
Altibase Administration

General Reference

Release 5.5.1

January 15, 2013

Altibase Administration General Reference

Release 5.5.1

Copyright © 2001~2012 Altibase Corporation. All rights reserved.

This manual contains proprietary information of Altibase® Corporation; it is provided under a license agreement containing restric-
tions on use and disclosure and is also protected by copyright patent and other intellectual property law. Reverse engineering of the
software is prohibited.

All trademarks, registered or otherwise, are the property of their respective owners

Altibase Corporation

10F, Daerung PostTower II, 182-13,

Guro-dong Guro-gu Seoul, 152-847, Korea

Telephone: +82-2-2082-1000 Fax: 82-2-2082-1099

E-mail: support@altibase.com www: http://www.altibase.com

iii

Contents

Preface ... i
About This Manual ..ii

1. Data Types ..1
1.1 Overview..2
1.2 Character Data Types ..8
1.3 Numeric Data Types ... 12
1.4 Date Data Types ... 24
1.5 Binary Types... 38
1.6 LOB Data Type .. 42
1.7 Spatial Types.. 45

2. ALTIBASE HDB Properties ...47
2.1 Configuration.. 48
2.2 Database Initialization Properties.. 57
2.3 Performance Properties ... 99
2.4 Session Properties ...135
2.5 Time-Out Properties ...144
2.6 Transaction Properties...155
2.7 Backup and Recovery Properties ...158
2.8 Replication Properties..164
2.9 Message Logging Properties...181
2.10 Database Link Related Properties ...205
2.11 DataPort Properties ..210
2.12 Other Properties ..212

3. The Data Dictionary ...219
3.1 Meta Tables..220
3.2 Performance Views ...286

4. The Sample Schema ...443
4.1 Information about the Sample Schema ..444
4.2 Entity-Relationship (ER) Diagram and Sample Data ...447

Preface
i Preface

About This Manual
About This Manual
This manual describes the concepts and architecture of ALTIBASE® HDB™. This manual also explains
to administrators how to manage their databases.

Audience

This manual has been prepared for the following users of ALTIBASE HDB:

• database administrators

• application developers

• programmers

It is recommended that those reading this manual possess the following background knowledge:

• basic knowledge in the use of computers, operating systems, and operating system utilities

• experience in using relational databases and an understanding of database concepts

• computer programming experience

Software Environment

This manual has been prepared assuming that ALTIBASE HDB 5.5.1 will be used as the database
server.

Organization

This manual has been organized as follows:

• Chapter1: Data Types

This chapter explains the data types that are supported in ALTIBASE HDB.

• Chapter2: ALTIBASE HDB Properties

This chapter lists the ALTIBASE HDB properties.

• Chapter3: The Data Dictionary

This chapter describes the specification of the ALTIBASE HDB data dictionary. The data diction-
ary of ALTIBASE HDB comprises meta tables, in which information about objects is stored, and
process tables, in which information about processes is stored.

• Chapter4: The Sample Schema

This chapter describes the example table information, ER diagrams and sample data.

Documentation Conventions
General Reference ii

About This Manual
This section describes the conventions used in this manual. Understanding these conventions will
make it easier to find information in this manual and other manuals in the series.

There are two sets of conventions:

• syntax diagram conventions

• sample code conventions

Syntax Diagram Conventions

This manual describes command syntax using diagrams composed of the following elements:

Elements Meaning

Indicates the start of a command. If a syntactic element starts
with an arrow, it is not a complete command.

Indicates that the command continues to the next line. If a
syntactic element ends with this symbol, it is not a complete
command.

Indicates that the command continues from the previous line.
If a syntactic element starts with this symbol, it is not a com-
plete command.

Indicates the end of a statement.

Indicates a mandatory element.

Indicates an optional element.

Indicates a mandatory element comprised of options. One,
and only one, option must be specified.

Reserved
word

;

NOT

ADD

DROP
iii Preface

About This Manual
Sample Code Conventions

The code examples explain SQL statements, stored procedures, iSQL statements, and other com-
mand line syntax.

The following table describes the printing conventions used in the code examples.

Indicates an optional element comprised of options.

Indicates an optional element in which multiple elements may
be specified. A comma must precede all but the first element.

Elements Meaning

ASC

DESC

,

ASC

DESC

Rules Meaning Example

[] Indicates an optional item. VARCHAR [(size)] [[FIXED |]
VARIABLE]

{ } Indicates a mandatory field for
which one or more items must be
selected.

{ ENABLE | DISABLE | COMPILE }

| A delimiter between optional or
mandatory arguments.

{ ENABLE | DISABLE | COMPILE }
[ENABLE | DISABLE | COMPILE]

.

.

.

Indicates that the previous argu-
ment is repeated, or that sample
code has been omitted.

iSQL> select e_lastname from
employees;
E_LASTNAME

Moon
Davenport
Kobain
.
.
.
20 rows selected.

Other Symbols Symbols other than those shown
above are part of the actual code.

EXEC :p1 := 1;
acc NUMBER(11,2);
General Reference iv

About This Manual
Related Documents

For more detailed information, please refer to the following documents:

• ALTIBASE HDB Getting Started Guide

• ALTIBASE HDB SQL Reference

• ALTIBASE HDB Administrator’s Manual

Online Manual

Online versions of our manuals (PDF or HTML) are available from the Altibase Download Center
(http://atc.altibase.com/).

Altibase Welcomes Your Opinions

Please feel free to send us your comments and suggestions regarding this manual. Your comments
and suggestions are important to us, and may be used to improve future versions of the manual.
When you send your feedback, please make sure to include the following information:

• The name and version of the manual you are using

• Your comments and suggestions regarding the manual

• Your full name, address, and phone number

Please send your e-mail to the following address:

support@altibase.com

In addition to suggestions, this address may also be used to report any errors or omissions discov-
ered in the manual, which we will address promptly.

If you need immediate assistance with technical issues, please contact the Altibase Customer Sup-
port Center.

We always appreciate your comments and suggestions.

Italics Statement elements in italics indi-
cate variables and special values
specified by the user.

SELECT * FROM table_name;
CONNECT userID/password;

Lower case
words

Indicate program elements set by
the user, such as table names, col-
umn names, file names, etc.

SELECT e_lastname FROM employ-
ees;

Upper case
words

Keywords and all elements pro-
vided by the system appear in
upper case.

DESC SYSTEM_.SYS_INDEX_;

Rules Meaning Example
v Preface

http://atc.altibase.com/
http://atc.altibase.com/

About This Manual
General Reference vi

1 Data Types
In order to use SQL to store, change, and query the data in a database, it is first necessary to possess
a thorough understanding of the available data types. This chapter presents a detailed explanation
of the data types supported in ALTIBASE HDB.
1 Data Types

1.1 Overview
1.1 Overview

1.1.1 Data Type Overview

The following data types are supported in ALTIBASE HDB:

1.1.1.1 Character Data Types

NCHAR and NVARCHAR are Unicode character types. The available maximum length of a UTF16-
encoded string is different from that of a UTF8-encoded string.

1.1.1.2 Numerical Data Types

• Non-native

M: defined column length
L: the length of the input string

Type M Storage Required (bytes)

CHAR(M) 1 ~ 32000 M + 2

VARCHAR(M) 1 ~ 32000 length + 2, where
length = L if the input value is stored in a variable area
length = M if the input value is stored in a fixed area

NCHAR(M) 1~16000(UTF16)
1~10666(UTF8)

M*2 + 2(UTF16)
M*3 + 2(UTF8)

NVARCHAR(M) 1~16000(UTF16)
1~10666(UTF8)

length*2 + 2(UTF16)
length*3 + 2(UTF8)
where:
length = L if the input value is stored in a variable area
length = M if the input value is stored in a fixed area
General Reference 2

1.1 Overview
• Native

Examples

• Fixed-Point Numbers

Size Calculation: (3 + ((p) + 2) / 2)

Ex) NUMERIC

NUMERIC(38,0)
Size = 3 + 40/2 = 23 bytes

Ex) NUMERIC(p) / NUMERIC(p, 0)

NUMERIC(10)
Size = 3 + 12/2 = 9 bytes

Ex) NUMERIC(p, s)

NUMERIC(10, 9)
Size = 3 + 12/2 = 9 bytes

Type Precision Scale Size (bytes) Remarks

NUMERIC 38 0 3+((precision)+2)/
2

* Fixed-Point Num-
bers
* The NUMERIC
data type is the
same as the DECI-
MAL datatype.

NUMERIC(p) 1 ~ 38 0

NUMERIC(p, s) 1 ~ 38 -84 ~ 128

DECIMAL 38 0

DECIMAL(p) 1 ~ 38 0

DECIMAL(p, s) 1 ~ 38 -84 ~ 128

NUMBER(p) 1 ~ 38 0

NUMBER(p, s) 1 ~ 38 -84 ~ 128

NUMBER 38 X 3+((precision)+2)/
2

* Floating-Point
Numbers

FLOAT 38 X

FLOAT(p) 1 ~ 38 X

Type Compatible C Type Size (bytes) Remarks

DOUBLE double 8 Floating-Point Numbers

REAL float 4

BIGINT long or long long 8 Integer Type

INTEGER int 4

SMALLINT short 2
3 Data Types

1.1 Overview
— DECIMAL: the same as NUMERIC
— DECIMAL(p): the same as NUMERIC(p)
— DECIMAL(p,s): the same as NUMERIC(p,s)
— NUMBER(p): the same as NUMERIC(p)
— NUMBER(p,s): the same as NUMERIC(p,s)

• Floating-Point Numbers

Size Calculation: (3 + ((p) + 2) / 2)

Ex) FLOAT

FLOAT(38)
Size = 3 + 40/2 = 23 bytes

Ex) FLOAT(p)

FLOAT(20)
Size = 3 + 22/2 = 14 bytes

- NUMBER: the same as FLOAT

1.1.1.3 Date Data Type

1.1.1.4 Binary Data Types

Type Size (bytes)

DATE 8

M: defined column length
L: the length of the input value

Type M Size (bytes)

BLOB/CLOB 1~2147483647

BYTE 1~32000 M + 2

NIBBLE 1~254 M/2 + 1

BIT 1~64000 M/8 + 4

VARBIT 1~64000 length/8 + 4, where
length = L if the input value is stored in a variable area
length = M if the input value is stored in a fixed area
General Reference 4

1.1 Overview
1.1.1.5 Geometry Data Types

The actual record size is the size of each data type as indicated above, plus the size of header infor-
mation. The size of the header information varies depending on the OS.

1.1.2 NULL

When a row is inserted into a table, the value of a column is set to NULL if the value for that column
is not known or has not been determined yet. In other words, NULL indicates that no value exists.
Therefore, NULL is not the same as 0 (zero) or blank space, and is handled differently when perform-
ing comparison operations or saving data.

If any operation other than the NVL() function or the IS NULL or IS NOT NULL conditions is performed
on a NULL value, the final result of the formula containing the operation will be NULL. In other
words, comparisons and operations are meaningless when performed on NULL values.

NULL can appear in columns of any data type, as long as they are not restricted by NOT NULL or PRI-
MARY KEY constraints.

1.1.3 Data Type Conversion

The data type conversions that are possible are shown in matrix form in the following table.

 When a comparison operation is to be performed on two values having the same data type, the
comparison operation is performed on the values directly without any prior conversion. In contrast,
when a comparison operation is to be performed on two values having different data types, the
comparison is performed after one of the values is converted into the same type as the other value.
Note however that when comparisons are performed, character data types are always converted
into the data type of the other comparison operand, not the other way around.

Type Length Size (bytes)

GEOMETRY 8~104857600 length + 40

After

Before ch
ar

va
rc

ha
r

nc
ha

r

nv
ar

ch
ar

cl
ob

bi
gi

nt

de
ci

m
al

do
ub

le

flo
at

in
te

ge
r

nu
m

be
r

nu
m

er
ic

re
al

sm
al

lin
t

da
te

bl
ob

by
te

ni
bb

le

bi
t

va
rb

it

ge
om

et
ry

char o o o o o o o o o o o o o o

varchar o o o o o o o o o o o o o o o

nchar o o o o o o o o o o o o o o

nvarchar o o o o o o o o o o o o o o o

clob o

bigint o o o o o o o o o o o o o
5 Data Types

1.1 Overview
1.1.4 Explicit Data Type Conversion

Data type conversion can be explicitly performed using SQL conversion functions or by typecasting,
as shown below.

1.1.4.1 Syntax

datatype 'string or constant literal'

1.1.4.2 Description

Explicitly converts a numeric value from one data type to another. In the following example, the
number 157.27 is converted to the characters “157.27”.

CHAR '157.27'

The SQL functions that are used to explicitly convert a value from one data type to another are
explained in the SQL Reference.

decimal o o o o o o o o o o o o o

double o o o o o o o o o o o o o

float o o o o o o o o o o o o o

integer o o o o o o o o o o o o o

number o o o o o o o o o o o o o

numeric o o o o o o o o o o o o o

real o o o o o o o o o o o o o

smallint o o o o o o o o o o o o o

date o o o o o

blob o

byte o o

nibble o

bit o o

varbit o o o

geometry o

After

Before ch
ar

va
rc

ha
r

nc
ha

r

nv
ar

ch
ar

cl
ob

bi
gi

nt

de
ci

m
al

do
ub

le

flo
at

in
te

ge
r

nu
m

be
r

nu
m

er
ic

re
al

sm
al

lin
t

da
te

bl
ob

by
te

ni
bb

le

bi
t

va
rb

it

ge
om

et
ry
General Reference 6

1.1 Overview
1.1.5 The FIXED and VARIABLE Options

FIXED or VARIABLE specifies where the data in a column will be stored.

When an entire record is stored in a contiguous space, this is called a 'FIXED' area. When one of the
columns is stored in a separate space, rather than being stored in the fixed area contiguous with the
rest of the record, this column is said to be stored in a 'VARIABLE' area.

When a column is stored in a variable area, the header information for the column, such as the
length of the data and the pointer to the actual data, is stored in the fixed area, whereas the data for
that column are stored in the variable area.

When a table is created in disk tablespace, whether the user specifies FIXED or VARIABLE is ignored,
and all columns in the table are treated as FIXED. However, when a table is created in memory
tablespace, the user-specified value is used.

The exception to this is that all LOB data type columns are always treated as VARIABLE, and the data
can thus be stored in a fixed or variable area depending on the value specified using the IN ROW
clause.

The following data types can be specified as VARIABLE: CHAR, VARCHAR, NCHAR, NVARCHAR, BYTE,
NIBBLE, BIT, VARBIT, BLOB, and CLOB.

1.1.6 The IN ROW clause

This clause pertains only to column data that are to be stored in a variable area. If the FIXED and IN
ROW clause are both specified when a table is created, the IN ROW clause is ignored. When data are
entered into a VARIABLE column, if the length of the data is less than or equal to the value specified
using the IN ROW clause, the data will be stored in the fixed area, whereas if the data length is
greater than the value specified using the IN ROW clause, the data will be stored in the variable area.

Here, “data length” does not mean the length of the input data, but the length of the data to be
stored in memory or on disk, which will be somewhat larger. For example, when a column is defined
as ‘VARCHAR(400) in row 200’, data will be inserted into the fixed area if the length of the data that
are input is smaller than or equal to 198, because 2 additional bytes are required when storing the
data.

The default size of lob data stored in the fixed area can be specified using the
MEMORY_LOB_COLUMN_IN_ROW_SIZE property for memory tables and the
DISK_LOB_COLUMN_IN_ROW_SIZE for disk tables. Additionally, the default size for columns contain-
ing other types of data with the VARIABLE option can be specified using the
MEMORY_VARIABLE_COLUMN_IN_ROW_SIZE property. Setting these properties obviates the need
to use the IN ROW clause repeatedly for individual columns.

For more information about these properties, please refer to the property descriptions in the ALTI-
BASE HDB General Reference.
7 Data Types

1.2 Character Data Types
1.2 Character Data Types
Character data types are used to store character (alphanumeric) data, meaning words or free-form
text, in either the database character set or the national character set.

In ALTIBASE HDB, character data types comprise the following types:

• CHAR

• VARCHAR

• NCHAR

• NVARCHAR

1.2.1 CHAR

1.2.1.1 Syntax Diagram

1.2.1.2 Syntax

CHAR [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.2.1.3 Description

This is a character data type that has a fixed length equal to the specified size. If an input value is
shorter than the specified size, the remaining area is filled with blank spaces.

The default size of a CHAR column is 1 byte. The maximum size is 32000 bytes.

For more information on the FIXED and VARIABLE clauses, please refer to the preceding sections,
entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

size

FIXED

variable_clause

()

VARIABLE

CHAR

IN ROW size

variable_clause ::=
General Reference 8

1.2 Character Data Types
1.2.2 VARCHAR

1.2.2.1 Syntax Diagram

1.2.2.2 Syntax

VARCHAR [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.2.2.3 Description

This is a character data type for storing alphanumeric data that vary in length within a specified size.

The default size of a VARCHAR column is 1 byte. The maximum size is 32000 bytes.

VARCHAR is a variable length data type; that is, when the length of input data is shorter than the
specified column size, only the data that were actually inserted are stored. In contrast, for the CHAR
data type, if the length of input data is shorter than the column length, the remaining space in the
column is padded with blank spaces. For example, if a column is defined as CHAR(10) and the word
“magic” is to be stored, it will be stored as “magic_____”, where “_” represents a blank space.

For more information on the FIXED and VARIABLE clauses, please refer to the preceding sections,
entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

size

FIXED

variable_clause

()

VARIABLE

VARCHAR

IN ROW size

variable_clause ::=
9 Data Types

1.2 Character Data Types
1.2.3 NCHAR

1.2.3.1 Syntax Diagram

1.2.3.2 Syntax

NCHAR [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.2.3.3 Description

This is a character data type having a specified fixed length. If an input value is shorter than the spec-
ified size, the remainder is filled with blank spaces.

If the national character set is UTF16, the size of one character in an NCHAR column is fixed at 2
bytes, that is, it does not vary in length. In contrast, if the national character set is UTF8, the size of
one character in an NCHAR column is not fixed; rather, it varies from 1 to 3 bytes.

The maximum size is 16000 bytes if the national character set is UTF16.

For more information on the FIXED and VARIABLE clauses, please refer to the preceding sections,
entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

1.2.4 NVARCHAR

1.2.4.1 Syntax Diagram

size

FIXED

variable_clause

()

VARIABLE

NCHAR

IN ROW size

variable_clause ::=

size

FIXED

variable_clause

()

VARIABLE

NVARCHAR

IN ROW size

variable_clause ::=
General Reference 10

1.2 Character Data Types
1.2.4.2 Syntax

NVARCHAR [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.2.4.3 Description

This is a character data type for storing Unicode alphanumeric data that vary in length within a spec-
ified size.

If the national character set is UTF16, the size of one character in an NVARCHAR column is fixed at 2
bytes, that is, it does not vary in length. In contrast, if the national character set is UTF8, the size of
one character in an NVARCHAR column is not fixed; rather, it varies from 1 to 3 bytes.

In other aspects, the NVARCHAR type is the same as the VARCHAR type, so for more detailed infor-
mation please refer to the description of the VARCHAR type.

For more information on the FIXED and VARIABLE clauses, please refer to the preceding sections,
entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.
11 Data Types

1.3 Numeric Data Types
1.3 Numeric Data Types
Numeric data types are used to store zero as well as positive and negative numbers having fixed val-
ues. ALTIBASE HDB supports the following numeric types:

• BIGINT

• DECIMAL

• DOUBLE

• FLOAT

• INTEGER

• NUMBER

• NUMERIC

• REAL

• SMALLINT

1.3.1 BIGINT

1.3.1.1 Syntax Diagram

1.3.1.2 Syntax

BIGINT

1.3.1.3 Description

This is an 8-byte integer data type.

It is equivalent to the “long” (on 64-bit systems) and “long long” (on 32-bit systems) types in the C
language.

Range: -263 + 1(-9223372036854775807) ~ 263 – 1 (9223372036854775807)

BIGINT
General Reference 12

1.3 Numeric Data Types
1.3.2 DECIMAL

1.3.2.1 Syntax Diagram

1.3.2.2 Syntax

DECIMAL [(precision[, scale])]

1.3.2.3 Description

This data type is the same as the NUMERIC type.

1.3.3 DOUBLE

1.3.3.1 Syntax Diagram

1.3.3.2 Syntax

DOUBLE

1.3.3.3 Description

This is an 8-byte floating-point numeric data type.

It is the same as the “double” type in the C language.

precision()

, scale

DECIMAL

DOUBLE
13 Data Types

1.3 Numeric Data Types
1.3.4 FLOAT

1.3.4.1 Syntax Diagram

1.3.4.2 Syntax

FLOAT [(precision)]

1.3.4.3 Description

This is a floating-point numeric data type that can store a value ranging from -1E+120 to 1E+120.

Precision is the number of significant digits, that is, the number of digits used to express the mantissa
of the floating-point number.

Precision can range from 1 to 38. If it is not expressly specified, the default precision is 38.

1.3.5 INTEGER

1.3.5.1 Syntax Diagram

1.3.5.2 Syntax

INTEGER

1.3.5.3 Description

This is an integer data type that is 4 bytes in size.

It is the same as the “int” data type in the C language.

It can have an integer value ranging from -2,147,483,647 to 2,147,483,647.

precision()

FLOAT

INTEGER
General Reference 14

1.3 Numeric Data Types
1.3.6 NUMBER

1.3.6.1 Syntax Diagram

1.3.6.2 Syntax

NUMBER [(precision, scale)]

1.3.6.3 Description

This is an alias of the NUMERIC data type. However, when precision and scale are not defined, they
are the same as for the FLOAT data type.

1.3.7 NUMERIC

1.3.7.1 Syntax Diagram

1.3.7.2 Syntax

NUMERIC [(precision, scale)]

1.3.7.3 Description

NUMERIC is a fixed decimal data type that can contain a total number of significant digits up to the
value specified using precision and a number of digits to the right of the decimal place up to the
value specified using scale. In contrast to the FLOAT data type, which is a floating-point numerical
data type used for representing real numbers, when both precision and scale are omitted from a
NUMERIC data type declaration, precision defaults to 38 and scale to 0, i.e. NUMERIC defaults to a
fixed decimal data type that is used to express integer values.

• Precision can be specified within the range from 1 to 38.

precision()

, scale

NUMBER

precision()

, scale

NUMERIC
15 Data Types

1.3 Numeric Data Types
• Scale can be specified within the range from -84 to 126.

• If precision is omitted, the default is 38.

• If scale is omitted, the default is 0.

The following shows the respective values that would result when the input value 1234567.89 is
converted to the NUMERIC types defined as shown.

• NUMERIC=> 1234568

• NUMERIC(9)=> 1234568

• NUMERIC(9, 2)=> 1234567.89

• NUMERIC(9, 1)=> 1234567.9

• NUMERIC(6)=> Precision exceeded

• NUMERIC(7, -2)=> 1234500

• NUMERIC(7, 2)=> Precision exceeded

1.3.8 REAL

1.3.8.1 Syntax Diagram

1.3.8.2 Syntax

REAL

1.3.8.3 Description

This data type is used to store 4-byte floating-point numeric values.

It is the same as the “float” type in the C language.

REAL
General Reference 16

1.3 Numeric Data Types
1.3.9 SMALLINT

1.3.9.1 Syntax Diagram

1.3.9.2 Syntax

SMALLINT

1.3.9.3 Description

This data type is used to store 2-byte integer values.

It is the same as the “short” type in the C language.

It can be used to store integers ranging from -215 + 1(-32,767) to 215 - 1(32,767) inclusive.

1.3.10 Number Format Model

When data are converted using typecasting functions such as TO_CHAR or TO_NUMBER, numeric
data can be specified in the following formats. A number format model consists of one or more ele-
ments that represent a number. In this section, each of these elements will be explained with refer-
ence to examples showing the related number formats.

1.3.10.1 , (comma)

Description

Outputs a comma at the specified position. More than one comma can be used.

Restrictions

A comma cannot be placed at the end of a number, to the right of a decimal point, or at the very
beginning of a number.

Example

iSQL> SELECT TO_CHAR (1234, '99,99') FROM dual;
TO_CHAR (1234, '99,99')

 12,34
1 row selected.

iSQL> SELECT TO_NUMBER ('12,34', '99,99') FROM dual;
TO_NUMBER ('12,34', '99,99')

SMALLINT
17 Data Types

1.3 Numeric Data Types
1234
1 row selected.

1.3.10.2 . (decimal point)

Description

Adds a decimal point at the specified position.

Restriction

Only one decimal point can be used within a number.

Example

iSQL> SELECT TO_CHAR (1.234, '99.999') FROM dual;
TO_CHAR (1.234, '99.999')

 1.234
1 row selected.

iSQL> SELECT TO_NUMBER ('1.234', '99.999') FROM dual;
TO_NUMBER ('1.234', '99.999')

1.234
1 row selected.

1.3.10.3 $

Description

Prepends the $ sign to a number.

Example

iSQL> SELECT TO_CHAR (123, '$9999') FROM dual;
TO_CHAR (123, '$9999')

 $123
1 row selected.
iSQL> SELECT TO_NUMBER ('$0123', '09$99') FROM dual;
TO_NUMBER ('$0123', '09$99')

123
1 row selected.

1.3.10.4 0 (numeral 0)

Description

If the number of significant digits to be output exceeds the number of digits in the number that is
input, 0's (zeroes) are prepended to the number before it is returned. In all other aspects, this ele-
ment is the same as the “9” element, which is described below.
General Reference 18

1.3 Numeric Data Types
Example

iSQL> SELECT TO_CHAR (123, '0999') FROM dual;
TO_CHAR (123, '0999')

 0123

1.3.10.5 9 (numeral 9)

Description

Uses the numeral 9 to indicate the number of digits to output. If the number of 9's is greater than the
number of digits in the number that is input, the space to the left of the number is padded with
blank spaces before the number is output. If the number of 9's to the left of the decimal point is less
than the number of digits to the left of the decimal point in the input number, the pound sign (“#”) is
repeatedly output. The number of pound signs that are output is the number of characters in the
user-defined format plus one (a sign character). A decimal point placed in between 9's separates the
integer and fractional parts of a number.

When there are digits to the right of the decimal point in the first argument, i.e. when the input num-
ber has a fractional part, but the user-defined format either has no fractional part or has a fractional
part with a smaller number of decimal places than the input number, the input number is rounded
off to the number of decimal places in the user-defined format.

Example

iSQL> SELECT TO_CHAR (123, '99999') FROM dual;
TO_CHAR (123, '99999')

 123

iSQL> SELECT TO_CHAR (123.55, '999') FROM dual;
TO_CHAR (123.55, '999')

 124
1 row selected.

iSQL> SELECT TO_CHAR (123.4567, '999999') FROM dual;
TO_CHAR (123.4567, '999999')

 123
1 row selected.

iSQL> SELECT TO_CHAR (1234.578, '9999.99') FROM dual;
TO_CHAR (1234.578, '9999.99')

 1234.58
1 row selected.

iSQL> SELECT TO_CHAR (1234.578, '999.99999') FROM dual;
TO_CHAR (1234.578, '999.99999')

##########
1 row selected.

iSQL> SELECT TO_NUMBER ('123', '99999') FROM dual;
TO_NUMBER ('123', '99999')

123
19 Data Types

1.3 Numeric Data Types
1 row selected.

iSQL> SELECT TO_NUMBER ('1234.58', '9999.99') FROM dual;
TO_NUMBER ('1234.58', '9999.99')

1234.58
1 row selected.

1.3.10.6 B

Description

0’s (zeroes) in the integer part of the fixed-point number are replaced with blank spaces.

Example

iSQL> SELECT TO_CHAR (0.4, 'B9') FROM T1;
TO_CHAR (0.4, 'B9')

1 row selected.

1.3.10.7 EEEE

Description

Display the input number in exponential notation.

Restrictions

EEEE must always be at the rightmost place of the number format. However, it can precede S, PR or
MI. It cannot be used with commas, and cannot be used with the TO_NUMBER function.

Example

iSQL> SELECT TO_CHAR (1234, '9.9EEEE') FROM dual;
TO_CHAR (1234, '9.9EEEE')

 1.2E+03
1 row selected.

1.3.10.8 MI

Description

When MI is used at the rightmost place in the number format, if the input value is negative, the
minus (-) sign is output at the end of the number, rather than at the beginning. If the input value is
positive, a blank space is output instead of the minus sign.

Restrictions

MI must always be at the rightmost place in the number format. It cannot be used together with S or
PR.
General Reference 20

1.3 Numeric Data Types
Example

iSQL> SELECT TO_CHAR (-123, '999MI') FROM dual;
TO_CHAR (-123, '999MI')

123-
1 row selected.

iSQL> SELECT TO_NUMBER ('123-', '999MI') FROM dual;
TO_NUMBER ('123-', '999MI')

-123
1 row selected.

1.3.10.9 PR

Description

When PR is used at the rightmost place in the number format, if the input value is negative, the value
is output in the form of “<number>”, rather than using the minus (“-”) sign.

Restrictions

PR must always be at the rightmost place in the number format. It cannot be used together with S or
MI.

Example

iSQL> SELECT TO_CHAR (-123, '999PR') FROM dual;
TO_CHAR (-123, '999PR')

<123>
1 row selected.

iSQL> SELECT TO_NUMBER ('<123>', '999PR') FROM dual;
TO_NUMBER ('<123>', '999PR')

-123
1 row selected.

1.3.10.10 RN

Description

Converts an input number to Roman numerals. The valid input range is from 1 to 3,999. If the lower-
case letters “rn” are used in the number format, lower-case Roman numerals are output.

Restrictions

RN cannot be used with any other number format elements or with the TO_NUMBER function.

Example

iSQL> SELECT TO_CHAR (14, 'RN') FROM dual;
TO_CHAR (14, 'RN')

21 Data Types

1.3 Numeric Data Types
XIV
1 row selected.

1.3.10.11 S

Description

When S is placed at the beginning or end of the number format, a plus (“+”) or minus (“-”) sign is out-
put at the same position, corresponding to the sign of the input number.

Restrictions

S can be placed at the beginning or end of the number format. It cannot be used with MI or PR.

Example

iSQL> SELECT TO_CHAR (123, 'S999.99') FROM dual;
TO_CHAR (123, 'S999.99')

+123.00
1 row selected.

iSQL> SELECT TO_CHAR (-123, '999.99S') FROM dual;
TO_CHAR (-123, '999.99S')

123.00-
1 row selected.

iSQL> SELECT TO_NUMBER ('+123', 'S999.99') FROM dual;
TO_NUMBER ('+123', 'S999.99')

123
1 row selected.

iSQL> SELECT TO_NUMBER ('123.00-', '999.99S') FROM dual;
TO_NUMBER ('123.00-', '999.99S')

-123
1 row selected.

1.3.10.12 V

Description

The input number is multiplied by 10 to the power of the number of 9's after V. The number of 9's
before V represents the number of significant digits to return from the input number.

Restrictions

V cannot be used with a decimal point, and cannot be used with the TO_NUMBER function.

Example

iSQL> SELECT TO_CHAR (12, '99V99') FROM dual;
TO_CHAR (12, '99V99')

General Reference 22

1.3 Numeric Data Types
 1200
1 row selected.

iSQL> SELECT TO_CHAR (1200, '99V99') FROM dual;
TO_CHAR (1200, '99V99')

1 row selected.

iSQL> SELECT TO_CHAR (-123.456, '999V999EEEEMI') from dual;
TO_CHAR (-123.456, '999V999EEEEMI')

 1235E+02-
1 row selected.

1.3.10.13 XXXX

Description

Converts the input number to a hexadecimal number. If the input number is not an integer, it is
rounded off before being converted to a hexadecimal number. Specifying “xxxx” in lower-case
returns the letters in the hexadecimal number in lower-case.

Restrictions

XXXX cannot be used with other number format elements. The number to be converted must be
greater than 0 (zero).

Example

iSQL> SELECT TO_CHAR (123, 'XXXX') FROM dual;
TO_CHAR (123, 'XXXX')

7B
1 row selected.

iSQL> SELECT TO_NUMBER ('ABC', 'XXXX') FROM dual;
TO_NUMBER ('ABC', 'XXXX')

2748
1 row selected.
23 Data Types

1.4 Date Data Types
1.4 Date Data Types
The DATE type is used to store date and time information. Although date and time information can
also be represented using both character and number data types, the DATE data type has special
properties. This data type contains the datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, and SEC-
OND.

1.4.1 DATE

1.4.1.1 Syntax Diagram

1.4.1.2 Syntax

DATE

1.4.1.3 Description

This data type is used to stores date values in 8 bytes.

The range of dates that can be stored depends on the system. Typically, the dates that can be stored
range from 0001/01/01 - 9999/12/31.

The date value can be displayed in various formats using a date format string.

1.4.2 The Datetime Format Model

Date type data are managed as numerical data within a database. However, users can display date
data as a string after conversion using the TO_CHAR and TO_DATE conversion functions. When
using conversion functions, the user must specify a date data type string in the desired format.

The datetime format model consists of the following basic elements:

• AM, PM

• CC

• D, DD, DDD, DAY,DY

• HH, HH12, HH24

• MM, MON, MONTH

• MI

DATE
General Reference 24

1.4 Date Data Types
• Q

• SS, SSSSS, SSSSSS, SSSSSSSS, FF[1..6]

• WW, W

• Y,YYY

• YYYY, YYY, YY, Y, RR, RRRR

Along with these basic elements, the datetime format model also comprises the following punctua-
tion marks and special characters:

• Hyphen (-)

• Slash (/)

• Comma (,)

• Period (.)

• Colon (:)

• Single Quotation (‘)

The meaning and use of each of these basic elements will be explained below with reference to
examples.

1.4.2.1 AM/PM

Description

Returns either “AM” or “PM” depending on whether the input time is before or after noon. This ele-
ment can be specified as either “AM” or “PM” when input, regardless of whether “AM” or “PM” is out-
put.

Example

% export ALTIBASE_DATE_FORMAT="YYYY/MM/DD HH:MI:SS"

iSQL> SELECT TO_CHAR (TO_DATE('13', 'HH'), 'AM') FROM dual;
TO_CHAR (TO_DATE('13', 'HH'), 'AM')

PM
1 row selected.

iSQL> SELECT TO_DATE('1980-12-28 PM', 'YYYY-MM-DD AM') FROM dual;
TO_DATE('1980-12-28 PM', 'YYYY-MM-DD AM')

1980/12/28 12:00:00
1 row selected.
25 Data Types

1.4 Date Data Types
1.4.2.2 CC

Description

Represents a century.

• If the last 2 digits of an input 4-digit year are within the range from 01 to 99, the sum of 1 plus
the first 2 digits of the 4-digit year is returned.

• If the last 2 digits of an input 4-digit year are 00, the first 2 digits of the 4-digit year are returned
unchanged.

CC cannot be used as an argument for the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'CC') FROM dual;
TO_CHAR ('28-DEC-1980', 'CC')

20
1 row selected.

1.4.2.3 D

Description

Returns the day of the week, represented by a number from 1 to 7. Sunday is represented by the
number 1.

D cannot be used as an argument for the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'D') FROM dual;
TO_CHAR ('28-DEC-1980', 'D')

1
1 row selected.

1.4.2.4 DAY

Description

Returns the day of the week in upper-case letters in English (SUNDAY, MONDAY,…).

DAY cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'DAY') FROM dual;
TO_CHAR ('28-DEC-1980', 'DAY')

SUNDAY
1 row selected.
General Reference 26

1.4 Date Data Types
1.4.2.5 DD

Description

Returns the day of the month, represented by a number from 1 to 31.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'DD') FROM dual;
TO_CHAR ('28-DEC-1980', 'DD')

28
1 row selected.

iSQL> SELECT TO_DATE('1980-12-28', 'YYYY-MM-DD') FROM dual;
TO_DATE('1980-12-28', 'YYYY-MM-DD')

1980/12/28 00:00:00
1 row selected.

1.4.2.6 DDD

Description

Returns the day of the year, represented by a number from 1 to 366.

DDD cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'DDD') FROM dual;
TO_CHAR ('28-DEC-1980', 'DDD')

363
1 row selected.

1.4.2.7 DY

Description

Returns the day of the week in abbreviated form (SUN, MON, TUE, …).

DY cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'DY') FROM dual;
TO_CHAR ('28-DEC-1980', 'DY')

SUN
1 row selected.
27 Data Types

1.4 Date Data Types
1.4.2.8 FF [1..6]

Description

Returns the fractional part of a second. The number of decimal places to return is determined by the
number input after FF as part of the argument. If this number is omitted (i.e. “FF” is specified with no
number following it), the element is handled the same as if “FF6” were specified.

Example

iSQL> SELECT TO_CHAR (SYSDATE, 'FF5') FROM dual;
TO_CHAR (SYSDATE, 'FF5')

34528
1 row selected.

iSQL> CREATE TABLE T1(C1 DATE);
Create success.

iSQL> INSERT INTO T1 VALUES(TO_DATE('2012-12-31 23:59:59.1', 'YYYY-MM-DD
HH:MI:SS.FF1'));
1 row inserted.
iSQL> INSERT INTO T1 VALUES(TO_DATE('2012-12-31 23:59:59.12', 'YYYY-MM-DD
HH:MI:SS.FF2'));
1 row inserted.
iSQL> INSERT INTO T1 VALUES(TO_DATE('2012-12-31 23:59:59.123', 'YYYY-MM-DD
HH:MI:SS.FF3'));
1 row inserted.
iSQL> INSERT INTO T1 VALUES(TO_DATE('2012-12-31 23:59:59.1234', 'YYYY-MM-DD
HH:MI:SS.FF4'));
1 row inserted.
iSQL> INSERT INTO T1 VALUES(TO_DATE('2012-12-31 23:59:59.12345', 'YYYY-MM-DD
HH:MI:SS.FF5'));
1 row inserted.
iSQL> INSERT INTO T1 VALUES(TO_DATE('2012-12-31 23:59:59.123456', 'YYYY-MM-DD
HH:MI:SS.FF6'));
1 row inserted.
iSQL> INSERT INTO T1 VALUES(TO_DATE('2012-12-31 23:59:59.123456', 'YYYY-MM-DD
HH:MI:SS.FF'));
1 row inserted.

iSQL> SELECT TO_CHAR(C1, 'YYYY-MM-DD HH:MI:SS.FF') FROM T1;
TO_CHAR(C1, 'YYYY-MM-DD HH:MI:SS.FF')

2012-12-31 23:59:59.100000
2012-12-31 23:59:59.120000
2012-12-31 23:59:59.123000
2012-12-31 23:59:59.123400
2012-12-31 23:59:59.123450
2012-12-31 23:59:59.123456
2012-12-31 23:59:59.123456
7 rows selected.

1.4.2.9 HH, HH24

Description

Returns the hour of the day in 24-hour format (i.e. returns a number from 0 to 23).
General Reference 28

1.4 Date Data Types
Example

iSQL> SELECT TO_CHAR (TO_DATE('2008-12-28 17:30:29', 'YYYY-MM-DD HH:MI:SS'
), 'HH') FROM dual;
TO_CHAR (TO_DATE('2008-12-28 17:30:29'
--
17
1 row selected.

iSQL> SELECT TO_CHAR (TO_DATE('2008-12-28 17:30:29', 'YYYY-MM-DD
HH24:MI:SS'), 'YYYY-MM-DD HH24:MI:SS') FROM dual;
TO_CHAR (TO_DATE('2008-12-28 17:30:29',
--
2008-12-28 17:30:29
1 row selected.

1.4.2.10 HH12

Description

Returns the hour of the day in 12-hour format (i.e. returns a number from 1 to 12).

This element cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR (TO_DATE('2008-12-28 17:30:29', 'YYYY-MM-DD HH:MI:SS'
), 'HH12') FROM dual;
TO_CHAR (TO_DATE('2008-12-28 17:30:29',

05
1 row selected.

iSQL> SELECT TO_CHAR(TO_DATE ('08-12-28 05:30:29', 'RR-MM-DD HH12:MI:SS'),
'RR-MM-DD HH12:MI:SS') FROM dual;
TO_CHAR(TO_DATE ('08-12-28 05:30:29', 'R
--
08-12-28 05:30:29
1 row selected.

1.4.2.11 MI

Description

Returns a number ranging from 0 to 59, indicating the minutes portion of the input date.

Example

% export ALTIBASE_DATE_FORMAT="YYYY/MM/DD HH:MI:SS"

iSQL> SELECT TO_CHAR (TO_DATE('1980-12-28 17:30:29', 'YYYY-MM-DD HH:MI:SS'
), 'MI') FROM dual;
TO_CHAR (TO_DATE('1980-12-28 17:30:29'
--
30
1 row selected.

iSQL> SELECT TO_DATE ('05-12-28 14:30:29', 'RR-MM-DD HH:MI:SS') FROM dual;
29 Data Types

1.4 Date Data Types
TO_DATE ('05-12-28 14:30:29', 'RR-MM-DD

2005/12/28 14:30:29
1 row selected.

1.4.2.12 MM

Description

Returns a number ranging from 01 to 12, indicating the month of the input date.

Example

iSQL> SELECT TO_CHAR (TO_DATE('1980-12-28 17:30:29', 'YYYY-MM-DD HH:MI:SS'
), 'MM') FROM dual;
TO_CHAR (TO_DATE('1980-12-28 17:30:29'
--
12
1 row selected.

iSQL> SELECT TO_DATE ('05-12-28 14:30:29', 'RR-MM-DD HH:MI:SS') FROM dual;
TO_DATE ('05-12-28 14:30:29', 'RR-MM-DD

2005/12/28 14:30:29
1 row selected.

1.4.2.13 MON

Description

Returns the name of the month in upper case in abbreviated form (JAN, FEB, MAR, …).

Example

SQL> SELECT TO_CHAR (TO_DATE ('1995-12-05', 'YYYY-MM-DD'), 'MON') FROM dual;
TO_

DEC

1.4.2.14 MONTH

Description

Returns the name of the month in upper case. (JANUARY, FEBRUARY, …)

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'Month') FROM dual;
TO_CHAR ('28-DEC-1980', 'Month')

December
1 row selected.

iSQL> SELECT TO_DATE ('05-APRIL-28 14:30:29', 'RR-MONTH-DD HH:MI:SS') FROM
dual;
General Reference 30

1.4 Date Data Types
TO_DATE ('05-APRIL-28 14:30:29', 'RR-MO

2005/04/28 14:30:29
1 row selected.

1.4.2.15 Q

Description

Returns a number ranging from 1 to 4, indicating the quarter of the year of the input date.

This element cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'Q') FROM dual;
TO_CHAR ('28-DEC-1980', 'Q')

4
1 row selected.

1.4.2.16 RM

Description

Returns the month of the input date in Roman numerals (I, II, III, IV...).

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'RM') FROM dual;
TO_CHAR ('28-DEC-1980', 'RM')

XII
1 row selected.

iSQL> SELECT TO_DATE ('28-V-1980', 'DD-RM-YYYY') FROM dual;
TO_DATE ('28-V-1980', 'DD-RM-YYYY')

1980/05/28 00:00:00
1 row selected.

1.4.2.17 RR

Description

Returns the year of the input date as a 2-digit integer. When the year portion of the input date has 2
digits, if it is less than 50, 2000 is added to it (i.e. the 21st Century is assumed), whereas if it is greater
than or equal to 50, 1900 is added to it before it is displayed. Therefore, the range of years that can
be displayed is between 1950 – 2049.

Example

iSQL> SELECT TO_CHAR ('28-DEC-80', 'RR') FROM dual;
TO_CHAR ('28-DEC-80', 'RR')

31 Data Types

1.4 Date Data Types
80
1 row selected.
iSQL> SELECT TO_DATE ('28-DEC-80', 'DD-MON-RR') FROM dual;
TO_DATE ('28-DEC-80', 'DD-MON-RR')

1980/12/28 00:00:00
1 row selected.

1.4.2.18 RRRR

Description

Year (0 - 9999)

Returns the year of the input date as a 4-digit integer. When the year portion of the input date has 2
digits, if it is less than 50, 2000 is added to it (i.e. the 21st Century is assumed), whereas if it is greater
than or equal to 50 and less than 100, 1900 is added to it before it is displayed. When the year por-
tion of the input date has 4 digits, it is output without change.

 Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'RRRR') FROM dual;
TO_CHAR ('28-DEC-1980', 'RRRR')

1980
1 row selected.

iSQL> select to_date('23-FEB-11', 'DD-MON-RRRR') from dual;
TO_DATE('23-FEB-11', 'DD-MON-RRRR')

2011/02/23 00:00:00
1 row selected.

iSQL> select to_date('23-FEB-100', 'DD-MON-RRRR') from dual;
TO_DATE('23-FEB-100', 'DD-MON-RRRR')

0100/02/23 00:00:00
1 row selected.

1.4.2.19 SS

Description

Returns a number ranging from 0 to 59, indicating the seconds portion of the input date.

Example

iSQL> SELECT TO_CHAR (TO_DATE('1980-12-28 17:30:29', 'YYYY-MM-DD HH:MI:SS'
), 'SS') FROM dual;
TO_CHAR (TO_DATE('1980-12-28 17:30:29'
--
29
1 row selected.

iSQL> SELECT TO_DATE ('05-12-28 14:30:29', 'RR-MM-DD HH:MI:SS') FROM dual;
TO_DATE ('05-12-28 14:30:29', 'RR-MM-DD

2005/12/28 14:30:29
General Reference 32

1.4 Date Data Types
1 row selected.

1.4.2.20 SSSSS

Description

Returns a number ranging from 0 to 86399, indicating the number of seconds that have passed
since midnight.

Example

iSQL> SELECT TO_CHAR (TO_DATE('1980-12-28 17:30:29', 'YYYY-MM-DD
HH24:MI:SS'), 'SSSSS') FROM dual;
TO_CHAR (TO_DATE('1980-12-28 17:30:29'
--
62940
1 row selected.

iSQL> SELECT TO_DATE('1980-12-28 12345', 'YYYY-MM-DD SSSSS') FROM dual;
TO_DATE('1980-12-28 12345', 'YYYY-MM-DD

1980/12/28 03:25:45
1 row selected.

1.4.2.21 SSSSSS

Description

Returns the fractional part of a second.

Example

iSQL> SELECT TO_CHAR (SYSDATE, 'SSSSSS') FROM dual;
TO_CHAR (SYSDATE, 'SSSSSS')

490927
1 row selected.

iSQL> SELECT TO_CHAR (TO_DATE('1980-12-28 123456', 'YYYY-MM-DD SSSSSS'),
'SSSSSS') FROM dual;
TO_CHAR (TO_DATE('1980-12-28 123456', '
--
123456
1 row selected.

1.4.2.22 SSSSSSSS

Description

Returns the integer and fractional parts of the number of seconds in the input date, expressed as an
8-digit integer ranging from 0 to 59999999. The first two digits indicate the number of seconds, and
the remaining 6 digits represent the fractional part of the second.
33 Data Types

1.4 Date Data Types
Example

iSQL> SELECT TO_CHAR (SYSDATE, 'SSSSSSSS') FROM dual;
TO_CHAR (SYSDATE, 'SSSSSSSS')

48987403
1 row selected.

iSQL> SELECT TO_DATE ('12.345678', 'SS.SSSSSS') FROM dual;
TO_DATE ('12.345678', 'SS.SSSSSS')

2005/12/01 00:00:12
1 row selected.

iSQL> SELECT TO_CHAR(TO_DATE('12.345678', 'SS.SSSSSS'), 'SSSSSS') FROM
dual;
TO_CHAR(TO_DATE('12.345678', 'SS.SSSSS
--
345678
1 row selected.

1.4.2.23 WW

Description

Returns a number ranging from 1 to 54, indicating the week of the year. The period from January 1
to the first Saturday is considered the first week of the year.

This element cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'WW') FROM dual;
TO_CHAR ('28-DEC-1980', 'WW')

53
1 row selected.

1.4.2.24 W

Description

Returns a number ranging from 1 to 6, indicating the week of the month. The period from the first
day of the month to the first Saturday is considered the first week of the year.

This element cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'W') FROM dual;
TO_CHAR ('28-DEC-1980', 'W')

5
1 row selected.
General Reference 34

1.4 Date Data Types
1.4.2.25 Y,YYY

Description

Returns the year of the input date. A comma can be inserted at any place within a number represent-
ing the year, including the very beginning or end.

This element cannot be used with the TO_DATE function.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'Y,YYY') FROM dual;
TO_CHAR ('28-DEC-1980', 'Y,YYY')

1,980
1 row selected.

1.4.2.26 YYYY

Description

Handles a positive four-digit number ranging from 0 - 9999 as the year.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'YYYY') FROM dual;
TO_CHAR ('28-DEC-1980', 'YYYY')

1980
1 row selected.

iSQL> SELECT TO_DATE ('28-DEC-1980', 'DD-MON-YYYY') FROM dual;
TO_DATE ('28-DEC-1980', 'DD-MON-YYYY')

1980/12/28 00:00:00
1 row selected.

1.4.2.27 YY

Description

Returns the last two digits of the year. The 21st Century is assumed, so 2000 is added to it to obtain
the actual year, which can range from 2000 to 2099.

Example

iSQL> SELECT TO_CHAR ('28-DEC-1980', 'YY') FROM dual;
TO_CHAR ('28-DEC-1980', 'YY')

80
1 row selected.

iSQL> SELECT TO_DATE ('28-DEC-80', 'DD-MON-YY') FROM dual;
TO_DATE ('28-DEC-80', 'DD-MON-YY')

2080/12/28 00:00:00
35 Data Types

1.4 Date Data Types
1 row selected.

Example

iSQL> CREATE TABLE timetbl(i1 INTEGER, t1 DATE, etc VARCHAR(10));
Create success.
iSQL> INSERT INTO timetbl VALUES (1, SYSDATE, 'Start');
1 row inserted.

iSQL> INSERT INTO timetbl VALUES (2, TO_DATE('2003-02-20 12:15:50', 'YYYY-MM-
DD HH:MI:SS'), 'The end');
1 row inserted.

iSQL> SELECT TO_CHAR(T1, 'YYYY YY MM MON Mon mon DD HH MI SS SSSSSS D DDD')
Date_format FROM timetbl WHERE I1 = 2;
DATE_FORMAT
--
2003 03 02 FEB Feb feb 20 12 15 50 000000 5 051
1 row selected.

1.4.2.28 The RR, RRRR, YY, and YYYY Date Format Elements Compared

Please refer to the descriptions of the respective format elements.

• [YYYY]: The number is treated as a year, without change.

‘23-FEB-5’ = February 23, 0005

‘23-FEB-05’ = February 23, 0005

‘23-FEB-2005’= February 23, 2005

‘23-FEB-95’ = February 23, 0095

• [YY]: 2000 is added to YY to obtain the year.

‘23-FEB-5’ = February 23, 2005

‘23-FEB-05’ = February 23, 2005

‘23-FEB-2005’= Error

‘23-FEB-95’ = February 23, 2095

‘23-FEB-05’ = February 23, 2005

‘23-FEB-2005’= Error

‘23-FEB-95’ = February 23, 2095

• [RRRR]: A number greater than 100 is taken as the year without change. If the input number
has one or two digits, if it is < 50, 2000 is added to it, and if it is >= 50 and < 100, 1900 is added
to it before it is output.

‘23-FEB-5’: February 23, 2005

‘23-FEB-05’: February 23, 2005
General Reference 36

1.4 Date Data Types
‘23-FEB-2005’: February 23, 2005

‘23-FEB-95’: February 23, 1995

‘23-FEB-100’: February 23, 0100

‘23-FEB-0005’: February 23, 0005

• [RR]: If the input number is < 50, 2000 is added to it, whereas if the input number is >= 50 and
< 100, 1900 is added to it before it is output.

‘23-FEB-5’: February 23, 2005

‘23-FEB-05’: February 23, 2005

‘23-FEB-2005’: Error

‘23-FEB-95’: February 23, 1995

1.4.2.29 YYY

Description

The last 3 digits of the year. As the 21st Century is assumed, 2000 is added to it to obtain the actual
year, which can range from 2000 to 2099.

1.4.2.30 Y

Description

The final digit of the year. As the 21st Century is assumed, 2000 is added to it to obtain the actual
year, which can range from 2000 to 2099.
37 Data Types

1.5 Binary Types
1.5 Binary Types
Large and unstructured data such as text, images, video, and spatial data can be stored as binary
data. ALTIBASE HDB supports the following binary types:

• BYTE

• NIBBLE

• BIT

• VARBIT

1.5.1 BYTE

1.5.1.1 Syntax Diagram

1.5.1.2 Syntax

BYTE [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.5.1.3 Description

This is a binary data type having a specified fixed length. The default size of a BYTE column is 1 byte.
The maximum length of a BYTE column is 32000 bytes. The data can be expressed in hexadecimal
format using a combination of alphabet and numeric characters, such as '0FAE13.' The allowable
alphanumeric characters are 0 (zero) to 9 and A to F.

When data are stored in or retrieved from a BYTE column, the specified size of the column must be
used. Two characters can be stored in one byte. For example, for a column specified as BYTE(3), a
range of values from '000000' to 'FFFFFF' can be input.

When the lower case letters 'a' through 'f' are input, they are converted into upper-case letters.

For more information on the FIXED and VARIABLE clauses, please refer to the sections earlier in this
chapter entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause section.

size

FIXED

variable_clause

()

VARIABLE

BYTE

IN ROW size

variable_clause ::=
General Reference 38

1.5 Binary Types
1.5.2 NIBBLE

1.5.2.1 Syntax Diagram

1.5.2.2 Syntax

NIBBLE [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.5.2.3 Description

This is a binary data type that varies in length up to the specified size. The default size of a NIBBLE
column is that of a single character, and the maximum size is 254nibbles.

The data can be expressed in hexadecimal format using a combination of alphabet and numeric
characters. The allowable alphanumeric characters are 0 (zero) to 9 and A to F. Unlike the BYTE type,
only one character can be entered into one nibble.

For example, for NIBBLE (6), '000000' to 'FFFFFF' can be inserted.

When the lower case letters 'a' through 'f' are input, they are converted into upper-case letters.

For more information on the FIXED and VARIABLE clauses, please refer to the sections earlier in this
chapter entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

size

FIXED

variable_clause

()

VARIABLE

NIBBLE

IN ROW size

variable_clause ::=
39 Data Types

1.5 Binary Types
1.5.3 BIT

1.5.3.1 Syntax Diagram

1.5.3.2 Syntax

BIT [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.5.3.3 Description

This is a binary data type that has a fixed length and consists only of 0's and 1's. The default size of a
BIT column is one bit. Its maximum size is 64000 bits.

If an attempt is made to input a string that is longer than the specified length, an 'Invalid data type
length' error will be raised. If a string shorter than the specified length is input, the space to the right
of the input data is populated with 0's. If a value other than 0 or 1 is input, an 'Invalid literal' error is
raised.

For more information on the FIXED and VARIABLE clauses, please refer to the sections earlier in this
chapter entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

1.5.3.4 Example

iSQL> CREATE TABLE T1 (I1 BIT(1), I2 BIT(5));
Create success.
iSQL> INSERT INTO T1 VALUES (BIT'1', BIT'011');
1 row inserted.

iSQL> SELECT TO_CHAR(I1), TO_CHAR(I2) FROM T1;
TO_CHAR(I1) TO_CHAR(I2)

1 01100
1 row selected.

iSQL> INSERT INTO T1 VALUES (BIT'1111', BIT'011');
[ERR-2100D : Invalid data type length]
iSQL> INSERT INTO T1 VALUES (BIT'1', BIT'1234');
[ERR-21011 : Invalid literal]

size

FIXED

variable_clause

()

VARIABLE

BIT

IN ROW size

variable_clause ::=
General Reference 40

1.5 Binary Types
1.5.4 VARBIT

1.5.4.1 Syntax Diagram

1.5.4.2 Syntax

VARBIT [(size)] [[FIXED |] VARIABLE (IN ROW size)]

1.5.4.3 Description

This is a binary data type that has a variable length and consists only of 0's and 1's. The default size of
a BIT column is one bit. Its maximum size is 64000 bits.

If an attempt is made to input a string that is longer than the specified length, an “Invalid data type
length” error will be raised. If a string shorter than the specified length is input, the space to the right
of the input data is populated with 0's. If a value other than 0 or 1 is input, an 'Invalid literal' error is
raised.

For more information on the FIXED and VARIABLE clauses, please refer to the sections earlier in this
chapter entitled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

1.5.4.4 Example

iSQL> CREATE TABLE T1 (I1 VARBIT(1), I2 VARBIT(5));
Create success.
iSQL> INSERT INTO T1 VALUES (VARBIT'1', VARBIT'011');
1 row inserted.

iSQL> SELECT TO_CHAR(I1), TO_CHAR(I2) FROM T1;
TO_CHAR(I1) TO_CHAR(I2)

1 011
1 row selected.

iSQL> INSERT INTO T1 VALUES (VARBIT'1111', VARBIT'011');
[ERR-2100D : Invalid data type length]
iSQL> INSERT INTO T1 VALUES (VARBIT'1', VARBIT'1234');
[ERR-21011 : Invalid literal]

size

FIXED

variable_clause

()

VARIABLE

VARBIT

IN ROW size

variable_clause ::=
41 Data Types

1.6 LOB Data Type
1.6 LOB Data Type

1.6.1 Overview

The LOB (which stands for Large OBject) data type is for holding large amounts of data. Up to 2 GB
can be stored in one column of LOB data. Unlike other data types, the length of a LOB column does
not need to be specified when a table is created. Additionally, more than one LOB type column can
be defined in a table.

The LOB data type is divided into the Binary Large Object (BLOB) type, which is for holding binary
data such as image and video files, and the Character Large Object (CLOB) type, which is for holding
string data.

1.6.2 The Features of LOB

The LOB data type provided with ALTIBASE HDB has the following features:

• Data Storage Functions

• Partial Read

• Disk LOB Partitioning

1.6.2.1 Data Storage Functions

CLOB or BLOB data can be stored using the ODBC SQLPutLob function or using the setBlob or set-
Clob methods in JDBC.

1.6.2.2 Partial Read

It is possible to read only a desired portion of LOB data. A specific amount of data, offset a specific
distance from the beginning of the file, can be read using the SQLGetLob function in ALTIBASE HDB
ODBC.

1.6.2.3 Disk LOB Partitioning

Disk LOB data can be stored in a disk tablespace other than the one in which the table is stored. This
tablespace can be configured in a method similar to partitioning. For more information about disk
LOB partitioning, please refer to the description of the CREATE TABLE statement in the SQL Reference.

1.6.3 Storing LOB Columns

In most cases, LOB data are stored in a variable area, away from the rest of the record. However, in
cases where the amount of data stored in the LOB column is not big, the column can be stored in an
area that is contiguous with the rest of the record (i.e. in the fixed area) using the 'in row' option.
Note that this is possible for memory tables only; regardless of their size, LOB data in disk tables are
always stored in a separate, variable area.

Because the amount of LOB column data that is stored in the variable area is typically very large,
General Reference 42

1.6 LOB Data Type
storing it in the same tablespace as the rest of the record has a negative impact on the efficiency of
usage of space.

In a disk table, LOB column data can be stored in a tablespace other than the one containing the
table to which the LOB column belongs. However, in a memory table, LOB column data cannot be
stored separately, and thus are stored in the same tablespace as the table.

1.6.4 BLOB

1.6.4.1 Syntax Diagram

1.6.4.2 Syntax

BLOB [VARIABLE (IN ROW size)]

1.6.4.3 Description

BLOB is a binary data type that can vary in length up to 2 GB and is intended for use in storing large
amounts of binary data.

For more information on the VARIABLE clause, please refer to the sections earlier in this chapter enti-
tled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

1.6.5 CLOB

1.6.5.1 Syntax Diagram

1.6.5.2 Syntax

CLOB [VARIABLE (IN ROW size)]

VARIABLE

BLOB

IN ROW size

VARIABLE

CLOB

IN ROW size
43 Data Types

1.6 LOB Data Type
1.6.5.3 Description

CLOB is a character data type that can vary in length up to 2 GB and is intended for use in storing
large amounts of character data.

For more information on the VARIABLE clause, please refer to the sections earlier in this chapter enti-
tled 1.1.5 The FIXED and VARIABLE Options and 1.1.6 The IN ROW clause.

1.6.6 Restrictions

• LOB type columns can't be used with stored procedures or triggers.

• LOB type columns can't be used with cursors.

• LOB type columns can't be used in volatile tables or disk temporary tablespaces.

• LOB columns associated with tables in discarded tablespaces cannot be accessed.

• LOB type columns cannot be used for partitioning conditions, because in order to partition a
column it must be possible to perform comparisons on the data in the column.

• Indexes cannot be created for LOB columns.

• It is possible to define a NOT NULL constraint for a LOB type column. However, when an insert
attempt is made, a constraint violation error may be raised while the ALTIBASE HDB server is
internally processing the data. Therefore, it is recommended that the NOT NULL constraint not
be used with LOB type columns.
General Reference 44

1.7 Spatial Types
1.7 Spatial Types
The only geometry data type that is defined and supported for use with SQL in ALTIBASE HDB is the
GEOMETRY data type. The Geometry data type comprises the following seven subtypes:

• Point

• LineString

• Polygon

• GeomCollection

• MultiPolygon

• MultiLineString

• MultiPoint

For more information about the geometry datatype, please refer to the ALTIBASE HDB Spatial SQL Ref-
erence.
45 Data Types

1.7 Spatial Types
General Reference 46

2 ALTIBASE HDB
Properties

ALTIBASE HDB server can be run in various modes. The altibase.properties file is used to make ALTI-
BASE HDB server environment settings. The altibase.properties file contains all elements related to
the operation and adjustment of the ALTIBASE HDB server.

In this chapter, the ALTIBASE HDB properties that must be set and managed in order to configure
and use ALTIBASE HDB in the manner that is suitable for the user’s purposes will be explained.

This chapter contains the following sections:

• Configuration

• Database Initialization Properties

• Performance Properties

• Session Properties

• Transaction Properties

• Backup and Recovery Properties

• Replication Properties

• Message Logging Properties

• Database Link Related Properties

• DataPort Properties

• Other Properties
47 ALTIBASE HDB Properties

2.1 Configuration
2.1 Configuration
There are three ways to make ALTIBASE HDB server environment settings. The first method involves
making changes to the ALTIBASE HDB properties file, which is located at $ALTIBASE_HOME/conf/
altibase.properties. Because this method of configuration is static, meaning that changes can only
be made while ALTIBASE HDB is not running, after setting given variables in the properties file to
particular values, it will be necessary to restart the ALTIBASE HDB server in order for the changes to
take effect.

The second method is dynamic, meaning that configuration changes of ALTIBASE HDB can be made
even while ALTIBASE HDB server is running. Although this method confers the advantage of being
able to make and apply changes without shutting down the server, it is not possible for all proper-
ties. For properties that can be dynamically changed, the ALTER SYSTEM or ALTER SESSION state-
ments can be used to apply the configuration changes to the entire ALTIBASE HDB server or to
individual sessions, respectively.

The third method of configuring the ALTIBASE HDB environment is through the use of operating sys-
tem environment variables. Like the method involving the altibase.properties file, this configuration
method is also static. Properties that are read-only or that can only have a single value can be set in
this way. After specifying the environment variable as ALTIBASE_property_name, it will be necessary
to reboot the database server in order to implement the changes.

Here is an example:

$ export ALTIBASE_DEFAULT_DATE_FORMAT=YYYY/MM/DD

The precedence of the property-setting methods is as follows:

1. environment variables settings

2. altibase.properties file settings

3. default system values

As can be seen in the following example, when properties are set, because environment variables
take highest precedence, the value of DEFAULT_DATE_FORMAT in the altibase.properties file is
ignored, and the value of the environment variable is used.

$ export ALTIBASE_DEFAULT_DATE_FORMAT=YYYY-MM-DD

altibase.properties

DEFAULT_DATE_FORMAT=YYYY-MM-DD

Similarly, in the following example, NLS_USE in the altibase.properties file is ignored, and UTF-8,
which is specified by the NLS_USE environment variable, is used, because environment variables
have the highest priority.

$ export ALTIBASE_NLS_USE=UTF8

altibase.properties

NLS_USE = KO16KSC5601

The property file for configuring the ALTIBASE HDB server is called "altibase.properties" and is
located in the conf subdirectory of ALTIBASE_HOME. The properties therein are broadly grouped as
General Reference 48

2.1 Configuration
follows:

• database initialization properties

• performance properties

• session properties

• transaction properties

• backup and recovery properties

• replication properties

• message logging properties

• Database Link properties

• DataPort properties

• other properties

The following table lists all ALTIBASE HDB properties. For reference, each group in the table has the
following meaning:

• D: database initialization properties

• P: performance properties

• S: session properties

• T: transaction properties

• B: backup and recovery properties

• R: replication properties

• M: message logging properties

• L: Database Link properties

• O: DataPort properties

• E: other properties

The values in the “Alter Level” column have the following meaning:

• SESSION: the property can be changed using an ALTER SESSION statement.

• SYSTEM: the property can be changed using an ALTER SYSTEM statement.

• BOTH: the property can be changed using either an ALTER SESSION or an ALTER SYSTEM state-
ment.
49 ALTIBASE HDB Properties

2.1 Configuration
Group Class Property Name Alter Level

D BUFFER_AREA_CHUNK_SIZE
BUFFER_AREA_SIZE
BUFFER_CHECKPOINT_LIST_CNT
BUFFER_FLUSHER_CNT
BUFFER_FLUSH_LIST_CNT
BUFFER_HASH_BUCKET_DENSITY
BUFFER_HASH_CHAIN_LATCH_DENSITY
BUFFER_LRU_LIST_CNT
BUFFER_PREPARE_LIST_CNT
BULKIO_PAGE_COUNT_FOR_DIRECT_PATH_INSERT
COMPRESSION_RESOURCE_GC_SECOND
DB_NAME
DDL_SUPPLEMENTAL_LOG_ENABLE
DEFAULT_DISK_DB_DIR
DEFAULT_MEM_DB_FILE_SIZE
DEFAULT_SEGMENT_MANAGEMENT_TYPE
DEFAULT_SEGMENT_STORAGE_INITEXTENTS
DEFAULT_SEGMENT_STORAGE_MAXEXTENTS
DEFAULT_SEGMENT_STORAGE_MINEXTENTS
DEFAULT_SEGMENT_STORAGE_NEXTEXTENTS
DIRECT_PATH_BUFFER_PAGE_COUNT
DISK_INDEX_UNBALANCED_SPLIT_RATE
DISK_LOB_COLUMN_IN_ROW_SIZE
DOUBLE_WRITE_DIRECTORY
DOUBLE_WRITE_DIRECTORY_COUNT
DRDB_FD_MAX_COUNT_PER_DATAFILE
EXPAND_CHUNK_PAGE_COUNT
FULL_SCAN_USE_BUFFER_POOL
LOGANCHOR_DIR
LOG_DIR
LOG_FILE_SIZE
MAX_CLIENT
MEM_DB_DIR
MEM_MAX_DB_SIZE
MEMORY_INDEX_BUILD_RUN_SIZE
MEMORY_INDEX_BUILD_VALUE_LENGTH_THRESHOLD
MEMORY_LOB_COLUMN_IN_ROW_SIZE
MEMORY_VARIABLE_COLUMN_IN_ROW_SIZE
MEM_SIZE_CLASS_COUNT
MIN_COMPRESSION_RESOURCE_COUNT
MIN_LOG_RECORD_SIZE_FOR_COMPRESS
MIN_PAGES_ON_DB_FREE_LIST
MIN_PAGES_ON_TABLE_FREE_LIST
PCTFREE
PCTUSED
QP_MEMORY_CHUNK_SIZE
SECURITY_ECC_POLICY_NAME
SECURITY_MODULE_LIBRARY
SECURITY_MODULE_NAME
SHM_DB_KEY
STARTUP_SHM_CHUNK_SIZE
ST_OBJECT_BUFFER_SIZE
SYS_DATA_FILE_INIT_SIZE
SYS_DATA_FILE_MAX_SIZE
SYS_DATA_FILE_NEXT_SIZE
SYS_DATA_TBS_EXTENT_SIZE

None
SYSTEM
None
None
None
None
None
None
None
SYSTEM
None
None
SYSTEM
None
None
None
None
None
None
None
SYSTEM
SYSTEM
None
None
None
SYSTEM
None
SYSTEM
None
None
None
None
None
None
SYSTEM
SYSTEM
None
None
None
None
SYSTEM
None
SYSTEM
None
None
None
SYSTEM
SYSTEM
SYSTEM
SYSTEM
None
BOTH
None
None
None
None
General Reference 50

2.1 Configuration
SYS_TEMP_FILE_INIT_SIZE
SYS_TEMP_FILE_MAX_SIZE
SYS_TEMP_FILE_NEXT_SIZE
SYS_TEMP_TBS_EXTENT_SIZE
SYS_UNDO_FILE_INIT_SIZE
SYS_UNDO_FILE_MAX_SIZE
SYS_UNDO_FILE_NEXT_SIZE
SYS_UNDO_TBS_EXTENT_SIZE
TABLE_BACKUP_FILE_BUFFER_SIZE
TABLE_COMPACT_AT_SHUTDOWN
TEMP_PAGE_CHUNK_COUNT
TRCLOG_DETAIL_SCHEMA
USER_DATA_FILE_INIT_SIZE
USER_DATA_FILE_MAX_SIZE
USER_DATA_FILE_NEXT_SIZE
USER_DATA_TBS_EXTENT_SIZE
USER_TEMP_FILE_INIT_SIZE
USER_TEMP_FILE_MAX_SIZE
USER_TEMP_FILE_NEXT_SIZE
USER_TEMP_TBS_EXTENT_SIZE
VOLATILE_MAX_DB_SIZE

None
None
None
None
None
None
None
None
None
SYSTEM
None
BOTH
None
None
None
None
None
None
None
None
None

P AGER_WAIT_MAXIMUM
AGER_WAIT_MINIMUM
BUFFER_VICTIM_SEARCH_INTERVAL
BUFFER_VICTIM_SEARCH_PCT
CHECKPOINT_BULK_SYNC_PAGE_COUNT
CHECKPOINT_BULK_WRITE_PAGE_COUNT
CHECKPOINT_BULK_WRITE_SLEEP_SEC
CHECKPOINT_BULK_WRITE_SLEEP_USEC
CHECKPOINT_FLUSH_COUNT
CHECKPOINT_FLUSH_MAX_GAP
CHECKPOINT_FLUSH_MAX_WAIT_SEC
CM_BUFFER_MAX_PENDING_LIST
DATABASE_IO_TYPE
DATAFILE_WRITE_UNIT_SIZE
DB_FILE_MULTIPAGE_READ_COUNT
DEFAULT_FLUSHER_WAIT_SEC
DIRECT_IO_ENABLED
DISK_INDEX_BUILD_MERGE_PAGE_COUNT
EXECUTE_STMT_MEMORY_MAXIMUM
FAST_START_IO_TARGET
FAST_START_LOGFILE_TARGET
HIGH_FLUSH_PCT
HOT_LIST_PCT
HOT_TOUCH_CNT

None
None
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
None
None
SYSTEM
SYSTEM
SYSTEM
None
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

Group Class Property Name Alter Level
51 ALTIBASE HDB Properties

2.1 Configuration
P INDEX_BUILD_THREAD_COUNT
INDEX_INITRANS
INDEX_MAXTRANS
INSPECTION_LARGE_HEAP_THRESHOLD
LFG_GROUP_COMMIT_INTERVAL_USEC
LFG_GROUP_COMMIT_RETRY_USEC
LFG_GROUP_COMMIT_UPDATE_TX_COUNT
LOCK_ESCALATION_MEMORY_SIZE
LOG_FILE_GROUP_COUNT
LOG_IO_TYPE
LOW_FLUSH_PCT
LOW_PREPARE_PCT
MAX_FLUSHER_WAIT_SEC
MULTIPLEXING_CHECK_INTERVAL
MULTIPLEXING_MAX_THREAD_COUNT
MULTIPLEXING_THREAD_COUNT
NORMALFORM_MAXIMUM
OPTIMIZER_MODE
PARALLEL_LOAD_FACTOR
PREPARE_STMT_MEMORY_MAXIMUM
REFINE_PAGE_COUNT
SHM_PAGE_COUNT_PER_KEY
SORT_AREA_SIZE
SQL_PLAN_CACHE_BUCKET_CNT
SQL_PLAN_CACHE_HOT_REGION_LRU_RATIO
SQL_PLAN_CACHE_PREPARED_EXECUTION_CONTEXT_CNT
SQL_PLAN_CACHE_SIZE
STATEMENT_LIST_PARTIAL_SCAN_COUNT
TABLE_INITRANS
TABLE_LOCK_ENABLE
TABLE_MAXTRANS
TIMER_RUNNING_LEVEL
TIMED_STATISTICS
TIMER_THREAD_RESOLUTION
TOUCH_TIME_INTERVAL
TRANSACTION_SEGMENT_COUNT
TRX_UPDATE_MAX_LOGSIZE

SYSTEM
None
None
SYSTEM
None
None
None
SYSTEM
None
None
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
None
BOTH
BOTH
None
SYSTEM
None
SYSTEM
SYSTEM
None
SYSTEM
SYSTEM
SYSTEM
SYSTEM
None
SYSTEM
None
None
SYSTEM
SYSTEM
SYSTEM
SYSTEM
BOTH

Group Class Property Name Alter Level
General Reference 52

2.1 Configuration
S Normal CM_DISCONN_DETECT_TIME
DEFAULT_THREAD_STACK_SIZE
IPC_CHANNEL_COUNT
IPC_PORT_NO
MAX_LISTEN
MAX_STATEMENTS_PER_SESSION
NET_CONN_IP_STACK
NLS_NCHAR_CONV_EXCP
NLS_COMP
NLS_USE
PORT_NO
PSM_FILE_OPEN_LIMIT
SERVICE_THREAD_STACK_SIZE
USE_MEMORY_POOL
XA_HEURISTIC_COMPLETE

None
None
None
None
None
BOTH
None
SESSION
None
None
None
SYSTEM
None
None
None

Time-
Out

BLOCK_ALL_TX_TIME_OUT
DDL_LOCK_TIMEOUT
FETCH_TIMEOUT
IDLE_TIMEOUT
LINKER_CONNECT_TIMEOUT
LINKER_RECEIVE_TIMEOUT
LOGIN_TIMEOUT
MULTIPLEXING_POLL_TIMEOUT
QUERY_TIMEOUT
REMOTE_SERVER_CONNECT_TIMEOUT
REPLICATION_CONNECT_TIMEOUT
REPLICATION_LOCK_TIMEOUT
REPLICATION_RECEIVE_TIMEOUT
REPLICATION_SENDER_SLEEP_TIMEOUT
REPLICATION_SYNC_LOCK_TIMEOUT
SHUTDOWN_IMMEDIATE_TIMEOUT
UTRANS_TIMEOUT
XA_INDOUBT_TX_TIMEOUT

SYSTEM
SYSTEM
BOTH
BOTH
None
None
SYSTEM
SYSTEM
BOTH
None
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
BOTH
None

T AUTO_COMMIT
ISOLATION_LEVEL
TRANSACTION_TABLE_SIZE

BOTH
None
SYSTEM

B ARCHIVE_DIR
ARCHIVE_FULL_ACTION
ARCHIVE_THREAD_AUTOSTART
CHECKPOINT_ENABLED
CHECKPOINT_INTERVAL_IN_LOG
CHECKPOINT_INTERVAL_IN_SEC
COMMIT_WRITE_WAIT_MODE
LOG_BUFFER_TYPE
PREPARE_LOG_FILE_COUNT

None
None
None
None
SYSTEM
SYSTEM
BOTH
None
None

Group Class Property Name Alter Level
53 ALTIBASE HDB Properties

2.1 Configuration
R REPLICATION_ACK_XLOG_COUNT
REPLICATION_CONNECT_RECEIVE_TIMEOUT
REPLICATION_DDL_ENABLE
REPLICATION_FAILBACK_INCREMENTAL_SYNC
REPLICATION_HBT_DETECT_HIGHWATER_MARK
REPLICATION_HBT_DETECT_TIME
REPLICATION_INSERT_REPLACE
REPLICATION_KEEP_ALIVE_CNT
REPLICATION_LOG_BUFFER_SIZE
REPLICATION_MAX_LISTEN
REPLICATION_MAX_LOGFILE
REPLICATION_NET_CONN_IP_STACK
REPLICATION_POOL_ELEMENT_COUNT
REPLICATION_POOL_ELEMENT_SIZE
REPLICATION_PORT_NO
REPLICATION_PREFETCH_LOGFILE_COUNT
REPLICATION_RECOVERY_MAX_LOGFILE
REPLICATION_RECOVERY_MAX_TIME
REPLICATION_SENDER_AUTO_START
REPLICATION_SENDER_SLEEP_TIME
REPLICATION_SERVICE_WAIT_MAX_LIMIT
REPLICATION_SYNC_LOG
REPLICATION_SYNC_TUPLE_COUNT
REPLICATION_TIMESTAMP_RESOLUTION
REPLICATION_UPDATE_REPLACE
REPLICATION_EAGER_PARALLEL_FACTOR
REPLICATION_COMMIT_WRITE_WAIT_MODE
REPLICATION_SERVER_FAILBACK_MAX_TIME

None
SYSTEM
SYSTEM
None
SYSTEM
SYSTEM
SYSTEM
None
None
None
SYSTEM
None
SYSTEM
SYSTEM
None
SYSTEM
None
None
None
None
None
None
SYSTEM
SYSTEM
SYSTEM
None
SYSTEM
None

Group Class Property Name Alter Level
General Reference 54

2.1 Configuration
M ALL_MSGLOG_FLUSH
DL_MSGLOG_COUNT
DL_MSGLOG_DIR
DL_MSGLOG_FILE
DL_MSGLOG_FLAG
DL_MSGLOG_SIZE
LK_MSGLOG_COUNT
LK_MSGLOG_DIR
LK_MSGLOG_FILE
LK_MSGLOG_FLAG
LK_MSGLOG_SIZE
NETWORK_ERROR_LOG
QP_MSGLOG_COUNT
QP_MSGLOG_DIR
QP_MSGLOG_FILE
QP_MSGLOG_FLAG
QP_MSGLOG_SIZE
QUERY_PROF_FLAG
RP_MSGLOG_COUNT
RP_MSGLOG_DIR
RP_MSGLOG_FILE
RP_MSGLOG_FLAG
RP_MSGLOG_SIZE
SERVER_MSGLOG_COUNT
SERVER_MSGLOG_DIR
SERVER_MSGLOG_FILE
SERVER_MSGLOG_FLAG
SERVER_MSGLOG_SIZE
SM_MSGLOG_COUNT
SM_MSGLOG_DIR
SM_MSGLOG_FILE
SM_MSGLOG_FLAG
SM_MSGLOG_SIZE
TRCLOG_DETAIL_PREDICATE
XA_MSGLOG_DIR
XA_MSGLOG_FILE
XA_MSGLOG_FLAG
XA_MSGLOG_SIZE

SYSTEM
None
None
None
SYSTEM
None
None
None
None
SYSTEM
None
SYSTEM
None
None
None
SYSTEM
None
SYSTEM
None
None
None
SYSTEM
None
None
None
None
SYSTEM
None
None
None
None
SYSTEM
None
SYSTEM
None
None
SYSTEM
None

L AUTO_REMOTE_EXEC
DBLINK_ENABLE
LINKER_LINK_TYPE
LINKER_PORT_NO
LINKER_SQLLEN_SIZE
LINKER_THREAD_COUNT
LINKER_THREAD_SLEEP_TIME
MAX_DBLINK_COUNT

BOTH
None
None
None
None
None
None
None

O DATAPORT_FILE_DIRECTORY
DATAPORT_IMPORT_COMMIT_UNIT
DATAPORT_IMPORT_STATEMENT_UNIT

SYSTEM
SYSTEM
SYSTEM

E ACCESS_LIST
ADMIN_MODE
CHECK_MUTEX_DURATION_TIME_ENABLE
DEFAULT_DATE_FORMAT
EXEC_DDL_DISABLE
QUERY_STACK_SIZE
REMOTE_SYSDBA_ENABLE
SELECT_HEADER_DISPLAY

None
SYSTEM
SYSTEM
None
SYSTEM
BOTH
SYSTEM
BOTH

Group Class Property Name Alter Level
55 ALTIBASE HDB Properties

2.1 Configuration
In this chapter, each property is explained as follows:

• Property Name

• Data Type

• Default Value

• Attributes (e.g. read-only vs. read-write, single vs. multiple values)

• Range (maximum and minimum possible values)

• Description
General Reference 56

2.2 Database Initialization Properties
2.2 Database Initialization Properties

2.2.1 BUFFER_AREA_CHUNK_SIZE

2.2.1.1 Data Type

Unsigned Long

2.2.1.2 Default Value

33554432 (32MB)

2.2.1.3 Attributes

Read-Only, Single Value

2.2.1.4 Range

[8192, 264 - 1]

2.2.1.5 Description

This indicates the unit, in bytes, by which the buffer size is incremented. When the buffer size is
increased, it is increased in multiples of this number. This property can’t be changed while the server
is running.

