (mask)								
	1	Enable (un	-mask)							
5	Inte	rrupt Level (5 (IRQ5) Enab	le Bit; Exte	ernal Interr	upts P2.7-	-P2.4			
	0	Disable (ma	. ,	,		•				
	1	Enable (un	-mask)							
	Into					_				
4	inte	rrupt Level 4	4 (IRQ4) Enab	le Bit; Exte	ernal Interr	upts P2.3-	-P2.0			
4	0	Disable (ma	4 (IRQ4) Enab ask)	le Bit; Exte	ernal Interr	upts P2.3-	-P2.0			
4		t -	ask)	le Bit; Exte	ernal Interr	upts P2.3-	-P2.0			
	0	Disable (ma Enable (un	ask) -mask)			-				
	0 1 Inte	Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab			-				
	0 1 Inte 0	Disable (ma Enable (un rrupt Level 3 Disable (ma	ask) -mask) 3 (IRQ3) Enab ask)			-				
	0 1 Inte	Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask)			-				
3	0 1 Inte 0 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask)	le Bit; Tim	er 2 Match	or Overflo				
3	0 1 Inte 0 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask) -mask) 2 (IRQ2) Enab	le Bit; Tim	er 2 Match	or Overflo				
3	0 1 Inte 0 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un rrupt Level 3	ask) -mask) 3 (IRQ3) Enab ask) -mask) 2 (IRQ2) Enab ask)	le Bit; Tim	er 2 Match	or Overflo				
3 2	0 1 0 1 1 Inte 0 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask) -mask) 2 (IRQ2) Enab ask)	le Bit; Tim	er 2 Match	or Overflo	DW			
3 2	0 1 0 1 1 Inte 0 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask) -mask) 2 (IRQ2) Enab ask) -mask) 1 (IRQ1) Enab	le Bit; Tim	er 2 Match	or Overflo	DW			
3 2	0 1 Inte 0 1 Inte 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask) -mask) 2 (IRQ2) Enab ask) -mask) 1 (IRQ1) Enab ask)	le Bit; Tim	er 2 Match	or Overflo	DW			
3 2 1	0 1 0 1 1 Inte 0 1 Inte 0 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un Trupt Level 3 Disable (ma Enable (un Trupt Level 4 Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask) -mask) 2 (IRQ2) Enab ask) -mask) 1 (IRQ1) Enab ask) -mask)	le Bit; Tim le Bit; Cou le Bit; Tim	er 2 Match Inter A Inte er 1 Match	or Overflo	DW DW			
4 3 2 1	0 1 0 1 1 Inte 0 1 Inte 0 1	Disable (ma Enable (un rrupt Level 3 Disable (ma Enable (un Trupt Level 3 Disable (ma Enable (un Trupt Level 4 Disable (ma Enable (un	ask) -mask) 3 (IRQ3) Enab ask) -mask) 2 (IRQ2) Enab ask) -mask) 1 (IRQ1) Enab ask) -mask) 0 (IRQ0) Enab	le Bit; Tim le Bit; Cou le Bit; Tim	er 2 Match Inter A Inte er 1 Match	or Overflo	DW DW			

	n Pointer (H	Pointer (High Byte) DAH Set1 Bar .7 .6 .5 .4 .3 .2 .1 .4 x x x x x x x x x x R/W R/W R/W R/W R/W R/W R/W R/W				Bank0		
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	Х	х	х	х	х	х	Х	х
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	addressing	mode only					
.7– .1	Instructio	on Pointer	Address (H	ligh Byte)				
	•	dress (IP1	•		e upper eig of the IP a	•		

IPL — Instruction Pointer (Low Byte)

DBH Set1 Bank0

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	х	х	х	х	х	х	х	х
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	ddressing	mode only					


.7– .0

Instruction Pointer Address (Low Byte)

The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH register (DAH).

IPR — Interrupt	Priorit	y Re	giste	r				FF	H Set1	Bank0	
Bit Identifier		.7	.6	6	.5	.4	.3	.2	.1	.0	
Reset Value		х	x		х	х	х	х	х	х	
Read/Write	R	/W	R/\	N	R/W	R/W	R/W	R/W	R/W	R/W	
Addressing Mode	Reg	ister a	addres	sing	mode only						
.7, .4, and .1	Pric	riority Control Bits for Interrupt Groups A, B, and C									
	0	0	0	Grou	up priority u	Indefined					
	0	0	1	B >	C > A						
	0	1	0	A >	B > C						
	0	1	1	B >	A > C						
	1	0	0	C >	A > B						
	1	0	1	C >	B > A						
	1	1	0	A >	C > B						
	1	1	1	Grou	up priority u	Indefined					
.5	0	IRQ IRQ	6 > IF 7 > IF Grou p	RQ7 RQ6 D C P	C Priority Priority Con , IRQ7)						
	1	-	26, IRC		,						
.3	Inte 0 1	IRQ	Subg i 3>IRQ 4>IRQ	4	B Priority	Control B	it (See Note)				
.2	Inte	rrupt	Group	b B P	Priority Co	ntrol Bit ^{(S}	ee Note)				
	0	IRQ	2 >(IR	Q3, I	RQ4)						
	1	(IRC	23, IRC	24) >	IRQ2						
.0	Inte	rrupt	Group	D A P	Priority Co	ntrol Bit					
	0	1	0 > IF		-						
	1	IRQ	1 > IF	RQ0							
	L										

IRQ — Interrupt Ro	eques	st Re	egister				DC	CH Set1	Bank0
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0)	0	0	0	0	0	0	0
Read/Write	F	र	R	R	R	R	R		
Addressing Mode	Regi	ister a	addressing	mode only					
.7	Leve	el 7 (l	RQ7) Requ	uest Pendi	ng Bit; Ext	ernal Inter	rupts P0.7	′–P0.4	
	0	Not	pending						
	1	Pen	ding						
.6	Leve	el 6 (l	RQ6) Reau	jest Pendi	ng Bit; Ext	ernal Inter	rupts P0.3	-P0.0	
	0	· ·	pending						
	1	Pen							
			<u>9</u>						
.5	Leve	el 5 (l	RQ5) Requ	uest Pendi	ng Bit; Ext	ernal Inter	rupts P2.7	′–P2.4	
	0	Not	pending						
	1	Pen	ding						
.4	1	· ·		lest Pendi	ng Bit; Ext	ernal Inter	rupts P2.3	5-P2.0	
	0	Pen	pending						
		Fen	ung						
.3	Leve	el 3 (l	RQ3) Requ	uest Pendi	ng Bit; Tim	er 2 Matc	h/Capture	or Overflo	w
	0	Not	pending						
	1	Pen	ding						
.2	l eve	-l 2 (l	RQ2) Reau	lest Pendi	ng Bit; Cou	inter A Int	errupt		
-	0	· · ·	pending		iig Dit, 000		onupt		
	1	Pen							
			5						
.1	Leve	el 1 (l	RQ1) Requ	uest Pendi	ng Bit; Tim	er 1 Matc	h/Capture	or Overflo	w
	0	Not	pending						
	1	Pen	ding						
.0		-) 0 /i	RQ0) Reau	lest Pendi	ng Bit; Tim	er 0 Matel	h/Canture	or Overflo	w
	0	· ·	pending				Suptuie	0. 070110	
	1	Pen	. 0						
	1 . 1		~···9						

	E0	H Set1	Bank1										
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0					
Reset Value	_	-	_	_	_	_	_	0					
Read/Write	_	-	_	_	_	_	_	R/W					
Addressing Mode	Regi	Register addressing mode only											
.7– .1	Not u	used for S3F80)P9.										
.0	LVD	Flag Indicato	r Bit										
	0	$V_{DD \geq} LVD_F$	LAG Level										
	1	$V_{DD} < LVD_F$	LAG Level										

NOTE: When LVD detects LVD_FLAG level, LVDCON.0 flag bit is set automatically. When VDD is upper LVD_FLAG level, LVDCON.0 flag bit is cleared automatically.

	D Flag	J Lev	vel Selecti	ion Regi	ster		F1	H Set1	Bank1			
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0			
Reset Value		0	0	_	_	_	_	_	_			
Read/Write	R	/W	R/W	_	_	_	_	_	_			
Addressing Mode	Reg	Register addressing mode only										
.7 and .6	LVE) Fla	g Level Sele	ection Bits	5							
	0	0	LVD_FLAG	Level = 1	.88V							
	0	1	LVD_FLAG	Level = 1	.98V							
	1	0	LVD_FLAG	Level = 2	.53V							
	1	1	LVD_FLAG	Level = 2	.73V							

.5– .0

Not used for S3F80P9.

POCONH - Port	0 C	ontro	ol Registe	er (High	Byte)		E8	H Set1	Bank0			
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0			
Reset Value	()	0	0	0	0	0	0	0			
Read/Write	R/	W/	R/W	R/W	R/W	R/W	R/W	R/W R/W F				
Addressing Mode	Reg	ister a	addressing	mode only								
.7 and .6	P0.7	/INT4	Mode Sel	ection Bits	6							
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	es					
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es				
	1	0	Push-pull	output mod	de							
	1	1	C-MOS in	put mode;	interrupt or	n rising edge	es					
.5 and .4	P0.6	/INT4	Mode Sel	ection Bits	6				1			
	0	0			•	n falling edg						
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es				
	1	0	Push-pull	output mod	de							
	1	1	C-MOS in	put mode;	interrupt or	n rising edge	es					
.3 and .2	P0.5	i/INT4	Mode Sel	ection Bits	6							
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	es					
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es				
	1	0	Push-pull	output mod	de							
	1	1	C-MOS in	put mode;	interrupt or	n rising edge	es					
.1 and .0	P0.4	/INT4	Mode Sel	ection Bits	6							
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	es					
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es				
	1	0	Push-pull	output mod	de							

NOTES:

1. The INT4 external interrupts at the P0.7–P0.4 pins share the same interrupt level (IRQ7) and interrupt vector address (E8H).

C-MOS input mode; interrupt on rising edges

2. You can assign pull-up resistors to individual port 0 pins by making the appropriate settings to the P0PUR register. (P0PUR.7 – P0PUR.4)

1

1

POCONL - Por	t 0 C	ontro	ol Regist	er (Low	Byte)		E9	H Set1	Bank0
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0
Reset Value	(0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	ister a	addressing	mode only					
.7 and .6	P0.3	B/INT3	B Mode Sel	ection Bits	6				
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	jes		
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es	
	1	0	Push-pull	output mod	de				
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es		
.5 and .4	P0.2	2/INT2	2 Mode Sel	ection Bits	6				
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	jes		
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es	
	1	0	Push-pull	output mod	de				
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es		
.3 and .2	P0.1	/INT1	Mode Sel	ection Bits	6				
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	jes		
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es	
	1	0	Push-pull	output mod	de				
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es		
.1 and .0	P0.0)/INTO) Mode Sel	ection Bits	6				
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	jes		
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es	
	1	0	Push-pull	output mod	de				

NOTES:

1. The INT3–INT0 external interrupts at P0.3–P0.0 are interrupt level IRQ6. Each interrupt has a separate vector address.

C-MOS input mode; interrupt on rising edges

 You can assign pull-up resistors to individual port 0 pins by making the appropriate settings to the P0PUR register. (P0PUR.3 – P0PUR.0)

1

1

Bit Identifier		7	6	.5	.4	3	.2	4	0
Reset Value		. 7 0	.6 0	0	0	.3 0	0	.1 0	.0 0
Read/Write		/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode				mode only					
7	P0.7	7 Extern	al Interr	upt (INT4)	Enable Bi	t			
	0	Disable	e interru	ot					
	1	Enable	interrup	ot					
5	P0.6	6 Extern	al Interr	upt (INT4)	Enable Bi	t			
	0	Disable	e interru	ot					
	1	Enable	interrup	ot					
5	P0.	5 Extern	al Interr	upt (INT4)	Enable Bi	t			
	0	Disable	e interru	ot					
	1	Enable	interrup	ot					
4	P0.4	4 Extern	al Interr	upt (INT4)	Enable Bi	t			
	0	1	e interru	• • •					
	1	Enable	interrup	ot					
}	P0 *	3 Extern	al Interr	upt (INT3)	Enable Bi	+			
,	0		e interru	• • •					
	1		interrup						
			-		Frickle Di				
2	· · · · · · · · · · · · · · · · · · ·	Disable		rupt (INT2)	Enable Bi	t			
	1		interrup						
			interrup	<i></i>					
	P0.′	1 Extern	al Interr	upt (INT1)	Enable Bi	t			
	0	Disable	e interru	ot					
	1	Enable	interrup	ot					
)	P0.0	0 Extern	al Interr	upt (INT0)	Enable Bi	t			
)	P0.0	1	al Interr		Enable Bi	t			

OPND — Port	t 0 Exte	ernal	Interrup	ot Pendin	g Regist	er	F2	H Set1	Bank
it Identifier	-	7	.6	.5	.4	.3	.2	.1	.0
eset Value		0	0	0	0	0	0	0	0
ead/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ddressing Mode	Reg	Register addressing mode only							
	P0.7	7 Exte	rnal Interr	upt (INT4)	Pending F	lag Bit (se	e Note)		
	0	No P	0.7 extern	al interrupt	pending (v	when read)			
	1	P0.7	external ir	nterrupt is p	ending (wh	nen read)			
	P0.6	6 Exte	rnal Interr	upt (INT4)	Pending F	lag Bit			
	0	No P	0.6 extern	al interrupt	pending (v	vhen read)			
	1	P0.6	external ir	nterrupt is p	ending (wł	nen read)			
	P0.5	5 Exte	rnal Interr	upt (INT4)	Pending F	lag Bit			
	0	1		al interrupt		-			
	1			nterrupt is p		,			
	D0 /		rnal Interr		Donding F	log Pit			
	0	1		upt (INT4) al interrupt					
	1			nterrupt is p		,			
				<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>				
	P0.3	B Exte	rnal Interr	upt (INT3)	Pending F	lag Bit			
	0	No P	0.3 extern	al interrupt	pending (v	vhen read)			
	1	P0.3	external ir	nterrupt is p	pending (wh	nen read)			
	P0.2	2 Exte	rnal Interr	upt (INT2)	Pending F	lag Bit			
	0	No P	0.2 extern	al interrupt	pending (v	when read)			
	1	P0.2	external in	nterrupt is p	ending (wł	nen read)			
			un al Intaru	upt (INT1)	Donding	log Dit			
	0	1		al interrupt	•	-			
	1			nterrupt is p		,			
		F 0.1				len reau)			
	P0.0) Exte	rnal Interr	upt (INT0)	Pending F	lag Bit			
	0	No P	0.0 extern	al interrupt	pending (v	vhen read)			
	1	P0.0	external in	nterrupt is p	ending (wł	nen read)			

NOTE: To clear an interrupt pending condition, write a "0" to the appropriate pending flag bit. Writing a "1" to an interrupt pending flag (P0PND.7–0) has no effect.

OPUR — Port	0 Pull-up	Resistor	Enable R	egister		E7	7H Set1	Bank
it Identifier	.7	.6	.5	.4	.3	.2	.1	.0
eset Value	0	0	0	0	0	0	0	0
ead/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ddressing Mode	Register	addressing	mode only					
	P0.7 Pu	ll-up Resist	or Enable	Bit				
	0 Disa	able pull-up	resistor					
	1 Ena	ble pull-up	resistor					
	P0.6 Pu	ll-up Resist	or Enable	Bit				
	0 Disa	able pull-up	resistor					
	1 Ena	ble pull-up	resistor					
	P0.5 Pu	ll-up Resist	or Enable	Bit				
	0 Disa	able pull-up	resistor					
	1 Ena	ble pull-up	resistor					
	P0.4 Pu	ll-up Resist	or Enable	Bit				
	0 Disa	able pull-up	resistor					
	1 Ena	ble pull-up	resistor					
	P0.3 Pu	ll-up Resist	or Enable	Bit				
	0 Disa	able pull-up	resistor					
		ble pull-up						
	P0.2 Pu	ll-up Resist	or Enable	Bit				
	0 Disa	able pull-up	resistor					
	1 Ena	ble pull-up	resistor					
	P0.1 Pu	ll-up Resist	or Enable	Bit				
	0 Disa	able pull-up	resistor					
	1 Ena	ble pull-up	resistor					
	P0.0 Pu	ll-up Resist	or Enable	Bit				
		able pull-up		-				

P1CONH - Po	ort 1 C	ontro	ol Registe	er (High	Byte)		EA	H Set1	Bank0		
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0		
Reset Value		1	1	1	1	1	1	1	1		
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Reg	ister a	addressing	mode only							
.7 and .6	P1.7	7 Mod	le Selectio	n Bits							
	0	0	C-MOS in	put mode							
	0	1	Open-drai	n output m	ode						
	1	0	Push-pull	output mod	de						
	1	1	C-MOS in	put with pu	ll up mode						
.5 and .4	P1.6	6 Mod	Iode Selection Bits								
	0	0	C-MOS in	•							
	0	1	· ·	n output m							
	1	0		output mod							
	1	1	C-MOS in	put with pu	ll up mode						
.3 and .2	P1.	5 Mod	le Selectio	n Bits							
	0	0	C-MOS in	put mode							
	0	1	Open-drai	n output m	ode						
	1	0	Push-pull	output mod	de						
	1	1	C-MOS in	put with pu	ll up mode						
.1 and .0	P1.4	1 Mod	le Selectio	n Bits							
	0	0	C-MOS in	put mode							
	0	1	Open-drai	n output m	ode						
	1	0	Push-pull	output mod	de						
	1	1	C-MOS in	put with pu	ll up mode						

NOTE: P1CONH is available in case of S3F80P9's 32-pin, not in 28-pin. P1CONH's reset value is 0FFH. After reset, initial values of port1.4-.7 become CMOS input with pull-up mode.

t 1 Co	ontro	l Registe	er (Low E	Byte)		EE	BH Set1	Bank0
	7	.6	.5	.4	.3	.2	.1	.0
(0	0	0	0	0	0	0	
R	/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reg	ister a	addressing	mode only					
P1.3	6 Mod	e Selection						
0	0	C-MOS in	put mode					
0	1	Open-drai	n output m	ode				
1	0	Push-pull	output mod	de				
1	1	C-MOS in	put with pu	ll up mode				
P1.2	Mod	e Selection	n Bits					
0	0	C-MOS in	put mode					
0	1	Open-drai	n output m	ode				
1	0	Push-pull	output mod	de				
1	1	C-MOS in	put with pu	ll up mode				
P1.1	Mod	le Selection	n Bits					
0	0	C-MOS in	put mode					
0	1	Open-drai	n output m	ode				
1	0	Push-pull	output mod	de				
1	1	C-MOS in	put with pu	ll up mode				
P1.0) Mod	e Selection	n Bits					
0	0	C-MOS in	put mode					
0	1	Open-drai	n output m	ode				
		.7 0 R/W Register a P1.3 Mod 0 0 1 0 1 1 P1.2 Mod 0 0 1 1 P1.2 Mod 0 0 1 1 P1.1 Mod 0 0 1 1 P1.1 Mod 0 1 1 1 P1.0 Mod 0 0 0 0	.7 .6 0 0 R/W R/W Register addressing P1.3 Mode Selection 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1	.7 .6 .5 0 0 0 R/W R/W R/W Register addressing mode only P1.3 Mode Selection Bits 0 0 C-MOS input mode 0 1 Open-drain output mode 0 1 Open-drain output mode 1 0 Push-pull output mode 1 1 C-MOS input with put P1.2 Mode Selection Bits 0 0 C-MOS input mode 0 1 Open-drain output mode 0 1 Open-drain output mode 0 1 Open-drain output mode 1 1 C-MOS input with put 1 0 Push-pull output mode 1 1 C-MOS input mode 0 1 Open-drain output mode 1 1 Open-drain output mode	0 0 0 0 R/W R/W R/W R/W Register addressing mode only P1.3 Mode Selection Bits 0 0 C-MOS input mode 0 1 Open-drain output mode 1 0 Push-pull output mode 1 1 C-MOS input with pull up mode 1 1 C-MOS input mode 1 1 C-MOS input mode 0 0 C-MOS input mode 1 1 C-MOS input mode 1 0 Push-pull output mode 1 0 Push-pull output mode 1 1 C-MOS input with pull up mode 1 1 C-MOS input mode 1 1 C-MOS input mode 1 1 Open-drain output mode 1 0 Push-pull output mode 1 0 Push-pull output mode 1 1 C-MOS input with pull up mode 1 1 C-MOS input with pull up mode	.7 .6 .5 .4 .3 0 0 0 0 0 0 R/W R/W R/W R/W R/W Register addressing mode only R/W R/W R/W P1.3 Mode Selection Bits 0 0 C-MOS input mode 0 0 0 C-MOS input mode 0 0 1 0 Push-pull output mode 1 1 C-MOS input mode 1 1	.7 .6 .5 .4 .3 .2 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W RIM R/W R/W R/W R/W R/W P1.3 Mode Selection Bits 0 0 C-MOS input mode 0 </td <td>.7 .6 .5 .4 .3 .2 .1 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W Register addressing mode only R/W R/W R/W R/W R/W P1.3 Mode Selection Bits 0 0 C-MOS input mode </td>	.7 .6 .5 .4 .3 .2 .1 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W Register addressing mode only R/W R/W R/W R/W R/W P1.3 Mode Selection Bits 0 0 C-MOS input mode

0	0	C-MOS input mode
0	1	Open-drain output mode
1	0	Push-pull output mode
1	1	C-MOS input with pull up mode

Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0				
leset Value		0	0	0	0	0	0	0	0				
ead/Write	F	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
ddressing Mode	Re	Register addressing mode only											
,	P1.	P1.7 Output Mode Pull-up Resistor Enable Bit											
	0	Disab	ole pull-up i	resistor									
	1	Enab	le pull-up r	esistor									
	P1.	6 Outp	out Mode F	Pull-up Res	sistor Ena	ble Bit							
	0	Disab	ole pull-up i	resistor									
	1	Enab	le pull-up r	esistor									
	P1.	5 Outp	out Mode F	Pull-up Res	sistor Enal	ble Bit							
	0	Disab	le pull-up i	resistor									
	1	Enab	le pull-up r	esistor									
	P1.	1 -		Pull-up Res	sistor Enal	ble Bit							
	0	Disab	ole pull-up i	resistor									
	1	Enab	le pull-up r	esistor									
	P1.	3 Outp	out Mode F	Pull-up Res	sistor Enal	ble Bit							
	0	Disab	le pull-up i	resistor									
	1	Enab	le pull-up r	esistor									
	P1.	2 Outp	out Mode F	Pull-up Res	sistor Enal	ble Bit							
	0	Disab	le pull-up i	resistor									
	1	Enab	le pull-up r	esistor									
	P1.	1 Outp	out Mode F	Pull-up Res	sistor Enal	ble Bit							
	0	1 -	le pull-up i	-									
	1	Enab	le pull-up r	esistor									
	P1	0 Outr	ut Mode F	Pull-up Res	sistor Fna	hle Bit							
	0	1	ble pull-up i	-									
		1											

P2CONH - Po	rt 2 C	ontr	ol Regist	er (High	Byte)		EC	CH Set1	Bank0			
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0			
Reset Value		0	0	0	0	0	0	0	0			
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Addressing Mode	Reg	ister a	addressing	ressing mode only								
.7 and .6	P2.7	/INT9	Mode Sel	ection Bits	6							
	0	0	C-MOS in									
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es				
	1	0	Output mo	ode; push-p	oull or oper	n-drain outp	out (refer to	P2OUTMD)			
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es					
.5 and .4	P2.6	2.6/INT9 Mode Selection Bits										
	0	0		•	•	n falling edg						
	0	1	C-MOS input mode; interrupt on rising and falling edges Output mode; push-pull or open-drain output (refer to P2OUTMD)									
	1	0	Output mo	ode; push-p	oull or oper	n-drain outp	out (refer to	P2OUTMD)			
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es					
.3 and .2	P2.5/INT9 Mode Selection Bits											
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	ges					
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es				
	1	0	Output mo	ode; push-p	oull or oper	n-drain outp	out (refer to	P2OUTMD)			
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es					
.1 and .0	P2.4	l/INT9) Mode Sel	ection Bits	6							
	0	0	C-MOS in	put mode;	interrupt or	n falling edg	ges					
	0	1	C-MOS in	put mode;	interrupt or	n rising and	falling edg	es				
	1	0	Output mo	ode; push-p	oull or oper	n-drain outp	out (refer to	P2OUTMD)			
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es					

NOTE: Pull-up resistors can be assigned to individual port2 pins by making the appropriate settings to the P2PUR control register, location EEH, set 1, bank0.

Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0		
eset Value		0	0	0	0	0	0	0	0		
lead/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ddressing Mode	Reg	ister a	addressing	mode only	,						
7 and .6	P2.3/INT8 Mode Selection Bits										
	0	0 0 C-MOS input mode; interrupt on falling edges									
	0	0 1 C-MOS input mode; interrupt on rising edges and falling edges									
	1	1 0 Output mode; push-pull or open-drain output (refer to P2OUT									
	1	1	C-MOS input mode; interrupt on rising edges								
5 and .4	P2.2	P2.2/INT7 Mode Selection Bits 0 0 C-MOS input mode; interrupt on falling edges									
	0	1		•	interrupt or						
	1	0		•	pull or open))		
	1	1			interrupt or		•	120011112)		
				<u> </u>							
3 and .2	P2.1/INT6 Mode Selection Bits										
	0	0	C-MOS in	put mode;	interrupt or	n falling ede	jes				
	0	1	C-MOS in	put mode;	interrupt or	n rising edg	es and falli	ing edges			
	1	0	Output me	ode; push-	pull or open	-drain outp	out (refer to	P2OUTME))		
	1	1	C-MOS in	put mode;	interrupt or	n rising edg	es				
	P2 (5 Mode Sel	ection Bit	c						
1 and 0	1 2.0	1			interrupt or	falling edg	ies				
l and .0	0	()				amig out	,				
1 and .0	0	0		•		n risina eda	es and falli	ina edaes			
1 and .0		0 1 0	C-MOS in	put mode;	interrupt or pull or open))		

NOTE: Pull-up resistors can be assigned to individual port 2 pins by making the appropriate settings to the P2PUR control register, location EEH, set 1, bank0.

2INT — Port 2				T		I	1	1	Bank
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
eset Value		0	0	0	0	0	0	0	0
ead/Write		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ddressing Mode	Reg	jister au	laressing	mode only					
	P2.	7 Exteri	nal Interr	upt (INT9)	Enable Bi	t			
	0	Disab	le interru	pt					
	1	Enabl	e interrup	ot					
	D 2	6 Extor	aal Intarr	unt (INITO)	Enchla Di				
	0	1	le interru	r upt (INT9)		L			
	1	-	e interrup						
		LIIGOI							
	P2.	5 Exteri	nal Interr	upt (INT9)	Enable Bi	t			
	0	Disab	le interru	pt					
	1	Enabl	e interrup	ot					
	D 2	1 Extor	nal Intorr	upt (INT9)	Enable Bi	•			
	0	1	le interru	• • •					
	1	-	e interrup						
	P2.3	3 Exteri	nal Interr	upt (INT8)	Enable Bi	t			
	0	Disab	le interru	pt					
	1	Enabl	e interrup	ot					
	P2 -	2 Extori	nal Interr	upt (INT7)	Enable Bi	•			
	0	1	le interru	,		•			
	1	-	e interrup						
	P2.	1 Exteri	nal Interr	upt (INT6)	Enable Bi	t			
	0	Disab	le interru	pt					
	1	Enabl	e interrup	ot					
	D 2	0 Exteri	nal Interr	upt (INT5)	Enable Bi	t			
	Г 4.1								
)	0	1	le interru	• • •					

Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0			
eset Value	(0	0	0	0	0	0	0			
ead/Write	R/	W R	/W	R/W	R/W	R/W	R/W	R/W	R/W			
ddressing Mode	Regi	ster addre	ssing	mode only								
	P2.7	Output M	lode S	Selection E	Bit							
	0	Push-pull	outpu	t mode								
	1	1 Open-drain output mode										
	P2.6	Output M	lode S	Selection E	Bit							
	0 Push-pull output mode											
	1	Open-drai	n outp	out mode								
	P2.5	Output M	lode S	Selection E	Bit							
	0	Push-pull	outpu	t mode								
	1	Open-drai	n outp	out mode								
	P2.4	Output M	lode \$	Selection E	Bit							
	0 Push-pull output mode											
	1	Open-drai	n outp	out mode								
	P2.3	Output M	lode S	Selection E	Bit							
	0	Push-pull										
	1	Open-drai	n outp	out mode								
	P2.2	Output M	lode S	Selection E	Bit							
	0	Push-pull	outpu	t mode								
	1	Open-drai	n outp	out mode								
	P2.1	Output M	lode S	Selection E	Bit							
	0	Push-pull	outpu	t mode								
	1	Open-drai	n outp	out mode								
)	P2.0	Output M	lode \$	Selection E	Bit							
	0 Push-pull output mode											
	1 Open-drain output mode											

PND — Port				-			_		
dentifier		7	.6	.5	.4	.3	.2	.1	.0
et Value		0	0	0	0	0	0	0	0
nd/Write		/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
dressing Mode	Reg	ister a							
	P2.7	7 Exte	rnal Interr	upt (INT9)	Pending F	lag Bit (se	e Note)		
	0			al interrupt		,			
	1	P2.7	external ir	nterrupt is p	ending (wh	nen read)			
	P2.6	6 Exte	rnal Interr	upt (INT9)	Pending F	lag Bit			
	0	No P	2.6 extern	al interrupt	pending (w	/hen read)			
	1	P2.6	external ir	nterrupt is p	ending (wh	nen read)			
	D 2 6	EExto	rnal Interr		Donding F	log Dit			
	0	1		al interrupt					
	1			nterrupt is p		,			
	P2.4	4 Exte	rnal Interr	upt (INT9)	Pending F	lag Bit			
	0	No P	2.4 extern	al interrupt	pending (w	/hen read)			
	1	P2.4	external in	nterrupt is p	ending (wh	nen read)			
	P2.3	B Exte	rnal Interr	upt (INT8)	Pending F	lag Bit			
	0	No P	2.3 extern	al interrupt	pending (w	/hen read)			
	1	P2.3	external ir	nterrupt is p	ending (wh	nen read)			
	P2.2	2 Exte	rnal Interr	upt (INT7)	Pending F	lag Bit			
	0	No P	2.2 extern	al interrupt	pending (w	/hen read)			
	1	P2.2	external in	nterrupt is p	ending (wh	nen read)			
	D0				Den din n F				
		1		upt (INT6)					
	0			al interrupt		,			
	1	P2.1	external in	nterrupt is p	ending (wh	nen read)			
	P2.0) Exte	rnal Interr	upt (INT5)	Pending F	lag Bit			
	0	No P	2.0 extern	al interrupt	pending (w	/hen read)			
	1		avtornal in	nterrupt is p	anding (wh	an read)			

NOTE: To clear an interrupt pending condition, write a "0" to the appropriate pending flag bit. Writing a "1" to an interrupt rending flag (P2PND.0–7) has no effect.

Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0		
eset Value		0	0	0	0	0	0	0	.0		
ead/Write		/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ddressing Mode				mode only							
	P2.7 Pull-up Resistor Enable Bit										
	0 Disable pull-up resistor										
	1	Enabl	le pull-up	resistor							
	P2.6	6 Pull-ս	up Resist	or Enable	Bit						
	0	Disab	le pull-up	resistor							
	1	Enabl	le pull-up	resistor							
	P2.5	5 Pull-u	ıp Resist	or Enable	Bit						
	0	1	ole pull-up								
	1	Enabl	le pull-up	resistor							
	P2.4	4 Pull-u	ıp Resist	or Enable	Bit						
	0	Disab	le pull-up	resistor							
	1	Enabl	le pull-up	resistor							
	P2.3	3 Pull-u	up Resist	or Enable	Bit						
	0		le pull-up								
	1		le pull-up								
	P2.2	2 Pull-u	ıp Resist	or Enable	Bit						
	i	1	ole pull-up								
	1	Enabl	le pull-up	resistor							
	P2 1	1 Pull-i	ın Resist	or Enable	Rit						
	0	1	le pull-up		Dit						
	1		le pull-up								
	Ŀ	Enab									
	P2 () Pull-u	ip Resist	or Enable	Bit						
	0	1	le pull-up								

Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0		
eset Value		, D	.0	0	0	. 5 0	0	0	.0		
lead/Write		5 /W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode		Register addressing mode only									
	Reg		aaresonig	mode only							
7 and .6	Package Selection and Alternative Function Select Bits										
	0	0		in package							
		P3.0: T0PWM/T0CAP/T1CAP, P3.1: REM/T0CK									
	Others Not used for S3F80P9										
5	D2 4	Euro	tion Selec	tion Dit							
)	0	r –	nal I/O sele								
	1				e (REM/TOC	^ K)					
		Allen				JN)					
4 and .3	P3.1	Mode	e Selectio	n Bits							
	0	0	Schmitt tri	igger input	mode						
	0	1	Open- dra	ain output n	node						
	1	0 Push pull output mode									
	1										
2	Fun	ction	Selection	Bit for P3.	0						
2	Fun 0	1	Selection		0						
2		Norm	nal I/O sele	ection	0 e (P3.0: T0F	PWM/T0CA	P/T1CAP)				
2	0	Norm	nal I/O sele	ection		PWM/T0CA	AP/T1CAP)				
_	0	Norm Alter	nal I/O sele	ection ction enable		PWM/T0CA	AP/T1CAP)				
_	0	Norm Alter	nal I/O sele native func e Selectio	ection ction enable	e (P3.0: TOP	PWM/T0CA	AP/T1CAP)				
_	0 1 P3.0	Norm Alter	nal I/O sele native func e Selectio Schmitt tri	ection ction enable n Bits	e (P3.0: TOP	PWM/T0CA	AP/T1CAP)				
2 1 and .0	0 1 P3.0 0	Norm Alter Mode	nal I/O sele native func e Selection Schmitt tri Open- dra	ection ction enable n Bits igger input	e (P3.0: TOP mode node	PWM/TOCA	AP/T1CAP)				

NOTES:

- 1. The port 3 data register, P3, at location E3H, set1, bank0, contains seven bit values which correspond to the following Port 3 pin functions (bit 6 is not used for the S3F80P9)
 - a. Port3, bit 7: carrier signal on ("1") or off ("0").
 - b. Port3, bit 1,0: P3.1/REM/T0CK pin, bit 0: P3.0/T0PWM/T0CAP/T1CAP pin.
- 2. The alternative function enable/disable are enabled in accordance with function selection bit (bit5 and bit2).
- 3. In case of 28/32pin package, the pin assign for alternative functions can be selectable relating to mode selection bit (bit0, 1, 2, 3, 4 and 5)
- 4. Following Table is the specific example about the alternative function and pin assignment according to the each bit control of P3CON in 28/32 pin package.

		P30	CON			Each Function Description a	nd Assignment to P3.0–P3.3
B5	B4	B 3	B2	B1	B0	P3.0	P3.1
0	х	х	0	х	х	Normal I/O	Normal I/O
0	х	х	1	0	0	T0_CAP/T1_CAP	Normal I/O
0	х	х	1	1	1	T0_CAP/T1_CAP	Normal I/O
0	х	х	1	0	1	TOPWM	Normal I/O
0	х	х	1	1	0	TOPWM	Normal I/O
1	0	0	0	х	х	Normal I/O	ТОСК
1	1	1	0	х	х	Normal I/O	ТОСК
1	0	1	0	x	x	Normal I/O	REM
1	1	0	0	х	х	Normal I/O	REM
1	0	0	1	0	0	T0_CAP/T1_CAP	ТОСК
1	1	1	1	1	1	T0_CAP/T1_CAP	ТОСК
1	0	1	1	0	1	TOPWM	REM
1	1	0	1	1	0	TOPWM	REM
1	0	0	1	0	1	TOPWM	Normal Input
1	1	1	1	1	0	TOPWM	Normal Input
1	0	1	1	0	0	T0_CAP/T1_CAP	REM
1	1	0	1	1	1	T0_CAP/T1_CAP	REM

Table 4-3. Each Function Description and Pin Assignment of P3CON in 28/32 Pin Package

P3OUTPU -	Port 3 C	output Pull-u	ıp Resist	or Enab	le Regist	er F4	4H Set1	Bank1				
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0				
Reset Value	_	_	_	_	_	_	0	0				
Read/Write	_	– – – – – – R/W R/W										
Addressing Mode	Regis	Register addressing mode only										
.7 and .2	Not us	Not used for S3F80P9										
.1	P3.1	Output Mode F	Pull-up Re	sistor Ena	ble Bit							
	0 [Disable pull-up	resistor									
	1 E	Enable pull-up r	esistor									
.0	P3.0	Output Mode F	Pull-up Re	sistor Ena	ble Bit							
	0 [Disable pull-up	resistor									

Enable pull-up resistor 1

PP — Register P	age Pointe	er				DI	FH Set1	Bank0
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register	addressing	mode only					
.7– .4	Destinat	on Regist	er Page Se	lection Bit	S			
	0 0	0 0	Destinatio	on: page 0 ((See Note)			
	<u>i</u>							

.3– .0	Source Register Page Selection Bits								
	0	0	0	0	Source: page 0 (See Note)				

NOTE: In the S3F80P9 microcontroller, a paged expansion of the internal register file is not implemented. For this reason, only page 0 settings are valid. Register page pointer values for the source and destination register page are automatically set to '0000B' following a hardware reset. These values should not be changed curing normal operation.

RESETID-Re	set Sou	rce Indicat	ing Regi	ister		FO	H Set1	Bank1		
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0		
Read/Write		_	_	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Registe	er addressing	mode only							
.7– .5	Not use	Not used for S3F80P9.								
.4	nRese	t pin Indicatir	ng Bit							
	0 F	Reset is not ge	enerated b	y nReset pi	n (when re	ad)				
	1 F	Reset is gener	ated by nF	Reset pin (w	/hen read)					
.3	Key-in	Reset Indica	ting Bit							
	0 F	Reset is not ge	enerated b	y P0, P2 ex	ternal INT	or SED&R	(when read	I)		
	1 F	Reset is gener	ated by P0), P2 exteri	nal INT or S	SED&R (wh	nen read)			
.2	WDT R	eset Indicati	ng Bit							
	0 6	Reset is not ge	enerated b	y WDT (wh	en read)					
	1 F	Reset is gener	ated by W	DT (when r	ead)					
.1	LVD R	eset Indicatin	g Bit							
	0 F	Reset is not ge	enerated b	y LVD (whe	en read)					
	1 F	Reset is gener	ated by L	/D (when re	ead)					
.0	POR R	eset Indicatir	ng Bit							
	0 6	Reset is not ge	enerated b	y POR (whe	en read)					
	1 F	Reset is gener	ated by PO	OR (when re	ead)					

State of RESETID depends on reset source

	.7	.6	.5	.4	.3	.2	.1	.0
POR	_	_	_	0	0	0	1	1
LVD	_	_	_	0	0	0	1	(note2)
WDT, Key-in, or nReset pin	-	-	-		(note3)		(note2)	(note2)

NOTES:

- 1. To clear an indicating register, write a "0" to indicating flag bit. Writing a "1" to an reset indicating flag (RESETID.0-.4) has no effect.
- 2. Not affected by any other reset.
- 3. Bits corresponding to sources that are active at the time of reset will be set.

