A Teledyne Technologies Company

Enhanced Sensitivity Cameras

Piranha ES

Camera User's Manual

ES-80-04k40-00-R ES-80-08k80-00-R ES-80-08k40-00-R ES-82-04k40-00-R ES-82-04k80-00-R

© 2011 Teledyne DALSA. All information provided in this manual is believed to be accurate and reliable. No responsibility is assumed by Teledyne DALSA for its use. Teledyne DALSA reserves the right to make changes to this information without notice. Reproduction of this manual in whole or in part, by any means, is prohibited without prior permission having been obtained from Teledyne DALSA.

About Teledyne Technologies and Teledyne DALSA, Inc.

Teledyne Technologies is a leading provider of sophisticated electronic subsystems, instrumentation and communication products, engineered systems, aerospace engines, and energy and power generation systems. Teledyne Technologies' operations are primarily located in the United States, the United Kingdom and Mexico. For more information, visit Teledyne Technologies' website at www.teledyne.com.

Teledyne DALSA, a Teledyne Technologies company, is an international leader in high performance digital imaging and semiconductors with approximately 1,000 employees worldwide, headquartered in Waterloo, Ontario, Canada. Established in 1980, the company designs, develops, manufactures and markets digital imaging products and solutions, in addition to providing MEMS products and services. For more information, visit Teledyne DALSA's website at www.teledynedalsa.com.

Support

For further information not included in this manual, or for information on Teledyne DALSA's extensive line of image sensing products, please contact:

North America	Europe	Asia Pacific
605 McMurray Rd	Breslauer Str. 34	Ikebukuro East 13F
Waterloo, ON N2V 2E9 Canada	D-82194 Gröbenzell (Munich)	3-4-3 Higashi-Ikebukuro
Tel: 519 886 6000	Germany	Toshima-ku, Tokyo 170-0013
Fax: 519 886 8023	Tel: +49 - 8142 - 46770	Japan
www.teledynedalsa.com	Fax: +49 - 8142 - 467746	Tel: 81 3 5960 6353
sales.americas@teledynedalsa.com support@teledynedalsa.com	www.teledynedalsa.com	Fax: 81 3 5960 6354 (fax)
	sales.europe@teledynedalsa.com	www.teledynedalsa.com
	support@teledynedalsa.com	sales.asia@teledynedalsa.com support@teledynedalsa.com

Camera Link is a trademark registered by the Automated Imaging Association, as chair of a committee of industry members including Teledyne DALSA.

Document number 03-032-20070-02. Document revision date Monday, June 06, 2011.

Contents

Introduction	5
1.1 Camera Highlights	5
1.2 Camera Performance Specifications	7
1.3 Image Sensor	20
1.4 Responsivity	21
Camera Hardware Interface	23
2.1 Installation Overview	23
2.2 Input/Output Connectors and LED	23
2.2.1 LED Status Indicator	24
2.2.2 Power Connector	25
2.2.3 Camera Link Data Connector	25
2.3 Camera Link Video Timing	27
Software Interface: How to Control the Camera	
3.1 First Power Up Camera Settings	
3.2 Command Categories	34
3.3 Sensor Output Format	35
3.3.1 Selecting TDI or Area Mode Operation	35
3.3.2 Selecting the Number of CCD Integration Stages	35
3.3.3 Setting the Camera's CCD Shift Direction	
3.3.4 Increasing Sensitivity with Binning	
3.3.5 Exposure Mode and Line/Frame Rate	
3.4 Camera Output Format	42
3.4.1 How to Configure Camera Output	42
3.4.2 Setting the Camera Link Mode	48
3.4.3 Setting the Camera Throughput	49
3.4.4 Setting the Pixel Readout Direction	49
3.4.5 Setting a Pretrigger	51
3.5 Data Processing	51
3.5.1 Setting a Region of Interest	51
3.5.2 Analog and Digital Signal Processing Chain	52
3.5.3 End-of-line Sequence	67
3.6 Saving and Restoring Settings	69

3.6.1 Saving and Restoring Factory and User Settings	69
3.6.2 Saving and Restoring PRNU and FPN Coefficients	70
3.6.3 Rebooting the Camera	72
3.7 Diagnostics	73
3.7.1 Generating a Test Pattern	73
3.7.2 Returning Video Information	76
3.7.3 Temperature Measurement	
3.7.4 Voltage Measurement	
3.7.5 Camera Frequency Measurement	
3.7.6 Returning Camera Settings	
Optical and Mechanical	
4.1 Lens Mounts	85
4.2 Optical Interface	85
4.3 Mechanical Interface	
Error Handling and Command List	
A1 Error Handling	
A2 Commands: Quick Reference	91
EMC Declaration of Conformity	101
Revision History	103
Index	105

Introduction

1.1 Camera Highlights

Features

- 8192 or 4096 resolution, 7 µm or 14 µm pixel pitch, 90% fill factor
- High speed, up to 640 megapixels/ second throughput
- Up to 110 kHz (14 µm x 14 µm) line rate
- 32 / 16 or 16/ 8 stages, independently selectable Time Delay and Integration (TDI) imaging regions for enhanced user-controlled sensitivity
- Broadband responsivity up to 780 DN (nJ/ cm²) @ 10 dB, 8-bit (ES-82)
- 4 or 8 taps, bidirectional TDI
- 100x anti-blooming

Programmability

- Serial interface (ASCII, 9600 baud, adjustable to 19200, 57600, 115200), through Camera Link[™].
- Programmable gain, offset, frame and frame rates, trigger mode, test pattern output, and camera diagnostics.
- Mirroring and forward/ reverse control.
- Selectable Area or TDI Mode of operation. Area Mode facilitates camera alignment and focusing. Area mode can also be used for regular operation.
- Selectable pixel size (binning).
- Flat-field correction—minimizes lens vignetting, non-uniform lighting, and sensor FPN and PRNU.
- Selectable Base (ES-80-08k40 only), Medium, or Full Camera Link configuration, depending on camera model.

Description

The Piranha Enhanced Sensitivity (ES) camera family represent Teledyne DALSA's latest generation of superior sensitivity, TDI based cameras. The Piranha ES family maximizes system throughput and provides the largest number of pixels available in a TDI camera. All cameras are capable of bi-directionality and up to 16 or 32 stages of integration, depending on the model.

Applications

The Piranha ES family is ideal for applications requiring high speed, superior image quality, and high responsivity. Applications include:

- Solar cell inspection
- Postal sorting (flats)
- Flat panel display inspection
- Printed circuit board inspection
- High performance document scanning
- Large web inspection
- Low-light applications

Models

The Piranha ES-xx cameras are available in these models.

 Table 1: Piranha ES-xx Camera Models Overview

Model Number	Description
ES-80-04k40-00-R	4k resolution, programmable 4 or 8 taps, up to 320 megapixels/ second throughput, 68 kHz line rate, Medium or Full Camera Link configuration. 7 μm x 7 μm pixel size. 16 or 32 stage TDI.
ES-80-08k80-00-R	8k resolution, programmable 4 or 8 taps, up to 640 megapixels/ second throughput, 68 kHz line rate, Medium or Full Camera Link configuration. 7 μm x 7 μm pixel size. 16 or 32 stage TDI.
ES-80-08k40-00-R	8k resolution, programmable 4 or 8 taps, up to 320 megapixels/ second throughput, 34 kHz line rate, Base, Medium or Full Camera Link configuration. 7 μm x 7 μm pixel size. 16 or 32 stage TDI.
ES-82-04k40-00-R	4k resolution, programmable 4 or 8 taps, up to 320 megapixels/ second throughput, 55 kHz line rate, Medium or Full Camera Link configuration. 14 μm x 14 μm pixel size. 8 or 16 stage TDI.
ES-82-04k80-00-R	4k resolution, programmable 4 or 8 taps, up to 640 megapixels/ second throughput, 110 kHz line rate, Medium or Full Camera Link configuration. 14 μm x 14 μm pixel size. 8 or 16 stage TDI.

Throughout the manual, the cameras are referred to as the Piranha ES-xx camera family unless a section is valid to a specific model only where the camera's model number is used.

1.2 Camera Performance Specifications

	mera Performance Speci	lications
Feature / Specification	Units	
Sensor Features		
Imager Format		Bidirectional TDI
Resolution	pixels	8192
Pixel Fill Factor	%	90
Pixel Size	μm	7 x 7
Output Format (# of Camera Link taps)		4 or 8
Stage Selection		32, 16
Anti-blooming		100x
CCD Shift Direction Change	seconds	0.2
Optical Interface	Units	
Back Focal Distance		
F Mount	mm	
M42x1 Mount	mm	
M72 Mount	mm	6.56±0.25
Sensor Alignment		
(aligned to sides of camera)		
х	mm	±0.05
У	mm	± 0.05
Z	mm	±0.25
θz	0	±0.2
Lens Mount Hole		M72x0.75
Mechanical Interface	Units	
Camera Size	mm lxhxw	80 x 150 x 65
Mass	g	<800
Connectors		
power connector		6 pin male Hirose
data connector		MDR26 female
Electrical Interface	Units	
Input Voltage	Volts	+12 to +15 ±5%

19

Table 2: ES-80-08k80 Camera Performance Specifications

Power Dissipation¹

W

Operating Temperature ²	°C	0 to 50		
Bit Width	Bits	8 or 12 bit user	selectable	
Output Data Configuration		Medium or Ful	l Camera Link	
Operating Ranges	Units			
Minimum Line Rate	kHz	3.5		
Maximum Line Rate	kHz	68		
Throughput	Mpix/ sec	640		
Gain	dB	-10 to +10		
Performance	Units	Min	Тур	Max
Dynamic Range -10 dB gain 0 dB gain +10 dB gain	Ratio	312 166 56	1190 357 119	
Random Noise -10 dB gain 0 dB gain +10 dB gain	DN rms		.22 .7 2.1	.8 1.5 4.5
SEE -10 dB gain 0 dB gain +10 dB gain	nJ/ cm ²		6.4 2.0 0.6	
NEE -10 dB gain 0 dB gain +10 dB gain	pJ/ cm ²		5.6 5.6 5.6	
Analog Broadband Responsivity -10 dB gain 0 dB gain +10 dB gain	DN/nJ/cm ²	 117 	39 123 390	 130
FPN with correction 0 dB gain FPN w/ o correction -10 dB gain 0 dB gain	DN p-p		.5 4.5	2 3 3 9
+ 10 u b galli				,

Performance	Units	Min	Тур	Max
PRNU with correction	DN p-p			
0 dB gain w/ o correction			4.0	8
-10 dB gain			_	22
0 dB gain			_	22
+10 dB gain			10	25
Saturation Output Amplitude	DN		255	
Calibration Time	seconds	8.5		
DC Offset	DN	3	5	6

- TDI mode of operation. These specifications are not guaranteed for area mode of operation.
- Line Rate: 10kHz
- Nominal Gain setting
- Light Source: Broadband Quartz Halogen, 3250k, with 700 nm IR cutoff filter installed
- All Max specifications are valid over a 0-50°C temperature range
- All Typ specifications are measured at 25°C.
- All values are referenced at 8-bit
- 1. Maximum using highest Camera Link mode and maximum line rate
- 2. Measured at the front plate.

Table 3: ES-80-08k40 Camera Performance Specifications

Feature / Specification	Units	
Sensor Features		
Imager Format		Bidirectional TDI
Resolution	pixels	8192
Pixel Fill Factor	%	90
Pixel Size	μm	7 x 7
Output Format (# of Camera Link taps)		4 or 8
Stage Selection		32, 16
Anti-blooming		100x
CCD Shift Direction Change	seconds	0.2
Optical Interface	Units	
Back Focal Distance	mm	6.56±0.25

Adapters		F Mount M42x1 Mount M72 Mount
Sensor Alignment (aligned to sides of camera)		
х	mm	± 0.05
у	mm	± 0.05
Z	mm	±0.25
θz	0	± 0.2
Lens Mount Hole		M72x0.75
Mechanical Interface	Units	
Camera Size	mm lxhxw	80 x 150 x 65
Mass	g	<800
Connectors power connector data connector		6 pin male Hirose MDR26 female
Electrical Interface	Units	
Input Voltage	Volts	+12 to +15 ±5%
Power Dissipation ¹	W	19
Operating Temperature ²	°C	0 to 50
Bit Width	Bits	8 or 12 bit user selectable

Base, Medium,	or Full Camera I	Link

Operating Ranges	Units	
Minimum Line Rate	kHz	3.5
Maximum Line Rate	kHz	34
Throughput	Mpix/ sec	320
Gain	dB	-10 to +10

Performance	Units	Minimum	Typical	Maximum
Dynamic Range	Ratio			
-10 dB gain		312	1920	
0 dB gain		312	607	
+10 dB gain		100	192	
Random Noise	DN rms			
-10 dB gain			0.16	0.8
0 dB gain			0.41	0.8
+10 dB gain			1.3	2.5

Output Data Configuration

Performance	Units	Minimum	Typical	Maximum
SEE -10 dB gain 0 dB gain +10 dB gain	nJ/ cm ²		6.4 2.0 0.6	
NEE -10 dB gain 0 dB gain +10 dB gain	pJ/ cm ²		5.6 5.6 5.6	
Analog Broadband Responsivity -10 dB gain 0 dB gain +10 dB gain	DN/nJ/cm ²	 117 	39 123 390	 130
FPN with correction 0 dB gain FPN w/ o correction -10 dB gain 0 dB gain +10 dB gain	DN p-p		.5 	2 3 3 9
PRNU with correction 0 dB gain w/ o correction -10 dB gain 0 dB gain +10 dB gain	DN p-p		3.2 — 7	5.5 22 22 25
Saturation Output Amplitude	DN		255	
DC Offset	DN	3	5	6

- TDI mode of operation. These specifications are not guaranteed for area mode of operation.
- Line Rate: 10kHz
- Nominal Gain setting
- Light Source: Broadband Quartz Halogen, 3250k, with 700 nm IR cutoff filter installed
- All Max specifications are valid over a 0-50°C temperature range
- All Typ specifications are measured at 25°C.
- All values are referenced at 8-bit

1. Maximum using highest Camera Link mode and maximum line rate

2. Measured at the front plate.

Feature / Specification	Units	
Sensor Features		
Imager Format		Bidirectional TDI
Resolution	pixels	4096
Pixel Fill Factor	%	90
Pixel Size	μm	7 x 7
Output Format (# of Camera Link taps)		4 or 8
Stage Selection		32, 16
Anti-blooming		100x
CCD Shift Direction Change	seconds	0.2
Optical Interface	Units	
Back Focal Distance	mm	6.56±0.25
Adapters		FMount
		M42x1 Mount
		M72 Mount
Sensor Alignment		
(aligned to sides of		
camera)		0.05
X	mm	±0.05
y	mm	+0.25
θz	0	+0.2
Lens Mount Hole		M72x0.75
Mechanical Interface	Units	
Camera Size	mm lxhxw	80 x 150 x 65
Mass	g	<800
Connectors		
power connector		6 pin male Hirose
data connector		MDR26 female
Electrical	Units	
Interface		
Interface Input Voltage	Volts	+12 to +15 ±5%
Interface Input Voltage Power Dissipation ¹	Volts W	+12 to +15 ±5% 19
Interface Input Voltage Power Dissipation ¹ Operating Temperature ²	Volts W °C	+12 to +15 ±5% 19 0 to 50