2.2.2 BUFFER_AREA_SIZE

2.2.2.1 Data Type

Unsigned Long

2.2.2.2 Default Value

134217728 (128MB)

2.2.2.3 Attributes

Read-Write, Single Value

2.2.2.4 Range

[8192, 264 - 1]
57 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.2.5 Description

This indicates the total memory size, in bytes, used by the buffer pool of ALTIBASE HDB. The value
specified by the user will be rounded up to the nearest multiple of BUFFER_AREA_CHUNK_SIZE.

2.2.3 BUFFER_CHECKPOINT_LIST_CNT

2.2.3.1 Data Type

Unsigned Integer

2.2.3.2 Default Value

4

2.2.3.3 Attributes

Read-Only, Single Value

2.2.3.4 Range

[1, 64]

2.2.3.5 Description

This indicates the number of checkpoint lists. The greater the number of checkpoint lists, the less
lock contention there is among transactions.

2.2.4 BUFFER_FLUSHER_CNT

2.2.4.1 Data Type

Unsigned Integer

2.2.4.2 Default Value

2

2.2.4.3 Attributes

Read-Only, Single Value

2.2.4.4 Range

[1, 16]
General Reference 58

2.2 Database Initialization Properties
2.2.4.5 Description

This indicates the number of buffer flushers. This parameter can’t be changed while the server is run-
ning.

2.2.5 BUFFER_FLUSH_LIST_CNT

2.2.5.1 Data Type

Unsigned Integer

2.2.5.2 Default Value

1

2.2.5.3 Attributes

Read-Only, Single Value

2.2.5.4 Range

[1, 64]

2.2.5.5 Description

This indicates the number of flush lists. The more flush lists there are, the less lock contention there is
among transactions.

2.2.6 BUFFER_HASH_BUCKET_DENSITY

2.2.6.1 Data Type

Unsigned Integer

2.2.6.2 Default Value

1

2.2.6.3 Attributes

Read-Only, Single Value

2.2.6.4 Range

[1, 100]
59 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.6.5 Description

This indicates the percentage of BCBs (Buffer Control Blocks) that can be contained in one bucket.
For example, when the number of BCBs is 100, if this value is set to 1, lock contention is minimized
because the number of buckets is the same as the number of buffer frames in the buffer pool. If this
value is set to 2, the number of buckets is half the number of frames, whereas if this value is set to
100, there is only one bucket. As this value is increased, less memory is used; however, operational
costs increase because a single bucket will manage more buffer frames.

2.2.7 BUFFER_HASH_CHAIN_LATCH_DENSITY

2.2.7.1 Data Type

Unsigned Integer

2.2.7.2 Default Value

1

2.2.7.3 Attributes

Read-Only, Single Value

2.2.7.4 Range

[1, 100]

2.2.7.5 Description

This sets the percentage of buckets that correspond to each latch in a hash table. For example, when
the number of buckets is 1000, if this value is 1, one latch corresponds to ten buckets. If this value is
2, twenty buckets share a single latch. If this value is 100, only one latch exists for the entire hash
table.

This property is used to control concurrency when inserting a BCB (Buffer Control Block) into a hash
table or deleting it therefrom. The more latches there are, the less hash chain latch contention will
occur.

2.2.8 BUFFER_LRU_LIST_CNT

2.2.8.1 Data Type

Unsigned Integer

2.2.8.2 Default Value

7

General Reference 60

2.2 Database Initialization Properties
2.2.8.3 Attributes

Read-Only, Single Value

2.2.8.4 Range

[1, 64]

2.2.8.5 Description

This indicates the number of LRU lists. LRU list lock contention among transactions decreases as this
value is increased.

2.2.9 BUFFER_PREPARE_LIST_CNT

2.2.9.1 Data Type

Unsigned Integer

2.2.9.2 Default Value

7

2.2.9.3 Attributes

Read-Only, Single Value

2.2.9.4 Range

[1, 64]

2.2.9.5 Description

This indicates the number of prepare lists. The greater this value is, the less prepare list lock conten-
tion there is among transactions.

2.2.10 BULKIO_PAGE_COUNT_FOR_DIRECT_PATH_INSERT

2.2.10.1 Data Type

Unsigned Integer

2.2.10.2 Default Value

128
61 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.10.3 Attributes

Read-Write, Single Value

2.2.10.4 Range

[128, 12800]

2.2.10.5 Description

This property indicates how many pages can be simultaneously written to disk when entering data
using direct-path INSERT. This property can be changed using the ALTER SYSTEM statement while
ALTIBASE HDB is running.

2.2.11 COMPRESSION_RESOURCE_GC_SECOND

2.2.11.1 Data Type

Unsigned Integer

2.2.11.2 Default Value

3600

2.2.11.3 Attributes

Read-Only, Single Value

2.2.11.4 Range

[1, (264 – 1)/1000000]

2.2.11.5 Description

This property specifies the amount of time, in seconds, that unused resources are retained in the log
compression resource pool before they are discarded.

2.2.12 DB_NAME

2.2.12.1 Data Type

String
General Reference 62

2.2 Database Initialization Properties
2.2.12.2 Default Value

mydb

2.2.12.3 Attributes

Read-Only, Single Value

2.2.12.4 Range

None

2.2.12.5 Description

This indicates the database name. When a database is created, you must set the database name to
the same value as the value in this property.

2.2.13 DDL_SUPPLEMENTAL_LOG_ENABLE

2.2.13.1 Data Type

Unsigned Integer

2.2.13.2 Default Value

0

2.2.13.3 Attributes

Read-Write, Single Value

2.2.13.4 Range

[0, 1]

2.2.13.5 Description

This property determines whether to add a log file when a DDL statement is executed. This property
can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

0: Disabled (Do not add a log file)

1: Enabled (add a log file)
63 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.14 DEFAULT_DISK_DB_DIR

2.2.14.1 Data Type

String

2.2.14.2 Default Value

$ALTIBASE_HOME/dbs

2.2.14.3 Attributes

Read-Only, single

2.2.14.4 Range

None

2.2.14.5 Description

This property specifies the directory in which to save the disk database files. This property must be
set, even if the DRDBMS feature is not used. The default value is $ALTIBASE_HOME/dbs.

2.2.15 DEFAULT_MEM_DB_FILE_SIZE

2.2.15.1 Data Type

Unsigned Long

2.2.15.2 Default Value

1073741824 bytes (1GB)

2.2.15.3 Attributes

Read-Only, Single Value

2.2.15.4 Range

[4194304 (4MB), 264 - 1]

2.2.15.5 Description

This property indicates the default checkpoint image file size, in bytes, for memory tablespaces.
General Reference 64

2.2 Database Initialization Properties
2.2.16 DEFAULT_SEGMENT_MANAGEMENT_TYPE

2.2.16.1 Data Type

Unsigned Integer

2.2.16.2 Default Value

1

2.2.16.3 Attributes

Read-Only, Single Value

2.2.16.4 Range

None

2.2.16.5 Description

This indicates how segments are managed when creating disk tablespaces.

0: MANUAL –segments are created on the basis of a so-called "free list" method of managing avail-
able space in the user tablespace

1: AUTO –segments are created on the basis of a bitmap index to manage available space in the user
tablespace

2.2.17 DEFAULT_SEGMENT_STORAGE_INITEXTENTS

2.2.17.1 Data Type

Unsigned Integer

2.2.17.2 Default Value

1

2.2.17.3 Attributes

Read-Only, Single Value

2.2.17.4 Range

[1, 232 - 1]
65 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.17.5 Description

This sets the default number of extents that are initially allocated to a segment.

2.2.18 DEFAULT_SEGMENT_STORAGE_MAXEXTENTS

2.2.18.1 Data Type

Unsigned Integer

2.2.18.2 Default Value

232 - 1

2.2.18.3 Attributes

Read-Only, Single Value

2.2.18.4 Range

[1, 232 - 1]

2.2.18.5 Description

This sets the maximum number of extents that can be allocated to a segment.

2.2.19 DEFAULT_SEGMENT_STORAGE_MINEXTENTS

2.2.19.1 Data Type

Unsigned Integer

2.2.19.2 Default Value

1

2.2.19.3 Attributes

Read-Only, Single Value

2.2.19.4 Range

[1, 232 - 1]
General Reference 66

2.2 Database Initialization Properties
2.2.19.5 Description

This sets the minimum number of extents that can be allocated to a segment.

2.2.20 DEFAULT_SEGMENT_STORAGE_NEXTEXTENTS

2.2.20.1 Data Type

Unsigned Integer

2.2.20.2 Default Value

1

2.2.20.3 Attributes

Read-Only, Single Value

2.2.20.4 Range

[1, 232 - 1]

2.2.20.5 Description

This sets the number of extents that can be added to an existing segment.

2.2.21 DIRECT_PATH_BUFFER_PAGE_COUNT

2.2.21.1 Data Type

Unsigned Integer

2.2.21.2 Default Value

1024

2.2.21.3 Attributes

Read-Write, Single Value

2.2.21.4 Range

[1024, 232 - 1]
67 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.21.5 Description

This sets the number of pages in the direct-path INSERT buffer. This property can be changed using
the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.2.22 DISK_INDEX_UNBALANCED_SPLIT_RATE

2.2.22.1 Data Type

Unsigned Integer

2.2.22.2 Default Value

90

2.2.22.3 Attributes

Read-Write, Single Value

2.2.22.4 Range

[50, 99]

2.2.22.5 Description

In a disk B+ tree index, when the last child node of a leaf node in the lowest rank is divided, this prop-
erty specifies the ratio by which to divide keys between the node to be divided and the created
node. When this value is set to 90, which is the default value, the key ratio between the 2 nodes is
90:10. This property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is run-
ning.

2.2.23 DISK_LOB_COLUMN_IN_ROW_SIZE

2.2.23.1 Data Type

Unsigned Long

2.2.23.2 Default Value

4000

2.2.23.3 Attributes

Read-Only, Single Value
General Reference 68

2.2 Database Initialization Properties
2.2.23.4 Range

[0,4000]

2.2.23.5 Description

Ths property sets the default column size, in bytes, when LOB type data are stored directly in disk
tables.

When data are entered into a LOB data type column, if the data length is smaller or the same as the
value specified here, they are saved in table segment, whereas if the data are larger than this value,
they are saved in LOB segment. This property pertains only to disk tables, and has no effect on how
memory tables are managed.

For detailed information on LOB type data, please refer to Chapter1: Data Types.

2.2.24 DOUBLE_WRITE_DIRECTORY

2.2.24.1 Data Type

String

2.2.24.2 Default Value

None

2.2.24.3 Attributes

Read-Only, Multiple Values

2.2.24.4 Range

None

2.2.24.5 Description

This specifies the directory in which double-write files are saved. Multiple values can be saved for
this property, according to the value specified in DOUBLE_WRITE_DIRECTORY_COUNT.

2.2.25 DOUBLE_WRITE_DIRECTORY_COUNT

2.2.25.1 Data Type

Unsigned Integer
69 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.25.2 Default Value

2

2.2.25.3 Attributes

Read-Only, Single Value

2.2.25.4 Range

[1, 16]

2.2.25.5 Description

This specifies the number of directories in which double-write files are saved. Double write files can
independently be saved on different disks. Because respective double-write files are used for each
flusher, better flush performance can be realized when directories on different disks are specified.

2.2.26 DRDB_FD_MAX_COUNT_PER_DATAFILE

2.2.26.1 Data Type

Unsigned Integer

2.2.26.2 Default Value

8

2.2.26.3 Attributes

Read-Write, Single Value

2.2.26.4 Range

[1, 1024]

2.2.26.5 Description

This property specifies the maximum number of FD (File Descriptors) that can be opened for I/O
operations on a single disk data file. If the maximum number of FDs specified in this property has
been opened, requests to open additional FDs will wait until previous I/O operations are completed.
General Reference 70

2.2 Database Initialization Properties
2.2.27 EXPAND_CHUNK_PAGE_COUNT

2.2.27.1 Data Type

Unsigned Integer

2.2.27.2 Default Value

128

2.2.27.3 Attributes

Read-Only, Single Value

2.2.27.4 Range

[64, 264- 1]

2.2.27.5 Description

This property specifies the number of pages by which to increase the size of the memory database.

2.2.28 FULL_SCAN_USE_BUFFER_POOL

2.2.28.1 Data Type

Unsigned Integer

2.2.28.2 Default Value

0

2.2.28.3 Attributes

Read-Write, Single Value

2.2.28.4 Range

[0, 1]

2.2.28.5 Description

This property indicates whether disk tables are loaded into a buffer when a full scan is performed on
them. It is recommended to specify this property as 0 because there is a low probability that a full
scan is performed on already read ones.
71 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.29 LOGANCHOR_DIR

2.2.29.1 Data Type

String

2.2.29.2 Default Value

$ALTIBASE_HOME/logs

2.2.29.3 Attributes

Read-Only, Multiple Values

2.2.29.4 Range

None

2.2.29.5 Description

This property specifies the pathnames for the log anchor files. There must be three log anchor file
pathways. They are all set to the same default path.

2.2.30 LOG_DIR

2.2.30.1 Data Type

String

2.2.30.2 Default Value

$ALTIBASE_HOME/logs

2.2.30.3 Attributes

Read-Only, Multiple Values

2.2.30.4 Range

None

2.2.30.5 Description

This property specifies the pathname for log files. When using the log file group functionality, the
number of values specified here must be equal to the value specified in LOG_FILE_GROUP_COUNT.
General Reference 72

2.2 Database Initialization Properties
2.2.31 LOG_FILE_SIZE

2.2.31.1 Data Type

Unsigned long

2.2.31.2 Default Value

10 * 1024 * 1024

2.2.31.3 Attributes

Read-Only, Single Value

2.2.31.4 Range

[1024 * 1024, 264-1]

2.2.31.5 Description

This property specifies the size, in bytes, of a log file. When an active log file fills up, writing contin-
ues in a new log file. This property can be set only when creating a database; it can't be changed
afterwards. If the user arbitrarily changes this property after a database has been created, abnormal
shutdown or other problems can occur.

Restrictions

• In order to perform offline replication, this property must be set the same on the local (active)
server and the remote (standby) server.

• On Microsoft Windows (x64), if the DIRECT_IO_ENABLED property is set to 1, LOG_FILE_SIZE
must be set lower than 32Mbytes because of operating system-specific buffer size restrictions.
In order to set LOG_FILE_SIZE to a value greater than 32Mbytes, DIRECT_IO_ENABLED must be
set to 0.

Please, refer to http://msdn.microsoft.com/en-us/library/aa365747%28VS.85%29.aspx.

2.2.32 MAX_CLIENT

2.2.32.1 Data Type

Unsigned integer

2.2.32.2 Default Value

1000
73 ALTIBASE HDB Properties

http://msdn.microsoft.com/en-us/library/aa365747%28VS.85%29.aspx

2.2 Database Initialization Properties
2.2.32.3 Attributes

Read-Only, Single Value

2.2.32.4 Range

[0, 232 – 1]

2.2.32.5 Description

This property specifies the maximum number of clients that can connect to an ALTIBASE HDB server.

2.2.33 MEM_DB_DIR

2.2.33.1 Data Type

String

2.2.33.2 Default Value

$ALTIBASE_HOME/dbs

2.2.33.3 Attributes

Read-Only, Multiple Values

2.2.33.4 Range

None

2.2.33.5 Description

This property specifies the pathname for the memory database files.

It is possible to specify a minimum of 1 to a maximum of 8 paths. If multiple paths are specified, the
database files are distributed among the paths. All of the paths specified using this parameter must
be actual existing paths. The default number of paths is two, and they are both set to
$ALTIBASE_HOME/dbs.

This parameter cannot be modified after the database has been created.

2.2.34 MEM_MAX_DB_SIZE

2.2.34.1 Data Type

Unsigned Long
General Reference 74

2.2 Database Initialization Properties
2.2.34.2 Default Value

232

2.2.34.3 Attributes

Read-Only, Single Value

2.2.34.4 Range

[1024 * 1024, 232] (32 bits), [1024 * 1024, 264-1] (64 bits)

2.2.34.5 Description

This property specifies the maximum size, in bytes, to which a memory database can dynamically
increase while the server is running. The default value is 4 GB for both 32-bit and 64-bit mode.

If a database expands to a size exceeding MEM_MAX_DB_SIZE, the offending transaction is treated
as an error, and all subsequent SQL statements other than SELECT statements are also treated as
errors.

2.2.35 MEMORY_INDEX_BUILD_RUN_SIZE

2.2.35.1 Data Type

Unsigned Long

2.2.35.2 Default Value

32768 (bytes)

2.2.35.3 Attributes

Read-Write, Single Value

2.2.35.4 Range

[1024, 264 - 1]

2.2.35.5 Description

This sets the size, in bytes, of the in-memory sorting area for building memory indexes. This property
can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.
75 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.36 MEMORY_INDEX_BUILD_VALUE_LENGTH_THRESHOLD

2.2.36.1 Data Type

Unsigned Long

2.2.36.2 Default Value

64

2.2.36.3 Attributes

Read-Write, Single Value

2.2.36.4 Range

[0, 264 - 1]

2.2.36.5 Description

This property sets the maximum length, in bytes, of the key value used for intermediate sorting
when building memory indexes.

If the length of the key value is less than this value, the key value is used for intermediate sorting. If
this property is set to 0, the index build thread uses a pointer to the record rather than this key value.

This property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.2.37 MEMORY_LOB_COLUMN_IN_ROW_SIZE

2.2.37.1 Data Type

Unsigned Long

2.2.37.2 Default Value

64

2.2.37.3 Attributes

Read-Only, Single Value

2.2.37.4 Range

[0,4000]
General Reference 76

2.2 Database Initialization Properties
2.2.37.5 Description

This property sets the default column size, in bytes, when LOB type data are stored directly in mem-
ory tables.

When data are entered into a LOB data type column, if the data length is smaller or the same as the
value specified here, they are saved in a fixed amount of area, whereas if the data are larger than this
value, they are saved in a variable area. This property pertains only to memory tables, and has no
effect on how disk tables are managed.

For detailed information on LOB type data, please refer to Chapter1: Data Types.

2.2.38 MEMORY_VARIABLE_COLUMN_IN_ROW_SIZE

2.2.38.1 Data Type

Unsigned Long

2.2.38.2 Default Value

32

2.2.38.3 Attributes

Read-Write, Single Value

2.2.38.4 Range

[0,4000]

2.2.38.5 Description

This property sets the default column size, in bytes, when the variable type data are stored directly in
memory tables.

When data are entered into the variable type column, if the data length is smaller or the same as the
value specified here, they are saved in a fixed amount of area, whereas if the data are larger than this
value, they are saved in a variable area. This property pertains only to memory tables, and has no
effect on how disk tables are managed.

For detailed information on IN ROW clause, please refer to Chapter1: Data Types.

2.2.39 MEM_SIZE_CLASS_COUNT

2.2.39.1 Data Type

Unsigned Integer
77 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.39.2 Default Value

4

2.2.39.3 Attributes

Read-Only, Single Value

2.2.39.4 Range

[1, 4]

2.2.39.5 Description

This property determines the number of categories into which memory pages are classified based
on the amount of free space in them.

2.2.40 MIN_COMPRESSION_RESOURCE_COUNT

2.2.40.1 Data Type

unsigned integer

2.2.40.2 Default Value

16

2.2.40.3 Attributes

Read-Only, Single Value

2.2.40.4 Range

[1, 10240]

2.2.40.5 Description

This property indicates the minimum number of buffer chunks used by the log manager for log
compression. (One compression buffer chunk is about 16kB.)

2.2.41 MIN_LOG_RECORD_SIZE_FOR_COMPRESS

2.2.41.1 Data Type

Unsigned Integer
General Reference 78

2.2 Database Initialization Properties
2.2.41.2 Default Value

512

2.2.41.3 Attributes

Read-Write, Single Value

2.2.41.4 Range

[0, 232 - 1]

2.2.41.5 Description

This property specifies the log size, in bytes, that is used to determine whether to compress logs.

When this property is set to 0, logs are never compressed. If the size of a log exceeds the size speci-
fied here, logs will be compressed. This property can be changed using the ALTER SYSTEM statement
while ALTIBASE HDB is running.

2.2.42 MIN_PAGES_ON_DB_FREE_LIST

2.2.42.1 Data Type

Unsigned integer

2.2.42.2 Default Value

16

2.2.42.3 Attributes

Read-Only, Single Value

2.2.42.4 Range

[1, 232 – 1]

2.2.42.5 Description

This property specifies the minimum number of free pages that must be available on each list of free
pages. These pages are allocated to table free lists as required.
79 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.43 MIN_PAGES_ON_TABLE_FREE_LIST

2.2.43.1 Data Type

Unsigned integer

2.2.43.2 Default Value

1

2.2.43.3 Attributes

Read-Write, Single Value

2.2.43.4 Range

[1, 232 – 1]

2.2.43.5 Description

This property specifies the minimum number of free pages that each table must maintain on its own
list of free pages.

2.2.44 PCTFREE

2.2.44.1 Data Type

Unsigned Integer

2.2.44.2 Default Value

10

2.2.44.3 Attributes

Read-Only, Single Value

2.2.44.4 Range

[0, 99]

2.2.44.5 Description

This property indicates the minimum percentage of space to keep free in each page for the insertion
of data. The value specified by PCTFREE indicates the percentage of space that is kept free in order
to allow existing records to be updated.
General Reference 80

2.2 Database Initialization Properties
If the total size of the tablespace is 100MB and the value of PCTFREE is 10, up to 90MB of data, or
data equivalent in size to 90% of the total space, can be inserted.

If the value of PCTFREE is not set using a CREATE TABLE statement when a disk table is created, the
default value is used.

2.2.45 PCTUSED

2.2.45.1 Data Type

Unsigned Integer

2.2.45.2 Default Value

40

2.2.45.3 Attributes

Read-Only, Single Value

2.2.45.4 Range

[0, 99]

2.2.45.5 Description

The PCTUSED property is the minimum percentage of used space for reinsertion when ALTIBASE
HDB can only update record.This property indicates the amount of space that is used to convert the
state of a tablespace page from one on which only updates can be performed to one on which insert
operations can also be performed.

When enough data have been entered that the amount of used page space reaches the value speci-
fied in PCTFREE, only update operations can be performed. In this state, if the amount of used space
falls below the value of PCTUSED due to update and delete operations, new records can be inserted.

If the value of PCTUSED is not explicitly set using a CREATE TABLE statement when a disk table is cre-
ated, the default value is used.

2.2.46 QP_MEMORY_CHUNK_SIZE

2.2.46.1 Data Type

Unsigned Long

2.2.46.2 Default Value

65536
81 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.46.3 Attributes

Read-Only, Single Value

2.2.46.4 Range

[1024, 264 – 1]

2.2.46.5 Description

This property specifies the number of additional bytes allocated by the system each time the Query
Processor requires additional memory.

2.2.47 SECURITY_ECC_POLICY_NAME

2.2.47.1 Data Type

String

2.2.47.2 Default Value

None

2.2.47.3 Attributes

Read-Write, Single Value

2.2.47.4 Range

None

2.2.47.5 Description

This property indicates the name of ECC (Encrypted Comparison Code) algorithm used when you
perform a security module for the encrypted columns.

2.2.48 SECURITY_MODULE_LIBRARY

2.2.48.1 Data Type

String

2.2.48.2 Default Value

None
General Reference 82

2.2 Database Initialization Properties
2.2.48.3 Attributes

Read-Write, Single Value

2.2.48.4 Range

None

2.2.48.5 Description

This property indicates library file name of security module, and is used when you perform a security
module.

2.2.49 SECURITY_MODULE_NAME

2.2.49.1 Data Type

String

2.2.49.2 Default Value

None

2.2.49.3 Attributes

Read-Write, Single Value

2.2.49.4 Range

None

2.2.49.5 Description

This property indicates the name of security module, and is used when you perform a security mod-
ule.

2.2.50 SHM_DB_KEY

2.2.50.1 Data Type

Unsigned integer

2.2.50.2 Default Value

0

83 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.50.3 Attributes

Read-Write, Single Value

2.2.50.4 Range

[0, 232 – 1]

2.2.50.5 Description

If the database is to be used in virtual memory space, this parameter is set to 0, whereas If shared
memory is used, this parameter must be set to the shared memory key value. The shared memory
key value can be any arbitrary value not used by the system. Because the process of reading pages
from disk is not necessary when the database is located in shared memory rather than on disk, ALTI-
BASE HDB server starting time can be reduced.

2.2.51 STARTUP_SHM_CHUNK_SIZE

2.2.51.1 Data Type

Unsigned long

2.2.51.2 Default Value

1 G

2.2.51.3 Attributes

Read-Only, Single Value

2.2.51.4 Range

[1024, 264 – 1]

2.2.51.5 Description

In the state in which a value other than 0 has been set for SHM_DB_KEY, i.e. when the database is to
be stored in shared memory, this property sets the maximum size, in bytes, of shared memory
chunks that are created when ALTIBASE HDB is started.

2.2.52 ST_OBJECT_BUFFER_SIZE

2.2.52.1 Data Type

Unsigned long
General Reference 84

2.2 Database Initialization Properties
2.2.52.2 Default Value

32000

2.2.52.3 Attributes

Read-Write, Single Value

2.2.52.4 Range

[32000, 104857600]

2.2.52.5 Description

This sets the maximum size, in bytes, of a single geometry object.

2.2.53 SYS_DATA_FILE_INIT_SIZE

2.2.53.1 Data Type

Unsigned long

2.2.53.2 Default Value

100M (100 * 1024 * 1024)

2.2.53.3 Attributes

Read-Only, Single Value

2.2.53.4 Range

[8 * 8kB, 32GB]

2.2.53.5 Description

This specifies the initial size, in bytes, of the data file (system001.dbf) when SYS_TBS_DISK_DATA
(system disk tablespace) is created. Moreover, if the initial size is not specified when a data file (that
is, a user-specified file other than system001.dbf) is added to SYS_TBS_DISK_DATA, the initial size of
that data file also defaults to the value specified here.

2.2.54 SYS_DATA_FILE_MAX_SIZE

2.2.54.1 Data Type

Unsigned long
85 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.54.2 Default Value

2 * 1024 * 1024 * 1024

2.2.54.3 Attributes

Read-Only, Single Value

2.2.54.4 Range

[8 * 8kB, 32GB]

2.2.54.5 Description

This property specifies the maximum size, in bytes, of the allocated data file when
SYS_TBS_DISK_DATA (system disk tablespace) is created. It must be equal to or greater than the
value of SYS_DATA_FILE_INIT_SIZE. The minimum possible value is 64kB.

Moreover, if no maximum value is set when data files are added to SYS_TBS_DISK_DATA (system disk
tablespace), the value specified here will be taken for SYS_DATA_FILE_MAX_SIZE.

2.2.55 SYS_DATA_FILE_NEXT_SIZE

2.2.55.1 Data Type

Unsigned long

2.2.55.2 Default Value

1 * 1024 * 1024 (bytes)

2.2.55.3 Attributes

Read-Only, Single Value

2.2.55.4 Range

[8 * 8kB, 32GB]

2.2.55.5 Description

When the autoextend property of system disk tablespace (SYS_TBS_DISK_DATA) is set to “autoex-
tend on”, data files are automatically incremented in size by the number of bytes specified here in
order to accommodate increased amounts of data.

If the size of a data file reaches the value specified in SYS_DATA_FILE_MAX_SIZE , and additionally
the amount of valid space in other data files is less than that specified in SYS_DATA_FILE_NEXT_SIZE,
an insufficient tablespace error will be raised.
General Reference 86

2.2 Database Initialization Properties
2.2.56 SYS_DATA_TBS_EXTENT_SIZE

2.2.56.1 Data Type

Unsigned long

2.2.56.2 Default Value

512 * 1024

2.2.56.3 Attributes

Read-Only, Single Value

2.2.56.4 Range

[40kB, 32GB]

2.2.56.5 Description

This specifies the size, in bytes, of an extent1 when SYS_TBS_DISK_DATA (system disk tablespace) is
created2. In order for an extent to contain at least 5 pages, the minimum value of this property is
40kB (5*8kB).

2.2.57 SYS_TEMP_FILE_INIT_SIZE

2.2.57.1 Data Type

Unsigned long

2.2.57.2 Default Value

100M (100 * 1024 * 1024)

2.2.57.3 Attributes

Read-Only, Single Value

2.2.57.4 Range

[8 * 8kB, 32GB]

1. The initial extent size cannot be changed after the database has been created. The default value
is 32 pages.

2. System disk data tablespace: this is the disk tablespace that is created by default when a data-
base is created. The disk table and disk index are the only database objects that are saved.
87 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.57.5 Description

This specifies the initial size, in bytes, of the temporary data file (temp001.dbf) when
SYS_TBS_DISK_TEMP is created. Moreover, if the initial size is not specified when a temporary data
file is added to SYS_TBS_DISK_TEMP, the value specified here is used.

2.2.58 SYS_TEMP_FILE_MAX_SIZE

2.2.58.1 Data Type

Unsigned long

2.2.58.2 Default Value

2 * 1024 * 1024 * 1024

2.2.58.3 Attributes

Read-Only, Single Value

2.2.58.4 Range

[8 * 8kB, 32GB]

2.2.58.5 Description

This specifies the maximum size, in bytes, of the data file (temp001.dbf) that is allocated when
SYS_TBS_DISK_TEMP is created.

The value of this property must be at least as great as that of SYS_TEMP_FILE_INIT_SIZE. The mini-
mum possible value is 64kB. Moreover, if the maximum size is not specified when a temporary data
file is added to SYS_TBS_DISK_TEMP, the size specified here is the default maximum size.

2.2.59 SYS_TEMP_FILE_NEXT_SIZE

2.2.59.1 Data Type

Unsigned long

2.2.59.2 Default Value

1 * 1024 * 1024

2.2.59.3 Attributes

Read-Only, Single Value
General Reference 88

2.2 Database Initialization Properties
2.2.59.4 Range

[8 * 8kB, 32GB]

2.2.59.5 Description

If there is not enough space in a data file in the SYS_TBS_DISK_TEMP tablespace, the size of the file is
increased by the amount specified here.

2.2.60 SYS_TEMP_TBS_EXTENT_SIZE

2.2.60.1 Data Type

Unsigned long

2.2.60.2 Default Value

256 * 1024

2.2.60.3 Attributes

Read-Only, Single Value

2.2.60.4 Range

[40kB, 32GB]

2.2.60.5 Description

This specifies the size, in bytes, of an extent when the SYS_TBS_DISK_TEMP (system disk temporary
tablespace)1 is created. It must be large enough to contain at least five pages (40kB = 5 * 8kB).

2.2.61 SYS_UNDO_FILE_INIT_SIZE

2.2.61.1 Data Type

Unsigned long

2.2.61.2 Default Value

100 * 1024 * 1024

1. System disk temporary tablespace: This is automatically created by default when a database is
created, and is a tablespace for temporary storage related to various kinds of database opera-
tions. It is set as the default temporary tablespace for storing objects on disk for all users. The
only database objects that are stored here are disk tables and disk indexes.
89 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.61.3 Attributes

Read-Only, Single Value

2.2.61.4 Range

[32 * 8kB, 32GB]

2.2.61.5 Description

This specifies the default size, in bytes, of the data file (undo001.dbf) when SYS_TBS_DISK_UNDO
tablespace is created. Additionally, when a data file is added to SYS_TBS_DISK_UNDO without speci-
fying its initial size, the size specified here is used.

2.2.62 SYS_UNDO_FILE_MAX_SIZE

2.2.62.1 Data Type

Unsigned long

2.2.62.2 Default Value

2 * 1024 * 1024 * 1024

2.2.62.3 Attributes

Read-Only, Single Value

2.2.62.4 Range

[32 * 8kB, 32GB]

2.2.62.5 Description

This specifies the maximum size, in bytes, of the data file (undo001.dbf) that is allocated when
SYS_TBS_DISK_UNDO is created.

The value of this property must be at least as great as that of SYS_UNDO_FILE_INIT_SIZE. The mini-
mum possible value is 256kB. Moreover, if the maximum size is not specified when a temporary data
file is added to SYS_TBS_DISK_UNDO, the value specified here is used as the default maximum size.

2.2.63 SYS_UNDO_FILE_NEXT_SIZE

2.2.63.1 Data Type

Unsigned long
General Reference 90

2.2 Database Initialization Properties
2.2.63.2 Default Value

1 * 1024 * 1024

2.2.63.3 Attributes

Read-Only, Single Value

2.2.63.4 Range

[8 * 8kB, 32GB]

2.2.63.5 Description

When there is not enough space in the SYS_TBS_DISK_UNDO tablespace data file, the size of the
data file is incremented by the number of bytes specified here.

2.2.64 SYS_UNDO_TBS_EXTENT_SIZE

2.2.64.1 Data Type

Unsigned long

2.2.64.2 Default Value

256 * 1024

2.2.64.3 Attributes

Read-Only, Single Value

2.2.64.4 Range

[40kB, 32GB]

2.2.64.5 Description

This specifies the size, in bytes, of an extent when SYS_TBS_DISK_UNDO (system disk undo
tablespace)1 is created.

1. System disk undo tablespace: this is automatically created by default when a database is cre-
ated, and is used only for saving undo information. Only one system disk undo tablespace exists
in a database. The user cannot create or delete tables, indexes, or anything else in system disk
undo tablespace.
91 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.65 TABLE_BACKUP_FILE_BUFFER_SIZE

2.2.65.1 Data Type

Unsigned Integer

2.2.65.2 Default Value

1024

2.2.65.3 Attributes

Read-Only, Single Value

2.2.65.4 Range

[0, 1048576]

2.2.65.5 Description

This property specifies the table backup buffer size, in bytes, for use when using the ALTER TABLE
command to add or delete columns to or from memory tables.

2.2.66 TABLE_COMPACT_AT_SHUTDOWN

2.2.66.1 Data Type

Unsigned Integer

2.2.66.2 Default Value

1

2.2.66.3 Attributes

Read-Write, Single Value

2.2.66.4 Range

None

2.2.66.5 Description

This property indicates whether to compact tables when you shut down database. It is recom-
mended to specify this property as 1 to reduce memory consumption of tables when you restart
database up.
General Reference 92

2.2 Database Initialization Properties
2.2.67 TEMP_PAGE_CHUNK_COUNT

2.2.67.1 Data Type

Unsigned integer

2.2.67.2 Default Value

128

2.2.67.3 Attributes

Read-Only, Single Value

2.2.67.4 Range

[1, 232 – 1]

2.2.67.5 Description

This property indicates the number of temporary data pages that can be allocated at one time.

2.2.68 TRCLOG_DETAIL_SCHEMA

2.2.68.1 Data Type

Unsigned integer

2.2.68.2 Default Value

0

2.2.68.3 Attributes

Read-Write, Single Value

2.2.68.4 Range

[0, 1]

2.2.68.5 Description

This property indicates whether to output the names of the owners of tables, indexes, and Database
Link-related objects when outputting the execution plan for a SQL statement.
93 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.69 USER_DATA_FILE_INIT_SIZE

2.2.69.1 Data Type

Unsigned long

2.2.69.2 Default Value

100 * 1024 * 1024

2.2.69.3 Attributes

Read-Only, Single Value

2.2.69.4 Range

[8 * 8kB, 32GB]

2.2.69.5 Description

This property sets the initial size, in bytes, of a user-defined data file that is created or added to user
disk data tablespace. The default value specified here is used if no initial size is specified.

2.2.70 USER_DATA_FILE_MAX_SIZE

2.2.70.1 Data Type

Unsigned long

2.2.70.2 Default Value

2 * 1024 * 1024 * 1024

2.2.70.3 Attributes

Read-Only, Single Value

2.2.70.4 Range

[8 * 8kB, 32GB]

2.2.70.5 Description

This sets the maximum size, in bytes, of a user-defined data file that is created or added to user disk
data tablespace.
General Reference 94

2.2 Database Initialization Properties
The value of this property should be at least as big as that specified in USER_DATA_FILE_INIT_SIZE.
The minimum possible value is 64kB. If no maximum size is specified when a data file is created or
added, the default value specified here is used.

2.2.71 USER_DATA_FILE_NEXT_SIZE

2.2.71.1 Data Type

Unsigned long

2.2.71.2 Default Value

1 * 1024 * 1024

2.2.71.3 Attributes

Read-Only, Single Value

2.2.71.4 Range

[8 * 8kB, 32GB]

2.2.71.5 Description

When there is not enough data file space in the user-defined data file user disk data tablespace, the
size of the data file is incremented by the number of bytes specified here.

2.2.72 USER_DATA_TBS_EXTENT_SIZE

2.2.72.1 Data Type

Unsigned long

2.2.72.2 Default Value

512 * 1024

2.2.72.3 Attributes

Read-Only, Single Value

2.2.72.4 Range

[2 * 8kB, 264 – 1]
95 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.72.5 Description

This specifies the size, in bytes, of an extent when a user disk data tablespace is created.

2.2.73 USER_TEMP_FILE_INIT_SIZE

2.2.73.1 Data Type

Unsigned long

2.2.73.2 Default Value

100 * 1024 * 1024

2.2.73.3 Attributes

Read-Only, Single Value

2.2.73.4 Range

[8 * 8kB, 32GB]

2.2.73.5 Description

This specifies the initial size, in bytes, of a data file when a user-defined temporary data file is created
or added to user temporary tablespace. If no initial size is specified, the default value specifed here is
used.

2.2.74 USER_TEMP_FILE_MAX_SIZE

2.2.74.1 Data Type

Unsigned long

2.2.74.2 Default Value

2 * 1024 * 1024 * 1024

2.2.74.3 Attributes

Read-Only, Single Value

2.2.74.4 Range

[8 * 8kB, 32GB]
General Reference 96

2.2 Database Initialization Properties
2.2.74.5 Description

This property limits the maximum size, in bytes, of user-defined temporary data files that are created
in or added to user temporary tablespace.

This parameter must be at least as great as USER_DATA_FILE_INIT_SIZE. The minimum possible
value is 64kB. If no maximum size is specified when temporary data files are created or added, the
default value specified here is used.

2.2.75 USER_TEMP_FILE_NEXT_SIZE

2.2.75.1 Data Type

Unsigned long

2.2.75.2 Default Value

1 * 1024 * 1024

2.2.75.3 Attributes

Read-Only, Single Value

2.2.75.4 Range

[8 * 8kB, 32GB]

2.2.75.5 Description

If there is insufficient space in a user-defined temporary data file in user temporary tablespace, the
size of the data file is increased by the number of bytes specified here.

2.2.76 USER_TEMP_TBS_EXTENT_SIZE

2.2.76.1 Data Type

Unsigned long

2.2.76.2 Default Value

256 * 1024

2.2.76.3 Attributes

Read-Only, Single Value
97 ALTIBASE HDB Properties

2.2 Database Initialization Properties
2.2.76.4 Range

[2 * 8kB, 264 – 1]

2.2.76.5 Description

This specifies the size, in bytes, of an extent when user temporary tablespace is created. It must be at
least 2 pages (16kB = 2 * 8kB).

2.2.77 VOLATILE_MAX_DB_SIZE

2.2.77.1 Data Type

Unsigned long

2.2.77.2 Default Value

232

2.2.77.3 Attributes

Read-Only, Single Value

2.2.77.4 Range

[2097152, 264 - 1]

2.2.77.5 Description

This property specifies the maximum size, in bytes, of volatile tablespace.
General Reference 98

2.3 Performance Properties
2.3 Performance Properties

2.3.1 AGER_WAIT_MAXIMUM

2.3.1.1 Data Type

Unsigned integer

2.3.1.2 Default Value

100000

2.3.1.3 Attributes

Read-Only, Single Value

2.3.1.4 Range

[0, 232 – 1]

2.3.1.5 Description

This property specifies the maximum waiting time, in microseconds, of the garbage collector (also
known as the “Ager”).

This property is intended to prevent deterioration in performance (especially in HP systems) result-
ing from excessive “sleep” system calls by threads related to the garbage collector while the garbage
collector is asleep. This parameter allows the maximum sleep time of the garbage collector to be
suitably regulated while the server is running.

2.3.2 AGER_WAIT_MINIMUM

2.3.2.1 Data Type

Unsigned integer

2.3.2.2 Default Value

100

2.3.2.3 Attributes

Read-Only, Single Value
99 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.2.4 Range

[0, 232 – 1]

2.3.2.5 Description

This property specifies the minimum waiting time, in microseconds, of the garbage collector (also
known as the “Ager”).

This property is intended to prevent deterioration in performance (especially in HP systems) result-
ing from excessive “sleep” system calls by threads related to the garbage collector while the garbage
collector is asleep. This parameter allows the minimum sleep time of the garbage collector to be
suitably regulated while the server is running.

2.3.3 BUFFER_VICTIM_SEARCH_INTERVAL

2.3.3.1 Data Type

Unsigned Integer

2.3.3.2 Default Value

3000

2.3.3.3 Attributes

Read-Write, Single Value

2.3.3.4 Range

[0, 232 – 1]

2.3.3.5 Description

After a search for a replacement BCB (“victim”) fails, this property specifies the amount of time, in
milliseconds, to wait for the flusher to flush dirty buffer frames before searching again for a victim.

If, as the result of the subsequent search, a replacement BCB still cannot be found, the value of
VICTIM_SEARCH_WARP in the V$BUFFPOOL_STAT performance view is increased.

2.3.4 BUFFER_VICTIM_SEARCH_PCT

2.3.4.1 Data Type

Unsigned Integer
General Reference 100

2.3 Performance Properties
2.3.4.2 Default Value

5

2.3.4.3 Attributes

Read-Write, Single Value

2.3.4.4 Range

[0, 100]

2.3.4.5 Description

This property sets how much to explore when searching for replacement buffers in an LRU list. In
other words, this property indicates the percentage of an LRU list that is searched, with the least
recently accessed records searched first. A value of 100 indicates that the entire list is searched.

2.3.5 CHECKPOINT_BULK_SYNC_PAGE_COUNT

2.3.5.1 Data Type

Unsigned Integer

2.3.5.2 Default Value

3200

2.3.5.3 Attributes

Read-Write, Single Value

2.3.5.4 Range

[0, 232 – 1]

2.3.5.5 Description

When performing checkpointing between memory and disk tables, this property sets the number of
pages that are synchronized at one time. This property can be changed using the ALTER SYSTEM
statement while ALTIBASE HDB is running.
101 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.6 CHECKPOINT_BULK_WRITE_PAGE_COUNT

2.3.6.1 Data Type

Unsigned Integer

2.3.6.2 Default Value

0

2.3.6.3 Attributes

Read-Write, Single Value

2.3.6.4 Range

[0, 232 - 1]

2.3.6.5 Description

When checkpointing, a given number of dirty pages can be separated and saved to disk. When this
happens, this property specifies the number of dirty pages that are saved to disk at one time. If this is
set to 0, all of the dirty pages are saved to the disk database at one time. This property can be
changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.3.7 CHECKPOINT_BULK_WRITE_SLEEP_SEC

2.3.7.1 Data Type

Unsigned Integer

2.3.7.2 Default Value

0

2.3.7.3 Attributes

Read-Write, Single Value

2.3.7.4 Range

[0, 232 - 1]

2.3.7.5 Description

This property specifies the amount of time to wait (in seconds) after saving dirty pages to disk if the
General Reference 102

2.3 Performance Properties
value of CHECKPOINT_BULK_WRITE_PAGE_COUNT is not set to 0. This property can be changed
using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.3.8 CHECKPOINT_BULK_WRITE_SLEEP_USEC

2.3.8.1 Data Type

Unsigned Integer

2.3.8.2 Default Value

0

2.3.8.3 Attributes

Read-Write, Single Value

2.3.8.4 Range

[0, 232 - 1]

2.3.8.5 Description

This property specifies the amount of time to wait (in microseconds) after saving dirty pages to disk
if the value of CHECKPOINT_BULK_WRITE_PAGE_COUNT is not set to 0. This property can be
changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.3.9 CHECKPOINT_FLUSH_COUNT

2.3.9.1 Data Type

Unsigned Integer

2.3.9.2 Default Value

64

2.3.9.3 Attributes

Read-Write, Single Value

2.3.9.4 Range

[1, 232 – 1]
103 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.9.5 Description

This property specifies the number of buffer pages (frames) that can be flushed in one flusher cycle
when checkpoint flushing.

2.3.10 CHECKPOINT_FLUSH_MAX_GAP

2.3.10.1 Data Type

Unsigned Integer

2.3.10.2 Default Value

10

2.3.10.3 Attributes

Read-Write, Single Value

2.3.10.4 Range

[0, 232 – 1]

2.3.10.5 Description

This is one of the conditions for conducting checkpoint processing. Checkpoint flushing is per-
formed when the number of logfiles between the most recent LSN (Log Sequence Number) and the
earliest LSN reaches this value.

This property influences the recovery time when the server is restarted. Greater values mean that
checkpoint processing is performed less often, and that it takes more time for the server to recover
when restarted.

The value of this property can be changed using the ALTER SYSTEM statement while the server is
running.

2.3.11 CHECKPOINT_FLUSH_MAX_WAIT_SEC

2.3.11.1 Data Type

Unsigned Integer

2.3.11.2 Default Value

10
General Reference 104

2.3 Performance Properties
2.3.11.3 Attributes

Read-Write, Single Value

2.3.11.4 Range

[0, 232 – 1]

2.3.11.5 Description

This is one of the conditions for conducting checkpoint processing. Checkpoint flushing is per-
formed when the number of seconds specified by this property has passed since the most recent
flush.

2.3.12 CM_BUFFER_MAX_PENDING_LIST

2.3.12.1 Data Type

Unsigned Integer

2.3.12.2 Default Value

128

2.3.12.3 Attributes

Read-Only, Single Value

2.3.12.4 Range

[1, 512]

2.3.12.5 Description

In order to prevent sudden increases in memory usage, this property specifies the maximum num-
ber of communication buffer blocks that can be allocated in one session.

2.3.13 DATABASE_IO_TYPE

2.3.13.1 Data Type

Unsigned integer

2.3.13.2 Default Value

0

105 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.13.3 Attributes

Read-Only, Single Value

2.3.13.4 Range

[0, 1]

2.3.13.5 Description

ALTIBASE HDB is a hybrid MMDBMS. Therefore, database-related disk I/O operations occur when
data are loaded at the time that the ALTIBASE HDB server is first started, and when checkpointing is
conducted while ALTIBASE HDB is running.

ALTIBASE HDB provides two disk I/O methods related to database files:

• Direct I/O

• Buffered I/O

To use direct I/O, set this parameter to 1, or to use buffered I/O, set it to 0.

The advantage of Direct I/O reduces CPU resources during occurance of Disk I/O. On the other hand,
since the Buffered I/O uses techniques of read-ahead and asynchronous write, it may not access disk
everytime when the disk I/O is required. It means that the Buffered I/O is faster the disk I/O than the
Direct I/O in aspect of the application; however the Buffered I/O consumes a higher level of CPU
resources when compared to the Direct I/O.

2.3.14 DATAFILE_WRITE_UNIT_SIZE

2.3.14.1 Data Type

Unsigned Long

2.3.14.2 Default Value

1024

2.3.14.3 Attributes

Read-Write, Single Value

2.3.14.4 Range

[1, 1024]

2.3.14.5 Description

This property specifies the default data unit size when a data file is created. This property can be
General Reference 106

2.3 Performance Properties
changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.3.15 DB_FILE_MULTIPAGE_READ_COUNT

2.3.15.1 Data Type

Unsigned Integer

2.3.15.2 Default Value

8

2.3.15.3 Attributes

Read-Write, Single Value

2.3.15.4 Range

[1, 128]

2.3.15.5 Description

This property determines the number of pages to read at a time when a full scan is performed on a
disk table. At this time, if a disk table’s extent size, that is, the number of pages in the extent, is a mul-
tiple of (and greater than) the value specified here, Multiple Page Read (MPR) is conducted.

However, if the extent size is not a multiple of, or is smaller than, the value specified here, Single
Page Read (SPR) is conducted. This property can be changed using the ALTER SYSTEM statement
while ALTIBASE HDB is running.

2.3.16 DEFAULT_FLUSHER_WAIT_SEC

2.3.16.1 Data Type

Unsigned Integer

2.3.16.2 Default Value

1

2.3.16.3 Attributes

Read-Write, Single Value
107 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.16.4 Range

[1, 232 – 1]

2.3.16.5 Description

This property sets the minimum number of seconds that the flusher waits. As long as there are no
special conditions, flushing is always conducted after waiting this amount of time.

The wait time is repeatedly incremented 1 second at a time if the flusher is removed from the queue
or doesn't perform any flushing work.

2.3.17 DIRECT_IO_ENABLED

2.3.17.1 Data Type

Unsigned Integer

2.3.17.2 Default Value

1

2.3.17.3 Attributes

Read-Only, Single Value

2.3.17.4 Range

[0, 1]

2.3.17.5 Description

This property indicates whether database I/O can be performed via direct disk access.

0: disable

1: enable

2.3.18 DISK_INDEX_BUILD_MERGE_PAGE_COUNT

2.3.18.1 Data Type

Unsigned Integer

2.3.18.2 Default Value

128
General Reference 108

2.3 Performance Properties
2.3.18.3 Attributes

Read-Write, Single Value

2.3.18.4 Range

[2, 232– 1]

2.3.18.5 Description

When a disk index is created, if the keys extracted from data cannot all be sorted in memory at the
same time, this property specifies the number of pages to be used for external sorting.

This property can be changed using the ALTER SYSTEM statement during system operation.

2.3.19 EXECUTE_STMT_MEMORY_MAXIMUM

2.3.19.1 Data Type

Unsigned Long

2.3.19.2 Default Value

1G

2.3.19.3 Property

Read-Write, Single Value

2.3.19.4 Range

[1024*1024, 264 – 1]

2.3.19.5 Description

This property limits the number of bytes of memory that can be used to execute a single query
statement .

This property can be changed using the ALTER SYSTEM statement during system operation.

2.3.20 FAST_START_IO_TARGET

2.3.20.1 Data Type

Unsigned Long
109 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.20.2 Default Value

10000

2.3.20.3 Attributes

Read-Write, Single Value

2.3.20.4 Range

[1, 264 – 1]

2.3.20.5 Description

This property indicates the number of redo pages that the server reads when performing recovery
after being restarted.

When the flusher performs checkpoint flushing while the system is running, if the number of dirty
pages remaining in the buffer is greater than the value saved in this property, the oldest dirty pages,
equal in number to the difference therebetween, are written to disk.

This value is important in determining the recovery time when the server is restarted. Because the
number of pages to be flushed increases as this value is decreased, the recovery time when the
server is restarted can be reduced.

The value of this property can be changed using the ALTER SYSTEM statement while the server is
running.

2.3.21 FAST_START_LOGFILE_TARGET

2.3.21.1 Data Type

Unsigned Integer

2.3.21.2 Default Value

100

2.3.21.3 Attributes

Read-Write, Single Value

2.3.21.4 Range

[1, 232 – 1]
General Reference 110

2.3 Performance Properties
2.3.21.5 Description

This property indicates the number of log files that the server reads when performing recovery after
being restarted.

When the flusher performs checkpoint flushing while the server is running, if the difference
between the LogFileNo of the LSN of the current log and the LogFileNo of the LSN of one of the dirty
pages in the checkpoint list is greater than the value specified in this property, that page is flushed.

This value is important in determining the recovery time when the server is restarted. Because the
number of pages to be flushed increases as this value is decreased, the recovery time when the
server is restarted can be reduced.

The value of this property can be changed using the ALTER SYSTEM statement while the server is
running.

2.3.22 HIGH_FLUSH_PCT

2.3.22.1 Data Type

Unsigned Integer

2.3.22.2 Default Value

5

2.3.22.3 Attributes

Read-Write, Single Value

2.3.22.4 Range

[0, 100]

2.3.22.5 Description

When the flusher is not in a waiting state, if the flush list is longer than the percentage of the total
buffer size specified here, replacement flushing occurs. At this time, all updated buffers in the flush
list are flushed sequentially without waiting.

The value of this property can be changed using the ALTER SYSTEM statement while the server is
running.

2.3.23 HOT_LIST_PCT

2.3.23.1 Data Type

Unsigned Integer
111 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.23.2 Default Value

0

2.3.23.3 Attributes

Read-Write, Single Value

2.3.23.4 Range

[0, 100]

2.3.23.5 Description

This property specifies the percentage of an LRU list that is a hot area.

The value of this property can be changed using the ALTER SYSTEM statement while the server is
running.

2.3.24 HOT_TOUCH_CNT

2.3.24.1 Data Type

Unsigned Integer

2.3.24.2 Default Value

2

2.3.24.3 Attributes

Read-Write, Single Value

2.3.24.4 Range

[1, 232 – 1]

2.3.24.5 Description

This property defines what constitutes a hot buffer in terms of the number of times the buffer is
accessed. If the buffer is accessed more times than the value specified for this property, the buffer is
considered hot. Hot buffers are moved to the hot list when replacement buffer searching is per-
formed.
General Reference 112

2.3 Performance Properties
2.3.25 INDEX_BUILD_THREAD_COUNT

2.3.25.1 Data Type

Unsigned integer

2.3.25.2 Default Value

The Number of CPUs

2.3.25.3 Attributes

Read-Write, Single Value

2.3.25.4 Range

[1, 128]

2.3.25.5 Description

This property indicates the number of index-building threads that are created when an index is
rebuilt at runtime. If this property is commented out, the default number of parallel threads gener-
ated by the system is equal to the number of CPUs.

2.3.26 INDEX_INITRANS

2.3.26.1 Data Type

Unsigned Integer

2.3.26.2 Default Value

8

2.3.26.3 Attributes

Read-Only, Single Value

2.3.26.4 Range

[0, 30]

2.3.26.5 Description

This property indicates the initial number of TTS (Touched Transaction Slots) in an index page.
113 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.27 INDEX_MAXTRANS

2.3.27.1 Data Type

Unsigned Integer

2.3.27.2 Default Value

30

2.3.27.3 Attributes

Read-Only, Single Value

2.3.27.4 Range

[0, 30]

2.3.27.5 Description

This property indicates the maximum number of TTS (Touched Transaction Slots) in an index page.

2.3.28 INSPECTION_LARGE_HEAP_THRESHOLD

2.3.28.1 Data Type

Unsigned integer

2.3.28.2 Default Value

0

2.3.28.3 Attributes

Read-Write, Single Value

2.3.28.4 Range

[0, 232-1]

2.3.28.5 Description

This property is for showing the user the number of bytes of memory requested by the server for
internal use. A call stack log file, which requires a large amount of memory, is output in order to pro-
vide the user with information. When this value is set to 0, this information is not output. Call stack
information is output to a log file only when the amount of memory that is being used is greater
General Reference 114

2.3 Performance Properties
than the value specified here.

2.3.29 LFG_GROUP_COMMIT_INTERVAL_USEC

2.3.29.1 Data Type

Unsigned integer

2.3.29.2 Default Value

1000

2.3.29.3 Attributes

Read-Only, Single Value

2.3.29.4 Range

[0, 232 – 1]

2.3.29.5 Description

This property pertains to group commit.

The last time point at which disk I/O was performed is maintained, for use in writing each log file
group (LFG) separately to the log disk. On the basis of this time point, after a number of microsec-
onds equal to the value specified in this property has passed, disk I/O is performed.

In this way, multiple transactions can be collectively committed to disk at the same time, and the
requested disk I/O can all be performed at one time.

2.3.30 LFG_GROUP_COMMIT_RETRY_USEC

2.3.30.1 Data Type

Unsigned integer

2.3.30.2 Default Value

100

2.3.30.3 Attributes

Read-Only, Single Value
115 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.30.4 Range

[0, 232 – 1]

2.3.30.5 Description

This property pertains to group commit.

If the amount of time specified in LFG_GROUP_COMMIT_INTERVAL_USEC has not passed since the
last time disk I/O was performed to record logs, a transaction to be committed waits for the number
of microseconds specified in this property and then checks again whether sufficient time has passed
to perform disk I/O.

2.3.31 LFG_GROUP_COMMIT_UPDATE_TX_COUNT

2.3.31.1 Data Type

Unsigned integer

2.3.31.2 Default Value

80

2.3.31.3 Attributes

Read-Only, Single Value

2.3.31.4 Range

[0, 232 – 1]

2.3.31.5 Description

This property pertains to group commit.

When the number of database update transactions (internally viewable as UPDATE_TX_COUNT of
V$LFG) of an individual log file group (LFG) is greater than the value of this property, group commit
is activated.

If this property is set to 0, group commit is disabled.

2.3.32 LOCK_ESCALATION_MEMORY_SIZE

2.3.32.1 Data Type

Unsigned Integer
General Reference 116

2.3 Performance Properties
2.3.32.2 Default Value

100M

2.3.32.3 Attributes

Read-Write, Single Value

2.3.32.4 Range

[0, 1000MB]

2.3.32.5 Description

This property is used to prevent abnormal increases in memory usage due to versioning when large-
volume UPDATE batch tasks are performed on memory tables. If the amount of memory that is used
increases beyond the value specified in this property, so-called “in-place update”1 is performed
without versioning in order to prevent increased memory usage.

When using versioning while updating records, an X lock is placed on the record, and an IX lock is
placed on the table. However, when in-place update is performed, an X lock, that is, an exclusive
lock, is placed on the table. Therefore, care must be taken when setting this value as it can degrade
the scalability of the corresponding table if the value is set too low. This property value can be
changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.3.33 LOG_FILE_GROUP_COUNT

2.3.33.1 Data Type

Unsigned integer

2.3.33.2 Default Value

1

2.3.33.3 Attributes

Read-Only, Single Value

2.3.33.4 Range

[1,32]

1. “In-place update” means directly updating the value of a column in an original record without cre-
ating another version of the record.
117 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.33.5 Description

This property is related to Log File Group (LFG) functionality. The database administrator (DBA) uses
this property to set the number of log file groups used by the system. Log file groups can be defined
to increase log writing performance. If multiple log file groups are specified, log files of ALTIBASE
HDB are distributed among the multiple locations.

This property requires that the number of paths specified in the LOG_DIR property and the
ARCHIVE_DIR property be the same. Regardless of how many paths are specified for LOG_DIR and
ARCHIVE_DIR, no two paths can be the same. This parameter cannot be changed after the database
has been created.

2.3.34 LOG_IO_TYPE

2.3.34.1 Data Type

Unsigned Integer

2.3.34.2 Default Value

1

2.3.34.3 Attributes

Read-Only, Single Value

2.3.34.4 Range

[0, 1]

2.3.34.5 Description

This indicates the I/O mode used to write logs.

0: buffered I/O

1: direct I/O

2.3.35 LOW_FLUSH_PCT

2.3.35.1 Data Type

Unsigned Integer

2.3.35.2 Default Value

1

General Reference 118

2.3 Performance Properties
2.3.35.3 Attributes

Read-Write, Single Value

2.3.35.4 Range

[0, 100]

2.3.35.5 Description

If the length of the flush list becomes equal to or greater than the percentage of the total buffer size
specified by this value, replacement flushing occurs. At this time, all update buffers in the flush list
are flushed.

2.3.36 LOW_PREPARE_PCT

2.3.36.1 Data Type

Unsigned Integer

2.3.36.2 Default Value

1

2.3.36.3 Attributes

Read-Write, Single Value

2.3.36.4 Range

[0, 100]

2.3.36.5 Description

When the flusher awakes from a waiting state, if the length of the Prepare list is less than or equal to
the percentage of the total buffer size specified by this value, replacement flushing occurs. At this
time, all update buffers in the flush list are flushed.

2.3.37 MAX_FLUSHER_WAIT_SEC

2.3.37.1 Data Type

Unsigned Integer
119 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.37.2 Default Value

10

2.3.37.3 Attributes

Read-Write, Single Value

2.3.37.4 Range

[1, 232 – 1]

2.3.37.5 Description

This property specifies the maximum number of seconds that the flusher waits. The flusher wait time
can increase depending on the frequency with which a task is conducted, but cannot exceed this
value.

2.3.38 MULTIPLEXING_CHECK_INTERVAL

2.3.38.1 Data Type

Unsigned Integer

2.3.38.2 Default Value

200000

2.3.38.3 Attributes

Read-Write, Single Value

2.3.38.4 Range

[100000, 10000000]

2.3.38.5 Description

This property indicates the interval at which sessions are checked, so that the thread manager ser-
vice thread can be distributed. It is expressed in units of microseconds.

The thread manger periodically checks the status of threads, updates statistical data, and adds and
deletes service threads.
General Reference 120

2.3 Performance Properties
2.3.39 MULTIPLEXING_MAX_THREAD_COUNT

2.3.39.1 Data Type

Unsigned Integer

2.3.39.2 Default Value

1024

2.3.39.3 Attributes

Read-Write, Single Value

2.3.39.4 Range

[1, 1024]

2.3.39.5 Description

This is the maximum number of multiplex threads.

If the capacity of existing threads is exceeded, new threads are automatically added. However,
because performance can suffer if new threads are continually created, care must be taken to set this
property appropriately.

Nevertheless, when queuing (QUEUE) is used, a number of threads exceeding the value specified by
this property can be created.

2.3.40 MULTIPLEXING_THREAD_COUNT

2.3.40.1 Data Type

Unsigned Integer

2.3.40.2 Default Value

The number of CPUs in the host

2.3.40.3 Attributes

Read-Only, Single Value

2.3.40.4 Range

[1, 1024]
121 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.40.5 Description

This is the minimum number of shared service threads that ALTIBASE HDB keeps running. The
default is the number of CPUs. This parameter cannot be changed after the server has been started.

2.3.41 NORMALFORM_MAXIMUM

2.3.41.1 Data Type

Unsigned integer

2.3.41.2 Default Value

128

2.3.41.3 Attributes

Read-Write, Single Value

2.3.41.4 Range

[1, 232 – 1]

2.3.41.5 Description

This property specifies the maximum number of normal form nodes when normalizing a condition
clause. When the predicates in a WHERE statement of a SELECT query are complicated by the use of
logical operators (AND, OR), ALTIBASE HDB normalizes the predicates so that the table(s) can be
searched more quickly.

There are two normalization methods: Conjunctive Normal Form (CNF) and Disjunctive Normal Form
(DNF). If the use of either of these normal forms results in the number of nodes specified here being
exceeded, no attempt to perform normalization using that normal form is made.

If both of the normal forms exceed the number specified here, execution proceeds without the con-
dition clause being normalized. In this case, because the condition clause has not been normalized,
an index cannot be used. On the other hand, if the value specified here is exceeded, the process of
normalizing the complicated condition clause can use vast amounts of memory, thus the normaliz-
ing process itself becomes so expensive that it results in a decrease in performance.

Therefore, it is important to avoid the excessive use of logical operators when writing condition
clauses, and to write condition clauses in normal forms.

Similarly, this rule also applies to an ON predicate joined to an ON condition.
General Reference 122

2.3 Performance Properties
2.3.42 OPTIMIZER_MODE

2.3.42.1 Data Type

Unsigned integer

2.3.42.2 Default Value

0

2.3.42.3 Attributes

Read-Write, Single Value

2.3.42.4 Range

[0, 1]

2.3.42.5 Description

If this property is set to 0, cost-based optimization will be used to optimize query statements,
whereas if it is set to 1, rule-based optimization will be used. This property can be changed using the
ALTER SYSTEM or ALTER SESSION statement while ALTIBASE HDB is running.

2.3.43 PARALLEL_LOAD_FACTOR

2.3.43.1 Data Type

Unsigned integer

2.3.43.2 Default Value

The Number of CPUs

2.3.43.3 Attributes

Read-Only, Single Value

2.3.43.4 Range

[1, 128]

2.3.43.5 Description

This property controls the number of database refinement and index rebuilding threads that are cre-
ated to refine the database or rebuild indexes when an ALTIBASE HDB server is restarted.
123 ALTIBASE HDB Properties

2.3 Performance Properties
If this property is commented out, the default system behavior is to generate a number of parallel
threads equal to the number of CPUs.

2.3.44 PREPARE_STMT_MEMORY_MAXIMUM

2.3.44.1 Data Type

Unsigned Long

2.3.44.2 Default Value

100M

2.3.44.3 Attributes

Read-Write, Single Value

2.3.44.4 Range

[1024*1024, 264 – 1]

2.3.44.5 Description

This property indicates the maximum amount of memory, in bytes, that can be used to prepare a
query statement . This property may be changed using the ALTER SYSTEM statement while ALTIBASE
HDB is running.

2.3.45 REFINE_PAGE_COUNT

2.3.45.1 Data Type

Unsigned integer

2.3.45.2 Default Value

50

2.3.45.3 Attributes

Read-Only, Single Value

2.3.45.4 Range

[0, 232 – 1]
General Reference 124

2.3 Performance Properties
2.3.45.5 Description

One of the ALTIBASE HDB startup steps handles database refinement. When the ALTIBASE HDB
server was shut down the previous time, some so-called “versioning records” created by transac-
tions are not handled by the garbage collector, and thus unneeded records may exist in the data-
base, and furthermore, other versioning records created by recovery processes when the server is
started up may also exist. The database refining step is conducted so that these records can be
reused. Because this process can be time-consuming when many records are to be refined, it is con-
ducted in parallel by multiple threads. This property specifies the number of pages handled by each
thread.

2.3.46 SHM_PAGE_COUNT_PER_KEY

2.3.46.1 Data Type

Unsigned integer

2.3.46.2 Default Value

3200

2.3.46.3 Attributes

Read-Write, Single Value

2.3.46.4 Range

[320, 232 – 1]

2.3.46.5 Description

This property determines how many pages are allocated to each shared memory key. This property
is relevant when a database is a shared memory type database.

For a database that uses shared memory, when the amount of memory is insufficient and thus needs
to be increased, the shared memory area is allocated by the OS. This property indicates the number
of pages by which to increase the size of the database. A new shared memory key is needed.

However, if this value is too small, a large number of shared memory chunks will be assigned, each
having its own shared memory key. Consequently, because shared memory keys are a limited
resource, the problem can arise in which the database needs to be shut down, shared memory
cleared, and the database started up again. To prevent this, the initial value of this property should
be set to a suitable size.
125 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.47 SORT_AREA_SIZE

2.3.47.1 Data Type

Unsigned long

2.3.47.2 Default Value

1048576

2.3.47.3 Attributes

Read-Write, Single Value

2.3.47.4 Range

[8192, 264 – 1]

2.3.47.5 Description

This property indicates the amount of memory, in bytes, that will be used when keys extracted from
data are sorted while a disk index is created.

This property can be changed using the ALTER SYSTEM statement while the system is running.

2.3.48 SQL_PLAN_CACHE_BUCKET_CNT

2.3.48.1 Data Type

Unsigned Integer

2.3.48.2 Default Value

127

2.3.48.3 Attributes

Read-Only, Single Value

2.3.48.4 Range

[5, 4096]

2.3.48.5 Description

This property inidicates the number of hash table buckets in a SQL plan cache.
General Reference 126

2.3 Performance Properties
2.3.49 SQL_PLAN_CACHE_HOT_REGION_LRU_RATIO

2.3.49.1 Data Type

Unsigned Integer

2.3.49.2 Default Value

50

2.3.49.3 Attributes

Read-Write, Single Value

2.3.49.4 Range

[10, 90]

2.3.49.5 Description

This property inidicates the percentage of a hot area in an LRU list in a SQL plan cache. A HOT area in
an LRU list is a separate portion of an LRU list in a SQL plan cache in which plans that are referred to
frequently are saved.

This property can be changed using the ALTER SYSTEM statement while the system is running.

2.3.50 SQL_PLAN_CACHE_PREPARED_EXECUTION_CONTEXT_CNT

2.3.50.1 Data Type

Unsigned Integer

2.3.50.2 Default Value

1

2.3.50.3 Attributes

Read-Write, Single Value

2.3.50.4 Range

[0, 1024]
127 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.50.5 Description

This property indicates the number of execution contexts that are initially created when plans are
generated.

The initial number of execution contexts is specified before plans are created, however, this only
determines the initial number. The number of execution contexts increases or decreases automati-
cally as required during runtime.

