Micripm

Empowering Embedded Systems

uC/0S-II
HC/Probe

and the
NXP LPC2103
(Using the IAR LPC2103-02-SK Kickstart Kit)

Application Note
AN-1074

www.Micrium.com

http://www.micrium.com/

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

About Micripm

Micripm provides high-quality embedded software components in the industry by way of engineer-friendly
source code, unsurpassed documentation, and customer support. The company’s world-renowned real-
time operating system, the Micrium pC/OS-Il, features the highest-quality source code available for
today's embedded market. Micrium delivers to the embedded marketplace a full portfolio of embedded
software components that complement pC/0S8-1l. A TCP/IP stack, USB stack, CAN stack, File System
(FS), Graphical User Interface (GUI), as well as many other high quality embedded components.
Micrium’s products consistently shorten time-to-market throughout all product development cycles. For
additional information on Micrium, please visit www.micrium.com.

About uC/OS-I1l

pC/OS-II is a preemptive, real-time, multitasking kernel. puC/OS-Il has been ported to over 45 different
CPU architectures.

pC/OS-II is small yet provides all the services you'd expect from an RTOS: task management, time and
timer management, semaphore and mutex, message mailboxes and queues, event flags an much more.

You will find that pC/OS-II delivers on all your expectations and you will be pleased by its ease of use.

Licensing

pC/0OS-Il is provided in source form for FREE evaluation, for educational use or for peaceful research. If
you plan on using pC/OS-Il in a commercial product you need to contact Micrium to properly license its
use in your product. We provide ALL the source code with this application note for your convenience and
to help you experience pC/OS-Il. The fact that the source is provided DOES NOT mean that you can

use it without paying a licensing fee. Please help us continue to provide the Embedded community with
the finest software available. Your honesty is greatly appreciated.

http://www.micrium.com/

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

About uC/Probe Demo Version

pC/Probe is a Windows application that allows a user to display and change the value (at run-time) of
virtually any variable or memory location on a connected embedded target. The user simply populates
pC/Probe’s graphical environment with gauges, tables, graphs, and other components, and associates
each of these with a variable or memory location. Once the application is loaded onto the target, the user
can begin pC/Probe’s data collection, which will update the screen with variable values fetched from the
target.

pC/Probe retrieves the values of global variables from a connected embedded target and displays the
values in an engineer-friendly format. The supported data-types are: booleans, integers, floats and ASCII
strings.

pC/Probe can have any number of ‘data screens’ where these variables are displayed. This allows to
logically grouping different ‘views’ into a product.

This pC/Probe demo version can only retrieve information from RS-232C or J-LINK interfaces and is
limited up to 15 symbols.

The demo version of uC/Probe is available on the Micrium website:

http://www.micrium.com/products/probe/probe.html

About uC/Probe Full Version

The full version of uC/Probe allows you to use a TCP/IP is a Windows application that allows a user to
display and change the value (at run-time) of virtually any variable or memory location on a connected
embedded target. The user simply populates uC/Probe’s graphical environment with gauges, tables,
graphs, and other components, and associates each of these with a variable or memory location. Once
the application is loaded onto the target, the user can begin uC/Probe’s data collection, which will update
the screen with variable values fetched from the target.

http://www.micrium.com/products/probe/probe.html

Micripm
OS-ll and Probe for the
NXP LPC2103 CPU

Manual Version

If you find any errors in this document, please inform us and we will make the appropriate corrections for
future releases.

Version Date By Description
V 1.00 2008/19/19 FT Initial revision.

Software Versions

This document may or may not have been downloaded as part of an executable file, Micrium-NXP-uCOS-
I1-LPC2103-02-SK.exe containing the code and projects described here. If so, then the versions of the
Micrium software modules in the table below would be included. In either case, the software port
described in this document uses the module versions in the table below

Module Version Comment
oS-Il V2.86
Probe V2.20

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

Document Conventions

Numbers and Number Bases

Hexadecimal numbers are preceded by the “Ox” prefix and displayed in a monospaced font.
Example: 0xFF886633.

Binary numbers are followed by the suffix “b”; for longer numbers, groups of four digits are
separated with a space. These are also displayed in a monospaced font. Example: 0101 1010
0011 1100b.

Other numbers in the document are decimal. These are displayed in the proportional font
prevailing where the number is used.

Typographical Conventions

Hexadecimal and binary numbers are displayed in a monospaced font.

Code excerpts, variable names, and function names are displayed in a monospaced font.
Functions names are always followed by empty parentheses (e.g., 0S_Start ()). Array names
are always followed by empty square brackets (e.g., BSP_Vector Arrayl[]).

File and directory names are always displayed in an italicized serif font. Example:
/Micrium/Sofware/uCOS-11/Source/.

A bold style may be layered on any of the preceding conventions—or in ordinary text—to more
strongly emphasize a particular detail.

Any other text is displayed in a sans-serif font.

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

Table of Contents

Table of Contents 6
1. Introduction 7
2. Getting Started 9
201 Setting up the Hardware 9
2.02 Directory Tree 9
2.03 Using the IAR Projects 11
2.03.01 pC/0S-Il Kernel Awareness 11
2.04 Example Applications 12
3. Directories and Files 13
4, Application Code 16
4.01 app.c 16
4.02 os_cfg.h 18
5. Board Support Package (BSP) 19
5.01 BSP, bsp.c and bsp.h 19
5.02 Processor Initialization Functions 20
6. pC/Probe 22
Licensing 25

References 25

Contacts 25

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

1. Introduction

This document, AN-1074, explains example code for using pC/OS-1l1 and uC/Probe with the NXP
LPC2103 processor on the IAR LPC2103-02-SK evaluation board, shown in Figure 1.