Table 1. EC 90 04140 Ca wa Doufe manao Cuodifianti

Output Data Configuration		Medium or Full	Camera Link	
Operating	Unite			
Ranges	Oning			
Minimum Line Rate	kHz	3.5		
Maximum Line Rate	kHz	68		
Throughput	Mpix/ sec	320		
Gain	dB	-10 to +10		
Performance	Units	Minimum	Typical	Maximum
Dynamic Range	Ratio		.,	
-10 dB gain	Kutio	312	1190	
0 dB gain		166	357	
+10 dB gain		56	119	
Random Noise	DN rms			
-10 dB gain			0.22	0.8
0 dB gain			0.7	1.5
+10 dB gain			2.1	4.5
SEE	nJ/cm^2			
-10 dB gain			6.4	
0 d B gain			2.0	
+10 dB gain	- 2		0.6	
NEE	pJ/ cm ⁻		5.7	
-10 dB gain			5.6	
10 dB gain			5.0	
Analog Droadband	$DN/mI/m^2 @700mm$		5.0	
Responsivity				
-10 dB gain			39	
0 dB gain		117	123	130
+10 dB gain		_	390	
FPN	DN p-p			
with correction				
0 dB gain			.5	2
FPN				
w/ o correction				
-10 dB gain			—	3
0 dB gain			3	3
+10 dB gain			—	9
PRNU	DN p-p			
with correction			2.2	5 5
UdB gain			3.2	3.3
-10 dR gain			_	22
0 d B gain			_	22
+10 dB gain			7	25

Performance	Units	Minimum	Typical	Maximum
Saturation Output Amplitude	DN		255	
DC Offset	DN	3	5	6

- TDI mode of operation. These specifications are not guaranteed for area mode of operation.
- Line Rate: 10 kHz
- Nominal Gain setting
- Light Source: Broadband Quartz Halogen, 3250k, with 700 nm IR cutoff filter installed
- All Max specifications are valid over a 0-50°C temperature range
- All Typ specifications are measured at 25°C.
- All values are referenced at 8-bit
- 1. Maximum using highest Camera Link mode and maximum line rate

2. Measured at the front plate.

able 5: E5-02-04440 Cumera renormance specifications			
Feature / Specification	Units		
Sensor Features			
Imager Format		Bidirectional TDI	
Resolution	pixels	4096	
Pixel Fill Factor	%	90	
Pixel Size	μm	14 x 14	
Output Format (# of Camera Link taps)		4 or 8	
Stage Selection		16, 8	
Anti-blooming		100x	
CCD Shift Direction Change	seconds	0.2	
Optical Interface	Units		
Back Focal Distance			
F Mount	mm		
M42x1 Mount	mm		
M72 Mount	mm	6.56±0.25	

Table 5: ES-82-04k40 Camera Performance Specifications

Sensor Alignment				
(anglied to sides of camera)				
x	mm	±0.05		
у	mm	±0.05		
Z	mm	±0.25		
θz	0	±0.2		
Lens Mount Hole		M72x0.75		
Mechanical Interface	Units			
Camera Size	mm lxhxw	80 x 150 x 65		
Mass	g	<800		
Connectors				
power connector		6 pin male Hiro	se	
data connector		MDR26 female		
Electrical Interface	Units			
Input Voltage	Volts	$+12 \text{ to } +15 \pm 5\%$		
Power Dissipation ¹	W	19		
Operating Temperature ²	°C	0 to 50		
Bit Width	Bits	8 or 12 bit user selectable		
Output Data		Medium or Full Camera Link		
Configuration				
Operating	Units			
Minimum Line Pate	<u> </u>	3.5		
Maximum Line Rate	kHz	55		
Waxiniuni Line Rate	KIIZ	55		
Throughput	Mpix/ sec	320		
Gain	dB	-10 to +10		
Performance	Unite	Minimum	Typical	Maximum
renomunce	Dillis	Minimoni	rypical	Maximoni
Dynamic Range	Ratio	212	1100	
-10 d B galli		312	257	
10 dB gain		100 56	110	
	DN	50	117	
Kandom Noise	DN rms		0.22	0.8
-10 d B galli			0.22	0.8
+10 dB gain			0.7	1.5
SEE	nJ/cm^2		2.1	т. <i>Ј</i>
-10 dB gain			3.28	
0 dB gain			1.04	
10 10			0.32	

Performance	Units	Minimum	Typical	Maximum
NEE -10 dB gain 0 dB gain +10 dB gain	pJ/ cm ²		2.8 2.8 2.8	
Analog Broadband Responsivity -10 dB gain 0 dB gain +10 dB gain	DN/ nJ/ cm ² @700nm	 234 	78 246 780	 260
FPN with correction 0 dB gain FPN w/ o correction -10 dB gain 0 dB gain +10 dB gain	DN p-p		.5	2 3 3 9
PRNU with correction 0 dB gain w/ o correction -10 dB gain 0 dB gain +10 dB gain	DN p-p		3.2 7 255	5.5 22 22 25
Amplitude	DN	3	200	6

- TDI mode of operation. These specifications are not guaranteed for area mode of operation.
- Line Rate: 10 kHz
- Nominal Gain setting
- Light Source: Broadband Quartz Halogen, 3250k, with 700 nm IR cutoff filter installed
- All Max specifications are valid over a 0-50°C temperature range
- All Typ specifications are measured at 25°C.
- All values are referenced at 8-bit
- 1. Maximum using highest Camera Link mode and maximum line rate
- 2. Measured at the front plate.

Feature / Specification	Units	
Sensor Features		
Imager Format		Bidirectional TDI
Resolution	pixels	4096
Pixel Fill Factor	%	90
Pixel Size	μm	14 x 14
Output Format (# of Camera Link taps)		4 or 8
Stage Selection		16, 8
Anti-blooming		100x
CCD Shift Direction Change	seconds	0.2
Optical Interface	Units	
Back Focal Distance	mm	6.56±0.25 (die to front plate surface)
F Mount	mm	
M42x1 Mount	mm	
M72 Mount	mm	
Sensor Alignment (aligned to sides of camera)		
х	mm	± 0.05
У	mm	±0.05
z	mm	±0.25
θz	0	±0.2
Lens Mount Hole		M /2x0.75
Mechanical Interface	Units	
Camera Size	mm lxhxw	80 x 150 x 65
Mass	g	<800
Connectors		
power connector		6 pin male Hirose
data connector		MDR26 female
Electrical Interface	Units	
Input Voltage	Volts	+12 to +15 ±5%
Power Dissipation ¹	W	19
Operating Temperature ²	°C	0 to 50
Bit Width	Bits	8 or 12 bit user selectable
Output Data Configuration		Medium or Full Camera Link

Table 6: ES-82-04k80 Camera Performance Specifications

Operating Ranges	Units			
Minimum Line Rate	kHz	3.5		
Maximum Line Rate	kHz	34		
Throughput	Mpix/ sec	320		
Gain	dB	-10 to +10		
Performance	Units	Minimum	Typical	Maximum
Dynamic Range -10 dB gain 0 dB gain +10 dB gain	Ratio	312 166 56	1190 357 119	
Random Noise -10 dB gain 0 dB gain +10 dB gain	DN rms		0.22 0.7 2.1	0.8 1.5 4.5
SEE -10 dB gain 0 dB gain +10 dB gain	nJ/ cm ²		3.28 1.04 0.32	
NEE -10 dB gain 0 dB gain +10 dB gain	pJ/ cm ²		2.8 2.8 2.8	
Analog Broadband Responsivity -10 dB gain 0 dB gain +10 dB gain	DN/ nJ/ cm ² @700nm	 234	78 246 780	 260
FPN with correction 0 dB gain FPN w/ o correction -10 dB gain 0 dB gain +10 dB gain	DN p-p		.5 	2 3 3 9
PRNU with correction 0 dB gain w/ o correction -10 dB gain 0 dB gain +10 dB gain	DN p-p		3.2 7	5.5 22 22 25
Saturation Output Amplitude	DN		255	

Performance	Units	Minimum	Typical	Maximum
DC Offset	DN	3	5	6

- TDI mode of operation. These specifications are not guaranteed for area mode of operation.
- Line Rate: 10 kHz
- Nominal Gain setting
- Light Source: Broadband Quartz Halogen, 3250k, with 700 nm IR cutoff filter installed
- All Max specifications are valid over a 0-50°C temperature range
- All Typ specifications are measured at 25°C.
- All values are referenced at 8-bit
- 1. Maximum using highest Camera Link mode and maximum line rate
- 2. Measured at the front plate.

1.3 Image Sensor

The camera uses our newest bidirectional TDI sensors. The camera can be configured to read out in either Forward or Reverse CCD shift direction. The direction is controlled by the software command **scd**.

Figure 1: Sensor Block Diagrams

8 Tap Sensor Block Diagram, ES-80-04k40

16 Tap Sensor Block Diagram, ES-82-04k40

1.4 Responsivity

Figure 2: Piranha ES Analog Responsivity

22

2

Camera Hardware Interface

2.1 Installation Overview

When installing your camera, you should take these steps:

- 1. Power down all equipment.
- 2. Follow the manufacturer's instructions to install the frame grabber (if applicable). Be sure to observe all static precautions.
- 3. Install any necessary imaging software.
- 4. Before connecting power to the camera, test all power supplies. Ensure that all the correct voltages are present at the camera end of the power cable. Power supplies must meet the requirements defined in section 2.2.2 Power Connector.
- 5. Inspect all cables and connectors prior to installation. Do not use damaged cables or connectors or the camera may be damaged.
- 6. Connect Camera Link and power cables.
- 7. After connecting cables, apply power to the camera.
- 8. Check the diagnostic LED. See 2.2.1 LED Status Indicator for an LED description.

You must also set up the other components of your system, including light sources, camera mounts, host computers, optics, encoders, and so on.

2.2 Input/Output Connectors and LED

The camera uses:

- A diagnostic LED for monitoring the camera. See LED Status Indicator in section 2.2.1 LED Status Indicator for details.
- High-density 26-pin MDR26 connectors for Camera Link control signals, data signals, and serial communications. Refer to section 2.2.3 Camera Link Data Connector for details.

This installation overview assumes you have not installed any system components yet. • One 6-pin Hirose connector for power. Refer to section 2.2.2 Power Connector for details.

Figure 3: Piranha ES-8x Input and Output Connectors

WARNING: It is extremely important that you apply the appropriate voltages to your camera. Incorrect voltages will damage the camera. See 2.2.2 Power Connector for more details.

2.2.1 LED Status Indicator

The camera is equipped with a red/ green LED used to display the operational status of the camera. The table below summarizes the operating states of the camera and the corresponding LED states.

When more than one condition is active, the LED indicates the condition with the highest priority. Error and warning states are accompanied by corresponding messages further describing the current camera status.

Table 2: Diagn	Table 5: Diagnostic LeD					
Priority	Color of Status LED	Meaning				
1	Flashing Red	Fatal Error. Camera temperature is too high and camera thermal shutdown has occurred or a power failure has been detected.				
2	Solid Red	Warning. Loss of functionality.				
3	Flashing Green	Camera initialization or executing a long command (e.g., flat field correction commands ccp or ccf)				
4	Solid Green	Camera is operational and functioning correctly.				

Table 5: Diganostic LED

2.2.2 Power Connector

Figure 4: Hirose 6-pin Circular Male—Power Connector

Hirose 6-pin Circular Male	Table 6: Hirose Pin Description				
	Pin	Description	Pin	Description	
2 5	1	Min +12 to Max +15V	4	GND	
Mating Part: HIROSE HR10A-7P-6S	2	Min +12 to Max +15V	5	GND	
	3	Min +12 to Max +15V	6	GND	

The camera requires a single voltage input (+12 to +15V). The camera meets all performance specifications using standard switching power supplies, although well-regulated linear supplies provide optimum performance.

WARNING: When setting up the camera's power supplies follow these guidelines:

- Apply the appropriate voltages
- Protect the camera with a **fast-blow fuse** between power supply and camera.
- Do not use the shield on a multi-conductor cable for ground.
- Keep leads as short as possible to reduce voltage drop.
- Use high-quality **linear** supplies to minimize noise.
- Use an isolated type power supply to prevent LVDS common mode range violation.

Note: Camera performance specifications are not guaranteed if your power supply does not meet these requirements.

2.2.3 Camera Link Data Connector

Figure 5: Camera Link MDR26 Connector

Mating Part 31/33431 series Cable: 31/14/26/521.BXXX-01.C**

A note concerning the length of the Camera Link cables

The length of the cables over which data can be transmitted without loss depends on the data rate and on the quality of the cables.

The camera was tested using a recognized brand of cable with a length of 5 meters. Data transmission is not guaranteed if you are using a cable greater than 5 meters in length.

Camera Link Configuration

The Camera Link interface is implemented as a Base, Medium, or Full Configuration in the Piranha ES cameras depending on the model number and follows the standard Camera Link configuration.

Table 7: Camera Control Configuration		
Signal	Configuration	
CC1	EXSYNC	
CC2	Spare	
CC3	Forward	
CC4	Spare	

c

See Appendix B for the complete Camera Link configuration table. Also refer to the Camera Link Roadmap, available from the Knowledge Center on our website here, for more information.

Input Signals, Camera Link

The camera accepts control inputs through the Camera Link MDR26F connector.

The camera ships in internal sync, internal programmed integration (exposure mode 7) TDI Mode.

EXSYNC (Triggers Frame Readout)

Frame rate can be set internally using the serial interface. The external control signal EXSYNC is optional and enabled through the serial interface. This camera uses the falling edge of EXSYNC to trigger pixel readout. Section 3.3.5 Exposure Mode and Line/ Frame Rate for details on how to set frame times, exposure times, and camera modes.

Direction Control

......

You control the CCD shift direction through the serial interface. With the software command, scd, you determine whether the direction control is set via software control or via the Camera Link control signal on CC3. Refer to section 3.3.3 Setting the Camera's CCD Shift Direction for details.

Output Signals, Camera Link

These signals indicate when data is valid, allowing you to clock the data from the camera to your acquisition system. These signals are part of the Camera Link configuration and you should refer to the Camera Link Roadmap, available from the Knowledge Center on our website, here, for the standard location of these signals.

Clocking Signal	Indicates
LVAL (high)	Outputting valid line
DVAL (high)	Valid data
STROBE (rising edge)	Valid data
FVAL (high)	Outputting valid frame

The camera internally digitizes 12 bits and outputs 8 MSB or all 12 bits depending on the camera's Camera Link operating mode. Refer to 3.4.2 Setting the Camera Link Mode for details.

IMPORTANT:

This camera's data should be sampled on the rising edge of STROBE.

2.3 Camera Link Video Timing

The Piranha ES-xx camera has two different readout times. The first readout time is the CCD Readout where the camera pixels are read out into the camera's line store. The second readout is the line store readout where the line store pixels are read out to your acquisition system. The camera's minimum readout time is dependent on which of these two readout times are greater where the greater readout time will be the camera's minimum readout time.

The figure below illustrates camera timing when the CCD readout is greater than the line store readout.

Figure 6: Piranha ES-xx TDI Mode Timing (CCD Limited)

The following figure illustrates camera timing when the line store readout is greater than the CCD readout.

Table 8: Piranha ES-xx Timing Values

Symbol	Time
HCCD Frequency	40 MHz (ES-80-04k40, ES-80-08K80, ES-82-04k40, ES-82-04k80)
	20 MHz (ES-80-08K40)
HCCD Pixels/Tap	512 (ES-80) and 256 (ES-82)

Symbol	Time
Frame Overhead	4 HCCD Frequency
VTransTime	33 HCCD Frequency
HCCD Read Overhead	ES 4k: and 8k: 34 clocks
HTime	HTime = $\frac{\text{HCCD Read Overhead} + \text{HCCD Pixels/Tap}}{\text{HCCD Frequency}}$
CCD Readout Time	CCDReadoutTime = FrameOverhead + HTime + VTransTime x Vertical Binning Factor
HCCD Taps	16 (ES-80-08k40, ES-80-08K80, ES-82-04k40, ES-82-04k80) or 8 (ES-80-04k40)
Line store Start Overhead	15 clocks
Line store End Overhead	23 clocks
Line store Readout Time	$\left(\frac{\text{HCCD Pixels/Tap x HCCD Taps}}{\text{# Camera Link Taps x Horizontal Binning Factor}}\right) + \text{Linestore Start Overhead} + \text{Linestore End Overhead} x \frac{\text{# Camera Link Taps}}{\text{Throughput (MHz)}}$
Horizontal Binning Factor	Value set with sbh command
Vertical Binning Factor	Value set with sbv command
Vertical Readout Rows	Stage selection set with stg command
# of Camera Link Taps	Value set with the clm command
Throughput	Value set with sot command

Figure 8: Piranha ES-xs Area Mode Timing (CCD Limited)

Software Interface: How to Control the Camera

All Piranha ES-xx camera features can be controlled through the serial interface. The camera can also be used without the serial interface after it has been set up correctly. Functions available include:

- Controlling basic camera functions such as gain and sync signal source
- Flat field correction
- Mirroring and readout control
- Generating a test pattern for debugging

The serial interface uses a simple ASCII-based protocol and the PC does not require any custom software.