CONTROL REGISTERS

RP0 — Register	Pointer 0					De	6H Set1	Bank0
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	1	1	0	0	0	_	_	_
Read/Write	R/W	R/W	R/W	R/W	R/W	_	_	_
Addressing Mode	Register a	addressing	mode only					
.7– .3	Register p areas in t two 8-byte RP0 poin	Pointer 0 A pointer 0 ca he register sl te register sl ts to address lice C0H–C	n indepenc file. Using t ices at one is C0H in re	lently point he register time as ac	pointers R tive workin	P0 and RP g register s	91, you can space. After	select a reset,
.2– .0	Not used	for S3F80F	9.					

RP1 — Register Pointer 1

D7H Set1 Bank0

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	1	1	0	0	1	_	_	_
Read/Write	R/W	R/W	R/W	R/W	R/W	_	_	_
Addressing Mode	Register a	addressing	mode only					
.7– .3	Register p areas in th two 8-byte RP1 point	pointer 1 ca ne register e register sl	file. Using t lices at one ss C8H in re	lently point the register time as ac	to one of th pointers R tive workin 1, bank0, s	P0 and RP g register s	1, you can space. After	select a reset,
.2– .0	Not used	for S3F80P	9.					

SPL — Stack Poi	SPL — Stack Pointer (Low Byte) D9H Set1 Ba								
Bit Identifier	.7	.7 .6 .5 .4 .3 .2 .1							
Reset Value	х	х	х	х	х	х	х	х	
Read/Write	R/W	R/W R/W R/W R/W R/W R/W R/W							
Addressing Mode	Register a	addressing	mode only.						
.7– .0	Stack Pointer Address (Low Byte)								
	The SP va	alue is unde	efined follow	wing a rese	et.				

STOPCON - Stop Control Register

FBH Set1 Bank0

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	W W W W W W							
Addressing Mode	Register addressing mode only							

Stop Control Register Enable Bits

1	0	1	0	0	1	0	1	Enable STOP Mode
	Other value							Disable STOP Mode

NOTES:

.7–.0

1. To get into STOP mode, stop control register must be enabled just before STOP instruction.

2. When STOP mode is released, stop control register (STOPCON) value is cleared automatically.

3. It is prohibited to write another value into STOPCON.

....

SYM — System	Mode	Regi	ster					D	EH Set1	Bank0
Bit Identifier		7	.6	i i	.5	.4	.3	.2	.1	.0
Reset Value	L	0	-		_	x	х	х	0	0
Read/Write	R	/W	_		_	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	ister a	address	sing mod	le only					
.7	Tri-	State	Extern	nal Interf	ace C	ontrol Bit	(note1)			
	0	Norr	nal ope	eration (o	disable	tri-state op	peration)			
	1	Set	externa	al interfac	ce line:	s to high im	pedance (e	enable tri-s	tate operati	on)
	·									
.6 and .5	Not	used	for S3F	-80P9 (n	ote2)					
.4– .2	Fas	t Inte	T		ection	Bits ^{(note:}	3)			
	0	0	0	IRQ0						
	0	0	1	IRQ1						
	0	1	0	IRQ2						
	0	1	1	IRQ3						
	1	0	0	IRQ4						
	1	0	1	IRQ5						
	1	1	0	IRQ6						
	1	1	1	IRQ7						
.1	Fas	t Inte	rrupt E	nable B	it ^{(note}	4)				
	0	0 Disable fast interrupt processing								
	1 Enable fast interrupt processing									
.0	Glo	bal In	terrup	t Enable	Bit ^{(ne}	ote5)				
	0	Disa	able glo	bal inter	rupt pr	ocessing				

NOTES:

- 1. Because an external interface is not implemented for the S3F80P9, SYM.7 must always be "0".
- 2. Although the SYM register is not used, SYM.5 should always be "0". If you accidentally write a "1" to this bit during normal operation, a system malfunction may occur.

Enable global interrupt processing

3. You can select only one interrupt level at a time for fast interrupt processing.

1

- 4. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2–SYM.4.
- 5. Following a reset, you must enable global interrupt processing by executing an EI instruction (not by writing a "1" to SYM.0).

TOCON — Time	er 0 Co	ontro	l Registe	r			D2	2H Set	1 Bank0	
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0	
Reset Value		0	0	0	0	0	0	0	0	
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Addressing Mode	Reg	ister a	addressing	mode only						
.7– .6	Tim	Timer 0 Input Clock Selection Bits								
	0	0	f _{OSC} /4096	6						
	0	1	f _{OSC} /256							
	1	0	f _{OSC} /8							
	1	1	External c	lock input ((at the T0C	K pin, P3.1	or P3.2)			
.5 and .4	Tim	er 0 C	Operating N	Mode Sele	ction Bits					
	0	0				eared by ma	atch signal))		
	0	1								
	 Capture mode (falling edges, counter running, OVF interrupt can occur) PWM mode (Match and OVF interrupt can occur) 						occur)			
.3	Tim	er 0 C	Counter Cle	ear Bit						
	0	No e	effect (wher	n write)						
	1	Clea	r T0 counte	er, T0CNT	(when write	e)				
.2	Tim	er 0 C	Overflow In	nterrupt En	able Bit (r	note)				
	0	Timer 0 Overflow Interrupt Enable Bit (note) 0 Disable T0 overflow interrupt								
	1	Ena	ble T0 over	flow interru	ipt					
.1	Tim	er 0 N	latch/Capt	ure Interru	upt Enable	Bit				
	0	1	ble T0 mat		-	-				
	1	-	ble T0 mate							
.0	Tim	or 0 N	/atch/Capt	uro Interri	unt Pendin	a Elaa Bit				
	0	1	-		-	ng (when re	ad)]	
	0	-		•		ding condit	,	write)		
	1	-		•		g (when rea	`			
	1	-	effect (wher							
		1.10 0								

NOTE: A timer 0 overflow interrupt pending condition is automatically cleared by hardware. However, the timer 0 match/capture interrupt, IRQ0, vector FCH, must be cleared by the interrupt service routine (S/W).

				_			1			
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0	
leset Value		0	0	0	0	0	0	0	0	
lead/Write		/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ddressing Mode	Reg	ister a	addressing	mode only						
7 and .6	Timer 1 Input Clock Selection Bits									
	0	0	f _{OSC} /4							
	0	1	f _{OSC} /8							
	1	0	f _{OSC} /16							
	1	1	Internal c	lock (count	er A flip-flop	o, T-FF)				
5 and .4	Timer 1 Operating Mode Selection Bits									
	0	 0 Interval timer mode (counter cleared by match signal) 1 Capture mode (rising edges, counter running, OVF can occur) 								
	0	-		· · ·			0	,		
	1	0		node (fallin			-	,		
	1	1	Capture	node (rising	y and railing	j euges, co	unterrunn	ing, OVF ca		
3	Timer 1 Counter Clear Bit									
	0 No effect (when write)									
	1	Clea	ar T1 count	er, T1CNT	(when write	e)				
2	Tim	or 1 (abla Dit (n					
2	Timer 1 Overflow Interrupt Enable Bit (note)									
	1	 0 Disable T1 overflow interrupt 1 Enable T1 overflow interrupt 								
		LIIG			ipt					
1	Tim	er 1 M	Match/Cap	ture Interru	upt Enable	Bit				
	0	Disa	able T1 mat	tch/capture	interrupt					
	1	1 Enable T1 match/capture interrupt								
)	Tim	er 1 N	Match/Can	ture Interru	ınt Pendin	a Flag Bit				
	0	1	•	apture inter	•		ead)			
	0			•		• •	,	write)		
	1		natch/cabit	ure interruo	t is penaina	i (when rea	(D)			

NOTE: A timer 1 overflow interrupt pending condition is automatically cleared by hardware. However, the timer 1 match/ capture interrupt, IRQ1, vector F6H, must be cleared by the interrupt service routine (S/W).

Reset Value 0 0 0 0 0 0 0 0	2CON – Timer	2 Con	trol	Register				E8	H Set1	Bank		
Read/Write R/W	Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0		
Addressing Mode Register addressing mode only 7 and .6 Timer 2 Input Clock Selection Bits 0 0 f _{OSC} /4 0 1 f _{OSC} /8 1 0 f _{OSC} /16 1 1 Internal clock (counter A flip-flop, T-FF) 5 and .4 Timer 2 Operating Mode Selection Bits 0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1	Reset Value		0	0	0	0	0	0	0	0		
Timer 2 Input Clock Selection Bits 0 0 $f_{OSC}/4$ 0 1 $f_{OSC}/8$ 1 0 $f_{OSC}/16$ 1 1 Internal clock (counter A flip-flop, T-FF) 5 and .4 Timer 2 Operating Mode Selection Bits 0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (flig edges, counter running, OVF can occur) 1 0 Capture mode (flig edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Clear T2 counter, T2CNT (when write) 1 1 Clea	lead/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0 0 1 fosc/4 0 1 fosc/8 1 0 fosc/16 1 1 Internal clock (counter A flip-flop, T-FF) 5 and .4 Timer 2 Operating Mode Selection Bits 0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 0 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Clear T2 counter, T2CNT (when write) 1 Enable T2 overflow interrupt Disable T2 overflow interrupt	ddressing Mode	Reg	ister a	addressing	mode only							
0 1 fosc/8 1 0 fosc/16 1 1 Internal clock (counter A flip-flop, T-FF) 5 and .4 Timer 2 Operating Mode Selection Bits 0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 0 Capture mode (falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 Clear T2 counter, T2CNT (when write) 1 1 Clear T2 counter, T2CNT (when write) 1 2 Timer 2 Overflow Interrupt Enable Bit (note) 0	7 and .6	Tim	Timer 2 Input Clock Selection Bits									
1 0 f _{OSC} /16 1 1 Internal clock (counter A flip-flop, T-FF) 5 and .4 Timer 2 Operating Mode Selection Bits 0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 0 Capture mode (falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 Clear T2 counter, T2CNT (when write) 1 1 Eleas T2 counter, T2CNT (when write) 1 1 Enab		0	0	f _{OSC} /4								
1 1 Internal clock (counter A flip-flop, T-FF) i and .4 Timer 2 Operating Mode Selection Bits 0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 1 Capture mode (falling edges, counter running, OVF can occur) 1 1 Capture mode (fising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 Clear T2 counter, T2CNT (when write) 1 1 Enable T2 overflow interrupt 1 </td <td></td> <td>0</td> <td>1</td> <td>f_{OSC}/8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0	1	f _{OSC} /8								
5 and .4 Timer 2 Operating Mode Selection Bits 0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 0 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 Clear T2 counter Clear Bit 0 0 No effect (when write) 1 1 Clear T2 overflow Interrupt Enable Bit (note) 0 0 Disable T2 overflow interrupt 1 1 Enable T2 match/Capture Interrupt Enable Bit 0 0 Disable T2 match/capt		1	0	f _{OSC} /16								
0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 0 Capture mode (falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 Clear T2 counter Clear Bit 0 0 No effect (when write) 1 1 Enable T2 overflow interrupt Enable Bit (note) 0 Disable T2 match/Capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrup		1	1	Internal cl	lock (counte	er A flip-flo	p, T-FF)					
0 0 Interval timer mode (counter cleared by match signal) 0 1 Capture mode (rising edges, counter running, OVF can occur) 1 0 Capture mode (falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 Clear T2 counter Clear Bit 0 0 No effect (when write) 1 1 Enable T2 overflow interrupt Enable Bit (note) 0 Disable T2 match/Capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrup												
0 1 Capture mode (rising edges, counter running, OVF can occur) 1 0 Capture mode (falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture Tode (rising and falling edges, counter running, OVF can occur) 1 1 Capture Tode (rising and falling edges, counter running, OVF can occur) 1 1 Capture Tode (rising and falling edges, counter running, OVF can occur) 1 Clear T2 counter Clear Bit 0 0 Disable T2 counter, T2CNT (when write) 1 1 Enable T2 overflow interrupt Enable Bit 0 0 Disable T2 match/capture interrupt Enable Bit 0 0 Disable T2 match/capture interrupt Pending Flag Bit 0 0 Clear T2 match/capture interrupt pending (when read) 0	and .4		1	· •								
1 0 Capture mode (falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 1 1 Capture mode (rising and falling edges, counter running, OVF can occur) 0 No effect (when write) 1 1 Clear T2 counter, T2CNT (when write) 1 2 Timer 2 Overflow Interrupt Enable Bit (note) 0 0 Disable T2 overflow interrupt 1 1 Enable T2 overflow interrupt 1 1 Enable T2 overflow interrupt 1 1 Enable T2 overflow interrupt Enable Bit 0 0 Disable T2 match/capture Interrupt Enable Bit 0 0 Disable T2 match/capture interrupt 1 1 Enable T2 match/capture interrupt Pending Flag Bit 0 0 No T2 match/capture interrupt Pending (when read) 0 0 Clear T2 match/capture interrupt pending (when read) 1 1 T2 match/capture interrup		-										
1 1 Capture mode (rising and falling edges, counter running, OVF can occu 3 Timer 2 Counter Clear Bit 0 0 No effect (when write) 1 1 Clear T2 counter, T2CNT (when write) 1 2 Timer 2 Overflow Interrupt Enable Bit (note) 0 Disable T2 overflow interrupt 1 Enable T2 match/capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read) 1 T2 match/capture interrupt is pending (when read)								-	,			
Imer 2 Counter Clear Bit 0 No effect (when write) 1 Clear T2 counter, T2CNT (when write) Imer 2 Overflow Interrupt Enable Bit (note) 0 Disable T2 overflow interrupt 1 Enable T2 match/capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending (when read) 1 T2 match/capture interrupt is pending (when read)			-	· ·		<u> </u>		•	,			
0 No effect (when write) 1 Clear T2 counter, T2CNT (when write) Timer 2 Overflow Interrupt Enable Bit (note) 0 Disable T2 overflow interrupt 1 Enable T2 match/capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 0 No T2 match/capture Interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)				Capture II		y and railing	y euges, co		ng, Ovr ca			
1 Clear T2 counter, T2CNT (when write) 2 Timer 2 Overflow Interrupt Enable Bit (note) 0 Disable T2 overflow interrupt 1 Enable T2 match/Capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 0 No T2 match/capture Interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)	3	Tim	er 2 (Counter Cl	ear Bit							
Timer 2 Overflow Interrupt Enable Bit (note) 0 Disable T2 overflow interrupt 1 Enable T2 overflow interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 1 Enable T2 match/capture interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)		0 No effect (when write)										
0 Disable T2 overflow interrupt 1 Enable T2 overflow interrupt 1 Enable T2 overflow interrupt 1 Enable T2 match/Capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 0 No T2 match/capture interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)		1	Clea	ar T2 count	er, T2CNT	(when write	e)					
0 Disable T2 overflow interrupt 1 Enable T2 overflow interrupt 1 Enable T2 overflow interrupt 0 Disable T2 match/Capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 0 No T2 match/capture interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)		Tim	or 0 ()		abla Bit /r						
1 Enable T2 overflow interrupt Timer 2 Match/Capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 1 Enable T2 match/capture interrupt Timer 2 Match/Capture Interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)	2											
Timer 2 Match/Capture Interrupt Enable Bit 0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt D Timer 2 Match/Capture Interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)												
0 Disable T2 match/capture interrupt 1 Enable T2 match/capture interrupt 0 Timer 2 Match/Capture Interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)			LIIA		now interio	ipt						
1 Enable T2 match/capture interrupt Timer 2 Match/Capture Interrupt Pending Flag Bit 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read)	I	Tim	er 2 N	latch/Capt	ture Interru	upt Enable	Bit					
DTimer 2 Match/Capture Interrupt Pending Flag Bit0No T2 match/capture interrupt pending (when read)0Clear T2 match/capture interrupt pending condition (when write)1T2 match/capture interrupt is pending (when read)		0	Disa	ble T2 mat	ch/capture	interrupt						
 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read) 		1	1 Enable T2 match/capture interrupt									
 0 No T2 match/capture interrupt pending (when read) 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read))	Tim	er 2 N	latch/Capt	ture Interru	upt Pendin	a Flaa Bit					
 0 Clear T2 match/capture interrupt pending condition (when write) 1 T2 match/capture interrupt is pending (when read) 			1			•		ad)				
1 T2 match/capture interrupt is pending (when read)												
		1										
		1					- •					

NOTE: A timer 2 overflow interrupt pending condition is automatically cleared by hardware. However, the timer 2 match/ capture interrupt, IRQ3, vector F2H, must be cleared by the interrupt service routine (S/W).

5 INTERRUPT STRUCTURE

OVERVIEW

The S3C8/S3F8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8RC CPU recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has more than one vector address, the vector priorities are established in hardware. A vector address can be assigned to one or more sources.

Levels

Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight possible interrupt levels: IRQ0–IRQ7, also called level 0 – level 7. Each interrupt level directly corresponds to an interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from device to device. The S3F80P9 interrupt structure recognizes eight interrupt levels.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are simply identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR register settings lets you define more complex priority relationships between different levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The maximum number of vectors that can be supported for a given level is 128. (The actual number of vectors used for S3C8/S3F8-series devices is always much smaller.) If an interrupt level has more than one vector address, the vector priorities are set in hardware. The S3F80P9 uses eighteen vectors. Two vector addresses are shared by four interrupt sources.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow, for example. Each vector can have several interrupt sources. In the S3F80P9 interrupt structure, there are 24 possible interrupt sources.

When a service routine starts, the respective pending bit is either cleared automatically by hardware or is must be cleared "manually" by program software. The characteristics of the source's pending mechanism determine which method is used to clear its respective pending bit.

INTERRUPT TYPES

The three components of the S3C8/S3F8-series interrupt structure described above — levels, vectors, and sources — are combined to determine the interrupt structure of an individual device and to make full use of its available interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (See Figure 5-1):

Type 1: One level (IRQn) + one vector (V_1) + one source (S_1)

Type 2: One level (IRQn) + one vector (V_1) + multiple sources $(S_1 - S_n)$

Type 3: One level (IRQn) + multiple vectors $(V_1 - V_n)$ + multiple sources $(S_1 - S_n, S_{n+1} - S_{n+m})$

Levels Vectors Sources _____ V1 — Type 1: IRQn — ----- S1 - S1 Type 2: - S2 — S3 L----- Sn _____ S1 V1 ------ V2 — Type 3: IRQn - $-S_{2}$ ——— V3 ————— S3 L----- Vn----- Sn ----- Sn + 1 ----- Sn+2 ----- Sn + m NOTE: The number of Sn and Vn value is expandable.

In the S3F80P9 microcontroller, all three interrupt types are implemented.

Figure 5-1. S3C8/S3F8-Series Interrupt Types

The S3F80P9 microcontroller supports twenty-four interrupt sources. Sixteen of the interrupt sources have a corresponding interrupt vector address; the remaining eight interrupt sources share by two vector address. Nine interrupt levels are recognized by the CPU in this device-specific interrupt structure, as shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single level are fixed in hardware).

When the CPU grants an interrupt request, interrupt processing starts: All other interrupts are disabled and the program counter value and status flags are pushed to stack. The starting address of the service routine is fetched from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the service routine is executed.

Levels	(9) Vectors(18)		Sources(24)	Reset/Clear
RESET	100H	1	Basic timer overflow	H/W
IRQ0	FCH	0	Timer 0 match/capture Timer 0 overflow	S/W H/W
IRQ1	F6H F4H	0	Timer 1 match/capture Timer 1 overflow	S/W H/W
IRQ2	———— ECH ———	1	Counter A	H/W
IRQ3	F2H	0	Timer 2 match/capture Timer 2 overflow	S/W H/W
IRQ4	D6H	3 2 1 0	P2.3 external interrupt P2.2 external interrupt P2.1 external interrupt P2.0 external interrupt	S/W S/W S/W
IRQ5	———— D8H ———		P2.7 external interrupt P2.6 external interrupt P2.5 external interrupt P2.4 external interrupt	S/W S/W S/W
IRQ6	E6H E4H E2H E0H	3 2 1 0	P0.3 external interrupt P0.2 external interrupt P0.1 external interrupt P0.0 external interrupt	S/W S/W S/W S/W
IRQ7	E8H		P0.7 external interrupt P0.6 external interrupt P0.5 external interrupt P0.4 external interrupt	S/W S/W S/W S/W

Figure 5-2. S3F80P9 Interrupt Structure

NOTE: Reset interrupt vector address (Basic timer overflow) can be varied by smart option.

INTERRUPT VECTOR ADDRESSES

All interrupt vector addresses for the S3F80P9 interrupt structure are stored in the vector address area of the internal program memory ROM, 00H–FFH (See Figure 5-3).

You can allocate unused locations in the vector address area as normal program memory. If you do so, please be careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).

The program reset address in the ROM is 0100H. Reset address can be changed by smart option (Refer to Figure 2-2).

(Decimal)		(HEX)
32,768		7FFFH
	32-Kbyte	
	Internal Program Memory (Flash Memory)	
		01FFH, 02FFH, 04FFH or 08FFH (note)
	ISP Sector	
255	Interrupt Vector Area	00FFH 003FH
	Smart Option Rom Cell	
0		003CH 0000H

Figure 5-3. ROM Vector Address Area

NOTE

The size of ISP[™] sector can be varied by Smart Option (refer to Figure 2-2). According to the smart option setting related to the ISP, ISP reset vector address can be changed one of addresses to be selected (200H, 300H, 500H, or 900H).

Vector A	Address	Interrupt Source	Rec	juest	Reset/Clear	
Decimal Value	Hex Value		Interrupt Level	Priority in Level	H/W	S/W
256	100H	Basic timer overflow/POR	RESET	_	\checkmark	
252	FCH	Timer 0 match/capture	IRQ0	1		
250	FAH	Timer 0 overflow		0	\checkmark	
246	F6H	Timer 1 match/capture	IRQ1	1		
244	F4H	Timer 1 overflow		0	\checkmark	
236	ECH	Counter A	IRQ2	_	\checkmark	
242	F2H	Timer 2 match/capture	IRQ3	1		
240	F0H	Timer 2 overflow		0	\checkmark	
232	E8H	P0.7 external interrupt	IRQ7	-		
232	E8H	P0.6 external interrupt		_		\checkmark
232	E8H	P0.5 external interrupt		_		
232	E8H	P0.4 external interrupt		_		
230	E6H	P0.3 external interrupt	IRQ6	3		\checkmark
228	E4H	P0.2 external interrupt		2		\checkmark
226	E2H	P0.1 external interrupt		1		\checkmark
224	E0H	P0.0 external interrupt		0		\checkmark
216	D8H	P2.7 external interrupt	IRQ5	_		\checkmark
216	D8H	P2.6 external interrupt		_		\checkmark
216	D8H	P2.5 external interrupt		_		\checkmark
216	D8H	P2.4 external interrupt		_		\checkmark
214	D6H	P2.3 external interrupt	IRQ4	3		\checkmark
212	D4H	P2.2 external interrupt		2		\checkmark
210	D2H	P2.1 external interrupt		1		\checkmark
208	D0H	P2.0 external interrupt		0		

Table 5-1. S3F80P9 Interrupt Vectors

NOTES:

1. Interrupt priorities are identified in inverse order: '0' is highest priority, '1' is the next highest, and so on.

2. If two or more interrupts within the same level content, the interrupt with the lowest vector address usually

has priority over one with a higher vector address. The priorities within a given level are fixed in hardware.Reset (Basic timer overflow or POR) interrupt vector address can be changed by smart option (Refer to Figure 2-2).

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then serviced as they occur, and according to the established priorities.

NOTE

The system initialization routine that is executed following a reset must always contain an EI instruction to globally enable the interrupt structure.

During normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register. Although you can manipulate SYM.0 directly to enable or disable interrupts, we recommend that you use the EI and DI instructions instead.

System-Level Interrupt Control Registers

In addition to the control registers for specific interrupt sources, four system-level registers control interrupt processing:

- The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.
- The interrupt priority register, IPR, controls the relative priorities of interrupt levels.
- The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to each interrupt source).
- The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable fast interrupts and control the activity of external interface, if implemented).

Control Register	ID	R/W	Function Description
Interrupt Mask Register	IMR	R/W	Bit settings in the IMR register enable or disable interrupt processing for each of the eight interrupt levels: IRQ0–IRQ7.
Interrupt Priority Register	IPR	R/W	Controls the relative processing priorities of the interrupt levels. The eight levels of the S3F80P9 are organized into three groups: A, B, and C. Group A is IRQ0 and IRQ1, group B is IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.
Interrupt Request Register	IRQ	R	This register contains a request pending bit for each interrupt level.
System Mode Register	SYM	R/W	A dynamic global interrupt processing enables/disables, fast interrupt processing, and external interface control (an external memory interface is not implemented in the S3F80P9 microcontroller).

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: globally or by a specific interrupt level and source. The system-level control points in the interrupt structure are, therefore:

- Global interrupt enable and disable (by EI and DI instructions or by a direct manipulation of SYM.0)
- Interrupt level enable/disable settings (IMR register)
- Interrupt level priority settings (IPR register)
- Interrupt source enable/disable settings in the corresponding peripheral control registers

NOTE

When writing the part of your application program that handles the interrupt processing, be sure to include the necessary register file address (register pointer) information.

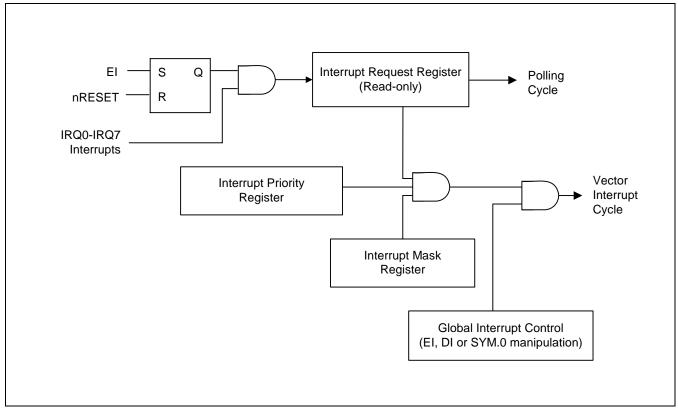


Figure 5-4. Interrupt Function Diagram

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is one or more corresponding peripheral control registers that let you control the interrupt generated by that peripheral (See Table 5-3).

Interrupt Source	Interrupt Level	Register(s)	Location(s) in Set 1	Bank
Timer 0 match/capture or Timer 0 overflow	IRQ0	T0CON (see Note) T0DATA	D2H D1H	Bank0
Timer 1 match/capture or Timer 1 overflow	IRQ1	T1CON (see Note) T1DATAH, T1DATAL	FAH F8H, F9H	Bank0
Counter A	IRQ2	CACON CADATAH, CADATAL	F3H F4H, F5H	Bank0
Timer 2 match/capture or Timer 2 overflow	IRQ3	T2CON (see Note) T2DATAH, T2DATAL	E8H E6H, E7H	Bank1
P0.7 external interrupt P0.6 external interrupt P0.5 external interrupt P0.4 external interrupt	IRQ7	POCONH POINT POPND	E8H F1H F2H	Bank0
P0.3 external interrupt P0.2 external interrupt P0.1 external interrupt P0.0 external interrupt	IRQ6	POCONL POINT POPND	E9H F1H F2H	Bank0
P2.7 external interrupt P2.6 external interrupt P2.5 external interrupt P2.4 external interrupt	IRQ5	P2CONH P2INT P2PND	ECH E5H E6H	Bank0
P2.3 external interrupt P2.2 external interrupt P2.1 external interrupt P2.0 external interrupt	IRQ4	P2CONL P2INT P2PND	EDH E5H E6H	Bank0

Table 5-3. Vectored Interrupt Source Control and Data Registers

NOTES:

1. Because the timer 0, timer1 and timer 2 overflow interrupts are cleared by hardware, the T0CON, T1CON and T2CON registers control only the enable/disable functions. The T0CON, T1CON and T2CON registers contain enable/disable and pending bits for the timer 0, timer1 and timer2 match/capture interrupts, respectively.

2. If a interrupt is un-mask(Enable interrupt level) in the IMR register, the pending bit and enable bit of the interrupt should be written after a DI instruction is executed.

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (DEH, Set 1, Bank0), is used to globally enable and disable interrupt processing and to control fast interrupt processing (See Figure 5-5).

A reset clears SYM.7, SYM.1, and SYM.0 to "0". The 3-bit value, SYM.4–SYM.2, is for fast interrupt level selection and undetermined values after reset. SYM.6 and SYM5 are not used.

The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0 value of the SYM register. An Enable Interrupt (EI) instruction must be included in the initialization routine, which follows a reset operation, in order to enable interrupt processing. Although you can manipulate SYM.0 directly to enable and disable interrupts during normal operation, we recommend using the EI and DI instructions for this purpose.

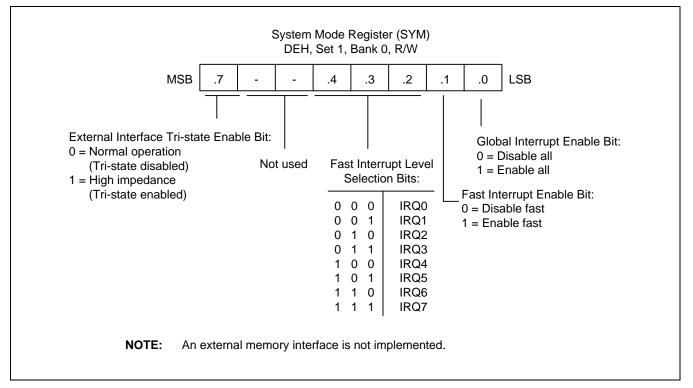


Figure 5-5. System Mode Register (SYM)

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register, IMR (DDH, Set 1, Bank0) is used to enable or disable interrupt processing for individual interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit of an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a level's IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to register location DDH in set 1 and Bank0. Bit values can be read and written by instructions using the register addressing mode.

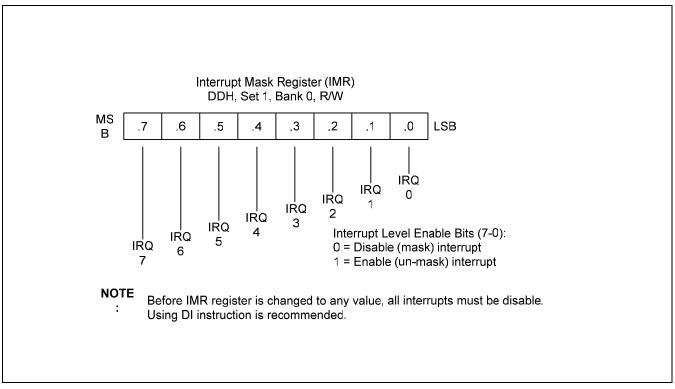


Figure 5-6. Interrupt Mask Register (IMR)

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR (FFH, Set 1, Bank 0), is used to set the relative priorities of the interrupt levels used in the microcontroller's interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

When more than one interrupt source is active, the source with the highest priority level is serviced first. If both sources belong to the same interrupt level, the source with the lowest vector address usually has priority (This priority is fixed in hardware).

To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register priority definitions (see Figure 5–7):

Group A	IRQ0, IRQ1
Group B	IRQ2, IRQ3, IRQ4
Group C	IRQ5, IRQ6, IRQ7

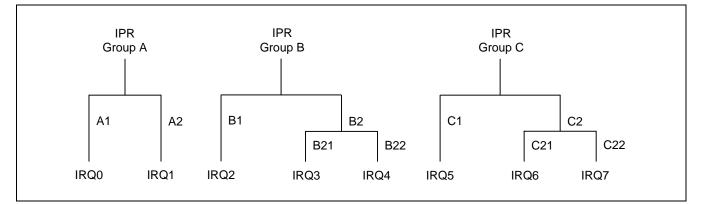


Figure 5-7. Interrupt Request Priority Groups

As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C. For example, the setting '001B' for these bits would select the group relationship B > C > A; the setting '101B' would select the relationship C > B > A.

The functions of the other IPR bit settings are as follows:

- IPR.5 controls the relative priorities of group C interrupts.
- Interrupt group B has a subgroup to provide an additional priority relationship between for interrupt levels 2, 3, and 4. IPR.3 defines the possible subgroup B relationships. IPR.2 controls interrupt group B.
- IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.

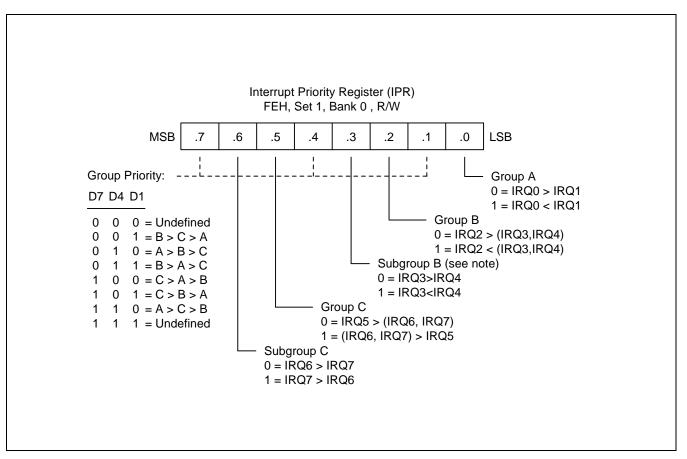


Figure 5-8. Interrupt Priority Register (IPR)

INTERRUPT REQUEST REGISTER (IRQ)

You can poll bit values in the interrupt request register, IRQ (DCH, Set 1, Bank0), to monitor interrupt request status for all levels in the microcontroller's interrupt structure. Each bit corresponds to the interrupt level of the same number: bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued for that level; a "1" indicates that an interrupt request has been generated for that level.

IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific interrupt levels. After a reset, all IRQ status bits are cleared to "0".

You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can, however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events occurred while the interrupt structure was globally disabled.

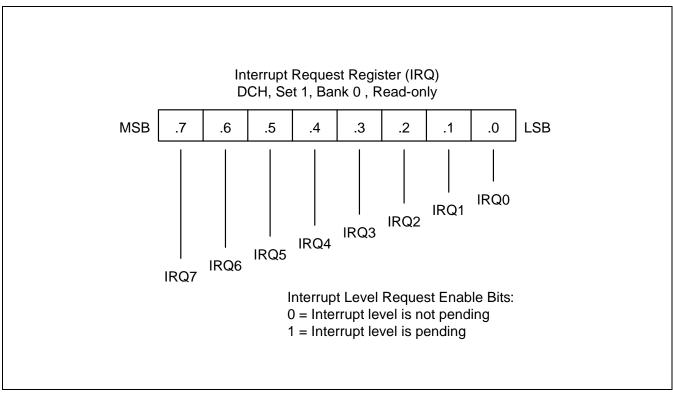


Figure 5-9. Interrupt Request Register (IRQ)

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: One type is automatically cleared by hardware after the interrupt service routine is acknowledged and executed; the other type must be cleared by the interrupt service routine.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine, and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written by application software.

In the S3F80P9 interrupt structure, the timer 0 overflow interrupt (IRQ0), the timer 1 overflow interrupt (IRQ1), the timer 2 overflow interrupt (IRQ3), and the counter A interrupt (IRQ2) belong to this category of interrupts whose pending condition is cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit must be cleared by program software. The service routine must clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be written to the corresponding pending bit location in the source's mode or control register.

In the S3F80P9 interrupt structure, pending conditions for all interrupt sources except the timer 0 overflow interrupt, the timer 1 overflow interrupt, the timer 2 overflow interrupt (IRQ3), and the counter A borrow interrupt, must be cleared by the interrupt service routine.

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

- 1. A source generates an interrupt request by setting the interrupt request bit to "1".
- 2. The CPU polling procedure identifies a pending condition for that source.
- 3. The CPU checks the interrupt level of source.
- 4. The CPU generates an interrupt acknowledge signal.
- 5. Interrupt logic determines the interrupt's vector address.
- 6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).
- 7. The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request can be serviced, the following conditions must be met:

- Interrupt processing must be globally enabled (EI, SYM.0 = "1")
- The interrupt level must be enabled (IMR register unmask)
- The interrupt level must have the highest priority if more than one level is currently requesting service
- The interrupt must be enabled at the interrupt's source (peripheral control register)

If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

- 1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
- 2. Save the program counter (PC) and status flags to the system stack.
- 3. Branch to the interrupt vector to fetch the address of the service routine.
- 4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores the PC and status flags and sets SYM.0 to "1", allowing the CPU to process the next interrupt request.

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM (except smart option ROM Cell- 003CH, 003DH, 003EH and 003FH) contains the addresses of interrupt service routines that correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:

- 1. Push the program counter's low-byte value to the stack.
- 2. Push the program counter's high-byte value to the stack.
- 3. Push the FLAG register values to the stack.
- 4. Fetch the service routine's high-byte address from the vector location.
- 5. Fetch the service routine's low-byte address from the vector location.
- 6. Branch to the service routine specified by the concatenated 16-bit vector address.

NOTE

A 16-bit vector address always begins at an even-numbered ROM address within the range 00H–FFH.

NESTING OF VECTORED INTERRUPTS

It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this, you must follow these steps:

- 1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).
- 2. Load the IMR register with a new mask value that enables only the higher priority interrupt.
- 3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it occurs).
- 4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the previous mask value from the stack (POP IMR).
- 5. Execute an IRET.

Depending on the application, you may be able to simplify the above procedure to some extent.

INSTRUCTION POINTER (IP)

The instruction pointer (IP) is used by all S3C8/S3F8-series microcontrollers to control the optional high-speed interrupt processing feature called fast interrupts. The IP consists of register pair IPH(DAH Set1 Bank0) and IPL(DBH Set1 Bank0). The IP register names are IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).

FAST INTERRUPT PROCESSING

The feature called *fast interrupt processing* lets you specify that an interrupt within a given level be completed in approximately six clock cycles instead of the usual 22 clock cycles. To select a specific interrupt level for fast interrupt processing, you write the appropriate 3-bit value to SYM.4–SYM.2. Then, to enable fast interrupt processing for the selected level, you set SYM.1 to "1".

FAST INTERRUPT PROCESSING (Continued)

Two other system registers support fast interrupt processing:

- The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the
 program counter values), and
- When a fast interrupt occurs, the contents of the FLAGS register are stored in an unmapped, dedicated register called FLAGS' ("FLAGS prime").

NOTE

For the S3F80P9 microcontroller, the service routine for any one of the eight interrupt levels: IRQ0–IRQ7, can be selected for fast interrupt processing.

Procedure for Initiating Fast Interrupt

To initiate fast interrupt processing, follow these steps:

- 1. Load the start address of the service routine into the instruction pointer (IP).
- 2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4–SYM.2)
- 3. Write a "1" to the fast interrupt enable bit in the SYM register.

Fast Interrupt Service Routine

When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:

- 1. The contents of the instruction pointer and the PC are swapped.
- 2. The FLAG register values are written to the FLAGS' ("FLAGS prime") register.
- 3. The fast interrupt status bit in the FLAGS register is set.
- 4. The interrupt is serviced.
- 5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction pointer and PC values are swapped back.
- 6. The content of FLAGS' ("FLAGS prime") is copied automatically back to the FLAGS register.
- 7. The fast interrupt status bit in FLAGS is cleared automatically.

