M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

USE OF OPENSSH SUPPORT FOR REMOTE LOGIN
TO A MULTILEVEL SECURE SYSTEM

by
Christopher Fred Herbig
December 2004

Thesis Advisor: Cynthia E. Irvine
Thesis Co-Advisor: Thuy D. Nguyen

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 2004 Master’s Thesis

4. TITLE AND SUBTITLE: USE OF OPENSSH SUPPORT FOR REMOTE] 5. FUNDING NUMBERS
LOGIN TO A MULTILEVEL SECURE SYSTEM

6. AUTHOR(S) Christopher Fred Herbig

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

Complex multilevel secure (MLS) architectures are emerging that require user identification and authentication
services not only from multilevel connections, but from pre-existing single level networks. The XTS-400 can be used as a
server in such environments. Trusted devices are required for user login via multilevel connections; however, single level
remote login facilities do not require such client-side devices. Instead, a more lightweight mechanism is possible.

Remote login capabilities do not exist on the XTS-400 for use over the single level networks and this capability is a
desired feature for use in complex multilevel architectures. OpenSSH is an application, developed for OpenBSD, that uses the
SSH protocol to provide secure remote logins and an interactive command interface. A secure remote login application,
OpenSSH, was ported to the XTS-400 in order to provide remote login capabilities.

The porting process identified differences between the original development platform for OpenSSH and the XTS-
400. Solutions, in the form of source code modifications, were made to overcome problems resulting from the compatibility
differences encountered during the port. Testing was conducted to ensure that the port was successful and did not violate any
security policies enforced by the XTS-400.

14. SUBJECT TERMS OpenSSH, XTS-400, Remote Login 15. NUMBER OF
PAGES
225
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited.

USE OF OPENSSH SUPPORT FOR REMOTE LOGIN TO A MULTILEVEL
SECURE SYSTEM

Christopher F. Herbig
Civilian, Naval Postgraduate School
B.S., St. Edward’s University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 2004
Author: Christopher Fred Herbig
Approved by: Cynthia E. Irvine
Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Complex multilevel secure (MLS) architectures are emerging that require user
identification and authentication services not only from multilevel connections, but from
pre-existing single level networks. The XTS-400 can be used as a server in such
environments. Trusted devices are required for user login via multilevel connections;
however, single level remote login facilities do not require such client-side devices.
Instead, a more lightweight mechanism is possible.

Remote login capabilities do not exist on the XTS-400 for use over the single
level networks and this capability is a desired feature for use in complex multilevel
architectures. OpenSSH is an application, developed for OpenBSD, that uses the SSH
protocol to provide secure remote logins and an interactive command interface. A secure
remote login application, OpenSSH, was ported to the XTS-400 in order to provide
remote login capabilities.

The porting process identified differences between the original development
platform for OpenSSH and the XTS-400. Solutions, in the form of source code
modifications, were made to overcome problems resulting from the compatibility
differences encountered during the port. Testing was conducted to ensure that the port

was successful and did not violate any security policies enforced by the XTS-400.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ..ottt sttt stesbesresneareeneas 1
A. MOTIVATION OF STUDY ...oiiiiiiiiiiiiieie e 1
B. PURPOSE OF STUDY ...ooiiiiiieiiieiese ettt 2
C. ORGANIZATION OF PAPERooiiiiiieieie e 2
BACKGROUND ..ottt sttt st sbe st sneaneeneenes 3
A. ARCHITECTURAL BACKGROUND.......cccctiitiiniiieieiee e 3
1. MY SEA PrOJECT.....coiiiiiiieie ettt 3

2. OPENSSH ... 4

a. Overview of OPeNSSHccccooiiiiiiiiee e 4

b. SSH CHENLS ..t 5

C. AULNENTICALIONceeiiie e 5

d. Modes Of OPEration..........ccoveieiieeieie e 7

B. PORTING BACKGROUND.......c.cotiiiiiieiiesie sttt eseeneas 9
1. BSD DISCUSSIONccuiiiiiiiiiestieie sttt 9

2. XTS400 ettt ne e 10

C. SOFTWARE DEPENDENCIESccoiiiiiinei s 12
1. ZID e 13

2. OPENSSL ... s 13

3. Entropy Gathering Daemon..........ccocceoiiienenieiienccee e 14

4. MYSEA LIDIariescoooeiiiieeseieseee s 14
INTEGRATION OF OPENSSH ONTO THE XTS-400ccccoceiiiiienieiieesieenenn 15
A GOALLS. ..t 15
B METHODOLOGY ..ottt sttt 15
C PORTING RESULTS. ..ot 16
D CHALLENGES ENCOUNTERED.......cccociitiiiiiieieeiee e 16
1. SYSTEM FEATUTES ..o 16

2. SYSEEM FUNCHIONS ... 17

3. SYSEEM FIIES .. 19

4, ENVIFONMENT ..o e 22
INTEGRATION TESTINGcoiiiiiiiie et 23
A DEVELOPMENTAL TESTING ..ottt 23
1. TESEPIAN L s 23

a. MAC Policy Enforcement...........cccooevieiiiinneniieninneee e 24

b. DAC Policy ENforcement..........ccccoovevveveiinsneie e 27

C. TPE Testing with Files Created by OpenSSHccccc..... 29

d. TPE Testing with Files Modified by OpenSSH 31

e. Single Level LAN — Simultaneous User Logins 32

f. Multiple Single Level LANs — Simultaneous User Logins....32

g. Public Key Authentication TestS.........ccoocvvenieieninnieneeieee 32

h. MiSCEHANEOUS TESES ..eovveiiiciieiieee e 33

Vil

2. Test Validation RePOItcccvveiiiii i 33

a. MAC Policy Enforcement Test Validation Results................ 33
b. DAC Policy Enforcement Test Validation Results................. 35

C. TPE Testing with File Created by OpenSSH Test
Validation ReSUIEScoeiiiiiiiii s 36

d. TPE Testing with Files Modified by OpenSSH Test
Validation ReSUIEScoeiiiiii s 36

e. Single Level LAN - Simultaneous User Logins Test
Validation ReSUIEScoviiiiiii s 36

f. Multiple Single Level LANs — Simultaneous User Logins
Test Validation ReSUItSccoviiiiiiiiies s 37
g. Public Key Authentication Test Validation Results............... 37
h. Miscellaneous Test Validation Resultscccccoocevirennnene 37
B. MLS TEST BED TESTING ..ottt 38
1. TESEPIAN i s 38
a. TPE Testing with Files Created by OpenSSHcccce.... 39
b. TPE Testing with Files Modified by OpenSSH 39
C. Single Level LAN — Simultaneous User Logins 39
d. Multiple Single Level LANs — Simultaneous User Logins....40
e. Public Key Authentication TestS.........cccccvvveiieieniienieneeieee 40
V. CONCLUSION ..ottt bbbttt sb bbb nne s 41
A SUMMARY ..ttt bttt sttt ne e ens 41
B. LESSONS LEARNEDcoiiiiitiiiee e 41
C. FUTURE WORK ..ottt st 41
APPENDIX A: SOFTWARE INSTALLATIONooiiiiitctieeee e 43
A SUPPORT SOFTWARE ..ottt 43
1. Entropy Gathering DaemoON...........cccceviririninieieieee e 43
2. Zlib compression libraries and toolsccccccveeevieve e 46
a. Installation INSTrUCHIONScovveiiiieiiecee e 46
3. OpenSSL Encryption Libraries and ToolS.........c.ccccoveiveivciecnnne. 46
a. Installation INSTrUCHIONScoooveiiiieiiecee e 46
B. OPENSSH ...ttt bbbt be s 47
C. PUTTY INSTALLATION ..ot 53
APPENDIX B: SOURCE CODE LISTINGcoeiiiiieiiite sttt 55
A DEFINES.H ..ot 55
B SESSIONLC ..ottt bbb 66
C SSHD.C .ot 106
D UIDSWAP.C ..ottt bbb 141
E MONITOR.C...oovr ettt ens 147
F MONITOR_WRAP.C ..ottt e 152
APPENDIX C: SSH DAEMON CONFIGURATION FILE........cccocoiiiiiiie e 175
A SUMMARY OF REQUIRED CHANGESccooiiiiiiene s 175
B. SAMPLE CONFIGURATION FILE......ccccciiiiiiiecree e, 175

viii

APPENDIX D: KEY GENERATION, CONVERSION AND STORAGE 179

A. XTS-400 GENERATED KEYS ...t 179
B. PUTTY CONVERSION OF KEYS FROM XTS-400........cccceeevveeeveennne. 183
C. PUTTY GENERATED KEYS.....ci et 184
D. OPENSSH GENERATED KEYS ON LINUX.....ccocovviieiiiie e 185
E. LINUX INSTALLATION OF KEYS FROM XTS-400.........ccoceeeevvrenen. 185
APPENDIX E: TOOLS ...ttt sttt eaae e s b e e aee s 187
A. TESTING TOOLSottt 187
1. OpenSSH Client 0N LINUX.....ccvviieiiiic e sn e 187
2. PULLY oo 187
B. DEVELOPMENT TOOLS ...ttt 188
1. Fedora core L lINUXoocviiiiiiiiie e 188
2. LinuX Cross REfEreNCecocvviviiiicie e 188
APPENDIX F: TEST PROCEDURESco ottt 191
1. MAC POLICY ENFORCEMENTooiiiiicie e 191
2. DAC POLICY ENFORCEMENT ... 193
3. TPE TESTING WITH FILES CREATED BY OPENSSH 196
4, TPE TESTING WITH FILES MODIFIED BY OPENSSH..................... 197
5. SINGLE LEVEL LAN - SIMULTANEOUS USER LOGINS................ 197
6. MULTIPLE SINGLE LEVEL LANS - SIMULTANEOUS USER
(IO 1 N S T 198
7. PUBLIC-KEY AUTHENTICATION ..ot 198
8. MISCELLANEQOUS TESTS ...t 198
LIST OF REFERENCGCES.oo oottt st 201
INITIAL DISTRIBUTION LIST ittt sttt rae e 203

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2.
Figure 3.

LIST OF FIGURES

Developmental Testing Network Topology
File System Structure for TPE Testing........

MLS Testbed Network Topology taken from [IRVO4]cccoevvevviivinenene,

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

Table 15.

Table 16.
Table 17.

Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.

LIST OF TABLES

OpenBSD Features Used by OPenSSH ... 10
XTS-400 Implementation DIfferences.........ccooveiveeiieninie e 11
MAC Policy Enforcement TeSL........cccveeiieieeie e 25
MAC Policy Test DefiNItioNScccooeiiiiierieiiesiee e 26
DAC Policy ENforcement TeSTccovveiieieiieiiee e 29
TPE Viewing Capability Test for OpenSSH Created Files.........c.cccoovervennne. 30
TPE Viewing Capability Test for Files Modified by OpenSSH..................... 31
Single Level LAN — Simultaneous User LOgGINS.........ccoccevveiieienennenieeneeniens 32
Multiple Single Level LANs — Simultaneous User LOgQINScccccceevevvvennenn. 32
Public Key AuthentiCation TeST........cooiiiiieiiie e 33
MISCEIIANEOUS TESES ..ottt 33
MAC Policy Enforcement Test Validation ReSUlts...........ccccoveiiiiiieieennne 34
DAC Policy Enforcement Test Validation ReSUltS...........cccccvevvvieivecieieennnn, 35
TPE Viewing Capability for OpenSSH Created Files Test Validation

RESUITS ...t bbb 36
TPE Viewing Capability with OpenSSH Modified Files Test Validation

RESUITS ...t bbb 36
Single Level LAN — Simultaneous User Logins Test Validation Results........ 37
Multiple Single Level LANs — Simultaneous User Logins Test Validation

RESUIES ...ttt 37
Public Key Authentication Test Validation Resultsccccccevvvevevieinennnne, 37
Miscellaneous Test Validation ReSUItS..........ccovviiiiiiiiniiie e 38
MLS Testbed — TPE Testing with Files Created Through OpenSSH 39
MLS Testbed — TPE Testing with Files Modified Through OpenSSH........... 39
MLS Testbed — Single Level LAN — Simultaneous User Logins.................... 40
MLS Testbed — Multiple Single Level LANs — Simultaneous User Logins ...40
MLS Testbed — Public Key Authentication Test..........cccooevviieivereiiernenn 40
MAC POliCy TeSt DIrECIOMES.ccveieeeiieiieiie et 191
MAC POlICY TSt FIlES.....cviiiieiiee e 192

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACL

API

DAC
DSA

IP

JWICS
LAN
MAC
MLS
MYSEA
NIPRNET
0OS

PGP

PKI

RSA
SIPRNET
SSH
STOP
TCM

TPE

ACRONYMNS AND ABBREVIATIONS

Access Control List

Application Programmer’s Interface
Discretionary Access Control

Digital Signature Algorithm

Internet Protocol

Joint Worldwide Intelligence Communications System
Local Area Network

Mandatory Access Controls

Multilevel Secure

Monterey Security Architecture

Non-secure Internet protocol router network
Operating System

Pretty Good Privacy

Public Key Infrastructure

Rivest, Shamir, Adelman

Secret Internet Protocol Router Network
Secure Shell

Secure Trusted Operating Program

Trusted Channel Module

Trusted Path Extension

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

ACKNOWLEDGMENTS

I would like to thank Dr. Irvine, Thuy, Jean Khosalim and David Shifflett for their
help and support with this project. | would also like to thank Tanya Raven and Naomi
Falby for their support and encouragement during my stay at the Naval Postgraduate

School. I thank my parents and sister for their love and support.

This material is based upon work supported by the National Science Foundation
under Grant No. DUE-0114018. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

XVii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

EXECUTIVE SUMMARY

It is general opinion that high assurance systems present challenging user
interfaces. Therefore users tend to use untrusted, low assurance systems that do not
provide sufficient security. The MYSEA project incorporates both high and low
assurance systems with trusted and untrusted applications. The high assurance system
used in the MYSEA project is the DigitalNet XTS-400. This system provides high
assurance enforcement of policies to protect information from both unauthorized
disclosure and unauthorized modification. Both commercial-off-the-shelf and open
source productivity applications are provided to gain user acceptability.

The MYSEA project currently provides logon services for users in a multilevel
secure LAN. These services require trusted devices at the client systems that are not
available to the users on the single level networks. The motivation for porting OpenSSH
is to provide users with remote access to the XTS-400 from a single level network.

The methodology used for this research involved platform analysis, source code
analysis, source code modifications, debugging and integration testing. The XTS-400
provides a Linux Binary Compatible Interface. In most cases, applications developed in
Linux will run on the XTS-400 with no modifications. OpenSSH is a special case, where
the source code had to be modified and the modified source code had to be tested to
ensure there was no major loss in functionality. Although some functionality was lost in
the porting process, the goal of providing a secure remote interactive session to the user
across the single level LAN was achieved. Users are constrained by the security policies
enforced on the XTS-400 when they are logged in through OpenSSH as verified by the
developmental testing results.

The conclusion of this study offers suggestions for future projects to extend this

work.

Xix

THIS PAGE INTENTIONALLY LEFT BLANK

XX

l. INTRODUCTION

A. MOTIVATION OF STUDY

In military and commercial contexts, information may be classified according to
its criticality to its owners. The classification process involves labeling information with
sensitivity levels. For the Military, the standard levels are UNCLASSIFIED,
CONFIDENTIAL, SECRET, and TOP SECRET. In commerce, the levels might be
PUBLIC, PROPRIETARY, and SENSITIVE. The use of these classifications is intended
to prevent the unauthorized disclosure of the information requiring protection. As a
military example, military plans must be kept confidential so as to defeat opposing
forces. If the opposing forces discovered a secret military operational plan, then they
could counter that operation and our military forces would suffer great losses in the form
of lives, equipment, and technology. For a commercial example consider the following:
information regarding a product of a company is labeled proprietary and this information
is not intended for public dissemination; its disclosure, perhaps to competitors, could

cause a company to lose its market edge and ultimately money.

Sensitive information needs sufficient protection, but access to this information
needs to be granted when appropriate. What is required is a multilevel secure (MLS)
architecture. One such architecture is the Monterey Security Architecture (MYSEA)
project. The MYSEA project incorporates the protection mechanisms required to ensure
only the authorized disclosure of information to authorized users. So far, the MYSEA
project has focused on the military sector, but it can also be used in the commercial sector
with little modification. To facilitate the sharing of information with appropriate and
authorized uses, the MYSEA project permits access from a MLS local area network
(LAN) to one of several single level networks. To aid in the sharing of information, a
service was required so that users on the single level networks could access resources

with the multilevel network.

The motivation for this study is to provide secure remote login capabilities for use
over the single level networks in support of the Monterey Security Architecture
(MYSEA) project. The MYSEA project uses the XTS-400 as its multilevel secure server

called the MYSEA server. The MYSEA server is connected to a number of single level
networks and a MLS LAN. From the MLS LAN, users can use the Trusted Path
Extension (TPE) devices to connect to the MYSEA server and view information at
varying secrecy and integrity levels. From the single level networks, only information
that has the same security classification as that of the network may be seen on these
networks. Users on these networks do not have TPE devices to authenticate with the
MYSEA server. Hence there is a need to provide a secure login mechanism for those
users. The tool chosen to provide the remote interactive session is OpenSSH, a
network security application that uses the SSH protocols to implement secure remote
login capabilities.
B. PURPOSE OF STUDY

The purpose of this study is to port OpenSSH to the XTS-400 run on a multilevel
secure (MLYS) server to provide secure remote logins for users from different single-level
networks. The XTS-400 does not provide such a capability. The XTS-400 provides a
Linux Binary Compatible Interface that allows Linux programs to run on the XTS-400
with little or no modifications [DIG03b]. This study includes source code modifications
and a series of developmental tests used to demonstrate that OpenSSH provides a remote
shell to the user and that the security policies enforced on the XTS-400 are still enforced
through OpenSSH. The organization for this study will now be discussed.
C. ORGANIZATION OF PAPER

This paper is organized as follows: Chapter | provides the purpose, motivation
and organization of this study. Chapter Il provides background information on the
MYSEA project, OpenSSH, differences between OpenBSD and the XTS-400 and the
software packages required by OpenSSH to function properly. Chapter 11l covers the
goals of this study, the methodology used to port OpenSSH, and the modifications made
to the source code for OpenSSH. Chapter 1V describes the types of testing required for a
software port and provides the test plans and the results for each type of test in the
context of this study. Chapter V provides a summary of this study, the lessons learned
from this study and future work that can extend this study.

II. BACKGROUND

This chapter provides background information relating to this project. The first
section discusses the MYSEA project, and provides an overview of OpenSSH including
its history, available clients, available authentication methods and its modes of operation.
The second section provides information about the port of OpenSSH to the XTS-400.
Within this section, features used by OpenSSH but have a different behavior on the XTS-
400 are discussed. Then, the way the XTS-400 handles those features is discussed along
with a brief description of security policies available on the XTS-400. The last section
will cover the software dependencies of OpenSSH.

A. ARCHITECTURAL BACKGROUND

1. MYSEA Project

“IMYSEA] provides a trusted distributed operating environment for enforcing
multilevel security policies, and utilization of support for incorporation of unmodified
commodity productivity applications for user activities” [IRV04]. This means that the
MYSEA project uses a client-server architecture where the server, called the MYSEA
server, is responsible for the enforcement of security policies. This server is one of the
very few specialized hardware components required by MYSEA. The other specialized
hardware components are the Trusted Path Extensions (TPE) and the Trusted Channel
Modules (TCM). The TPE is a device that will provide an unforgeable communications
link between the server and the client machine. The TCMs authenticate network
sensitivity levels to the MYSEA server so that the information received from that
network may be labeled correctly. The clients are intended to have no permanent
writeable storage. A Knoppix client as well as a specialized version of Microsoft
Windows XP Embedded called “state-less professional” are part of the design. The use of
a popular operating system such as Microsoft Windows supports user acceptance because
users may continue to use their favorite, and familiar, office productivity applications.

The MYSEA server uses an XTS-400 as its base. It will be discussed in a future section.

The XTS-400 provides an unforgeable communications link called a “trusted
path” between the target of evaluation (TOE) security functions (TSF) and the user. The

TSF is “a set consisting of all hardware, software, and firmware of the TOE that must be
3

relied upon for the correct enforcement of the [TOE security policy]” [DIG04]. The TOE
in this context refers to the XTS-400. The trusted path can be invoked by the user with a
secure attention key (SAK). The trusted path ensures to the user that he is
communicating with the TSF and ensures to the TSF that it is communicating with the
user. Qutside the context of the MYSEA project, the XTS-400 only allows users at the
console or serial terminals to invoke the SAK to use the trusted path. Within the context
of the MYSEA project, the TPEs are high assurance components that allow users to login
to the MYSEA server from a multilevel secure (MLS) LAN. The TPEs are not available
for use on single level LANs such as the NIPRNET, SIPRNET and JWICS. There is a
need to provide remote login capabilities with strong authentication over the single level
LANs. The remote login utility chosen is OpenSSH, which will be described in the next
section.
2. OpenSSH

a. Overview of OpenSSH

OpenSSH is the OpenBSD version of SSH, the secure shell. It is available
under the OpenBSD license [SSHO04]. SSH - pronounced s-s-h — is a protocol that
specifies a secure way to login to a remote host [BARO1]. The creator of the SSH
protocol is Tatu Ylonen, a researcher at the Helsinki University of Technology in Finland
[BARO1]. There are two versions of the protocol, SSH-1 and SSH-2. SSH-1 was
developed rather quickly and has numerous flaws [BARO1]. SSH-2 was developed to fix
these flaws and add more functionality to the protocol [BAROL1]. There is no backwards
compatibility from SSH-1 to SSH-2[BARO01]. SSH-1 is also monolithic and tries to
provide for confidentiality, integrity, authentication and communication of user
commands and data within one single protocol. According to Saltzer and Schroeder, a
secure system should be very modular based on the principle of economy of mechanism
[SAL75]. SSH-2 follows this recommendation and divides the protocol into three main
components: SSH-TRANS, SSH-USERAUTH, and SSH-CONNECT. In essence, SSH
is a protocol and not an application; OpenSSH is an application that supports the SSH

protocols.

Applications based on SSH usually only support one protocol, either SSH-

1 or SSH-2. Thus certain clients may not be compatible with certain servers. OpenSSH is

4

an application that incorporates both protocol versions. OpenSSH clients and servers
can negotiate with other clients and servers as to which protocol version to use.
OpenSSH is the preferred implementation of SSH because it recognizes both versions of
the protocol and it is highly portable — although the server must run on a Linux- or BSD-
like system. OpenSSH clients have been developed for many popular operating systems
such as Microsoft Windows and the various Linux Distributions.

A discussion of the PUTTY OpenSSH client follows.
b. SSH Clients
There are numerous clients for OpenSSH as can be seen on
http://www.freessh.org. Under the Windows section of the website, 27 different listings
can be found for clients that can be run on the Windows Operating System. Some of
these clients are freeware and others are shareware. One popular Windows-based client
iSPUTTY.

PUTTY is very modular; there are separate executables for about every
function available to the OpenSSH client such as an SSH client, a telnet client, a secure
copy and secure FTP client, a secure tunneling client and a key-generation client. PUTTY
is compatible with OpenSSH because like OpenSSH, it supports the two versions of the
SSH protocol. PUuTTY was developed and is maintained by a small team lead by Simon
Tatham in Cambridge, England [TATO04]. PuTTY was selected as the Windows SSH
client for use in this study.

C. Authentication

One important requirement for remote logins is strong authentication.
OpenSSH provides eight authentication mechanisms: none, public-key, RhostsRSA,

Rhosts, password, s/key, Kerberos, and PAM.

The first authentication method, none, does not perform any
authentication. It allows a user to login assuming the user supplies a valid username.
This method is built into OpenSSH and is part of the default mode of operation for
OpenSSH. This method can be disabled by altering the OpenSSH daemon configuration

to deny empty passwords.

The public-key authentication method works in the following way: the
server issues a numerical challenge to the client. The client, acting on behalf of a user,
must sign the challenge and send it back to the server. The server then uses the user’s
public key to verify the signature. If the signature can be verified, the user is
authenticated. There are three types of keys used in OpenSSH: RSA, DSA and
OpenPGP. RSA keys are used by the RSA cryptosystem which was developed by Rivest,
Shamir and Adelman [BARO1]. DSA, which stands for digital signature algorithm, has
keys similar to RSA keys but this cryptosystem was developed by the U.S. National
Security Agency and distributed by the U.S. National Institute of Standards and
Technology through the digital signature standard because of patent restrictions on the
RSA cryptosystem [BARO1]. OpenPGP is the free version of PGP. PGP is the “pretty
good privacy” cryptosystem developed by Phil Zimmerman [BARO1]. The default keys
used for OpenSSH running under Version 2 of the SSH protocol are DSA keys.

RhostsRSA is similar to public-key authentication but it only provides
host authentication, not user authentication. Each host generates a pair of RSA keys.
The server then sends a numerical challenge to the client host and the client host must
sign and send the message back to the server. This method differs from the previous
method because the user does not have to specify the key or its passphrase.

Rhosts is a very insecure method of authentication; it involves creating a
file that will allow a host listed in that file to establish a connection without any further
authentication checks. This is the method used by the rlogin, rsh, rcp commands. In this
method, when the server receives a connection, it checks the IP address and the hostname
of the remote host against the “/etc/rhosts” file. If the IP address and hostname are
located in the file, the host is authenticated and the user is granted access to the server
assuming that a valid username was supplied. Rhosts is very insecure because it assumes
that the client machine can protect itself from compromise. If the machine is
compromised, then the server could be compromised as well, because this authentication

method does not require the user to prove their identity with a password or private key.

The use of passwords has always been popular because users can

remember passwords easily if they create them and there is no need to carry around a file

6

holding keys. The drawback to passwords is usually if people generate their own, then
they are often easy to guess. In the case that the user is not allowed to generate their own
password, then the user may not remember it as easily and will write it down, which

could lead to the compromise of their account.

S/key is a form of one-time password challenge-response authentication.
The server issues a challenge in the form of a string of characters and the user can either
enter the string into a device that will provide the response that the user enters into the
command line and sends to the server or the user carries a list of pre-calculated
passwords and provides the appropriate response to the server from the list. Use of this

authentication mechanism requires extra technology and devices.

Kerberos is an authentication method where the user authenticates to a
server and receives a ticket that will grant access to other servers as long as these servers
have been configured to use and receive the Kerberos tickets. This mechanism requires

the installation and maintenance of a Kerberos server.

OpenSSH also provides compatibility with the Pluggable Authentication
Modules (PAM) developed by Sun Microsystems. According to [BARO01], PAM *“is an
infrastructure for supporting multiple authentication methods.” This allows for other
authentication methods to be developed and used without modifying the OpenSSH source
to directly implement the new method. All that OpenSSH has to provide is support for
PAM.

d. Modes of Operation

OpenSSH can run in one of two modes: with privilege separation and
without privilege separation. Privilege separation will be discussed in a later section, but

first the need for it will be discussed.

When OpenSSH first appeared, it only provided secure remote login capabilities
by encrypting the network traffic and providing numerous authentication methods.
OpenSSH followed a standard client—server architecture: the server, known as a daemon,
would listen for connections on a specific Internet Protocol (IP) address and port and
when a connection is received it would spawn a child to handle the requests of the client.

Every client—server application is different and each server may run as a specific user or a

7

special user without login capabilities. In a few special cases, the server needs to run as
the root user because the server needs to execute some privileged commands. OpenSSH

falls into this last category.

The OpenSSH daemon and its child need to possess privileges so that all client
requests, such as password authentication, can be serviced. In a Linux or UNIX
environment, user identities and passwords are stored in two different files: “passwd” and
“shadow” in the “/etc” directory. The “passwd” file which stores information such as
user name, user id, real name, home directory, and user path is normally readable by
anyone on the system. However, it is only writeable by the root user. The “shadow” file
contains the user id and password pairs for each user in an encrypted text format that is
only readable by the root user. In order for the OpenSSH child to authenticate the user
using password authentication, it would have to access both the “passwd” and “shadow”
files. Thus, the OpenSSH child would have to run as the root user. There are some
vulnerabilities [PROO03] that can result in privilege escalation to the root user. If root-
user status can be acquired maliciously, then the system is compromised and the
confidentiality, integrity and availability of the information on that system can no longer

be guaranteed.

A solution to combat this threat was needed. Among the many proposed solutions
that will mitigate the privilege escalation threat, one solution is the concept of privilege
separation. Privilege separation is a generic concept with the objective of “[reducing] the
amount of code that runs with special privilege without affecting or limiting the
functionality of the service” [PRO03]. The implementation of privilege separation
requires the use of two processes, a parent with privileges and a child without privileges.
The child handles all user transactions and when a user transaction requires privileges,
the child must ask the parent to process the transaction for the child [PRO03]. Privilege
separation has the benefit of confining an intruder, if they manage to compromise the
child, to the child’s address space and prevents the inheritance of privileges. The work
done in [PROO03] proposed a framework for implementing privilege separation and
OpenSSH was chosen as the test application that would demonstrate privilege separation.

Privilege separation has now been fully integrated into OpenSSH and is a default option.

If privilege separation is disabled, then the OpenSSH daemon follows the

standard client-server model, i.e., the daemon handles all user transactions.
B. PORTING BACKGROUND

In porting an application from one platform to another it is useful to know the
differences between the original development platform and the target platform. This
section will discuss how the features required by OpenSSH differ between OpenBSD
and the XTS-400.

1. BSD Discussion

OpenSSH uses many features available on its development platform, OpenBSD.
Many of these features are also available on many of the other platforms to which
OpenSSH has been ported such as the various distributions of Linux. Table 1 provides a
description of the features used by OpenSSH that do not have the same behavior on the
XTS-400 as they do on OpenBSD.

Category Name Description

System root user a user with unlimited access to the system;
Features all privileges are given to this user

file-descriptor passing ability for processes to pass file-descriptors
to other processes

System chroot create a new root directory for a process
Functions setgroups sets the supplementary group IDs for a
process
initgroups initializes the supplementary group list
socketpair creates a pair of UNIX domain sockets that

are linked together

setuid, seteuid, setreuid | sets the real and effective user ID of a

process

setgid, setgegid, setregid | sets the real and effective group ID of a
process

daemon forks the process into the background and

disconnects it from the controlling terminal

System Files | passwd provides user information such as
username, user 1D, default group 1D, home
directory and shell

shadow provides the user’s encrypted password
utmp contains a record of users logged in to the
system
wtmp records all of the logins and logouts to the
system
group provides information about the groups in
the system and which users belong in each
group
Environment | daemon environment the init process provides an environment

for all processes

Table 1. OpenBSD Features Used by OpenSSH
The next section will discuss how these features are different on the XTS-400.
2. XTS-400
The XTS-400 provides a Linux Binary Compatible Interface. This interface is not
complete because not all features of Linux are supported through this interface.

OpenSSH has been ported to numerous Linux distributions and is compatible with the

10

interface provided by the XTS-400. However, not all features required by OpenSSH as

presented in Table 1 behave in the same way on the XTS-400 as they do in Linux or

OpenBSD. The differences in the features are listed in Table 2.

Category

Name

XTS-400 Implementation Difference

System Features

the root user

there is no root user on the XTS-400

file-descriptor passing

this feature is not implemented

System Functions

chroot there is an API, but there is no underlying
system support

setgroups there is an API, but there is no underlying
system support

initgroups there is an API, but there is no underlying
system support

socketpair there is an API, but there is no underlying

system support

setuid, seteuid, setreuid

these system calls require the privilege:
set_owner_group

setgid, setgegid, setregid

these system calls require the privilege:
set_owner_group

daemon there is an API, but there is no underlying

system support
System Files passwd stub file provided for Linux

compatibility, not used for XTS-400
authentication

shadow does not exist on the system

utmp does not exist on the system

wtmp does not exist on the system

group stub file provided for Linux compatibility

Environment

daemon environment

no init process for daemons, daemons are
started from the daemon database

Table 2.

XTS-400 Implementation Differences

The features presented in Table 1 are not the only differences between the XTS-

400 and other operating systems.

The XTS-400 differs from most popular operating

systems because unlike Linux, which only enforces discretionary access control policies,

the XTS-400 also enforces mandatory access control policies. The XTS-400 enforces a

11

total of three policies: a mandatory secrecy policy, a mandatory integrity policy, and a
discretionary policy.

The mandatory secrecy policy is represented by the Bell and La Padula secrecy
formal model. This model prevents the unauthorized disclosure of sensitive information
by maintaining two properties: the simple security property and the *-property [BEL76].
The simple security property prevents a subject from accessing an object if the secrecy
level of the subject is dominated by the secrecy level of the object [BEL76] —this is
referred to as read-up. The *-property only allows write-access if the secrecy level of the

object is equal to or dominates the secrecy level of the subject [BEL76].

The mandatory integrity policy is represented by the Biba integrity formal model.
This model prevents the unauthorized modification of information. Like the previous
model, this model also has two properties that must be maintained: the simple integrity
property and the *-property [BIB77]. The simple integrity property does not allow for a
subject to have observe-access to an object if the integrity level of the subject dominates
the integrity level of the object [BIB77] — this is referred to as read-down. The *-
property allows for write-access if the integrity level of the subject is equal to or

dominates the integrity level of the object [BIB77].

The discretionary access control policies are enforced by two mechanisms: access
control lists (ACLs) and capability lists — referred to as subtypes in the context of the
XTS-400. For a detailed discussion of these two types of access control mechanisms,
refer to [LAM74].

The differences between the development and target platforms provided the
greatest challenges in porting OpenSSH to the XTS-400. Software dependencies created
a few minor challenges for the port. OpenSSH relies on other software packages and
libraries in order to function. These extra packages were not present on the XTS-400. A
discussion of these packages follows.

C. SOFTWARE DEPENDENCIES

According to [BARO01] and [SSH04], OpenSSH requires the following software in

order for it to run: Zlib 1.1.4 or greater and OpenSSL 0.9.6 or greater. Further inspection

revealed that OpenSSL depends on a random number generator that is normally available

12

in Linux through the *“/dev/random” or “/dev/urandom” device entries. The XTS-400
does not provide a kernelized random number generator; the above mentioned devices are
not listed anywhere in the file system. Both the OpenSSL and OpenSSH installation
instructions recommended the use of either the PRNGd (pseudo random number
generator daemon) or the EGD (entropy gathering daemon). EGD was chosen for use
because the PRNGd documentation referenced the EGD. Installation instructions for
these three software packages are in Appendix A of this report. A discussion of these
three packages will follow.

1. Zlib

Zlib 1.1.4 is a compression library with utilities. OpenSSH and OpenSSL use zlib
in order to compress data when communicating over a network. The compression occurs
before encryption so the delay in transmission due to encryption is reduced [BARO1].
The use of compression is also a daemon runtime configuration option as can be seen in
Appendix C: SSH daemon configuration file. However, this file is not used until the SSH
daemon executes. Simply changing the option “Compression Yes” to “Compression No”
will not stop the tests by the configuration file to look for the zlib libraries and header
files. In order to bypass the configuration file tests, either false libraries and header files
would have to be created or the configuration file would have to be modified to not check
for zlib. After a quick analysis of the zlib documentation, it was determined that the
installation of zlib would not be difficult. In this case, it was easier to install the required
software than to provide false libraries or modify the configuration file.

2. OpenSSL

OpenSSL is a project designed to provide “a robust, commercial-grade, full-
featured, and Open Source toolkit implementing the Secure Sockets Layer (SSL v2/v3)
and Transport Layer Security (TLS v1) protocols as well as a full-strength general
purpose cryptography library” [SSL04]. The OpenSSL libraries and header files provide
the cryptographic ciphers needed by OpenSSH to perform encryption. Without the use of
the libraries, then OpenSSH would be reduced to the ordinary telnet and file transfer
protocols. A quick glance at the XTS-400 “/lib” directory showed that the OpenSSL
shared libraries were already installed; however, the OpenSSH configuration file did not

accept the libraries. Unlike zlib, this application is absolutely necessary in order for

13

OpenSSH to work, so simple file substitution was not an option and neither was
modifying the configuration file. A quick review of the OpenSSL documentation
revealed that the installation, like zlib, should not be difficult. The latest source,openssl-
0.9.7d, was downloaded and installed.

3. Entropy Gathering Daemon

The entropy gathering daemon is needed to provide a software-based pseudo-
random number generator. It was quickly discovered that without some type of random
number generator, OpenSSH will not run; the application will exit with the error, “prng
not seeded.” A quick alternative was needed. As mentioned, both the OpenSSH and
OpenSSL documentation mentioned two software-based random number generators: the
pseudo-random number generator daemon (PRNGd) and the entropy gathering daemon
(EGD). Both daemons stated compatibility with OpenSSL and OpenSSH. The PRNGd
documentation also mentioned that the PRNGd also provided an interface to the EGD.
This implies that the EGD provides greater compatibility with more systems. A test of
each random number generator was not conducted and is beyond the scope of this report.
The EGD is a perl script that monitors processes and provides random data based on
information gathered from the processes. This data is then stirred each time a request for
random data is made. It should be mentioned that the mandatory security policies
prevent the EGD from viewing all possible processes resulting in a smaller pool of
processes from which to gather random data. The EGD can only view processes running
at the same secrecy and integrity levels as itself. For each OpenSSH daemon running,
there must be an EGD running at the same level. This is very important because if the
random number generator is exhausted, then OpenSSH will stop functioning either by
waiting for random data to become available or by the daemon refusing to start. Both
would result in an inability to function. It is suggested that an alternative to the EGD be
found or developed.

4. MYSEA Libraries

As shown in Table 2, some of the system calls require privileges. The MYSEA
libraries provide APIs for acquiring and revoking privileges. The MYSEA libraries must

be installed so that OpenSSH can operate properly.

14

I11. INTEGRATION OF OPENSSH ONTO THE XTS-400

This chapter will provide the goals of this project, the methodology used to
accomplish those goals, the results of the research, and solutions to the problems
encountered.

A. GOALS

The goals of this project are to port OpenSSH to the XTS-400 with as much of the
functionality preserved as possible. The key functions desired are the interactive session
and the use of PKI for authentication. An extra benefit of this work is the provision of a
better understanding of the functions supported by the XTS-400. This may inform future
porting projects on the XTS-400.

B. METHODOLOGY

To port a particular application to the XTS-400, a number of steps must be
completed. One step is to look at the documentation of the application that will be
ported. Here, it is important to identify any references to other software packages that the
application requires. If these additional software packages are not available on the XTS-
400, then they must be ported first. Another item to look for in the documentation is the
process architecture of the application. When the process architecture is not available, a
thorough examination of the source code will help to determine the process architecture.
The process architecture is important because the XTS-400 enforces mandatory security
policies and will not allow processes at different sensitivity levelsto communicate with
one another unless privileges are given to both processes. Another step is to review the
documentation for the XTS-400 and look for any system calls not supported by the
operating system that are required by the application. Each of these items: software
dependencies, the process architecture and system compatibility, can either produce a
delay in the port or a complete roadblock.

For this research the above steps were followed but the process was not
sequential, but cyclic. First, the OpenSSH documentation was reviewed, then the source
code, then the XTS-400 documentation. When a challenge, usually in the form of an

unsupported system call, was discovered, all three sources of information were consulted.