The LPC2103 microcontroller is based on a 16-bit/32-bit ARM7TDMI-S CPU with real-time emulation that
combines the microcontroller with 32 kB of embedded high speed flash memory. A blend of serial
communications interfaces, ranging from multiple UARTS, SPI, and SSP to two 12Cs, and on-chip SRAM
of 8 kB make these devices very well suited for communication gateways and protocol converters.

The IAR LPC2103-02-SK board includes :

* NXP LPC2103 MCU

+ J-LINK on-chip with USB cable

* One serial port

* Reset button

* In-system programming (ISP) button

» Two user-defined buttons

+ 16 fully configurable LEDs

* Power-on LED

« Lithium back-up battery and holder

* Breakout headers for all pins (suitable for mounting daughter boards)
» Small array of plated holes for prototyping

LEDs
RS-232
X) 2
(for pC/Probe) P J -
- 1},
&1
= .
]
: Potentiometer
iele
Ol o.‘
J-LINK on-chip with Push Buttons
ISR Cahe

Figure 1-1. I1AR LCP2103-02-SK

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

If this appnote was downloaded in a packaged executable zip file, then it should have been found in the
directory /Micrium/Appnotes/AN1xxx-RTOS/AN1074-uCOS-11-NXP-LPC2103-02-SK and the code files
referred to herein are located in the directory structure displayed in Section 2.02; these files are described
in Section 3.

The executable zip also includes example workspaces for uC/Probe. pC/Probe is a Windows program
which retrieves the value of variables form a connected embedded target and displays the values in an
engineer-friendly format as shown in Figure 1-2. It interfaces with the IAR LPC2103-02-SK via RS-232C.
For more information, including instructions for downloading a trial and the demo version of the program,
please referto Section 6.

! w i
- Hame: Mumeric Meters Graphs Sliders Tanks Miscelanesous Switches Leds Dials Levels (7]
2 & o
@
oot il
3. M| Alignment T
["n] 05: General Info” 05: Task Info | 05: Task CPU Usage | 05: Task Stack Usage | 05: About | 05: Events | 05: Timers | 05: Configuration (General) | 05:C4 * X
£
o .
Z| Task Stack Information
&
i e pst_,g.:k _sta:k Usage Stack
kS ointer Current Starts @ Ends @
% uC/0S-II Idle 0x20006C00 BO/512 72/512 0x20006C48 | Ox20006448
uC/OS-II Stat 0x200069F0 | 112/512 BB/512 0x20006448 | 0x20006848
uC/OS-II Tmr 0x20006008 | 104/512 | 112/512 | 0x20006E48 | 0x20006C48
lﬂ? Start 0x200061D0 | 228/512 (120/512 | 0x20006248 | 0x20006048
-53:" Probe RS-232 0x20005610 | 112/1024 | 120/1024 | 0x20005688 | 0x20005288
g KSD LED Task 0x200067E8 | 92/512 96/512 0x20006848 | Ox20006648
%U Probe OS PlugIn 0x20006FD8 | 108/512 (112/512 | 0x20007048 | 0x20006E48
% Push Buttons 0x200063D8 | 96/512 112/512 | 0x20006448 | 0x20006248
P SCP1000 Sensor 0x20002B98 | 184/2048 | 104/2048 | 0x20002C00 | 0x20002400
Probe 5tr 0x200065E8 | 124/512 96/512 0x20006648 | Ox20006448
USBE Task 0x20003E10 | 220/1024 |[120/1024 | 0x20003E88 | Ox20003AB8
FS Task 0x20001388 | 6B0/4096 | 120/4096 | 0x20001400 | 0x20000400
Frobe USB 0x20005908 | 176/1024 176/1024 | 0x20005AB8 | 0x20005688
MSD Task 0x200041E0 | 376/1024 | 168/1024 | 0x20004288 | Ox20003E88
General Task Information
. Task Status Context Current
Name D Priarity State Delay | Waiting On |M i CPU Usage
uC/0S-1I Idle 65535 31 Ready | === | | e 30952 84.57%
uC/0S-II Stat 65534 30 Delay s [| = 720 0.69%
uC/OS-II Tmr 65533 29 Semaphore | ----- 0S-TmrSig | -==-- 588 0.04%
Start 2 2 Mailbox 251 Kbd Mbox o 295 0.01%
Probe RS-232 13 13 Semaphore | ----- Probe RS-232| -----
il IR I R Bl i <
Probe OS Plugln 11 11 Delay 2 || e String Tx #00013
Push Buttons 3 3 Delay » || String Tx #ODO12
SCP1000 Sensor 16 16 Delay ueE | = String Tx #0005
Probe Str 5 5 Delay 814 | | - String Tx HO00L6
USBE Task 7 7 Delay ST String Tx #00017
FS Task 6 6 | Semaphore | 407 | AppFSLock | ----- String Tx #00018
Probe USB 15 15 Ready | -——- [| - String Tx #00019
MSD Task B 8 Semaphore | ----- uC/USB-Devicgl ----- String Tx #000z0
Frring Tx #000zZ1
String Tx HO00ZZ
String Tx #00023
Frring Tx #OO0Z4
os-11™ For more information, visit :Zii:g > ;EEEE:
The Real-Time Kernel www.micrium.com zzii:g ;: ;ggg;;
Running USE 34B61 4BED 177469 bytes/sec iy

Figure 1-2. puC/Probe (with Target Output Window)

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

2. Getting Started

The following sections step through the prerequisites for using the demonstration application described in
this document, AN-1074 First, the setup of the hardware will be outlined. Second, the use and setup of
the IAR Embedded Workbench project will be described. Thirdly, the steps to build the projects and load
the application onto the board through a JTAG will be described. Lastly, instructions will be provided for
using the example application.

2.01 Setting up the Hardware

The evaluation board can only be powered through the USB connector on the board. The processor on
the evaluation board can be programmed and debugged through the USB J-LINK port.