Programming Guidelines

Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the SYM register, SYM.1. Executing an EI or DI instruction globally enables or disables all interrupt processing, including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast interrupt service routine ends.

NOTES

6 INSTRUCTION SET

OVERVIEW

The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8 microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the instruction set include:

- A full complement of 8-bit arithmetic and logic operations, including multiply and divide
- No special I/O instructions (I/O control/data registers are mapped directly into the register file)
- Decimal adjustment included in binary-coded decimal (BCD) operations
- 16-bit (word) data can be incremented and decremented
- Flexible instructions for bit addressing, rotate, and shift operations

Data Types

The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can be set, cleared, complemented and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least significant (right-most) bit.

Register Addressing

To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."

Addressing Modes

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), Immediate (IM) and Indirect (IA). For detailed descriptions of these addressing modes, please refer to Section 3, "Addressing Modes."

Mnemonic	Operands	Instruction
Load Instructions		
CLR	dst	Clear
LD	dst, src	Load
LDB	dst, src	Load bit
LDE	dst, src	Load external data memory
LDC	dst, src	Load program memory
LDED	dst, src	Load external data memory and decrement
LDCD	dst, src	Load program memory and decrement
LDEI	dst, src	Load external data memory and increment
LDCI	dst, src	Load program memory and increment
LDEPD	dst, src	Load external data memory with pre-decrement
LDCPD	dst, src	Load program memory with pre-decrement
LDEPI	dst, src	Load external data memory with pre-increment
LDCPI	dst, src	Load program memory with pre-increment
LDW	dst, src	Load word
POP	dst	Pop from stack
POPUD	dst, src	Pop user stack (decrementing)
POPUI	dst, src	Pop user stack (incrementing)
PUSH	Src	Push to stack
PUSHUD	dst, src	Push user stack (decrementing)
PUSHUI	dst, src	Push user stack (incrementing)

Table 6-1. Instruction Group Summary

		detion Group Summary (Continued)
Mnemonic	Operands	Instruction
Arithmetic Instruct	ions	
ADC	dst,src	Add with carry
ADD	dst,src	Add
СР	dst,src	Compare
DA	dst	Decimal adjust
DEC	dst	Decrement
DECW	dst	Decrement word
DIV	dst,src	Divide
INC	dst	Increment
INCW	dst	Increment word
MULT	dst,src	Multiply
SBC	dst,src	Subtract with carry
SUB	dst,src	Subtract
Logic Instructions		
AND	dst,src	Logical AND
СОМ	dst	Complement
OR	dst,src	Logical OR
XOR	dst,src	Logical exclusive OR

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction				
	Operando			
Program Control Instructions				
BTJRF		Dit test and jump relative on false		
BTJRT	dst,src	Bit test and jump relative on false		
	dst,src	Bit test and jump relative on true		
CALL	dst	Call procedure		
CPIJE	dst,src	Compare, increment and jump on equal		
CPIJNE	dst,src	Compare, increment and jump on non-equal		
DJNZ	r,dst	Decrement register and jump on non-zero		
ENTER		Enter		
EXIT		Exit		
IRET		Interrupt return		
JP	cc,dst	Jump on condition code		
JP	dst	Jump unconditional		
JR	cc,dst	Jump relative on condition code		
NEXT		Next		
RET		Return		
WFI		Wait for interrupt		
Bit Manipulation Instructions				
BAND	dst,src	Bit AND		
BCP	dst,src	Bit compare		
BITC	dst	Bit complement		
BITR	dst	Bit reset		
BITS	dst	Bit set		
BOR	dst,src	Bit OR		
BXOR	dst,src	Bit XOR		
ТСМ	dst,src	Test complement under mask		
ТМ	dst,src	Test under mask		
	,			

Table 6-1. Instruction Group Summary (Continued)

Mnemonic	Operands	Instruction				
Rotate and Shift Instructions						
Rotate and Shint ins	Suluctions					
RL	dst	Rotate left				
RLC	dst	Rotate left through carry				
RR	dst	Rotate right				
RRC	dst	Rotate right through carry				
SRA	dst	Shift right arithmetic				
SWAP	dst	Swap nibbles				
CPU Control Instru	ctions					
CCF		Complement carry flag				
DI		Disable interrupts				
EI		Enable interrupts				
IDLE		Enter Idle mode				
NOP		No operation				
RCF		Reset carry flag				
SB0		Set bank 0				
SB1		Set bank 1				
SCF		Set carry flag				
SRP	src	Set register pointers				
SRP0	src	Set register pointer 0				
SRP1	src	Set register pointer 1				
STOP		Enter Stop mode				

Table 6-1. Instruction Group Summary (Concluded)

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and FLAGS.2 are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.

Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will occur to the Flags register producing an unpredictable result.

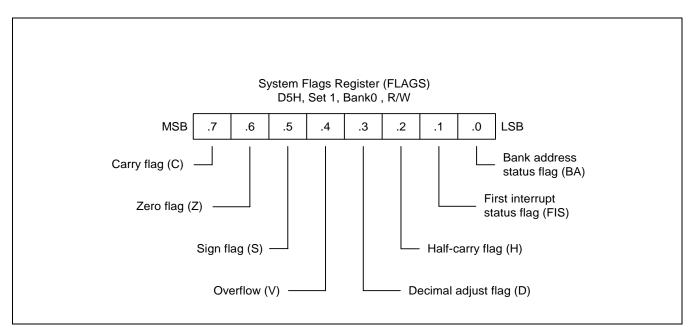


Figure 6-1. System Flags Register (FLAGS)

FLAG DESCRIPTIONS

C Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register. Program instructions can set, clear, or complement the carry flag.

Z Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is logic zero.

Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A logic zero indicates a positive number and a logic one indicates a negative number.

V Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than - 128. It is also cleared to "0" following logic operations.

D

Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by programmers, and cannot be used as a test condition.

Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a program.

FIS Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing. When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET instruction is executed.

BA Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected, bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0 instruction and is set to "1" (select bank 1) when you execute the SB1 instruction.

INSTRUCTION SET NOTATION

Flag	Description						
С	Carry flag						
Z	Zero flag						
S	Sign flag						
V	Overflow flag						
D	Decimal-adjust flag						
Н	Half-carry flag						
0	Cleared to logic zero						
1	Set to logic one						
*	Set or cleared according to operation						
_	Value is unaffected						
х	Value is undefined						

Table 6-2. Flag Notation Conventions

Table 6-3. Instruction Set Symbols

Symbol	Description
dst	Destination operand
src	Source operand
@	Indirect register address prefix
PC	Program counter
IP	Instruction pointer
FLAGS	Flags register (D5H)
RP	Register pointer
#	Immediate operand or register address prefix
н	Hexadecimal number suffix
D	Decimal number suffix
В	Binary number suffix
орс	Opcode

Notation	Description	Actual Operand Range
CC	Condition code	See list of condition codes in Table 6-6.
r	Working register only	Rn (n = 0–15)
rb	Bit (b) of working register	Rn.b (n = 0–15, b = 0–7)
rO	Bit 0 (LSB) of working register	Rn (n = 0–15)
rr	Working register pair	RRp (p = 0, 2, 4,, 14)
R	Register or working register	reg or Rn (reg = 0–255, n = 0–15)
Rb	Bit 'b' of register or working register	reg.b (reg = 0–255, b = 0–7)
RR	Register pair or working register pair	reg or RRp (reg = $0-254$, even number only, where $p = 0, 2,, 14$)
IA	Indirect addressing mode	addr (addr = 0–254, even number only)
Ir	Indirect working register only	@Rn (n = 0–15)
IR	Indirect register or indirect working register	@Rn or @reg (reg = 0–255, n = 0–15)
Irr	Indirect working register pair only	@RRp (p = 0, 2,, 14)
IRR	Indirect register pair or indirect working register pair	@RRp or @reg (reg = 0–254, even only, where p = 0, 2,, 14)
Х	Indexed addressing mode	#reg [Rn] (reg = 0–255, n = 0–15)
XS	Indexed (short offset) addressing mode	#addr [RRp] (addr = range –128 to +127, where p = 0, 2,, 14)
xl	Indexed (long offset) addressing mode	#addr [RRp] (addr = range 0–65535, where p = 0, 2,, 14)
da	Direct addressing mode	addr (addr = range 0–65535)
ra	Relative addressing mode	addr (addr = number in the range +127 to -128 that is an offset relative to the address of the next instruction)
im	Immediate addressing mode	#data (data = 0-255)
iml	Immediate (long) addressing mode	#data (data = range 0–65535)

Table 6-4. Instruction Notation Conventions

	OPCODE MAP								
	LOWER NIBBLE (HEX)								
	_	0	1	2	3	4	5	6	7
U	0	DEC R1	DEC IR1	ADD r1,r2	ADD r1,Ir2	ADD R2,R1	ADD IR2,R1	ADD R1,IM	BOR r0–Rb
Р	1	RLC R1	RLC IR1	ADC r1,r2	ADC r1,Ir2	ADC R2,R1	ADC IR2,R1	ADC R1,IM	BCP r1.b, R2
Р	2	INC R1	INC IR1	SUB r1,r2	SUB r1,Ir2	SUB R2,R1	SUB IR2,R1	SUB R1,IM	BXOR r0–Rb
E			SBC R2,R1	SBC IR2,R1	SBC R1,IM	BTJR r2.b, RA			
R	4	DA R1	DA IR1	OR r1,r2	OR r1,Ir2	OR R2,R1	OR IR2,R1	OR R1,IM	LDB r0–Rb
	5	POP R1	POP IR1	AND r1,r2	AND r1,Ir2	AND R2,R1	AND IR2,R1	AND R1,IM	BITC r1.b
N	6	COM R1	COM IR1	TCM r1,r2	TCM r1,Ir2	TCM R2,R1	TCM IR2,R1	TCM R1,IM	BAND r0–Rb
I	7	PUSH R2	PUSH IR2	TM r1,r2	TM r1,Ir2	TM R2,R1	TM IR2,R1	TM R1,IM	BIT r1.b
В	8	DECW RR1	DECW IR1	PUSHUD IR1,R2	PUSHUI IR1,R2	MULT R2,RR1	MULT IR2,RR1	MULT IM,RR1	LD r1, x, r2
В	9	RL R1	RL IR1	POPUD IR2,R1	POPUI IR2,R1	DIV R2,RR1	DIV IR2,RR1	DIV IM,RR1	LD r2, x, r1
L	A	INCW RR1	INCW IR1	CP r1,r2	CP r1,Ir2	CP R2,R1	CP IR2,R1	CP R1,IM	LDC r1, Irr2, xL
E	В	CLR R1	CLR IR1	XOR r1,r2	XOR r1,Ir2	XOR R2,R1	XOR IR2,R1	XOR R1,IM	LDC r2, Irr2, xL
	С	RRC R1	RRC IR1	CPIJE Ir,r2,RA	LDC r1,Irr2	LDW RR2,RR1	LDW IR2,RR1	LDW RR1,IML	LD r1, Ir2
н	D	SRA R1	SRA IR1	CPIJNE Irr,r2,RA	LDC r2,Irr1	CALL IA1		LD IR1,IM	LD Ir1, r2
E	E	RR R1	RR IR1	LDCD r1,Irr2	LDCI r1,Irr2	LD R2,R1	LD R2,IR1	LD R1,IM	LDC r1, Irr2, xs
x	F	SWAP R1	SWAP IR1	LDCPD r2,Irr1	LDCPI r2,Irr1	CALL IRR1	LD IR2,R1	CALL DA1	LDC r2, Irr1, xs

Table 6-5. Opcode Quick Reference

S3F80P9_UM_ REV1.00

			_	LOWER	NIBBLE (H	EX)			
	-	8	9	А	В	С	D	E	F
U	0	LD r1,R2	LD r2,R1	DJNZ r1,RA	JR cc,RA	LD r1,IM	JP cc,DA	INC r1	NEXT
Р	1	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	ENTER
Р	2								EXIT
Е	3								WFI
R	4								SB0
	5								SB1
N	6								IDLE
I	7	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	STOP
в	8								DI
в	9								EI
L	A								RET
Е	В								IRET
	С								RCF
н	D	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	SCF
E	E								CCF
x	F	LD r1,R2	LD r2,R1	DJNZ r1,RA	JR cc,RA	LD r1,IM	JP cc,DA	INC r1	NOP

CONDITION CODES

The op-code of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump instructions.

Binary	Mnemonic	Description	Flags Set
0000	F	Always false	-
1000	Т	Always true	-
0111 ^(note)	С	Carry	C = 1
1111 ^(note)	NC	No carry	C = 0
0110 ^(note)	Z	Zero	Z = 1
1110 ^(note)	NZ	Not zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No overflow	V = 0
0110 ^(note)	EQ	Equal	Z = 1
1110 ^(note)	NE	Not equal	Z = 0
1001	GE	Greater than or equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater than	(Z OR (S XOR V)) = 0
0010	LE	Less than or equal	(Z OR (S XOR V)) = 1
1111 ^(note)	UGE	Unsigned greater than or equal	C = 0
0111 ^(note)	ULT	Unsigned less than	C = 1
1011	UGT	Unsigned greater than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned less than or equal	(C OR Z) = 1

Table 6-6. Condition Cod

NOTES:

 It indicates condition codes that are related to two different mnemonics but which test the same flag. For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used; after a CP instruction, however, EQ would probably be used.

2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction in the SAM8 instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The following information is included in each instruction description:

- Instruction name (mnemonic)
- Full instruction name
- Source/destination format of the instruction operand
- Shorthand notation of the instruction's operation
- Textual description of the instruction's effect
- Specific flag settings affected by the instruction
- Detailed description of the instruction's format, execution time, and addressing mode(s)
- Programming example(s) explaining how to use the instruction

ADC - Add with carry

ADC	dst	dst,src								
Operation:	The and cor car	dst \leftarrow dst + src + c The source operand, along with the setting of the carry flag, is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's- complement addition is performed. In multiple precision arithmetic, this instruction permits the carry from the addition of low-order operands to be carried into the addition of high-order operands.								
Flags:	Z: S: V: D:	Set if there is a carry from the most significant bit of the result; cleared otherwise. Set if the result is "0"; cleared otherwise. Set if the result is negative; cleared otherwise. Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise. Always cleared to "0". Set if there is a carry from the most significant bit of the low-order four bits of the result; cleared otherwise.								
Format:										
						Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
		орс	dst src			2	4	12	r	r
							6	13	r	lr
		орс	src	dst]	3	6	14	R	R
	L				1		6	15	R	IR
		орс	dst	src]	3	6	16	R	IM
Examples:			1 = 10H, R: 6H = 0AH:	2 = 03H,	C flag = "1", r	egister 01ŀ	H = 20H, re	egister 02H =	⊧ 03H, a	Ind

ADCR1,R2 \rightarrow R1 = 14H, R2 = 03HADCR1,@R2 \rightarrow R1 = 1BH, R2 = 03HADC01H,02H \rightarrow Register 01H = 24H, register 02H = 03HADC01H,@02H \rightarrow Register 01H = 2BH, register 02H = 03HADC01H,#11H \rightarrow Register 01H = 32H

In the first example, destination register R1 contains the value 10H, the carry flag is set to "1", and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.

ADD - Add

ADD dst,src

Operation: dst \leftarrow dst + src

The source operand is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed.

Flags:

- **C:** Set if there is a carry from the most significant bit of the result; cleared otherwise.
- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.
- **D:** Always cleared to "0".
- H: Set if a carry from the low-order nibble occurred.

Format:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src			2	4	02	r	r
					6	03	r	lr
	1		1					
орс	src	dst		3	6	04	R	R
					6	05	R	IR
орс	dst	src		3	6	06	R	IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD	R1,R2 \rightarrow	R1 = 15H, R2 = 03H
ADD	R1,@R2 \rightarrow	R1 = 1CH, R2 = 03H
ADD	01H,02H \rightarrow	Register 01H = 24H, register 02H = 03H
ADD	01H,@02H \rightarrow	Register 01H = 2BH, register 02H = 03H
ADD	01H,#25H \rightarrow	Register 01H = 46H

In the first example, destination working register R1 contains 12H and the source working register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in register R1.

AND - Logical AND

AND dst,src

Operation: dst ← dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the destination. The AND operation results in a "1" bit being stored whenever the corresponding bits in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the source are unaffected.

Flags:

- C: Unaffected.
 - **Z:** Set if the result is "0"; cleared otherwise.
 - **S:** Set if the result bit 7 is set; cleared otherwise.
 - V: Always cleared to "0".
 - D: Unaffected.
 - H: Unaffected.

Format:

			Ву	tes C	ycles	Opcode (Hex)	Addr I <u>dst</u>	Mode <u>src</u>
орс	dst src		2	2	4	52	r	r
					6	53	r	lr
орс	src	dst	:	3	6	54	R	R
					6	55	R	IR
орс	dst	src	;	3	6	56	R	IM

Examples:

es: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

AND	R1,R2 \rightarrow	R1 = 02H, R2 = 03H
AND	R1,@R2 \rightarrow	R1 = 02H, R2 = 03H
AND	01H,02H \rightarrow	Register 01H = 01H, register 02H = 03H
AND	01H,@02H \rightarrow	Register 01H = 00H, register 02H = $03H$
AND	01H,#25H →	Register 01H = 21H

In the first example, destination working register R1 contains the value 12H and the source working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source operand 03H with the destination operand value 12H, leaving the value 02H in register R1.

BAND — Bit AND

BAND dst,src.b

BAND dst.b,src

Operation: $dst(0) \leftarrow dst(0)$ AND src(b)

or

 $dst(b) \leftarrow dst(b) AND src(0)$

The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of the destination (or source). The resultant bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Cleared to "0".
- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst b 0	src	3	6	67	rO	Rb
орс	src b 1	dst	3	6	67	Rb	r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H and register 01H = 05H:

BAND R1,01H.1 \rightarrow R1 = 06H, register 01H = 05H BAND 01H.1,R1 \rightarrow Register 01H = 05H, R1 = 07H

In the first example, source register 01H contains the value 05H (00000101B) and destination working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1 value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the value 06H (00000110B) in register R1.

BCP — Bit Compare

BCP dst,src.b

Operation: dst(0) – src(b)

The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination. The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both operands are unaffected by the comparison.

Flags: C: Unaffected.

- **Z:** Set if the two bits are the same; cleared otherwise.
- S: Cleared to "0".
- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

				Bytes	Cycles	Opcode	Addr Mode		
_						(Hex)	<u>dst</u>	<u>src</u>	
	орс	dst b 0	src	3	6	17	r0	Rb	

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Giv

Given: R1 = 07H and register 01H = 01H:

BCP R1,01H.1 \rightarrow R1 = 07H, register 01H = 01H

If destination working register R1 contains the value 07H (00000111B) and the source register 01H contains the value 01H (0000001B), the statement "BCP R1,01H.1" compares bit one of the source register (01H) and bit zero of the destination register (R1). Because the bit values are not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).

BITC — Bit Complement

BITC dst.b

Operation: $dst(b) \leftarrow NOT dst(b)$

This instruction complements the specified bit within the destination without affecting any other bits in the destination.

- Flags: C: Unaffected.
 - Z: Set if the result is "0"; cleared otherwise.
 - S: Cleared to "0".
 - V: Undefined.
 - D: Unaffected.
 - H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst b 0	2	4	57	rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H

BITC R1.1 \rightarrow R1 = 05H

If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1" complements bit one of the destination and leaves the value 05H (00000101B) in register R1. Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H) is cleared.

BITR — Bit Reset

BITR	dst.b								
Operation:	dst(b) $\leftarrow 0$ The BITR instruction clears the specified bit within in the destination.	The BITR instruction clears the specified bit within the destination without affecting any other bits							
Flags:	No flags are affected.	lo flags are affected.							
Format:									
		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>				
	opc dst b 0	2	4	77	rb				
	NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.								
Example:	Given: R1 = 07H:								
	BITR R1.1 \rightarrow R1 = 05H								

If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one of the destination register R1, leaving the value 05H (00000101B).

BITS — Bit Set

BITS	dst.b									
Operation:	dst(b) $\leftarrow 1$ The BITS instruction sets the specified bit withi the destination.	ne BITS instruction sets the specified bit within the destination without affecting any other bits in e destination.								
Flags:	No flags are affected.									
Format:										
		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>					
	opc dst b 1	2	4	77	rb					
	NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.									
Example:	Given: R1 = 07H:									
	BITS R1.3 \rightarrow R1 = 0FH									

If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit three of the destination register R1 to "1", leaving the value 0FH (00001111B).

BOR - Bit OR

BOR BOR	dst,src.b dst.b,src									
Operation:	dst(0) ← 0 or dst(b) ← 0 The specifi destination	$st(b) \leftarrow dst(b) \text{ OR } src(0)$ he specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the estination (or the source). The resulting bit value is stored in the specified bit of the destination. Io other bits of the destination are affected. The source is unaffected.								
Flags:	Z: Set if theS: CleareV: UndefinitionD: Unaffering	 C: Unaffected. Z: Set if the result is "0"; cleared otherwise. S: Cleared to "0". V: Undefined. D: Unaffected. H: Unaffected. 								
Format:	орс	dst b 0	SIC	1	Bytes 3	Cycles 6	Opcode (Hex) 07	Addr <u>dst</u> r0	Mode <u>src</u> Rb	
	opc	src b 1	dst /te of the 3-	J byte instruction its, and the LSE	3 formats, the	6 e destination	07 (or source) add	Rb dress is fo	rO	

Given:	R1	=	07H and register 01H =	03H:
--------	----	---	------------------------	------

BOR R1, 01H.1 \rightarrow R1 = 07H, register 01H = 03H BOR 01H.2, R1 \rightarrow Register 01H = 07H, R1 = 07H

In the first example, destination working register R1 contains the value 07H (00000111B) and source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value (07H) in working register R1.

In the second example, destination register 01H contains the value 03H (00000011B) and the source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H in register 01H.

BTJRF — Bit Test, Jump Relative on False

BTJRF dst,src.b

If src(b) is a "0", then PC \leftarrow PC + dst **Operation:**

> The specified bit within the source operand is tested. If it is a "0", the relative address is added to the program counter and control passes to the statement whose address is now in the PC; otherwise, the instruction following the BTJRF instruction is executed.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode		
	(Note 1)	-			(Hex)	<u>dst</u>	<u>src</u>
орс	src b 0	dst	3	10	37	RA	rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

> **BTJRF SKIP, R1.3** \rightarrow PC jumps to SKIP location

If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3" tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the memory location must be within the allowed range of + 127 to - 128.)

BTJRT — Bit Test, Jump Relative on True

BTJRT dst,src.b

Operation: If src(b) is a "1", then PC \leftarrow PC + dst

The specified bit within the source operand is tested. If it is a "1", the relative address is added to the program counter and control passes to the statement whose address is now in the PC; otherwise, the instruction following the BTJRT instruction is executed.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode	Addr	Addr Mode	
	(Note)				(Hex)	<u>dst</u>	<u>src</u>	
орс	src b 1	dst	3	10	37	RA	rb	

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BTJRT SKIP,R1.1

If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1" tests bit one in the source register (R1). Because it is a "1", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the memory location must be within the allowed range of +127 to -128.)

BXOR — Bit XOR

BXOR dst,src.b

BXOR dst.b,src

Operation: $dst(0) \leftarrow dst(0) \text{ XOR } src(b)$

or

 $dst(b) \leftarrow dst(b) XOR src(0)$

The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB) of the destination (or source). The result bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Cleared to "0".
- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst b 0	src	3	6	27	rO	Rb
орс	src b 1	dst	3	6	27	Rb	rO

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):

BXOR R1,01H.1 \rightarrow R1 = 06H, register 01H = 03H BXOR 01H.2,R1 \rightarrow Register 01H = 07H, R1 = 07H

In the first example, destination working register R1 has the value 07H (00000111B) and source register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is unaffected.

CALL — Call Procedure

SD

CALL	dst
------	-----

Operation:

0		0^{-1}
@SP	\leftarrow	PCL
SP	←	SP –1
@SP	←	PCH
PC	\leftarrow	dst

SP _ 1

The current contents of the program counter are pushed onto the top of the stack. The program counter value used is the address of the first instruction following the CALL instruction. The specified destination address is then loaded into the program counter and points to the first instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to return to the original program flow. RET pops the top of the stack back into the program counter.

Flags: No flags are affected.

Format:

				Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	d	st	3	14	F6	DA
Ī				-			
	орс	dst		2	12	F4	IRR
1						54	
	орс	dst		2	14	D4	IA

Examples:

Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:

CALL	$3521H \rightarrow$	SP =	0000H	

(Memory locations 0000H = 1AH, 0001H = 4AH, where

4AH is the address that follows the instruction.)

- CALL @RR0 \rightarrow SP = 0000H (0000H = 1AH, 0001H = 49H)
- CALL #40H \rightarrow SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the statement "CALL @RR0" produces the same result except that the 49H is stored in stack location 0001H (because the two-byte instruction format was used). The PC is then loaded with the value 3521H, the address of the first instruction in the program sequence to be executed. Assuming that the contents of the program counter and stack pointer are the same as in the first example, if program address 0040H contains 35H and program address 0041H contains 21H, the statement "CALL #40H" produces the same result as in the second example.

$\mathbf{CCF}-\mathbf{Complement}$ Carry Flag

CCF

- Operation: C ← NOT C The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic zero; if C = "0", the value of the carry flag is changed to logic one.
- Flags: C: Complemented.

No other flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	EF

Example: Given: The carry flag = "0":

CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H), changing its value from logic zero to logic one.

$\mathbf{CLR} - \mathbf{Clear}$

CLR	dst							
Operation:	dst \leftarrow "0" The destina	tion location is clea	red to "0".					
Flags:	No flags are	No flags are affected.						
Format:			Bytes					
	орс	dst	2					

Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
2	4	B0	R
	4	B1	IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR 00H \rightarrow Register 00H = 00H

CLR @01H \rightarrow Register 01H = 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR) addressing mode to clear the 02H register value to 00H.

COM - Complement

COM dst

Operation: dst \leftarrow NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are changed to "0s", and vice-versa.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to "0".
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	60	R
			4	61	IR

Examples: Given: R1 = 07H and register 07H = 0F1H:

COM R1 \rightarrow R1 = 0F8H COM @R1 \rightarrow R1 = 07H, register 07H = 0EH

In the first example, destination working register R1 contains the value 07H (00000111B). The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros, and vice-versa, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value of destination register 07H (11110001B), leaving the new value 0EH (00001110B).

CP — Compare

CP dst,src

Operation: dst – src

The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are set accordingly. The contents of both operands are unaffected by the comparison.

Flags:

- **C:** Set if a "borrow" occurred (src > dst); cleared otherwise.
 - Z: Set if the result is "0"; cleared otherwise.
 - S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

-					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst src			2	4	A2	r	r
						6	A3	r	lr
[орс	src	dst]	3	6	A4	R	R
						6	A5	R	IR
[орс	dst	src]	3	6	A6	R	IM

Examples:

1. Given: R1 = 02H and R2 = 03H:

CP R1,R2 \rightarrow Set the C and S flags

Destination working register R1 contains the value 02H and source register R2 contains the value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are "1".

2. Given: R1 = 05H and R2 = 0AH:

CP R1,R2 JP UGE,SKIP INCR1 SKIP LD R3,R1

In this example, destination working register R1 contains the value 05H which is less than the contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1" and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1" executes, the value 06H remains in working register R3.

CPIJE — Compare, Increment, and Jump on Equal

CPIJE dst,src,RA

Operation: If dst - src = "0", PC \leftarrow PC + RA

 $lr \leftarrow lr + 1$

The source operand is compared to (subtracted from) the destination operand. If the result is "0", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter. Otherwise, the instruction immediately following the CPIJE instruction is executed. In either case, the source pointer is incremented by one before the next instruction is executed.

Flags: No flags are affected.

Format:

				Bytes	Cycles	Opcode	Addr	Mode
						(Hex)	<u>dst</u>	<u>src</u>
орс	src	dst	RA	3	12	C2	r	Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example:	Given:	R1 =	02H, R2 =	03H, and register $03H = 02H$:	
----------	--------	------	-----------	---------------------------------	--

CPIJE R1,@R2,SKIP \rightarrow R2 = 04H, PC jumps to SKIP location

In this example, working register R1 contains the value 02H, working register R2 the value 03H, and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value 02H (00000010B) to 02H (00000010B). Because the result of the comparison is *equal*, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that the memory location must be within the allowed range of + 127 to -128.)

CPIJNE — Compare, Increment, and Jump on Non-Equal

CPIJNE dst,src,RA

Operation: If dst – src "0", PC \leftarrow PC + RA

 $lr \leftarrow lr + 1$

The source operand is compared to (subtracted from) the destination operand. If the result is not "0", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter; otherwise the instruction following the CPIJNE instruction is executed. In either case the source pointer is incremented by one before the next instruction.

Flags: No flags are affected.

Format:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	
орс	src	dst	RA	3	12	D2	r	lr

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example:	Given: $R1 = 02H$, $R2 = 03H$, and register $03H = 04H$:	
----------	---	--

CPIJNER1,@R2,SKIP \rightarrow R2 = 04H, PC jumps to SKIP location

Working register R1 contains the value 02H, working register R2 (the source pointer) the value 03H, and general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts 04H (00000100B) from 02H (0000010B). Because the result of the comparison is *non-equal*, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H. (Remember that the memory location must be within the allowed range of + 127 to -128.)

DA — Decimal Adjust

DA

Operation: dst \leftarrow DA dst

dst

The destination operand is adjusted to form two 4-bit BCD digits following an addition or subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table indicates the operation performed. (The operation is undefined if the destination operand was not the result of a valid addition or subtraction of BCD digits):

Instruction	Carry Before DA	Bits 4–7 Value (Hex)	H Flag Before DA	Bits 0–3 Value (Hex)	Number Added to Byte	Carry After DA
	0	0–9	0	0–9	00	0
	0	0–8	0	A–F	06	0
	0	0–9	1	0–3	06	0
ADD	0	A–F	0	0–9	60	1
ADC	0	9–F	0 A–F	A–F	66	1
	0	A–F	1	0–3	66	1
	1	0–2	0	0–9	60	1
	1	0–2	0	A–F	66	1
	1	0–3	1	0–3	66	1
	0	0—9	0	0–9	00 = -00	0
SUB	0	0–8	1	6–F	FA = -06	0
SBC	1	7–F	0	0–9	A0 = -60	1
	1	6–F	1	6–F	9A = -66	1

Flags:

C: Set if there was a carry from the most significant bit; cleared otherwise (see table).

- **Z:** Set if result is "0"; cleared otherwise.
- S: Set if result bit 7 is set; cleared otherwise.
- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	40	R
			4	41	IR

DA — Decimal Adjust

DA (Continued)

Example: Given: Working register R0 contains the value 15 (BCD), working register R1 contains 27 (BCD), and address 27H contains 46 (BCD):

ADD	R1,R0	;	$C \leftarrow$ "0", $H \leftarrow$ "0", Bits 4–7 = 3, bits 0–3 = C, R1 \leftarrow 3CH
DA	R1	;	R1 ← 3CH + 06

If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is incorrect, however, when the binary representations are added in the destination location using standard binary arithmetic:

	0001	0101	15
+	<u>0010</u>	0111	27
	0011	1100	=3CH

The DA instruction adjusts this result so that the correct BCD representation is obtained:

Assuming the same values given above, the statements

SUB	27H,R0	;	$C \leftarrow "0", H \leftarrow "0", Bits 4-7 = 3, bits 0-3 = 1$
DA @F	R1	;	@R1 ← 31–0

leave the value 31 (BCD) in address 27H (@R1).

DEC - Decrement

DEC dst

Operation: dst \leftarrow dst -1

The contents of the destination operand are decremented by one.

Flags: C: Unaffected.

- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	00	R
			4	01	IR

Examples:	Given:	R1	=	03H and register $03H = 10H$:

DEC R1 \rightarrow R1 = 02H DEC @R1 \rightarrow Register 03H = 0FH

In the first example, if working register R1 contains the value 03H, the statement "DEC R1" decrements the hexadecimal value by one, leaving the value 02H. In the second example, the statement "DEC @R1" decrements the value 10H contained in the destination register 03H by one, leaving the value 0FH.

DECW — Decrement Word

DECW dst

Operation: dst \leftarrow dst - 1

The contents of the destination location (which must be an even address) and the operand following that location are treated as a single 16-bit value that is decremented by one.

Flags: C: Unaffected.

- **Z:** Set if the result is "0"; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	dst	2	8	80	RR
_				8	81	IR

Examples: Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:

DECW RR0 \rightarrow R0 = 12H, R1 = 33H DECW @R2 \rightarrow Register 30H = 0FH, register 31H = 20H

In the first example, destination register R0 contains the value 12H and register R1 the value 34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word and decrements the value of R1 by one, leaving the value 33H.

NOTE: A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW instruction. To avoid this problem, we recommend that you use DECW as shown in the following example:

LOOP: DECW RR0 LD R2,R1 OR R2,R0 JR NZ,LOOP

$\mathbf{DI}-\mathbf{Disable}$ Interrupts

DI

Operation:SYM (0) \leftarrow 0Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all

interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits, but the CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	8F

Example: Given: SYM = 01H:

DI

If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the register and clears SYM.0 to "0", disabling interrupt processing.

Before changing IMR, interrupt pending and interrupt source control register, be sure DI state.

DIV — Divide (Unsigned)

DIV	dst,src							
Operation:	dst ÷ src							
-	dst (UPPER) ← REMAINDER							
	dst (LOWER) ← QUOTIENT							
	The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits) is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of the destination. When the quotient is $\geq 2^8$, the numbers stored in the upper and lower halves of the destination for quotient and remainder are incorrect. Both operands are treated as unsigned integers.							
Flags:	C: Set if the V flag is set and quotient is betwee	en 2 ⁸ and	1 2 ⁹ –1; clea	red otherwise	э.			
	Z: Set if divisor or quotient = "0"; cleared oth							
	S : Set if MSB of quotient = "1"; cleared other							
	V: Set if quotient is $\ge 2^8$ or if divisor = "0"; c D: Unaffected.	leared oth	erwise.					
	H: Unaffected.							
Format:		Defe	0	0	A . I . I	M - 1-		
		Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>		
	opc src dst	3	26/10	94	RR	R		
			26/10	95	RR	IR		
			26/10	96	RR	IM		
NOTE: Execut	ion takes 10 cycles if the divide-by-zero is attempted; o	otherwise it	takes 26 cyc	les.				
Examples:	Given: R0 = 10H, R1 = 03H, R2 = 40H, re	gister 40H	= 80H:					
	DIV RR0,R2 \rightarrow R0 = 03H, R1 = 40H							
	$DIV RR0, @R2 \rightarrow R0 = 03H, R1 = 20H$							
	$DIVRR0, \# 20H \ \rightarrow \ R0 \ = \ 03H, \ R1 \ = \ 80H$							
	In the first example, destination working register (R1), and register R2 contains the value 40H. T RR0 value by the 8-bit value of the R2 (source) value 03H and R1 contains 40H. The 8-bit rem register RR0 (R0) and the quotient in the lower	The staten) register. ainder is s	nent "DIV R After the DI' stored in the	R0,R2" divide	es the 16 R0 conta	6-bit ains the		

DJNZ — Decrement and Jump if Non-Zero

DJNZ r,dst

Operation: $r \leftarrow r - 1$

If $r \neq 0$, PC \leftarrow PC + dst

The working register being used as a counter is decremented. If the contents of the register are not logic zero after decrementing, the relative address is added to the program counter and control passes to the statement whose address is now in the PC. The range of the relative address is +127 to -128, and the original value of the PC is taken to be the address of the instruction byte following the DJNZ statement.

NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at the one of location 0C0H to 0CFH with SRP, SRP0, or SRP1 instruction.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
r opc	dst	2	8 (jump taken)	rA	RA
			8 (no jump)	r = 0 to F	

Example: Given: R1 = 02H and LOOP is the label of a relative address:

SRP#0C0H

DJNZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the destination operand instead of a numeric relative address value. In the example, working register R1 contains the value 02H, and LOOP is the label for a relative address.

The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H. Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative address specified by the LOOP label.

EI — Enable Interrupts

ΕI

 Operation:
 SYM (0) ← 1

 An El instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was set while interrupt processing was disabled (by executing a DI instruction), it will be serviced when you execute the El instruction.

 Flags:
 No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	9F

Example: Given: SYM = 00H:

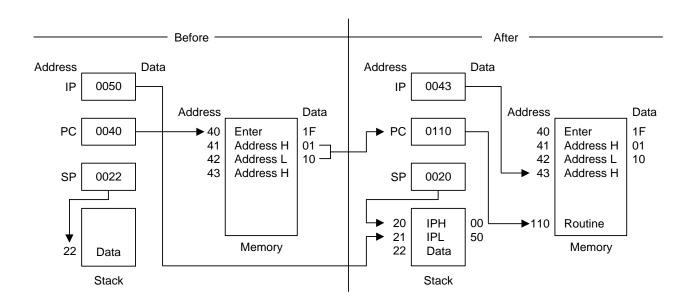
ΕI

If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for global interrupt processing.)

ENTER - Enter

ENTER

- Operation:
- $SP \leftarrow SP 2$ $@SP \leftarrow IP$ $IP \leftarrow PC$ $PC \leftarrow @IP$ $IP \leftarrow IP + 2$ This instruction


This instruction is useful when implementing threaded-code languages. The contents of the instruction pointer are pushed to the stack. The program counter (PC) value is then written to the instruction pointer. The program memory word that is pointed to by the instruction pointer is loaded into the PC, and the instruction pointer is incremented by two.

Flags:	No flags are affected.
i lago.	no hage are anotica.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	14	1F

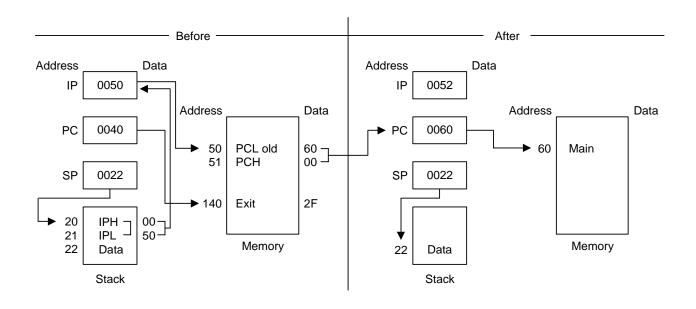
Example: The diagram below shows one example of how to use an ENTER statement.

EXIT — Exit

EXIT

Operation: IP ← SP ←

 $\begin{array}{rrrr} \mathsf{IP} &\leftarrow @\mathsf{SP} \\ \mathsf{SP} \leftarrow &\mathsf{SP} + 2 \\ \mathsf{PC} \leftarrow @\mathsf{IP} \\ \mathsf{IP} &\leftarrow &\mathsf{IP} + 2 \end{array}$


This instruction is useful when implementing threaded-code languages. The stack value is popped and loaded into the instruction pointer. The program memory word that is pointed to by the instruction pointer is then loaded into the program counter, and the instruction pointer is incremented by two.

Flags: No flags are affected.

Format:

	Bytes Cycles	Opcode (Hex)
орс	1 14 (internal stack)	2F
	16 (internal stack)	

Example: The diagram below shows one example of how to use an EXIT statement.