15

A helpful tool used to review the source code deserves mention: the Linux Cross
Reference (LXR). This tool allows for the browsing of source code through a web-
browser. Like a compiler, the LXR will generate a table of symbols and those symbols
will be treated as links in the source code. This feature allows for the quick lookup of
variable and function declarations, definitions and references. The source code for this
tool can be downloaded from http://sourceforge.net/projects/Ixr.

The documentation for the XTS-400 was a little vague or incomplete at times. In
order to verify that a normal feature on Linux or UNIX was not supported on the XTS-
400, the XTS-40 manuals were consulted and then test programs were used. Theses test
programs were written for a Fedora Core 1 Linux platform and then tested on that
platform. The test programs were then transferred to the XTS-400 for testing and the
results from each platform were compared. This was done to verify that support for the
given feature was not implemented if proper documentation could not be found so that a
blind assumption would not be made.

C. PORTING RESULTS

OpenSSH was successfully ported to the XTS-400, with some limited
functionality. Privilege separation could not be implemented because file-descriptor
passing is not supported by the XTS-400. To simplify the port, the only authentication
method available is public-key authentication. Each single level LAN requires an
OpenSSH daemon and there is no communication between any of the daemons as a
consequence of the mandatory access control policies.

D. CHALLENGES ENCOUNTERED

The challenges encountered are the features listed in Tables 1 and 2. A
discussion of the solutions used to circumvent these limitations is presented in the order
they are presented in Tables 1 and 2. All source code modifications can be found in
Appendix B: Source Code Listing. All modified files are in the “openssh-3.7.1p2” source
code directory.

1. System Features

The two system features listed in Table 1 are the root user and file descriptor
passing. As mentioned in Table 2, the root user does not exist. The XTS-400 does not

give a single user all system privileges; rather the integrity policy is used to mediate

16

http://sourceforge.net/projects/lxr

access to privileged operations. In an OpenBSD system, the OpenSSH daemon runs as
the root user. The OpenSSH code performs user ID checks to verify that the daemon is
running as the root user. If these checks fail, then the daemon assumes that it is not
running with root user privileges and will not function properly. In the XTS-400, the
OpenSSH daemon must run as the network user so that port 22 can be opened. Port 22 is
the default port for the SSH protocol. To account for the non-existence of the root user,
the user ID checks were altered to check for the user ID of the network user. The
modifications were made to the temporarily use uid and the permanently set uid
functions in the “uidswap.c” file and the do_setusercontext function in the “session.c”
file.

File descriptor passing is required for SSH privilege separation. The system
feature of file descriptor passing through UNIX domain sockets is not supported by the
XTS-400 [DIG03a]. The only solution would be to build support for this feature into the
operating system. The operating system for the XTS-400 is called the Secure Trusted
Operating Program (STOP). STOP is proprietary and cannot be modified without
invalidating the evaluated assurance level assigned by the National Institute of Standards
and Technology and the National Security Agency. Because there is no feasible solution

for this problem, privilege separation has been disabled.

These problems were the only ones encountered for this category of challenges.
The next category to be discussed is the system functions provided by the XTS-400.

2. System Functions

There are many system functions that are used by OpenSSH. The untrusted
environment of the XTS-400 strongly resembles Redhat Linux 8.0. This strong
resemblanceis only superficial. In fact, many of these functions were not implemented

on the XTS-400 and were only APIs with functional stubs.

The chroot system call was identified by the configuration file as being available
on the XTS-400; however, it would exit with the error “Function not implemented.” In
the XTS-400 documentation, chroot is listed as an unsupported system call [DIG03c].
Support for this system call must be built into the operating system, but this is not an
option. The solution used involved commenting out all references to the chroot system

17

call in the source code. The modifications occurred in the privsep_preauth_child
function in the “sshd.c” file. Privilege separation is not implemented and this function
should never be called, but it has remained commented out to ensure that the daemon

does not exit prematurely.

The setgroups function is also not implemented on the XTS-400 as mentioned in
the User’s Manual for the XTS-400 [DIG03c]. All references to this system call were
commented out. The modifications are in the main and privsep_preauth_child functions
of the “sshd.c” file and the temporarily use uid and restore_uid functions in the

“uidswap.c” file.

The initgroups system call is not supported either. All references to this system
call have been commented out. The modifications are in the temporarily use uid

function in the “uidswap.c” file and the do_setusercontext function in the “session.c” file.

The socketpair system call is not implemented. This call returns with the error
“invalid argument”. The XTS-400 documentation states that unsupported interprocess
communication (IPC) mechanisms will return the error “Invalid Argument” [DIG03c].
OpenSSH provides compatibility for the use of UNIX domain socket pairs or pairs of
pipes for IPC. A modification had to be made to force OpenSSH to use pairs of pipes
instead of socket pairs. The modification was to uncomment the line, #define
USE_PIPES 1, in the “defines.h” file. Socketpair is used extensively in the monitor code
that is used when privilege separation is enabled. In an attempt to support privilege
separation, pairs of pipes were created to replace the socket pair. Privilege separation
appeared to work through the pre-authentication phase of a user login, but because file
descriptor passing is not supported, no tests could be conducted to verify that this phase
of privilege separation did work as intended. All modifications made to the monitor-
specific files have been commented out. The files that were modified are “monitor.c”,

“monitor_wrap.c” and “monitor.h”.

There are many functions that can be used to set the real and effective user and
group IDs of a process. These functions are listed in Table 1 and Table 2. These system
calls are supported by the XTS-400, but require special XTS-400 privileges to operate
properly. The specific privilege that they require is set_owner_group on the XTS-400

18

[DIGO3b]. Privileges can be granted to programs by installing the program with tp_edit.
To follow the principle of least privilege, the privileges should be granted when
necessary and then be revoked when not needed. The MYSEA libraries provide APIs to
request and revoke the set_owner_group privilege. The modifications made to the source
code were to the temporarily_use_uid, restore_uid and permanently_set_uid functions in
the “uidswap.c” file. The header files for the MYSEA libraries had to be included in the
“uidswap.c” file in order for the C compiler to locate and link the appropriate functions
when the executable is being constructed. The OpenSSH configuration script had to be
given extra arguments to specify the location of the libraries and which libraries to use.
The options given to the configuration script can be seen in Appendix A.

The daemon system call is not supported in the XTS-400 untrusted environment.
The OpenSSH source code provides a directory called “openbsd-compat” under the
“openssh-3.7.1p2” source directory that provides certain functions that may not be
implemented on the target platform. Daemon is one of the functions provided in the
“openbsd-compat” directory. However, the OpenSSH configuration file identified the
daemon API as being supported by the XTS-400, but this is incorrect because the daemon
APl is only a functional stub. The linking order when the executable is being built will
not permit the daemon function in “openbsd-compat” to be used instead of the daemon
system call provided by the XTS-400. The solution for this was to copy the daemon code
from the “openbsd-compat/daemon.c” file into the “sshd.c” file. A new function
prototype was added to the “sshd.c” file and the function definition was added to the end
of the “sshd.c” file. The new daemon function is called daemonize to prevent the linker
from calling the daemon system call provided by the XTS-400.

These are the solutions for the system calls that were either not supported or that
required privileges. The next set of challenges involved system files that OpenSSH
expects to be present on the system.

3. System Files

There are four system files that OpenSSH assumes to be present on the system:
“letc/passwd”, “/etc/shadow”, “/var/run/utmp”, “/var/log/wtmp” and *“etc/group”. The
passwd file is present on the XTS-400 system while the remaining three files are not.

19

The “/etc/passwd” file is used by the untrusted environment to assign each user a
user 1D, a home directory and a default shell. The *“/etc/passwd” file is generated by the
xtsmkpasswd command. This command does not produce a correct “passwd” file
because the default group listed in the file assigns all users to the system group. The
system group is reserved for the STOP kernel and no user should ever have this group
assigned as their default group. OpenSSH uses the “/etc/passwd” file to associate the
supplied username with the appropriate user ID and the default group ID of the user when
the user attempts to login. The user’s default group is assigned by the system
administrator when the user’s account is created. The “/etc/passwd” file had to be
modified to reflect the proper default group association for the users of the system. The
modifications made were to the fourth field of every line in the “/etc/passwd” file. In
order to make the mdofications, the trusted command, ua_edit, was used to lookup the

default group for every user in XTS-400.

The “/etc/shadow” file is not present on the XTS-400. The functionality
supported by the “/etc/shadow” file is replaced by two trusted databases on the XTS-400:
the *“user access authorization” database and the “user access information” database. The
“user access authorization” database contains the following information: a password
history list, a change password flag, a default group identifier, maximum mandatory
session levels, default mandatory session levels, last login time, number of failed login
attempts, time of last password change, and a list of user capabilities. The *“user access
information” database contains: the username, the user’s home directory and a default
shell. This last database is similar to the “/etc/passwd” file mentioned earlier. The “user
access authorization” database is stored at the highest secrecy and integrity levels and is
protected by the subtype DAC mechanism. Without the “/etc/shadow” file, password
authentication will not succeed. For password authentication to work, the OpenSSH
daemon would have to be granted access to the user databases and, in order to accomplish
this, more privileges would have to be granted to the OpenSSH daemon. The specific
privileges are simple_security_exempt and subtype exempt. It was determined that
further and more detailed analysis would be needed to determine where to insert the

privileged code. There was no solution for fixing the absence of the “/etc/shadow” file.

20

The workaround was to disable password authentication so that the OpenSSH daemon

would not attempt to access a nonexistent file.

The next two files are related and are discussed together. The “/var/log/wtmp”
file contains a record of all user logins and logouts. This file is not present on the XTS-
400 as its functionality is provided by the trusted “user access authorization” database
discussed earlier. The “/var/run/utmp” file contains a record of all users currently logged
in to the system. This file is not present either. These files are used for account login
auditing in a Linux system. Because these files are not present and the functionality of
only one is provided through a trusted database that would require privileges to access it,
the solution was to disable support for these files. This was accomplished by giving the
OpenSSH configuration script a few extra options that disabled support for these files.

The options given to the configuration script can be seen in Appendix A.

The last system file presented is the “/etc/group” file. This file stores information
on all groups including a list of users associated with each group. This file would
normally be used by the setgroups and initgroups system calls, but as mentioned, these
calls are not supported. The “/etc/groups” file is generated by the xtsmkgroup command.
This command does not produce a correct “/etc/group” file. After examining the file, no
users were listed with their associated groups. In the event that setgroups and initgroups
are implemented, this file will have to be modified manually to contain the correct
information that these system calls will require. The functionality of the “/etc/group” file
is provided by the two trusted group databases: the “group access authorization” database
and the “group access information” database. These two databases are stored at the
highest secrecy level and protected by the subtype DAC mechanism. To support the
proper association of users to groups, access to these databases would have to be granted
through privileges. The analysis required to identify where the privileged code should be

added was beyond the scope of this thesis.

These were the only problems encountered regarding protected system files on the
XTS-400 required by OpenSSH. The next problem presented is the daemon startup

environment.

21

4. Environment

In an OpenBSD system, daemons are started by the init process and this process
creates all other processes in the system [STE93]. When a daemon is started either by the
init process or through a shell, an environment is created that includes the allocation of
three file streams: STDIN, STDOUT and STDERR. These three streams are associated
with the following file descriptors: 0, 1 and 2 respectively. OpenSSH expects these three
streams and corresponding file descriptors. On the XTS-400, daemon processes are
started from the start_daemon command. This command does not allocate the three file
streams expected by OpenSSH so when OpenSSH starts to allocate files, the file
descriptor numbering starts at 0. When a user logs in through the OpenSSH daemon, a
pseudo-terminal is requested and it is referenced by a file descriptor. If the file descriptor
used to reference the pseudo-terminal is one of the three reserved file descriptors that
OpenSSH assumes to be provided, then all 1/0 will be sent to the pseudo-terminal across
the network connection. During the authentication session setup sequence of a user
login, specifically structured messages are sent between the client and the server. If all of
the pseudo-terminal 1/0 is sent to the client, then the client gets confused and exits. In
the main function of the “sshd.c” file, the developers of OpenSSH placed comments
stating that the file descriptors 0, 1 and 2 should be reserved and never closed. To solve
this problem, the “/dev/null” file was opened three times so that the first three entries in
the file descriptor table would be in use. This will cause the file descriptor numbering to

begin after 2. The modifications made were in the main function of the “sshd.c” file.

22

IV. INTEGRATION TESTING

After porting an application to a different platform, testing is required to ensure
that the application still functions as specified. The functionality of the ported
application may have been altered by the modifications to the source code. In order to
detect any difference in functionality, comprehensive testing is required. Developmental
testing tests the functionality of the ported application in a simple environment. To
ensure that the ported application can function in a more realistic environment, a larger
and more realistic testing environment is needed. The testing in this environment is

called Testbed testing.

Due to time constraints, only the developmental testing was performed for the
OpenSSH port to the XTS-400. Both testing methods will be discussed in this chapter;
however only the results for the developmental testing will be provided.

A. DEVELOPMENTAL TESTING

1. Test Plan

The developmental test plan describes the results used to validate that the port of
OpenSSH to the XTS-400 is successful. A small network was created with three laptops,
one is a Fedora Core 1 Linux system and the other two are Windows XP systems. The
three clients are connected to the XTS-400 machine, “Holmes,” though a switch. Holmes
has a network interface card that has four interfaces. One interface is used to simulate the
MLS-LAN with one client and one TPE. The other three interfaces are used to simulate
the multiple single level LANs. The IP addresses of the three single level clients were to
be configured to allow those clients to communicate with the corresponding network as

required by the specific tests. A diagram of the test network is presented in Figure 1.

23

< @ Windows Client|

AT
NIPRNET 192.168.1.22

SIPRNET 192.168.2.22 Q Switch
:

JWICS 192.168.3.22 \[\

TPE Device —6/117 Linux Client
\\|V
Un-trusted
Client on Windows
MLS LAN € Client
g

Figure 1. Developmental Testing Network Topology

a. MAC Policy Enforcement

The purpose of this test suite is to verify that the mandatory policies
enforced by the XTS-400 are still enforced when a user is logged in through OpenSSH.
The test plan is presented in Table 3. The Test Type identifies the kind of test being
performed. The Session Level identifies the secrecy and integrity levels of the remote
user. The Object Level identifies the secrecy and integrity levels of the object. The
command used to test for read-access is more. This command only requires and uses
read access; modification of the file is not required. The command used for writing is vi
— the visual editor. Vi is a common editor that is available on most systems. Vi needs to
be able to both modify and save the modifications. The integrity levels of OSS and
Admin are defined as il3{all integrity compartments} and il7{all integrity compartments}
respectively. In this suite of tests, a result of “pass” means that the operation was
allowed, e.g., more was able to display the file, and vi was able to edit the file and save
the changes. A result of “fail” means that the operation was not permitted. Vi can appear
to make modifications, but if the modifications cannot be saved, then the write-access test

fails.

The objects are text files with the following naming convention:
test_sl#il#.txt where the two pound signs are replaced with the appropriate object level
numbers, e.g., test_sllil3.txt if the object level is sl1:il3. The permissions on the objects
are read, write, and execute for owner, group and world. This ensures that the

24

discretionary policies do not interfere with the tests. Because the XTS-400 does not
allow subjects to write to objects if the level of the parent directory is dominated by the
level of the subject or object, directories had to be created to hold the objects at the
specific sensitivity levels in order to allow tests for writing. For example, for objects

with a level of sll1:il3, a directory with the same level had to be created to hold the

objects.
Test Number | Test Type Session Object Command Expected
Level Level Result
al Secrecy read -up sI1:il3 sl2:il3 more Fail
a2 sl3:il3 more Fail
a3 sl4:il3 more Fail
a4 sl2:il3 sl3:il3 more Fail
ab sl4:il3 more Fail
ab sl3:il3 sl4:il3 more Fail
a7 Secrecy read-down sI1:il3 sl0:il3 more Pass
a8 sl2:il3 sl0:il3 more Pass
a9 sl1:il3 more Pass
al0 si3:il3 sl0:il3 more Pass
all sl1:il3 more Pass
al2 sl2:il3 more Pass
al3 Secrecy read-equal sI1:il3 sI1:il3 more Pass
ala sl2:il3 sl2:il3 more Pass
alb si3:il3 si3:il3 more Pass
al6 Secrecy write-up sI1:il3 sl2:il3 Vi Fail
al7 sl3:il3 Vi Fail
al8 sl4:il3 Vi Fail
al9 sl2:il3 sl3:il3 Vi Fail
a20 sl4:il3 Vi Fail
a2l sl3:il3 sl4:il3 Vi Fail
a22 Secrecy write-down sl1:il3 sl0:il3 vi Fail
a23 sl2:il3 sl0:il3 Vi Fail
a24 slI1:il3 Vi Fail
a25 sI3:il3 sl0:il3 Vi Fail
a26 slI1:il3 Vi Fail
a27 sl2:il3 Vi Fail
a28 Secrecy write-equal sI1:il3 sI1:il3 Vi Pass
a29 sl2:il3 sl2:il3 Vi Pass
a30 sl3:il3 sl3:il3 Vi Pass
a3l Integrity read-up sI1:il3 sl1:0SS more Pass
a32 Integrity read-down sI1:il3 sl1:il0 more Fail
a33 siL:ill more Fail
a34 sl1:il2 more Fail
a35 Integrity write-up sl1:il3 sl1:0SS vi Fail
a36 Integrity write-down sI1:il3 sI1:il0 Vi Fail
a37 slL:ill Vi Fail
a38 sl1:il2 Vi Fail

Table 3. MAC Policy Enforcement Test
25

As mentioned, this suite of tests verifies that the MAC policies are
enforced. Each MAC policy has two properties that must be maintained: a simple
security or integrity property and a *-property. Table 4 presents definitions of the types
of test used in this suite of tests. In this table, the Policy Type identifies whether the
definition is for the mandatory secrecy or integrity policy. The Property column
identifies which property of the mandatory policies is being tested. The Access Type
specifies the type of access. The Definition gives the mathematical definition of the
property where S represents the subject, O represents the object, sl() means the secrecy
level, il() means the integrity level, ‘=" means equality, ‘>’ means dominates, and ‘<’
means is dominated by. The last column in the table states whether or not the action is
allowed given the Property of the Policy type. The models that represent the security
However, the XTS-400

does not allow these access types so the expected results for the XTS-400 should be no.

policies allow for secrecy write-up and integrity write-down.

The effected entries in the table are identified by an asterisk.

Policy Type Property Access Type Definition Allowed
Secrecy simple security | Read-equal sl(S) = sl(0) Yes
Read-down sl(S) > sl(0) Yes
Read-up sl(S) <sl(0) No
*-property Write-equal sl(S) =sl(0) Yes
Write-down sl(S) > sl(0) No
Write-up sl(S) < sl(0) Yes*
Integrity simple integrity | Read-equal il(S) =il(0) Yes
Read-down il(S) > il(0) No
Read-up il(S) <il(O) Yes
*-property Write-equal il(S) =il(0) Yes
Write-down il(S) >il(0O) Yes*
Write-up il(S) <il(0) No
Table 4. MAC Policy Test Definitions

In the mandatory secrecy policy, the simple security property does not

allow a subject to access an object if the secrecy level of the subject does not dominate

the secrecy level of the object.

Therefore, all secrecy read-up tests should fail. All

26

secrecy read-down and read-equal tests should pass. The *-property of the secrecy policy
does not allow a subject to modify an object if the secrecy level of the subject dominates
the secrecy level of the object. All secrecy write-down tests should fail. Theoretically, it
is possible for a subject to modify an object if the secrecy level of the subject is
dominated by the secrecy level of the object; however, the XTS-400 does not allow this
action, so all secrecy write-up tests should fail as well. Only the secrecy write-equal tests

should pass.

The simple integrity property of the mandatory integrity policy does not
allow a subject to read an object if the integrity level of the subject dominates the
integrity level of the object. All integrity read-down tests should fail and all integrity
read-up and read-equal tests should pass. The *-property of the mandatory integrity
policy does not allow a subject to modify an object if the integrity level of the subject is
dominated by the integrity level of the object. All integrity write-up tests should fail.
The formal model for the mandatory integrity policy allows for the theoretical write-
down from a subject to an object, but this is not allowed on the XTS-400 and all integrity
write-down tests should fail. Only the integrity write-equal tests should pass.

b. DAC Policy Enforcement

The purpose of this test suite is to verify that the discretionary access
control policies enforced by the XTS-400 are still enforced when logged in through
OpenSSH. The test plan is presented in Table 5. The username and group name used to
run this test should remain constant, i.e., the same user login, “cherbig” with a default
group of “other”, is used to test all cases. The object permissions identify the
permissions of the object that can be seen when the Is —| command is issued. The object
name identifies how the object was named to help keep track of the permissions. The
naming convention is discussed later. The object owner identifies the username of the
owner of the object and the object group identifies the group name of the owning group.
The action identifies the type of access tested. For read-access, the command, more, will
be used to attempt to read the file. The vi tool will be used to test for write-access. To
test for execute-access, the file name will be entered at the shell prompt, i.e., the file will
have to be a program.

27

The objects for read- and write-access tests are text files. The objects used
for execute-access are simple c-programs that print a message to the screen. The naming
convention for the text files are “test <o or g or a><r or w or x>.txt”, where 0 means
owner, g means group and a means all and r means read, w means write and x means
execute. The “or” specified in the filename is not exclusive. For example, the file
“test_orwx.txt” means that the object permissions are read, write and execute for the
owner. The programs used for testing execute-access will have the same file name
without the “.txt” extension. The session and object levels will remain fixed in order to

prevent the MAC protection mechanisms from interfering with the tests.

28

Test Object Object | Object | Action | Expected
Number | Permissions/ Owner | Group Results
Name
bl FWXPWXIWX cherbig | other | read Allowed
b2 test_ogarwx.txt write Allowed
b3 execute | Allowed
b4 FWXIWx--- cherbig | other | read Allowed
b5 test_ogrwx.txt write Allowed
b6 execute | Allowed
b7 rWX------ cherbig | other | read Allowed
b8 test_orwx.txt write Allowed
b9 execute | Allowed
b10 rw------- cherbig | other | read Allowed
b1l test_orw.txt write Allowed
b12 execute | Fail
b13 [-------- cherbig | other | read Allowed
b14 test_or.txt write Fail
b15 execute | Fail
bl6 | -------- cherbig | other | read Fail
b17 test_none.txt write Fail
b18 execute | Fail
b19 FWXIWXIwWx demo | other | read Allowed
b20 dtest_ogarwx.txt write Allowed
b21 execute | Allowed
h22 FWXIWX--- demo | other | read Allowed
b23 dtest_ogrwx.txt write Allowed
b24 execute | Allowed
b25 FWXrw---- demo | other | read Allowed
b26 dtest_orwxgrw.txt write Allowed
b27 execute | Fail
b28 rWXr----- demo | other | read Allowed
b29 dtest_orwxgr.txt write Fail
b30 execute | Fail
b31 rwx------ demo | other | read Fail
b32 dtest_orwx.txt write Fail
b33 execute | Fail
b34 ---FWX--- demo | stop read Fail
h35 atest_grwx.txt write Fail
b36 execute | Fail

Table 5. DAC Policy Enforcement Test

C. TPE Testing with Files Created by OpenSSH
The purpose of these tests is to verify that when users login from the
MLS-LAN through the TPEs, they can view the files created under OpenSSH. The test

29

plan is presented in Table 6. The TPE Login Level specifies the session level of the
current test. The TPE allows users to negotiate and renegotiate their session level. This
test will also test for MAC policy enforcement through the TPE. The Object Levels are
the secrecy and integrity levels of the object. A result of “yes” means that the file was
viewable through the web-browser and a result of “no” means that the file could not be
displayed.

This test suite uses the MYSEA web-server’s ability to navigate and
display pages from the user’s home directory. In order to do this, a special directory,
“public_html”, had to be created under the user’s home directory. This directory must
have the same levels as the user’s home directory and the permissions must be read, write
and execute for the owner, and read and execute for the group and world. Within the
“public_html” directory, there must be three more directories, one for each network
classification. The levels of these three directories must be set appropriately using fsm.
This will allow OpenSSH to create and modify files as long as the files are within these
directories. A diagram of the proposed file system structure is presented in Figure 2. In

the diagram, the levels of the required directories are also listed.

The objects used in this test are text files which can be viewed through a

web-browser.

Test Number | TPE Login Level Object Levels TPE Viewable
Expected Results
cl sI1:il3 sI1:il3 Yes
c2 s12:113 No
c3 sI3:il3 No
c4 sl2:i13 sI1:il3 Yes
c5 sl2:il3 Yes
c6 sI3:il3 No
c7 sI3:il3 sI1:il3 Yes
c8 sl2:il3 Yes
c9 sI3:il3 Yes

Table 6. TPE Viewing Capability Test for OpenSSH Created Files

30

/
bin etc dev home usr xts
cherbig (sl0:0ss) demo (slO:il3)
I
s s
public_html (sl1:0ss) public_html (sl0:il3)
7% B " I d W W
niprnet siprnet jwics unclass secret topsecret
sI1:il3 sl2:il3 sI3:il3 sl1:13 sl2:il3 sl3:il3

Figure 2. File System Structure for TPE Testing

d. TPE Testing with Files Modified by OpenSSH
The purpose of this test suite is to verify that changes made to pre-existing
files through OpenSSH are viewable from the MLS-LAN through the TPEs. This test

plan is very similar to the previous test. The test plan is presented in Table 7

Test objects were created at the console of the XTS-400 prior to the
execution of the tests. The objects are within the three network-classified directories
under the “public_htmlI” subdirectory. This allows for a user logged in through OpenSSH
to modify the files.

Test Number | TPE Login Level Obiject Levels TPE Viewable
Expected Results
di sI1:il3 sI1:il3 Yes
d2 sl2:il3 No
d3 sI3:il3 No
da sl2:il3 sI1:il3 Yes
d5 sl2:il3 Yes
dé sI3:il3 No
d7 sI3:il3 sI1:il3 Yes
ds sl2:il3 Yes
do sI3:il3 Yes

Table 7. TPE Viewing Capability Test for Files Modified by OpenSSH

31

e. Single Level LAN - Simultaneous User Logins

The purpose of this test suite is to verify that multiple users on the same
single level LAN can login. Success is determined by the user being presented with a
shell and the command, whoami, returns the user’s correct username. The test plan is

presented in Table 8.

Test Number LAN Level User Name Successful Logins
Expected Results
el si1:il3 cherbig Pass
demo Pass
testuser Pass

Table 8. Single Level LAN — Simultaneous User Logins

f. Multiple Single Level LANs — Simultaneous User Logins

The purpose of this test suite is to verify that users can login from multiple
networks of varying classifications. The test plan is presented in Table 9. Each user,
specified by the username logs in at each network. Success is determined by the user
being presented with a shell and the command, whoami, returns the correct username and

the level command returns the correct session level.

Test Number LAN Level Username Successful Login
Expected Result
fl sI1:il3 cherbig Yes
sl2:i13 demo Yes
sI3:il3 testuser Yes

Table 9. Multiple Single Level LANs — Simultaneous User Logins

g. Public Key Authentication Tests

The purpose of these tests is to verify that the public key authentication
mechanism works properly. The test plan is presented in Table 10. In this test suite, a
valid username means that the user does exist within the system. An invalid user means
that a username was supplied, but that user does not exist on the system. A correct
private key means that the private key has a corresponding public key belonging to the
user attempting to login. A wrong private key means that the private key used does not

match the public key presented by the user.

32

Test Number | User Name | Private Key | Passphrase | Expected Results
gl Valid Correct Correct Succeed

g2 Valid Correct Wrong Fail

g3 Valid Wrong Correct Fail

g4 Invalid Correct Correct Fail

Table 10. Public Key Authentication Test

h. Miscellaneous Tests

To test how OpenSSH reacts when the user’s account is created
incorrectly, a set of experiments was created. The test plan is presented in Table 11. The
first case tests to see how OpenSSH reacts when a user’s home directory is not present,
i.e., it was never created. The second test, determines what happens when either the user
or the Administrator revoke all permissions on the user’s home directory. The third test
determines what happens when a user logs in from a network with a lower security

classification than that of his home directory.

Test Number Case Environment Expected Results

hl Home directory not | Home directory not | Cannot login, no key
present present file

h2 permissionson | --------- $HOME Cannot login, cannot
home directory read key file
incorrect

h3 level on home level($HOME) = Cannot login, cannot
directory incorrect | sl2:il3, session level = | read key file

sI1:il3

Table 11. Miscellaneous Tests
2. Test Validation Report

This section provides the results of the above tests as conducted on the
developmental system for the port. The tables from the test plan have been replicated and
a column with the test results has been added to each.

a. MAC Policy Enforcement Test Validation Results

For this suite of tests, the test results matched the expected results and it
can be concluded that the MAC policies remain enforced when users are logged in
through OpenSSH.

33

Test Test Session | Object Command | Expected Actual
Number | Type Level Level Result Result
al Secrecy | sIL:il3 | sl2:il3 more Fail Fail
a2 read-up sI3:il3 more Fail Fail
a3 sl4:il3 more Fail Fail
ad sl2:13 | sI3:il3 more Fail Fail
ab sl4:il3 more Fail Fail
ab sI3:i13 | sl4:il3 more Fail Fail
a7 Secrecy | sl1:il3 | sl0:il3 more Pass Pass
a8 read- sl2:13 | slO:il3 more Pass Pass
a9 down sl1:il3 more Pass Pass
al0 sI3:i13 | sl0:il3 more Pass Pass
all sl1:il3 more Pass Pass
al2 sl2:il3 more Pass Pass
al3 Secrecy | sI1:il3 | sI1:il3 more Pass Pass
ald read —|sl2:l3 |sl2:il3 more Pass Pass
alb equal sI3:i13 | slI3:il3 more Pass Pass
alé Secrecy | sl1:il3 | sl2:il3 Vi Fail Fail
al7 write-up sI3:il3 Vi Fail Fail
al8 sl4:il3 Vi Fail Fail
al9 sl2:il3 | sl3:il3 Vi Fail Fail
a20 sl4:il3 Vi Fail Fail
a2l sI3:i13 | sl4:il3 Vi Fail Fail
a22 Secrecy | sl1:il3 | sl0:il3 Vi Fail Fail
a23 write- si2:il3 | sl0:il3 Vi Fail Fail
a24 down sl1:il3 Vi Fail Fail
a25 sI3:il3 | sl0:il3 Vi Fail Fail
a26 sl1:il3 Vi Fail Fail
az27 sl2:il3 Vi Fail Fail
a28 Secrecy | sl1l:il3 | sl1:il3 Vi Pass Fail
a29 write- sl2:il3 | sl2:il3 Vi Pass Fail
a30 equal sI3:il13 | sI3:il3 Vi Pass Fail
a3l Integrity | sll:il3 | sl1:0SS more Pass Pass
read-up
a32 Integrity | sl1:il3 | sIL:il0 more Fail Fail
a33 read- sl1:ill more Fail Fail
a34 down sl1:il2 more Fail Fail
a35 Integrity | sll:il3 | sl1:0SS Vi Fail Fail
write-up
a36 Integrity | sl1:il3 | sIL:il0 Vi Fail Fail
a37 write- sl1:ill Vi Fail Fail
a38 down sl1:il2 Vi Fail Fail
Table 12. MAC Policy Enforcement Test Validation Results

34

b. DAC Policy Enforcement Test Validation Results
This suite of tests demonstrated that the XTS-400 DAC policies are still

enforced when users are logged in through OpenSSH

Test Object Object | Object | Action | Expected | Actual
Number | Permissions/ Owner | Group Results | Results
Name
bl FWXIWXIWX cherbig | other | read Allowed | Allowed
b2 test_ogarwx.txt write Allowed | Allowed
b3 execute | Allowed | Allowed
b4 rWXIwx--- cherbig | other | read Allowed | Allowed
b5 test_ogrwx.txt write Allowed | Allowed
b6 execute | Allowed | Allowed
b7 rWX------ cherbig | other | read Allowed | Allowed
b8 test_orwx.txt write Allowed | Allowed
b9 execute | Allowed | Allowed
b10 rw------- cherbig | other | read Allowed | Allowed
b1l test_orw.txt write Allowed | Allowed
b12 execute | Fail Fail
b13 [-------- cherbig | other | read Allowed | Allowed
b14 test_or.txt write Fail Fail
b15 execute | Fail Fail
bl6 | ---—------ cherbig | other | read Fail Fail
b17 test_none.txt write Fail Fail
b18 execute | Fail Fail
b19 FWXIWXIrwix demo | other | read Allowed | Allowed
b20 dtest_ogarwx.txt write Allowed | Allowed
b21 execute | Allowed | Allowed
b22 FWXIwx--- demo | other | read Allowed | Allowed
b23 dtest_ogrwx.txt write Allowed | Allowed
b24 execute | Allowed | Allowed
b25 FWXIrw---- demo | other | read Allowed | Allowed
b26 dtest_orwxgrw.txt write Allowed | Allowed
b27 execute | Fail Fail
b28 rWXr----- demo | other | read Allowed | Allowed
b29 dtest_orwxgr.txt write Fail Fail
b30 execute | Fail Fail
b31 rWx------ demo | other | read Fail Fail
b32 dtest_orwx.txt write Fail Fail
b33 execute | Fail Fail
b34 ---FWX--- demo | stop read Fail Fail
b35 atest_grwx.txt write Fail Fail
b36 execute | Fail Fail

Table 13. DAC Policy Enforcement Test Validation Results

35

C. TPE Testing with File Created by OpenSSH Test Validation
Results

This suite of tests validated the claim that files created through OpenSSH
can be viewed from the MLS LAN through the TPEs.

Test TPE Login | Object Levels | TPE Viewable Actual
Number Level Expected Results | Results
cl sI1:il3 sI1:il3 Yes Yes
c2 sl2:i13 No No
c3 sI3:il3 No No
c4 sl2:il3 sI1:il3 Yes Yes
c5 sl2:il3 Yes Yes
c6 sI3:il3 No No
c7 sI3:il3 sI1:il3 Yes Yes
c8 sl2:il3 Yes Yes
c9 sI3:il3 Yes Yes

Table 14. TPE Viewing Capability for OpenSSH Created Files Test Validation Results

d. TPE Testing with Files Modified by OpenSSH Test Validation
Results

This suite of tests validated that files created at the console of the XTS-
400 and modified by a user logged in through OpenSSH can be viewed from the MLS
LAN through the TPEs.

Test TPE Login | Object TPE Viewable Actual
Number Level Levels Expected Results | Results
di sI1:il3 sl1:il3 Yes Yes
d2 sI2:il3 No No
d3 sI3:il3 No No
d4 sl2:il3 sI1:il3 Yes Yes
d5 sI2:il3 Yes Yes
dé6 sI3:il3 No No
d7 sI3:il3 sI1:il3 Yes Yes
ds sl2:i13 Yes Yes
d9 sI3:il3 Yes Yes
Table 15. TPE Viewing Capability with OpenSSH Modified Files Test Validation Results
e. Single Level LAN — Simultaneous User Logins Test Validation
Results

This test demonstrated that a single level OpenSSH daemon could handle

multiple simultaneous user logins.

36

Test LAN Level | User Name | Successful Logins | Actual Results
Number Expected Results
el sl1:il3 cherbig Pass Pass
demo Pass Pass
testuser Pass Pass
Table 16. Single Level LAN — Simultaneous User Logins Test Validation Results

f.

This test demonstrated that multiple users are able to login from multiple

Multiple Single Level LANs — Simultaneous User Logins Test

Validation Results

single level LANs simultaneously.

Test LAN Level | Username | Successful Login | Actual

Number Expected Result | Results

fl sl1:il3 cherbig Yes Yes
sl2:il3 demo Yes Yes
sI3:il3 testuser Yes Yes

Table 17.

g.

This suite of tests demonstrated that the public key authentication method

works properly.

Multiple Single Level LANs — Simultaneous User Logins Test Validation Results

Public Key Authentication Test Validation Results

Test User Private Passphrase | Expected | Actual
Number | Name Key Results Results
gl Valid Correct Correct Succeed Succeed
g2 Valid Correct Wrong Fail Fail

g3 Valid Wrong Correct Fail Fail

g4 Invalid Correct Correct Fail Fail

Table 18. Public Key Authentication Test Validation Results
h. Miscellaneous Test Validation Results

This suite of tests demonstrated that OpenSSH will react as expected when

user accounts are not configured properly.

37

Test Case Environment Expected | Actual

Number Results Results

hl Home directory not home directory not | Cannot Cannot
present present login Login

h2 permissions on home | --------- $HOME Cannot Cannot
directory incorrect login Login

h3 level on home level(SHOME) = Cannot Cannot
directory incorrect sl2:il3, session level = | login Login

sI1:il3

Table 19. Miscellaneous Test Validation Results
B. MLS TEST BED TESTING

1. Test Plan

The purpose of testing the OpenSSH port in the MLS testbed is to verify
OpenSSH functionality in a more realistic environment. The only tests that need to be
performed are the OpenSSH login and TPE tests because the XTS-400 in the testbed
should also enforce the same policies as the XTS-400 used in the developmental testing
so it is redundant to repeat the MAC and DAC tests. The network topology for the MLS
testbed is taken from [IRV04] and is presented in Figure 3. The clients used to connect to
the XTS-400 are the web servers for each single level LAN. The XTS-400 is the
MYSEA MLS server in the diagram.

CONTROLLED ENVIRONMENT

e Mall carvar Appisation Bsrvar
MY2EA
MLE Sarvere
1ZMTF, IMAR, HTTF)

3 UMCLASS

MLE LAN
Combinsd OPS
Cantar

LEGEND

Encrypted Tunnals —

MYSEA Architecture Qverview | 777 T ===
Encryptad Link

38

Figure 3. MLS Testbed Network Topology taken from [IRV04]
a. TPE Testing with Files Created by OpenSSH

The same test performed for the developmental testing is repeated for in
the testbed environment. See the developmental test plan for more details on these tests.

The test plan is presented in Table 20.

Test Number | TPE Login Level Obiject Levels TPE Viewable
Expected Results
Bal sl1:il3 sl1:il3 Yes
Ba2 sl2:il3 No
Ba3 sI3:il3 No
Ba4 sl2:il3 sI1:il3 Yes
Ba5 sl2:il3 Yes
Ba6 sl3:il3 No
Ba7 sI3:il3 sI1:il3 Yes
Ba8 sl2:il3 Yes
Ba9 sI3:il3 Yes

Table 20. MLS Testbed — TPE Testing with Files Created Through OpenSSH

b. TPE Testing with Files Modified by OpenSSH
The same test performed for the developmental testing is repeated in the
testbed environment. See the developmental test plan for more details on these tests.

The test plan is presented in Table 21.

Test Number | TPE Login Level Obiject Levels TPE Viewable
Expected Results
Bbl sI1:il3 sI1:il3 Yes
Bb2 sl2:il3 No
Bb3 sI3:il3 No
Bb4 sl2:il3 sI1:il3 Yes
Bb5 sl2:il3 Yes
Bb6 sI3:il3 No
Bb7 sI3:il3 sI1:il3 Yes
Bb8 sl2:il3 Yes
Bb9 sI3:il3 Yes

Table 21. MLS Testbed — TPE Testing with Files Modified Through OpenSSH

C. Single Level LAN - Simultaneous User Logins
The same test performed for the developmental testing is repeated in the
testbed environment. See the developmental test plan for more details on these tests.