To use pC/Probe with the IAR-LPC2103-02-SK, download and install the trial version of the program
from the Micrium website as discussed in Section 6. After programming your target with one of the
included example projects, connect a RS-232 cable between your PC and the evaluation board, configure
the RS-232 options (also covered in Section 6), and start running the program. The open data screens
should update. The IAR LPC2103-02-SK example application is configured to use UARTO, the RS-232C
connector labeled “RS-232 for uC/Probe” in Figure 1-1.

2.02 Directory Tree

If this file were downloaded as part of an executable zip file (which should have been named
Micrium-NXP-uCOS-11-LPC2103-02-SK.exe, then the code files referred to herein are located in the directory
structure shown in Figure 2-2.

Licensing agreements
(If pC/OS-1l is used
commercially)

\Micrium

\AppNotes

1 aAn-018

Micripm
1C/OS-Il and pC/Probe for the
NXP LPC2103 CPU

\AN1xxx-RTOS —

\AN1014-uCOS-II-ARM
\AN1074-uCOS-II-NXP-LPC2103-02-SK

—_

{ AN-1074

Contact \AN9xxx-MULT
www.Micrium.com \AN9913-IAR-Probe-Demo
for pricing 4 AN-9913
\Licensing
\Software
\EvalBoards
\<NXP> Board Support Package
\LPC2103-02-SK (BSP)
\IAR
\BSP
\OS—Probe{ IAR Example Project
\uC-CPU
\ARM
\IAR
\uC-LIB
uc/os-il ucos-II
The Real Time \Doc ARM7 /| ARM9
\Ports pC/OS-Il port
\ARM 1
pC/0S-Il \Generic
documentation \IAR
\Source pC/OS-l processor
4C/Probe \uC—Probe independent source
code
Real-Time Monitor \Target , ,
\Communication
557’/ \DCC
Target \Generic
Communication \0S
\uCO0S-1I1I
\RS-232
RS-232 \OS
Communication \uCOS-I1I
\Ports
1 \NXP
pC/Probe /7 \LPC21xx
LPC21xx Port \Source
\Source
\KSD _)_ puC/Probe
t;g‘;izgace IAR Kickstart Kits
\Plugins Demo
\ucos-11 AN-9913

Figure 2-1. Directory Structure

10

http://www.micrium.com/

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

2.03 Using the IAR Projects

One IAR project is located in the directory marked “IAR Example Project ” in Figure 2-1.:
/Micrium/Software/EvalBoards/NXP/LPC2103-02-SK/IAR/OS-Probe

The example project, LPC2103-02-SK-OS-Probe-v5-2.ewp, is intended for EWARM v5.2x. To view this
example, start an instance of IAR EWARM v5.2x, and open the workspace file
LPC2103-02-SK-0OS-Probe-v5-2.eww. To do this, select the “Open” menu command under the “File” menu,
select the “Workspace...” submenu command and select the workspace file after navigating to the project
directory. The project tree shown in Figure 2-2 should appear. (In addition, the workspace should be
openable by double-clicking on the file itself in a Windows Explorer window.)

2.03.01 pC/OS-Il Kernel Awareness

When running the IAR C-Spy debugger, the uC/0OS8-11 Kernel Awareness Plug-In can be used to provide

useful information about the status of pC/OS-1l objects and tasks. If the uC/OS-Il Kernel Awareness
Plug-In is currently enabled, then a “uC/OS-1I” menu should be displayed while debugging. Otherwise, the
plug-in can be enabled. Stop the debugger (if it is currently active) and select the “Options” menu item
from the “Project” menu. Select the “Debugger” entry in the list box and then select the “Plugins” tab
pane. Find the pC/OS-Il entry in the list and select the check box beside the entry, as shown in
Figure 2-4.

When the code is reloaded onto the evaluation board, the “uC/OS-II” menu should appear. Options are
included to display lists of kernel objects such as semaphores, queues, and mailboxes, including for each
entry the state of the object. Additionally, a list of the current tasks may be displayed, including for each
task pertinent information such as used stack space, task status, and task priority, in addition to showing
the actively executing task. An example task list for this project is shown in Figure 2-5.

S Factory Settings |
[eneral Options

CiC++ Compiler

Assembler

Cutput Converter Setup I Download | Extra Optiong Plugins

Custorn Build
Build Actions

Select pluging to load

Linker [1SEGGER emb0S ;I
Debugger [105E Epsilon
Simulatar [1Power Pac RTOS
Angel [] Thread=
GDE Server pCAOS
IAR ROM-monitaor [1Code Coverage
Hinkf-Trace FI0RTIATOS =l
LMIFTEI Description: RTOS awareness for CMx,
Macraigor
RD_I . Location: |EI “Program FileshAR SystemshEmbedded Workbench 5.2%
Third-Party Driver
Originatar: |IAF| Systems
Wersion: |5.2D.D.50993

oK | Cancel |

Figure 2-4. Enabling the pC/OS-ll Kernel Awareness Plug-In

11

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

|
| Hame | Ref | Priol Statel Dlyl Waiting On | Msgl Ctx Swl Stl Ptrl Maxxl Cur‘Xl Maxl Curl Sizel Start= @l End= @
Start Task 3 2 Dly 12 81 04002CC0O 40% 20% 208 104 512 04002D28 O04002B28
T=zer I-F 7 3 Hbox g0 7 79 04002EBO0 d4e% 23% 240 120 512 04002F28 04002D28
Keyboard g 4 Dly 3n 157 040030B0 34 23% 176 120 512 04003128 04002Fz28
Probe Str 9 5 Dly 12 17 04003278 45% 34% 232 176 512 04003328 04003128
Probe 0S5 Plugln 4 & Dly 3n 157 04001370 9% 7% 200 144 2048 04001400 04000C00
KSD LED Task & 7 Dly 10 780 04003440 37% 26 192 136 512 04003528 04003328
Probe RS5-232 5 11 Sem 0 Probe RS-232 1 04002768 17% 12% 184 128 1024 040027E8 040023E8
uCs05-I1 Tmr 2 61 Sem 0 05-TmrSig 82 04003448 35% 28% 184 128 512 04003B28 04003928
uCs05-I1 Stat 1 62 Dly g1 79 040036C0 31% 20% 1e0 104 512 04003728 04003528
> uis05-I1 Idle 1] 63 Ready 1] 934 040038C0 20% 20% 104 104 512 04003925 04003728

Figure 2-5. pC/OS-Il Task List.