IDLE — Idle Operation

IDLE

Operation:

The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode	Addr	Mode
			(Hex)	<u>dst</u>	<u>src</u>
орс	1	4	6F	-	_

Example: The instruction

IDLE

stops the CPU clock but not the system clock.

INC — Increment

INC

Operation: dst \leftarrow dst + 1

dst

The contents of the destination operand are incremented by one.

Flags: C: Unaffected.

- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

			Byte	s Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	dst opc		1	4	rE	r
_					r = 0 to F	
r						
	орс	dst	2	4	20	R
				4	21	IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

INCR0 \rightarrow R0 = 1CH

INC00H \rightarrow Register 00H = 0DH

INC @R0 \rightarrow R0 = 1BH, register 01H = 10H

In the first example, if destination working register R0 contains the value 1BH, the statement "INC R0" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on register 00H, assuming that it contains the value 0CH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value of register 1BH from 0FH to 10H.

INCW — Increment Word

INCW dst

Operation: dst \leftarrow dst + 1

The contents of the destination (which must be an even address) and the byte following that location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	8	A0	RR
			8	A1	IR

Examples: Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:

INCW RR0 \rightarrow R0 = 1AH, R1 = 03H INCW @R1 \rightarrow Register 02H = 10H, register 03H = 00H

In the first example, the working register pair RR0 contains the value 1AH in register R0 and 02H in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect Register (IR) addressing mode to increment the contents of general register 03H from 0FFH to 00H and register 02H from 0FH to 10H.

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the following example:

LOOP:	INCW	RR0
	LD	R2,R1
	OR	R2,R0
	JR	NZ,LOOP

IRET — Interrupt Return

IRET	IRET (Normal)	IRET (Fast)
Operation:	$\begin{array}{rrrr} FLAGS \leftarrow @SP \\ SP \leftarrow SP + 1 \\ PC \leftarrow @SP \\ SP \leftarrow SP + 2 \\ SYM(0) \leftarrow 1 \end{array}$	PC \leftrightarrow IP FLAGS \leftarrow FLAGS' FIS \leftarrow 0
	This instruction is used	d at the end of an interr

This instruction is used at the end of an interrupt service routine. It restores the flag register and the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

IRET (Normal)	Bytes	Cycles	Opcode (Hex)
орс	1	10 (internal stack)	BF
		12 (internal stack)	
IRET (Fast)	Bytes	Cycles	Opcode (Hex)
орс	1	6	BF

Example: In the figure below, the instruction pointer is initially loaded with 100H in the main program before interrupts are enabled. When an interrupt occurs, the program counter and instruction pointer are swapped. This causes the PC to jump to address 100H and the IP to keep the return address. The last instruction in the service routine normally is a jump to IRET at address FFH. This causes the instruction pointer to be loaded with 100H "again" and the program counter to jump back to the main program. Now, the next interrupt can occur and the IP is still correct at 100H.

ОH	
FFH	IRET
100H	Interrupt Service Routine
	JP to FFH
FFFFH	

NOTE: In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay attention to the order of the last two instructions. The IRET cannot be immediately proceeded by a clearing of the interrupt status (as with a reset of the IPR register).

JP — Jump

- JP cc,dst (Conditional)
- JP dst (Unconditional)
- **Operation:** If cc is true, PC \leftarrow dst

The conditional JUMP instruction transfers program control to the destination address if the condition specified by the condition code (cc) is true; otherwise, the instruction following the JP instruction is executed. The unconditional JP simply replaces the contents of the PC with the contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: No flags are affected.

Format: ⁽¹⁾

(2)		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
cc opc	dst	3	8	ccD	DA
				cc = 0 to F	
орс	dst	2	8	30	IRR

NOTES:

- 1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
- 2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the opcode are both four bits.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

JP	C,LABEL_W	\rightarrow	$LABEL_W = 1000H, PC = 1000H$
JP	@00H	\rightarrow	PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement "JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to that location. Had the carry flag not been set, control would then have passed to the statement immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

JR — Jump Relative

JR cc,dst

Operation: If cc is true, PC \leftarrow PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the program counter and control passes to the statement whose address is now in the program counter; otherwise, the instruction following the JR instruction is executed. (See list of condition codes).

The range of the relative address is +127, -128, and the original value of the program counter is taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(1)			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
cc opc	dst		2	6	ccB	RA
		-			cc = 0 to F	

NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each four bits.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:

JR C,LABEL_X \rightarrow PC = 1FF7H

If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will pass control to the statement whose address is now in the PC. Otherwise, the program instruction following the JR would be executed.

LD - Load

dst,src

Operation: dst \leftarrow src

LD

The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
dst opc	src		2	4	rC	r	IM
				4	r8	r	R
src opc	dst		2	4	r9	R	r
					r = 0 to F		
орс	dst src		2	4	C7	r	lr
				4	D7	lr	r
орс	src	dst	3	6	E4	R	R
	-			6	E5	R	IR
орс	dst	src	3	6	E6	R	IM
				6	D6	IR	IM
орс	src	dst	3	6	F5	IR	R
I	I	1					
орс	dst src	Х	3	6	87	r	x [r]
		1					
орс	src dst	Х	3	6	97	x [r]	r

LD — Load

LD	(Continued)
Examples:	Given: $R0 = 01H$, $R1 = 0AH$, register $00H = 01H$, register $01H = 20H$, register $02H = 02H$, LOOP = 30H, and register $3AH = 0FFH$:
	LD R0,#10H \rightarrow R0 = 10H
	LD R0,01H \rightarrow R0 = 20H, register 01H = 20H
	LD 01H,R0 \rightarrow Register 01H = 01H, R0 = 01H
	LD R1,@R0 \rightarrow R1 = 20H, R0 = 01H
	LD @R0,R1 \rightarrow R0 = 01H, R1 = 0AH, register 01H = 0AH
	LD 00H,01H \rightarrow Register 00H = 20H, register 01H = 20H
	LD 02H,@00H \rightarrow Register 02H = 20H, register 00H = 01H
	LD 00H,#0AH \rightarrow Register 00H = 0AH
	LD @00H,#10H \rightarrow Register 00H = 01H, register 01H = 10H
	LD @00H,02H \rightarrow Register 00H = 01H, register 01H = 02, register 02H = 02H
	LD R0,#LOOP[R1] \rightarrow R0 = 0FFH, R1 = 0AH
	LD #LOOP[R0],R1 \rightarrow Register 31H = 0AH, R0 = 01H, R1 = 0AH

LDB - Load Bit

LDB dst,src.b

LDB dst.b,src

Operation: dst(0) \leftarrow src(b)

or

dst(b) \leftarrow src(0)

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the source is loaded into the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: No flags are affected.

Format:

_				_	Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst b 0	src		3	6	47	rO	Rb
	орс	src b 1	dst		3	6	47	Rb	rO

NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R0 = 06H and general register 00H = 05H:

LDB	R0,00H.2	\rightarrow	R0 = 07H, register $00H = 05H$
LDB	00H.0,R0	\rightarrow	R0 = 06H, register 00H = 04H

In the first example, destination working register R0 contains the value 06H and the source general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the 00H register into bit zero of the R0 register, leaving the value 07H in register R0.

In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04H in general register 00H.

LDC/LDE — Load Memory

LDC/LDE dst,src

Operation: dst \leftarrow src

This instruction loads a byte from program or data memory into a working register or vice-versa. The source values are unaffected. LDC refers to program memory and LDE to data memory. The assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd number for data memory.

Flags: No flags are affected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
1.	орс	dst src			2	10	C3	r	Irr
2.	орс	src dst			2	10	D3	Irr	r
3.	орс	dst src	XS]	3	12	E7	r	XS [rr]
4.	орс	src dst	XS]	3	12	F7	XS [rr]	r
5.	орс	dst src	XLL	XL _H	4	14	A7	r	XL [rr]
6.	орс	src dst	XLL	XL _H	4	14	B7	XL [rr]	r
7.	орс	dst 0000	DAL	DA _H	4	14	A7	r	DA
8.	орс	src 0000	DA _L	DA _H	4	14	B7	DA	r
9.	орс	dst 0001	DAL	DA _H	4	14	A7	r	DA
10.	орс	src 0001	DAL	DA _H	4	14	B7	DA	r

NOTES:

- 1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.
- 2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one byte.
- 3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two bytes.
- 4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of values, used in formats 9 and 10, are used to address data memory.

LDC/LDE — Load Memory

LDC/LDE (Continued)

Examples: Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations 0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:

LDC	R0,@RR2	;	$R0 \leftarrow$ contents of program memory location 0104H
		;	R0 = 1AH, R2 = 01H, R3 = 04H
LDE	R0,@RR2	;	$R0 \leftarrow$ contents of external data memory location 0104H
		;	R0 = 2AH, R2 = 01H, R3 = 04H
LDC (not	^{te)} @RR2,R0	;	11H (contents of R0) is loaded into program memory
		;	location 0104H (RR2),
		;	working registers R0, R2, R3 \rightarrow no change
LDE	@RR2,R0	;	11H (contents of R0) is loaded into external data memory
		;	location 0104H (RR2),
		;	working registers R0, R2, R3 \rightarrow no change
LDC	R0,#01H[RR2]	;	R0 ← contents of program memory location 0105H
		;	(01H + RR2),
		;	R0 = 6DH, R2 = 01H, R3 = 04H
LDE	R0,#01H[RR2]	;	$R0 \leftarrow$ contents of external data memory location 0105H
		;	(01H + RR2), R0 = 7DH, R2 = 01H, R3 = 04H
LDC (not	^{e)} #01H[RR2],R0	;	11H (contents of R0) is loaded into program memory location
		;	0105H (01H + 0104H)
LDE	#01H[RR2],R0	;	11H (contents of R0) is loaded into external data memory
		;	location 0105H (01H + 0104H)
LDC	R0,#1000H[RR2]];	$R0 \leftarrow$ contents of program memory location 1104H
		;	(1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H
LDE	R0,#1000H[RR2]];	$R0 \leftarrow$ contents of external data memory location 1104H
		;	(1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H
LDC	R0,1104H	;	$R0 \leftarrow$ contents of program memory location 1104H, $R0 = 88H$
LDE	R0,1104H	;	R0 \leftarrow contents of external data memory location 1104H,
		;	R0 = 98H
LDC (not	^{e)} 1105H,R0	;	11H (contents of R0) is loaded into program memory location
		;	1105H, (1105H) ← 11H
LDE	1105H,R0	;	11H (contents of R0) is loaded into external data memory
		;	location 1105H, (1105H) ← 11H

LDCD/LDED — Load Memory and Decrement

LDCD/LDED	dst,src									
Operation:	memory pair. The address LDCD re	- 1 structions are u to the register fi contents of the is then decrement ferences progra	sed for user stacks of ile. The address of the source location are ented. The contents of am memory and LDE ber for program mem	ne memory lo loaded into the of the source D reference	ocation is sp the destinat are unaffe s external d	becified by a bion location. cted. ata memory.	working re The memo The asse	egister ory		
Flags:	No flags	No flags are affected.								
Format:	орс	dst src		Bytes 2	Cycles 10	Opcode (Hex) E2	Addr M <u>dst</u> r	Mode <u>src</u> Irr		
Examples:			= 33H, R8 = 12H, bcation 1033H = 0D ; 0CDH (content ; into R8 and RF ; R8 = 0CDH, F	DH: s of program (6 is decrem	n memory lo ented by or	ocation 1033F	I) is loade			
	LDED	R8,@RR6	; 0DDH (content ; into R8 and RF			,				

; R8 = 0DDH, R6 = 10H, R7 = 32H

LDCI/LDEI — Load Memory and Increment

LDCI/LDEI	dst,src											
Operation:	rr ← rr These in memory pair. The	dst \leftarrow src rr \leftarrow rr + 1 These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then incremented automatically. The contents of the source are unaffected.										
		LDCI refers to program memory and LDEI refers to external data memory. The assembler makes 'Irr' even for program memory and odd for data memory.										
Flags:	No flags	No flags are affected.										
Format:												
	орс	dst src		Bytes 2	Cycles 10	Opcode (Hex) E3	Addr Mode <u>dst src</u> r Irr					
Examples:			= 33H, R8 = 12H, p al data memory locatio	•								
	LDCI	LDCI R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded ; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1) ; R8 = 0CDH, R6 = 10H, R7 = 34H										
	LDEI R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded ; into R8 and RR6 is incremented by one (RR6 \leftarrow RR6 + 1) ; R8 = 0DDH, R6 = 10H, R7 = 34H											

LDCPD/LDEPD — Load Memory with Pre-Decrement

LDCPD/ LDEPD

Operation: $rr \leftarrow rr - 1$

dst ← src

dst,src

These instructions are used for block transfers of data from program or data memory from the register file. The address of the memory location is specified by a working register pair and is first decremented. The contents of the source location are then loaded into the destination location. The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler makes 'Irr' an even number for program memory and an odd number for external data memory.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode	Addr Mode	
				(Hex)	<u>dst</u>	src
орс	src dst	2	14	F2	Irr	r

Examples:	Given: R	0 = 77H, R6	; =	30H, and R7 = 00H:
	LDCPD	@RR6,R0	;	$(RR6 \leftarrow RR6 - 1)$
			;	77H (contents of R0) is loaded into program memory location
			;	2FFFH (3000H – 1H)
			;	R0 = 77H, R6 = 2FH, R7 = 0FFH
	LDEPD	@RR6,R0	;	(RR6 ← RR6 – 1)
			;	77H (contents of R0) is loaded into external data memory location 2FFFH (3000H – 1H)
			;	R0 = 77H, R6 = 2FH, R7 = 0FFH

LDCPI/LDEPI — Load Memory with Pre-Increment

LDCPI/ LDEPI

rr ← rr + 1

dst,src

dst ← src

These instructions are used for block transfers of data from program or data memory from the register file. The address of the memory location is specified by a working register pair and is first incremented. The contents of the source location are loaded into the destination location. The contents of the source are unaffected.

LDCPI refers to program memory and LDEPI refers to external data memory. The assembler makes 'Irr' an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Examples:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>	
	орс	src dst		2	14	F3	Irr	r	
:	Given: R	0 = 7FH, R6	6 =	21H, and R7 = 0FFH:					
	LDCPI	@RR6,R0	;	(RR6 ← RR6 + 1)					
		; 7FH (contents of R0) is loaded into program memory							
			;	location 2200H (21FFH +	1H)				

;	R0 =	7FH, R6 =	= 22H, R7	= 00H
---	------	-----------	-----------	-------

- LDEPI @RR6,R0 ; (RR6 \leftarrow RR6 + 1)
 - ; 7FH (contents of R0) is loaded into external data memory
 - ; location 2200H (21FFH + 1H)
 - ; R0 = 7FH, R6 = 22H, R7 = 00H

LDW - Load Word

LDW dst,src

Operation: dst \leftarrow src

The contents of the source (a word) are loaded into the destination. The contents of the source are unaffected.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	src	dst	3	8	C4	RR	RR
				8	C5	RR	IR
орс	dst	S	4	8	C6	RR	IML

Examples: Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH, register 01H = 02H, register 02H = 03H, and register 03H = 0FH:

LDW	RR6,RR4 \rightarrow	R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH
LDW	00H,02H →	Register 00H = 03H, register 01H = 0FH, register 02H = 03H, register 03H = 0FH
LDW	RR2,@R7 \rightarrow	R2 = 03H, R3 = 0FH,
LDW	04H,@01H \rightarrow	Register 04H = 03H, register 05H = 0FH
LDW	RR6,#1234H \rightarrow	R6 = 12H, R7 = 34H
LDW	02H,#0FEDH→	Register 02H = 0FH, register 03H = 0EDH

In the second example, please note that the statement "LDW 00H,02H" loads the contents of the source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in general register 00H and the value 0FH in register 01H.

The other examples show how to use the LDW instruction with various addressing modes and formats.

MULT — Multiply (Unsigned)

MULT dst,src

Operation: dst \leftarrow dst \times src

The 8-bit destination operand (even register of the register pair) is multiplied by the source operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination address. Both operands are treated as unsigned integers.

Flags:

- **C:** Set if result is > 255; cleared otherwise.
- Z: Set if the result is "0"; cleared otherwise.
- S: Set if MSB of the result is a "1"; cleared otherwise.
- V: Cleared.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Bytes Cycles		Addr Mode		
					(Hex)	<u>dst</u>	src	
орс	src	dst	3	22	84	RR	R	
				22	85	RR	IR	
				22	86	RR	IM	

Examples:	Given:	Register 00H =	= 20H,	register $01H = 03H$, register $02H = 09H$, register $03H = 06H$:
	MULT	00H, 02H	\rightarrow	Register 00H = 01H, register 01H = 20H, register 02H = 09H
	MULT	00H, @01H	\rightarrow	Register 00H = 00H, register 01H = 0C0H
	MULT	00H, #30H	\rightarrow	Register 00H = 06H, register 01H = 00H

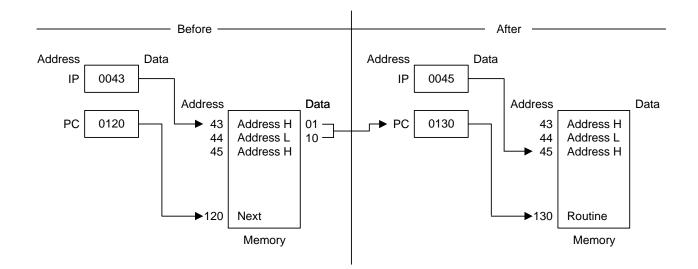
In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The 16-bit product, 0120H, is stored in the register pair 00H, 01H.

NEXT - Next

NEXT

Operation: $PC \leftarrow @ IP$

 $IP \leftarrow IP + 2$


The NEXT instruction is useful when implementing threaded-code languages. The program memory word that is pointed to by the instruction pointer is loaded into the program counter. The instruction pointer is then incremented by two.

Flags: No flags are affected.

Format:

	Bytes	s Cycles	s Opcode (Hex)
орс	1	10	0F

Example: The following diagram shows one example of how to use the NEXT instruction.

$\mathbf{NOP} - \mathbf{No}$ Operation

NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are executed in sequence in order to effect a timing delay of variable duration.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	FF

Example: When the instruction

NOP

is encountered in a program, no operation occurs. Instead, there is a delay in instruction execution time.

\mathbf{OR} — Logical OR

OR dst,src

Operation: dst ← dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the destination. The contents of the source are unaffected. The OR operation results in a "1" being stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is stored.

Flags:

C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Always cleared to "0".
- D: Unaffected.
- H: Unaffected.

Format:

			B	ytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src			2	4	42	r	r
		_			6	43	r	lr
орс	src	dst		3	6	44	R	R
					6	45	R	IR
орс	dst	src		3	6	46	R	IM

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and register 08H = 8AH:

OR	R0,R1 \rightarrow	R0 = 3FH, R1 = 2AH
OR	R0,@R2 \rightarrow	R0 = 37H, R2 = 01H, register 01H = 37H
OR	00H,01H \rightarrow	Register 00H = 3FH, register 01H = 37H
OR	01H,@00H \rightarrow	Register 00H = 08H, register 01H = 0BFH
OR	00H,#02H →	Register 00H = 0AH

In the first example, if working register R0 contains the value 15H and register R1 the value 2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result (3FH) in destination register R0.

The other examples show the use of the logical OR instruction with the various addressing modes and formats.

$\mathbf{POP} - \mathbf{Pop}$ From Stack

POP	dst							
Operation:		P + 1		Idressed by the	stack point	ter are loade	ed into the de	stination. The
Flags:	No flags		lerement					
Format:	i to nago							
					Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	dst]		2	8	50	R
						8	51	IR
Examples:		Register 00H < register 0FI				. ,		D9H) = 0FBH,
	POP	00H	\rightarrow	Register 00H	= 55H, SI	P = 00FCH	ł	
	POP	@00H	\rightarrow	Register 00H	= 01H, re	gister 01H	= 55H, SP =	= 00FCH
	In the fire	t ovomplo a	onoral ro	aistor 00H contr	vine the val		o statomont "	

In the first example, general register 00H contains the value 01H. The statement "POP 00H" loads the contents of location 00FBH (55H) into destination register 00H and then increments the stack pointer by one. Register 00H then contains the value 55H and the SP points to location 00FCH.

POPUD — Pop User Stack (Decrementing)

POPUD	dst,src								
Operation:	This instruction ad	dst \leftarrow src IR \leftarrow IR – 1 This instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then decremented.							
Flags:	No flags ar	No flags are affected.							
Format:									
					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	src	dst]	3	8	92	R	IR
Example:	Given: Re register 02	•	= 42H (us	ser stack point	er register), register 42	2H = 6FH, a	Ind	

POPUD 02H,@00H \rightarrow Register 00H = 41H, register 02H = 6FH, register 42H = 6FH

If general register 00H contains the value 42H and register 42H the value 6FH, the statement "POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The user stack pointer is then decremented by one, leaving the value 41H.

POPUI — Pop User Stack (Incrementing)

POPUI	dst,src									
Operation:	The POPU register file	dst \leftarrow src R \leftarrow IR + 1 The POPUI instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then incremented.								
Flags:	No flags ar	No flags are affected.								
Format:										
					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>	
	орс	src	dst]	3	8	93	R	IR	
Example:	Given: Re	gister 00H	= 01H and	d register 01H	= 70H:					

POPUI 02H,@00H \rightarrow Register 00H = 02H, register 01H = 70H, register 02H = 70H

If general register 00H contains the value 01H and register 01H the value 70H, the statement "POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.

PUSH — Push To Stack

PUSH	src					
Operation:		ressed by		ter value and loads th d stack pointer. The o		
Flags:	No flags are affected	d.				
Format:						
			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	opc src		2	8 (internal clock)	70	R
				8 (external clock)		
				8 (internal clock)		
				8 (external clock)	71	IR
Examples:	Given: Register 40	H = 4FH,	register 4FH =	0AAH, SPH = 00H,	and SPL = 0	00H:
	PUSH 40H	\rightarrow	Register 40H	= 4FH, stack register	rOFFH = 4F	H,
			SPH = 0FFH	, SPL = 0FFH		
	PUSH @40H	\rightarrow		= 4FH, register 4FH H, SPH = 0FFH, SPI		ck register

In the first example, if the stack pointer contains the value 0000H, and general register 40H the value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It then loads the contents of register 40H into location 0FFFFH and adds this new value to the top of the stack.

PUSHUD — Push User Stack (Decrementing)

PUSHUD	dst,src								
Operation:	$IR \leftarrow IR$ -	- 1							
	$dst \leftarrow src$								
		ack pointer	and loads	ss user-define the contents					
Flags:	No flags ar	e affected.							
Format:									
					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst	src		3	8	82	IR	R
Example:	Given: Re	gister 00H	= 03H, re	egister 01H =	05H, and	register 02F	H = 1AH:		

PUSHUD @00H,01H \rightarrow Register 00H = 02H, register 01H = 05H, register 02H = 05H

If the user stack pointer (register 00H, for example) contains the value 03H, the statement "PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The 01H register value, 05H, is then loaded into the register addressed by the decremented user stack pointer.

PUSHUI — Push User Stack (Incrementing)

PUSHUI	dst,src								
Operation:	$IR \leftarrow IR$	+ 1							
	dst ← src								
	stack point	er and ther		contents of t			ISHUI increm ster location a		
Flags:	No flags ar	e affected.							
Format:									
					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst	src		3	8	83	IR	R
Example:	Given: Re	egister 00H	= 03H, reg	gister 01H =	= 05H, and	register 04F	I = 2AH:		

PUSHUI @00H,01H \rightarrow Register 00H = 04H, register 01H = 05H, register 04H = 05H

If the user stack pointer (register 00H, for example) contains the value 03H, the statement "PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H register value, 05H, is then loaded into the location addressed by the incremented user stack pointer.

RCF — Reset Carry Flag

RCF	RCF			
Operation:	$C \leftarrow 0$ The carry flag is cleared to logic zero, regardles	ss of its pr	evious value	9.
Flags:	C: Cleared to "0".			
	No other flags are affected.			
Format:				
		Bytes	Cycles	Opcode (Hex)
	орс	1	4	CF
Example:	Given: C = "1" or "0":			

The instruction RCF clears the carry flag (C) to logic zero.

$\mathbf{RET} - \mathbf{Return}$

RET

Operation: $PC \leftarrow @SP$

 $SP \leftarrow SP + 2$

The RET instruction is normally used to return to the previously executing procedure at the end of a procedure entered by a CALL instruction. The contents of the location addressed by the stack pointer are popped into the program counter. The next statement that is executed is the one that is addressed by the new program counter value.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	8 (internal stack)	AF
		10 (internal stack)	

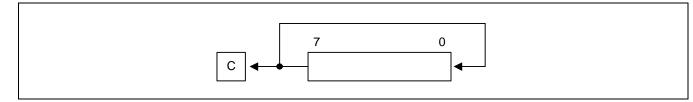
Example: Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:

RET \rightarrow PC = 101AH, SP = 00FEH

The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to memory location 00FEH.

RL — Rotate Left

RL


dst

Operation: $C \leftarrow dst(7)$

dst (0) \leftarrow dst (7)

dst (n + 1) \leftarrow dst (n), n = 0-6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is moved to the bit zero (LSB) position and also replaces the carry flag.

Flags:

- C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
- **Z:** Set if the result is "0"; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	90	R
			4	91	IR

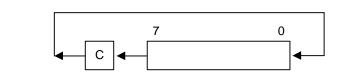
Examples: Given: Register 00H = 0AAH, register 01H = 02H and reg

RL 00H \rightarrow Register 00H = 55H, C = "1"

RL @01H \rightarrow Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if general register 00H contains the value 0AAH (10101010B), the statement "RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B) and setting the carry and overflow flags.

RLC — Rotate Left Through Carry


RLC dst

Operation: dst (0) \leftarrow C

 $C \leftarrow dst(7)$

dst (n + 1) \leftarrow dst (n), n = 0-6

The contents of the destination operand with the carry flag are rotated left one bit position. The initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

Flags:

- C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	dst	2	4	10	R
_				4	11	IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":

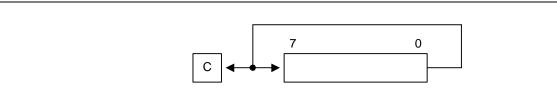
RLC 00H \rightarrow Register 00H = 54H, C = "1"

RLC @01H \rightarrow Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H (01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.

\mathbf{RR} — Rotate Right

RR


dst

Operation: $C \leftarrow dst(0)$

dst (7) \leftarrow dst (0)

dst (n) \leftarrow dst (n + 1), n = 0-6

The contents of the destination operand are rotated right one bit position. The initial value of bit zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

Flags:

- C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Byte	s Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	E0	R
			4	E1	IR

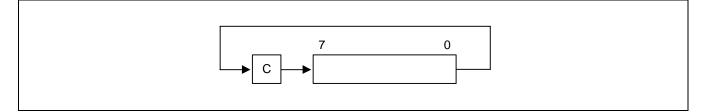
Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR 00H \rightarrow Register 00H = 98H, C = "1"

RR @01H \rightarrow Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if general register 00H contains the value 31H (00110001B), the statement "RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

RRC — Rotate Right Through Carry


RRC dst

Operation: dst (7) \leftarrow C

 $C \leftarrow dst(0)$

dst (n) \leftarrow dst (n + 1), n = 0-6

The contents of the destination operand and the carry flag are rotated right one bit position. The initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7 (MSB).

Flags:

- C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
- Z: Set if the result is "0" cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	C0	R
			4	C1	IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":

RRC	00H	\rightarrow	Register 00H =	2AH C = "1"
RRC	000	\rightarrow	Register UUH =	ZAH, C = 1

RRC	@01H	\rightarrow	Register 01H = 02H, register 02H = 0BH, C = "1"
	CONT	/	

In the first example, if general register 00H contains the value 55H (01010101B), the statement "RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1") replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both cleared to "0".

SB0 — Select Bank 0

SB0

 Operation:
 BANK ← 0

 The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero, selecting bank 0 register addressing in the set 1 area of the register file.

 Flags:
 No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	4F

Example: The statement

SB0

clears FLAGS.0 to "0", selecting bank 0 register addressing.

SB1 — Select Bank 1

SB1 **Operation:** BANK \leftarrow 1 The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one, selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not implemented in some S3F8-series microcontrollers.) Flags: No flags are affected. Format: **Bytes** Cycles Opcode (Hex) 1 5F opc 4 Example: The statement SB1 sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.

SBC — Subtract With Carry

SBC dst,src

Operation: dst \leftarrow dst - src - c

The source operand, along with the current value of the carry flag, is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's-complement of the source operand to the destination operand. In multiple precision arithmetic, this instruction permits the carry ("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of high-order operands.

Flags:

- **C:** Set if a borrow occurred (src > dst); cleared otherwise.
 - **Z:** Set if the result is "0"; cleared otherwise.
 - S: Set if the result is negative; cleared otherwise.
 - V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of the result is the same as the sign of the source; cleared otherwise.
 - **D:** Always set to "1".
 - **H:** Cleared if there is a carry from the most significant bit of the low-order four bits of the result; set otherwise, indicating a "borrow".

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	32	r	r
				6	33	r	lr
орс	src	dst	3	6	34	R	R
				6	35	R	IR
орс	dst	src	3	6	36	R	IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register 03H = 0AH:

SBC	R1,R2	\rightarrow	R1 = 0CH, R2 = 03H
SBC	R1,@R2	\rightarrow	R1 = 05H, R2 = 03H, register 03H = 0AH
SBC	01H,02H	\rightarrow	Register 01H = 1CH, register 02H = $03H$
SBC	01H,@02H	\rightarrow	Register 01H = 15H, register 02H = 03H, register 03H = 0AH
SBC	01H,#8AH	\rightarrow	Register 01H = 95H; C, S, and V = "1"

In the first example, if working register R1 contains the value 10H and register R2 the value 03H, the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the destination (10H) and then stores the result (0CH) in register R1.

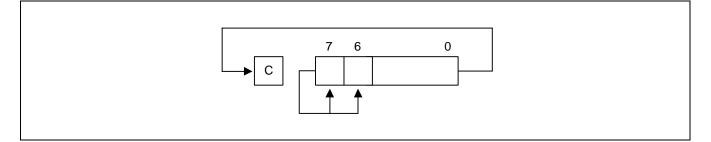
\mathbf{SCF} — Set Carry Flag

SCF

Operation:	$C \leftarrow 1$ The carry flag (C) is set to logic one, regardless	s of its pre	vious value.	
Flags:	C: Set to "1".			
	No other flags are affected.			
Format:				
		Bytes	Cycles	Opcode (Hex)
	орс	1	4	DF
Example:	The statement			
	SCF			

sets the carry flag to logic one.

SRA — Shift Right Arithmetic


SRA dst

Operation: dst (7) \leftarrow dst (7)

 $C \leftarrow dst(0)$

dst (n) \leftarrow dst (n + 1), n = 0-6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit position 6.

Flags:

C: Set if the bit shifted from the LSB position (bit zero) was "1".

- Z: Set if the result is "0"; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Always cleared to "0".
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	D0	R
			4	D1	IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":

SRA 00H \rightarrow Register 00H = 0CD, C = "0"

SRA @02H \rightarrow Register 02H = 03H, register 03H = 0DEH, C = "0"

In the first example, if general register 00H contains the value 9AH (10011010B), the statement "SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the value 0CDH (11001101B) in destination register 00H.

SAMSUNG ELECTRONICS

SRP/SRP0/SRP1 — Set Register Pointer

SRP	src					
SRP0	src					
SRP1	src					
Operation:	If src (1) =	1 and src (0)	= 0 then:	RP0 (3–7)	←	src (3–7)
	If src $(1) =$	0 and src (0)	= 1 then:	RP1 (3–7)	\leftarrow	src (3–7)
	If src (1) =	0 and src (0)	= 0 then:	RP0 (4–7)	←	src (4–7),
				RP0 (3)	←	0
				RP1 (4–7)	←	src (4–7),
				RP1 (3)	←	1
	-					

The source data bits one and zero (LSB) determine whether to write one or both of the register pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>src</u>
орс	src	2	4	31	IM

Examples: The statement

SRP #40H

sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location 0D7H to 48H.

The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to 68H.

STOP — Stop Operation

STOP

Operation:

The STOP instruction stops the both the CPU clock and system clock and causes the microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral registers, and I/O port control and data registers are retained. Stop mode can be released by an external reset operation or by external interrupts. For the reset operation, the RESET pin must be held to Low level until the required oscillation stabilization interval has elapsed.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode		
			(Hex)	<u>dst</u>	src
орс	1	4	7F	-	-

Example: The statement

STOP

halts all microcontroller operations.

SUB — Subtract

SUB dst,src

Operation: dst \leftarrow dst - src

The source operand is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's complement of the source operand to the destination operand.

Flags:

- **C:** Set if a "borrow" occurred; cleared otherwise.
- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of the result is of the same as the sign of the source operand; cleared otherwise.
- D: Always set to "1".
- **H:** Cleared if there is a carry from the most significant bit of the low-order four bits of the result; set otherwise indicating a "borrow".

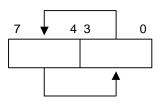
Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	22	r	r
				6	23	r	lr
орс	src	dst	3	6	24	R	R
				6	25	R	IR
орс	dst	src	3	6	26	R	IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

SUB	R1,R2	\rightarrow	R1 = 0FH, R2 = 03H
SUB	R1,@R2	\rightarrow	R1 = 08H, R2 = 03H
SUB	01H,02H	\rightarrow	Register 01H = 1EH, register 02H = 03H
SUB	01H,@02H	\rightarrow	Register 01H = 17H, register 02H = 03H
SUB	01H,#90H	\rightarrow	Register 01H = 91H; C, S, and V = "1"
SUB	01H,#65H	\rightarrow	Register 01H = 0BCH; C and S = "1", V = "0"

In the first example, if working register R1 contains the value 12H and if register R2 contains the value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination value (12H) and stores the result (0FH) in destination register R1.



SWAP — Swap Nibbles

SWAP dst

Operation: dst $(0 - 3) \leftrightarrow$ dst (4 - 7)

The contents of the lower four bits and upper four bits of the destination operand are swapped.

Flags:

C: Undefined.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	F0	R
			4	F1	IR

Examples: Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:

SWAP	00H	\rightarrow	Register 00H = 0E3H	
------	-----	---------------	---------------------	--

SWAP @0)2H –	→ R	egister 02H	= 03H	, register 03H	= 4AH
---------	-------	-----	-------------	-------	----------------	-------

In the first example, if general register 00H contains the value 3EH (00111110B), the statement "SWAP 00H" swaps the lower and upper four bits (nibbles) in the 00H register, leaving the value 0E3H (11100011B).

TCM — Test Complement Under Mask

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask). The TCM statement complements the destination operand, which is then ANDed with the source mask. The zero (Z) flag can then be checked to determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.

- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Always cleared to "0".
- D: Unaffected.
- H: Unaffected.

Format:

_				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst src		2	4	62	r	r
					6	63	r	lr
	орс	src	dst	3	6	64	R	R
					6	65	R	IR
	орс	dst	src	3	6	66	R	IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

ТСМ	R0,R1	\rightarrow	R0 = 0C7H, R1 = 02H, Z = "1"
ТСМ	R0,@R1	\rightarrow	R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"
ТСМ	00H,01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, Z = "1"
ТСМ	00H,@01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, register 02H = 23H, Z = "1"
тсм	00H,#34	\rightarrow	Register 00H = 2BH, Z = "0"

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the value 02H (0000010B), the statement "TCM R0,R1" tests bit one in the destination register for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one and can be tested to determine the result of the TCM operation.

TM — Test Under Mask

TM dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to determine the result. The destination and source operands are unaffected.

Flags:

- C: Unaffected.
- Z: Set if the result is "0"; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to "0".
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	72	r	r
				6	73	r	lr
орс	src	dst	3	6	74	R	R
				6	75	R	IR
орс	dst	src	3	6	76	R	IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

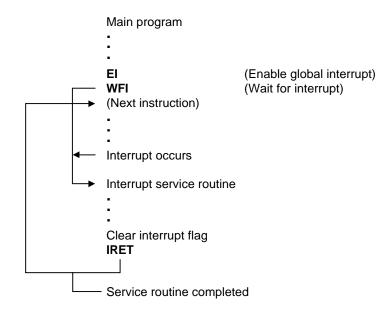
ТМ	R0,R1	\rightarrow	R0 = 0C7H, R1 = 02H, Z = "0"
ТМ	R0,@R1	\rightarrow	R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"
ТМ	00H,01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, Z = "0"
ТМ	00H,@01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, register 02H = 23H, Z = "0"
ТМ	00H,#54H	\rightarrow	Register 00H = 2BH, Z = "1"

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the value 02H (0000010B), the statement "TM R0,R1" tests bit one in the destination register for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero and can be tested to determine the result of the TM operation.

WFI — Wait For Interrupt

WFI

Operation:


The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take place during this wait state. The WFI status can be released by an internal interrupt, including a fast interrupt .

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4n	3F
		(n = 1, 2, 3	,)

Example: The following sample program structure shows the sequence of operations that follow a "WFI" statement:

XOR — Logical Exclusive OR

XOR dst,src

Operation: dst ← dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

Flags:

- C: Unaffected.
 - Z: Set if the result is "0"; cleared otherwise.
 - S: Set if the result bit 7 is set; cleared otherwise.
 - V: Always reset to "0".
 - D: Unaffected.
 - H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	B2	r	r
				6	B3	r	lr
орс	src	dst	3	6 6	B4 B5	R R	R IR
				0	5	K	
орс	dst	src	3	6	B6	R	IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

XOR	R0,R1	\rightarrow	R0 = 0C5H, R1 = 02H
XOR	R0,@R1	\rightarrow	R0 = 0E4H, R1 = 02H, register 02H = 23H
XOR	00H,01H	\rightarrow	Register 00H = 29H, register 01H = 02H
XOR	00H,@01H	\rightarrow	Register 00H = 08H, register 01H = 02H, register 02H = 23H
XOR	00H,#54H	\rightarrow	Register 00H = 7FH

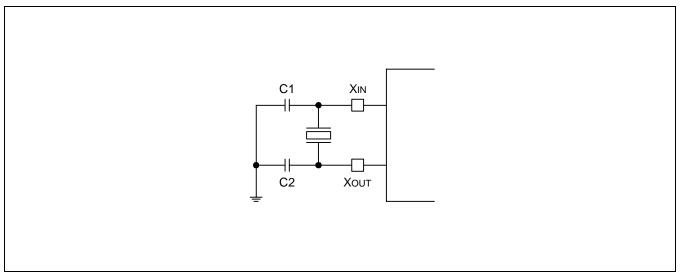
In the first example, if working register R0 contains the value 0C7H and if register R1 contains the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value and stores the result (0C5H) in the destination register R0.

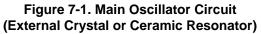
NOTES

CLOCK, POWER AND RESET CIRCUITS

OVERVIEW

The clock frequency for the S3F80P9 can be generated by an external crystal or supplied by an external clock source. The clock frequency for the S3F80P9 can range from 1MHz to 8 MHz. The maximum CPU clock frequency, as determined by CLKCON register, is 8 MHz. The X_{IN} and X_{OUT} pins connect the external oscillator or clock source to the on-chip clock circuit.


