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Abstract
OrbitClash is my first attempt at a video game.  The project was inspired by the classic game 
“Spacewar!”  It requires the Microsoft .NET 4.0 framework to run.  When completed, the game was 
released freely to the public under an open source license.

1. Introduction
Whenever I do a project, I always keep a couple of goals in mind: learn something new, and produce 
quality results.  For the purpose of this project, I served as my own client.  I am a very motivated 
client with extremely high standards.  So, I didn’t make things easy on myself.  Being my own client 
gave me the advantage of total creative control.  However, it also left me with no starting direction.

The gaming industry is currently booming, so some rudimentary knowledge of game programming 
could be handy.  With that in mind, I decided to make my first video game!

2. Overview
When I was young (and dinosaurs roamed the Earth), one of my 
favorite “casual” games was Spacewar![R1][Illustration 1]

To be completely honest, I don’t remember the name of the game, 
because it was actually just a clone of Spacewar! for my beloved 
Amiga 500.  So, embodied in this game, is my attempt to recreate 
the essence of that childhood memory.

3. Requirements

3.1 System Requirements
• The game must run on the Microsoft .NET 4.0[R2] framework.
• The game must accommodate 2-players at one keyboard.
• The game must have “good” graphics, sound effects, and gameplay – as determined by the 

client.  Obviously, this type of evaluation is quite qualitative.  However, since I am my own 
client, I have the advantage of a constant feedback loop.  Thus, a qualitative measurement of 
success is sufficient for the purposes of this project.

3.2 Gameplay Description
• The game is a top-down, 2-dimensional, non-scrolling, spaceship action/shooter, wherein two 

players duel to the death!
• Each player controls a small spaceship, which is equipped with a shield (limited), a front-facing 

cannon (see next point), and two (front and rear-facing) thrusters (unlimited).
• Each ship’s cannon has unlimited capacity, with the exception that there can be only 10 “live” 

bullets from each player in the universe at one time.  I imposed this rule, rather than a lengthier 
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Illustration 1: A Spacewar! clone.
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cooldown between shots, to make the game a little more challenging.  Note that the player that 
owns a bullet will never be harmed by it, rather it would simply bounce off them.

• Firing a ship’s thruster accelerates the ship in its current direction.  When the thruster is not 
firing, the ship continues on its trajectory unless affected by another force (e.g., collision, 
gravity, etc).  Note that cannon bullets behave essentially the same way.

• The entire game-world consists of the fixed screen area only.  Ships and cannon bullets bounce 
back if they touch the edge of the screen.  However, cannon bullets have a limited lifespan, so 
they disappear fairly quickly.

• At the center of the screen is a planet, which exerts a gravitational pull on the ships and cannon 
bullets within a specified distance range.  Anything that touches the planet is instantly 
destroyed.

3.3 Program Behavior
• When the application starts up, the game prompts: “Press the spacebar to begin.”
• When the game begins, each ship begins on opposite sides of the screen, with the planet 

between them.  Each ship’s starting point is a safe distance from the planet, so that they are 
outside the range of the planet’s gravity.

• When a player is destroyed, they simply respawn after a few seconds in a location that is on the 
opposite side of (and a minimum safe distance from) the planet from the other player.

• Each player begins with three simple counters  displayed:
◦ Kills: a count of times the player destroyed other player.
◦ Defeats: a count of times the player was destroyed by other player.
◦ Suicides: a count of times the player hit the planet.

• The game never ends, it simply goes on until it is shut down.

3.4 Player Controls
• Player One Controls (The Yellow Ship):

◦ Rotate-left: A 
◦ Rotate-right: D 
◦ Forward-thruster: W 
◦ Reverse-thruster: S 
◦ Fire-cannon: Left Control

• Player Two Controls (The Red Ship):
◦ Rotate-left: Left Arrow 
◦ Rotate-right: Right Arrow 
◦ Forward-thruster: Up Arrow 
◦ Reverse-thruster: Down Arrow 
◦ Fire-cannon: Right Alt 
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4. Design
Since I was completely new to game design, and possessed only a limited understanding of 
graphics programming, I decided to use a multimedia library called Simple Directmedia Layer[R3] 

(SDL) to facilitate the game’s development.  SDL aids game development by simplifying the 
handling of animation, physics, sound, and player input.