2.04 Example Applications

The example projects include a basic demonstration of the uC/0S8-1l1 and pC/Probe. After you load the
evaluation board the sample project, the LEDs will start blinkging

Stack Out of Range Notification

While debugging this project (or any other uC/0S-1l project), IAR may log a SVC stack
pointer out-of-range notification in the “Debug Log” window. This is actually normal
behavior and does NOT indicate an error. IAR EWARM does not understand that the
SVC stack pointer points to the stack for the current task stack.

12

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

3. Directories and Files

Application Notes

/Micrium/AppNotes/AN1xxx-RTOS\AN1014-uCOS-11-ARM
This directory contains AN-1014.pdf, the application note describing the ARM port for pC/OS-Il,
and AN-1014-PPT.pdf, a supplement to AN-1014.pdf.

\Micrium\AppNotes\AN1xxx-RTOS\AN1074-uCOS-11-NXP-LPC2103-02-SK
This directory contains this application note, AN-1074pdf.

\Micrium\AppNotes\AN9xxx-MULT\AN-9913-1AR-Probe-Demo
This directory contains this application note, AN-9913.pdf.

Licensing Information

\Micrium\Licensing
Licensing agreements are located in this directory. Any source code accompanying this appnote
is provided for evaluation purposes only. If you choose to use pC/0OS-Il in a commercial product,
you must contact Micrium regarding the necessary licensing.

pC/OS-Il Files

\Micrium\Software\uCOS-1I\Doc
This directory contains documentation for uC/OS-II.

\Micrium\Software\uCOS-11\Ports\ARM\Generic\IAR
This directory contains the standard processor-specific files for the generic pC/0OS-11 ARM port
assuming the IAR toolchain. These files could easily be modified to work with other toolchains
(i.e., compiler/assembler/linker/locator/debugger); however, the modified files should be placed
into a different directory. The following files are in this directory:

0s_cpu.h
0S_Ccpu_a.asm
0S_Ccpu_c.c
os_dcc.c
os_dbg.c

With this port, pC/OS-Il can be used in either ARM or Thumb mode. Thumb mode, which
drastically reduces the size of the code, was used in this example, but compiler settings may be
switched (as discussed in Section 2.30) to generate ARM-mode code without needing to change
either the port or the application code. The ARM/Thumb port is described in application note AN-
1014 which is available from the Micrium web site.

\Micrium\Software\uCOS-11\Source
This directory contains the processor-independent source code for uC/OS-Il.

13

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

pC/Probe Files

\Micrium\Software\uC-Probe\Communication\Generic\
This directory contains the pC/Probe generic communication module, the target-side code
responsible for responding to requests from the pC/Probe Windows application (including
requests over RS-232).

\Micrium\Software\uC-Probe\Communication\Generic\Source
This directory contains probe com.c and probe com.h, the source code for the generic
communication module.

\Micrium\Software\uC-Probe\Communication\Generic\OS\uCOS-11
This directory contains probe_com_os.c, which is the pC/OS-Il port for the uC/Probe generic
communication module.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232
This directory contains the RS-232 specific code for uC/Probe generic communication module,
the target-side code responsible for responding to requests from the pC/Probe Windows
application over RS-232

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\Source
This directory contains probe _rs232.c and probe_rs232.h, the source code for the generic
communication module RS-232 code.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\Ports\NXP\LPC21xx
This directory contains probe_rs232c.c and probe_rs232c.h, the LPC21xx port for the RS-232
communications.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\0S\uCOS-I1
This directory contains probe_rs232_os.c, which is the pC/OS-Il port for the uC/Probe RS-232
communication module.

\Micrium\Software\uC-Probe\Target\Demo\KSD\Source
This directory contains ksd.c and ksd.h, the source code for the IAR Kickstart kits demo example

for the demo version of uC/Probe.

\Micrium\Software\uC-Probe\Target\Demo\KSD\Workspace
This directory contains OS-Probe-Kickstart-Demo-Workspace.wsp which is the generic uC/Probe
workspace for the IAR Kickstart kits.

14

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

pC/CPU Files

\Micrium\Software\uC-CPU
This directory contains cpu_def.h, which declares #define constants for CPU alignment,
endianness, and other generic CPU properties.

\Micrium\Software\uC-CPU\ARM\IAR
This directory contains cpu.h and cpu_a.s. cpu.h defines the Micrium portable data types for 8-,
16-, and 32-bit signed and unsigned integers (such as CPU_INT16U, a 16-bit unsigned integer).
These allow code to be independent of processor and compiler word size definitions. cpu_a.s
contains generic assembly code for ARM7 and ARM9 processors which is used to enable and
disable interrupts within the operating system. This code is called from C with
OS_ENTER CRITICAL() andOS EXIT CRITICAL().

pC/LIB Files

\Micrium\Software\uC-L1B
This directory contains lib_def.h, which provides #defines for useful constants (like DEF TRUE
and DEF_DISABLED) and macros.

\Micrium\Software\uC-LIB\Doc
This directory contains the documentation for uC/LIB.