The test plan is presented in Table 22.
39

Test Number LAN Level User Name Successful Logins
Expected Results
Bcl sI1:il3 cherbig Pass
demo Pass
testuser Pass
Table 22. MLS Testbed — Single Level LAN — Simultaneous User Logins

d.

The same test performed for the developmental testing is repeated in the

testbed environment. See the developmental test plan for more details on these tests.

Multiple Single Level LANs — Simultaneous User Logins

The test plan is presented in Table 23 .

Test Number LAN Level Username Successful Login
Expected Result
Bdl sI1:il3 cherbig Yes
sl2:i13 demo Yes
sI3:il3 testuser Yes
Table 23. MLS Testbed — Multiple Single Level LANs — Simultaneous User Logins

e.

The same test performed for the developmental testing is repeated in the

testbed environment.

Public Key Authentication Tests

The test plan is presented in Table 24.

See the developmental test plan for more details on these tests.

Test Number | User Name | Private Key | Passphrase | Expected Results
Bel Valid Correct Correct Succeed
Be2 Valid Correct Wrong Fail
Be3 Valid Wrong Correct Fail
Be4 Invalid Correct Correct Fail
Table 24. MLS Testbed — Public Key Authentication Test

40

V. CONCLUSION

A. SUMMARY

This study successfully ported OpenSSH, without privilege separation enabled, to
the XTS-400. Challenges caused by the functional differences between the XTS-400 and
the Linux and OpenBSD platforms were encountered and solutions that did not require
modification of the STOP source code were implemented. Remote login capabilities are
now supported on the XTS-400 through OpenSSH and can be provided to single level
LAN users through the MYSEA project’s use of the XTS-400 as the MLS MYSEA

Server.

Developmental tests were conducted and the results of those tests were provided.
These tests ensure that the security policies cannot be violated by users when they are
logged in through OpenSSHA plan for validation of the results on the MLS testbed was
developed, but due to time constraints, was not executed. The latter test plan is provided
for future projects.
B. LESSONS LEARNED

Software porting with the XTS-400 as the target platform is difficult and time
consuming; however, it can be achieved in most cases. For this study, more time should
have been allocated to discovering the differences between the XTS-400 and Linux
systems. This would have reduced the time spent tracking down errors. A greater
knowledge of the C programming language would have reduced the time spent analyzing
the OpenSSH source code and provided a greater understanding of that code. The
porting process involved more time than anticipated
C. FUTURE WORK

The port of OpenSSH to the XTS-400 was successful, but the port resulted in a
minor loss of functionality in OpenSSH. This section suggests future projects that could

restore the lost functionality to the OpenSSH port.

One project is to implement password authentication with the XTS-400. To do
this, more privileges will have to be granted to the OpenSSH daemon. The MYSEA

libraries will help with this project, but the specific modifications to the OpenSSH source

41

code will have to be investigated to ensure that the privileges are acquired only when
needed and then revoked when no longer in use. Password authentication would be very
convenient for users because they would not have to carry a key file and the XTS-400

administrator would not have to worry about key generation and installation issues.

Another project is to implement support for proper group association. The
setgroups and initgroups calls are not implemented and the “/etc/group” file is incorrect,
so improper associations of users to groups could result in inadequate access permissions
for users. This project would involve assessing the trusted group databases and
implementing the functionality that setgroups and initgroups would normally implement.
An analysis of where to acquire and revoke the privileges required to access the trusted

databases would be required.

Another project would be to incorporate the remote shell capabilities of OpenSSH
with the the MYSEA secure session server. Currently, the MYSEA server does not
implement a remote shell for the MLS LAN user. The incorporation of the of the remote
shell functionality would enable the MYSEA server to provide an interactive session to

the user.

The entropy gathering daemon is used to provide randomness which is required
for cryptography. Software-based pseudo-random number generators do not perform as
well as hardware-based pseudo-random number generators. A future project would be to
design and implement a pseudo-random number generator that produces sufficient

randomness in terms of both quality and quantity.

A detailed vulnerability analysis should be performed for the ported OpenSSH.
The XTS-400 documentation warns against network connectivity and explains the threats
associated with networks [DIGO03b].

42

APPENDIX A: SOFTWARE INSTALLATION

The purpose of this appendix is to describe the installation instructions for all of
the software packages on the XTS-400 used in this project. The user should be familiar
with the XTS-400 and the STOP operating system. This appendix has two main sections:
support software and OpenSSH. The support software consists of the Entropy Gathering
Daemon, the Zlib compression libraries and the OpenSSL encryption libraries. The
Secure Attention Key (SAK) on the XTS-400 console is the “alt” and “Print Screen” keys
pressed simultaneously.

A. SUPPORT SOFTWARE

For the Entropy Gathering Daemon, Zlib and OpenSSL installations, create a
directory “src” in the “/usr” directory. The “src” directory must have the following
mandatory levels: min:oss. Create another directory under “/usr” called “local”. This
directory should also be at min:oss. The MYSEA libraries will be needed in order to
install OpenSSH. Installation of the MYSEA libraries should occur before any of these

packages are installed.

When using the cdtool, to copy files from the CD-ROM drive, the levels of the
files may have to be downgraded or upgraded. For now, assume that the level of the CD-
ROM is min:oss. If it is not, then use sda to set the access level of the CD-ROM to the
level of the current session.

1. Entropy Gathering Daemon

Source code for the entropy gathering daemon can be obtained from

http://eqd.sourceforge.net/ The user installing the daemon should be logged in as admin
at a level of min:oss. It is suggested that the source be downloaded to the /usr/src
directory. Untar the file by issuing the command: tar —xvf egd.tar. This will create a
directory called “egd” and subdirectory under that directory called “egd-0.9”. Navigate

to the “egd-0.9” directory and issue the following commands:
perl Makefile.PL
make

make test
43

http://egd.sourceforge.net/

make install

This will install the egd.pl perl script in the /usr/bin directory. As user admin,

enter the trusted environment by issuing the SAK.

Use sl to change your session level to min security and max integrity

(administrator, all compartments).
Use fsm to copy the egd.pl script to the “/sys/daemon” directory.
Type fsm
Type copy for the request
Enter /usr/bin/egd.pl as the input path name
Enter /sys/daemon/egd.pl for the output path name
Type yes for create output file
A message is displayed that states that n bytes were copied.
While still in fsm, type change
Enter /sys/daemon/egd.pl for the pathname
Type no for modify access level
Enter network for the new owner
Enter network for the new group
Type yes for change discretionary access
Type rwx for owner
Hit enter for name of specific owner
Type rwx for group
Hit enter for specific group
Type rwx for others
Type no to display the object

Type no to hex dump the object
44

Type yes to okay to change
Next use daemon_edit to have egd.pl act as a daemon. Issue SAK.
Type daemon_edit

Type add.

Enter the “egd” as the name of the daemon.

For the command line type: egd.pl

For the arguments, use “/tmp/entropy”

Type enter for environment setting

Answer yes to starting the daemon at startup.

Answer no to high integrity.

Answer no to controls a device.

The security level for the daemon should be min.

The integrity level should be il3.

Run the daemon as user network and group network.

If seeing the current starting order for daemons is desired, type yes,

otherwise say no.

To add the daemon to the end of the list, press enter otherwise enter a
starting index.

Press enter for the delay at startup question.
Press enter for the delay at stop.
Type “entropy gathering daemon” for the description.

A message stating that the daemon was added should appear. To start the
daemon, use the trusted start daemon command. A list of available daemons will be
presented. Choose egd. A message stating that the daemon has started should appear.
To verify this, use the proc_edit command and type list. There should be an entry for

egd.pl. It is possible that the daemon may not be able to keep up with all entropy
45

requests. It is better to start this daemon as soon as possible and leave it running

continuously.

Each OpenSSH daemon will require its own entropy daemon. The entropy
daemons will have to have the same session levels as its corresponding OpenSSH
daemon. For instance, if the OpenSSH daemon will be run at sl1:il3, then an entropy
daemon will have to run with those same levels. Repeat the above process three times
starting at daemon_edit, specifying the session levels as those of the network interfaces
(typically they will be sl1:il3, sl2:il3 and sl3:il3). You will also have to give each
daemon a unigue name, so for the daemon running at sl1:il3, the name should be egd-
nipr. The daemon running at sl2:il3 should have the name egd-sipr. The daemon running
at sl3:il3 should have the name egd-jwics.

2. Zlib compression libraries and tools

a. Installation Instructions
The zlib libraries should be installed by the admin user. The source can be

downloaded from http://www.gzip.org/zlib/. Move the file “zlib.tar” to the XTS-400

and save in the /usr/src directory. Login as admin at slO and oss (il3, all compartments).
Type tar -xvf zlib.tar. This will create a directory called “zlib”. Change to the “zlib”

directory. Run the following commands:
make test
make install

The make install will install the libz.* files in the “/usr/local/lib™ directory
and zlib.h in the “/usr/local/include” directory.
3. OpenSSL Encryption Libraries and Tools
a. Installation Instructions
The source for OpenSSL can be obtained from http://www.openssl.org.

The current version is 0.9.7d. Download the source code or use source on the CD-ROM
and load it onto the XTS-400 in the “/usr/src” directory. Login as admin at slO and oss.
Un-pack the file by issuing the following command: tar -zxvf openssl.tar.gz. This will
uncompress the files into a directory called “openssl-0.9.7d”. Navigate to that directory

and issue the following commands:

46

http://www.gzip.org/zlib/
http://www.openssl.org/

Jconfig zlib
make

make test
make install

The configuration option, zlib, will allow OpenSSL to use the zlib
libraries for compression. The make command will compile the source. The make test
command will test the compilation and the encryption algorithms. The make install
command will install the libraries in “/usr/local” directory. The man pages will not
install properly, but they are not needed in order for openssl to function properly.

B. OPENSSH

Create a directory called “src” under the “/usr/local” directory. This directory
should have the levels: min:oss, this directory and its contents will be downgraded later.
The MYSEA software must be installed in the “/usr/local/mysea” directory.

Login as admin at min:oss. Copy the openssh.tar.gz file into the “/usr/local/src”

directory.
Issue SAK
Type fsm
Type change
Enter /usr/local/src/openssh.tar.gz for the pathname
Type yes to modify the access level
Type min for security level
Type i3 for integrity level
Type yes for the question, “is the level correct?”
Hit enter for new owner name
Hit enter for new group name

Type no for modify discretionary access

47

Type no for display the object

Type yes for okay to change

While still in fsm,

Type change

Enter /usr/local/src for the pathname
Type yes to modify the access level
Enter min for security level

Enter il3 for the integrity level

Hit enter for new owner name

Hit enter for new group name

Type no for modify discretionary access
Type no for display the object

Type yes for okay to change

Uncompress and unpack the files by issuing the following command: tar-zxvf
openssh.tar.gz. This will create a directory called “openssh-3.7.1p2”. Navigate to that

directory and type the following commands:

Jconfigure --prefix=/usr/local/src --with-prngd-socket=/tmp/entropy --with-
default-path=:/xts/untrusted/bin:/bin:/usr/bin:/usr/X11R6/bin --disable-lastlog --
disable-utmp --disable-utmpx --disable-wtmp --disable-wtmpx --with-ldflags=-

L/usr/local/mysea/lib --with-libs=""-lut_oss —lut_xts —loss™
make
make install

The make install command will create directories within the “/usr/local/src”
directory. The directories are: “bin”, “etc”, “libexec”, “shin”, “share” and “man”. Verify
that the file sshd is in the “/usr/local/src/sbin” directory. Navigate to the

“lusr/local/src/etc” directory and copy the “sshd_config” file three times. Name each of

48

the three files a different name such as “sshd_config-nipr”, “sshd_config-sipr” and
“sshd_config-jwics”. Modify each of these three files as described in Appendix C.

Invoke the Trusted Path with the SAK. Set session levels to min:max.
Run the tp_edit command.

Enter cd to change to the “/system” directory.

Type add to install the OpenSSH daemon in this directory.

For program name type sshd

For path enter “/usr/local/src/sbin/sshd”.

For maximum integrity enter admin.

For minimum integrity enter ilO.

For assign privileges type yes and answer no to all privileges except for “Set

owner/group”.

A message will be displayed stating that the program has been installed. Exit
tp_edit.

Start daemon_edit.
Type add.

For the daemon name, specify three different daemon names for the three levels at
which the OpenSSH daemons will run. Three suggested names are sshd-nipr, sshd-sipr,

sshd-jwics.
For the command line type sshd.

For arguments type “-f /usr/local/src/etc/<sshd_config>". Specify the
configuration file that corresponds to the level of the network interface and the level of
the daemon. For example, if the daemon is to run at sl1:il3, then the config file is

“sshd_config-nipr”.

For the environment setting type TERM=/dev/console. This is to allow the

daemon to start from the console, but it will detach from it.

49

Type no for start daemon at start up. This can be changed to yes, but make sure
that the OpenSSH daemons start after the entropy daemons.

Enter yes for high integrity program.

Answer no for the daemon will control a device.
Enter the security level, either sl1, sl2 or sl3.

Type i3 for the integrity level for all three daemons.
For user and group names type network.

Type no for display start index.

Hit enter for end of list.

Enter O for delay in starting the daemon if answered no to start daemon at startup.
If the question “start daemon at startup” was answered with yes, then enter a delay of 60

seconds. The entropy daemons need time to generate entropy.

Enter O for delay in stopping daemon. For the daemon description, type the
classification of the daemon followed by “SSH Daemon”.

Issue SAK.
Set levels to min:max.
Type fsm.

Change the owner and group of the sshd, and the configuration and host keys files
to the network user:

Type change

Enter “/system/sshd” for the path.
Do not modify the levels.

Enter “network” for the owner.
Enter “network” for the group.

Do not modify the discretionary access.

50

Type no for display.

Type yes for Okay to change.

Type change (Repeat this process for all of the configuration files)
Enter “/usr/local/src/etc/<config-file>

Do not modify the mandatory access levels.

Enter “network” for owner and group.

Do not modify the discretionary access.

Type no to display

Type yes for Okay to change.

Type change. Repeat this process for the three private keys:
lusr/local/src/etc/ssh_host_rsa_key, lusr/local/src/etc/ssh_host_dsa_key, and

lusr/local/src/etc/ssh_host_key.
Enter /usr/local/src/etc/<private key file>
Do not modify the mandatory access levels
Type “network” for the owner and group.
Do not modify the discretionary access.
To manually start the daemons, issue SAK.

Type start_daemon and enter the names of the daemons. To verify that the
daemons have started, set the session level to max:max and then run proc_edit. Type list
and all three daemons should be present. If ssh-rand-helper is also listed in proc_edit,
then there is not enough entropy and the OpenSSH daemon is trying to generate more.
Wait about 10 minutes or more before attempting to login. Because the daemon was
installed using tp_edit, the command stop_daemon will not terminate the daemon. Using
the “remove” function of proc_edit will not stop the daemon either. The only way to

terminate the daemon is with a system reboot.

51

Edit the “/etc/passwd” to include the proper default group with each user. The

fourth field is what is used to identify the groups. By default, these numbers will be 0.

Change to the appropriate group ID for the user.

OpenSSH.

Issue SAK

Type sl

max is the security level
max is the integrity level
Issue SAK

Type ua_edit

Type display

Enter the user name of the user that will be allowed to login remotely via

Look for the user’s default group and remember it or write it down
Type exit

Issue SAK

Type sl

min is the security level

0ss is the integrity level

Issue SAK and type run

Change directories to the /etc directory

Type vi group

Look for the user’s default group and record the group ID number
Exit vi

Type vi passwd

52

Look for the user’s entry and change the fourth field from 0 to the group

ID of the user’s default group

Each time a user is added, the “/etc/passwd” file will have to be updated. The
xtsmkpasswd command, does not create a correct passwd file.

C. PUTTY INSTALLATION
This is the Windows SSH client. Do not attempt to install this on a Linux system

or the XTS-400.
Login to the Windows machine as Administrator.
Copy the installer from the CD.

Double click on the installer and follow the on-screen instructions.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

APPENDIX B: SOURCE CODE LISTING

The following files are the source code files that were modified in order to port
OpenSSH to the XTS-400. All modifications are preceded with comments and the
keyword, MYSEA.

A. DEFINES.H

N
*

Copyright (c) 1999-2003 Damien Miller. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

OOF % o+ % % % % % X

-

e
documentation and/or other materials provided with the

distribution.

*

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ~"AS 1S*" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, [INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE,

* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY

* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF

* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#ifndef DEFINES_H
#define _DEFINES_H

/* $1d: defines.h,v 1.103 2003/09/16 01:52:19 dtucker Exp $ */

/* Constants */

#ifndef SHUT_RDWR

enum
SHUT_RD = O, /* No more receptions. */
SHUT_WR, /* No more transmissions. */

55

SHUT_RDWR /* No more receptions or transmissions. */

(]

define SHUT RD SHUT RD
define SHUT_WR SHUT_WR
define SHUT _RDWR SHUT_ RDWR

#endi

#ifndef IPTOS LOWDELAY

define IPTOS_ LOWDELAY 0x10

define IPTOS_THROUGHPUT 0x08

define IPTOS RELIABILITY 0x04

define IPTOS_LOWCOST 0x02

define IPTOS_MINCOST IPTOS_LOWCOST

#endit /* IPTOS_LOWDELAY */

#ifndef MAXPATHLEN

i1fdef PATH_MAX

define MAXPATHLEN PATH_MAX

else /* PATH _MAX */

define MAXPATHLEN 64 /* Should be safe */
endif /* PATH _MAX */

#endif /* MAXPATHLEN */

#ifndef STDIN_FILENO

define STDIN_FILENO 0
#endi

#ifndef STDOUT_FILENO

define STDOUT_FILENO 1
#endi

#ifndef STDERR_FILENO

define STDERR_FILENO 2
#endif

#ifndef NGROUPS_ MAX /* Disable groupaccess if NGROUP_MAX is not set
*/

#iTtdef NGROUPS

#define NGROUPS_MAX NGROUPS

#else

#define NGROUPS_MAX O

#endif

#endif

#ifndef O_NONBLOCK /* Non Blocking Open */
define O_NONBLOCK 00004
#endif

#ifndef S_ISDIR
define S_ISDIR(mode) (((mode) & (S _IFMT)) == (_S_IFDIR))
#endift /* S_ISDIR */

#ifndef S_ISREG
define S _ISREG(mode) (((mode) & (S IFMT)) == (_S_IFREG))
#endif /* S_ISREG */

#ifndef S_ISLNK
define S_ISLNK(mode) (((mode) & S_IFMT) == S_IFLNK)
#endif /* S_ISLNK */

56

#ifndef S_IXUSR

define S_IXUSR 0000100 /* execute/search permission,
*/

define S_IXGRP 0000010 /* execute/search permission,
*

/

define S_I1XOTH 0000001 /* execute/search permission,
*/

define _S IWUSR 0000200 /* write permission, */

define S_IWUSR _S_IWUSR /* write permission, owner */
define S_IWGRP 0000020 /* write permission, group */
define S_IWOTH 0000002 /* write permission, other */
define S_IRUSR 0000400 /* read permission, owner */
define S_IRGRP 0000040 /* read permission, group */
define S_IROTH 0000004 /* read permission, other */
define S_IRWXU 0000700 /* read, write, execute */

define S_IRWXG 0000070 /* read, write, execute */

define S_IRWXO 0000007 /* read, write, execute */

#endift /* S_IXUSR */

#iF ldefined(MAP_ANON) && defined(MAP_ANONYMOUS)
#define MAP_ANON MAP_ANONYMOUS
#endi

#ifndef MAP_FAILED
define MAP_FAILED ((void *)-1)
#endif

/* *-*-nto-gnx doesn"t define this constant in the system headers */
#ifdef MISSING_NFDBITS

define NFDBITS (8 * sizeof(unsigned long))

#endif

/*

SCO Open Server 3 has INADDR_LOOPBACK defined in rpc/rpc.h but
including rpc/rpc.h breaks Solaris 6

*/

#ifndef INADDR_LOOPBACK

#define INADDR_LOOPBACK ((u_long)0x7f000001)

#endiF

/* Types */

/* 1T sys/types.h does not supply intXX_t, supply them ourselves */
/* (or die trying) */

#ifndef HAVE_U_INT
typedef unsigned int u_int;
#endiF

#ifndef HAVE_INTXX_T

if (SIZEOF_CHAR == 1)

typedef char int8_t;

else

error "8 bit int type not found."
endif

57

1Ff (SIZEOF_SHORT_INT == 2)
typedef short int intl6 t;

else

1fdef _UNICOS

iT (SIZEOF_SHORT_INT == 4)
typedef short intl6_t;

else

typedef long intl6_t;

endif

else

error "16 bit int type not found."
endif /* _UNICOS */

endif

1Ff (SIZEOF_INT == 4)

typedef int int32_t;

else

1fdef _UNICOS

typedef long int32_t;

else

error "32 bit int type not found."
endif /* _UNICOS */

endif

#endif

/* 1T sys/types.h does not supply u_intXX_t, supply them ourselves

#itndef HAVE_U_INTXX_T

1fdef HAVE_UINTXX_T

typedef uint8 t u_int8_t;

typedef uintl6_t u_intl6é _t;

typedef uint32_t u_int32_t;

define HAVE_U_INTXX_T 1

else

1f (SIZEOF_CHAR == 1)

typedef unsigned char u_int8_t;

else

error "8 bit int type not found."
endif

1F (SIZEOF_SHORT_INT == 2)
typedef unsigned short int u_intl6é t;
else

ifdef _UNICOS

iT (SIZEOF_SHORT_INT == 4)
typedef unsigned short u_intl6_t;

else
typedef unsigned long u_intl6_t;
endif

else

error "'16 bit int type not found."
endif

endif

1F (SIZEOF_INT == 4)

typedef unsigned int u_int32_t;

else

ifdef _UNICOS

typedef unsigned long u_int32_t;

else

error '""32 bit int type not found.™

58

*/

endif

endif

endif

#define _ BIT TYPES DEFINED
#endif

/* 64-bit types */

#ifndef HAVE_INT64_T

1Ff (SIZEOF_LONG_INT == 8)

typedef long int int64_t;

else

1F (SIZEOF_LONG_LONG_INT == 8)
typedef long long int int64_t;

endif

endif

#endif

#ifndef HAVE_U_INT64_T

1Ff (SIZEOF_LONG_INT == 8)

typedef unsigned long int u_int64 t;
else

1F (SIZEOF_LONG_LONG_INT == 8)
typedef unsigned long long int u_int64_t;
endif

endif

#endiF

#ifndef HAVE_U_CHAR

typedef unsigned char u_char;
define HAVE_U_CHAR

#endift /* HAVE_U_CHAR */

#ifndef SIZE_T_MAX
#define SIZE_T_MAX ULONG_MAX
#endif /* SIZE_T_MAX */

#ifndef HAVE_SIZE_T

typedef unsigned int size_t;
define HAVE_SIZE T

#endif /* HAVE _SIZE T */

#ifndef HAVE_SSIZE_T
typedef iInt ssize_t;

define HAVE SSIZE T
#endif /* HAVE _SSIZE T */

#ifndef HAVE_CLOCK_T
typedef long clock t;
define HAVE CLOCK_ T
#endif /* HAVE CLOCK T */

#ifndef HAVE_SA FAMILY_T
typedef int sa family t;

define HAVE_SA FAMILY_T
#endif /* HAVE_SA FAMILY_ T */

#ifndef HAVE_PID T
typedef int pid_t;

59

define HAVE_PID_T
#endif /* HAVE PID_T */

#ifndef HAVE_SIG_ATOMIC_ T
typedef int sig_atomic_t;

define HAVE_SIG_ATOMIC_T
#endif /* HAVE_SIG_ATOMIC_T */

#ifndef HAVE_MODE_T
typedef int mode_ t;

define HAVE_MODE_T
#endif /* HAVE_MODE_T */

#if ldefined(HAVE_SS_FAMILY_IN_SS) && defined(HAVE___SS FAMILY_IN_SS)
define ss_Tamily _ ss family

#endif /* Tdefined(HAVE_SS_FAMILY_IN_SS)
defined(HAVE_SA_ FAMILY_IN_SS) */

#ifndef HAVE_SYS_UN_H

struct sockaddr_un {

short sun_family; /* AF_UNIX */

char sun_path[108]; /* path name (gag) */
};

#endif /* HAVE_SYS_UN_H */

#iT defined(BROKEN_SYS_TERMIO_H) && !'defined(_STRUCT_WINSIZE)
#define _STRUCT_WINSIZE
struct winsize {

unsigned short ws_row; /* rows, in characters */
unsigned short ws_col; /* columns, in character */
unsigned short ws_ xpixel; /* horizontal size, pixels */
unsigned short ws_ypixel; /* vertical size, pixels */
};
#endif

/* *-*-nto-gnx does not define this type in the system headers */
#ifdef MISSING_FD_MASK

typedef unsigned long int Td_mask;
#endif

/* Paths */

#ifndef _PATH_BSHELL

define _PATH BSHELL "/bin/sh"
#endif

#ifndef _PATH_CSHELL

define PATH CSHELL "/bin/csh™
#endif

#ifndef PATH SHELLS

define _PATH_SHELLS "/etc/shells”
#endif

#ifdef USER_PATH

1fdef _PATH_STDPATH

undef _PATH_STDPATH

endif

define PATH_STDPATH USER_PATH

60

&&

#endi f

#ifndef _PATH_STDPATH
define _PATH _STDPATH "/usr/bin:/bin:/usr/sbin:/sbin"
#endiF

#ifndef SUPERUSER_PATH
define SUPERUSER PATH _PATH_ STDPATH
#endi

#ifndef _PATH DEVNULL
define _PATH DEVNULL "‘/dev/null"
#endi

#ifndef MAIL_DIRECTORY
define MAIL_DIRECTORY "/var/spool/mail"
#endif

#ifndef MAILDIR
define MAILDIR MAIL_DIRECTORY
#endi

#if 1defined(PATH _MAILDIR) && deFfined(MAILDIR)
define _PATH_MAILDIR MAILDIR
#endif /* 1defined(PATH_MAILDIR) && defined(MAILDIR) */

#ifndef _PATH_NOLOGIN
define _PATH_NOLOGIN *'/etc/nologin®
#endif

/* Define this to be the path of the xauth program. */
#ifdef XAUTH_PATH

#define _PATH_XAUTH XAUTH_PATH

#endif /* XAUTH_PATH */

/* derived from XF4/xc/lib/dps/Xlibnet.h */
#ifndef X_UNIX_PATH
ifdef _ hpux
define X _UNIX_PATH *'/var/spool/sockets/X11/%u""
else
define X _UNIX_PATH "'/tmp/.X11l-unix/X%u"
endif
#endif /* X_UNIX_PATH */
#define _PATH_UNIX_X X _UNIX_PATH

HHHFHHT

#ifndef PATH TTY
define _PATH_TTY "/dev/tty"
#endi

/* Macros */

#i1Ff defined(HAVE_LOGIN_GETCAPBOOL) && defined(HAVE_LOGIN_CAP_H)
define HAVE_LOGIN_CAP
#endif

#ifndef MAX
define MAX(a,b) (((@)>(b))?(a):(b))
61

define MIN(a,b) (((@)<(b))?(@):(b))
#endif

#ifndef roundup

define roundup(x, y) ((COO+((Y)-1))/(¥Y))*Y))
#endif

#ifndef timersub
#define timersub(a, b, result) \
do { \

(result)->tv_sec = (a)->tv_sec - (b)->tv_sec; \
(result)->tv_usec = (a)->tv_usec - (b)->tv_usec; \
if ((result)->tv_usec < 0) {
-—(result)->tv_sec;
(result)->tv_usec += 1000000; \

7 7

b
} while (0)
#endif

#ifndef TIMEVAL_TO_TIMESPEC

#define TIMEVAL_TO_TIMESPEC(tv, ts) { \
(ts)->tv_sec = (tv)->tv_sec; \
(ts)->tv_nsec = (tv)->tv_usec * 1000; \

}

#endiF

#ifndef TIMESPEC_TO_TIMEVAL

#define TIMESPEC_TO_TIMEVAL(tv, ts) { \
(tv)—>tv_sec = (ts)->tv_sec; \
(tv)->tv_usec = (ts)->tv_nsec / 1000; \

}

#endif

#ifndef P
define _ P(X) x
#endif

#if 1defined(IN6_IS_ADDR_VAMAPPED)
define IN6_IS_ADDR_VAMAPPED(a) \

((Qu_int32_t *) (a))[0] == 0) && ((((u_int32_t *) (a))[1] == 0)

(((u_int32_t *) (a))[2] == htonl (OxFFFF)))
#endif /* 'defined(IN6_IS ADDR_VAMAPPED) */

&& \

#iT Ydefined(__GNUC__) |] (_GNUC__ < 2)
define __ attribute (X))
#endif /* 1defined(__GNUC_) || (_GNUC__ < 2) */

* *_*_nto-gnx doesn"t define this macro in the system headers */
#ifdef MISSING_HOWMANY

define howmany(x,y) ((C)+((¥)-1))/(Y))
#endif

#iftndef OSSH_ALIGNBYTES

#define OSSH_ALIGNBYTES (sizeof(int) - 1)
#endif

#ifndef _ CMSG_ALIGN

62

#define ___CMSG_ALIGN(p) ((Qu_int)(p) + OSSH_ALIGNBYTES) &~
OSSH_ALIGNBYTES)
#endi

/* Length of the contents of a control message of length len */
#ifndef CMSG_LEN
#define CMSG_LEN(len) (__CMSG_ALIGN(sizeof(struct cmsghdr)) +

(len))
#endif

/* Length of the space taken up by a padded control message of length
len */
#ifndef CMSG_SPACE

#define CMSG_SPACE(len) (__CMSG_ALIGN(sizeof(struct cmsghdr)) +
_ CMSG_ALIGN(Ien))
#endif

/* given pointer to struct cmsghdr, return pointer to data */

#ifndef CMSG_DATA

#define CMSG_DATA(cmsg) ((u_char *)(cmsg) + _ CMSG_ALIGN(sizeof(struct
cmsghdr)))

#endif /* CMSG_DATA */

/*
* RFC 2292 requires to check msg _controllen, in case that the kernel
returns
* an empty list for some reasons.
*/
#ifndef CMSG_FIRSTHDR
#define CMSG_FIRSTHDR(mhdr) \
((mhdr)->msg_controllen >= sizeof(struct cmsghdr) ? \
(struct cmsghdr *)(mhdr)->msg_control : \
(struct cmsghdr *)NULL)
#endif /* CMSG_FIRSTHDR */

/* Function replacement / compatibility hacks */

#ifT Tdefined(HAVE_GETADDRINFO) && (defined(HAVE_OGETADDRINFO) 11
defined(HAVE_NGETADDRINFO))

define HAVE_GETADDRINFO

#endif

#itndet HAVE_GETOPT_OPTRESET

undef getopt

undef opterr

undef optind

undef optopt

undef optreset

undef optarg

define getopt(ac, av, o) BSDgetopt(ac, av, 0)
define opterr BSDopterr
define optind BSDoptind

define optopt BSDoptopt
define optreset BSDoptreset
define optarg BSDoptarg
#endif

63

/* In older versions of libpam, pam_strerror takes a single argument */
#ifdef HAVE _OLD PAM

define PAM_STRERROR(a,b) pam_strerror((b))

#else

define PAM_STRERROR(a,b) pam_strerror((a), (b))

#endif

#ifdef PAM_SUN_CODEBASE

define PAM_MSG_MEMBER(msg, n, member) ((*(msg))[(n)]-member)
#else

define PAM_MSG_MEMBER(msg, n, member) ((msg)[(n)]->member)
#endif

#if defined(BROKEN_GETADDRINFO) && defined(HAVE_ GETADDRINFO)
undef HAVE_GETADDRINFO

#endif

#if defined(BROKEN_GETADDRINFO) && defined(HAVE_FREEADDRINFO)
undef HAVE_FREEADDRINFO

#endif

#i1Ff defined(BROKEN_GETADDRINFO) && defined(HAVE_GAIl_STRERROR)
undef HAVE_GAIl_STRERROR

#endi

#if 1defined(HAVE_MEMMOVE) && defined(HAVE_BCOPY)
define memmove(sl, s2, n) bcopy((s2), (s1l), (n))
#endif /* ldefined(HAVE_MEMMOVE) && defined(HAVE_BCOPY) */

#if defined(HAVE_VHANGUP) && !'defined(HAVE_DEV_PTMX)
define USE_VHANGUP
#endif /* defined(HAVE_VHANGUP) && !defined(HAVE_DEV_PTMX) */

#iftndef GETPGRP_VOID

define getpgrp() getpgrp(0)
#endif

/* OPENSSL_free() is Free() in versions before OpenSSL 0.9.6 */

#if 1defined(OPENSSL_VERSION_NUMBER) 11 (OPENSSL_VERSION_NUMBER <
0x0090600f)

define OPENSSL_free(X) Free(X)

#endif

#1F ldefined(HAVE___ func__) && defined(HAVE__ FUNCTION_)
define _ func__ _ FUNCTION_

#elif 'defined(HAVE___ func_)

define _ func__ """

#endif

#iT defined(KRB5) && !defined(HEIMDAL)
define krb5 get err_text(context,code) error_message(code)
#endif

/*
* Define this to use pipes instead of socketpairs for communicating
with the

* client program. Socketpairs do not seem to work on all systems.
*

64

* configure.ac sets this for a few 0S"s which are known to have
problems

* but you may need to set it yourself

*/
//MYSEA: Manually changed to use pipes
#define USE_PIPES 1

/**
** login recorder definitions
**/

/* FIXME: put default paths back in */
#ifndef UTMP_FILE

ifdef PATH UTMP

define UTMP_FILE _PATH UTMP

else

ifdef CONF_UTMP_FILE

define UTMP_FILE CONF_UTMP_FILE
endif

endif

#endi

#ifndef WTMP_FILE

1fdef _PATH_WTMP

define WTMP_FILE _PATH WTMP

else

ifdef CONF_WTMP_FILE

define WTMP_FILE CONF_WTMP_FILE
endif

endif

#endiF

/* pick up the user®"s location for lastlog if given */
#ifndef LASTLOG_FILE

1fdef _PATH_LASTLOG

define LASTLOG _FILE _PATH LASTLOG

else

ifdef CONF_LASTLOG_FILE

define LASTLOG_FILE CONF_LASTLOG FILE
endif

endif

#endif

/* The login() library function in libutil is first choice */
#i1T defined(HAVE_LOGIN) && !'defined(DISABLE_LOGIN)
define USE_LOGIN

#else

/* Simply select your favourite login types. */

/* Can"t do if-else because some systems use several... <sigh> */
1T defined(UTMPX_FILE) && !'defined(DISABLE_UTMPX)
define USE_UTMPX

endif

1F defined(UTMP_FILE) && !defined(DISABLE_UTMP)

define USE_UTMP

endif

if defined(WTMPX_FILE) && !defined(DISABLE_WTMPX)
define USE_WTMPX

65

endif

if defined(WTMP_FILE) && 'defined(DISABLE_WTMP)
define USE _WTMP

endif

H o HH

#endi

/* 1 hope that the presence of LASTLOG_FILE is enough to detect this */
#1T defined(LASTLOG_FILE) && 'defined(DISABLE_LASTLOG)

define USE_LASTLOG

#endif

/** end of login recorder definitions */

#endift /* _DEFINES_H */
B. SESSION.C

N
*

Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
All rights reserved

As far as | am concerned, the code I have written for this software
can be used freely for any purpose. Any derived versions of this
software must be clearly marked as such, and if the derived work is
incompatible with the protocol description in the RFC file, it must

o

called by a name other than "ssh' or '"Secure Shell".