4.1 Simple Directmedia Layer (SDL)
SDL is written in C, but I used a wrapper called SdlDotNet[R4], which allows much of SDL’s 
functionality to be used from within the Microsoft .NET framework’s managed environment. 
SDL.NET uses .NET’s Interop services to access SDL’s unmanaged resources, which incurs a 
small overhead.

SDL is an event-driven framework.  Consequently, the game is built from a framework of 
abstract data types that are manipulated by a single main game class (or controller) in response to 
events generated by SDL.

4.1.1 Surfaces, Sprites, and Animated Sprites
A Sprite is a two dimensional image (or Surface), often with a transparent background, that 
can be quickly pasted into another Surface.  An animated sprite is designed, not only to move 
around the screen, but also to simultaneously play back a kind of flip-book of sprites, which 
are encapsulated in a sprite sheet.  A sprite sheet is really just a series of statically-sized, 
sequential, motion-capturing frames, not unlike a strip of film.

During gameplay, the ships in OrbitClash will not just move around the screen; they will also 
be able to rotate.  So, a sprite sheet was required to animate the rotation of each ship.  Other 
options were explored, as I will discuss later, but in the end I used sprite sheets.

4.1.2 Events
Once the initial environment has been set up, SDL is an event driven framework.  A framerate 
is assigned, and SDL calls your own Tick handler for each refresh.  Additionally, other 
handlers can be called in response to events like keypresses, or application close. The 
programmer chooses which events to attend and how to handle them.

OrbitClash’s keypress event handlers merely set flags, which are later read and processed in 
the Tick handler.

Most of the action takes place in the Tick handler, which updates the states of all the particles 
in the universe and then draws them to the screen.

4.1.3 Particles
SDL.NET (note: the wrapper) provides a particle engine that allows an instance of the Particle 
class to be created from a variety of different objects (like a Sprite, for example).

The ParticleSystem class consists of a list of particles and a list of particle manipulators.  A 
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particle manipulator is a class that implements the IParticleManipulator interface, which 
forces the programmer to provide an operation (Manipulate) that takes a list of particles and 
performs some arbitrary task on them.  Particles behave according to their Velocity property. 
The Velocity property contains an abstract data type called a Vector, which is composed of a 3-
dimensional origin point, a direction, and a length.  

In the Tick handler, the ParticleSystem’s Update and Refresh operations are called to send 
Particles flying around the screen.  A call to Update runs each particle manipulator in the 
system on every Particle in the system, and updates each particle’s position according to its 
Velocity.  Each particle has a Life property that ticks down incrementally each time Update is 
called.  If Life reaches 0, the Particle is pruned from the system.  However, if the lifespan is 
set to a negative value, the particle lives forever (or until it is killed by manually setting its 
Life to 0).

The ParticleEmitter class, (which is also just a Particle itself) emits a steady stream of particles 
in a configurable way.  The particle emitter was very handy for various important special 
effects.  I used particle pixel emitters for the thrusters of each ship’s engine, and particle circle 
emitters for the ship-warping-in and ship-explosion effect.

4.1.4 Sounds
Sounds are quite simple to use in SDL.NET.  Each sound is loaded from an OGG Vorbis file 
(other formats are supported, e.g., MP3, WAV) during the program’s initialization.  The 
Thruster class holds the sounds for each ship’s thruster.  The Cannon class carries the fire and 
dryfire sounds.  Since it handles all of the collision detection and reaction, the main game 
class itself (OrbitClash) holds the collision sounds.  Asynchronous playback of each sound is 
initiated from the Tick handler.

4.1.5 Fonts / Text
SDL.NET provides simple classes that are used to facilitate the loading of a font from a file, 
and the rendering of a text string to a Surface.  The details are of little interest.

4.2 Data Structures

4.2.1 The Configuration Static Class
The configuration class contains many intricate 
settings OrbitClash, some of which are described in 
this document.  However, if you desire more specific 
details, please see the comments in the 
Configuration.cs file.