Application Code

\Micrium\Software\EvalBoards\NXP\LPC2103-02-SK \AR\OS-Probe
This directory contains the soruce code the uC/OS-Il and uC/Probe example application:

e app.c contains the test code for the example application including calls to the functions
that start multitasking within pC/OS-1l, register tasks with the kernel, and update the user
interface (the LEDs and the push buttons)

e app_cfg.h is a configuration file specifying stack sizes and priorities for all user tasks and
#defines for important global application constants.

e includes.h is the master include file used by the application.

e o0s_cfg.his the uC/OS-1l configuration file.

e | PC2103-02-SK-0OS-Probe -Workspace.wsp is an example pC/Probe workspace.

e LPC2103-02-SK-0OS-Probe-v5-2.* are the IAR EWARM v5.2x project files.

\Micrium\Software\EvalBoards\ NXP\LPC2103-02-SK \IAR\BSP
This directory contains the Board Support Package for the IAR LPC2103-02-SK evaluation board:

e Dbsp.c contains the board support package functions which initialize critical processor
functions (e.g., the PLL) and provide support for peripherals such as the push buttons and
LEDs.

e bsp.h contains prototypes for functions that may be called by the user.

e cstartup.s is the IAR EWARM v5.2x startup file. This file performs critical processor
initialization (such as the initialization of task stacks), readying the platform to enter
main ().

e LPC2103 Flash.icf is a IAR EWARM v5.2x linker file which contains information about the
placement of data and code segments in the processor's memory map.

e | PC2103_Flash.mac contains instructions that are executed prior to loading code onto the
processor.

15

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

4. Application Code

The example application described in this appnote, AN-1073, is a simple demonstration of pC/OS-11 and

HC/Probe for the NXP’s LPC2103 processor on the IAR LPC2103-02-SK evaluation board. The basic
procedure for setting up and using each of these can be gleaned from an inspection of the application
code contained in app.c, which should serve as a beginning template for further use of these software
modules. Being but a basic demonstration of software and hardware functionality, this code will make
evident the power and convenience of upC/OS-Il “The Real-Time Kernel” used on the
NXP’s LPC2103 processor without the clutter or confusion of a more complex example.

4.01 app.c

Five functions of interest are located in app.c:

1. main() is the entry point for the application, as it is with most C programs. This function
initializes the operating system, creates the primary application task, AppTaskStart (), begins
multitasking, and exits.

2. App_TaskStart(), after creating the user interface tasks, enters an infinite loop in which it
blinks the LEDs on the board.

void main (void) /* Note 1 */
{
CPU INTO08U err;

BSP_IntDisAll(); /* Note 2 */
OSInit(); /* Note 3 */
OSTaskCreateExt ((void (*) (void *)) App TaskStart, /* Note 4 */
(void #) 0,
(0OS_STK *) sAppTaskStartStk[APP CFG TASK START STK SIZE - 1],
(INT8U) APP CFG TASK START PRIO, B -
(INT16U) APP CFG TASK START PRIO,
(0OS_STK *) &AppTaskStartStk([0],
(INT32U) APP CFG TASK START STK SIZE,
(void *) 0,
(INT16U) (OS_TASK OPT STK CHK | OS_TASK OPT STK CLR));
#if OS_TASK NAME SIZE > 13 /* Note 5 */
OSTaskNameSet (APP CFG TASK START PRIO, "Start Task", &err);
#endif
OSStart () ; /* Note 6 */

Listing 4-1, main ()

Listing 4-1, Note 1: As with most C applications, the code starts in main ().

Listing 4-1, Note 2: All interrupts are disabled to make sure the application does not get interrupted until it
is fully initialized.

Listing 4-1, Note 3: 0SInit () must be called before creating a task or any other kernel object, as must
be done with all pC/OS-Il applications.

16

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

Listing 4-1, Note 4: At least one task must be created (in this case, using OSTaskCreateExt () to
obtain additional information about the task). In addition, pC/OS-Il creates either one or two
internal tasks in 0SInit (). uC/OS-Il always creates an idle task, 0S TaskIdle (), and will
create a statistic task, 0S_TaskStat () if you set OS_TASK_STAT_EN_tO 1in os_cfg.h.

Listing 4-1, Note 5: As of V2.6x, you can now hame pC/OS-Il tasks (and other kernel objects) and
display task names at run-time or with a debugger. In this case, the App TaskStart () is given
the name “Start Task”. Because C-Spy can work with the Kernel Awareness Plug-In available
from Micrium, task names can be displayed during debugging.

Listing 4-1, Note 6: Finally multitasking under pC/OS-ll is started by calling 0sSTart (). pC/OS-Il will
then begin executing App_TaskStart () since that is the highest-priority task created (both
0S_TaskStat () and OS_TaskIdle () having lower priorities).

static void App TaskStart (void *p arg)

{
CPU INTO8U 1i;

(void)p arg;
BSP_Init(); /* Note 1 */

#if (OS TASK STAT EN > 0)
0SStatInit(); /* Note 2 */
#endif

#if (APP CFG PROBE COM EN == DEF ENABLED) || \
(APP_CFG_PROBE_OS_PLUGIN EN == DEF_ENABLED)
App ProbelInit () ; /* Note 3 */
#endif

App TaskCreate () ; /* Note 4 */
App EventCreate();

BSP_LED Off (0);
while (DEF_TRUE) { /* Note 5 */
for (i = 1; i <= 16; i++) {
BSP LED Toggle(i);
0STimeD1yHMSM (0, 0, 0, 100);
}

for (i = 1; i <= 10; 1i++) {
BSP LED Toggle (0);
OSTimeDlyHMSM (0, 0, 0, 50);

Listing 4-2, App_TaskStart()

Listing 4-2, Note 1: BSP_Init () initializes the Board Support Package—the 1/Os, tick interrupt, etc.
See Section 5 for details.