Typically, application systems have a resister and two separate capacitors across the power pins in order to suppress high frequency noise and provide bulk charge storage for the overall system. When the nRESET pin input goes to high, the reset operation is released. External reset circuit has to be attached in the application systems.


SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

- External crystal or ceramic resonator oscillation source (or an external clock)
- Oscillator stop and wake-up functions
- Programmable frequency divider for the CPU clock (fOSC divided by 1, 2, 8, or 16)
- Clock circuit control register, CLKCON

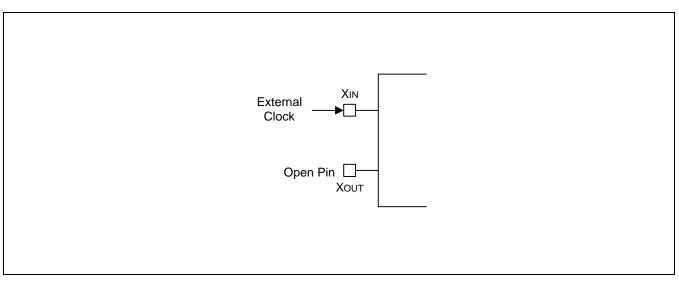


Figure 7-2. External Clock Circuit

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

- In Stop mode, the main oscillator is halted. When stop mode is released, the oscillator starts by a reset operation or by an external interrupt. To enter the stop mode, STOPCON (STOP Control Register) has to be loaded with value, #0A5H before STOP instruction execution. After recovering from the stop mode by a reset or an external interrupt, STOPCON register is automatically cleared.
- In Idle mode, the internal clock signal is gated away from the CPU, but continues to be supplied to the interrupt structure, timer 0, timer 1, counter A and so on. Idle mode is released by a reset or by an interrupt (external or internally generated).

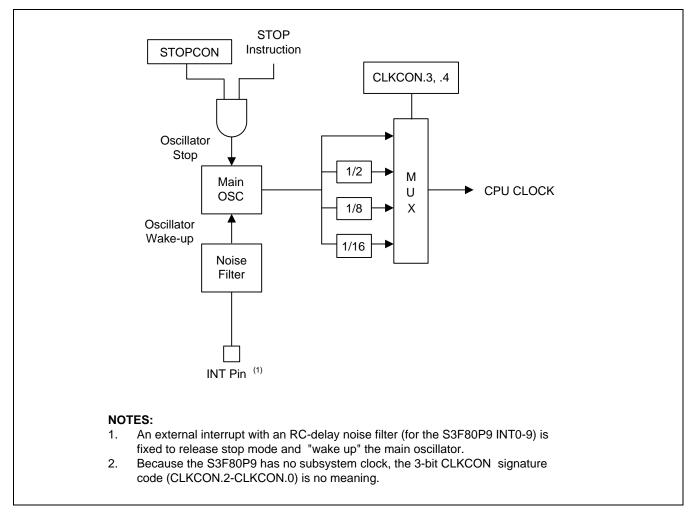


Figure 7-3. System Clock Circuit Diagram

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in address D4H, Set1, Bank0. It is read/write addressable and has the following functions:

- Oscillator frequency divide-by value

The CLKCON.7– .5 and CLKCON.2- .0 Bit are not used in S3F80P9. After a reset, the main oscillator is activated, and the $f_{OSC/16}$ (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU clock speed to f_{OSC} , $f_{OSC/2}$, $f_{OSC/2}$, $f_{OSC/16}$.

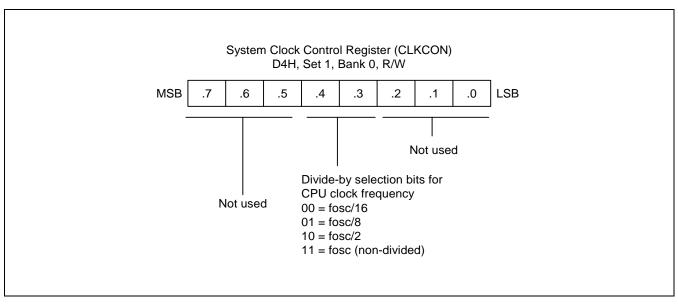


Figure 7-4. System Clock Control Register (CLKCON)

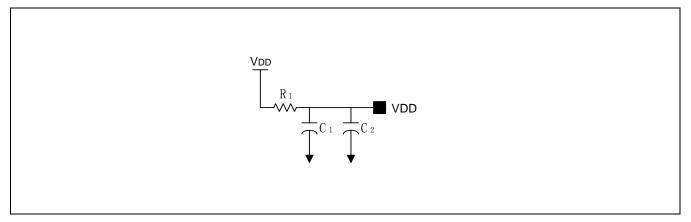


Figure 7-5. Power circuit (VDD)

Typically, application systems have a resister and two separate capacitors across the power pins. R1 and C1 located as near to the MCU power pins as practical to suppress high-frequency noise. C2 should be a bulk electrolytic capacitor to provide bulk charge storage for the overall system. We recommend that R1=10ohm, C1=0.1uF and C2=100uF.

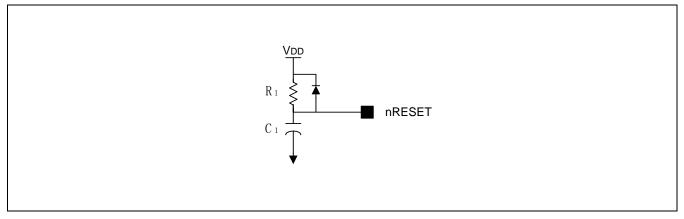


Figure 7-6. nRESET circuit

When the nRESET pin input goes to high, the reset operation is released. External reset circuit has to be attached in the application systems for initializing. We recommend that R1=1Mohm and C1=0.1uF.

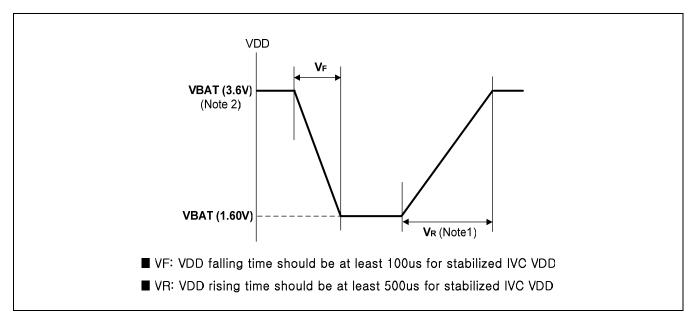


Figure 7-7. Guide line of chip operating voltage

V_{DD} Slope	Min	Тур	Max	Unit
VF	100	-	-	110
VR	500	-	-	us

NOTES:

- 1. In order to reduce overshoot, VR is longer than VF
- 2. Since VDD=3.6V is the worst case, IVC VDD will be stabilized when VF>=100us, VR>=500us.

OVERVIEW

Resetting the MCU is the function to start processing by generating reset signal using several reset schemes. During reset, most control and status are forced to initial values and the program counter is loaded from the reset vector. In case of S3F80P9, reset vector can be changed by smart option. (Refer to the page 2-3 or 13-4).

RESET SOURCES

The S3F80P9 has six-different system reset sources as following

- The External Reset Pin (nRESET): When the nRESET pin transiting from VIL (low input level of reset pin) to VIH (high input level of reset pin), the reset pulse is generated on the condition of "VDD ≥ VLVD" in any operation mode.
- Watch Dog Timer (WTD): When watchdog timer enables in normal operating, a reset is generated whenever the basic timer overflow occurs.
- Low Voltage Detect (LVD): When VDD is changed in condition for LVD operation in the normal operating mode, reset occurs.
- Internal Power-ON Reset (IPOR): When VDD is changed in condition for IPOR operation, a reset is generated.
- External Interrupt (INTO-INT9): When RESET Control Bit is set to '0' (smart option @ 03FH) and chip is in stop mode, if external interrupt is enabled, external interrupts by P0 and P2 generate the reset signal.
- STOP Error Detection & Recovery (SED&R): When RESET Control Bit is set to '0' (smart option bit [7] @ 03FH) and MCU is in stop or abnormal state, the falling edge input of P0 or P2.4-P2.7 generates the reset signal regardless of external interrupt enable or disable.

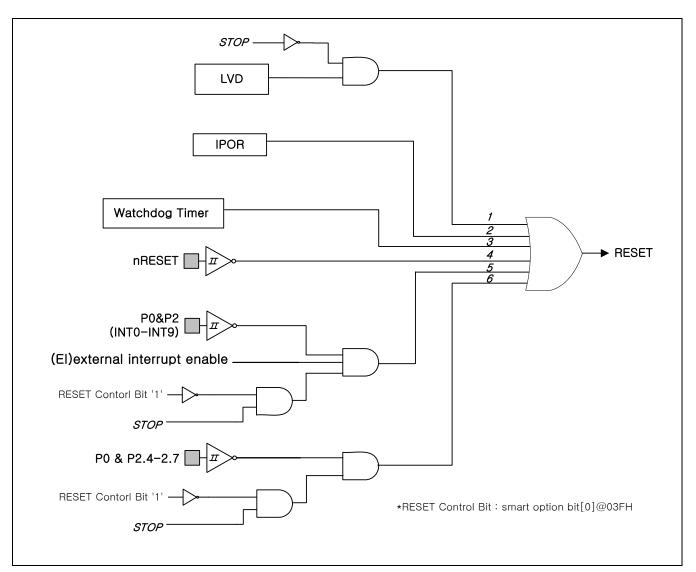


Figure 8-1. RESET Sources of The S3F80P9

- 1. The rising edge detection of LVD circuit while rising of VDD passes the level of V_{LVD}.
- 2. When POR circuit detects VDD below V_{POR} , reset is generated by internal power-on reset.
- 3. Basic Timer over-flow for watchdog timer. See the chapter 10. Basic Timer and Timer 0 for more understanding.
- 4. The reset pulse generation by transiting of reset pin (nRESET) from low level to high level on the condition that VDD is higher level state than V_{LVD} (Low level Detect Voltage).
- 5. When RESET Control Bit (smart option @ 03FH) is set to '0' and chip is in stop mode, external interrupt input by P0 and P2 generates the reset signal.
- 6. When RESET Control Bit (smart option @ 03FH) are set to '0' and chip is in stop mode or abnormal state, the falling edge input of P0 and P2.4-P2.7 generates the reset signal regardless of external interrupt enable/disable.

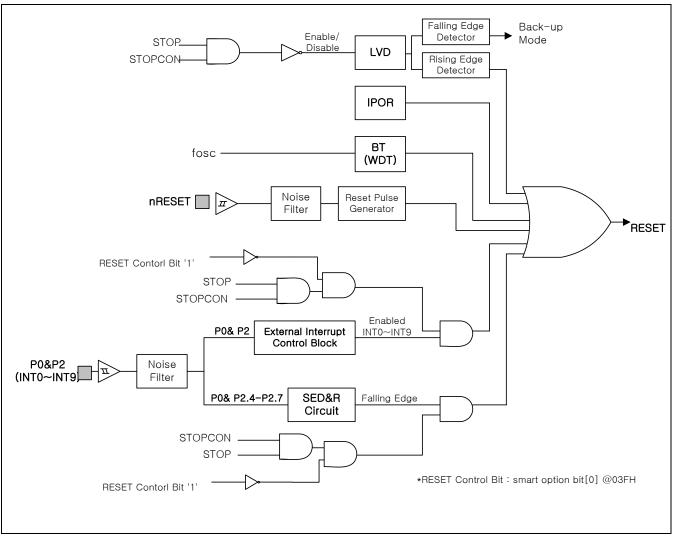


Figure 8-2. RESET Block Diagram of The S3F80P9

RESET MECHANISM

The interlocking work of reset pin and LVD circuit supplies two operating modes: back-up mode input, and system reset input. Back-up mode input automatically creates a chip stop state when the reset pin is set to low level or the voltage at V_{DD} is lower than V_{LVD} . When the reset pin is at a high state and the LVD circuit detects rising edge of V_{DD} on the point V_{LVD} , the reset pulse generator makes a reset pulse, and system reset occurs. When the operating mode is in STOP mode, the LVD circuit is disabled to reduce the current consumption under 5uA (at $V_{DD} = 3.6 \text{ V}$). Therefore, although the voltage at V_{DD} is lower than V_{LVD} , the chip doesn't go into back-up mode when the operating state is in stop mode and reset pin is High level (Vreset > V_{IH}).

EXTERNAL RESET PIN

When the nRESET pin transiting from V_{IL} (low input level of reset pin) to V_{IH} (high input level of reset pin), the reset pulse is generated on the condition of " $V_{DD} \ge V_{LVD}$ ".

WATCH DOG TIMER RESET

The watchdog timer that can recover to normal operation from abnormal function is built in S3F80P9. Watchdog timer generates a system reset signal, if Basic Timer Counter (BTCNT) isn't cleared within a specific time by program. For more understanding of the watchdog timer function, please see the chapter 11, Basic Timer and Timer0.

LVD RESET

The Low Voltage Detect Circuit (LVD) is built on the S3F80P9 product to generate a system reset. LVD is disabled in stop mode. When the voltage at V_{DD} is falling down and passing V_{LVD} , the chip goes into back-up mode at the moment " $V_{DD} = V_{LVD}$ ". As the voltage at V_{DD} is rising up, the reset pulse is occurred at the moment " $V_{DD} \ge V_{LVD}$ ".



Figure 8-3. RESET Block Diagram by LVD for The S3F80P9 in Stop Mode

NOTES

- 1. LVD is disabled in stop mode. LVD always operates in any other operation modes.
- 2. CPU can enter stop mode by setting STOPCON (Stop Control Register) into 0A5H before execution STOP instruction.
- 3. This signal is output relating to STOP mode. If STOPCON has 0A5H, and STOP instruction is executed, that output signal makes S3F80P9 enter STOP mode. So that is one of two statuses; one is STOP mode, the other is not STOP mode.

INTERNAL POWER-ON RESET

The power-on reset circuit is built on the S3F80P9 product. When power is initially applied to the MCU, or when V_{DD} drops below the V_{POR} , the POR circuit holds the MCU in reset until V_{DD} has risen above the V_{LVD} level.

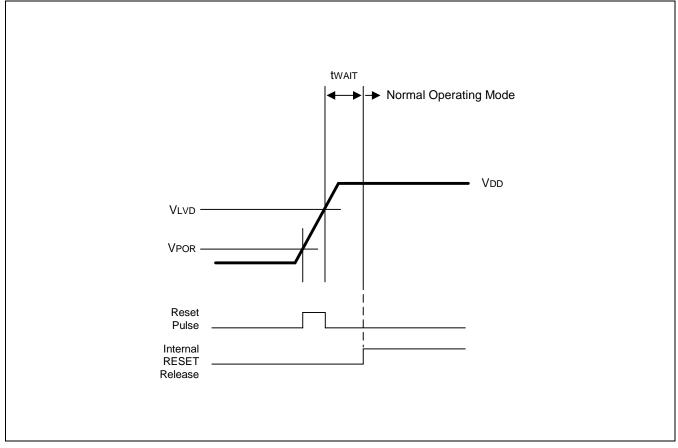


Figure 8-4. Timing Diagram for Internal Power-On Reset Circuit

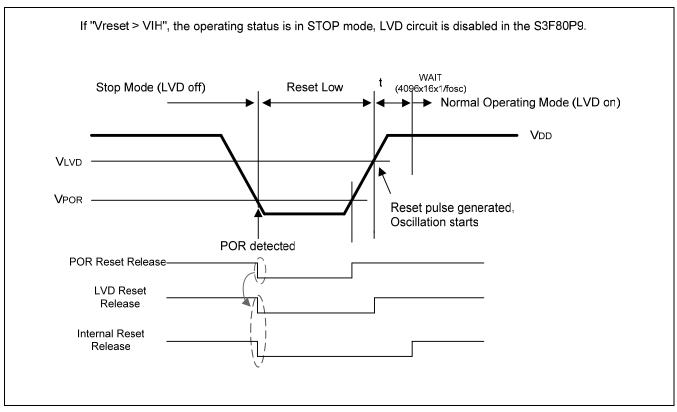


Figure 8-5. Reset Timing Diagram for The S3F80P9 in STOP mode by IPOR

EXTERNAL INTERRUPT RESET

When RESET Control Bit (smart option @ 03FH) is set to '0' and chip is in stop mode, if external interrupt is occurred by among the enabled external interrupt sources, from INT0 to INT9, reset signal is generated.

STOP ERROR DETECTION & RECOVERY

When RESET Control Bit (smart option @ 03FH) is set to '0' and chip is in stop or abnormal state, the falling edge input of P0 and P2.4-P2.7 generates the reset signal.

EXTERNAL RESET PIN

When the nRESET pin transiting from VIL (low input level of reset pin) to VIH (high input level of reset pin), the reset pulse is generated on the condition of "VDD \ge VLVD" in any operation mode.

Refer to following table and figure for more information.

	Cond	ition	Reset	System Reset	
Slope of V_{DD}	V _{DD}	The voltage level of reset pin (Vreset)	Source		
Rising up from	$V_{DD} \ge V_{LVD}$	$Vreset \geq V_{IH}$	-	No system reset	
$V_{POR} < V_{DD} < V_{LVD}$	$V_{DD} > V_{LVD}$	Vreset < V _{IH}	-	No system reset	
	$V_{DD} < V_{LVD}$	Transition from "Vreset < V _{IL} " to "V _{IH} < Vreset"	_	No system reset	
Rising up from	$V_{DD} \ge V_{LVD}$	$Vreset \ge V_{IH}$	Internal POR	System reset occurs	
$V_{DD} < V_{POR}$ $V_{DD} > V_{LVD}$ Vr		Vreset < V _{IH}	-	No system reset	
	$V_{DD} < V_{LVD}$	Transition from "Vreset < V _{IL} " to "V _{IH} < Vreset"	-	No system reset	
$\begin{tabular}{ccc} \label{eq:standstill} Standstill & V_{DD} \geq V_{LVD} & Transition from \\ (V_{DD} \geq V_{LVD}) & ``Vreset < V_{IL}" to ``V_{IH} < Vreset" \\ \end{tabular}$		Reset pin	System reset occurs		

 Table 8-1. Reset Condition in STOP Mode

POWER-DOWN MODES

The power down mode of S3F80P9 are described following that:

- Idle mode
- Back- up mode
- Stop mode

IDLE MODE

Idle mode is invoked by the instruction IDLE (op-code 6FH). In Idle mode, CPU operations are halted while some peripherals remain active. During Idle mode, the internal clock signal is gated away from the CPU and from all but the following peripherals, which remain active:

- Interrupt logic
- Basic Timer
- Timer 0
- Timer 1
- Timer 2
- Counter A

I/O port pins retain the state (input or output) they had at the time Idle mode was entered.

IDLE Mode Release

You can release Idle mode in one of two ways:

- 1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents of all data registers are retained. The reset automatically selects the slowest clock (1/16) because of the hardware reset value for the CLKCON register. If all interrupts are masked in the IMR register, a reset is the only way you can release Idle mode.
- 2. Activate any enabled interrupt; internal or external. When you use an interrupt to release Idle mode, the 2-bit CLKCON.4/CLKCON.3 value remains unchanged, and the currently selected clock value is used. The interrupt is then serviced. When the return-from-interrupt condition (IRET) occurs, the instruction immediately following the one which initiated Idle mode is executed.

NOTE

Only external interrupts built in to the pin circuit can be used to release stop mode. To release Idle mode, you can use either an external interrupt or an internally-generated interrupt.

BACK-UP MODE

For reducing current consumption, S3F80P9 goes into Back-up mode. If external reset pin is low state or a falling level of V_{DD} is detected by LVD circuit on the point of V_{LVD} , chip goes into the back-up mode. CPU and peripheral operation are stopped, but LVD is enabled. Because of oscillation stop, the supply current is reduced. In back-up mode, chip cannot be released from stop state by any interrupt. The only way to release back-up mode is the system-reset operation by interactive work of reset pin and LVD circuit. The system reset of watchdog timer is not occurred in back up mode.

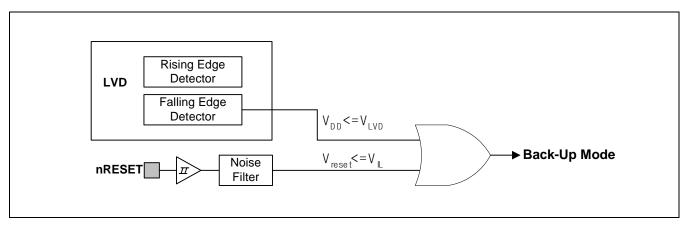


Figure 8-6. Block Diagram for Back-up Mode

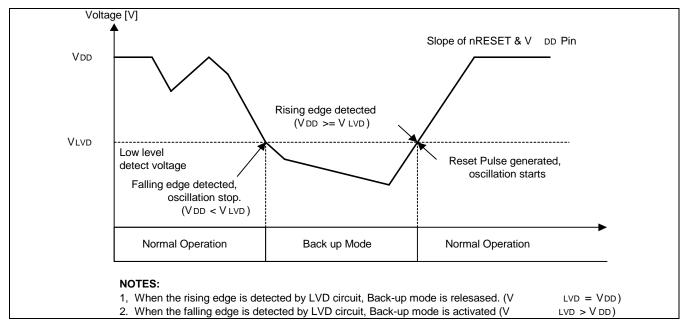


Figure 8-7. Timing Diagram for Back-up Mode Input and Released by LVD

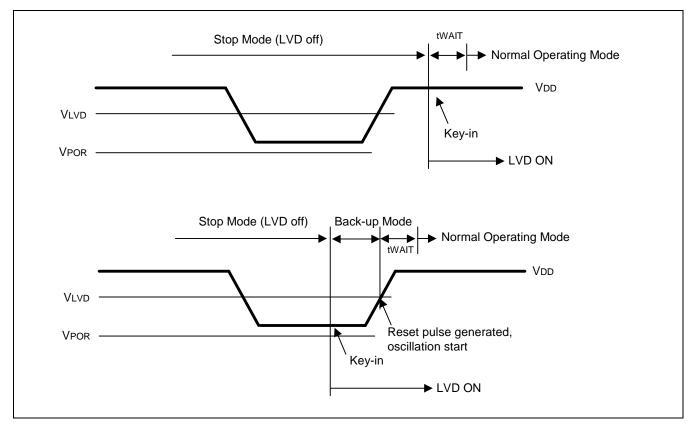


Figure 8-8. Timing Diagram for Back-up Mode Input in Stop mode

STOP MODE

STOP mode is invoked by executing the instruction 'STOP', after setting the stop control register (STOPCON). In STOP mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the current consumption can be reduced. All system functions stop when the clock "freezes," but data stored in the internal register file is retained. STOP mode can be released in one of two ways: by a system reset or by an external interrupt. After releasing from STOP mode, the value of stop control register (STOPCON) is cleared automatically.

PROGRAMMING TIP – To Enter STOP Mode

This example shows how to enter the stop mode.

	ORG •	0000H	Res	et address	
ENTER_ST	• JP LD STOP: NOP NOP NOP RET	T, START STOPCON, #0A5H			
	ORG JP	0100H-3 T, START			
START:	ORG LD •	0100H BTCON, #		; Reset address ; Clear basic timer counter.	
MAIN:	NOP				
	CALL •	ENTER_S	TOP	; Enter the STOP mode	
	• LD JP •	BTCON,# T,MAIN	02H	; Clear basic timer counter.	

SOURCES TO RELEASE STOP MODE

Stop mode is released when following sources go active:

- System Reset by external reset pin (nRESET)
- System Reset by Internal Power-On Reset (IPOR)
- External Interrupt (INT0-INT9)
- SED & R circuit

Using nRESET Pin to Release STOP Mode

Stop mode is released when the system reset signal goes active by nRESET Pin: all system and peripheral control registers are reset to their default hardware values and the contents of all data registers are retained. When the oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by fetching the program instruction stored in reset address.

Using IPOR to Release STOP Mode

Stop mode is released when the system reset signal goes active by internal power-on reset (IPOR). All system and peripheral control registers are reset to their default hardware values and contents of all data registers are unknown states. When the oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by fetching the program instruction stored in reset address.

Using an External Interrupt to Release STOP Mode

External interrupts can be used to release stop mode. When RESET Control Bit is set to '0' (smart option @ 03FH) and external interrupt is enabled, S3F80P9 is released from stop mode and generates reset signal. On the other hand, when RESET Control Bit are set to '1' (smart option @ 03FH), S3F80P9 is only released from stop mode and does not generate reset signal. To wake-up from stop mode by external interrupt from INT0 to INT9, external interrupt should be enabled by setting corresponding control registers or instructions.

Please note the following conditions for Stop mode release:

- If you release Stop mode using an external interrupt, the current values in system and peripheral control
 registers are unchanged.
- If you use an external interrupt for Stop mode release, you can also program the duration of the oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before entering Stop mode.
- If you use an interrupt to release Stop mode, the bit-pair setting for CLKCON.4/CLKCON.3 remains unchanged and the currently selected clock value is used.

SED&R (Stop Error Detect and Recovery)

The Stop Error Detect & Recovery circuit is used to release stop mode and prevent abnormal - stop mode that can be occurred by battery bouncing. It executes two functions in related to the internal logic of P0 and P2.4–P2.7. One is releasing from stop status by switching the level of input port (P0 or P2.4–P2.7) and the other is keeping the chip from entering stop mode when the chip is in abnormal status.

• Releasing from stop mode

When RESET Control Bit is set to '0' (smart option @ 03FH), if falling edge input signal enters in through Port0 or P2.4–P2.7, S3F80P9 is released from stop mode and generates reset signal. On the other hand, when RESET Control Bit is set to '1' (smart option @ 03FH), S3F80P9 is only released stop mode, reset doesn't occur. When the falling edge of a pin on Port0 and P2.4–P2.7 is entered, the chip is released from stop mode even though external interrupt is disabled.

• Keeping the chip from entering abnormal - stop mode

This circuit detects the abnormal status by checking the port (P0 and P2.4–P2.7) status. If the chip is in abnormal status it keeps from entering stop mode.

NOTE

In case of P2.0–2.3, SED&R circuit isn't implemented. So although 4pins, P2.0–2.3, have the falling edge input signal in stop mode, if external interrupt is disabled, the stop state of S3F80P9 is unchanged. Do not use stop mode if you are using an external clock source because Xin input must be cleared internally to VSS to reduce current leakage.

SYSTEM RESET OPERATION

System reset starts the oscillation circuit, synchronize chip operation with CPU clock, and initialize the internal CPU and peripheral modules. This procedure brings the S3F80P9 into a known operating status. To allow time for internal CPU clock oscillation to stabilize, the reset pulse generator must be held to active level for a minimum time interval after the power supply comes within tolerance. The minimum required reset operation for an oscillation stabilization time is 16 oscillation clocks. All system and peripheral control registers are then reset to their default hardware values (See Tables 8-2).

In summary, the following sequence of events occurs during a reset operation:

- All interrupts are disabled.
- The watch-dog function (Basic Timer) is enabled.
- Port 0,2 and 3 are set to input mode and all pull-up resistors are disabled for the I/O port pin circuits.
- Peripheral control and data register settings are disabled and reset to their default hardware values. (See Table 8-2.)
- The program counter (PC) is loaded with the program reset address in the ROM, 0100H.
- When the programmed oscillation stabilization time interval has elapsed, the instruction stored in reset address is fetched and executed.

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can disable it by writing '1010B' to the upper nibble of BTCON. But we recommend you should use it to prevent the chip malfunction.

HARDWARE RESET VALUES

Tables 8-2 list the reset values for CPU and system registers, peripheral control registers, and peripheral data registers following a reset operation. The following notation is used to represent reset values:

- A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.
- An 'x' means that the bit value is undefined after a reset.
- A dash ('-') means that the bit is either not used or not mapped (but a 0 is read from the bit position)

Register Name	Mnemonic	onic Address			Bit Values After Reset								
		Dec Hex		7	6	5	4	3	2	1	0		
Timer 0 Counter Register	TOCNT	208	D0H	0	0	0	0	0	0	0	0		
Timer 0 Data Register	TODATA	209	D1H	1	1	1	1	1	1	1	1		
Timer 0 Control Register	TOCON	210	D2H	0	0	0	0	0	0	0	0		
Basic Timer Control Register	BTCON	211	D3H	0	0	0	0	0	0	0	0		
Clock Control Register	CLKCON	212	D4H	0	0	0	0	0	0	0	0		
System Flags Register	FLAGS	213	D5H	х	х	х	х	х	х	0	0		
Register Pointer 0	RP0	214	D6H	1	1	0	0	0	-	-	_		
Register Pointer 1	RP1	215	D7H	1	1	0	0	1	_	-	-		
Location D8H (SPH) is not mapped.													
Stack Pointer (Low Byte)	SPL	217	D9H	х	х	х	х	х	х	х	х		
Instruction Pointer (High Byte)	IPH	218	DAH	х	х	х	х	х	х	х	х		
Instruction Pointer (Low Byte)	IPL	219	DBH	х	х	х	х	х	х	х	х		
Interrupt Request Register (Read-Only)	IRQ	220	DCH	0	0	0	0	0	0	0	0		
Interrupt Mask Register	IMR	221	DDH	х	х	х	х	х	х	х	х		
System Mode Register	SYM	222	DEH	0	-	_	х	х	х	0	0		
Register Page Pointer	PP	223	DFH	0	0	0	0	0	0	0	0		
Port 0 Data Register	P0	224	E0H	0	0	0	0	0	0	0	0		
Port 1 Data Register	P1	225	E1H	0	0	0	0	0	0	0	0		
Port 2 Data Register	P2	226	E2H	0	0	0	0	0	0	0	0		
Port 3 Data Register	P3	227	E3H	0	-	0	0	1	1	0	0		
Reserved													
Port 2 Interrupt Enable Register	P2INT	229	E5H	0	0	0	0	0	0	0	0		
Port 2 Interrupt Pending Register	P2PND	230	E6H	0	0	0	0	0	0	0	0		
Port 0 Pull-up Enable Register	rt 0 Pull-up Enable Register P0PUR		E7H	0	0	0	0	0	0	0	0		
Port 0 Control Register (High Byte)	P0CONH	232	E8H	0	0	0	0	0	0	0	0		
Port 0 Control Register (Low Byte)	POCONL	233	E9H	0	0	0	0	0	0	0	0		

Table 8-2. Set 1, Bank 0 Register Values After Reset

Table 0-2. Set 1, Bank 0 Register Values Arter Reset (Continued)													
Register Name	Mnemonic	nonic Address			Bit Values After Reset								
		Dec	Hex	7	6	5	4	3	2	1	0		
Port 1 Control Register (High Byte)	P1CONH	234	EAH	1	1	1	1	1	1	1	1		
Port 1 Control Register (Low Byte)	P1CONL	235	EBH	0	0	0	0	0	0	0	0		
Port 2 Control Register (High Byte)	P2CONH	236	ECH	0	0	0	0	0	0	0	0		
Port 2 Control Register (Low Byte)	P2CONL	237	EDH	0	0	0	0	0	0	0	0		
Port 2 Pull-up Enable Register	P2PUR	238	EEH	0	0	0	0	0	0	0	0		
Port 3 Control Register	P3CON	239	EFH	0	0	0	0	0	0	0	0		
Reserved													
Port 0 Interrupt Enable Register	POINT	241	F1H	0	0	0	0	0	0	0	0		
Port 0 Interrupt Pending Register	P0PND	242	F2H	0	0	0	0	0	0	0	0		
Counter A Control Register	CACON	243	F3H	0	0	0	0	0	0	0	0		
Counter A Data Register (High Byte)	CADATAH	244	F4H	1	1	1	1	1	1	1	1		
Counter A Data Register (Low Byte)	CADATAL	245	F5H	1	1	1	1	1	1	1	1		
Timer 1 Counter Register (High Byte)	T1CNTH	246	F6H	0	0	0	0	0	0	0	0		
Timer 1 Counter Register (Low Byte)	T1CNTL	247	F7H	0	0	0	0	0	0	0	0		
Timer 1 Data Register (High Byte)	T1DATAH	248	F8H	1	1	1	1	1	1	1	1		
Timer 1 Data Register (Low Byte)	T1DATAL	249	F9H	1	1	1	1	1	1	1	1		
Timer 1 Control Register	T1CON	250	FAH	0	0	0	0	0	0	0	0		
STOP Control Register	STOPCON	251	FBH	0	0	0	0	0	0	0	0		
Locations FCH is not mapped. (For factory test)													
Basic Timer Counter	BTCNT	253	FDH	0	0	0	0	0	0	0	0		
External Memory Timing Register	EMT	254	FEH	0	1	1	1	1	1	0	_		
Interrupt Priority Register	IPR	255	FFH	х	х	х	х	х	х	х	х		

Table 8-2. Set 1, Bank 0 Register Values After Reset (Continued)

NOTES:

1. Although the SYM register is not used, SYM.5 should always be "0". If you accidentally write a 1 to this bit during normal operation, a system malfunction may occur.

2. Except for T0CNTH, T0CNTL, IRQ, T1CNTH, T1CNTL, and BTCNT, which are read-only, all registers in set 1 are read/write addressable.

3. You cannot use a read-only register as a destination field for the instructions OR, AND, LD, and LDB.

Register Name Mnemo		Ado	dress		E	Bit Va	lues	After	Rese	et	
		Dec	Hex	7	6	5	4	3	2	1	0
LVD Control Register	LVDCON	224	E0H	-	_	_	_	_	_	-	0
	•				•	•	•	•			
Reserved											
Reserved											
	Res	served									
Reserved											
Reserved											
Reserved											
	Reserved										
Flash Memory Sector Address Register (High Byte)	FMSECH	236	ECH	0	0	0	0	0	0	0	0
Flash Memory Sector Address Register (Low byte)	FMSECL	237	EDH	0	0	0	0	0	0	0	0
Flash Memory User Programming Enable Register	FMUSR	238	EEH	0	0	0	0	0	0	0	0
Flash Memory Control Register	FMCON	239	EFH	0	0	0	0	-	-	-	0
Reset Indicating Register RESETID 240 F0H				Refer to the section 4.control registers							
LVD Flag Level Selection Register	LVDSEL	243	F1H	0	0	-	-	-	-	-	-
PORT1 Output Mode Pull-up Enable Register	P1OUTPU	244	F2H	0	0	0	0	0	0	0	0
PORT2 Output Mode Selection Register	P2OUTMD	245	F3H	0	0	0	0	0	0	0	0
PORT3 Output Mode Pull-up Enable Register	P3OUTPU	246	F4H	_	_	0	0	_	_	0	0

Table 8-3. Set 1, Bank 1 Register Values After Reset

Mode	Reset	Source	Smart option 1st bit @3FH								
	1				0						
	Reset Pin		0	Reset	0	Reset					
	Watch Dog Timer Enable			Reset	0	Reset					
Normal	IPOR			Reset	0	Reset					
Operating	LVD			Reset	0	Reset					
	External Interrupt (EI) P0 and P2		Х	External ISR	Х	External ISR					
	External Interru	ot (DI) P0 and P2	Х	Continue	Х	Continue					
	Reset Pin		0	Reset	0	Reset					
	Watch Dog Time	er Enable	Х	STOP	Х	STOP					
Stop	IPOR		0	STOP Release and Reset	0	STOP Release and Reset					
Mode	LVD		Х	STOP	Х	STOP					
External Interrupt (EI-Enable and P2		ot (EI-Enable) P0	Х	STOP Release and External ISR	0	STOP Release and Reset					
	SED&R	P0 & P2.4-2.7	Х	STOP Release and Continue	0	STOP Release and Reset					
		P2.0-2.3	Х	STOP	Х	STOP					

Table 8-4. Reset Generation According to the Condition of Smart Option

NOTES

- 1. 'X' means that a corresponding reset source don't generate reset signal. 'O' means that a corresponding reset source generates reset signal.
- 2. 'Reset' means that reset signal is generated and chip reset occurs,
- 3. 'Continue' means that it executes the next instruction continuously without ISR execution.
- 4. 'External ISR' means that chip executes the interrupt service routine of generated external interrupt source.
- 5. 'STOP ' means that the chip is in stop state.
- 6. 'STOP Release and External ISR' means that chip executes the external interrupt service routine of generated external interrupt source after STOP released.
- 7. 'STOP Release and Continue' means that executes the next instruction continuously after STOP released.

RECOMMENDATION FOR UNUSUED PINS

To reduce overall power consumption, please configure unused pins according to the guideline description Table 8-5.

Pin Name	Recommend	Example
Port 0	Set Input modeEnable Pull-up ResisterNo Connection for Pins	 • P0CONH ← # 00H or 0FFH • P0CONL ← # 00H or 0FFH • P0PUR ← # 0FFH
Port 1	 Set Open-Drain Output mode Set P1 Data Register to #00H. Disable Pull-up Resister No Connection for Pins 	• P1CONH ← # 55H • P1CONL ← # 55H • P1 ← # 00H
Port 2	 Set Push-pull Output mode Set P2 Data Register to #00H. Disable Pull-up resister No Connection for Pins 	 P2CONH ← # 0AAH P2CONL ← # 0AAH P2 ← # 00H P2PUR ← # 00H
P3.0–3.1	 Set Push-pull Output mode Set P3 Data Register to #00H. No Connection for Pins 	• P3CON ← # 11010010B • P3 ← # 00H
TEST	Connect to V _{SS} .	-

 Table 8-5. Guideline for Unused Pins to Reduced Power Consumption

SUMMARY TABLE OF BACK-UP MODE, STOP MODE, AND RESET STATUS

For more understanding, please see the below description Table 8-6.

Item/Mode	Back-up	Reset Status	Stop
Approach Condition	• External nRESET pin is low level state or V _{DD} is lower than V _{LVD}	 External nRESET pin is on rising edge. The rising edge at VDD is detected by LVD circuit. (When VDD ≥ V_{LVD}) Watch-dog timer overflow signal is activated. 	• STOPCON ← # A5H STOP (LD STOPCON,#0A5H) (STOP)
Port status	 All I/O port is floating status All the ports become input mode but is blocked. Disable all pull-up resister 	 All I/O port is floating status Disable all pull-up resisters 	 All the ports keep the previous status. Output port data is not changed.
Control Register	All control register and system register are initialized as list of Table 8-2.	• All control register and system register are initialized as list of Table 8-2.	_
Releasing Condition	 External nRESET pin is high (rising edge). The rising edge of LVD circuit is generated. 	 After passing an oscillation warm-up time 	 External interrupt, or reset SED & R Circuit.
Others	 There is no current consumption in chip. 	 There can be input leakage current in chip. 	 It depends on control program

Table 8	-6. Sum	marv of I	Each Mode
1 4010 0	or oann		

9 I/O PORTS

OVERVIEW

The S3F80P9 microcontroller has two kinds of package and different I/O number relating to the package type:

32-SOP package has four bit-programmable I/O ports, P0–P3. Three ports, P0–P2, are 8-bit ports and P3 is a 2-bit port. This gives a total of 26 I/O pins.

28-SOP package has four bit-programmable I/O ports, P0–P3. Two ports, P0 and P2, are 8-bit ports and P1 is a 4-bit port. P3 is a 2-bit port. This gives a total of 22 I/O pins.

Each port is bit-programmable and can be flexibly configured to meet application design requirements. The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required.

For IR applications, port0, port1, and port2 are usually configured to the keyboard matrix and port 3 is used to IR drive pins.