Increasing this value can help realize better performance when only one plan is executed at a time,
however, in other cases the plan size is merely increased, without realizing improved performance.

2.3.51 SQL_PLAN_CACHE_SIZE

2.3.51.1 Data Type

Unsigned long

2.3.51.2 Default Value

64 M

2.3.51.3 Attributes

Read-Write, Single Value

2.3.51.4 Range

[0, 264 – 1]

2.3.51.5 Description

This property indicates the maximum size, in bytes, of the SQL plan cache. If set to 0, the cache can't
be used. This property can be checked by viewing the value of MAX_CACHE_SIZE of
V$SQL_PLAN_CACHE.

This property can be changed using the ALTER SYSTEM statement while the system is running.

2.3.52 STATEMENT_LIST_PARTIAL_SCAN_COUNT

2.3.52.1 Data Type

Unsigned Integer

2.3.52.2 Default Value

0

General Reference 128

2.3 Performance Properties
2.3.52.3 Attributes

Read-Write, Single Value

2.3.52.4 Range

[0, 232 – 1]

2.3.52.5 Description

This property indicates the maximum number of statements to return to the application in response
to a SELECT query executed on V$STATEMENT, V$SQLTEXT, or V$PLANTEXT. If this property is set to
0, all rows pertaining to all statements are returned.

This property can be changed using the ALTER SYSTEM statement while the system is running.

2.3.53 TABLE_INITRANS

2.3.53.1 Data Type

Unsigned Integer

2.3.53.2 Default Value

2

2.3.53.3 Attributes

Read-Only, Single Value

2.3.53.4 Range

[0, 120]

2.3.53.5 Description

This property indicates the initial number of TTS (Touched Transaction Slots) to be maintained in a
table page.

2.3.54 TABLE_LOCK_ENABLE

2.3.54.1 Data Type

Unsigned integer
129 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.54.2 Default Value

1

2.3.54.3 Attributes

Read-Write, Single Value

2.3.54.4 Range

[0, 1]

2.3.54.5 Description

This property controls the lock level.

If this parameter is set to 1, which is the default, both table-level locks and record-level locks are
enabled. If the parameter is set to 0, table locks are disabled, and only record-level locks are enabled,
which realizes the benefit of improved performance of simple DML statements.

However, when this property is set to 0, the following restrictions apply:

• DDL statements cannot be executed.

• CREATE DATABASE cannot be executed.

• When performing replication, parallel SYNC cannot be used.

This property can be changed using the ALTER SYSTEM statement.

2.3.55 TABLE_MAXTRANS

2.3.55.1 Data Type

Unsigned Integer

2.3.55.2 Default Value

120

2.3.55.3 Attributes

Read-Only, Single Value

2.3.55.4 Range

[0, 120]
General Reference 130

2.3 Performance Properties
2.3.55.5 Description

This property indicates the maximum size of the ITL (Interested Transaction List) that is maintained
for one table.

2.3.56 TIMER_RUNNING_LEVEL

2.3.56.1 Data Type

Unsigned Integer

2.3.56.2 Default Value

The default value for this property differs depending on the platform as follows:

1: all platforms not listed below

2: sparc-solaris, X86-solaris, IBM-AIX, PA-RISC-HP-64, IA64-HP

3: x86-linux, Amd64-linux

2.3.56.3 Attributes

Read-Write, Single Value

2.3.56.4 Range

[1, 3]

2.3.56.5 Description

This property specifies how to measure the wait time for wait events and the time required for SQL
operations.

1: The time measurement thread measures the time at regular intervals specified in the property
TIMER_THREAD_RESOLUTION.

2: The time is measured using the library functions provided with respective platforms.

3: This method is similar to #1, but the time is measured using the system clock. Therefore, this
method doesn't hinder performance as much as the other methods.

2.3.57 TIMED_STATISTICS

2.3.57.1 Data Type

Unsigned Integer
131 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.57.2 Default Value

0

2.3.57.3 Attributes

Read-Write, Single Value

2.3.57.4 Range

[0, 1]

2.3.57.5 Description

This property determines whether to measure the wait time for wait events and the time required
for SQL operations. Using this property to specify that the time is to be measured can negatively
impact performance.

0: do not measure the time

1: measure the time

2.3.58 TIMER_THREAD_RESOLUTION

2.3.58.1 Data Type

Unsigned Integer

2.3.58.2 Default Value

1000

2.3.58.3 Attributes

Read-Write, Single Value

2.3.58.4 Range

[50, 10000000]

2.3.58.5 Description

If the TIMER_RUNNING_LEVEL property is set to 1, this property indicates the interval, in microsec-
onds, at which to conduct measurements.
General Reference 132

2.3 Performance Properties
2.3.59 TOUCH_TIME_INTERVAL

2.3.59.1 Data Type

Unsigned Integer

2.3.59.2 Default Value

3

2.3.59.3 Attributes

Read-Write, Single Value

2.3.59.4 Range

[0, 100]

2.3.59.5 Description

This property specifies the minimum time interval, in seconds, at which to increase the buffer access
count. After the value specified in this property has passed since the last time the buffer was
accessed, the access count is increased.

If this property is set to 3, which is the default value, the access count is not updated if a particular
buffer is accessed again less than 3 seconds since it was previously accessed.

2.3.60 TRANSACTION_SEGMENT_COUNT

2.3.60.1 Data Type

Unsigned Integer

2.3.60.2 Default Value

256

2.3.60.3 Attributes

Read-Write, Single Value

2.3.60.4 Range

[1, 512]
133 ALTIBASE HDB Properties

2.3 Performance Properties
2.3.60.5 Description

This property specifies the number of transaction segments (Undo segments and TTS segments)
created when the server is started. This property can be changed using the ALTER SYSTEM statement
while ALTIBASE HDB is running.

2.3.61 TRX_UPDATE_MAX_LOGSIZE

2.3.61.1 Data Type

Unsigned Integer

2.3.61.2 Default Value

10M

2.3.61.3 Attributes

Read-Write, Single Value

2.3.61.4 Range

[0, 264 – 1]

2.3.61.5 Description

If the size of a log created by a DML statement becomes greater than the number of bytes specified
in this property, the corresponding transaction is aborted and an error is returned. This property is
used to prevent unusual increases in system load attributable to large volume batch tasks that result
from the user’s carelessness.

Because the log size has no limit if this property is set to 0, logs can be used without limit when
records are updated. This property can be changed using the ALTER SYSTEM or ALTER SESSION state-
ment when ALTIBASE HDB is running.
General Reference 134

2.4 Session Properties
2.4 Session Properties
Session-related properties define the rules for communication between clients and the database
server when ALTIBASE HDB is run in a client-server configuration. They are as follows:

2.4.1 CM_DISCONN_DETECT_TIME

2.4.1.1 Data Type

Unsigned integer

2.4.1.2 Default Value

3

2.4.1.3 Attributes

Read-Only, Single Value

2.4.1.4 Range

[1, 232 – 1]

2.4.1.5 Description

ALTIBASE HDB server provides a session management thread (“cm detector”) for checking whether
the connection between a client and a server has been interrupted. This property specifies the inter-
val, in seconds, at which the session management thread operates. Usually, when a client process is
abnormally terminated, the server to which the client is connected can immediately detect this.

However, when a session has an unfinished task, and furthermore if the task is an internal ALTIBASE
HDB server operation that is not directly related to the client session, and it is taking a long time, the
server cannot check whether the client has terminated abnormally. That is to say, because the server
cannot check whether the connection with the client has ended abnormally, such abnormal termi-
nation would be disregarded and ALTIBASE HDB would continue to process the task. Such sessions
must be detected, and the corresponding transactions must be rolled back. For this purpose, the
session management thread regularly checks the status of all sessions.

2.4.2 DEFAULT_THREAD_STACK_SIZE

2.4.2.1 Data Type

Unsigned Integer
135 ALTIBASE HDB Properties

2.4 Session Properties
2.4.2.2 Default Value

1048576

2.4.2.3 Attributes

Read-Only, Single Value

2.4.2.4 Range

[8192, 10485760]

2.4.2.5 Description

This property specifies the stack size, in bytes, for all system threads other than service threads. The
service thread stack size is set using the SERVICE_THREAD_STACK_SIZE property.

2.4.3 IPC_CHANNEL_COUNT

2.4.3.1 Data Type

Unsigned integer

2.4.3.2 Default Value

0

2.4.3.3 Attributes

Read-Only, Single Value

2.4.3.4 Range

[0, 65535]

2.4.3.5 Description

This property, which specifies the maximum number of IPC communication channels between a cli-
ent and an ALTIBASE HDB server, must be set. Because shared memory and semaphore(s) are allo-
cated in proportion to the channel count, it is important to set the maximum number of IPC
connections that can be simultaneously established with the server.
General Reference 136

2.4 Session Properties
2.4.4 IPC_PORT_NO

2.4.4.1 Data Type

Unsigned Integer

2.4.4.2 Default Value

20350

2.4.4.3 Attributes

Read-Only, Single Value

2.4.4.4 Range

[1024, 65535]

2.4.4.5 Description

This property specifies the TCP port number for use in establishing client-server IPC connections in a
Windows environment. In a Unix environment, Unix domain sockets can be used for IPC connec-
tions, but as they cannot be used in Windows, this port number is necessary.

The client receives the shared memory name, semaphore and mutex name via a TCP connection,
and then uses that information to connect via IPC.

2.4.5 MAX_LISTEN

2.4.5.1 Data Type

Unsigned integer

2.4.5.2 Default Value

128

2.4.5.3 Attributes

Read-Only, Single Value

2.4.5.4 Range

[0, 512]
137 ALTIBASE HDB Properties

2.4 Session Properties
2.4.5.5 Description

This property specifies the maximum size of the “listen queue” when TCP/IP or UNIX domain proto-
col is used for communication between a client and ALTIBASE HDB.

2.4.6 MAX_STATEMENTS_PER_SESSION

2.4.6.1 Data Type

Unsigned Integer

2.4.6.2 Default Value

1024

2.4.6.3 Attributes

Read-Write, Single Value

2.4.6.4 Range

[1, 232-1]

2.4.6.5 Description

This property specifies the maximum number of statements that can be executed in a session.

2.4.7 NET_CONN_IP_STACK

2.4.7.1 Data Type

Unsigned Integer

2.4.7.2 Default Value

0

2.4.7.3 Attributes

Read-Only, Single Value

2.4.7.4 Range

[0, 1, 2]
General Reference 138

2.4 Session Properties
2.4.7.5 Description

This property specifies the Internet Protocol Stack to be used when creating sockets on the server
side for communication between the client and the server via TCP/IP.

0: An Internet Protocol Stack supporting only IPv4 will be used.

1: A dual stack (Internet Protocol Stack supporting both IPv4 and IPv6) will be used.

2: An Internet Protocol Stack supporting only IPv6 will be used.

2.4.8 NLS_NCHAR_CONV_EXCP

2.4.8.1 Data Type

Unsigned Integer

2.4.8.2 Default Value

0

2.4.8.3 Attributes

Read-Write, Single Value

2.4.8.4 Range

[0, 1]

2.4.8.5 Description

When an NCHAR data type is converted to another character set, data loss can occur. In such cases,
this property determines whether to raise an error or to continue converting the data despite the
possibility of data loss.

In order to ensure that this property raises an error only when the server performs data type conver-
sion from other character sets to NCHAR, this property doesn’t apply to conversion performed on
the client. This property can be changed using the ALTER SESSION statement while ALTIBASE HDB is
running.

0: FALSE (Do not raise an error.)

1: TRUE

2.4.9 NLS_COMP

2.4.9.1 Data Type

Unsigned Integer
139 ALTIBASE HDB Properties

2.4 Session Properties
2.4.9.2 Default Value

0

2.4.9.3 Attributes

Read-Only, Single Value

2.4.9.4 Range

[0, 1]

2.4.9.5 Description

When a database is created, it cannot be guaranteed that the sequence of characters in the charac-
ter set specified by NLS_USE is the same as in a dictionary for the language of the country in ques-
tion.

If this property is set to 1, each character set is compared in the order in which words in that lan-
guage appear in a dictionary. This is supported only when the database character set is set to Korean
(KSC-5601 complete and MS extended complete) because the system currently supports Korean
only.

2.4.10 PORT_NO

2.4.10.1 Data Type

Unsigned integer

2.4.10.2 Default Value

20300

2.4.10.3 Attributes

Read-Only, Single Value

2.4.10.4 Range

[1024, 65535]

2.4.10.5 Description

This property specifies the port number for communication between the client and the server via
TCP/IP. The user can set this port number to any number not being used by another application
within the range of port numbers (up to number 65535) excluding the so-called “well-known TCP
port numbers” (from 1 to 1023). Application programs of ALTIBASE HDB connect to the server via
this port number. ALTIBASE HDB obtains the value of PORT_NO from the $ALTIBASE_HOME/conf/
General Reference 140

2.4 Session Properties
altibase.properties file. This property must be set even when the client and the server are on differ-
ent computers.

2.4.11 PSM_FILE_OPEN_LIMIT

2.4.11.1 Data Type

Unsigned integer

2.4.11.2 Default Value

16

2.4.11.3 Attributes

Read-Write, Single Value

2.4.11.4 Range

[0,128]

2.4.11.5 Description

This property specifies the maximum number of stored procedure file handlers that can be opened
for a session.

2.4.12 SERVICE_THREAD_STACK_SIZE

2.4.12.1 Data Type

Unsigned Integer

2.4.12.2 Default Value

1048576

2.4.12.3 Attributes

Read-Only, Single Value

2.4.12.4 Range

[8192, 10485760]
141 ALTIBASE HDB Properties

2.4 Session Properties
2.4.12.5 Description

This property specifies the stack size, in bytes, for the service thread of ALTIBASE HDB. The thread
stack size is limited by the OS on which ALTIBASE HDB is installed. Please note that the stack size for
all system threads other than service threads is set using DEFAULT_THREAD_STACK_SIZE.

2.4.13 USE_MEMORY_POOL

2.4.13.1 Data Type

Unsigned Integer

2.4.13.2 Default Value

1

2.4.13.3 Attributes

Read-Only, Single Value

2.4.13.4 Range

[0,1]

2.4.13.5 Description

This property specifies whether memory pooling is used. “Memory pooling” means assigning server
memory in advance.

When this function is used, because server memory is allocated in advance, memory use is
increased.

0: do not use memory pooling

1: use memory pooling

2.4.14 XA_HEURISTIC_COMPLETE

2.4.14.1 Data Type

Unsigned integer

2.4.14.2 Default Value

0

General Reference 142

2.4 Session Properties
2.4.14.3 Attributes

Read-Only, Single Value

2.4.14.4 Range

[0, 2]

2.4.14.5 Description

In a distributed transaction environment, Two-Phase Commit Protocol (XA) is used. While a transac-
tion is underway, after a Prepare command has been received from the global transaction coordina-
tor, if for some reason a COMMIT or ROLLBACK command does not arrive for a long time, ALTIBASE
HDB will keep the transaction active for a long time, which will negatively affect database perfor-
mance.

To prevent this, ALTIBASE HDB terminates the entire transaction if it has been in a PREPARE (or
IN_DOUBT) state beyond a certain period of time. In such cases, this property determines whether
to use COMMIT or ROLLBACK to terminate the transaction.

ALTIBASE HDB waits for the amount of time specified with the XA_INDOUBT_TX_TIMEOUT property
before cancelling a transaction in this way. If the value of XA_HEURISTIC_COMPLETE is 0, which is the
default, nothing will be done; if it is 1, the transaction will be committed, and if it is 2, the transaction
will be rolled back.
143 ALTIBASE HDB Properties

2.5 Time-Out Properties
2.5 Time-Out Properties

2.5.1 BLOCK_ALL_TX_TIME_OUT

2.5.1.1 Data Type

Unsigned Integer

2.5.1.2 Default Value

3 (seconds)

2.5.1.3 Attributes

Read-Write, Single Value

2.5.1.4 Range

[0, 232 - 1]

2.5.1.5 Description

This property restricts transactions’ access to the hash table when the buffer manager resizes the
hash table. The minimum value of 0 specifies that error handling is to be performed without any
wait time. This property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is
running.

2.5.2 DDL_LOCK_TIMEOUT

2.5.2.1 Data Type

Short integer

2.5.2.2 Default Value

0

2.5.2.3 Attributes

Read-Write, Single Value

2.5.2.4 Range

[-1, 65535]
General Reference 144

2.5 Time-Out Properties
2.5.2.5 Description

When DDL query statements are executed, this property sets how long to wait to establish a lock
when the target table has already been locked by another transaction. In cases where a transaction
cannot immediately gain write access to the table, If this parameter is set to -1, the transaction will
wait indefinitely, whereas if this parameter is set to a positive value, the transaction will wait for that
number of seconds before trying again.

The default value of this parameter is 0, which tells ALTIBASE HDB to return an error code if it cannot
obtain a lock immediately at the time of executing a DDL statement. This property can be changed
using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.5.3 FETCH_TIMEOUT

2.5.3.1 Data Type

Unsigned integer

2.5.3.2 Default Value

60

2.5.3.3 Attributes

Read-Write, Single Value

2.5.3.4 Range

[0, 232- 1]

2.5.3.5 Description

This property prevents abnormal increases in database memory consumption when SELECT state-
ments executed by client applications take an excessive amount of time. In cases where the query
execution time exceeds the number of seconds specified using this property, the session will be dis-
connected and the transaction will be rolled back. This property can be changed using the ALTER
SYSTEM or ALTER SESSION statement while ALTIBASE HDB is running.

2.5.4 IDLE_TIMEOUT

2.5.4.1 Data Type

Unsigned integer

2.5.4.2 Default Value

0

145 ALTIBASE HDB Properties

2.5 Time-Out Properties
2.5.4.3 Attributes

Read-Write, Single Value

2.5.4.4 Range

[0, 232 – 1]

2.5.4.5 Description

If a large number of clients are connected to a server for an excessive period of time due to some
abnormality, the number of available connections will significantly decrease, ultimately leading to
failure to provide service.

This property functions to preemptively prevent this situation. If the number of seconds that a ses-
sion is idle exceeds this value, the session will be disconnected and any associated transactions will
be rolled back. The value of this property can be changed using the ALTER SYSTEM or ALTER SES-
SION statement while ALTIBASE HDB is running.

2.5.5 LINKER_CONNECT_TIMEOUT

2.5.5.1 Data Type

Unsigned Integer

2.5.5.2 Default Value

225

2.5.5.3 Attributes

Read-Only, Single Value

2.5.5.4 Range

[0, 232 - 1]

2.5.5.5 Description

This property specifies the connection timeout, in seconds, when the ALTIBASE HDB server attempts
to establish a connection to another server using AltiLinker.
General Reference 146

2.5 Time-Out Properties
2.5.6 LINKER_RECEIVE_TIMEOUT

2.5.6.1 Data Type

Unsigned Integer

2.5.6.2 Default Value

300

2.5.6.3 Attributes

Read-Only, Single Value

2.5.6.4 Range

[0, 232- 1]

2.5.6.5 Description

This property specifies the wait time, in seconds, when an ALTIBASE HDB server is exchanging data
with AltiLinker.

2.5.7 LOGIN_TIMEOUT

2.5.7.1 Data Type

Unsigned Integer

2.5.7.2 Default Value

0

2.5.7.3 Attributes

Read-Write, Single Value

2.5.7.4 Range

[0, 232 - 1]

2.5.7.5 Description

This property specifies the permitted amount of time, in seconds, to wait for authorization to be
completed after a connection has been made to an ALTIBASE HDB port. If authorization is not com-
pleted within this time, the server disconnects.
147 ALTIBASE HDB Properties

2.5 Time-Out Properties
2.5.8 MULTIPLEXING_POLL_TIMEOUT

2.5.8.1 Data Type

Unsigned Integer

2.5.8.2 Default Value

10000

2.5.8.3 Attributes

Read-Write, Single Value

2.5.8.4 Range

[1000, 1000000]

2.5.8.5 Description

This property specifies the interval, in microseconds, at which the multiplexed thread running ser-
vice detects sessions.

2.5.9 QUERY_TIMEOUT

2.5.9.1 Data Type

Unsigned integer

2.5.9.2 Default Value

600

2.5.9.3 Attributes

Read-Write, Single Value

2.5.9.4 Range

[0, 232 – 1]

2.5.9.5 Description

This property is set to prevent abnormal increases in database size when particular kinds of queries
(especially those involving sort operations or joins) are executed. If the query execution time
exceeds the number of seconds specified here, the transaction is partially rolled back. This property
General Reference 148

2.5 Time-Out Properties
can be changed using the ALTER SYSTEM or ALTER SESSION statement while ALTIBASE HDB is run-
ning.

2.5.10 REMOTE_SERVER_CONNECT_TIMEOUT

2.5.10.1 Data Type

Unsigned Integer

2.5.10.2 Default Value

5

2.5.10.3 Attributes

Read-Only, Single Value

2.5.10.4 Range

[0, 232 - 1]

2.5.10.5 Description

This property specifies the amount of time, in seconds, to wait for AltiLinker to connect to a remote
server.

2.5.11 REPLICATION_CONNECT_TIMEOUT

2.5.11.1 Data Type

Unsigned integer

2.5.11.2 Default Value

10

2.5.11.3 Attributes

Read-Write, Single Value

2.5.11.4 Range

[0, 232 - 1]
149 ALTIBASE HDB Properties

2.5 Time-Out Properties
2.5.11.5 Description

When attempting to connect to a target host to perform replication, if there is no response within
the number of seconds specified in this property, no further connection attempts are made. This
property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.5.12 REPLICATION_LOCK_TIMEOUT

2.5.12.1 Data Type

Unsigned integer

2.5.12.2 Default Value

5

2.5.12.3 Attributes

Read-Write, Single Value

2.5.12.4 Range

[0, 3600]

2.5.12.5 Description

When a replication deadlock occurs, the Receiver thread will wait indefinitely to establish a lock,
which may result in a service interruption. To prevent this, when the Receiver thread requests a lock
to perform this kind of operation, it will only wait for the number of seconds specified using this
property.

If a lock cannot be acquired within the given time, the corresponding operation will be rolled back.

2.5.13 REPLICATION_RECEIVE_TIMEOUT

2.5.13.1 Data Type

Unsigned integer

2.5.13.2 Default Value

300

2.5.13.3 Attributes

Read-Write, Single Value
General Reference 150

2.5 Time-Out Properties
2.5.13.4 Range

[0, 232 - 1]

2.5.13.5 Description

This property, which is used by both the Sender thread and the Receiver thread, specifies the maxi-
mum amount of time, in seconds, to wait for a message from the Receiver or Sender thread, respec-
tively.

In the case where the Sender thread has waited for a response from the Receiver thread for the max-
imum amount of time specified here, the Sender thread will enter into sleep mode for the amount of
time specified using the REPLICATION_SENDER_SLEEP_TIMEOUT property before again attempting
to connect to the Receiver thread. In this case, the existing socket is closed and a new socket is cre-
ated for the new connection attempt.

This property also specifies the maximum time that the Receiver thread waits for a message from a
Sender thread. If the specified amount of time has passed, the Receiver thread is automatically ter-
minated, and a new Receiver thread will be created when the Sender thread sends a message. This
property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.5.14 REPLICATION_SENDER_SLEEP_TIMEOUT

2.5.14.1 Data Type

Unsigned integer

2.5.14.2 Default Value

10 (microseconds)

2.5.14.3 Attributes

Read-Write, Single Value

2.5.14.4 Range

[0, 232 - 1]

2.5.14.5 Description

This property specifies the number of microseconds that a replication Sender thread that is in an
error state must sleep before trying again. This property can be changed using the ALTER SYSTEM
statement while ALTIBASE HDB is running.
151 ALTIBASE HDB Properties

2.5 Time-Out Properties
2.5.15 REPLICATION_SYNC_LOCK_TIMEOUT

2.5.15.1 Data Type

Unsigned integer

2.5.15.2 Default Value

30

2.5.15.3 Attributes

Read-Write, Single Value

2.5.15.4 Range

[1, 232 - 1]

2.5.15.5 Description

When replication synchronization is performed, the Replication Sender Thread determines the cur-
rent position in the log at which replication will start after synchronization. In order to prevent
another transaction from changing the data in the table on which synchronization is to be per-
formed right at the time of this determination, the Replication Sender Thread obtains an S Lock on
the table on which synchronization is to be performed for a short time before synchronization. This
property specifies the amount of time, in seconds, to wait to establish a lock when a table to be syn-
chronized has been locked by another transaction. If a lock is requested but cannot be obtained
immediately, the replication process will wait for the amount of time specified here. If a lock cannot
be obtained within the amount of time specified here, the synchronization attempt will be handled
as an error. This property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is
running.

2.5.16 SHUTDOWN_IMMEDIATE_TIMEOUT

2.5.16.1 Data Type

Unsigned integer

2.5.16.2 Default Value

60

2.5.16.3 Attributes

Read-Write, Single Value
General Reference 152

2.5 Time-Out Properties
2.5.16.4 Range

[0, 232 – 1]

2.5.16.5 Description

When shutting down ALTIBASE HDB with the IMMEDIATE option, ALTIBASE HDB is shut down after
uncommitted transactions are rolled back. This property specifies the amount of time, in seconds, to
wait for the transactions to be rolled back. If the elapsed time exceeds the specified value, ALTIBASE
HDB is shut down forcibly and uncommitted transactions are not rolled back. If this property is set to
0, ALTIBASE HDB waits until all transactions are rolled back. This property can be changed using the
ALTER SYSTEM statement while ALTIBASE HDB is running.

2.5.17 UTRANS_TIMEOUT

2.5.17.1 Data Type

Unsigned integer

2.5.17.2 Default Value

3600

2.5.17.3 Attributes

Read-Write, Single Value

2.5.17.4 Range

[0, 232 – 1]

2.5.17.5 Description

This property is set to prevent the number of log files from abnormally increasing when write opera-
tions (UPDATE, DELETE, INSERT) take a long time. If such a transaction takes longer than the number
of seconds specified here, the session will be disconnected and the transaction in question will be
rolled back. This property can be changed using the ALTER SYSTEM or ALTER SESSION statement
while ALTIBASE HDB is running.

2.5.18 XA_INDOUBT_TX_TIMEOUT

2.5.18.1 Data Type

Unsigned integer
153 ALTIBASE HDB Properties

2.5 Time-Out Properties
2.5.18.2 Default Value

60

2.5.18.3 Attributes

Read-Only, Single Value

2.5.18.4 Range

[0, 232 – 1]

2.5.18.5 Description

When using the Two-Phase Commit Protocol, this property specifies the number of seconds to wait
before terminating an entire transaction that has taken a long time and is thus in IN_DOUBT state.
General Reference 154

2.6 Transaction Properties
2.6 Transaction Properties

2.6.1 AUTO_COMMIT

2.6.1.1 Data Type

Unsigned integer

2.6.1.2 Default Value

1

2.6.1.3 Attributes

Read-Write, Single Value

2.6.1.4 Range

[0, 1]

2.6.1.5 Description

This property determines whether to handle each individual SQL statement as a separate transac-
tion and commit it when SQL statements are executed in a session. A value of 1 indicates auto-com-
mit mode, while a value of 0 indicates non-autocommit mode. When using non-autocommit mode,
the client application must explicitly indicate the beginning and end of a transaction.

Even if this value is set to 1, indicating auto-commit, when the server is started, this property can be
changed for individual sessions. For example, if ALTER SESSION SET AUTOCOMMIT = FALSE (non-
autocommit) is executed from a client, the user must explicitly specify whether to commit or roll-
back any transactions that occur for the remainder of the session. This property can be changed
using the ALTER SYSTEM and ALTER SESSION statement while ALTIBASE HDB is running.

2.6.2 ISOLATION_LEVEL

2.6.2.1 Data Type

Unsigned integer

2.6.2.2 Default Value

0

2.6.2.3 Attributes

Read-Only, Single Value
155 ALTIBASE HDB Properties

2.6 Transaction Properties
2.6.2.4 Range

[0, 3]

2.6.2.5 Description

This property specifies the transaction isolation level. When a single transaction searches the same
table multiple times, the result varies depending on the isolation level. For more information about
transaction isolation levels, please refer to the ALTIBASE HDB Administrator’s Manual.

2.6.3 TRANSACTION_TABLE_SIZE

2.6.3.1 Data Type

Unsigned integer

2.6.3.2 Default Value

1024

2.6.3.3 Attributes

Read-Write, Single Value

2.6.3.4 Range

[16, 1024 * 10]

Isolation Level Characteristics

0 (Committed Read) This is default mode of ALTIBASE HDB. This isolation level guarantees
that previously read data that have been modified by another transac-
tion will reflect the changes of that other transaction.When a SELECT
transaction reads data one time and then reads the data again, if
another transaction simultaneously executes and commits an INSERT or
DELETE statement, due to this change, it is possible for a new row to be
found, or for a previously found row to have disappeared.

1 (Repeatable Read) This isolation level guarantees that the contents of a row will be the
same upon repeated reads by the same transaction.This isolation level
places a lock on a row once it has been read. Therefore, when the table is
subsequently read, previously read rows will not change or disappear,
but it is possible for new rows to appear.

2 (No Phantom) This isolation level guarantees identical results for repeated reads.
General Reference 156

2.6 Transaction Properties
2.6.3.5 Description

This property specifies the maximum number of concurrent transactions while ALTIBASE HDB is run-
ning, for which memory is allocated in advance.
157 ALTIBASE HDB Properties

2.7 Backup and Recovery Properties
2.7 Backup and Recovery Properties
These properties are related to the management of change logs, which are maintained in response
to database changes.

2.7.1 ARCHIVE_DIR

2.7.1.1 Data Type

String

2.7.1.2 Default Value

$ALTIBASE_HOME/arch_logs

2.7.1.3 Attributes

Read-Only, Multiple Values

2.7.1.4 Range

None

2.7.1.5 Description

This property specifies the directory or directories in which to store archive log files when perform-
ing an archive log backup. If this value is not expressly specified by the user, the default location is
$ALTIBASE_HOME/arch_logs.

The number of directories specified in this property must be the same as the number specified in
the LOG_DIR property. Furthermore, when multiple values are specified in the LOG_DIR property,
the ARCHIVE_DIR property values and the LOG_DIR property values must be specified in sequence,
such that they are individually mapped 1:1. The user can explicitly specify the value(s), but the spec-
ified directories must be created first. If not, an error message will be output, and ALTIBASE HDB will
not start.

2.7.2 ARCHIVE_FULL_ACTION

2.7.2.1 Data Type

Unsigned integer

2.7.2.2 Default Value

0

General Reference 158

2.7 Backup and Recovery Properties
2.7.2.3 Attributes

Read-Only, Single Value

2.7.2.4 Range

[0, 1]

2.7.2.5 Description

This property controls the action of the archivelog thread, which conducts archive log backup, when
there is not enough disk space in the archive log destination (specified using ARCHIVE_DIR).

If this parameter is set to 0, the archivelog thread will output an error message and stop the archive
log file backup. Even if enough disk space can subsequently be secured, archive log backup will not
resume until the user explicitly issues a command to do so. In such cases, if checkpointing takes
place, unnecessary log files will be deleted even if no archive log file backup has been conducted,
therefore care must be taken when using this mode.

If this parameter is set to 1, the archivelog thread waits until enough disk space can be secured to
perform the archive log file backup. Because the archive log files have not been backed up, care
must be taken to prevent the log files from being deleted if checkpointing takes place during this
waiting period.

2.7.3 ARCHIVE_THREAD_AUTOSTART

2.7.3.1 Data Type

Unsigned integer

2.7.3.2 Default Value

1

2.7.3.3 Attributes

Read-Only, Single Value

2.7.3.4 Range

[0, 1]

2.7.3.5 Description

This property specifies whether to activate the archivelog thread, which periodically performs
archive log file backups. If this property is 1, the archivelog thread is activated.

After the archivelog thread has been suspended due to insufficient disk space in the backup direc-
tory, this property is used to restart the thread automatically after sufficient disk space is secured.
159 ALTIBASE HDB Properties

2.7 Backup and Recovery Properties
2.7.4 CHECKPOINT_ENABLED

2.7.4.1 Data Type

Unsigned integer

2.7.4.2 Default Value

1

2.7.4.3 Attributes

Read-Only, Single Value

2.7.4.4 Range

[0, 1]

2.7.4.5 Description

0: OFF

1: ON

This property specifies whether checkpointing is enabled (“ON”) or disabled (“OFF”).

When this value is 0 (“OFF”), the checkpoint thread cannot be started, and additionally, the user can-
not perform checkpointing manually.

2.7.5 CHECKPOINT_INTERVAL_IN_LOG

2.7.5.1 Data Type

Unsigned integer

2.7.5.2 Default Value

100

2.7.5.3 Attributes

Read-Write, Single Value

2.7.5.4 Range

[1, 232 – 1]
General Reference 160

2.7 Backup and Recovery Properties
2.7.5.5 Description

This property defines the checkpoint interval based on the log file creation count. In other words,
after the log files have been replaced the number of times specified using this property, checkpoint-
ing will be automatically executed. When checkpointing is requested based on this property, it may
be impossible to execute, either because checkpointing is already underway, or for some other rea-
son.

In such cases, checkpointing is not initiated immediately again after the checkpointing that is
already underway has finished; instead, the current checkpointing request is canceled. Therefore,
the next checkpointing request will occur when the number of log files reaches the value set in this
property. This property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is
running.

2.7.6 CHECKPOINT_INTERVAL_IN_SEC

2.7.6.1 Data Type

Unsigned integer

2.7.6.2 Default Value

6000

2.7.6.3 Attributes

Read-Write, Single Value

2.7.6.4 Range

[3, 232 – 1]

2.7.6.5 Description

This property specifies the checkpoint interval in seconds. This property can be changed using the
ALTER SYSTEM statement while ALTIBASE HDB is running.

2.7.7 COMMIT_WRITE_WAIT_MODE

2.7.7.1 Data Type

Unsigned Integer

2.7.7.2 Default Value

0

161 ALTIBASE HDB Properties

2.7 Backup and Recovery Properties
2.7.7.3 Attributes

Read-Write, Single Value

2.7.7.4 Range

[0, 1]

2.7.7.5 Description

This property specifies whether to wait until logs have been written to log files when committing
transactions. In ALTIBASE HDB, the default is not to wait, in the interests of better performance. This
property can be set for the entire system or for individual user sessions, and thus this property can
be changed using either the ALTER SYSTEM or ALTER SESSION statement while ALTIBASE HDB is run-
ning.

0 : Do Not Wait

1 : Wait

2.7.8 LOG_BUFFER_TYPE

2.7.8.1 Data Type

Unsigned Integer

2.7.8.2 Default Value

0

2.7.8.3 Attributes

Read-Only, Single Value

2.7.8.4 Range

[0, 1]

2.7.8.5 Description

This property determines the log buffer type. If it is set to 0, the OS kernel log buffer is used. If it is set
to 1, the process memory log buffer is used.

This property cannot be changed while the system is running.
General Reference 162

2.7 Backup and Recovery Properties
2.7.9 PREPARE_LOG_FILE_COUNT

2.7.9.1 Data Type

Unsigned integer

2.7.9.2 Default Value

5

2.7.9.3 Attributes

Read-Only, Single Value

2.7.9.4 Range

[0, 232 – 1]

2.7.9.5 Description

If there is not enough space in the log file when logs are written, a new log file is created, which can
increase the transaction response time. To prevent such delays in transaction execution caused by
the creation of log files, ALTIBASE HDB creates extra log files (“prepare log files”) in advance. This
parameter specifies the number of such log files.
163 ALTIBASE HDB Properties

2.8 Replication Properties
2.8 Replication Properties
The following parameters pertain to database replication. For more information about database rep-
lication, please refer to the Getting Started Guide and to the Replication Manual.

2.8.1 REPLICATION_ACK_XLOG_COUNT

2.8.1.1 Data Type

Unsigned Integer

2.8.1.2 Default Value

100

2.8.1.3 Attributes

Read-Only, Single Value

2.8.1.4 Range

[0, 232 – 1]

2.8.1.5 Description

This property indicates the frequency with which the Receiver thread sends ACK to the Sender
thread.

The Receiver thread receives XLogs and replays them one by one. When the number of replayed
XLogs exceeds the value specified here, the Receiver thread sends ACK to the Sender thread.

If this value is set too low, the Receiver thread sends ACK too often, leading to reduced performance.

If it is set too high, the amount of time that the Sender thread waits for ACK can increase excessively,
and may be treated as a network fault. In addition, if the Sender thread does not receive ACK for an
extended time, the replication restart SN is not updated, and thus the Sender thread will start over
from the most recent log record if checkpointing occurs, resulting in the deletion of unreplicated
logs.

2.8.2 REPLICATION_COMMIT_WRITE_WAIT_MODE

2.8.2.1 Data Type

Unsigned integer
General Reference 164

2.8 Replication Properties
2.8.2.2 Default Value

0

2.8.2.3 Attributes

Changeable, Single Value

2.8.2.4 Range

[0, 1]

2.8.2.5 Description

This property determines whether the replication Receiver checks whether XLOGs have been
applied to disk after the replication Receiver has completed executing all of the transactions that are
necessary in order to apply the contents of XLOGs to disk. If this property is set to 0, the replication
Receiver doesn't wait to ensure that the contents of XLOGs have been applied to disk. If the value of
this property is set to 1, the replication Receiver ensures that the contents of XLOGs have been
applied to disk.

2.8.3 REPLICATION_CONNECT_RECEIVE_TIMEOUT

2.8.3.1 Data Type

Unsigned integer

2.8.3.2 Default Value

60

2.8.3.3 Attributes

Read-Write, Single Value

2.8.3.4 Range

[0, 232 – 1]

2.8.3.5 Description

This property specifies the amount of time, in seconds, to wait after attempting to connect to the
target host at the start of replication. This parameter value must be slightly greater than
REPLICATION_HBT_DETECT_TIMEOUT. This property can be changed using the ALTER SYSTEM state-
ment while ALTIBASE HDB is running.
165 ALTIBASE HDB Properties

2.8 Replication Properties
2.8.4 REPLICATION_DDL_ENABLE

2.8.4.1 Data Type

Unsigned Integer

2.8.4.2 Default Value

0

2.8.4.3 Attributes

Read-Write, Single Value

2.8.4.4 Range

[0, 1]

2.8.4.5 Description

This property specifies whether or not to allow DDL statements to be executed on replication target
tables. If this property is set to 1, DDL statements can be executed on replication target tables.

Before executing DDL statements, if the replication property of a transaction in the current session is
set to a value other than NONE, the Sender thread can be made aware of the execution of DDL state-
ments.

For a list of DDL statements permitted during replication and other restrictions, please refer to the
ALTIBASE HDB Replication Manual. This property can be changed using the ALTER SYSTEM statement
while ALTIBASE HDB is running.

2.8.5 REPLICATION_EAGER_PARALLEL_FACTOR

2.8.5.1 Data Type

Unsigned integer

2.8.5.2 Default Value

the lower of the number of CPUs and 512

2.8.5.3 Attributes

Read-Only, Single Value
General Reference 166

2.8 Replication Properties
2.8.5.4 Range

[1 - 512]

2.8.5.5 Description

When replication is running in EAGER mode, multiple sender threads can work in parallel. The num-
ber of sender threads that work in parallel must be specified using this property. If this property is
not set, the default value is either the number of CPUs or 512, whichever is lower.

2.8.6 REPLICATION_FAILBACK_INCREMENTAL_SYNC

2.8.6.1 Data Type

Unsigned integer

2.8.6.2 Default Value

1

2.8.6.3 Attributes

Read-Only, Single Value

2.8.6.4 Range

[0, 1]

2.8.6.5 Description

When an ALTIBASE HDB server is started with replication in EAGER mode, service starts after the data
are synchronized between the database servers. This property specifies how the data are synchro-
nized between the database servers.

0: The data are synchronized using LAZY mode by eliminating the replication gap. One server does
not wait for data to be synchronized on the other server. Therefore, it is recommended that you con-
firm that the data have been synchronized. If the data to be updated are completely divided
between replicated systems in an Active-Active replication environment, 0 should be specified.

1: One of the two database servers is the basis for data synchronization. If both servers have been
providing service in an Active-Active replication environment since the occurrence of a network fail-
ure, changes that have been made to data on one server during that time will be removed during
synchronization. If the data to be updated are the same on replicated systems in an Active-Active
replication environment, 1 should be specified.

This property must be set to the same value on both servers.
167 ALTIBASE HDB Properties

2.8 Replication Properties
2.8.7 REPLICATION_HBT_DETECT_HIGHWATER_MARK

2.8.7.1 Data Type

Unsigned integer

2.8.7.2 Default Value

10

2.8.7.3 Attributes

Read-Write, Single Value

2.8.7.4 Range

[0, 232 – 1]

2.8.7.5 Description

This property specifies the number of failed connection attempts to make before determining that a
failure has occurred in a replication environment. Thus, the maximum time that can pass before it is
determined that a host has failed can be calculated by multiplying
REPLICATION_HBT_DETECT_TIME * REPLICATION_HBT_DETECT_HIGHWATER_MARK.

In other words, if the HeartBeat thread (see below) fails to connect for 30 seconds (i.e. 10 attempts *
3 seconds, the default values for each of the above properties), it will be handled as a failure. This
property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.8.8 REPLICATION_HBT_DETECT_TIME

2.8.8.1 Data Type

Unsigned integer

2.8.8.2 Default Value

3

2.8.8.3 Attributes

Read-Write, Single Value

2.8.8.4 Range

[0, 232 – 1]
General Reference 168

2.8 Replication Properties
2.8.8.5 Description

This property specifies the interval, in seconds, at which to check the HeartBeat thread1. The Heart-
Beat thread checks the host for a fault every 3 seconds (the default value). This property can be
changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.8.9 REPLICATION_INSERT_REPLACE

2.8.9.1 Data Type

Unsigned integer

2.8.9.2 Default Value

0

2.8.9.3 Attributes

Read-Write, Single Value

2.8.9.4 Range

[0, 1]

2.8.9.5 Description

This property specifies whether to keep inserted contents if an insert conflict occurs during replica-
tion. If this value has been set to 0, the insert will not be committed, and the data conflict will be
handled as an error, whereas if this value has been set to 1, the data conflict will be ignored and the
insert will be committed. This property can be changed using the ALTER SYSTEM statement while
ALTIBASE HDB is running.

2.8.10 REPLICATION_KEEP_ALIVE_CNT

2.8.10.1 Data Type

Unsigned integer

2.8.10.2 Default Value

600

1. HeartBeat thread: In a replication environment of ALTIBASE HDB, in order to allow physical
faults to be detected as quickly as possible while data are being exchanged between a Sender
thread and a Receiver thread, a HeartBeat Thread is used to allow each host to regularly check
the condition of the other host.
169 ALTIBASE HDB Properties

2.8 Replication Properties
2.8.10.3 Attributes

Read-Only, Single Value

2.8.10.4 Range

[0, 232-1]

2.8.10.5 Description

A KEEP_ALIVE signal is sent when a Sender thread has not sent a packet and has slept for
REPLICATION_SENDER_SLEEP_TIME * REPLICATION_KEEP_ALIVE_CNT.

2.8.11 REPLICATION_LOG_BUFFER_SIZE

2.8.11.1 Data Type

Unsigned Integer

2.8.11.2 Default Value

30 (MB)

2.8.11.3 Attributes

Read-Only, Single Value

2.8.11.4 Range

[0, 212-1]

2.8.11.5 Description

This property is set in order to improve replication performance using a dedicated replication log
buffer. The dedicated replication log buffer filters and stores only replication logs.

The Sender thread can read logs from the log buffer or from disk. However, when reading logs from
disk, the processing speed of the Sender thread may be greatly reduced. Furthermore, the additional
burden of reading unnecessary logs is imposed. The dedicated replication log buffer mitigates this
burden.

However, when there is more than one Log File Group (LFG), the dedicated replication log buffer
cannot be used, and the value of this property is ignored.

When multiple replication Sender threads are working, replication and overall service performance
can suffer. This is because there is only one replication log buffer, so if it is accessed by more than
one Sender thread, synchronization overhead is more likely to occur.

When the REPLICATION_SYNC_LOG value is set to 1, this property must be set to 0. Otherwise, the
General Reference 170

2.8 Replication Properties
ALTIBASE HDB server will fail to start. If the value of this property is set too small, it may lead to worse
performance than when it is not used at all (i.e. when it is set to 0).

2.8.12 REPLICATION_MAX_LISTEN

2.8.12.1 Data Type

Unsigned integer

2.8.12.2 Default Value

32

2.8.12.3 Attributes

Read-Only, Single Value

2.8.12.4 Range

[0, 512]

2.8.12.5 Description

This property specifies the maximum size of the “listen queue” when TCP/IP is used for communica-
tion between a Sender thread and an ALTIBASE HDB server that maintains a Receiver thread.

2.8.13 REPLICATION_MAX_LOGFILE

2.8.13.1 Data Type

Unsigned Integer

2.8.13.2 Default Value

0

2.8.13.3 Attributes

Read-Write, Single Value

2.8.13.4 Range

[0, 65535]
171 ALTIBASE HDB Properties

2.8 Replication Properties
2.8.13.5 Description

This property specifies the maximum number of log files preceding the Restart Redo Point that are
to be prevented from being deleted, for use in replication.

If, after replication starts, changes to a local server are not also made on a remote server for some
reason, such as reduced network speed between the local and remote servers, replication will pre-
vent log files from being deleted, even after checkpointing has taken place. Under such circum-
stances, the number of log files on the local server will continue to increase, which can ultimately
lead to a disk full error.

Therefore, when checkpointing occurs, if the number of accumulated log files preceding the Restart
Redo Point exceeds the number specified using this property, the replication Restart SN is set to the
highest SN in the current log file, and the log files preceding the Restart Redo Point are deleted.
Then, replication is performed starting from the new Restart SN.

If this property is set to 0, or if replication is running in EAGER mode, this function is disabled. Please
note that because log files are erased when checkpointing is carried out, the values of the
CHECKPOINT_INTERVAL_IN_SEC and CHECKPOINT_IN_LOG properties should be considered when
setting the value of this property.

2.8.14 REPLICATION_NET_CONN_IP_STACK

2.8.14.1 Data Type

Unsigned Integer

2.8.14.2 Default Value

The default value for this property is the same as the value set for the NET_CONN_IP_STACK prop-
erty.

2.8.14.3 Attributes

Read-Only, Single Value

2.8.14.4 Range

[0, 1, 2]

2.8.14.5 Description

This property specifies the Internet Protocol Stack to be used when creating sockets on the Replica-
tion Receiver side for communication between the Receiver and the Sender via TCP/IP.

0: An Internet Protocol Stack supporting only IPv4 will be used.

1: A dual stack (Internet Protocol Stack supporting both IPv4 and IPv6) will be used.

2: An Internet Protocol Stack supporting only IPv6 will be used.
General Reference 172

2.8 Replication Properties
2.8.15 REPLICATION_POOL_ELEMENT_COUNT

2.8.15.1 Data Type

Unsigned Integer

2.8.15.2 Default Value

10

2.8.15.3 Attributes

Read-Write, Single Value

2.8.15.4 Range

[1, 1024]

2.8.15.5 Description

This is the amount of memory (number of elements) used when a Sender thread analyzes a log and
copies column values. Memory elements are pre-allocated from the memory pool, and their size is
specified by REPLICATION_POOL_ELEMENT_SIZE. The value of this property can be changed using
the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.8.16 REPLICATION_POOL_ELEMENT_SIZE

2.8.16.1 Data Type

Unsigned Integer

2.8.16.2 Default Value

256

2.8.16.3 Attributes

Read-Write, Single Value

2.8.16.4 Range

[128, 65536]

2.8.16.5 Description

This is the size of a memory element, in bytes, that is used when the sender thread analyzes a log
173 ALTIBASE HDB Properties

2.8 Replication Properties
and copies column values. This property can be changed using the ALTER SYSTEM statement while
ALTIBASE HDB is running.

2.8.17 REPLICATION_PORT_NO

2.8.17.1 Data Type

Unsigned integer

2.8.17.2 Default Value

0

2.8.17.3 Attributes

Read-Only, Single Value

2.8.17.4 Range

[0, 65535]

2.8.17.5 Description

This property specifies the replication port number on the local server, to be used when a replication
connection is established. Set this property to 0 to disable replication.

2.8.18 REPLICATION_PREFETCH_LOGFILE_COUNT

2.8.18.1 Data Type

Unsigned integer

2.8.18.2 Default Value

0

2.8.18.3 Attributes

Read-Write, Single Value

2.8.18.4 Range

[0, 232 – 1]
General Reference 174

2.8 Replication Properties
2.8.18.5 Description

This property specifies the number of prefetch log files, that is, the number of log files in each log file
group that are read in advance. Pre-reading and caching log files allows the Sender thread to read
logs from log files more quickly.

2.8.19 REPLICATION_RECOVERY_MAX_LOGFILE

2.8.19.1 Data Type

Unsigned Integer

2.8.19.2 Default Value

0

2.8.19.3 Attributes

Read-Write, Single Value

2.8.19.4 Range

[0, 65535]

2.8.19.5 Description

This property specifies the maximum number of log files that are not deleted, based on a Restart
Redo Point, for data recovery using replication.

In order to recover data at the time of replication, the local server does not delete logs that have not
been flushed to disk on remote servers. Even if checkpointing takes place at this time, because the
log files cannot be deleted, the number of log files on the local server will continue to increase,
which can ultimately lead to a disk full error.

Thus, if the maximum log file count in the recovery options is exceeded when checkpointing occurs,
replication-based recovery is aborted and the log files are deleted. Then, replication starts over.

If this property is set to 0 or replication runs in eager mode, this function is not used. Because log
files are deleted when checkpointing occurs, the values of CHECKPOINT_INTERVAL_IN_SEC and
CHECKPOINT_IN_LOG should be considered together.

2.8.20 REPLICATION_RECOVERY_MAX_TIME

2.8.20.1 Data Type

Unsigned Integer
175 ALTIBASE HDB Properties

2.8 Replication Properties
2.8.20.2 Default Value

232 – 1 (seconds)

2.8.20.3 Attributes

Read-Only, Single Value

2.8.20.4 Range

[0, 232 – 1]

2.8.20.5 Description

If the number of seconds specified using this property is exceeded while the replication module is
performing recovery, recovery is stopped and service is provided in the state in which recovery has
been performed up to that point.

If this property is set to 0, replication-based recovery is not performed. Before replication-based data
recovery is completed, ALTIBASE HDB will not be able to proceed to the service stage, and service
may be delayed.

2.8.21 REPLICATION_SENDER_AUTO_START

2.8.21.1 Data Type

Unsigned integer

2.8.21.2 Default Value

1

2.8.21.3 Attributes

Read-Only, Single Value

2.8.21.4 Range

[0, 1]

2.8.21.5 Description

If a replication Sender thread is still active when the server is restarted, ALTIBASE HDB automatically
restarts the thread. If this value is set to 0, the user can prevent the Sender thread from being
restarted.
General Reference 176

2.8 Replication Properties
2.8.22 REPLICATION_SENDER_SLEEP_TIME

2.8.22.1 Data Type

Unsigned Integer

2.8.22.2 Default Value

10000

2.8.22.3 Attributes

Read-Only, Single Value

2.8.22.4 Range

[0, 232 – 1]

2.8.22.5 Description

This property indicates the sleep time, in microseconds, when there are no more logs to be read by
the Sender thread. Because certain platforms ignore short Sleep time values, a suitable value must
be specified. The value specified here is used in conjunction with REPLICATION_KEEP_ALIVE_CNT to
determine when to send KEEP_ALIVE.

2.8.23 REPLICATION_SERVER_FAILBACK_MAX_TIME

2.8.23.1 Data Type

Unsigned integer

2.8.23.2 Default Value

232-1

2.8.23.3 Attributes

Read-Only, Single Value

2.8.23.4 Range

[0, 232-1]

2.8.23.5 Description

In EAGER mode replication, when a server that was terminated abnormally is restarted, it resumes
177 ALTIBASE HDB Properties

2.8 Replication Properties
providing service only after it has synchronized its data with the data on another (i.e. the remote)
server. At this time, if the process of applying the logs from the other server on the server that expe-
rienced the fault takes longer than the number of seconds specified using this property, the server
that experienced the fault gives up waiting for synchronization to complete.

2.8.24 REPLICATION_SYNC_LOG

2.8.24.1 Data Type

Unsigned Integer

2.8.24.2 Default Value

0

2.8.24.3 Attributes

Read-Only, Single Value

2.8.24.4 Range

[0, 1]

2.8.24.5 Description

When performing replication, because the Sender thread sends logs that are in memory regardless
of whether they have been committed to disk, data inconsistency or other problems may occur in
the event of system or media failure.

To prevent this problem, setting this value to 1 ensures that the Sender thread only sends logs that
have already been committed to disk.

2.8.25 REPLICATION_SYNC_TUPLE_COUNT

2.8.25.1 Data Type

Unsigned long

2.8.25.2 Default Value

30000

2.8.25.3 Attributes

Read-Write, Single Value
General Reference 178

2.8 Replication Properties
2.8.25.4 Range

[0, 264 – 1]

2.8.25.5 Description

This property specifies the maximum number of records that each Sender thread can read and han-
dle during parallel synchronization. This property can be changed using the ALTER SYSTEM state-
ment while ALTIBASE HDB is running.

2.8.26 REPLICATION_TIMESTAMP_RESOLUTION

2.8.26.1 Data Type

Unsigned integer

2.8.26.2 Default Value

0

2.8.26.3 Attributes

Read-Write, Single Value

2.8.26.4 Range

[0, 1]

2.8.26.5 Description

In an Active-Active replication environment, if this property is set to 1 and a TIMESTAMP column
exists in a given replication target table, then the TIMESTAMP-based resolution scheme is used to
resolve any data conflicts that occur in that table. However, even if a TIMESTAMP column exists in a
replication target table, if this value has been set to 0, some other conflict resolution scheme is used.

For more about TIMESTAMP-based resolution and data conflicts, please refer to the ALTIBASE HDB
Replication Manual. This property can be changed using the ALTER SYSTEM statement while ALTI-
BASE HDB is running.

2.8.27 REPLICATION_UPDATE_REPLACE

2.8.27.1 Data Type

Unsigned integer
179 ALTIBASE HDB Properties

2.8 Replication Properties
2.8.27.2 Default Value

0

2.8.27.3 Attributes

Read-Write, Single Value

2.8.27.4 Range

[0, 1]

2.8.27.5 Description

This property specifies whether to keep updated contents if an update conflict occurs during repli-
cation.

If this value has been set to 0, the update will not be committed, and the data conflict will be han-
dled as an error, whereas if this value has been set to 1, the data conflict will be ignored and the
update will be committed. This property can be changed using the ALTER SYSTEM statement while
ALTIBASE HDB is running.
General Reference 180

2.9 Message Logging Properties
2.9 Message Logging Properties

2.9.1 ALL_MSGLOG_FLUSH

2.9.1.1 Data Type

Unsigned integer

2.9.1.2 Default Value

1

2.9.1.3 Attributes

Read-Write, Single Value

2.9.1.4 Range

[0, 1]

2.9.1.5 Description

If this property is set to 1, all database messages are written immediately to disk, whereas if it is set
to 0, ALTIBASE HDB writes the messages all at once at regularly scheduled intervals. In order to pre-
vent reduced performance attributable to excessive logging, it is recommended that this value be
set to 0 for normal operations, and that it be set to 1 when troubleshooting.

2.9.2 DL_MSGLOG_COUNT

2.9.2.1 Data Type

Unsigned Integer

2.9.2.2 Default Value

10

2.9.2.3 Attributes

Read-Only, Single Value

2.9.2.4 Range

[0, 232 – 1]
181 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.2.5 Description

This sets the maximum number of Database Link message files.

2.9.3 DL_MSGLOG_DIR

2.9.3.1 Data Type

String

2.9.3.2 Default Value

$ALTIBASE_HOME/trc

2.9.3.3 Attributes

Read-Only, Single Value

2.9.3.4 Range

None

2.9.3.5 Description

This property sets the directory in which the Database Link module maintains message files.

2.9.4 DL_MSGLOG_FILE

2.9.4.1 Data Type

String

2.9.4.2 Default Value

altibase_dl.log

2.9.4.3 Attributes

Read-Only, Single Value

2.9.4.4 Range

None
General Reference 182

2.9 Message Logging Properties
2.9.4.5 Description

This property specifies the file in which to write messages that arise during Database Link process-
ing.

2.9.5 DL_MSGLOG_FLAG

2.9.5.1 Data Type

Unsigned Integer

2.9.5.2 Default

6

2.9.5.3 Attributes

Read-Write, Single Value

2.9.5.4 Range

[0, 232 – 1]

2.9.5.5 Description

This is a flag value that indicates whether to write trace messages generated by the database Link
module to DL_MSGLOG_FILE.

If this property is set to 0, no messages are written, whereas if it is set to a value greater than 0, the
messages are written.

2.9.6 DL_MSGLOG_SIZE

2.9.6.1 Data Type

Unsigned Integer

2.9.6.2 Default Value

10 * 1024 * 1024

2.9.6.3 Attributes

Read-Only, Single Value
183 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.6.4 Range

[0, 232 – 1]

2.9.6.5 Description

This property sets the maximum size of Database Link message files.

2.9.7 LK_MSGLOG_COUNT

2.9.7.1 Data Type

Unsigned Integer

2.9.7.2 Default

10

2.9.7.3 Attributes

Read-Only, Single Value

2.9.7.4 Range

[0, 232 – 1]

2.9.7.5 Description

This property sets the maximum number of message files that the Database Link connecting pro-
cessing module can create.

2.9.8 LK_MSGLOG_DIR

2.9.8.1 Data Type

String

2.9.8.2 Default

$ALTIBASE_HOME/trc

2.9.8.3 Attributes

Read-Only, Single Value
General Reference 184

2.9 Message Logging Properties
2.9.8.4 Range

None

2.9.8.5 Description

This property specifies the directory in which the Database Link connection processing module
stores message files.

2.9.9 LK_MSGLOG_FILE

2.9.9.1 Data Type

String

2.9.9.2 Default

altibase_lk.log

2.9.9.3 Attributes

Read-Only, Single Value

2.9.9.4 Range

None

2.9.9.5 Description

This property specifies the prefix of the file(s) in which the Database Link connection processing
module writes messages.

2.9.10 LK_MSGLOG_FLAG

2.9.10.1 Data Type

Unsigned Integer

2.9.10.2 Default

6

2.9.10.3 Attributes

Read-Write, Single Value
185 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.10.4 Range

[0, 232 – 1]

2.9.10.5 Description

This is a flag value that indicates whether to write messages generated by the Database Link connec-
tion processing module to LK_MSGLOG_FILE.

If this property is set to 0, no messages are written, whereas if it is set to a value greater than 0, the
messages are written.

2.9.11 LK_MSGLOG_SIZE

2.9.11.1 Data Type

Unsigned Integer

2.9.11.2 Default

10 * 1024 * 1024

2.9.11.3 Attributes

Read-Only, Single Value

2.9.11.4 Range

[0, 232 – 1]

2.9.11.5 Description

This property sets the maximum size of the Database Link connection processing module message
files.

2.9.12 MM_MSGLOG_COUNT

2.9.12.1 Data Type

Unsigned Integer

2.9.12.2 Default Value

10
General Reference 186

2.9 Message Logging Properties
2.9.12.3 Attributes

Read-Only, Single Value

2.9.12.4 Range

[0, 232 – 1]

2.9.12.5 Description

This sets the maximum number of message files for the Main module.

2.9.13 MM_MSGLOG_DIR

2.9.13.1 Data Type

String

2.9.13.2 Default Value

$ALTIBASE_HOME/trc

2.9.13.3 Attributes

Read-Only, Single Value

2.9.13.4 Range

None

2.9.13.5 Description

This property sets the directory in which the Main module maintains message files.

2.9.14 MM_MSGLOG_FILE

2.9.14.1 Data Type

String

2.9.14.2 Default Value

altibase_mm.log
187 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.14.3 Attributes

Read-Only, Single Value

2.9.14.4 Range

None

2.9.14.5 Description

This property specifies the file in which to write messages that arise during Main module processing.

2.9.15 MM_SESSION_LOGGING

2.9.15.1 Data Type

Unsigned Integer

2.9.15.2 Default

0

2.9.15.3 Attributes

Read-Write, Single Value

2.9.15.4 Range

[0, 1]

2.9.15.5 Description

This is a flag value that indicates whether to write session information regarding all database logon
and logoff events to MM_MSGLOG_FILE. Session information includes session ID, user name, IP
address, client program PID and other details about the client program.

If this property is set to 0, no messages are written, whereas if it is set to 1, the messages are written.

2.9.16 MM_MSGLOG_SIZE

2.9.16.1 Data Type

Unsigned Integer
General Reference 188

2.9 Message Logging Properties
2.9.16.2 Default Value

10 * 1024 * 1024

2.9.16.3 Attributes

Read-Only, Single Value

2.9.16.4 Range

[0, 232 – 1]

2.9.16.5 Description

This property sets the maximum size of the Main module message files.

2.9.17 NETWORK_ERROR_LOG

2.9.17.1 Data Type

Unsigned Integer

2.9.17.2 Default

1

2.9.17.3 Attributes

Read-Write, Single Value

2.9.17.4 Range

[0, 1]

2.9.17.5 Description

This property specifies whether to write network-related error messages in the server message file.

In an unstable network environment, in which error messages are frequently output, setting this
value to 0 prevents network-related error messages from being output.

2.9.18 QP_MSGLOG_COUNT

2.9.18.1 Data Type

Unsigned integer
189 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.18.2 Default Value

10

2.9.18.3 Attributes

Read-Only, Single Value

2.9.18.4 Range

[0, 232 – 1]

2.9.18.5 Description

This property sets the maximum number of message log files for the Query Processor.

2.9.19 QP_MSGLOG_DIR

2.9.19.1 Data Type

String

2.9.19.2 Default Value

$ALTIBASE_HOME/trc

2.9.19.3 Attributes

Read-Only, Single Value

2.9.19.4 Range

None

2.9.19.5 Description

This property specifies the directory name in which the Query Processor writes message log files.

2.9.20 QP_MSGLOG_FILE

2.9.20.1 Data Type

String
General Reference 190

2.9 Message Logging Properties
2.9.20.2 Default Value

altibase_qp.log

2.9.20.3 Attributes

Read-Only, Single Value

2.9.20.4 Range

None

2.9.20.5 Description

This property specifies the name of the file in which to write messages when processing queries.

2.9.21 QP_MSGLOG_FLAG

2.9.21.1 Data Type

Unsigned Integer

2.9.21.2 Default Value

0

2.9.21.3 Attributes

Read-Write, Single Value

2.9.21.4 Range

[0, 232 – 1]

2.9.21.5 Description

This is a flag value that indicates whether to write trace messages generated by the Query Processor
in QP_MSGLOG_FILE.

If this property is set to 0, the messages are not written, whereas if it is set to a value greater than 0,
the messages are written.
191 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.22 QP_MSGLOG_SIZE

2.9.22.1 Data Type

Unsigned integer

2.9.22.2 Default Value

10 * 1024 * 1024

2.9.22.3 Attributes

Read-Only, Single Value

2.9.22.4 Range

[0, 232 – 1]

2.9.22.5 Description

This property specifies the maximum size, in bytes, of the Query Processor message log files.

2.9.23 QUERY_PROF_FLAG

2.9.23.1 Data Type

Integer

2.9.23.2 Default Value

0

2.9.23.3 Attributes

Read-Write, Single Value

2.9.23.4 Range

[0, 26 – 1]

2.9.23.5 Description

This property enables information about the work being conducted by a server and the overall state
of the server to be written to a file for later analysis. The user can specify that information is written
as desired by suitably combining the following values:
General Reference 192

2.9 Message Logging Properties
0: write nothing

1: every time a SQL statement is executed, write the executed SQL statement, execution time, execu-
tion information, and information about index and disk access

2: every time a SQL statement is executed, write the BIND parameter(s)

4: every time a SQL statement is executed, write the execution plan

8: write session information (i.e. the data in V$SESSTAT) every 3 seconds

16: write system information (i.e. the data in V$SYSSTAT) every 3 seconds

32: write information about memory (i.e. the data in V$MEMSTAT) every 3 seconds

For example, if this property is set to 1+4+32=37, then whenever a SQL statement is executed, the
execution information and execution plan for the SQL statement is written, and additionally, infor-
mation about memory is written every 3 seconds.

This file can be converted to a form suitable for analysis using the altiprofile utility. For more
information, please refer to the portion of the Utilities Manual pertaining to the altiprofile util-
ity. This property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is run-
ning.

2.9.24 RP_MSGLOG_COUNT

2.9.24.1 Data Type

Unsigned integer

2.9.24.2 Default Value

10

2.9.24.3 Attributes

Read-Only, Single Value

2.9.24.4 Range

[0, 232 – 1]

2.9.24.5 Description

This property specifies the maximum number of replication message log files.
193 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.25 RP_MSGLOG_DIR

2.9.25.1 Data Type

String

2.9.25.2 Default Value

$ALTIBASE_HOME/trc

2.9.25.3 Attributes

Read-Only, Single Value

2.9.25.4 Range

None

2.9.25.5 Description

This property specifies the directory name in which the replication module writes message log files.

2.9.26 RP_MSGLOG_FILE

2.9.26.1 Data Type

String

2.9.26.2 Default Value

altibase_rp.log

2.9.26.3 Attributes

Read-Only, Single Value

2.9.26.4 Range

None

2.9.26.5 Description

This property specifies the name of the file in which to write messages output from the Replication
Manager.
General Reference 194

2.9 Message Logging Properties
2.9.27 RP_MSGLOG_FLAG

2.9.27.1 Data Type

Unsigned Integer

2.9.27.2 Default Value

2

2.9.27.3 Attributes

Read-Write, Single Value

2.9.27.4 Range

[0, 232 – 1]

2.9.27.5 Description

This is a flag value that indicates whether to write trace messages generated by the Replication Man-
ager module in RP_MSGLOG_FILE.

If this property is set to 0, no messages are written, whereas if it is set to a value greater than 0, the
messages are written.

2.9.28 RP_MSGLOG_SIZE

2.9.28.1 Data Type

Unsigned integer

2.9.28.2 Default Value

10 * 1024 * 1024

2.9.28.3 Attributes

Read-Only, Single Value

2.9.28.4 Range

[0, 232 – 1]
195 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.28.5 Description

This property specifies the maximum size, in bytes, of the replication message log file.

2.9.29 SERVER_MSGLOG_COUNT

2.9.29.1 Data Type

Unsigned integer

2.9.29.2 Default Value

10

2.9.29.3 Attributes

Read-Only, Single Value

2.9.29.4 Range

[0, 232 – 1]

2.9.29.5 Description

This property specifies the maximum number of server message log files.

2.9.30 SERVER_MSGLOG_DIR

2.9.30.1 Data Type

String

2.9.30.2 Default Value

$ALTIBASE_HOME/trc

2.9.30.3 Attributes

Read-Only, Single Value

2.9.30.4 Range

None
General Reference 196

2.9 Message Logging Properties
2.9.30.5 Description

This property specifies the path in which altibase.lock, which is an internally used server mainte-
nance file, and SERVER_MSGLOG_FILE, which is the server module message file in which information
about the server startup, shutdown etc. are written, are located.

This directory can also serve as the default directory for individual modules when default values
have not been individually set for their corresponding properties, such as SM_MSGLOG_DIR,
QP_MSGLOG_DIR, RP_MSGLOG_DIR and the like.

2.9.31 SERVER_MSGLOG_FILE

2.9.31.1 Data Type

String

2.9.31.2 Default Value

altibase_boot.log

2.9.31.3 Attributes

Read-Only, Single Value

2.9.31.4 Range

None

2.9.31.5 Description

This property specifies the file name for messages left by the server module. Messages pertaining to
ALTIBASE HDB startup, warnings, and abnormal termination are written to the server message log
file.

2.9.32 SERVER_MSGLOG_FLAG

2.9.32.1 Data Type

Unsigned Integer

2.9.32.2 Default Value

7

197 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.32.3 Attributes

Read-Write, Single Value

2.9.32.4 Range

[0, 232 – 1]

2.9.32.5 Description

This is a flag value that indicates whether to write trace messages generated by the server module in
SERVER_MSGLOG_FILE.

If this property is set to 0, no messages are written, whereas if it is set to a value greater than 0, the
messages are written.

2.9.33 SERVER_MSGLOG_SIZE

2.9.33.1 Data Type

Unsigned integer

2.9.33.2 Default Value

10 * 1024 * 1024

2.9.33.3 Attributes

Read-Only, Single Value

2.9.33.4 Range

[0, 232 – 1]

2.9.33.5 Description

This property specifies the maximum size, in bytes, of server message log files.

2.9.34 SM_MSGLOG_COUNT

2.9.34.1 Data Type

Unsigned integer
General Reference 198

2.9 Message Logging Properties
2.9.34.2 Default Value

10

2.9.34.3 Attributes

Read-Only, Single Value

2.9.34.4 Range

[0, 232 – 1]

2.9.34.5 Description

This property specifies the maximum number of Storage Manager message log files.

2.9.35 SM_MSGLOG_DIR

2.9.35.1 Data Type

String

2.9.35.2 Default Value

$ALTIBASE_HOME/trc

2.9.35.3 Attributes

Read-Only, Single Value

2.9.35.4 Range

None

2.9.35.5 Description

This property specifies the directory name in which to write the Storage Manager message log files.

2.9.36 SM_MSGLOG_FILE

2.9.36.1 Data Type

String
199 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.36.2 Default Value

altibase_sm.log

2.9.36.3 Attributes

Read-Only, Single Value

2.9.36.4 Range

None

2.9.36.5 Description

This property specifies the prefix of the name of the message file(s) in which the Storage Manager
writes messages.

2.9.37 SM_MSGLOG_FLAG

2.9.37.1 Data Type

Unsigned Integer

2.9.37.2 Default Value

2147483647

2.9.37.3 Attributes

Read-Write, Single Value

2.9.37.4 Range

[0, 232 – 1]

2.9.37.5 Description

This is a flag value that indicates whether to write trace messages generated by the Storage Man-
ager module in the file(s) specified in SM_MSGLOG_FILE.

If this property is set to 0, no messages are written, whereas if it is set to a value greater than 0, the
messages are written.
General Reference 200

2.9 Message Logging Properties
2.9.38 SM_MSGLOG_SIZE

2.9.38.1 Data Type

Unsigned integer

2.9.38.2 Default Value

10 * 1024 * 1024

2.9.38.3 Attributes

Read-Only, Single Value

2.9.38.4 Range

[0, 232 – 1]

2.9.38.5 Description

This property specifies the maximum size, in bytes, of the Storage Manager message log files.

2.9.39 TRCLOG_DETAIL_PREDICATE

2.9.39.1 Data Type

Unsigned integer

2.9.39.2 Default Value

0

2.9.39.3 Attributes

Read-Write, Single Value

2.9.39.4 Range

[0, 1]

2.9.39.5 Description

When Explain Plan mode is being used in iSQL, this property specifies whether to display the status
of a predicate portion of a WHERE clause. To use this trace log, set this parameter to 1. This property
can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.
201 ALTIBASE HDB Properties

2.9 Message Logging Properties
2.9.40 XA_MSGLOG_COUNT

2.9.40.1 Data Type

Unsigned Integer

2.9.40.2 Default Value

10

2.9.40.3 Attributes

Read-Only, Single Value

2.9.40.4 Range

[0, 232–1]

2.9.40.5 Description

This property specifies the maximum number of XA message files used by the server.

2.9.41 XA_MSGLOG_DIR

2.9.41.1 Data Type

String

2.9.41.2 Default Value

$ALTIBASE_HOME/trc

2.9.41.3 Attributes

Read-Only, Single Value

2.9.41.4 Range

None

2.9.41.5 Description

This property specifies the directory in which XA message files used by the server are stored.
General Reference 202

2.9 Message Logging Properties
2.9.42 XA_MSGLOG_FILE

2.9.42.1 Data Type

String

2.9.42.2 Default Value

altibase_xa.log

2.9.42.3 Attributes

Read-Only, Single Value

2.9.42.4 Range

None

2.9.42.5 Description

This property specifies the prefix of the name of the file(s) in which XA message logs from the server
are written.

2.9.43 XA_MSGLOG_FLAG

2.9.43.1 Data Type

Unsigned Integer

2.9.43.2 Default Value

3

2.9.43.3 Attributes

Read-Write, Single Value

2.9.43.4 Range

[0, 3]

2.9.43.5 Description

This property determines which of the server XA messages to write to disk. The possible values are
as follows:
203 ALTIBASE HDB Properties

2.9 Message Logging Properties
0: write only critical XA-related messages

1: write messages pertaining to XA calls

2: write messages when XIDs are allocated, freed, etc.

3: write all message logs related to XA

2.9.44 XA_MSGLOG_SIZE

2.9.44.1 Data Type

Unsigned Integer

2.9.44.2 Default Value

10 * 1024 * 1024

2.9.44.3 Attributes

Read-Only, Single Value

2.9.44.4 Range

[0, 232–1]

2.9.44.5 Description

This property specifies the maximum size of XA message files used by the server.
General Reference 204

2.10 Database Link Related Properties
2.10 Database Link Related Properties

2.10.1 AUTO_REMOTE_EXEC

2.10.1.1 Data Type

Unsigned Integer

2.10.1.2 Default Value

0

2.10.1.3 Attributes

Read-Write, Single Value

2.10.1.4 Range

[0, 1]

2.10.1.5 Description

When using Database Link, this property specifies that only results of search targets are to be
retrieved from a remote server, even if EXEC_REMOTE hints are not used directly in SQL statements.

0 : Default Action

1 : Forward queries to a remote server. (REMOTE hint option)

The value of this property can be changed using the ALTER SYSTEM or ALTER SESSION statements
while ALTIBASE HDB is running.

2.10.2 DBLINK_ENABLE

2.10.2.1 Data Type

Unsigned Integer

2.10.2.2 Default Value

0

2.10.2.3 Attributes

Read-Only, Single Value
205 ALTIBASE HDB Properties

2.10 Database Link Related Properties
2.10.2.4 Range

[0, 1]

2.10.2.5 Description

This property determines whether to use Database Link. Set this value to 1 to use Database Link. If
this value is set to 0 (zero), Database Link cannot be used.