Listing 4-2, Note 2: O0SStatInit () initializes pC/OS-II's statistic task. This only occurs if you enable
the statistic task by setting 0S_ TASK STAT ENto 1 in os_cfg.h. The statistic task measures
overall CPU usage (expressed as a percentage) and performs stack checking for all the tasks
that have been created with 0STaskCreateExt () with the stack checking option set.

17

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

Listing 4-2, Note 3: App_ProbelInit () initialize pC/Probe. This function calls OSProbe Init ()
which initializes the pC/Probe plug-in for uC/0OS-I1, which maintains CPU usage statistics for
each task. ProbeCom_Init () which initializes the pC/Probe generic communication module,
ProbeRS232 Init () which initializes the RS-232 communication module and KSD Init()
which initializes the IAR Kickstart kit demo (KSD) for the demo version of pC/Probe. (see AN-
9913). After these have been initialized, the pC/Probe Windows program will be able to
download data from the processor. For more information, see Section 6.

Listing 4-2, Note 4: App TaskCreate () ,App EventCreate () Creates all the application tasks and
events (respectively).

Listing 4-2, Note 9: Any task managed by pC/OS-Il must either enter an infinite loop ‘waiting’ for some
event to occur or terminate itself. This task enters an infinite loop in which the LEDs are toggled.

4.02 os_cfg.h

The file os_cfg.h is used to configure pC/OS-Il and defines the maximum number of tasks that your
application can have, which services will be enabled (semaphores, mailboxes, queues, etc.), the size of
the idle and statistic task and more. In all, there are about 60 or so #define that you can set in this file.
Each entry is commented and additional information about the purpose of each #define can be found in
Jean Labrosse’s book, uC/OS-Il, The Real-Time Kernel, 2nd Edition. os_cfg.h assumes you have
pC/0S-Il V2.83 or higher but also works with previous versions of pC/0S-Il.

e OS_APP_HOOKS_EN is setto 1 so that the cycle counters in the 0S_TCBs will be maintained.

e Task sizes for the Idle (0OS_TASK_IDLE_STK_ SIZE), statistics OS_TASK STAT STK SIZE) and
timer (OS_TASK_TMR STK_SIZE) task are set to 128 0S_STK elements (each is 4 bytes) and
thus each task stack is 512 bytes. If you add code to the examples make sure you account for
additional stack usage.

e OS_DEBUG_EN is set to 1 to provide valuable information about pC/OS-1l objects to IAR’s C-Spy
through the Kernel Awareness plug-in. Setting 0S_DEBUG_EN to O should some code space
(though it will not save much).

e OS_LOWEST_ PRIO is setto 31, allowing up to 64 total tasks.

e OS_MAX TASKS determines the number of “application” tasks and is currently set to 10.

. OS_TICKS_PER SEC is set to 1000 Hz. This value can be changed as needed and the proper
tick rate will be adjusted in bsp.c if you change this value. You would typically set the tick rate
betweek 10 and 1000 Hz. The higher the tick rate, the more overhead pC/OS-1l will impose on
the application. However, you will have better tick granularity with a higher tick rate.

18

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

5. Board Support Package (BSP)

The Board Support Package (BSP) provides functions to encapsulate common 1/O access functions and
make porting your application code easier. Essentially, these files are the interface between the
application and the IAR LPC2103-02-SK evaluation board. Though one file, bsp.c, contains some
functions which are intended to be called directly by the user (all of which are prototyped in bsp.h), the
other files serve the compiler (as with cstartup.).

5.01 BSP, bsp.c and bsp.h

The file bsp.c implements several global functions, each providing some important service, such as the
initialization of processor functions for pC/OS-1l to operate or the toggling of an LED. Several local
functions are defined as well to perform some atomic duty, initializing the 1/0O for the LED or initialize the
pC/OS-II tick timer. The discussion of the BSP will be limited to the discussion of the global functions
that might be called from user code (and may be called from the example application).

The global functions defined in bsp.c (and prototyped in bsp.h) may be roughly divided into two categories:
critical processor initialization and user interface services. Three functions constitute the former:

e BSP_Init() is called by the application code to initialize critical processor features (particularly

the uC/OS-Il tick interrupt) after multitasking has started (i.e., 0S_Start () has been called).
This function should be called before any other BSP functions are used. See Listing 5-1 for more
details.

e BSP_IntDis() is called to disable an specific interrupt source.

e BSP_IntDisAll() is called to disable all interrupts, thereby preventing any interrupts until the
processor is ready to handle them.

e BSP_IntEn() is called to enable a specific interrupt souce.
e BSP_IntVectSet () is called to assign a ISR handler to a specific interrupt source.

e BSP_CPU_ClkFreq() returns the clock frequency in Hz.
Several functions provide access to user interface components:

e BSP_LED Toggle(), BSP_LED On() and BSP_LED Off () will toggle, turn on, and turn off
(respectively) the LED corresponding to the ID passed as the argument If an argument of O is
provided, the appropriate action will be performed on all LEDs. Valid IDs are 1, 2, 3 and 4
(inclusive).

e BSP_PB GetStatus () returns the status of the board’s push buttons corresponding the ID
passed as the argument.

19

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

5.02 Processor Initialization Functions

void BSP_Init (void)
{

MEMMAP = 1; /* Note 1 */
BSP_PLL Init(); /* Note 2 */
BSP_VIC Init(); /* Note 3 */
BSP_PB_Init(); /* Note 4 */

BSP LED Init();

BSP Tmr TickInit(); /* Note 5 */

Listing 5-1, BSP_Init()

Listing 5-1, Note 1. MEMMAP register is set to User Flash Mode , in this mode the interrupt vectors are not
re-mapped and reside in Flash.