Table 9-1, 9-2 and 9-3 give you a general overview of S3F80P9 I/O port functions.

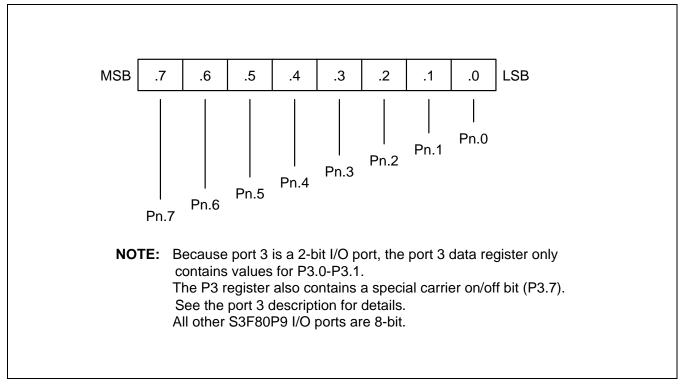
Port	Configuration Options
Port 0	8-bit general-purpose I/O port; Input or push-pull output; external interrupt input on falling edges, rising edges, or both edges; all P0 pin circuits have noise filters and interrupt enable/disable register (P0INT) and pending control register (P0PND); Pull-up resistors can be assigned to individual P0 pins using P0PUR register settings. This port is dedicated for key input in IR controller application.
Port 1	8-bit general-purpose I/O port; Input without or with pull-up, open-drain output, or push-pull output. This port is dedicated for key output in IR controller application.
Port 2	8-bit general-purpose I/O port; Input, open-drain output, or push-pull output. The P2 pins, P2.0–P2.7, can be used as external interrupt inputs and have noise filters. The P2INT register is used to enable/disable interrupts and P2PND bits can be polled by software for interrupt pending control. Pull-up resistors can be assigned to individual P2 pins using P2PUR register settings.
P3.0-P3.1	2-bit I/O port; P3.0 and P3.1 are configured input functions (Input mode, with or without pull-up, for T0CK, T0CAP or T1CAP) or output functions (push-pull or open-drain output mode, or for REM and T0PWM). P3.1 is dedicated for IR drive pin and P3.0 can be used for indicator LED drive.

Table 9-1. S3F80P9 Port Configuration Overview (32-SOP)

Port	Configuration Options
Port 0	8-bit general-purpose I/O port; Input or push-pull output; external interrupt input on falling edges, rising edges, or both edges; all P0 pin circuits have noise filters and interrupt enable/disable register (P0INT) and pending control register (P0PND); Pull-up resistors can be assigned to individual P0 pins using P0PUR register settings. This port is dedicated for key input in IR controller application.
P1.0-P1.3	General-purpose I/O port; Input without or with pull-up, open-drain output, or push-pull output. This port is dedicated for key output in IR controller application. After reset, init status is CMOS input.
Port 2	8-bit general-purpose I/O port; Input, push-pull output, or open-drain output. The P2 pins, P2.0–P2.7, can be used as external interrupt inputs and have noise filters. The P2INT register is used to enable/disable interrupts and P2PND bits can be polled by software for interrupt pending control. Pull-up resistors can be assigned to individual P2 pins using P2PUR register settings.
P3.0–P3.1	2-bit I/O port; P3.0 and P3.1 are configured input functions (Input mode, with or without pull-up, for T0CK, T0CAP or T1CAP) or output functions (push-pull or open-drain output mode, or for REM and T0PWM). P3.1 is dedicated for IR drive pin and P3.0 can be used for indicator LED drive.

PORT DATA REGISTERS

Table 9-4 gives you an overview of the register locations of all four S3F80P9 I/O port data registers. Data registers for ports 0,1, and 2 have the general format shown in Figure 9-1.


NOTE

The data register for port 3, P3, contains 2-bits for P3.0–P3.1, and an additional status bit (P3.7) for carrier signal on/off.

Register Name	Mnemonic	Decimal	Hex	Location	R/W
Port 0 data register	P0	224	E0H	Set 1, Bank 0	R/W
Port 1 data register	P1	225	E1H	Set 1, Bank 0	R/W
Port 2 data register	P2	226	E2H	Set 1, Bank 0	R/W
Port 3 data register	P3	227	E3H	Set 1, Bank 0	R/W

Table 9-3. Port Data Register Summary

Because port 3 is a 2-bit I/O port, the port 3 data register only contains values for P3.0 – P3.1. The P3 register also contains a special carrier on/off bit (P3.7). See the port3 description for details. All other I/O ports are 8-bit.

Figure 9-1. S3F80P9 I/O Port Data Register Format

PULL-UP RESISTOR ENABLE REGISTERS

You can assign pull-up resistors to the pin circuits of individual pins in port0 and port2. To do this, you make the appropriate settings to the corresponding pull-up resistor enable registers; P0PUR and P2PUR. These registers are located in set 1, bank 0 at locations E7H and EEH, respectively, and are read/write accessible using Register addressing mode.

You can assign a pull-up resistor to the port 1 pins, using basic port configuration setting in the P1CONH and P1CONL.

You can assign a pull-up resistor to the port 3 pins, P3.0 and P3.1 in the input mode using basic port configuration setting in the P3CON registers.

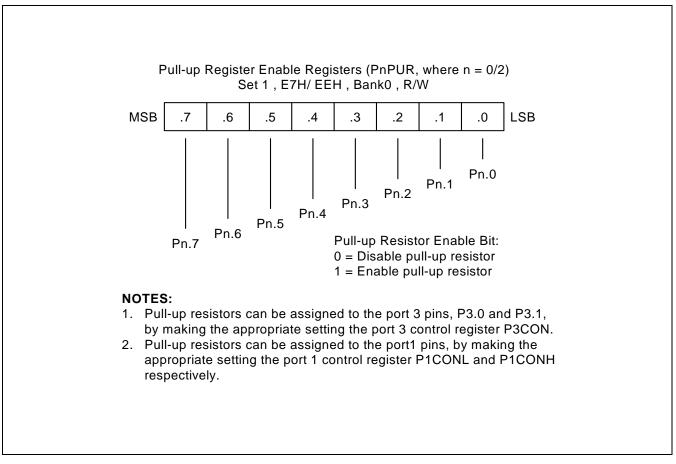


Figure 9-2. Pull-up Resistor Enable Registers (Port 0 and Port 2 only)

10 BASIC TIMER and TIMER 0

OVERVIEW

The S3F80P9 has two default timers: the 8-bit basic timer and the 8-bit general-purpose timer/counter. The 8-bit timer/counter is called timer 0.

BASIC TIMER (BT)

You can use the basic timer (BT) in two different ways:

- As a watch-dog timer to provide an automatic reset mechanism in the event of a system malfunction
- To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:

- Clock frequency divider (fOSC divided by 16384, 4096, 1024 or 128) with multiplexer
- 8-bit basic timer counter, BTCNT (FDH, Set 1, Bank0, Read-only)
- Basic timer control register, BTCON (D3H, Set 1, Bank0, R/W)

TIMER 0

Timer 0 has three operating modes, one of which you select using the appropriate T0CON setting:

- Interval timer mode
- Capture input mode with a rising or falling edge trigger at the P3.0 pin
- PWM mode

Timer 0 has the following functional components:

- Clock frequency divider (fOSC divided by 4096, 256 or 8) with multiplexer
- External clock input pin (T0CK)
- 8-bit timer 0 counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)
- I/O pins for capture input (T0CAP) or match output
- Timer 0 overflow interrupt (IRQ0, vector FAH) and match/capture interrupt (IRQ0, vector FCH) generation
- Timer 0 control register, T0CON (D2H, Set 1, Bank0, R/W)

NOTE

The CPU clock should be faster than basic timer clock and timer 0 clock.

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer counter and frequency dividers, and to enable or disable the watch-dog timer function. It is located in Set 1 and Bank0, address D3H, and is read/write addressable using register addressing mode.

A reset clears BTCON to '00H'. This enables the watch-dog function and selects a basic timer clock frequency of fOSC/4096. To disable the watch-dog function, you must write the signature code '1010B' to the basic timer register control bits BTCON.7–BTCON.4. For improved reliability, using the watch-dog timer function is recommended in remote controllers and hand-held product applications.

Figure 10-1. Basic Timer Control Register (BTCON)

BASIC TIMER FUNCTION DESCRIPTION

Watch-dog Timer Function

You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to any value other than '1010B'. (The '1010B' value disables the watch-dog function.) A reset clears BTCON to '00H', automatically enabling the watch-dog timer function. A reset also selects the CPU clock (as determined by the current CLKCON register setting), divided by 4096, as the BT clock.

A reset is generated whenever the basic timer overflow occurs. During normal operation, the application program must prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must be cleared (by writing a "1" to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during normal operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when Stop mode has been released by an external interrupt.

In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts increasing at the rate of fOSC/4096 (for reset), or at the rate of the preset clock source (for an external interrupt). When BTCNT.3 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate the clock signal off to the CPU so that it can resume normal operation.

In summary, the following events occur when Stop mode is released:

- 1. During Stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and oscillation starts.
- 2. If a power-on reset occurred, the basic timer counter will increase at the rate of f_{OSC}/4096. If an external interrupt is used to release Stop mode, the BTCNT value increases at the rate of the preset clock source.
- 3. Clock oscillation stabilization interval begins and continues until bit 3 of the basic timer counter overflows.
- 4. When a BTCNT.3 overflow occurs, normal CPU operation resumes.

TIMER 0 CONTROL REGISTER (T0CON)

You use the timer 0 control register, T0CON, to

- Select the timer 0 operating mode (interval timer, capture mode, or PWM mode)
- Select the timer 0 input clock frequency
- Clear the timer 0 counter, T0CNT
- Enable the timer 0 overflow interrupt or timer 0 match/capture interrupt
- Clear timer0 match/capture interrupt pending conditions

T0CON is located in Set 1, Bank0, at address D2H, and is read/write addressable using register addressing mode.

A reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency of fOSC/4096, and disables all timer 0 interrupts. You can clear the timer 0 counter at any time during normal operation by writing a "1" to T0CON.3.

The timer 0 overflow interrupt (T0OVF) is interrupt level IRQ0 and has the vector address FAH. When a timer0 overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.

To enable the timer 0 mach/capture interrupt (IRQ0, vector FCH), you must write T0CON.1 to "1". To detect a match/capture interrupt pending condition, the application program polls T0CON.0. When a "1" is detected, a timer0 match or capture interrupt is pending. When the interrupt request has been serviced, the pending condition must be cleared by software by writing a "0" to the timer0 interrupt pending bit, T0CON.0.

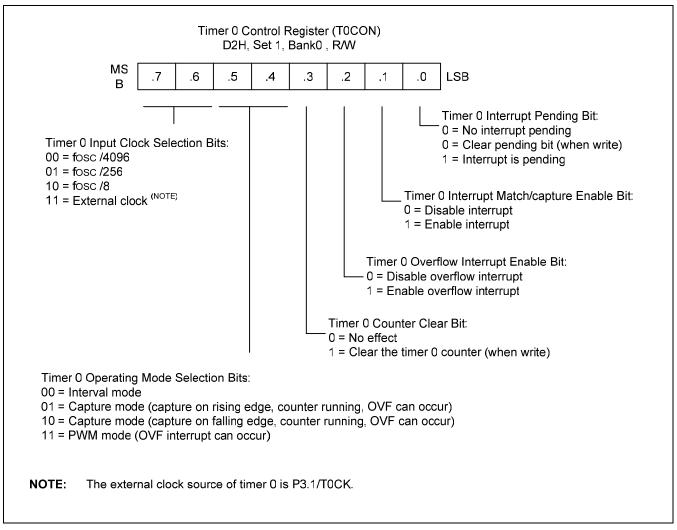


Figure 10-2. Timer 0 Control Register (T0CON)

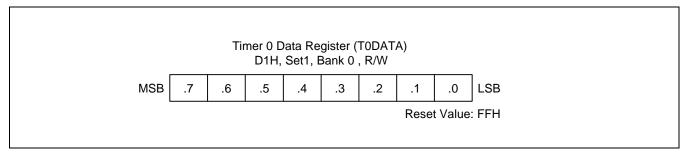


Figure 10-3. Timer 0 DATA Register (T0DATA)

TIMER 0 FUNCTION DESCRIPTION

Timer 0 Interrupts (IRQ0, Vectors FAH and FCH)

The timer 0 module can generate two interrupts: the timer 0 overflow interrupt (T0OVF), and the timer 0 match/ capture interrupt (T0INT). T0OVF is interrupt with level IRQ0 and vector FAH. T0INT also belongs to interrupt level IRQ0, but is assigned the separate vector address, FCH.

A timer 0 overflow interrupt (T0OVF) pending condition is automatically cleared by hardware when it has been serviced. The T0INT pending condition must, however, be cleared by the application's interrupt service routine by writing a "1" to the T0CON.0 interrupt pending bit.

Interval Timer Mode

In interval timer mode, a match signal is generated when the counter value is identical to the value written to the T0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt (T0INT, vector FCH) and clears the counter.

If, for example, you write the value '10H' to T0DATA, '0BH' to T0CON, the counter will increment until it reaches '10H'. At this point, the T0 interrupt request is generated. And after the counter value is reset, counting resumes. With each match, the level of the signal at the timer 0 output pin is inverted (See Figure 10-4).

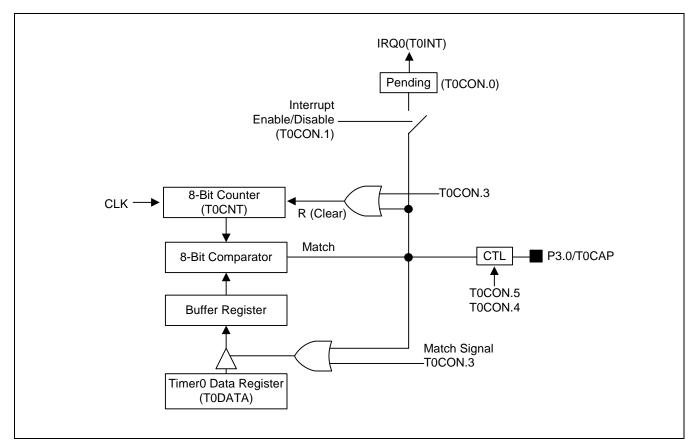


Figure 10-4. Simplified Timer 0 Function Diagram: Interval Timer Mode

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the T0PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the timer 0 data register. In PWM mode, however, the match signal does not clear the counter. Instead, it runs continuously, overflowing at 'FFH', and then continues incrementing from '00H'.

Although you can use the match signal to generate a timer 0 overflow interrupt, interrupts are not typically used in PWM-type applications. Instead, the pulse at the T0PWM pin is held to low level as long as the reference data value is less than or equal to (\leq) the counter value and then the pulse is held to high level for as long as the data value is greater than (>) the counter value. One pulse width is equal to t_{CLK} × 256 (See Figure 10-5).

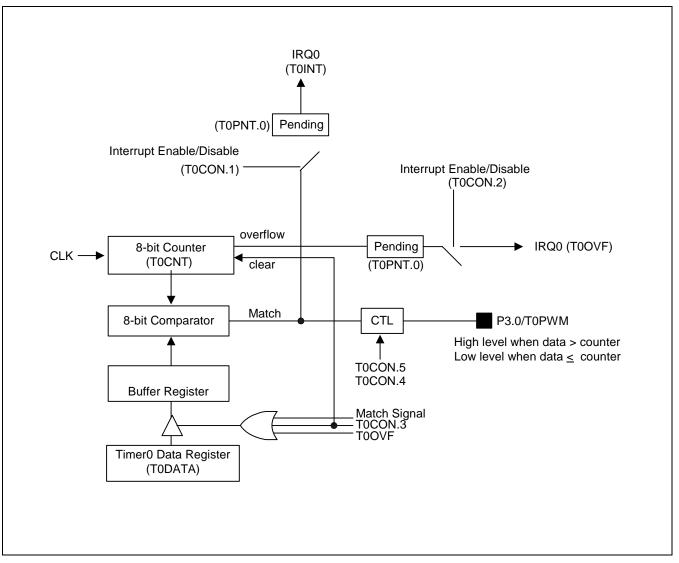


Figure 10-5. Simplified Timer 0 Function Diagram: PWM Mode

Capture Mode

In capture mode, a signal edge that is detected at the T0CAP pin opens a gate and loads the current counter value into the T0 data register. You can select rising or falling edges to trigger this operation.

Timer 0 also gives you capture input source: the signal edge at the T0CAP pin. You select the capture input by setting the value of the timer 0 capture input selection bit in the port 3 control register, P3CON.2, (set 1, bank 0, EFH). When P3CON.2 is "1", the T0CAP input is selected. When P3CON.2 is set to "0", normal I/O port (P3.0) is selected.

Both kinds of timer 0 interrupts can be used in capture mode: the timer 0 overflow interrupt is generated whenever a counter overflow occurs; the timer 0 match/capture interrupt is generated whenever the counter value is loaded into the T0 data register.

By reading the captured data value in T0DATA, and assuming a specific value for the timer 0 clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin (See Figure 10-6).

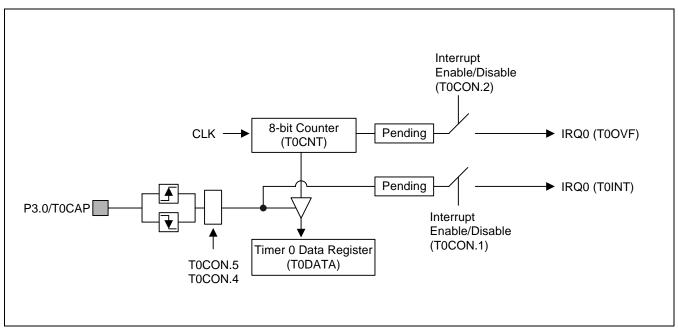


Figure 10-6. Simplified Timer 0 Function Diagram: Capture Mode

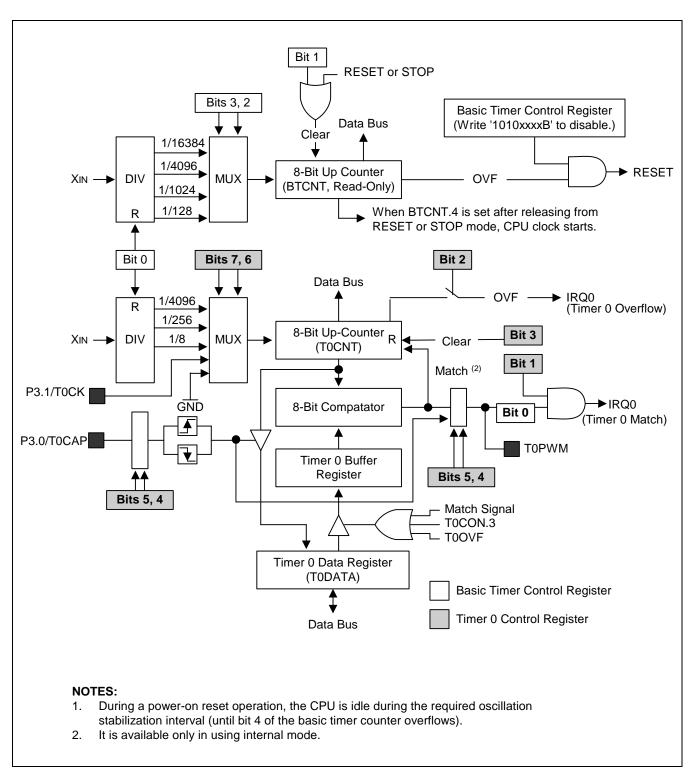


Figure 10-7. Basic Timer and Timer 0 Block Diagram

PROGRAMMING TIP — Configuring the Basic Timer

This example shows how to configure the basic timer to sample specifications:

	ORG	0100H	
RESET	DI LD CLR CLR •		 ; Disable all interrupts ; Disable the watchdog timer ; Non-divided clock ; Disable global and fast interrupts ; Stack pointer low byte → "0" ; Stack area starts at 0FFH
	SRP El	#0C0H	; Set register pointer $\rightarrow 0C0H$; Enable interrupts
MAIN	LD NOP NOP •	BTCON,#52H	; Enable the watchdog timer ; Basic timer clock: f _{OSC} /4096 ; Clear basic timer counter
	• JP •	T,MAIN	

PROGRAMMING TIP — Programming Timer 0

This sample program sets timer 0 to interval timer mode, sets the frequency of the oscillator clock, and determines the execution sequence which follows a timer 0 interrupt. The program parameters are as follows:

- Timer 0 is used in interval mode; the timer interval is set to 4 milliseconds
- Oscillation frequency is 6 MHz
- General register 60H (page 0) \rightarrow 60H + 61H + 62H + 63H + 64H (page 0) is executed after a timer 0 interrupt

		DR 00FAH,T0OVER DR 00FCH ,T0INT	; Timer 0 overflow interrupt ; Timer 0 match/capture interrupt				
RESET:	ORG 0100H DI LD BTCON,#0AAH LD CLKCON,#18H CLR SYM CLR SPL •		 ; Disable all interrupts ; Disable the watchdog timer ; Select non-divided clock ; Disable global and fast interrupts ; Stack pointer low byte → "0" ; Stack area starts at 0FFH 				
	LD	T0CON,#4BH T0DATA,#5DH	; Write '00100101B' ; Input clock is f _{OSC} /256 ; Interval timer mode ; Enable the timer 0 interrupt ; Disable the timer 0 overflow interrupt ; Set timer interval to 4 milliseconds ; (6 MHz/256) ÷ (93 + 1) = 0.25 kHz (4 ms)				
	SRP El •	#0C0H	; Set register pointer → 0C0H ; Enable interrupts				
TOINT:	PUSH SRP0 INC ADD ADC ADC	#60H R0	; Save RP0 to stack ; RP0 \leftarrow 60H ; R0 \leftarrow R0 + 1 ; R2 \leftarrow R2 + R0 ; R3 \leftarrow R3 + R2 + Carry ; R4 \leftarrow R4 + R0 + Carry				
	(Continued on next page)						

PROGRAMMING TIP — Programming Timer 0 (Continued)

	CP JR	R0,#32H ULT,NO_200MS_SET	; $50 \times 4 = 200 \text{ ms}$
	BITS	R1.2	; Bit setting (61.2H)
NO 200MS SE	ET:		
	LD POP	T0CON,#42H RP0	; Clear pending bit ; Restore register pointer 0 value
T0OVER	IRET		; Return from interrupt service routine

11 TIMER 1

OVERVIEW

The S3F80P9 microcontroller has a 16-bit timer/counter called Timer 1 (T1). For universal remote controller applications, Timer 1 can be used to generate the envelope pattern for the remote controller signal. Timer 1 has the following components:

- One control register, T1CON (FAH, Set 1, Bank0, R/W)
- Two 8-bit counter registers, T1CNTH and T1CNTL (F6H and F7H, Set 1, Bank0, Read-only)
- Two 8-bit reference data registers, T1DATAH and T1DATAL (F8H and F9H, Set 1, Bank0, R/W)
- One 16-bit comparator

You can select one of the following clock sources as the Timer 1 clock:

- Oscillator frequency (f_{OSC}) divided by 4, 8, or 16
- Internal clock input from the counter A module (counter A flip/flop output)

You can use Timer 1 in three ways:

- As a normal free run counter, generating a Timer 1 overflow interrupt (IRQ1, vector F4H) at programmed time intervals.
- To generate a Timer 1 match interrupt (IRQ1, vector F6H) when the 16-bit Timer 1 count value matches the 16-bit value written to the reference data registers.
- To generate a Timer 1 capture interrupt (IRQ1, vector F6H) when a triggering condition exists at the P3.0 (You can select a rising edge, a falling edge, or both edges as the trigger).

In the S3F80P9 interrupt structure, the Timer 1 overflow interrupt has higher priority than the Timer 1 match or capture interrupt.

NOTE

The CPU clock should be faster than timer 1 clock.

TIMER 1 OVERFLOW INTERRUPT

Timer 1 can be programmed to generate an overflow interrupt (IRQ1, F4H) whenever an overflow occurs in the 16-bit up counter. When you set the Timer 1 overflow interrupt enable bit, T1CON.2, to "1", the overflow interrupt is generated each time the 16-bit up counter reaches 'FFFFH'. After the interrupt request is generated, the counter value is automatically cleared to '00H' and up counting resumes. By writing a "1" to T1CON.3, you can clear/reset the 16-bit counter value at any time during program operation.

TIMER 1 CAPTURE INTERRUPT

Timer 1 can be used to generate a capture interrupt (IRQ1, vector F6H) whenever a triggering condition is detected at the P3.0 pin. The T1CON.5 and T1CON.4 bit-pair setting is used to select the trigger condition for capture mode operation: rising edges, falling edges, or both signal edges.

In capture mode, program software can poll the Timer 1 match/capture interrupt pending bit, T1CON.0, to detect when a Timer 1 capture interrupt pending condition exists (T1CON.0 = "1"). When the interrupt request is acknowledged by the CPU and the service routine starts, the interrupt service routine for vector F6H must clear the interrupt pending condition by writing a "0" to T1CON.0.

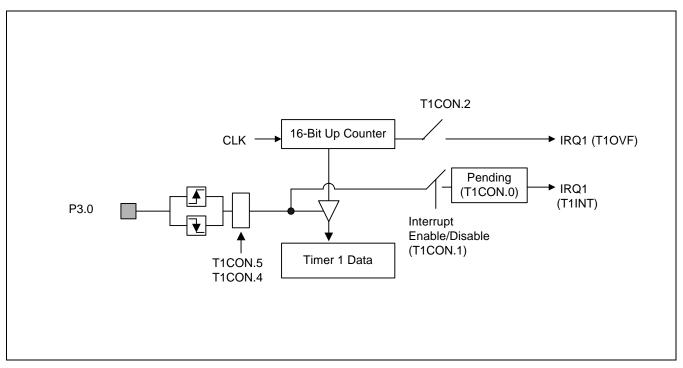


Figure 11-1. Simplified Timer 1 Function Diagram: Capture Mode

TIMER 1 MATCH INTERRUPT

Timer 1 can also be used to generate a match interrupt (IRQ1, vector F6H) whenever the 16-bit counter value matches the value that is written to the Timer 1 reference data registers, T1DATAH and T1DATAL. When a match condition is detected by the 16-bit comparator, the match interrupt is generated, the counter value is cleared, and up counting resumes from '00H'.

In match mode, program software can poll the Timer 1 match/capture interrupt pending bit, T1CON.0, to detect when a Timer 1 match interrupt pending condition exists (T1CON.0 = "1"). When the interrupt request is acknowledged by the CPU and the service routine starts, the interrupt service routine for vector F6H must clear the interrupt pending condition by writing a "0" to T1CON.0.

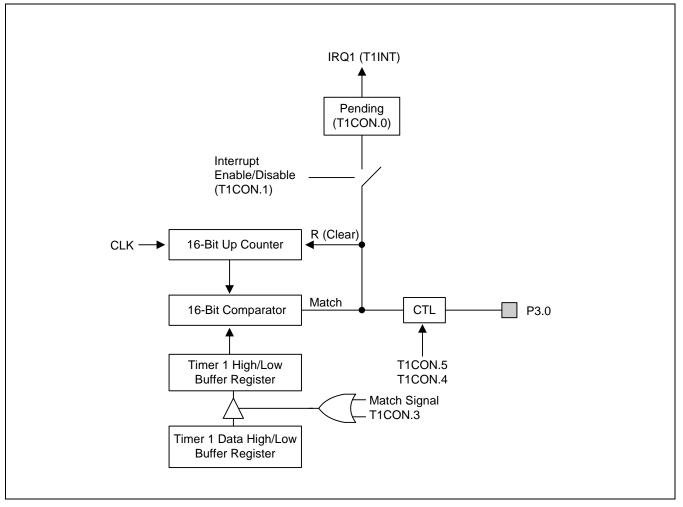


Figure 11-2. Simplified Timer 1 Function Diagram: Interval Timer Mode

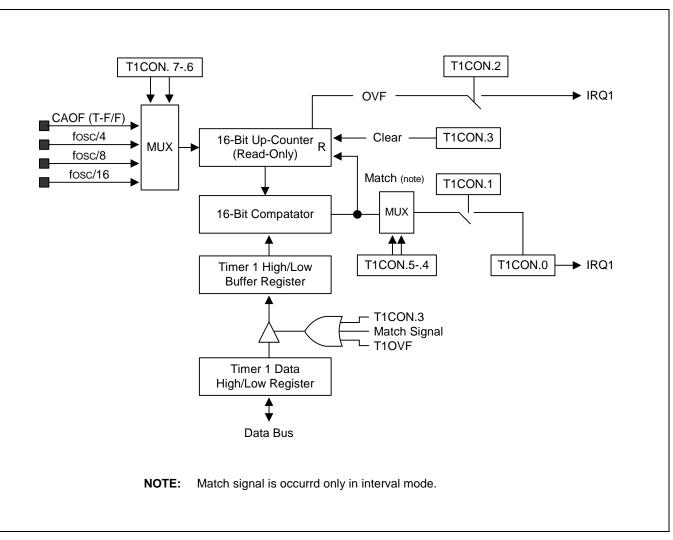


Figure 11-3. Timer 1 Block Diagram

TIMER 1 CONTROL REGISTER (T1CON)

The Timer 1 control register, T1CON, is located in Set 1, FAH, Bank0 and is read/write addressable. T1CON contains control settings for the following T1 functions:

- Timer 1 input clock selection
- Timer 1 operating mode selection
- Timer 1 16-bit down counter clear
- Timer 1 overflow interrupt enable/disable
- Timer 1 match or capture interrupt enable/disable
- Timer 1 interrupt pending control (read for status, write to clear)

A reset operation clears T1CON to '00H', selecting fosc divided by 4 as the T1 clock, configuring Timer 1 as a normal interval Timer, and disabling the Timer 1 interrupts.

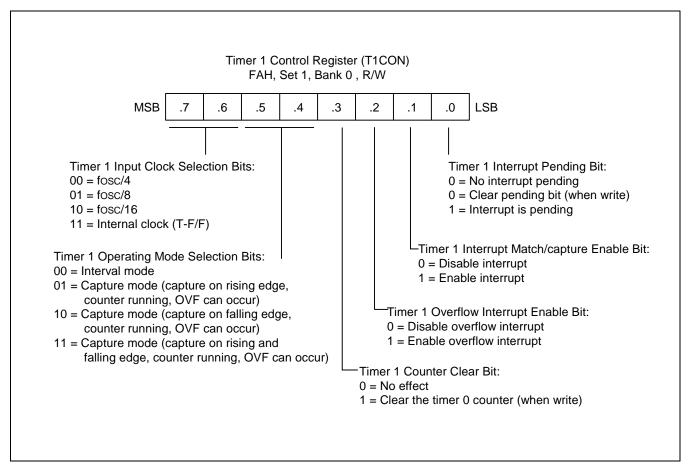


Figure 11-4. Timer 1 Control Register (T1CON)

	Ti	mer1 C	Counter F6H		yte Reg , Bank ([1CNTH	4)	
MSB	.7	.6	.5	.4	.3	.2	.1	.0	LSB
							Rese	t Value	:: 00H
	т	imer 1 (Counte F7H		yte Reg , Bank		T1CNT	L)	
MSB	.7	.6	.5	.4	.3	.2	.1	.0	LSB
							Rese	t Value	9: 00H
	Т	ïmer 1	Data H F8H,		e Regis Bank 0,		DATAH	I)	
MSB	.7	.6	.5	.4	.3	.2	.1	.0	LSB
							Rese	t Value	: FFH
	-	Fimer 1	Data L F9H,		e Regis Bank 0,		DATAL)	
MSB	.7	.6	.5	.4	.3	.2	.1	.0	LSB
							Rese	t Value	: FFH

Figure 11-5. Timer 1 Registers (T1CNTH, T1CNTL, T1DATAH, T1DATAL)

12 COUNTER A

OVERVIEW

The S3F80P9 microcontroller has one 8-bit counter called counter A. Counter A, which can be used to generate the carrier frequency, has the following components (See Figure 12-1):

- Counter A control register, CACON
- 8-bit down counter with auto-reload function
- Two 8-bit reference data registers, CADATAH and CADATAL

Counter A has two functions:

- As a normal interval timer, generating a counter A interrupt (IRQ2, vector ECH) at programmed time intervals.
- To supply a clock source to the 16-bit timer/counter module, Timer 1, for generating the Timer 1 overflow interrupt.

NOTE

The CPU clock should be faster than count A clock.

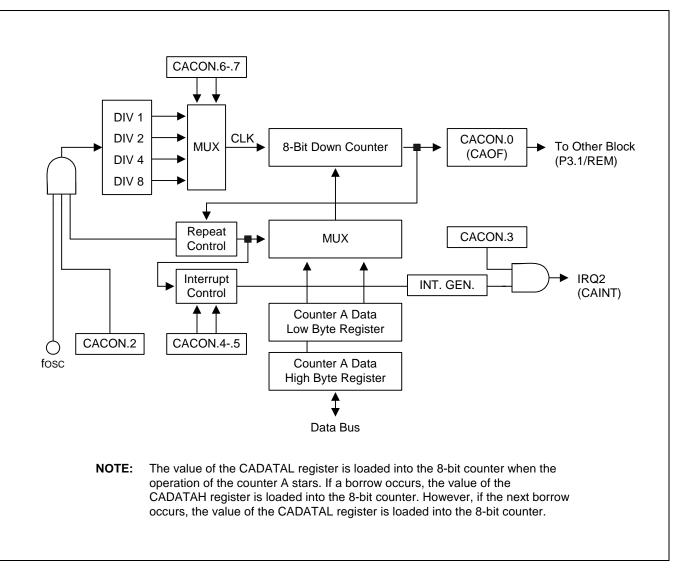


Figure 12-1. Counter A Block Diagram

COUNTER A CONTROL REGISTER (CACON)

The counter A control register, CACON, is located in F3H, Set 1, Bank 0, and is read/write addressable. CACON contains control settings for the following functions (See Figure 12-2):

- Counter A clock source selection
- Counter A interrupt enable/disable
- Counter A interrupt pending control (read for status, write to clear)
- Counter A interrupt time selection

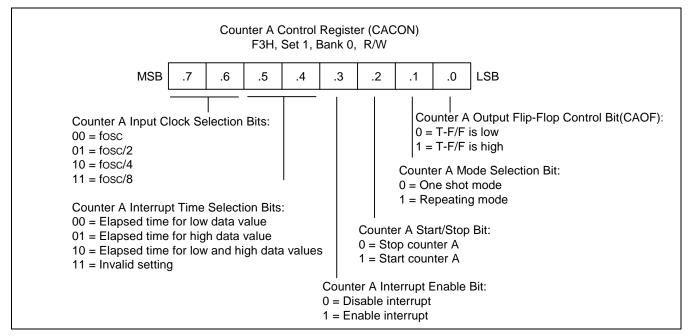


Figure 12-2. Counter A Control Register (CACON)

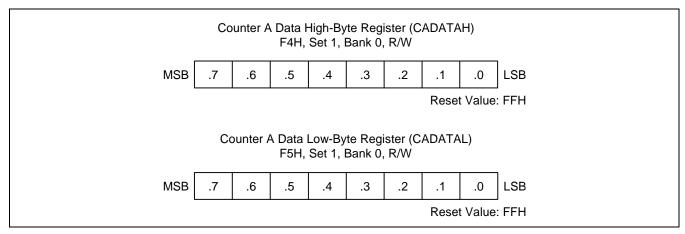
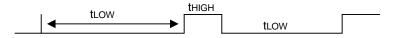



Figure 12-3. Counter A Registers

COUNTER A PULSE WIDTH CALCULATIONS

To generate the above repeated waveform consisted of low period time, t_{LOW}, and high period time, t_{HIGH}.

 $\begin{array}{l} \mbox{When CAOF = 0,} \\ t_{LOW} = (CADATAL + 2) \ \times \ 1/Fx. \ 0H < CADATAL < 100H, \ where \ Fx = the \ selected \ clock. \\ t_{HIGH} = (CADATAH + 2) \ \times \ 1/Fx. \ 0H < CADATAH < 100H, \ where \ Fx = the \ selected \ clock. \\ \ When \ CAOF = 1, \\ t_{LOW} = (CADATAH + 2) \ \times \ 1/Fx. \ 0H < CADATAH < 100H, \ where \ Fx = the \ selected \ clock. \\ t_{HIGH} = (CADATAL + 2) \ \times \ 1/Fx. \ 0H < CADATAH < 100H, \ where \ Fx = the \ selected \ clock. \\ \end{array}$

To make $t_{LOW} = 24$ us and $t_{HIGH} = 15$ us. $f_{OSC} = 4$ MHz, FX = 4 MHz/4 = 1 MHz

[Method 1] When CAOF = 0, t_{LOW} = 24 us = (CADATAL + 2) / FX = (CADATAL + 2) x 1us, CADATAL = 22. t_{HIGH} = 15 us = (CADATAH + 2) / FX = (CADATAH + 2) x 1us, CADATAH = 13.

[Method 2] When CAOF = 1,

 $t_{HIGH} = 15 \text{ us} = (CADATAL + 2) / FX = (CADATAL + 2) x 1us, CADATAL = 13.$ $t_{LOW} = 24 \text{ us} = (CADATAH + 2) / FX = (CADATAH + 2) x 1us, CADATAH = 22.$

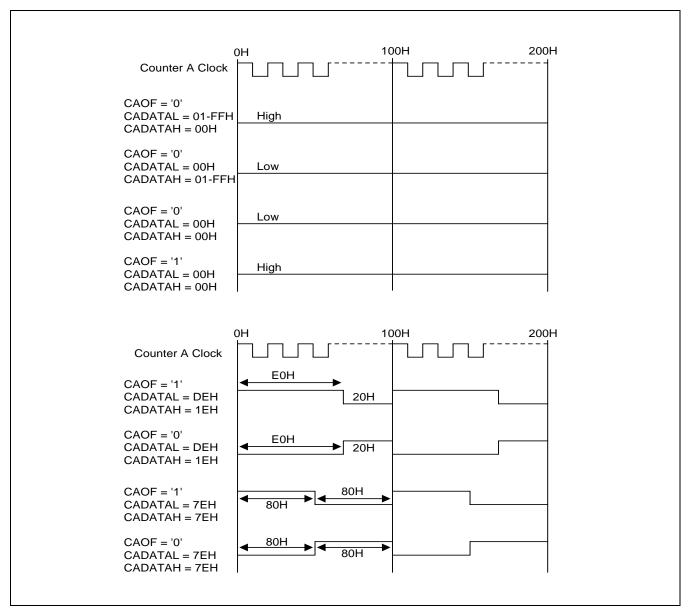
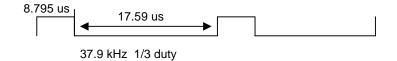



Figure 12-4. Counter A Output Flip-Flop Waveforms in Repeat Mode

PROGRAMMING TIP — To generate 38 kHz, 1/3duty signal through P3.1

This example sets Counter A to the repeat mode, sets the oscillation frequency as the Counter A clock source, and CADATAH and CADATAL to make a 38 kHz, 1/3 Duty carrier frequency. The program parameters are:

- Counter A is used in repeat mode
- Oscillation frequency is 4 MHz (0.25 μs)
- CADATAH = $8.795 \ \mu s / 0.25 \ \mu s = 35.18$, CADATAL = $17.59 \ \mu s / 0.25 \ \mu s = 70.36$
- Set P3.1 C-MOS push-pull output and CAOF mode.