2.10.3 LINKER_LINK_TYPE

2.10.3.1 Data Type

Unsigned Integer

2.10.3.2 Default Value

0

2.10.3.3 Attributes

Read-Only, Single Value

2.10.3.4 Range

[0, 2]

2.10.3.5 Description

This property determines the method of communication between an ALTIBASE HDB server and
AltiLinker. If the value of this property is set to 0, communication is conducted using TCP. If it is set to
1, communication is conducted using the UNIX domain protocol. If it is set to 2, communication is
conducted using IPC. (At present, only TCP and the Unix domain protocol are supported.)

2.10.4 LINKER_PORT_NO

2.10.4.1 Data Type

Unsigned Integer

2.10.4.2 Default Value

0

General Reference 206

2.10 Database Link Related Properties
2.10.4.3 Attributes

Read-Only, Single Value

2.10.4.4 Range

[0, 65535]

2.10.4.5 Description

When TCP is used for communication with AltiLinker, this property specifies the port number at
which AltiLinker listens.

2.10.5 LINKER_SQLLEN_SIZE

2.10.5.1 Data Type

Unsigned Integer

2.10.5.2 Default Value

0

2.10.5.3 Attributes

Read-Only, Single Value

2.10.5.4 Range

[0, 232-1]

2.10.5.5 Description

This property specifies the size of SQLLEN, used by UNIXODBC, in units of bytes or bits. If this prop-
erty is set to 4 or 32, the size of SQLLEN is specified as 4 bytes, or 32 bits. If this property is set to 8 or
64, the size of SQLLEN is specified as 64 bits. If you are not sure how to specify this property, you
should set it to sizeof(SQLLEN).

2.10.6 LINKER_THREAD_COUNT

2.10.6.1 Data Type

Unsigned Integer
207 ALTIBASE HDB Properties

2.10 Database Link Related Properties
2.10.6.2 Default Value

16

2.10.6.3 Attributes

Read-Only, Single Value

2.10.6.4 Range

[0, 100]

2.10.6.5 Description

This property specifies the number of Linker threads that are launched by AltiLinker.

2.10.7 LINKER_THREAD_SLEEP_TIME

2.10.7.1 Data Type

Unsigned Integer

2.10.7.2 Default Value

200 (1000 on Windows platforms)

2.10.7.3 Attributes

Read-Only, Single Value

2.10.7.4 Range

[0, 232 – 1]

2.10.7.5 Description

This property specifies the wait time, in microseconds, when there are no tasks to be processed by
the Linker thread. For normal system operation, the default on Unix platforms is 200, but on Win-
dows platforms the default value is 1000.

2.10.8 MAX_DBLINK_COUNT

2.10.8.1 Data Type

Unsigned Integer
General Reference 208

2.10 Database Link Related Properties
2.10.8.2 Default Value

10

2.10.8.3 Attributes

Read-Only, Single Value

2.10.8.4 Range

[0, 232 – 1]

2.10.8.5 Description

This property specifies the number of caches that will be used by Database Link. It has nothing to do
with the number of instances of Database Link that can be created. More instances of Database Link
can be created than the number specified here.

However, if the number of Database Link instances is greater than the number of caches, this may
cause frequent cache changes, resulting in reduced performance.
209 ALTIBASE HDB Properties

2.11 DataPort Properties
2.11 DataPort Properties

2.11.1 DATAPORT_FILE_DIRECTORY

2.11.1.1 Data Type

String

2.11.1.2 Default Value

$ALTIBASE_HOME/dbs

2.11.1.3 Attributes

Read-Write, Single Value

2.11.1.4 Range

None

2.11.1.5 Description

This property specifies the default directory in which the dataport files are located. This property can
be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.

2.11.2 DATAPORT_IMPORT_COMMIT_UNIT

2.11.2.1 Data Type

Signed Integer

2.11.2.2 Default Value

10

2.11.2.3 Attributes

Read-Write, Single Value

2.11.2.4 Range

[1, 231 - 1]
General Reference 210

2.11 DataPort Properties
2.11.2.5 Description

When importing data, this property determines how many statements are committed at one time
after being executed. This property can be changed using the ALTER SYSTEM statement while ALTI-
BASE HDB is running.

2.11.3 DATAPORT_IMPORT_STATEMENT_UNIT

2.11.3.1 Data Type

Signed Integer

2.11.3.2 Default Value

50000

2.11.3.3 Attributes

Read-Write, Single Value

2.11.3.4 Range

[1, 231 - 1]

2.11.3.5 Description

This property indicates how many rows are inserted per statement when importing data. This prop-
erty can be changed using the ALTER SYSTEM statement while ALTIBASE HDB is running.
211 ALTIBASE HDB Properties

2.12 Other Properties
2.12 Other Properties

2.12.1 ACCESS_LIST

2.12.1.1 Format

ACCESS_LIST = operation, address, mask

2.12.1.2 Range

• operation ::= [PERMIT|DENY]

Indicates whether to allow or deny access by an IP packet that matches a validation rule.

• address

Indicates the IP address of the packet to validate. It can be in IPv4 or IPv6 address notation.

• mask

If the specified address is in IPv4 address notation, mask specifies that only part of the IP
address of a packet, the subnet mask, is to be validated.

If the specified address is in IPv6 address notation, mask gives the length of prefix bits to be
compared. An IPv6 address is matched if the specified mask bits of the specified address are
equal to the specified mask bits of the originating address of an incoming IP packet.

2.12.1.3 Validation Rule

IF
BITXOR (BITAND (IP_Packet, mask), BITAND (address, mask)) = 0
THEN valid
ELSE invalid

2.12.1.4 Description

Packets that attempt to access an Altibase database can be allowed or blocked based on the IP
address from which they originate. The address of IP packets is checked based on a validation rule,
and if the address satisfies the condition in the validation rule, the packet is allowed or blocked as
specified by “operation”, whereas if it does not satisfy the validation condition, it is ignored and exe-
cution proceeds to the next item on the list.

If more than one IP packet address is specified, validation is performed in the order that they are
specified. If none of the conditions are satisfied, access is granted. If more than one validation rule of
a single IP address is specified, a "PERMIT" rule will take priority.

2.12.1.5 Example

Block packets with the IP address 192.168.1.55 and allow all other packets.
General Reference 212

2.12 Other Properties
ACCESS_LIST = deny, 192.168.1.55, 255.255.255.255

Allow access to packets from the addresses 192.168.3.* and 219.211.253.*, and block all other pack-
ets.

ACCESS_LIST = permit, 192.168.3.0, 255.255.255.0
ACCESS_LIST = permit, 219.211.253.0, 255.255.255.0
ACCESS_LIST = deny ,0.0.0.0, 0.0.0.0

Block all Ipv4 and IPv6 address except for localhost.

ACCESS_LIST = deny, 0.0.0.0, 0.0.0.0
ACCESS_LIST = deny, ::1, 1
ACCESS_LIST = deny, fe80::, 1

2.12.2 ADMIN_MODE

2.12.2.1 Data Type

Unsigned integer

2.12.2.2 Default Value

0

2.12.2.3 Attributes

Read-Write, Single Value

2.12.2.4 Range

[0, 1]

2.12.2.5 Description

ADMIN_MODE limits the database connection to administrators only.

• 0: OFF

• 1: ON

When this property is set to 1, administrator mode is activated, and only the SYS and SYSTEM_ users
can connect to the server using the SYSDBA option, and other users will be unable to establish a
connection. This property can be changed using the ALTER SYSTEM statement while ALTIBASE HDB
is running.
213 ALTIBASE HDB Properties

2.12 Other Properties
2.12.3 CHECK_MUTEX_DURATION_TIME_ENABLE

2.12.3.1 Data Type

Unsigned Integer

2.12.3.2 Default Value

0

2.12.3.3 Attributes

Read-Write, Single Value

2.12.3.4 Range

[0, 1]

2.12.3.5 Description

This property specifies whether to check MUTEX_DURATION_TIME. This property can be changed
using the ALTER SYSTEM statement while ALTIBASE HDB is running.

0: disable checking

1: enable checking

2.12.4 DEFAULT_DATE_FORMAT

2.12.4.1 Data Type

String

2.12.4.2 Default Value

DD-MON-RRRR

2.12.4.3 Attributes

Read-Only, Single Value

2.12.4.4 Range

None
General Reference 214

2.12 Other Properties
2.12.4.5 Description

This property sets the default format of DATE type data table columns. If not specified otherwise
when SQL statements are executed, DATE type data are input or output according to this setting.
This type must specify the formats in which both dates and times are saved. It is also possible to use
blanks within double quotation marks, such as "DD MON RRRR".

Ex) DEFAULT_DATE_FORMAT = YYYY/MM/DD

iSQL> SELECT sysdate FROM dual;
SYSDATE

2000/01/01
1 row selected.

2.12.5 EXEC_DDL_DISABLE

2.12.5.1 Data Type

Unsigned integer

2.12.5.2 Default Value

0

2.12.5.3 Attributes

Read-Write, Single Value

2.12.5.4 Range

[0, 1]

2.12.5.5 Description

Typically, after a database is initially created, DML statements are executed much more frequently
than DDL statements. Because DDL statements change existing database schema, they must be exe-
cuted with caution.

The administrator can thus use this property to prevent the execution of DDL statements. When this
property is set to 1, DDL statements cannot be executed while ALTIBASE HDB is running, whereas if it
is set to 0, DDL statements can be executed. This property can be changed using the ALTER SYSTEM
statement while ALTIBASE HDB is running.

2.12.6 QUERY_STACK_SIZE

2.12.6.1 Data Type

Unsigned integer
215 ALTIBASE HDB Properties

2.12 Other Properties
2.12.6.2 Default Value

1024

2.12.6.3 Attributes

Read-Write, Single Value

2.12.6.4 Range

[8, 65536]

2.12.6.5 Description

This property specifies the size of the stack internally used in the system to process query operations
such as comparisons and other operations.

When complicated calculations or stored procedures are used, a stack overflow error may occur. In
such cases, the property must be changed to a bigger value.

This parameter must be set according to the application environment. If it is set to a value higher
than necessary, memory space will be wasted, so this parameter must be set carefully.

This property can be set in the altibase.properties file, and can be changed using the ALTER SYSTEM
or ALTER SESSION statements.

This property can be changed using the ALTER SESSION statement as follows:

ALTER SESSION SET STACK SIZE = n;

2.12.7 REMOTE_SYSDBA_ENABLE

2.12.7.1 Data Type

Unsigned Integer

2.12.7.2 Default Value

1

2.12.7.3 Attributes

Read-Write, Single Value

2.12.7.4 Range

[0, 1]
General Reference 216

2.12 Other Properties
2.12.7.5 Description

This property specifies whether the SYS user can access the database with SYSDBA privileges from a
remote location. Its value can be changed using the ALTER SYSTEM statement.

0 : deny remote database access with SYSDBA privileges

1 : allow remote database access with SYSDBA privileges (default)

2.12.8 SELECT_HEADER_DISPLAY

2.12.8.1 Data Type

Unsigned integer

2.12.8.2 Default Value

1

2.12.8.3 Attributes

Read-Write, Single Value

2.12.8.4 Range

[0, 1]

2.12.8.5 Description

When the results of a SELECT query are output over iSQL, this system property determines whether
only the column names are output, or whether the table names are output along with the column
names. This property can be set in the altibase.properties file, and can be changed using the ALTER
SYSTEM or ALTER SESSION statements. If this parameter is set to 0, the table names are displayed
along with the column names when the results of SQL statements are output using iSQL.
217 ALTIBASE HDB Properties

2.12 Other Properties
General Reference 218

3 The Data Dictionary
The data dictionary of ALTIBASE HDB comprises meta tables, in which information about objects is
stored, and process tables, in which information about processes is stored. Process tables comprise
fixed tables and performance views. This chapter describes the ALTIBASE HDB data dictionary, which
is the basis of all database objects and all system information of ALTIBASE HDB.
219 The Data Dictionary

3.1 Meta Tables
3.1 Meta Tables
Meta tables are system-defined tables that contain all information about database objects.

This section describes the types of meta tables and their structure, and explains how to read and
update the information in meta tables.

3.1.1 Structure and Function

Meta tables are defined by the system for the purpose of managing database objects. They use the
same data types and store records in the same way as user-defined tables.

When ALTIBASE HDB starts up, it loads information about database objects, and when DDL state-
ments are executed, meta tables are used to read, store, and update this information.

The owner of meta tables is the system user (user name: SYSTEM_), so normal users have limited
access to meta tables.

3.1.2 Retrieving Information from Meta Tables

When a database object is created, deleted or modified using a DDL statement, the system creates,
deletes, or updates records in one or more meta tables.

After a DDL statement is executed, the resultant changes to database objects can be confirmed by
checking meta tables. This is accomplished using a SELECT statement, just as with a regular data-
base table.

3.1.3 Modifying Data in Meta Tables

It is possible to use DML statements to explicitly make changes to the data in meta tables. However,
only the system-defined system user (SYSTEM_) can make such changes to meta tables. Additionally,
when the information in meta tables is changed, the system may become impossible to start, infor-
mation about database objects may be lost, or the system may be critically damaged. Therefore,
users must avoid making changes to meta tables whenever possible. When it is inevitable that a user
must change meta table information, it is imperative that the database first be backed up, and it
must be understood that the user is completely responsible for any damage resulting from directly
making changes to meta table information.

3.1.4 Modifying Meta Table Schema

The meta table schema may be modified when a new kind of DDL statement is introduced, or when
the functionality of an existing statement is changed. Depending on the characteristics of the
changes to meta table schema, one of two cases may arise: either the database might need to be
migrated, or the meta table schema will simply be automatically modified when ALTIBASE HDB is
restarted. This should be kept in mind when upgrading ALTIBASE HDB to a newer version.
General Reference 220

3.1 Meta Tables
3.1.5 The Kinds of Meta Tables

This table shows the list of meta tables. Their names start with SYS_.

Meta Table Name Description

SYS_COLUMNS_ This table contains information about columns.

SYS_COMMENTS_ This table contains information about explanatory
comments.

SYS_CONSTRAINTS_ This table contains information about constraints.

SYS_CONSTRAINT_COLUMNS_ This table contains information about columns having
constraints.

SYS_DATABASE_ This table contains information about the name and
version of the database.

SYS_DIRECTORIES_ This table contains information about directories used
by stored procedures for managing files.

SYS_DN_USERS_ This table is reserved for future use.

SYS_DUMMY_ This table is for internal use only.

SYS_ENCRYPTED_COLUMNS_ This table contains additional security information for
individual columns.

SYS_GRANT_OBJECT_ This table contains information about object privileges.

SYS_GRANT_SYSTEM_ This table contains information about system privi-
leges.

SYS_INDEX_COLUMNS_ This table contains information about index key col-
umns.

SYS_INDEX_PARTITIONS_ This table contains information about index partitions.

SYS_INDICES_ This table contains information about indexes.

SYS_LOBS_ This table contains information about LOB columns.

SYS_PART_INDICES_ This table contains information about partitioned
indexes.

SYS_PART_KEY_COLUMNS_ This table contains information about partitioning keys.

SYS_PART_LOBS_ This table contains information about LOB columns for
respective partitions.

SYS_PART_TABLES_ This table contains information about partitioned
tables.

SYS_PRIVILEGES_ This table contains information about privileges.

SYS_PROCEDURES_ This table contains information about stored proce-
dures and functions.
221 The Data Dictionary

3.1 Meta Tables
SYS_PROC_PARAS_ This table contains information about the parameters
for stored procedures and functions.

SYS_PROC_PARSE_ This table contains the actual text of stored procedures
and stored functions.

SYS_PROC_RELATED_ This table contains information about tables accessed
by stored procedures and functions.

SYS_REPLICATIONS_ This table contains general information about replica-
tion.

SYS_REPL_HOSTS_ This table contains information about replication hosts.

SYS_REPL_ITEMS_ This table contains information about tables to be repli-
cated.

SYS_REPL_OFFLINE_DIR_ This table contains information about the log directory
related to the replication offline option.

SYS_REPL_OLD_COLUMNS_ This table contains information about columns repli-
cated by the replication sender thread.

SYS_REPL_OLD_INDEX_COLUMNS_ This table contains information about index columns
replicated by the replication sender thread.

SYS_REPL_OLD_INDICES_ This table contains information about indexes repli-
cated by the replication sender thread.

SYS_REPL_OLD_ITEMS_ This table contains information about the tables repli-
cated by the replication sender thread.

SYS_REPL_RECOVERY_INFOS_ This table contains information about logs used by rep-
lication for recovery of a remote server.

SYS_SECURITY_ This table contains information about the state of the
security module.

SYS_SYNONYMS_ This table contains information about synonyms.

SYS_TABLES_ This table contains information about all kinds of
tables.

SYS_TABLE_PARTITIONS_ This table contains information about table partitions.

SYS_TBS_USERS_ This table contains information about users’ access to
user-defined tablespaces.

SYS_TRIGGERS_ This table contains information about triggers.

SYS_TRIGGER_DML_TABLES_ This table contains information about tables accessed
by triggers.

SYS_TRIGGER_STRINGS_ This table contains the actual text of trigger com-
mands.

Meta Table Name Description
General Reference 222

3.1 Meta Tables
3.1.5.1 Unsupported Meta Tables

ALTIBASE HDB provides the following GIS-related meta tables. Their names begin with STO_. They
aren't used at present.

STO_COLUMNS_

STO_DATUMS_

STO_ELLIPSOIDS_

STO_GEOCCS_

STO_GEOGCS_

STO_PRIMEMS_

STO_PROJCS_

STO_PROJECTIONS_

STO_SRS_

STO_USER_COLUMNS_

3.1.6 SYS_COLUMNS_

Information about columns defined in all tables, virtual columns in all views, and virtual columns in
all sequences is stored in this meta table.

SYS_TRIGGER_UPDATE_COLUMNS_ This table contains information about columns that
cause triggers to fire whenever their contents are
changed.

SYS_USERS_ This table contains information about users.

SYS_VIEWS_ This table contains information about views.

SYS_VIEW_PARSE_ This table contains the actual text of statements used
to create views.

SYS_VIEW_RELATED_ This table contains information about objects accessed
by views.

SYS_XA_HEURISTIC_TRANS_ This table contains information about global transac-
tions.

Meta Table Name Description

Column Data Type Description

COLUMN_ID INTEGER The column identifier
223 The Data Dictionary

3.1 Meta Tables
3.1.6.1 Column Information

COLUMN_ID

This is the column identifier, which is assigned automatically by the system sequence.

DATA_TYPE

This is the data type identifier. The identifiers for each data type are as follows:

DATA_TYPE INTEGER The data type

LANG_ID INTEGER The language identifier

OFFSET INTEGER The offset of the column within the record

SIZE INTEGER The physical length of the column within the
record

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

PRECISION INTEGER The specified precision of the column

SCALE INTEGER The specified scale of the column

COLUMN_ORDER INTEGER The position of the column in the table

COLUMN_NAME VARCHAR(40) The name of the column

IS_NULLABLE CHAR(1) Whether NULL is permitted.
T: can be NULL
F: cannot be NULL

DEFAULT_VAL VARCHAR(4000) The default value for the column

STORE_TYPE CHAR(1) The column storage type
V: variable type
F: fixed type
L: LOB column

IN_ROW_SIZE INTEGER The length of data that can be saved in a
fixed area when data are saved in a variable-
length column in a memory table

REPL_CONDITION INTEGER The number of replication conditions for a
column

Column Data Type Description

Data Type Value

CHAR 1
General Reference 224

3.1 Meta Tables
For more information about data types, please refer to Chapter1: Data Types.

LANG_ID

A column that contains the language properties for character data types (CHAR, VARCHAR).

OFFSET

This indicates the physical starting point of a column within a record. The offset and size of a column
are used to calculate the physical storage size of a record.

SIZE

This is the physical storage size of the column in a record, calculated by the system based on the col-
umn type, user-defined precision, etc.

VARCHAR 12

NCHAR -8

NVARCHAR -9

NUMERIC 2

DECIMAL 2

FLOAT 6

NUMBER 6

DOUBLE 8

REAL 7

BIGINT -5

INTEGER 4

SMALLINT 5

DATE 9

BLOB 30

CLOB 40

BYTE 20001

NIBBLE 20002

BIT -7

VARBIT -100

GEOMETRY 10003

Data Type Value
225 The Data Dictionary

3.1 Meta Tables
USER_ID

This corresponds to a USER_ID value in the SYS_USERS_ meta table, and identifies the owner of the
table to which the column belongs.

TABLE_ID

This corresponds to a TABLE_ID value in the SYS_TABLES_ meta table, and identifies the table to
which the column belongs.

PRECISION

This is the precision of the data type, and is either defined by the user or corresponds to the default
value for the system. In the case of a character data type, it corresponds to the length of the charac-
ter data type set by the user.

SCALE

This is the scale of the data type, and is either defined by the user or corresponds to the default value
for the system. This value is not used with some data types.

COLUMN_ORDER

This is the order in which columns appear in a table.

The order in which the columns are stated in a CREATE TABLE statement determines the order in
which they are created, and thus their position in the table. If a column is added using an ALTER
TABLE statement, the newly created column will be the last column in the table.

COLUMN_NAME

This is the name specified when a user creates a table or adds a column to the table.

IS_NULLABLE

This indicates whether NULL values are permitted for a column.

When a column is created, the user can explicitly state whether to allow NULL values for the column.
If not explicitly set by the user, NULL values are allowed by default.

DEFAULT_VAL

If no column value is specified when inserting a record, this default value is used for the column. In
order to disallow NULL values, a default value must be specified by the user when creating the col-
umn. If no default value is specified, NULL values will be allowed.

STORE_TYPE

When physically storing a column, it can either be written as part of a record, or it can be saved on
another page, in which case only the location of the data is stored in the record.

If the physical storage size of a column is too big, or if the size of the column varies frequently for
individual records, the column can be stored on another page by using the VARIABLE option when
General Reference 226

3.1 Meta Tables
defining the column. This option is generally used for VARCHAR types where the character strings in
a column are long.

This column indicates whether the VARIABLE option is used.

IN_ROW_SIZE

This is the default IN_ROW_SIZE when data are stored in variable-length columns in memory tables.
When data are inserted into a variable-length column, if the length of the data is equal to or smaller
than the value specified by IN_ROW_SIZE, the data are stored in the fixed space, whereas if the data
are longer than this value, they are stored in a variable space. For disk tables, this value is always 0.

For more information about variable-length columns and the IN ROW clause, please refer to
Chapter1: Data Types.

REPL_CONDITION

This indicates the number of columns that are associated with replication conditions when condi-
tion clauses are used in replication.

3.1.6.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_USER_COLUMNS_

3.1.7 SYS_COMMENTS_

This meta table is for storing comments such as descriptions of user-defined tables, views and asso-
ciated columns.

3.1.7.1 Column Information

USER_NAME

This is the name of the table owner. Its value corresponds to one of the USER_NAME values in the
SYS_USERS_ meta table.

Column name Type Description

USER_NAME VARCHAR(40) The name of the user

TABLE_NAME VARCHAR(40) The name of the table

COLUMN_NAME VARCHAR(40) The name of the column

COMMENTS VARCHAR(4000) The actual comment
227 The Data Dictionary

3.1 Meta Tables
TABLE_NAME

This is the name of the table (or view). Its value is the same as one of the TABLE_NAME values
appearing in SYS_TABLES_.

COLUMN_NAME

This is the name of a column in the table (or view). Its value is equal to a COLUMN_NAME value in the
SYS_COLUMNS_ meta table.

However, if the comment pertains to an entire table (or view), the value for COLUMN_NAME will be
NULL.

COMMENTS

This is the actual comment written by the user.

3.1.7.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_COLUMNS_

3.1.8 SYS_CONSTRAINTS_

This meta table contains information about table constraints.

Column Data Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

CONSTRAINT_ID INTEGER The constraint identifier

CONSTRAINT_NAME VARCHAR(40) The name of the constraint

CONSTRAINT_TYPE INTEGER The type of the constraint

INDEX_ID INTEGER The identifier of the index used by the con-
straint

COLUMN_CNT INTEGER The number of columns that are associated
with the constraint

REFERENCED_TABLE_ID INTEGER The identifier of a table referenced in a FOR-
EIGN KEY constraint

REFERENCED_INDEX_ID INTEGER The identifier of an index referenced in a
FOREIGN KEY constraint
General Reference 228

3.1 Meta Tables
3.1.8.1 Column Information

USER_ID

This is the user identifier, and corresponds to a USER_ID in the SYS_USERS_ meta table.

TABLE_ID

This is the identifier for the table associated with the constraint, and will correspond to a TABLE_ID
value in the SYS_TABLES_ meta table.

CONSTRAINT_ID

This is a constraint identifier. It is automatically assigned by the system sequence.

CONSTRAINT_NAME

This is the name of the constraint.

CONSTRAINT_TYPE

This indicates the type of the constraint. The possible types are as follows:

• 0: FOREIGN KEY

• 1: NOT NULL

• 2: UNIQUE

• 3: PRIMARY KEY

• 4: NULL

• 5: TIMESTAMP

• 6: LOCAL UNIQUE

For additional information on each type of constraint, please refer to the description of column con-
straints in the explanation of the CREATE TABLE statement in the SQL Reference.

INDEX_ID

If an index must be created in order to define constraints such as UNIQUE or PRIMARY KEY con-
straints, the system creates an index internally. This is the identifier of that index, and will correspond

DELETE_RULE INTEGER Whether to perform cascade delete for a
FOREIGN KEY constraint
0: Do not perform cascade delete
1: perform cascade delete

VALIDATED CHAR(1) Whether all data conform to the constraint

Column Data Type Description
229 The Data Dictionary

3.1 Meta Tables
to an INDEX_ID in the SYS_INDICES_ meta table.

COLUMN_CNT

This is the number of columns associated with the constraint. For example, for a constraint such as
UNIQUE (i1, i2, i3), this value would be 3.

REFERENCED_TABLE_ID

This is the identifier of a table referenced in a FOREIGN KEY constraint (not the table for which the
constraint is defined). This identifier will correspond to a TABLE_ID value in the SYS_TABLES_ meta
table.

REFERENCED_INDEX_ID

This indicates a UNIQUE or PRIMARY KEY constraint that must exist in a table referenced by a FOR-
EIGN KEY constraint. The identifier of this constraint will be the same as a CONSTRAINT_ID value in
the SYS_CONSTRAINTS_ meta table.

VALIDATED

This indicates whether all data conform to the constraint.

T: Validated

F: Not Validated

3.1.8.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_INDICES_

3.1.9 SYS_CONSTRAINT_COLUMNS_

This meta table contains information about columns related to all constraints defined in user tables.

Column name Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

CONSTRAINT_ID INTEGER The constraint identifier

CONSTRAINT_COL_ORD
ER

INTEGER The position of the column in the constraint

COLUMN_ID INTEGER The column Identifier
General Reference 230

3.1 Meta Tables
3.1.9.1 Column Information

USER_ID

This is the user identifier, and corresponds to a USER_ID in the SYS_USERS_ meta table.

TABLE_ID

This is the identifier of the table in which the constraint is defined, and corresponds to a TABLE_ID
value in the SYS_TABLES_ meta table.

CONSTRAINT_ID

This is the identifier of the constraint, and corresponds to a CONSTRAINT_ID value in the
SYS_CONSTRAINTS_ meta table.

CONSTRAINT_COL_ORDER

This is the position of the column within the constraint. For example, when the constraint UNIQUE
(i1,i2,i3) is created, three records are inserted into the SYS_CONSTRAINT_COLUMNS_ meta table. The
position of column i1 is 1, column i2 is 2, and column i3 is 3.

COLUMN_ID

This is the identifier of the column for which the constraint is defined, and corresponds to a
COLUMN_ID value in the SYS_COLUMNS_ meta table.

3.1.9.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_CONSTRAINTS_

SYS_COLUMNS_

3.1.10 SYS_DATABASE_

This is the table that contains the database name and meta table version information.

Column name Type Description

DB_NAME VARCHAR(40) The database name

OWNER_DN VARCHAR(2048) Reserved for future use

META_MAJOR_VER INTEGER The database meta table version (Main)

META_MINOR_VER INTEGER The database meta table version (Sub)
231 The Data Dictionary

3.1 Meta Tables
3.1.10.1 Column Information

META_MAJOR_VER

This value increases when a meta table is modified, added or removed. If the database version and
the corresponding binary version of ALTIBASE HDB do not match, the database must be migrated.

META_MINOR_VER

This value increases when the contents of one or more meta tables is modified. If the version of the
database does not correspond to the current version of ALTIBASE HDB, the system internally com-
pares this value and automatically upgrades the meta tables to the newer version.

META_PATCH_VER

This indicates the meta table patch version.

3.1.11 SYS_DATABASE_LINKS_

This meta table is for storing Database Link information.

3.1.11.1 Column Information

USER_ID

This is the identifier of the user who owns the Database Link object.

META_PATCH_VER INTEGER The database meta table version (Patch)

Column name Type Description

Column name Type Description

USER_ID INTEGER The user identifier

LINK_ID INTEGER The Database Link identifier

LINK_OID BIGINT The Database Link object identifier

LINK_NAME VARCHAR(40) The Database Link name

USER_MODE INTEGER The mode in which a remote server is
accessed

REMOTE_USER_ID VARCHAR(40) The user account for a remote database

REMOTE_USER_PWD BYTE(40) The user password for a remote database

LINK_METHOD INTEGER The link method

LINK_INFO VARCHAR(400) The link information
General Reference 232

3.1 Meta Tables
LINK_ID

This is the Database Link identifier.

LINK_OID

This is the Database Link object identifier.

LINK_NAME

This is the name of the Database Link object, which is specified by the user when the Database Link
object is created.

USER_MODE

This indicates the mode in which a remote server is accessed.

• 0: DEDICATED USER MODE

• 1: CURRENT USER MODE (reserved for future use)

REMOTE_USER_ID

This indicates a user account on a remote server, to be used when accessing a remote database
server.

REMOTE_USER_PWD

This is the password for the user account on the remote server, to be used when accessing a remote
database server. The password is encrypted using an encryption algorithm before it is stored.

LINK_METHOD

This indicates the method of connecting to a remote server.

• 0: ODBC

• 1: (reserved for future use)

LINK_INFO

This is for storing information that is needed when connecting to a remote server.

3.1.12 SYS_DATA_PORTS_

This table contains information about export and import tasks that are either underway or have
been completed.

For more information about data ports, please refer to Section 10.2 DataPort in the Stored Procedures
Manual.
233 The Data Dictionary

3.1 Meta Tables
3.1.12.1 Column Information

For additional information about each column of the table, please refer to Section 10.2 DataPort in
the Stored Procedures Manual.

NAME

This is the name of the task.

USER_NAME

This is the name of the user who started the task, and corresponds to a USER_NAME value in
SYS_USERS_.

OPERATION

This indicates the operation that is underway. It can be either EXPORT or IMPORT.

STATE

This indicates the current state of the task. It can be either START or FINISH.

OWNER_NAME

This is the name of the user who owns the source table or target table.

Column name Type Description

NAME VARCHAR(40) The name of the task

USER_NAME VARCHAR(40) The user who initiated the task

OPERATION VARCHAR(16) The current operation

STATE VARCHAR(16) The state of the task

OWNER_NAME VARCHAR(40) The name of the owner of the source or tar-
get table

TABLE_NAME VARCHAR(40) The name of the table

OBJECT_NAME VARCHAR(256) The file name

DIRECTORY_NAME VARCHAR(1024) The name of the directory

PROCESSED_ROW_CNT BIGINT The number of rows that have been pro-
cessed

FIRST_ROW BIGINT The first imported row

LAST_ROW BIGINT The last imported row

SPLIT BIGINT The number of split rows
General Reference 234

3.1 Meta Tables
TABLE_NAME

This is the name of the target table for an import or export operation. Its value corresponds to a
TABLE_NAME value in SYS_TABLES_.

OBJECT_NAME

This is the name of the file that is the target of an export or import operation.

DIRECTORY_NAME

This is the name of the directory in which the files for an export or import operation are located.

PROCESSED_ROW_CNT

This is the number of rows that have already been processed.

FIRST_ROW

This is the first row to be imported, or the first row that was imported in the case of a completed task.
Its value corresponds to the value which is specified in the firstrow parameter when executing
the IMPORT_FROM_FILE procedure. For more information about the IMPORT_FROM_FILE proce-
dure, please refer to the Stored Procedures Manual.

LAST_ROW

This is the last row to be imported, or the last row that was imported in the case of a completed task.
Its value corresponds to the value which is specified in the lastrow parameter when executing the
IMPORT_FROM_FILE procedure. For more information about the IMPORT_FROM_FILE procedure,
please refer to the Stored Procedures Manual.

SPLIT

This is the number of rows to be split, or the number of rows that have been split in the case of a
completed task. Its value corresponds to the value which is specified in the split parameter when
executing the EXPORT_TO_FILE procedure. For more information about the EXPORT_TO_FILE
procedure, please refer to the Stored Procedures Manual.

3.1.13 SYS_DIRECTORIES_

This table contains information about directories that are used when files are managed using stored
procedures.

Column Data Type Description

DIRECTORY_ID BIGINT The directory identifier

USER_ID INTEGER The user identifier

DIRECTORY_NAME VARCHAR(40) The directory name
235 The Data Dictionary

3.1 Meta Tables
3.1.13.1 Column Information

DIRECTORY_ID

This is a directory identifier. It is a unique value within the system.

USER_ID

This is the user identifier of the owner of the directory.

DIRECTORY_NAME

This is the name of the directory. It is a unique value within the system.

DIRECTORY_PATH

This is the absolute path where the directory is located. This value is explicitly set by the user when
executing a CREATE DIRECTORY statement.

LAST_DDL_TIME

This is the most recent time at which a DDL task was used to change the directory object.

3.1.14 SYS_ENCRYPTED_COLUMNS_

This is the meta table for managing additional security information based on the security settings
for individual columns.

DIRECTORY_PATH VARCHAR(4000) The absolute path of the directory on the
system

CREATED DATE The time at which the directory was created

LAST_DDL_TIME DATE The most recent time at which a DDL task
was used to change the directory object

Column Data Type Description

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the table to
which the column belongs

TABLE_ID INTEGER The identifier of the table to which the col-
umn belongs

COLUMN_ID INTEGER The identifier of the encrypted column

ENCRYPT_PRECISION INTEGER The precision of the column encryption

POLICY_NAME VARCHAR(16) The name of the encryption policy
General Reference 236

3.1 Meta Tables
3.1.15 SYS_GRANT_OBJECT_

This contains information about object privileges granted to a user.

3.1.15.1 Column Information

GRANTOR_ID

This is the identifier of the user who granted the privilege, and corresponds to a USER_ID in the
SYS_USERS_ meta table.

GRANTEE_ID

This is the identifier of the user to whom the privilege has been granted, and corresponds to a
USER_ID in the SYS_USERS_ meta table.

PRIV_ID

This is the identifier of the privilege. It corresponds to a PRIV_ID in the SYS_PRIVILEGES_ meta table.

USER_ID

This is the user ID of the owner of the object for which the privilege has been granted. This value will
correspond to a USER_ID in the SYS_USERS_ meta table.

POLICY_CODE VARCHAR(128) The verification code of the encryption pol-
icy

Column Data Type Description

Column Data Type Description

GRANTOR_ID INTEGER The identifier of the user who granted the
privileges

GRANTEE_ID INTEGER The identifier of the user to whom the privi-
leges were granted

PRIV_ID INTEGER The privilege identifier

USER_ID INTEGER The identifier of the owner of the object

OBJ_ID INTEGER The identifier of the object

OBJ_TYPE CHAR(1) The type of object

WITH_GRANT_OPTION INTEGER Indicates whether the
WITH_GRANT_OPTION is used when object
access privileges are granted
0: Not used
1: Used
237 The Data Dictionary

3.1 Meta Tables
OBJ_ID

This is the ID of the object for which the privilege has been granted. It corresponds with one, and
only one, target object ID saved in the appropriate meta table.

If the target object is a table, view or sequence, it is mapped to a TABLE_ID in the SYS_TABLES_ meta
table, whereas if it is a stored procedure or stored function, it is mapped to a PROC_OID in the
SYS_PROCEDURES_ meta table.

OBJ_TYPE

This is the type of the object related to the privilege.

• T: Table

• S: Sequence

• P: Stored procedure or function

• V: View

WITH_GRANT_OPTION

The WITH_GRANT_OPTION indicates whether the user to whom the privilege was granted is permit-
ted to grant the privilege to other users.

3.1.15.2 See Also

SYS_USERS_

SYS_PRIVILEGES_

SYS_TABLES_

SYS_PROCEDURES_

3.1.16 SYS_GRANT_SYSTEM_

This contains information about system privileges granted to users.

Column Data Type Description

GRANTOR_ID INTEGER The identifier of the user who granted the
privilege

GRANTEE_ID INTEGER The identifier of the user to whom the privi-
lege was granted

PRIV_ID INTEGER The identifier of the privilege
General Reference 238

3.1 Meta Tables
3.1.16.1 Column Information

GRANTOR_ID

This is the identifier of the user who granted the privilege, and corresponds to a USER_ID in the
SYS_USERS_ meta table.

GRANTEE_ID

This is the identifier of the user to whom the privilege was granted, and corresponds to a USER_ID in
the SYS_USERS_ meta table.

PRIV_ID

This is the identifier of the privilege, and corresponds to a PRIV_ID found in the SYS_PRIVILEGES_
meta table.

3.1.16.2 See Also

SYS_USERS_

SYS_PRIVILEGES_

3.1.17 SYS_INDEX_COLUMNS_

This is the meta table that contains information about all columns associated with indexes defined
for all tables.

3.1.17.1 Column Information

USER_ID

This is the identifier of the owner of the index, and corresponds to a USER_ID in the SYS_USERS_
meta table.

Column Data Type Description

USER_ID INTEGER The identifier of the user

INDEX_ID INTEGER The identifier of the index

COLUMN_ID INTEGER The column identifier

INDEX_COL_ORDER INTEGER The position of the column in the index

SORT_ORDER CHAR(1) The sort order

TABLE_ID INTEGER The table identifier
239 The Data Dictionary

3.1 Meta Tables
INDEX_ID

This is the identifier of the index, and corresponds to an INDEX_ID in the SYS_INDICES_ meta table.

COLUMN_ID

This is the identifier of the column for which the index was created, and corresponds to a
COLUMN_ID in the SYS_COLUMNS_ meta table.

INDEX_COL_ORDER

In the case of a composite index, because a single index spans multiple columns, this value indicates
the position of the column in the index.

SORT_ORDER

This indicates whether the index is arranged in ascending or descending order.

• A: Ascending order

• D: Descending order

TABLE_ID

This is the identifier of the table in which the index was created, and corresponds to a TABLE_ID
value in the SYS_TABLES_ meta table.

3.1.17.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_COLUMNS_

SYS_INDICES_

3.1.18 SYS_INDEX_PARTITIONS_

This is the meta table for managing index partitions.

Column name Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

INDEX_ID INTEGER The index identifier

TABLE_PARTITION_ID INTEGER The table partition identifier

INDEX_PARTITION_ID INTEGER The index partition identifier
General Reference 240

3.1 Meta Tables
3.1.18.1 Column Information

USER_ID

This is the user identifier of the owner of the index. It corresponds to a USER_ID in the SYS_USERS_
meta table.

TABLE_ID

This is the identifier of the table in which the index is created. It is the same as a TABLE_ID value in
the SYS_TABLES_ meta table.

INDEX_ID

This is the index identifier, and corresponds to an INDEX_ID in the SYS_INDICES_ meta table.

TABLE_PARTITION_ID

This is the table partition identifier.

INDEX_PARTITION_ID

This is the index partition identifier.

INDEX_PARTITION_NAME

This is the name of the index partition. It is specified by the user.

TBS_ID

This is the identifier of the tablespace in which the index is stored.

3.1.18.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_INDICES_

SYS_TABLE_PARTITIONS_

INDEX_PARTITION_NAM
E

VARCHAR(40) The index partition name

PARTITION_MIN_VALUE VARCHAR(4000) Reserved for future use

PARTITION_MAX_VALUE VARCHAR(4000) Reserved for future use

TBS_ID INTEGER The tablespace identifier

Column name Type Description
241 The Data Dictionary

3.1 Meta Tables
3.1.19 SYS_INDICES_

This is the meta table that contains information about all indexes defined for all tables.

3.1.19.1 Column Information

USER_ID

This is the identifier of the owner of the index, and corresponds to a USER_ID value in the
SYS_USERS_ meta table.

TABLE_ID

This is the identifier of the table in which the index was created, and corresponds to a TABLE_ID of
the SYS_TABLES_ meta table.

INDEX_ID

This is an index identifier. It is automatically assigned by the system sequence.

INDEX_NAME

This is the name of the index.

Column Data Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

INDEX_ID INTEGER The index identifier

INDEX_NAME VARCHAR(40) The index name

INDEX_TYPE INTEGER The index type

IS_UNIQUE CHAR(1) Indicates whether the use of duplicate key
values is allowed

COLUMN_CNT INTEGER The number of columns in the index

IS_RANGE CHAR(1) Indicates whether range scanning is possible
using the index

IS_PERS CHAR(1) Indicates whether the index is stored perma-
nently

TBS_ID INTEGER The tablespace identifier

IS_PARTITIONED CHAR(1) Indicates whether the index is partitioned

CREATED DATE Indicates when the index was created

LAST_DDL_TIME DATE The time at which the index was most
recently changed using a DDL statement
General Reference 242

3.1 Meta Tables
INDEX_TYPE

This indicates the index type. A value of 1 indicates a B-TREE index, while a value of 2 indicates an R-
TREE index.

IS_UNIQUE

This indicates whether duplicate key values are allowed.

• T: Do not allow duplicate key values.

• F: Allow duplicate key values.

COLUMN_CNT

This is the number of columns with which the index is associated.

IS_RANGE

This is indicates whether range scanning is possible using the index.

• T: Range scanning is possible.

• F: Range scanning is not possible.

IS_PERS

When a server is powered up, in the case of memory tables, data are read from tables and all indexes
are created. Alternatively, when a server is shut down, the indexes can be saved to disk, in which
case the indexing information is read directly from the index files that were saved to disk when the
server is restarted. This eliminates the expense of constructing indexes when the server is powered
up.

Indexes that are saved to disk in index files are called persistent indexes. The user can specify that an
index is a persistent index when creating the index.

• T: Permanent index

• F: Non-permanent index

TBS_ID

This is the identifier of the tablespace in which the index was created.

IS_PARTITIONED

This indicates whether the index is partitioned. If it is ‘Y’, the index is partitioned. If it is ‘N’, the index is
not partitioned.

3.1.19.2 See Also

SYS_USERS_
243 The Data Dictionary

3.1 Meta Tables
SYS_TABLES_

3.1.20 SYS_LOBS_

This is the meta table containing information about LOB columns defined in tables.

3.1.20.1 Column Information

USER_ID

This is the identifier of the owner of the table to which the LOB column belongs, and corresponds to
a USER_ID value in the SYS_USERS_ meta table.

TABLE_ID

This is the identifier of the table to which the LOB column belongs, and corresponds to a TABLE_ID
value in the SYS_TABLES_ meta table.

COLUMN_ID

This is the LOB column identifier.

TBS_ID

This is the identifier of the tablespace to which the LOB column belongs.

IS_DEFAULT_TBS

This indicates whether a tablespace for storing a LOB column was specified by the user when the
LOB column was created.

3.1.20.2 See Also

SYS_USERS_

Column name Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

COLUMN_ID INTEGER The column identifier

TBS_ID INTEGER The tablespace identifier

LOGGING CHAR(1) This field is reserved for future use.

BUFFER CHAR(1) This field is reserved for future use.

IS_DEFAULT_TBS CHAR(1) Indicates whether a tablespace is designated
for LOB column storage
General Reference 244

3.1 Meta Tables
SYS_TABLES_

SYS_COLUMNS_

3.1.21 SYS_PART_INDICES_

This is the meta table for managing partitioned indexes. It contains information on partitioned
indexes for which IS_PARTITIONED in SYS_INDICES_ is set to ‘Y’.

3.1.21.1 Column Information

USER_ID

This is the user identifier of the owner of the index, and corresponds to a USER_ID in the SYS_USERS_
meta table.

TABLE_ID

This is the identifier of the table for which the index was created, and corresponds to a TABLE_ID
value in the SYS_TABLES_ meta table.

INDEX_ID

This is the index identifier. It corresponds to an INDEX_ID value in the SYS_INDICES_ meta table.

PARTITION_TYPE

This indicates whether the partition type is LOCAL or GLOBAL. However, because the GLOBAL parti-
tion type is not supported at present, it is always 0.

• 0: LOCAL

• 1: GLOBAL

IS_LOCAL_UNIQUE

This indicates whether an index is a local unique index, and can be ‘Y’ or ‘N’.

Column name Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

INDEX_ID INTEGER The index identifier

PARTITION_TYPE INTEGER The partition type

IS_LOCAL_UNIQUE CHAR(1) Indicates whether an index is a local unique
index
245 The Data Dictionary

3.1 Meta Tables
• Y: A local unique index.

• N: Not a local unique index.

3.1.21.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_INDICES_

3.1.22 SYS_PART_KEY_COLUMNS_

This meta table shows information about the partitioning key columns for the partitioned objects.

3.1.22.1 Column Information

USER_ID

This is the identifier of the owner of the partitioned table or index. It corresponds to a USER_ID value
in the SYS_USERS_ meta table.

PARTITION_OBJ_ID

This is the identifier of a partitioned object, and corresponds to a TABLE_ID value in the
SYS_PART_TABLES_ meta table or INDEX_ID value in the SYS_PART_INDICES_ meta table.

COLUMN_ID

This is the identifier of the column in the partitioning key, and corresponds to a COLUMN_ID value in
the SYS_COLUMNS_ meta table.

OBJECT_TYPE

This identifies the type of the object.

• 0: TABLE

Column name Type Description

USER_ID INTEGER The user identifier

PARTITION_OBJ_ID INTEGER The partitioned object identifier

COLUMN_ID INTEGER The column identifier

OBJECT_TYPE INTEGER The object type

PART_COL_ORDER INTEGER The position of the column in the partition-
ing key (starting with 0)
General Reference 246

3.1 Meta Tables
• 1: INDEX

PART_COL_ORDER

This is the position of the column in the partitioning key (starting with 0).

3.1.22.2 See Also

SYS_PART_INDICES_

SYS_ TABLES_PARTITIONS_

SYS_COLUMNS_

3.1.23 SYS_PART_LOBS_

This is a meta table for managing LOB columns for respective partitions.

3.1.23.1 Column Information

USER_ID

This is the identifier of the owner of the table to which the LOB column belongs, and corresponds to
a USER_ID value in the SYS_USERS_ meta table.

TABLE_ID

This is the identifier of the table to which the LOB column belongs, and corresponds to a TABLE_ID
value in the SYS_TABLES_ meta table.

PARTITION_ID

This is the identifier of the partition in which the LOB column is stored.

Column name Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

PARTITION_ID INTEGER The partition identifier

COLUMN_ID INTEGER The column identifier

TBS_ID INTEGER The tablespace identifier

LOGGING CHAR(1) This field is reserved for future use.

BUFFER CHAR(1) This field is reserved for future use.
247 The Data Dictionary

3.1 Meta Tables
COLUMN_ID

This is the LOB column identifier.

TBS_ID

This is the identifier of the tablespace to which the LOB column belongs.

3.1.23.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_PART_TABLES_

SYS_COLUMNS_

3.1.24 SYS_PART_TABLES_

This is the meta table for the management of partitioned tables. The table information in
SYS_PART_TABLES_ is information about partitioned tables for which IS_PARTITIONED in
SYS_TABLES_ is set to 'Y'.

3.1.24.1 Column Information

USER_ID

This is the identifier of the owner of the index, and corresponds to a USER_ID value in the
SYS_USERS_ meta table.

TABLE_ID

This is the identifier of the table in which the index was created, and corresponds to a TABLE_ID
value in the SYS_TABLES_ meta table.

Column name Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

PARTITION_METHOD INTEGER The partitioning method

PARTITION_KEY_COUNT INTEGER The number of partitioning key columns

ROW_MOVEMENT CHAR(1) Indicates whether updated records can be
moved between partitions
General Reference 248

3.1 Meta Tables
PARTITION_METHOD

This indicates the partitioning method.

• 0: RANGE

• 1: HASH

• 2: LIST

ROW_MOVEMENT

This indicates whether it is permissible for records that have been updated to be moved to other
partitions when the value of a partition key column is updated.

• T: movement of updated records between partitions is permitted

• F: movement of updated records between partitions is forbidden

3.1.24.2 See Also

SYS_USERS_

SYS_TABLES_

3.1.25 SYS_PRIVILEGES_

This meta table contains information about the kinds of privileges supported by ALTIBASE HDB. For
more detailed information, please refer to the descriptions of database privileges and of the GRANT
statement in the SQL Reference.

3.1.25.1 Column Information

PRIV_ID

This is the privilege identifier. It is defined internally by the system.

PRIV_TYPE

This indicates the type of privilege.

• 1: indicates an object privilege

Column Data Type Description

PRIV_ID INTEGER The privilege identifier

PRIV_TYPE INTEGER The privilege type

PRIV_NAME VARCHAR(40) The privilege name
249 The Data Dictionary

3.1 Meta Tables
• 2: indicates a system privilege

PRIV_NAME

This is the name of the privilege.

3.1.26 SYS_PROCEDURES_

This table is for storing information about stored procedures and stored functions, such as the
stored procedure name, return type, number of parameters, whether it can be executed, etc.

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the stored pro-
cedure

PROC_OID BIGINT The identifier of the stored procedure

PROC_NAME VARCHAR(40) The name of the stored procedure

OBJECT_TYPE INTEGER Indicates whether the object is a stored pro-
cedure, stored function, or type set

STATUS INTEGER Indicates the status of the object. The object
cannot be executed if it is INVALID.
0: VALID
1: INVALID

PARA_NUM INTEGER The number of parameters for the stored
procedure

RETURN_DATA_TYPE INTEGER The return data type for the stored function

RETURN_LANG_ID INTEGER The return type language identifier

RETURN_SIZE INTEGER The size of the stored function return data
type

RETURN_PRECISION INTEGER The precision of the stored function return
data type

RETURN_SCALE INTEGER The scale of the stored function return data
type

PARSE_NO INTEGER The number of records containing statement
fragments stored in SYS_PROC_PARSE_ for
the procedure

PARSE_LEN INTEGER The total length of the procedure statement
stored in SYS_PROC_PARSE_

CREATED DATE The date on which the object was created

LAST_DDL_TIME DATE The time when DDL was most recently used
to make changes to a stored procedure
General Reference 250

3.1 Meta Tables
3.1.26.1 Column Information

USER_ID

This is the identifier of the owner of the stored procedure or stored function, and corresponds to a
USER_ID value in the SYS_USERS_ meta table.

PROC_OID

This is the identifier of the stored procedure or stored function, and is automatically assigned by the
system.

PROC_NAME

This is the name of the stored procedure or stored function.

OBJECT_TYPE

This value allows stored procedures to be distinguished from stored functions. Stored functions dif-
fer from stored procedures in that they return a value.

• 0: Stored procedure

• 1: Stored function

• 3: Type set

STATUS

This value indicates whether a stored procedure or function may be executed. A value of 0 (VALID)
indicates that it can be executed.

If a DDL statement is executed on an object that is accessed by a stored procedure or stored func-
tion, the stored procedure or stored function will become invalid. For example, if a new column is
added to a table that is accessed by a stored procedure, the stored procedure will need to be re-
compiled before it can be deemed VALID and executed. The status values are as follows:

• 0: VALID

• 1: INVALID

PARA_NUM

This indicates the number of parameters defined for a stored procedure or stored function.

RETURN_DATA_TYPE

This is the data type identifier for the return value of a stored function. Information on data type
identifiers can be found in the DATA_TYPE column of the SYS_COLUMNS_ meta table.

For more information on data types, please refer to Chapter1: Data Types.
251 The Data Dictionary

3.1 Meta Tables
RETURN_LANG_ID

This column contains information about the language properties of the character data types (CHAR,
VARCHAR).

RETURN_SIZE

This is the physical size of the return data type.

RETURN_PRECISION

This is the precision of the return data type, which is either defined by the user or set based on the
system default. For character types, it is the length of the user-defined character type.

RETURN_SCALE

This is the scale of the return data type, which is either defined by the user or set as the system
default. Depending on the type, this value may not be used.

For more information about data type precision and scale, please refer to Chapter1: Data Types.

PARSE_NO

Stored procedure and stored function statements are divided into multiple records containing text
fragments and stored in the SYS_PROC_PARSE_ meta table. This value indicates the number of
records used to store a stored procedure or function.

PARSE_LEN

Stored procedure and stored function statements are divided into multiple records containing text
fragments and stored in the SYS_PROC_PARSE_ meta table. This value indicates the overall length of
the statement.

LAST_DDL_TIME

This is the most recent time at which a DDL statement was used to make changes to a stored proce-
dure.

3.1.26.2 See Also

SYS_USERS_

3.1.27 SYS_PROC_PARAS_

This meta table contains information about the parameters of stored procedures and stored func-
tions.
General Reference 252

3.1 Meta Tables
3.1.27.1 Column Information

USER_ID

This is the identifier of the user who is the owner of the stored procedure or the stored function, and
corresponds to a USER_ID in the SYS_USERS_ meta table.

PROC_OID

This is the identifier of the stored procedure or stored function, and corresponds to a PROC_ID in the
SYS_PROCEDURES_ meta table.

PARA_NAME

This is the parameter name.

PARA_ORDER

When there are multiple parameters, this value indicates the position of the parameter in the
defined parameter order.

INOUT_TYPE

This value indicates whether the parameter for the stored procedure or stored function is an input,
output, or input/output parameter.

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the stored pro-
cedure

PROC_OID BIGINT The identifier of the stored procedure

PARA_NAME VARCHAR(40) The parameter name

PARA_ORDER INTEGER The parameter order. The first parameter is
assigned the number 1.

INOUT_TYPE INTEGER Whether the parameter is an Input, Output,
or Input/Output parameter

DATA_TYPE INTEGER The data type of the parameter

LANG_ID INTEGER The language identifier for the parameter
type

SIZE INTEGER The size of the parameter type

PRECISION INTEGER The precision of the parameter type

SCALE INTEGER The scale of the parameter type

DEFAULT_VAL VARCHAR(4000) The default value for the parameter
253 The Data Dictionary

3.1 Meta Tables
• 0: IN

• 1: OUT

• 2: IN/OUT

DATA_TYPE

This is the data type identifier for the parameter. The DATA_TYPE column in the SYS_COLUMNS_
meta table contains information on data type identifiers.

For more information about data types, please refer to Chapter1: Data Types.

LANG_ID

This column displays the language properties for character type parameters (CHAR and VARCHAR).

SIZE

This is the physical size of the data type.

PRECISION

This is the precision of the parameter, which is either determined by the user or set based on the sys-
tem default. The precision (length) of character data types is defined by the user.

SCALE

This is the scale of the parameter, which is either determined by the user or set to the system default.
Depending on the data type, this value may not be used.

For more information on the scale and precision of data types, please refer to Chapter1: Data Types.

DEFAULT_VAL

When a parameter is defined, this is the user-defined default parameter value.

3.1.27.2 See Also

SYS_USERS_

SYS_PROCEDURES_

3.1.28 SYS_PROC_PARSE_

This meta table contains the text constituting user-defined stored procedures and stored functions.
General Reference 254

3.1 Meta Tables
3.1.28.1 Column Information

USER_ID

This is the identifier of the owner of the stored procedure or stored function, and corresponds to a
USER_ID in the SYS_USERS_ meta table.

PROC_OID

This is the identifier of the stored procedure or the stored function, and corresponds to a PROC_ID in
the SYS_PROCEDURES_ meta table.

SEQ_NO

When the information for a statement for one stored procedure is saved across multiple records in
SYS_PROC_PARSE_, this is the sequential position of an individual record.

PARSE

This is a line of text belonging to the stored procedure or stored function. An entire statement of a
stored procedure can be re-created by retrieving all records that correspond to a single PROC_OID
value and combining the PARSE values in order according to the SEQ_NO values.

3.1.28.2 See Also

SYS_USERS_

SYS_PROCEDURES_

3.1.29 SYS_PROC_RELATED_

This table contains information about tables, sequences, stored procedures, stored functions, and
views accessed by a stored procedure or stored function.

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the stored pro-
cedure or stored function

PROC_OID BIGINT The object identifier of the stored procedure

SEQ_NO INTEGER The position of the record among multiple
records for a statement that was split and
then saved

PARSE VARCHAR(100) A fragment of the text of the stored proce-
dure or stored function
255 The Data Dictionary

3.1 Meta Tables
In the case where stored procedure PROC1 performs INSERT on table t1, the identifiers for the owner
of the stored procedure PROC1 and for the stored procedure itself would be stored in USER_ID and
PROC_OID respectively, the identifiers for the owner of table t1 and for the table itself would be
stored in RELATED_USER_ID and RELATED_OBJECT_NAME respectively, and the number 2 (signify-
ing a table) would be stored in RELATED_OBJECT_TYPE.

3.1.29.1 Column Information

USER_ID

This is the identifier of the owner of the stored procedure or the stored function, and corresponds to
a USER_ID in the SYS_USERS_ meta table.

PROC_OID

This is the identifier of the stored procedure or the stored function, and corresponds to a PROC_ID in
the SYS_PROCEDURES_ meta table.

RELATED_USER_ID

This is the identifier of the owner of the object accessed by the stored procedure, and corresponds
to a USER_ID in the SYS_USERS_ meta table.

RELATED_OBJECT_NAME

This is the name of the object accessed by the stored procedure.

RELATED_OBJECT_TYPE

This is the type of the object accessed by the stored procedure. The possible values are as follows:

0: Stored procedure

1: Stored function

2: Table, Sequence, View

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the stored pro-
cedure

PROC_OID BIGINT The identifier of the stored procedure

RELATED_USER_ID INTEGER The identifier of the owner of an object refer-
enced within a stored procedure

RELATED_OBJECT_NAM
E

VARCHAR(40) The name of an object referenced within a
stored procedure

RELATED_OBJECT_TYPE INTEGER The type of an object referenced within a
stored procedure
General Reference 256

3.1 Meta Tables
3: Type set

4: Database link

3.1.29.2 See Also

SYS_USERS_

SYS_PROCEDURES_

SYS_TABLES_

3.1.30 SYS_REPLICATIONS_

This meta table contains information related to replication.

3.1.30.1 Column Information

REPLICATION_NAME

This is the name of the replication object, and is set by the user when the replication object is cre-
ated.

Column Data Type Description

REPLICATION_NAME VARCHAR(40) The name of the replication object

LAST_USED_HOST_NO INTEGER The most recently used remote server

HOST_COUNT INTEGER The number of remote servers

IS_STARTED INTEGER Whether replication is active

XSN BIGINT The Restart SN (Sequence Number), i.e. the
SN from which the Sender will resume trans-
mission of XLogs

ITEM_COUNT INTEGER The number of replication target tables

CONFLICT_RESOLUTION INTEGER The replication conflict resolution method

REPL_MODE INTEGER The default replication mode

ROLE INTEGER The role of the sender thread

OPTIONS INTEGER A flag for additional replication features

INVALID_RECOVERY INTEGER Whether replication recovery is possible

REMOTE_FAULT_DETEC
T_TIME

DATE The time at which a fault was detected on a
remote server
257 The Data Dictionary

3.1 Meta Tables
LAST_USED_HOST_NO

This is the number of the most recently used remote server, and corresponds to a HOST_NO in the
SYS_REPL_HOSTS_ meta table.

HOST_COUNT

This is the number of remote servers involved in replication, and is equal to the number of IP
addresses stored in SYS_REPL_HOSTS_.

IS_STARTED

Indicates whether replication is active.

• 0: suspended

• 1: active

XSN

This indicates the SN from which the Sender thread must begin sending logs when replication is
started.

ITEM_COUNT

This is the number of replication target tables. This number corresponds to the number of records in
the SYS_REPL_ITEMS_ meta table for this replication object, with one record corresponding to each
of these tables.

CONFLICT_RESOLUTION

This describes the replication conflict resolution method.

• 0: Default

• 1: Act as the Master server

• 2: Act as the Slave server

Please refer to the Replication Manual for detailed information about replication conflict resolution
methods.

REPL_MODE

This is the default replication mode, which is set when the replication object is created.

• 0: LAZY MODE (Default)

• 2: EAGER MODE

The default replication mode is used if the ALTER SESSION SET REPLICATION statement is not used to
set the replication mode for a session.

For detailed information about the default replication mode, please refer to the Replication Manual,
General Reference 258

3.1 Meta Tables
and for detailed information about the ALTER SESSION SET REPLICATION statement, please refer to
the SQL Reference.

ROLE

This indicates the role of the Sender thread.

• 0: Replication

• 1: Log Analyzer

For more information, please refer to the Log Analyzer User’s Manual.

OPTIONS

This flag indicates whether to use the recovery and offline options, which are extra replication fea-
tures.

• 0: do not use the recovery or offline options

• 1: use the recovery option

• 2: use the offline option

INVALID_RECOVERY

This value indicates whether recovery using replication is possible.

• 0: replication-based recovery is possible.

• 1: replication-based recovery is not possible.

REMOTE_FAULT_DETECT_TIME

This is the time at which a fault was detected on a remote server while replication was running.

3.1.31 SYS_REPL_HOSTS_

This meta table contains information related to remote servers defined in replication objects.

Column Data Type Description

HOST_NO INTEGER The host identifier

REPLICATION_NAME VARCHAR(40) The replication name

HOST_IP VARCHAR(64) The IP address of the remote server

PORT_NO INTEGER The replication port number on the remote
server
259 The Data Dictionary

3.1 Meta Tables
3.1.31.1 Column Information

HOST_NO

This is the serial number of the remote server, which is automatically assigned by the system
sequence.

REPLICATION_NAME

This is the name of the replication object set by the user, and corresponds to a REPLICATION_NAME
in the SYS_REPLICATIONS_ meta table.

HOST_IP

This is the IP address of the remote server.

PORT_NO

This is the replication port number on the remote server.

3.1.31.2 See Also

SYS_REPLICATIONS_

3.1.32 SYS_REPL_ITEMS_

This meta table contains information about replication target tables.

Column Data Type Description

REPLICATION_NAME VARCHAR(40) The replication name

TABLE_OID BIGINT The table object identifier

LOCAL_USER_NAME VARCHAR(40) The name of a user owning a target table on
the local server

LOCAL_TABLE_NAME VARCHAR(40) The name of a target table on the local server

LOCAL_PARTITION_NA
ME

VARCHAR(40) The name of a partition on the local server

REMOTE_USER_NAME VARCHAR(40) The name of a user owning a target table on
the remote server

REMOTE_TABLE_NAME VARCHAR(40) The name of a target table on the remote
server

REMOTE_PARTITION_N
AME

VARCHAR(40) The name of a partition on the remote server

IS_PARTITION CHAR(1) Whether or not a table is partitioned
General Reference 260

3.1 Meta Tables
One replication object can pertain to more than one table, and SYS_REPL_ITEMS_ has a record for
each of these tables. For example, if a replication pertains to 10 tables, this meta table will contain 10
records pertaining to this replication.

3.1.32.1 Column Information

REPLICATION_NAME

This is the name of the replication object, which is defined by the user, and corresponds to a
REPLICATION_NAME in the SYS_REPLICATIONS_ meta table.

TABLE_OID

This is the identifier of the replication target table, and corresponds to a TABLE_OID in the
SYS_TABLES_ meta table.

LOCAL_USER_NAME

This is the user name of the owner of the replication target table in the local system, and corre-
sponds to a USER_NAME in the SYS_USERS_ meta table.

LOCAL_TABLE_NAME

This is the name of the replication target table in the local system, and corresponds to a
TABLE_NAME in the SYS_TABLES_ meta table.

LOCAL_PARTITION_NAME

This is the name of the replication target partition on the local server.

REMOTE_USER_NAME

This is the user name of the owner of the replication target table in the remote system, and corre-
sponds to a USER_NAME in the SYS_USERS_ meta table.

REMOTE_TABLE_NAME

This is the name of the replication target table in the remote system, and corresponds to a
TABLE_NAME in the SYS_TABLES_ meta table.

REMOTE_PARTITION_NAME

This is the name of the replication target partition on the remote server.

INVALID_MAX_SN BIGINT The highest log SN to skip

CONDITION VARCHAR(1000) A Replication Condition Clause

Column Data Type Description
261 The Data Dictionary

3.1 Meta Tables
IS_PARTITION

This is an identifier indicating whether a table is partitioned. If it is ‘Y’, the table is partitioned. If it is
‘N’, the table is not partitioned.

INVALID_MAX_SN

If DDL statements or Sync operations are executed on replication target tables, the most recently
recorded SN is saved here. Table logs up to this SN are skipped when the table is replicated.

CONDITION

This is a condition clause, which is input by a user and takes effect when replication is executed.

3.1.32.2 See Also

SYS_REPLICATIONS_

SYS_USERS_

SYS_TABLES_

3.1.33 SYS_REPL_OFFLINE_DIR_

This meta table stores log directory information related to the offline replication option.

3.1.33.1 Column Information

REPLICATION_NAME

This is the user-defined replication name. It corresponds to a REPLICATION_NAME in the
SYS_REPLICATIONS_ meta table.

LFG_ID

One archive directory exists for each LFG (Log File Group). This is the identifier for this LFG.

PATH

This is the absolute path in the system where the log file is saved.

Column name Type Description

REPLICATION_NAME VARCHAR(40) The replication name

LFG_ID INTEGER The identifier of the log file group

PATH VARCHAR(512) The offline log path
General Reference 262

3.1 Meta Tables
3.1.34 SYS_REPL_OLD_COLUMNS_

This meta table is for storing information on columns that are currently replicated by the replication
Sender thread.

3.1.34.1 Column Information

REPLICATION_NAME

This is the replication name, which is specified by the user. It corresponds to a REPLICATION_NAME
in the SYS_REPLICATIONS_ meta table.

TABLE_OID

This is the identifier for a replication target table currently being used by the replication Sender
thread. Its value may not correspond to any TABLE_OID value in SYS_TABLES_.

COLUMN_NAME

This is the name of a column currently being replicated by the replication Sender thread.

Column name Type Description

REPLICATION_NAME VARCHAR(40) The name of the replication object

TABLE_OID BIGINT The object identifier of the table

COLUMN_NAME VARCHAR(40) The column name

MT_DATATYPE_ID INTEGER The data type identifier

MT_LANGUAGE_ID INTEGER The language identifier

MT_FLAG INTEGER An internal flag

MT_PRECISION INTEGER The number of digits

MT_SCALE INTEGER The number of digits to the right of the deci-
mal point

MT_ENCRYPT_PRECISIO
N

INTEGER The number of digits in an encrypted column

MT_POLICY_NAME VARCHAR(16) The name of the policy used for an
encrypted column

SM_ID INTEGER The column identifier

SM_FLAG INTEGER An internal flag

SM_OFFSET INTEGER The internal offset

SM_SIZE INTEGER The internal size
263 The Data Dictionary

3.1 Meta Tables
MT_DATATYPE_ID

This is the data type identifier, and is an internal value.

MT_LANGUAGE_ID

This is the language identifier, and is an internal value.

MT_FLAG

This is an internal flag used by ALTIBASE HDB.

MT_PRECISION

For a numeric type column, this is the number of digits in the column.

MT_SCALE

For a numeric type column, this is the number of digits to the right of the decimal point in the col-
umn.

MT_ENCRYPT_PRECISION

For an encrypted numeric type column, this is the number of digits in the column.

MT_POLICY_NAME

For an encrypted column, this is the name of the policy used for the column.

SM_ID

This is the column identifier. Column identifiers start with 0.

SM_FLAG

This is a flag internally used by ALTIBASE HDB.

SM_OFFSET

This is an offset value internally used by ALTIBASE HDB.

SM_SIZE

This is a size value internally used by ALTIBASE HDB.

3.1.34.2 See Also

SYS_REPL_OLD_ITEMS_

SYS_REPL_OLD_INDICES_

SYS_REPL_OLD_INDEX_COLUMNS_
General Reference 264

3.1 Meta Tables
3.1.35 SYS_REPL_OLD_INDEX_COLUMNS_

This meta table is for storing information on columns currently being replicated by the replication
Sender thread.

3.1.35.1 Column Information

REPLICATION_NAME

This value corresponds to a REPLICATION_NAME in the SYS_REPLICATIONS_ meta table, and is the
user-defined replication name.

TABLE_OID

This is the identifier of a table currently being replicated by the replication Sender thread. Its value
may not correspond to any TABLE_OID value in SYS_TABLES_.

INDEX_ID

This is the identifier of an index currently being replicated by the replication Sender thread.

KEY_COLUMN_ID

This is the identifier of the column on which the index is based.

KEY_COLUMN_FLAG

This is an internal flag for the column on which the index is based.

COMPOSITE_ORDER

This is the position of the column on which the index is based.

3.1.35.2 See Also

SYS_REPL_OLD_ITEMS_

Column name Type Description

REPLICATION_NAME VARCHAR(40) The replication name

TABLE_OID BIGINT The table object identifier

INDEX_ID INTEGER The index identifier

KEY_COLUMN_ID INTEGER The column identifier

KEY_COLUMN_FLAG INTEGER An internal flag

COMPOSITE_ORDER INTEGER The position of the column on which the
index is based
265 The Data Dictionary

3.1 Meta Tables
SYS_REPL_OLD_COLUMNS_

SYS_REPL_OLD_INDICES_

3.1.36 SYS_REPL_OLD_INDICES_

This meta table contains information about indexes currently being replicated by the replication
Sender thread.

3.1.36.1 Column Information

REPLICATION_NAME

This is the user-defined replication name. Its value corresponds to a REPLICATION_NAME value in
the SYS_REPLICATIONS_ meta table.

TABLE_OID

This is the identifier of a table currently being replicated by the replication Sender thread. Its value
may be different from that of TABLE_OID in the SYS_TABLES_ meta table.

INDEX_ID

This is the identifier of an index currently being replicated by the replication Sender thread.

INDEX_NAME

This is the name of an index currently being replicated by the replication Sender thread.

Column name Type Description

REPLICATION_NAME VARCHAR(40) The replication name

TABLE_OID BIGINT The object identifier of the table

INDEX_ID INTEGER The index identifier

INDEX_NAME VARCHAR(40) The index name

TYPE_ID INTEGER The index type identifier

IS_UNIQUE CHAR(1) Indicates whether or not the index is globally
unique

IS_LOCAL_UNIQUE CHAR(1) Indicates whether or not the index is locally
unique

IS_RANGE CHAR(1) Indicates whether or not range scanning is
possible using the index
General Reference 266

3.1 Meta Tables
TYPE_ID

This is an index type identifier, and is an internal value.

IS_UNIQUE

This indicates whether or not the index is globally unique. 'Y' signifies that the identifier is globally
unique, and 'N' signifies that it is not globally unique.

IS_LOCAL_UNIQUE

This indicates whether or not the index is locally unique. 'Y' signifies that it is locally unique, and 'N'
means that it is not locally unique.

IS_RANGE

This indicates whether or not range scanning is possible using the index. 'Y' means that range scan-
ning is possible, and 'N' means that range scanning is impossible.

3.1.36.2 See Also

SYS_REPL_OLD_ITEMS_

SYS_REPL_OLD_COLUMNS_

SYS_REPL_OLD_INDEX_COLUMNS_

3.1.37 SYS_REPL_OLD_ITEMS_

This meta table contains information on tables currently being replicated by the replication Sender
thread.

Column name Type Description

REPLICATION_NAME VARCHAR(40) The name of the replication

TABLE_OID BIGINT The table object identifier

USER_NAME VARCHAR(40) The user name

TABLE_NAME VARCHAR(40) The table name

PARTITION_NAME VARCHAR(40) The partition name

PRIMARY_KEY_INDEX_I
D

INTEGER The index identifier of the primary key
267 The Data Dictionary

3.1 Meta Tables
3.1.37.1 Column Information

REPLICATION_NAME

This value corresponds to a REPLICATION_NAME in the SYS_REPLICATIONS_ meta table, and is the
user-defined replication name.

TABLE_OID

This is the identifier of a table currently being replicated by the replication Sender thread. Its value
may be different from the value of TABLE_OID in the SYS_TABLES_ meta table.

USER_NAME

This is the user name of the owner of the table being replicated on the local server. Its value corre-
sponds to a USER_NAME in the SYS_USERS_ meta table.

TABLE_NAME

This is the name of the table being replicated on the local server. Its value corresponds to a
TABLE_NAME value in the SYS_TABLES_ meta table.

PARTITION_NAME

This is the name of the partition containing the table being replicated on the local server.

PRIMARY_KEY_INDEX_ID

This is the identifier of a primary key index.

3.1.37.2 See Also

SYS_REPL_OLD_COLUMNS_

SYS_REPL_OLD_INDICES_

SYS_REPL_OLD_INDEX_COLUMNS_

3.1.38 SYS_REPL_RECOVERY_INFOS_

This is the meta table in which log information is written for use in recovery of the remote server.

Column name Type Description

REPLICATION_NAME VARCHAR(40) The name of the replication

MASTER_BEGIN_SN BIGINT The starting log number of a master transac-
tion
General Reference 268

3.1 Meta Tables
3.1.38.1 Column Information

REPLICATION_NAME

This is the replication object name defined by the user, and corresponds to a REPLICATION_NAME in
the SYS_REPLICATIONS_ meta table.

MASTER_BEGIN_SN

The starting log number of a master transaction occurring on a remote server.

MASTER_COMMIT_SN

The final log number of a master transaction occurring on a remote server.

REPLICATED_BEGIN_SN

The starting log number of a replication transaction occurring on the local server.

REPLICATED_COMMIT_SN

The final log number of a replication transaction occurring on the local server.

3.1.38.2 See Also

SYS_REPLICATIONS_

3.1.39 SYS_SECURITY_

This table contains information about the state of the security module.

MASTER_COMMIT_SN BIGINT The final log number of the master transac-
tion

REPLICATED_BEGIN_SN BIGINT The starting log number of a replication
transaction

REPLICATED_COMMIT_S
N

BIGINT The final log number of the replication trans-
action

Column name Type Description

Column Data Type Description

MODULE_NAME VARCHAR(24) The name of the security module

MODULE_VERSION VARCHAR(40) The version of the security module

ECC_POLICY_NAME VARCHAR(16) The name of the ECC policy
269 The Data Dictionary

3.1 Meta Tables
This table shows whether a security module authored by a third party is being used.

In the case where a security module authored by a third party is in use, the SYS_SECURITY_ meta
table contains information about the properties of the security module, whereas if no such security
module is in use, the SYS_SECURITY_ meta table will contain no records.