SSH2 support by Markus Friedl.
Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

Ok X R X ok X o X ok % X XD * X * X ok X

[

e

documentation and/or other materials provided with the
distribution.
*

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ~~AS 1S"" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, [INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE,

* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY

* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF

66

* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "includes._h"
RCSID(*"$0penBSD: session.c,v 1.164 2003/09/18 08:49:45 markus Exp $');

#include "'ssh.h"
#include 'sshl.h"
#include 'ssh2._h"
#include "xmalloc.h"
#include "'sshpty.h"
#include "packet.h"
#include "buffer.h"
#include "mpaux.h™
#include "uidswap.h"
#include '"compat.h"
#include 'channels._h"
#include "bufaux.h"
#include "auth.h"
#include "auth-options._h"
#include "pathnames.h"
#include "log.h"
#include "servconf_h"
#include "sshlogin._h"
#include "serverloop.h"
#include 'canohost._h"
#include "'session.h"
#include "monitor_wrap.h"
#ifdef GSSAPI

#include '"ssh-gss.h"
#endif

/* func */

Session *session_nhew(void);

void session_set fds(Session *, int, int, int);
void session_pty cleanup(void *);

void session_proctitle(Session *);

int session_setup x11fwd(Session *);

void do_exec pty(Session *, const char *);

void do_exec no pty(Session *, const char *);
void do_exec(Session *, const char *);

void do_login(Session *, const char *);

#ifdef LOGIN_NEEDS_UTMPX

static void do_pre_ login(Session *s);

#endif

void do_child(Session *, const char *);

void do_motd(void);

int check _quietlogin(Session *, const char *);

static void do_authenticatedl(Authctxt *);
static void do_authenticated2(Authctxt *);

static int session_pty req(Session *);

/* import */
67

extern ServerQOptions options;

extern char *__progname;

extern int log_stderr;

extern int debug_flag;

extern u_int utmp_len;

extern int startup pipe;

extern void destroy_ sensitive data(void);
extern Buffer loginmsg;

/* original command from peer. */
const char *original_command = NULL;

/* data */
#define MAX_SESSIONS 10
Session sessions[MAX_SESSIONS];

#ifdef HAVE_LOGIN_CAP
login_cap_t *Ic;
#endif

/* Name and directory of socket for authentication agent forwarding. */
static char *auth_sock name = NULL;
static char *auth_sock dir = NULL;

/* removes the agent forwarding socket */

static void
auth_sock_cleanup_proc(void *_pw)

{
struct passwd *pw = _pw;
if (auth_sock name '= NULL) {
temporarily_use uid(pw);
unlink(auth_sock _name);
rmdir(auth_sock dir);
auth_sock name = NULL;
restore_uid();
}
}

static int
auth_input_request_forwarding(struct passwd * pw)
{

Channel *nc;

int sock;

struct sockaddr_un sunaddr;

if (auth_sock name '= NULL) {
error(T'authentication forwarding requested twice."');
return O;

}

/* Temporarily drop privileged uid for mkdir/bind. */
temporarily_use_uid(pw);

/* Allocate a buffer for the socket name, and format the name. */
auth_sock name = xmalloc(MAXPATHLEN);

68

auth_sock _dir = xmalloc(MAXPATHLEN) ;
stricpy(auth_sock _dir, "/tmp/ssh-XXXXXXXX', MAXPATHLEN);

/* Create private directory for socket */
it (nkdtemp(auth_sock_dir) == NULL) {
packet _send_debug(''Agent forwarding disabled: "
"mkdtemp() failed: %.100s", strerror(errno));
restore_uid();
xfree(auth_sock _name);
xFree(auth_sock_dir);
auth_sock name = NULL;
auth_sock _dir = NULL;
return O;
}
snprintf(auth_sock_name, MAXPATHLEN, "'%s/agent.%ld",
auth_sock dir, (long) getpid());

/* delete agent socket on fatal() */
fatal_add_cleanup(auth_sock_cleanup_proc, pw);

/* Create the socket. */
sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (sock < 0)
packet_disconnect(*'socket: %.100s", strerror(errno));

/* Bind it to the name. */

memset(&sunaddr, 0, sizeof(sunaddr));

sunaddr.sun_family = AF_UNIX;

stricpy(sunaddr.sun_path, auth_sock_name,
sizeof(sunaddr.sun_path));

if (bind(sock, (struct sockaddr *) & sunaddr, sizeof(sunaddr)) <

0)
packet_disconnect('bind: %.100s", strerror(errno));
/* Restore the privileged uid. */
restore_uid();
/* Start listening on the socket. */
if (listen(sock, 5) < 0)
packet _disconnect('listen: %.100s", strerror(errno));
/* Allocate a channel for the authentication agent socket. */
nc = channel_new(*"auth socket',
SSH_CHANNEL_AUTH_SOCKET, sock, sock, -1,
CHAN_X11_WINDOW_DEFAULT, CHAN_X11_PACKET_DEFAULT,
0, "auth socket", 1);
stricpy(nc->path, auth_sock_name, sizeof(nc->path));
return 1;
}
void
do_authenticated(Authctxt *authctxt)
{

setproctitle(""%s", authctxt->pw->pw_name);

69

/*
* Cancel the alarm we set to limit the time taken for
* authentication.
*/
alarm(0);
if (startup_pipe = -1) {
close(startup_pipe);
startup_pipe = -1;
3

/* setup the channel layer */
it ('no_port_forwarding_flag && options.allow_tcp forwarding)
channel_permit_all_opens();

if (compat20)
do_authenticated2(authctxt);
else
do_authenticatedl(authctxt);

/* remove agent socket */
if (auth_sock name != NULL)
auth_sock_cleanup_proc(authctxt->pw);
#ifdef KRB5
ifT (options.kerberos_ticket_cleanup)
krb5_ cleanup_proc(authctxt);
#endif

}

/*
* Prepares for an interactive session. This is called after the user
has
* been successfully authenticated. During this message exchange,
pseudo
* terminals are allocated, X111, TCP/IP, and authentication agent
forwardings
* are requested, etc.
*/
static void
do_authenticatedl(Authctxt *authctxt)
{
Session *s;
char *command;
int success, type, screen_flag;
int enable_compression_after_reply = 0;
u_int proto_len, data_len, dlen, compression_level = 0O;

s = session_new();
s->authctxt = authctxt;
s->pw = authctxt->pw;

/*
* We stay in this loop until the client requests to execute a
shell
* or a command.
*/
for (G3) {

success = 0;

70

/* Get a packet from the client. */
type = packet_read();

/* Process the packet. */
switch (type) {
case SSH_CMSG_REQUEST_COMPRESSION:
compression_level = packet_get_int();
packet_check_eom();
ifT (compression_level < 1 || compression_level > 9) {
packet_send debug(''Received illegal compression
level %d.",
compression_level);
break;

if (loptions.compression) {
debug2(*'compression disabled™);
break;

/* Enable compression after we have responded with
SUCCESS. */

enable_compression_after_reply = 1;

success = 1;

break;

case SSH_CMSG_REQUEST_PTY:
success = session_pty req(s);
break;

case SSH CMSG_X11 REQUEST FORWARDING:
s->auth_proto = packet get string(&proto_len);
s->auth_data = packet get string(&data_len);

screen_Tlag = packet_get protocol_flags() &
SSH_PROTOFLAG_SCREEN_NUMBER;
debug2(**'SSH_PROTOFLAG_SCREEN_NUMBER: %d",
screen_Tlag);

if (packet_remaining() == 4) {
it (Iscreen_flag)
debug2(*'Buggy client: "
""X11 screen flag missing™);
s->screen = packet_get _int();
} else {

s->screen = 0;

packet _check eom();

success = session_setup x11fwd(s);

if (Isuccess) {
xfree(s->auth_proto);
xfree(s->auth_data);
s->auth_proto = NULL;
s->auth_data = NULL;

}

break;

case SSH_CMSG_AGENT REQUEST_FORWARDING:
71

if (no_agent forwarding flag || compatl3) {
debug(*'Authentication agent forwarding not
permitted for this authentication.');
break;
}

debug(*'Received authentication agent forwarding
request.');

success = auth_input_request_forwarding(s->pw);

break;

case SSH_CMSG_PORT_FORWARD_REQUEST:
if (no_port_forwarding flag) {
debug(*'Port forwarding not permitted for this
authentication.');

}

if (loptions.allow_tcp forwarding) {
debug(*'Port forwarding not permitted.™);
break;

break;

}

debug(‘'Received TCP/IP port forwarding request.');

channel _input_port_forward_request(s->pw->pw_uid ==
0, options.gateway ports);

success = 1;

break;

case SSH_CMSG_MAX_PACKET_SIZE:
if (packet_set _maxsize(packet_get int()) > 0)
success = 1;
break;

case SSH_CMSG_EXEC_SHELL:
case SSH_CMSG_EXEC_CMD:
if (type == SSH_CMSG_EXEC_CMD) {
command = packet_get_string(&dlen);
debug("'Exec command "%.500s"', command);
do_exec(s, command);
xfree(command) ;

} else {
do_exec(s, NULL);

packet _check eom();

debug(*'Calling Session Close™);

session_close(s);

debug("'Returned from Session Close called from do
Authenticatedl™);

return;

default:
/*
* Any unknown messages in this phase are ignored,
* and a failure message is returned.
*/
logit(*'Unknown packet type received after
authentication: %d', type);

}
72

packet_start(success ? SSH_SMSG_SUCCESS
SSH_SMSG_FAILURE) ;

packet_send();

packet write wait();

/* Enable compression now that we have replied if
appropriate. */
if (enable_compression_after_reply) {
enable_compression_after_reply = 0;
packet_start _compression(compression_level);

}
}
}
/*
* This is called to fork and execute a command when we have no tty.
This

* will call do_child from the child, and server_loop from the parent
after

* setting up file descriptors and such.

*/
void

do_exec_no_pty(Session *s, const char *command)

{
pid_t pid;

#ifdef USE_PIPES
int pin[2], pout[2], perr[2];
/* Allocate pipes for communicating with the program. */
if (pipe(pin) < 0 || pipe(pout) < O || pipe(perr) < 0)
packet_disconnect("'Could not create pipes: %.100s",
strerror(errno));
#else /* USE_PIPES */
int inout[2], err[2];
/* Uses socket pairs to communicate with the program. */
if (socketpair(AF_UNIX, SOCK STREAM, O, inout) < 0 ||
socketpair(AF_UNIX, SOCK STREAM, 0, err) < 0)
packet_disconnect("'Could not create socket pairs: %.100s",
strerror(errno));
#endif /* USE_PIPES */
if (s == NULL)
fatal ("'do_exec_no_pty: no session™);

session_proctitle(s);

#if defined(USE_PAM)
ifT (options.use pam) {
do_pam_setcred(l);
if (is_pam_password_change_required())
packet_disconnect(*'Password change required but no
"TTY available™);

+
#endif /* USE_PAM */

/* Fork the child. */
if ((pid = fork(Q)) == 0) {
fatal _remove_all _cleanups();

73

/* Child. Reinitialize the log since the pid has changed.
*/

log_init(__progname, options.log_level,
options.log_facility, log stderr);

/*
* Create a new session and process group since the 4_4BSD
* setlogin() affects the entire process group.
*/
it (setsid() < 0)
error(‘'setsid failed: %.100s", strerror(errno));

#ifdef USE_PIPES
/*
* Redirect stdin. We close the parent side of the socket
* pair, and make the child side the standard input.
*/
close(pin[1]);
it (dup2(pin[0], 0) < 0)
perror("'dup2 stdin');
close(pin[0]);

/* Redirect stdout. */

close(pout[0]);

if (dup2(pout[1l], 1) < 0)
perror("'dup2 stdout™);

close(pout[1]);

/* Redirect stderr. */
close(perr[0]);
it (dup2(perr[1], 2) < 0)
perror(*'dup2 stderr™);
close(perr[1]);
#else /* USE_PIPES */
/*
* Redirect stdin, stdout, and stderr. Stdin and stdout
will
* use the same socket, as some programs (particularly
rdist)
* seem to depend on it.
*/
close(inout[1]);
close(err[1]);
if (dup2(inout[0], 0) < 0) /* stdin */
perror("'dup2 stdin');

if (dup2(inout[0], 1) < 0) /* stdout. Note: same socket
as stdin. */

perror("'dup2 stdout™);
if (dup2(err[0], 2) < 0) /* stderr */
perror('dup2 stderr'™);
#endif /* USE_PIPES */

#iftdef _UNICOS

cray_init_job(s->pw); /* set up cray jid and tmpdir */
#endiF

74

/* Do processing for the child (exec command etc). */
do_child(s, command);
/* NOTREACHED */

}
#ifdef _UNICOS
signal (WISIGNAL, cray_job_termination_handler);
#endif /* _UNICOS */
#ifdef HAVE_CYGWIN
ifT (is_winnt)
cygwin_set_impersonation_token(INVALID_HANDLE_VALUE);
#endif
if (pid < 0)
packet_disconnect("'fork failed: %.100s", strerror(errno));
s->pid = pid;
/* Set interactive/non-interactive mode. */
packet_set_interactive(s->display !'= NULL);
#ifdef USE_PIPES
/* We are the parent. Close the child sides of the pipes. */
close(pin[0]);
close(pout[1]);
close(perr[1]);

it (compat20) {
session_set_fds(s, pin[l], pout[0], s->is_subsystem ? -1
perr[01);

} else {

/* Enter the interactive session. */
server_loop(pid, pin[1], pout[0], perr[0]);
/* server_loop has closed pin[1], pout][0], and perr[0]. */

3
#else /* USE_PIPES */

/* We are the parent. Close the child sides of the socket pairs.
*/

close(inout[0]);

close(err[0]);

/*
* Enter the interactive session. Note: server_loop must be able
to
* handle the case that fdin and fdout are the same.
*
/
it (compat20) {
session_set_fds(s, inout[1l], inout[1l], s->is_subsystem ? -1
> err[1]);
} else {
server_loop(pid, inout[1], inout[l], err[1l]);
/* server_loop has closed inout[1] and err[1]. */

}
#endif /* USE_PIPES */
}

/*

* This is called to fork and execute a command when we have a tty.
This

* will call do_child from the child, and server_loop from the parent
after

* setting up file descriptors, controlling tty, updating wtmp, utmp,

75

* lastlog,
*/
void

and other such operations.

do_exec_pty(Session *s, const char *command)

int fdout, ptyfd, ttyfd, ptymaster;

pid t
if (s
{

}
ptyfd
ttyfd

pid;
== NULL)

fatal ("'do_exec_pty: no session');

s->ptyfd;
s->ttyfd;

#if defined(USE_PAM)
if (options.use pam) {

#endif

do _pam_set_tty(s->tty);
do_pam_setcred(l);

/* Fork the child. */
if ((pid = fork()) == 0) {

changed. */

fatal_remove_all_cleanups();
/* Child. Reinitialize the 1log because the pid has

log _init(__progname, options.log_level,

options.log_facility, log stderr);

/* Close the master side of the pseudo tty. */
close(ptyfd);

/* Make the pseudo tty our controlling tty. */
pty _make controlling tty(&ttyfd, s->tty);

/* Redirect stdin/stdout/stderr from the pseudo tty. */
if (dup2(ttyfd, 0) < 0)

error("'dup2 stdin: %s', strerror(errno));
T (dup2(ttyfd, 1) < 0)

error(*'dup2 stdout: %s'", strerror(errno));
T (dup2(ttyfd, 2) < 0)

error("'dup2 stderr: %s", strerror(errno));

L N L R Sy TSR

/* Close the extra descriptor for the pseudo tty. */
close(ttyfd);

/* record login, etc. similar to login(l) */

#ifndef HAVE_OSF_SIA

it (I(options.use_login && command == NULL)) {

#iftdef _UNICOS

*/

cray_init_job(s->pw); /* set up cray jid and tmpdir

76

#endif /* _UNICOS */
do_login(s, command);

¥
1fdef LOGIN_NEEDS_ UTMPX
else
do_pre_login(s);
endif
#endif

/* Do common processing for the child, such as execing the
command. */

do_child(s, command);

/* NOTREACHED */

}
#ifdef _UNICOS
signal (WISIGNAL, cray_job_termination_handler);
#endif /* _UNICOS */
#ifdef HAVE_CYGWIN
if (is_winnt)
cygwin_set_impersonation_token(INVALID_HANDLE_VALUE);
#endif
if (pid < 0)
packet_disconnect("'fork failed: %.100s", strerror(errno));
s->pid = pid;

/* Parent. Close the slave side of the pseudo tty. */
close(ttyfd);

/*
* Create another descriptor of the pty master side for use as
the
* standard input. We could use the original descriptor, but
this
* simplifies code 1in server_loop. The descriptor is
bidirectional.
*/
fdout = dup(ptyfd);
iT (fdout < 0)
packet_disconnect('dup #1 failed: %.100s",
strerror(errno));

/* we keep a reference to the pty master */
ptymaster = dup(ptyfd);
it (ptymaster < 0)
packet_disconnect('dup #2 failed: %.100s",
strerror(errno));
s->ptymaster = ptymaster;

/* Enter interactive session. */
packet_set_interactive(l);
if (compat20) {
session_set fds(s, ptyfd, fdout, -1);
} else {
server_loop(pid, ptyfd, fdout, -1);
/* server_loop has_closed ptyfd and fdout. */

77

#ifdef LOGIN_NEEDS_UTMPX
static void
do_pre_login(Session *s)

socklen_t fromlen;
struct sockaddr_storage from;
pid_t pid = getpid();

/*

* Get IP address of client. If the connection is not a socket,

let

* the address be 0.0.0.0.

*/

memset(&from, 0, sizeof(from));

fromlen = sizeof(from);

iT (packet_connection_is_on_socket()) {

if (getpeername(packet_get_connection_in(),

(struct sockaddr *) & from, &fromlen) < 0) {
debug(‘'getpeername: %.100s'", strerror(errno));
fatal_cleanup();

}
}
record_utmp_only(pid, s->tty, s->pw->pw_name,
get_remote_name_or_ip(utmp_len, options.use_dns),
(struct sockaddr *)&from, fromlen);
}
#endif
/*

* This is called to fork and execute a command. If another command is
* to be forced, execute that instead.
*/
void
do_exec(Session *s, const char *command)
{
it (forced_command) {

original_command = command;

command = forced_command;

debug(*'Forced command "%.900s"', command);

#ifdef GSSAPI
if (options.gss _authentication) {
temporarily_use uid(s->pw);
ssh_gssapi_storecreds();
restore_uid(Q);

#endiF
if (s->ttyfd 1= -1)
{
do_exec_pty(s, command);
}
else
{

78

do_exec_no_pty(s, command);

}

original_command = NULL;
}
/* administrative, login(1)-like work */
void
do_login(Session *s, const char *command)
{

char *time_string;

socklen_t fromlen;

struct sockaddr_storage from;

struct passwd * pw = s->pw;

pid_t pid = getpid();

/*

* Get IP address of client. If the connection is not a socket,
let

* the address be 0.0.0.0.

*/

memset(&from, 0, sizeof(from));

fromlen = sizeof(from);

it (packet_connection_is_on_socket()) {

if (getpeername(packet _get_connection_in(),
(struct sockaddr *) & from, &Ffromlen) < 0) {

debug(‘'getpeername: %.100s", strerror(errno));
fatal_cleanup();

}

/* Record that there was a login on that tty from the remote
host. */

if (Tuse_privsep)
record_login(pid, s->tty, pw->pw_name, pw->pw_uid,
get_remote _name_or_ip(utmp_len,
options.use_dns),
(struct sockaddr *)&from, fromlen);

#ifdef USE_PAM
/*
* IFf password change is needed, do it now.
* This needs to occur before the ~/_hushlogin check.
*/
if (options.use pam && is_pam_password_change_required()) {
print_pam messages();
do_pam_chauthtok();
/* XXX - signal [net] parent to enable forwardings */

}
#endif
if (check quietlogin(s, command))
{
return;
}

#ifdef USE_PAM
79

it (options.use pam && lis_pam_password change required())
print_pam messages();
#endif /* USE_PAM */

/* display post-login message */

it (buffer_len(&loginmsg) > 0) {
buffer_append(&loginmsg, "\0", 1);
printf('%s\n", (char *)buffer_ptr(&loginmsg));

}
buffer_free(&loginmsg);

#ifndef NO_SSH_LASTLOG
if (options.print_lastlog && s->last_login_time = 0) {
time_string = ctime(&s->last_login_time);
if (strchr(time_string, "\n%))
*strchr(time_string, "\n") = 0;
if (strcmp(s->hostname, ") == 0)
printf('Last login: %s\r\n', time_string);
else
printf('Last login: %s from %s\r\n", time_string,
s->hostname) ;

}
#endit /* NO_SSH_LASTLOG */

do_motd();
}
/*
* Display the message of the day.
*/
void

do_motd(void)

FILE *F;
char buf[256];

if (options.print_motd) {
#ifdef HAVE_LOGIN_CAP
T = fopen(login_getcapstr(lc, "welcome'™, "/etc/motd",
“/etc/motd™), 'r');

#else
f = fopen(''/etc/motd", "r');
#endif
it (P {
while (fgets(buf, sizeof(buf), f))
fputs(buf, stdout);
fclose(T);
}
}
}
/*

* Check for quiet login, either _hushlogin or command given.
*/

int

check quietlogin(Session *s, const char *command)

{
80

char buf[256];
struct passwd *pw = s->pw;
struct stat st;

/* Return 1 if _hushlogin exists or a command given. */
if (command "= NULL)
return 1;
snprintf(buf, sizeof(buf), "%.200s/.hushlogin®™, pw->pw_dir);
#ifdef HAVE_LOGIN_CAP
if (login_getcapbool(lc, "hushlogin'™, 0) |] stat(buf, &st) >= 0)
return 1;
#else
if (stat(buf, &st) >= 0)
return 1;
#endiF
return O;
}

/*

* Sets the value of the given variable in the environment. IT the
variable

* already exists, its value is overriden.

*/
void

child_set_env(char ***envp, u_int *envsizep, const char *name,

const char *value)

{
char **env;
u_int envsize;
u_int i, namelen;
/*
* IFf we"re passed an uninitialized list, allocate a single null
* entry before continuing.
*/
if (*envp == NULL && *envsizep == 0) {
*envp = xmalloc(sizeof(char *));
*envp[0] = NULL;
*envsizep = 1;
}
/*
* Find the slot where the value should be stored. IT the
variable
* already exists, we reuse the slot; otherwise we append a new
slot

* at the end of the array, expanding if necessary.

*/

env = *envp;

namelen = strlen(name);

for (i = 0; env[i]; i++)

if (strncmp(env[i], name, namelen) == 0 && env[i][namelen]

break;

if (env[i]) {
/* Reuse the slot. */
xfree(env[i]);

81

} else {

/* New variable. Expand if necessary. */
envsize = *envsizep;
if (1 >= envsize - 1) {
if (envsize >= 1000)
fatal ("'child_set _env: too many env vars');
envsize += 50;
env = (*envp) = xrealloc(env, envsize * sizeof(char
)

*envsizep = envsize;

/* Need to set the NULL pointer at end of array beyond the
new slot. */
env[i + 1] = NULL;
}

/* Allocate space and format the variable iIn the appropriate
slot. */

env[i] = xmalloc(strlen(name) + 1 + strlen(value) + 1);

snprintf(env[i], strlen(name) + 1 + strlen(value) + 1, "%s=%s",
name, value);

}

/*
* Reads environment variables from the given file and adds/overrides
them

* into the environment. IT the file does not exist, this does
nothing.

* Otherwise, it must consist of empty lines, comments (line starts
with "#%)

* and assignments of the form name=value. No other forms are allowed.
*/
static void
read_environment_file(char ***env, u_int *envsize,
const char *filename)

FILE *F;

char buf[4096];
char *cp, *value;
u_int lineno = 0;

f = fopen(filename, "r');
if (1)
return;

while (fgets(buf, sizeof(buf), F)) {
if (++lineno > 1000)
fatal("Too many Qlines 1in environment Tfile %s",
Ffilename);
for (cp = buf; *cp == " " || *cp == "\t"; cp++)

it (I*cp || *cp == "#° || *cp == "\n7)
continue;

it (strchr(cp, "\n%))
*strchr(cp, "\n") = "\0";

value = strchr(cp, "=7);
if (value == NULL) {

82

fprintf(stderr, "Bad line %u in %.100s\n", lineno,
filename);
continue;
}
/*
* Replace the equals sign by nul, and advance value to
* the value string.

*/
*value = "\0~;
value++;
child_set _env(env, envsize, cp, value);
}
fclose(T);
}
#ifdef HAVE_ETC_DEFAULT_LOGIN
/*
* Return named variable from specified environment, or NULL if not
present.
*/

static char *
child_get env(char **env, const char *name)

{ o
int i;
size_t len;
len = strlen(name);
for (i=0; env[i] '= NULL; i++)
it (strncmp(name, env[i], len) == 0 && env[i][len] == "=7)
return(env[i] + len + 1);
return NULL;
}
/*

* Read /etc/default/login.
* We pick up the PATH (or SUPATH for root) and UMASK.
*/
static void
read_etc_default _login(char ***env, u_int *envsize, uid_t uid)
{
char **tmpenv = NULL, *var;
u_int i1, tmpenvsize = 0;
mode_t mask;

/*
* We don"t want to copy the whole file to the child"s
environment,
* so we use a temporary environment and copy the variables we"re
* interested in.
*/
read_environment_ file(&tmpenv, &tmpenvsize,
"/etc/default/login'™);

ifT (tmpenv == NULL)
return;
it (uid == 0)
83

var = child_get _env(tmpenv, "SUPATH'");
else

var = child_get_env(tmpenv, "PATH™);
if (var = NULL)

child_set _env(env, envsize, "PATH", var);

if ((var = child_get _env(tmpenv, "UMASK'™)) = NULL)
if (sscanf(var, "%5l0", &mask) == 1)
umask(mask) ;

for (i = 0; tmpenv[i] '= NULL; i++)
xFree(tmpenv[i]);
xfree(tmpenv);

}
#endif /* HAVE_ETC_DEFAULT_LOGIN */

void copy_environment(char **source, char ***env, u_int *envsize)

{

char *var_name, *var_val;
int i1;

if (source == NULL)
return;

for(i = 0; source[i] = NULL; i++) {
var_name = xstrdup(source[i]);
if ((var_val = strstr(var_name, "=")) == NULL) {
xfree(var_name);
continue;

}

*var_val++ = "\0";

debug3(*'Copy environment: %s=%s'', var_name, var_val);
child_set_env(env, envsize, var_name, var_val);

xFree(var_name);

}

static char **
do_setup_env(Session *s, const char *shell)

char buf[256];

u_int i, envsize;

char **env, *laddr, *path = NULL;
struct passwd *pw = s->pw;

/* Initialize the environment. */
envsize = 100;

env = xmalloc(envsize * sizeof(char *));
env[0] = NULL;

#ifdef HAVE_CYGWIN
/*
* The Windows environment contains some setting which are
* important for a running system. They must not be dropped.
*/
84

copy_environment(environ, &env, &envsize);
#endif

#ifdef GSSAPI
/* Allow any GSSAPI methods that we"ve used to alter
* the childs environment as they see fit
*/
ssh_gssapi_do_child(&env, &envsize);
#endif

if (Yoptions.use_login) {
/* Set basic environment. */
child_set_env(&env, &envsize, "USER"™, pw->pw_name);
child_set_env(&env, &envsize, "LOGNAME"™, pw->pw_name);
#ifdef _AIX
child_set _env(&env, &envsize, "LOGIN'", pw->pw_name);
#endif
child_set_env(&env, &envsize, "HOME™, pw->pw_dir);
#ifdef HAVE_LOGIN_CAP
if (setusercontext(lc, pw, pw->pw_uid, LOGIN_SETPATH) < 0)
child_set _env(&env, &envsize, "PATH", PATH STDPATH);
else
child_set _env(&env, &envsize, "PATH™,
getenv("'PATH'));
#else /* HAVE_LOGIN_CAP */
i1fndef HAVE_CYGWIN
/*
* There®s no standard path on Windows. The path contains
* important components pointing to the system directories,
* needed for loading shared libraries. So the path better
* remains intact here.
*/
1fdef HAVE_ETC_DEFAULT_LOGIN
read_etc_default_login(&env, &envsize, pw->pw_uid);
path = child_get_env(env, "PATH™);
endif /* HAVE_ETC_DEFAULT_LOGIN */
if (path == NULL || *path == *\0") {
child_set_env(&env, &envsize, "PATH",
s->pw->pw_uid == 0 ?
SUPERUSER_PATH : _PATH_STDPATH);

}
endif /* HAVE_CYGWIN */
#endit /* HAVE_LOGIN_CAP */

snprintf(buf, sizeof buf, "%.200s/%.50s",
_PATH_MAILDIR, pw->pw_name);
child_set env(&env, &envsize, "MAIL"™, buf);

/* Normal systems set SHELL by default. */
child_set _env(&env, &envsize, "SHELL'™, shell);

}

it (getenv('TZ™))
child_set_env(&env, &envsize, "TZ", getenv('TZ™));

/* Set custom environment options from RSA authentication. */
iT (loptions.use_login) {
while (custom_environment) {

85

1);

}

struct envstring *ce = custom _environment;
char *str = ce->s;

for (i = 0; str[i] = "=" && str[i]; i++)

if (str[i] == "=") {
str[i] = 0;
child_set _env(&env, &envsize, str, str + i

}

custom_environment = ce->next;
xfree(ce->s);

xfree(ce);

/* SSH_CLIENT deprecated */
snprintf(buf, sizeof buf, "%.50s %d %d",

get_remote_ipaddr(), get _remote_port(), get local_port());
child_set _env(&env, &envsize, "SSH _CLIENT", buf);

laddr

= get_local _ipaddr(packet _get connection_in());

snprintf(buf, sizeof buf, "%.50s %d %.50s %d',
get_remote_ipaddr(), get_remote_port(), laddr,
get_local _port(Q));
xfree(laddr);
child_set env(&env, &envsize, ""SSH _CONNECTION'", buf);

if (s->ttyfd 1= -1)

child_set _env(&env, &envsize, "SSH TTY", s->tty);

if (s->term)

child_set env(&env, &envsize, "TERM", s->term);

it (s—>display)

child_set_env(&env, &envsize, "DISPLAY", s->display);

ifT (original_command)

child_set _env(&env, &envsize, ""SSH ORIGINAL COMMAND",
original_command);

#ifdef _UNICOS
it (cray_tmpdir[0] != °"\O")

child_set _env(&env, &envsize, "TMPDIR", cray_ tmpdir);

#endif /* _UNICOS */

#ifdef _AIX
{

#endif
#ifdef KRB5

it (s-

char *cp;
if ((cp = getenv("AUTHSTATE')) != NULL)

child_set _env(&env, &envsize, "AUTHSTATE", cp);
it ((cp = getenv(""KRB5CCNAME'™)) = NULL)

child_set _env(&env, &envsize, "KRB5CCNAME', cp);
read_environment Ffile(&env, &envsize, "/etc/environment'™);

>authctxt->krb5_ ticket file)
child_set env(&env, &envsize, "KRB5CCNAME',

86

+

s—>authctxt->krb5 ticket file);
#endif
#ifdef USE_PAM
/*
* Pull in any environment variables that may have
* been set by PAM.
*/
if (options.use pam) {
char **p = fetch_pam_environment();

copy_environment(p, &env, &envsize);
free_pam_environment(p);

#endift /* USE_PAM */

if (auth_sock name != NULL)

child_set _env(&env, &envsize, SSH AUTHSOCKET_ ENV_NAME,
auth_sock_name);

/* read $HOME/.ssh/environment. */
if (options.permit_user_env && loptions.use login) {
snprintf(buf, sizeof buf, "%.200s/.ssh/environment",
stremp(pw—>pw_dir, /") ? pw->pw_dir I "");
read_environment_file(&env, &envsize, buf);

}
if (debug flag) {
/* dump the environment */
fprintf(stderr, "Environment:\n'");
for (i = 0; env[i]; i++)
fprintf(stderr, " %.200s\n", env[i]);
}

return env;

}

/*
* Run $HOME/ .ssh/rc, /etc/ssh/sshrc, or xauth (whichever is found
* first iIn this order).
*/
static void
do_rc_files(Session *s, const char *shell)
{
FILE *f = NULL;
char cmd[1024];
int do_xauth;
struct stat st;

do xauth =

s—->display != NULL && s->auth_proto != NULL && s->auth_data
I= NULL;

/* ignore PATH _SSH USER_RC for subsystems */
if (Is->is_subsystem && (stat(PATH_SSH USER RC, &st) >= 0)) {
snprintf(cmd, sizeof cmd, "%s -c “"%s %s"",
shell, _PATH BSHELL, _PATH_SSH_USER_RC);
if (debug_flag)
fprintf(stderr, "Running %s\n", cmd);
f = popen(cmd, "w');

87

it (M) {
if (do_xauth)
fprintf(F, "%s %s\n", s->auth_proto,
s->auth_data);
pclose(F);
} else
fprintf(stderr, "Could not run %s\n",
_PATH_SSH_USER_RC);
} else if (stat(_PATH_SSH SYSTEM_RC, &st) >= 0) {
if (debug_flag)
fprintf(stderr, "Running %s %s\n", PATH BSHELL,
_PATH_SSH_SYSTEM_RC);
f = popen(_PATH_BSHELL " " _PATH_SSH_SYSTEM_RC, "'w');
it (P {
if (do_xauth)
fprintf(F, "%s %s\n", s->auth proto,
s->auth_data);
pclose(f);
} else
fprintf(stderr, "Could not run %s\n',
_PATH_SSH_SYSTEM_RC);

} else if (do_xauth && options.xauth_location !'= NULL) {
/* Add authority data to .Xauthority if appropriate. */
if (debug_flag) {

fprintf(stderr,
"Running %.500s remove %.100s\n",
options.xauth_location, s->auth_display);
fprintf(stderr,
""%.500s add %.100s %.100s %.100s\n"",
options.xauth_location, s->auth_display,
s->auth_proto, s->auth _data);
}
snprintf(cmd, sizeof cmd, "%s -q -",
options.xauth_location);
f = popen(cmd, "w');
it (M) {
fprintf(Ff, "remove %s\n",
s—->auth_display);
fprintf(Ff, "add %s %s %s\n',
s->auth_display, s->auth_proto,
s->auth_data);
pclose(f);
} else {
fprintf(stderr, "Could not run %s\n',
cmd) ;

}

static void
do_nologin(struct passwd *pw)

FILE *f = NULL;
char buf[1024];

#ifdef HAVE_LOGIN_CAP
it (Mlogin_getcapbool(lc, "ignorenologin', 0) && pw->pw_uid)

88

T = fopen(login_getcapstr(lc, "nologin', PATH NOLOGIN,
_PATH_NOLOGIN), "r');

#else
if (pw->pw_uid)
T = fopen(_PATH_NOLOGIN, "r™);
#endif
it () {
/* /etc/nologin exists. Print its contents and exit. */
logit(*'User %.100s not allowed because %s exists',
pw->pw_name, _PATH_NOLOGIN);
while (fgets(buf, sizeof(buf), F))
fputs(buf, stderr);
fclose(T);
FFlush(NULL);
exit(254);
}
}
/* Set login name, uid, gid, and groups. */
void

do_setusercontext(struct passwd *pw)

//MYSEA: Change these numbers to the UID of the user the daemon
//will run as.
#iftndef HAVE_CYGWIN
if (getuid() == 3 || geteuid() == 3)
#endif /* HAVE_CYGWIN */
{

#ifdef HAVE_SETPCRED
if (setpcred(pw->pw_name, (char **)NULL) == -1)

fatal ("'Failed to set process credentials'™);

}
#endif /* HAVE_SETPCRED */
#iftdef HAVE_LOGIN_CAP
ifdef _ bsdi__
setpgid(0, 0);

endif
iT (setusercontext(lc, pw, pw->pw_uid,
(LOGIN_SETALL & ~LOGIN_SETPATH)) < 0) {
perror("'unable to set user context');
exit(l);
}
#else

1T defined(HAVE_GETLUID) && defined(HAVE_SETLUID)
/* Sets login uid for accounting */
it (getluid() == -1 && setluid(pw->pw_uid) == -1)
{
error(‘'setluid: %s', strerror(errno));
3
endif /* defined(HAVE _GETLUID) && defined(HAVE_SETLUID) */
if (setlogin(pw->pw_name) < 0)

error(‘'setlogin failed: %s', strerror(errno));

89

if (setgid(pw->pw_gid) < 0) {
perror(‘'setgid™);
exit(l);

}

//MYSEA: initgroups is not implemented on the XTS-400,
//for now, it has been commented out.

/* Initialize the group list. */

//1 T (initgroups(pw->pw_name, pw->pw_gid) < 0) {

// perror(C'initgroups');

// exit(l);

//}
endgrent();
1fdef USE_PAM
/*
* PAM credentials may take the form of supplementary
groups.
* These will have been wiped by the above initgroups(Q)
call.

* Reestablish them here.

*/

if (options.use pam) {
do_pam_session();
do_pam_setcred(0);

}
endif /* USE_PAM */
it defined(WITH_IRIX_PROJECT) 11 defined(WITH_IRIX_JOBS) 11
defined(WITH_IRIX_ARRAY)

irix_setusercontext(pw);

endif /* defined(WITH_IRIX_PROJECT) || defined(WITH_IRIX_JOBS) ||
defined(WITH_IRIX_ARRAY) */
ifdef AIX

aix_usrinfo(pw);

endif /* _AIX */
/* Permanently switch to the desired uid. */
permanently set uid(pw);

#endif

}

#ifdef HAVE_CYGWIN
if (is_winnt)
#endif
iT (getuid() !'= pw->pw_uid || geteuid() = pw->pw_uid)
fatal (""Failed to set uids to %u.", (u_int) pw->pw_uid);
}

static void
launch_login(struct passwd *pw, const char *hostname)

{
/* Launch login(1). */

execl (LOGIN_PROGRAM, "login', "-h", hostname,
#ifdef xxxLOGIN_NEEDS_TERM
(s->term ? s->term - "‘unknown™),
#endif /* LOGIN_NEEDS TERM */
#ifdef LOGIN_NO_ENDOPT
Y-p, -, pw->pw_name, (char *)NULL);
#else

90

Yep', "-F", "--", pw->pw_name, (char *)NULL);
#endif

/* Login couldn®™t be executed, die. */

perror("'login');
exit(1);
}

/*
* Performs common processing for the child, such as setting up the
* environment, closing extra Tfile descriptors, setting the user and

group
* 1ds, and executing the command or shell.
*/

void

do_child(Session *s, const char *command)
{

extern char **environ;
char **env;
char *argv[10];
const char *shell, *shell0O, *hostname = NULL;
struct passwd *pw = s->pw;
u int i;
/* remove hostkey from the child®"s memory */
destroy_sensitive_data();
/* login(1) is only called if we execute the login shell */
if (options.use_login && command '= NULL)
options.use_login = 0;

#ifdef _UNICOS
cray_setup(pw->pw_uid, pw->pw_name, command);
#endif /* _UNICOS */

/*
* Login(l) does this as well, and it needs uid 0 for the "-h"
* switch, so we let login(l) to this for us.
*/
if (Joptions.use_login) {
#ifdef HAVE OSF SIA

session_setup_sia(pw, s->ttyfd == -1 ? NULL : s->tty);
if (Icheck _quietlogin(s, command))
do_motd();

#else /* HAVE _OSF_SIA */
do_nologin(pw);
do_setusercontext(pw);

#endif /* HAVE_OSF_SIA */

}

/*

* Get the shell from the password data. An empty shell field is
* legal, and means /bin/sh.

*/

shell = (pw->pw_shell[0] == *\0") ? _PATH_BSHELL : pw->pw_shell;

/*
* Make sure $SHELL points to the shell from the password file,
91

* even if shell is overridden from login.conf
*/
env = do_setup_env(s, shell);

#ifdef HAVE LOGIN_CAP

shell = login_getcapstr(lc, '"shell", (char *)shell, (char
*)shell);
#endif

/* we have to stash the hostname before we close our socket. */
if (options.use_login)
hostname = get remote_name_or_ip(utmp_len,
options.use_dns);

/*

* Close the connection descriptors; note that this is the child,
and

* the server will still have the socket open, and it is
important

* that we do not shutdown it. Note that the descriptors cannot

be
* closed before building the environment, as we call
* get_remote_ipaddr there.
*/
ifT (packet_get _connection_in() == packet_get _connection_out())
close(packet_get_connection_in());
else {
close(packet_get connection_in());
close(packet_get _connection_out());
}
/*
* Close all descriptors related to channels. They will still
remain
* open in the parent.
*/
/* XXX better use close-on-exec? -markus */
channel_close_all();
/*
* Close any extra file descriptors. Note that there may still
be
* descriptors left by system functions. They will be closed
later.
*/
endpwent();
/*
* Close any extra open fTile descriptors so that we don\"t have
them

* hanging around in clients. Note that we want to do this after
initgroups, because at least on Solaris 2.3 it leaves fTile
descriptors open.

*

*

*/
for (i = 3; 1 < 64; i++)
close(i);
/*

* Must take new environment into use so that .ssh/rc,
92

* /etc/ssh/sshrc and xauth are run in the proper environment.

*/
environ = env;

/* Change current directory to the user\"s home directory. */

%s\n"",

#itdef

#endi

shell

that

if (chdir(pw->pw_dir) < 0) {

fprintf(stderr, "Could not chdir to home directory %s:

pw->pw_dir, strerror(errno));
HAVE_LOGIN_CAP
if (login_getcapbool(lc, "requirehome', 0))
exit(1);
}

it (Joptions.use_login)
do_rc_files(s, shell);

/* restore SIGPIPE for child */
signal (SIGPIPE, SIG_DFL);

if (options.use _login) {
launch_login(pw, hostname);
/* NEVERREACHED */

}

/* Get the last component of the shell name. */
if ((shellO = strrchr(shell, */7)) 1= NULL)

shel 10++;
else
shellO = shell;

/*

* |If we have no command, execute the shell.

* name to be passed in argv[O]

* this is a login shell.
*/
it (Tcommand) {

char argv0[256];

/* Start the shell. Set initial

argvo[0o] = "--;

is preceded by

character to

to

if (stricpy(argvO + 1, shell0O, sizeof(argvO) - 1)

>= sizeof(argv0) - 1) {
errno = EINVAL;
perror(shell);
exit(l);
}

/* Execute the shell. */
argv[0] = argvO;
argv[1] = NULL;
execve(shell, argv, env);

/* Executing the shell failed. */

93

In this case, the

indicate

4

perror(shell);
exit(1);
}
/*
* Execute the command using the user®s shell. This uses the -c
* option to execute the command.