4.2.2 The SpriteSheet Class
The SpriteSheet class is designed to hold information 
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about a ship rotation animation.  Its constructor takes, among other things, the filename of the 
sprite sheet image to load as a parameter.  The class provides access to the entire image, as 
well as configuration information like: what direction the ship is facing in the first frame, how 
many degrees the ship rotates in each frame, the size of each frame in pixels, and the color that 
will be treated as transparent.

Some of the information the class provides is dynamic.  For example, the 
CurrentDirectionDeg property provides the current direction that the ship is facing by 
multiplying the degrees of rotation per frame by the index number of the current animation 
frame.

4.2.3 The SolidEntity Class
The SolidEntity abstract class 
extends the ParticleSprite 
class, and is designed to 
facilitate collision detection 
between classes that further 
extend it.

The Collision operation 
returns true if a pixel-level 
collision is detected between 
the entity in question and the 
entity specified as a 
parameter.

In OrbitClash, the Planet, 
Ship, and Bullet classes all 
extend the SolidEntity abstract 
class.

4.2.4 The Ship, Cannon, and Thruster Classes
The ship class extends the SolidEntity class, and is therefore also a ParticleSprite.  It carries 
with it: two Thruster class instances (forward and reverse), and a Cannon instance.  It abstracts 
operations on the thrusters and cannon by keeping those data structures private, and passing 
some requests directly to them (e.g., the AmmoCount property).  

The Ship’s Die operation causes the ship to turn off its thrusters, disable its weapons, and set 
it’s particle’s Life property to 0; this effectively makes the ship hidden and inactive.
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The BeginRotateLeft, BeginRotateRight, and EndRotate operations control the ship’s sprite 
sheet animation.

The Thruster class extends the ParticleSystem class, and contains a ParticlePixelEmitter, 
which creates the engine exhaust effect.  By not including the engine effects in the main 
particle system of the OrbitClash class, I keep them from being effected by the manipulators 
attached with that system (i.e., gravity, screen edge bounce, speed limit).

The Ship class provides Update and Render methods,which are called from within 
OrbitClash’s Tick handler.  Those methods simply call the operations by the same name within 
the Thruster class instances.  Thus, the particles are all updated and rendered, even though 
they do not exist in the game’s main particle system.

The Cannon class’s Fire operation returns a Bullet on success, and null on failure.  The cannon 
may fail to fire if there are too many live bullets for that ship, or if the cannon’s cooldown 
period (as specified in the configuration file) has not elapsed.

To determine the number of live bullets the ship currently has in-play, the Cannon class 
maintains a list of the live bullets it has fired.  It provides the LiveBulletCount property, which 
gets called each time a player attempts to fire their cannon.  When this occurs, first it prunes 
its list of all bullets with Life of 0, then it returns the count of the number of items remaining 
in the list.
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4.2.5 The Bullet Class
The Bullet class is a SolidEntity that holds a reference back to the 
player that owns it.  The Power property indicates how much damage 
the bullet will do if it hits the opposing player’s ship.  The Bullet 
class’s constructor takes a variety of parameters, including the bullet 
sprite, the initial bullet Vector, the bullet’s Life, and a reference to its 
owner.  The reference to owner is important, because friendly bullets 
will merely bounce off a ship, while hostile ones cause damage!

4.2.6 The Planet Class
The Planet class is a SolidEntity that, aside from encapsulating the 
planet image, also contains the HaloSurface property, which is 
optionally applied to the background surface (i.e., the star field), 
depending on configuration settings.  The halo simply gives a 
visual representation of the limit of the reach of the gravitational 
force of the planet.

The gravitational force itself is applied via a particle manipulator, 
which is discussed below.

4.2.7 The SpeedLimit and GravityWell Classes (Particle Manipulators)
The GravityWell and SpeedLimit classes 
are particle manipulators that implement 
SDL.NET’s IParticleManipulator interface.

Manipulators are designed to be added to a 
particle system, which means they run of 
every particle in the main system each time 
the main system’s Update operation is 
called.