START:	ORG DI •	0100H	; Reset address
	LD LD	CADATAL,#(70-2) CADATAH,#(35-2)	; Set 17.5 ms ; Set 8.75 ms
	LD	P3CON,#11110010B	, ; Set P3 to C-MOS push-pull output. ; Set P3.1 to REM output
	LD	CACON,#00000110B	; Clock Source \rightarrow Fosc
	LD	P3,#80H	; Disable Counter A interrupt. ; Select repeat mode for Counter A. ; Start Counter A operation. ; Set Counter A Output Flip-flop(CAOF) high. ; ; Set P3.7(Carrier On/Off) to high. ; This command generates 38 kHz, 1/3duty pulse signal ; through P3.1
	• •		

PROGRAMMING TIP — To generate a one-pulse signal through P3.1

This example sets Counter A to the one shot mode, sets the oscillation frequency as the Counter A clock source, and CADATAH and CADATAL to make a 40 μ s width pulse. The program parameters are:

- Counter A is used in one-shot mode
- Oscillation frequency is 4 MHz (1 clock = $0.25 \ \mu$ s)
- CADATAH = $40 \ \mu s / 0.25 \ \mu s = 160$, CADATAL = 1
- Set P3.1 C-MOS push-pull output and CAOF mode.

START:	ORG DI	0100H	; Reset address
	•		
	LD LD	CADATAH,# (160-2) CADATAL,# 1	; Set 40 ms ; Set any value except 00H
	LD	P3CON,#11110010B	, ; Set P3 to C-MOS push-pull output. ; Set P3.1 to REM output
	LD	CACON,#0000001B	; Clock Source → Fosc ; Disable Counter A interrupt. ; Select one shot mode for Counter A. ; Stop Counter A operation. ; Set Counter A Output Flip-Flop (CAOF) high
	LD	P3,#80H	; Set P3.7(Carrier On/Off) to high.
	• • •		
Pulse_out:	LD • •	CACON,#00000101B	; Start Counter A operation ; to make the pulse at this point. ; After the instruction is executed, 0.75 ms is required ; before the falling edge of the pulse starts.

NOTES

13 TIMER 2

OVERVIEW

The S3F80P9 microcontroller has a 16-bit timer/counter called Timer 2 (T2). For universal remote controller applications, timer 2 can be used to generate the envelope pattern for the remote controller signal. Timer 2 has the following components:

- One control register, T2CON (E8H, Set 1, Bank1, R/W)
- Two 8-bit counter registers, T2CNTH and T2CNTL (E4H and E5H, Set1, Bank1, Read only)
- Two 8-bit reference data registers, T2DATAH and T2DATAL (E6H and E7H, Set 1, Bank1, R/W)
- One 16-bit comparator

You can select one of the following clock sources as the timer 2 clock:

- Oscillator frequency (f_{OSC}) divided by 4, 8, or 16
- Internal clock input from the counter A module (counter A flip/flop output)

You can use Timer 2 in three ways:

- As a normal free run counter, generating a timer 2 overflow interrupt (IRQ3, vector F0H) at programmed time intervals.
- To generate a timer 2 match interrupt (IRQ3, vector F2H) when the 16-bit timer 2 count value matches the 16-bit value written to the reference data registers.
- To generate a timer 2 capture interrupt (IRQ3, vector F2H) when a triggering condition exists at the P3.0 (You can select a rising edge, a falling edge, or both edges as the trigger).

In the S3F80P9 interrupt structure, the timer 2 overflow interrupt has higher priority than the timer 2 match or capture interrupt.

NOTE

The CPU clock should be faster than timer 2 clock.

TIMER 2 OVERFLOW INTERRUPT

Timer 2 can be programmed to generate an overflow interrupt (IRQ3, F0H) whenever an overflow occurs in the 16-bit up counter. When you set the timer 2 overflow interrupt enable bit, T2CON.2, to "1", the overflow interrupt is generated each time the 16-bit up counter reaches 'FFFFH'. After the interrupt request is generated, the counter value is automatically cleared to '00H' and up counting resumes. By writing a "1" to T2CON.3, you can clear/reset the 16-bit counter value at any time during program operation.

TIMER 2 CAPTURE INTERRUPT

Timer 2 can be used to generate a capture interrupt (IRQ3, vector F2H) whenever a triggering condition is detected at the P3.0 pin for 32 pin package and P3.3 pin for 44 pin package. The T2CON.5 and T2CON.4 bit-pair setting is used to select the trigger condition for capture mode operation: rising edges, falling edges, or both signal edges.

In capture mode, program software can poll the timer 2 match/capture interrupt pending bit, T2CON.0, to detect when a timer 2 capture interrupt pending condition exists (T2CON.0 = "1"). When the interrupt request is acknowledged by the CPU and the service routine starts, the interrupt service routine for vector F2H must clear the interrupt pending condition by writing a "0" to T2CON.0.

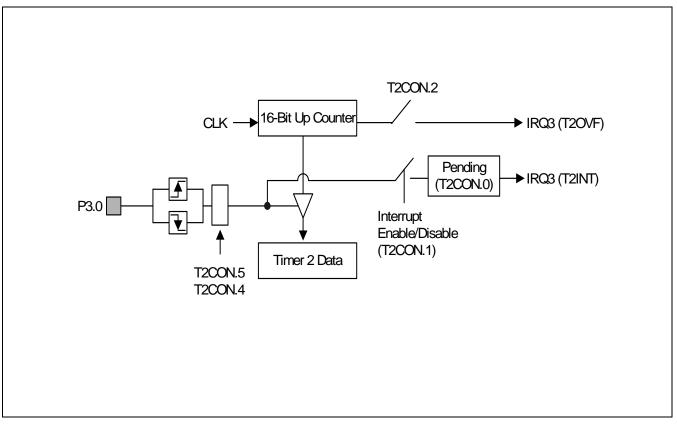


Figure 13-1. Simplified Timer 2 Function Diagram: Capture Mode

TIMER 2 MATCH INTERRUPT

Timer 2 can also be used to generate a match interrupt (IRQ3, vector F2H) whenever the 16-bit counter value matches the value that is written to the timer 2 reference data registers, T2DATAH and T2DATAL. When a match condition is detected by the 16-bit comparator, the match interrupt is generated, the counter value is cleared, and up counting resumes from '00H'.

In match mode, program software can poll the timer 2 match/capture interrupt pending bit, T2CON.0, to detect when a timer 2 match interrupt pending condition exists (T2CON.0 = "1"). When the interrupt request is acknowledged by the CPU and the service routine starts, the interrupt service routine for vector F2H must clear the interrupt pending condition by writing a "0" to T2CON.0.

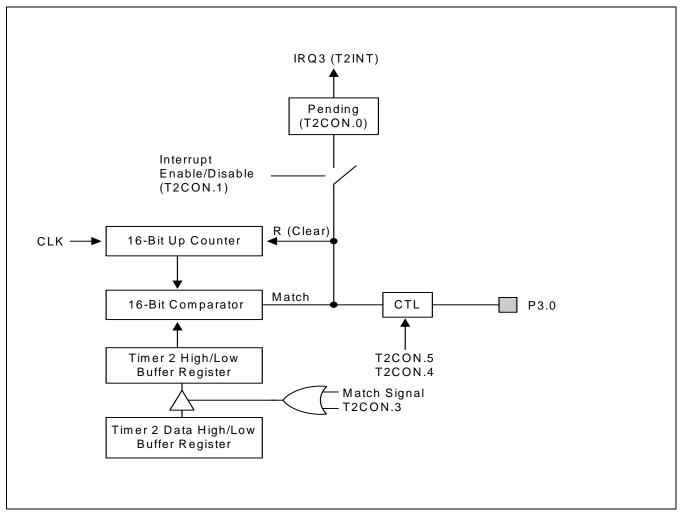


Figure 13-2. Simplified Timer 2 Function Diagram: Interval Timer Mode

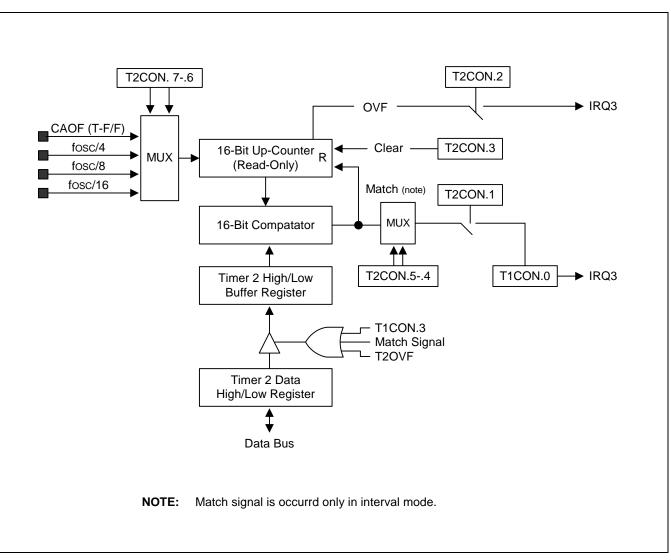


Figure 13-3. Timer 2 Block Diagram

TIMER 2 CONTROL REGISTER (T2CON)

The timer 2 control register, T2CON, is located in address E8H, Bank1, Set 1 and is read/write addressable. T2CON contains control settings for the following T2 functions:

- Timer 2 input clock selection
- Timer 2 operating mode selection
- Timer 2 16-bit down counter clear
- Timer 2 overflow interrupt enable/disable
- Timer 2 match or capture interrupt enable/disable
- Timer 2 interrupt pending control (read for status, write to clear)

A reset operation clears T2CON to '00H', selecting fosc divided by 4 as the T2 clock, configuring timer 2 as a normal interval timer, and disabling the timer 2 interrupts.

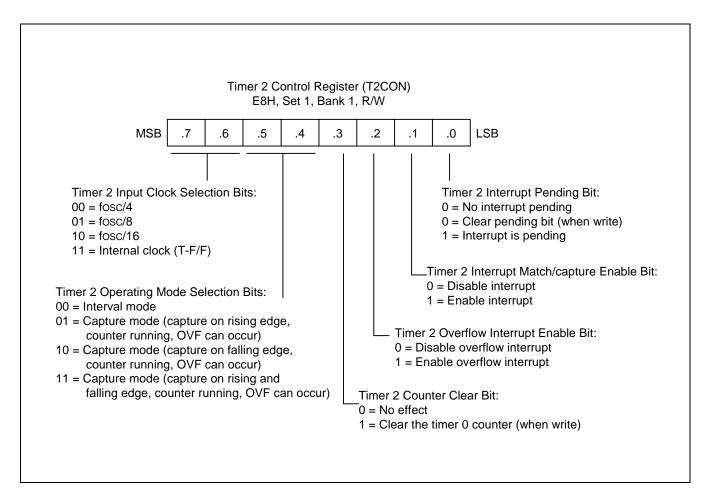


Figure 13-4. Timer 2 Control Register (T2CON)

	Ti	imer2 C E		High-B et 1, Ba				H)	
MSB	.7	.6	.5	.4	.3	.2	.1	.0	LSB
							Rese	t Value	: 00H
ſ	Т	imer 2 (E		r Low-B et 1, Ba				_)	1
MSB	.7	.6	.5	.4	.3	.2	.1	.0	LSB
	т	imer 2		igh-Byt Set 1,			DATAH	I)	
r	-	.6	.5	.4	.3	.2	.1	.0	LSB
MSB	.7						-		CCU
MSB		Timer 2		ow-Byte Set 1,				t Value)	
MSB (Timer 2							LSB

Figure 13-5. Timer 2 Registers (T2CNTH, T2CNTL, T2DATAH, T2DATAL)

14 EMBEDDED FLASH MEMORY INTERFACE

OVERVIEW

The S3F80P9 has an on-chip flash memory internally instead of masked ROM. The flash memory is accessed by instruction 'LDC'. This is a sector erasable and a byte programmable flash. User can program the data in a flash memory area any time you want. The S3F80P9's embedded 32K-byte memory has two operating features as below:

- User Program Mode
- Tool Program Mode: Refer to the chapter 18. S3F80P9 FLASH MCU

Flash ROM Configuration

The S3F80P9 flash memory consists of 256sectors. Each sector consists of 128bytes. So, the total size of flash memory is 256x128 bytes (32KB). User can erase the flash memory by a sector unit at a time and write the data into the flash memory by a byte unit at a time.

- 32Kbyte Internal flash memory
- Sector size: 128-Bytes
- 10years data retention
- Fast programming Time: Sector Erase: 4ms (min) Byte Program: 20us (min)
- Byte programmable
- User programmable by 'LDC' instruction
- Sector (128-Bytes) erase available
- External serial programming support
- Endurance: 10,000 Erase/Program cycles (min)
- Expandable OBPTM (On Board Program)

User Program Mode

This mode supports sector erase, byte programming, byte read and one protection mode (Hard Lock Protection). The S3F80P9 has the internal pumping circuit to generate high voltage. Therefore, 12.5V into Vpp (TEST) pin is not needed. To program a flash memory in this mode several control registers will be used. There are four kind functions in user program mode – programming, reading, sector erase, and one protection mode (Hard lock protection).

ISP™ (ON-BOARD PROGRAMMING) SECTOR

ISPTM sectors located in program memory area can store On Board Program Software (Boot program code for upgrading application code by interfacing with I/O port pin). The ISPTM sectors can't be erased or programmed by 'LDC' instruction for the safety of On Board Program Software.

The ISP sectors are available only when the ISP enable/disable bit is set 0, that is, enable ISP at the Smart Option. If you don't like to use ISP sector, this area can be used as a normal program memory (can be erased or programmed by 'LDC' instruction) by setting ISP disable bit ("1") at the Smart Option. Even if ISP sector is selected, ISP sector can be erased or programmed in the tool program mode by serial programming tools.

The size of ISP sector can be varied by settings of smart option (Refer to Figure 2-2 and Table 15-2). You can choose appropriate ISP sector size according to the size of On Board Program Software.

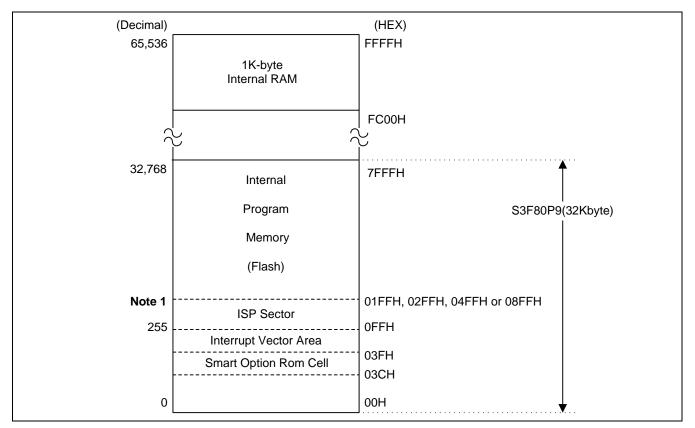


Figure 14-1. Program Memory Address Space

SMART OPTION

Smart option is the program memory option for starting condition of the chip. The program memory addresses used by smart option are from 003CH to 003FH. The S3F80P9 only use 003EH and 003FH. User can write any value in the not used addresses (003CH and 003DH). The default value of smart option bits in program memory is 0FFH (Normal reset vector address 100H, ISP protection disable). Before execution the program memory code, user can set the smart option bits according to the hardware option for user to want to select.

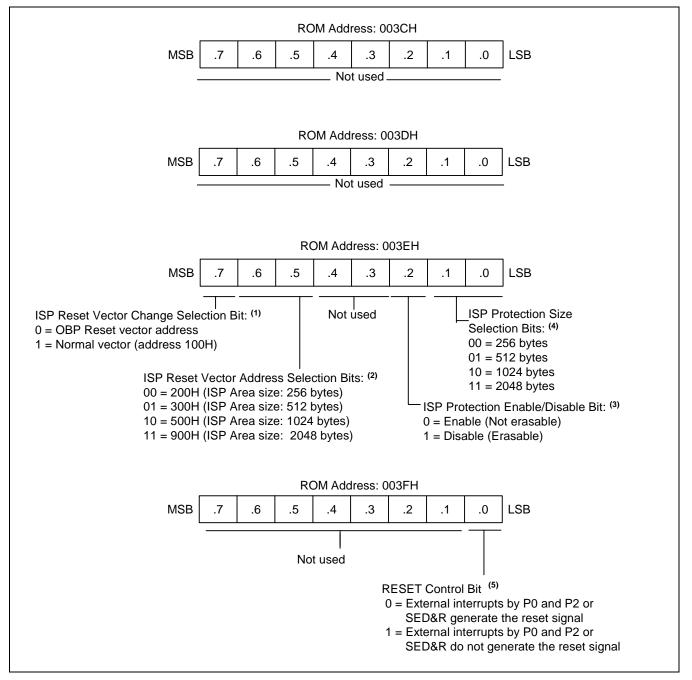


Figure 14-2. Smart Option

NOTES

1. By setting ISP Reset Vector Change Selection Bit (3EH.7) to '0', user can have the available ISP area.

If ISP Reset Vector Change Selection Bit (3EH.7) is '1', 3EH.6 and 3EH.5 are meaningless.

If ISP Reset Vector Change Selection Bit (3EH.7) is '0', user must change ISP reset vector address from 0100H to some address which user want to set reset address (0200H, 0300H, 0500H or 0900H).
 If the reset vector address is 0200H, the ISP area can be assigned from 0100H to 01FFH (256bytes).

If 0300H, the ISP area can be assigned from 0100H to 02FFH (512bytes). If 0500H, the ISP area can be from 0100H to 04FFH (1024bytes). If 0900H, the ISP area can be from 0100H to 08FFH (2048bytes).

- 3. If ISP Protection Enable/Disable Bit is '0', user can't erase or program the ISP area selected by 3EH.1 and 3EH.0 in flash memory.
- 4. User can select suitable ISP protection size by 3EH.1 and 3EH.0. If ISP Protection Enable/Disable Bit (3EH.2) is '1', 3EH.1 and 3EH.0 are meaningless.

Smart Option	n (003EH) ISP Si	ze Selection Bit	Area of ISP Sector	ISP Sector Size
Bit 2	Bit 1	Bit 0		
1	x	х	0	0
0	0	0	100H – 1FFH (256 Bytes)	256 Bytes
0	0	1	100H – 2FFH (512 Bytes)	512 Bytes
0	1	0	100H – 4FFH (1024 Bytes)	1024 Bytes
0	1	1	100H – 8FFH (2048 Bytes)	2048 Bytes

Table 14-1. ISP Sector Size

NOTE: The area of the ISP sector selected by smart option bit (3EH.2 – 3EH.0) can't be erased and programmed by 'LDC' instruction in user program mode.

ISP RESET VECTOR AND ISP SECTOR SIZE

If you use ISP sectors by setting the ISP enable/disable bit to "0" and the reset vector selection bit to "0" at the smart option, you can choose the reset vector address of CPU as shown in Table 14-2 by setting the ISP reset vector address selection bits. (Refer to Figure 2-2 Smart Option).

Smart Option (003EH) ISP Reset Vector Address Selection Bit			Reset Vector Address after POR	Usable Area for ISP Sector	ISP Sector Size
Bit 7	Bit 6	Bit 5			
1	x	x	0100H	0	0
0	0	0	0200H	100H – 1FFH	256 Bytes
0	0	1	0300H	100H – 2FFH	512 Bytes
0	1	0	0500H	100H – 4FFH	1024 Bytes
0	1	1	0900H	100H – 8FFH	2048 Bytes

Table 14-2.	Reset Vector	Address

NOTE: The selection of the ISP reset vector address by Smart Option (003EH.7 – 003EH.5) is not dependent of the selection of ISP sector size by Smart Option (003EH.2 – 003EH.0).

FLASH MEMORY CONTROL REGISTERS (USER PROGRAM MODE)

FLASH MEMORY CONTROL REGISTER (FMCON)

FMCON register is available only in user program mode to select the flash memory operation mode; sector erase, byte programming, and to make the flash memory into a hard lock protection.

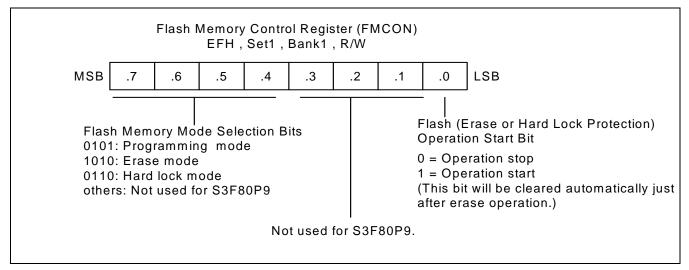


Figure 14-3. Flash Memory Control Register (FMCON)

The bit 0 of FMCON register (FMCON.0) is a bit for the operation start of Erase and Hard Lock Protection. Therefore, operation of Erase and Hard Lock Protection is activated when you set FMCON.0 to "1". If you write FMCON.0 to 1 for erasing, CPU is stopped automatically for erasing time (min.10ms). After erasing time, CPU is restarted automatically. When you read or program a byte data from or into flash memory, this bit is not needed to manipulate.

FLASH MEMORY USER PROGRAMMING ENABLE REGISTER (FMUSR)

The FMUSR register is used for a safe operation of the flash memory. This register will protect undesired erase or program operation from malfunctioning of CPU caused by an electrical noise. After reset, the user-programming mode is disabled, because the value of FMUSR is "0000000B" by reset operation. If necessary to operate the flash memory, you can use the user programming mode by setting the value of FMUSR to "10100101B". The other value of "10100101B", user program mode is disabled.

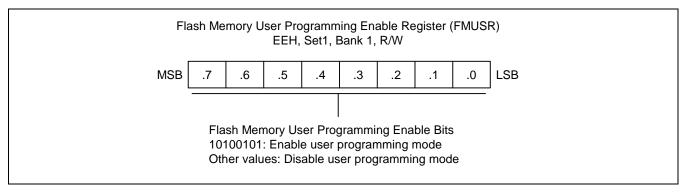


Figure 14-4. Flash Memory User Programming Enable Register (FMUSR)

FLASH MEMORY SECTOR ADDRESS REGISTERS

There are two sector address registers for the erase or programming flash memory. The FMSECL (Flash Memory Sector Address Register Low Byte) indicates the low byte of sector address and FMSECH (Flash Memory Address Sector Register High Byte) indicates the high byte of sector address.

One sector consists of 128-bytes. Each sector's address starts XX00H or XX80H, that is, a base address of sector is XX00H or XX80H. So bit .6-.0 of FMSECL don't mean whether the value is '1' or '0'. We recommend that it is the simplest way to load the sector base address into FMSECH and FMSECL register. When programming the flash memory, user should program after loading a sector base address, which is located in the destination address to write data into FMSECH and FMSECL register. If the next operation is also to write one byte data, user should check whether next destination address is located in the same sector or not. In case of other sectors, user should load sector address to FMSECH and FMSECL Register according to the sector. (Refer to page 14-14 PROGRAMMING TIP — Programming)

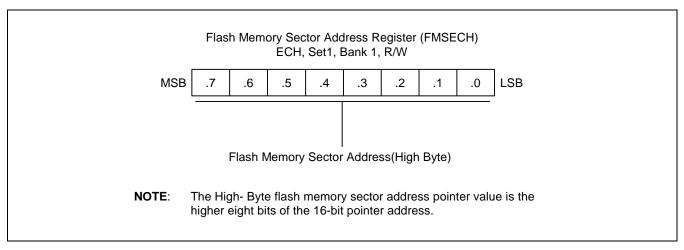


Figure 14-5. Flash Memory Sector Address Register (FMSECH)

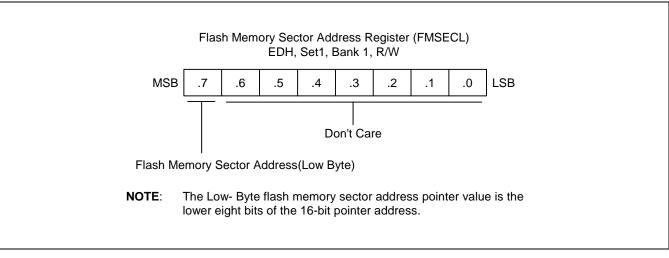


Figure 14-6. Flash Memory Sector Address Register (FMSECL)

SECTOR ERASE

User can erase a flash memory partially by using sector erase function only in user program mode. The only unit of flash memory to be erased in the user program mode is a sector.

The program memory of S3F80P9, 32Kbytes flash memory, is divided into 256 sectors. Every sector has all 128byte sizes. So the sector to be located destination address should be erased first to program a new data (one byte) into flash memory. Minimum 10ms' delay time for the erase is required after setting sector address and triggering erase start bit (FMCON.0). Sector erase is not supported in tool program modes (MDS mode tool or programming tool).

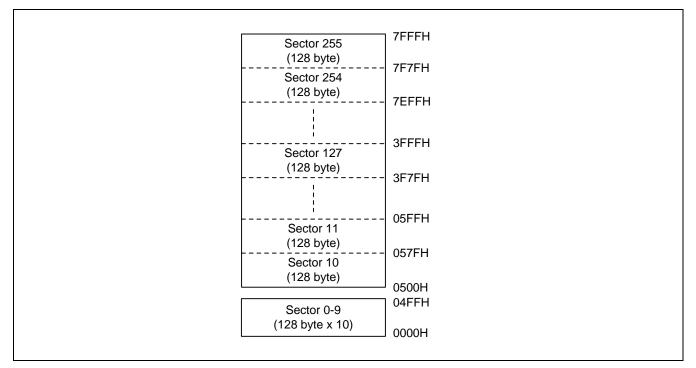


Figure 14-7. Sector Configurations in User Program Mode

The Sector Erase Procedure in User Program Mode

- 1. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 2. Set Flash Memory Sector Address Register (FMSECH and FMSECL).
- 3. Set Flash Memory Control Register (FMCON) to "10100001B".
- 4. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

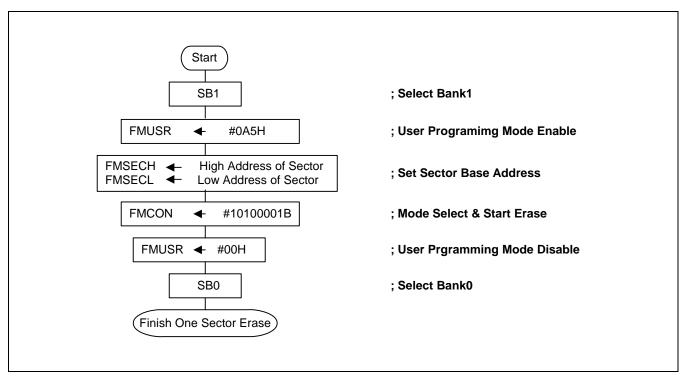


Figure 14-8. Sector Erase Flowchart in User Program Mode

NOTES

- 1. If user erases a sector selected by Flash Memory Sector Address Register FMSECH and FMSECL, FMUSR should be enabled just before starting sector erase operation. And to erase a sector, Flash Operation Start Bit of FMCON register is written from operation stop '0' to operation start '1'. That bit will be cleared automatically just after the corresponding operation completed. In other words, when S3F80P9 is in the condition that flash memory user programming enable bits is enabled and executes start operation of sector erase, it will get the result of erasing selected sector as user's a purpose and Flash Operation Start Bit of FMCON register is also clear automatically.
- If user executes sector erase operation with FMUSR disabled, FMCON.0 bit, Flash Operation Start Bit, remains 'high', which means start operation, and is not cleared even though next instruction is executed. So user should be careful to set FMUSR when executing sector erase, for no effect on other flash sectors.

PROGRAMMING TIP — Sector Erase

Case1. Erase one sector

ERASE_ONESECTOR	•		
	SB1 LD LD LD LD	FMUSR,#0A5H FMSECH,#40H FMSECL,#00H FMCON,#10100001B	; User program mode enable ; Set sector address 4000H,sector 128, ; among sector 0~511 ; Select erase mode enable & Start sector erase
ERASE_STOP:	LD SB0	FMUSR,#00H	; User program mode disable

Case2.Erase flash memory space from Sector (n) to Sector (n + m)

;;Pre-define the number of sector to erase

•

	LD LD LD LD	SecNumH,#00H SecNumL,#128 R6,#01H R7,#7DH R2,SecNumH R3,SecNumL	; Set sector number ; Selection the sector128 (base address 4000H) ; Set the sector range (m) to erase ; into High-byte(R6) and Low-byte(R7)
ERASE_LOOP:	CALL XOR INCW LD DECW LD OR CP JP •	P4,#11111111B	; Display ERASE_LOOP cycle

SECTOR_ERASE:	LD LD MULT MULT ADD		; Calculation the base address of a target sector ; The size of one sector is 128-bytes ; BTJRF FLAGS.7,NOCARRY ; INC R12
NOCARRY:	LD LD	R10,R13 R11,R15	
ERASE_START:	SB1 LD LD LD LD	FMUSR,#0A5H FMSECH,R10 FMSECL,R11 FMCON,#10100001B	; User program mode enable ; Set sector address ; Select erase mode enable & Start sector erase
ERASE_STOP:	LD SB0 RET	FMUSR,#00H	; User program mode disable

PROGRAMMING

A flash memory is programmed in one-byte unit after sector erase. The write operation of programming starts by 'LDC' instruction.

The program procedure in user program mode

- 1. Must erase target sectors before programming.
- 2. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 3. Set Flash Memory Control Register (FMCON) to "0101000XB".
- 4. Set Flash Memory Sector Address Register (FMSECH and FMSECL) to the sector base address of destination address to write data.
- 5. Load a transmission data into a working register.
- 6. Load a flash memory upper address into upper register of pair working register.
- 7. Load a flash memory lower address into lower register of pair working register.
- 8. Load transmission data to flash memory location area on 'LDC' instruction by indirectly addressing mode
- 9. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

NOTE

In programming mode, it doesn't care whether FMCON.0's value is "0" or "1".

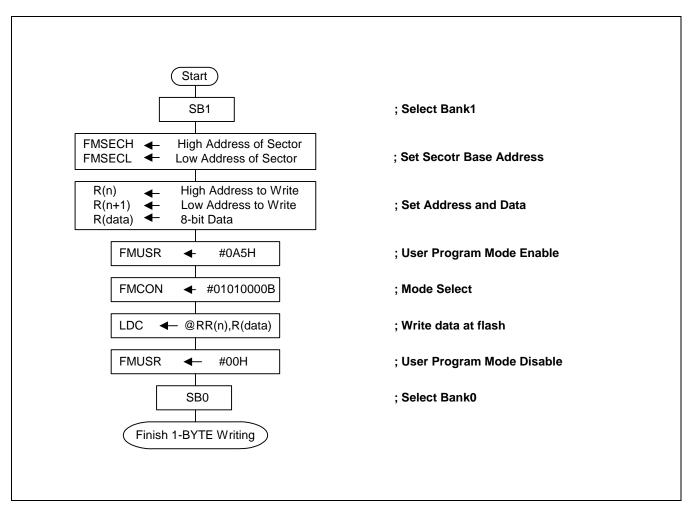


Figure 14-9. Byte Program Flowchart in a User Program Mode

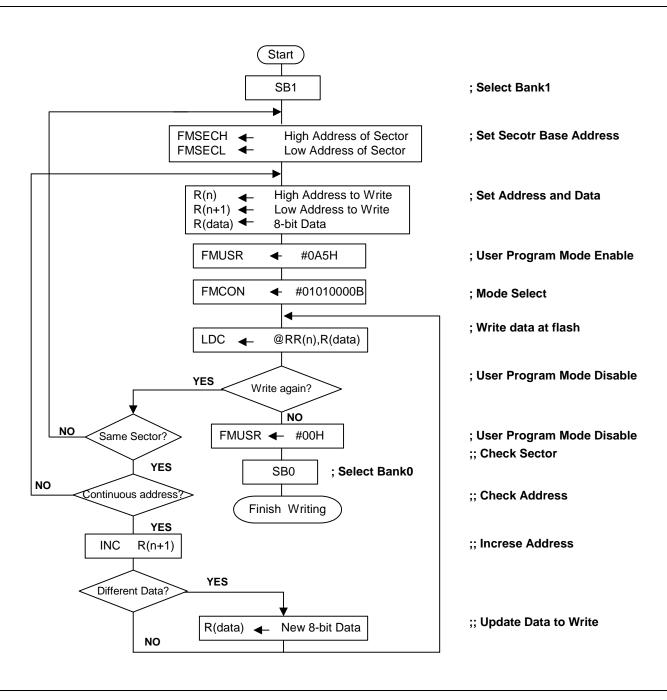


Figure 14-10. Program Flowchart in a User Program Mode

PROGRAMMING TIP — Programming

Case1. 1-Byte Programming

•		
• WR_BYTE:		; Write data "AAH" to destination address 4010H
SB1		
LD	FMUSR,#0A5H	; User program mode enable
LD	FMCON,#01010000B	; Selection programming mode
LD	FMSECH, #40H	; Set the base address of sector (4000H)
LD	FMSECL, #00H	
LD	R9,#0AAH	; Load data "AA" to write
LD	R10,#40H	; Load flash memory upper address into upper register of pair working ; register
LD	R11,#10H	; Load flash memory lower address into lower register of pair working ; register
LDC	@RR10,R9	; Write data 'AAH' at flash memory location (4010H)
LD SB0	FMUSR,#00H	; User program mode disable

Case2. Programming in the same sector

•		
WR_INSECTOR:		; RR10>Address copy (R10 –high address,R11-low address)
LD	R0,#40H	
SB1		
LD	FMUSR,#0A5H	; User program mode enable
LD	FMCON,#01010000B	; Selection programming mode and Start programming
LD	FMSECH,#40H	; Set the base address of sector located in target address to write data
LD	FMSECL,#00H	; The sector 128's base address is 4000H.
LD	R9,#33H	; Load data "33H" to write
LD	R10,#40H	; Load flash memory upper address into upper register of pair working ; register
LD	R11,#40H	; Load flash memory lower address into lower register of pair working ; register
WR_BYTE:	:	-
LDC	@RR10,R9	; Write data '33H' at flash memory location
INC	R11	; Reset address in the same sector by INC instruction
DJNZ	R0,WR_BYTE	; Check whether the end address for programming reach 407FH or not.
LD SB0	FMUSR,#00H	; User Program mode disable

Case3. Programming to the flash memory space located in other sectors

٠ V

٠

WR	LINSECTO	R2:	
	LD	R0,#40H	
	LD	R1,#40H	
	SB1		
	LD	FMUSR,#0A5H	; User program mode enable
	LD	FMCON,#01010000B	; Selection programming mode and Start programming
	LD	FMSECH,#01H	; Set the base address of sector located in target address to write data
	LD	FMSECL,#00H	; The sector 2's base address is 100H
	LD	R9,#0CCH	; Load data "CCH" to write
	LD	R10,#01H	; Load flash memory upper address into upper register of pair working
	LD	1(10,#0111	; register
	LD	R11,#40H	; Load flash memory lower address into lower register of pair working ; register
	CALL	WR_BYTE	
	LD	R0,#40H	
WR			
	LD	FMSECH,#19H	; Set the base address of sector located in target address to write data
	LD	FMSECL,#00H	; The sector 50's base address is 1900H
	LD	R9,# 55H	; Load data "55H" to write
	LD	R10,#19H	; Load flash memory upper address into upper register of pair working
	LD	1(10,#1011	; register
	LD	R11,#40H	; Load flash memory lower address into lower register of pair working ; register
	CALL	WR_BYTE	
		D400-	
VVR	LINSECTO		Out the hand of the second sec
	LD	FMSECH,#40H	; Set the base address of sector located in target address to write data
	LD	FMSECL,#00H	; The sector 128's base address is 4000H
	LD	R9,#0A3H	; Load data "A3H" to write
	LD	R10,#40H	; Load flash memory upper address into upper register of pair working ; register
	LD	R11,#40H	; Load flash memory lower address into lower register of pair working ; register
WR	BYTE1:		
	LDC	@RR10,R9	; Write data 'A3H' at flash memory location
	INC	R11	,,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
	DJNZ	R1,WR_BYTE1	
	LD	FMUSR,#00H	; User Program mode disable
	SB0		
	•		
	•		
WR	L_BYTE:		
	LDC	@RR10,R9	; Write data written by R9 at flash memory location
	INC	R11	
	DJNZ	R0,WR_BYTE	
	RET		

READING

The read operation starts by 'LDC' instruction.

The program procedure in user program mode

- 1. Load a flash memory upper address into upper register of pair working register.
- 2. Load a flash memory lower address into lower register of pair working register.
- 3. Load receive data from flash memory location area on 'LDC' instruction by indirectly addressing mode

PROGRAMMING TIP — Reading

•

	• LD	R2,#03H	; Load flash memory's upper address
	LD	R3,#00H	; to upper register of pair working register ; Load flash memory's lower address
			; to lower register of pair working register
LOOP:	LDC	R0,@RR2	; Read data from flash memory location ; (Between 300H and 3FFH)
	INC	R3	
	СР	R3,#0FFH	
	JP	NZ,LOOP	
	•		
	•		

HARD LOCK PROTECTION

User can set Hard Lock Protection by writing '0110B' in FMCON7-4. This function prevents the changes of data in a flash memory area. If this function is enabled, the user cannot write or erase the data in a flash memory area. This protection can be released by the chip erase execution in the tool program mode. In terms of user program mode, the procedure of setting Hard Lock Protection is following that. In tool mode, the manufacturer of serial tool writer could support Hardware Protection. Please refer to the manual of serial program writer tool provided by the manufacturer.

The program procedure in user program mode

- 1. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 2. Set Flash Memory Control Register (FMCON) to "01100001B".
- 3. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

PROGRAMMING TIP — Hard Lock Protection

•		
SB1 LD	FMUSR,#0A5H	; User program mode enable
LD	FMCON,#01100001B	; Select Hard Lock Mode and Start protection
LD SB0	FMUSR,#00H	; User program mode disable

- ٠
- •

NOTES

15 LOW VOLTAGE DETECTOR

OVERVIEW

The S3F80P9 micro-controller has a built-in Low Voltage Detector (LVD) circuit, which allows LVD and LVD_FLAG detection of power voltage. The S3F80P9 has two options in LVD and LVD_FLAG voltage level according to the operating frequency to be set by smart option (Refer to the page 2-4).

Operating Frequency 8MHz:

- Low voltage detect level for Backup Mode and Reset (LVD): 1.65V (Typ) \pm 50mV
- Low voltage detect level for Flash Flag Bit (LVD_FLAG): 1.88, 1.98, 2.53, 2.73V (Typ) ± 100mV

After power-on, LVD block is always enabled. LVD block is only disable when executed STOP instruction. The LVD block of S3F80P9 consists of two comparators and a resistor string. One of comparators is for LVD detection, and the other is for LVD_FLAG detection.