3.1.40 SYS_SYNONYMS_

This is the table for storing information about synonyms, which provide alias functions for database
objects.

3.1.40.1 Column Information

SYNONYM_OWNER_ID

This is the identifier of the owner of the synonym, and corresponds to a USER_ID in the SYS_USERS_
meta table.

SYNONYM_NAME

This is the synonym name, which is defined by the user.

OBJECT_OWNER_NAME

This is the name of the owner of the schema containing the object that is the target of the user-
defined synonym.

OBJECT_NAME

This is the name of the object targeted by the user-defined synonym.

ECC_POLICY_CODE VARCHAR(64) The verification code of the ECC policy

Column Data Type Description

Column Data Type Description

SYNONYM_OWNER_ID INTEGER The user identifier

SYNONYM_NAME VARCHAR(40) The synonym name

OBJECT_OWNER_NAME VARCHAR(40) The name of the object owner

OBJECT_NAME VARCHAR(40) The name of the synonym target object

CREATED DATE The time at which the synonym was created

LAST_DDL_TIME DATE The most recent time at which a DDL state-
ment was used to make changes to a syn-
onym
General Reference 270

3.1 Meta Tables
CREATED

This is the time at which the synonym was created.

LAST_DDL_TIME

This is the most recent time at which a DDL statement was used to create or make changes to the
synonym.

3.1.40.2 See Also

SYS_USERS_

3.1.41 SYS_TABLES_

This table contains information on meta tables, user-defined tables, sequences and views.

Column Data Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

TABLE_OID BIGINT The table object identifier

COLUMN_COUNT INTEGER The number of columns in the table

TABLE_NAME VARCHAR(40) The name of the table

TABLE_TYPE CHAR(1) The object type

REPLICATION_COUNT INTEGER The number of replications related to the
table

REPLICATION_RECOVER
Y_COUNT

INTEGER The number of replications that use the
recovery option and are related to the table

MAXROW BIGINT The maximum number of records that can be
entered (0: no limit)

TBS_ID INTEGER The tablespace identifier

PCTFREE INTEGER See below

PCTUSED INTEGER See below

INIT_TRANS INTEGER The initial number of transactions that can
be simultaneously used for update in a page

MAX_TRANS INTEGER The maximum number of transactions that
can be simultaneously used for update in a
page

INITEXTENTS BIGINT The initial number of extents when a table is
created
271 The Data Dictionary

3.1 Meta Tables
3.1.41.1 Column Information

USER_ID

This is the identifier of the owner of the table, and corresponds to a USER_ID in the SYS_USERS_
meta table.

TABLE_ID

This is the table identifier, which is automatically assigned by the system sequence.

TABLE_OID

This is the table object identifier, which is automatically and internally assigned by the system.
Unlike TABLE_ID, which is used when the user reads meta tables, this value is used only for internal
operations.

COLUMN_COUNT

This is the number of columns defined in the table.

TABLE_NAME

This is the table name, which is defined by the user.

TABLE_TYPE

Information not only about tables, but also about sequences, views, etc. is saved in the SYS_TABLES_
meta table. This type identifier is used to distinguish them, and comprises the following types:

• T: Table

• S: Sequence

• V: View

• W: Sequence for Queue Use Only

NEXTEXTENTS BIGINT The number of extents that are added when
a table is expanded

MINEXTENTS BIGINT The minimum number of extents in a table

MAXEXTENTS BIGINT The maximum number of extents in a table

IS_PARTITIONED CHAR(1) Indicates whether a table is partitioned

CREATED DATE The time at which the table was created

LAST_DDL_TIME DATE The time at which the table was most
recently changed using a DDL statement

Column Data Type Description
General Reference 272

3.1 Meta Tables
• Q: Queue

REPLICATION_COUNT

This is the number of replication objects associated with the table.

REPLICATION_RECOVERY_COUNT

This is the number of replication objects that use the recovery option and are associated with the
table.

MAXROW

This is the maximum number of records that can be inserted into the table.

TBS_ID

This is the identifier of the tablespace in which the table is saved.

PCTFREE

This is the minimum percentage of free space that must exist in order for it to be possible to update
a page. Usually, an amount of space equal to the percentage specified in PCTFREE is kept free so that
existing rows saved in a page can be updated. For example, if PCTFREE is set to 20, 20% of the space
in the page is set aside for update operations, so data can be inserted only into 80% of the space in
the page.

The user can set PCTFREE between 0 and 99 when executing the CREATE TABLE statement.

PCTUSED

This is a threshold below which the amount of used space in a page must decrease in order for the
page to return to the state in which records can be inserted from the state in which only update
operations are possible. If the amount of free space falls below the percentage specified in PCTFREE,
it will become impossible to insert new records into the page, and it will only be possible to update
and delete rows. If subsequent update or delete operations reduce the percentage of used space
below the threshold specified by PCTUSED, it will become possible to insert new rows into the page
again.

The user can set PCTUSED between 0 and 99 when the CREATE TABLE statement is executed.

* For more detailed explanations of PCTFREE and PCTUSED, please refer to the description of the
CREATE TABLE statement in the SQL Reference.

INIT_TRANS

This is the initial number of update transactions that can be simultaneously executed, and is set
when a page is created. The actual number of transactions can increase to the number specified in
MAX_TRANS, as long as sufficient page space is available.

MAX_TRANS

This is the maximum number of update transactions that can be simultaneously executed for a sin-
273 The Data Dictionary

3.1 Meta Tables
gle page.

INITEXTENTS

This denotes the number of extents that are available to be allocated when a table is created.

NEXTEXTENTS

This denotes the number of additional extents that are available to be allocated when the size of a
table is increased.

MINEXTENTS

This denotes the minimum number of available extents for a table.

MAXEXTENTS

This denotes the maximum number of available extents for a table.

IS_PARTITIONED

This is an identifier that indicates whether a table is partitioned. If it is ‘T’, the table is partitioned. If it
is ‘F’, the table is not partitioned.

3.1.41.2 See Also

SYS_USERS_

3.1.42 SYS_TABLE_PARTITIONS_

This is a meta table for the management of table partitions.

Column name Type Description

USER_ID INTEGER The user identifier

TABLE_ID INTEGER The table identifier

PARTITION_OID BIGINT The partition object identifier

PARTITION_ID INTEGER The partition identifier

PARTITION_NAME VARCHAR(40) The partition name

PARTITION_MIN_VALUE VARCHAR(4000) The minimum reference value for a partition
(NULL in the case of a hash partition)

PARTITION_MAX_VALUE VARCHAR(4000) The maximum reference value for a partition
(NULL in the case of a hash partition)

PARTITION_ORDER INTEGER The position of the partition (required for
hash partitions)
General Reference 274

3.1 Meta Tables
3.1.42.1 Column Information

USER_ID

This is the identifier of the table owner, and corresponds to a USER_ID in the SYS_USERS_ meta
table.

TABLE_ID

This is the table identifier. It is assigned automatically by the system sequence.

PARTITION_OID

This is the partition object identifier. It is assigned automatically by the system. Unlike PARTITION_ID,
which is used when viewing meta tables, it is used only internally by the system.

PARTITION_ID

This is the partition identifier.

PARTITION_NAME

This is the user-defined partition name.

PARTITION_MIN_VALUE

This is a string that gives the minimum reference value for a partition. It is NULL for hash partitions.

PARTITION_MAX_VALUE

This is a string that gives the maximum reference value for a partition. It is NULL for hash partitions.

PARTITION_ORDER

This is the position of the partition among the partitions. It is required for hash partitions.

TBS_ID

This is the identifier of the tablespace in which the table is stored.

3.1.42.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_PART_TABLES_

TBS_ID INTEGER The identifier of a tablespace

Column name Type Description
275 The Data Dictionary

3.1 Meta Tables
3.1.43 SYS_TBS_USERS_

This meta table contains information about the relationship between users and user-defined
tablespaces.

3.1.43.1 Column Information

TBS_ID

This is the tablespace identifier.

USER_ID

This is the identifier of a particular user. It corresponds to a USER_ID in the SYS_USERS_ meta table.

IS_ACCESS

This indicates whether the user is permitted to access the tablespace.

• 0: access not permitted

• 1: access permitted

3.1.43.2 See Also

SYS_USERS_

3.1.44 SYS_TRIGGERS_

This meta table contains default information about triggers.

Column Data Type Description

TBS_ID INTEGER The tablespace identifier

USER_ID INTEGER The user identifier

IS_ACCESS INTEGER Whether the user is allowed to access the
tablespace

Column Data Type Description

USER_ID INTEGER The user identifier

USER_NAME VARCHAR(40) The user name

TRIGGER_OID BIGINT The trigger identifier

TRIGGER_NAME VARCHAR(40) The trigger name
General Reference 276

3.1 Meta Tables
3.1.44.1 Column Information

USER_ID

This is the identifier of the user who owns the trigger, and corresponds to a USER_ID in the
SYS_USERS_ meta table.

USER_NAME

This is the user name, and corresponds to a USER_NAME in the SYS_USERS_ meta table.

TRIGGER_OID

This is the trigger identifier. It is automatically assigned by the system.

TRIGGER_NAME

This is the user-defined trigger name.

TABLE_ID

This is the identifier of the table on which the trigger is defined, and corresponds to a TABLE_ID in
the SYS_TABLES_ meta table.

TABLE_ID INTEGER The table identifier

IS_ENABLE INTEGER Indicates whether the trigger is enabled

EVENT_TIME INTEGER Indicates when the trigger fires

EVENT_TYPE INTEGER The trigger event type

UPDATE_COLUMN_CNT INTEGER The number of columns that can cause a trig-
ger to fire if updated

GRANULARITY INTEGER The units in which the trigger is executed

REF_ROW_CNT INTEGER The number of ALIASes for a REFERENCING
statement

SUBSTRING_CNT INTEGER The number of records in which the trigger
statement is saved

STRING_LENGTH INTEGER The total length of the trigger statement
character string

CREATED DATE The time at which the trigger was created

LAST_DDL_TIME DATE The most recent time at which a DDL state-
ment was used to make changes to the trig-
ger

Column Data Type Description
277 The Data Dictionary

3.1 Meta Tables
IS_ENABLE

This value indicates whether or not the trigger is enabled. It can be modified using the ALTER TRIG-
GER statement.

• 0: DISABLED

• 1: ENABLED

EVENT_TIME

This value classifies triggers based on whether they fire before or after the event that caused them.

• 1: BEFORE

• 2: AFTER

EVENT_TYPE

This is the type of the event that causes the trigger to fire.

• 1: INSERT

• 2: DELETE

• 4 UPDATE

UPDATE_COLUMN_CNT

This is the number of columns that cause a trigger to fire when updated. This value is equal to the
number of records related to the trigger in the SYS_TRIGGER_UPDATE_COLUMNS_ meta table.

GRANULARITY

This value indicates how often the trigger fires:

• 1: FOR EACH ROW

• 2: FOR EACH STATEMENT

REF_ROW_CNT

This is the number of ALIASes defined in a REFERENCING statement.

SUBSTRING_CNT

One trigger statement is divided into several records and stored in the SYS_TRIGGER_STRINGS_
meta table. This value indicates the number of records used to store the statement.

STRING_LENGTH

This is the total length of the trigger statement character string.
General Reference 278

3.1 Meta Tables
3.1.44.2 See Also

SYS_USERS_

SYS_TABLES_

3.1.45 SYS_TRIGGER_DML_TABLES_

This meta table contains information about tables referenced by triggers.

3.1.45.1 Column Information

TABLE_ID

This is the identifier of the table on which the trigger is defined, and corresponds to a TABLE_ID in
the SYS_TABLES_ meta table.

TRIGGER_OID

This is the trigger identifier, and corresponds to a TRIGGER_OID in the SYS_TRIGGERS_ meta table.

DML_TABLE_ID

This is the identifier of the table that is accessed using the DML statements within the trigger, and
corresponds to a TABLE_ID in the SYS_TABLES_ meta table.

STMT_TYPE

This is the type of statement executed on a table.

• 8: DELETE

• 19: INSERT

• 33: UPDATE

3.1.45.2 See Also

SYS_TABLES_

SYS_TRIGGERS_

Column Data Type Description

TABLE_ID INTEGER The table identifier

TRIGGER_OID BIGINT The trigger identifier

DML_TABLE_ID INTEGER The table identifier within the trigger

STMT_TYPE INTEGER The type of executable statement
279 The Data Dictionary

3.1 Meta Tables
3.1.46 SYS_TRIGGER_STRINGS_

This is the meta table in which the trigger statements are saved.

3.1.46.1 Column Information

TABLE_ID

This is the table identifier, and corresponds to a TABLE_ID in the SYS_TABLES_ meta table.

TRIGGER_OID

This is the trigger identifier, and corresponds to a TRIGGER_OID in the SYS_TRIGGERS_ meta table.

SEQNO

When information about a single trigger statement is saved as several records in
SYS_TRIGGER_STRINGS, this is the position of this record among the records.

SUBSTRING

This is a fragment of the trigger statement text. When records are searched for using a single
TRIGGER_OID and their SUBSTRING values are concatenated in the order described in SEQNO, the
complete trigger command can be reconstructed.

3.1.46.2 See Also

SYS_TABLES_

SYS_TRIGGERS_

3.1.47 SYS_TRIGGER_UPDATE_COLUMNS_

This meta table contains information about columns that cause triggers to fire when updated.

Column Data Type Description

TABLE_ID INTEGER The table identifier

TRIGGER_OID BIGINT The trigger identifier

SEQNO INTEGER The position of this text fragment in the trig-
ger statement

SUBSTRING VARCHAR(100) A fragment of trigger statement text

Column Data Type Description

TABLE_ID INTEGER The table identifier
General Reference 280

3.1 Meta Tables
3.1.47.1 Column Information

TABLE_ID

This is the table identifier, and corresponds to a TABLE_ID in the SYS_TABLES_ meta table.

TRIGGER_OID

This is the trigger identifier, and corresponds to a TRIGGER_OID in the SYS_TRIGGERS_ meta table.

COLUMN_ID

This is the column ID, and corresponds to a COLUMN_ID in the SYS_COLUMNS_ meta table.

3.1.47.2 See Also

SYS_TABLES_

SYS_TRIGGERS_

3.1.48 SYS_USERS_

This meta table contains information about database users.

TRIGGER_OID BIGINT The trigger identifier

COLUMN_ID INTEGER The column identifier

Column Data Type Description

Column Data Type Description

USER_ID INTEGER The user identifier

USER_NAME VARCHAR(40) The user name

PASSWORD VARCHAR(40) The user password

DEFAULT_TBS_ID INTEGER The default tablespace identifier

TEMP_TBS_ID INTEGER The temporary tablespace identifier

CREATED DATE The time at which the database user was cre-
ated

LAST_DDL_TIME DATE The most recent time at which a DDL state-
ment was used to make changes to the user
281 The Data Dictionary

3.1 Meta Tables
3.1.48.1 Column Information

USER_ID

This is the user identifier. It is automatically assigned by the system sequence.

USER_NAME

This is the user-defined user name.

PASSWORD

This is the encrypted user password.

DEFAULT_TBS_ID

This is the identifier of the default tablespace, which is used when the user creates an object without
explicitly specifying a tablespace.

TEMP_TBS_ID

This is the identifier for the user temporary tablespace.

3.1.49 SYS_VIEWS_

Basic information about views is stored in the SYS_TABLES_ meta table. This meta table contains
additional information about views.

3.1.49.1 Column Information

USER_ID

This is the identifier of the view owner, and corresponds to a USER_ID in the SYS_USERS_ meta table.

VIEW_ID

This is the view identifier, and corresponds to a TABLE_ID in the SYS_TABLES_ meta table.

STATUS

This value indicates the status of the view:

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the view

VIEW_ID INTEGER The view identifier

STATUS INTEGER The view status
General Reference 282

3.1 Meta Tables
• 0: VALID

• 1: INVALID

3.1.49.2 See Also

SYS_USERS_

SYS_TABLES_

3.1.50 SYS_VIEW_PARSE_

This meta table contains the text of view creation statements.

3.1.50.1 Column Information

USER_ID

This is the identifier of the view owner, and corresponds to a USER_ID in the SYS_USERS_ meta table.

VIEW_ID

This is the view identifier, and corresponds to a TABLE_ID in the SYS_TABLES_ meta table.

SEQ_NO

When a single statement corresponding to one view is saved as multiple records in
SYS_VIEW_PARSE_, this is the position of the record among the records.

PARSE

When records are searched for using a single VIEW_ID and their PARSE values are concatenated in
the order described in SEQ_NO, the complete view statement can be reconstructed.

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the view

VIEW_ID INTEGER The identifier of the view

SEQ_NO INTEGER When a view creation statement text is split
and the text is saved as multiple text frag-
ments in SYS_VIEW_PARSE_, this is the posi-
tion of the record among the records.

PARSE VARCHAR(100) A text fragment of the view creation state-
ment
283 The Data Dictionary

3.1 Meta Tables
3.1.50.2 See Also

SYS_USERS_

SYS_TABLES_

3.1.51 SYS_VIEW_RELATED_

This meta table contains information about objects accessed by user-defined views.

3.1.51.1 Column Information

USER_ID

This is the identifier of the view owner, and corresponds to a USER_ID in the SYS_USERS_ meta table.

VIEW_ID

This is the identifier of the view, and corresponds to a TABLE_ID in the SYS_TABLES_ meta table.

RELATED_USER_ID

This is the identifier of the owner of the object accessed by the view, and corresponds to a USER_ID
in the SYS_USERS_ meta table.

RELATED_OBJECT_NAME

This is the name of the object accessed by the view.

RELATED_OBJECT_TYPE

This identifies the type of object accessed by the view. Views can access stored functions, tables,
sequences, other views, Database Link objects, and synonyms. The identifiers are as follows:

1: Stored function

2: Table, Sequence, View

Column Data Type Description

USER_ID INTEGER The identifier of the owner of the view

VIEW_ID INTEGER The view identifier

RELATED_USER_ID INTEGER The identifier of the owner of the object that
the view accesses

RELATED_OBJECT_NAM
E

VARCHAR(40) The name of the object accessed by the view

RELATED_OBJECT_TYPE INTEGER The type of the object accessed by the view
General Reference 284

3.1 Meta Tables
4: Database link

5: Synonym

3.1.51.2 See Also

SYS_USERS_

SYS_TABLES_

SYS_PROCEDURES_

3.1.52 SYS_XA_HEURISTIC_TRANS_

This is a meta table that contains identifiers and information about the status of the database’s
global transactions.

3.1.52.1 Column Information

FORMAT_ID

This is the identifier of the format of the global transaction.

GLOBAL_TX_ID

This is the identifier of the global transaction.

BRANCH_QUALIFIER

This is the branch qualifier of the global transaction.

STATUS

This is the status of the global transaction.

Column name Type Description

FORMAT_ID BIGINT The identifier of the format of the global
transaction

GLOBAL_TX_ID VARCHAR(128) The identifier of the global transaction

BRANCH_QUALIFIER VARCHAR(128) The branch qualifier of the global transaction

STATUS INTEGER The status of the global transaction
285 The Data Dictionary

3.2 Performance Views
3.2 Performance Views
Performance views are structures that exist in memory but have the form of regular tables, and allow
users to monitor internal information about an ALTIBASE HDB system, such as system memory, pro-
cess status, sessions, buffers, threads, etc.

Performance views allow ALTIBASE HDB users to easily obtain information about memory objects
(e.g. session information, log information, thread information) using SQL statements while ALTIBASE
HDB is running, in the same way that they would use SQL to search for data saved in regular tables.

This section describes the kinds of performance views provided with ALTIBASE HDB, their structure
and function, how to access them, and the information that each view provides.

Note: Performance views provide data on memory objects which are in use by ALTIBASE HDB. Therefore,
information about memory objects which have already been released cannot appear in performance
views.

For example, when stopping a Replication Sender Thread, the thread object is freed and information
about it cannot appear in the V$REPSENDER performance view.

3.2.1 Structures and Features

Inside ALTIBASE HDB there is not only information about user-created objects such as tables; there is
also a variety of kinds of information required for the operation of the DBMS itself. Because ALTIBASE
HDB has a hybrid structure, in which tables can be created and queried not only in memory space
but also in disk space, monitoring ALTIBASE HDB is particularly critical.

Performance views provide information about most of the internal memory structures used by ALTI-
BASE HDB processes in the form of views. Because the data are dynamically created in real time
when a view is queried, users can always obtain up-to-date information about internal processes.

Performance views are always read-only. If a user attempts to modify the data in a performance
view, ALTIBASE HDB returns an error and rolls back the transaction.

3.2.2 How to Use Performance Views

Users can retrieve the entire list of performance views by executing the “SELECT * FROM V$TAB”
query statement from iSQL as follows:

iSQL> SELECT * FROM V$TAB;

Performance view schemas can be checked from iSQL using the DESC command, just as with regular
tables, and SELECT statements can also be used to query data in the same way that they would be
used to query regular tables.

3.2.3 V$ Views

Performance views are identified by the prefix V$. The following table lists all performance views.
General Reference 286

3.2 Performance Views
Name Description

V$ALLCOLUMN Information on the columns that make up a performance view

V$ARCHIVE Archive and backup- related information

V$BUFFPAGEINFO Statistics on the buffer frame of the buffer manager

V$BUFFPOOL_STAT Buffer pool related statistics, including the buffer pool hit ratio

V$CATALOG Information about the structure of tables

V$DATABASE Internal information about memory database space

V$DATAFILES Information on data files which are related to tablespaces

V$DATATYPE Information about data types supported by ALTIBASE HDB

V$DBA_2PC_PENDING A list of distributed transactions whose status is “in-doubt”

V$DBLINK_REMOTE_STATEME
NT_INFO

Information about statements that are executed on the
remote server when using Database Link

V$DBLINK_REMOTE_TRANSAC
TION_INFO

Information about transactions that occur on the remote
server when using Database Link

V$DBLINK_TRANSACTION_INF
O

Transaction information used by Database Link

V$DB_FREEPAGELISTS Information about all usable page lists

V$DB_PROTOCOL Information about database protocols input into the server

V$DISKTBL_INFO Information on disk tables

V$DISK_BTREE_HEADER Information about headers of disk BTREE indexes

V$DISK_RTREE_HEADER Information about headers of disk RTREE indexes

V$DISK_UNDO_USAGE Information about the amount of undo tablespace on disk
that is currently being used

V$EVENT_NAME Information about ALTIBASE HDB server wait events

V$FILESTAT Statistical information about disk data file I/O

V$FLUSHER Information about the flusher which flushes the buffers

V$FLUSHINFO Buffer flush information

V$INDEX Information about table indexes

V$INSTANCE Information about the current startup phase

V$LATCH Information about the Buffer Control Block (BCB) latch of the
buffer pool and statistical information about read/write latch
attempts made on data pages

V$LFG Information about LFG and statistical information related to
GROUP COMMIT
287 The Data Dictionary

3.2 Performance Views
V$LINKER_STATUS Information about the status of AltiLinker for Database Link

V$LOCK Information about all table level lock nodes in the database at
the current point in time

V$LOCK_STATEMENT Information about locks and statements, shown together

V$LOCK_WAIT Information about the status of transactions waiting to obtain
locks

V$LOG Information on log anchor files

V$MEMGC Information about garbage collection (memory space recov-
ery)

V$MEMSTAT Statistical information about memory use by ALTIBASE HDB
processes

V$MEMTBL_INFO Information about memory tables

V$MEM_BTREE_HEADER Information about headers of memory BTREE indexes

V$MEM_BTREE_NODEPOOL Information about node pools for memory BTREE Indices

V$MEM_RTREE_HEADER Information about headers of memory RTREE indexes

V$MEM_RTREE_NODEPOOL Information about node pools for memory RTREE indexes

V$MEM_TABLESPACES Information about tablespaces created in memory

V$MEM_TABLESPACE_CHECKP
OINT_PATHS

Information about the location of DB files in which to record
checkpointing details during checkpointing

V$MEM_TABLESPACE_STATUS_
DESC

Internal information about the status of memory tablespaces

V$MUTEX Statistical information about mutexes, used by ALTIBASE HDB
for concurrency control

V$NLS_PARAMETERS Information about parameters related to NLS

V$PLANTEXT Information about SQL execution plan text

V$PROCTEXT Information about stored procedure text

V$PROPERTY Information about internally set ALTIBASE HDB properties

V$REPEXEC Information about the replication manager

V$REPGAP Information about the difference between the log record cur-
rently being processed by the replication Sender and the most
recently created log record

V$REPGAP_PARALLEL Information about the difference between the sequence num-
ber of the log record currently being processed by replication
sender threads working in parallel and the sequence number
of the most recently created log record

V$REPLOGBUFFER Information about the log buffer used for replication

Name Description
General Reference 288

3.2 Performance Views
V$REPOFFLINE_STATUS Information about the status of offline replication execution

V$REPRECEIVER Information about the replication Receiver

V$REPRECEIVER_COLUMN Information about target columns for the replication Receiver

V$REPRECEIVER_PARALLEL Information about replication Receiver threads working in
parallel

V$REPRECEIVER_TRANSTBL Information about transaction tables for the replication
Receiver

V$REPRECEIVER_TRANSTBL_PA
RALLEL

Information about transaction tables used by replication
Receiver threads working in parallel

V$REPRECOVERY Recovery information used in replication

V$REPSENDER Information about the replication Sender

V$REPSENDER_PARALLEL Information about replication Sender threads working in par-
allel

V$REPSENDER_TRANSTBL Information about transaction tables used by the replication
Sender

V$REPSENDER_TRANSTBL_PAR
ALLEL

Information about transaction tables used by replication
Sender threads working in parallel

V$REPSYNC Information about tables that are synchronized using replica-
tion

V$SEGMENT Information about segments, which constitute tables and
indexes

V$SEQ Sequence-related information

V$SERVICE_THREAD Information about service threads related to multiplexing

V$SESSION Information about client sessions created internally in ALTI-
BASE HDB

V$SESSION_EVENT Statistical information on all wait events for all currently con-
nected sessions

V$SESSION_WAIT Information about wait events for all currently connected ses-
sions

V$SESSION_WAIT_CLASS Cumulative wait statistic information classified by session,
wait event and wait class for all currently connected sessions.

V$SESSIONMGR Statistical information about ALTIBASE HDB sessions

V$SESSTAT Information about the status of currently connected sessions

V$SQLTEXT Information about the text of all SQL statements executed in
the system

Name Description
289 The Data Dictionary

3.2 Performance Views
V$SQL_PLAN_CACHE Information about the current status and statistical informa-
tion about the SQL Plan Cache

V$SQL_PLAN_CACHE_PCO Information about Plan Cache objects registered in the SQL
Plan Cache

V$SQL_PLAN_CACHE_SQLTEX
T

Information about SQL statements registered in the SQL Plan
Cache

V$STABLE_MEM_DATAFILES Information about the paths of data file(s)

V$STATEMENT Information about statements for all current ALTIBASE HDB
sessions

V$STATNAME Information about the name and status of the system and ses-
sions

V$ST_ANGULAR_UNIT Reserved for future use

V$ST_AREA_UNIT Reserved for future use

V$ST_LINEAR_UNIT Reserved for future use

V$SYSSTAT Information about the status of the system

V$SYSTEM_CONFLICT_PAGE Information about latch contention according to page type

V$SYSTEM_EVENT Cumulative statistical information about waits from startup to
the current time, classified according to wait event

V$SYSTEM_WAIT_CLASS Cumulative statistical information about waits from startup to
the current time, classified according to wait class

V$TABLE Information about records and columns for all performance
views

V$TABLESPACES Information about tablespaces

V$TRACELOG Information about trace logging

V$TRANSACTION Information about transaction objects

V$TRANSACTION_MGR Information about the transaction manager of ALTIBASE HDB

V$TSSEGS Information about all TSS segments

V$TXSEGS Information about bound transaction segments

V$UDSEGS Information about all undo segments

V$UNDO_BUFF_STAT Statistical Information about the undo tablespace buffer pool

V$VERSION ALTIBASE HDB version information

V$WAIT_CLASS_NAME Information for grouping wait events into classes

V$VOL_TABLESPACES Information about volatile tablespaces

Name Description
General Reference 290

3.2 Performance Views
3.2.4 V$ALLCOLUMN

This view displays information about the columns in all performance views.

3.2.4.1 Column Information

TABLENAME

This is the name of the performance view.

COLNAME

This is the name of the column in the performance view.

3.2.5 V$ARCHIVE

This view displays the information related to archiving and backups.

V$XID List of XIDs, which are branches of distributed transactions,
that currently exist in the DBMS

Name Description

Column Data Type Description

TABLENAME VARCHAR(39) The name of the performance view

COLNAME VARCHAR(39) The name of the column in the performance
view

Column Data Type Description

LFG_ID INTEGER The log file group identifier

ARCHIVE_MODE BIGINT Archive log mode
0: no archive log mode
1: archive log mode

ARCHIVE_THR_RUNNING BIGINT Information about the execution of the
archivelog thread

ARCHIVE_DEST VARCHAR(1024) The directory in which logs are to be
archived

NEXTLOGFILE_TO_ARCH INTEGER The number of the next log file to be
archived

OLDEST_ACTIVE_LOGFILE INTEGER The number of the oldest of the online log
files
291 The Data Dictionary

3.2 Performance Views
3.2.5.1 Column Information

LFG_ID

There is one archive directory for each Log File Group (LFG). This is the identifier of the LFG.

ARCHIVE_MODE

This indicates the archive log mode of the database.

0: No archive log mode

1: Archive log mode

3.2.6 V$BUFFPAGEINFO

This view shows statistics about the main operations managed by the buffer manager for each type
of page in the buffer frame.

3.2.6.1 Column Information

PAGE_TYPE

PAGE_TYPE indicates the type of buffer page. The possible values are as follows:

CURRENT_LOGFILE INTEGER The number of the current online log file

Column Data Type Description

Column Data Type Description

PAGE_TYPE VARCHAR(20) The type of page

READ_PAGE_COUNT BIGINT The number of times that disk I/O (READ)
was initiated

GET_PAGE_COUNT BIGINT The number of times that buffer frames have
been requested

FIX_PAGE_COUNT BIGINT The number of times that buffer frames have
been fixed

CREATE_PAGE_COUNT BIGINT The number of times that new buffer frames
have been requested

HIT_RATIO DOUBLE The buffer frame hit ratio
General Reference 292

3.2 Performance Views
PAGE_TYPE Description

PAGE UNFORMAT An unformatted page

PAGE FORMAT A formatted page

PAGE INDEX META BTREE A page in which meta information about a B-Tree index is written

PAGE INDEX META RTREE A page in which meta information about an R-Tree index is written

PAGE INDEX BTREE A page in which a B-Tree index node is written

PAGE INDEX RTREE A page in which an R-Tree index node is written

PAGE TABLE A page in which table records are written

PAGE TEMP TABLE META A page in which meta information about a single temporary table is
written

PAGE TEMP TABLE DATA A page in which the records stored in a temporary table are written

PAGE TSS A page in which information about the status of a transaction is writ-
ten. Multiple transaction status slots (TSS) can be written to a single
page.

PAGE UNDO A page in which UNDO information is written. A single page can
contain multiple UNDO records.

PAGE LOB DATA A page in which LOB type data are written. A single page cannot
contain more than one LOB column. Moreover, a single LOB column
can span multiple pages.

PAGE LOB INODE A page in which an index node, which pertains to LOB data that
exceed a certain size, is written

PAGE FMS SEGHDR A page in which a single FMS header is written

PAGE FMS EXTDIR A page in which a single FMS extent directory is written

PAGE TMS SEGHDR A page in which a single TMS header is written

PAGE TMS LFBMP A page in which a single TMS leaf bitmap node is written

PAGE TMS ITBMP A page in which a single TMS internal bitmap node is written

PAGE TMS RTBMP A page in which a single TMS root bitmap node is written

PAGE TMS EXTDIR A page in which a single TMS extent directory is written

PAGE CMS SEGHDR A page in which a single CMS header is written

PAGE CMS EXTDIR A page in which a single CMS extent directory is written

PAGE FEBT FSB A page in which a single datafile header is written

PAGE FEBT EGH A page in which an extent group header within a data file is written.
One page can contain only one header.

PAGE LOB META A page in which meta information about a LOB data column is writ-
ten
293 The Data Dictionary

3.2 Performance Views
READ_PAGE_COUNT

This is the total number of disk I/O (read) requests that have been made for buffer frames related to
this PAGE_TYPE since the server was started.

The value can be 0 or greater.

GET_PAGE_COUNT

Shows the total number of read or write requests that have been made to the buffer manager for
buffer frames related to this PAGE_TYPE since the server was started.

The value can be 0 or greater.

FIX_PAGE_COUNT

This shows the total number of fixes for buffer frames related to PAGE_TYPE received by the buffer
manager for reading or writing data since the server was started. The value can be 0 or greater.

CREATE_PAGE_COUNT

This shows the number of requests for new buffer frames for this PAGE_TYPE made to the buffer
manager since the server was started.

The value can be 0 or greater.

HIT_RATIO

This shows the hit ratio for this buffer since the server was started. Its value can be calculated as fol-
lows: (GET_PAGE_COUNT + FIX_PAGE_COUNT - READ_PAGE_COUNT) / (GET_PAGE_COUNT +
FIX_PAGE_COUNT)

3.2.6.2 Example

The following SQL shows how to retrieve v$buffpageinfo and cumulative figures of main operations
for each page type managed in the buffer since the server was started.

iSQL> select * from v$buffpageinfo;
PAGE_TYPE READ_PAGE_COUNT GET_PAGE_COUNT

FIX_PAGE_COUNT CREATE_PAGE_COUNT HIT_RATIO

PAGE UNFORMAT 0 0
0 0 0
PAGE FORMAT 0 0
0 0 0
PAGE INDEX META BTREE 4 0
4 0 0
PAGE INDEX META RTREE 0 0
0 0 0
PAGE INDEX BTREE 12 0

PAGE HV TEMP NODE A page in which a node of a Hash Value-Based Temp Index is written

PAGE_TYPE Description
General Reference 294

3.2 Performance Views
12 0 0
PAGE INDEX RTREE 0 0
0 0 0
PAGE TABLE 0 0
0 0 0
PAGE TEMP TABLE META 0 0
0 0 0
PAGE TEMP TABLE DATA 0 0
0 0 0
PAGE TSS 0 0
0 0 0
PAGE UNDO 0 0
0 0 0
PAGE LOB DATA 0 0
0 0 0
PAGE LOB INODE 0 0
0 0 0
PAGE FMS SEGHDR 0 0
0 0 0
PAGE FMS EXTDIR 0 0
0 0 0
PAGE TMS SEGHDR 5 19
4 0 73.6842105263158
PAGE TMS LFBMP 0 0
0 0 0
PAGE TMS ITBMP 0 0
0 0 0
PAGE TMS RTBMP 0 0
0 0 0
PAGE TMS EXTDIR 0 0
0 0 0
PAGE CMS SEGHDR 0 1536
0 512 100
PAGE CMS EXTDIR 0 0
0 0 0
PAGE FEBT FSB 2 1024
515 2 99.8046875
PAGE FEBT EGH 0 512
0 4 100
PAGE LOB META 0 0
0 0 0
PAGE HV TEMP NODE 0 0
0 0 0
26 rows selected.

3.2.7 V$BUFFPOOL_STAT

This view displays statistics including the buffer pool hit ratio and the buffer control block (BCB)
count of the buffer pool.

Column Data Type Description

ID INTEGER The identifier of the buffer pool

POOL_SIZE INTEGER The number of pages in the buffer pool

PAGE_SIZE INTEGER The size of a page (in bytes)

HASH_BUCKET_COUNT INTEGER The number of hash table buckets
295 The Data Dictionary

3.2 Performance Views
HASH_CHAIN_LATCH_COU
NT

INTEGER The number of chain latches used in the hash
table of the buffer pool

LRU_LIST_COUNT INTEGER The number of LRU lists

PREPARE_LIST_COUNT INTEGER The number of prepare lists in the buffer
pool

FLUSH_LIST_COUNT INTEGER The number of flush lists in the buffer pool

CHECKPOINT_LIST_COUNT INTEGER The number of checkpoint lists in the buffer
pool

VICTIM_SEARCH_COUNT INTEGER The number of victim searches in an LRU List

HASH_PAGES INTEGER The number of pages inserted into the hash
table at present

HOT_LIST_PAGES INTEGER The number of pages in LRU hot lists at pres-
ent

COLD_LIST_PAGES INTEGER The number of pages in LRU cold lists at
present

PREPARE_LIST_PAGES INTEGER The number of pages in all prepare lists at
present

FLUSH_LIST_PAGES INTEGER The number of pages in all flush lists at pres-
ent

CHECKPOINT_LIST_PAGES INTEGER The number of pages in all checkpoint lists at
present

FIX_PAGES BIGINT The accumulated number of page fix
requests without latches

GET_PAGES BIGINT The accumulated number of page requests
for which latches were obtained

READ_PAGES BIGINT The accumulated number of page reads from
disk

CREATE_PAGES BIGINT The accumulated number of new page cre-
ation tasks

HIT_RATIO DOUBLE The cumulative hit ratio from the buffer pool
since the system was started

HOT_HITS BIGINT The accumulated number of accesses to an
LRU hot list

COLD_HITS BIGINT The accumulated number of accesses to an
LRU cold list

PREPARE_HITS BIGINT The accumulated number of accesses to a
prepare list

Column Data Type Description
General Reference 296

3.2 Performance Views
3.2.7.1 Column Information

ID

This is a unique buffer pool number. Its value is 0 because multiple buffer pools are not currently
supported.

FLUSH_HITS BIGINT The accumulated number of accesses to a
flush list

OTHER_HITS BIGINT The accumulated number of accesses to buf-
fers not included on any list

PREPARE_VICTIMS BIGINT The accumulated number of searches for
replacement targets on a prepare list

LRU_VICTIMS BIGINT The accumulated number of searches for
replacement targets on an LRU list

VICTIM_FAILS BIGINT The number of failures to find a replacement
target

PREPARE_AGAIN_VICTIMS BIGINT The cumulative number of searches for a
replacement target buffer on a prepare list
after failing to find a replacement target on
an LRU list

VICTIM_SEARCH_WARP BIGINT The number of searches that continued to
subsequent prepare lists after failing to find
replacement targets on prepare lists or LRU
lists

LRU_SEARCHS BIGINT The accumulated number of searched buf-
fers on an LRU list

LRU_SEARCHS_AVG INTEGER The average number of buffers searched for
a replacement target

LRU_TO_HOTS BIGINT The accumulated number of times that a Buf-
fer Control Block (BCB) has moved into a hot
area in an LRU list

LRU_TO_COLDS BIGINT The accumulated number of times that a BCB
has moved into a cold area in an LRU list

LRU_TO_FLUSHS BIGINT The accumulated number of times that a BCB
has moved from an LRU list to a flush list

HOT_INSERTIONS BIGINT The accumulated number of insertions into
LRU hot lists

COLD_INSERTIONS BIGINT The accumulated number of insertions into
LRU cold lists

Column Data Type Description
297 The Data Dictionary

3.2 Performance Views
POOL_SIZE

This is the number of pages in the buffer pool. POOL_SIZE * PAGE_SIZE is equal to the size specified
by the BUFFER_AREA_SIZE property.

PAGE_SIZE

This is the size of the pages used in the buffer pool at present. Only the fixed value 8192 is possible,
because multiple buffer pools are not currently supported.

HASH_BUCKET_COUNT

This is the number of hash table buckets. It is determined by the BUFFER_HASH_BUCKET_DENSITY
property. This value cannot be changed while the server is running. The greater this value is, the less
expensive it is to search the hash bucket list.

HASH_CHAIN_LATCH_COUNT

This is the number of chain latches used in the hash table. The greater this value is, the less competi-
tion there is for latches, which can occur when searching the hash table.

LRU_LIST_COUNT

This is the number of LRU lists in the buffer pool.

PREPARE_LIST_COUNT

This is the number of prepare lists in the buffer pool.

FLUSH_LIST_COUNT

This is the number of flush lists in the buffer pool.

CHECKPOINT_LIST_COUNT

This is the number of checkpoint lists in the buffer pool.

VICTIM_SEARCH_COUNT

This is the maximum number of BCBs that are searched when searching for replacement targets in
LRU lists. If the search for replacement targets reaches the specified value and no replacement target
is found, Buffer Manager waits until the flusher adds a clean buffer to the prepare list.

HASH_PAGES

This is the number of buffers that have been inserted into the hash table. lts value indicates the
number of buffers currently in use.

HOT_LIST_PAGES

This is the number of buffers that exist on the LRU hot list.
General Reference 298

3.2 Performance Views
COLD_LIST_PAGES

This is the number of buffers that exist on the LRU cold list.

PREPARE_LIST_PAGES

This is the number of buffers that exist on the prepare list. If the value is 0, the LRU list is searched in
order to obtain replacement targets.

FLUSH_LIST_PAGES

This is the number of buffers that exist on the flush list. A high value means that there are many buf-
fers to be flushed.

CHECKPOINT_LIST_PAGES

This is the number of buffers that exist on the checkpoint list. It also indicates the number of pages
that have been renewed.

FIX_PAGES

This is the cumulative number of pages that have been requested without obtaining latches since
the system was started.

GET_PAGES

This is the cumulative number of page latches that have been have been requested and obtained
since the system was started.

READ_PAGES

This is the cumulative number of pages that have been read from disk when requesting a page. It
also indicates the number of buffer misses.

CREATE_PAGES

This is the cumulative number of page assignments for the insertion of data into new pages. Page
creation isn't actually accompanied by disk I/O.

HIT_RATIO

This is the cumulative hit ratio in the buffer pool. It can be calculated thus: (GET_PAGES + FIX_PAGES
- READ_PAGES)/(GET_PAGES + FIX_PAGES). If this value is low, it means that many pages have been
read from disk instead of from the cache. In other words, if the value is low, the system will not be
able to process queries quickly.

HOT_HITS

This is the cumulative number of hits on the LRU hot list. If a requested page is already in the buffer,
a hit doesn't cause a page to be read.
299 The Data Dictionary

3.2 Performance Views
COLD_HITS

This is the cumulative number of hits on the LRU cold list.

PREPARE_HITS

This is the cumulative number of hits on the prepare list.

FLUSH_HITS

This is the cumulative number of hits on the flush list.

OTHER_HITS

This is the number of hits on a buffer that was not on any list at that moment. A hit buffer need not
always be on a list.

PREPARE_VICTIMS

This is the cumulative number of searches for replacement buffers on a prepare list.

LRU_VICTIMS

This is the cumulative number of searches for replacement buffers on an LRU list.

VICTIM_FAILS

This is the cumulative number of failures to find a replacement target buffer. This value can be calcu-
lated thus: PREPARE_AGAIN_VICTIMS + VICTIM_SEARCH_WARP.

Summing PREPARE_VICTIMS + LRU_VICTIMS + VICTIM_FAILS gives the total number of replace-
ments in the buffer pool.

PREPARE_AGAIN_VICTIMS

After failing to find replacement target buffers, it is necessary to wait for the insertion of buffers on a
prepare list. While waiting, this is the number of clean buffers that have been received and selected
as replacement targets.

VICTIM_SEARCH_WARP

This is the cumulative number of searches for replacement target buffers that failed after the speci-
fied period of time and thus passed to the next prepare list.

LRU_SEARCHS

This is the cumulative number of buffers for which searches for replacement target buffers have
been made in the LRU list.

LRU_SEARCHS_AVG

This is the average number of buffers that are searched when searching for a replacement target.
General Reference 300

3.2 Performance Views
LRU_TO_HOTS

This is the cumulative number of times that buffers have moved into hot areas in LRU lists.

LRU_TO_COLDS

This is the cumulative number of times that buffers have moved into cold areas in LRU lists.

LRU_TO_FLUSHS

This is the cumulative number of times that buffers have moved from LRU lists to flush lists.

HOT_INSERTIONS

This is the cumulative number of insertions into LRU hot lists.

COLD_INSERTIONS

This is the cumulative number of insertions into LRU cold lists.

3.2.8 V$CATALOG

This view displays information about the structure of the tables that exist in the database.

3.2.8.1 Column Information

TABLE_OID

This is the physical location of the header, which contains information about the table.

COLUMN_CNT

This is the number of columns in the table.

COLUMN_VAR_SLOT_CNT

This is the number of variable slots, which are used to store information about the columns in the

Column Data Type Description

TABLE_OID BIGINT The object identifier of the table

COLUMN_CNT INTEGER The number of columns in the table

COLUMN_VAR_SLOT_C
NT

INTEGER The number of variable slots, which are used
to store information about columns

INDEX_CNT INTEGER The number of indexes in the table

INDEX_VAR_SLOT_CNT INTEGER The number of variable slots, which are used
to store information about indexes
301 The Data Dictionary

3.2 Performance Views
table.

INDEX_CNT

This is the number of indexes in the table.

INDEX_VAR_SLOT_CNT

This is the number of variable slots, which are used to store information about the indexes in the
table.

3.2.9 V$DATABASE

V$DATABASE displays internal information about the memory database.

Column Data Type Description

DB_NAME VARCHAR(128) The database name

PRODUCT_SIGNATURE VARCHAR(512) A string describing the product binary and
build environment

DB_SIGNATURE VARCHAR(512) A unique database identification string

VERSION_ID INTEGER The version of the database

COMPILE_BIT INTEGER Whether the product was compiled for 32
bits or 64 bits

ENDIAN BIGINT Endian information

LOGFILE_SIZE BIGINT The log file size

TX_TBL_SIZE INTEGER The transaction table size

LAST_SYSTEM_SCN VARCHAR(29) For internal usage only

INIT_SYSTEM_SCN VARCHAR(29) For internal usage only

DURABLE_SYSTEM_SCN VARCHAR(29) The saved system SCN value

MEM_MAX_DB_SIZE VARCHAR(256) The maximum size of the memory database

MEM_ALLOC_PAGE_CO
UNT

BIGINT The total number of allocated pages

MEM_FREE_PAGE_COU
NT

BIGINT The total number of available pages

MAX_ACCESS_FILE_SIZE VARCHAR(12) The maximum file size that can be created in
the database
General Reference 302

3.2 Performance Views
3.2.9.1 Column Information

DB_NAME

This is the name of the memory database.

PRODUCT_SIGNATURE

This is unique information of ALTIBASE HDB.

DB_SIGNATURE

A unique database identification string.

VERSION_ID

This is a unique version number managed by the storage manager of ALTIBASE HDB.

COMPILE_BIT

This indicates whether the database was compiled as a 32-bit or 64-bit application.

ENDIAN

This is the Endian of the database.

0: little Endian

1: big Endian

LOGFILE_SIZE

This is the size of the log files used by the database.

TX_TBL_SIZE

This is the size of the transaction table.

MEM_MAX_DB_SIZE

This is the maximum size to which the memory database can expand.

MEM_ALLOC_PAGE_COUNT

This is the total number of pages currently allocated to the memory database. This only indicates the
current size of memory database space, not the maximum size to which it can expand. The current
size of memory database space can be calculated by multiplying the sum of
MEM_ALLOC_PAGE_COUNT and MEM_FREE_PAGE_COUNT by the page size (32kB).

MEM_FREE_PAGE_COUNT

 This is the number of pages available to be allocated to memory database space, not including the
303 The Data Dictionary

3.2 Performance Views
number of pages that are currently allocated. This only pertains to the current size of memory data-
base space, not the maximum size to which it can expand. The current size of memory database
space can be calculated by multiplying the sum of MEM_ALLOC_PAGE_COUNT and
MEM_FREE_PAGE_COUNT by the page size (32kB).

DURABLE_SYSTEM_SCN

This is the system SCN value saved in database.

3.2.10 V$DATAFILES

This view displays information about the data files used in tablespaces.

Column Data Type Description

ID INTEGER The data file identifier

NAME VARCHAR(256) Data file name

SPACEID INTEGER The tablespace identifier

OLDEST_LSN_LFGID INTEGER See below

OLDEST_LSN_FILENO INTEGER See below

OLDEST_LSN_OFFSET INTEGER See below

CREATE_LSN_LFGID INTEGER See below

CREATE_LSN_FILENO INTEGER See below

CREATE_LSN_OFFSET INTEGER See below

SM_VERSION INTEGER Version information

NEXTSIZE BIGINT The size at the next increase

MAXSIZE BIGINT The maximum size

INITSIZE BIGINT The initial size

CURRSIZE BIGINT The current size

AUTOEXTEND INTEGER An auto-extension flag

IOCOUNT INTEGER The number of I/O operations currently
underway

OPENED INTEGER Indicates whether or not the file is currently
in use

MODIFIED INTEGER Indicates whether or not the file is currently
being modified

STATE INTEGER The status of the file
General Reference 304

3.2 Performance Views
3.2.10.1 Column Information

ID

This is the identifier of the data file. In order to avoid duplicate identifiers, identifiers are assigned
sequentially in the order in which data files are created.

NAME

This is the physical path and name of the data file.

SPACEID

This is the identifier of the tablespace containing the data file.

OLDEST_LSN_LFGID

This is the Log File Group (LFG) portion of the LSN value of the oldest of the pages that were loaded
into the buffer and changed at the time of the last checkpoint, when pages in the data file were
flushed to disk.

OLDEST_LSN_FILENO

This is the file number portion of the LSN value of the oldest of the pages that were loaded into the
buffer and changed at the time of the last checkpoint, when pages in the data file were flushed to
disk.

OLDEST_LSN_OFFSET

This is the offset value portion of the LSN value of the oldest of the pages that were loaded into the
buffer and changed at the time of the last checkpoint, when pages in the data file were flushed to
disk.

CREATE_LSN_LFGID

This is the identifier of the Log File Group (LFG) of the LSN that was current at the time at which the
data file was created.

CREATE_LSN_FILENO

This is the file number portion of the LSN that was current at the time at which the data file was cre-
ated.

MAX_OPEN_FD_COUNT INTEGER The maximum number of FDs that can be
opened

CUR_OPEN_FD_COUNT INTEGER The number of open FDs

Column Data Type Description
305 The Data Dictionary

3.2 Performance Views
CREATE_LSN_OFFSET

This is the offset value portion of the LSN that was current at the time at which the data file was cre-
ated.

SM_VERSION

This is the version of the binary from which the data file was created.

NEXTSIZE

If the data file’s autoextend property is set to “on”, this is the size by which the data file will be
increased when there is insufficient space.

MAXSIZE

If the data file’s autoextend property is set to “on”, this is the maximum size to which the data file
can be increased when there is insufficient space.

INITSIZE

This is the initial size of the data file at the time of its creation.

CURRSIZE

This is the current size of the data file.

AUTOEXTEND

This indicates whether the size of the data file will be increased automatically when there is insuffi-
cient space.

0: No automatic increase

1: Automatic increase

IOCOUNT

This is the number of I/O operations currently underway on the data file. If no data I/O is in progress
on the data file, the next data file can be opened.

OPENED

This indicates whether the data file is currently open.

0: closed

1: open

MODIFIED

This indicates whether the data file has been modified. If any pages have been flushed to the data
file without subsequent synchronization, this value is 1. if synchronization has been executed on the
General Reference 306

3.2 Performance Views
data file since pages were last flushed to it, this value is 0.

STATE

This is the status of the data file.

1: Offline

2: Online

6: Backup is in progress

128: Dropped

MAX_OPEN_FD_COUNT

This is the maximum number of FDs (File Descriptors) that can be opened when performing I/O on
the current disk data file.

CUR_OPEN_FD_COUNT

This is the number of open FDs (File Descriptors) for the current disk data file.

3.2.11 V$DATATYPE

This table shows information about the data types that are supported by ALTIBASE HDB.

Column name Type Description

TYPE_NAME VARCHAR(40) The name of a data type that is supported in
the DBMS

DATA_TYPE SMALLINT An internally defined value indicating a data
type that is supported in the DBMS

ODBC_DATA_TYPE SMALLINT The identifier of an ODBC SQL data type cor-
responding to the data type

COLUMN_SIZE INTEGER The maximum column size for the data type

LITERAL_PREFIX VARCHAR(4) Characters recognized as the prefix of the
data type literal

LITERAL_SUFFIX VARCHAR(4) Characters recognized as the suffix of the
data type literal

CREATE_PARAM VARCHAR(20) When using SQL to define a data type, a
parameter keyword list enclosed in paren-
theses

NULLABLE SMALLINT Indicates whether NULL values are allowed
for the data type
307 The Data Dictionary

3.2 Performance Views
3.2.11.1 Column Information

ODBC_DATA_TYPE

This is the data type identifier for the ODBC SQL data type corresponding to the data type. For more
information, please refer to the appendix pertaining to data types in the ODBC Reference.

COLUMN_SIZE

This is the maximum column size for the data type.

For numeric data types, this is the precision value, which was specified when the type was defined.
For string data types, this is the length value, which was specified when the type was defined. For
datetime data types, this is the total number of characters that are needed to display a value when it
is converted to characters.

CASE_SENSITIVE SMALLINT Indicates whether the data type is case-sen-
sitive

SEARCHABLE SMALLINT Indicates how the data type is used in a
WHERE clause

UNSIGNED_ATTRIBUTE SMALLINT For a numeric data type, indicates whether
the data type is a signed data type

FIXED_PREC_SCALE SMALLINT Indicates whether the data type is a fixed
type

AUTO_UNIQUE_VALUE SMALLINT Reserved for future use

LOCAL_TYPE_NAME VARCHAR(40) The name of the data type in the local lan-
guage

MINIMUM_SCALE SMALLINT The minimum allowable number of digits to
the right of the decimal point

MAXIMUM_SCALE SMALLINT The maximum allowable number of digits to
the right of the decimal point

SQL_DATA_TYPE SMALLINT (A defined value of an SQL data type that is
provided by SQL_DESC_TYPE in ODBC)

SQL_DATETIME_SUB SMALLINT A type subcode for a datetime or inter-
val data type

NUM_PREC_RADIX INTEGER The number of bits that are needed to per-
form operations on the maximum number of
digits that a column can hold

INTERVAL_PRECISION SMALLINT When the DATA_TYPE is interval, the maxi-
mum number of digits needed to express the
data

Column name Type Description
General Reference 308

3.2 Performance Views
LITERAL_PREFIX

This is the characters that signify the prefix of a literal for the data type. For data types to which literal
prefixes do not apply, it is NULL.

LITERAL_SUFFIX

This is the characters that signify the suffix of a literal for the data type. For data types to which literal
suffixes do not apply, it is NULL.

CREATE_PARAM

When using SQL to define a data type, this is a comma-separated list of parameter keywords
enclosed in parentheses. For example, to express a NUMBER as NUMBER(precision,scale), the content
within the parentheses, that is, “precision, scale”, is the list. ”Precision” and “scale” are thus both key-
words in the list. For data types that do not need parameters, this is set to NULL.

NULLABLE

This indicates whether NULL values are allowed for a data type.

1: NULL is allowed.

0: NULL is not allowed.

CASE_SENSITIVE

For character data types, indicates whether to distinguish between uppercase and lowercase letters
when sorting data of the data type.

1: Case-sensitive.

0: Not case-sensitive.

SEARCHABLE

Indicates how a data type can be used in a WHERE clause.

0: It cannot be used in a WHERE clause (SQL_PRED_NONE).

1: It can be used in a WHERE clause, but must be used with LIKE (SQL_PRED_CHAR).

2: It can be used in a WHERE clause with any comparison operator except LIKE (SQL_PRED_BASIC).

3: It can be used in a WHERE clause with any comparison operator (SQL_SEARCHABLE).

UNSIGNED_ATTRIBUTE

Indicates whether a data type is signed.

1: The data type is an unsigned data type.

0: The data type is a signed data type.

NULL: The data type is not numeric, therefore this attribute is not applicable.
309 The Data Dictionary

3.2 Performance Views
FIXED_PREC_SCALE

Indicates whether a data type is fixed. If a data type is a fixed numeric type and always has the same
precision and scale, this value is 1 (SQL_TRUE). Otherwise, it is 0 (SQL_FALSE).

LOCAL_TYPE_NAME

Indicates a localized (region-specific) name for a data type. If there is no localized name, this value is
NULL.

MINIMUM_SCALE

For numeric data types, this is the minimum allowable number of digits to the right of the decimal.
This value exists for fixed scale types; it is set to NULL for types to which scale does not pertain.

MAXIMUM_SCALE

For numeric data types, this is the maximum allowable number of digits to the right of the decimal.
It is specified when the data type is defined. It is set to NULL for types to which scale does not per-
tain.

SQL_DATA_TYPE

This is a SQL data type that is provided by SQL_DESC_TYPE in ODBC. For data types other than
INTERVAL or DATETIME, this value is the same as that of ODBC_DATA_TYPE.

SQL_DATETIME_SUB

If the SQL_DATA_TYPE value is SQL_DATETIME or SQL_INTERVAL, this is the type sub code for the
DATETIME or INTERVAL data type. If the data type is not DATETIME or INTERVAL, it is set to NULL.

NUM_PREC_RADIX

This is the number of bits or digits that are needed to perform mathematical operations on the high-
est number that a column can hold.

INTERVAL_PRECISION

This is the maximum number of digits that a DATA_TYPE of type INTERVAL can hold.

3.2.12 V$DBA_2PC_PENDING

This view shows a list of XIDs (transaction IDs) for distributed transactions that exist in the DBMS and
whose status is in doubt. The status of a distributed transaction is said to be "in-doubt" when a
branch thereof is ready to be committed, but has not yet been committed or rolled back.
General Reference 310

3.2 Performance Views
3.2.12.1 Column Information

LOCAL_TRAN_ID

This is an internal ALTIBASE HDB transaction identifier that is associated with a global transaction
identifier.

GLOBAL_TX_ID

This is globally unique transaction identifier. The GLOBAL_TX_ID contains a format identifier, two
length fields and a data field. The data field comprises at most two contiguous components: a global
transaction identifier and a branch qualifier.

3.2.13 V$DBLINK_REMOTE_STATEMENT_INFO

This view shows information about a query statement that is parsed and executed on a remote
server when Database Link is used.

3.2.13.1 Column Information

REMOTE_TRANSACTION_ID

This is the identifier of a transaction that takes place on a remote server. This identifier is not the
actual identifier of the transaction on the remote server; it is an identifier that is assigned by AltiL-
inker when a transaction is created on a remote server. Since this identifier is created for administra-
tive purposes, the value itself is not meaningful.

Column name Type Description

LOCAL_TRAN_ID BIGINT An internal ALTIBASE HDB transaction identi-
fier that is associated with the
GLOBAL_TX_ID

GLOBAL_TX_ID VARCHAR(256) Globally unique transaction identifier

Column name Type Description

TRANSACTION_ID INTEGER The identifier of the transaction that uses
Database Link

REMOTE_TRANSACTION
_ID

INTEGER The identifier of a transaction that took place
on a remote server

STATEMENT_ID INTEGER The identifier of a statement that is executed
on a remote server

QUERY VARCHAR(1024) A query that is executed in a statement
311 The Data Dictionary

3.2 Performance Views
STATEMENT_ID

This is the identifier of a statement that is executed on a remote server. This identifier is not the
actual identifier of the statement on the remote server; it is an identifier that is self-assigned by AltiL-
inker when a statement is created on a remote server. Since this identifier is created for administra-
tive purposes, the value itself is not meaningful.

3.2.14 V$DBLINK_REMOTE_TRANSACTION_INFO

This view shows information about a transaction that takes place on a remote server when Database
Link is used:.

3.2.14.1 Column Information

REMOTE_TRANSACTION_ID

This is the identifier of a transaction that takes place on a remote server. This identifier is not the
actual identifier of the transaction on the remote server; it is an identifier that is self-assigned by
AltiLinker when the transaction is created on the remote server. Since this identifier is created for
administrative purposes, the value itself is not meaningful.

3.2.15 V$DBLINK_TRANSACTION_INFO

This view shows information of a transaction that uses the current Database Link:

Column name Type Description

TRANSACTION_ID INTEGER The identifier of a local transaction that uses
Database Link

REMOTE_TRANSACTION
_ID

INTEGER The identifier of a transaction that occurs on
a remote server

CONNECTION_METHOD INTEGER 0: ODBC
1: Native (reserved for future use)

CONNECTION_STRING VARCHAR(41) A connection string

ACTIVE_STATEMENT_CO
UNT

INTEGER The number of query statements that are
currently being executed

Column name Type Description

TRANSACTION_ID INTEGER The identifier of a transaction that is cur-
rently using Database Link

STATUS INTEGER Reserved for future use

CONSISTENCY INTEGER Reserved for future use
General Reference 312

3.2 Performance Views
3.2.16 V$DB_FREEPAGELISTS

This view displays information about lists of pages that can be used, that is, free pages, in a database.

3.2.16.1 Column Information

RESOURCE_GROUP_ID

This is a unique number that is used to identify the list.

FIRST_FREE_PAGE_ID

This is the identifier of the first free page in the list.

FREE_PAGE_COUNT

This is the number of free pages on the list.

3.2.17 V$DB_PROTOCOL

This view shows information on ALTIBASE HDB communication protocols of all incoming packets.

3.2.18 V$DIRECT_PATH_INSERT

This view displays historical statistics on direct-path uploads.

Column Data Type Description

SPACE_ID INTEGER The identifier of the tablespace to which the
free pages belong

RESOURCE_GROUP_ID INTEGER The identifier of the resource group

FIRST_FREE_PAGE_ID INTEGER The identifier of the first free page in the list

FREE_PAGE_COUNT BIGINT The total number of free pages in the list

Column name Type Description

QP_NAME VARCHAR(50) The protocol name

QP_ID INTEGER The unique identifier of the protocol

COUNT BIGINT The cumulative number of incoming packets
for this protocol
313 The Data Dictionary

3.2 Performance Views
3.2.18.1 Column Information

COMMIT_TX_COUNT

This is the total number of transactions which were committed by iLoader using the direct-path
option, accumulated over past executions.

ABORT_TX_COUNT

This is the total number of transactions which were rolled back due to errors while data were being
uploaded using the direct-path option, accumulated over past executions.

INSERT_ROW_COUNT

This is the total number of rows which were inserted by iLoader using the direct-path option, accu-
mulated over past executions.

ALLOC_BUFFER_PAGE_TRY_COUNT

This is the total number of times that page allocation was requested for uploading data using the
direct-path option, accumulated over past executions.

ALLOC_BUFFER_PAGE_FAIL_COUNT

This is the total number of times that a page allocation request for uploading data using the direct-
path option failed due to insufficient memory, accumulated over past executions.

3.2.19 V$DISKTBL_INFO

This view displays information about disk tables.

Column Data Type Description

COMMIT_TX_COUNT BIGINT The total number of transactions that were suc-
cessfully committed using the direct-path
option

ABORT_TX_COUNT BIGINT The total number of transactions that were
rolled back while data were being uploaded
using the direct-path option

INSERT_ROW_COUNT BIGINT The total number of rows that were inserted by
iLoader using the direct-path option

ALLOC_BUFFER_PAGE_
TRY_COUNT

BIGINT The total number of times that page allocation
was requested

ALLOC_BUFFER_PAGE_
FAIL_COUNT

BIGINT The total number of times that a page allocation
request failed
General Reference 314

3.2 Performance Views
To display a view together with the name of the table on which it is based, use a query to join the
performance view with a meta table as follows:

SELECT A.TABLE_NAME,
B.DISK_PAGE_CNT,
B.PCTFREE,
 B.PCTUSED
FROM SYSTEM_.SYS_TABLES_ A, V$DISKTBL_INFO B
WHERE A.TABLE_OID = B.TABLE_OID;

3.2.19.1 Column Information

PCTFREE

Please refer to the description of the corresponding column in the SYS_TABLES_ description.

Column Data Type Description

TABLESPACE_ID SMALLINT The tablespace identifier

TABLE_OID BIGINT The table object identifier

DISK_TOTAL_PAGE_CNT BIGINT The total number of pages in a table

DISK_PAGE_CNT BIGINT The number of pages containing data in a
table

SEG_PID INTEGER The page identifier of a segment of a table

META_PAGE INTEGER This column has been deprecated

FST_EXTRID BIGINT The RID of the first extent in a table

LST_EXTRID BIGINT The RID of the last extent in a table

PCTFREE SMALLINT See SYS_TABLES_

PCTUSED SMALLINT See SYS_TABLES_

INITRANS SMALLINT The initial number of transactions that can
be simultaneously processed in one page

MAXTRANS SMALLINT The maximum number of transactions that
can be simultaneously processed in one
page

INITEXTENTS INTEGER The initial number of extents when a table is
created

NEXTEXTENTS INTEGER The number of extents that can be allocated
when a table is expanded

MINEXTENTS INTEGER The minimum number of extents in a table

MAXEXTENTS INTEGER The maximum number of extents in a table

COMPRESSED_LOGGIN
G

INTEGER Whether to compress a log for a table
315 The Data Dictionary

3.2 Performance Views
PCTUSED

Please refer to the description of the corresponding column in the SYS_TABLES_ description.

INITRANS

This is the initial number of transactions that can be processed simultaneously in one table page.

MAXTRANS

This is the maximum number of transactions that can be processed simultaneously in one table
page.

INITEXTENTS

This is the initial number of extents when a table segment is created.

NEXTEXTENTS

This is the number of additional extents that will be allocated when the size of a table segment is
increased.

MINEXTENTS

This is the minimum number of extents in a table segment.

MAXEXTENTS

This is the maximum number of extents in a table segment.

3.2.20 V$DISK_BTREE_HEADER

This view displays information about the header of a disk BTREE index.

Column name Type Description

INDEX_NAME CHAR(40) The index name

INDEX_ID INTEGER The index identifier

INDEX_TBS_ID INTEGER The tablespace in which the index is saved

TABLE_TBS_ID INTEGER The tablespace in which the table is saved

IS_UNIQUE CHAR(1) Whether an index is a unique key index

COLLENINFO_LIST CHAR(64) A list of the sizes of the values in the index

IS_CONSISTENT CHAR(1) Whether an index is consistent

IS_CREATED_WITH_LOG
GING

CHAR(1) Whether the LOGGING option was specified
at the time the index was created
General Reference 316

3.2 Performance Views
3.2.20.1 Column Information

INDEX_NAME

This is the name of the index.

INDEX_ID

This displays the identifier, unique in the system, of the index.

INDEX_TBS_ID

This is the identifier of the tablespace in which the index is saved.

IS_CREATED_WITH_FOR
CE

CHAR(1) Whether the NOLOGGING FORCE or NOLOG-
GING NOFORCE option was specified at the
time the index was created

COMPLETION_LSN_LFG
_ID

INTEGER The log group identifier when the index was
created

COMPLETION_LSN_FILE
_NO

INTEGER The log file number when the index was cre-
ated

COMPLETION_LSN_FILE
_OFFSET

INTEGER The log file offset when the index was cre-
ated

INIT_TRANS SMALLINT The initial number of transactions that can
be simultaneously processed in a single
index node

MAX_TRANS SMALLINT The maximum number of transactions that
can be simultaneously processed in a single
index node

FREE_NODE_HEAD INTEGER The ID of the first page in a free node

FREE_NODE_CNT BIGINT The number of pages in a free node list

INITEXTENTS INTEGER The initial number of extents when the index
was created.

NEXTEXTENTS INTEGER The number of extents to be allocated when
the index is increased in size

MINEXTENTS INTEGER The minimum number of extents in the
index segment

MAXEXTENTS INTEGER The maximum number of extents in the
index segment

Column name Type Description
317 The Data Dictionary

3.2 Performance Views
TABLE_TBS_ID

This is the identifier of the tablespace containing the table that is connected to the corresponding
index.

IS_UNIQUE

This indicates whether the index is a unique key index. It is set to ‘T’ for a unique key index, and to ‘F’
for a duplicate key index.

T: Unique key index

F: Duplicate key index

COLLENINFO_LIST

This is a list of the sizes of the values in the index. The list is expressed as a comma-delimited string.
The size of a variable length column is expressed as ‘?’. The size of a key can be inferred based on this
list.

Ex)

iSQL> CREATE TABLE D3(I1 SMALLINT, I2 INTEGER, I3 VARCHAR(10), I4 DATE)
TABLESPACE SYS_TBS_DISK_DATA;
Create success.
iSQL> CREATE INDEX D3X ON D3(I4,I3,I2,I1);
Create success.
iSQL> SELECT COLLENINFO_LIST FROM V$DISK_BTREE_HEADER WHERE INDEX_NAME='D3X';
COLLENINFO_LIST
--
8,?,4,2
1 row selected.

IS_CONSISTENT

This indicates whether the index is consistent. It is usually set to ‘T’. It may be set to ‘F' when an index
is created with NOLOGGING or NOFORCE.

T: Normal

F: Abnormal

IS_CREATED_WITH_LOGGING

This indicates whether the LOGGING option was specified at the time that the index was created.

IS_CREATED_WITH_FORCE

This value indicates whether the NOLOGGING FORCE or NOLOGGING NOFORCE option was speci-
fied at the time that the index was created.

COMPLETION_LSN_LFG_ID

This is the identifier of the log group that was current at the time that the index was created. This col-
umn does not have just a single meaning; rather, COMPLETION_LSN_FILE_NO and
COMPLETION_LSN_FILE_OFFSET together constitute the LSN. The LSN indicates the time at which
General Reference 318

3.2 Performance Views
index construction was completed.

COMPLETION_LSN_FILE_NO

This is the log file number that was current at the time that the index was created.

COMPLETION_LSN_FILE_OFFSET

This is the log file offset that was current at the time that the index was created.

INIT_TRANS

This is the initial number of transactions that can simultaneously access a single index node (page)
for an INSERT, UPDATE or DELETE operation.

MAX_TRANS

This is the maximum number of transactions that can simultaneously access a single index node
(page) for an INSERT, UPDATE or DELETE operation.

FREE_NODE_HEAD

A FREE_NODE_HEAD shows the first page of a free node list within an index, a FREE NODE being a
node in which a delete mark has been set for all keys therein.

FREE_NODE_CNT

This is the total number of FREE NODEs in an index.

INITEXTENTS

This is the initial number of extents, which is specified at the time that an index segment is created.

NEXTEXTENTS

This is the number of extents to be allocated when the size of an index segment is increased.

MINEXTENTS

This is the minimum number of extents in an index segment.

MAXEXTENTS

This is the maximum number of extents in an index segment.

3.2.21 V$DISK_RTREE_HEADER

This view displays information about the header of a disk RTREE index.
319 The Data Dictionary

3.2 Performance Views
3.2.21.1 Column Information

For more information about each column, please refer to the V$DISK_BTREE_HEADER performance
view.

FREE_NODE_SCN

This is the view SCN that was current when the first page was added to the free node list.

Column name Type Description

INDEX_NAME CHAR(40) see V$DISK_BTREE_HEADER

INDEX_ID INTEGER see V$DISK_BTREE_HEADER

INDEX_TBS_ID INTEGER see V$DISK_BTREE_HEADER

TABLE_TBS_ID INTEGER see V$DISK_BTREE_HEADER

IS_CONSISTENT CHAR(1) see V$DISK_BTREE_HEADER

IS_CREATED_WITH_LOG
GING

CHAR(1) see V$DISK_BTREE_HEADER

IS_CREATED_WITH_FOR
CE

CHAR(1) see V$DISK_BTREE_HEADER

COMPLETION_LSN_LFG
_ID

INTEGER see V$DISK_BTREE_HEADER

COMPLETION_LSN_FILE
_NO

INTEGER see V$DISK_BTREE_HEADER

COMPLETION_LSN_FILE
_OFFSET

INTEGER see V$DISK_BTREE_HEADER

INIT_TRANS SMALLINT see V$DISK_BTREE_HEADER

MAX_TRANS SMALLINT see V$DISK_BTREE_HEADER

FREE_NODE_HEAD INTEGER see V$DISK_BTREE_HEADER

FREE_NODE_CNT BIGINT see V$DISK_BTREE_HEADER

FREE_NODE_SCN CHAR(16) The view SCN that was current when the first
page was added to the free node list

INITEXTENTS INTEGER see V$DISK_BTREE_HEADER

NEXTEXTENTS INTEGER see V$DISK_BTREE_HEADER

MINEXTENTS INTEGER see V$DISK_BTREE_HEADER

MAXEXTENTS INTEGER see V$DISK_BTREE_HEADER
General Reference 320

3.2 Performance Views
3.2.22 V$DISK_UNDO_USAGE

This view displays the amount of undo tablespace on disk that is currently being used.

3.2.22.1 Column Information

TX_EXT_CNT

This is the number of extents in all transaction segments. These extents cannot be used in undo seg-
ments.

USED_EXT_CNT

This is the number of extents currently used in undo segments. Because these extents are currently
being used, they cannot be reused by subseqent tasks.

UNSTEALABLE_EXT_CNT

Multiple undo segments exist in the database. Moreover, the number of extents that can be used
within each undo segment differs for different undo segments. Therefore, for efficient undo seg-
ment management, the "steal" operation is provided so that extents that can be used by other undo
segments can be taken by them. However, depending on the circumstances, each undo segment
has a certain number of extents that cannot be stolen by other undo segments. These are called
"unstealable" extents.

REUSABLE_EXT_CNT

This is the number of extents that can be reused because they contain undo records that are no lon-
ger necessary.

TOTAL_EXT_CNT

This is the total number of extents in undo tablespace.

Column name Type Description

TX_EXT_CNT BIGINT The number of extents in all transaction seg-
ments

USED_EXT_CNT BIGINT The number of extents currently being used
in undo segments

UNSTEALABLE_EXT_CNT BIGINT The number of extents that cannot be stolen
by other undo segments (when a segment
does not have enough extents, it can take
extents from other undo segments)

REUSABLE_EXT_CNT BIGINT The number of extents that can be reused

TOTAL_EXT_CNT BIGINT The total number of extents in undo
tablespace
321 The Data Dictionary

3.2 Performance Views
3.2.23 V$EVENT_NAME

This displays information about various wait events for which an ALTIBASE HDB server is waiting.

3.2.23.1 Column Information

EVENT_ID

This is the identifier of the wait event.

NAME

This is the name of the wait event. The identifiers, names and corresponding descriptions are given
in the following table.