Optionally, manipulators can be run 
manually on a collection of particles by 
calling their Manipulate operation directly.

GravityWell draws all particles within 
Radius distance of Position according to a 
calculation that makes the drawing-force 
zero at the outer edge of the radius, and 
maximal at the center of the well.  The force 
becomes much more intense as the distance 
from the center approaches zero. The exact 
description of the force calculation is: the 
gravity well’s Power divided by the 
particle’s distance from the center of the
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well (as a percentage of the overall well radius) squared.  The main OrbitClash class creates an 
instance of GravityWell and adds it to the main particle system.

SpeedLimit checks and caps the Length property of each particle’s Vector. The main 
OrbitClash class also creates an instance of the SpeedLimit class.  However, it enforces the 
speed limit manipulator manually (as described above), to ensure that it is the last thing to 
update the particle system before the call to Render.

4.2.8 The OrbitClash Class (and the Tick handler)
The OrbitClash class is the 
main class of the program.  It 
handles events generated by 
SDL.NET (i.e., keypress, 
tick, quit), maintains the 
primary game particle 
system, and does the overseer 
work of detecting and 
reacting to collisions.  

Naturally, it also contains two 
instances of the Player class 
(one for each player), and a 
single instance of the Planet 
class.

It is also responsible for 
instantiating and adding the 
various particle manipulators 
used in the game (i.e., 
boundary, gravity) to the 
particle system.  Note that the 
speed limit manipulator is not 
added to the main particle 
system, but is run manually 
(as noted above).

Ideally nearly all handling of 
collision detection and 
reaction would be better if it 
were abstracted from the 
main game class.  However, 
due to time constraints, I 
decided that making that change – in an already working system – just wasn’t worth it.
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4.2.8.1 The “Tick” Handler
In a bare-bones fashion, the Tick handler looks something like this:
/* Update all the particles in the universe by running each manipulator
 * in the system on the list of particles,  and then updating their
 * position coordinates according to their resulting Velocity property.
 */
myParticleSystem.Update();
// Check for, and handle, user input.
ProcessUserInput(); // Local method.
// Check for, and enforce, collisions.
EnforceCollisions(); // Local method.
// Manually enforce speed limit manipulator, to make sure it runs last.
speedLimiter.Manipulate(myParticleSystem.Particles);
// Render all the particles in the universe to the back buffer. 
myParticleSystem.Render(Video.Screen);
// Blit the InfoBar at the bottom of the screen to the back buffer.
DisplayInfoBar(); // Local method.
// Finally, flip the back-buffer onto the screen. 
Video.Screen.Update();

4.2.9 The Player Class
The Player class represents a real-life player, and contains a Ship and ScoreCard instance; it 
also carries instances of the creation and explosion effect classes.

Its other job, is to take user commands when its CheckKeyPresses and CheckKeyReleases 
operations are called by the main game class’ keypress event handlers, and then execute those 
commands when the ProcessUserInput operation is called from within the main game class’ 
Tick handler.
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4.2.10 The ScoreCard Class
The ScoreCard class holds statistical 
information for a Player.  Its constructor 
takes a player and a display position as 
parameters.

The ScoreCard class will render itself to any 
surface passed to the Render operation (in 
keeping with SDL.NET conventions).

Stats Explanation:

• Kill: killed the other player with 
bullets.

• Defeat: killed by the other player’s 
bullets.

• Suicide: killed by planetary impact

4.2.11 The ShipExplosionEffect and ShipCreationEffect Classes
The ShipCreationEffect and 
ShipExplosionEffect classes are very 
similar, and each is an extension of 
SDL.NET’s ParticleCircleEmitter class.

They each provide a single operation that 
triggers their functionality at a specified 
screen position.  Each of these classes 
creates a simple burst of circle-particles as 
defined in their respective sections of the 
configuration file.

An instance of each of these classes reside 
inside, and are utilized by, instances of the 
Player class.

4.3 Algorithms

4.3.1 Collision Detection
One of the most interesting algorithms I wrote is the one that implements collision detection. 
Collision detection is simply a method of recognizing when two particles come in contact 
(collide).