Note: This command set has changes from previous camera models. Do not assume that the Piranha ES commands perform similarly to older cameras.

Serial Protocol Defaults

- 8 data bits
- 1 stop bit
- No parity
- No flow control
- 9.6kbps
- Camera does not echo characters

This chapter outlines the more commonly used commands. See section A2 Commands for a list of all available commands.

Command Format

When entering commands, remember that:

- A carriage return <CR> ends each command.
- A space or multiple space characters separate parameters. Tabs or commas are invalid parameter separators.
- Upper and lowercase characters are accepted
- The backspace key is supported
- The camera will answer each command with either <CR><LF> "OK >" or <CR><LF>"Error xx: Error Message >" or "Warning xx: Warning Message >". The ">" is used exclusively as the last character sent by the camera.

The following parameter conventions are used in the manual:

- *i* = integer value
- *f* = real number
- m =member of a set
- $\boldsymbol{s} = \text{string}$
- t = tap id
- **x** = pixel column number
- **y** = pixel row number

Example: to return the current camera settings

gcp <CR>

Setting Baud Rate

Purpose:	Sets the speed in bps of the camera serial communication port.
Syntax:	sbr m
Syntax Elements:	m
	Baud rate. Available baud rates are: 9600 (Default), 19200 , 57600 , and 115200 .
Notes:	• Power-on rate is always 9600 baud.
	• The rc (reset camera) command will <i>not</i> reset the camera to the power-on baud rate and will reboot using the last used baud rate.
Example:	sbr 57600

Camera Help Screen

For quick help, the camera can return all available commands and parameters through the serial interface.

There are two different help screens available. One lists all of the available commands to configure camera operation. The other help screen lists all of the commands available for retrieving camera parameters (these are called "get" commands).

To view the help screen listing all of the camera configuration commands, use the command:

Syntax:	
---------	--

To view a help screen listing all of the "get" commands, use the command:

h

Syntax:	gh
Notes:	For more information on the camera's "get" commands, refer to
	section 3.7.6 Returning Camera Settings.

The camera configuration command help screen lists all commands available. Parameter ranges displayed are the extreme ranges available. Depending on the current camera operating conditions, you may not be able to obtain these values. If this occurs, values are clipped and the camera returns a warning message.

Some commands may not be available in your current operating mode. The help screen displays NA in this case.

Example Help Screen for ES-80-08k80 TDI Mode Operation

cag)calibrate analog gain	ti	0-16:1024-4055	i
cao	calibrate analog offset	ti	0-16:0-255	
ccf	correction calibrate fpn			
ccg	calibrate camera gain	iti	1-4:0-16:1024-	4055
ccp	correction calibrate prnu			
clm	camera link mode	m	15/16/21/	Parameters
cpa	calculate prnu algorithm	ii	1-4:1024-4055	i = infeger
css	correction set sample	m	256/512/1024/	t = floating point number
dpc	display pixel coeffs	(xx)	1-8191:2-8192	m = member ot a set
els	end of line sequence	i	0-1	s = string
epc	enable pixel coefficients	ii	0-1:0-1	t = tap
gcm	get camera model			x = pixel column number
gcp	get camera parameters			y = pixel row number
gcs	get camera serial			
gcv	get camera version			
get	get values	s		
get	fpn coeff	x	1-8192	
gh	get help			Parameter Range
gl	get line	xx	1-8191:2-8192	- = ranae
gla	get line average	xx	1-8191:2-8192	: = multiple parameter separator
gpc	get prnu coeff	x	1-8192	/ = member of a set separator
gsf	get signal frequency	i	0-0	NA = command not available in
gss	get sensor serial			current operating mode
h	help			corrent operating mode
lpc	load pixel coefficients	i	0-4	
rc	reset camera			
rfs	restore factory settings			
roi	region of interest	хуху	1-8192:1-8192:	1-1:1-1
\mathbf{rpc}	reset pixel coeffs			
rus	restore user settings			
sag	set analog gain	tf	0-16:-10.0-+10	.0
sao	set analog offset	ti	0-16:0-255	
sbh	set binning horizontal	m	1/2/4/8/	
sbr	set baud rate	m	9600/19200/576	00/115200/
sbv	set binning vertical	i	1-8	
scd	set ccd direction	i	0-2	
sdo	set digital offset	ti	0-16:0-511	
sem	set exposure mode	m	3/7/	
sfc	set fpn coeff	xi	1-8192:0-511	
sfr	set fpn range	xxi	1-8192:1-8192:	0-2048
slt	set lower threshold	i	0-4095	

Command

smm	set mirroring mode	i	0-1
sot	set output throughput	m	320
spc	set prnu coeff	xi	1-8192:0-28671
spr	set prnu range	xxi	1-8192:1-8192:0-28671
ssb	set subtract background	ti	0-16:0-4095
ssf	set sync frequency	f	3499.87-68610.6 [Hz]
ssg	set system gain	ti	0-16:0-65535
stg	set stage	m	16, 32
spt	set pretrigger	i	0-16
sut	set upper threshold	i	0-4095
svm	set video mode	i	0-3
tdi	set TDI or area mode	i	0-1
ugr	update gain reference		
vt	verify temperature		
vv	verify voltage		
wfc	write FPN coefficients	i	1-4
wpc	write PRNU coefficients	i	1-4
wus	write user settings		

Example Help Screen for ES-80-08k80 Area Mode Operation

cao	calibrate analog offset	ti	0-16:0-255
ccf	correction calibrate fpn		NA
ccg	calibrate camera gain	iti	0-1:0-16:1024-4055
ccp	correction calibrate prnu		NA
clm	camera link mode	m	5/16/21/
cpa	calculate prnu algorithm	ii	NA
css	correction set sample	m	NA
dpc	display pixel coeffs	xx	NA
els	end of line sequence	i	0-1
epc	enable pixel coefficients	ii	NA
gcm	get camera model		
gcp	get camera parameters		
gcs	get camera serial		
gcv	get camera version		
get	get values	S	
gfc	get fpn coeff	x	NA
gh	get help		
gl	get line	xx	NA
gla	get line average	xx	NA
gpc	get prnu coeff	x	NA
gsf	get signal frequency	i	0-0
gss	get sensor serial		
h	help		
lpc	load pixel coefficients		NA
rc	reset camera		
rfs	restore factory settings		
roi	region of interest	хуху	1-8192:1-96:1-8192:1-96
\mathbf{rpc}	reset pixel coeffs		NA
rus	restore user settings		
sag	set analog gain	tf	0-16:-10.0-+10.0
sao	set analog offset	ti	0-16:0-255
sbh	set binning horizontal	m	1/2/4/8/
sbr	set baud rate	m	9600/19200/57600/115200/
sbv	set binning vertical	i	1-8
scd	set_ccd_direction	i	0-1
sdo	set digital offset	ti	0-16:0-511
sem	set exposure mode	m	2/3/4/5/6/7/8/
sfc	set fpn coeff	xi	NA
slt	set lower threshold	i	0-4095
smm	set mirroring mode	i	0-1
sot	set output throughput	m	320

spc	set prnu coeff	xi	NA
ssb	set subtract background	ti	0-4:0-4095
ssf	set sync frequency	f	1-6169.03 [Hz]
ssg	set system gain	ti	0-4:0-65535
stg	set stage	m	16, 32
spt	set pretrigger	i	0-16
sut	set upper threshold	i	0-4095
svm	set video mode	i	0-3
tdi	set TDI or area mode	i	0-1
ugr	update gain reference		
vt	verify temperature		
vv	verify voltage		
wfc	write FPN coefficients		NA
wpc	write PRNU coefficients		NA
wils	write user settings		

3.1 First Power Up Camera Settings

When the camera is powered up for the first time, it operates using the following factory settings:

- TDI mode
- Left to right pixel readout
- Forward CCD shift direction
- Maximum integration stages
- No binning
- Camera Link Mode: 21 (8 bit, 8 taps, 40MHz strobe rate)
- Exposure mode 7 (internal sync, maximum exposure time)
- 10 kHz line rate
- 320 throughput
- Factory calibrated analog gain and offset
- Factory calibrated FPN and PRNU coefficients using the following process:

1. **ssf 10000** (line rate of 10000Hz)

- 2. ccg 2 0 3280 (analog gain calibrated to an average pixel value of 3280)
- 3. ccf (fpn calibration)
- 4. ccp (prnu calibration)
- 5. ssg 0 0

3.2 Command Categories

The following diagram categorizes and lists all of the camera's commands. This chapter is organized by command category.

Figure 10: Command Categories

Sensor Output Format

TDI or Area Mode (tdi) Number of Integration Stages (stg) CCD Shift Direction (scd) Binning (sbv and sbh) Set Exposure Mode (sem) Set Frame/Line Rate (ssf)

Camera Output Format

Camera Link Mode (clm) Camera Throughput (sot) Pixel Readout Direction (smm) Generate a Test Pattern (svm) Set Upper Threshold (sut) Set Lower Threshold (slt) End of Line Sequence (els) Set Pretrigger (spt)

Data Processing

Region of Interest (roi) Set Analog Gain (sag or ccg) Update Gain Reference (ugr) Set Analog Offset (sao) Calibrate Analog Offset (cao) Correction Set Sample (css) Calculate FPN (ccf) Set Digital Offset (sdo) Calculate PRNU (ccp) Calculate PRNU Algorithm (cpa) Enable Pixel Coefficients (epc) Set PRNU Coefficient (spc) Set FPN Coefficient (sfc) Set PRNU Range (spr) Set FPM Range (sfr) Set Background Subtract (ssb) Set Digital System Gain (ssg)

Saving and Restoring Settings

Save Current User Settings (wus) Restore Previously Saved User Settings (rus) Save Current PRNU Coefficients (wpc) Save Current FPN Coefficients (wfc) Load Pixel Coefficients (lpc) Reset Pixel Coefficients (rpc) Restore Factory Settings (rfs) Reboot Camera (rc)

Diagnostics

Get Line of Data (gl) Get an Average of Multiple Lines (gla) Display Pixel Coefficients (dpc) Measure Internal Temperature (vt) Measure Input Voltage (vv) Get Commands

Other

Help (h) Set Baud Rate (sbr)

3.3 Sensor Output Format

3.3.1 Selecting TDI or Area Mode Operation

The Piranha ES-xx cameras have the ability to operate in both TDI and Area Mode.

In Area Mode, the camera operates as an area array camera using a two dimensional array of pixels. Area Mode is useful for aligning the camera to your web direction or when you need a rectangular 2D image and the lighting supports a full frame imager.

In TDI Mode, the camera operates as a TDI high sensitivity line scan camera and combines multiple exposures of an object into one high-resolution result.

The camera stores user settings for Area Mode and TDI Mode separately, allowing you to switch between Area and TDI mode without losing settings specific to each mode. See section 3.6 Saving and Restoring Settings for an explanation on how user settings are stored and retrieved.

Purpose:Selects the camera's operating mode. Area Mode is useful for aligning and focusing your camera.Syntax:tdi iSyntax Elements:i0Area mode1TDI modeNotes:• Remember to save your user settings before changing mode Sending the tdi command always restores your last saved settings for the mode of operation requested even if you are already operating in the requested mode. See section 3.6 Sar and Restoring Settings for an explanation on how user setting are stored and retrieved for each mode.Exampletdi 1	goululleeu	
Syntax: tdi i Syntax Elements: i 0 Area mode 1 TDI mode Notes: • Remember to save your user settings before changing mode Sending the tdi command always restores your last saved settings for the mode of operation requested even if you are already operating in the requested mode. See section 3.6 Sar and Restoring Settings for an explanation on how user setting are stored and retrieved for each mode. Example tdi 1	Purpose:	Selects the camera's operating mode. Area Mode is useful for aligning and focusing your camera.
Syntax Elements: i 0 Area mode 1 TDI mode Notes: • Remember to save your user settings before changing mode Sending the tdi command always restores your last saved settings for the mode of operation requested even if you are already operating in the requested mode. See section 3.6 Sar and Restoring Settings for an explanation on how user setting are stored and retrieved for each mode. Example tdi 1	Syntax:	tdi <i>i</i>
 O Area mode TDI mode TDI mode Remember to save your user settings before changing mode Sending the tdi command always restores your last saved settings for the mode of operation requested even if you are already operating in the requested mode. See section 3.6 Sar and Restoring Settings for an explanation on how user setting are stored and retrieved for each mode. Flat field correction is not available in Area Mode 	Syntax Elements:	i
1 TDI mode Notes: • Remember to save your user settings before changing mode Sending the tdi command always restores your last saved settings for the mode of operation requested even if you are already operating in the requested mode. See section 3.6 Sar and Restoring Settings for an explanation on how user setting are stored and retrieved for each mode. • Flat field correction is not available in Area Mode Example tdi 1		0 Area mode
Notes: • Remember to save your user settings before changing model Sending the tdi command always restores your last saved settings for the mode of operation requested even if you are already operating in the requested mode. See section 3.6 Sar and Restoring Settings for an explanation on how user setting are stored and retrieved for each mode. • Flat field correction is not available in Area Mode tdi 1		1 TDI mode
 Flat field correction is not available in Area Mode Example tdi 1 	Notes:	• Remember to save your user settings before changing mode. Sending the tdi command always restores your last saved user settings for the mode of operation requested even if you are already operating in the requested mode. See section 3.6 Saving and Restoring Settings for an explanation on how user settings are stored and retrieved for each mode.
Example tdi 1		• Flat field correction is not available in Area Mode
	Example	tdi 1

NOTE: Sensor cosmetic specifications for Area Mode of operation are neither tested nor guaranteed

3.3.2 Selecting the Number of CCD Integration Stages

Purpose:	In TDI Mode, this command adjusts the sensitivity level in your camera by setting the number of CCD integration stages. In Area Mode, the vertical height of the image sensor is controlled by the number of stages.
Syntax:	stg m
Syntax Elements:	m
	Number of stages to use. Available values are 8 and 16 (ES-82) or 16 and 32 (ES-80). Area mode is restricted to the maximum number of stages.
Example	stg 32

3.3.3 Setting the Camera's CCD Shift Direction

Purpose:	When in TDI Mode, selects the forward or reverse CCD shift direction or external direction control. This accommodates object direction change on a web and allows you to mount the camera "upside down".In Area Mode, selects the vertical readout direction. This allows you to mirror the image vertically or mount the camera "upside down".
Syntax:	scd i
Syntax Elements:	i
Notes:	 Readout direction. Allowable values are: 0 = Forward CCD shift direction. 1 = Reverse CCD shift direction. 2 = Externally controlled direction control via Camera Link control CC3 (CC3=1 forward, CC3=0 reverse). Available only in TDI Mode. The following user settings are stored separately for forward and reverse direction; analog gain, analog offset, digital gain, digital offset, background subtract, and pixel coefficients. These settings are automatically loaded when you switch direction. All other settings are common to both directions. See the following figures for an illustration of CCD shift direction in relation to object movement. Note that some commands that require longer processing time, like ccg, delay implementation of an external direction change.
Example	scd 1

Figure 11: Object Movement and Camera Direction Example using 8k Model and an Inverting Lens
3.3.4 Increasing Sensitivity with Binning

Binning increases the camera's light sensitivity by decreasing horizontal and/ or vertical resolution-the charge collected by adjacent pixels is added together. Binning is also useful for increasing frame rate (vertical binning) or increasing the pixel pitch. For example, if you set your vertical binning to 2 and your horizontal binning to 2, your pixel size increases from 7µm x 7µm (no binning) to 14µm x 14µm (2x2 binning).