LVD

LVD circuit supplies two operating modes by one comparator: back-up mode input and system reset input. The S3F80P9 can enter the back-up mode and generate the reset signal by the LVD level (note1) detection using LVD circuit. When LVD circuit detects the LVD level in falling power, S3F80P9 enters the Back-up mode. Back-up mode input automatically creates a chip stop state. When LVD circuit detects the LVD level in rising power, the system reset occurs. When the reset pin is at a high state and the LVD circuit detects rising edge of V_{DD} on the point V_{LVD} , the reset pulse generator makes a reset pulse, and system reset occurs. This reset by LVD circuit is one of the S3F80P9 reset sources. (Refer to the page 8-3 for more.)

LVD FLAG

The other comparator's output makes LVD indicator flag bit '1' or '0'. That is used to indicate low voltage level. When the power voltage is below the LVD_FLAG level, the bit 0 of LVDCON register is set '1'. When the power voltage is above the LVD_FLAG level, the bit 0 of LVDCON register is set '0' automatically. LVDCON.0 can be used flag bit to indicate low battery in IR application or others.

NOTES

- 1. A term of LVD is a symbol of parameter that means 'Low Level Detect Voltage for Back-Up Mode'.
- 2. A term of LVD_FLAG is a symbol of parameter that means 'Low Level Detect Voltage for Flag Indicator'.
- 3. The voltage gaps(LVD_GAPn (n=1~4)) between LVD and LVD FLAGn(n=1~4) have ± 80mV distribution. LVD and LVD FLAGn(n=1~4) are not overlapped

Symbol	Min	Тур	Max	Unit
LVD_GAP1	150	230	310	mV
LVD_GAP2	250	330	410	mV
LVD_GAP3	800	880	960	mV
LVD_GAP4	1000	1080	1160	mV

Symbol	Min	Тур	Max	Unit
GAP Between LVD_Flag1 and LVD_Flag2	50	100	150	mV
GAP Between LVD_Flag2 and LVD_Flag3	500	550	600	mV
GAP Between LVD_Flag3 and LVD_Flag4	150	200	250	mV

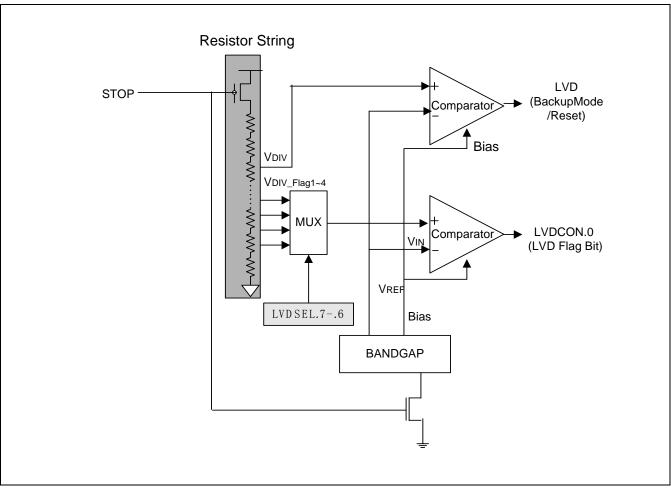


Figure 15-1. Low Voltage Detect (LVD) Block Diagram

LOW VOLTAGE DETECTOR CONTROL REGISTER (LVDCON)

LVDCON.0 is used flag bit to indicate low battery in IR application or others. When LVD circuit detects LVD_FLAG, LVDCON.0 flag bit is set automatically. The reset value of LVDCON is #00H.

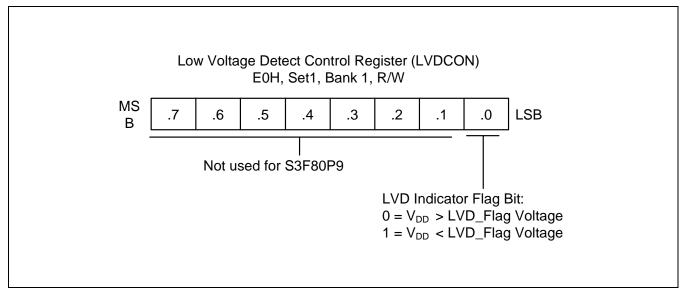


Figure 15-2. Low Voltage Detect Control Register (LVDCON)

LOW VOLTAGE DETECTOR FLAG SELECTION REGISTER (LVDSEL)

LVDSEL is used to select LVD flag level. The reset value of LVDSEL is #00H.

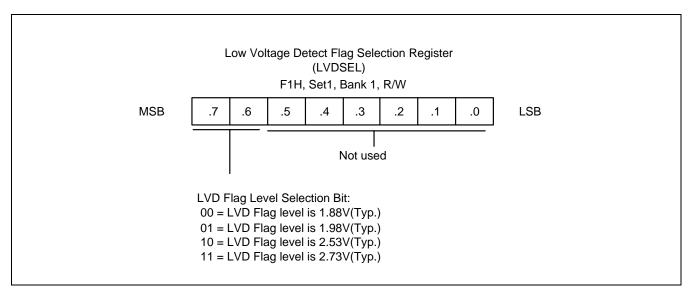


Figure 15-3. Low Voltage Detect Flag Selection Register (LVDSEL)

16 ELECTRICAL DATA

OVERVIEW

In this section, S3F80P9 electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute Maximum Ratings
- D.C. Electrical Characteristics
- Characteristics of Low Voltage Detect Circuit
- Data Retention Supply Voltage in Stop Mode
- Typical Low-Side Driver (Sink) Characteristics
- Typical High-Side Driver (Source) Characteristics
- Stop Mode Release Timing When Initiated by an External Interrupt
- Stop Mode Release Timing When Initiated by a Reset
- Stop Mode Release Timing When Initiated by a LVD
- Input/Output Capacitance
- A.C. Electrical Characteristics
- Input Timing for External Interrupts
- Input Timing for Reset
- Oscillation Characteristics
- Oscillation Stabilization Time
- Operating Voltage Range
- A.C. Electrical Characteristics for Internal Flash ROM

Table 16-1. Absolute Maximum Ratings

(T _A	=	25	°C)
-----------------	---	----	-----

Parameter	Symbol	Conditions	Rating *TBD	Unit
Supply Voltage	V _{DD}	_	– 0.3 to + 3.8	V
Input Voltage	V _{IN}	0.3 to V _{DD} + 0.3		V
Output Voltage	V _O	All output pins	– 0.3 to V _{DD} + 0.3	V
Output Current High	I _{ОН}	One I/O pin active	– 18	
		All I/O pins active	- 60	mA
Output Current Low	I _{OL}	One I/O pin active	+ 30	
		All I/O pins active	+ 150	mA
Operating Temperature	T _A	_	-25 to + 85	°C
Storage Temperature	T _{STG}	-	– 65 to + 150	°C

Table 16-2. D.C. Electrical Characteristics

(T_A = -25 °C to + 85 °C, V_{DD} = 1.60 V to 3.6 V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage	V_{DD}	F _{OSC} = 4MHz, 8 MHz	1.60	-	3.6	V
Input High Voltage	V _{IH1}	All input pins except V_{IH2} and V_{IH3} $$ 0.8 V_{DD}		_	V _{DD}	V
	V _{IH2}	nRESET	0.85 V _{DD}		V _{DD}	
	V _{IH3}	X _{IN}	V _{DD} – 0.3		V _{DD}	
Input Low Voltage	V _{IL1}	All input pins except V_{IL2} and V_{IL3}	0	-	0.2 V _{DD}	V
	V _{IL2}	nRESET			0.2 V _{DD}	
	V _{IL3}	X _{IN}			0.3	
Output High Voltage	V _{OH1}	$V_{DD} = 1.70V$, $I_{OH} = -6mA$ Port 3.1 only	V _{DD} – 0.7			V
	V _{OH2}	V _{DD} = 1.70 V, I _{OH} = - 2.2mA P3.0 and P2.0-2.3	V _{DD} – 0.7	_	-	
	V _{OH3}	V _{DD} = 1.70 V, I _{OH} = – 1mA Port0, Port1, P2.4-2.7	V _{DD} – 1.0			

Table 16-2. D.C. Electrical Characteristics (Continued)

(T _A	=	-25 °C	to + 85	°C, V _{DD}	= 1.60	V to 3.6 V)
-----------------	---	--------	---------	---------------------	--------	-------------

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Low Voltage	V _{OL1}	V _{DD} = 1.70 V, I _{OL} = 8mA Port 3.1 only	-	0.4	0.5	V
	V _{OL2}	V _{DD} = 1.70 V, I _{OL} = 5mA P3.0 and P2.0-2.3		0.4	0.5	
	V _{OL3}	V _{DD} = 1.70 V, I _{OL} = 2mA Port0, Port1, P2.4-2.7		0.4	1.0	
Input High Leakage Current	I _{LIH1}	$V_{IN} = V_{DD}$ All input pins except I _{LIH2} and X_{OUT}	_	_	1	μA
	I _{LIH2}	$V_{IN} = V_{DD}, X_{IN}$			20	
Input Low Leakage Current	I _{LIL1}	$V_{IN} = 0 V$ All input pins except I _{LIL2} and X_{OUT}	_	_	- 1	μA
	I _{LIL2}	$V_{IN} = 0 V, X_{IN}$			- 20	
Output High Leakage Current	I _{LOH}	V _{OUT} = V _{DD} All output pins	-	_	1	μA
Output Low Leakage Current	I _{LOL}	V _{OUT} = 0 V All output pins	-	_	- 1	μΑ
Pull-Up Resistors	R _{L1}	$V_{IN} = 0 V, V_{DD} = 2.35 V$ $T_A = 25^{\circ}C, Ports 0-3$	44	67	95	kΩ
	R_{L2}	$V_{IN} = 0 V, V_{DD} = 2.35 V$ $T_A = 25^{\circ}C, nRESET$	150	500	1000	kΩ
Feedback Resistor	R _{fd}	$V_{IN} = V_{DD}, V_{DD} = 2.35V$ $T_A = 25^{\circ}C, X_{IN}$	300	700	1500	kΩ

(T_A = -25 °C to + 85 °C, V_{DD} = 1.60 V to 3.6 V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Current (note1)	I _{DD1}	Operating Mode ^(note2) V _{DD} = 3.6 V 8 MHz crystal	-	3	6	mA
	I _{DD2}	Idle Mode V _{DD} =3.6 V 8 MHz crystal	_	1	2	
	I _{DD3}	Stop Mode LVD OFF, V _{DD} = 3.6 V	-	0.7	5	uA
	I _{DD12}	Operating Mode V _{DD} = 3.6 V 4 MHz crystal	-	1.5	3	mA
	I _{DD22}	Idle Mode V _{DD} =3.6 V 4 MHz crystal	-	0.5	1	

NOTES:

- 1. Supply current does not include current drawn through internal pull-up resistors or external output current loads.
- 2. IDD1 includes flash operating current (flash erase/write/read operation).
- 3. The adder by LVD on current in back-up mode is 18uA.

Conditions	Min	Тур	Max	Unit
LVD on current in back-up mode $V_{DD} = 1.60V$		18	35	uA

Note) Back-up mode voltage is VDD between LVD and POR.

Table 16-3. Characteristics of Low Voltage Detect Circuit

 $(T_A = -25 \ ^{\circ}C \ to \ + 85 \ ^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Hysteresis Voltage of LVD (Slew Rate of LVD)	ΔV	_	-	100	200	mV
Low Level Detect Voltage for Back-Up Mode	LVD	_	1.60	1.65	1.70	V
Low Level Detect Voltage	LVD_FLAG1	_	1.78	1.88	1.98	V
for Flag Indicator	LVD_FLAG2	_	1.88	1.98	2.06	V
	LVD_FLAG3	_	2.43	2.53	2.63	V
	LVD_FLAG4	_	2.63	2.73	2.83	V

NOTE: The voltage gaps(LVD_GAPn (n=1~4)) between LVD and LVD FLAGn(n=1~4) have ± 80mV distribution. LVD and LVD FLAGn(n=1~4) are not overlapped. The variation of LVD FLAGn(n=1~4) and LVD always is shifted in same direction. That is, if one chip has positive tolerance(e.g. + 50mV) in LVD FLAG, LVD has positive tolerance.

Symbol	Min	Тур	Max	Unit
LVD_GAP1	150	230	310	mV
LVD_GAP2	250	330	410	mV
LVD_GAP3	800	880	960	mV
LVD_GAP4	1000	1080	1160	mV

Symbol	Min	Тур	Max	Unit
GAP Between LVD_Flag1 and LVD_Flag2	50	100	150	mV
GAP Between LVD_Flag2 and LVD_Flag3	500	550	600	mV
GAP Between LVD_Flag3 and LVD_Flag4	150	200	250	mV

Table 16-4. Power On Reset Circuit

 $(T_A = -25 \circ C \text{ to } + 85 \circ C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power on reset (POR) Voltage	V _{POR}	_	0.8	1.1	1.4	V

Table 16-5. Data Retention Supply Voltage in Stop Mode

 $(T_A = -25 \circ C \text{ to } + 85 \circ C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data Retention Supply Voltage	V _{DDDR}	-	0.8	_	3.6	V
Data Retention Supply Current	IDDDR	V _{DDDR} = 1.0 V Stop Mode	_	_	1	μA

NOTE: Data Retention Supply Current means that the minimum supplied current for data retention. When the battery voltage is not sufficient (i,e, the supply current is <1uA), the data retention could be not be guaranteed.

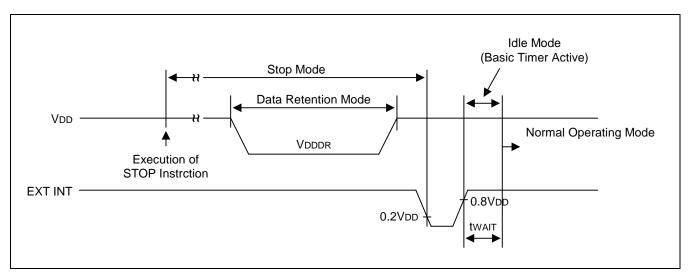


Figure 16-1. Stop Mode Release Timing When Initiated by an External Interrupt

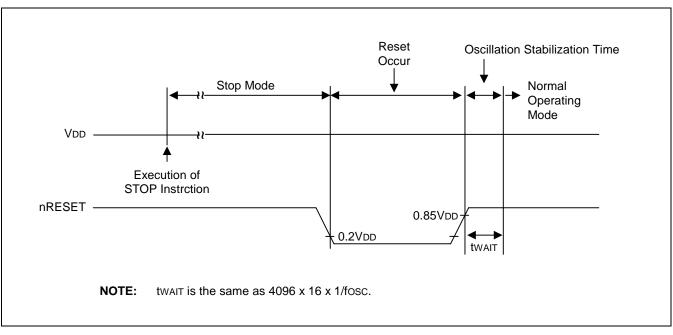
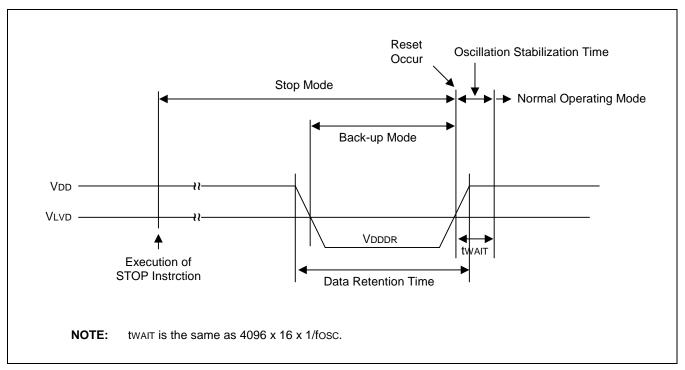



Figure 16-2. Stop Mode Release Timing When Initiated by a Reset

 $(T_A = -25 \circ C \text{ to } + 85 \circ C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Capacitance	C _{IN}	f = 1 MHz $V_{DD} = 0 V$, unmeasured pins	_	_	10	pF
Output Capacitance	C _{OUT}	are connected to V_{SS}				
I/O Capacitance	C _{IO}					

 $(T_A = -25 \circ C \text{ to } + 85 \circ C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Interrupt Input High, Low Width	t _{INTH} , t _{INTL}	P0.0–P0.7, P2.0–P2.7 V _{DD} = 3.6 V	200	300	I	ns
nRESET Input Low Width	t _{RSL}	Input V _{DD} = 3.6 V	1000	_	-	

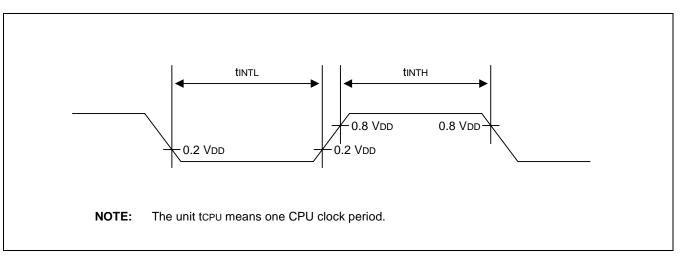


Figure 16-4. Input Timing for External Interrupts (Port 0 and Port 2)

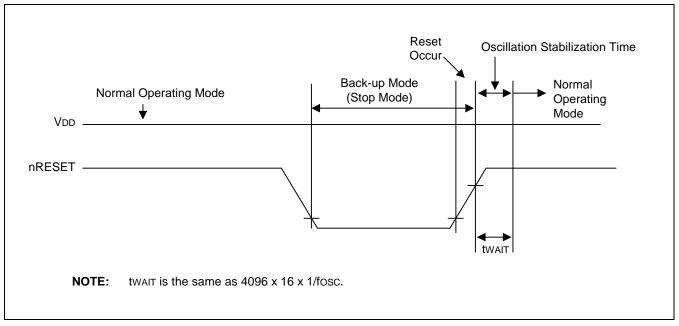


Figure 16-5. Input Timing for Reset (nRESET Pin)

 $(T_A = -25 \circ C \text{ to } + 85 \circ C)$

Oscillator	Clock Circuit	Conditions	Min	Тур	Max	Unit
Crystal		CPU clock oscillation frequency	1	_	8	MHz
Ceramic		CPU clock oscillation frequency	1	_	8	MHz
External Clock	ExternalXIN Clock Open PinXOUT	X _{IN} input frequency	1	_	8	MHz

Table 16-9. Oscillation Stabilization Time

(T_A = -25 °C to + 85 °C, V_{DD} = 3.6 V)

Oscillator	Test Condition	Min	Тур	Max	Unit
Main crystal	f _{OSC} > 1 MHz	_	_	20	ms
Main ceramic	Oscillation stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range.	_	-	10	ms
External clock (main system)	$X_{\mbox{\scriptsize IN}}$ input High and Low width (t_{\mbox{\scriptsize XH}}, t_{\mbox{\scriptsize XL}})	25	-	500	ns
Oscillator	t_{WAIT} when released by a reset (note1)	_	2 ¹⁶ /f _{OSC}	_	ms
stabilization wait time	t _{WAIT} when released by an interrupt (note2)	-	_	-	ms

NOTES:

1. f_{OSC} is the oscillator frequency.

 The duration of the oscillation stabilization time (t_{WAIT}) when it is released by an interrupt is determined by the setting in the basic timer control register, BTCON.

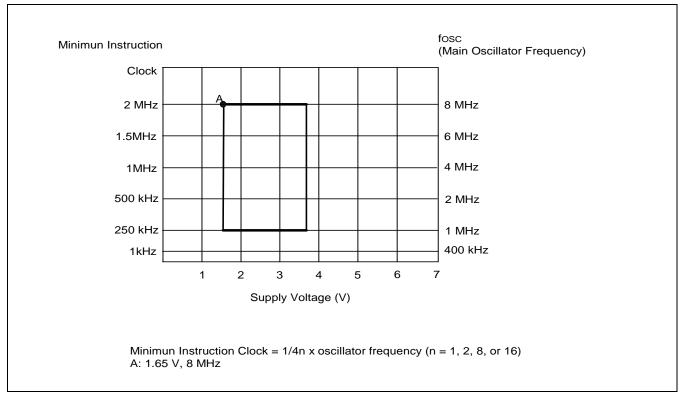


Figure 16-6. Operating Voltage Range of S3F80P9

Table 16-10.	AC Electrical	Characteristics	for Internal	Flash ROM
		onunuotonistios		

 $(T_A = -25 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Flash Erase/Write/Read Voltage	Fewrv	V _{DD}	1.60	3.3	3.6	V
Programming Time (note1)	Ftp	_	20	_	30	μS
Sector Erasing Time (note2)	Ftp1		4	Ι	12	mS
Chip Erasing Time (note3)	Ftp2		32	-	70	mS
Data Access Time	Ft _{RS}	$V_{DD} = 2.0 V$	-	250	_	nS
Number of Writing/Erasing	FNwe	_	10,000	-	-	Times
Data Retention	Ftdr	_	10	_	_	Years

NOTES:

1. The programming time is the time during which one byte (8-bit) is programmed.

2. The Sector erasing time is the time during which all 128-bytes of one sector block is erased.

3. In the case of S3F80P9, the chip erasing is available in Tool Program Mode only.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Electrostatic discharge	V _{ESD}	НВМ	2000	_	_	V
		ММ	200	_	_	V
		CDM	500	_	_	V

Table 16-11. ESD Characteristics

NOTE: If on board programming is needed, it is recommended that add a 0.1uF capacitor between TEST pin and VSS for better noise immunity; otherwise, connect TEST pin to VSS directly. It is recommended also that add a 0.1uF capacitor between nRESET pin and VSS for better noise immunity.

17 MECHANICAL DATA

OVERVIEW

The S3F80P9 micro-controller is currently available in a 44-pin QFP, 32-pin SOP and 28-pin SOP package.

Figure 17-1. 44-Pin QFP Package Dimension

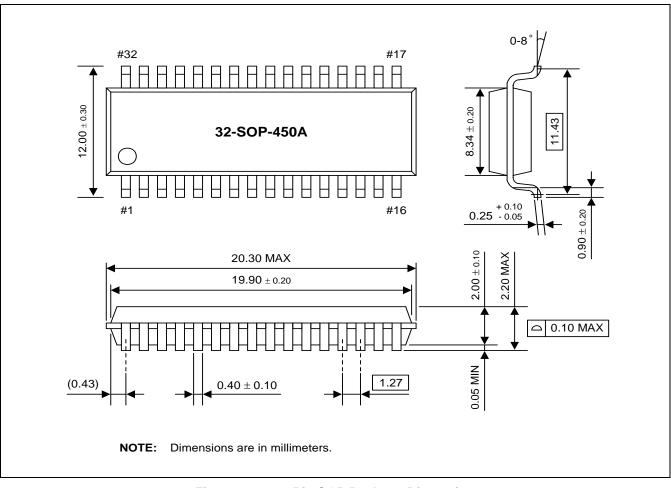


Figure 17-2. 32-Pin SOP Package Dimension



Figure 17-3. 28-Pin SOP Package Dimension

NOTES

18 S3F80P9 FLASH MCU

OVERVIEW

The S3F80P9 single-chip CMOS microcontroller is the Flash MCU. It has an on-chip Flash MCU ROM. The Flash ROM is accessed by serial data format.

NOTE

This chapter is about the Tool Program Mode of Flash MCU.

If you want to know the User Program Mode, refer to the chapter 13. Embedded Flash Memory Interface.

PIN ASSIGNMENTS (28-PIN SOP PACKAGE)

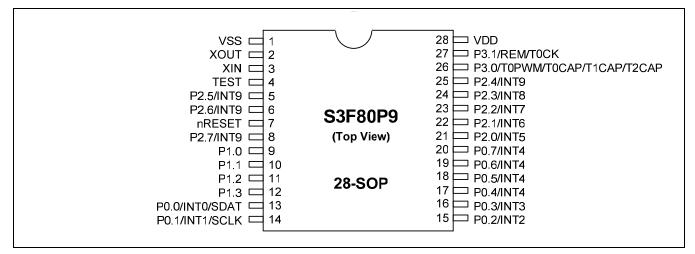


Figure 18-1. Pin Assignment Diagram (28-Pin SOP Package)

PIN ASSIGNMENTS (32-PIN SOP PACKAGE)

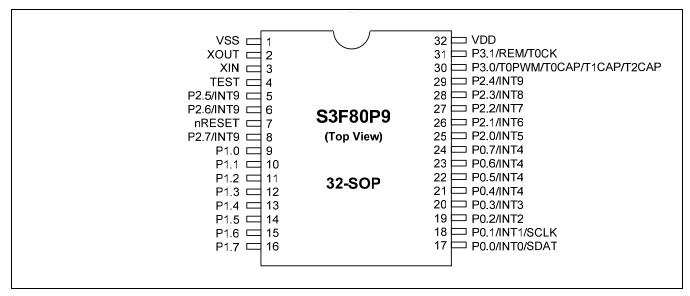


Figure 18-2. Pin Assignment Diagram (32-Pin SOP Package)

PIN ASSIGNMENTS (44-PIN QFP PACKAGE)

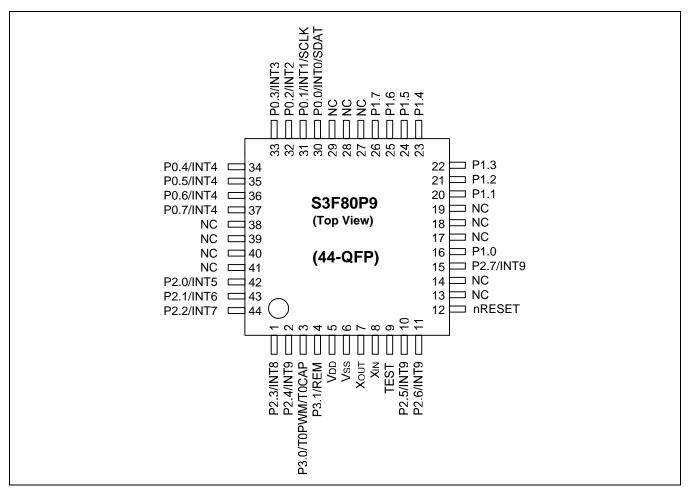


Figure 18-3. Pin Assignment Diagram (44-Pin QFP Package)

Normal Chip	During Programming			
Pin Name	Pin Name	Pin No.	I/O	Function
P0.0	SDAT	13(17)[30]	I/O	Serial data pin. Output port when reading and input port when writing. SDAT (P3.0) can be assigned as an input or push-pull output port.
P0.1	SCLK	14(18)[31]	I	Serial clock pin. Input only pin.
TEST	TEST	4(4)[9]	I	Tool mode selection when TEST pin sets Logic value '1'. If user uses the flash writer tool mode (ex.spw2+ etc.), user should connect TEST pin to V_{DD} . (S3F80P9 supplies high voltage 12.5V by internal high voltage generation circuit.)
nRESET	nRESET	7(7)[12]	I	Chip Initialization
V _{DD} , V _{SS}	V_{DD}, V_{SS}	28(32)[5], 1(1)[6]	_	Power supply pin for logic circuit. V _{DD} should be tied to +3.3 V during programming.

NOTE: [] means 44QFP package. () means 32SOP package.

Test Pin Voltage

The TEST pin on socket board for OTP/MTP writer must be connected to Vdd (3.3V). <u>The TEST pin on socket</u> <u>board must not be connected Vpp(12.5V)</u> which is generated from OTP/MTP Writer. So the specific socket board for S3F80K5 must be used, when writing or erasing using OTP/MTP writer.

OPERATING MODE CHARACTERISTICS

When 3.3 V is supplied to the TEST pin of the S3F80P9, the Flash ROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 18-2 below.

V _{DD}	TEST	REG/nMEM	Address (A15–A0)	R/W	Mode
3.3 V	3.3 V	0	0000H	1	Flash ROM read
	3.3 V	0	0000H	0	Flash ROM program
	3.3 V	1	0E3FH	0	Flash ROM read protection

NOTE: "0" means Low level; "1" means High level.

19 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system on a turnkey basis. The development support system is composed of a host system, debugging tools, and supporting software. For a host system, any standard computer that employs Win95/98/2000/XP as its operating system can be used. A sophisticated debugging tool is provided both in hardware and software: the powerful in-circuit emulator, OPENice-i500 and SK-1200, for the S3C7-, S3C9-, and S3C8- microcontroller families. Samsung also offers supporting software that includes, debugger, an assembler, and a program for setting options.

TARGET BOARDS

Target boards are available for all the S3C8/S3F8-series microcontrollers. All the required target system cables and adapters are included on the device-specific target board. TB80PB is a specific target board for the development of application systems using S3F80P9.

PROGRAMMING SOCKET ADAPTER

When you program S3F80P9's flash memory by using an emulator or OTP/MTP writer, you need a specific programming socket adapter for S3F80P9.

[Development System Configuration]

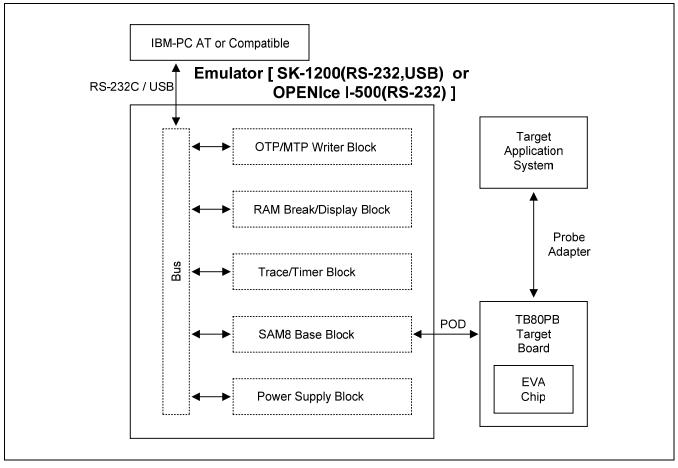


Figure 19-1. Development System Configuration

TB80PB TARGET BOARD

The TB80PB target board can be used for development of S3F80P9 and S3F80PB together. But you should be careful to set the memory size to program internal flash memory. The TB80PB target board is operated as target CPU with Emulator (SK-1200, OPENIce I-500)

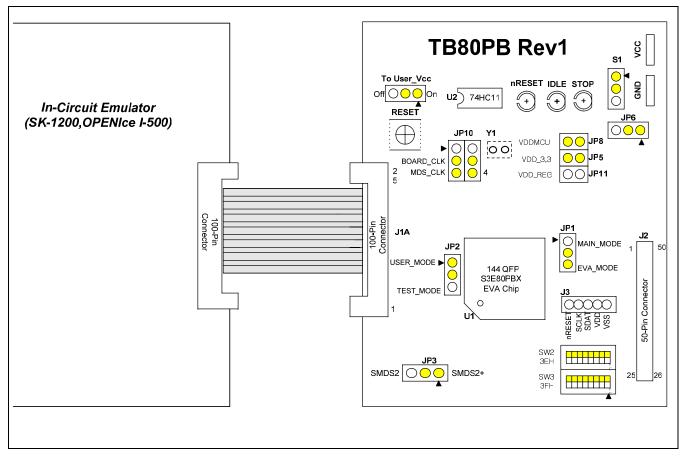


Figure 19-2. TB80PB Target Board Configuration

NOTES

- 1. TB80PB should be supplied 3.3V normally. So the power supply from Emulator should be set 3.3V for the target board operation. If the power supply from Emulator is set to 5V, you should activate 3.3V regulator on the TB80PB by setting the related jumpers (see Table 19-2).
- 2. The symbol '**4** ' marks start point of jumper signals.

JP#	Description	1-2 Connection		2-3 Connection	Default Setting
S1	Target board power source	Use JP7(VCC)	NOT connected		Join 1-2
JP1	Target board mode selection	H: Main-Mode	L: EVA-Mode		Join 2-3
JP2	Operation Mode	H: User Mode	L: Test-Mode		Join 1-2
JP3	MDS version	SMDS2	SMDS2+,SK-1200,OPENIce I-500		Join 2-3
JP4 To User_Vcc	Target system is supplied V_{DD}	Target system is supplied V _{DD} from user system.Target system is not supplied V _{DD} from user system.		ON setting	
JP5	Board peripheral power connection	Board peripheral power connection		Connect	
JP6	When supplied 5V in target board, generation of 3.3V using regulator.	In case of selection 3.3V or Emulator (Not use 3.3V regulator)	f	In case of selection 5V of Emulator (Use 3.3V Regulator)	Join 2-3
JP7,JP9	POWER connector	JP7: VCC JP9:GND			-
JP8	80PBX V _{DD} power connection	80PB V _{DD} power connection		Connect	
JP10	Clock source selection	When using the internal clock source which is generated from Emulator, join connector 2-3 and 4-5 pin. If user wants to use the external clock source like a crystal, user should change the jumper setting from 1-2 to 5-6 and connect Y1 to an external clock source.		Emulator 2-3 4-5	
JP11,12	NOT used for TB80PB	-		NOT connected	
SW1	Generation low active reset signal to S3F80PB EVA-chip	Push switch		-	
SW2	Smart option at address 3EH	Dip switch for smart option. This 1byte is mapped address 3EH for special function. Refer to the page 2-3.			
SW3	Smart option at address 3FH	Dip switch for smart option. This 1byte is mapped address 3FH for special function. Refer to the page 2-3.			
Y1	External clock source	Connecting points for external clock source			
J3	Header for flash serial programming signals	To program an internal flash, connect the signals with flash writer tool.		J3	
To User_Vcc	Target System is supplied V _{DD}	Target Board is not supplied V _{DD} from user System.	d	Target Board is supplied V _{DD} from user System.	Join 2-3

• nRESET LED

This LED is OFF when the Reset switch is ON.

• IDLE LED

This is LED is ON when the evaluation chip (S3E80PB) is in idle mode.

• STOP LED

This LED is ON when the evaluation chip (S3E80PB) is in stop mode.

DEVELOPMENT TOOLS

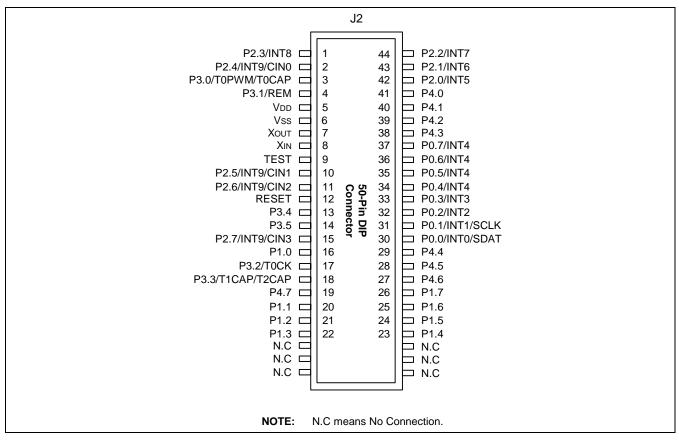


Figure 19-3. 50-Pin Connector Pin Assignment for user System

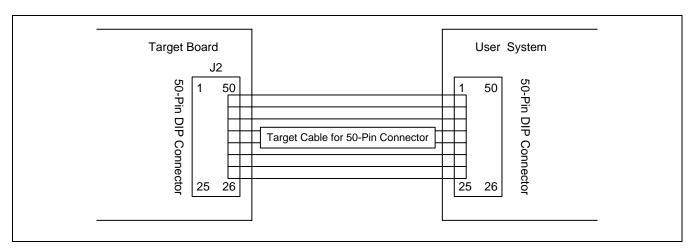


Figure 19-4. TB80PB Probe Adapter Cable

Third parties for Development Tools

SAMSUNG provides a complete line of development tools for SAMSUNG's microcontroller. With long experience in developing MCU systems, our third parties are leading companies in the tool's technology. SAMSUNG Incircuit emulator solution covers a wide range of capabilities and prices, from a low cost ICE to a complete system with an OTP/MTP programmer.

In-Circuit Emulator for SAM8 family

- OPENice-i500
- SmartKit SK-1200

OTP/MTP Programmer

- SPW-uni
- AS-pro
- US-pro
- GW-PRO2 (8 gang programmer)

Development Tools Suppliers

Please contact our local sales offices or the 3rd party tool suppliers directly as shown below for getting development tools.

8-bit In-Circuit Emulator

OPENice - i500	AIJI System		
	 TEL: 82-31-223-6611 FAX: 82-331-223-6613 E-mail : openice@aijisystem.com URL : http://www.aijisystem.com 		
SK-1200	Seminix		
Smart Kit	 TEL: 82-2-539-7891 FAX: 82-2-539-7819 E-mail: sales@seminix.com URL: <u>http://www.seminix.com</u> 		

OTP/MTP PROGRAMMER (WRITER)

SPW-uni	SEMINIX
 Single OTP/ MTP/FLASH Programmer Download/Upload and data edit function PC-based operation with USB port Full function regarding OTP/MTP/FLASH MCU programmer (Read, Program, Verify, Blank, Protection) Fast programming speed (4Kbyte/sec) Support all of SAMSUNG OTP/MTP/FLASH MCU devices Low-cost NOR Flash memory (SST,Samsung) NAND Flash memory (SLC) New devices will be supported just by adding device files or upgrading the software. 	 TEL: 82-2-539-7891 FAX: 82-2-539-7819. E-mail: sales@seminix.com URL: http://www.seminix.com
 AS-pro On-board programmer for Samsung Flash MCU Portable & Stand alone Samsung OTP/MTP/FLASH Programmer for After Service Small size and Light for the portable use Support all of SAMSUNG OTP/MTP/FLASH devices HEX file download via USB port from PC Very fast program and verify time (OTP:2Kbytes per second, MTP:10Kbytes per second) Internal large buffer memory (118M Bytes) Driver software run under various O/S (Windows 95/98/2000/XP) Full function regarding OTP/MTP programmer (Read, Program, Verify, Blank, Protection) Two kind of Power Supplies (User system power or USB power adapter) Support Firmware upgrade 	SEMINIX • TEL: 82-2-539-7891 • FAX: 82-2-539-7819. • E-mail: <u>sales@seminix.com</u> • URL: <u>http://www.seminix.com</u>

OTP/MTP PROGRAMMER (WRITER) (Continued)

	US-pro	SEMINIX
Construction of the second	 Portable Samsung OTP/MTP/FLASH Programmer Portable Samsung OTP/MTP/FLASH Programmer Small size and Light for the portable use Support all of SAMSUNG OTP/MTP/FLASH devices Convenient USB connection to any IBM compatible PC or Laptop computers. Operated by USB power of PC PC-based menu-drive software for simple operation Very fast program and verify time (OTP:2Kbytes per second, MTP:10Kbytes per second) Support Samsung standard Hex or Intel Hex format Driver software run under various O/S (Windows 95/98/2000/XP) Full function regarding OTP/MTP programmer (Read, Program, Verify, Blank, Protection) Support Firmware upgrade 	 TEL: 82-2-539-7891 FAX: 82-2-539-7819. E-mail: <u>sales@seminix.com</u> URL: <u>http://www.seminix.com</u>
	 GW-PRO2 Gang Programmer for OTP/MTP/FLASH MCU 8 devices programming at one time Fast programming speed (1.2Kbyte/sec) PC-based control operation mode or Stand-alone Full Function regarding OTP/MTP program (Read, Program, Verify, Protection, Blank) Data back-up even at power break After setup in Design Lab, it can be moved to the factory site. Key Lock protecting operator's mistake Good/Fail quantity displayed and memorized Buzzer sounds after programming User friendly single-menu operation (PC) Operation status displayed in LCD panel 	SEMINIX • TEL: 82-2-539-7891 • FAX: 82-2-539-7819. • E-mail: <u>sales@seminix.com</u> • URL: <u>http://www.seminix.com</u>

NOTES