One easy method of collision detection is to simply see if the rectangles of the sprites overlap. 
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However, since most sprites come with transparent portions, the rectangles may not tell the 
whole story.  Although simple rectangle detection may work fine in some scenarios, for the 
purpose of my game, I needed pixel-level detection.

For pixel-level collision detection, the previously described “rectangle check” is done first; 
because if the rectangles aren’t overlapping, then there is no reason to do the more costly 
pixel-level check.

If the full pixel check is necessary, then we find the rectangle that contains the intersection of 
the two sprites, and check each pixel within the rectangle.  If we find a location where two 
non-transparent pixels overlap, then we have a collision.

5. The Development Process
I chose the name OrbitClash, because it seemed appropriate to the game’s concept, and more 
importantly: a Google search for “orbit clash game” didn’t reveal any other video games with the 
same title!

5.1 The Spike Project (A.K.A. The Early Start)
I really had no idea how to make a game, so I couldn’t write a design document without doing a 
little programming work first.  So, to familiarize myself with game programming, I performed a 
“Spike” project.

My spike resulted in a simple program wherein two very primitive looking ships could be flung 
around the screen using the keyboard controls.  The ships bounced off the edges of the screen, 
thanks to SDL.NET’s ParticleBoundary class, which implements IParticleManipulator and keeps 
particles within a specified rectangular boundary.  However, they still passed right through each 
other (and the planet), because I hadn’t implemented collision detection yet.

The Spike was very helpful because of my inexperience, and it was good quality work.  So,  I 
used the results of my spike as my first evolutionary prototype.

5.2 Ship Rotation: Sprite Sheets vs Real Time Rendering
SDL does not provide an efficient method of rendering the ship rotation in real time.  The rotation 
would be done by the CPU, rather than the graphics hardware.  Modern machines are fast, and 
this would hardly be a killer.  However, I wanted to do this “right.”  So, I was faced with a 
choice: learn OpenGL and do the rendering on the graphics hardware, or make a sprite sheet and 
use SDL as I originally planned.  I opted to use a sprite sheet for a variety of reasons.  Mostly, I 
did not want to add the extra complexity of learning OpenGL to my already busy agenda.

So, I needed a sprite sheet showing the full 360 degrees of rotation for each ship.  I have been 
informed that automatically creating a sprite sheet of a rotating image is trivial in professional art 
software (like Adobe Photoshop).  Unfortunately, when free alternatives are elusive, poor college 
students must make our own solutions.  So, I whipped up a quick spinning-sprite-sheet-creator of 
my own in C#.
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5.3 Ship Graphics, Sound, and Fonts.
My original plan for making the ship graphics was to draw them by hand, scan them, and shrink 
them down to hide the defects.  However, after a few less-than-spectacular attempts, I located 
some free ship graphics to use.  I edited them for my needs, ran them through my sprite sheet 
spinner program, and made sure to give attribution to the artist in all deliverable and published 
materials (including this paper: below).

The planet graphic, sounds, and font that I used are all released under free licenses (as detailed in 
the Licensing section of this paper: below).  Everything not mentioned was created by me!

5.4 Testing and Debugging
Since I was my own client, I fell into regular loops of testing, debugging, and refactoring.  Along 
the way, I faced a number of memorable, educational, and even amusing challenges.

5.4.1 Animated Sprites and Collision Detection
The fact that the ship sprites are animated meant I had to take special considerations during 
the pixel-level collision check.  I couldn’t figure out why I was sometimes getting an 
exception during collisions.  I realized that the animation frame could change as the pixel-
level check was iterating through pixels.  To solve the problem, I simply grabbed a reference 
to the appropriate frame as soon as I entered the pixel-level checking method; rather than 
dereferencing the animated sprite for its surface each time I needed it within the loop.