Figure 12: 2x2 Binning in Area Mode

4 adjacent pixels

Charge binned: 1 pixel output

Binned image

Setting Horizontal Binning

Purpose:	Increases the horizontal pixel pitch and light sensitivity by decreasing horizontal resolution. The amount of data being sent from the camera is reduced by the horizontal binning factor. Different frame grabber files are needed for different horizontal binning factors.
Syntax:	sbh m
Syntax Elements:	m
	Horizontal binning value. Available values are 1 (factory setting, no binning) 2 , 4 , or 8 (ES-80 model only)
Notes:	• If you are using horizontal binning, the min, max, and mean statistics generated by the gl or gla command are for every second pixel (or valid data) only (e.g., if sbh 2, every second pixel).
	• For optimal flat field correction, you should rerun the ccp and ccf commands after changing binning values.
	• Changing binning values does not automatically alter gain, frame rate generation, or other functions of the camera.
	• Pixel numbering remains unchanged for the roi, gl, gla, dpc, gfc, sfc, gpc, and spc commands. Refer to Figure 13 for an explanation of pixel numbering and pixel start and stop values when using a region of interest.
Example:	sbh 2

	roi 4 1 9 1									
CCD Pixel Numbering	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8	Pixel 9	Pixel 10
Pixel data using sbh 2	Di T	at	D	at 2	[Data 3	D	at 4	E	Dat 5

Figure 13: Binning Start and End Values when using a Region of Interest

In this example a region of interest is set to include pixels 4 to 9 and horizontal binning is set to 2. Because pixel 3 is now included in the same data group as pixel 4, the region of interest will now include the data from pixel 3. Also, pixel 10 is included in the same data group as pixel 9, so pixel 10 is now part of the region of interest. To see how the region of interest start and stop values have been rounded, use the command **get roi**.

Setting Vertical Binning

Syntax:	Increases the vertical pixel pitch and light sensitivity by decreasing vertical resolution. Vertical binning is also useful for increasing frame rate in Area Mode. Vertical binning in TDI Mode should only be used if your web's shaft encoder provides a reduced ratio of pulses to match web speed.
Syntax:	sbv i
Syntax Elements:	i
Notes:	 Vertical binning value. Available values are 1 (factory setting, no binning) to 4 (ES-82 model) or 1 to 8 (ES-80 model). You will have to recalibrate the camera after changing binning values. Increasing the vertical binning, decreases the maximum allowable line rate. You may have to enter a new camera frame rate after changing vertical binning values if the current value becomes invalid. The camera sends a warning message
	in this situation.
Example:	sbv 2

3.3.5 Exposure Mode and Line/Frame Rate

How to Set Exposure Mode and Line/Frame Rate

You have a choice of operating the camera in one of two exposure modes. Depending on your mode of operation, the camera's line/ frame rate (synchronization) can be generated internally through the software command **ssf** or set externally with an EXSYNC signal (CC1). When operating in TDI Mode, it is important that the line rate used matches the web speed. Failure to match the web speed will result in smearing. Refer to the application note, "Line Scan/ TDI Line Scan Calculation Worksheet" located on the Knowledge Center page of our Web site,

www.teledynedalsa.com/mv/knowledge/appnotes.aspx, if you require further explanation on how to synchronize your web speed.

To select how you want the camera's line/frame rate to be generated:

- 1. You must first set the camera's exposure mode using the **sem** command. Refer to section Setting the Exposure Mode below for details.
- 2. Next, if using mode 7, use the command **ssf** to set the line/ frame rate. Refer to section
- 3. Setting Frame Rate for details.

Setting the Exposure Mode

Purpose:	Sets the camera's exposure mode allowing you to control your sync and line/ frame rate generation.				
Syntax:	sem m				
Syntax Elements:	m				
	Exposure mode to use. Factory setting is 7.				
Notes:	• Refer to Table 10: Piranha ES Exposure Modes for a quick list of available modes or to the following sections for a more detailed explanation including timing diagrams.				
	• To obtain the current value of the exposure mode, use the command gcp or get sem.				
	• When setting the camera to external signal modes, EXSYNC must be supplied.				
	• Refer to section 3.5.1 for more information on how to operate your camera in TDI or Area Mode.				
	• Exposure Modes are saved separately for TDI Mode and Area Mode. Refer to section 3.6 Saving and Restoring Settings for more information on how to save camera settings.				
Related Commands:	ssf				
Example:	sem 3				

Table 10: Piranha ES Exposure Modes

Programmable Frame Rate Programmable Exposure Time

Mode	SYNC	↓ ↓	↓ ↓	Description
3	External	No	No	Maximum exposure time with no charge reset.
7	Internal	Yes	No	Internal sync, maximum exposure time with no charge reset.

Exposure Modes in Detail

Frame rate is set by the period of the external trigger pulses. EXSYNC pulses faster than the read out time are ignored. The falling edge of EXSYNC marks the start of readout.

Note: In TDI mode the frame period equals the line period.

Figure 14: Mode 3 Timing

Mode 3

Mode 7: Internal Frame Rate, Maximum Exposure Time

In this mode, the frame rate is set internally using the **ssf** command with a maximum exposure time.

Note: In TDI mode the frame period equals the line period.

Figure 15: Mode 7 Camera Timing

Setting Frame Rate

Purpose:	Sets the camera's frame rate in Hz. Camera must be operating in exposure mode 7.
Syntax:	ssf f
Syntax Elements:	f
	Set the frame rate to a value from: TDI ES-80-08k40: 3499.56-34305.3 ES-80-08k80: 3499.87-68610.6 ES-80-04k40: 3499.87-68610.6 ES-82-04k40: 3499.87-55020.6 ES-82-04k80: 3499.87-11111.0 Area ES-80-08k40: 1-3084.5 ES-80-08k80: 1-6169.0 ES-80-04k40: 1-6169.0 ES-82-04k40: 1-1084.7 ES-82-04k80: 1-2080.7
Notes:	 Value rounded up/ down as required. The maximum line/ frame rate is affected by horizontal and vertical binning factors, throughput setting, Camera Link mode, and number of CCD integration stages. If you enter an invalid frame rate frequency the value, the camera clips the frame rate to be within the current operating range and a warning message is returned.
	 If you enter a frame rate frequency out of the range displayed on the help screen, an error message is returned and the frame rate remains unchanged. The camera does not automatically change the frame rate after you change binning or stage selection values. You may have to adjust your frame rate to avoid ignored syncs. To return the camera's frame rate, use the command gcp or
	get ssf.
Related Commands:	sem
Example:	ssf 10000

3.4 Camera Output Format

3.4.1 How to Configure Camera Output

The Piranha ES cameras offer great flexibility when configuring your camera output. Using the **clm** command, you determine the camera's Camera Link configuration, number of output taps, and bit depth. Using the **sot** command, you determine the camera's output rate. These two commands work together to determine your final camera output configuration.

You can further configure your readout using the smm command to select the camera's pixel readout direction.

The following tables summarize the possible camera configurations for each of the ES-xx camera models. Refer to the figure below for a description on how to select your camera output.

Figure 16: How to Read the Camera Link Tables

Note: In the following tables, a CCD tap refers to the actual physical taps on the sensor, while the Camera Link taps refer to the way the data is configured for output over Camera Link. For a diagram illustrating sensor taps, see section 1.3 Image Sensor.

Camera Link	Mode Configuration	n (Controlled by clm comma	Readout Direction (Controlled by	Pixel Rate	
Command	Camera Link Configuration	Camera Link Taps	, Bit Depth	smm command)	Configuration (Controlled by sot command)
clm 15	Medium	4 Camera Link taps where: 1 = CCD tap 1 + 2 2 = CCD tap 3 + 4 3 = CCD tap 5 + 6 4 = CCD tap 7 + 8	8	<pre>smm 0 = CL tap 1 (1-1024)</pre>	sot 320 = 80 MHz strobe (max rate 68610 Hz) sot 160 = 40 MHz strobe (max line rate 37629 Hz)
clm 16	Medium	4 Camera Link taps where: 1 = CCD tap 1 + 2 2 = CCD tap 3 + 4 3 = CCD tap 5 + 6 4 = CCD tap 7 + 8	12	<pre>smm 0 = CL tap 1 (1-1024) CL tap 2 (1025-2048) CL tap 3 (2049-3072) CL tap 4 (3073-4096) smm 1 = CL tap 1 (4096-3073) CL tap 2 (3072-2049) CL tap 3 (2048-1025) CL tap 4 (1024-1)</pre>	<pre>sot 320 = 80 MHz strobe (max line rate 68610 Hz) sot 160 = 40 MHz strobe (max line rate 37629 Hz)</pre>
clm 21	Full	8 Camera Link taps where: 1 = CCD tap 1 2 = CCD tap 2 3 = CCD tap 3 4 = CCD tap 4 5 = CCD tap 5 6 = CCD tap 6 7 = CCD tap 7 8 = CCD tap 8	8	$smm \ 0 = CL tap 1 (1-512)$ $CL tap 2 (513-1024)$ $CL tap 3 (1025-1536)$ $CL tap 4 (1537-2048)$ $CL tap 5 (2049-2560)$ $CL tap 6 (2561-3072)$ $CL tap 7 (3073-3584)$ $CL tap 8 (3585-4096)$ $smm \ 1 = CL tap 1 (4096-3585)$ $CL tap 2 (3584-3073)$ $CL tap 3 (3072-2561)$ $CL tap 4 (2560-2049)$ $CL tap 5 (2048-1537)$ $CL tap 6 (1536-1025)$ $CL tap 8 (512-1)$	sot 320 = 40 MHz strobe (max line rate 68610 Hz)

Table 11: ES-80-04k40 Configurations

Camera Link Mode Configuration (Controlled by clm command)			Readout Direction (Controlled by	Pixel Rate	
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)
clm 2	Base	2 Camera Link taps	8	<pre>smm 0 = CL tap 1(1-4096) CL tap 2(4097-8192) smm 1 = CL tap 1(8192-4097) CL tap 2(4096-1)</pre>	sot 40 = 20 MHz strobe (max line rate 4836 Hz) sot 80 = 40 MHz strobe (max line rate 9671 Hz)
clm 3	Base	2 Camera Link taps	12	<pre>smm 0 = CL tap 1(1-4096) CL tap 2(4097-8192) smm 1 = CL tap 1(8192-4097) CL tap 2(4096-1)</pre>	<pre>sot 40 = 20 MHz strobe (max line rate 4836 Hz) sot 80 = 40 MHz strobe (max line rate 9671 Hz)</pre>
clm 15	Medium	4 Camera Link taps where: 1 = CCD tap 1+2+3+4 2 = CCD tap 5+6+7+8 3 = CCD tap 9+10+11+12 4 = CCD tap 13+14+15+16	8	<pre>smm 0 = CL tap 1(1-2048) CL tap 2(2049-4096) CL tap 3(4097-6144) CL tap 4(6145-8192) smm 1 = CL tap 1(8192-6145) CL tap 2(6144-4097) CL tap 3(4096-2049) CL tap 4(2048-1)</pre>	<pre>sot 80 = 20 MHz strobe (max line rate 9583Hz) sot 160 = 40 MHz strobe (max line rate 19157Hz)</pre>
clm 16	Medium 4 0 wi 1 = 2 = 3 = 4 =	Camera Link taps here: = CCD tap 1+2+3+4 = CCD tap 5+6+7+8 = CCD tap 9+10+11+12 = CCD tap 13+14+15+16	12	<pre>smm 0 = CL tap 1(1-2048) CL tap 2(2049-4096) CL tap 3(4097-6144) CL tap 4(6145-8192) smm 1 = CL tap 1(8192-6145) CL tap 2(6144-4097) CL tap 3(4096-2049) CL tap 4(2048-1)</pre>	<pre>sot 80 = 20 MHz strobe (max line rate 9583Hz) sot 160 = 40 MHz strobe (max line rate 19157Hz)</pre>

Table 12: ES-80-08k40 Configurations

Camera Link Mode Configuration (Controlled by clm command)			Readout Direction (Controlled by	Pixel Rate	
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)
clm 21	Full 8 (w 1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 =	Camera Link taps here: = CCD tap 1+2 = CCD tap 3+4 = CCD tap 5+6 = CCD tap 7+8 = CCD tap 9+10 = CCD tap 11+12 = CCD tap 13+14 = CCD tap 15+16	8	<pre>smm 0 = CL tap 1(1-1024) CL tap 2(1025-2048) CL tap 3(2049-3072) CL tap 4(3073-4096) CL tap 5(4097-5120) CL tap 6(5121-6144) CL tap 7(6145-7168) CL tap 7(6145-7168) CL tap 8(7169-8192)</pre> smm 1 = CL tap 1(8192-7169) CL tap 2(7168-6145) CL tap 3(6144-5121) CL tap 3(6144-5121) CL tap 5(4096-3073) CL tap 6(3072-2049) CL tap 7(2048-1025) CL tap 8(1024-1)	<pre>sot 160 = 20 MHz strobe (max line rate 18814Hz) sot 320 = 40 MHz strobe (max line rate 34305Hz)</pre>

Table 13: ES-80-08k80 Configurations

Camera Link Mode Configuration (Controlled by clm command)				Readout Direction (Controlled by	Pixel Rate
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)
clm 15	Medium	4 Camera Link taps where: 1 = CCD tap 1+2+3+4 2 = CCD tap 5+6+7+8 3 = CCD tap 9+10+11+12 4 = CCD tap 13+14+15+16	8	<pre>smm 0 = CL tap 1(1-2048) CL tap 2(2049-4096) CL tap 3(4097-6144) CL tap 4(6145-8192) smm 1 = CL tap 1(8192-6145) CL tap 2(6144-4097) CL tap 3(4096-2049) CL tap 4(2048-1)</pre>	sot 320 = 80 MHz strobe (max rate 38314Hz) sot 160 = 40 MHz strobe (max line rate 19166Hz)
clm 16	Medium	4 Camera Link taps where: 1 = CCD tap 1+2+3+4 2 = CCD tap 5+6+7+8 3 = CCD tap 9+10+11+12 4 = CCD tap 13+14+15+16	12	<pre>smm 0 = CL tap 1(1-2048) CL tap 2(2049-4096) CL tap 3(4097-6144) CL tap 4(6145-8192) smm 1 = CL tap 1(8192-6145) CL tap 2(6144-4097) CL tap 3(4096-2049) CL tap 4(2048-1)</pre>	<pre>sot 320 = 80 MHz strobe (max line rate 38314Hz) sot 160 = 40 MHz strobe (max line rate 19166Hz)</pre>

Camera Link	Mode Configuration (C	Controlled by clm command)	Readout Direction (Controlled by	Pixel Rate	
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)
clm 21	Full 8 v 1 2 3 4 5 6 7 8	Camera Link taps where: = CCD tap 1+2 = CCD tap 3+4 = CCD tap 5+6 = CCD tap 7+8 = CCD tap 9+10 = CCD tap 11+12 = CCD tap 13+14 = CCD tap 15+16	8	$smm \ 0 = CL tap 1(1-1024)$ $CL tap 2(1025-2048)$ $CL tap 3(2049-3072)$ $CL tap 4(3073-4096)$ $CL tap 5(4097-5120)$ $CL tap 6(5121-6144)$ $CL tap 7(6145-7168)$ $CL tap 8(7169-8192)$ $smm \ 1 = CL tap 1(8192-7169)$ $CL tap 2(7168-6145)$ $CL tap 3(6144-5121)$ $CL tap 4(5120-4097)$ $CL tap 5(4096-3073)$ $CL tap 6(3072-2049)$ $CL tap 8(1024-1)$	sot 640 = 80 MHz strobe (ES-80-08k80 only) (max line rate 68610Hz) sot 320 = 40 MHz strobe (max line rate 37629Hz)