Listing 5-1, Note 2: The PLL is initialized.

Listing 5-1, Note 3: The vectored interrupt controller is initialized.

Listing 5-1, Note 4: The 1/Os for the board’s peripherals are initialized (LEDs and Push buttons).

Listing 5-1, Note 4. The uC/OS-Il tick interrupt source is initialized.

Listings 5-2 and 5-3 give the pC/OS-Il timer tick initialization function, BSP_ Tmr TickInit (), the tick
ISR handler, BSP_ Tmr TickISR Handler (). These may serve as examples for initializing an interrupt
and servicing that interrupt.

20

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

static wvoid BSP Tmr TickInit (void)
{
CPU INT32U pclk freqg;
CPU_INT32U tmr_reload;

BSP_IntVectSet ((CPU_INT08U)BSP INT ID TMRO, /* Note 1 */
(CPU_INTO8U)0,
(CPU_INTO8U)BSP INT TYPE NO VEC IRQ,

(CPU_FNCT VOID)BSP Tmr TickISR Handler) ;

BSP IntEn(BSP INT ID TMRO) ;

pclk freq = BSP CPU PclkFreq(); /* Note 2 */
tmr reload = pclk freq / OS TICKS PER SEC;

TOTCR = 0 /* Note 3 */
TOPC = 0;

TOMRO = tmr reload;

TOMCR = DEF BIT 00 | DEF BIT 01;

TOCCR = 0;

TOEMR = 0;

TOTCR = DEF BIT 00;

Listing 5-2, BSP_Tmr_TickInit()

Listing 5-2, Note 1. The tick ISR handler is programmed into the vectored interrupt controller.
Listing 5-2, Note 2: The number of counts per tick is calculated

Listing 5-2, Note 2: The calculated re-load value is programmed into the Timer 0, the timer interrupt is
enabled and the timer is started

void BSP_Tmr TickISR Handler (void)
{

TOIR = DEF_BIT 00; /* Note 1 */

OSTimeTick() ; /* Note 2 */

Listing 5-3, BSP_Tmr TickISR Handler()

Listing 5-3, Note 1: The timer 0O interrupt is cleared.

Listing 5-3, Note 2: 0STimeTick () informs uC/OS-I1 of the tick interrupt.

21

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

6. uC/Probe

pC/Probe is a Windows program which retrieves the values of global variables from a connected
embedded target and displays the values in a engineer-friendly format. To accomplish this, an ELF file,
created by the user’s compiler and containing the names and addresses of all the global symbols on the
target, is monitored by uC/Probe. The user places components (such as gauges, labels, and charts) into

a Data Screen in a pC/Probe workspace and assigns each one of these a variable from the Symbol
Browser, which lists all symbols from the ELF file. The symbols associated with components placed on
an open Data Screen will be updated after the user presses the start button (assuming the user’s PC is
connected to the target).

A small section of code resident on the target receives commands from the Windows application and
responds to those commands. The commands ask for a certain number of bytes located at a certain
address, for example, “Send 16 bytes beginning at 0x0040102C”. The Windows application, upon
receiving the response, updates the appropriate component(s) on the screens with the new values.

o
Home | Mumeic Meters Graphe Sliders Tanks Miscelaneous Switches Leds Diak Lewel (7]
S
b
oo il
5. | Alignment g
Warkspace Expl 05: GeneralInfa | 0S: TaskInfa,/ 05: Task CPU Usage | 0S: Task Stack Usage | 0S5:About | 0S:Events | 0S:Timers | 0S: Corfiguation(Genera) 4 * X
uCloSTl Warksg] e 2
Task CPU Usage
I Infa
PU Usage Name u‘s:;'_ CPU Usage
tack Usage
Infa 10 20 30 40 50 50 70 80
uC/0S-11 Idle 84.0%
guration (Beneral)
figuration [E vents/Timers) uC/0s-11 Stat 0.4%
uC/OS-T1 Tmr 0.0%
Start 0.0%
Probe RS-232 0.0%
Start Button. }. Ko LEDTask | 0.1%

This button switches
between Design and
Run-Time Views.
During Run-Time
View (when data is
collected), this will

appear as a stop B
button (a blue .
square).

et
=] os_dbgc
L] o5 niohe s

dMode_Drv.c

Symbol Browser.
Contains all symbols

from the ELF files added

to the workspace.

R
5] USB_Setup.c

m 5 nen v e .

C
- The Real-Time Kernel
JFs.c i

\

Probe OS PlugIn 0.2%

Push Buttons 0.0%

SCP1000 Sensor 0.2%

Probe Str 0.0%
USB Task 0.0%

FS Task 0.0%
Probe USE 15.1%
MSD Task 0.0%

Data Screen.

Components are placed
onto the data screen and
assigned symbols during
Design View. During
Run-Time View, these
components are updated
with values of those
symbols from the target

os I l-m. For more information, visit

www.micrium.com

Ready

USE 34851 4660 Disconnected s

Figure 6-1. pC/Probe Windows Program

22

Micripm
LC/OS-Il and pC/Probe for the
NXP LPC2103 CPU

To use pC/Probe with the example project (or your application), do the following:

1. Download and Install pC/Probe. A trial version of pC/Probe can be downloaded from the
Micrium website at

http://www.micrium.com/products/probe/probe.html

IAR Kickstart Kits Users

If this development board is part of the IAR Kickstart Kit a demo version of pC/Probe is
already included in the installation CD. Please refer to the application note AN-9913 for
more details in how to use the demo version of pC/Probe with the IAR Kickstart kits.