Column name Type Description

EVENT_ID INTEGER The identifier of a wait event

NAME VARCHAR(128) The name of the wait event

WAIT_CLASS_ID INTEGER The identifier of a wait class

WAIT_CLASS VARCHAR(128) The name of the wait class

EVENT_ID NAME Description

0 latch: buffer busy waits A wait to access a block being changed by another
session

1 latch: drdb B-Tree index
SMO

A wait caused by a session that is executing a Struc-
ture Modification Operation (SMO) of a B-tree index

2 latch: drdb B-Tree index
SMO by other session

A wait until the completion of an SMO of a B-tree
index by another session

3 latch: drdb R-Tree index
SMO

A wait caused by a session that is executing an SMO
of an R-tree index

4 db file multi page read A wait caused by a session that is waiting for the
completion of a request to read multiple pages

5 db file single page read A wait caused by a session that is waiting for the
completion of a request to read a single page

6 db file single page write A wait until a free BCB is obtained before an LRU
flush can be executed

7 enq: TX – row lock con-
tention, data row

A wait to place a lock on a row so that it can be
updated

8 enq: TX – allocate
TXSEG entry

A wait to assign a transaction segment entry
General Reference 322

3.2 Performance Views
9 latch free: drdb file i/o A wait to obtain a file latch in order to perform read/
write I/O on a disk file

10 latch free: drdb tbs list A wait to obtain a hash latch on a tablespace being
used by another thread

11 latch free: drdb tbs cre-
ation

A wait caused by a session that is attempting to cre-
ate a file when a tablespace is created

12 latch free: drdb page list
entry

A wait to obtain a latch on a disk page list being
used by another thread

13 latch free: drdb transac-
tion segment freelist

A wait for a transaction segment free list

14 latch free: drdb LRU list A wait for an LRU list in the buffer pool

15 latch free: drdb prepare
list

A wait for a prepare list in the buffer pool

16 latch free: drdb prepare
list wait

A wait until a BCB has been added to a prepare list
in the buffer pool

17 latch free: drdb flush list A wait for a flush list in the buffer pool

18 latch free: drdb check-
point list

A wait for a checkpoint list in the buffer pool

19 latch free: drdb buffer
flusher min recovery
LSN

A wait for a latch for concurrency control of a Recov-
ery LSN of the buffer pool flusher

20 latch free: drdb buffer
flush manager req job

A wait for a latch for concurrency control of a flush
job of the buffer pool

21 latch free: drdb buffer
bcb mutex

A wait for a latch for concurrency control of a BCB of
the buffer pool

22 latch free: drdb buffer
bcb read io mutex

A wait for a latch on a BCB of the buffer pool for
page loading

23 latch free: drdb buffer
buffer manager expand
mutex

A wait for expansion of the buffer pool

24 latch free: drdb buffer
hash mutex

A wait for a buffer pool hash

25 latch free: plan cache
LRU List mutex

A wait to obtain a latch on an LRU list in a plan
cache when adding, moving, or removing a plan
from the list.

26 latch free: statement list
mutex

A wait to obtain a latch on a statement list when
adding, moving, or removing a statement from the
list.

EVENT_ID NAME Description
323 The Data Dictionary

3.2 Performance Views
WAIT_CLASS_ID

This is the identifier of the class of a wait event. For more detailed information on wait class identifi-
ers, please refer to V$WAIT_CLASS_NAME.

WAIT_CLASS

Wait events are conceptually grouped into broadly defined wait classes. For more detailed informa-
tion on these wait classes, please refer to V$WAIT_CLASS_NAME.

3.2.24 V$FILESTAT

This view displays cumulative statistical information about I/O on individual disk files since the sys-
tem was started. These statistics can be used to determine which data files are hot spots.

27 latch free: others A wait to obtain a latch on anything being used by
another thread that was not mentioned above

28 no wait event No wait event exists

EVENT_ID NAME Description

Column name Type Description

SPACEID INTEGER The tablespace identifier

FILEID INTEGER The data file identifier

PHYRDS BIGINT The number of physical read I/O operations
that have been conducted

PHYWRTS BIGINT The number of physical write I/O operations
that have occurred

PHYBLKRD BIGINT The number of pages that have been physi-
cally opened for reading

PHYBLKWRT BIGINT The number of pages that have been physi-
cally written to disk

SINGLEBLKRDS BIGINT The number of read operations that have
taken place on single pages

READTIM DOUBLE The total time (in milliseconds) spent on read
I/O operations

WRITETIM DOUBLE The total time (in milliseconds) spent on
write operations

SINGLEBLKRDTIM DOUBLE The total time taken to read a single page (in
milliseconds)

AVGIOTIM DOUBLE The average time (in milliseconds) per I/O
operation
General Reference 324

3.2 Performance Views
3.2.24.1 Column Information

SPACEID

This is the identifier of the tablespace.

FILEID

This is the identifier of the data file.

PHYRDS

This is the total number of physical read I/O operations that have been performed.

PHYWRTS

This is the total number of physical write operations that have been performed.

PHYBLKRD

This is the total number of pages that have been opened for physical reading.

PHYBLKWRT

This is the total number of pages that have been physically written to disk.

SINGLEBLKRDS

This is the total number of read I/O operations that have been performed on single pages.

READTIM

This is the total time (in milliseconds) spent performing read I/O operations.

WRITETIM

This is the total time (in milliseconds) spent performing write I/O operations.

LSTIOTIM DOUBLE The time (in milliseconds) spent performing
the most recent I/O operation

MINIOTIM DOUBLE The shortest time (in milliseconds) spent on
a single I/O operation

MAXIORTM DOUBLE The longest time (in milliseconds) spent per-
forming a single read operation

MAXIOWTM DOUBLE The longest time (in milliseconds) spent per-
forming a single write operation

Column name Type Description
325 The Data Dictionary

3.2 Performance Views
SINGLEBLKRDTIM

This is the total amount of time (in milliseconds) spent performing read I/O operations on single
pages.

AVGIOTIM

This is the average time (in milliseconds) spent performing a single I/O operation.

LSTIOTIM

This is the time (in milliseconds) spent performing the most recent I/O operation.

MINIOTIM

This is the minimum time (in milliseconds) spent performing a single I/O operation.

MAXIORTM

This is the maximum time (in milliseconds) spent performing a single read I/O operation.

MAXIOWTM

This is the maximum time (in milliseconds) spent performing a single write I/O operation.

3.2.25 V$FLUSHER

This view displays information about flushing tasks.

Column name Type Description

ID INTEGER This is the identifier of the flusher

ALIVE INTEGER This indicates whether the flusher is cur-
rently active.

CURRENT_JOB INTEGER Current job
1: replacement flushing is underway
2: checkpoint flushing is underway
3: an object is being flushed

DOING_IO INTEGER This indicates whether the flusher is per-
forming disk I/O.

INIOB_COUNT INTEGER This is the number of times that an internal
buffer has been directly accessed in order to
save contents to be flushed therein.

REPLACE_FLUSH_JOBS BIGINT This is the cumulative number of replace-
ment flushing tasks that have been com-
pleted.
General Reference 326

3.2 Performance Views
3.2.25.1 Column Information

ID

This is the identifier of the flusher. A newly created identifier cannot be a duplicate of an existing
identifier.

ALIVE

This indicates whether the flusher is currently active. Individual flushers can be started or stopped
using DCL statements.

REPLACE_FLUSH_PAGES BIGINT This is the cumulative number of pages that
have been written to disk by replacement
flushing.

REPLACE_SKIP_PAGES BIGINT This is the cumulative number of pages for
which flushing was canceled during replace-
ment flushing.

CHECKPOINT_FLUSH_J
OBS

BIGINT This is the cumulative number of checkpoint
flushing tasks that have been completed.

CHECKPOINT_FLUSH_P
AGES

BIGINT This is the cumulative number of pages that
have been written to disk by checkpoint
flushing.

CHECKPOINT_SKIP_PAG
ES

BIGINT This is the cumulative number of pages for
which flushing was canceled during check-
point flushing.

OBJECT_FLUSH_JOBS BIGINT This is the cumulative number of times that
object flushing has been performed.

OBJECT_FLUSH_PAGES BIGINT This is the cumulative number of pages that
have been written to disk by object flushing.

OBJECT_SKIP_PAGES BIGINT This is the cumulative number of pages for
which flushing was canceled during object
flushing.

LAST_SLEEP_SEC INTEGER This is the length of time that the flusher has
slept after having completed all of its tasks.

TIMEOUT BIGINT This is the number of times that a sleeping
flusher has woken up in order to check
whether it has any tasks.

SIGNALED BIGINT This is the number of times that the flusher
has been woken up by a signal from ALTI-
BASE HDB.

TOTAL_SLEEP_SEC BIGINT This is the total length of time that the
flusher has slept.

Column name Type Description
327 The Data Dictionary

3.2 Performance Views
CURRENT_JOB

This indicates the type of job that the flusher is currently performing. A value of 1 indicates that the
flusher is performing replacement flushing. The purpose of replacement flushing is to flush buffers
that have not been accessed for a long time so that they can be replaced.

A value of 2 indicates that the flusher is performing checkpoint flushing. The purpose of checkpoint
flushing is to flush the buffer that has not been flushed for the longest time in order to reduce the
amount of time required to perform checkpointing.

A value of 3 indicates that the flusher is performing object flushing on a particular object, such as an
index, table, segment, etc.

DOING_IO

This indicates whether the flusher is currently performing disk I/O in order to fulfill its current task.

INIOB_COUNT

In order to save pages to disk, their contents are saved in an internal buffer (IOB). This value indicates
the number of times that this internal buffer has been directly accessed in order to save contents to
be flushed therein.

REPLACE_FLUSH_PAGES

This is the cumulative number of pages that have been written to disk in the course of performing
replacement flushing tasks.

REPLACE_SKIP_PAGES

This is the cumulative number of pages for which a flushing task was canceled during replacement
flushing. Such cancellation can occur either according to some policy or in the interests of efficiency.

CHECKPOINT_FLUSH_PAGES

This is the cumulative number of pages that have been written to disk in the course of performing
checkpoint flushing tasks.

CHECKPOINT_SKIP_PAGES

This is the cumulative number of pages for which a flushing task was canceled during checkpoint
flushing. Such cancellation can occur either according to some policy or in the interests of efficiency.

OBJECT_FLUSH_PAGES

This is the cumulative number of pages that have been written to disk in the course of performing
object flushing tasks.

OBJECT_SKIP_PAGES

This is the cumulative number of pages for which a flushing task was canceled during object flush-
ing. Such cancellation can occur either according to some policy or in the interests of efficiency.
General Reference 328

3.2 Performance Views
TIMEOUT

Flushers that have no tasks and thus go to sleep are required to wake up at regular intervals to check
whether they have work to do. This is the number of times that this has occurred.

SIGNALED

In order to improve the performance with which some task is performed, ALTIBASE HDB can signal a
sleeping flusher and wake it up. This value is the number of times that the flusher has been woken
up by such a signal.

TOTAL_SLEEP_SEC

This is the total length of time that the flusher has slept because the flusher did not have any work to
do.

3.2.26 V$FLUSHINFO

This view displays buffer flush information.

3.2.26.1 Column Information

LOW_FLUSH_LENGTH

This is the minimum length of the flush list above which replacement flushing can occur.

Column Data Type Description

LOW_FLUSH_LENGTH INTEGER The minimum length of the flush list above
which replacement flushing can occur

HIGH_FLUSH_LENGTH INTEGER The flush list length at which the flusher
ignores REPLACE_FLUSH_COUNT and
flushes all the buffers in the flush list.

LOW_PREPARE_LENGTH INTEGER The threshold length of the prepare list that
can cause replacement flushing. Replace-
ment flushing occurs when the prepare list is
shorter than this length.

CHECKPOINT_FLUSH_COUNT INTEGER The number of buffers to be flushed when
checkpoint flushing occurs.

FAST_START_IO_TARGET BIGINT The number of dirty pages that will not be
flushed when checkpoint flushing occurs

FAST_START_LOGFILE_TARGET INTEGER The number of log files that will not be
flushed when checkpoint flushing occurs

REQ_JOB_COUNT INTEGER The number of tasks currently registered for
the flush manager
329 The Data Dictionary

3.2 Performance Views
HIGH_FLUSH_LENGTH

This is the flush list length at which the flusher ignores REPLACE_FLUSH_COUNT and flushes all the
buffers in the flush list.

LOW_PREPARE_LENGTH

This is the threshold length of the prepare list. Replacement flushing occurs if the length of a prepare
list drops below this length.

CHECKPOINT_FLUSH_COUNT

This is the number of buffers that will be flushed when checkpoint flushing is performed.

FAST_START_IO_TARGET

This is the number of dirty pages that are not flushed when checkpoint flushing occurs.

FAST_START_LOGFILE_TARGET

This is the number of log files that are not flushed when checkpoint flushing occurs. These are the
most recently created log files.

REQ_JOB_COUNT

This is the number of jobs registered in the flush manager.

3.2.27 V$INDEX

This view shows information about the indexes that currently exist in the database:

3.2.27.1 Column Information

TABLE_OID

This is the object identifier of the table for which the index was created, and stores the physical loca-
tion of the header, which contains the table information.

Column Name Type Description

TABLE_OID BIGINT The object identifier of the table header

INDEX_SEG_PID INTEGER The page identifier of a segment header in
the case of a disk index

INDEX_ID INTEGER The identifier of the index

INDEX_TYPE VARCHAR(7) An indicator that identifies whether the
index is a primary key or a standard index
General Reference 330

3.2 Performance Views
INDEX_SEG_PID

For a disk index, this is the page identifier of a segment header.

INDEX_ID

This is the identifier of the index in the system.

INDEXTYPE

This indicates whether the index is used as a primary key or as a normal index.

PRIMARY: The index is used as primary key.

NORMAL: The index is used as normal one.

3.2.28 V$INSTANCE

This view displays information about an Altibase database, the amount of time it took to start up,
and the amount of time that has elapsed since startup.

3.2.29 V$LATCH

This view displays statistical information about the BCB latch of the buffer pool, including the num-
ber of attempts to obtain a latch on pages on which it is desired to perform read or write I/O, the
number of latches that were successfully obtained immediately, and the number of failures to obtain
a latch. These statistics are calculated separately for read and write latches.

Column Data Type Description

STARTUP_PHASE VARCHAR(13) The current startup phase

STARTUP_TIME_SEC BIGINT The system time at which the system was
started (in seconds).

WORKING_TIME_SEC BIGINT The amount of time that has elapsed from
startup to the present

Column Data Type Description

SPACE_ID INTEGER The tablespace identifier

PAGE_ID INTEGER The page identifier

TRY_READ_LATCH BIGINT The number of attempts to obtain read
latches

READ_SUCCESS_IMME BIGINT The number of immediate successes to
obtain read latches

READ_MISS BIGINT The number of failures to obtain read latches
331 The Data Dictionary

3.2 Performance Views
3.2.30 V$LFG

This view provides statistical information to help database administrators monitor group commit
activity. For more detailed information on each column, please refer to the section in Administrator’s
Manual pertaining to Group Commit.

TRY_WRITE_LATCH BIGINT The number of attempts to obtain write
latches

WRITE_SUCCESS_IMME BIGINT The number of immediate successes to
obtain write latches

WRITE_MISS BIGINT The number of failures to obtain write
latches

SLEEPS_CNT BIGINT The number of sleeps related to latch
attempts

Column Data Type Description

Column Data Type Description

LFG_ID INTEGER The log file group identifier

CUR_WRITE_LF_NO INTEGER The log file number of the log file currently
being written to

CUR_WRITE_LF_OFFSET INTEGER The offset of the log file currently being writ-
ten to

LF_OPEN_COUNT INTEGER The number of open log files

LF_PREPARE_COUNT INTEGER The number of log files that have been cre-
ated in advance

LF_PREPARE_WAIT_COUNT INTEGER The number of waits to switch to new log
files

LST_PREPARE_LF_NO INTEGER The identifier of the most recently prepared
log file

END_LSN_LFGID INTEGER The Log File Group portion of the LSN (Log
Sequence Number) at which a REDO opera-
tion will start when ALTIBASE HDB is
restarted

END_LSN_FILE_NO INTEGER The file number portion of the LSN (Log
Sequence Number) at which a REDO opera-
tion will start when ALTIBASE HDB is
restarted

END_LSN_OFFSET INTEGER The offset within a LSN (Log Sequence Num-
ber) at which a REDO operation will start
when ALTIBASE HDB is restarted
General Reference 332

3.2 Performance Views
3.2.30.1 Column Information

LFG_ID

This is a unique log file group number, starting from 0 and incremented by 1.

For example, if there are four log file groups in a system, querying LFG_ID will result in four rows with
the values 0, 1, 2, and 3.

CUR_WRITE_LF_NO

This is the number of the log file currently being used to store logs.

CUR_WRITE_LF_OFFSET

This is the log file offset currently being used to store logs.

LF_OPEN_COUNT

This is the number of log files on disk that are open for use by ALTIBASE HDB.

FIRST_DELETED_LOGFILE INTEGER The first log file that was deleted (inclusive)

LAST_DELETED_LOGFILE INTEGER The log file immediately preceding this log
file is the last log file that was deleted

RESET_LSN_LFGID INTEGER The Log File Group identifier portion of the
LSN (Log Sequence Number) used after data-
base recovery

RESET_LSN_FILE_NO INTEGER The file number portion of the LSN (Log
Sequence Number) used after database
recovery

RESET_LSN_OFFSET INTEGER The offset of the LSN (Log Sequence Num-
ber) used after database recovery

UPDATE_TX_COUNT INTEGER The number of transactions in the LFG that
are currently making changes to the data-
base (only available for group commit)

GC_WAIT_COUNT INTEGER The number of waits for disk I/O (only avail-
able for group commit)

GC_ALREADY_SYNC_COUNT INTEGER The number of completed disk I/O opera-
tions (only available for group commit)

GC_REAL_SYNC_COUNT INTEGER The number of actual disk I/O operations
that occurred during group commit

Column Data Type Description
333 The Data Dictionary

3.2 Performance Views
LF_PREPARE_COUNT

This is the number of log files that have been created in advance (prepared) by the log file creation
thread up to the present moment.

LF_PREPARE_WAIT_COUNT

When all of the prepared log files have been used, it is necessary to create new log files. This is the
total number of waits for log files to be created in order to switch to a new log file.

If this value is large, setting the PREPARE_LOG_FILE_COUNT property to a higher value will help
ensure that a sufficient number of log files is prepared in advance. For more information about
PREPARE_LOG_FILE_COUNT, please refer to the ALTIBASE HDB General Reference.

LST_PREPARE_LF_NO

This is the number of the log file that was most recently prepared (created in advance) by the log file
creation thread.

END_LSN_LFGID

When the system is restarted, this is a unique LFG number, which is part of the LSN (Log Sequence
Number) at which REDO restarts. It is the same as the value in the LFG_ID column.

When the system is restarted, REDO may not start at precisely this position within the LFG. However,
it can be guaranteed that REDO will definitely begin with a log having a greater LSN value than the
one shown here.

END_LSN_FILE_NO

This shows the number of the log file, which is part of the LSN (Log Sequence Number), at which
REDO commences when the system is restarted.

END_LSN_OFFSET

This shows the offset within the log file, which is part of the LSN (Log Sequence Number), at which
REDO commences when the system is restarted.

FIRST_DELETED_LOGFILE

This shows the number of the first of the log files that were classified as unnecessary and deleted
during checkpointing. This means that the log file having this number was deleted during check-
pointing.

LAST_DELETED_LOGFILE

This shows a number which is 1 greater than the number of the last of the log files that were classi-
fied as unnecessary and deleted during checkpointing. This means that the log file having this num-
ber was not deleted during checkpointing.

RESET_LSN_LFGID

RESET_LSN is the LSN for recording logs pertaining to new tasks that arise after the time point at
General Reference 334

3.2 Performance Views
which database recovery occurs due to the system suffering from a fault or for some other reason.
This column contains the unique LFG number, which is part of the RESET_LSN. It has the same value
as that in the LFG_ID column.

RESET_LSN_FILE_NO

RESET_LSN is the first LSN after the time point at which recovery was performed.
RESET_LSN_FILE_NO is the log file number portion of RESET_LSN.

RESET_LSN_OFFSET

This shows the offset within the log file, and is a portion of RESET_LSN.

UPDATE_TX_COUNT

This returns, in real time, the number of transactions in the LFG that are currently making changes to
the database.

GC_WAIT_COUNT

This shows the total number of times transactions in this LFG had to wait for disk I/O for group com-
mit.

GC_ALREADY_SYNC_COUNT

During group commit, it is sometimes not necessary to perform disk I/O for some transactions,
because the logs containing them have already been written to disk. This is the cumulative number
of times this has occurred.

GC_REAL_SYNC_COUNT

This shows the number of actual disk I/O operations related to transactions in this LFG during group
commit.

3.2.31 V$LINKER_STATUS

This view shows the status of AltiLinker for Database Link.

Column name Type Description

LINKER_STATUS INTEGER Indicates the linker status. If it is 1, the linker
is in a normal state. If it is 0, the linker is in an
abnormal state, or is not available.

SESSION_COUNT INTEGER Indicates the number of Database Link ses-
sions between ALTIBASE HDB and the linker.
335 The Data Dictionary

3.2 Performance Views
3.2.31.1 Column Information

LINKER_STATUS

This is the status of the linker. A value of 1 indicates that the linker is in a normal state, while a value
of 0 indicates that the linker is in an abnormal state, or is not available.

3.2.32 V$LOCK

This view displays information about lock nodes for all tables in the database at the current point in
time.

3.2.32.1 Column Information

LOCK_ITEM_TYPE

This indicates the type of object that is locked, and can have the following values:

Column Data Type Description

LOCK_ITEM_TYPE VARCHAR(7) The type of object that is locked

TBS_ID INTEGER The tablespace identifier

TABLE_OID BIGINT The table object identifier

DBF_ID BIGINT The database file identifier

TRANS_ID BIGINT The transaction identifier

LOCK_DESC VARCHAR(32) A character string indicating the lock mode
e.g.) IX, IS, X

LOCK_CNT INTEGER The number of locks for this lock node

IS_GRANT BIGINT Indicates whether the table is locked or is
waiting to be locked

Value Description

NONE Cannot have this value

TBS Tablespace

TBL Table

DBF Database file

UNKNOWN Unknown object type
General Reference 336

3.2 Performance Views
3.2.33 V$LOCK_STATEMENT

This view displays information about statements that are holding or waiting to acquire locks.

3.2.34 V$LOG

This view displays information about log anchors.

Column Data Type Description

SESSION_ID INTEGER The session identifier

ID INTEGER The statement identifier

TX_ID BIGINT The transaction identifier

QUERY VARCHAR(16384) The query statement

STATE INTEGER The state of the statement

BEGIN_FLAG INTEGER A flag indicating the beginning of the state-
ment

LOCK_ITEM_TYPE VARCHAR(7) The type of object that is locked

TBS_ID INTEGER The tablespace identifier

TABLE_OID BIGINT The table object identifier

DBF_ID BIGINT The database file identifier

LOCK_DESC VARCHAR(32) A character string indicating the lock mode
e.g.) IX, IS, X

LOCK_CNT INTEGER The number of locks for the lock node

IS_GRANT BIGINT Indicates whether the table is locked or is
waiting to be locked

Column Data Type Description

BEGIN_CHKPT_LFGID INTEGER The LFGID of the checkpoint start log of the
most recently executed checkpoint

BEGIN_CHKPT_FILE_NO INTEGER The log file number of the checkpoint start
log of the most recently executed check-
point

BEGIN_CHKPT_FILE_OF
FSET

INTEGER The log offset of the checkpoint start log of
the most recently executed checkpoint

END_CHKPT_LFGID INTEGER The LFGID of the checkpoint end log of the
most recently executed checkpoint
337 The Data Dictionary

3.2 Performance Views
3.2.34.1 Column Information

BEGIN_CHKPT_LFGID

This is the Log File Group ID of the log file containing the log at which the most recent checkpoint
began.

BEGIN_CHKPT_FILE_NO

This is the file number of the log file containing the log at which the most recent checkpoint began.

BEGIN_CHKPT_FILE_OFFSET

This is the log offset of the log file containing the log at which the most recent checkpoint began.

END_CHKPT_LFGID

This is the Log File Group ID of the log file containing the log at which the most recent checkpoint
ended.

END_CHKPT_FILE_NO

This is the file number of the log file containing the log at which the most recent checkpoint ended.

END_CHKPT_FILE_NO INTEGER The log file number of the checkpoint end
log of the most recently executed check-
point

END_CHKPT_FILE_OFFS
ET

INTEGER The log offset of the checkpoint end log of
the most recently executed checkpoint

SERVER_STATUS VARCHAR(15) A character string indicating the status of the
server

ARCHIVELOG_MODE VARCHAR(12) A character string indicating the status of
database archive mode

TRANSACTION_SEGME
NT_COUNT

INTEGER The number of transaction segments to be
created in undo tablespace

OLDEST_LFGID INTEGER When restart recovery is performed, the
LFGID of the LSN from which disk-related
redo will begin

OLDEST_LOGFILE_NO INTEGER When restart recovery is performed, the log
file number from which disk-related redo will
begin

OLDEST_LOGFILE_OFFS
ET

INTEGER When restart recovery is performed, the log
file offset from which disk-related redo will
begin

Column Data Type Description
General Reference 338

3.2 Performance Views
END_CHKPT_FILE_OFFSET

This is the log offset of the log file containing the log at which the most recent checkpoint ended.

SERVER_STATUS

This is the status of the server.

SERVER SHUTDOWN: The server has been shut down.

SERVER STARTED: The server is running.

ARCHIVELOG_MODE

This indicates whether Archivelog mode is enabled for the database.

ARCHIVE: In this mode, unnecessary log files are stored in an extra directory for use in performing
media recovery.

NOARCHIVE: In this mode, unnecessary log files are deleted.

TRANSACTION_SEGMENT_COUNT

This is the number of transaction segments to be created in undo tablespace.

OLDEST_LFGID

This is the Log File Group ID of the log file containing the LSN from which REDO will start when the
database is restarted in recovery mode. Every log is identified by a unique log sequence number
(LSN). This ensures that recovery performs REDO on all log records required to bring pages up to
date.

OLDEST_LOGFILE_NO

This is the number of the log file containing the LSN from which REDO will start when the database
is restarted in recovery mode.

OLDEST_LOGFILE_OFFSET

This is the offset of the log file containing the LSN from which REDO will start when the database is
restarted in recovery mode.

3.2.35 V$LOCK_WAIT

This view shows wait information between transactions that are executed on the system.

Column name Type Description

TRANS_ID BIGINT The identifier of the waiting transaction
339 The Data Dictionary

3.2 Performance Views
3.2.35.1 Column Information

TRANS_ID

This is the identifier of the transaction that is currently waiting.

WAIT_FOR_TRANS_ID

This is the identifier of the transaction for which the transaction identified by TRANS_ID is waiting.

SQL> select * from v$lock_wait;
V$LOCK_WAIT.TRANS_ID V$LOCK_WAIT.WAIT_FOR_TRANS_ID

1216 2208
5344 2208
2 rows selected.

In the above example, transactions 1216 and 5344 are waiting for transaction 2208.

3.2.36 V$MEMGC

This view displays memory space recovery (that is, memory garbage collection) information.

WAIT_FOR_TRANS_ID BIGINT The identifier of the transaction being waited
for

Column name Type Description

Column Data Type Description

GC_NAME VARCHAR(128) MEM_LOGICAL_AGER: Previous version
index key slot release thread
MEM_DELTHR: A thread that releases deleted
records and supports pending operations
such as DROP TABLE etc.

CURRSYSTEMVIEWSCN VARCHAR(29) The current system view SCN

MINMEMSCNINTXS VARCHAR(29) The lowest of the view SCNs for memory-
related transactions

OLDESTTX INTEGER The identifier of the oldest transaction (the
identifier of the transaction to which MIN-
MEMSCNINTXS belongs)

SCNOFTAIL VARCHAR(29) The commit SCN of the tail in garbage collec-
tion OID list
General Reference 340

3.2 Performance Views
3.2.36.1 Column Information

Because ALTIBASE HDB supports MVCC, multiple versions of a single record can exist. In other words,
one record consists of a most recent version and a number of previous versions. For more details on
MVCC, please refer to the sections pertaining to Multi-Version Concurrency Control (MVCC) in both
the Administrator’s Manual and the Getting Started Guide.

AGING_REQUEST_OID_CNT

If 10 records are deleted in one transaction, which is then committed, there are now 10 outdated
records that can be cleared to recover space. However, because ADD_OID_CNT is determined on the
basis of transactions, it is incremented by 1. To remedy this, AGING_REQUEST_OID_CNT, which is
determined on the basis of OIDs, is incremented by 10.

AGING_PROCESSED_OID_CNT

If the garbage collector (or ager) deletes 10 outdated versions of records from the same OID list,
GC_OID_CNT is only incremented by 1 because it determined on the basis of lists. To remedy this,
AGING_PROCESSED_OID_CNT, which is determined on the basis of OIDs, is incremented by 10.

THREAD_COUNT

This shows the number of garbage collection threads.

3.2.37 V$MEMSTAT

This view displays statistics about the memory being used by ALTIBASE HDB processes.

IS_EMPTY_OIDLIST BIGINT Whether the garbage collection OID list is
empty
0: empty
1: not empty

ADD_OID_CNT BIGINT The number of transactions that caused OIDs
to be added for garbage collection manage-
ment

GC_OID_CNT BIGINT The number of times OIDs are deleted for
garbage collection

AGING_REQUEST_OID_
CNT

BIGINT The number of outdated versions of records
for which deletion has been requested

AGING_PROCESSED_OI
D_CNT

BIGINT The number of outdated versions of records
that have been deleted

THREAD_COUNT INTEGER The number of garbage collection threads

Column Data Type Description
341 The Data Dictionary

3.2 Performance Views
3.2.37.1 Column Information

NAME

This is the name of the module being used by ALTIBASE HDB. This column contains the following
memory modules.

Column Data Type Description

NAME VARCHAR(40) The name of the memory module

ALLOC_SIZE BIGINT The amount of memory being used by the
module (in bytes)

ALLOC_COUNT BIGINT The number of units of memory that make
up ALLOC_SIZE

MAX_TOTAL_SIZE BIGINT The maximum memory size of the module
(in bytes)

Name Description

Async_IO_Manager The memory that is used when asynchronous I/O occurs

CM_Buffer The buffer memory used for communcation (TCP, Unix domain
Socket, IPC)

CM_DataType The memory that is used for sending and receiving large pack-
ets

CM_Multiplexing The memory that is used for saving session information for
communication

CM_NetworkInterface The memory that is used for saving information about individ-
ual communication nodes

Clock_Manager The memory for the clock manager. The clock manager uses
the CPU clock when it checks the system time.

Cond_Manager The memory that is used for managing condition variables
used for multiple thread control

DatabaseLink The memory that is used by Database Link

Dynamic Module Loader The memory that is used when the shared library is loaded

GIS_DataType The memory that is used for handling GIS data

GIS_Disk_Index The memory that is used for managing the Disk Spatial Index
for GIS data

GIS_Function The memory that is used for space-related calculations

GIS_TEMP_MEMORY The memory that is used for creating R-tree indexes
General Reference 342

3.2 Performance Views
Index_Memory The memory that is used for managing index information

Linker The memory that is used by the Linker process of the Database
Link module

Main_Module_Channel ALTIBASE HDB Main Module Process

Main_Module_Distributed The memory that is used for XA management

Main_Module_Queue The memory that is used for queues

Main_Module_Thread The memory that is used for managing threads

Main_Module_Utility Not used at present

Mathematics The memory that is used for various kinds of mathematical
operations

Mutex_Manager The memory that is used for managing mutexes

OS_Independent Not used at present

Profile_Manager The memory that is used by the Profile Manager

Query_Binding The memory that is used for binding host variables

Query_Common Memory that is used for other purposes

Query_Conversion The memory that is used to perform conversion when binding
host variables

Query_DML The memory that is used for executing DML statements

Query_Execute The memory that is used when queries are executed

Query_Meta The memory that is used to manage cached meta information,
which is checked while the server is active

Query_PSM_Execute The memory that is used for executing PSM (Persistent Stored
Module)

Query_PSM_Node The memory that is used for managing PSM array variables

Query_Prepare The memory that is used for preparing queries for execution

Query_Sequence The memory that is used for managing sequences

Query_Transaction The memory that is used for executing triggers

Replication_Common Not used at present

Replication_Control The memory that is used by the Replication Manager

Replication_Data The memory that is used for processing XLOGs

Replication_Executor Not used at present

Replication_Met The memory that is used by the meta cache

Replication_Network The memory that is used for communication for replication

Name Description
343 The Data Dictionary

3.2 Performance Views
Replication_Receiver The memory that is used by the replication Receiver

Replication_Recovery The memory that is used to perform recovery using replication

Replication_Sender The memory that is used by the replication Sender

Replication_Storage The memory that is used to apply XLOGs

Replication_Sync The memory that is used for synchronization in replication

SQL Plan Cache Control The memory that is used for the SQL Plan Cache

Socket_Manager Not used at present

Storage_DataPort Memory that is used for executing DataPort

Storage_Disk_Buffer The memory that is used by the Disk Buffer Manager

Storage_Disk_Collection The memory that is used for performing Direct-Path Insert and
LOB calculations for disk tables

Storage_Disk_Datafile The memory that is used for data file management tasks, such
as creating I/O buffers and data file nodes

Storage_Disk_Index The memory that is used for managing disk indexes

Storage_Disk_Page The memory that is used for assigning disk LOB segment
descriptors and disk table page list mutexes

Storage_Disk_Recovery Memory that is used to ensure the consistency of a disk data-
base

Storage_Memory_Ager Memory that is used for the garbage collector and the data-
base recovery ("refining") thread

Storage_Memory_Collection Memory that is used for managing records in memory tables

Storage_Memory_Index Memory that is used for managing memory indexes

Storage_Memory_Interface Memory that is used at the storage module interface level

Storage_Memory_Locking Memory that is used for locking tables and tablespaces

Storage_Memory_Manager The memory in which memory data are actually stored

Storage_Memory_Page The memory that is used for managing memory pages

Storage_Memory_Recovery The memory that is used to perform recovery

Storage_Memory_Transaction Memory that is used for managing transaction information

Storage_Memory_Utility Memory that is used when the Storage Manager Tool is used

Storage_Tablespace Memory that is used for managing and allocating tablespace
nodes

Tablespace Free Extent Pool The memory that is used for managing free extent pools of
tablespaces

Temp_Memory The memory that is used when allocating temporary space

Name Description
General Reference 344

3.2 Performance Views
ALLOC_SIZE

This is the amount of memory being used by the module.

ALLOC_COUNT

This is the number of units of memory that make up ALLOC_SIZE in the module.

MAX_TOTAL_SIZE

This is the maximum memory size that the module has occupied.

3.2.38 V$MEMTBL_INFO

This view displays information about the status of memory tables.

Timer_Manager Memory for the timer manager, which uses the timer thread
when checking the system time

Transaction_DiskPage_Touche
d_List

The memory that is used for managing disk data pages that are
affected by a transaction

Transaction_OID_List The memory that is used for making the OID (object identifier)
list of a memory database

Transaction_Segment_Table Memory that is used for managing Undo segments and Trans-
action Status segments

Transaction_Table Memory that is used for assigning transaction objects

Transaction_Table_Info Memory that is used for managing information about the
tables changed by a transaction

Volatile_Log_Buffer Volatile Log Buffer memory

Volatile_Memory_Manager The memory in which volatile memory data are stored

Volatile_Memory_Page The memory that is used for managing volatile memory pages

Name Description

Column Data Type Description

TABLESPACE_ID SMALLINT The tablespace identifier

TABLE_OID BIGINT The table object identifier

MEM_PAGE_CNT BIGINT The number of pages containing fixed-
length columns in the table

MEM_VAR_PAGE_CNT BIGINT The number of pages containing variable-
length columns in the table
345 The Data Dictionary

3.2 Performance Views
To view this information together with the table name, join this view with the SYS_TABLES_ meta
table and execute a query as follows:

SELECT A.TABLE_NAME,
B.MEM_PAGE_CNT,
B.MEM_SLOT_SIZE
B.MEM_FIRST_PAGEID
FROM SYSTEM_.SYS_TABLES_ A, V$MEMTBL_INFO B
WHERE A.TABLE_OID = B.TABLE_OID;

3.2.38.1 Column Information

TABLESPACE_ID

This is the identifier of the tablespace in which the current table is stored. The following tablespaces
are created by default. Identifiers of new user-created tablespaces will have values greater than 4.

0: SYS_TBS_MEM_DIC

1: SYS_TBS_MEM_DATA

MEM_SLOT_PERPAGE INTEGER The number of slots that can be stored in a
page containing fixed-length columns

MEM_SLOT_SIZE BIGINT The size of the fixed area in the table record

FIXED_ALLOC_MEM DOUBLE The amount of fixed memory area (in bytes)
allocated to a table

FIXED_USED_MEM BIGINT The amount of fixed memory area (in bytes)
actually being used by a table

VAR_ALLOC_MEM DOUBLE The amount of variable memory area (in
bytes) allocated to a table

VAR_USED_MEM BIGINT The amount of variable memory area (in
bytes) actually being used by a table

MEM_FIRST_PAGEID BIGINT The number of the first of the fixed-length
pages in the table

STATEMENT_REBUILD_C
OUNT

BIGINT The number of times a statement has been
rebuilt

UNIQUE_VIOLATION_C
OUNT

BIGINT The number of times a unique key violation
has occurred

UPDATE_RETRY_COUNT BIGINT The number of times an update operation
has been retried

DELETE_RETRY_COUNT BIGINT The number of times a delete operation has
been retried

COMPRESSED_LOGGIN
G

INTEGER Indicates whether log compression is
enabled or not

Column Data Type Description
General Reference 346

3.2 Performance Views
2: SYS_TBS_DISK_DATA

3: SYS_TBS_DISK_UNDO

4: SYS_TBS_DISK_TEMP

TABLE_OID

This is the default table object identifier, and indicates the physical location of the header that con-
tains information about the table. This is only used internally by the system.

MEM_PAGE_CNT

This is the number of fixed-length pages allocated to the table.

MEM_VAR_PAGE_CNT

This is the number of variable-length pages allocated to the table.

MEM_SLOT_PERPAGE

This is the number of slots that can be stored in a single fixed-length page.

MEM_SLOT_SIZE

This is the fixed area that is occupied by one record in a memory table.

FIXED_ALLOC_MEM

This is the amount of fixed area (in bytes) allocated to a table.

FIXED_USED_MEM

This is the amount of fixed area (in bytes) that is actually used by a table.

VAR_ALLOC_MEM

This is the amount of variable area (in bytes) allocated to a table.

VAR_USED_MEM

This is the amount of variable area (in bytes) actually used by a table.

MEM_FIRST_PAGEID

This is the identifier of the first of the fixed-length pages allocated to a table.

STATEMENT_REBUILD_COUNT

When the Prepare-Execute process is performed, a prepared statement is executed without being
parsed, validated, or optimized. However, after the statement is prepared, if a DDL statement is exe-
cuted on a query target object (a tablespace, table or index), the corresponding statement is auto-
347 The Data Dictionary

3.2 Performance Views
matically rebuilt when the statement is executed, and this value is incremented.

UNIQUE_VIOLATION_COUNT

This value is incremented when a unique key restriction is violated.

UPDATE_RETRY_COUNT

This value is incremented when an attempt to perform an update operation is repeated.

DELETE_RETRY_COUNT

This value is incremented when an attempt to perform a delete operation is repeated.

3.2.39 V$MEM_BTREE_HEADER

This view shows information about a memory BTREE header.

3.2.39.1 Column Information

INDEX_NAME

This is the name of the index.

INDEX_ID

This is a unique identifier for the index in the system.

Column name Type Description

INDEX_NAME CHAR(40) The name of the index

INDEX_ID INTEGER The index identifier

INDEX_TBS_ID INTEGER The tablespace in which the index is stored

TABLE_TBS_ID INTEGER The tablespace in which the associated table
is stored

IS_UNIQUE CHAR(1) Whether an index is a unique key index

IS_NOT_NULL CHAR(1) Whether NULL values are allowed

USED_NODE_COUNT INTEGER The number of nodes that are being used by
an index

PREPARE_NODE_COUN
T

INTEGER The number of nodes that are prepared in
advance to meet the demand for nodes

BUILT_TYPE CHAR(1) The key type that was used when the index
was created
General Reference 348

3.2 Performance Views
INDEX_TBS_ID

This is the identifier of the tablespace in which the index is stored.

TABLE_TBS_ID

This is the identifier of the tablespace containing the table that is related to the index.

IS_UNIQUE

This indicates whether the index is a unique key index. It is set to ‘T’ to indicate a unique key index,
and to ‘F’ to indicate a duplicate key index.

IS_NOT_NULL

This indicates whether NULL values are allowed. It is set to ‘T’ for a primary key index, and to ‘F’ for
other kinds of indexes.

USED_NODE_COUNT

This indicates the total number of nodes for the current index. This number increases when a node is
split, and decreases when a node is deleted.

PREPARE_NODE_COUNT

This is the number of nodes that are allocated in advance in consideration of system load, based on
the number of nodes that have been assigned.

BUILT_TYPE

This indicates whether a key value or a record pointer was used when the index was built. It is set to
‘V’ to indicate that a key value was used, and to ‘P’ to indicate that a record pointer was used.

3.2.40 V$MEM_BTREE_NODEPOOL

This view shows information about the node pool for memory BTREE indexes. The node pool man-
ages node allocation and return for all memory BTREE indexes.

Column name Type Description

TOTAL_PAGE_COUNT INTEGER The total number of pages in the node pool

TOTAL_NODE_COUNT INTEGER The total number of nodes in the node pool

FREE_NODE_COUNT INTEGER The number of unallocated nodes in the
node pool

USED_NODE_COUNT INTEGER The number of nodes allocated to indexes

NODE_SIZE INTEGER The size of a node (in bytes)
349 The Data Dictionary

3.2 Performance Views
3.2.40.1 Column Information

TOTAL_PAGE_COUNT

This shows the number of pages allocated to the node pool for BTREE indexes.

TOTAL_NODE_COUNT

This indicates the number of nodes allocated to the node pool for BTREE indexes. It is determined by
TOTAL_PAGE_COUNT and NODE_SIZE.

FREE_NODE_COUNT

This is the number of nodes that have not been allocated to BTREE indexes, and thus remain in the
node pool.

USED_NODE_COUNT

This shows the total number of nodes that are currently allocated to BTREE indexes.

NODE_SIZE

This is the size of a BTREE index node.

TOTAL_ALLOC_REQ

This is the number of node allocation requests that have been made to the node pool. This is the
cumulative number since the system was started.

TOTAL_FREE_REQ

This is the number of return requests that have been made to the node pool for nodes that were
used for BTREE indexes and then deleted. This is the cumulative number since the system was
started.

FREE_REQ_COUNT

This is the number of nodes that were being used by BTREE indexes and are waiting to be deleted.

TOTAL_ALLOC_REQ BIGINT The cumulative number of node allocation
requests made to the node pool

TOTAL_FREE_REQ BIGINT The cumulative number of node deletion
requests made to the node pool

FREE_REQ_COUNT INTEGER The number of nodes in the node pool wait-
ing to be deleted

Column name Type Description
General Reference 350

3.2 Performance Views
3.2.41 V$MEM_RTREE_HEADER

This view shows information about the header of a memory RTREE index.

3.2.41.1 Column Information

INDEX_NAME

This is the name of the index.

INDEX_ID

This is the identifier of the index. This identifier is unique within the system.

TABLE_TBS_ID

This is the identifier of the tablespace containing the table that is related to the index.

TREE_MBR_MIN_X

This is the minimum X value of the minimum bounding box of the RTREE index.

TREE_MBR_MIN_Y

This is the minimum Y value of the minimum bounding box of the RTREE index.

TREE_MBR_MAX_X

This is the maximum X value of the minimum bounding box of the RTREE index.

Column name Type Description

INDEX_NAME CHAR(40) The name of the index

INDEX_ID INTEGER The index identifier

TABLE_TBS_ID INTEGER The identifier of the tablespace in which the
table is stored

TREE_MBR_MIN_X DOUBLE The minimum X value of the RTREE index

TREE_MBR_MIN_Y DOUBLE The minimum Y value of the RTREE index

TREE_MBR_MAX_X DOUBLE The maximum X value of the RTREE index

TREE_MBR_MAX_Y DOUBLE The maximum Y value of the RTREE index

USED_NODE_COUNT INTEGER The number of nodes that are being used by
the index

PREPARE_NODE_COUN
T

INTEGER The number of nodes that have been pre-
allocated to meet node demand
351 The Data Dictionary

3.2 Performance Views
TREE_MBR_MAX_Y

This is the maximum Y value of the minimum bounding box of the RTREE index.

USED_NODE_COUNT

This is the total number of nodes being used by the current index. This number increases when a
node is split and decreases when a node is deleted.

PREPARE_NODE_COUNT

This is the number of nodes that are allocated in advance in consideration of system load, based on
the number of nodes that have been assigned.

3.2.42 V$MEM_RTREE_NODEPOOL

This view shows information about the node pool for memory RTREE indexes. This node pool man-
ages node allocation and return for all memory RTREE indexes.

3.2.42.1 Column Information

TOTAL_PAGE_COUNT

This is the number of pages allocated to the node pool for RTREE indexes.

TOTAL_NODE_COUNT

This is the total number of nodes allocated to the node pool for RTREE indexes. It is determined by
TOTAL_PAGE_COUNT and NODE_SIZE.

Column name Type Description

TOTAL_PAGE_COUNT INTEGER The total number of pages in the node pool

TOTAL_NODE_COUNT INTEGER The total number of nodes in the node pool

FREE_NODE_COUNT INTEGER The number of unallocated nodes in the
node pool

USED_NODE_COUNT INTEGER The number of nodes allocated to indexes

NODE_SIZE INTEGER The size of a node (in bytes)

TOTAL_ALLOC_REQ BIGINT The cumulative number of node allocation
requests made to the node pool

TOTAL_FREE_REQ BIGINT The cumulative number of node deletion
requests made to the node pool

FREE_REQ_COUNT INTEGER The number of nodes in the node pool that
are waiting to be deleted
General Reference 352

3.2 Performance Views
FREE_NODE_COUNT

This is the number of nodes that have not been allocated to RTREE indexes and thus remain in the
node pool.

USED_NODE_COUNT

This is the total number of nodes that are currently allocated to RTREE indexes.

NODE_SIZE

This is the size of an RTREE index node.

TOTAL_ALLOC_REQ

This is the number of node allocation requests that have been made to the node pool. This is the
cumulative number since the system was started.

TOTAL_FREE_REQ

This is the number of return requests that have been made to the node pool for nodes that were
being used by RTREE indexes and were then deleted. This is the cumulative number since the system
was started.

FREE_REQ_COUNT

This is the number of nodes that were being used by RTREE indexes and are waiting to be deleted.

3.2.43 V$MEM_TABLESPACES

This view shows information about tablespaces that exist in memory.

Column name Type Description

SPACE_ID INTEGER The tablespace identifier

SPACE_NAME VARCHAR(512) The name of the tablespace

SPACE_STATUS INTEGER The tablespace status

SPACE_SHM_KEY INTEGER The shared memory key of the tablespace

AUTOEXTEND_MODE INTEGER The auto extension mode of the tablespace

AUTOEXTEND_NEXT_SIZE BIGINT The size (in bytes) by which the tablespace is
automatically extended

MAXSIZE BIGINT The maximum size of the tablespace (in
bytes)

CURRENT_SIZE BIGINT The current size of the tablespace (in bytes)

DBFILE_SIZE DOUBLE The size of the database image files (in bytes)
353 The Data Dictionary

3.2 Performance Views
3.2.43.1 Column Information

SPACE_STATUS

This is a value that indicates the tablespace status. Please refer to
V$MEM_TABLESPACE_STATUS_DESC for details.

SPACE_SHM_KEY

This is a shared memory key, which is used when a tablespace is loaded into shared memory.

AUTOEXTEND_MODE

This indicates whether Autoextend mode is enabled. If it is set to 1, Autoextend mode is enabled,
whereas if it is set to some other value, Autoextend mode is not enabled.

AUTOEXTEND_NEXTSIZE

When the tablespace is automatically extended, this indicates the size (in bytes) by which the
tablespace is automatically extended.

MAXSIZE

This is the maximum size of the tablespace (in bytes).

DBFILE_COUNT_0 INTEGER The number of database image files in file
group #0

DBFILE_COUNT_1 INTEGER The number of database image files in file
group #1

TIMESTAMP VARCHAR(64) The time point at which the tablespace was
created

ALLOC_PAGE_COUNT BIGINT The total number of pages in the tablespace

FREE_PAGE_COUNT BIGINT The number of free pages in the tablespace

RESTORE_TYPE BIGINT How to load the tablespace into memory

CURRENT_DB INTEGER A set of files that are the target for ping pong
checkpointing

HIGH_LIMIT_PAGE BIGINT The maximum number of pages that the
tablespace can have

PAGE_COUNT_PER_FILE BIGINT The number of pages per database image file

PAGE_COUNT_IN_DISK INTEGER The number of pages that exist on disk

Column name Type Description
General Reference 354

3.2 Performance Views
CURRENT_SIZE

This is the current size of the tablespace (in bytes).

DBFILE_SIZE

This is the size of the database image files for the tablespace (in bytes).

DBFILE_COUNT_0

Because ALTIBASE HDB uses ping pong checkpointing, it maintains two sets of databases image
files. This value indicates the number of files in file group #0, which is one of these sets.

DBFILE_COUNT_1

Because ALTIBASE HDB uses ping pong checkpointing, it maintains two sets of databases image
files. This value indicates the number of files in file group #1, which is one of these sets.

TIMESTAMP

This timestamp value indicates the time point at which the tablespace was created.

ALLOC_PAGE_COUNT

This is the number of pages in the tablespace.

FREE_PAGE_COUNT

This is the number of free pages in the tablespace.

RESTORE_TYPE

This indicates how the tablespace is loaded into memory. It can have the following values:

CURRENT_DB

This is the database image file group into which dirty pages (changed pages) are downloaded dur-
ing checkpointing. It can be 0 or 1.

Loading Method Value Description

RESTORE_TYPE_DYNAMIC 0 The tablespace is loaded into dynamic mem-
ory.

RESTORE_TYPE_SHM_CREATE 1 Shared memory is created, and then the
tablespace is loaded into it.

RESTORE_TYPE_SHM_ATTACH 2 The tablespace is attached to shared mem-
ory. When the database has already been
loaded into shared memory, the shared
memory is attached to the process.
355 The Data Dictionary

3.2 Performance Views
HIGH_LIMIT_PAGE

This is the maximum number of pages that the tablespace can have.

PAGE_COUNT_PER_FILE

This is the number of pages per database image file.

PAGE_COUNT_IN_DISK

This is the total number of pages in all database image files that exist on disk. ALTIBASE HDB
increases the size of a database during checkpointing, rather than directly increasing the size of files
on disk. Therefore, the number of database pages that exist in memory can be different from the
number of pages on disk.

3.2.44 V$MEM_TABLESPACE_CHECKPOINT_PATHS

This view shows the directory path of the database image files in which changed pages (dirty pages)
are recorded during checkpointing for a tablespace.

3.2.45 V$MEM_TABLESPACE_STATUS_DESC

This view provides descriptions of values that indicate the status of memory tablespace. These are
the values that the SPACE_STATUS column in the V$MEM_TABLESPACES view can have.

3.2.45.1 Column Information

STATUS

This is the status value of memory tablespace.

STATUS_DESC

This is a description of the status value of memory tablespace.

Column name Type Description

SPACE_ID INTEGER The tablespace identifier

CHECKPOINT_PATH VARCHAR(512) The directory in which the database image
files are located

Column name Type Description

STATUS INTEGER The status value of memory tablespace

STATUS_DESC VARCHAR(64) The description of the status value
General Reference 356

3.2 Performance Views
The status values and corresponding descriptions are as follows:

3.2.46 V$MUTEX

This view displays statistical information about mutexes, which are related to concurrency control
performed by ALTIBASE HDB processes.

STATUS_DESC Description

OFFLINE The tablespace is offline.

ONLINE The tablespace is online.

DISCARDED The tablespace has been discarded.

DROPPED The tablespace has been deleted.

BACKUP The tablespace is being backed up.

CREATING The tablespace is being created.

DROPPING A request has been made to delete the tablespace.

DROP_PENDING The tablespace is being deleted.

SWITCHING_TO_OFFLINE The tablespace is switching to offline status.

SWITCHING_TO_ONLINE The tablespace is switching to online status.

BLOCK_BACKUP The tablespace cannot be backed up. Because another
operation is in progress, it is necessary to wait until the
other operation is complete before backup can be per-
formed.

Column Data Type Description

NAME VARCHAR(64) The name of the mutex

TRY_COUNT INTEGER The number of lock attempts

LOCK_COUNT INTEGER The number of successful lock attempts

MISS_COUNT INTEGER The number of waits resulting from missed
lock attempts

SPIN_VALUE INTEGER This field is reserved for future use.

TOTAL_LOCK_TIME_US BIGINT The total amount of time this mutex has
been locked (in microseconds)

MAX_LOCK_TIME_US BIGINT The maximum time elapsed while locking
this mutex (in microseconds)
357 The Data Dictionary

3.2 Performance Views
3.2.47 V$NLS_PARAMETERS

This view shows NLS (National Language Support)-related information for both the server and client
for each session.

3.2.47.1 Column Information

SESSION_ID

This is the identifier of the session.

NLS_USE

This is the client character set. The default character set should be set when processing character
data on the client. The character sets and related NLS_USE settings currently supported by ALTIBASE
HDB are as follows:

Table 3-1 Character Sets Supported by ALTIBASE HDB

Column name Type Description

SESSION_ID INTEGER The session identifier

NLS_USE VARCHAR(40) The client character set

NLS_CHARACTERSET VARCHAR(40) The database character set

NLS_NCHAR_CHARACT
ERSET

VARCHAR(40) The national character set

NLS_COMP VARCHAR(7) How characters are compared

NLS_NCHAR_CONV_EX
CP

VARCHAR(7) How to handle errors that arise when con-
verting character sets

NLS_NCHAR_LITERAL_R
EPLACE

VARCHAR(7) Whether to check for the presence of NCHAR
literals within SQL statements

Language Character Set NLS_USE

English (default) US7ASCII US7ASCII, ASCII, ENGLISH

Korean KSC-5601 Complete KSC5601, KO16KSC5601, KOREAN

MS Extended Complete MS949, CP949, WINDOWS949

Japanese EUC-JP (UNIX) EUCJP

Shift-JIS (Windows) SHIFTJIS

Chinese China GB231280, ZHS16CGB231280, CHINESE

Taiwan BIG5, ZHT16BIG5, TAIWAN

Universal Unicode (UTF-8) UTF8, UNICODE
General Reference 358

3.2 Performance Views
When storing data of a different character set than the database character set, it is important to con-
sider convertibility and compatibility between the individual character sets. Please refer to the Get-
ting Started Guide for more detailed information about multilingual support.

 NLS_CHARACTERSET

This is the database character set used on the server.

NLS_NCHAR_CHARACTERSET

This is the national character set.

NLS_COMP

This indicates the order in which characters are compared according to how they appear in a dic-
tionary of the language corresponding to the character set that was specified when the database
was created. At present, this is useful only when Korean (KSC-5601 Completion or MS Extended
Completion) is specified as the database character set.

BINARY: Characters are compared on the basis of the binary value.

ANSI: Characters are compared on the basis of the order in which they appear in a dictionary of that
language

 NLS_NCHAR_CONV_EXCP

This shows how errors are handled when the character set is converted.

 NLS_NCHAR_LITERAL_REPLACE

This shows whether the client will check whether NCHAR literals exist within an SQL statement. If
this is TRUE, the client always checks whether NCHAR literals exist, and convert the remainder of the
SQL statement, other than the NCHAR literals, to the database character set. If this is FALSE, the client
doesn't check this, and convert the entire SQL statement to to the database character set.

3.2.48 V$PLANTEXT

This view displays information about execution plans for SQL statements that are executed by the
server.

Column Data Type Description

SID INTEGER The session identifier

STMT_ID INTEGER The statement identifier

PIECE INTEGER The serial number for the fragment of execu-
tion plan text

TEXT VARCHAR(64) A fragment of execution plan text
359 The Data Dictionary

3.2 Performance Views
3.2.48.1 Column Information

SID

This is the identifier of the session.

STMT_ID

This is the identifier of the statement.

PIECE

A complete execution plan for one statement is divided into text fragments 64 bytes long and then
saved. PIECE shows the serial numbers for these 64-byte fragments, starting from 0.

TEXT

This shows the contents of the 64-byte text fragment that is part of the execution plan statement.

3.2.49 V$PROCTEXT

This view displays information about stored procedures being used by the system.

3.2.49.1 Column Information

PROC_OID

This is an OID, which is a unique object identifier for a stored procedure.

PIECE

The complete text for a stored procedure is divided into text fragments 64 bytes long and then
saved. PIECE shows the serial numbers for these 64-byte fragments, starting from 0.

TEXT

This shows the contents of the 64-byte text fragment that is part of the stored procedure text.

Column Data Type Description

PROC_OID BIGINT The object identifier of a stored procedure

PIECE INTEGER The serial number for the stored procedure
fragment

TEXT VARCHAR(64) A fragment of the stored procedure text
General Reference 360

3.2 Performance Views
3.2.50 V$PROPERTY

This view displays information about all internally set ALTIBASE HDB properties.

3.2.50.1 Column Information

NAME

This is the name of the property.

STOREDCOUNT

STOREDCOUNT displays the number of values set in the property. A property can have up to eight
duplicate values.

ATTR

This is the attribute of the property.

MIN

This is the minimum value that the property can have.

MAX

This is the maximum value that the property can have.

Column Data Type Description

NAME VARCHAR(256) The property name

STOREDCOUNT INTEGER The number of values set for the property

ATTR BIGINT The property attribute

MIN VARCHAR(256) The minimum value

MAX VARCHAR(256) The maximum value

VALUE1 VARCHAR(256) The first value

VALUE2 VARCHAR(256) The second value

VALUE3 VARCHAR(256) The third value

VALUE4 VARCHAR(256) The fourth value

VALUE5 VARCHAR(256) The fifth value

VALUE6 VARCHAR(256) The sixth value

VALUE7 VARCHAR(256) The seventh value

VALUE8 VARCHAR(256) The eighth value
361 The Data Dictionary

3.2 Performance Views
VALUE1 ~ 8

The actual values set for the property.

3.2.51 V$REPEXEC

This view displays information related to the replication manager.

3.2.51.1 Column Information

PORT

The number of the port through which the replication manager on the local server receives replica-
tion requests from the remote server.

MAX_SENDER_COUNT

This is the maximum number of replication Sender threads that can be created on the local server.

MAX_RECEIVER_COUNT

This is the maximum number of replication Receiver threads that can be created on the local server.

3.2.52 V$REPGAP

This shows the difference between the most recently created log record and the log record currently
being processed by the replication Sender. Please note that this information is only available while
the replication Sender thread is active.

Column Data Type Description

PORT INTEGER The port number currently being used

MAX_SENDER_COUNT INTEGER The maximum number of Sender threads

MAX_RECEIVER_COUNT INTEGER The maximum number of Receiver threads

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

START_FLAG BIGINT Startup options

REP_LAST_SN BIGINT The sequence number of the last log record

REP_SN BIGINT The sequence number of the log record cur-
rently being sent
General Reference 362

3.2 Performance Views
3.2.52.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

START_FLAG

This is a replication startup option for use when replication is started on the local server. The follow-
ing values are possible:

• NORMAL: 0

• QUICK: 1

• SYNC: 2

• SYNC_ONLY: 3

• SYNC RUN: 4

• SYNC END: 5

• RECOVERY from Replication: 6

• OFFLINE: 7

• PARALLEL: 8

REP_LAST_SN

This is the sequence number of the log record that was most recently written in response to a trans-
action on the local server.

REP_SN

This is the sequence number of the log record that is currently being sent by the replication Sender
on the local server.

REP_GAP

This shows the interval between the log sequence numbers of REP_LAST_SN and REP_SN. In other
words, this is the interval between the log record that was most recently written due to a transaction

REP_GAP BIGINT The difference between REP_LAST_SN and
REP_SN

READ_LFG_ID INTEGER The log file group currently being read

READ_FILE_NO INTEGER The log file number currently being read

READ_OFFSET INTEGER The location currently being read

Column Data Type Description
363 The Data Dictionary

3.2 Performance Views
on the local server and the log record that is currently being sent by the replication Sender thread.

READ_LFG_ID

This indicates the log file group that is currently being read for transmission.

READ_FILE_NO

This indicates the number of the log file that is currently being read.

READ_OFFSET

This indicates the location in the log file that is currently being read.

3.2.53 V$REPGAP_PARALLEL

This view shows the difference between the most recently created log record and the log record cur-
rently being processed by replication Sender threads working in parallel. Please note that this infor-
mation is only available when multiple replication Sender threads are working in parallel.

3.2.53.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

CURRENT_TYPE

This can have one of the following values, which denote the current status of the replication Sender

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication

CURRENT_TYPE VARCHAR(9) The type of the replication Sender thread

REP_LAST_SN BIGINT The last log file number

REP_SN BIGINT The sequence number of the log record cur-
rently being sent

REP_GAP BIGINT The gap between REP_LAST_SN and REP_SN

READ_LFG_ID INTEGER The identifier of the log file group currently
being read

READ_FILE_NO INTEGER The log file number currently being read

READ_OFFSET INTEGER The current reading offset

PARALLEL_ID INTEGER The identifier of one of several threads work-
ing in parallel for one Sender
General Reference 364

3.2 Performance Views
thread.

• NORMAL: This means that the Sender thread analyzes transaction logs and converts them to
XLOGs on the active server. The Sender thread then transfers the XLOGs to a standby server.

• QUICK: This value can be returned when replication was started with the QUICKSTART option,
and indicates the state in which the starting location is being changed so that the Sender
thread will ignore old logs and start sending from the most recent log. After the starting loca-
tion is changed, NORMAL will be returned, rather than this value.

• SYNC: This value can be returned when replication was started with the SYNC option. After
synchronization is complete, NORMAL (LAZY mode) or PARALLEL (EAGER mode) will be
returned, rather than this value.

• SYNC_ONLY: This value can be returned when replication was started with the SYNC ONLY
option. After synchronization is complete, the Sender thread will be terminated.

• RECOVERY: This value indicates that the Sender thread is running in order to restore data that
were lost on another server.

• OFFLINE: This value indicates that the Sender thread is running in order to read logs on the
active server when the active server is offline and apply them to the standby server.

• PARALLEL: This value indicates that several Sender threads are sending XLOGs pertaining to
the table(s) that is (or are) being replicated in parallel. This value can be returned when replica-
tion was started in EAGER mode with the PARALLEL option. It is different from the PARALLEL
option which can be specified when starting replication with the SYNC or SYNC_ONLY option.

REP_LAST_SN

This is the most recent log record sequence number on the local server.

REP_SN

This is the sequence number of the log record that is currently being sent by the replication Sender
on the local server.

REP_GAP

This is the difference between the log serial number returned by REP_LAST_SN and that returned by
REP_SN. In other words, this is the gap between the log record that was most recently written by a
transaction on the local server and the log record that is currently being sent by the replication
Sender thread.

READ_LFG_ID

This indicates the group of log files that is currently being read for transmission.

READ_FILE_NO

This indicates the number of the log file that is currently being read.
365 The Data Dictionary

3.2 Performance Views
READ_OFFSET

This indicates the current location in the log file that is currently being read.

PARALLEL_ID

This is the identifier of one of several threads working in parallel for one Sender.

3.2.54 V$REPLOGBUFFER

This view displays information about the state of the log buffer used by the replication Sender while
the replication Sender thread is working.

3.2.54.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

BUFFER_MIN_SN

This is the lowest of the sequence numbers of log records saved in the log buffer that is used for rep-
lication.

READ_SN

This is the sequence number of the log record that is to be read next by the replication Sender
thread in the log buffer that is being used for replication.

BUFFRT_MAX_SN

This is the highest of the sequence numbers of log records saved in the log buffer that is being used
for replication.

Column name Type Description

REP_NAME VARCHAR(40) The name of the replication object

BUFFER_MIN_SN BIGINT The lowest log sequence number in the buf-
fer that is being used by the replication
Sender

READ_SN BIGINT The sequence number of the log record to be
read next by the replication Sender thread

BUFFER_MAX_SN BIGINT The highest log sequence number in the buf-
fer that is being used by the replication
Sender
General Reference 366

3.2 Performance Views
3.2.55 V$REPOFFLINE_STATUS

This view shows the status of offline replication.

3.2.55.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

STATUS

This is the status of offline replication.

0: offline replication has not been started

1: offline replication has been started

2: offline replication has completed

3: offline replication failed

SUCCESS_TIME

This is the time point at which the most recent successful execution of offline replication occurred. It
is based on the system time. In the case where replication was successfully started and completed, it
is the time taken for replication to complete, and is 0 otherwise.

3.2.56 V$REPRECEIVER

This view displays information about the replication Receiver.

Column name Type Description

REP_NAME VARCHAR(40) The name of the replication object

STATUS BIGINT The status of offline replication execution

SUCCESS_TIME INTEGER The time taken for offline replication to exe-
cute successfully

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

MY_IP VARCHAR(64) The IP address of the local sever

MY_PORT INTEGER The port number on the local server

PEER_IP VARCHAR(64) The IP address on the remote server
367 The Data Dictionary

3.2 Performance Views
3.2.56.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

MY_IP

This is the IP address of the local server.

MY_PORT

This is the port number being used by the Receiver thread on the local server.

PEER_IP

This is the IP address of the remote server.

PEER_PORT

This is the port number being used by the Sender thread on the remote server.

PEER_PORT INTEGER The port number on the remote server

APPLY_XSN BIGINT The XSN currently being processed

INSERT_SUCCESS_COUNT BIGINT The number of INSERT log records success-
fully applied to the local database by the rep-
lication Receiver thread

INSERT_FAILURE_COUNT BIGINT The number of INSERT log records that could
not be applied to the local database by the
replication Receiver thread

UPDATE _SUCCESS_COUNT BIGINT The number of UPDATE log records success-
fully applied to the local database by the rep-
lication Receiver thread

UPDATE_FAILURE_COUNT BIGINT The number of UPDATE log records that
could not be applied to the local database by
the replication Receiver thread

DELETE_SUCCESS_COUNT BIGINT The number of DELETE log records success-
fully applied to the local database by the rep-
lication Receiver thread

DELETE_FAILURE_COUNT BIGINT The number of DELETE log records that
could not be applied to the local database by
the replication Receiver thread

Column Data Type Description
General Reference 368

3.2 Performance Views
APPLY_XSN

This shows the XLog sequence number (XSN) of the XLog that was sent by the Sender thread on the
remote server and is being used by the Receiver thread on the local server.

INSERT_SUCCESS_COUNT

This is the number of INSERT log records that were successfully applied to the local database by the
replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

INSERT_FAILURE_COUNT

This is the number of INSERT log records (including conflicts) that could not be applied to the local
database by the replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

UPDATE_SUCCESS_COUNT

This is the number of UPDATE log records that were successfully applied to the local database by the
replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

UPDATE_FAILURE_COUNT

This is the number of UPDATE log records (including conflicts) that could not be applied to the local
database by the replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

DELETE_SUCCESS_COUNT

This is the number of DELETE log records that were successfully applied to the local database by the
replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

DELETE_FAILURE_COUNT

This is the number of DELETE log records (including conflicts) that could not be applied to the local
database by the replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.
369 The Data Dictionary

3.2 Performance Views
3.2.57 V$REPRECEIVER_COLUMN

This view shows information about columns that are replication targets used by the replication
Receiver.

3.2.57.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

USER_NAME

This is the user name of the owner of the table that is the target of replication on the local server. Its
value corresponds to a USER_NAME in the SYS_USERS_ meta table.

TABLE_NAME

This is the name of a table that is the target of replication on the local server. It corresponds to a
TABLE_NAME in the SYS_TABLES_ meta table.

PARTITION_NAME

This is the name of the partition that is the target for replication on the local server.

COLUMN_NAME

This is the name of the column that is the target of replication on the local server.

3.2.58 V$REPRECEIVER_PARALLEL

This view displays information about replication Receiver threads working in parallel.

Column name Type Description

REP_NAME VARCHAR(40) The name of the replication

USER_NAME VARCHAR(40) The user name

TABLE_NAME VARCHAR(40) The table name

PARTITION_NAME VARCHAR(40) The name of the partition

COLUMN_NAME VARCHAR(40) The column name

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

MY_IP VARCHAR(64) The IP address of the local server
General Reference 370

3.2 Performance Views
3.2.58.1 Column Information

REP_NAME

This is the name of the replication object.

MY_IP

This is the IP address of the local server.

MY_PORT

This is the port number used by the Receiver on the local server.

PEER_IP

This is the IP address of the remote server.

MY_PORT INTEGER The port number on the local server

PEER_IP VARCHAR(64) The IP address of the remote server

PEER_PORT INTEGER The port number on the remote server

APPLY_XSN BIGINT The XSN currently being processed

INSERT_SUCCESS_COUNT BIGINT The number of INSERT transactions success-
fully applied to the local database by the rep-
lication Receiver thread.

INSERT_FAILURE_COUNT BIGINT The number of INSERT transactions that
could not be applied to the local database by
the replication Receiver thread.

UPDATE _SUCCESS_COUNT BIGINT The number of UPDATE transactions success-
fully applied to the local database by the rep-
lication Receiver thread.

UPDATE_FAILURE_COUNT BIGINT The number of UPDATE transactions that
could not be applied to the local database by
the replication Receiver thread.

DELETE_SUCCESS_COUNT BIGINT The number of DELETE transactions success-
fully applied to the local database by the rep-
lication Receiver thread.

DELETE_FAILURE_COUNT BIGINT The number of DELETE transactions that
could not be applied to the local database by
the replication Receiver thread.

PARALLEL_ID INTEGER The identifier of one of several replication
Receiver threads working in parallel

Column Data Type Description
371 The Data Dictionary

3.2 Performance Views
PEER_PORT

This is the port number used by the Sender on the remote server.

APPLY_XSN

This shows the XLog sequence number of the XLog that was sent by a Sender thread on the remote
server and is being applied by the Receiver thread on the local server.

INSERT_SUCCESS_COUNT

This is the number of INSERT transactions that were successfully applied to the local database by the
replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

INSERT_FAILURE_COUNT

This is the number of INSERT transactions (including conflicts) that could not be applied to the local
database by the replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

UPDATE_SUCCESS_COUNT

This is the number of UPDATE transactions that were successfully applied to the local database by
the replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

UPDATE_FAILURE_COUNT

This is the number of INSERT transactions (including conflicts) that could not be applied to the local
database by the replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

DELETE_SUCCESS_COUNT

This is the number of DELETE transactions that were successfully applied to the local database by
the replication Receiver thread.

This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

DELETE_FAILURE_COUNT

This is the number of INSERT transactions (including conflicts) that could not be applied to the local
database by the replication Receiver thread.
General Reference 372

3.2 Performance Views
This number is not dependent on whether statements are committed or rolled back. In other words,
if a statement is rolled back, this number is not decreased.

PARALLEL_ID

This is the identifier of one of several replication Receivers having the same name.

3.2.59 V$REPRECEIVER_TRANSTBL

This view displays information about the replication Receiver’s transaction table.

3.2.59.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

LOCAL_TID

This is the identifier of the transaction that is being executed on the local server.

REMOTE_TID

This is the identifier of the transaction that is executed on the remote server. It may or may not have
already finished being executed.

3.2.60 V$REPRECEIVER_TRANSTBL_PARALLEL

This view displays information about transaction tables used by multiple replication Receiver
threads working in parallel.

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

LOCAL_TID INTEGER The local transaction identifier

REMOTE_TID INTEGER The remote transaction identifier

BEGIN_FLAG INTEGER Not currently used

BEGIN_SN BIGINT The first log record sequence number of the
transaction

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

LOCAL_TID INTEGER The local transaction identifier
373 The Data Dictionary

3.2 Performance Views
3.2.60.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

LOCAL_TID

This is the identifier of a transaction that is being executed on the local server.

REMOTE_TID

This is the identifier of a transaction that is executed on the remote server. It may or may not have
already finished being executed.

PARALLEL_ID

This is the identifier of one of several replication Receivers working in parallel.

3.2.61 V$REPRECOVERY

This view shows information pertaining to recovery using replication.

REMOTE_TID INTEGER The remote transaction identifier

BEGIN_FLAG INTEGER Not currently used

BEGIN_SN BIGINT The first log record sequence number of the
transaction

PARALLEL_ID INTEGER The identifier of one of several Receivers hav-
ing the same name

Column Data Type Description

Column name Type Description

REP_NAME VARCHAR(40) The name of the replication object

STATUS INTEGER The present status of recovery
1: Generating recovery information
2: Recovery request pending
3: Recovery in progress

START_XSN BIGINT The first SN sent for recovery

XSN BIGINT The SN currently being sent for recovery

END_XSN BIGINT The last SN sent for recovery

RECOVERY_SENDER_IP VARCHAR(64) The IP address of the Sender for recovery of
the local server
General Reference 374

3.2 Performance Views
3.2.61.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

STATUS

This is the present status of replication Sender threads on the local server.

1: Recovery information is being generated

2: A recovery request is waiting

3: Recovery is underway

START_XSN

This shows the sequence number of the first log record to be sent by the Sender thread for recovery
of the local server.

XSN

This shows the sequence number of the log record currently being sent by the Sender thread for
recovery of the local server.

END_XSN

This shows the sequence number of the last log record to be sent by the Sender thread for recovery
of the local server.

RECOVERY_SENDER_IP

This is the IP address of the Sender for recovery of the local server.

PEER_IP

This is the IP address of the remote server for recovery of the remote server.

PEER_IP VARCHAR(64) The IP address of the Receiver for recovery of
the remote server

RECOVERY_SENDER_PO
RT

INTEGER The port number used by the Sender for
recovery of the local server

PEER_PORT INTEGER The port number used by the Receiver for
recovery of the remote server

Column name Type Description
375 The Data Dictionary

3.2 Performance Views
RECOVERY_SENDER_PORT

This is the port number being used by the Sender thread for recovery of the local server.

PEER_PORT

This is the port number being used by the Receiver thread for recovery of the remote server.

3.2.62 V$REPSENDER

This view displays information about the replication Sender.