*/

argv[0] = (char *) shellO;
argv[1l] = "-c";

argv[2] = (char *) command;
argv[3] = NULL;

execve(shell, argv, env);
perror(shell);
exit(l);

}

Session *
session_new(void)
{ o
int i;
static int did_init = 0;
if (Idid_init) {
debug(‘'session_new: init'");
for (i = 0; i < MAX_SESSIONS; i++) {
sessions[i].used = 0;
}

did_init = 1;
}
for (i = 0; i < MAX_SESSIONS; i++) {
Session *s = &sessions[i];
if (1 s—>used) {
memset(s, 0, sizeof(*s));
s->chanid = -1;
s->ptyfd = -1;
= _1;

1
s->self = 1
debug(‘'sess
return s;

ion_new: session %d", i);

return NULL;
3

static void
session_dump(void)
{ o
int i;
for (i = 0; 1 < MAX_SESSIONS; i++) {
Session *s = &sessions[i];
debug(*'dump: used %d session %d %p channel %d pid %l1d",
s->used,
s->self,
S,
s->chanid,
(long)s->pid);

94

}

int
session_open(Authctxt *authctxt, int chanid)

Session *s = session_new();
debug(‘'session_open: channel %d", chanid);
iT (s == NULL) {
error(*'no more sessions'™);
return O;
}
s—>authctxt = authctxt;
s->pw = authctxt->pw;
it (s->pw == NULL)
Ffatal ("'no user for session %d", s->self);
debug(‘'session_open: session %d: link with channel %d", s->self,
chanid);
s->chanid = chanid;
return 1;

}

Session *
session_by tty(char *tty)
{ o
int i;
for (i = 0; 1 < MAX_SESSIONS; i++) {
Session *s = &sessions[i];
if (s->used && s->ttyfd != -1 && strcmp(s->tty, tty) == 0)

{
debug(‘'session_by tty: session %d tty %s', i, tty);
return s;
}
}
debug(‘'session_by_ tty: unknown tty %.100s', tty);
session_dump();
return NULL;
}

static Session *
session_by channel(int id)

{ o
int i;
for (i = 0; i < MAX_SESSIONS; i++) {
Session *s = &sessions[i];
if (s->used && s->chanid == id) {
debug(‘'session_by channel: session %d channel %d", i,
id);
return s;
}
}
debug(‘'session_by channel: unknown channel %d', id);
session_dump();
return NULL;
}

static Session *
session_by pid(pid_t pid)

95

}

int i;
debug(‘'session_by pid: pid %1d", (long)pid);
for (i = 0; i < MAX_SESSIONS; i++) {

Session *s = &sessions[i];

if (s->used && s->pid == pid)

return s;

}
error(‘'session_by pid: unknown pid %1d", (long)pid);
session_dump(Q);
return NULL;

static int
session_window_change_req(Session *s)

{

s->col = packet_get int();

s->row = packet_get_int();

s->xpixel = packet_get _int();

s->ypixel = packet _get int();

packet _check eom();

pty change window_size(s->ptyfd, s->row, s->col,

>ypixel);

}

return 1;

static int
session_pty req(Session *s)

{

u_int len;
int n_bytes;
if (no_pty_flag) {

s—>xpixel, s-

debug('Allocating a pty not permitted for this
authentication.');

return O;

}
if (s->ttyfd 1= -1) {

packet_disconnect(*'Protocol error: you already have a

pty.");

return O;

/* Get the time and hostname when the user last logged in. */

if (options.print_lastlog) {
s->hostname[0] = *\0";

s->last_login_time = get last login_time(s->pw->pw_uid,
s->pw->pw_name, s->hostname, sizeof(s->hostname));

}

s->term = packet_get_string(&len);

it (compat20) {

s->col = packet_get_int();

s->row = packet_get _int();
} else {

s->row = packet_get int();

s->col = packet_get int();

96

}
s->xpixel = packet _get int();
s->ypixel = packet _get_int();

if (strcemp(s->term, ") == 0) {
xfree(s->term);
s->term = NULL;

}

/* Allocate a pty and open it. */
debug("'Allocating pty.");
if ('PRIVSEP(pty_allocate(&s->ptyfd, &s->ttyfd, s->tty, sizeof(s-
>tty)))) {
if (s->term)
xfree(s->term);
s->term = NULL;
s->ptyfd = -1;
s->ttyfd = -1;
error(‘'session_pty req: session %d alloc failed"”, s->self);
return O;
}
debug(‘'session_pty req: session %d alloc %s", s->self, s->tty);
/* for SSH1 the tty modes length is not given */
it (Tcompat20)
n_bytes = packet_remaining();
tty parse_modes(s->ttyfd, &n_bytes);

/*
* Add a cleanup function to clear the utmp entry and record
logout
* time in case we call fatal() (e.g., the connection gets
closed).

*/
fatal _add_cleanup(session_pty cleanup, (void *)s);
if (Tuse_privsep)

pty_setowner(s->pw, s->tty);

/* Set window size from the packet. */
pty_change_window_size(s->ptyfd, s->row, s->col, s->xpixel, s-
>ypixel);

packet _check eom();
session_proctitle(s);
return 1;

}

static int
session_subsystem_req(Session *s)
{
struct stat st;
u_int len;
int success = 0;
char *cmd, *subsys = packet _get_string(&len);
int 1;

packet _check eom();
logit(“'subsystem request for %.100s", subsys);

97

for (i i < options.num_subsystems; i++) {

cmd = options.subsystem_command[i];
if (stat(cmd, &st) < 0) {

= 0;
if (strcmp(subsys, options.subsystem name[i]) == 0) {

error(‘'subsystem: cannot stat %s: %s'', cmd,

strerror(errno));

break;
}
debug(‘'subsystem: exec() %s'", cmd);
s->is_subsystem = 1;
do_exec(s, cmd);
success = 1;
break;

}

if (Isuccess)
logit('subsystem request for %.100s failed,
found™,
subsys);

xfree(subsys);
return success;

}

static int
session_x11 req(Session *s)

{

int success;

s->single_connection = packet _get char();
s->auth_proto = packet _get_string(NULL);
s->auth_data = packet_get_string(NULL);
s->screen = packet _get int();

packet _check _eom();

success = session_setup x11fwd(s);

it (Isuccess) {
xfree(s->auth_proto);
xfree(s->auth_data);
s->auth_proto = NULL;
s->auth_data = NULL;

}

return success;

}

static int
session_shell_req(Session *s)

{
packet _check eom();
do_exec(s, NULL);
return 1;

}

static int
session_exec_req(Session *s)

98

subsystem not

u_int len;

char *command = packet_get_string(&len);
packet_check_eom();

do_exec(s, command);

xFree(command) ;

return 1;

}

static int
session_break req(Session *s)

{
u_int break length;

break length = packet get int(); /* ignored */
packet _check eom();

if (s->ttyfd == -1 ||
tcsendbreak(s->ttyfd, 0) < 0)
return O;
return 1;

}

static int
session_auth_agent_req(Session *s)

{
static int called = 0O;
packet_check_eom();
it (no_agent_forwarding_flag) {
debug(‘'session_auth_agent_req: no_agent forwarding_flag"™);
return O;
}
iT (called) {
return O;
} else {
called = 1;
return auth_input_request_ forwarding(s->pw);
}
}
int

session_input_channel _req(Channel *c, const char *rtype)
{
int success = 0;
Session *s;
if ((s = session_by channel(c->self)) == NULL) {
logit(“'session_input_channel_req: no session %d req
%.100s",
c->self, rtype);
return O;
3
debug(‘'session_input_channel _req: session %d req %s', s->self,
rtype);
/*

* a session is in LARVAL state until a shell, a command
* or a subsystem is executed
*/

99

iT (c->type == SSH_CHANNEL_LARVAL) {

if (strcmp(rtype, "shell™) == 0) {
success = session_shell_req(s);

} else if (stremp(rtype, “exec'™) == 0) {
success = session_exec_req(s);

} else if (stremp(rtype, "pty-req'™) == 0) {
success = session_pty _req(s);

} else if (strcmp(rtype, ""x11-req™) == 0) {
success = session_x11 req(s);

} else if (strcmp(rtype, '"auth-agent-req@openssh.com™) ==

0 {

success = session_auth_agent_req(s);

} else if (strcmp(rtype, 'subsystem™) == 0) {
success = session_subsystem req(s);

} else if (strcemp(rtype, "break'™) == 0) {
success = session_break req(s);

}

if (stremp(rtype, "window-change'™) == 0) {
success = session_window_change_req(s);
s

return success;

}

void
session_set_fds(Session *s, int fdin, int fdout, int fderr)
{
it (Tcompat20)
fatal ("'session_set_fds: called for proto !'= 2.0");
/*
* now that have a child and a pipe to the child,
* we can activate our channel and register the fd"s
*/
if (s->chanid == -1)
fatal ("'no channel for session %d", s->self);
channel_set_ fds(s->chanid,
fdout, fdin, fderr,

fderr == -1 ? CHAN_EXTENDED_IGNORE : CHAN_EXTENDED READ,
15
CHAN_SES_WINDOW_DEFAULT);

s

/*

* Function to perform pty cleanup. Also called if we get aborted
abnormally

* (e.g., due to a dropped connection).

*/
void

session_pty cleanup2(void *session)

Session *s = session;
if (s == NULL) {

error(''session_pty cleanup: no session');
return;

3
if (s->ttyfd == -1)
100

return;

debug(‘'session_pty cleanup: session %d release %s", s->self, s-
>tty);

/* Record that the user has logged out. */
ifT (s->pid = 0)
record_logout(s->pid, s->tty, s->pw->pw_name);

/* Release the pseudo-tty. */
debug(*'Going to Release PTY\n'");
ifT (getuid() == 0)
pty_release(s->tty);
debug(*'Released the PTY\n'");

/*
* Close the server side of the socket pairs. We must do this
after
* the pty cleanup, so that another process doesn®t get this pty
* while we"re still cleaning up.
*/
if (close(s->ptymaster) < 0)
error("'close(s->ptymaster/%d) : %s™, s->ptymaster,
strerror(errno));

/* unlink pty from session */

s->ttyfd = -1;

debug('end of pty_cleanup function™);
}

void
session_pty cleanup(void *session)

PRIVSEP(session_pty cleanup2(session));
}

static char *
sig2name(int sig)

{

#define SSH_SIG(xX) iF (sig == SIG ## X) return #x
SSH_SIG(ABRT);
SSH_SIG(ALRM);
SSH_SIG(FPE);
SSH_SIG(HUP);
SSH_SIG(ILL);
SSH_SIG(INT);
SSH_SIG(KILL);
SSH_SIG(PIPE);
SSH_SIG(QUIT);
SSH_SIG(SEGVY);
SSH_SIG(TERM);
SSH_SIG(USR1);
SSH_SIG(USR2);

#undef SSH_SIG
return "S1G@openssh.com';

s

101

static void
session_exit_message(Session *s, int status)

{

Channel *c;

if ((c = channel_lookup(s->chanid)) == NULL)
fatal ("'session_exit_message: session %d: no channel %d",
s->self, s->chanid);
debug(‘'session_exit_message: session %d channel %d pid %01d",
s->self, s->chanid, (long)s->pid);

it (WIFEXITED(status)) {
channel_request_start(s->chanid, "exit-status', 0);
packet put_int(WEXITSTATUS(status));
packet_send();
} else if (WIFSIGNALED(status)) {
channel_request_start(s->chanid, "exit-signal', 0);
packet put_cstring(sig2name(WTERMSIG(status)));
#ifdef WCOREDUMP

packet_put_char (WCOREDUMP(status));
#else /* WCOREDUMP */

packet put_char(0);
#endif /* WCOREDUMP */

packet _put_cstring("");

packet put_cstring('"");

packet _send();

} else {

/* Some weird exit cause. Just exit. */
packet_disconnect('wait returned status %04x.', status);

}

/* disconnect channel */
debug(‘'session_exit _message: release channel %d", s->chanid);
channel_cancel_cleanup(s->chanid);
/*
* emulate a write failure with "chan_write failed®, nobody will
be
* interested iIn data we write.
* Note that we must not call “chan_read failed®, since there
could
* be some more data waiting in the pipe.
*/
iT (c->ostate '= CHAN_OUTPUT_CLOSED)
chan_write_failed(c);
s->chanid = -1;

}

void
session_close(Session *s)

debug('session_close: session %d pid %ld", s->self, (long)s-
>pid);
debug(*'Starting Session close™);
it (s->ttyfd 1= -1) {
fatal_remove_cleanup(session_pty cleanup, (void *)s);
session_pty cleanup(s);

102

if (s->term)
xfree(s->term);
it (s—>display)
xfree(s->display);
if (s->auth_display)
xfree(s->auth_display);
if (s->auth_data)
xfree(s->auth_data);
if (s->auth_proto)
xfree(s->auth_proto);
s->used = 0;
session_proctitle(s);
debug(*'ending session close™);

}
void
session_close by pid(pid_t pid, int status)
{
Session *s = session_by pid(pid);
ifT (s == NULL) {
debug(‘'session_close_by pid: no session for pid %ld",
(Tong)pid);
return;
}
if (s->chanid !'= -1)
session_exit_message(s, status);
session_close(s);
}
/*

* this is called when a channel dies before
* the session "child® itself dies

*/
void
session_close by channel(int id, void *arg)
{
Session *s = session_by channel(id);
iT (s == NULL) {
debug(‘'session_close_by channel: no session for id %d",
id);
return;
}
debug(‘'session_close_by channel: channel %d child %l1d™,
id, (long)s->pid);
ifT (s->pid 1= 0) {
debug(‘'session_close_by channel: channel %d: has child",
id);

/*
* delay detach of session, but release pty, since
* the fd"s to the child are already closed
*/
ifT (s->ttyfd 1= -1) {
fatal_remove_cleanup(session_pty_cleanup, (void *)s);
session_pty cleanup(s);

}

return;

103

/* detach by removing callback */
channel_cancel _cleanup(s->chanid);
s->chanid = -1;

session_close(s);

}
void
session_destroy_all(void (*closefunc)(Session *))
{
int 1;
for (i = 0; 1 < MAX_SESSIONS; i++) {
Session *s = &sessions[i];
if (s—>used) {
if (closefunc '= NULL)
closefunc(s);
else
session_close(s);
}
}
}

static char *

session_tty list(void)

{
static char buf[1024];
int i1;
char *cp;

= "\0";

= 0; 1 < MAX _SESSIONS; i++) {
Session *s = &sessions[i];

if (s->used && s->ttyfd 1= -1) {

if (strncmp(s->tty, "/dev/', 5) 1= 0) {
cp strrchr(s->tty, "/%);
cp (cp == NULL) ? s->tty : cp + 1;
} else
cp

it (buf[0] '= "\0")
stricat(buf, ",", sizeof buf);
stricat(buf, cp, sizeof buf);

s->tty + 5;

}

}
it (buf[0] == "\0")

stricpy(buf, "notty", sizeof buf);
return buf;

}

void
session_proctitle(Session *s)
{
it (s->pw == NULL)
error('no user for session %d", s->self);
else
setproctitle("%s@%s', s->pw->pw_name, session_tty list());

104

int

session_setup x11fwd(Session *s)

{
struct stat st;
char display[512], auth_display[512];
char hostname[MAXHOSTNAMELEN];

if (no_x11 forwarding_flag) {
packet_send_debug(*'X11 forwarding disabled in user
configuration Ffile."™);
return O;

if (Yoptions.x11 forwarding) {
debug(*'’X11 forwarding disabled in server configuration

file.");
return O;
}
if (Joptions.xauth_location ||
(stat(options.xauth_location, &st) == -1)) {

packet _send debug('No xauth program; cannot forward with
spoofing.');

}
iT (options.use_login) {
packet _send_debug(''X11 forwarding disabled; "
""not compatible with UselLogin=yes.");
return O;

return O;

}

it (s->display != NULL) {
debug(*'X11 display already set.');
return O;

iT (xX11_create_display_inet(options.x11 display offset,
options.x11 use_localhost, s->single_connection,

&s->display_number) == -1) {
debug(*'x11_create_display_inet failed.');
return O;

}

/* Set up a suitable value for the DISPLAY variable. */
iT (gethostname(hostname, sizeof(hostname)) < 0)
fatal ("'gethostname: %.100s', strerror(errno));
/*
* auth_display must be used as the displayname when the
* authorization entry is added with xauth(l). This will be
* different than the DISPLAY string for localhost displays.
*/
if (options.x11 use_localhost) {
snprintf(display, sizeof display, "localhost:%u.%u",
s->display_number, s->screen);
snprintf(auth_display, sizeof auth_display, "unix:%u.%u',
s->display_number, s->screen);
s->display = xstrdup(display);
s—->auth_display = xstrdup(auth_display);
} else {
#ifdeft IPADDR_IN_DISPLAY

105

struct hostent *he;
struct in_addr my_addr;

he = gethostbyname(hostname);
if (he == NULL) {
error("'Can"t get IP address for X11 DISPLAY.'");
packet _send debug('Can"t get IP address Tfor X11

DISPLAY.");
return O;
}
memcpy (&my_addr, he->h_addr_list[0], sizeof(struct
in_addr));
snprintf(display, sizeof display, "% .50s:%u.%u",

inet_ntoa(my_addr),
s->display_number, s->screen);

#else
snprintf(display, sizeof display, "%.400s:%u.%u', hostname,
s->display_number, s->screen);
#endif
s->display = xstrdup(display);
s—->auth_display = xstrdup(display);
}
return 1;
}

static void
do_authenticated2(Authctxt *authctxt)

{
server_loop2(authctxt);
#iT defined(GSSAPI)
iT (options.gss _cleanup_creds)
ssh_gssapi_cleanup_creds(NULL);
#endif

}
C. SSHD.C

/*

* Author: Tatu Ylonen <ylo@cs.hut.fi>

* Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland

* All rights reserved

* This program is the ssh daemon. It listens for connections from
clients,

* and performs authentication, executes use commands or shell, and
forwards

* information to/from the application to the user client over an
encrypted

* connection. This can also handle forwarding of X11, TCP/IP, and
authentication agent connections.

As far as | am concerned, the code I have written for this software
can be used freely for any purpose. Any derived versions of this
software must be clearly marked as such, and if the derived work is
incompatible with the protocol description in the RFC file, it must

o

¥ XD F * X x X %

called by a name other than "ssh' or 'Secure Shell".

106

SSH2 implementation:
Privilege Separation:

Copyright (c) 2000, 2001, 2002 Markus Friedl. All rights reserved.
Copyright (c) 2002 Niels Provos. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

-

Ok X ok X R X b X ok X F X %

e
documentation and/or other materials provided with the

distribution.

*

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ~~AS IS"" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE,

* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY

* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF

* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include "includes.h"
RCSID(*"$0penBSD: sshd.c,v 1.276 2003/08/28 12:54:34 markus Exp $);

#include <openssl/dh.h>
#include <openssli/bn_h>
#include <openssl/md5.h>
#include <openssl/rand.h>
#ifdef HAVE_SECUREWARE
#include <sys/security.h>
#include <prot.h>

#endif

#include "ssh.h"
#include ''sshl.h"
#include ''ssh2.h"
#include "xmalloc.h"
#include "rsa.h"
#include "sshpty.h"
#include "packet.h"
#include "mpaux.h
#include "log.h"
#include "servconf.h"

107

#include "uidswap.h"
#include "compat.h"
#include "buffer._h"
#include "cipher.h"
#include "kex.h"
#include "key.h"
#include "dh.h"
#include "myproposal._h"
#include "authfile.h"
#include "pathnames._h"
#include "atomicio.h"
#include "canohost.h"
#include "auth.h"
#include "misc.h"
#include "dispatch._h"
#include '"channels.h"
#include "session.h"
#include "'monitor_mm.h"
#include "monitor.h"
#include "monitor_wrap.h"
#include "monitor_fdpass.h"

#ifdeT LIBWRAP

#include <tcpd.h>

#include <syslog.h>

int allow_severity = LOG_INFO;
int deny_severity = LOG_WARNING;
#endit /* LIBWRAP */

#ifndef O _NOCTTY
#define O _NOCTTY O
#endif

#ifdef HAVE___ PROGNAME
extern char *__progname;
#else

char *__ progname;
#endif

/* Server configuration options. */
ServerOptions options;

/* Name of the server configuration file. */
char *config_file_name = _PATH_SERVER _CONFIG_FILE;

/*

* Flag indicating whether IPv4 or IPv6. This can be set on the
command line.

* Default value is AF_UNSPEC means both IPv4 and IPv6.

*/

int IPv4or6 = AF_UNSPEC;

/*

* Debug mode flag. This can be set on the command line. 1f debug

* mode is enabled, extra debugging output will be sent to the system

* log, the daemon will not go to background, and will exit after
processing

108

* the First connection.
*/
int debug flag = O;

/* Flag indicating that the daemon should only test the configuration
and keys. */
int test flag = 0;

/* Flag indicating that the daemon is being started from inetd. */
int inetd _flag = O;

/* Flag indicating that sshd should not detach and become a daemon. */
int no_daemon_flag = 0;

/* debug goes to stderr unless inetd flag is set */
int log_stderr = O;

/* Saved arguments to main(). */
char **saved_argv;
int saved_argc;

/*

* The sockets that the server is listening; this is used in the SIGHUP
* signal handler.

*/

#define MAX_LISTEN_SOCKS 16

int listen_socks[MAX LISTEN_ SOCKS];

int num_listen_socks = 0;

/*
* the client"s version string, passed by sshd2 in compat mode. if I=
NULL,
* sshd will skip the version-number exchange
*/
char *client_version_string
char *server_version_string

NULL;
NULL;

/* for rekeying XXX fixme */
Kex *xxx_kex;

/*

* Any really sensitive data in the application is contained in this

* structure. The 1idea is that this structure could be locked into
memory so

* that the pages do not get written into swap. However, there are
some

* problems. The private key contains BIGNUMs, and we do not (in
principle)

* have access to the internals of them, and locking just the structure
is

* not very useful. Currently, memory locking is not implemented.

*/

struct {
Key *server_key; /* ephemeral server key */
Key *sshl host key; /* sshl host key */
Key **host_keys; /* all private host keys */

int have_sshl key;
109

int have_ssh2 key;
u_char sshl cookie[SSH_SESSION_KEY_ LENGTH];
} sensitive_data;

/*

* Flag indicating whether the RSA server key needs to be regenerated.

* 1Is set in the SIGALRM handler and cleared when the key is
regenerated.

*/

static volatile sig_atomic_t key do regen = 0;

/* This is set to true when a signal is received. */
static volatile sig_atomic_t received_sighup = 0O;
static volatile sig_atomic_t received_sigterm = 0;

/* session identifier, used by RSA-auth */
u_char session_id[16];

/* same for ssh2 */
u_char *session_id2 = NULL;
u_int session_id2 len = 0;

/* record remote hostname or ip */
u_int utmp_len = MAXHOSTNAMELEN;

/* options.max_startup sized array of fd ints */
int *startup_pipes = NULL;
int startup_pipe; /* in child */

/* variables used for privilege separation */
int use privsep;
struct monitor *pmonitor;

/* message to be displayed after login */
Buffer loginmsg;

/* Prototypes for various functions defined later in this file. */
void destroy_sensitive_data(void);
void demote_sensitive_data(void);

static void do_sshl kex(void);
static void do_ssh2 kex(void);

/*MYSEA: Implement daemon function as daemonize*/
int daemonize(int nochdir, int noclose);

/*
* Close all listening sockets
*/
static void
close_listen_socks(void)

{

int i;

for (i = 0; 1 < num_listen_socks; i++)
close(listen_socks[i]);
num_listen_socks = -1;

110

}

static void
close_startup_pipes(void)

{

if (startup_pipes)

for (i = 0; 1 < options.max_startups; i++)

iT (startup_pipes[i] = -1)
close(startup_pipes[i]);

}

/*
* Signal handler for SIGHUP. Sshd execs itself when it receives
SIGHUP;
* the effect iIs to reread the configuration file (and to regenerate
* the server key).
*/
static void
sighup_handler(int sig)

{
int save_errno = errno;
received_sighup = 1;
signal (SIGHUP, sighup_handler);
errno = save_errno;

}

/*

* Called from the main program after receiving SIGHUP.
* Restarts the server.
*/
static void
sighup_restart(void)
{
logit("'Received SIGHUP; restarting.");
close_listen_socks();
close_startup_pipes(Q);
execv(saved_argv[0], saved _argv);
logit(""RESTART FAILED: av[0]="%.100s", error: %.100s.",
saved_argv[0],
strerror(errno));
exit(l);
}

/*

* Generic signal handler for terminating signals in the master daemon.
*/

static void

sigterm_handler(int sig)

{

}
/*

received_sigterm = sig;

111

* SIGCHLD handler. This is called whenever a child dies. This will
then

* reap any zombies left by exited children.

*/

static void

main_sigchld_handler(int sig)

{
int save_errno = errno;
pid_t pid;
int status;
while ((pid = waitpid(-1, &status, WNOHANG)) > 0 ||
(pid < 0 && errno == EINTR))
signal (SIGCHLD, main_sigchld_handler);
errno = save_errno;
}
/*
* Signal handler for the alarm after the login grace period has
expired.
*/

static void
grace_alarm_handler(int sig)

{
/* XXX no idea how Fix this signal handler */
/* Log error and exit. */
fatal (""Timeout before authentication for %s',
get_remote_ipaddr());
}
/*

* Signal handler for the key regeneration alarm. Note that this
* alarm only occurs in the daemon waiting for connections, and it does
not
* do anything with the private key or random state before forking.
* Thus there should be no concurrency control/asynchronous execution
* problems.
*/
static void
generate_ephemeral_server_key(void)
{
u_int32_t rnd = O;
int i;

verbose("'Generating %s%d bit RSA key.',

sensitive_data.server_key ?
options.server_key bits);
if (sensitive_data.server_key != NULL)
key free(sensitive_data.server_key);

sensitive_data.server_key = key generate(KEY_RSA1l,
options.server_key bits);

verbose("'RSA key generation complete.');

new - s

for (i = 0; i < SSH_SESSION_KEY_LENGTH; i++) {
112

if (i %4 ==0)
rnd = arc4random();
sensitive_data.sshl _cookie[i] = rnd & Oxff;
rnd >>= 8;
}

arcd4random_stir();

}

static void
key regeneration_alarm(int sig)

{
int save_errno = errno;
signal (SIGALRM, SIG_DFL);
errno = save_errno;
key do _regen = 1;

}

static void
sshd_exchange_identification(int sock in, int sock out)
{

int 1, mismatch;

int remote_major, remote_minor;

int major, minor;

char *s;
char buf[256]; /* Must not be larger than
remote_version. */
char remote_ version[256]; /* Must be at least as big as buf.
*/
if ((options.protocol & SSH PROTO 1) &&
(options.protocol & SSH PROTO 2)) {
major = PROTOCOL_MAJOR_1;
minor = 99;
} else if (options.protocol & SSH PROTO 2) {
major = PROTOCOL_MAJOR 2;
minor = PROTOCOL_MINOR_2;
} else {
major = PROTOCOL_MAJOR_1;
minor = PROTOCOL_MINOR_1;
}
snprintf(buf, sizeof buf, '"SSH-%d.%d-%.100s\n'", major, minor,
SSH_VERSION) ;
server_version_string = xstrdup(buf);
/* Send our protocol version identification. */
it (atomicio(vwrite, sock out, server_version_string,
strlen(server_version_string))
I= strlen(server_version_string)) {
logit(*"'Could not write ident string to %s',

get_remote_ipaddr());
fatal _cleanup(Q);
}

/* Read other sides version identification. */
memset(buf, 0, sizeof(buf));
for (i = 0; 1 < sizeof(buf) - 1; i++) {

113

if (atomicio(read, sock _in, &buf[i], 1) = 1) {
logit(""'Did not receive identification string Tfrom

%s",
get_remote_ipaddr());
fatal_cleanup(Q);
}
if (buf[i] == "\r") {
buf[i] = O;
/* Kludge for F-Secure Macintosh < 1.0.2 */
if (i == 12 &&
strncmp(buf, "SSH-1.5-W1.0", 12) == 0)
break;
continue;
}
ifT (buf[i] == "\n") {
buf[i] = O;
break;
}
}
buf[sizeof(buf) - 1] = 0;
client _version_string = xstrdup(buf);
/*
* Check that the versions match. In future this might accept
* several versions and set appropriate flags to handle them.
*/
ifT (sscanf(client _version_string, "SSH-%d.%d-%[\n]\n"",
&remote_major, &remote_minor, remote_version) != 3) {
s = "Protocol mismatch.\n";
(void) atomicio(wwrite, sock out, s, strlen(s));
close(sock _in);
close(sock out);
logit(*'Bad protocol version identification <"%.100s* from
%s",

client_version_string, get_remote_ipaddr());
fatal _cleanup(Q);

debug(*'Client protocol version %d.%d; client software version

%.100s",
remote_major, remote _minor, remote version);

compat_datafellows(remote_version);

if (datafellows & SSH BUG_PROBE) {
logit(“'probed from %s with %s. Don"t panic.",
get_remote_ipaddr(), client_version_string);
fatal _cleanup();

}

if (datafellows & SSH BUG_SCANNER) {
logit(*'scanned from %s with %s. Don"t panic.",
get_remote_ipaddr(), client_version_string);
fatal_cleanup();

}

mismatch = 0;
switch (remote_major) {

114

case 1:
if (remote_minor == 99) {
if (options.protocol & SSH_PROTO_2)
enable_compat20();
else
mismatch = 1;
break;

}
if (I(options.protocol & SSH PROTO_ 1)) {
mismatch = 1;
break;
}
if (remote_minor < 3) {
packet_disconnect("'Your ssh version is too old and ™
"is no longer supported. Please install a newer
version.');
} else if (remote_minor == 3) {
/* note that this disables agent-forwarding */
enable_compatl3();
}
break;
case 2:
if (options.protocol & SSH_PROTO 2) {
enable_compat20();
break;

}
/* FALLTHROUGH */

default:
mismatch = 1;
break;

s

chop(server_version_string);
debug(*'Local version string %.200s", server_version_string);

it (mismatch) {
s = "Protocol major versions differ.\n";
(void) atomicio(vwrite, sock out, s, strlen(s));
close(sock _in);
close(sock _out);
logit("'Protocol major versions differ for %s: %.200s vs.

%.200s",
get _remote_ipaddr(),
server_version_string, client_version_string);
fatal_cleanup();
b
b

/* Destroy the host and server keys. They will no longer be needed. */
void
destroy_sensitive_data(void)

{

int i;
if (sensitive _data.server_key) {

key free(sensitive_data.server_key);
sensitive_data.server_key = NULL;

115

for (i = 0; 1 < options.num_host _key Ffiles; i++) {
if (sensitive_data.host _keys[i]) {
key free(sensitive_data._host keys[i]);
sensitive_data._host _keys[i] = NULL;
}
}
sensitive_data.sshl_host_key = NULL;
memset(sensitive _data.sshl _cookie, 0, SSH_SESSION_KEY_ LENGTH);

}
/* Demote private to public keys for network child */
void
demote_sensitive data(void)
{
Key *tmp;
int i;
if (sensitive_data.server_key) {
tmp = key_demote(sensitive _data.server_key);
key free(sensitive_data.server_key);
sensitive_data.server_key = tmp;
3
for (i = 0; 1 < options.num_host_key Ffiles; i++) {
iT (sensitive_data.host_keys[i]) {
tmp = key_demote(sensitive _data.host keys[i]);
key free(sensitive_data.host keys[i]);
sensitive_data._host_keys[i] = tmp;
if (tmp->type == KEY_RSA1)
sensitive_data.sshl host key = tmp;
}
}
/* We do not clear sshl _host key and cookie. XXX - Okay Niels?
*/
}

static void
privsep_preauth_child(void)
{
u_int32_t rnd[256];
gid_t gidset[1];
struct passwd *pw;
int i;

/* Enable challenge-response authentication for privilege
separation */
privsep_challenge_enable();

for (i = 0; 1 < 256; i++)
rnd[i] = arcd4random();
RAND_seed(rnd, sizeof(rnd));

/* Demote the private keys to public keys. */
demote_sensitive data();

it ((pw = getpwnam(SSH_PRIVSEP_USER)) == NULL)
116

#it O

#else

fatal (""Privilege separation user %s does not exist",
SSH_PRIVSEP_USER) ;
memset(pw->pw_passwd, 0, strlen(pw->pw_passwd));
endpwent();

/* Change our root directory */
/*MYSEA: chroot is not supported so comment out for now*/
//if (chroot(_PATH_PRIVSEP_CHROOT_DIR) == -1)
// fatal ("'chroot(\"%s\""): %s'", _PATH_PRIVSEP_CHROOT_DIR,
// strerror(errno));
/*MYSEA:change directory to var run empty*/
if (chdir("/var/empty') == -1)
fatal ("chdir(\"/var/empty\'"): %s", strerror(errno));

/* Drop our privileges */
debug3(*'privsep user:group %u:%u', (u_int)pw->pw_uid,
(u_int)pw->pw_gid);

/* XXX not ready, to heavy after chroot */
do_setusercontext(pw);

gidset[0] = pw->pw_gid;
/*MYSEA: setgroups is not implemented*/
/*1T (setgroups(l, gidset) < 0)
fatal ("'setgroups: %.100s", strerror(errno));*/
permanently_set uid(pw);

#endif

}

static Authctxt *
privsep_preauth(void)

{

NULL) ;

descri

Authctxt *authctxt = NULL;
int status;
pid_t pid;

/* Set up unprivileged child process to deal with network data */
pmonitor = monitor_init();

/* Store a pointer to the kex for later rekeying */
pmonitor->m_pkex = &xxx_kex;

pid = fork();
if (pid == -1) {
fatal (""fork of unprivileged child failed);
} else if (pid '=0) {
fatal_remove_cleanup((void (*) (void *)) packet close,

debug2(*'Network child is on pid %I1d", (long)pid);

/*MYSEA: Need to <close both of the child*s fFTile
ptors*/

close(pmonitor->m_recvfd);

//close(pmonitor->m_childrecvfd);

//close(pmonitor->m_childsendfd);

authctxt = monitor_child_preauth(pmonitor);

/*MYSEA:now close both of the parent"s file descriptors*/

close(pmonitor->m_sendfd);

117

//close(pmonitor->m_parentrecvfd);
//close(pmonitor->m_parentsendfd);

/* Sync memory */
monitor_sync(pmonitor);

/* Wait for the child"s exit status */
while (waitpid(pid, &status, 0) < 0)
if (errno = EINTR)
break;

/* Reinstall, since the child has finished */
fatal_add_cleanup((void (*) (void *)) packet _close, NULL);

return (authctxt);

} else {
/* child */
/*MYSEA: close the parent side of the file descriptors*/
close(pmonitor->m_sendfd);
//close(pmonitor->m_parentrecvfd);
//close(pmonitor->m_parentsendfd);

/* Demote the child */

/*MYSEA: no root user, 3 is network user*/

if (getuid() == 3 || geteuid() == 3)
privsep_preauth_child();

setproctitle("%s", "[net]');

}
return (NULL);
}

static void
privsep_postauth(Authctxt *authctxt)

{

extern Authctxt *x_authctxt;

/* XXX - Remote port forwarding */
X_authctxt = authctxt;

#ifdeT DISABLE_FD_ PASSING
it (D {
#else

/*MYSEA:network user is 3*/
if (authctxt->pw->pw_uid == 3 || options.use_login) {

#endiF

/* File descriptor passing is broken or root login */
monitor_apply_ keystate(pmonitor);
use_privsep = 0;
return;

}

/* Authentication complete */

alarm(0);

if (startup_pipe 1= -1) {
close(startup _pipe);
startup_pipe = -1;

}

118

NULL);

}

/* New socket pair */
monitor_reinit(pmonitor);

pmonitor->m_pid = fork();
if (pmonitor->m pid == -1)
fatal (""fork of unprivileged child failed);
else if (pmonitor->m_pid !'= 0) {
fatal_remove_cleanup((void (*) (void *)) packet_close,

debug2(*'User child is on pid %1d", (long)pmonitor->m_pid);
/*MYSEA: close child side of descriptors*/
close(pmonitor->m_recvfd);
//close(pmonitor->m_childrecvfd);
//close(pmonitor->m_childsendfd);
monitor_child_postauth(pmonitor);

/* NEVERREACHED */
exit(0);

/*MYSEA: Child side, close the parent side of descriptors*/
close(pmonitor->m_sendfd);
//close(pmonitor->m_parentrecvfd);
//close(pmonitor->m_parentsendfd);

/* Demote the private keys to public keys. */
demote_sensitive _data();

/* Drop privileges */
do_setusercontext(authctxt->pw);

/* 1t is safe now to apply the key state */
monitor_apply_ keystate(pmonitor);

static char *
list_hostkey types(void)

{

Buffer b;

buffer_init(&b);
for (i = 0; 1 < options.num_host_key Files; i++) {
Key *key = sensitive_data.host keys[i];
if (key == NULL)
continue;
switch (key->type) {
case KEY_RSA:
case KEY_DSA:
if (buffer_len(&b) > 0)
buffer_append(&b, ',", 1);
p = key_ssh_name(key);
buffer_append(&b, p, strlen(p));
break;

119

}

buffer_append(&b, '\0", 1);

p = xstrdup(buffer_ptr(&b));
buffer_free(&b);
debug(*'list_hostkey types: %s', p);

return p;
3
Key *
get_hostkey by type(int type)
{
int i;
for (i = 0; 1 < options.num_host_key Ffiles; i++) {
Key *key = sensitive_data.host keys[i];
if (key = NULL && key->type == type)
return key;
return NULL;
}
Key *
get_hostkey by index(int ind)
{
if (ind < 0 |] ind >= options.num_host_key files)
return (NULL);
return (sensitive_data.host _keys[ind]);
3
int
get_hostkey index(Key *key)
{
int i;
for (i = 0; 1 < options.num_host_key Ffiles; i++) {
if (key == sensitive _data.host _keys[i])
return (i);
3
return (-1);
}
/*

* returns 1 if connection should be dropped, 0 otherwise.