2. Open pC/Probe. If the trail version was installed , open the example pC/Probe workspace for

pC/OS-II, named OS-Probe-Workspace.wsp, which should be located in your installation directory
at

/Program Files//Micrium/uC-Probe/Target/Plugins/uCOS-11/Workspace

If the demo version was installed open the example workspace for the IAR Kickstarts kits named
OS-Probe-Kickstart-Demo-Workspace.wsp, which should be located in your installation directory at

/Micrium/Software/uC-Probe/Target/Demo/KSD/Workspace

3. Connect Target to PC. Currently, uC/Probe can use RS-232 to retrieve information from the
target. You should connect a RS-232 cable between your target and computer.

4. Load Your ELF File. The example projects included with this application note are already
configured to output an ELF file. (If you are using your own project, please refer to Appendix A of

the uC/Probe user manual for directions for generating an ELF file with your compiler.) This file
should be in

/<Project Directory>/<Configuration Name>/exe/
where <Project Directory> is the directory in which the IAR EWARM project is located (extension
*.ewp) and <Configuration Name> is the name of the configuration in that project which was built
to generate the ELF file and which will be loaded onto the target. The ELF file will be named
<Project Name> elf
in EWARM v4.4x and

<Project Name>.out

in EWARM v5.xx unless you specify otherwise. To load this ELF file, right-click on the symbol
browser and choose “Add Symbols”.

5. Configure the RS-232 Options. In uC/Probe, choose the “Options” menu item on the “Tools”
menu. A dialog box as shown in Figure 6-2 (left) should appear. Choose the “RS-232” radio
button. Next, select the “RS-232” item in the options tree, and choose the appropriate COM port
and baud rate. The baud rate for the projects accompanying this appnote is 115200.

23

http://www.micrium.com/products/probe/probe.html

Micripm

LC/OS-Il and pC/Probe for the

NXP LPC2103 CPU

6. Start Running. You should now be ready to run pC/Probe. Just press the run button (b) to

see the variables in the open data screens update. Figure 6-3 displays the pC/OS-Il workspace
which displays detailed information about each task’s state.

RS-232
J-Link
TCPAP
use

(= Environment
General
Screen

Target

Settings (= Communication Settings
® R$-232 O use EEE
¢ . - -
J-Link COM Port: | COM7 v
O J-Link O Hew Target Server TCPAP .
use Baud Rate: 115200 v
O TCP/P (UDP) = Environment
General
Screen
Update
P Target
@) symbols/sec
O bytes/sec
Slow queue update period: v? sec.
[[] Calculate communication timeout automatically
Wait Time: |10 ms.
0K] ’ Cancel l [Apply] [0K] [Cancel l [Apply
m pC/Probe - 05-Probe-Workspace.wsp. =10l x|
Home Mumeidc Metes Giaphs Sliders Tanks Miscelancous Swiches Leds Dk Levek @
=] 0S: GeneralInfa - 0S: Task Info | DS: Task CPU Usage | 0S: Tack Stack Usage | 0S: Canfiguiation (General) | 4 P %
s =
z| Task Stack Information
]
8 — Stack Stack Usage Stack
= FPointer Current | Starts @ Ends @
g uC/OS-IT Idle 0x00201DBO | 807512 | 72/512 | 0x00201DF8 | 0x00201BF8
L] uC/OS-11 Stat 0x00201BA0 | 132/512 | B8/512 | 0x00201BF8 | 0x002019F8
ol Start Task 0x00201390 | 196/512 | 104/512 | 0x002013F8 | Ox002011F8
Probe OS Plugin | 0x00202188 | 156/512 | 112/512 | 0x002021F8 | 0x00201FF8
5 KSD LED Task 0x00201998 | 140/512 | 96/512 | 0x002019F8 | ox002017F8
g Probe RS-232 0x00201180 | 176/1024 | 12071024 | Ox002011F8 | 0x00200DF8
o Keyboard 0x00201590 | 148/512 | 104/512 | 0x002015F8 | Ox002013F8
i Prabe Str 0x00201798 | 172/512 | 967512 | 0x002017F8 | 0x002015F8
General Task Information
s Task Status Cantext Current
N: 1 P
ame T | state | Delay | Waiting On |Messags| Switches | CPU Usage
UC/0S-TI idle 65535 | 31 Ready | ---- 118860 90.51%
uC/QS-II Stat 65534 | 30 Delay 9 10116 1.34%
Start Task 5 5 Delay 1 20062 0.24%
Probe OS Plugin 7 7 Delay 1 20060 2.72%
KSD LED Task 8 8 Delay 1 100298 0.96%
Probe RS-232 9 9 Ready | ---- 19656 4.16%
Keyboard 4 4 Delay 3 10030 0.12%
Probe Str 6 6 Delay % [| - 5150 0.03%
Running RS-232 115200 COM7 | 2353 bytes/sec

Figure 6-3. pC/Probe Run-Time: pC/OS-ll Task Information

24

Licensing

pC/0S-Il is provided in source form for FREE evaluation, for educational use or for peaceful research. If

you plan on using uC/0OS8-Il in a commercial product you need to contact Micrium to properly license its
use in your product. We provide ALL the source code with this application note for your convenience and
to help you experience pC/OS-Il. The fact that the source is provided does NOT mean that you can use it
without paying a licensing fee. Please help us continue to provide the Embedded community with the
finest software available. Your honesty is greatly appreciated.

References

HC/OS-Il, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse

R&D Technical Books, 2002

ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse

R&D Technical Books, 2000

ISBN 0-87930-604-1

Contacts

IAR Systems
Century Plaza

1065 E. Hillsdale Blvd
Foster City, CA 94404
USA

+1 650 287 4250
+1 650 287 4253 (FAX)

e-mail: Info@IAR.com
WEB : http://www.lAR.com

Micripm

949 Crestview Circle
Weston, FL 33327
USA

+1 954 217 2036
+1 954 217 2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com
WEB : http://www.Micrium.com

mailto:Info@IAR.com
http://www.iar.com/
mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/