Table 14: ES-82-04k40 Configurations

Camera Link	Mode Configuration	n (Controlled by clm comma	Readout Direction (Controlled by	Pixel Rate	
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)
clm 15	Medium	4 Camera Link taps where: 1 = CCD tap 1+2+3+4 2 = CCD tap 5+6+7+8 3 = CCD tap 9+10+11+12 4 = CCD tap 13+14+15+16	8	<pre>smm 0 = CL tap 1(1-1024) CL tap 2(1025-2048) CL tap 3(2049-3172) CL tap 4(3173-4096) smm 1 = CL tap 1(4096-3173) CL tap 2(3172-2049) CL tap 3(2048-1025) CL tap 4(1024-1)</pre>	sot 320 = 80 MHz strobe (max rate 55020Hz) sot 160 = 40 MHz strobe (max line rate 37629Hz)
clm 16	Medium 40 wl 1 = 2 = 3 = 4 =	Camera Link taps here: = CCD tap 1+2+3+4 = CCD tap 5+6+7+8 = CCD tap 9+10+11+12 = CCD tap 13+14+15+16	12	<pre>smm 0 = CL tap 1(1-1024) CL tap 2(1025-2048) CL tap 3(2049-3072) CL tap 4(3073-4096) smm 1 = CL tap 1(4096-3073) CL tap 2(3072-2049) CL tap 3(2048-1025) CL tap 4(1024-1)</pre>	<pre>sot 320 = 80 MHz strobe (max line rate 55020Hz) sot 160 = 40 MHz strobe (max line rate 37629Hz)</pre>

Camera Link	Mode Configuratio	n (Controlled by clm comma	nd)	Readout Direction (Controlled by	Pixel Rate	
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)	
clm 21	Full 8 w 1 2 3 4 5 6 7 8	Camera Link taps here: = CCD tap 1+2 = CCD tap 3+4 = CCD tap 5+6 = CCD tap 7+8 = CCD tap 9+10 = CCD tap 11+12 = CCD tap 13+14 = CCD tap 15+16	8	$smm \ 0 = CL tap 1(1-512) \\ CL tap 2(513-1024) \\ CL tap 3(1025-1536) \\ CL tap 4(1537-2048) \\ CL tap 5(2049-2560) \\ CL tap 5(2049-2560) \\ CL tap 6(2561-3072) \\ CL tap 7(3173-3584) \\ CL tap 7(3173-3584) \\ CL tap 8(3585-4096) \\ smm \ 1 = CL tap 1(4096-3585) \\ CL tap 2(3584-3173) \\ CL tap 3(3172-2561) \\ CL tap 4(2560-2049) \\ CL tap 5(2048-1537) \\ CL tap 6(1536-1025) \\ CL tap 8(512-1) \\ \end{cases}$	sot 320 = 80 MHz strobe (ES-80-08k80 only) (max line rate 55020Hz) sot 160 = 40 MHz strobe (max line rate 55020Hz)	

Table 15: ES-82-04k80 Configurations

Camera Link	Mode Configuration	(Controlled by clm command)		Readout Direction (Controlled by	Pixel Rate	
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)	
clm 15	Medium	4 Camera Link taps where: 1 = CCD tap 1+2+3+4 2 = CCD tap 5+6+7+8 3 = CCD tap 9+10+11+12 4 = CCD tap 13+14+15+16	8	<pre>smm 0 = CL tap 1(1-1024) CL tap 2(1025-2048) CL tap 3(2049-3072) CL tap 4(3073-4096) smm 1 = CL tap 1(4096-3073) CL tap 2(3072-2049) CL tap 3(2048-1025) CL tap 4(1024-1)</pre>	sot 320 = 80 MHz strobe (max rate 75187Hz) sot 160 = 40 MHz strobe (max line rate 37629Hz)	
clm 16	Medium	4 Camera Link taps where: 1 = CCD tap 1+2+3+4 2 = CCD tap 5+6+7+8 3 = CCD tap 9+10+11+12 4 = CCD tap 13+14+15+16	12	<pre>smm 0 = CL tap 1(1-1024) CL tap 2(1025-2048) CL tap 3(2049-3072) CL tap 4(3073-4096) smm 1 = CL tap 1(4096-3073) CL tap 2(3072-2049) CL tap 3(2048-1025) CL tap 4(1024-1)</pre>	<pre>sot 320 = 80 MHz strobe (max line rate 75187Hz) sot 160 = 40 MHz strobe (max line rate 37629Hz)</pre>	

Camera Link	Mode Configuration (C	ontrolled by clm command)		Readout Direction (Controlled by	Pixel Rate
Command	Camera Link Configuration	Camera Link Taps	Bit Depth	smm command)	Configuration (Controlled by sot command)
clm 21	Full 8 w 1 2 3 4 4 5 6 7 8	Camera Link taps where: = CCD tap 1+2 = CCD tap 3+4 = CCD tap 5+6 = CCD tap 7+8 = CCD tap 9+10 = CCD tap 11+12 = CCD tap 13+14 = CCD tap 15+16	8	$smm \ 0 = CL tap 1(1-512) \\ CL tap 2(513-1024) \\ CL tap 3(1025-1536) \\ CL tap 4(1537-2048) \\ CL tap 5(2049-2560) \\ CL tap 5(2049-2560) \\ CL tap 6(2561-3072) \\ CL tap 7(3173-3584) \\ CL tap 8(3585-4096) \\ smm \ 1 = CL tap 1(4096-3585) \\ CL tap 2(3584-3173) \\ CL tap 3(3172-2561) \\ CL tap 4(2560-2049) \\ CL tap 5(2048-1537) \\ CL tap 6(1536-1025) \\ CL tap 7(1024-513) \\ CL tap 8(512-1) \\ \end{cases}$	<pre>sot 640 = 80 MHz strobe (ES-80-08k80 only) (max line rate 111111Hz) sot 320 = 40 MHz strobe (max line rate 72595Hz)</pre>

3.4.2 Setting the Camera Link Mode

Pu	rpose:	Sets the camera's Camera Link configuration, number of Camera Link taps and data bit depth. Refer to the tables on the previous pages to determine which configurations are valid for your camera model and how this command relates to other camera configuration commands.
Syı	ntax:	clm m
Syı	ntax Elements:	m
		Output mode to use:
		2: Base configuration, 2 taps, 8 bit output
		3: Base configuration, 2 taps, 12 bit output
		15 : Medium configuration, 4 taps, 8 bit output
		16 : Medium configuration, 4 taps, 12 bit output
		21 : Full configuration, 8 taps, 8 bit output
No	otes:	• When you change the Camera Link mode (clm command), the camera attempts to maintain the current sot throughput (pixels/ sec). If the current throughput is too slow or too fast for the current Camera Link mode, the camera will automatically adjust the throughput value and will return a warning message that a related parameter was adjusted.
		• Base configuration only requires the use of one MDR26 Camera Linkg cable.
		• To obtain the current Camera Link mode, use the command gcp or get clm.
		• The bit patterns are defined by the Camera Link Roadmap, available from the Knowledge Center on our website here.
Re	lated Commands	sot
Exa	ample:	clm 15

3.4.3 Setting the Camera Throughput

Purpose:	Works in conjunction with the clm command (see previous) and determines the throughput of the camera. Refer to the tables in section 3.4.1 How to Configure Camera Output to determine which configurations are valid for your camera model and how this command relates to other camera configuration commands.		
Syntax:	sot m		
Syntax Elements:	m		
	Output throughput. Allowable values are: 40 = 2 taps at 20MHz 80 = 2 taps at 40MHz or 4 taps at 20MHz 160 = 2 taps at 80MHz or 4 taps at 40MHz 320 = 4 taps at 80MHz or 8 taps at 40MHz 640 = 8 taps at 80MHz		
Notes:	 Throughput is calculated as: Throughput= (Number of Camera Link Taps) x (Camera Link Pixel Rate in MHz) 		
	• To obtain the throughput setting, use the command gcp or get clm.		
	• Throughput values are clipped if the camera is unable to maintain the current throughput setting and a warning message is displayed.		
	• Refer to the tables in section 3.4.1 How to Configure Camera Output to determine which configurations are valid for your camera model.		
Related Commands	clm		
Example:	sot 160		

3.4.4 Setting the Pixel Readout Direction

Purpose:	Sets the tap readout from left to right or from right to left. This command is useful if the camera must be mounted upside down.			
Syntax:	smm i			
Syntax Elements:	i			
	Readout direction. Allowable values are:			
	0 = All pixels are read out from left to right.			
	1 = All pixels are read out from right to left.			
Notes:	• To obtain the current readout direction, use the command gcp or get smm.			
	• This command is available in both TDI and Area Mode.			
	• Refer to the following figures and tables for an explanation of pixel readout and mirror direction.			
	• Refer to section 1.3 Image Sensor for sensor architecture diagrams that illustrate sensor readout direction.			

03-032-20070-02

Figure 17: Left to Right Readout (smm 0) Forward Direction Example Output

abcdefghijklmnopqrstuvwxyz12345

Figure 18: Right to Left Readout (smm 1) Forward Direction Example Output

abcdefghijklmnopqrstuvwxyz12345

Figure 19: Camera Pixel Readout Direction Example using 8k Model with Inverting Lens

Table 16: HS-80-04k40 Forward or Reverse Pixel Readout

Camera Link Readout Direction	Ταρ 1	Tap 2	Тар 3	Ταρ 4
Left to Right Software command smm 0	1-1024	1025-2048	2049-3072	3073-4096
Right to Left Software command smm 1	4096-3073	3072-2049	2048-1025	1024-1

Table 17: Forward or Reverse Pixel Readout

Readout Direction	Tap 1	Tap 2	Tap 3	Tap 4	Tap 5	Tap 6	Tap 7	Tap 8
Left to Right Software command smm 0	1-1024	1025-2048	2049-3072	3073-4096	4097-5120	5121-6144	6145-7168	7169-8192
Right to Left Software command smm 1	8192-7169	7168-6145	6144-5121	5120-4097	4096-3073	3072-2049	2048-1025	1024-1

3.4.5 Setting a Pretrigger

Pu	rpo	ose:	
Syı	ita	x:	
a		-	

A pretrigger may be required for some frame grabbers.

x:

spt i

i

Syntax Elements:

Pretrigger in a range from **0** to **16**.

3.5 Data Processing

3.5.1 Setting a Region of Interest

Purpose:	Sets the pixel range used to collect the end-of-line statistics and sets the region of pixels used in the ccg, cao, cpa, gl, gla, ccf, and ccp commands.				
	In most applications, the field of view exceeds the required object size and these extraneous areas should be ignored. It is recommended that you set the region of interest a few pixels inside the actual useable image.				
Syntax:	roi x1 y1 x2 y2				
Syntax Elements:	x1				
	Column start number. Must be less than or equal to the column end number in a range from 1 to (column resolution – 1).				
	y1				
	Row start number. Must be less than or equal to the row end number in a range from 1 to (row end number -1) except in TDI Mode where y1 must be 1 .				
	x2				
	Column end number. Must be greater than or equal to the column start number in a range from 2 to column resolution.				
	y2				
	Row end number. Must be greater than or equal to the row start number in a range from 2 to number of stages except in TDI Mode where $y2$ must be 1 .				
Notes:	• If you are using binning, the start pixel is rounded down to the beginning of binned area and end pixel is rounded up to the end of the binned area.				
	• In Area Mode, the roi must be within the stage. If the requested roi is above the stage, the roi rows will be clipped. The start and end rows will be clipped to the stage selection if necessary. A "clipped to max" warning message is returned.				
Related Commands	ccg, cao, cpa, gl, gla, ccf, ccp, els				
Example:	roi 10 1 50 1 (TDI Mode)				

3.5.2 Analog and Digital Signal Processing Chain

Processing Chain Overview and Description

The following diagram shows a simplified block diagram of the camera's analog and digital processing chain. The analog processing chain begins with an analog gain adjustment, followed by an analog offset adjustment. These adjustments are applied to the video analog signal prior to its digitization by an A/ D converter.

The digital processing chain contains the FPN correction, the PRNU correction, the background subtract, and the digital gain and offset. All of these elements are user programmable.

Notes:

- FPN and PRNU correction is not available when operating the camera in Area Mode. For details on how to switch camera operation modes, refer to section 3.5.1.
- The following user settings are stored separately for forward and reverse direction; analog gain, analog offset, digital gain, digital offset, and background subtract. They are saved using the wus command. For details on changing camera shift direction, refer to section 3.3.3 Setting the Camera's CCD Shift Direction.
- FPN and PRNU coefficients are stored separately for forward and reverse direction. To save the current PRNU coefficients, use the command wpc. To save the current FPN coefficients, use the command wfc. Settings are saved for the current direction only.

Figure 20: Signal Processing Chain

Analog Processing

Optimizing offset performance and gain in the analog domain allows you to achieve a better signal-to-noise ratio and dynamic range than you would achieve by trying to optimize the offset in the digital domain. As a result, perform all analog adjustments prior to any digital adjustments.

- Analog gain is multiplied by the analog signal to increase the signal strength before the A/D conversion. It is used to take advantage of the full dynamic range of the A/D converter. For example, in a low light situation the brightest part of the image may be consistently coming in at only 50% of the DN. An analog gain of 6 dB (2x) will ensure full use of the dynamic range of the A/D converter. Of course the noise is also increased.
- 2. The analog offset or black level is an "artificial" offset introduced into the video path to ensure that the A/D will function properly. The analog offset should be set so that it is at least 3 times the rms noise value at the current gain.

Digital Processing

To optimize camera performance, digital signal processing should be completed after any analog adjustments.

- 1. Fixed pattern noise (FPN) calibration (calculated using the **ccf** command) is used to subtract away individual pixel dark current.
- 2. The digital offset (sdo command) enables the subtraction of the "artificial" A/ D offset (the analog offset) so that application of the PRNU coefficient doesn't result in artifacts at low light levels due to the offset value. You may want to set the sdo value if you are not using FPN correction but want to perform PRNU correction.
- 3. Photo-Response Non-Uniformity (PRNU) coefficients are used to correct the difference in responsivity of individual pixels (i.e. given the same amount of light different pixels will charge up at different rates) and the change in light intensity across the image either because of the light source or due to optical aberrations (e.g. there many be more light in the center of the image). PRNU coefficients are multipliers and are defined to be of a value greater than or equal to 1. This ensures that all pixels will saturate together. When using PRNU correction, it is important that the A/ D offset and Fixed Pattern Noise (FPN) or per pixel offsets are subtracted prior to the multiplication by the PRNU coefficient. The subtraction of these 2 components ensure that the video supplied to the PRNU multiplier is nominally zero and zero multiplied by anything is still zero resulting in no PRNU coefficient induced FPN. If the offset is not subtracted from the video then there will be artifacts in the video at low light caused by the multiplication of the offset value by the PRNU coefficients.
- 4. Background subtract (ssb command) and system (digital) gain (ssg command) are used to increase image contrast after FPN and PRNU calibration. It is useful for systems that process 8-bit data but want to take advantage of the camera's 12-bit digital processing chain. For example, if you find that your image is consistently between 128 and 255DN (8-bit), you can subtract off 128 (ssb 2048) and then multiply by 2 (ssg 0 8192) to get an output range from 0 to 255.

The following sections are organized as follows:

- 1. Section Analog Signal Processing provides a detailed description of all analog processing chain commands.
- 2. Section Calibrating the Camera to Remove Non-Uniformity (Flat Field Correction) provides an overview of how to perform flat field calibration.
- 3. Section Digital Signal Processing provides a detailed description of all digital processing chain commands.