* dropping starts at connection #max_startups_begin with a probability
* of (max_startups_rate/100). the probability increases linearly until
* all connections are dropped for startups > max_startups

*/

static int

drop_connection(int startups)

{
double p, r;

ifT (startups < options.max_startups_begin)
return O;

if (startups >= options.max_startups)
return 1;

if (options.max_startups_rate == 100)

120

return 1;

p = 100 - options.max_startups_rate;

p *= startups - options.max_startups_begin;

p /= (double) (options.max_startups -
options.max_startups_begin);

p += options.max_startups_rate;

p /= 100.0;

r = arcd4random() / (double) UINT_MAX;

debug(*'drop_connection: p %g, r %g", p, r);

return (r < p) ?2 1 : 0;
}
static void
usage(void)
fprintf(stderr, "'sshd version %s\n", SSH_VERSION);
fprintf(stderr, "Usage: %s [options]\n', __ progname);
fprintf(stderr, "Options:\n'");
fprintf(stderr, " -F file Configuration file (default %s)\n",
_PATH_SERVER_CONFIG_FILE);
fprintf(stderr, -d Debugging mode (multiple -d means
more debugging)\n™);
fprintf(stderr, " -i Started from inetd\n');
fprintf(stderr, "™ -D Do not fork into daemon mode\n');
fprintf(stderr, -t Only test configuration file and
keys\n');
fprintf(stderr, " -q Quiet (no logging)\n™);
fprintf(stderr, " -p port Listen on the specified port
(default: 22)\n'");
fprintf(stderr, -k seconds Regenerate server Kkey every this

many seconds (default:

3600)\n"");

fprintf(stderr, -g seconds Grace period for authentication
(default: 600)\n"™");

fprintf(stderr, -b bits Size of server RSA key (default:
768 bits)\n'");

fprintf(stderr, -h file File from which to read host key

(default: %s)\n",

_PATH_HOST_KEY_FILE);

fprintf(stderr, -u len Maximum hostname Hlength for utmp
recording\n);
fprintf(stderr, " -4 Use IPv4 only\n™);
fprintf(stderr, ™ -6 Use IPv6 only\n™);
fprintf(stderr, ' -0 option Process the option as if it was
read from a configuration file.\n");
exit(1);
}
/*
* Main program for the daemon.
*/
int

main(int ac, char **av)

{

extern char *optarg;
extern int optind;

121

start

int opt, sock in = 0, sock out = 0, newsock, j, i, fdsetsz, on =

pid_t pid;

socklen_t fromlen;

fd_set *fdset;

struct sockaddr_storage from;

const char *remote_ip;

int remote_port;

FILE *F;

struct addrinfo *ai;

char ntop[NI_MAXHOST], strport[NI_MAXSERV];
int listen_sock, maxfd;

int startup_p[2];

int startups = 0O;

Authctxt *authctxt;

Key *key;

int ret, key used = 0;

/*MYSEA: Need to Create File Descriptors so that descriptors will
numbering above 2*/

int tfl, tf2, tf3;

#ifdef HAVE_SECUREWARE

(void)set_auth_parameters(ac, av);

#endi

it */

__progname = ssh_get progname(av[0]);
init_rngQ;
/*MYSEA: OPen files so that descriptors are above 2*/

tfl = open(PATH_DEVNULL,O _RDWR, 0);
tf2 = open(_PATH_DEVNULL,O_RDWR, 0);
tf3 = open(PATH_DEVNULL,O_RDWR, 0);

/* Save argv. Duplicate so setproctitle emulation doesn®t clobber

saved_argc = ac;
saved_argv = xmalloc(sizeof(*saved _argv) * (ac + 1));
for (i = 0; 1 < ac; i++)
saved_argv[i] = xstrdup(av[i]);
saved_argv[i] = NULL;

#iftndef HAVE_SETPROCTITLE

/* Prepare for later setproctitle emulation */
compat_init_setproctitle(ac, av);
av = saved_argv;

#endif

/* Initialize configuration options to their default values. */
initialize_server_options(&options);

/* Parse command-line arguments. */
while ((opt = getopt(ac, av, "f:p:b:k:h:g:u:o:dDeiqtQ46')) = -1)

switch (opt) {
case "4":
IPv4or6 = AF_INET;
break;
case "6":
122

case

case

case

case

case

case

case

case

case

case

-D A

case

IPv4or6 = AF_INET6;
break;
f:
config_file _name = optarg;
break;
"dT:
if (debug flag == 0) {
debug flag = 1;
options.log_level = SYSLOG_LEVEL DEBUG1;

} else if (options.log_level < SYSLOG_LEVEL_DEBUG3)
options.log_level++;

break;

"D":

no_daemon_Tflag = 1;

break;

e :

log stderr
break;

B
inetd_flag
break;

Q":

/* ignored */

break;

q-:

options.log_level = SYSLOG _LEVEL QUIET;

break;

"b":
options.server_key bits = atoi(optarg);
break;

pU:

options.ports_from_cmdline = 1;

if (options.num_ports >= MAX_PORTS) {
fprintf(stderr, "too many ports.\n");

exit(l);

1;

1;

}

options.ports[options.num_ports++] = a2port(optarg);

if (options.portsfoptions.num_ports-1] == 0) {
fprintf(stderr, "Bad port number._.\n");
exit(l);

}

break;

"g":

if ((options.login_grace_time = convtime(optarg))

fprintf(stderr, "Invalid login grace time.\n");

exit(1);
}
break;
IkI:
if ((options.key regeneration_time

convtime(optarg)) == -1) {

interval .\n"");

fprintf(stderr, "Invalid key regenerati

exit(l);
}

break;
123

on

case "h*":
if (options.num _host key files >= MAX_HOSTKEYS) {
fprintf(stderr, "too many host keys.\n"");

exit(l);
options.host_key Ffiles[options.num_host_key Ffiles++]
= optarg;
break;
case "t":
test _flag = 1;
break;
case "u":

utmp_len = atoi(optarg);
if (utmp_len > MAXHOSTNAMELEN) {
fprintf(stderr, "Invalid utmp length.\n");
exit(l);
}
break;
case "0":
if (process_server_config_line(&options, optarg,
""command-line'", 0) 1= 0)
exit(1);
break;
case "?":
default:
usage();
break;

}

}
SSLeay add_all_algorithms(Q);
channel_set_af(1Pv40r6);
/*
* Force logging to stderr until we have loaded the private host
* key (unless started from inetd)
*/
log _init(__progname,
options.log_level == SYSLOG LEVEL NOT_SET ?
SYSLOG_LEVEL_INFO : options.log_level,
options.log_facility == SYSLOG_FACILITY_NOT_SET ?
SYSLOG_FACILITY_AUTH : options.log_facility,
log stderr || 'inetd flag);

#ifdef _UNICOS
/* Cray can define user privs drop all prives now!
* Not needed on PRIV_SU systems!
*/
drop_cray _privs(Q);
#endif

seed_rng(Q);

/* Read server configuration options from the configuration file.
*/
read_server_config(&options, config_file_name);

/* Fill in default values for those options not explicitly set.
*/
124

fill_default_server_options(&options);

/* Check that there are no remaining arguments. */

if (optind < ac) {
fprintf(stderr, "Extra argument %s.\n", av[optind]);
exit(1);

}

debug(*'sshd version %.100s", SSH_VERSION);

/* load private host keys */
sensitive_data.host keys = xmalloc(options.num_host key Ffiles *
sizeof(Key *));
for (i = 0; 1 < options.num_host_key Ffiles; i++)
sensitive_data.host_keys[i] = NULL;
sensitive_data.server_key = NULL;

sensitive_data.sshl host key = NULL;
sensitive_data.have sshl key = 0;
sensitive_data.have ssh2 _key = 0;

for (i = 0; i1 < options.num_host _key Ffiles; i++) {

key key load private(options.host_key files[i], s
NULL);

sensitive_data.host _keys[i] = key;

if (key == NULL) {
error(*'Could not load host key: %s'",

options.host_key Files[i]);

sensitive_data.host _keys[i] = NULL;
continue;

}

switch (key->type) {

case KEY_RSA1l:
sensitive_data.sshl _host key = key;
sensitive_data.have sshl key = 1;
break;

case KEY_RSA:

case KEY_DSA:
sensitive_data.have ssh2 key = 1;
break;

}

debug(*'private host key: #%d type %d %s', i, key->type,

) key_type(key));

if ((options.protocol & SSH_PROTO_1) &&
Isensitive _data.have sshl key) {
logit("'Disabling protocol version 1. Could not load host
key™);
options.protocol &= ~SSH_PROTO_1;

}
if ((options.protocol & SSH_PROTO_2) &&
Isensitive _data.have ssh2 key) {
logit("'Disabling protocol version 2. Could not load host
key™);

options.protocol &= ~SSH _PROTO_2;

}
if (M(options.protocol & (SSH_PROTO_1]SSH_PROTO _2))) {
logit(*'sshd: no hostkeys available -- exiting.");

125

exit(l);
}

/* Check certain values for sanity. */
if (options.protocol & SSH PROTO 1) {
if (options.server_key bits < 512 ||
options.server_key bits > 32768) {
fprintf(stderr, "Bad server key size.\n");
exit(l);
3
/*
* Check that server and host key lengths differ

sufficiently. This
* is necessary to make double encryption work with rsaref.

Oh, 1
* hate software patents. | dont know if this can go? Niels
*/
if (options.server_key bits >
BN_num_bits(sensitive_data.sshl_host key->rsa->n) -
SSH_KEY_BITS_RESERVED && options.server_key bits <
BN_num_bits(sensitive_data.sshl host_key->rsa->n) +
SSH_KEY_BITS_RESERVED) {
options.server_key bits =
BN_num_bits(sensitive_data.sshl_host key->rsa->n)
+

SSH_KEY_BITS_RESERVED;
debug(*'Forcing server key to %d bits to make it

differ from host key.",
options.server_key bits);
}

}

if (use privsep) {
struct passwd *pw;
struct stat st;

it ((pw = getpwnam(SSH_PRIVSEP_USER)) == NULL)
fatal (""Privilege separation user %s does not exist",
SSH_PRIVSEP_USER) ;
ifT ((stat(_PATH_PRIVSEP_CHROOT_DIR, &st) == -1) ||
(S_ISDIR(st.st_mode) == 0))
fatal (""Missing privilege separation directory: %s',
_PATH_PRIVSEP_CHROOT_DIR);

#ifdef HAVE _CYGWIN
iT (check_ntsec(_PATH_PRIVSEP_CHROOT_DIR) &&
(st.st_uid !'= getuid O ||
(st.st_mode & (S_IWGRP|S_IWOTH)) != 0))

#else /* MYSEA:Change test to 3 for network user on XTS400*/

if (st.st uid '= 3 || (st.st_mode & (S_IWGRP|S_IWOTH)) !I=
0)
#endif

fatal ("'%s must be owned by root and not group or
"world-writable.', _PATH_PRIVSEP_CHROOT_DIR);

}

/* Configuration looks good, so exit if in test mode. */
126

if (test flag)
exit(0);

/*

* Clear out any supplemental groups we may have inherited. This
* prevents inadvertent creation of files with bad modes (in the
* portable version at least, it"s certainly possible for PAM
* to create a file, and we can"t control the code iIn every
* module which might be used).
*/

//MYSEA: setgroups is not implemented

//1T (setgroups(0, NULL) < 0)

// debug(*'setgroups() failed: %.200s", strerror(errno));

/* Initialize the log (it is reinitialized below in case we
forked). */
if (debug flag && 'inetd flag)
log_stderr = 1;
log_init(__progname, options.log_level, options.log_facility,
log_stderr);

/*
* If not 1in debugging mode, and not started from inetd,
disconnect
* from the controlling terminal, and fork. The original process
* exits.
*/
it (1(debug_flag || inetd_flag || no_daemon_flag)) {
#ifdef TIOCNOTTY
int fd;
#endif /* TIOCNOTTY */
//MYSEA: Use daemonize function instead of daemon
//They are the same thing
it (daemonize(0, 0) < 0)
fatal ("'daemon() failed: %.200s', strerror(errno));

/* Disconnect from the controlling tty. */
#ifdef TIOCNOTTY
fd = open(_ PATH_TTY, O_RDWR | O_NOCTTY);
if (fd >= 0) {
(void) iocth(fd, TIOCNOTTY, NULL);
close(fd);

}
#endif /* TIOCNOTTY */

/* Reinitialize the log (because of the fork above). */
log init(__progname, options.log_level, options.log_Tfacility,
log_stderr);

/* Initialize the random number generator. */
arc4random_stir();

/* Chdir to the root directory so that the current disk can be
unmounted if desired. */
chdir('/™);
/* ignore SIGPIPE */
127

signal (SIGPIPE, SIG_IGN);

/* Start listening for a socket, unless started from inetd. */
iT (inetd_flag) {
int si;
sl = dup(0); /* Make sure descriptors 0, 1, and 2 are
in use. */
dup(sl);
sock_in = dup(0);
sock_out = dup(l);
startup_pipe = -1;
/*

* We intentionally do not close the descriptors 0, 1, and

2
* as our code for setting the descriptors won\"t work if
* ttyfd happens to be one of those.
*/
debug('inetd sockets after dupping: %d, %d", sock in,
sock_out);
if (options.protocol & SSH PROTO 1)
generate_ephemeral_server_key();
} else {
for (ai = options.listen_addrs; ai; ai = ai->ai_next) {
it (ai->ai_family != AF_INET && ai->ai_family I=
AF_INET6)
continue;

if (num_listen_socks >= MAX_LISTEN_SOCKS)
fatal ("'Too many listen sockets. ™
"Enlarge MAX_LISTEN_SOCKS™);
if (getnameinfo(ai->ai_addr, ai->ai_addrlen,
ntop, sizeof(ntop), strport, sizeof(strport),
NI_NUMERICHOST|NI_NUMERICSERV) 1= 0) {
error(‘'getnameinfo failed);
continue;
3
/* Create socket for listening. */
listen_sock = socket(ai->ai_family, ai->ai_socktype,
ai->ai_protocol);
if (listen_sock < 0) {
/* kernel may not support ipv6 */
verbose(''socket: %.100s', strerror(errno));
continue;

}
if (fentl(listen_sock, F_SETFL, O _NONBLOCK) < 0) {
error("'listen_sock O_NONBLOCK: %s',
strerror(errno));
close(listen_sock);
continue;
3
/*
* Set socket options.
* Allow local port reuse in TIME_WAIT.
*/
if (setsockopt(listen_sock, SOL_SOCKET, SO _REUSEADDR,
&on, sizeof(on)) == -1)
error(‘'setsockopt SO_REUSEADDR: %s',
strerror(errno));

128

0 {

%.200s.",

strport);

setup */

debug(*'Bind to port %s on %s.', strport, ntop);

/* Bind the socket to the desired port. */
it (bind(listen_sock, ai->ai_addr, ai->ai_addrlen) <

if (lai—>ai_next)
error("'Bind to port %s on %s failed:

strport, ntop, strerror(errno));
close(listen_sock);
continue;

}

listen_socks[num_listen_socks] = listen_sock;
num_listen_socks++;

/* Start listening on the port. */
logit(*'Server listening on %s port %s."™, ntop,

if (listen(listen_sock, 5) < 0)
fatal ("listen: %.100s", strerror(errno));

freeaddrinfo(options.listen_addrs);

it ('num_listen_socks)
fatal ("'Cannot bind any address.™);

if (options.protocol & SSH _PROTO_1)
generate_ephemeral_server_key();

/*

* Arrange to restart on SIGHUP. The handler needs
* listen_sock.

*/

signal (SIGHUP, sighup_handler);

signal (SIGTERM, sigterm_handler);
signal (SIGQUIT, sigterm_handler);

/* Arrange SIGCHLD to be caught. */
signal (SIGCHLD, main_sigchld _handler);

/* Write out the pid file after the sigterm handler is
if (Ydebug_flag) {
/*

* Record our pid in /var/run/sshd.pid to make it
* easier to kill the correct sshd. We don"t want to
* do this before the bind above because the bind

* fail if there already is a daemon, and this will
* overwrite any old pid in the file.
*/
T = fopen(options.pid_file, "wb™);
if (f == NULL) {
error("'Couldn®"t create pid Ffile \"%s\": %s",

129

options.pid_file, strerror(errno));

} else {
fprintf(f, "%ld\n", (long) getpid());
fclose(T);

}

}

/* setup fd set for listen */

fdset = NULL;

maxfd = O;

= 0; 1 < num_listen_socks; i++)

if (listen_socks[i] > maxfd)

maxfd = listen_socks[i];

/* pipes connected to unauthenticated childs */
startup_pipes = xmalloc(options.max_startups

sizeof(int));
for (i = 0; 1 < options.max_startups; i++)

startup_pipes[i] = -1;

*

/*
* Stay listening for connections until the system crashes
or
* the daemon is killed with a signal.
*/
for (G;) {

if (received_sighup)
sighup_restart();
if (fdset != NULL)
xfree(fdset);
fdsetsz = howmany (maxfd+1, NFDBITS) *
sizeof(fd_mask);
fdset = (fd_set *)xmalloc(fdsetsz);
memset(fdset, 0, fdsetsz);
for (i = 0; 1 < num_listen_socks; i++)
FD SET(Ilsten socks[l] fdset);
for (i = 0; 1 < options.max_startups; i++)
if (startup_pipes[i] !'= -1)
FD_SET(startup_pipes[i], fdset);

/* Wait in select until there is a connection. */
ret = select(maxfd+1l, fdset, NULL, NULL, NULL);
if (ret < 0 & errno != EINTR)
error(‘'select: %.100s", strerror(errno));
if (received_sigterm) {
logit("'Received signal %d; terminating.",
(int) received_sigterm);
close_listen_socks();
unlink(options.pid_file);
exit(255);
}
if (key_used && key _do_regen) {
generate_ephemeral_server_key();
key_used =
key do_regen = 0;

}
if (ret < 0)
130

sockaddr *)&from,

EWOULDBLOCK)

strerror(errno));

strerror(errno));

unless

continue;
for (i = 0; 1 < options.max_startups; i++)
if (startup_pipes[i] = -1 &&
FD_ISSET(startup_pipes[i], fdset)) {
/*
* the read end of the pipe is ready
* 1Ff the child has closed the pipe
* after successful authentication
* or if the child has died
*/
close(startup_pipes[i]);
startup_pipes[i] = -1;
startups--;

}
for (i = 0; 1 < num_listen_socks; i++) {
if (JFD_ISSET(listen_socks[i], fdset))
continue;
fromlen = sizeof(from);
newsock = accept(listen_socks[i], (struct
&Fromlen);

if (newsock < 0) {
if (errno 1= EINTR && errno 1=

error("'accept: %.100s",
continue;

}
if (fecntl(newsock, F_SETFL, 0) < 0) {
error(‘'newsock del O_NONBLOCK: %s',

close(newsock) ;
continue;

}

if (drop_connection(startups) == 1) {
debug(*'drop connection #%d', startups);
close(newsock) ;

continue;
}
if (pipe(startup p) == -1) {
close(newsock) ;
continue;
}
for (J = 0; j < options.max_startups; j++)
if (startup_pipes[j] == -1) {
startup_pipes[jJ] = startup_p[O];
if (maxfd < startup_ p[O0])
maxfd = startup p[O];
startups++;
break;
}
/*

* Got connection. Fork a child to handle it,

131

listening

in debugging mode.');

have

max_startup
accepted socket.
pid has

loop to handle

* we are in debugging mode.
*/
if (debug_flag) {

/*

* In debugging mode. Close the

* socket, and start processing the

* connection without forking.

*/

debug(*'Server will not fork when running

close listen_socks();
sock _in = newsock;
sock out = newsock;
startup_pipe = -1;
pid = getpid(Q);
break;
} else {
/*
* Normal production daemon. Fork, and

* the child process the connection. The
:/parent continues listening.
if ((pig = fork()) == 0) {
/* Child. Close the listening and
* sockets. Start using the

* Reinitialize logging (since our

*

changed) . We break out of the

* the connection.

*/

startup_pipe = startup_p[1];
close_startup_pipes(Q);
close_listen_socks();
sock_in = newsock;

sock_out = newsock;

log init(__progname,

options.log_level, options.log _facility, log_stderr);

break;
}
}
/* Parent. Stay in the loop. */
if (pid < 0)
error("fork: %.100s", strerror(errno));
else

debug(*'Forked child %Id.", (long)pid);
close(startup p[1]);

/* Mark that the key has been used (it was

"given" to the child). */

132

if ((options.protocol & SSH PROTO_1) &&
key used == 0) {
/* Schedule server key regeneration
alarm. */
signal (SIGALRM, key regeneration_alarm);
alarm(options.key_regeneration_time);
key used = 1;
}

arc4random_stir();

/* Close the new socket (the child 1is now
taking care of it). */
close(newsock) ;

/* child process check (or debug mode) */
if (num_listen_socks < 0)
break;

}

/* This is the child processing a new connection. */

/*
* Create a new session and process group since the 4_.4BSD
* setlogin() affects the entire process group. We don"t
* want the child to be able to affect the parent.

*/
#if 1defined(SSHD_ACQUIRES_CTTY)
/*
* 1f setsid is called, on some platforms sshd will later acquire
a
* controlling terminal which will result in "could not set
* controlling tty' errors.
*/
if (Ydebug_flag && 'inetd flag && setsid() < 0)
error(‘'setsid: %.100s', strerror(errno));
#endif
/*
* Disable the key regeneration alarm. We will not regenerate
the
* key since we are no longer in a position to give it to anyone.
We
* will not restart on SIGHUP since it no longer makes sense.
*/
alarm(0);

signal (SIGALRM, SIG_DFL);
signal (SIGHUP, SIG _DFL);
signal (SIGTERM, SIG_DFL);
signal (SIGQUIT, SIG DFL);
signal (SIGCHLD, SIG DFL);
signal (SIGINT, SIG_DFL);

/* Set keepalives if requested. */
iT (options.keepalives &&
setsockopt(sock _in, SOL_SOCKET, SO _KEEPALIVE, &on,

133

sizeof(on)) < 0)
error(‘'setsockopt SO _KEEPALIVE: %.100s", strerror(errno));

/*
* Register our connection. This turns encryption off because we
do
* not have a key.
*/
packet_set_connection(sock_in, sock out);

get_remote_port();

remote_port =
= get_remote_ipaddr();

remote_ip

#ifdef LIBWRAP
/* Check whether logins are denied from this host. */

{

struct request_info req;

request_init(&req, RQ_DAEMON, _ progname, RQ FILE, sock_in,
0):;
fromhost(&req);

if (Thosts_access(&req)) {
debug(*'Connection refused by tcp wrapper™);
refuse(&req);
/* NOTREACHED */
fatal ("libwrap refuse returns');

}
}
#endif /* LIBWRAP */

/* Log the connection. */
verbose(*'Connection from %.500s port %d™, remote_ip,
remote_port);

/*
* We don\"t want to listen forever unless the other side
* successfully authenticates itself. So we set up an alarm
which is

* cleared after successful authentication. A limit of zero

* indicates no limit. Note that we don\"t set the alarm in
debugging

* mode; it is just annoying to have the server exit just when
you
* are about to d
*/
signal (SIGALRM, grace_alarm _handler);
it (Idebug_flag)

alarm(options.login_grace_time);

iscover the bug.

sshd_exchange_identification(sock _in, sock out);
packet_set_nonblocking();

/* prepare buffers to collect authentication messages */
buffer_init(&loginmsg);

134

if (use privsep)
if ((authctxt = privsep_preauth()) '= NULL)
goto authenticated;

/* perform the key exchange */
/* authenticate user and start session */
it (compat20) {
do_ssh2_kex();
authctxt = do_authentication2();
} else {
do_sshl kex(Q);
authctxt = do_authentication();
}
/*
* 1f we wuse privilege separation, the unprivileged child

transfers

* the current keystate and exits

*/

if (use privsep) {
mm_send_keystate(pmonitor);

exit(0);
}
authenticated:
/*

* In privilege separation, we fork another child and prepare
* file descriptor passing.
*/
if (use privsep) {

privsep_postauth(authctxt);

/* the monitor process [priv] will not return */

if (Icompat20)

destroy_sensitive_data();

}

/* Perform session preparation. */
do_authenticated(authctxt);

/* The connection has been terminated. */
verbose(*'Closing connection to %.100s", remote_ip);

#ifdef USE_PAM

if (options.use_pam)
Ffinish_pam(Q);

#endift /* USE_PAM */

/*

packet _close();

if (use privsep)
mm_terminate();

close(tfl);

close(tf2);

close(tf3);

exit(0);

135

* Decrypt session_key int using our private server key and private
host key

* (key with larger modulus first).

*/

int

sshl _session_key(BIGNUM *session_key int)

{

int rsafail = 0;

if (BN_cmp(sensitive_data.server_key->rsa->n,
sensitive_data.sshl host key->rsa->n) > 0) {
/* Server key has bigger modulus. */
if (BN_num_bits(sensitive data.server_key->rsa->n) <
BN_num_bits(sensitive_data.sshl_host key->rsa->n) +
SSH_KEY_BITS RESERVED) {
fatal ("'do_connection: %s: server_key %d < host key %d
+ SSH_KEY_BITS_RESERVED %d",
get_remote_ipaddr(),
BN_num_bits(sensitive_data.server_key->rsa->n),
BN_num_bits(sensitive_data.sshl host key->rsa-
>n),
SSH_KEY_BITS_RESERVED) ;

if (rsa_private_decrypt(session_key int, session_key_ int,
sensitive_data.server_key->rsa) <= 0)
rsafail++;
if (rsa private _decrypt(session_key int, session_key int,
sensitive_data.sshl _host _key->rsa) <= 0)
rsafail++;
} else {
/* Host key has bigger modulus (or they are equal). */
if (BN_num_bits(sensitive data.sshl host key->rsa->n) <
BN_num_bits(sensitive_data.server_key->rsa->n) +
SSH_KEY_BITS_RESERVED) {
fatal ("'do_connection: %s: host _key %d < server_key %d
+ SSH_KEY_BITS_RESERVED %d",
get _remote_ipaddr(),
BN_num_bits(sensitive_data.sshl_host key->rsa-

>n),
BN_num_bits(sensitive_data.server_key->rsa->n),
SSH_KEY_BITS_RESERVED) ;
}
if (rsa_private_decrypt(session_key int, session_key_ int,
sensitive_data.sshl _host key->rsa) < 0)
rsafail++;
if (rsa private_decrypt(session_key int, session_key int,
sensitive_data.server_key->rsa) < 0)
rsafail++;
return (rsafail);
}
/*
* SSH1 key exchange
*/

static void
do_sshl kex(void)
{
136

user

local

one

random

>n));

int i, len;

int rsafail = 0;

BIGNUM *session_key int;

u_char session_key[SSH_SESSION_KEY_LENGTH];
u_char cookie[8];

u_int cipher_type, auth_mask, protocol flags;
u_int32_t rnd = 0;

* Generate check bytes that the client must send back in the
* packet in order for it to be accepted; this is used to defy ip
* spoofing attacks. Note that this only works against somebody

* doing IP spoofing from a remote machine; any machine on the

* network can still see outgoing packets and catch the random
* cookie. This only affects rhosts authentication, and this is

* of the reasons why it is inherently insecure.

*/

for (i =0; i <8; i++) {
if(%4==0)

rnd = arc4random();

cookie[i] = rnd & Oxff;
rnd >>= 8;

}

/*

* Send our public key. We include in the packet 64 bits of

* data that must be matched in the reply in order to prevent IP
* spoofing.
*/
packet_start(SSH_SMSG_PUBLIC_KEY);
for (i =0; 1 < 8; i++)
packet put_char(cookie[i]);

/* Store our public server RSA key. */

packet put_int(BN_num_bits(sensitive_data.server_key->rsa->n));
packet put_bignum(sensitive data.server_key->rsa->e);

packet put_bignum(sensitive data.server_key->rsa->n);

/* Store our public host RSA key. */
packet put_int(BN_num_bits(sensitive_data.sshl host key->rsa-

packet put_bignum(sensitive data.sshl host key->rsa->e);
packet put_bignum(sensitive data.sshl host key->rsa->n);

/* Put protocol flags. */
packet put int(SSH_PROTOFLAG_HOST IN_FWD OPEN);

/* Declare which ciphers we support. */
packet put_int(cipher_mask_ssh1(0));

/* Declare supported authentication types. */
auth_mask = 0;
if (options.rhosts _rsa_authentication)

137

auth_mask |= 1 << SSH_AUTH_RHOSTS_RSA;
iT (options.rsa_authentication)
auth_mask |= 1 << SSH_AUTH_RSA;
iT (options.challenge_response_authentication == 1)
auth_mask |= 1 << SSH_AUTH_TIS;
if (options.password_authentication)
auth_mask |= 1 << SSH_AUTH_PASSWORD;
packet put_int(auth_mask);

/* Send the packet and wait for it to be sent. */
packet _send();
packet write wait();

debug(*'Sent %d bit server key and %d bit host key.",
BN_num_bits(sensitive_data.server_key->rsa->n),
BN _num_bits(sensitive_data.sshl host key->rsa->n));

/* Read clients reply (cipher type and session key). */
packet_read_expect(SSH_CMSG_SESSION_KEY);

/* Get cipher type and check whether we accept this. */
cipher_type = packet_get char();

iT (I(cipher_mask_ssh1(0) & (1 << cipher_type)))
packet_disconnect(*'Warning: client selects unsupported

cipher.');

match.’

the

the

/* Get check bytes from the packet. These must match those we
sent earlier with the public key packet. */

for (i = 0; 1 < 8; i++)
if (cookie[i] !'= packet _get char())
packet _disconnect("IP Spoofing check bytes do not
P

debug("'Encryption type: %.200s", cipher_name(cipher_type));

/* Get the encrypted integer. */

iT ((session_key int = BN_new()) == NULL)
fatal ("'do_sshl _kex: BN_new failed™);

packet _get_bignum(session_key int);

protocol flags = packet_get int();
packet_set_protocol_flags(protocol_flags);
packet_check_eom();

/* Decrypt session_key int using host/server keys */
rsafail = PRIVSEP(sshl_session_key(session_key int));

/*
* Extract session key from the decrypted integer. The key is in

* least significant 256 bits of the integer; the first byte of

* key is in the highest bits.
*/
iT (Irsafail) {
BN_mask bits(session _key int, sizeof(session_key) * 8);

138

len = BN_num_bytes(session_key int);
if (len < 0 || len > sizeof(session_key)) {
error(‘'do_connection: bad session key len from %s:
"session_key int %d > sizeof(session_key) %lu™,
get_remote_ipaddr(), len,

(u_long)sizeof(session_key));

rsafail++;
} else {
memset(session_key, 0, sizeof(session_key));
BN_bn2bin(session_key int,
session_key + sizeof(session_key) - len);

compute_session_id(session_id, cookie,
sensitive_data.sshl _host key->rsa->n,
sensitive_data.server_key->rsa->n);
/*
* Xor the first 16 bytes of the session key with the
* session id.
*/
for (i = 0; 1 < 16; i++)
session_key[i] ”= session_id[i];

}

}
if (rsafail) {

int bytes = BN_num_bytes(session_key int);
u_char *buf = xmalloc(bytes);
MD5_CTX md;

logit(*'do_connection: generating a fake encryption key™);
BN_bn2bin(session_key int, buf);

MD5_Init(&md);

MD5_ Update(&md, buf, bytes);

MD5_Update(&md, sensitive _data.sshl cookie,

SSH_SESSION_KEY_LENGTH) ;

MD5_ Final (session_key, &md);

MD5_Init(&md);

MD5 Update(&md, session_key, 16);

MD5_Update(&md, buf, bytes);

MD5_Update(&md, sensitive _data.sshl cookie,

SSH_SESSION_KEY_LENGTH);

}

MD5 Final(session_key + 16, &md);

memset(buf, 0, bytes);

xfree(buf);

for (i = 0; 1 < 16; i++)
session_id[i] = session_key[i] ™ session_key[i + 16];

/* Destroy the private and public keys. No longer. */
destroy_sensitive_data();

if (use privsep)

mm_sshl session_id(session_id);

/* Destroy the decrypted integer. It is no longer needed. */
BN_clear_free(session_key int);

/* Set the session key. From this on all communications will be
encrypted. */

139

packet_set _encryption_key(session_key, SSH_SESSION_KEY_LENGTH,
cipher_type);

/* Destroy our copy of the session key. It is no longer needed.
*/
memset(session_key, 0, sizeof(session_key));

debug(*'Received session key; encryption turned on.™);

/* Send an acknowledgment packet. Note that this packet is sent
encrypted. */

packet start(SSH_SMSG_SUCCESS);

packet_send();

packet write wait();

}

/*

* SSH2 key exchange: diffie-hellman-groupl-shal
*/

static void

do_ssh2_ kex(void)

{

Kex *kex;

ifT (options.ciphers = NULL) {
myproposal [PROPOSAL_ENC_ALGS_CTOS]
myproposal [PROPOSAL _ENC_ALGS_STOC]

options.ciphers;

}

myproposal [PROPOSAL_ENC_ALGS_CTOS] =
compat_cipher_proposal (myproposal [PROPOSAL_ENC_ALGS CTOS]);

myproposal [PROPOSAL_ENC_ALGS_STOC] =
compat_cipher_proposal (myproposal [PROPOSAL_ENC_ALGS STOC]);

if (options.macs '= NULL) {
myproposal [PROPOSAL_MAC_ALGS_CTOS]
myproposal [PROPOSAL_MAC_ALGS_STOC]

options.macs;

ifT (Yoptions.compression) {
myproposal [PROPOSAL_COMP_ALGS_CTOS]
myproposal [PROPOSAL_COMP_ALGS_STOC]

"none'';

}

myproposal [PROPOSAL_SERVER_HOST_KEY_ALGS] list _hostkey types();
/* start key exchange */

kex = kex_setup(myproposal);
kex->kex[KEX_DH_GRP1 SHA1] = kexdh_server;
kex->kex[KEX_DH_GEX SHA1l] = kexgex_server;
kex->server = 1;
kex->client_version_string=client_version_string;
kex->server_version_string=server_version_string;
kex->load_host_key=&get hostkey by type;
kex->host _key index=&get hostkey index;

xxx_kex = kex;

dispatch_run(DISPATCH _BLOCK, &kex->done, kex);

140

session_id2 = kex->session_id;
session_id2 len = kex->session_id_len;

#ifdeft DEBUG_KEXDH
/* send 1lst encrypted/maced/compressed message */
packet start(SSH2_MSG_IGNORE);
packet put_cstring(“markus'™);
packet_send();
packet write wait();
#endiF
debug("'KEX done');

/*MYSEA: Definition of daemonize function*/
int daemonize(int nochdir, int noclose)

{
int fd;
switch (fork(Q))
{
case -1:
return (-1);
case O:
break;
default:
_exit(0);
}
if (setsid() == -1)
return (-1);
it (Inochdir)
(void)chdir('/™);
if (Inoclose && (fd = open(_PATH_DEVNULL, O_RDWR, 0)) != -1)
{
(void)dup2(fd, STDIN_FILENO);
(void)dup2(fd, STDOUT_FILENO);
(void)dup2(fd, STDERR_FILENO);
if (fd > 2)
(void)close(fd);
}
return (0);
D. UIDSWAP.C
/*
* Author: Tatu Ylonen <ylo@cs.hut.fi>
* Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
* All rights reserved
* Code for uid-swapping.
*
* As far as | am concerned, the code I have written for this software
* can be used freely for any purpose. Any derived versions of this
* software must be clearly marked as such, and if the derived work is
* incompatible with the protocol description in the RFC file, it must
be

* called by a name other than "'ssh' or 'Secure Shell".
*/

141

#include "includes.h"
RCSID(*"$0penBSD: uidswap.c,v 1.24 2003/05/29 16:58:45 deraadt Exp $');

#include "log.-h"

#include "'uidswap.h"

/*MYSEA: Need to include extra headers to make the daemon privileged to
change the user and group ids of the processes*/

#include </usr/local/mysea/Zinclude/priv_util_h>

#include </usr/local/mysea/include/util_h>

#include <xts/types.h>

/*
* Note: all these functions must work in all of the following cases:
* 1. euid=0, ruid=0
* 2. euid=0, ruid!=0
* 3. euid!=0, ruid!=0
* Additionally, they must work regardless of whether the system has
* POSIX saved uids or not.
*/

#iT defined(_POSIX_SAVED_IDS) && !'defined(BROKEN_SAVED_UIDS)
/* Lets assume that posix saved ids also work with seteuid, even though
that
is not part of the posix specification. */
#define SAVED IDS WORK WITH_SETEUID
/* Saved effective uid. */

static uid_t saved_euid = 0;
static gid_t saved_egid = O;
#endif

/* Saved effective uid. */
static int privileged = 0;
static int temporarily use uid_effective = 0O;

static gid_t saved_egroups[NGROUPS_MAX], user_groups[NGROUPS_MAX];
static int saved _egroupslen = -1, user_groupslen = -1;
/*

* Temporarily changes to the given uid. |If the effective user

* id is not root, this does nothing. This call cannot be nested.
*/

void

temporarily_use uid(struct passwd *pw)

/*MYSEA: variable needed for privileged code*/

xts_privilege_t old_priv;

/* Save the current euid, and egroups. */

#ifdef SAVED_IDS_WORK_WITH_SETEUID

saved_euid = geteuid();

saved_egid = getegid();

debug(*'temporarily_use uid: %u/%u (e=%u/%u)",
(u_int)pw->pw_uid, (u_int)pw->pw_gid,
(u_int)saved _euid, (u_int)saved egid);

/*MYSEA: Change this to be the user the program will run as*/
if (saved _euid = 3) {

privileged = 0;

return;

142

}

#else
if (geteuid() = 3) {
privileged = 0O;
return;

}
#endif /* SAVED_IDS_WORK_WITH_SETEUID */
privileged = 1;
temporarily_use uid_effective = 1;
saved_egroupslen = getgroups(NGROUPS MAX, saved_egroups);
if (saved _egroupslen < 0)

{
fatal ("'getgroups: %.100s"™, strerror(errno));
}
/* set and save the user®"s groups */
if (user_groupslen == -1) {
//MYSEA: initgroups is not implemented on the XTS-400
//Comment out for now
//iT (initgroups(pw->pw_name, pw->pw_gid) < 0)
/74
// fatal (""initgroups: %s: %.100s", pw->pw_nhame,
// strerror(errno));
//}
user_groupslen = getgroups(NGROUPS_MAX, user_groups);
if (user_groupslen < 0)
fatal ("'getgroups: %.100s", strerror(errno));
}
}

/* Set the effective uid to the given (unprivileged) uid. */

/*MYSEA: PRIVILEGED CODE*/

old_priv = enable_uid _priv(Q);

//MYSEA: setgroups is not implemented on the XTS-400

//Comment out for now

//1T (setgroups(user_groupslen, user_groups) < 0)

// fatal ("'setgroups: %.100s", strerror(errno));
#ifndef SAVED_IDS_WORK_WITH_SETEUID

/* Propagate the privileged gid to all of our gids. */

ifT (setgid(getegid()) < 0)

{

debug(‘'setgid %u : %.100s", (u_int) getegid(),
strerror(errno));

}

/* Propagate the privileged uid to all of our uids. */
if (setuid(geteuid()) < 0)

{

debug(*'setuid %u : %.100s", (u_int) geteuid(),
strerror(errno));

}

#endif /* SAVED_IDS WORK _WITH_SETEUID */
it (setegid(pw->pw_gid) < 0)
{

fatal ("'setegid %u: %.100s', (u_int)pw->pw_gid,
strerror(errno));

}
ifT (seteuid(pw->pw_uid) == -1)
{

143

fatal ("'seteuid %u: %.100s\n", (u_int)pw->pw_uid,
strerror(errno));

}
/*MYSEA: Release the Privileges*/
set_priv(old _priv);

}

/*

* Restores to the original (privileged) uid.
*/

void

restore_uid(void)

/*MYSEA: Need to add privileges here too in order to change the
user and group ids*/
xts _privilege_t old priv;
/* it"s a no-op unless privileged */
it (Iprivileged) {
debug(*'restore_uid: (unprivileged)\n');
return;

if (Mtemporarily _use uid_effective)
fatal ("'restore_uid: temporarily use_uid not effective');

3

/*MYSEA: Enable the Privileges*/

old _priv = enable_uid _priv(Q);
#ifdef SAVED_IDS _WORK_WITH_SETEUID

debug(*'restore_uid: %u/%u', (u_int)saved_euid,
(u_int)saved_egid);

/* Set the effective uid back to the saved privileged uid. */

if (seteuid(saved euid) < 0)

{
fatal ("'seteuid Y%u : %.100s™, (u_int)saved_euid,
strerror(errno));

}
iT (setegid(saved egid) < 0)

fatal ("'setegid Y%u : %.100s™, (u_int)saved_egid,
strerror(errno));

}
#else /* SAVED_IDS_WORK_WITH_SETEUID */
/*
* We are unable to restore the real uid to its unprivileged

value.