3.2.62.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

START_FLAG BIGINT A flag indicating startup options

NET_ERROR_FLAG BIGINT A flag indicating a network error

XSN BIGINT The sequence number of the log record
being sent

COMMIT_XSN BIGINT The sequence number of the committed log
record that was most recently read by the
Sender

STATUS BIGINT The current status of the replication Sender

SENDER_IP VARCHAR(64) The IP address of the Sender

PEER_IP VARCHAR(64) The IP address of the remote server

SENDER_PORT INTEGER The port number used by the Sender

PEER_PORT INTEGER The port number used by the Receiver on the
remote server

READ_LOG_COUNT BIGINT The number of logs that have been read

SEND_LOG_COUNT BIGINT The number of logs that have been read and
sent

REPL_MODE VARCHAR(7) The replication mode specified by the user

ACT_REPL_MODE VARCHAR(7) The actual replication mode
General Reference 376

3.2 Performance Views
START_FLAG

This is a flag indicating the replication startup options on the local server. It can have the following
values:

• NORMAL: 0

• QUICK: 1

• SYNC: 2

• SYNC_ONLY: 3

• SYNC RUN: 4

• SYNC END: 5

• RECOVERY USING REPLICATION: 6

• OFFLINE: 7

• PARALLEL: 8

NET_ERROR_FLAG

This indicates whether a network error has occurred. The default value is 0; 1 indicates that an error
has occurred.

XSN

This is the sequence number of the log record that is currently being sent by the replication Sender
thread on the local server.

COMMIT_XSN

This is the sequence number of the committed log record that was most recently read by the replica-
tion Sender.

STATUS

This is the current status of the replication Sender on the local server. It can have the following val-
ues:

0: STOP

1: RUN

2: RETRY

3: FAILBACK NORMAL

4: FAILBACK MASTER

5: FAILBACK SLAVE

6: SYNC
377 The Data Dictionary

3.2 Performance Views
SENDER_IP

This is the IP address of the local server.

PEER_IP

This is the IP address of the remote server.

SENDER_PORT

This is the port number used by the replication Sender thread on the local server.

PEER_PORT

This is the port number used by the replication Receiver thread on the remote server.

READ_LOG_COUNT

This is the number of log records that have been read by the Sender thread on the local server.

SEND_LOG_COUNT

This is the number of log records that have been read and sent by the Sender thread on the local
server.

REPL_MODE

This is the replication mode set by the user, which can be set to LAZY or EAGER.

For more detailed information about replication modes, please refer to the Replication Manual.

ACT_REPL_MODE

This is the actual replication mode, which may differ from REPL_MODE.

When the replication mode has been set to EAGER, if the value of the
REPLICATION_SERVICE_WAIT_MAX_LIMIT property is exceeded due to some error, replication con-
tinues in LAZY mode.

Other than this case, the value is the same as that of REPL_MODE.

Please refer to the General Reference for a more detailed explanation of the
REPLICATION_SERVICE_WAIT_MAX_LIMIT property.

3.2.63 V$REPSENDER_PARALLEL

This view displays information about replication Sender threads working in parallel.

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object
General Reference 378

3.2 Performance Views
3.2.63.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

CURRENT_TYPE

Please refer to the description of the CURRENT_TYPE column in the V$REPGAP_PARALLEL perfor-
mance view.

NET_ERROR_FLAG

This indicates whether a network error has occurred. The default value is 0; 1 indicates that an error
has occurred.

XSN

This is the sequence number of the log record that is currently being sent by the corresponding rep-
lication Sender thread on the local server.

CURRENT_TYPE VARCHAR(9) The type of the replication Sender thread

NET_ERROR_FLAG BIGINT A flag indicating a network error

XSN BIGINT The sequence number of the log record cur-
rently being sent

COMMIT_XSN BIGINT The sequence number of the most recently
committed log record

STATUS BIGINT The current status of the replication Sender

SENDER_IP VARCHAR(64) The IP address of the Sender

PEER_IP VARCHAR(64) The IP address of the remote server

SENDER_PORT INTEGER The port number used by the Sender

PEER_PORT INTEGER The port number used by the Receiver on the
remote server

READ_LOG_COUNT BIGINT The number of logs that have been read

SEND_LOG_COUNT BIGINT The number of logs that have been read and
transmitted

REPL_MODE VARCHAR(7) The current replication mode

PARALLEL_ID INTEGER The identifier of one of several replication
Senders having the same name

Column Data Type Description
379 The Data Dictionary

3.2 Performance Views
COMMIT_XSN

This is the sequence number of the committed log record that was most recently read by this Sender
thread.

STATUS

This is the current status of the replication Sender on the local server. It can have the following val-
ues:

0: STOP

1: RUN

2: RETRY

3: FAILBACK NORMAL

4: FAILBACK MASTER

5: FAILBACK SLAVE

6: SYNC

SENDER_IP

This is the IP address of the local server.

PEER_IP

This is the IP address of the remote server.

SENDER_PORT

This is the port number used by this replication Sender thread on the local server.

PEER_PORT

This is the port number used by the corresponding replication Receiver thread on the remote server.

READ_LOG_COUNT

This is the number of log records read by this Sender thread on the local server.

SEND_LOG_COUNT

This is the number of log records read and transmitted by this Sender thread on the local server.

REPL_MODE

This is the replication mode. It can be set to LAZY or EAGER.

For more detailed information about replication modes, please refer to the Replication Manual.
General Reference 380

3.2 Performance Views
PARALLEL_ID

This is the identifier of one of several replication Senders working in parallel.

3.2.64 V$REPSENDER_TRANSTBL

This view displays information about the replication Sender’s transaction table.

3.2.64.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

START_FLAG

Please refer to the description of the START_FLAG column in the V$REPSENDER performance view.

LOCAL_TID

This is the identifier of the transaction being executed on the local server.

REMOTE_TID

This is the identifier of the transaction being executed on the remote server.

3.2.65 V$REPSENDER_TRANSTBL_PARALLEL

This view displays information about transaction tables used by multiple replication Sender threads
working in parallel.

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

START_FLAG BIGINT A flag indicating startup options

LOCAL_TID INTEGER The local transaction identifier

REMOTE_TID INTEGER The remote transaction identifier

BEGIN_FLAG INTEGER Indicates whether ‘BEGIN’ acknowledgement
has been sent

BEGIN_SN BIGINT The first log record sequence number of the
transaction
381 The Data Dictionary

3.2 Performance Views
3.2.65.1 Column Information

REP_NAME

This is the name of the replication object.

CURRENT_TYPE

Please refer to the description of the CURRENT_TYPE column in the V$REPGAP_PARALLEL perfor-
mance view.

LOCAL_TID

This is the identifier of the transaction being executed on the local server.

REMOTE_TID

This is the identifier of the transaction being executed on the remote server.

PARALLEL_ID

This is the identifier of one of several replication Sender threads working in parallel.

3.2.66 V$REPSYNC

This view displays information about tables that are synchronized using replication.

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object

CURRENT_TYPE VARCHAR(9) The type of the replication Sender thread

LOCAL_TID INTEGER The local transaction identifier

REMOTE_TID INTEGER The remote transaction identifier

BEGIN_FLAG INTEGER Indicates whether ‘BEGIN’ acknowledgement
has been sent

BEGIN_SN BIGINT The first log record sequence number of the
transaction

PARALLEL_ID INTEGER The identifier of one of several replication
Senders working in parallel

Column Data Type Description

REP_NAME VARCHAR(40) The name of the replication object
General Reference 382

3.2 Performance Views
3.2.66.1 Column Information

REP_NAME

This is the name of the replication object on the local server.

SYNC_TABLE

This is the name of the table that is the target for synchronization.

SYNC_PARTITION

This is the name of the partition that is the target for synchronization.

SYNC_RECORD_COUNT

When data in replication target tables on the local server are synchronized with those on the remote
server, the data are synchronized in batches of records, the size of which is specified in the ALTIBASE
HDB REPLICATION_SYNC_TUPLE_COUNT property.

While synchronization is underway, this is the number of records that have been synchronized.

A value of -1 indicates that synchronization is complete.

3.2.67 V$SEGMENT

This view shows information about segments that make up disk tables and disk indexes, including
their status, kind, and the index to which they are allocated.

SYNC_TABLE VARCHAR(40) The name of the table to be synchronized

SYNC_PARTITION VARCHAR(40) The name of the partition to be synchronized

SYNC_RECORD_COUNT BIGINT The number of records that have been syn-
chronized on the remote server

SYNC_SN BIGINT Not currently used

Column Data Type Description

Column Data Type Description

SPACE_ID INTEGER The tablespace identifier

TABLE_OID BIGINT The object identifier of the table header

SEGMENT_PID INTEGER The identifier of the page in which the seg-
ment is stored

SEGMENT_TYPE VARCHAR(7) The type of segment

SEGMENT_STATE VARCHAR(7) The status of the segment
383 The Data Dictionary

3.2 Performance Views
3.2.67.1 Column Information

SPACE_ID

This is identifier of the tablespace in which the segment exists.

TABLE_OID

This is the object identifier of the table that uses the segment.

SEGMENT_PID

This is the identifier of the page in which the segment header is stored.

SEGMENT_TYPE

INDEX: This indicates that the segment is an index segment.

TABLE: This indicates that the segment is an table segment.

TSSEG: This indicates that the segment is a TSS segment.

UDSEG: This indicates that the segment is an undo segment.

SEGMENT_STATE

USED: This indicates that the segment is being used.

FREE: This indicates that the segment is empty.

EXTENT_TOTAL_COUNT

This is the total number of extents allocated to the segment.

3.2.68 V$SEQ

This view displays sequence-related information.

EXTENT_TOTAL_COUNT BIGINT The total number of extents assigned to the
segment

Column Data Type Description

Column Data Type Description

SEQ_OID BIGINT The object identifier of the sequence

CURRENT_SEQ BIGINT The current value of the sequence

START_SEQ BIGINT The starting value of the sequence
General Reference 384

3.2 Performance Views
3.2.68.1 Column Information

SEQ_OID

This is a unique sequence identifier, which is assigned internally by the system when the sequence is
created. It has the same value as a TABLE_OID in the SYS_TABLES_ meta table, for which the value in
the TABLE_TYPE column will be 'S' (Sequence).

CURRENT_SEQ

This is the current sequence value.

START_SEQ

This is the sequence value that was specified when the sequence was first created.

INCREMENT_SEQ

This is value by which the sequence is incremented.

MAX_SEQ

This is the maximum value that can be generated using the sequence.

MIN_SEQ

This is the minimum value that can be generated using the sequence.

IS_CYCLE

When the sequence reaches its maximum possible value, this indicates whether the sequence will
cycle and generate values starting from the minimum value again.

YES: The sequence cycles

NO: The sequence does not cycle. If the sequence has reached the maximum possible value and an
attempt is made to generate another sequence value, an error occurs.

INCREMENT_SEQ BIGINT The increment value of the sequence

CACHE_SIZE BIGINT The size of the cache

MAX_SEQ BIGINT The maximum sequence value

MIN_SEQ BIGINT The minimum sequence value

IS_CYCLE CHAR(7) Indicates whether the sequence is cyclical

Column Data Type Description
385 The Data Dictionary

3.2 Performance Views
3.2.69 V$SERVICE_THREAD

This view displays information about service threads related to multiplexing.

A thread in a server that receives and fulfills a request (query) from a client is called a service thread.
When multiple clients connect to a server and execute queries, if a service thread is created for each
client session, it may result in deterioration of performance.

Therefore, it is better to create only the number of service threads that is optimized for the server
and can meet client requests. This is called service thread multiplexing. ALTIBASE HDB is designed to
maintain the optimal number of service threads all of the time by dynamically adding or deleting
service threads. However, the minimum number of service threads specified in the
MULTIPLEXING_THREAD_COUNT property is always maintained.

Column Information

ID

This is the identifier of the service thread. This is an identifier that is managed within ALTIBASE HDB,
rather than a system thread identifier (that is, a Light Weight Process ID).

TYPE

This shows the service thread connection method. It can have the following values:

SOCKET: Connection via TCP or Unix Domain (UDP)

Column Data Type Description

ID INTEGER The service thread identifier

TYPE VARCHAR(7) The service thread access method

STATE VARCHAR(10) The current status of the service thread

SESSION_ID INTEGER The identifier of the session in which the ser-
vice thread is executed

RUN_MODE VARCHAR(9) The mode of execution of the service thread

STATEMENT_ID INTEGER The identifier of the statement being exe-
cuted by the service thread

START_TIME INTEGER The time at which the service thread was cre-
ated

EXECUTE_TIME BIGINT The time taken for the service thread to exe-
cute a query

TASK_COUNT INTEGER The number of sessions being handled by
the service thread

READY_TASK_COUNT INTEGER The number of sessions waiting for service
threads to process their requests
General Reference 386

3.2 Performance Views
IPC: Connection via IPC

STATE

This indicates the current status of the service thread. It can have the following values:

NONE: The service thread is being initialized.

POLL: The service thread is waiting for an event.

QUEUE-WAIT: The service thread is waiting in the queue.

EXECUTE: The service thread is executing a statement.

UNKNOWN: The status of the service thread cannot be determined.

RUN_MODE

This shows the mode of execution of the service thread. It can be either SHARED or DEDICATED.

SHARED: When multiple database tasks (connections) are allocated to a single service thread, this
service thread is said to be multiplexed, and processes all of the database tasks.

DEDICATED: One database task (connection) is allocated to one service thread, and uses the thread
exclusively.

Switching the operating mode of a service thread is currently possible only for queue-related tasks.
The mode can only be switched from SHARED mode to DEDICATED mode.

STATEMENT_ID

This is the identifier of the SQL statement that is currently being executed by the service thread.

START_TIME

This is the time point at which the service thread was created. It is based on system time.

Unit: seconds

EXECUTE_TIME

This is the amount of time that the service thread has taken to execute the current query.

Unit: microseconds

TASK_COUNT

This is the total number of sessions that are assigned to the service thread.

READY_TASK_COUNT

This is the number of sessions that are waiting for their requests to be processed by service threads.
387 The Data Dictionary

3.2 Performance Views
3.2.70 V$SESSION

This view displays internally generated information about client sessions.

Column name Type Description

ID INTEGER The session identifier

TRANS_ID BIGINT The identifier of the transaction currently
being executed in the session

TASK_STATE VARCHAR(11) The task status

COMM_NAME VARCHAR(64) Connection information

XA_SESSION_FLAG INTEGER The XA session flag

XA_ASSOCIATE_FLAG INTEGER The XA associate flag

QUERY_TIME_LIMIT INTEGER See below

FETCH_TIME_LIMIT INTEGER See below

UTRANS_TIME_LIMIT INTEGER See below

IDLE_TIME_LIMIT INTEGER See below

IDLE_START_TIME INTEGER See below

ACTIVE_FLAG INTEGER The active transaction flag

OPENED_STMT_COUNT INTEGER The number of opened statements

CLIENT_PACKAGE_VERS
ION

VARCHAR(40) The client package version

CLIENT_PROTOCOL_VER
SION

VARCHAR(40) The client communication protocol version

CLIENT_PID BIGINT The client process ID

CLIENT_TYPE VARCHAR(40) The type of the client

CLIENT_APP_INFO VARCHAR(128) The type of the client application

CLIENT_NLS VARCHAR(40) The client character set

DB_USERNAME VARCHAR(40) The database user name

DB_USERID INTEGER The database user identifier

DEFAULT_TBSID BIGINT The user’s default tablespace identifier

DEFAULT_TEMP_TBSID BIGINT The user’s default temporary tablespace
identifier

SYSDBA_FLAG INTEGER Indicates whether the connection was made
as sysdba

AUTOCOMMIT_FLAG INTEGER The autocommit flag
General Reference 388

3.2 Performance Views
3.2.70.1 Column Information

ID

This is the unique identifier of a currently connected session.

TRANS_ID

This is the identifier of the transaction currently being executed in the session. If no transaction is
currently underway, the value of -1 will be shown.

TASK_STATE

This indicates the status of the current task. It can have the following values:

SESSION_STATE VARCHAR(13) The status of the session

ISOLATION_LEVEL INTEGER The isolation level

REPLICATION_MODE INTEGER The replication mode

TRANSACTION_MODE INTEGER The transaction mode

COMMIT_WRITE_WAIT_
MODE

INTEGER See below

OPTIMIZER_MODE INTEGER The optimization mode

HEADER_DISPLAY_MOD
E

INTEGER Indicates whether only the column names
are output, or whether the table names are
output along with the column names when
the results of a SELECT query are output.
0: The table names are displayed along with
the column names.
1: Only the column names are output.

CURRENT_STMT_ID INTEGER The identifier of the current statement

STACK_SIZE INTEGER The size of the stack

DEFAULT_DATE_FORMA
T

VARCHAR(64) The default date format
e.g.) DD-MON-RRRR

TRX_UPDATE_MAX_LO
GSIZE

BIGINT The maximum size of the DML Log

PARALLEL_DML_MODE INTEGER Deprecated

LOGIN_TIME INTEGER The amount of time the client has been
logged in

Column name Type Description
389 The Data Dictionary

3.2 Performance Views
COMM_NAME

This is the client connection information, the format of which varies depending on which communi-
cation protocol (TCP/IP, UNIX domain sockets, or IPC) is used. In the case of TCP/IP, this information
also includes the client IP address and port number.

XA_SESSION_FLAG

Indicates whether the current session is an XA session.

0: NON-XA (not an XA session)

XA_ASSOCIATE_FLAG

This shows the state of association between the session and the global transaction.

QUERY_TIME_LIMIT

This is the query timeout value for the current session.

FETCH_TIME_LIMIT

This is the fetch timeout value for the current session.

UTRANS_TIME_LIMIT

This is the update transaction timeout value for the current session.

IDLE_TIME_LIMIT

This is the idle timeout value for the current session.

STATE Description

WAITING The state in which the task is waiting for a request from a
client

READY The state in which the task has been received from a client
and is waiting for a thread to be assigned to it

EXECUTING The state in which a thread has been assigned to the task
and is processing it

QUEUE WAIT The state in which the task is waiting to be queued. After
the task is queued, it is eventually dequeued.

QUEUE READY The state in which the task has been queued. It will be
dequeued once a thread has been assigned to it.

UNKNOWN The state of the task cannot be determined.
General Reference 390

3.2 Performance Views
IDLE_START_TIME

This shows the time at which the session entered an Idle state.

ACTIVE_FLAG

If the session is executing a statement, the value of 1 is shown. However, if the session has merely
connected, or has finished committing or rolling back a transaction, a value of 0 will be shown.

OPENED_STMT_COUNT

This shows the number of statements that are currently being executed by the session.

CLIENT_PACKAGE_VERSION

This is the package version of the connected client.

CLIENT_PROTOCOL _VERSION

This is the communication protocol version being used by the connected client.

CLIENT_PID

This is the process ID of the connected client. This value is not available for Java applications.

CLIENT_TYPE

This is a string that indicates the type of the connected client.

It consists of the following:

CLIENT_TYPE ::= app-type hypen word-size endian
 app-type ::= CLI | WIN_ODBC | UNIX_ODBC
 hypen ::= -
 word-size ::= 32 | 64
 endian ::= BE | LE
BE : Big Endian, LE : Little Endian

Ex.) CLI-32LE
 UNIX_ODBC-32BE

CLIENT_APP_INFO

This is information about the connected client application. This information is set by the client appli-
cation.

CLIENT_NLS

This indicates the character set in use on the connected client.

DB_USERNAME

This is the name of the database user being used on the connected client.
391 The Data Dictionary

3.2 Performance Views
DB_USERID

This is a numerically expressed user identifier, used by ALTIBASE HDB to distinguish between users.

DEFAULT_TBSID

This is the identifier of the default tablespace for the user.

DEFAULT_TEMP_TBSID

This is the identifier of the default temporary tablespace for the user.

SYSDBA_FLAG

This indicates whether or not the session is connected in sysdba mode.

1: sysdba mode

AUTOCOMMIT_FLAG

This indicates whether AUTOCOMMIT is active for the connected session.

0: the connected session is not in AUTOCOMMIT mode

1: the connected session is in AUTOCOMMIT mode

SESSION_STATE

ISOLATION_LEVEL

This indicates the isolation level for the session.

STATE Description

INIT The state in which the session is waiting for a request from
a client

AUTH The state in which user authorization is complete

SERVICE READY The state in which service is ready (The state “A transaction
cannot be created” is returned only for XA sessions.)

SERVICE The service state

END The state of normal completion (COMMIT in the case
where there is a transaction)

ROLLBACK The state of abnormal termination (ROLLBACK in the case
where there is a transaction) This occurs when a client is
disconnected or a server forcibly disconnects a session.

UNKNOWN The state cannot be determined
General Reference 392

3.2 Performance Views
REPLICATION_MODE

This indicates the replication mode for the session.

0: DEFAULT

16: EAGER

48: LAZY

64: NONE

TRANSACTION_MODE

This indicates the transaction mode for the session.

0: READ/WRITE

4: READ ONLY

COMMIT_WRITE_WAIT_MODE

0: When a transaction is committed, do not wait until the logs are written to disk.

1: When a transaction is committed, wait until the logs are written to disk.

OPTIMIZER_MODE

This indicates the optimization mode that has been set for the session.

1: the optimization mode is rule-based

0: the optimization mode is cost-based

CURRENT_STMT_ID

This is the identifier of the statement that is currently being executed.

STACK_SIZE

This is the size of the stack for the query processor that has been set for the current session.

DEFAULT_DATE_FORMAT

This is the default date format that has been set for the session. (Please refer to the description of the
Datetime data type in Chapter1: Data Types.)

e.g.: DD-MON-RRRR

TRX_UPDATE_MAX_LOGSIZE

This is the maximum size of logs that can be generated by a single DML statement.
393 The Data Dictionary

3.2 Performance Views
LOGIN_TIME

This indicates the amount of time that the client has been logged in.

3.2.71 V$SESSION_EVENT

This view shows cumulative statistical wait information about all wait events for each session that is
currently connected to an Altibase database.

3.2.71.1 Column Information

SID

This is the identifier of a waiting session.

EVENT

This is the name of the wait event.

TOTAL_WAITS

This is the total number of waits related to the wait event.

Column name Type Description

SID INTEGER The identifier of the session

EVENT VARCHAR(128) The name of the wait event

TOTAL_WAITS BIGINT The total number of waits related to the wait
event

TOTAL_TIMEOUTS BIGINT The total number of times that a resource
could not be accessed after the specified
time

TIME_WAITED BIGINT The total amount of time spent waiting for
the wait event (in milliseconds)

AVERAGE_WAIT BIGINT The average amount of time spent waiting
for the wait event (in milliseconds)

MAX_WAIT BIGINT The maximum time spent waiting for the
wait event (in milliseconds)

TIME_WAITED_MICRO BIGINT The total amount of time spent waiting for
the wait event (in microseconds)

EVENT_ID INTEGER The identifier of the wait event

WAIT_CLASS_ID INTEGER The identifier of the class of the wait event

WAIT_CLASS VARCHAR(128) The name of the class of the wait event
General Reference 394

3.2 Performance Views
TOTAL_TIMEOUTS

This is the number of failures to gain access to the requested resource even after the specified time
has elapsed.

TIME_WAITED

This is the total time spent waiting for this wait event (in milliseconds).

AVERAGE_WAIT

This is the average amount of time spent waiting for the wait event (in milliseconds).

MAX_WAIT

This is the maximum time spent waiting for the wait event (in milliseconds).

TIME_WAITED_MICRO

This is the total amount of time spent waiting for this wait event (in microseconds).

EVENT_ID

This is the identifier of the wait event.

WAIT_CLASS_ID

This is the identifier of the wait class in which the wait event is classified.

WAIT_CLASS

This is the name of the class in which the wait event is classified.

3.2.72 V$SESSION_WAIT

This view displays information about wait events for all currently connected sessions. This view does
not provide information about wait events related to sessions that are no longer connected.

Column name Type Description

SID INTEGER The identifier of the session

SEQNUM INTEGER The identifier of the wait event

EVENT VARCHAR(128) The name of the wait event

P1 BIGINT Parameter 1 of the wait event

P2 BIGINT Parameter 2 of the wait event

P3 BIGINT Parameter 3 of the wait event
395 The Data Dictionary

3.2 Performance Views
3.2.72.1 Column Information

SID

This is the identifier of a currently connected session.

SEQNUM

This is the identifier of the wait event associated with the session.

EVENT

This is the name of the wait event.

WAIT_CLASS_ID

This is the identifier of the class of the wait event.

WAIT_CLASS

This is the name of the wait class.

WAIT_TIME

This is the amount of time spent waiting for the wait event (in milliseconds).

SECOND_IN_WAIT

This is the amount of time spent waiting for the wait event (in seconds).

3.2.73 V$SESSION_WAIT_CLASS

This view shows cumulative statistical information about waits, classified according to session and
wait event, for all currently connected sessions. This view does not provide information about wait
events related to sessions that are no longer connected.

WAIT_CLASS_ID INTEGER The identifier of the wait class

WAIT_CLASS VARCHAR(128) The name of the wait class

WAIT_TIME BIGINT The time spent waiting (in milliseconds)

SECOND_IN_WAIT BIGINT The time spent waiting (in seconds)

Column name Type Description

Column name Type Description

SID INTEGER The session identifier
General Reference 396

3.2 Performance Views
3.2.73.1 Column Information

WAIT_CLASS_ID

This is the identifier of the wait class.

WAIT_CLASS

This is the name of the wait class.

TOTAL_WAITS

This is the total number of waits for this wait event in this session.

TIME_WAITED

This is the total time (in milliseconds) spent waiting for this wait event in this session.

SID

This is the identifier of the session.

SERIAL

This is the identifier of the wait event.

3.2.73.2 Example

<Example 1> The following SELECT query outputs the total number of waits and the total amount of
time spent waiting for each wait event in each session, classified by session, wait event and wait
class.

select sid, serial, wait_class_id, sum(total_waits), sum(time_waited)
from v$session_wait_class
group by sid, serial, wait_class_id
order by total_waits desc;

SERIAL INTEGER The identifier of the wait event

WAIT_CLASS_ID INTEGER The identifier of the wait class

WAIT_CLASS VARCHAR(128) The name of the wait class

TOTAL_WAITS BIGINT The total number of waits for this wait event
in this session

TIME_WAITED VACHAR(128) The total amount of time waited for this wait
event in this session (in milliseconds)

Column name Type Description
397 The Data Dictionary

3.2 Performance Views
3.2.74 V$SESSIONMGR

This view displays statistical information about sessions.

3.2.74.1 Column Information

TASK_COUNT

This is the total number of currently connected sessions.

BASE_TIME

This is the current time, expressed in seconds.

IDLE_TIMEOUT_COUNT

This is the number of idle timeouts that have occurred since ALTIBASE HDB was started.

QUERY_TIMEOUT_COUNT

This is the number of query timeouts that have occurred since ALTIBASE HDB was started.

FETCH_TIMEOUT_COUNT

This is the number of fetch timeouts that have occurred since ALTIBASE HDB was started.

UTRANS_TIMEOUT_COUNT

This is the number of UPDATE transaction timeouts that have occurred since ALTIBASE HDB was
started.

Column Data Type Description

TASK_COUNT INTEGER The number of connected sessions

BASE_TIME INTEGER The current time

IDLE_TIMEOUT_COUNT INTEGER See below

QUERY_TIMEOUT_COU
NT

INTEGER See below

FETCH_TIMEOUT_COUN
T

INTEGER See below

UTRANS_TIMEOUT_CO
UNT

INTEGER See below

SESSION_TERMINATE_C
OUNT

INTEGER See below
General Reference 398

3.2 Performance Views
SESSION_TERMINATE_COUNT

This is the number of sessions that have been forcibly disconnected by the sysdba since ALTIBASE
HDB was started.

3.2.75 V$SESSTAT

This view shows statistics for all currently connected sessions.

For information about each status, please refer to V$STATNAME.

3.2.75.1 Column Information

SID

This is the unique identifier for the session.

SEQNUM

This is a serial number for the statistic.

NAME

This is the name of the statistic.

VALUE

This is the value returned for the statistic, expressed as a 64-bit integer.

3.2.76 V$SQLTEXT

This view displays information about SQL that is currently being executed in the server.

Column name Type Description

SID INTEGER The identifier of the session.

SEQNUM INTEGER The serial number of each statistic

NAME VARCHAR(128) The name of the statistic

VALUE BIGINT The value returned for the statistic

Column Data Type Description

SID INTEGER The identifier of the session

STMT_ID INTEGER The identifier of the statement
399 The Data Dictionary

3.2 Performance Views
3.2.76.1 Column Information

SID

This is a unique number identifying the session in which the SQL text is being executed.

STMT_ID

This is the serial number of the fragment of the SQL statement being executed in the session.

PIECE

The complete SQL statement that is being executed is divided into 64-byte fragments of text and
saved. PIECE is a serial number that identifies each line of text, ascending from 0.

TEXT

This is the actual 64-byte fragment of text constituting part of the SQL statement.

3.2.77 V$SQL_PLAN_CACHE

This view shows the current status of the SQL Plan Cache along with some related statistical informa-
tion.

PIECE INTEGER The serial number of the text fragment

TEXT VARCHAR(64) A fragment of SQL text

Column Data Type Description

Column name Type Description

MAX_CACHE_SIZE BIGINT The maximum size of the SQL Plan Cache (in
bytes)

CURRENT_HOT_LRU_SIZE BIGINT The current size of the HOT area of an LRU list

CURRENT_COLD_LRU_SIZE BIGINT The current size of the COLD area of an LRU
list

CURRENT_CACHE_SIZE BIGINT The current size of the SQL Plan Cache

CURRENT_CACHE_OBJ_COUNT INTEGER The number of plan objects currently regis-
tered in the SQL Plan Cache

CACHE_HIT_COUNT BIGINT The number of times that plan cache objects
registered in the SQL Plan Cache are used

CACHE_MISS_COUNT BIGINT The number of failures to find plan objects in
the SQL Plan Cache
General Reference 400

3.2 Performance Views
3.2.77.1 Column Information

MAX_CACHE_SIZE

This is the maximum size of the SQL Plan Cache. To reduce or increase this maximum size, execute
‘alter system set SQL_PLAN_CACHE_SIZE = ’.

CURRENT_HOT_LRU_SIZE

The plan cache objects on the SQL Plan Cache LRU list that are frequently referred to are managed in
a HOT area, the size of which is expressed in bytes.

CURRENT_COLD_LRU_SIZE

The plan cache objects on the SQL Plan Cache LRU list that are not frequently referred to are man-
aged in a COLD area, the size of which is expressed in bytes.

CURRENT_CACHE_SIZE

This is the total size of plan cache objects that are currently in the SQL Plan Cache.

CURRENT_CACHE_OBJ_COUNT

This is the number of plan cache objects that are in the SQL Plan Cache.

CACHE_HIT_COUNT

This is the total number of times that plan cache objects in the SQL Plan Cache have been used.

CACHE_MISS_COUNT

This is the number of attempts to refer to plan cache objects that do not exist in the SQL Plan Cache.

CACHE_IN_FAIL_COUNT

This is the number of times that a plan cache object could not be inserted into the cache due to the

CACHE_IN_FAIL_COUNT BIGINT The number of failures to insert new plan
objects into the SQL Plan Cache due to the
maximum size restriction

CACHE_OUT_COUNT BIGINT The number of plan objects that have been
deleted from the SQL Plan Cache

CACHE_INSERTED_COUNT BIGINT The number of plan objects that have been
inserted into the SQL Plan Cache

NONE_CACHE_SQL_TRY_COUNT BIGINT The number of attempts to execute state-
ments, such as DDL and DCL statements, that
do not affect the plan cache

Column name Type Description
401 The Data Dictionary

3.2 Performance Views
maximum memory size restriction of the cache, even though an attempt was made to delete or
remove infrequently consulted plan cache objects from the cache.

CACHE_OUT_COUNT

This is the number of plan cache objects that were deleted from the SQL Plan Cache.

CACHE_INSERTED_COUNT

This is the number of plan cache objects that were added to the SQL Plan Cache.

NONE_CACHE_SQL_TRY_COUNT

This is the number of attempts to execute statements that do not affect the plan cache. These state-
ments are usually DDL or DCL statements.

3.2.78 V$SQL_PLAN_CACHE_PCO

This view displays information about plan cache objects registered in the SQL Plan Cache.

3.2.78.1 Column Information

SQL_TEXT_ID

This is the identifier of the SQL text object to which the plan cache object belongs.

PCO_ID

This is the identifier of the plan cache object in the SQL text object.

Column name Type Description

SQL_TEXT_ID VARCHAR(64) The identifier of the SQL text object contain-
ing the plan cache object

PCO_ID INTEGER The identifier of the plan cache object in the
SQL text object

CREATE_REASON VARCHAR(28) The reason the plan cache object was cre-
ated

HIT_COUNT INTEGER The number of times the plan cache object
has been referred to

REBUILD_COUNT INTEGER The number of times the plan cache object
has been rebuilt

PLAN_STATE VARCHAR(17) The state of the plan of the plan cache object
General Reference 402

3.2 Performance Views
CREATE_REASON

This is the reason for creating the plan cache object. It can have the following values:

• CREATE_BY_CACHE_MISS

The plan cache object was created because no such object existed in the SQL Plan Cache.

• CREATE_BY_PLAN_INVALIDATION

A plan cache object was found in the SQL Plan Cache during PREPARE work, but a new object
was created because the database object referred to in the plan was not valid.

• CREATE_BY_PLAN_TOO_OLD

A new plan cache object was created, either because the range of statistical information about
objects to which the plan refers has changed excessively, or because a DDL statement was exe-
cuted.

HIT_COUNT

This is the number of times the plan cache object has been referred to.

REBUILD_COUNT

This is the number of times the plan cache object has been recompiled.

PLAN_STATE

This is the status of the plan of the plan cache object. It can have the following values:

• NOT_READY

This is the state in which a plan and environment have not yet been assigned to the plan cache
object.

• READY

This is the state in which a plan and environment have been assigned to the plan cache object.

• HARD-PREPARE-NEED

This is the state in which Hard Prepare (forcible plan creation) is necessary because the state-
ment does not affect the plan cache or because there is insufficient plan cache area.

• OLD_PLAN

This is the state in which the plan is not valid and will not be used in the future.

3.2.79 V$SQL_PLAN_CACHE_SQLTEXT

This view displays information about plan cache objects registered in the SQL Plan Cache.
403 The Data Dictionary

3.2 Performance Views
3.2.79.1 Column Information

SQL_TEXT_ID

This is the identifier of the SQL statement in the SQL Plan Cache. The first 4 digits indicate thenum-
ber of the bucket in which the SQL statement is stored in the SQL Plan Cache. The remaining digits
indicate the serial number of the SQL statement in the bucket.

SQL_TEXT

This is the actual SQL statement.

CHILD_PCO_COUNT

This is the number of Child Plan Cache objects that the SQL Text Plan object currently possesses.

CHILD_PCO_CREATE_COUNT

This is the number of Child Plan Caches that have been created in the SQL Text Plan object so far.
New Child Plan Cache objects are created in the SQL Text Plan object in the following two cases:

• A Child Plan Cache object is created when the SQL statement is the same but the environment
in which the plan was created has changed.

• A new plan cache object is created when objects that refer to the plan cache object have
changed, or when the range of statistical information about objects has changed excessively.

3.2.80 V$STABLE_MEM_DATAFILES

This view shows the complete file path of the data files in the database.

Column name Type Description

SQL_TEXT_ID VARCHAR(64) The identifier of the SQL statement in the
SQL Plan Cache

SQL_TEXT VARCHAR(16384) The SQL statements

CHILD_PCO_COUNT INTEGER The number of Child Plan Cache objects

CHILD_PCO_CREATE_COU
NT

INTEGER The number of Child Plan Cache objects that
have been created

Column name Type Description

MEM_DATA_FILE VARCHAR(256) The full path of the data file
General Reference 404

3.2 Performance Views
3.2.80.1 Column Information

MEM_DATA_FILE

This is the full path of the data files in the database.

3.2.81 V$STATEMENT

This view shows information about the most recently executed query in each currently connected
session.

Column name Type Description

ID INTEGER The identifier of the statement

PARENT_ID INTEGER The identifier of the parent statement

CURSOR_TYPE INTEGER The cursor type

SESSION_ID INTEGER The ID of the session to which the statement
belongs

TX_ID BIGINT The identifier of the transaction

QUERY VARCHAR(16384) The first 1024 characters of the SQL string
that is or was executed

LAST_QUERY_START_TI
ME

INTEGER The start time of the most recent query

QUERY_START_TIME INTEGER The start time of the current query

FETCH_START_TIME INTEGER The start time of the current fetch

STATE VARCHAR(13) The state of the current statement

ARRAY_FLAG INTEGER The array execution flag

ROW_NUMBER INTEGER The number of the current row

EXECUTE_FLAG INTEGER The execution flag

BEGIN_FLAG BIGINT A flag that shows whether the current state-
ment is opened or not

TOTAL_TIME BIGINT The total elapsed time

PARSE_TIME BIGINT The time taken to parse the statement

VALIDATE_TIME BIGINT The time taken to validate the statement

OPTIMIZE_TIME BIGINT The time taken to optimize the statement

EXECUTE_TIME BIGINT The time taken to execute the statement

FETCH_TIME BIGINT The time taken to perform a fetch operation
405 The Data Dictionary

3.2 Performance Views
SOFT_PREPARE_TIME BIGINT The time taken to search for a plan in the SQL
Plan Cache during the Prepare process

SQL_CACHE_TEXT_ID VARCHAR(64) The SQL Text identifier of the SQL plan cache
object

SQL_CACHE_PCO_ID INTEGER The identifier of the plan cache object

OPTIMIZER BIGINT The optimization mode

COST BIGINT The optimization cost

USED_MEMORY BIGINT Reserved for future use

READ_PAGE BIGINT The number of disk pages that have been
read

WRITE_PAGE BIGINT The number of disk pages that have been
written to

GET_PAGE BIGINT The number of disk pages that have been
accessed

CREATE_PAGE BIGINT The number of disk pages that have been
created

UNDO_READ_PAGE BIGINT The number of disk UNDO pages that have
been read

UNDO_WRITE_PAGE BIGINT The number of disk UNDO pages that have
been written to

UNDO_GET_PAGE BIGINT The number of disk UNDO pages that have
been accessed

UNDO_CREATE_PAGE BIGINT The number of disk UNDO pages that have
been created

MEM_CURSOR_FULL_S
CAN

BIGINT The number of memory table searches with-
out indexes

MEM_CURSOR_INDEX_
SCAN

BIGINT The number of memory table searches that
use indexes

DISK_CURSOR_FULL_SC
AN

BIGINT The number of disk table searches without
indexes

DISK_CURSOR_INDEX_S
CAN

BIGINT The number of disk table searches that use
indexes

EXECUTE_SUCCESS BIGINT The number of successful statement execu-
tions

EXECUTE_FAILURE BIGINT The number of failed statement executions

PROCESS_ROW BIGINT The number of processed records

Column name Type Description
General Reference 406

3.2 Performance Views
3.2.81.1 Column Information

ID

This is a unique identifier that distinguishes the statement within a session.

PARENT_ID

This is the identifier of the parent statement of the given statement.

CURSOR_TYPE

A hex value of 0x02 indicates a memory cursor, whereas a hex value of 0x04 indicates a disk cursor.

SESSION_ID

This is the identifier of the session to which the statement belongs.

TX_ID

This is the identifier of the transaction that is currently being executed.

QUERY

This is a query string that is currently being executed or was executed by the statement.

LAST_QUERY_START_TIME

Indicates the absolute time when the last query started, in seconds.

QUERY_START_TIME

This is the absolute start time of execution of the currently executed query, in seconds.

MEMORY_TABLE_ACCES
S_COUNT

BIGINT The number of records that a statement
retrieves from the target memory table(s)

SEQNUM INTEGER The identifier of a wait event

EVENT VARCHAR(128) The name of a wait event

P1 BIGINT Parameter 1 of the wait event

P2 BIGINT Parameter 2 of the wait event

P3 BIGINT Parameter 3 of the wait event

WAIT_TIME BIGINT The time spent waiting (in milliseconds)

SECOND_IN_TIME BIGINT The time spent waiting (in seconds)

Column name Type Description
407 The Data Dictionary

3.2 Performance Views
FETCH_START_TIME

If the current statement is a SELECT statement, this is the time at which the fetch started, in seconds.

STATE

This is the state of the current statement. It can have the following values:

ALLOC: The statement has been initialized and assigned.

PREPARED: The statement is in a prepared state.

FETCH READY: The statement is being prepared for a fetch operation.

FETCH PROCEED: The statement is in the process of performing a fetch operation.

ARRAY_FLAG

This indicates whether or not the current statement is being executed in array or batch mode. It can
have the following values:

0: Not executed in array or batch mode

1: Executed in array or batch mode

ROW_NUMBER

If the current statement is being executed in array or batch mode, this is the number of the row cur-
rently being processed, starting at 1.

EXECUTE_FLAG

Indicates whether the current statement is being executed. It can have the following values:

0: Not currently being executed

1: Currently being executed

BEGIN_FLAG

Indicates whether the current statement is open, that is, whether it is being executed.

0: Execution of the current statement has not started, or has completed.

1: The current statement is open.

TOTAL_TIME

This is the total execution time of the current statement, in microseconds.

Depending on the type of the statement, the PVO time or fetch time can be added to
EXECUTE_TIME.
General Reference 408

3.2 Performance Views
PARSE_TIME

This is the time taken to check the syntax of the query, in microseconds.

VALIDATE_TIME

This is the time taken to validate the query, in microseconds.

OPTIMIZE_TIME

This is the time taken to optimize the query, in microseconds.

EXECUTE_TIME

This is the time actually taken to execute a query, in microseconds. In the case of a SELECT state-
ment, this is the execution time up until the first fetch occurs.

FETCH_TIME

For a SELECT query, this is the time that elapses during fetching, in microseconds.

SOFT_PREPARE_TIME

This is the time taken to find an appropriate plan cache object in the SQL Plan Cache when creating
an SQL statement and plan as part of a Prepare task.

SQL_CACHE_TEXT_ID

This is the identifier of the SQL Cache Text object when searching for a plan object in the SQL Plan
Cache.

SQL_CACHE_PCO_ID

This is the object identifier of a shared plan cache in the SQL Cache Text object.

OPTIMIZER

This is the optimization mode. It can have the following values:

0: Cost-based optimization

1: Rule-based optimization

COST

This is the cost of optimizing the query.

USED_MEMORY

Reserved for future use.
409 The Data Dictionary

3.2 Performance Views
READ_PAGE

This is the number of disk data pages that are physically read when executing a query.

WRITE_PAGE

This is the number of disk data pages that are physically written to when executing a query.

GET_PAGE

This is the number of disk data pages that are accessed when executing a query.

CREATE_PAGE

This is the number of disk data pages that are created when executing a query.

UNDO_READ_PAGE

This is the number of disk UNDO pages that are physically read when executing a query.

UNDO_WRITE_PAGE

This is the number of disk UNDO pages that are physically written to when executing a query.

UNDO_GET_PAGE

This is the number of disk UNDO pages that are physically accessed when a query is executed.

UNDO_CREATE_PAGE

This is the number of disk UNDO pages that are created when executing a query.

MEM_CURSOR_FULL_SCAN

This is the number of times that a memory table is searched without using an index when executing
a query.

MEM_CURSOR_INDEX_SCAN

This is the number of times that a memory table is searched using an index when executing a query.

DISK_CURSOR_FULL_SCAN

This is the number of times that a disk table is searched without using an index when executing a
query.

DISK_CURSOR_INDEX_SCAN

This is the number of times that a disk table is searched using an index when executing a query.
General Reference 410

3.2 Performance Views
EXECUTE_SUCCESS

This is the number of successful query executions.

EXECUTE_FAILURE

This is the number of failed query executions.

PROCESS_ROW

This is the number of records that were processed when a query was executed.

MEMORY_TABLE_ACCESS_COUNT

This is the total number of records that are found in memory tables when a statement is executed. It
should be the same as the total number of accesses specified in the execution plan of the statement.

SEQNUM

This is the identifier of the wait event.

EVENT

This is the name of the wait event.

P1

This is a parameter used by the wait event.

P2

This is a parameter used by the wait event.

P3

This is a parameter used by the wait event.

WAIT_TIME

This is the time spent waiting (in milliseconds).

SECOND_IN_TIME

This is the time spent waiting (in seconds).

3.2.82 V$STATNAME

This view shows the numeric identifiers and names of statistics, and is the basis for V$SYSSTAT, which
shows the overall statistics for the system, and V$SESSTAT, which shows the statistics for individual
sessions.
411 The Data Dictionary

3.2 Performance Views
This table alone does not have any meaning; it should be viewed through one of the above two per-
formance views in order to provide meaningful information.

3.2.82.1 Column Information

SEQNUM

This is the identifier of the statistic, which is shown in one of the above performance views.

NAME

This is the name of the statistic, which is shown in one of the above performance views.

The serial number and a brief description of each statistic are provided in the following table. Each
statistic value is expressed as a 64-bit integer in the V$SYSSTAT and V$SESSTAT performance views.

Column name Type Description

SEQNUM INTEGER The identifier for the particular statistic

NAME VARCHAR(128) The name of the statistic

SEQNUM NAME Description

0 logon current The number of users that are currently connected

1 logon cumulative The cumulative number of users who have con-
nected

2 data page read The number of times that pages were read in the
system or session

3 data page write The number of times that pages were written to in
the system or session

4 data page gets The number of times that pages were accessed in
the system or session using latches

5 data page fix The number of times that pages were accessed in
the system or session without using latches

6 data page create The number of pages that were created in the sys-
tem or session

7 undo page read The number of times that UNDO pages were read in
the system or session

8 undo page write The number of times that UNDO pages were written
to in the system or session

9 undo page gets The number of times that UNDO pages were
accessed in the system or session using latches
General Reference 412

3.2 Performance Views
10 undo page fix The number of times that UNDO pages were
accessed in the system or session without using
latches

11 undo page create The number of UNDO pages that were created in
the system or session

12 base time in second The internal time that is maintained by the system
(in seconds)

13 query timeout The number of query timeouts that have occurred
in the system or session

14 idle timeout The number of idle timeouts that have occurred in
the system or session

15 fetch timeout The number of fetch timeouts that have occurred in
the system or session

16 utrans timeout The number of utrans timeouts that have occurred
in the system or session

17 session terminated The number of sessions that have been forcibly shut
down in the system

18 statement rebuild count The number of times that a statement has been
rebuilt in the system or session

19 unique violation count The number of times that a unique key constraint
has been violated in the system or session

20 update retry count The number of times that an update operation has
been reattempted in the system or session

21 delete retry count The number of times that a delete operation has
been reattempted in the system or session

22 lock row retry count The number of times that an attempt to lock a row
has been repeated in the system or session

23 session commit The number of commits that have occurred in the
system or session

24 session rollback The number of rollbacks that have occurred in the
system or session

25 fetch success count The number of successful fetches in the system or
session

26 fetch failure count The number of times a fetch failed in the system or
session

27 execute success count The number of times that queries were successfully
executed in the system or session

28 execute failure count The number of failures to execute a query in the sys-
tem or session

SEQNUM NAME Description
413 The Data Dictionary

3.2 Performance Views
29 prepare success count The number of times that a Prepare operation was
successfully conducted in the system or session

30 prepare failure count The number of times that a Prepare operation failed
in the system or session

31 rebuild count The number of times a plan cache object was
rebuilt in the system or session

32 write redo log count The number of log records that were recorded in
the system or session

33 write redo log bytes The total number of bytes of logs that were
recorded in the system or session

34 read socket count The number of times that data were read from a
socket in the system or session

35 write socket count The number of times that data were written to a
socket in the system or session

36 byte received via inet The number of bytes of data read using an INET
socket in the system or session

37 byte sent via inet The number of bytes of data written using an INET
socket in the system or session

38 byte received via unix
domain

The number of bytes of data read using the Unix
domain protocol in the system or session

39 byte sent via unix domain The number of bytes of data written using the Unix
domain protocol in the system or session

40 semop count for receiving
via ipc

The number of semaphore operations for IPC read
tasks in the system or session

41 semop count for sending
via ipc

The number of semaphore operations for IPC write
tasks in the system or session

42 memory table cursor full
scan count

The number of full scan cursors (a full scan cursor is
a forward-only cursor that scans an entire table)
opened on memory tables using sequential read

43 memory table cursor index
scan count

The number of index scan cursors opened on mem-
ory tables

44 disk table cursor full scan
count

The number of full scan cursors opened on disk
tables using sequential read

45 disk table cursor index scan
count

The number of index scan cursors opened on disk
tables

SEQNUM NAME Description
General Reference 414

3.2 Performance Views
46 lock acquired count The number of table locks that were obtained in the
system or session (Caution: For internal reasons,
when viewing V$SYSSTAT, this value may not be the
same as the number of locks that have been
released. However, for V$SESSTAT, the two values
should be the same.)

47 lock released count The number of table locks that have been released
in the system or session

48 service thread created
count

The number of service threads that have been cre-
ated in the system or session

49 memory table access count The number of times that memory tables have been
accessed in the system or session

50 elapsed time: query parse The total amount of time taken to parse a query.
This is a cumulative value.

51 elapsed time: query vali-
date

The total amount of time taken to validate a query.
This is a cumulative value.

52 elapsed time: query opti-
mize

The total amount of time taken to optimize a query.
This is a cumulative value.

53 elapsed time: query exe-
cute

The total amount of time taken to execute a query.
This is a cumulative value.

54 elapsed time: query fetch The total amount of time taken for a query to return
records.
This is a cumulative value.

55 elapsed time: soft prepare The total amount of time taken for soft prepare. This
is a cumulative value.

56 elapsed time: analyze val-
ues in DML(disk)

The total amount of time taken to analyze the input
column values when executing DML statements
(INSERT or UPDATE) in the system or session.
This is a cumulative value.

57 elapsed time: record lock
validation in DML(disk)

The amount of time taken to check whether or not
records can be updated in the system or session.
This is a cumulative value.

58 elapsed time: allocate data
slot in DML(slot)

The amount of time taken to allocate data slots dur-
ing a DML operation in the system or session.
This is a cumulative value.

59 elapsed time: write undo
record in DML(disk)

The amount of time taken to write undo records in
the system or session.
This is a cumulative value.

60 elapsed time: allocate tss in
DML(disk)

The amount of time taken to allocate transaction
slots in the system or session.
This is a cumulative value.

SEQNUM NAME Description
415 The Data Dictionary

3.2 Performance Views
61 elapsed time: allocate
undopage in DML(disk)

The amount of time taken to allocate undo pages in
the system or session.
This is a cumulative value.

62 elapsed time: index opera-
tion in DML(disk)

The amount of time taken to add keys to indexes in
the system or session.
This is a cumulative value.

63 elapsed time: create
page(disk)

The amount of time taken to create pages in the
system or session.
This is a cumulative value.

64 elapsed time: get
page(disk)

The amount of time taken to access pages with
latches in the system or session.
This is a cumulative value.

65 elapsed time: fix page(disk) The amount of time taken to access pages without
latches in the system or session.
This is a cumulative value.

66 elapsed time: logical aging
by tx in DML(disk)

Not currently used.

67 elapsed time: physical
aging by tx in DML(disk)

Not currently used.

68 elapsed time: replace (plan
cache)

The time taken to replace one plan with another
plan from a list.

69 elapsed time: victim free in
replace (plan cache)

The time taken to release a victim while replacing
one plan with another plan from a list.

70 elapsed time: hard rebuild When a plan is found in the plan cache but is deter-
mined to be invalid, this is the amount of time taken
to re-build it.
This is a cumulative value.

71 elapsed time: soft rebuild When a plan is found in the plan cache but is deter-
mined to be invalid and is thus to be rebuilt, this is
the amount of time spent waiting for another trans-
action to re-build the plan.
This is a cumulative value.

72 elapsed time: add hard-pre-
pared plan to plan cache

The amount of time taken to add a plan created by
hard prepare (i.e. a forcibly created plan) to the plan
cache.
This is a cumulative value.

73 elapsed time: add hard-
built plan to plan cache

The amount of time taken to add a plan created by
hard rebuild (refer to #70) to the plan cache.
This is a cumulative value.

74 elapsed time: search time
for parent PCO

The amount of time taken to find a parent PCO (Plan
Cache Object that has SQL text).
This is a cumulative value.

SEQNUM NAME Description
General Reference 416

3.2 Performance Views
3.2.83 V$SYSSTAT

This view shows the status of the system. It should be noted that the shown value may be out of

75 elapsed time: creation time
for parent PCO

The amount of time taken to create a new parent
PCO.
This is a cumulative value.

76 elapsed time: search time
for child PCO

The sum of #82 and #83 (i.e. 82 + 83).
This is a cumulative value.

77 elapsed time: creation time
for child PCO

The amount of time taken to create a new child PCO
(Plan Cache Object which has an execution plan).
This is a cumulative value.

78 elapsed time: validation
time for child PCO

The amount of time taken to validate a child PCO.
This is a cumulative value.

79 elapsed time: creation time
for new child PCO by
rebuild at execution

The amount of time taken to create a new child PCO
in the case where a plan is re-built during the execu-
tion phase.
This is a cumulative value.

80 elapsed time: creation time
for new child PCO by
rebuild at soft prepare

The amount of time taken to create a new child PCO
in the case where a plan is re-built during the soft
prepare phase.
This is a cumulative value.

81 elapsed time: hard prepare
time

The amount of time taken for hard prepare, that is,
to create a plan when no plan exists in the plan
cache.
This is a cumulative value.

82 elapsed time: matching
time for child PCO

The amount of time taken to determine which plan
is the desired plan in the case where there are two
or more child PCOs that have the same SQL text.
This is a cumulative value.

83 elapsed time: waiting time
for hard prepare

The sum of #81 and #72 (i.e. 81 + 72).
This is a cumulative value.

84 elapsed time: moving time
from cold region to hot
region

The amount of time taken to move a plan from a
cold area to a hot area.
This is a cumulative value.

85 elapsed time: waiting time
for parent PCO when
choosing plan cache
replacement target

The amount of time spent waiting for a parent PCO
latch to check child PCOs when choosing a replace-
ment target.
This is a cumulative value.

86 elapsed time: privilege
checking time during soft
prepare

The amount of time taken to check privileges for
access to objects during soft prepare.
This is a cumulative value.

SEQNUM NAME Description
417 The Data Dictionary

3.2 Performance Views
date, because the status values are updated every 3 seconds based on the data for all sessions.

For information about each statistic, please refer to V$STATNAME.

Note: The timestamps that can be obtained from Windows NT are limited to a maximum resolution of 10
or 15 milliseconds, depending on the underlying hardware. When the TIMED_STATISTICS property is set to
1 in altibase.properties, statistics which show elapsed time, such as "elapsed time: query parse" and
"elapsed time: query validate", in the V$SYSSTAT and V$SESSTAT performance views will be multiples of
the above maximum resolution.

3.2.83.1 Column Information

SEQNUM

This is the serial number of the system statistic.

NAME

This is the name corresponding to the statistic serial number.

VALUE

This is the current system value corresponding to the statistic serial number, expressed as a 64-bit
integer.

3.2.84 V$SYSTEM_CONFLICT_PAGE

This displays conflict information, classified by page type, for use in analyzing bottlenecks caused by
page latch contention in disk buffer space.

This information is collected only if the TIMED_STATISTICS property is set to 1.

Column name Type Description

SEQNUM INTEGER The identifier of the statistical category

NAME CHAR(128) The name of the statistic

VALUE BIGINT The value of the statistic

Column name Type Description

PAGE_TYPE VARCHAR(20) The type of page

LATCH_MISS_CNT BIGINT The number of failures to acquire latches

LATCH_MISS_TIME BIGINT The waiting time
General Reference 418

3.2 Performance Views
3.2.84.1 Column Information

PAGE_TYPE

This is the type of page.

LATCH_MISS_CNT

This is the number of failures to acquire buffer page latches.

LATCH_MISS_TIME

This is the amount of time (in microseconds) spent waiting for failed attempts to acquire buffer page
latches.

3.2.85 V$SYSTEM_EVENT

This view shows cumulative statistical information about waits, classified according to wait event,
from the time ALTIBASE HDB was started to the present.

3.2.85.1 Column Information

EVENT

This is the name of the wait event.

Column name Type Description

EVENT VARCHAR(128) The name of the wait event

TOTAL_WAITS BIGINT The total number of waits for this event

TOTAL_TIMEOUTS BIGINT The number of failures to gain access to the
requested resource within the specified time

TIME_WAITED BIGINT The total time spent waiting for this wait
event by all sessions (in milliseconds)

AVERAGE_WAIT BIGINT The average length of a wait for this event (in
milliseconds)

TIME_WAITED_MICRO BIGINT (The total time spent waiting for this wait
event by all sessions (in microseconds)

EVENT_ID INTEGER The identifier of the wait event

WAIT_CLASS_ID INTEGER The identifier of the wait class

WAIT_CLASS VARCHAR(128) The name of the wait class
419 The Data Dictionary

3.2 Performance Views
TOTAL_WAITS

This is the total number of waits for this event.

TOTAL_TIMEOUTS

This is the number of failures to gain access to the requested resource even after the specified time
has elapsed.

TIME_WAITED

This is the total amount of time spent waiting for this wait event by all sessions (in milliseconds).

AVERAGE_WAIT

This is the average time spent waiting for this wait event (in milliseconds).

TIME_WAITED_MICRO

This is the total amount of time spent waiting for this event by all sessions (in microseconds).

EVENT_ID

This is the identifier of the wait event.

WAIT_CLASS_ID

This is the identifier of the wait class into which the event being waited for in the session is catego-
rized.

WAIT_CLASS

This is the name of the wait class into which the event being waited for in the session is categorized.

3.2.86 V$SYSTEM_WAIT_CLASS

This view shows cumulative statistical information about waits, classified according to wait class,
from the time ALTIBASE HDB was started to the present.

Column name Type Description

WAIT_CLASS_ID INTEGER The identifier of the wait class

WAIT_CLASS VHARCHAR(128) The name of the wait class

TOTAL_WAITS BIGINT The total number of waits in this wait class

TIME_WAITED VACHAR(128) The total amount of time spent waiting for
this wait class by all processes (in millisec-
onds)
General Reference 420

3.2 Performance Views
3.2.86.1 Column Information

WAIT_CLASS_ID

This is the identifier of the wait class.

WAIT_CLASS

This is the name of the wait class.

TOTAL_WAITS

This is the total number of waits for this class.

TIME_WAITED

This is the total time (in milliseconds) spent waiting for this wait class by all sessions.

3.2.86.2 Example

<Example 1> The following query outputs the waiting time and the number of waits in each wait
class for all current wait events.

iSQL> select * from v$system_wait_class order by total_waits desc;

<Example 2> The following query outputs the proportion of waits in each wait class to total waits
and the proportion of time spent waiting in each wait class to the total amount of time spent wait-
ing, in descending order, starting with the wait class in which the longest waits have occurred.

iSQL> select
 WAIT_CLASS,
 TOTAL_WAITS,
 round(100 * (TOTAL_WAITS / SUM_WAITS),2) PCT_WAITS,
 TIME_WAITED,
 round(100 * (TIME_WAITED / SUM_TIME),2) PCT_TIME
from
(select
WAIT_CLASS,
TOTAL_WAITS,
 TIME_WAITED
 from
 V$SYSTEM_WAIT_CLASS
 where
 WAIT_CLASS != 'Idle'),
 (select
 sum(TOTAL_WAITS) SUM_WAITS,
 sum(TIME_WAITED) SUM_TIME
 from
 V$SYSTEM_WAIT_CLASS
 where
 WAIT_CLASS != 'Idle')
order by 5 desc;

3.2.87 V$TABLE

This view shows the list of performance views.
421 The Data Dictionary

3.2 Performance Views
3.2.87.1 Column Information

NAME

This is the name of the performance view.

SLOTSIZE

This is the size of one record in the performance view.

COLUMNCOUNT

This is the number of columns in the performance view.

3.2.88 V$TABLESPACES

This view shows information about tablespaces.

Column Data Type Description

NAME VARCHAR(39) The name of the view

SLOTSIZE INTEGER The record size

COLUMNCOUNT SMALLINT The number of columns

Column Data Type Description

ID INTEGER The tablespace identifier

NAME VARCHAR(40) The tablespace name

NEXT_FILE_ID INTEGER The identifier of the next data file to be cre-
ated

TYPE INTEGER The type of tablespace

STATE INTEGER The status of the tablespace

EXTENT_MANAGEMENT VARCHAR(20) The method of managing extents, which is
set when the user creates a disk tablespace

SEGMENT_MANAGEME
NT

VARCHAR(20) The type of segment in the tablespace

DATA FILE_COUNT INTEGER The number of files in the tablespace

TOTAL_PAGE_COUNT BIGINT The total number of pages

EXTENT_PAGE_CNT INTEGER The size of an extent (number of pages) in
the tablespace
General Reference 422

3.2 Performance Views
3.2.88.1 Column Information

ID

This is the identifier of the tablespace. The identifiers of user tablespaces start at 5 and increment.

NAME

This is the name of the tablespace, which was defined using the CREATE TABLESPACE statement.

NEXT_FILE_ID

This is an identifier that is assigned to a data file when the data file is added to the tablespace. This
value increases by 1 for every individual data file that is added.

TYPE

This value indicates the type of tablespace:

0: MEMORY_SYSTEM_DICTIONARY

1: MEMORY_SYSTEM_DATA

2: MEMORY_USER_DATA

3: DISK_SYSTEM_DATA

4: DISK_USER_DATA

5: DISK_SYSTEM_TEMP

6: DISK_USER_TEMP

7: DISK_SYSTEM_UNDO

8: VOLATILE_USER_DATA

STATE

This value indicates the status of the tablespace.

1: OFFLINE

2: ONLINE

ALLOCATED_PAGE_CNT BIGINT The initial number of pages in the tablespace

PAGE_SIZE INTEGER The size of a page in the tablespace

ATTR_LOG_COMPRESS INTEGER Whether to compress logs when executing
DML statements on tables in the tablespace

Column Data Type Description
423 The Data Dictionary

3.2 Performance Views
5: Offline tablespace that is being backed up

6: Online tablespace that is being backed up

128: DROPPED

1024: Discarded tablespace

1028: Discarded tablespace that is being backed up

EXTENT_MANAGEMENT

This is the method of managing extents, which is set when a user disk tablespace is created. At pres-
ent, the BITMAP method is supported.

BITMAP: This indicates whether all EXTENTs of a tablespace are allocated.

SEGMENT_MANAGEMENT

When a segment is created in a tablespace, this indicates which type of segment is to be created.

MANUAL: This indicates that a Free list Management Segment (FMS). is to be created.

AUTO: This indicates that a bitmap-based Tree Management Segment (TMS) is to be created.

DATA FILE_COUNT

This is the number of data files in the tablespace.

TOTAL_PAGE_COUNT

This is the size of the tablespace, expressed as the number of pages. The actual size of the tablespace
can be calculated by multiplying this value by the page size (TOTAL_PAGE_COUNT * PAGE_SIZE).
This is the actual number of usable pages, and does not include the single file header page for each
file.

EXTENT_PAGE_COUNT

This is the size of an extent for this tablespace, expressed as the number of pages. An extent has at
least 3 pages.

ALLOCATED_PAGE_COUNT

This is the initial number of pages that were allocated to the tablespace.

PAGE_SIZE

This is the size of each of the pages in the tablespace. It is 8 kB for disk tablespaces and 32 kB for
memory tablespaces.

ATTR_LOG_COMPRESS

This indicates whether to perform log compression when executing DML statements on tables in
the tablespace.
General Reference 424

3.2 Performance Views
0: do not compress logs

1: compress logs

3.2.89 V$TRACELOG

This view displays information related to message logging, for use in leaving records related to inter-
nal database operation.

3.2.89.1 Column Information

MODULE_NAME

This is the name of an ALTIBASE HDB module. At present, ALTIBASE HDB comprises the SERVER, QP,
RP and SM modules, each of which can perform message logging.

TRCLEVEL

This is the message logging level. It has a value between 1 and 32.

FLAG

This displays the setting that determines whether history messages for this module and level are
output.

X: Not output

O: Output

SUM: This value indicates that the POWLEVEL column for this record contains the sum of POWLEVELs
for which the FLAG is set to ‘O’ in each module.

For information on output settings, please refer to the following description.

Column Type Description

MODULE_NAME VARCHAR(8) The name of the module

TRCLEVEL INTEGER The logging level (1~32)

FLAG VARCHAR(8) Whether logging is enabled for this module and
level.
O: Enable
X: Disable

POWLEVEL BIGINT Two to the power of the level minus one
(2^(TRCLEVEL-1))

DESCRIPTION VARCHAR(64) A description of this module and level
425 The Data Dictionary

3.2 Performance Views
POWLEVEL

This is 2 to the power of the TRCLEVEL minus one, that is, 2^(TRCLEVEL-1). The stored procedures
addTrcLevel() and delTrcLevel() are provided so that users can easily set the logging level. These
stored procedures can be created by executing tracelog.sql, which comes with the package.

DESCRIPTION

This is an explanation of the corresponding module and level.

Example

To check the trace logging level currently set for the server module:

iSQL> select module_name, trclevel, flag, powlevel, description from
v$tracelog where module_name like '%SER%';
MODULE_NAME TRCLEVEL FLAG POWLEVEL DESCRIPTION
--
SERVER 1 O 1 [DEFAULT] TimeOut(Query,Fetch,Idle,UTrans) Trace Log
SERVER 2 O 2 [DEFAULT] Network Operation Fail Trace Log
SERVER 3 O 4 [DEFAULT] Memory Operation Warning Trace Log
SERVER 4 X 8 ---
SERVER 5 X 16 ---
SERVER 6 X 32 ---
SERVER 7 X 64 ---
SERVER 8 X 128 ---
SERVER 9 X 256 ---
SERVER 10 X 512 ---
SERVER 11 X 1024 ---
SERVER 12 X 2048 ---
SERVER 13 X 4096 ---
SERVER 14 X 8192 ---
SERVER 15 X 16384 ---
SERVER 16 X 32768 ---
SERVER 17 X 65536 ---
SERVER 18 X 131072 ---
SERVER 19 X 262144 ---
SERVER 20 X 524288 ---
SERVER 21 X 1048576 ---
SERVER 22 X 2097152 ---
SERVER 23 X 4194304 ---
SERVER 24 X 8388608 ---
SERVER 25 X 16777216 ---
SERVER 26 X 33554432 ---
SERVER 27 X 67108864 ---
SERVER 28 X 134217728 ---
SERVER 29 X 268435456 ---
SERVER 30 X 536870912 ---
SERVER 31 X 1073741824 ---
SERVER 32 X 2147483648 ---
SERVER 99 SUM 7 Total Sum of Trace Log Values
33 rows selected.

Usage

ALTIBASE HDB provides message logging properties for the SERVER, SM, QP and RP modules.

• SERVER_MSGLOG_FLAG: Communication and server messages

• SM _MSGLOG_FLAG: Storage manager-related messages
General Reference 426

3.2 Performance Views
• QP_MSGLOG_FLAG: Query processor-related messages

• RP_MSGLOG_FLAG: Replication-related messages

Each property has 32 bits. The message type and description for each bit can be checked by viewing
V$TRACELOG.

The message logging details can be changed as follows.

• To disable the output of all server logging messages:

alter system set server_msglog_flag=0

• To enable the output of server logging messages related to the 1st, 2nd and 5th bits (1+2+5):

alter system set server_msglog_flag=8

• To disable the output of all replication logging messages except conflict-related messages:

alter system set rp_msglog_flag=2

• To enable stored procedure error line logging (the 1st bit) and details pertaining to the execu-
tion of DDL statements (the 2nd bit) for the query processor (1+2):

alter system set qp_msglog_flag=3

3.2.90 V$TRANSACTION

This view displays information about transaction objects.

Column Data Type Description

ID BIGINT The transaction identifier

SESSION_ID INTEGER See below

MEMORY_VIEW_SCN VARCHAR(29) See below

MIN_MEMORY_LOB_VIEW_SCN VARCHAR(29) See below

DISK_VIEW_SCN VARCHAR(29) See below

MIN_DISK_LOB_VIEW_SCN VARCHAR(29) See below

COMMIT_SCN VARCHAR(29) See below

STATUS BIGINT See below

UPDATE_STATUS BIGINT See below

LOG_TYPE INTEGER See below

XA_COMMIT_STATUS BIGINT See below

XA_PREPARED_TIME VARCHAR(64) See below

FIRST_UNDO_NEXT_LSN_LFGID INTEGER See below
427 The Data Dictionary

3.2 Performance Views
3.2.90.1 Column Information

ID

This is a number for classifying the transaction, ranging from 0 to 232 – 1. These values can be reused.

SESSION_ID

This is the identifier of the session in which the transaction is executing. If no session is associated
with the transaction, this value is -1, which indicates that the transaction branch is in a prepared
state in an XA environment.

FIRST_UNDO_NEXT_LSN_FILENO INTEGER See below

FIRST_UNDO_NEXT_LSN_OFFSET INTEGER See below

CURRENT_UNDO_NEXT_SN BIGINT For internal use

CURRENT_UNDO_NEXT_LSN_LFGID INTEGER For internal use

CURRENT_UNDO_NEXT_LSN_FILENO INTEGER For internal use

CURRENT_UNDO_NEXT_LSN_OFFSET INTEGER For internal use

LAST_UNDO_NEXT_LSN_LFGID INTEGER See below

LAST_UNDO_NEXT_LSN_FILENO INTEGER See below

LAST_UNDO_NEXT_LSN_OFFSET INTEGER See below

LAST_UNDO_NEXT_SN BIGINT See below

SLOT_NO INTEGER See below

UPDATE_SIZE BIGINT See below

ENABLE_ROLLBACK BIGINT For internal use

FIRST_UPDATE_TIME INTEGER See below

LOG_BUF_SIZE INTEGER For internal use

LOG_OFFSET INTEGER For internal use

SKIP_CHECK_FLAG BIGINT For internal use

SKIP_CHECK_SCN_FLAG BIGINT For internal use

DDL_FLAG BIGINT See below

TSS_RID BIGINT See below

UNDO_NO INTEGER See below

RESOURCE_GROUP_ID INTEGER The log file group identifier

Column Data Type Description
General Reference 428

3.2 Performance Views
MEMORY_VIEW_SCN

Because ALTIBASE HDB uses MVCC, it has an SCN that indicates the relative point in time at which
each cursor for a table was opened. This value is the smallest value of the View SCNs for memory
table cursors for the transaction. A value of 263 means that no cursor is open.

MIN_MEMORY_LOB_VIEW_SCN

This is the SCN of the oldest of the currently open memory LOB cursors for the present transaction. A
value of 263 means that no cursors are open.

DISK_VIEW_SCN

This is the lowest of the View SCN values for cursors that are currently open for disk tables for the
present transaction. The range of values is the same as for MEMORY_VIEW_SCN.

MIN_DISK_LOB_VIEW_SCN

This is the SCN of the oldest of the currently open disk LOB cursors for the present transaction. A
value of 263 means that no cursors are open.

COMMIT_SCN

This is the system SCN at the point in time at which the transaction is committed. A value of 263
means that the transaction has not been committed yet.

STATUS

This is the status of the current transaction. The possible values are:

0: BEGIN

1: PRECOMMIT

2: COMMIT_IN_MEMORY

3: COMMIT

4: ABORT

5: BLOCKED

6: END

UPDATE_STATUS

This indicates whether the transaction is a transaction that is still updating or a read-only transac-
tion.

0: Read-only

1: Updating
429 The Data Dictionary

3.2 Performance Views
LOG_TYPE

This indicates whether the transaction updates tables related to replication. The possible values are:

0: General

1: Replication-related

XA_COMMIT_STATUS

This is the status of a local transaction that is caused by a global transaction. It can have the follow-
ing values:

0: BEGIN

1: PREPARED

2: COMPLETE

XA_PREPARED_TIME

This is the point in time at which a PREPARE command was received from the global transaction
manager as the result of a global transaction.

FIRST_UNDO_NEXT_LSN_LFGID

This is the log file group identifier portion of the LSN, which indicates the location of the first log
recorded for the transaction.

FIRST_UNDO_NEXT_LSN_FILENO

This is the file number portion of the LSN, which indicates the location of the first log recorded for
the transaction.

FIRST_UNDO_NEXT_LSN_OFFSET

This is the offset portion of the LSN, which indicates the location of the first log recorded for the
transaction. The offset indicates the location of the log within a file.

LAST_UNDO_NEXT_LSN_LFGID

This is the log file group identifier portion of the LSN, which indicates the location of the last log
recorded for the transaction.

LAST_UNDO_NEXT_LSN_FILENO

This is the file number portion of the LSN, which indicates the location of the last log recorded for
the transaction.

LAST_UNDO_NEXT_LSN_OFFSET

This is the offset portion of the LSN, which indicates the location of the last log recorded for the
transaction. The offset indicates the location of the log within a file.
General Reference 430

3.2 Performance Views
LAST_UNDO_NEXT_SN

This is the sequence number (SN) of the last log recorded for the transaction.

SLOT_NO

This is the location of the transaction object in the transaction pool.

UPDATE_SIZE

This is the size of the data created as the result of an UPDATE operation executed by the transaction.
If this value is greater than the value of the LOCK_ESCALATION_MEMORY_SIZE property, the table is
locked with an X-lock and updates are performed according to the in-place update method.

FIRST_UPDATE_TIME

This is the point in time at which the database was first updated.

DDL_FLAG

This indicates whether the transaction is one that executes a DLL statement:

0: non-DDL

1: DDL

TSS_RID

This is the physical location of the Transaction Status Slot (TSL), which is obtained in order to per-
form an UPDATE operation on a disk table. A nonzero value means that the transaction has executed
at least one update operation on a disk table.

3.2.91 V$TRANSACTION_MGR

This value displays information about the Transaction Manager of ALTIBASE HDB.

Column Data Type Description

TOTAL_COUNT INTEGER The total number of transactions

FREE_LIST_COUNT INTEGER The number of free lists

BEGIN_ENABLE BIGINT Indicates whether a new transaction can be
commenced

ACTIVE_COUNT INTEGER The number of active transactions

SYS_MIN_DISK_VIEWSC
N

VARCHAR(29) The lowest transaction disk view SCN
431 The Data Dictionary

3.2 Performance Views
3.2.91.1 Column Information

TOTAL_COUNT

When ALTIBASE HDB is started, it creates a number of transaction objects equal to the number
defined in this property, and uses these objects as the transaction pool. TOTAL_COUNT is the total
number of transactions that have been created.

FREE_LIST_COUNT

This is the number of lists used to separately manage the transaction pool.

BEGIN_ENABLE

This indicates whether a new transaction can begin.

0: Disabled

1: Enabled

ACTIVE_COUNT

This is the number of transaction objects that have been assigned to tasks and are currently execut-
ing them.

SYS_MIN_DISK_VIEWSCN

This is the lowest transaction disk view SCN (System Change Number).