Analog Signal Processing: Setting Analog Gain and Offset

All analog signal processing chain commands should be performed prior to FPN and PRNU calibration and prior to digital signal processing commands.

Setting Analog Gain

Purpose:	Sets the camera's analog gain value. Analog gain is multiplied by the analog signal to increase the signal strength before the A/ D conversion. It is used to take advantage of the full dynamic range of the A/ D converter.
Syntax:	sag t f
Syntax Elements:	t
	Tap selection. Use 0 for all taps or 1 to number of CCD taps for individual tap selection.
	f
	Gain value in a range from -10 to +10 dB.
Example:	sag 0 5.2

Calibrating Camera Gain

Purpose:	Instead of manually setting the analog gain to a specific value, the camera can determine appropriate gain values. This command calculates and sets the analog gain according to the algorithm determined by the first parameter.		
Syntax:	ccgiti		
Syntax Elements:	i		
	Calibration algorithm to use.		
	1 = This algorithm adjusts analog gain so that 8% to 13% of tap ROI pixels are above the specified target value.		
	2 = This algorithm adjusts analog gain so that the average pixel value in tap's ROI is equal to the specified target value.		
	3 = This algorithm adjusts digital gain so that the average pixel value in tap's ROI is equal to the specified target.		
	4 = This algorithm adjusts the analog gain so that the peak tap ROI pixels are adjusted to the specified target.		
	t		
	Tap value. Use 0 for all taps or 1 to number of CCD taps for individual tap selection.		
	i		
	Calculation target value in a range from 1024 to 4055 DN (12 bit LSB).		
Notes:	 All digital settings (digital offset, FPN and PRNU coefficients), digital gain, background subtract) should be turned off before calibrating analog gain to avoid unpredictable results. 		
	• This function requires constant light input while executing.		
	 To use this command, the CCD shift direction (scd) should be set to forward (0) or reverse (1). 		
	 If very few tap pixels are within the ROI, gain calculation may not be optimal. 		
	• When all taps are selected, taps outside of the ROI are set to the average gain of the taps that are within the ROI.		
	• Perform analog gain algorithms before performing FPN and PRNU calibration.		
Example:	ccg 2 0 3040		

The following diagrams summarize and provide an example of how analog gain is calibrated when using a region of interest.

In the following example, analog gain is being set for a tap inside the region of interest. The peak value of the tap is calibrated to the specified target value and all other taps remain unchanged.

Figure 21: Calculating Analog Gain for a Tap inside the Region of Interest

In the following example, analog gain is set for all taps. The peak value of each tap within the region of interest is calibrated to the specified target value. All taps completely outside the region of interest are calibrated to the average analog gain value of the taps inside the region of interest.

Figure 22: Calculating Analog Gain for all Taps

_ ___

Setting Analog Offset

Purpose:	Sets the analog offset. The analog offset should be set so that it is at least 3 times the rms noise value at the current gain. The analog offset is configured for noise at the maximum specified gain and as a result you should not need to adjust the analog offset.
Syntax:	sao t i
Syntax Elements:	t
	Tap selection. Use 0 for all taps or 1 to number of CCD taps for individual tap selection.
	i
	Offset value in a range from 0 to 255 DN (12 bit LSB).
Example:	sao 3 35

Calibrating Analog Offset

Purpose:	Instead of manually setting the analog offset to a specific value, the camera can determine appropriate offset values. This command calculates and averages each tap's pixels within the ROI and sets the offset to achieve the specified average target value.
Syntax:	cao t i
Syntax Elements:	t
	Tap selection. Use 0 for all taps or 1 to number of CCD taps for individual tap selection.
	i
	Average target value in a range from 1 to 255 DN (12 bit LSB).
Notes:	• Perform analog offset calibration before performing FPN and PRNU coefficients.
	• To use this command, CCD shift direction should be controlled internally, either scd 0 or 1
Example:	cao 1 50

Updating the Gain Reference

To update the analog gain reference:

Purpose:	Sets the current analog gain setting to be the 0dB point. This is useful after tap gain matching allowing you to change the gain on all taps by the same amount.
Syntax:	ugr

Calibrating the Camera to Remove Non-Uniformity (Flat Field Correction)

Flat Field Correction Overview

This camera has the ability to calculate correction coefficients in order to remove nonuniformity in the image when operating in TDI Mode. This video correction operates on a pixel-by-pixel basis and implements a two point correction for each pixel. This correction can reduce or eliminate image distortion caused by the following factors:

- Fixed Pattern Noise (FPN)
- Photo Response Non Uniformity (PRNU)
- Lens and light source non-uniformity

Correction is implemented such that for each pixel:

V_{output} =[(V_{input} - FPN(pixel) - digital offset) * PRNU(pixel) – Background Subtract] x System Gain

where V_{output}

 V_{input}

- = digital output pixel value
- = digital input pixel value from the CCD

PRNU(pixel)	=	PRNU correction coefficient for this pixel
FPN(pixel)	=	FPN correction coefficient for this pixel
Background Subtract	=	background subtract value
System Gain	=	digital gain value

The algorithm is performed in two steps. The fixed offset (FPN) is determined first by performing a calculation without any light. This calibration determines exactly how much offset to subtract per pixel in order to obtain flat output when the CCD is not exposed.

The white light calibration is performed next to determine the multiplication factors required to bring each pixel to the required value (target) for flat, white output. Video output is set slightly above the brightest pixel (depending on offset subtracted).

Flat Field Correction Restrictions

It is important to do the FPN correction first. Results of the FPN correction are used in the PRNU procedure. We recommend that you repeat the correction when a temperature change greater than 10°C occurs or if you change the analog gain, integration time, binning, or number of integration stages.

PRNU correction requires a clean, white reference. The quality of this reference is important for proper calibration. White paper is often not sufficient because the grain in the white paper will distort the correction. White plastic or white ceramic will lead to better balancing.

For best results, ensure that:

- 1. 60 Hz ambient light flicker is sufficiently low not to affect camera performance and calibration results.
- 2. For best results, the analog gain should be adjusted for the expected operating conditions and the ratio of the brightest to darkest pixel in a tap should be less than 3 to 1 where:

3> Brightest Pixel (per tap) Darkest Pixel (per tap)

The camera is capable of operating under a range of 8 to 1, but will clip values larger than this ratio.

- 3. The brightest pixel should be slightly below the target output.
- 4. When 6.25% of pixels from a single row within the region of interest are clipped, flat field correction results may be inaccurate.
- 5. Correction results are valid only for the current stage selection. If you change the number of stages, it is recommended that you recalculate your coefficients.
- 6. Correction results are valid only for the current analog gain and offset values. If you change these values, it is recommended that you recalculate your coefficients.

Note: If your illumination or white reference does not extend the full field of view of the camera, the camera will send a warning.

How to Perform Flat Field Correction

Digital Signal Processing

Subtracting Background

Purpose:	Use the background subtract command after performing flat field correction if you want to improve your image in a low contrast scene. You should try to make your darkest pixel in the scene equal to zero.
Syntax	ssb t i
Syntax Elements:	t
	Tap selection. Allowable range is 1 to number of CCD taps, or 0 for all taps.
	i
	Subtracted value in a range in DN from 0 to 4095 (12 bit LSB).
Notes:	• See the following section for details on the ssg command.
Related Commands	ssg
Example	ssb 0 500

Setting Digital Gain

Purpose:	Improves signal output swing after a background subtract. When subtracting a digital value from the digital video signal, using the ssb command, the output can no longer reach its maximum. Use the this command to correct for this where: $ssg value = \frac{max output value}{max output value - ssb value}$
Syntax:	ssgti
Syntax Elements:	t
	Tap selection. Allowable range is 1 to number of CCD taps, or 0 for all taps.
	i
	Gain setting. The gain ranges are 0 to 65535. The digital video values are multiplied by this value where:
	Digital Gain= $\frac{7}{4096}$
Notes:	• Use this command in conjunction with the ssb command (described above).
	• It is recommended that i is never set below 4096. Setting i to 0 will result in only 0 output data.
	• Digital offset is set to zero after sending the ccf command
Related Commands:	ssb, sdo
Example:	ssg 1 4500

Purpose:	Sets the digital offset. Digital offset is set to zero when you perform FPN correction (ccf command). If you are unable to perform FPN correction, you can partially remove FPN by adjusting the digital offset.
Syntax:	sdo t i
Syntax Elements:	t
	Tap selection. Allowable range is 1 to number of CCD taps, or 0 for all taps.
	i
Notes:	 Subtracted offset value in a range from 0 to 511 (12-bit LSB). When subtracting a digital value from the digital video signal, the output can no longer reach its maximum unless you apply digital gain using the ssg command. See the previous section for details on the ssg command.
Related Commands:	ssg, ccf
Example:	sdo 0 100

Setting Digital Offset

FPN Correction

Performing FPN Correction

Syntax:	Performs FPN correction and eliminates FPN noise by subtracting away individual pixel dark current. For a complete description on how to use this command, see the Flat Field Correction Overview on page 58.
Syntax:	ccf
Notes:	• Before performing this command, stop all light from entering the camera. (Tip: cover lens with a lens cap.)
	• Perform all analog and digital adjustments before performing FPN correction.
	• Perform FPN correction before PRNU correction.
	• The ccf command is not available when the CCD direction is externally controlled (scd 2) (see Direction Control on page 26). Direction control must be stable while the camera is calculating coefficients.
	• Available in TDI Mode only.
	• Save coefficients before changing directions, changing operating mode, or powering off.
Related Commands:	ccp, cpa
Example:	ccf

62

Setting a Pixel's FPN Coefficient

Purpose: Syntax	Sets an individual pixel's FPN coefficient. sfc <i>x i</i>
Syntax Elements:	xThe pixel number from 1 to sensor pixel count.
Notes: Example:	 Coefficient value in a range from 0-511 (12-bit LSB). Available in TDI Mode only. sfc 10 50

Returning FPN Coefficients

Purpose:	Returns a pixel's FPN coefficient value in DN (12-bit LSB)
Syntax:	gfc i
Syntax Elements:	i
	The pixel number to read in a range from 1 to sensor pixel count.
Notes:	• Available in TDI Mode only.
Example:	gfc 10

Setting a Range of FPN Coefficients

Purpose:	Sets a range of pixel FPN coefficients.
Syntax	sfr x x i
Syntax Elements:	x
	The first pixel number of the range.
	x
	The last pixel number of the range.
	i
	Coefficient value in a range from 0-2048.
Notes:	• The first pixel of the range must be less than the last.
Example:	sfr 1 100 80

PRNU Correction

Performing PRNU Correction

jjjjj	
Purpose:	Performs PRNU correction to a camera calibrated peak value and eliminates the difference in responsivity between the most and least sensitive pixel creating a uniform response to light. For a complete description on how to use this command, see the Flat Field Correction Overview on page 58.
Syntax	ccp
Notes:	 Perform all analog adjustments before calculating PRNU. Perform FPN correction before PRNU correction. If FPN cannot be calibrated, use the rpc command to reset all coefficients to zero, and save them to memory with the wpc command. You can then adjust the digital offset (sdo command) to remove some of the FPN. The ccp command is not available when the camera shift direction is externally controlled. Direction control must be stable while the camera is calculating coefficients (see Direction Control on page 26).
	 Ensure camera is operating at its expected analog gain, integration time, and temperature. To avoid losing your current direction coefficients, you must save the PRNU coefficients using the command wpc before changing camera shift direction or changing from TDI to Area Mode. Available in TDI Mode only.

• Executing these algorithms causes the **ssb** command to be set to 0 (no background subtraction) and the **ssg** command to 4096 (unity digital gain). The pixel coefficients are disabled (epc 0 0) during the algorithm execution but returned to the state they were prior to command execution.

Performing PRNU to a user entered value

Purpose:	Performs PRNU calibration to user entered value and eliminates the difference in responsivity between the most and least sensitive pixel creating a uniform response to light. Using this command, you must provide a calibration target.
	Executing these algorithms causes the ssb command to be set to 0 (no background subtraction) and the ssg command to 4096 (unity digital gain). The pixel coefficients are disabled (epc 0 0) during the algorithm execution but returned to the state they were prior to command execution.
Syntax:	cpa i i
Syntax Elements:	i
	PRNU calibration algorithm to use: 1 = This algorithm first adjusts each tap's analog gain so that 8- 13% of pixels within a tap are shown the value specified in the

13% of pixels within a tap are above the value specified in the target value parameter. PRNU calibration then occurs using the peak pixel in the region of interest.

This algorithm is recommended for use only when FPN is negligible and FPN coefficients are set to zero. Since this algorithm adjusts the analog gain, it also affects FPN. If FPN is calibrated prior to running this algorithm, FPN will be observable in dark conditions and an incorrect FPN value will be used during PRNU calibration resulting in incorrect PRNU coefficients.

2 = Calculates the PRNU coefficients using the entered target value as shown below:

 $PRNU Coefficient_{i} = \frac{Target}{(AVG Pixel Value_{i}) - (FPN_{i} + sdo value)}$

The calculation is performed for all sensor pixels but warnings are only applied to pixels in the region of interest. This algorithm is useful for achieving uniform output across multiple cameras. It is important that the target value (set with the next parameter) is set to be at least equal to the highest pixel across all cameras so that all pixels can reach the highest pixel value during calibration.

3 = This algorithm includes an analog gain adjustment prior to PRNU calibration. Analog gain is first adjusted so that the peak pixel value in tap's ROI is within 97 to 99% of the specified target value. It then calculates the PRNU coefficients using the target value as shown below:

 $PRNU Coefficient_{i} = \frac{Target}{(AVG Pixel Value_{i}) - (FPN_{i} + sdo value)}$

The calculation is performed for all sensor pixels but warnings are only applied to pixels in the region of interest. This algorithm is useful for achieving uniform output across multiple cameras.

This algorithm is useful for achieving uniform output across multiple cameras by first adjusting analog gain and then performing PRNU calibration. This algorithm is recommended for use only when FPN is negligible and FPN coefficients are set to zero. Since this algorithm adjusts the analog gain, it also affects FPN. If FPN is calibrated prior to running this algorithm, FPN will be observable in dark conditions and an incorrect FPN value will be used during PRNU calibration resulting in incorrect PRNU coefficients.

This algorithm is more robust and repeatable than algorithm 1 because it uses an average pixel value rather than a number above target. However, this algorithm is slower.

4 = Calculates the PRNU coefficient in the same way as **cpa 2** with the exception that this command only calculates PRNU for pixels within the current Region of Interest (ROI).

i

Peak target value in a range from 1024 to 4055DN. The target value must be greater than the current peak output value.

- Perform all analog adjustments before calibrating PRNU.
- This command performs the same function as the cpp command but forces you to enter a target value.
- Calibrate FPN before calibrating PRNU. If you are not performing FPN calibration then issue the **rpc** (reset pixel coefficients) command and set the **sdo** (set digital offset)

Notes:

value so that the output is near zero under dark.

Example: cpa 1 600

Setting a Pixel's PRNU Coefficient

Purpose:	Sets an individual pixel's PRNU coefficient.
Syntax:	spc i i
Syntax Elements:	i

The pixel number from 1 to sensor pixel count.

i

Coefficient value in a range from 0 to 28671 where:

prnu coefficient = $1 + \frac{i}{4096}$

Setting a range of Pixel PRNU Coefficients

Purpose:	Sets a range of pixel PRNU coefficients.
Syntax:	spr i i x
Syntax Elements:	i
	The first pixel number of the range.
	í
	The last pixel number of the range.
	x
	Coefficient value in a range from 0 to 28671 where:
	prnu coefficient = $1 + \frac{i}{4096}$
Notes:	• The first pixel of the range must be less than the last
Example:	spr 4001 4096 0

Returning FPN and PRNU Coefficients

Purpose:	Returns all the current pixel coefficients in the order FPN, PRNU, FPN, PRNU for the range specified by x1 and x2 . The camera also returns the pixel number with every fifth coefficient.
Syntax:	dpc x1 x2
Syntax Elements:	x1
	Start pixel to display in a range from 1 to (sensor pixel count-1).
	x2
	End pixel to display in a range from $\mathbf{x1} + 1$ to sensor pixel count.
Notes:	• If $x_2 < x_1$ then x_2 is forced to be x_1 .