* Propagate the real uid (usually more privileged) to effective
uid

* as well.

*/

setuid(getuidQ));

setgid(getgid());

#endif /* SAVED_IDS_WORK_WITH_SETEUID */
//MYSEA: Setgroups 1is not implmented on the XTS-400, for now
comment out
//1T (setgroups(saved_egroupslen, saved egroups) < 0)
// fatal ("'setgroups: %.100s", strerror(errno));
temporarily_use uid _effective = 0;

144

/*MYSEA: Drop the Privileges*/
set_priv(old priv);
}

/*

* Permanently sets all uids to the given uid. This cannot be
* called while temporarily use_uid is effective.

*/

void

permanently set uid(struct passwd *pw)

/*MYSEA: Privilege Code here as well*/
xts_privilege_t old_priv;
uid_t old _uid = getuid();
gid_t old gid = getgid(Q);

iT (temporarily use uid_effective)

{
fatal ("permanently_set_uid: temporarily_use uid
effective'™);

}
debug(“'permanently_set uid: %u/%u', (u_int)pw->pw_uid,

(u_int)pw->pw_gid);
/*MYSEA: Enable Privileges*/
old_priv = enable_uid _priv(Q);
#if defined(HAVE_SETRESGID)
it (setresgid(pw->pw_gid, pw->pw_gid, pw->pw_gid) < 0)

{
fatal ("'setresgid %u: %.100s", (u_int)pw->pw_gid,
strerror(errno));

}
#eliT defined(HAVE_SETREGID) && !defined(BROKEN_SETREGID)
it (setregid(pw->pw_gid, pw->pw_gid) < 0)

fatal ("'setregid %u : %.100s", (u_int)pw->pw_gid,
strerror(errno));

#else
if (setegid(pw->pw_gid) < 0)

fatal (""'setegid %u : %.100s", (u_int)pw->pw_gid,
strerror(errno));

}
if (setgid(pw->pw_gid) < 0)
{

fatal ("'setgid %u: %.100s", (u_int)pw->pw_gid,
strerror(errno));

#endif

#iT defined(HAVE_SETRESUID)
it (setresuid(pw->pw_uid, pw->pw_uid, pw->pw_uid) < 0)

{
fatal ("'setresuid %u : %.100s", (u_int)pw->pw_uid,
strerror(errno));

145

#elif defined(HAVE_SETREUID) && Idefined(BROKEN _SETREUID)

ifT (setreuid(pw->pw_uid, pw->pw_uid) < 0)

{
fatal ("'setreuid Y%u : %.100s™", (u_int)pw->pw_uid,

strerror(errno));

#else

1fndef SETEUID_BREAKS_SETUID

iT (seteuid(pw->pw_uid) < 0)

{
fatal ("'seteuid %u : %.100s", (u_int)pw->pw_uid,
strerror(errno));
}
endif

if (setuid(pw->pw_uid) < 0)
{

fatal (""'setuid %u: %.100s", (u_int)pw->pw_uid,

strerror(errno));

#endif

*/

//MYSEA: Drop the privileges now!!!!
set _priv(old priv);
/* Try restoration of GID if changed (test clearing of saved gid)

if (old_gid = pw->pw_gid &&
(setgid(old gid) !'= -1 || setegid(old gid) !'= -1))

fatal (""%s: was able to restore old [e]gid”, _ func_);

}

/* Verify GID drop was successful */
iT (getgid() !'= pw->pw_gid || getegid() = pw->pw_gid) {
fatal (""%s: egid incorrect gid:%u egid:%u (should be %u)™,
__Ffunc__, (u_int)getgid(), (u_int)getegid(),
(u_int)pw->pw_gid);
}

#itndet HAVE_CYGWIN

/* Try restoration of UID if changed (test clearing of saved uid)

*/
if (old_uid "= pw->pw_uid &&
(setuid(old_uid) = -1 || seteuid(old_uid) !'= -1))
fatal (""%s: was able to restore old [e]Juid”, _ func_);
#endif
/* Verify UID drop was successful */
iT (getuid() '= pw->pw_uid || geteuid() = pw->pw_uid) {
fatal (""%s: euild incorrect uid:%u euid:%u (should be %u)™,
__Ffunc__, (u_int)getuid(), (u_int)geteuid(),
(u_int)pw->pw_uid);
}
}

146

E. MONITOR.C

N
*

Author: Tatu Ylonen <ylo@cs.hut.fi>

Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
All rights reserved

Code for uid-swapping.

As far as | am concerned, the code 1 have written for this software
can be used freely for any purpose. Any derived versions of this
software must be clearly marked as such, and if the derived work is
incompatible with the protocol description in the RFC file, it must

D * X o X ok X F X

o

* called by a name other than "'ssh' or 'Secure Shell".
*/

#include "includes.h"
RCSID(*'$0penBSD: uidswap.c,v 1.24 2003/05/29 16:58:45 deraadt Exp $');

#include "log.h"

#include "uidswap.h"

/*MYSEA: Need to include extra headers to make the daemon privileged to
change the user and group ids of the processes*/

#include </usr/local/mysea/include/priv_util_h>

#include </usr/local/mysea/include/util_h>

#include <xts/types.h>

* Note: all these functions must work in all of the following cases:
* 1. euid=0, ruid=0

* 2. euid=0, ruid!=0

* 3. euid!=0, ruid!=0

* Additionally, they must work regardless of whether the system has
* POSIX saved uids or not.

*/

#iT defined(_POSIX_SAVED_IDS) && !'defined(BROKEN_SAVED_UIDS)
/* Lets assume that posix saved ids also work with seteuid, even though
that
is not part of the posix specification. */
#define SAVED_IDS_WORK_WITH_SETEUID
/* Saved effective uid. */

static uid_t saved_euild = 0;
static gid_t saved_egid = O;
#endif

/* Saved effective uid. */
static int privileged = 0;
static int temporarily use uid_effective = 0;

static gid_t saved_egroups[NGROUPS MAX], user_groups[NGROUPS MAX];
static int saved egroupslen = -1, user_groupslen = -1;
/*

* Temporarily changes to the given uid. |IFf the effective user

* id is not root, this does nothing. This call cannot be nested.
*/

void

147

temporarily_use uid(struct passwd *pw)

/*MYSEA: variable needed for privileged code*/

xts_privilege_t old_priv;

/* Save the current euid, and egroups. */

#iftdef SAVED_IDS_WORK_WITH_SETEUID

saved _euid = geteuid();

saved_egid = getegid();

debug(*'temporarily_use uid: %u/%u (e=%u/%u)",
(u_int)pw->pw_uid, (u_int)pw->pw_gid,
(u_int)saved _euid, (u_int)saved egid);

/*MYSEA: Change this to be the user the program will run as*/
if (saved_euid != 3) {
privileged = 0;
return;
}
#else
if (geteuid(Q) 1= 3) {
privileged = 0;
return;

}
#endif /* SAVED_IDS_WORK_WITH_SETEUID */
privileged = 1;
temporarily _use uid_effective = 1;
saved_egroupslen = getgroups(NGROUPS MAX, saved_egroups);
if (saved _egroupslen < 0)
{

fatal ("'getgroups: %.100s", strerror(errno));

/* set and save the user®"s groups */

if (user_groupslen == -1) {
//MYSEA: initgroups is not implemented on the XTS-400
//Comment out for now
//if (initgroups(pw->pw_name, pw->pw_gid) < 0)

/74

// fatal (""initgroups: %s: %.100s", pw->pw_nhame,
// strerror(errno));

//}

user_groupslen = getgroups(NGROUPS MAX, user_groups);
if (user_groupslen < 0)

fatal ("'getgroups: %.100s"™, strerror(errno));

}

/* Set the effective uid to the given (unprivileged) uid. */
/*MYSEA: PRIVILEGED CODE*/
old_priv = enable_uid_priv();
//MYSEA: setgroups is not implemented on the XTS-400
//Comment out for now
//iT (setgroups(user_groupslen, user_groups) < 0)
// fatal ("'setgroups: %.100s", strerror(errno));
#ifndef SAVED_ IDS_WORK _WITH_SETEUID
/* Propagate the privileged gid to all of our gids. */
if (setgid(getegid()) < 0)

148

debug(‘'setgid %u : %.100s", (u_int) getegid(),
strerror(errno));

}

/* Propagate the privileged uid to all of our uids. */
if (setuid(geteuid()) < 0)
{

debug(*'setuid %u : %.100s", (u_int) geteuid(),
strerror(errno));

#endif /* SAVED_ IDS WORK _WITH_SETEUID */
it (setegid(pw->pw_gid) < 0)
{

fatal ("'setegid %u: %.100s', (u_int)pw->pw_gid,
strerror(errno));

}
if (seteuid(pw->pw_uid) == -1)

fatal ("'seteuid %u: %.100s\n", (u_int)pw->pw_uid,
strerror(errno));
}
/*MYSEA: Release the Privileges*/
set _priv(old priv);

}

/*
* Restores to the original (privileged) uid.
*/
void
restore_uid(void)

/*MYSEA: Need to add privileges here too in order to change the
user and group ids*/
xts_privilege_t old_priv;
/* it"s a no-op unless privileged */
if (Iprivileged) {
debug(‘'restore_uid: (unprivileged)\n');
return;

if (Ttemporarily_use uid_effective)

{

3
/*MYSEA: Enable the Privileges*/

old_priv = enable_uid_priv();
#ifdef SAVED_IDS_WORK_WITH_SETEUID

debug(‘'restore_uid: %u/%u'", (u_int)saved_euid,
(u_int)saved _egid);

/* Set the effective uid back to the saved privileged uid. */

if (seteuid(saved_euid) < 0)

fatal ("'restore_uid: temporarily use _uid not effective');

fatal ("'seteuid %u : %.100s", (u_int)saved_euid,
strerror(errno));

}
if (setegid(saved _egid) < 0)
{

fatal ("'setegid Y%u : %.100s", (u_int)saved_egid,
strerror(errno));
149

}
#else /* SAVED_IDS_WORK_WITH_SETEUID */

/*
* We are unable to restore the real uid to its unprivileged
value.
* Propagate the real uid (usually more privileged) to effective
uid
* as well.
*/
setuid(getuid());
setgid(getgid());
#endif /* SAVED_IDS_WORK_WITH_SETEUID */
//MYSEA: Setgroups 1is not implmented on the XTS-400, for now
comment out
//iT (setgroups(saved_egroupslen, saved egroups) < 0)
// fatal ("'setgroups: %.100s", strerror(errno));
temporarily_use uid _effective = 0;
/*MYSEA: Drop the Privileges*/
set_priv(old_priv);
}

/*
* Permanently sets all uids to the given uid. This cannot be
* called while temporarily use_uid is effective.
*/
void
permanently set uid(struct passwd *pw)

{
/*MYSEA: Privilege Code here as well*/

xts_privilege_t old_priv;
uid_t old uid = getuid(Q);
gid_t old gid = getgid(Q);

if (temporarily use_uid_effective)

fatal (""permanently_set uid: temporarily_use uid
effective™);

debug(“'permanently_set _uid: %u/%u', (u_int)pw->pw_uid,
(u_int)pw->pw_gid);

/*MYSEA: Enable Privileges*/
old_priv = enable_uid_priv(Q);
#i1T defined(HAVE_SETRESGID)
iT (setresgid(pw->pw_gid, pw->pw_gid, pw->pw_gid) < 0)
{

fatal ("'setresgid Y%u: %.100s", (u_int)pw->pw_gid,
strerror(errno));

}
#elif defined(HAVE_SETREGID) && !defined(BROKEN_SETREGID)
if (setregid(pw->pw_gid, pw->pw_gid) < 0)

{
fatal ("'setregid Y%u : %.100s", (u_int)pw->pw_gid,
strerror(errno));

#else
if (setegid(pw->pw_gid) < 0)

150

{
fatal (""'setegid %u :
strerror(errno));

}
if (setgid(pw->pw_gid) < 0)
{

fatal ("'setgid %u:
strerror(errno));

#endif

#if defined(HAVE_SETRESUID)

%.100s", (u_int)pw->pw_gid,

%.100s", (u_int)pw->pw_gid,

it (setresuid(pw->pw_uid, pw->pw_uid, pw->pw_uid) < 0)

{

fatal ("'setresuid %u : %.100s", (u_int)pw->pw_uid,

strerror(errno));

}
#eliT defined(HAVE_SETREUID) && !defined(BROKEN_SETREUID)
it (setreuid(pw->pw_uid, pw->pw_uid) < 0)

fatal ("'setreuid %u :

strerror(errno));

#else

1fndef SETEUID_BREAKS SETUID
if (seteuid(pw->pw_uid) < 0)
{

fatal ("'seteuid %u :
strerror(errno));
s
endif
it (setuid(pw->pw_uid) < 0)
{

fatal ("'setuid Y%u:
strerror(errno));

#endif

%.100s", (u_int)pw->pw_uid,
%.100s™, (u_int)pw->pw_uid,
%.100s™, (u_int)pw->pw_uid,

//MYSEA: Drop the privileges now!!!!

set_priv(old_priv);
/* Try restoration of GID if
*/
if (old_gid "= pw->pw_gid &&
(setgid(old_gid) = -1 ||

changed (test clearing of saved gid)

setegid(old_gid) 1= -1))

fatal ("%s: was able to restore old [e]gid"”, _ func_);

}

/* Verify GID drop was successful */

if (getgid(Q) = pw->pw_gid ||

getegid() '= pw->pw_gid) {

fatal (""%s: egid incorrect gid:%u egid:%u (should be %u)",
__Ffunc__, (u_int)getgid(), (u_int)geteqgid(),

(u_int)pw->pw_gid);
}

#ifndef HAVE_CYGWIN
/* Try restoration of UID if
*/

changed (test clearing of saved uid)

151

if (old_uid "= pw->pw_uid &&
(setuid(old_uid) !'= -1 || seteuid(old_uid) I= -1))
fatal (""%s: was able to restore old [e]Juid”, _ func_);
#endif

/* Verify UID drop was successful */
iT (getuid() '= pw->pw_uid || geteuid() = pw->pw_uid) {
fatal (""%s: euild incorrect uid:%u euid:%u (should be %u)™,
__Ffunc__, (u_int)getuid(), (u_int)geteuid(),
(u_int)pw->pw_uid);

_'I'I“v-’

MONITOR_WRAP.C

N
*

Copyright 2002 Niels Provos <provos@citi.umich.edu>
Copyright 2002 Markus Friedl <markus@openbsd.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

-

OOk % ok % % 3k X % % % X

e

documentation and/or other materials provided with the
distribution.
*

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ~"AS 1S*" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, [INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE,

* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY

* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF

* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*MYSEA: This file provides functions that the unprivileged child of
the
*monitor process can use to communicate with the monitor. All changes
*are from m_recvfd to either m_childsendfd or m_childrecvfd.
*/
#include "includes.h"
RCSID(*"$0penBSD: monitor_wrap.c,v 1.31 2003/08/28 12:54:34 markus Exp
$);

152

#include <openssl/bn.h>
#include <openssl/dh.h>

#include ''ssh.h"

#include "dh.h"

#include "kex.h"

#include "auth.h"
#include "auth-options._h"
#include "buffer.h"
#include "bufaux.h"
#include "packet.h"
#include "mac.h"

#include "log.-h"

#include "zlib.h"
#include "monitor.h"
#include "monitor_wrap.h"
#include "xmalloc.h"
#include "atomicio.h"
#include "monitor_fdpass.h"
#include "'getput.h"
#include "servconf.h"

#include "auth.h"
#include '‘channels.h"
#include ''session.h"

#ifdef GSSAPI
#include "ssh-gss.h"
#endif

/* Imports */

extern int compat20;

extern Newkeys *newkeys[];
extern z_stream incoming_stream;
extern z_stream outgoing_stream;
extern struct monitor *pmonitor;
extern Buffer input, output;
extern ServerOptions options;

void
mm_request_send(int socket, enum monitor_reqtype type, Buffer *m)
{

u_int mlen = buffer_len(m);

u_char buf[5];

debug3(*'%s entering: type %d", _ func__, type);

PUT_32BIT(buf, mlen + 1);

buf[4] = (u_char) type; /* 1st byte of payload is mesg-type
*/
it (atomicio(vwrite, socket, buf, sizeof(buf)) != sizeof(buf))
fatal (""%s: write check 1", _ func_);
ifT (atomicio(vwrite, socket, buffer_ptr(m), mlen) != mlen)
fatal (""%s: write check 2", func_);
}

153

void
mm_request_receive(int socket, Buffer *m)
{

u_char buf[4];

u_int msg_len;

ssize_t res;

debug3(*'%s entering”, _ func_);

res = atomicio(read, socket, buf, sizeof(buf));
if (res 1= sizeof(buf)) {

if (res == 0)

fatal_cleanup();

fatal (""%s: read: %Id", _ func__, (long)res);
}
msg_len = GET_32BIT(buf);
if (msg_len > 256 * 1024)

fatal (""%s: read: bad msg_len %d”, _ func__, msg_len);
buffer_clear(m);
buffer_append_space(m, msg_len);
res = atomicio(read, socket, buffer_ptr(m), msg_len);
if (res 1= msg_len)

fatal (""%s: read: %Id != msg_len”, _ func__, (long)res);

}

void

mm_request_receive_expect(int socket, enum monitor_reqtype type, Buffer
*m)

{

u_char rtype;
debug3(*'%s entering: type %d", _ func__, type);

mm_request_receive(socket, m);
rtype = buffer_get char(m);
if (rtype != type)
fatal(""%s: read: rtype %d != type %d", func_ ,
rtype, type);
}

DH *
mm_choose_dh(int min, int nbits, int max)
{

BIGNUM *p, *g;

int success = 0;

Buffer m;

buffer_init(&m);

buffer_put_int(&m, min);

buffer_put_int(&m, nbits);

buffer_put_int(&m, max);

/*MYSEA*/

//Change m_recvfd to childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ MODULI, &m);

debug3(*'%s: waiting for MONITOR_ANS_MobuLI™, _ func_);
//Change m _recvfd to m_childrecvfd

154

mm_request_receive_expect(pmonitor->m _recvfd, MONITOR_ANS MODULI,

&m);
success = buffer_get_char(&m);
if (success == 0)
fatal (""%s: MONITOR_ANS MODULI failed", _ func_);
iT ((p = BN_new()) == NULL)
fatal (""%s: BN_new failed™, _ func_);
it ((g = BN_new()) == NULL)
fatal (""%s: BN_new failed", _ func_);
buffer_get _bignum2(&m, p);
buffer_get_bignum2(&m, g);
debug3(*'%s: remaining %d”, _ func__, buffer_len(&m));
buffer_free(&m);
return (dh_new_group(g, p));
}
int
mm_key_sign(Key *key, u_char **sigp, u_int *lenp, u_char *data, u_int
datalen)
{

&m);

}

Kex *kex = *pmonitor->m_pkex;
Buffer m;

debug3(*'%s entering”, _ func_);

buffer_init(&m);

buffer_put_int(&m, kex->host key index(key));

buffer_ put_string(&m, data, datalen);

/*MYSEA*/

//Change m_recvfd tp childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ SIGN, &m);

debug3(*"%s: waiting for MONITOR_ANS SIGN", _ func_);
//Change m_recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd, MONITOR_ANS_SIGN,

*sigp = buffer_get _string(&m, lenp);
buffer_free(&m);

return (0);

struct passwd *
mm_getpwnamal low(const char *login)

{

Buffer m;
struct passwd *pw;
u_int pwlen;

debug3(*'%s entering'”, _ func_);

buffer_init(&m);
buffer_put_cstring(&m, login);

155

/*MYSEA*/
//Change m _recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ PWNAM, &m);

debug3(*'%s: waiting for MONITOR_ANS_PWNAM'™, _ func_);

//Change m _recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd, MONITOR_ANS PWNAM,
&m);

if (buffer_get char(&m) == 0) {
buffer_free(&m);
return (NULL);

pw = buffer_get_string(&m, &pwlen);
if (pwlen != sizeof(struct passwd))
fatal (""%s: struct passwd size mismatch', func_);

pw->pw_name = buffer_get string(&m, NULL);

pw->pw_passwd = buffer_get_string(&m, NULL);

pw->pw_gecos = buffer_get string(&m, NULL);
#ifdef HAVE_PW_CLASS_IN_PASSWD

pw->pw_class = buffer_get string(&m, NULL);
#endif

pw->pw_dir = buffer_get_string(&m, NULL);

pw->pw_shell = buffer_get string(&m, NULL);

buffer_free(&m);

return (pw);

}

char *mm_auth2_read banner(void)
{

Buffer m;

char *banner;

debug3(*'%s entering'”, _ func_);

buffer_init(&m);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m_recvfd,
MONITOR_REQ_AUTH2_READ_BANNER, &m);

buffer_clear(&m);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_AUTH2_ READ_BANNER, &m);

banner = buffer_get string(&m, NULL);

buffer_free(&m);

return (banner);

}

/* Inform the privileged process about service and style */

void
mm_inform_authserv(char *service, char *style)

Buffer m;
156

debug3(*'%s entering”, _ func_);

buffer_init(&m);

buffer_put_cstring(&m, service);

buffer_put_cstring(&m, style ? style : '"'");

/*MYSEA*/

//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ AUTHSERV, &m);

buffer_free(&m);

}
/* Do the password authentication */
int
mm_auth_password(Authctxt *authctxt, char *password)
{
Buffer m;
int authenticated = O;
debug3(*'%s entering', _ func_);
buffer_init(&m);
buffer_put_cstring(&m, password);
/*MYSEA*/
//Change m _recvfd to m_childsendfd
mm_request_send(pmonitor->m _recvfd, MONITOR_REQ_ AUTHPASSWORD,
&m);

debug3(*'%s: waiting for MONITOR_ANS AUTHPASSWORD', _ func_);

//Change m _recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_AUTHPASSWORD, &m);

authenticated = buffer_get_int(&m);
buffer_free(&m);
debug3(*'%s: user %sauthenticated™,

_ func__, authenticated ? ' : "not ");
return (authenticated);

}
int
mm_user_key allowed(struct passwd *pw, Key *key)
{
return (mm_key_ allowed(MM_USERKEY, NULL, NULL, key));
}
int
mm_hostbased _key allowed(struct passwd *pw, char *user, char *host,
Key *key)
{
return (mm_key allowed(MM_HOSTKEY, user, host, key));
}
int

157

mm_auth_rhosts rsa key allowed(struct passwd *pw, char *user,
char *host, Key *key)

{ _
int ret;
key->type = KEY_RSA; /* XXX hack for key to blob */
ret = mm_key allowed(MM_RSAHOSTKEY, user, host, key);
key->type = KEY_RSA1;
return (ret);

}

static void
mm_send_debug(Buffer *m)

{
char *msg;
while (buffer_len(m)) {
msg = buffer_get _string(m, NULL);
debug3(*'%s: Sending debug: %s'™, _ func__, msg);
packet_send_debug("'%s', msg);
xFree(msqg) ;
}
}
int

mm_key allowed(enum mm_keytype type, char *user, char *host, Key *key)

{
Buffer m;

u_char *blob;
u_int len;
int allowed = 0, have_forced = 0;

debug3(*'%s entering”, _ func_);
/* Convert the key to a blob and the pass it over */
if (key_to_blob(key, &blob, &len))

return (0);

buffer_init(&m);
buffer_put_int(&m, type);

buffer_put_cstring(&m, user ? user : "');
buffer_ put_cstring(&m, host ? host : "");
buffer_put_string(&m, blob, len);
xfree(blob);

/*MYSEA*/

//Change m _recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ KEYALLOWED, &m);

debug3(*'%s: waiting for MONITOR_ANS_KEYALLOWED"™, _ func_);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_KEYALLOWED, &m);

allowed = buffer_get_int(&m);

/* Take forced command */
auth_clear_options();

158

have forced = buffer_get int(&m);
forced _command = have forced ? xstrdup(‘"true'™) : NULL;

/* Send potential debug messages */
mm_send_debug(&m);

buffer_free(&m);

return (allowed);

}

/*
* This key verify needs to send the key type along, because the
* privileged parent makes the decision if the key is allowed
* for authentication.
*/

int
mm_key verify(Key *key, u_char *sig, u_int siglen, u_char *data, u_int
datalen)
{
Buffer m;
u_char *blob;
u_int len;
int verified = 0;

debug3(*'%s entering”, _ func_);

/* Convert the key to a blob and the pass it over */
if (key_to_blob(key, &blob, &len))
return (0);

buffer_init(&m);

buffer_put_string(&m, blob, len);

buffer_put_string(&m, sig, siglen);

buffer_put_string(&m, data, datalen);

xfree(blob);

/*MYSEA*/

//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ KEYVERIFY, &m);

debug3(*"%s: waiting for MONITOR_ANS KEYVERIFY", func_);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_KEYVERIFY, &m);

verified = buffer_get int(&m);

buffer_free(&m);

return (verified);

}

/* Export key state after authentication */
Newkeys *

mm_newkeys_ from_blob(u_char *blob, int blen)
{

159

Buffer b;

u_int len;

Newkeys *newkey = NULL;
Enc *enc;

Mac *mac;

Comp *comp;

debug3(*'%s: %p(%d)',
#ifdef DEBUG_PK

dump_base64(stderr, blob, blen);
#endif

buffer_init(&b);

buffer_append(&b, blob, blen);

func__, blob, blen);

newkey = xmalloc(sizeof(*newkey));
enc = &newkey->enc;

mac = &newkey->mac;

comp = &newkey->comp;

/* Enc structure */
enc->name = buffer_get string(&b, NULL);
buffer_get(&b, &enc->cipher, sizeof(enc->cipher));
enc->enabled = buffer_get_int(&b);
enc->block_size = buffer_get_int(&b);
enc->key = buffer_get string(&b, &enc->key len);
enc->iv = buffer_get _string(&b, &len);
it (len = enc->block_size)
fatal (""%s: bad ivlen: expected %u 1= %u", _ func__,
enc->block_size, len);

if (enc->name == NULL || cipher_by name(enc->name) != enc-
>cipher)
fatal (""%s: bad cipher name %s or pointer %p", _ func__,
enc->name, enc->cipher);

/* Mac structure */

mac->name = buffer_get string(&b, NULL);

it (mac->name == NULL || mac_init(mac, mac->name) == -1)
fatal (""%s: can not init mac %s', _ func__, mac->name);

mac->enabled = buffer_get_int(&b);

mac->key = buffer_get string(&b, &len);

it (Ien > mac->key_len)
fatal (""%s: bad mac key length: %u > %d', _ func__, len,

mac->key len);
mac->key len = len;

/* Comp structure */

comp->type = buffer_get_int(&b);
comp->enabled = buffer_get_int(&b);
comp->name = buffer_get string(&b, NULL);

len = buffer_len(&b);
it (len 1= 0)
error(‘'newkeys_from blob: remaining bytes 1in blob %u",
len);
buffer_free(&b);
return (newkey);

160

}

int
mm_newkeys_to_blob(int mode, u_char **blobp, u_int *lenp)
{

Buffer b;

int len;

Enc *enc;

Mac *mac;

Comp *comp;

Newkeys *newkey = newkeys[mode];

debug3(*'%s: converting %p", _ func__, newkey);

it (newkey == NULL) {

error("'%s: newkey == NULL", _ func_);
return O;

}

enc = &newkey->enc;

mac = &newkey->mac;

comp = &newkey->comp;

buffer_init(&b);

/* Enc structure */

buffer_put_cstring(&b, enc->name);

/* The cipher struct is constant and shared, you export pointer
*/

buffer_append(&b, &enc->cipher, sizeof(enc->cipher));

buffer_put_int(&b, enc->enabled);

buffer_put_int(&b, enc->block_size);

buffer_put_string(&b, enc->key, enc->key len);

packet get keyiv(mode, enc->iv, enc->block _size);

buffer_put_string(&b, enc->iv, enc->block_size);

/* Mac structure */

buffer_put_cstring(&b, mac->name);
buffer_put_int(&b, mac->enabled);
buffer_put_string(&b, mac->key, mac->key len);

/* Comp structure */
buffer_put_int(&b, comp->type);
buffer_put_int(&b, comp->enabled);
buffer_put_cstring(&b, comp->name);

len = buffer_len(&b);

if (Ienp "= NULL)
*lenp = len;

if (blobp '= NULL) {
*blobp = xmalloc(len);
memcpy(*blobp, buffer_ ptr(&b), len);

}

memset(buffer_ptr(&b), 0, len);
buffer_free(&b);

return len;

}

static void
161

mm_send_kex(

{

Buffer *m, Kex *kex)

buffer_put_string(m, kex->session_id, kex->session_id_len);
buffer_put_int(m, kex->we_need);
buffer_put_int(m, kex->hostkey type);
buffer_put_int(m, kex->kex_ type);

buffer_put _string(m, buffer_ptr(&kex->my), buffer_len(&kex->my));

buffer_put_string(m, buffer_ptr(&kex->peer),

>peer));

buffer_put_int(m, kex->flags);

buffer_put_cstring(m, kex->client version_string);
buffer_put_cstring(m, kex->server_version_string);

}

void

mm_send_keystate(struct monitor *pmonitor)

{
Buffer

u_char
u_int

u_int3
u_inté
buffer

if (1c

} else

}

ms3

*blob, *p;
bloblen, plen;

2 _t seqnr, packets;
4 t blocks;

—Init(&m);

ompat20) {

u_char iv[24];
u_char *key;

u_int ivlen, keylen;

buffer_len(&kex-

buffer_put_int(&m, packet get protocol flags());

buffer_put_int(&m, packet _get_sshl cipher());

debug3(*'%s: Sending sshl KEY+IV'", _ func_);
keylen = packet_get encryption_key(NULL);

key = xmalloc(keylen+1);

keylen = packet_get_encryption_key(key);

buffer_put_string(&m, key,
memset(key, 0, keylen);
xfree(key);

ivlen = packet_get_keyiv_len(MODE_OUT);
iv, ivlen);

packet_get_keyiv(MODE_OUT,
buffer_put_string(&m, iv,

ivlen = packet _get keyiv_len(MODE_OUT);

packet get keyiv(MODE_IN,
buffer_put_string(&m, iv,
goto skip;

{
/* Kex for rekeying */

/* add 1 if keylen == 0 */

keylen);

ivlen);

iv, ivlen);
ivlen);

mm_send_kex(&m, *pmonitor->m_pkex);

debug3(*'%s: Sending new keys: %p %p",
__func__, newkeys[MODE_OUT], newkeys[MODE_IN]);

162

/* Keys from Kex */
it (!mm_newkeys to blob(MODE_OUT, &blob, &bloblen))
fatal (""%s: conversion of newkeys failed”, _ func_);

buffer_put_string(&m, blob, bloblen);
xfree(blob);

if (Imm_newkeys to blob(MODE_IN, &blob, &bloblen))
fatal (""%s: conversion of newkeys failed”, _ func_);

buffer_put_string(&m, blob, bloblen);
xfree(blob);

packet_get_state(MODE_OUT, &seqnr, &blocks, &packets);
buffer_put_int(&m, seqgnr);

buffer_put_int64(&m, blocks);

buffer_ put_int(&m, packets);

packet_get_state(MODE_IN, &seqgnr, &blocks, &packets);
buffer_put_int(&m, seqgnr);

buffer_put_int64(&m, blocks);

buffer_put_int(&m, packets);

debug3(*'%s: New keys have been sent™, _ func_);

/* More key context */

plen = packet_get keycontext(MODE _OUT, NULL);
p = xmalloc(plen+1);
packet_get_keycontext(MODE_OUT, p);
buffer_put_string(&m, p, plen);

xFree(p);

plen = packet_get keycontext(MODE_ IN, NULL);
p = xmalloc(plen+1);
packet_get_keycontext(MODE_IN, p);
buffer_put_string(&m, p, plen);

xfree(p);

/* Compression state */

debug3(*'%s: Sending compression state'”, _ func_);
buffer_put_string(&m, &outgoing _stream, sizeof(outgoing stream));
buffer_put_string(&m, &incoming_stream, sizeof(incoming_stream));

/* Network 1/0 buffers */

buffer_put_string(&m, buffer_ptr(&input), buffer_len(&input));
buffer_put_string(&m, buffer_ptr(&output), buffer_len(&output));
/*MYSEA*/

//Change m recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ KEYEXPORT, &m);
debug3(*'%s: Finished sending state', func_);

buffer_free(&m);
}

int
mm_pty allocate(int *ptyfd, int *ttyfd, char *namebuf, int namebuflen)

Buffer m;
163

char *p;

int success = 0;

/*MYSEA: add socket structures*/

//int sockfd, length;

//struct sockaddr_un unix_addr, serv_addr;

//char path[] = "/tmp/";

buffer_init(&m);

/*MYSEA: Use Pipe instead of Socketpair*/

//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ PTY, &m);
/*MYSEA: set up sockets, but don"t connect until after the

message*/

//if ((sockfd = socket(AF_LOCAL, SOCK_STREAM, 0)) < 0)
/7{
// printf(*'Could not create child socket:

%s\n",strerror(errno));

//}

//memset(&unix_addr, 0, sizeof(unix_addr));
//unix_addr.sun_family = AF_LOCAL;

/*Set up child socket*/
//sprintf(unix_addr.sun_path,"%s%d", path, getpid());
//unlink(unix_addr.sun_path);

/*Bind the child®s socket*/

//if ((bind(sockfd, (struct sockaddr*) &unix_addr,
sizeof(unix_addr)) < 0))

/7

// printf(*'Could not bind child socket:

%s\n",strerror(errno));

&m);

0)

//}

//printfC'child:%s\n",unix_addr.sun_path);

/*MYSEA:initialize server socket, but don®"t connect*/
//memset(&serv_addr, 0, sizeof(serv_addr));
//serv_addr.sun_Tfamily = AF_LOCAL;
//sprintf(serv_addr.sun_path,"%s%d", path, getppid());

debug3(*'%s: waiting for MONITOR_ANS_PTY', _ func_);

//Change m _recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd, MONITOR_ANS PTY,

/*MYSEA: now call connect*/
//length = SUN_LEN(&serv_addr);
//1T ((connect(sockfd, (struct sockaddr*) &serv_addr, length)) <

/74
// printf(*'Could not connect from child: %s\n'",

strerror(errno));

//}

success = buffer_get_int(&m);

if (success ==
debug3(*'%s: pty alloc failed”, _ func_);
buffer_free(&m);
return (0);

}
p = buffer_get string(&m, NULL);
buffer_free(&m);

stricpy(namebuf, p, namebuflen); /* Possible truncation */
164

xFree(p);

/*MYSEA: use the new file descriptor*/
//Change both fds to sockfd

*ptyfd mm_receive_fd(pmonitor->m_recvfd);
*ttyfd mm_receive_fd(pmonitor->m_recvfd);

/*MYSEA: destroy the sockets now*/
//close(sockfd);
//unlink(unix_addr.sun_path);

/* Success */

return (1);

}
void
mm_session_pty cleanup2(void *session)
{
Session *s = session;
Buffer m;
if (s->ttyfd == -1)
return;
buffer_init(&m);
buffer_put_cstring(&m, s->tty);
/*MYSEA*/
//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ PTYCLEANUP, &m);
buffer_free(&m);
/* closed dup“ed master */
if (close(s->ptymaster) < 0)
error(‘'close(s->ptymaster): %s", strerror(errno));
/* unlink pty from session */
s->ttyfd = -1;
}
#ifdef USE_PAM
void
mm_start_pam(char *user)
{
Buffer m;
debug3(*'%s entering”, _ func_);
ifT (Yoptions.use_pam)
fatal (""UsePAM=no, but ended up in %s anyway', func_);
buffer_init(&m);
buffer_put_cstring(&m, user);
/*MYSEA*/
//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ PAM START, &m);
buffer_free(&m);
}
u_int

mm_do_pam_account(void)
165

Buffer m;
u_int ret;

debug3(*'%s entering'”, _ func_);
it (Yoptions.use_pam)
fatal (""UsePAM=no, but ended up in %s anyway', _ func_);

buffer_init(&m);

/*MYSEA*/

//Change m _recvfd to m_childsendfd

mm_request_send(pmonitor->m _recvfd, MONITOR_REQ PAM ACCOUNT, &m);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_PAM_ACCOUNT, &m);

ret = buffer_get int(&m);

buffer_free(&m);
debug3(*'%s returning %d", _ func__, ret);

return (ret);

}
void *
mm_sshpam_init_ctx(Authctxt *authctxt)
{
Buffer m;
int success;
debug3(*'%s', _ func_);
buffer_init(&m);
buffer_put_cstring(&m, authctxt->user);
/*MYSEA*/
//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ_ PAM_INIT_CTX,
&m);

debug3(*'%s: waiting for MONITOR_ANS_ PAM_INIT_CTX", _ func_);
//change m_recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_PAM_INIT_CTX, &m);
success = buffer_get int(&m);
if (success == 0) {
debug3(*'%s: pam_init_ctx failed”, _ func_);
buffer_free(&m);
return (NULL);
}
buffer_free(&m);
return (authctxt);

}

int
mm_sshpam_query(void *ctx, char **name, char **info,
u_int *num, char ***prompts, u_int **echo_on)

Buffer m;
int i, ret;

166

debug3(*'%s'", _ func_);
buffer_init(&m);
/*MYSEA*/
//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ PAM QUERY, &m);
debug3(*"%s: waiting for MONITOR_ANS PAM_QUERY", _ func_);
//Change m_recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_PAM_QUERY, &m);
ret = buffer_get int(&m);
debug3(*"%s: pam_query returned %d", _ func__, ret);
*name buffer_get_string(&m, NULL);
*info buffer_get_string(&m, NULL);
*num = buffer_get_int(&m);
*prompts = xmalloc((*num + 1) * sizeof(char *));
*echo_on = xmalloc((*num + 1) * sizeof(u_int));
for (i = 0; 1 < *num; ++i1) {
(*prompts)[i] = buffer_get string(&m, NULL);
(*echo_on)[i] = buffer_get_int(&m);

}
buffer_free(&m);

return (ret);

}

int
mm_sshpam_respond(void *ctx, u_int num, char **resp)
{

Buffer m;

int i, ret;

debug3(*'%s', _ func_);

buffer_init(&m);

buffer_put_int(&m, num);

for (i = 0; 1 < num; ++i)

buffer_put_cstring(&m, resp[i]);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m_recvfd, MONITOR_REQ PAM_RESPOND, &m);

debug3(*'%s: waiting for MONITOR_ANS_PAM_RESPOND', _ func_);

//Change m _recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_PAM_RESPOND, &m);

ret = buffer_get int(&m);

debug3(*'%s: pam_respond returned %d", _ func__, ret);

buffer_free(&m);

return (ret);

}

void
mm_sshpam_free_ ctx(void *ctxtp)

{
Buffer m;

debug3('%s', _ func_);
buffer_init(&m);
/*MYSEA*/

167

//Change m _recvfd to m_childsendfd

mm_request_send(pmonitor->m _recvfd, MONITOR_REQ PAM_ FREE CTX,
&m);

debug3(*'%s: waiting for MONITOR_ANS_ PAM_FREE_CTX', _ func_);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_PAM_FREE_CTX, &m);

buffer_free(&m);
}

#endift /* USE_PAM */

/* Request process termination */

void

mm_terminate(void)