3.2.92 V$TSSEGS

This view outputs a list of all TSS segments that exist in UNDO tablespace.

Column name Type Description

SPACE_ID INTEGER The identifier of the UNDO tablespace

SEG_PID INTEGER The identifier of the TSS segment page

TXSEG_ENTRY_ID INTEGER The identifier of the transaction segment

CUR_ALLOC_EXTENT_RI
D

BIGINT The RID of the extent currently being used in
the TSS segment

CUR_ALLOC_PAGE_ID INTEGER The identifier of the page currently being
used in the TSS segment

TOTAL_EXTENT_COUNT BIGINT The total number of extents in the TSS seg-
ment

TOTAL_EXTDIR_COUNT BIGINT The total number of extent directories in the
TSS segment
General Reference 432

3.2 Performance Views
3.2.92.1 Column Information

SPACE_ID

This is the identifier of the UNDO tablespace.

SEG_PID

This is the identifier of the TSS segment page.

TXSEG_ENTRY_ID

This is the identifier of the transaction segment.

CUR_ALLOC_EXTENT_RID

This is the RID (resource identifier) of the extent currently being used in the TSS segment.

CUR_ALLOC_PAGE_ID

This is the identifier of the page currently being used in the TSS segment.

TOTAL_EXTENT_COUNT

This is the total number of extents in the TSS segment.

TOTAL_EXTDIR_COUNT

This is the total number of extent directories in the TSS segment.

PAGE_COUNT_IN_EXTENT

This is the total number of pages in one extent.

3.2.93 V$TXSEGS

This view outputs the list of transaction segments that are bound to transactions, and thus online
(active).

PAGE_COUNT_IN_EXTE
NT

INTEGER The total number of pages in one extent

Column name Type Description

Column name Type Description

ID INTEGER The identifier of the transaction segment
433 The Data Dictionary

3.2 Performance Views
3.2.93.1 Column Information

ID

This is the identifier of the transaction segment.

TRANS_ID

This is the identifier of the transaction to which the segment is bound.

MIN_DISK_VIEW_SCN

This is the lowest disk view SCN for the transaction.

COMMIT_SCN

This is the commit SCN for the transaction.

FIRST_DISK_VIEW_SCN

This is the first disk view SCN for the transaction.

TRANS_ID INTEGER The identifier of the transaction to which the
segment is bound

MIN_DISK_VIEW_SCN VARCHAR(29) The lowest disk view SCN of the transaction

COMMIT_SCN VARCHAR(29) The commit SCN of the transaction

FIRST_DISK_VIEW_SCN VARCHAR(29) The first disk view SCN of the transaction

TSS_RID BIGINT The RID of the TSS for the transaction

TSSEG_EXTENT_RID BIGINT The RID of the extent of the TSS segment
allocated to the TSS

FST_UDSEG_EXTENT_RI
D

BIGINT The RID of the first extent of the UNDO seg-
ment used by the transaction

LST_UDSEG_EXTENT_RI
D

BIGINT The RID of the last extent of the UNDO seg-
ment used by the transaction

FST_UNDO_PAGEID INTEGER The identifier of the page containing the first
UNDO record written by the transaction

FST_UNDO_SLOTNUM SMALLINT The slot number of the first UNDO record
written by the transaction

LST_UNDO_PAGEID INTEGER The identifier of the page containing the last
UNDO record written by the transaction

LST_UNDO_SLOTNUM SMALLINT The slot number of the last UNDO record
written by the transaction

Column name Type Description
General Reference 434

3.2 Performance Views
TSS_RID

This is the RID (resource identifier) of the TSS (Transaction Status Slot) allocated to the transaction.

TSSEG_EXTENT_RID

This is the RID (resource identifier) of the extent of the TSS segment allocated to the TSS.

FST_UDSEG_EXTENT_RID

This is the RID (resource identifier) of the first extent of the UNDO segment used by the transaction.

LST_UDSEG_EXTENT_RID

This is the RID (resource identifier) of the last extent of the UNDO segment used by the transaction.

FST_UNDO_PAGEID

This is the identifier of the page containing the first UNDO record written when the transaction is
updated.

FST_UNDO_SLOTNUM

This is the slot number in the page containing the first UNDO record written when the transaction is
updated.

LST_UNDO_PAGEID

This is the identifier of the page containing the last UNDO record written when the transaction is
updated.

LST_UNDO_SLOTNUM

This is the slot number in the page containing the last UNDO record written when the transaction is
updated.

3.2.94 V$UDSEGS

This view outputs a list of all UNDO segments existing in undo tablespace.

Column name Type Description

SPACE_ID INTEGER The UNDO tablespace identifier

SEG_PID INTEGER The UNDO segment page identifier

TXSEG_ENTRY_ID INTEGER The transaction segment identifier

CUR_ALLOC_EXTENT_RI
D

BIGINT The RID of the extent currently used in the
UNDO segment
435 The Data Dictionary

3.2 Performance Views
3.2.94.1 Column Information

SPACE_ID

This is the identifier of the UNDO tablespace.

SEG_PID

This is the identifier of the page associated with the UNDO segment.

TXSEG_ENTRY_ID

This is the identifier of the segment used by the transaction.

CUR_ALLOC_EXTENT_RID

This is the RID of the extent that is currently being used in the UNDO segment.

CUR_ALLOC_PAGE_ID

This is the identifier of the page that is currently being used in the UNDO segment.

TOTAL_EXTENT_COUNT

This is the total number of extents in the UNDO segment.

TOTAL_EXTDIR_COUNT

This is the total number of extent directories in the UNDO segment.

PAGE_COUNT_IN_EXTENT

This is the total number of pages in one extent.

3.2.95 V$UNDO_BUFF_STAT

This view displays buffer pool statistics related to the UNDO tablespace.

CUR_ALLOC_PAGE_ID INTEGER The identifier of the page currently used in
the UNDO segment

TOTAL_EXTENT_COUNT BIGINT The total number of extents in the UNDO
segment

TOTAL_EXTDIR_COUNT BIGINT The total number of extent directories in the
UNDO segment

PAGE_COUNT_IN_EXTE
NT

INTEGER The total number of pages in one extent

Column name Type Description
General Reference 436

3.2 Performance Views
3.2.95.1 Column Information

READ_PAGE_COUNT

The total number of pages read from disk since the buffer was initialized.

GET_PAGE_COUNT

This is the total number of page requests made to the buffer manager since the buffer was initial-
ized. If the page is in the buffer, the buffer manager returns the requested page, otherwise the page
is read from disk and then returned.

FIX_PAGE_COUNT

This is the total number of UNDO page requests made without latches to the buffer manager since
the buffer was initialized.

CREATE_PAGE_COUNT

This is the total number of page creation requests made by transactions to the buffer manager since
the buffer was initialized. The buffer manager responds to such requests by obtaining a free BCB
from the buffer and then creating and returning a page. This operation does not incur any disk I/O.

3.2.96 V$VERSION

This view displays information about the version of the database.

Column Data Type Description

READ_PAGE_COUNT BIGINT See below

GET_PAGE_COUNT BIGINT The number of page requests made to the
buffer manager

FIX_PAGE_COUNT BIGINT The number of UNDO page requests made to
the buffer manager

CREATE_PAGE_COUNT BIGINT See below

HIT_RATIO DOUBLE The hit ratio of the buffer frame

Column Data Type Description

PRODUCT_VERSION VARCHAR(128) The product version, e.g. 6.1.1.1

PKG_BUILD_PLATFORM
_INFO

VARCHAR(128) The platform on which the package was built

PRODUCT_TIME VARCHAR(128) The date on which the package was built
437 The Data Dictionary

3.2 Performance Views
3.2.96.1 Column Information

PRODUCT_VERSION

This is the version of the ALTIBASE HDB.

PKG_BUILD_PLATFORM_INFO

This is information about the platform on which the package was built.

PRODUCT_TIME

This is the date and time when the current package was built on the platform.

SM_VERSION

This is the version of the Storage Manager. This version information changes every time the storage
structure changes.

META_VERSION

This is the version of the meta tables, in which database information is managed.

PROTOCOL_VERSION

This is the version of the protocols used for database communication.

REPL_PROTOCOL_VERSION

This is the version of the protocol used for replication.

3.2.97 V$VOL_TABLESPACES

This view shows information about volatile tablespaces, which exist in memory.

SM_VERSION VARCHAR(128) The version of the Storage Manager

META_VERSION VARCHAR(128) The meta table version

PROTOCOL_VERSION VARCHAR(128) The communication protocol version

REPL_PROTOCOL_VERSI
ON

VARCHAR(128) The replication protocol version

Column Data Type Description

Column name Type Description

SPACE_ID INTEGER The identifier of the tablespace
General Reference 438

3.2 Performance Views
3.2.97.1 Column Information

SPACE_STATUS

This is a value indicating the status of the tablespace. Please refer to
V$MEM_TABLESPACE_STATUS_DESC for details.

AUTOEXTEND_MODE

This indicates the Autoextend mode. If it is set to 1, Autoextend is enabled; if not, Autoextend is dis-
abled.

AUTOEXTEND_NEXTSIZE

This is the incremental size used for auto extension (in bytes).

MAXSIZE

This is the maximum size of the tablespace (in bytes).

CURRENT_SIZE

This is the current size of the tablespace (in bytes).

3.2.98 V$WAIT_CLASS_NAME

This view shows information for classifying ALTIBASE HDB server wait events. This performance view
can be used to check wait classes, which are a higher concept for classifying the various kinds of wait
events.

SPACE_NAME VARCHAR(512) The name of the tablespace

SPACE_STATUS INTEGER The status of the tablespace

INIT_SIZE BIGINT The initial size of the tablespace (in bytes)

AUTOEXTEND_MODE INTEGER The auto extension mode of the tablespace

AUTOEXTEND_NEXT_SIZE BIGINT The auto extension increment size (in bytes)

MAXSIZE BIGINT The maximum size of the tablespace (in
bytes)

CURRENT_SIZE BIGINT The current size of the tablespace (in bytes)

Column name Type Description

Column name Type Description

WAIT_CLASS_ID INTEGER The identifier of the wait class
439 The Data Dictionary

3.2 Performance Views
3.2.98.1 Column Information

WAIT_CLASS_ID

This is the class identifier of the wait event.

WAIT_CLASS

This is the wait class, which is a higher concept for classifying and grouping wait events. In ALTIBASE
HDB, wait events are classified into the following 8 wait event classes:

3.2.99 V$XID

This view displays a list of XIDs, which are identifiers for distributed transactions in the DBMS. In
compliance with XA, the distributed transaction identifier is generated internally by the TM (Transac-
tion Manager) and sent to the RM (Resource Manager), that is, to other database nodes, when a dis-
tributed transaction commences.

WAIT_CLASS VARCHAR(128) The name of the wait class

Column name Type Description

WAIT_CLASS_ID WAIT_CLASS Description

0 Other This wait class includes all wait events not included in
any of the following classes.

1 Administrative This class includes wait events that make the user wait
due to the execution of a command with SYSDBA privi-
leges.

2 Configuration This class includes wait events pertaining to unsuitable
settings for database resources.

3 Concurrency This class includes wait events pertaining to internal
database resources.

4 Commit This class includes wait events pertaining to the syn-
chronization of REDO logs in log files

5 Idle This class includes wait events pertaining to requested
tasks in sessions.

6 User I/O This class includes wait events pertaining to user I/O.

7 System I/O This class includes wait events pertaining to system I/O.
General Reference 440

3.2 Performance Views
3.2.99.1 Column Information

XID_VALUE

This is the XID value, expressed as a character string.

ASSOC_SESSION_ID

This is the identifier of the session related to the XID object, that is, the session which executed
XA_START for this XID.

TRANS_ID

This is the internal identifier of the distributed transaction within the XID object.

STATE

This is the state of execution of the XID object. The possible values for this state are as follows:

• IDLE: This means that no sessions are connected to the XID.

• ACTIVE: This means that there is a session connected to the XID. In other words, XA_START has
been executed for this XID.

• PREPARED: This means that a Prepare command has been received for a 2PC (Phase Commit)
task.

• HEURISTICALLY_COMMITED: This means that the DBMS has forcefully committed the transac-
tion branch of the XID.

Column Data Type Description

XID_VALUE VARCHAR(256) This returns the XID value as a character
string

ASSOC_SESSION_ID INTEGER The identifier of the session connected to the
XID object

TRANS_ID INTEGER The identifier of the distributed transaction
within the XID object

STATE VARCHAR(24) The state of the XID object

STATE_START_TIME INTEGER The time at which the state of the XID object
was determined

STATE_DURATION BIGINT The amount of time that has elapsed since
the state of the XID was determined

TX_BEGIN_FLAG VARCHAR(9) A flag within the XID object indicating
whether the transaction has begun

REF_COUNT INTEGER The number of current references to the XID
object
441 The Data Dictionary

3.2 Performance Views
• HEURISTICALLY_ROLLBACKED: This means that the DBMS has forcefully rolled back the trans-
action branch of the XID.

• NO_TX: This means that the XID has just been initialized, or that the transaction branch related
to the XID has been committed or rolled back.

STATE_START_TIME

This is the time at which the state of the XID object was determined.

STATE_DURATION

This is the amount of time that has elapsed since the state of the XID object was determined.

TX_BEGIN_FLAG

This is an internal flag within the XID object that indicates whether the transaction branch has been
started in the RM.

• BEGIN: The transaction has started

• NOT BEGIN: The transaction has not started

REF_COUNT

This is the number of current references to the XID object.
General Reference 442

4 The Sample Schema
This appendix provides information about the schemas and data used in the examples in the ALTI-
BASE HDB Manuals.
443 The Sample Schema

4.1 Information about the Sample Schema
4.1 Information about the Sample Schema

4.1.1 Script Files

A schema creation file is provided at $ALTIBASE_HOME/sample/APRE/schema/schema.sql.

Executing this file creates the tables referenced in the manuals and populates them with sample
data.

Therefore, if you would like to work with the examples described in the manuals, first execute the
schema creation file, after which it will be possible to follow the provided examples.

4.1.2 The Sample Schema

Purpose: Managing Customers and Orders

Tables: employees, departments, customers, orders, goods

4.1.2.1 employees Table

Primary Key: Employee Number (eno)

4.1.2.2 departments Table

Primary Key: Department Number (dno)

Column Name Data Type Description Other

eno INTEGER Employee Number Primary Key

e_lastname CHAR(20) Employee Last Name NOT NULL

e_firstname CHAR(20) Employee First Name NOT NULL

emp_job VARCHAR(15) Title NULL allowed

emp_tel CHAR(15) Telephone Number NULL allowed

dno SMALLINT Department Number NULL allowed, INDEX
ASC

salary NUMBER(10,2) Monthly Salary NULL allowed, DEFAULT
0

sex CHAR(1) Gender NULL allowed

birth CHAR(6) Birthday NULL allowed

join_date DATE Hiring Date NULL allowed

status CHAR(1) Position NULL allowed, DEFAULT
'H'
General Reference 444

4.1 Information about the Sample Schema
4.1.2.3 customers Table

Primary Key: Resident Registration Number (cno)

4.1.2.4 orders Table

Primary Keys: Order Number & Order Date (ono, order_date)

Column Name Data Type Description Other

dno SMALLINT Department Number Primary Key

dname CHAR(30) Department Name NOT NULL

dep_location CHAR(15) Department Location NULL allowed

mgr_no INTEGER Administrator Number NULL allowed, INDEX
ASC

Column Name Data Type Description Other

cno BIGINT Customer Number Primary Key

c_lastname CHAR(20) Customer Last Name NOT NULL

c_firstname CHAR(20) Customer First Name NOT NULL

cus_job VARCHAR(20) Occupation NULL allowed

cus_tel CHAR(15) Telephone Number NOT NULL

sex CHAR(1) Gender NULL allowed

birth CHAR(6) Birthday NULL allowed

postal_cd VARCHAR(9) Postal Code NULL allowed

address VARCHAR(60) Address NULL allowed

Column Name Data Type Description Other

ono BIGINT Order Number Primary Key

order_date DATE Order Date Primary Key

eno INTEGER Sales Clerk NOT NULL,INDEX ASC

cno BIGINT Customer Number NOT NULL,INDEX DESC

gno CHAR(10) Product No. NOT NULL,INDEX ASC

qty INTEGER Order Quantity NULL allowed, DEFAULT
1

445 The Sample Schema

4.1 Information about the Sample Schema
4.1.2.5 goods Table

Primary Key: Product No. (gno)

4.1.2.6 dual Table

Record Size: 1

arrival_date DATE Expected Arrival Date NULL allowed

processing CHAR(1) Order Status NULL allowed
(typical values:
O: ordered,
P: being prepared,
D: being delivered,
C: complete
)

Column Name Data Type Description Other

Column Name Data Type Description Other

gno CHAR(10) Product Number Primary Key

gname CHAR(20) Product Name NOT NULL, Unique

goods_location CHAR(9) Storage Location NULL allowed

stock INTEGER Stored Quantity NULL allowed, DEFAULT
0

price NUMERIC(10,2) Item Price NULL allowed

Column Name Data Type Description Other

DUMMY CHAR(1) DEFAULT ‘X’
General Reference 446

4.2 Entity-Relationship (ER) Diagram and Sample Data
4.2 Entity-Relationship (ER) Diagram and Sample Data

4.2.1 ER Diagram

DEPARTMENTS

EMPLOYEES

ORDERS

CUSTOMERS GOODS

dno
dep_location

dname mgr_no

emp_tel

salary

birth

join_date

status dno
sex

emp_job

eno

e_lastname

cno

ono

processing

qty gno

arrival _date

order_date

birth

sex

postal_cd

c_lastname address

cus_job

cno

cus_tel
goods_locationprice

gno

stock gname

WORKS_FO
R

TAKE_ORDERS

ORDER_FO
R ORDER_GOODS

eno

1

N

N

N N

M M

e_firstname

c_firstname
447 The Sample Schema

4.2 Entity-Relationship (ER) Diagram and Sample Data
4.2.2 Sample Data

employees Table

iSQL> select * from employees;
ENO E_LASTNAME E_FIRSTNAME EMP_JOB
--
EMP_TEL DNO SALARY SEX BIRTH JOIN_DATE STATUS
--
1 Moon Chan-seung CEO
01195662365 3002 M R
2 Davenport Susan designer
0113654540 1500 F 721219 18-NOV-2009 H
3 Kobain Ken engineer
0162581369 1001 2000 M 650226 11-JAN-2010 H
4 Foster Aaron PL
0182563984 3001 1800 M 820730 H
5 Ghorbani Farhad PL
01145582310 3002 2500 M 20-DEC-2009 H
6 Momoi Ryu programmer
0197853222 1002 1700 M 790822 09-SEP-2010 H
7 Fleischer Gottlieb manager
0175221002 4002 500 M 840417 24-JAN-2004 H
8 Wang Xiong manager
0178829663 4001 M 810726 29-NOV-2009 H
9 Diaz Curtis planner
0165293668 4001 1200 M 660102 14-JUN-2010 H
10 Bae Elizabeth programmer
0167452000 1003 4000 F 710213 05-JAN-2010 H
11 Liu Zhen webmaster
0114553206 1003 2750 M 28-APR-2011 H
12 Hammond Sandra sales rep
0174562330 4002 1890 F 810211 14-DEC-2009 H
13 Jones Mitch PM
0187636550 1002 980 M 801102 H
14 Miura Yuu PM
0197664120 1003 2003 M H
15 Davenport Jason webmaster
0119556884 1003 1000 M 901212 H
16 Chen Wei-Wei manager
0195562100 1001 2300 F 780509 H
17 Fubuki Takahiro PM
0165293886 2001 1400 M 781026 07-MAY-2010 H
18 Huxley John planner
01755231044 4001 1900 M 30-OCT-2007 H
19 Marquez Alvar sales rep
0185698550 4002 1800 M 18-NOV-2010 H
20 Blake William sales rep
01154112366 4002 M 18-NOV-2006 H
20 rows selected.

departments Table

iSQL> select * from departments;
DNO DNAME DEP_LOCATION MGR_NO
--
1001 RESEARCH DEVELOPMENT DEPT 1 New York 16
1002 RESEARCH DEVELOPMENT DEPT 2 Sydney 13
1003 SOLUTION DEVELOPMENT DEPT Osaka 14
2001 QUALITY ASSURANCE DEPT Seoul 17
3001 CUSTOMERS SUPPORT DEPT London 4
General Reference 448

4.2 Entity-Relationship (ER) Diagram and Sample Data
3002 PRESALES DEPT Peking 5
4001 MARKETING DEPT Brasilia 8
4002 BUSINESS DEPT Palo Alto 7
8 rows selected.

customers Table

iSQL> select * from customers;
CNO C_LASTNAME C_FIRSTNAME

CUS_JOB CUS_TEL SEX BIRTH POSTAL_CD

ADDRESS
--
1 Sanchez Estevan
engineer 0514685282 M 720828 90021
2100 Exposition Boulevard Los Angeles USA
2 Martin Pierre
doctor 023242121 M 821215 V6T 1F2
4712 West 10th Avenue Vancouver BC Canada
3 Morris Gabriel
designer 023442542 M 811111 75010
D914 Puteaux Ile-de-France France
4 Park Soo-jung
engineer 022326393 F 840305 609-735
Geumjeong-Gu Busan South Korea
5 Stone James
webmaster 0233452141 M 821012 6060
142 Francis Street Western Australia AUS
6 Dureault Phil
WEBPD 025743215 M 810209 H1R-2W1
1000 Rue Rachel Est Montreal Canada
7 Lalani Yasmin
planner 023143366 F 821225 156772
176 Robinson Road Singapore
8 Kanazawa Tsubasa
PD 024721114 M 730801 141-0031
2-4-6 Nishi-Gotanda Shinagawa-ku Tokyo JP
9 Yuan Ai
designer 0512543734 F 690211 200020
10th Floor No. 334 Jiujiang Road Shanghai
10 Nguyen Anh Dung
 0516232256 M 790815 70000
8A Ton Duc Thang Street District 1 HCMC Vietnam
11 Sato Naoki
manager 027664545 M 810101 455-8205
3-23 Oye-cho Minato-ku Nagoya Aichi Japan
12 Rodriguez Aida
banker 023343214 F 810905 76152
3484 Taylor Street Dallas TX USA
13 White Crystal
engineer 022320119 F 801230 WC2B 4BM
12th Floor Five Kemble Street London UK
14 Kim Cheol-soo
banker 024720112 M 660508 135-740
222-55 Samsung-dong Gangnam-gu Seoul Korea
15 Fedorov Fyodor
manager 0518064398 M 750625 50696
No 6 Leboh Ampang 50100 Kuala Lumpur Malaysia
16 Lefebvre Daniel
planner 027544147 M 761225 21004
Chaussee de Wavre 114a 1050 Brussels Belgium
17 Yoshida Daichi
 023543541 M 811001 530-0100
449 The Sample Schema

4.2 Entity-Relationship (ER) Diagram and Sample Data
2-7 3-Chome-Kita Tenjinbashi Kita-ku Osaka
18 Zhang Bao
engineer 024560207 F 840419 100008
2 Chaoyang Men Wai Street Chaoyang Beijing
19 Pahlavi Saeed
 022371234 M 741231 20037
3300 L Street NW Washington DC USA
20 Dubois Alisee
webmaster 024560002 F 860405 1357
Chemin de Messidor 7-6 CH-1006 Lausanne Suisse
20 rows selected.

orders Table

iSQL> select * from orders;
ONO ORDER_DATE ENO CNO
--
GNO QTY ARRIVAL_DATE PROCESSING
--
11290007 29-NOV-2011 12 3
A111100002 70 02-DEC-2011 C
11290011 29-NOV-2011 12 17
E111100001 1000 05-DEC-2011 D
11290100 29-NOV-2011 19 11
E111100001 500 07-DEC-2011 D
12100277 10-DEC-2011 19 5
D111100008 2500 12-DEC-2011 C
12300001 01-DEC-2011 19 1
D111100004 1000 02-JAN-2012 P
12300002 29-DEC-2011 12 2
C111100001 300 02-JAN-2012 P
12300003 29-DEC-2011 20 14
E111100002 900 02-JAN-2012 P
12300004 30-DEC-2011 20 15
D111100002 1000 02-JAN-2012 P
12300005 30-DEC-2011 19 4
D111100008 4000 02-JAN-2012 P
12300006 30-DEC-2011 20 13
A111100002 20 02-JAN-2012 P
12300007 30-DEC-2011 12 7
D111100002 2500 02-JAN-2012 P
12300008 30-DEC-2011 20 11
D111100011 300 02-JAN-2012 P
12300009 30-DEC-2011 20 19
D111100003 500 02-JAN-2012 P
12300010 30-DEC-2011 19 16
D111100010 2000 02-JAN-2012 P
12300011 30-DEC-2011 20 15
C111100001 1000 02-JAN-2012 P
12300012 30-DEC-2011 12 3
E111100012 1300 02-JAN-2012 P
12300013 30-DEC-2011 20 6
C111100001 5000 02-JAN-2012 P
12300014 30-DEC-2011 12 12
F111100001 800 02-JAN-2012 P
12310001 31-DEC-2011 20 15
A111100002 50 09-DEC-2011 O
12310002 31-DEC-2011 12 10
D111100008 10000 03-JAN-2012 O
12310003 31-DEC-2011 20 18
E111100009 1500 03-JAN-2012 O
12310004 31-DEC-2011 19 5
General Reference 450

4.2 Entity-Relationship (ER) Diagram and Sample Data
E111100010 5000 08-JAN-2012 O
12310005 31-DEC-2011 20 14
E111100007 940 03-JAN-2012 O
12310006 31-DEC-2011 20 2
D111100004 500 03-JAN-2012 O
12310007 31-DEC-2011 12 19
E111100012 1400 03-JAN-2012 O
12310008 31-DEC-2011 19 1
D111100003 100 03-JAN-2012 O
12310009 31-DEC-2011 12 5
E111100013 500 03-JAN-2012 O
12310010 31-DEC-2011 20 6
D111100010 1500 03-JAN-2012 O
12310011 31-DEC-2011 19 15
E111100012 10000 03-JAN-2012 O
12310012 31-DEC-2011 19 1
C111100001 250 03-JAN-2012 O
30 rows selected.

goods Table

iSQL> SELECT * FROM goods;
GOODS.GNO GOODS.GNAME GOODS.GOODS_LOCATION GOODS.STOCK

GOODS.PRICE

A111100001 IM-300 AC0001 1000
78000
A111100002 IM-310 DD0001 100
98000
B111100001 NT-H5000 AC0002 780
35800
C111100001 IT-U950 FA0001 35000
7820.55
C111100002 IT-U200 AC0003 1000
9455.21
D111100001 TM-H5000 AC0004 7800
12000
D111100002 TM-T88 BF0001 10000
72000

D111100003 TM-L60 BF0002 650
45100
D111100004 TM-U950 DD0002 8000
96200
D111100005 TM-U925 AC0005 9800
23000
D111100006 TM-U375 EB0001 1200
57400
D111100007 TM-U325 EB0002 20000
84500
D111100008 TM-U200 AC0006 61000
10000
D111100009 TM-U300 DD0003 9000
50000
D111100010 TM-U590 DD0004 7900
36800
D111100011 TM-U295 FA0002 1000
45600
E111100001 M-T245 AC0007 900
2290.54
451 The Sample Schema

4.2 Entity-Relationship (ER) Diagram and Sample Data
E111100002 M-150 FD0001 4300
7527.35
E111100003 M-180 BF0003 1000
2300.55
E111100004 M-190G CE0001 88000
5638.76
E111100005 M-U310 CE0002 11200
1450.5
E111100006 M-T153 FD0002 900
2338.62
E111100007 M-T102 BF0004 7890
966.99
E111100008 M-T500 EB0003 5000
1000.54
E111100009 M-T300 FA0003 7000
3099.88
E111100010 M-T260 AC0008 4000
9200.5
E111100011 M-780 AC0009 9800
9832.98
E111100012 M-U420 CE0003 43200
3566.78
E111100013 M-U290 FD0003 12000
1295.44
F111100001 AU-100 AC0010 10000
100000
30 rows selected.

dual Table

iSQL> SELECT * FROM dual;
DUAL.X

X
selected row count [1]
General Reference 452

Index

A
ACCESS_LIST 212
ADMIN_MODE 213
AGER_WAIT_MAXIMUM 99
AGER_WAIT_MINIMUM 99
ALL_MSGLOG_FLUSH 181
ARCHIVE_DIR 158
ARCHIVE_FULL_ACTION 158
ARCHIVE_THREAD_AUTOSTART 159
AUTO_COMMIT 155
AUTO_REMOTE_EXEC 205

B
BIGINT datatype 12
binary data type 4
BIT datatype 40
BLOB data type 43
BLOB datatype 43
BLOCK_ALL_TX_TIME_OUT 144
BUFFER_AREA_CHUNK_SIZE 57
BUFFER_AREA_SIZE 57
BUFFER_CHECKPOINT_LIST_CNT 58
BUFFER_FLUSHER_CNT 58
BUFFER_FLUSH_LIST_CNT 59
BUFFER_HASH_BUCKET_DENSITY 59
BUFFER_HASH_CHAIN_LATCH_DENSITY 60
BUFFER_LRU_LIST_CNT 60
BUFFER_PREPARE_LIST_CNT 61
BUFFER_VICTIM_SEARCH_INTERVAL 100
BUFFER_VICTIM_SEARCH_PCT 100
BULKIO_PAGE_COUNT_FOR_DIRECT_PATH_INSER
T 61
BYTE datatype 38

C
CHAR datatype 8
character datatype 2
CHECKPOINT_BULK_SYNC_PAGE_COUNT 101
CHECKPOINT_BULK_WRITE_PAGE_COUNT 102
CHECKPOINT_BULK_WRITE_SLEEP_SEC 102
CHECKPOINT_BULK_WRITE_SLEEP_USEC 103
CHECKPOINT_ENABLED 160
CHECKPOINT_FLUSH_COUNT 103
CHECKPOINT_FLUSH_MAX_GAP 104
CHECKPOINT_FLUSH_MAX_WAIT_SEC 104
CHECKPOINT_INTERVAL_IN_LOG 160
CHECKPOINT_INTERVAL_IN_SEC 161
CM_DISCONN_DETECT_TIME 135
COMMIT_WRITE_WAIT_MODE 161
COMPRESSION_RESOURCE_GC_SECOND 62

Configuration 48
customers table 445

D
DATABASE_IO_TYPE 105
DATAFILE_WRITE_UNIT_SIZE 106
DATAPORT_FILE_DIRECTORY 210
DATAPORT_IMPORT_COMMIT_UNIT 210
DATAPORT_IMPORT_STATEMENT_UNIT 211
datatype 2
Datatype conversion 5
DATE datatype 24
date datatype 4
datetime format model 24
DB_FILE_MULTIPAGE_READ_COUNT 107
DBLINK_ENABLE 205
DB_NAME 62
DDL_SUPPLEMENTAL_LOG_ENABLE 63
DECIMAL datatype 13
DEFAULT_DATE_FORMAT 214
DEFAULT_DISK_DB_DIR 64
DEFAULT_FLUSHER_WAIT_SEC 107
DEFAULT_MEM_DB_FILE_SIZE 64
DEFAULT_SEGMENT_MANAGEMENT_TYPE 65
DEFAULT_SEGMENT_STORAGE_INITEXTENTS 65
DEFAULT_SEGMENT_STORAGE_MAXEXTENTS 66
DEFAULT_SEGMENT_STORAGE_MINEXTENTS 66
DEFAULT_SEGMENT_STORAGE_NEXTEXTENTS 67
DEFAULT_THREAD_STACK_SIZE 135
departments table 444
DIRECT_PATH_BUFFER_PAGE_COUNT 67
DISK_INDEX_BUILD_MERGE_PAGE_COUNT 108
DISK_INDEX_UNBALANCED_SPLIT_RATE 68
DISK_LOB_COLUMN_IN_ROW_SIZE 68
DL_MSGLOG_COUNT 181
DL_MSGLOG_DIR 182
DL_MSGLOG_FILE 182
DL_MSGLOG_FLAG 183
DL_MSGLOG_SIZE 183
DOUBLE datatype 13
DOUBLE_WRITE_DIRECTORY 69
DOUBLE_WRITE_DIRECTORY_COUNT 69
DRDB_FD_MAX_COUNT_PER_DATAFILE 70
dual table 446

E
employees table 444
EXEC_DDL_DISABLE 215
EXECUTE_STMT_MEMORY_MAXIMUM 109
EXPAND_CHUNK_PAGE_COUNT 71
453 Index

Explicit datatype conversion 6

F
FAST_START_IO_TARGET 109
FAST_START_LOGFILE_TARGET 110
FETCH_TIMEOUT 145
FIXED 7
FLOAT datatype 14
FULL_SCAN_USE_BUFFER_POOL 71

G
geomcollection 45
geometry datatype 5
goods table 446

H
HIGH_FLUSH_PCT 111
HOT_LIST_PCT 111
HOT_TOUCH_CNT 112

I
IDLE_TIMEOUT 145
IN ROW clause 7
INDEX_BUILD_THREAD_COUNT 113
INDEX_INITRANS 113
INDEX_MAXTRANS 114
INSPECTION_LARGE_HEAP_THRESHOLD 114
INTEGER datatype 14
IPC_CHANNEL_COUNT 136
IPC_PORT_NO 137
ISOLATION_LEVEL 155

L
LFG_GROUP_COMMIT_INTERVAL_USEC 115
LFG_GROUP_COMMIT_RETRY_USEC 115
LFG_GROUP_COMMIT_UPDATE_TX_COUNT 116
linestring 45
LINKER_CONNECT_TIMEOUT 146
LINKER_LINK_TYPE 206
LINKER_PORT_NO 206
LINKER_SQLLEN_SIZE 207
LINKER_THREAD_COUNT 207
LINKER_THREAD_SLEEP_TIME 208
List of Meta Tables 221
LK_MSGLOG_COUNT 184
LK_MSGLOG_DIR 184
LK_MSGLOG_FILE 185
LK_MSGLOG_FLAG 185
LK_MSGLOG_SIZE 186
LOB data type 42
LOCK_ESCALATION_MEMORY_SIZE 116
LOGANCHOR_DIR 72

LOG_BUFFER_TYPE 162
LOG_DIR 72
LOG_FILE_GROUP_COUNT 117
LOG_FILE_SIZE 73
LOG_IO_TYPE 118
LOW_FLUSH_PCT 118
LOW_PREPARE_PCT 119

M
MAX_CLIENT 73
MAX_DBLINK_COUNT 208
MAX_FLUSHER_WAIT_SEC 119
MAX_LISTEN 137
MAX_STATEMENTS_PER_SESSION 138
MEM_DB_DIR 74
MEM_MAX_DB_SIZE 74
MEMORY_INDEX_BUILD_RUN_SIZE 75
MEMORY_INDEX_BUILD_VALUE_LENGTH_THRESH
OLD 76
MEMORY_LOB_COLUMN_IN_ROW_SIZE 76
MEMORY_VARIABLE_COLUMN_IN_ROW_SIZE 77
MEM_SIZE_CLASS_COUNT 77
Meta Table 220
MIN_COMPRESSION_RESOURCE_COUNT 78
MIN_LOG_RECORD_SIZE_FOR_COMPRESS 78
MIN_PAGES_ON_DB_FREE_LIST 79
MIN_PAGES_ON_TABLE_FREE_LIST 80
MM_MSGLOG_COUNT 186
MM_MSGLOG_DIR 187
MM_MSGLOG_FILE 187
MM_MSGLOG_FLAG 188
MM_MSGLOG_SIZE 188
multilinestring 45
MULTIPLEXING_CHECK_INTERVAL 120
MULTIPLEXING_MAX_THREAD_COUNT 121
MULTIPLEXING_THREAD_COUNT 121
multipoint 45
multipolygon 45

N
NCHAR datatype 10
NET_CONN_IP_STACK 138
NETWORK_ERROR_LOG 189
NIBBLE datatype 39
NLS_NCHAR_CONV_EXCP 139
NLS_USE 139
NORMALFORM_MAXIMUM 122
NULL 5
NUMBER datatype 15
NUMERIC datatype 15
numeric datatype 2
Numeric Format Model 17
NVARCHAR datatype 10
Index 454

O
OPTIMIZER_MODE 123
orders table 445

P
PARALLEL_LOAD_FACTOR 123
PCTFREE 80
PCTUSED 81
Performance View 286
point 45
polygon 45
PORT_NO 140
PREPARE_LOG_FILE_COUNT 163
PREPARE_STMT_MEMORY_MAXIMUM 124
PSM_FILE_OPEN_LIMIT 141

Q
QP_MEMORY_CHUNK_SIZE 81
QP_MSGLOG_COUNT 189
QP_MSGLOG_DIR 190
QP_MSGLOG_FILE 190
QP_MSGLOG_FLAG 191
QP_MSGLOG_SIZE 192
QUERY_PROF_FLAG 192
QUERY_STACK_SIZE 215
QUERY_TIMEOUT 148

R
REAL datatype 16
REFINE_PAGE_COUNT 124
REMOTE_SERVER_CONNECT_TIMEOUT 149
REMOTE_SYSDBA_ENABLE 216
REPLICAITON_KEEP_ALIVE_CNT 169
REPLICATION_ACK_XLOG_COUNT 164
REPLICATION_COMMIT_WRITE_WAIT_MODE 164
REPLICATION_CONNECT_ RECEIVE_TIMEOUT 165
REPLICATION_DDL_ENABLE 166
REPLICATION_EAGER_PARALLEL_FACTOR 166
REPLICATION_FAILBACK_INCREMENTAL_SYNC
167
REPLICATION_HBT_DETECT_HIGHWATER_MARK
168
REPLICATION_HBT_DETECT_TIME 168
REPLICATION_INSERT_REPLACE 169
REPLICATION_LOG_BUFFER_SIZE 170
REPLICATION_MAX_LISTEN 171
REPLICATION_MAX_LOGFILE 171
REPLICATION_NET_CONN_IP_STACK 172
REPLICATION_POOL_ELEMENT_COUNT 173
REPLICATION_POOL_ELEMENT_SIZE 173
REPLICATION_PORT_NO 174
REPLICATION_PREFETCH_LOGFILE_COUNT 174
REPLICATION_SENDER_AUTO_START 176

REPLICATION_SENDER_SLEEP_TIME 177
REPLICATION_SERVER_FAILBACK_MAX_TIME 177
REPLICATION_SYNC_LOG 178
REPLICATION_SYNC_TUPLE_COUNT 178
REPLICATION_TIMESTAMP_RESOLUTION 179
REPLICATION_UPDATE_REPLACE 179
RP_MSGLOG_COUNT 193
RP_MSGLOG_DIR 194
RP_MSGLOG_FILE 194
RP_MSGLOG_FLAG 195
RP_MSGLOG_SIZE 195

S
Sample data 448
Sample Schema 444
SECURITY_ECC_POLICY_NAME 82
SECURITY_MODULE_LIBRARY 82
SECURITY_MODULE_NAME 83
SELECT_HEADER_DISPLAY 217
SERVER_MSGLOG_COUNT 196
SERVER_MSGLOG_DIR 196
SERVER_MSGLOG_FILE 197
SERVER_MSGLOG_SIZE 198
SERVICE_THREAD_STACK_SIZE 141
SEVER_MSGLOG_FLAG 197
SHM_DB_KEY 83
SHM_PAGE_COUNT_PER_KEY 125
SHUTDOWN_IMMEDIATE_TIMEOUT 152
SMALLINT datatype 17
SM_MSGLOG_COUNT 198
SM_MSGLOG_DIR 199
SM_MSGLOG_FILE 199
SM_MSGLOG_FLAG 200
SM_MSGLOG_SIZE 201
SORT_AREA_SIZE 126
Spatial type 45
SQL_PLAN_CACHE_HOT_REGION_LRU_RATIO 127
STARTUP_SHM_CHUNK_SIZE 84
STATEMENT_LIST_PARTIAL_SCAN_COUNT 128
ST_OBJECT_BUFFER_SIZE 84
SYS_COLUMNS_ 223
SYS_COMMENTS_ 227
SYS_CONSTRAINT_COLUMNS_ 230
SYS_CONSTRAINTS_ 228
SYS_DATABASE_ 231
SYS_DATABASE_LINKS_ 232
SYS_DATA_FILE_INIT_SIZE 85
SYS_DATA_FILE_MAX_SIZE 85
SYS_DATA_FILE_NEXT_SIZE 86
SYS_DATA_PORTS_ 233
SYS_DATA_TBS_EXTENT_SIZE 87
SYS_DIRECTORIES_ 235
SYS_ENCRYPTED_COLUMNS_ 236
SYS_GRANT_OBJECT_ 237
455 Index

SYS_GRANT_SYSTEM_ 238
SYS_INDEX_COLUMNS_ 239
SYS_INDEX_PARTITIONS_ 240
SYS_INDICES_ 242
SYS_LOBS_ 244
SYS_PART_INDICES_ 245
SYS_PART_KEY_COLUMNS_ 246
SYS_PART_LOBS_ 247
SYS_PART_TABLES_ 248
SYS_PRIVILEGES_ 249
SYS_PROCEDURES_ 250
SYS_PROC_PARAS_ 252
SYS_PROC_PARSE_ 254
SYS_PROC_RELATED_ 255
SYS_REPL_HOSTS_ 259
SYS_REPLICATIONS_ 257
SYS_REPL_ITEMS_ 260
SYS_REPL_OFFLINE_DIR_ 262
SYS_REPL_RECOVERY_INFOS_ 268
SYS_SECURITY_ 269
SYS_SYNONYMS_ 270
SYS_TABLE_PARTITIONS_ 274
SYS_TABLES_ 271
SYS_TBS_USERS_ 276
SYS_TEMP_FILE_INIT_SIZE 87
SYS_TEMP_FILE_MAX_SIZE 88
SYS_TEMP_FILE_NEXT_SIZE 88
SYS_TEMP_TBS_EXTENT_SIZE 89
SYS_TRIGGER_DML_TABLES_ 279
SYS_TRIGGERS_ 276
SYS_TRIGGER_STRINGS_ 280
SYS_TRIGGER_UPDATE_COLUMNS_ 280
SYS_UNDO_FILE_INIT_SIZE 89
SYS_UNDO_FILE_MAX_SIZE 90
SYS_UNDO_FILE_NEXT_SIZE 90
SYS_UNDO_TBS_EXTENT_SIZE 91
SYS_USERS_ 281
SYS_VIEW_PARSE_ 283
SYS_VIEW_RELATED_ 284
SYS_VIEWS_ 282
SYS_XA_HEURISTIC_TRANS_ 285

T
TABLE_BACKUP_FILE_BUFFER_SIZE 92
TABLE_COMPACT_AT_SHUTDOWN 92
TABLE_INITRANS 129
TABLE_LOCK_ENABLE 129
TABLE_MAXTRANS 130
TEMP_PAGE_CHUNK_COUNT 93
TIMED_STATISTICS 131
TIMER_RUNNING_LEVEL 131
TIMER_THREAD_RESOLUTION 132
TOUCH_TIME_INTERVAL 133
TRANSACTION_SEGMENT_COUNT 133

TRANSACTION_TABLE_SIZE 156
TRCLOG_DETAIL_PREDICATE 201
TRCLOG_DETAIL_SCHEMA 93
TRX_UPDATE_MAX_LOGSIZE 134

U
USE_MEMORY_POOL 142
USER_DATA_FILE_INIT_SIZE 94
USER_DATA_FILE_MAX_SIZE 94
USER_DATA_FILE_NEXT_SIZE 95
USER_DATA_TBS_EXTENT_SIZE 95
USER_TEMP_FILE_INIT_SIZE 96
USER_TEMP_FILE_MAX_SIZE 96
USER_TEMP_FILE_NEXT_SIZE 97
USER_TEMP_TBS_EXTENT_SIZE 97
UTRANS_TIMEOUT 153

V
V$ PROCTEXT 360
V$ALLCOLUMN 291
V$ARCHIVE 291
V$BUFFPAGEINFO 292
V$BUFFPOOL_STAT 295
V$CATALOG 301
V$DATABASE 302
V$DATAFILES 304
V$DATATYPE 307
V$DBA_2PC_PENDING 310
V$DB_FREEPAGELISTS 313
V$DBLINK_REMOTE_STATEMENT_INFO 311
V$DBLINK_REMOTE_TRANSACTION_INFO 312
V$DBLINK_TRANSACTION_INFO 312
V$DB_PROTOCOL 313
V$DIRECT_PATH_INSERT 313
V$DISK_BTREE_HEADER 316
V$DISK_RTREE_HEADER 319
V$DISKTBL_INFO 314
V$DISK_UNDO_USAGE 321
V$EVENT_NAME 322
V$FILESTAT 324
V$FLUSHER 326
V$FLUSHINFO 329
V$INDEX 330
V$INSTANCE 331
V$LATCH 331
V$LFG 332
V$LINKER_STATUS 335
V$LOCK 336
V$LOCK_STATEMENT 337
V$LOCK_WAIT 339
V$LOG 337
V$MEM_BTREE_HEADER 348
V$MEM_BTREE_NODEPOOL 349
Index 456

V$MEMGC 340
V$MEM_RTREE_HEADER 351
V$MEM_RTREE_NODEPOOL 352
V$MEMSTAT 341
V$MEM_TABLESPACE_CHECKPOINT_PATHS 356
V$MEM_TABLESPACES 353
V$MEM_TABLESPACE_STATUS_DESC 356
V$MEMTBL_INFO 345
V$MUTEX 357
V$NLS_PARAMETERS 358
V$PALNTEXT 359
V$PROPERTY 361
V$REPEXEC 362
V$REPGAP 362
V$REPGAP_PARALLEL 364
V$REPLOGBUFFER 366
V$REPOFFLINE_STATUS 367
V$REPRECEIVER 367
V$REPRECEIVER_PARALLEL 370
V$REPRECEIVER_TRANSTBL 373
V$REPRECEIVER_TRANSTBL_PARALLEL 373
V$REPSENDER 376
V$REPSENDER_PARALLEL 378
V$REPSENDER_TRANSTBL_PARALLEL 381
V$REPSYNC 382
V$SEGMENT 383
V$SEQ 384
V$SERVICE_THREAD 386
V$SESSION_EVENT 394
V$SESSIONMGR 398
V$SESSION_WAIT 395
V$SESSTAT 399
V$SQL_PLAN_CACHE 400
V$SQL_PLAN_CACHE_PCO 402
V$SQL_PLAN_CACHE_SQLTEXT 403
V$SQLTEXT 399
V$SSESSION 388
V$STABLE_MEM_DATAFILES 404
V$STATEMENT 405
V$STATNAME 411
V$SYSSTAT 417
V$SYSTEM_CONFLICT_PAGE 418
V$SYSTEM_EVENT 419
V$SYSTEM_WAIT_CLASS 396
V$TAB 286
V$TABLE 421
V$TABLESPACES 422
V$TRANSACTION 427
V$TRANSACTION_MGR 431
V$TSSEGS 432
V$TXSEGS 433
V$UDSEGS 435
V$UNDO_BUFF_STAT 436
V$VERSION 437

V$Views 286
V$VOL_TABLESPACES 438
V$WAIT_CLASS_NAME 439
V$XID 440
VARBIT datatype 41
VARCHAR datatype 9, 43
VARIABLE 7
VOLATILE_MAX_DB_SIZE 98

X
XA_INDOUBT_TX_TIMEOUT 153
XA_MSGLOG_COUNT 202
XA_MSGLOG_DIR 202
XA_MSGLOG_FILE 203
XA_MSGLOG_FLAG 203
XA_MSGLOG_SIZE 204
457 Index

	Contents
	Preface
	About This Manual
	Audience
	Software Environment
	Organization
	Documentation Conventions
	Related Documents
	Online Manual
	Altibase Welcomes Your Opinions

	1 Data Types
	1.1 Overview
	1.1.1 Data Type Overview
	1.1.2 NULL
	1.1.3 Data Type Conversion
	1.1.4 Explicit Data Type Conversion
	1.1.5 The FIXED and VARIABLE Options
	1.1.6 The IN ROW clause

	1.2 Character Data Types
	1.2.1 CHAR
	1.2.2 VARCHAR
	1.2.3 NCHAR
	1.2.4 NVARCHAR

	1.3 Numeric Data Types
	1.3.1 BIGINT
	1.3.2 DECIMAL
	1.3.3 DOUBLE
	1.3.4 FLOAT
	1.3.5 INTEGER
	1.3.6 NUMBER
	1.3.7 NUMERIC
	1.3.8 REAL
	1.3.9 SMALLINT
	1.3.10 Number Format Model

	1.4 Date Data Types
	1.4.1 DATE
	1.4.2 The Datetime Format Model

	1.5 Binary Types
	1.5.1 BYTE
	1.5.2 NIBBLE
	1.5.3 BIT
	1.5.4 VARBIT

	1.6 LOB Data Type
	1.6.1 Overview
	1.6.2 The Features of LOB
	1.6.3 Storing LOB Columns
	1.6.4 BLOB
	1.6.5 CLOB
	1.6.6 Restrictions

	1.7 Spatial Types

	2 ALTIBASE HDB Properties
	2.1 Configuration
	2.2 Database Initialization Properties
	2.2.1 BUFFER_AREA_CHUNK_SIZE
	2.2.2 BUFFER_AREA_SIZE
	2.2.3 BUFFER_CHECKPOINT_LIST_CNT
	2.2.4 BUFFER_FLUSHER_CNT
	2.2.5 BUFFER_FLUSH_LIST_CNT
	2.2.6 BUFFER_HASH_BUCKET_DENSITY
	2.2.7 BUFFER_HASH_CHAIN_LATCH_DENSITY
	2.2.8 BUFFER_LRU_LIST_CNT
	2.2.9 BUFFER_PREPARE_LIST_CNT
	2.2.10 BULKIO_PAGE_COUNT_FOR_DIRECT_PATH_INSERT
	2.2.11 COMPRESSION_RESOURCE_GC_SECOND
	2.2.12 DB_NAME
	2.2.13 DDL_SUPPLEMENTAL_LOG_ENABLE
	2.2.14 DEFAULT_DISK_DB_DIR
	2.2.15 DEFAULT_MEM_DB_FILE_SIZE
	2.2.16 DEFAULT_SEGMENT_MANAGEMENT_TYPE
	2.2.17 DEFAULT_SEGMENT_STORAGE_INITEXTENTS
	2.2.18 DEFAULT_SEGMENT_STORAGE_MAXEXTENTS
	2.2.19 DEFAULT_SEGMENT_STORAGE_MINEXTENTS
	2.2.20 DEFAULT_SEGMENT_STORAGE_NEXTEXTENTS
	2.2.21 DIRECT_PATH_BUFFER_PAGE_COUNT
	2.2.22 DISK_INDEX_UNBALANCED_SPLIT_RATE
	2.2.23 DISK_LOB_COLUMN_IN_ROW_SIZE
	2.2.24 DOUBLE_WRITE_DIRECTORY
	2.2.25 DOUBLE_WRITE_DIRECTORY_COUNT
	2.2.26 DRDB_FD_MAX_COUNT_PER_DATAFILE
	2.2.27 EXPAND_CHUNK_PAGE_COUNT
	2.2.28 FULL_SCAN_USE_BUFFER_POOL
	2.2.29 LOGANCHOR_DIR
	2.2.30 LOG_DIR
	2.2.31 LOG_FILE_SIZE
	2.2.32 MAX_CLIENT
	2.2.33 MEM_DB_DIR
	2.2.34 MEM_MAX_DB_SIZE
	2.2.35 MEMORY_INDEX_BUILD_RUN_SIZE
	2.2.36 MEMORY_INDEX_BUILD_VALUE_LENGTH_THRESHOLD
	2.2.37 MEMORY_LOB_COLUMN_IN_ROW_SIZE
	2.2.38 MEMORY_VARIABLE_COLUMN_IN_ROW_SIZE
	2.2.39 MEM_SIZE_CLASS_COUNT
	2.2.40 MIN_COMPRESSION_RESOURCE_COUNT
	2.2.41 MIN_LOG_RECORD_SIZE_FOR_COMPRESS
	2.2.42 MIN_PAGES_ON_DB_FREE_LIST
	2.2.43 MIN_PAGES_ON_TABLE_FREE_LIST
	2.2.44 PCTFREE
	2.2.45 PCTUSED
	2.2.46 QP_MEMORY_CHUNK_SIZE
	2.2.47 SECURITY_ECC_POLICY_NAME
	2.2.48 SECURITY_MODULE_LIBRARY
	2.2.49 SECURITY_MODULE_NAME
	2.2.50 SHM_DB_KEY
	2.2.51 STARTUP_SHM_CHUNK_SIZE
	2.2.52 ST_OBJECT_BUFFER_SIZE
	2.2.53 SYS_DATA_FILE_INIT_SIZE
	2.2.54 SYS_DATA_FILE_MAX_SIZE
	2.2.55 SYS_DATA_FILE_NEXT_SIZE
	2.2.56 SYS_DATA_TBS_EXTENT_SIZE
	2.2.57 SYS_TEMP_FILE_INIT_SIZE
	2.2.58 SYS_TEMP_FILE_MAX_SIZE
	2.2.59 SYS_TEMP_FILE_NEXT_SIZE
	2.2.60 SYS_TEMP_TBS_EXTENT_SIZE
	2.2.61 SYS_UNDO_FILE_INIT_SIZE
	2.2.62 SYS_UNDO_FILE_MAX_SIZE
	2.2.63 SYS_UNDO_FILE_NEXT_SIZE
	2.2.64 SYS_UNDO_TBS_EXTENT_SIZE
	2.2.65 TABLE_BACKUP_FILE_BUFFER_SIZE
	2.2.66 TABLE_COMPACT_AT_SHUTDOWN
	2.2.67 TEMP_PAGE_CHUNK_COUNT
	2.2.68 TRCLOG_DETAIL_SCHEMA
	2.2.69 USER_DATA_FILE_INIT_SIZE
	2.2.70 USER_DATA_FILE_MAX_SIZE
	2.2.71 USER_DATA_FILE_NEXT_SIZE
	2.2.72 USER_DATA_TBS_EXTENT_SIZE
	2.2.73 USER_TEMP_FILE_INIT_SIZE
	2.2.74 USER_TEMP_FILE_MAX_SIZE
	2.2.75 USER_TEMP_FILE_NEXT_SIZE
	2.2.76 USER_TEMP_TBS_EXTENT_SIZE
	2.2.77 VOLATILE_MAX_DB_SIZE

	2.3 Performance Properties
	2.3.1 AGER_WAIT_MAXIMUM
	2.3.2 AGER_WAIT_MINIMUM
	2.3.3 BUFFER_VICTIM_SEARCH_INTERVAL
	2.3.4 BUFFER_VICTIM_SEARCH_PCT
	2.3.5 CHECKPOINT_BULK_SYNC_PAGE_COUNT
	2.3.6 CHECKPOINT_BULK_WRITE_PAGE_COUNT
	2.3.7 CHECKPOINT_BULK_WRITE_SLEEP_SEC
	2.3.8 CHECKPOINT_BULK_WRITE_SLEEP_USEC
	2.3.9 CHECKPOINT_FLUSH_COUNT
	2.3.10 CHECKPOINT_FLUSH_MAX_GAP
	2.3.11 CHECKPOINT_FLUSH_MAX_WAIT_SEC
	2.3.12 CM_BUFFER_MAX_PENDING_LIST
	2.3.13 DATABASE_IO_TYPE
	2.3.14 DATAFILE_WRITE_UNIT_SIZE
	2.3.15 DB_FILE_MULTIPAGE_READ_COUNT
	2.3.16 DEFAULT_FLUSHER_WAIT_SEC
	2.3.17 DIRECT_IO_ENABLED
	2.3.18 DISK_INDEX_BUILD_MERGE_PAGE_COUNT
	2.3.19 EXECUTE_STMT_MEMORY_MAXIMUM
	2.3.20 FAST_START_IO_TARGET
	2.3.21 FAST_START_LOGFILE_TARGET
	2.3.22 HIGH_FLUSH_PCT
	2.3.23 HOT_LIST_PCT
	2.3.24 HOT_TOUCH_CNT
	2.3.25 INDEX_BUILD_THREAD_COUNT
	2.3.26 INDEX_INITRANS
	2.3.27 INDEX_MAXTRANS
	2.3.28 INSPECTION_LARGE_HEAP_THRESHOLD
	2.3.29 LFG_GROUP_COMMIT_INTERVAL_USEC
	2.3.30 LFG_GROUP_COMMIT_RETRY_USEC
	2.3.31 LFG_GROUP_COMMIT_UPDATE_TX_COUNT
	2.3.32 LOCK_ESCALATION_MEMORY_SIZE
	2.3.33 LOG_FILE_GROUP_COUNT
	2.3.34 LOG_IO_TYPE
	2.3.35 LOW_FLUSH_PCT
	2.3.36 LOW_PREPARE_PCT
	2.3.37 MAX_FLUSHER_WAIT_SEC
	2.3.38 MULTIPLEXING_CHECK_INTERVAL
	2.3.39 MULTIPLEXING_MAX_THREAD_COUNT
	2.3.40 MULTIPLEXING_THREAD_COUNT
	2.3.41 NORMALFORM_MAXIMUM
	2.3.42 OPTIMIZER_MODE
	2.3.43 PARALLEL_LOAD_FACTOR
	2.3.44 PREPARE_STMT_MEMORY_MAXIMUM
	2.3.45 REFINE_PAGE_COUNT
	2.3.46 SHM_PAGE_COUNT_PER_KEY
	2.3.47 SORT_AREA_SIZE
	2.3.48 SQL_PLAN_CACHE_BUCKET_CNT
	2.3.49 SQL_PLAN_CACHE_HOT_REGION_LRU_RATIO
	2.3.50 SQL_PLAN_CACHE_PREPARED_EXECUTION_CONTEXT_CNT
	2.3.51 SQL_PLAN_CACHE_SIZE
	2.3.52 STATEMENT_LIST_PARTIAL_SCAN_COUNT
	2.3.53 TABLE_INITRANS
	2.3.54 TABLE_LOCK_ENABLE
	2.3.55 TABLE_MAXTRANS
	2.3.56 TIMER_RUNNING_LEVEL
	2.3.57 TIMED_STATISTICS
	2.3.58 TIMER_THREAD_RESOLUTION
	2.3.59 TOUCH_TIME_INTERVAL
	2.3.60 TRANSACTION_SEGMENT_COUNT
	2.3.61 TRX_UPDATE_MAX_LOGSIZE

	2.4 Session Properties
	2.4.1 CM_DISCONN_DETECT_TIME
	2.4.2 DEFAULT_THREAD_STACK_SIZE
	2.4.3 IPC_CHANNEL_COUNT
	2.4.4 IPC_PORT_NO
	2.4.5 MAX_LISTEN
	2.4.6 MAX_STATEMENTS_PER_SESSION
	2.4.7 NET_CONN_IP_STACK
	2.4.8 NLS_NCHAR_CONV_EXCP
	2.4.9 NLS_COMP
	2.4.10 PORT_NO
	2.4.11 PSM_FILE_OPEN_LIMIT
	2.4.12 SERVICE_THREAD_STACK_SIZE
	2.4.13 USE_MEMORY_POOL
	2.4.14 XA_HEURISTIC_COMPLETE

	2.5 Time-Out Properties
	2.5.1 BLOCK_ALL_TX_TIME_OUT
	2.5.2 DDL_LOCK_TIMEOUT
	2.5.3 FETCH_TIMEOUT
	2.5.4 IDLE_TIMEOUT
	2.5.5 LINKER_CONNECT_TIMEOUT
	2.5.6 LINKER_RECEIVE_TIMEOUT
	2.5.7 LOGIN_TIMEOUT
	2.5.8 MULTIPLEXING_POLL_TIMEOUT
	2.5.9 QUERY_TIMEOUT
	2.5.10 REMOTE_SERVER_CONNECT_TIMEOUT
	2.5.11 REPLICATION_CONNECT_TIMEOUT
	2.5.12 REPLICATION_LOCK_TIMEOUT
	2.5.13 REPLICATION_RECEIVE_TIMEOUT
	2.5.14 REPLICATION_SENDER_SLEEP_TIMEOUT
	2.5.15 REPLICATION_SYNC_LOCK_TIMEOUT
	2.5.16 SHUTDOWN_IMMEDIATE_TIMEOUT
	2.5.17 UTRANS_TIMEOUT
	2.5.18 XA_INDOUBT_TX_TIMEOUT

	2.6 Transaction Properties
	2.6.1 AUTO_COMMIT
	2.6.2 ISOLATION_LEVEL
	2.6.3 TRANSACTION_TABLE_SIZE

	2.7 Backup and Recovery Properties
	2.7.1 ARCHIVE_DIR
	2.7.2 ARCHIVE_FULL_ACTION
	2.7.3 ARCHIVE_THREAD_AUTOSTART
	2.7.4 CHECKPOINT_ENABLED
	2.7.5 CHECKPOINT_INTERVAL_IN_LOG
	2.7.6 CHECKPOINT_INTERVAL_IN_SEC
	2.7.7 COMMIT_WRITE_WAIT_MODE
	2.7.8 LOG_BUFFER_TYPE
	2.7.9 PREPARE_LOG_FILE_COUNT

	2.8 Replication Properties
	2.8.1 REPLICATION_ACK_XLOG_COUNT
	2.8.2 REPLICATION_COMMIT_WRITE_WAIT_MODE
	2.8.3 REPLICATION_CONNECT_RECEIVE_TIMEOUT
	2.8.4 REPLICATION_DDL_ENABLE
	2.8.5 REPLICATION_EAGER_PARALLEL_FACTOR
	2.8.6 REPLICATION_FAILBACK_INCREMENTAL_SYNC
	2.8.7 REPLICATION_HBT_DETECT_HIGHWATER_MARK
	2.8.8 REPLICATION_HBT_DETECT_TIME
	2.8.9 REPLICATION_INSERT_REPLACE
	2.8.10 REPLICATION_KEEP_ALIVE_CNT
	2.8.11 REPLICATION_LOG_BUFFER_SIZE
	2.8.12 REPLICATION_MAX_LISTEN
	2.8.13 REPLICATION_MAX_LOGFILE
	2.8.14 REPLICATION_NET_CONN_IP_STACK
	2.8.15 REPLICATION_POOL_ELEMENT_COUNT
	2.8.16 REPLICATION_POOL_ELEMENT_SIZE
	2.8.17 REPLICATION_PORT_NO
	2.8.18 REPLICATION_PREFETCH_LOGFILE_COUNT
	2.8.19 REPLICATION_RECOVERY_MAX_LOGFILE
	2.8.20 REPLICATION_RECOVERY_MAX_TIME
	2.8.21 REPLICATION_SENDER_AUTO_START
	2.8.22 REPLICATION_SENDER_SLEEP_TIME
	2.8.23 REPLICATION_SERVER_FAILBACK_MAX_TIME
	2.8.24 REPLICATION_SYNC_LOG
	2.8.25 REPLICATION_SYNC_TUPLE_COUNT
	2.8.26 REPLICATION_TIMESTAMP_RESOLUTION
	2.8.27 REPLICATION_UPDATE_REPLACE

	2.9 Message Logging Properties
	2.9.1 ALL_MSGLOG_FLUSH
	2.9.2 DL_MSGLOG_COUNT
	2.9.3 DL_MSGLOG_DIR
	2.9.4 DL_MSGLOG_FILE
	2.9.5 DL_MSGLOG_FLAG
	2.9.6 DL_MSGLOG_SIZE
	2.9.7 LK_MSGLOG_COUNT
	2.9.8 LK_MSGLOG_DIR
	2.9.9 LK_MSGLOG_FILE
	2.9.10 LK_MSGLOG_FLAG
	2.9.11 LK_MSGLOG_SIZE
	2.9.12 MM_MSGLOG_COUNT
	2.9.13 MM_MSGLOG_DIR
	2.9.14 MM_MSGLOG_FILE
	2.9.15 MM_SESSION_LOGGING
	2.9.16 MM_MSGLOG_SIZE
	2.9.17 NETWORK_ERROR_LOG
	2.9.18 QP_MSGLOG_COUNT
	2.9.19 QP_MSGLOG_DIR
	2.9.20 QP_MSGLOG_FILE
	2.9.21 QP_MSGLOG_FLAG
	2.9.22 QP_MSGLOG_SIZE
	2.9.23 QUERY_PROF_FLAG
	2.9.24 RP_MSGLOG_COUNT
	2.9.25 RP_MSGLOG_DIR
	2.9.26 RP_MSGLOG_FILE
	2.9.27 RP_MSGLOG_FLAG
	2.9.28 RP_MSGLOG_SIZE
	2.9.29 SERVER_MSGLOG_COUNT
	2.9.30 SERVER_MSGLOG_DIR
	2.9.31 SERVER_MSGLOG_FILE
	2.9.32 SERVER_MSGLOG_FLAG
	2.9.33 SERVER_MSGLOG_SIZE
	2.9.34 SM_MSGLOG_COUNT
	2.9.35 SM_MSGLOG_DIR
	2.9.36 SM_MSGLOG_FILE
	2.9.37 SM_MSGLOG_FLAG
	2.9.38 SM_MSGLOG_SIZE
	2.9.39 TRCLOG_DETAIL_PREDICATE
	2.9.40 XA_MSGLOG_COUNT
	2.9.41 XA_MSGLOG_DIR
	2.9.42 XA_MSGLOG_FILE
	2.9.43 XA_MSGLOG_FLAG
	2.9.44 XA_MSGLOG_SIZE

	2.10 Database Link Related Properties
	2.10.1 AUTO_REMOTE_EXEC
	2.10.2 DBLINK_ENABLE
	2.10.3 LINKER_LINK_TYPE
	2.10.4 LINKER_PORT_NO
	2.10.5 LINKER_SQLLEN_SIZE
	2.10.6 LINKER_THREAD_COUNT
	2.10.7 LINKER_THREAD_SLEEP_TIME
	2.10.8 MAX_DBLINK_COUNT

	2.11 DataPort Properties
	2.11.1 DATAPORT_FILE_DIRECTORY
	2.11.2 DATAPORT_IMPORT_COMMIT_UNIT
	2.11.3 DATAPORT_IMPORT_STATEMENT_UNIT

	2.12 Other Properties
	2.12.1 ACCESS_LIST
	2.12.2 ADMIN_MODE
	2.12.3 CHECK_MUTEX_DURATION_TIME_ENABLE
	2.12.4 DEFAULT_DATE_FORMAT
	2.12.5 EXEC_DDL_DISABLE
	2.12.6 QUERY_STACK_SIZE
	2.12.7 REMOTE_SYSDBA_ENABLE
	2.12.8 SELECT_HEADER_DISPLAY

	3 The Data Dictionary
	3.1 Meta Tables
	3.1.1 Structure and Function
	3.1.2 Retrieving Information from Meta Tables
	3.1.3 Modifying Data in Meta Tables
	3.1.4 Modifying Meta Table Schema
	3.1.5 The Kinds of Meta Tables
	3.1.6 SYS_COLUMNS_
	3.1.7 SYS_COMMENTS_
	3.1.8 SYS_CONSTRAINTS_
	3.1.9 SYS_CONSTRAINT_COLUMNS_
	3.1.10 SYS_DATABASE_
	3.1.11 SYS_DATABASE_LINKS_
	3.1.12 SYS_DATA_PORTS_
	3.1.13 SYS_DIRECTORIES_
	3.1.14 SYS_ENCRYPTED_COLUMNS_
	3.1.15 SYS_GRANT_OBJECT_
	3.1.16 SYS_GRANT_SYSTEM_
	3.1.17 SYS_INDEX_COLUMNS_
	3.1.18 SYS_INDEX_PARTITIONS_
	3.1.19 SYS_INDICES_
	3.1.20 SYS_LOBS_
	3.1.21 SYS_PART_INDICES_
	3.1.22 SYS_PART_KEY_COLUMNS_
	3.1.23 SYS_PART_LOBS_
	3.1.24 SYS_PART_TABLES_
	3.1.25 SYS_PRIVILEGES_
	3.1.26 SYS_PROCEDURES_
	3.1.27 SYS_PROC_PARAS_
	3.1.28 SYS_PROC_PARSE_
	3.1.29 SYS_PROC_RELATED_
	3.1.30 SYS_REPLICATIONS_
	3.1.31 SYS_REPL_HOSTS_
	3.1.32 SYS_REPL_ITEMS_
	3.1.33 SYS_REPL_OFFLINE_DIR_
	3.1.34 SYS_REPL_OLD_COLUMNS_
	3.1.35 SYS_REPL_OLD_INDEX_COLUMNS_
	3.1.36 SYS_REPL_OLD_INDICES_
	3.1.37 SYS_REPL_OLD_ITEMS_
	3.1.38 SYS_REPL_RECOVERY_INFOS_
	3.1.39 SYS_SECURITY_
	3.1.40 SYS_SYNONYMS_
	3.1.41 SYS_TABLES_
	3.1.42 SYS_TABLE_PARTITIONS_
	3.1.43 SYS_TBS_USERS_
	3.1.44 SYS_TRIGGERS_
	3.1.45 SYS_TRIGGER_DML_TABLES_
	3.1.46 SYS_TRIGGER_STRINGS_
	3.1.47 SYS_TRIGGER_UPDATE_COLUMNS_
	3.1.48 SYS_USERS_
	3.1.49 SYS_VIEWS_
	3.1.50 SYS_VIEW_PARSE_
	3.1.51 SYS_VIEW_RELATED_
	3.1.52 SYS_XA_HEURISTIC_TRANS_

	3.2 Performance Views
	3.2.1 Structures and Features
	3.2.2 How to Use Performance Views
	3.2.3 V$ Views
	3.2.4 V$ALLCOLUMN
	3.2.5 V$ARCHIVE
	3.2.6 V$BUFFPAGEINFO
	3.2.7 V$BUFFPOOL_STAT
	3.2.8 V$CATALOG
	3.2.9 V$DATABASE
	3.2.10 V$DATAFILES
	3.2.11 V$DATATYPE
	3.2.12 V$DBA_2PC_PENDING
	3.2.13 V$DBLINK_REMOTE_STATEMENT_INFO
	3.2.14 V$DBLINK_REMOTE_TRANSACTION_INFO
	3.2.15 V$DBLINK_TRANSACTION_INFO
	3.2.16 V$DB_FREEPAGELISTS
	3.2.17 V$DB_PROTOCOL
	3.2.18 V$DIRECT_PATH_INSERT
	3.2.19 V$DISKTBL_INFO
	3.2.20 V$DISK_BTREE_HEADER
	3.2.21 V$DISK_RTREE_HEADER
	3.2.22 V$DISK_UNDO_USAGE
	3.2.23 V$EVENT_NAME
	3.2.24 V$FILESTAT
	3.2.25 V$FLUSHER
	3.2.26 V$FLUSHINFO
	3.2.27 V$INDEX
	3.2.28 V$INSTANCE
	3.2.29 V$LATCH
	3.2.30 V$LFG
	3.2.31 V$LINKER_STATUS
	3.2.32 V$LOCK
	3.2.33 V$LOCK_STATEMENT
	3.2.34 V$LOG
	3.2.35 V$LOCK_WAIT
	3.2.36 V$MEMGC
	3.2.37 V$MEMSTAT
	3.2.38 V$MEMTBL_INFO
	3.2.39 V$MEM_BTREE_HEADER
	3.2.40 V$MEM_BTREE_NODEPOOL
	3.2.41 V$MEM_RTREE_HEADER
	3.2.42 V$MEM_RTREE_NODEPOOL
	3.2.43 V$MEM_TABLESPACES
	3.2.44 V$MEM_TABLESPACE_CHECKPOINT_PATHS
	3.2.45 V$MEM_TABLESPACE_STATUS_DESC
	3.2.46 V$MUTEX
	3.2.47 V$NLS_PARAMETERS
	3.2.48 V$PLANTEXT
	3.2.49 V$PROCTEXT
	3.2.50 V$PROPERTY
	3.2.51 V$REPEXEC
	3.2.52 V$REPGAP
	3.2.53 V$REPGAP_PARALLEL
	3.2.54 V$REPLOGBUFFER
	3.2.55 V$REPOFFLINE_STATUS
	3.2.56 V$REPRECEIVER
	3.2.57 V$REPRECEIVER_COLUMN
	3.2.58 V$REPRECEIVER_PARALLEL
	3.2.59 V$REPRECEIVER_TRANSTBL
	3.2.60 V$REPRECEIVER_TRANSTBL_PARALLEL
	3.2.61 V$REPRECOVERY
	3.2.62 V$REPSENDER
	3.2.63 V$REPSENDER_PARALLEL
	3.2.64 V$REPSENDER_TRANSTBL
	3.2.65 V$REPSENDER_TRANSTBL_PARALLEL
	3.2.66 V$REPSYNC
	3.2.67 V$SEGMENT
	3.2.68 V$SEQ
	3.2.69 V$SERVICE_THREAD
	3.2.70 V$SESSION
	3.2.71 V$SESSION_EVENT
	3.2.72 V$SESSION_WAIT
	3.2.73 V$SESSION_WAIT_CLASS
	3.2.74 V$SESSIONMGR
	3.2.75 V$SESSTAT
	3.2.76 V$SQLTEXT
	3.2.77 V$SQL_PLAN_CACHE
	3.2.78 V$SQL_PLAN_CACHE_PCO
	3.2.79 V$SQL_PLAN_CACHE_SQLTEXT
	3.2.80 V$STABLE_MEM_DATAFILES
	3.2.81 V$STATEMENT
	3.2.82 V$STATNAME
	3.2.83 V$SYSSTAT
	3.2.84 V$SYSTEM_CONFLICT_PAGE
	3.2.85 V$SYSTEM_EVENT
	3.2.86 V$SYSTEM_WAIT_CLASS
	3.2.87 V$TABLE
	3.2.88 V$TABLESPACES
	3.2.89 V$TRACELOG
	3.2.90 V$TRANSACTION
	3.2.91 V$TRANSACTION_MGR
	3.2.92 V$TSSEGS
	3.2.93 V$TXSEGS
	3.2.94 V$UDSEGS
	3.2.95 V$UNDO_BUFF_STAT
	3.2.96 V$VERSION
	3.2.97 V$VOL_TABLESPACES
	3.2.98 V$WAIT_CLASS_NAME
	3.2.99 V$XID

	4 The Sample Schema
	4.1 Information about the Sample Schema
	4.1.1 Script Files
	4.1.2 The Sample Schema

	4.2 Entity-Relationship (ER) Diagram and Sample Data
	4.2.1 ER Diagram
	4.2.2 Sample Data

	Index