Example:

dpc 10 20

Enabling and Disabling Pixel Coefficients

Purpose:	Enables and disables FPN and PRNU coefficients.
Syntax:	epc i i
Syntax Elements:	i
	FPN coefficients.
	0 = FPN coefficients disabled
	1 = FPN coefficients enabled
	i
	PRNU coefficients.
	0 = PRNU coefficients disabled
	1 = PRNU coefficients enabled
Example:	epc 0 1

3.5.3 End-of-line Sequence

Purpose:	Produces an end-of-line sequence that provides basic calculations including "frame counter", "line sum", "pixels above threshold", "pixels below threshold", and "derivative line sum" within the region of interest. These basic calculations are used to calibrate analog offset (cao) and calibrate analog gain (ccg). To further aid in debugging and cable/ data path integrity, the	
	first three pixels after Line Valid are "aa", "55", "aa". Refer to the following table. These statistics refer only to pixels within the region of interest.	
Syntax:	els i	
Syntax Elements:	i	
	0 Disable end-of-line sequence	
	1 Enable end-of-line sequence	
Notes:	• LVAL is not high during the end-of-line statistics.	
Example:	els 1	

Table 18: End-of-Line Sequence Description

Location	Value	Description
1	A's	By ensuring these values consistently
2	5's	verify cabling (i.e. no stuck bits)
3	A's	
4	4 bit counter LSB justified (Upper 4 bits are row counter in Area Mode)	Counter increments by 1. Use this value to verify that every line is output
5	Line sum (70)	LSB justified. Use these values to help
б	Line sum (158)	calculate line average and gain

Location	Value	Description
7	Line sum (2316)	
8	Line sum (3124)	
9	Line sum (3932)	
10	Pixels above threshold (70)	
11	Pixels above threshold (158)	Monitor these values (either above or
12	Pixels above threshold (2316)	below threshold) and adjust camera digital gain and background subtract to
13	Pixels below threshold (70)	maximize scene contrast. This provides a
14	Pixels below threshold (158)	basis for automatic gain control (AGC)
15	Pixels below threshold (2316)	
16	Differential line sum (70)	
17	Differential line sum (158)	
18	Differential line sum (2316)	Use these values to focus the camera. Generally, the greater the sum the greater
19	Differential line sum (3124)	the image contrast and better the focus.
20	Differential line sum (3932)	

Setting Thresholds

Setting an Upper Threshold

Purpose:	Sets the upper threshold limit to report in the end -of-line sequence.
Syntax:	sut i
Syntax Elements:	i
	Upper threshold limit in range from 0 to 4095.
Notes:	• LVAL is not high during the end-of-line statistics.
Related Commands:	els, slt
Example:	sut 1024

Setting a Lower Threshold

Purpose:	Sets the lower threshold limit to report in the end-of-line sequence.
Syntax:	slt i
Syntax Elements:	i
	Upper threshold limit in range from 0 to 4095 .
Notes:	• LVAL is not high during the end-of-line statistics.
Related Commands:	els, sut
Example:	slt 1024

3.6 Saving and Restoring Settings

3.6.1 Saving and Restoring Factory and User Settings

Figure 23: Saving and Restoring Overview

Factory Settings

You can restore the original factory settings, including the factory calibrated pixel coefficient set, at any time using the command **rfs**.

User Settings

There are two main sets of user settings: Area Mode user settings and TDI Mode user settings. After issuing the user settings save command, wus, settings are saved depending on which mode the camera is operating in when the command is issued. Also, when operating in TDI Mode, analog gain and offset, digital gain and offset, and background subtract values are saved as distinct values for Forward and Reverse directions. In other words, you can program the camera to operate with an analog gain value of +5db in Forward direction and an analog gain value of +3db in Reverse direction. Forward and Reverse directions, the settings saved for that direction are automatically loaded.

Figure 24: How User Settings are Stored in the ES-xx Cameras after issuing the wus Command

You can save or restore your user settings to non-volatile memory using the following commands.

• To save all current user settings to EEPROM for the current mode for both TDI shift directions, use the command **wus**. The camera will automatically restore the saved user settings when powered up.

WARNING: While settings are being written to nonvolatile memory, do not power down camera or camera memory may be corrupted.

• To restore the last saved user settings, including the last used pixel coefficient set, for the current mode, use the command **rus**.

Current Session Settings

These are the current operating settings of your camera. These settings are stored in the camera's volatile memory and will not be restored once you power down your camera. To save these settings for reuse at power up, use the command **wus**. Settings are saved for the current operating mode (TDI or Area) only.

3.6.2 Saving and Restoring PRNU and FPN Coefficients

Pixel coefficient sets are saved separately for Forward and Reverse direction, depending on which direction the camera is operating in when the wpc or wfc command is issued. It is important that you save pixel coefficients before switching CCD shift direction or current coefficient values will be lost.

Note: Available in TDI Mode only.

Figure 25: How Pixel Coefficients are saved in the ES-xx Cameras after issuing the wpc or wfc Command

Saving the Current PRNU Coefficients

Purpose:	Saves the current PRNU coefficients for the current direction.
Syntax:	wpc i
Syntax Elements:	i
	PRNU coefficients set to save.
	1 = Coefficient set one
	2 = Coefficient set two
	3 = Coefficient set three
	4 = Coefficient set four
Notes:	• Available in TDI mode only.
	• Available only when operating the camera in internal direction control (scd 0 or 1)
Example:	wpc 2

Saving the Current FPN Coefficients

Purpose:	Saves the current FPN coefficients for the current direction.
Syntax:	wfc i
Syntax Elements:	i
	FPN coefficients set to save.
	1 = Coefficient set one
	2 = Coefficient set two
	3 = Coefficient set three
	4 = Coefficient set four
Notes:	• Available in TDI mode only.
	• Available only when operating the camera in internal direction control (scd 0 or 1)
Example:	wfc 2

Purpose:	Loads a saved set of pixel coefficients for the current direction. A factory calibrated set of coefficients is available.
Syntax:	lpc i
Syntax Elements:	i
	FPN coefficients set to save.
	0 = Factory calibrated pixel coefficients.
	1 = Coefficient set one
	2 = Coefficient set two
	3 = Coefficient set three
	4 = Coefficient set four
Notes:	• Available in TDI mode only.
	• Available only when operating the camera in internal direction control (scd 0 or 1). When operating in external direction control, you must switch to internal direction control, load the coefficient set, and then return to external direction control.
Example:	lpc 0

Loading a Saved Set of Coefficients

Resetting the Current Pixel Coefficients

Purpose:	Resets the current pixel coefficients to zero. This command does not reset saved coefficients.
Syntax:	rpc
Notes:	The digital offset is not reset.

3.6.3 Rebooting the Camera

The command **rc** reboots the camera. The camera starts up with the last saved settings and the baud rate used before reboot. Previously saved pixel coefficients are also restored.
3.7 Diagnostics

3.7.1 Generating a Test Pattern

Purpose:	Generates a test pattern to aid in system debugging. The test patterns are useful for verifying proper timing and connections between the camera and the frame grabber. The following tables show each available test pattern.
Syntax:	svm i
Syntax Elements:	i
	0 Video.
	1 12 bit test pattern 1 (ramp)
	2 8 bit test pattern 2 (step)
Notes:	• When returning to video (svm 0) after viewing a test pattern, the camera restores the saved user settings for digital offset (sdo), enable pixel coefficients (epc), set subtract background (ssb), and set system digital gain (ssg).
	• The following diagrams show 12-bit pixel values. When operating in 8-bit mode, pixel values will be 1/16 th of pixel values in the diagram.
Example:	svm 2

FS_80_	Test Pattern				
04440	resirunem				
Operating					
Mode					
TDI Mode Forward,	0	102,02	254 248	ast ast	has.
1					
TDI Mode	1023	2047	1023011	2048 4095	302
Reverse, smm					
0, svm 1					
TDI Mode	4095	307307	2048 2041	102 ⁴ 1023	0
Forward, smm 1, svm					
1					
TDI Mode	3012	1195 - 1948	301/1024	2047 0	1023
Reverse, smm 1, svm 1					
Area Mode	÷	1001001	257 255	Al Al	1
Forward, smm 0, svm					

Table 19: Test Patterns

ES-82-04K* Operating Mode	Test Pattern
TDI Mode Forward, smm 0, svm 1	o yor
TDI Mode Forward, smm 1, svm 1	^я ц _у 0
TDI Mode Reverse, smm 0, svm 1	255 0 511 255 751 512 4023 768 427 4024 4535 281 479 4536 204 792 233 2040 2559 234 281 2560 307 2816 3527 307 3583 358 3583 3584 8093 384
TDI Mode Reverse, smm 1, svm 1	³⁸ 867088 ³ 884 ³ 839 ³ 328 ³ 883 ³ 02 ³ 325 ² 818 ³ 07 ⁻² 865 ⁹ 18 ² 305 ² 565 ² 046 ² 303 ¹ 25 ² 047 ¹ 53 ¹ /53
Area Mode Forward, smm 0, svm 1	8
Area Mode Reverse, smm 0, svm 1	26 ³ 8 619 76 ⁴ 520 715 703 716 708 709 76 ⁴ 70 ⁸ 70 ⁹ 76 ⁴⁴ 70 ⁵⁵ 780 751 70 ⁵⁶ 755 751 73 ¹² 781 758 30 ⁹ 784 35 ²⁵ 308 353 358 381 358 31 384 ⁸
Area Mode Forward, smm 1, svm 1	103

Area Mode Reverse, smm 1, svm 1	3848 >	. 3592 ³⁸⁴ /	× ³ 36 ³⁵⁹⁷	³⁰ 60 ³ 335	²⁸²⁴ 3075	, ² 368-565	3 ^{2372²⁵⁶}	> ^{2056²³1}	7 ^{1800²⁰⁵}	5 ¹⁵⁴⁴¹⁷⁹⁵	¹ 288 ¹ 54	3 ¹ 032 ¹ 28,	>> ₆ 103	, 735 EU	, 264 57	, ∂ ² 63	
TDI or Area Mode, smm 1 or 2 , svm 2	240	700	752	1008	1264	1532	1776	2032	2288	2544	2800	3050	3312	See.	3814	1080	
TDI or Area Mode, Forward or Reverse, smm 1, svm 2	1080	38 ²⁴	-solo	3312	dene.	2800	2544	2288	2052	1776	1570	1264	1000	492	196	249	

Teledyne DALSA

03-032-20070-02

3.7.2 Returning Video Information

The camera's microcontroller has the ability to read video data when operating the camera in TDI Mode. This functionality can be used to verify camera operation and to perform basic testing without having to connect the camera to a frame grabber. This information is also used for collecting line statistics for calibrating the camera.

Returning a Single Line of Video

Purpose:	Returns a complete line of video (without pixel coefficients or test pattern) displaying one pixel value after another. It also displays the minimum, maximum, and mean value of the line sampled within the region of interest (the region of interest command is explained in section Setting a Region of Interest).					
	Use the gl command, or the following gla command, to ensure the proper video input range into the processing chain before executing any pixel calibration commands.					
Syntax:	gl x1 x2					
Syntax Elements:	x 1					
	Column start number. Must be less than the column end number in a range from 1 to (column resolution - 1).					
	x2					
	Column end number. Must be greater than the column start number in a range from 2 to sensor resolution.					
Notes:	• If $x2 \le x1$ then $x2$ is forced to be $x1$.					
	• Analog gain, analog offset, digital offset, background subtract, and digital system gain are applied to the data. FPN and PRNU coefficients are not included in the data.					
	• Values returned are in 12 bit DN.					
	• Available in TDI Mode only.					
Related Commands	roi					
Example:	gl 10 20					

Returning Averaged Lines of Video

Setting the Number of Lines to Sample

Purpose:	Sets the number of lines to sample when using the gla command or for pixel coefficient calculations.
Syntax:	css i
Syntax Elements:	i
	Number of lines to sample. Allowable values are 256 , 512 , or 1024 (factory setting).
Notes:	• To return the current setting, use the gcp command.
Related Commands:	gla
Example:	css 1024

Returning the Average of Multiple Lines of Video

Purpose:	Returns the average for multiple lines of video data (without pixel coefficients or test pattern). The number of lines to sample is set and adjusted by the css command. The camera displays the Min., Max., and Mean statistics for the pixels in the region of interest (the region of interest command is explained in section Setting a Region of Interest).					
Syntax:	gla x1 x2					
Syntax Elements:	x1					
	Column start number. Must be less than the column end number in a range from 1 to (column resolution - 1). x2					
	Column end number. Must be greater than the column start number in a range from 2 to column resolution.					
Notes:	• If $x2 \le x1$ then $x2$ is forced to be $x1$.					
	• Analog gain, analog offset, digital offset, background subtract, and digital system gain are applied to the data. FPN and PRNU coefficients are not included in the data.					
	• Values returned are in 12 bit DN.					
	• Available in TDI Mode only.					
Related Commands:	css, roi					
Example:	gla 10 20					

3.7.3 Temperature Measurement

The temperature of the camera can be determined by using the **vt** command. This command will return the internal chip temperature in degrees Celsius. For proper operation, this value should not exceed 75°C.

Note: If the camera reaches 75°C, the camera **will shutdown and the LED will flash red**. If this occurs, the camera **must be rebooted** using the command, **rc** or can be powered down manually. You will have to correct the temperature problem or the camera will shutdown again.

3.7.4 Voltage Measurement

The command **vv** displays the camera's input voltage. Note that the voltage measurement feature of the camera provides only approximate results (typically within 10%). The measurement should not be used to set the applied voltage to the camera but only used as a test to isolate gross problems with the supply voltage.

3.7.5 Camera Frequency Measurement

Purpose:	Returns the frequency for the requested Camera Link control signal
Syntax:	gsf i
Syntax Elements:	i
	Camera Link control signal to measure:
	1: CC1 (EXSYNC)
	2 : CC2 (Spare)
	3 : CC3 (Forward)
	4 : CC4 (Spare)
Example:	gsf 1

3.7.6 Returning Camera Settings

Returning All Camera Settings with the Camera Parameter Screen

The camera parameter (GCP) screen returns all of the camera's current settings. Figure 26 below describes the GCP screen for the Piranha ES-4k camera.