5.4.2 Stop the Bouncing!
Each instance of SolidEntity maintains a list of other SolidEntity objects it is currently 
colliding with.  This is useful because I do after-the-fact collision detection, which means the 
objects are already overlapping when I detect the collision.  A collision triggers a reaction that 
varies depending on the types of objects involved (i.e., planet, ship, bullet).  However, the 
reaction typically involves an change of Velocity (and usually direction).  If the resulting 
bounce is unable to separate the two objects in the next Tick handler’s Update call, then the 
collision will be detected again (and reacted to again).  As you might imagine, this can result 
in an amusing, rapid-fire, ping-pong effect.  However, this is not particularly desirable 
behavior for my space ships.  Thus, the list is maintained so that: if a collision is detected 
more than one, the reaction will be bypassed.  To keep it current, the list is pruned each tick 
when the collision checks happen.

5.4.3 Ships Being Damaged by Their Own Bullets (a.k.a., Et tu Brute?)
In the course of testing the near-final versions of the game, I came across a gameplay bug that 
occurred often enough to be detrimental to the overall experience.  A player could fire a shot 
shortly before dying, respawn, and get damaged by their own bouncing bullet!  This was due 
to the fact that each Bullet class was linked via reference to its creating ship.  If the ship was 
destroyed, then the player would receive a new ship, which the bullet wouldn’t recognize.  It 
was a simple fix: I simply associated each bullet with its Player rather than its Ship.  This was 
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really the point in the program’s evolution that I decided to make a Player class; it was an idea 
I had considered, but this was the “last straw.”

5.4.4 Max-Bullets Exploit (a.k.a., Suicide-to-Reload Trick)
Another issue I discovered while testing was more of an exploit than a bug.  The count of live 
bullets is tallied at the cannon level, and bullets persist even after a player’s death (I feel this 
adds a fun element).  So, a player could have more than the maximum number of live bullets 
by firing off a rapid barrage, quickly dying, and then firing more.  To fix this, I could simply 
move the counting of live bullets from the Cannon class to the Player class.  However, it’s 
hardly a serious issue, and I just didn’t get around to fixing it.  However, I did add it to my 
“Future Work” list (below).

5.4.5 Framerate Independent Movement and Predictive Collision Detection.
Ideally, I would add support for framerate independent movement, which moves a particle 
according to the amount of time that has passed since the Tick handler was last called; rather 
than a static distance per Tick.  It is possible to do, but SDL.NET clearly wasn’t designed with 
framerate independent movement in mind.  Implementing it would mean discarding 
SDL.NET’s ParticleSystem almost entirely: since theirs is designed to progress only in non-
fractional units.  Additionally, framerate independent movement would necessitate some form 
of predictive collision detection.  If a SolidEntity can move more than one “unit” in a Tick, we 
need to know if it will cross-paths (i.e., collide) with another object; otherwise we could move 
one object through another.  Predictive detection would allow the program to notice and react 
to those collisions.  In the end, I decided that the extra effort wasn’t worth it.  I had made a 
decision at the start to use SDL.NET, so I felt it was right to use it as-intended.

5.4.6 Optimization
As I neared the end of the development phase I came to a shocking realization.  The game 
worked very smoothly on many machines, but on my slower ones the game sometimes 
became unplayably slow!  I used a performance profiler to hone in on the slowdown points. 
As it turns out, the performance hit came from the fact that I had not converted the images I 
loaded from the disk into a uniform pixel format.  So, the conversions were being done each 
time, on-the-fly!  Once I made those simple changes, the speed of the game greatly increased. 
Even my lowly netbook can now maintain the game’s set framerate of 30fps.

5.5 Work Breakdown
I initially broke the development of the project into distinct phases of coding, refactoring, and 
testing.  I carefully separated each task, and assigned a specific schedule to it.  However, given 
the nature of evolutionary programming, and the fact that I served as my own client, I ended up 
adhering to a more informal system of short development cycles (implementing, testing, and 
refactoring).  The project still reached completion at the planned time, and there were no code-
like-hell sessions involved.  The chart below is simplified from the chart in my original proposal.
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Semester
Development (Actual)

Writeup (Actual)
Implementation (Estimated)

Refactoring (Estimated)
Final Testing (Estimated)

Writeup (Estimated)

02/15/11 02/25/11 03/07/11 03/17/11 03/27/11 04/06/11 04/16/11 04/26/11

Work Breakdown

6. Results
I’m quite satisfied with the results as a whole; both as the client and the developer!  The game is 
very playable and fun.  However, it would be nice to have a computer player to compete with, since 
computer scientists often don’t have real friends.