{
Buffer m;
buffer_init(&m);
/*MYSEA*/
//Change m_recvfd to m_childsend
mm_request_send(pmonitor->m _recvfd, MONITOR_REQ TERM, &m);
buffer_free(&m);

}

int

mm_sshl_session_key(BIGNUM *num)

{

int rsafail;
Buffer m;

buffer_init(&m);

buffer_put_bignum2(&m, num);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m recvfd, MONITOR_REQ SESSKEY, &m);

//Change m recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_SESSKEY, &m);

rsafail = buffer_get int(&m);
buffer_get _bignum2(&m, num);

buffer_free(&m);

return (rsafail);

}

static void

mm_chall_setup(char **name, char **infotxt, u_int *numprompts,
char ***prompts, u_int **echo_on)

{

name = xstrdup("");

*infotxt = xstrdup(''");

*numprompts = 1;

*prompts = xmalloc(*numprompts * sizeof(char *));
*echo_on = xmalloc(*numprompts * sizeof(u_int));

168

(*echo_on)[0] = 0;
}

int

mm_bsdauth_query(void *ctx, char **name, char **infotxt,
u_int *numprompts, char ***prompts, u_int **echo_on)

{

Buffer m;
u_int success;
char *challenge;

debug3(*'%s: entering", _ func_);

buffer_init(&m);
/*MYSEA*/
//Change m _recvfd to m_childsendfd
mm_request_send(pmonitor->m _recvfd, MONITOR_REQ BSDAUTHQUERY,
&m);
//Change m_recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_BSDAUTHQUERY,
&m);
success = buffer_get_int(&m);
if (success == 0) {
debug3(*'%s: no challenge', _ func_);
buffer_free(&m);
return (-1);
}

/* Get the challenge, and format the response */
challenge = buffer_get string(&m, NULL);
buffer_free(&m);

mm_chall_setup(name, infotxt, numprompts, prompts, echo_on);
(*prompts)[0] = challenge;

debug3(*"%s: received challenge: %s'™, _ func__, challenge);

return (0);
}

int
mm_bsdauth_respond(void *ctx, u_int numresponses, char **responses)
{

Buffer m;

int authok;

debug3(*'%s: entering™, _ func_);
it (numresponses != 1)
return (-1);

buffer_init(&m);

buffer_put_cstring(&m, responses[0]);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m_recvfd, MONITOR_REQ_BSDAUTHRESPOND,
&m);

169

//Change m _recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_BSDAUTHRESPOND, &m);

authok = buffer_get int(&m);
buffer_free(&m);

return ((authok == 0) ? -1 : 0);
}

int

mm_skey query(void *ctx, char **name, char **infotxt,
u_int *numprompts, char ***prompts, u_int **echo_on)

{

Buffer m;

int len;

u_int success;

char *p, *challenge;

debug3(*'%s: entering”, _ func_);

buffer_init(&m);
/*MYSEA*/
//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ SKEYQUERY, &m);
//Change m _recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_SKEYQUERY,
&m);

success = buffer_get_int(&m);
if (success == 0) {

debug3(*"%s: no challenge'™, _ func_);

buffer_free(&m);

return (-1);
}

/* Get the challenge, and format the response */
challenge = buffer_get string(&m, NULL);
buffer_free(&m);

debug3(*'%s: received challenge: %s'", _ func__, challenge);
mm_chall_setup(name, infotxt, numprompts, prompts, echo_on);

len = strlen(challenge) + strlen(SKEY_PROMPT) + 1;
p = xmalloc(len);

stricpy(p, challenge, len);

stricat(p, SKEY_PROMPT, len);

(C*prompts)[0] = p;

xFree(challenge);

return (0);
}

int
mm_skey respond(void *ctx, u_int numresponses, char **responses)

{
170

Buffer m;
int authok;

debug3(*'%s: entering™, _ func_);
iT (numresponses != 1)
return (-1);

buffer_init(&m);

buffer_put_cstring(&m, responses[0]);

/*MYSEA*/

//Change m _recvfd to m_childsendfd

mm_request_send(pmonitor->m _recvfd, MONITOR_REQ SKEYRESPOND, &m);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_SKEYRESPOND, &m);

authok = buffer_get int(&m);
buffer_free(&m);

return ((authok == 0) ? -1 : 0);

}
void
mm_sshl_session_id(u_char session_id[16])
{
Buffer m;
int i;
debug3(*'%s entering”, _ func_);
buffer_init(&m);
for (i = 0; i < 16; i++)
buffer_put_char(&m, session_id[i]);
/*MYSEA*/
//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ SESSID, &m);
buffer_free(&m);
}
int
mm_auth_rsa key allowed(struct passwd “*pw, BIGNUM “*client_n, Key
**rkey)
{
Buffer m;
Key *key;
u_char *blob;
u_int blen;
int allowed = 0, have forced = 0;
debug3(*'%s entering'”, _ func_);
buffer_init(&m);
buffer_put_bignum2(&m, client_n);
/*MYSEA*/
//Change m_recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ RSAKEYALLOWED,
&m);

171

//Change m _recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd,

MONITOR_ANS_RSAKEYALLOWED, &m);

allowed = buffer_get_int(&m);

/* fake forced command */

auth_clear_options();

have forced = buffer_get_int(&m);

forced_command = have_forced ? xstrdup(*true') : NULL;

it (allowed && rkey 1= NULL) {
blob = buffer_get _string(&m, &blen);
if ((key = key from_blob(blob, blen)) == NULL)
fatal (""%s: key_from_blob failed”, _ func_);
*rkey = key;
xfree(blob);
}
mm_send_debug(&m) ;
buffer_free(&m);

return (allowed);

}
BIGNUM *
mm_auth_rsa_generate_challenge(Key *key)
{
Buffer m;
BIGNUM *challenge;
u_char *blob;
u_int blen;
debug3(*'%s entering”, _ func_);
iT ((challenge = BN_new()) == NULL)
fatal (""%s: BN_new failed", _ func_);
key->type = KEY_RSA; /* XXX cheat for key_to_blob */
if (key_to blob(key, &blob, &blen) == 0)
fatal ("%s: key_to_blob failed", _ func_);
key->type = KEY_RSA1;
buffer_init(&m);
buffer_put_string(&m, blob, blen);
xfree(blob);
/*MYSEA*/
//CHange m _recvfd to m_childsendfd
mm_request_send(pmonitor->m_recvfd, MONITOR_REQ RSACHALLENGE,
&m);

//Change m_recvfd to m_childrecvfd
mm_request_receive_expect(pmonitor->m_recvfd,

MONITOR_ANS_RSACHALLENGE, &m);

buffer_get bignum2(&m, challenge);
buffer_free(&m);

return (challenge);
172

}

int
mm_auth_rsa_verify response(Key *key, BIGNUM *p, u_char response[16])
{

Buffer m;

u_char *blob;

u_int blen;

int success = 0;

debug3(*'%s entering', _ func_);

key->type = KEY_RSA; /* XXX cheat for key_to_blob */
if (key_to blob(key, &blob, &blen) == 0)

fatal ("%s: key_to_blob failed", _ func_);
key->type = KEY_RSA1;

buffer_init(&m);

buffer_put_string(&m, blob, blen);

buffer_put_string(&m, response, 16);

xfree(blob);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m_recvfd, MONITOR_REQ RSARESPONSE, &m);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_RSARESPONSE, &m);

success = buffer_get_int(&m);
buffer_free(&m);

return (success);

}

#ifdef GSSAPI
OM_uint32
mm_ssh_gssapi_server_ctx(Gssctxt **ctx, gss_OID oid)
{
Buffer m;
OM_uint32 major;

/* Client doesn"t get to see the context */
*ctx = NULL;

buffer_init(&m);

buffer_put_string(&m, oid->elements, oid->length);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m_recvfd, MONITOR_REQ GSSSETUP, &m);

//Change m_recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_GSSSETUP, &m);

major = buffer_get_int(&m);

buffer_free(&m);
return (major);

173

}

OM_uint32

mm_ssh_gssapi_accept_ctx(Gssctxt *ctx, gss_buffer_desc *in,
gss_buffer_desc *out, OM_uint32 *flags)

{

Buffer m;
OM_uint32 major;
u_int len;

buffer_init(&m);

buffer_put_string(&m, in->value, in->length);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m_recvfd, MONITOR_REQ GSSSTEP, &m);

//Change m _recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_GSSSTEP, &m);

major = buffer_get_int(&m);
out->value = buffer_get string(&m, &len);
out->length = len;
it (Flags)
*flags = buffer_get _int(&m);

buffer_free(&m);

return (major);

}

int
mm_ssh_gssapi_userok(char *user)
{

Buffer m;

int authenticated = O;

buffer_init(&m);

/*MYSEA*/

//Change m_recvfd to m_childsendfd

mm_request_send(pmonitor->m_recvfd, MONITOR_REQ GSSUSEROK, &m);

//Change m _recvfd to m_childrecvfd

mm_request_receive_expect(pmonitor->m_recvfd,
MONITOR_ANS_GSSUSEROK,

&m);

authenticated = buffer_get int(&m);

buffer_free(&m);

debug3(*'%s: user %sauthenticated™, func__, authenticated ?
Ilnot Il);

return (authenticated);
}

#endit /* GSSAPI */

174

APPENDIX C: SSH DAEMON CONFIGURATION FILE

The purpose of this appendix is provide instructions on how to modify the SSH
daemon configuration files that will be used by the OpenSSH daemons running on the
XTS-400. Section A provides instructions on the modifications that need to be made.
Section B provides a sample configuration file. The key word MYSEA is used to
identify where the changes should occur.

A. SUMMARY OF REQUIRED CHANGES
There are six lines in the sshd_config file that need to be changed.

The first line is the Protocol option. Remove the ‘#’ from the beginning of the
line and remove the 1. The line should look like the line in the sshd_config file provided.

The next line is the ListenAddress Option. Remove the ‘#” from the beginning of
the line and change the 0.0.0.0 IP address to the IP address assigned to the network

interface.

The next option is PasswordAuthentication. Remove the ‘#’ from the beginning

of the line and change the yes to no. Refer to the sample file provided.
The next line has the PrintMotd option. Remove the ‘#” and change the yes to no.
The next line is PrintLastLog. Remove the ‘#’ and change the yes to no.

The next line is the UsePrivilegeSeparation. Remove the ‘#’ and change the yes

to no.

Refer to the sample configuration file below.

B. SAMPLE CONFIGURATION FILE
$0penBSD: sshd_config,v 1.65 2003/08/28 12:54:34 markus Exp $

This is the sshd server system-wide configuration Ffile. See
sshd_config(5) for more information.

This sshd was compiled with
PATH=/usr/bin:/bin:/usr/sbin:/sbin:/home/cherbig/bin

The strategy used for options in the default sshd _config shipped with
OpenSSH i1s to specify options with their default value where

possible, but leave them commented. Uncommented options change a

default value.

175

#MYSEA: uncomment the option for Protocol and use only 2 as shown.
#MYSEA: uncomment the ListenAddress option and change the 0.0.0.0 to
the 1P address of the network interface that this daemon will listen
#to.

#Port 22

Protocol 2

ListenAddress 192.168.100.22
#ListenAddress ::

HostKey for protocol version 1

#HostKey /home/cherbig/etc/ssh_host key

HostKeys for protocol version 2

#HostKey /home/cherbig/etc/ssh_host _rsa_key
#HostKey /home/cherbig/etc/ssh_host dsa_ key

Lifetime and size of ephemeral version 1 server key
#KeyRegenerationlnterval 1h
#ServerKeyBits 768

Logging

#obsoletes QuietMode and FascistlLogging
#SyslogFacility AUTH

#LogLevel INFO

Authentication:

#LoginGraceTime 2m
#PermitRootLogin yes
#StrictModes yes

#RSAAuthentication yes
#PubkeyAuthentication yes
#AuthorizedKeysFile -ssh/authorized_keys

For this to work you will also need host keys in
/home/cherbig/etc/ssh_known_hosts
#RhostsRSAAuthentication no

similar for protocol version 2

#HostbasedAuthentication no

Change to yes if you don"t trust ~/.ssh/known_hosts for
RhostsRSAAuthentication and HostbasedAuthentication
#lgnoreUserkKnownHosts no

Don"t read the user"s ~/.rhosts and ~/.shosts files
#1gnoreRhosts yes

#MYSEA: Uncomment the PasswordAuthentication option and change the yes
o no.

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication no
#PermitEmptyPasswords no

Change to no to disable s/key passwords
#Chal lengeResponseAuthentication yes

Kerberos options
176

#KerberosAuthentication no
#KerberosOrLocalPasswd yes
#KerberosTicketCleanup yes

GSSAPI options
#GSSAPIAuthentication no
#GSSAPICleanupCreds yes

Set this to "yes"™ to enable PAM authentication (via challenge-
response)

and session processing. Depending on your PAM configuration, this may
bypass the setting of "PasswordAuthentication”®

#UsePAM no

#MYSEA: uncomment PrintMotd, PrintLastLog and UsePrivilegeSeparation
and change the options to no.
#AllowTcpForwarding yes
#GatewayPorts no
#X11Forwarding no
#X11DisplayOffset 10
#X11lUselLocalhost yes

PrintMotd no

PrintLastLog no

#KeepAlive yes

#UselLogin no
UsePrivilegeSeparation no
#PermitUserEnvironment no
#Compression yes
#ClientAlivelnterval 0O
#ClientAliveCountMax 3

#UseDNS yes

#PidFile /var/run/sshd.pid
#MaxStartups 10

no default banner path
#Banner /some/path

override default of no subsystems

Subsystem sftp /home/cherbig/libexec/sftp-server

177

THIS PAGE INTENTIONALLY LEFT BLANK

178

APPENDIX D: KEY GENERATION, CONVERSION AND STORAGE

This appendix provides instructions on key generation and conversion for use
with the public key authentication mechanism in OpenSSH. Keys may be generated on
the XTS-400 by the system administrator or by the users on their personal Windows or
Linux machines. The Secure Attention Key (SAK) on the XTS-400 console is the “alt”
and “Print Screen” keys pressed together.

A. XTS-400 GENERATED KEYS
This procedure assumes that all user home directories are at min:il3. (level

$HOME = sl1:il3) Only perform these steps for users that will be granted remote access

to the system.
On the XTS-400, login as admin with a session level of min:max.
1. Create a directory called “.ssh” directly under the user’s home directory
Issue SAK
Type fsm
Type mkdir
For path enter: /home/<username>/.ssh
Type no for deflection directory
Type change
For path enter: /home/<username>/.ssh
Type yes to modify mandatory access levels.
Enter “min” for security level and “il3” for integrity level

Change the name of the owner from admin to the username of the user’s

directory.
Change the name of the group to the user’s default group.
Answer yes to change discretionary access

Enter: rwx for owner
179

Hit enter for specific user
Type none for group

Hit enter for specific group
Type none for others

Type no for display object.
Type yes for okay to change.
Type exit

2. This step is used to generate the keys for the users. Only one pair of keys
can be generated for one user at a time. Before generating a new pair of keys for another
user, complete step 6, then start from step 1.

Issue SAK

Change levels to min:il3.

Issue SAK

Type run.

cd to the “/usr/local/src/bin” directory.
Type: ssh-keygen —t dsa —f ./id_dsa

Enter a passphrase. Reenter to confirm the passphrase. Write this down

to give to the user.
Two files have been created: “id_dsa” and “id_dsa.pub”.
Move the “id_dsa” file to disk by using mcopy:
mcopy id_dsa a:id_dsa
Verify that the file has been copied to disk with the mdir command.
3. Issue SAK.
Set levels to min:max.

Issue SAK
180

Use fsm to copy the two files, “/usr/local/src/bin/id_dsa” and
“/usr/local/src/bin/id_dsa.pub” over to the user’s “.ssh” directory created

earlier.
Issue SAK
Type sl
Type min for the security level
Type max for the integrity level
Type yes for is the level correct.
Issue SAK
Type fsm
Type copy
Enter /usr/local/src/bin/id_dsa.pub as the input pathname

Enter <path to user’s home directory>/.ssh/id_dsa.pub as the
output pathname

Type yes for create output file
Type copy
Enter /usr/local/src/bin/id_dsa as the input pathname

Enter <path to user’s home directory>/.ssh/id_dsa as the output
pathname

The keys that are in the /usr/local/src/bin directory may now be deleted.
Type delete
Enter /usr/local/src/bin/id_dsa.pub as the input pathname
Type no to display the object
Type yes to delete it

Type delete

181

Enter /usr/local/src/bin/id_dsa as the input pathname
Type no to display the object
Type yes to delete the file.

Use fsm’s change command to change the ownership and discretionary

permission of the files.

Type change

Enter the path: /home/<username>/.ssh/id_dsa

Type no to modify mandatory access levels. (the levels should be min:il3)
Enter the username of the user for the owner

Enter the group name of the user’s default group for the group

Type yes for change discretionary permissions

Type rw for owner

Hit enter for specific user

Type none for group

Hit enter for specific group

Type none for others

Type no to display

Types yes for okay to change.

Type change

Enter the path :/home/<username>/.ssh/id_dsa.pub

Type no to modify mandatory access levels. (the levels should be min:il3)
Enter the username of the user for the owner

Enter the group name of the user’s group for the group

Type yes for change discretionary permissions

182

Type rw for owner

Hit enter for specific user
Type r for group

Hit enter for specific group
Type r for others

Type no to display

Types yes for okay to change.

6. Use fsm to copy the “id_dsa.pub” file to the same directory but rename it

“authorized_keys2”.

After the file has been created, change the ownership and permissions to
match that of the “id_dsa.pub” file. Repeat step 5 substituting
authorized_keys?2 for id_dsa.pub

B. PUTTY CONVERSION OF KEYS FROM XTS-400
For users who do not want to generate their own keys, the keys generated

on the XTS-400 must be converted before use.
Take the id_dsa file provided by the administrator.
Double click on puttygen.

From the Conversions menu, select Import Key

Choose the file provided from the administrator (the file name should be
id_dsa).

The user will be asked to enter the passphrase for the key. The
administrator should have given them the passphrase.

The key should successfully be imported.
Click on Save private key.

Enter a file name of any kind. Save the key to a secure location, a network
drive or a USB drive.

183

Click save.
When connecting using PUTTY, specify this new key and not the old one.
The old key that the system administrator gave to the user may be deleted.

Safeguard the new private key. When attempting to use the key, the
passphrase will be required.
C. PUTTY GENERATED KEYS
For users who want to generate their own keys, they can use PUTTY’s puttygen to

generate keys.

On a windows machine that has PUTTY installed. Double click on the puttygen

icon. This will open a window.
Select the “SSH2 DSA” radio button in the parameters section of the window.
The number of bits should be 1024.
Click on the “Generate” button in the actions section of the window.
Follow the instructions for moving the mouse to help generate some randomness.

Enter a passphrase in the “Key Passphrase” field in the “key” section of the

window. Reenter the passphrase in the “Confirm passphrase” field.

Click on the Save Public Key and Save Private Key buttons in the Actions

section.
Go to the “Conversions” menu and select “Export OpenSSH Key”.
For the name of the file to save enter: “id_dsa.pub” and click on Save.

This file should be moved to disk or CD and given to the Administrator of the
XTS-400.

The Private key should be used when connecting to the XTS-400.

The Administrator should use mcopy to copy the key file from the disk that the
user has provided to the /usr/local/src/bin directory.

Repeat steps 1, 3, 5, and 6 from section A of this Appendix. In step 3, do not

attempt to copy the id_dsa file.
184

D. OPENSSH GENERATED KEYS ON LINUX
Login to Linux system under a normal user account, not the root user account.

Open a terminal.
Type the command:
ssh-keygen —t dsa
Enter a passphrase when prompted.
Reenter passphrase to confirm.

This will create a directory called “.ssh” directly under the user’s home directory
and there will be two files in that directory: “id_dsa.pub” and “id_dsa”.

Copy the “id_dsa.pub” file to disk and give to the Administrator of the XTS-400.

The Administrator should use mcopy to copy the key file from the disk that the

user has provided to the /usr/local/src/bin directory.

Repeat steps 1, 3, 5, and 6 from section A of this Appendix. In step 3, do not
attempt to copy the id_dsa file (it should not be on the disk).
E. LINUX INSTALLATION OF KEYS FROM XTS-400

Take the private key file from the administrator. Copy the file over to the user’s
.ssh directory under their home directory. If the floppy drive is mounted as /mnt/floppy,

then use the following command:

cp /mnt/floppy/id_dsa $HOME/.ssh/id_dsa

185

THIS PAGE INTENTIONALLY LEFT BLANK

186

APPENDIX E: TOOLS

This appendix provides instructions on how to use the SSH clients and
information on the other tools used in this project Section A describes how to use the
two types of OpenSSH clients used for testing to connect to the XTS-400. Section B
describes the tools used for development.

A. TESTING TOOLS

1. OpenSSH Client on Linux

The OpenSSH client on Linux and UNIX systems can be used to connect to the
ported OpenSSH on the XTS-400.

Make sure that each user has generated a DSA key pair. Refer to section D in
Appendix D for instructions on how to generate DSA key pairs. The public key must be
installed on the XTS-400 prior to login attempts.

To connect, use the command:

ssh username@<host name or IP address>

When prompted, enter the passphrase for the private key.
If the login succeeds, a shell prompt is returned.

If the login fails, a message appears stating that the connection to the host was

closed.

To exit, do not type exit or logout. Use the key sequence of a tilde and a period to

close the connection:

2. Putty

Make sure the PUTTY client is installed on the Windows machine. Refer to
section C in Appendix A for instructions on how to install PuUTTY. Make sure that the
user has a private key that corresponds to the public key installed on the XTS-400. Refer
to Appendix D for instructions on how to generate keys and install the public key on the
XTS-400.

187

Double click on the PUTTY icon. This opens the PUTTY configuration window.
In the Host Name field, enter the host name or IP address of the XTS-400.

Click on the “Auth” option under the SSH category on the lower left side of the
Window. Click on the “Browse” button to select the private key file. A new “Open File”

dialog box is presented. Locate the private key file and click on the “Open” button.
Click on the “Open” button in the PUTTY configuration window.
This will open a terminal.
Enter a username when prompted for one.
Enter the passphrase of the private key when asked.
A shell is returned.

To exit, close the window by clicking on the ‘X’ in the top right corner of the

window.
B. DEVELOPMENT TOOLS
1. Fedora core 1 linux

This distribution of Linux was used as a hands-on experimentation system. The
experiments conducted on this system were used to provide baseline behaviors and
results that were then compared to the behaviors and results produced by conducting
experiments on the XTS-400. Fedora Linux can be downloaded from

http://fedora.redhat.com.

2. Linux Cross Reference

This tool works with a web-server to display C program files as web pages. All
identifiers are treated as links. This makes source code navigation easier by allowing the
user to treat the source code directory as a website. All variables and functions are
treated as links, allowing users to quickly navigate to the specific line in the specific file
where the variable or function is defined. This tool may be downloaded from

http://sourceforge.net/projects/Ixr. This tool was installed in the Fedora Core 1 Linux

system mentioned earlier.

188

This tool requires that a web-server be installed on the system as well. Apache
2.0 was also installed on the Fedora Linux system. Apache can be downloaded from

http://www.apache.org.

189

THIS PAGE INTENTIONALLY LEFT BLANK

190

APPENDIX F: TEST PROCEDURES

The purpose of this appendix to provide the testing procedures used in the tests as
described in Chapter IV. The Secure Attention Key (SAK) on the XTS-400 console is

the “alt” and “Print Screen” keys pressed together.

Three user accounts must be created for these tests: demo, cherbig and testuser.
The username, cherbig, may be changed to testuser2. In this case all references to
cherbig should be changed to testuser2. Their default session levels should be min:il3.
The mandatory access levels of their home directories should be min:il3. Each user
account should have a public and private key. Refer to Appendix D for instructions on
how to create and install keys.
1. MAC POLICY ENFORCEMENT

Login at the console as the demo user at default session level.

Create the following directories with mkdir as specified by the directory name
column in the table.

Directory Name Mandatory Levels
sl0il3 sl0:il3
sI1il3 sI1:il13
sl2il3 sl2:il3
sI3il3 sI3:il3
sl4il3 sl4:il3
sI1il0 sI1:il0
sl1ill sl1:ill
sl1il2 sl1:il2

Table 25. MAC Policy Test Directories
Create the following files with vi typing a short text message in each:

191

Filename Mandatory Levels Directory
test_slOil3.txt sl0:il3 sl0il3
test sl1il3.txt sI1:il3 sI1il3
test_sl2il3.txt sl2:i13 sl2il3
test_sl3il3.txt sI3:il3 sI3il3
test_sl4il3.txt sl4:il3 sl4il3
test_sl1ilO.txt sI1:il0 sI1il0
test_sllill.txt sl1:ill sllill
test_sl1il2.txt sl1:il2 sl1il2

Issue SAK.

Type fsm.

Use the change command in fsm to change the mandatory levels of the above files
to their respective levels. Use the Table 26 to identify which levels to associate with the
appropriate files. Make sure all permissions are turned on for all files and directories.

This can be done through the change command in fsm when changing the levels.

Use the change command in fsm to change the mandatory levels of the

directories. Use the above tables to specify the correct mandatory level for each

directory.

Table 26. MAC Policy Test Files

Reattach to default session level

For tests a25 and a29:

Create a directory called slloss.

Create a file with vi called test_sl1oss.txt in the slloss directory.

Issue SAK

Type fsm.

192

Use the change command in fsm to upgrade the level of the home directory to
min:oss. Now upgrade the “sl1oss” directory and “test_slloss.txt” file to min:oss. Only

run Tests a25 and a29 after the other MAC tests have been completed.

Refer to Table 3 in Chapter 1V to see what session level to login at through
OpenSSH and what command to use on the file with the appropriate levels. For read
operations, use more followed by the filename. For write operations use vi followed by

the filename. When trying to save, do a normal *“:wq”, do not override with an “!’.

When this suite of tests is concluded, use fsm to change the levels of the
slloxx.txt file and the user’s home directory, and the slloss directory back to the default
levels. This step must be followed before proceeding onto any other tests.

2. DAC POLICY ENFORCEMENT
Login at regular session level as the cherbig user.

Create a directory called “dactests”
Issue SAK
Use fsm to change the mandatory levels of the “dactests” directory to sl1:il3.
Login at sl1:il3 at the console
Create the following files with vi, typing a short text message in each:
test_ogarwx.txt
test_ogrwx.txt
test_orwx.txt
test_orw.txt
test_or.txt
test_none.txt
dtest_ogarwx.txt
dtest_ogrwx.txt

dtest_orwxgrw.txt

193

dtest_orwxgr.txt
dtest_orwx.txt
atest_grwx.txt

Issue the following commands:
chmod 777 test_ogarwx.txt
chmod 770 test_ogrwx.txt
chmod 700 test_orwx.txt
chmod 600 test_orw.txt
chmod 400 test_or.txt
chmod 000 test_none.txt
chmod 777 dtest_ogarwx.txt
chown demo dtest_ogarwx.txt
chmod 770 dtest_ogrwx.txt
chown demo dtest_ogrwx.txt
chmod 760 dtest_orwxgrw.txt
chown demo dtest_orwxgrw.txt
chmod 740 dtest_orwxgr.txt
chown demo dtest_orwxgr.txt
chmod 700 dtest_orwx.txt
chown demo dtest_orwx.txt
chmod 070 atest_grwx.txt
chgrp stop atest_grwx.txt

chown demo atest_grwx.txt

194

Use vi to create a C-program, “test.c”. This program should be the typical “hello

world” program.
Compile the program: gcc —c test.c
Build the program: gcc —o test test.o
Issue the following commands:
cp test test_ogarwx
chmod 777 test_ogarwx
cp test test_ogrwx
chmod 770 test_ogrwx
cp test test_orwx
chmod 700 test_orwx
cp test test_orw
chmod 600 test_orw
cp test test_or
chmod 400 test_or
cp test test_none
chmod 000 test_none
cp test dtest_ogarwx
chmod 777 dtest_ogarwx
chown demo dtest_ogarwx
cp test dtest_ogrwx
chmod 770 dtest_ogrwx
chown demo dtest_ogrwx

cp test dtest_orwxgrw

195

chmod 740 dtest_orwxgr
chown demo dtest_orwxgr
cp test dtest_orwxgr
chmod 760 dtest_orwxgrw
chown demo dtest_orwxgrw
cp test dtest_orwx

chmod 700 dtest_orwx
chown demo dtest_orwx
Cp test atest_grwx

chmod 070 atest_grwx
chgrp stop atest_grwx
chown demo atest_grwx.

Refer to Table 5 in Chapter IV for the tests to be performed. Login as the cherbig
user at the sl1:il3 network interface. For read operations, use more followed by the
filename. For write operations use vi followed by the filename. When trying to save, do
a normal :wq, do not override with an ‘I’. For execute tests, type “./<executable
filename>
3. TPE TESTING WITH FILES CREATED BY OPENSSH

Login at the console at default level as the demo user.

Create a directory called “public_html|”:
mkdir public_html

Change permissions by:
chmod 755 public_html

Change to that directory
cd public_html

Create the following directories
196

mkdir unclass
mkdir secret
mkdir topsecret
Issue SAK
Use fsm to change the mandatory levels of the following directories:
unclass = sl1:il3
secret = sl2:il3
topsecret = sl3:il3
Login through OpenSSH at each network and try to create a file in each directory.

Login through the TPE at each level and try to view the files created through the
web-browser.
4, TPE TESTING WITH FILES MODIFIED BY OPENSSH

Login at the console, as the demo user, at each network level (sl1:il3, sl2:il3,

sI3:i13) and create a file in the respective directory under the “public_html” directory.

Login through OpenSSH at each network and modify the file for the

corresponding network.

Login through the TPE at each network level and try to view the files through the
web-browser.
5. SINGLE LEVEL LAN - SIMULTANEOUS USER LOGINS

Ensure that there is a *“.ssh” directory under each user’s home directory on the
XTS-400 and that within that directory there is a file named “authorized_keys2” that
holds the user’s public key. Refer to Appendix D for instructions on key generation and

installation.

Connect three clients to the switch or network. Make sure they are on the proper
subnet.

Use each client, as a different user, to connect to the same daemon on the same

network.

197

6. MULTIPLE SINGLE LEVEL LANS - SIMULTANEOUS USER LOGINS
Repeat the above procedure, but make sure that each client machine is on a
different LAN and connects to a different daemon.

7. PUBLIC-KEY AUTHENTICATION
Connect one client to the network. Any user may be used for this test.

Attempt to login with a valid username and a valid private key with a valid

passphrase

Attempt to login with a valid username, a valid private key and the wrong

passphrase

Attempt to login with a valid username with the wrong private key file. This can
be done in PUTTY by selecting the “auth” category on the left hand side of the
configuration window. Next specify a private key file by using the browse button. Make
sure that the private key does not correspond to the user’s public key stored in the

“authorized_key2” file.

Attempt to login with an invalid username. Choose any key file, but make sure
that the user does not exist on the system.
8. MISCELLANEOUS TESTS

Login at the console as admin

Set levels to max:max.
Type ua_edit
Add a user to the system.

Edit the /etc/passwd file to include the user’s username, user 1D, group 1D, home

directory and shell.

Before creating a directory, try logging in though OpenSSH. This attempt should
fail.

After creating a directory and installing the “authorized_keys2” file, use FSM to

revoke all permissions on the home directory.
Try logging in through OpenSSH. This attempt should fail.
198

Use fsm to restore the permissions to the home directory. Use the change
command in fsm to set the secrecy level of the home directory to sl2. Change the levels
of the following files and directories in the following order: authorized keys2, id_dsa,

id_dsa.pub, .ssh, then the home directory.

Try logging in through OpenSSH. This attempt should fail.

199

THIS PAGE INTENTIONALLY LEFT BLANK

200

[BARO1]

[BEL76]

[BIB77]

[DIG04]

[DIG03a]

[DIG03b]

[DIG03c]

[IRV04]

[LAM74]

[SSHO04]

[SSLO4]

LIST OF REFERENCES

Barrett, D. J., & Silverman, R. E. (2001). SSH: The Secure Shell.
Sebastopol, CA: O’Reilly.

Bell, D.E. & La Padula, L.J. (1976). Secure Computer System: Unified
Exposition and Multics Interpretation. ESD-TR-75-306. Mitre
Corporation, Bedford, MA.

Biba, K.J. (1977). Integrity Considerations for Secure Computer Systems.
ESD-TR-76-372. Mitre Corporation, Bedford, MA.

DigitalNet Government Solutions, LLC. (2004). Security Target. Version
1.7 for XTS-400, Version 6.0.E. Available: http://niap.nist.gov/cc-
scheme/st/ST-VID3012-ST.pdf. Accessed: 12 December 2004.

DigitalNet Government Solutions, LLC. (2003). XTS-400: Programmer’s
Guide. XTDOCO0006-02. Herndon, VA.

DigitalNet Government Solutions LLC. (2003). XTS-400: Trusted Facility
Manual. XTDOC0004-02. Herndon, VA.

DigitalNet Government Solutions, LLC. (2002). XTS-400: User’s
Manual. XTDOCO0005-02. Herndon, VA.

Irvine, C. E., Levin, T. E., Nguyen, T. D., Shifflett, D., Khosalim, J.,
Clark, P. C., Wong, A., Afinidad, F., Bibighaus, D., & Sears, J.
(2004). *“Overview of a High Assurance Architecture for
Distributed Multilevel Security.” Proceedings of the 5" IEEE

Systems, Man and Cybernetics Information Assurance Workshop,
38-45.
Lampson, B. W. (1974). “Protection”. Proc. Fifth Symposium on

Information Sciences and Systems. Reprinted in Operating

Systems Review, 8, 1 January 1974. pp.18-24

OpenSSH (2004, September). Available: http://www.openssh.org.
Accessed: December 15, 2004

OpenSSL (2004, November). Available: http://www.openssl.org.
Accessed: December 15, 2004

201

[PRO03]

[SALT5]

[STE93]

[TAT04]

Provos, N., Friedl, M., & Honeyman, P. (2003). “Preventing Privilege
Escalation”. The 12" USENIX Security Symposium.
Saltzer, J. H., & Schroeder, M. D. (1975). “The Protection of Information

in an Information System”. Fourth ACM Symposium on

Operating System Principles.
Stevens, W. R. (1993). Advanced Programming in the UNIX

Environment. Indianapolis, IN: Addison-Wesley.

Tatham, S. (2004). PuTTY: A Free Telnet/SSH Client. Available:
http://www.chiark.greeenend.org.uk/~sgtathum/putty/. Accessed:
December 15, 2004

202

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, VA

Dudley Knox Library
Naval Postgraduate School
Monterey, CA

Dr. Diana Gant
National Science Foundation
Arlington, VA

Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

Chris Herbig

Civilian, Naval Postgraduate School
Monterey, CA

203

	I. INTRODUCTION
	A. MOTIVATION OF STUDY
	B. PURPOSE OF STUDY
	C. ORGANIZATION OF PAPER

	II. BACKGROUND
	A. ARCHITECTURAL BACKGROUND
	1. MYSEA Project
	2. OpenSSH
	a. Overview of OpenSSH
	b. SSH Clients
	c. Authentication
	d. Modes of Operation

	B. PORTING BACKGROUND
	1. BSD Discussion
	2. XTS-400

	C. SOFTWARE DEPENDENCIES
	1. Zlib
	2. OpenSSL
	3. Entropy Gathering Daemon
	4. MYSEA Libraries

	III. INTEGRATION OF OPENSSH ONTO THE XTS-400
	A. GOALS
	B. METHODOLOGY
	C. PORTING RESULTS
	D. CHALLENGES ENCOUNTERED
	1. System Features
	2. System Functions
	3. System Files
	4. Environment

	IV. INTEGRATION TESTING
	A. DEVELOPMENTAL TESTING
	1. Test Plan
	a. MAC Policy Enforcement
	b. DAC Policy Enforcement
	c. TPE Testing with Files Created by OpenSSH
	d. TPE Testing with Files Modified by OpenSSH
	e. Single Level LAN – Simultaneous User Logins
	f. Multiple Single Level LANs – Simultaneous User Logins
	g. Public Key Authentication Tests
	h. Miscellaneous Tests

	2. Test Validation Report
	a. MAC Policy Enforcement Test Validation Results
	b. DAC Policy Enforcement Test Validation Results
	c. TPE Testing with File Created by OpenSSH Test Validation
	d. TPE Testing with Files Modified by OpenSSH Test Validatio
	e. Single Level LAN – Simultaneous User Logins Test Validati
	f. Multiple Single Level LANs – Simultaneous User Logins Tes
	g. Public Key Authentication Test Validation Results
	h. Miscellaneous Test Validation Results

	B. MLS TEST BED TESTING
	1. Test Plan
	a. TPE Testing with Files Created by OpenSSH
	b. TPE Testing with Files Modified by OpenSSH
	c. Single Level LAN – Simultaneous User Logins
	d. Multiple Single Level LANs – Simultaneous User Logins
	e. Public Key Authentication Tests

	V. CONCLUSION
	A. SUMMARY
	B. LESSONS LEARNED
	C. FUTURE WORK

	APPENDIX A: SOFTWARE INSTALLATION
	A. SUPPORT SOFTWARE
	1. Entropy Gathering Daemon
	2. Zlib compression libraries and tools
	a. Installation Instructions

	3. OpenSSL Encryption Libraries and Tools
	a. Installation Instructions

	B. OPENSSH
	C. PUTTY INSTALLATION

	APPENDIX B: SOURCE CODE LISTING
	A. DEFINES.H
	B. SESSION.C
	C. SSHD.C
	D. UIDSWAP.C
	E. MONITOR.C
	F. MONITOR_WRAP.C

	APPENDIX C: SSH DAEMON CONFIGURATION FILE
	A. SUMMARY OF REQUIRED CHANGES
	B. SAMPLE CONFIGURATION FILE

	APPENDIX D: KEY GENERATION, CONVERSION AND STORAGE
	A. XTS-400 GENERATED KEYS
	B. PUTTY CONVERSION OF KEYS FROM XTS-400
	C. PUTTY GENERATED KEYS
	D. OPENSSH GENERATED KEYS ON LINUX
	E. LINUX INSTALLATION OF KEYS FROM XTS-400

	APPENDIX E: TOOLS
	A. TESTING TOOLS
	1. OpenSSH Client on Linux
	2. Putty

	B. DEVELOPMENT TOOLS
	1. Fedora core 1 linux
	2. Linux Cross Reference

	APPENDIX F: TEST PROCEDURES
	1. MAC POLICY ENFORCEMENT
	2. DAC POLICY ENFORCEMENT
	3. TPE TESTING WITH FILES CREATED BY OPENSSH
	4. TPE TESTING WITH FILES MODIFIED BY OPENSSH
	5. SINGLE LEVEL LAN – SIMULTANEOUS USER LOGINS
	6. MULTIPLE SINGLE LEVEL LANS – SIMULTANEOUS USER LOGINS
	7. PUBLIC-KEY AUTHENTICATION
	8. MISCELLANEOUS TESTS

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