Check out the screen shots of the finished product below.

6.1 Final Program

Illustration 2: The start up screen.

Illustration 3: The ships in their initial positions.
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    Illustration 4: An epic space battle!

6.2 Performance
SDL.NET uses Microsoft .NET Interop services to call the unmanaged SDL libraries, which 
incurs some overhead. In spite of this, the game does not put a significant strain on the system. 
In fact, its exact requirements are unknown, but low enough that the maintainable frame rate isn’t 
likely to be much of an issue.  However, it would still be 
more correct to implement framerate independent 
movement and predictive collision detection.

6.3 Public Release
I published the game on GoogleCode.  The site contains 
a source code (SVN) repository, as well as binary and 
source code archive downloads.  The game’s homepage 
http://orbitclash.googlecode.com.[Illustration 5]

6.3.1 User Manual Illustration 5: The OrbitClash homepage.
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Operating the game is exceedingly simple.  However, the OrbitClash user manual is included 
on the game’s home page and in the ReadMe.txt file bundled with each distribution.  I made a 
tactical decision not to duplicate it again in this document.

6.3.2 Licensing Details
I chose the GNU General Public License[R5] (GPL) for OrbitClash, because it is compatible 
with all of the licenses of the other resources used in this project, and because it prevents my 
code from being used in some random closed-source, commercial product (theoretically).

SDL and SDL.NET are both licensed under the GNU Lesser General Public License (LGPL).
[R6]  Which is an open source GNU license commonly used with libraries.

The two ship graphics were created by “JVI i I{ I{,” who made them freely available[R7] under 
the conditions that they be attributed for their work, and that they be notified (via thread post) 
when their work is used; I did both.

The planet graphic was created by Christian Hollingsworth[R8] and licensed under the Creative 
Commons Attribution 3.0[R9] license. 

The sound effects I used were all obtained from SoundBible.[R10]  Most of the sounds were 
created by Mike Koenig, and released under the Creative Commons Attribution 3.0 license. 
For a comprehensive list, see the “Sound Attribution.txt” file in the Sounds directory of either 
the binary or source code distributions or OrbitClash.  The ship thruster sound was created by 
dobroride, and released under the Creative Common Sampling Plus 1.0[R11] license.  The ship 
warping-in sound was created by snottyboy, and released under the Creative Commons 
Attribution 3.0 license.

The only font I used is called Orbitron, and it was created by Matt McInerney,[R12] and released 
under the Open Font License.[R13]

I took special care to provide complete and specific licensing details in every distribution of 
the binary and source of the game, so as to be sure not to violate any of the sub-licenses.

6.4 Wish List
• Tally “live” bullet count in the Player class, instead of the Cannon class, to prevent max-

bullet exploit.
• Graphic-effects when bullet hits ship
• Graphic-effects when ship hit ship
• Graphic-effects of ship damage level
• Configuration
• Joystick support
• Framerate-independent movement & predictive collision detection
• Ability to pause/unpause the game
• “Press 'H' for instructions” on main title screen
• Give SolidEntity objects “mass” to make physics more realistic
• Support higher resolutions
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• Network play
• Power-ups
• Player profiles
• Choice of ships /w various specs
• AI to play against
• Installer for binary distribution

7. Summary
For this project, I served as my own client, so I found it sensible to use an evolutionary prototyping 
design methodology.  My goal was to develop a video game inspired by the classic game Spacewar! 
The result is a very playable, open-source game.  I (the client) have declared the project a brilliant 
success!  As mentioned above, to download the finished result, visit 
http://orbitclash.googlecode.com.

I learned a little bit about some very basic game programing (graphics, physics, sound, and player 
input) along the way.  I also learned that collision detection is not as simple as it seems.  I feel like 
my work was a worthy introduction to the basic concepts of video game design. 
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8.1 Useful Tools
• Audacity - The Free, Cross-Platform Sound Editor.  <http://audacity.sourceforge.net/>.
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