To read all current camera settings, use the command:

Syntax: gcp

```
Figure 26: Example GCP Screen for ES-40-08k40 TDI Mode Operation
```

GCP Screen		Description
CAMERA SETTINGS		
Camera Model No.:	ES-xx-xxxxx	Camera model number.
Sensor Serial No.:	****	Sensor serial number.
Firmware Design Rev.:	xx-xx-xxxx-xx	Firmware design revision number.
FPGA Version:	xx-xx-xxxx-xx	DSP design revision number.
UART Baud Rate:	9600	Serial communication connection speed set with the sbr command. See section Setting Baud Rate for details.
TDI Mode:	tdi	Current operating mode, either TDI or Area set with

GCP Screen		Description
		the tdi command. See section 3.5.1 for details.
Exposure Mode:	7	Current exposure mode value set with the sem command. See section 3.3.5 Exposure Mode and Line/ Frame Rate for details.
SYNC Frequency:	10000.00 Hz	Current line rate. Value is set with the ssf command. See section 3.3.5 Exposure Mode and Line/ Frame Rate for details.
Internal Exposure Time:	100.00µs	Current exposure time setting if internal. If external, "external" is displayed. See section 3.3.5 Exposure Mode and Line/ Frame Rate for details.
CCD Direction:	internal/forward	CCD shift direction set with the scd command. See section 3.3.3 Setting the Camera's CCD Shift Direction for details.
Stage Selection	16, 32	Number of integration stages set with the stg command. See section 3.3.2 Selecting the Number of CCD Integration Stages for details.
Horizontal Binning	1	Horizontal binning value set with the sbh command. See section 3.3.4 Increasing Sensitivity with Binning for details.
Vertical Binning	1	Vertical binning value set with the sbv command. See section 3.3.4 Increasing Sensitivity with Binning for details.
Video Mode:	video	Current video mode value set with the svm command. See section 3.7.1 Generating a Test Pattern for details.
Background Subtract:	0 0 0 0	Background subtract value set with the ssb command. See section Digital Signal Processing for details.
Region of Interest:	(1,1) to (8192,1)	Region of interest size set with the roi command. See section Setting a Region of Interest for details.
End-Of-Line Sequence:	on	States whether an end-of- line sequence is turned on

GCP Screen		Description
		or off. Set using the eol command. See section 3.5.3 End-of-line Sequence for details.
FFC Coefficient Set:	0	Current pixel coefficient set loaded. Refer to section 3.6.2 Saving and Restoring PRNU and FPN Coefficients for details
FPN Coefficients:	off	States whether FPN coefficients are on or off. Set with the epc command. Refer to section Digital Signal Processing for details.
PRNU Coefficients:	off	States whether PRNU coefficients are on or off. Set with the epc command. Refer to section Digital Signal Processing for details.
Number of Line Samples:	1024	Number of lines sample with the gla command set with the css command. See section 3.7.2 Returning Video Information for details.
Lower Threshold:	400	Lower threshold value set with the slt command. See section 3.5.3 End-of- line Sequence for details.
Upper Threshold:	3600	Upper threshold value set with the sut command. See section 3.5.3 End-of- line Sequence for details.
Camera Link Mode:	15, Medium, 4 taps, 8 bits, no time MUX	Camera Link configuration set with the clm command. See 3.4.2 Setting the Camera Link Mode for details.
Output Throughput:	320	Camera throughput value set with the sot command. See section 3.4.3 Setting the Camera Throughput for details.
Pretrigger	0	Pretrigger set with the spt command. See section 3.4.5 Setting a Pretrigger.
Mirroring Mode:	left to right	Readout direction set with the smm command. See section 3.4.4 Setting the Pixel Readout Direction for details.

GCP Screen					Description
Analog Gain (dB):	3.0	3.0	3.0	3.0	Analog gain settings set with the sag command. See section Analog Signal Processing for details.
Analog Reference Gain (dB):	3.0	3.0	3.0	3.0	Analog reference gain set with the ugr command. See section Analog Signal Processing for details.
Total Analog Gain (dB):	6.0	6.0	6.0	6.0	This is the sum of the analog gain and analog gain reference values and is the total analog gain being used by the camera.
Analog Offset:	100	100	100	100	Analog offset settings set with the sao command. See section Analog Signal Processing for details.
Digital Offset:	50	50	50	50	Digital offset settings set with the sdo command. See section Digital Signal Processing for details.
Background Subtract:	150	150	150	150	Background subtract settings set with the ssb command. See section Digital Signal Processing for details.
System Gain:	4096 4096	4096	409	96	Digital gain settings set with the ssg command. See section Digital Signal Processing for details.

Returning Camera Settings with Get Commands

You can also return individual camera settings by inserting a "get" in front of the command that you want to query. If the command has a tap or pixel number parameter, you must also insert the tap number or pixel number that you want to query. Refer to Table 20 below for a list of available commands. To view a help screen listing the following get commands, use the command gh.

Table 20: Get Commands

Syntax	Parameters	Description
get cao	t	Returns the analog offset for the tap indicated t = tap selection, either 1 to number of CCD taps , or 0 for all taps
get ccf	x1 x2	Returns the FPN pixel coefficients for the pixel range indicated. x1 = Pixel start number x2 = Pixel end number
get ccp	x1 x2	Returns the PRNU pixel coefficients for the pixel range indicated. x1 = Pixel start number x2 = Pixel end number
get clm		Returns the current Camera Link mode.
get css		Returns the number of line samples averaged for pixel coefficient calculations or for output of gla command.
get els		Returns whether the end-of-line statistics are turned off or on. 0 : Off 1 : On
get epc		 Returns whether pixel coefficients are enabled or disabled. The first parameter returns the FPN coefficients setting where: 0 = FPN coefficients disabled 1 = FPN coefficients enabled The second parameter returns the PRNU coefficients setting where: 0 = PRNU coefficients disabled 1 = PRNU coefficients enabled
get gcm		Returns the camera's model number
get gcs		Returns the camera's serial number
get gcv		Returns the camera's software version.
get gfc	x	Returns the FPN pixel coefficient for the pixel indicated.
get gl	x1 x2	Returns pixel values for the pixel range specified.
get gla	x1 x2	Returns the average of the pixel range indicated.
get gsf	i	Returns the frequency of the Camera Link control signal indicated, either 1 , 2 , 3 , or 4 .

Syntax	Parameters	Description		
get lpc		Returns the current coefficient set number.		
get rfs		Returns whether factory settings have been saved. The camera always returns 1 (factory settings have been saved).		
get roi		Returns the current region of interest.		
get rus		Returns whether user settings have been saved. 0 = No user settings saved 1 = User settings have been saved		
get sag	t	Returns the analog gain in dB for the tap indicated $t = Tap$ value. 0 for all taps or 1-number of CCD taps for individual tap selection.		
get sao	t	Returns the analog offset for the tap indicated. t = 0 for all taps or 1 to number of CCD taps for individual tap selection.		
get sbh		Returns the horizontal binning value.		
get sbr		Returns the speed of camera serial communication port.		
get sbv		Returns the vertical binning value.		
get scd		 Returns the CCD shift direction where: 0 = Forward TDI shift direction. 1 = Reverse TDI shift direction. 2 = Externally controlled direction control via Camera Link control CC3. 		
get sdo	t	Returns the digital offset value in DN for the tap indicated. t = Tap value. 0 for all taps or 1-number of CCD taps for individual tap selection.		
get sem		 Returns the current exposure mode: 3 = External SYNC, maximum exposure time 7 = Internal programmable SYNC, maximum exposure time. Factory setting. 		
get sfc	x	Returns the FPN coefficient for the pixel number indicated. x =pixel number within the range 1 to sensor pixel count .		
get sgr		Returns the current analog gain reference value in dB.		
get slt		Returns the current lower threshold value.		
get smm		Returns the camera's mirror mode: 0 : Pixels readout left to right (1 to 4096 or 8192) 1 : Pixels readout right to left (8092 or 4096 to 1)		
get sot		Returns the Camera Link strobe rate.		

Syntax	Parameters	Description
get spc	x	Returns the PRNU coefficient for the specified pixel number. x =pixel number within the range 1 to sensor pixel count .
get spt		Returns the current pretrigger setting.
get ssb	t	Returns the current background subtract value. t = Tap value. 0 for all taps or 1 to number of CCD taps for individual tap selection.
get ssf		Returns the current line/ frame rate in Hz.
get ssg	t	Returns the current digital gain setting. t = tap selection, either 1 to number of CCD taps, or 0 for all taps
get stg		Returns the current number of CCD integration stages.
get sut		Returns the current upper threshold value.
get svm		Returns the current video mode. 0: Normal video mode 1: Test pattern 2: Test pattern 3: Test pattern
get tdi		Returns the camera's current operating mode. 0: Area Mode 1: TDI Mode
get ugr		Returns the gain reference value
get vt		Returns the camera's internal chip temperature in degrees Celsius.
get vv		Returns the camera's supply voltage.
get wfc		Returns whether FPN coefficients have been saved. 0 = No FPN coefficients saved 1 = Pixel coefficients have been saved
get wpc		Returns whether PRNU coefficients have been saved. 0 = No PRNU coefficients saved 1 = Pixel coefficients have been saved
get wus		Returns whether user settings have been saved. 0 = No user settings saved 1 = User settings have been saved

4

Optical and Mechanical

4.1 Lens Mounts

Model Number Ler All models M7

Lens Mount Options M72x0.75 thread.

4.2 Optical Interface

Illumination

The amount and wavelengths of light required to capture useful images depend on the particular application. Factors include the nature, speed, and spectral characteristics of objects being imaged, exposure times, light source characteristics, environmental and acquisition system specifics, and more. The Knowledge Ceneter page on our Web site, www.teledynedalsa.com/mv/knowledge/appnotes.aspx, provides an introduction to this potentially complicated issue. See "Radiometry and Photo Responsivity" and "Sensitivities in Photometric Units" in the CCD Technology Primer found under the Application Support link.

It is often more important to consider exposure than illumination. The total amount of energy (which is related to the total number of photons reaching the sensor) is more important than the rate at which it arrives. For example, $5\mu J/cm^2$ can be achieved by exposing $5mW/cm^2$ for 1ms just the same as exposing an intensity of $5W/cm^2$ for 1 μ s.

Light Sources

Keep these guidelines in mind when setting up your light source:

- LED light sources are relatively inexpensive, provide a uniform field, and longer life span compared to other light sources. However, they also require a camera with excellent sensitivity, such as the ES-xx camera.
- Halogen light sources generally provide very little blue relative to infrared light (IR).
- Fiber-optic light distribution systems generally transmit very little blue relative to IR.

• Some light sources age; over their life span they produce less light. This aging may not be uniform—a light source may produce progressively less light in some areas of the spectrum but not others.

Filters

CCD cameras are extremely responsive to infrared (IR) wavelengths of light. To prevent infrared from distorting the images you scan, use a "hot mirror" or IR cutoff filter that transmits visible wavelengths but does not transmit wavelengths over 750nm. Examples are the Schneider Optics[™] B+W 489, which includes a mounting ring, the CORION[™] LS-750, which does not include a mounting ring, and the CORION[™] HR-750 series hot mirror.

Lens Modeling

Any lens surrounded by air can be modeled for camera purposes using three primary points: the first and second principal points and the second focal point. The primary points for a lens should be available from the lens data sheet or from the lens manufacturer. Primed quantities denote characteristics of the image side of the lens. That is, h is the object height and h' is the image height.

The *focal point* is the point at which the image of an infinitely distant object is brought to focus. The *effective focal length* (f') is the distance from the second principal point to the second focal point. The *back focal length* (*BFL*) is the distance from the image side of the lens surface to the second focal point. The *object distance* (*OD*) is the distance from the first principal point to the object.

Figure 27: Primary Points in a Lens System

4.3 Mechanical Interface

Appendix A

Error Handling and Command List

A1 Error Handling

The following table lists warning and error messages and provides a description and possible cause. Warning messages are returned when the camera cannot meet the full value of the request; error messages are returned when the camera is unable to complete the request.

Table 21: Warning and Error Messages

wurning messuges

Camera Response	Comment
OK>	Camera executed command
Warning 01: Outside of specification>	Parameter accepted was outside of specified operating range (e.g. gain greater than ± 10 dB of factory setting, or SSF below specification).
Warning 02: Clipped to min>	Parameter was clipped to the current operating range. Use GCP or GET to see value used.
Warning 03: Clipped to max>	Parameter was clipped to the current operating range. Use GCP or GET to see value used.
Warning 04: Related parameters adjusted>	Internal operating condition is adjusted to accommodate the entered command. E.g. requesting exposure time longer than line time automatically adjusts the line time to meet the exposure time requirement.
Warning 07: Coefficient may be inaccurate A/ D clipping has occurred>	In the region of interest (ROI) greater than 6.251% single or 1% of averaged pixel values were zero or saturated.
Warning 08: Greater than 1% of coefficients have been clipped	Greater than 1% of FPN or PRNU coefficients have been calculated to be greater than the maximum allowable and so were clipped.
Warning 09: Internal line rate inconsistent with read out time>	Changing this parameter (e.g. vertical binning) has changed read out time and that is greater than the <i>internal</i> SYNC

Error Messages		
Camera Response	Comment	
Error 01: Internal error xx>	Where xx is a code list below. Only output during power up. Customer should contact customer support.	
Error 02: Unrecognized command>	Command is not valid.	
Error 03: Incorrect number of parameters>	Too many or too few parameters.	
Error 04: Incorrect parameter value>	This response returned for	
	 Alpha received for numeric or visa versa 	
	• Float where integer expected	
	 Not an element of the set of possible values. E.g., Baud Rate 	
	• Outside the range limit	
Error 05: Command unavailable in this mode>	E.g. SSF when in SEM 3	
Error 06: Timeout>	Command not completed in time. E.g. CCF or CCP in SEM 3 when no external EXSYNC is present.	
Error 07: Camera settings not saved>	> Indicates that user settings have been corrupted by turning off the power while executing the WUS command. Must build up new settings from factory and re-save with WUS.	
Error 08: Unable to calibrate - tap outside ROI>	Cannot calibrate a tap that is not part of the end of line statistics.	
Error 09: The camera's temperature exceeds the specified operating range>	Indicates that the camera has shut itself down to prevent damage from further overheating. (flashing red)	
	Shuts down at internal temperature of 75°C and will not restart until below 65°C (equivalent to 50°C at front plate).	
Error 10: FPGA Flash Program Failed	FCS failed either because of communication error or a bad file was sent.	

Error	Messaae	

A2 Commands: Quick Reference

Parameters:

- t = tap id
- i = integer value
- £ = float
- $\mathbf{m} =$ member of a set
- $\mathbf{s} = string$
- $\boldsymbol{x} = \mathsf{pixel} \ \mathsf{column} \ \mathsf{number}$
- $\mathbf{y} = \mathsf{pixel} \mathsf{ row} \mathsf{ number}$

As a quick reference, the following table lists all of the camera configuration commands available to the camera user. For detailed information on using these commands, refer to Chapter 3. Note: This table does not list "get" commands. Refer to section 3.7.6 Returning Camera Settings for a list of these commands.

Table 22: Command Quick Reference				
Mnemonic	Syntax	Parameters	Description	
calibrate analog offset	cao	ti	Calibrates the analog gain and averages each tap's pixels within the ROI to the specified average target value.	
			t = tap selection, either 1 to number of CCD taps, or 0 for all taps	
			i = target value in a range from 0 to255DN (12-bit LSB)	
			Refer to Analog Signal Processing: Setting Analog Gain and Offset for details.	
correction calibrate fpn	ccf		Performs FPN calibration and eliminates FPN noise by subtracting away individual pixel dark current.	
			Refer to Digital Signal Processing and Processing Chain Overview and Description for details.	

Mnemonic	Syntax	Parameters	Description
calculate camera gain	ccg	iti	Calculates the camera gain according to the selected algorithm. i = Calibration algorithm to use. 1 = This algorithm adjusts analoggain so that 8% to 13% of tap ROIpixels are above the specified targetvalue. $2 = This algorithm adjusts analoggain so that the average pixel valuein tap's ROI is equal to thespecified target value. 3 = This algorithm adjusts digitalgain so that the average pixel valuein tap's ROI is equal to thespecified target. 4 = This algorithm adjusts theanalog gain so that the peak tapROI pixels are adjusted to thespecified target. t = Tap value. Use 0 for all taps or 1to number of CCD taps for individualtap selection.i = Calibration target value in a rangefrom: Algorithm 1 and 2: 1024 to 4055DN(12 bit LSB). Algorithm 3: 4095 to 65535. Thedigital video values are multiplied bythis value where: Digital Gain = \frac{i}{4096}$
correction calibrate prnu	сср		Performs PRNU calibration and eliminates the difference in responsivity between the most and least sensitive pixel creating a uniform response to light. Refer to Digital Signal Processing and Processing Chain Overview and Description for details.

Mnemonic	Syntax	Parameters	Description
camera link mode	clm	m	 Sets the Camera Link configuration, number of Camera Link taps, and data bit depth. 2: Base configuration, 2 taps, 8 bit output 3: Base configuration, 2 taps, 12 bit output 15: Medium configuration, 4 taps, 8 bit output 16: Medium configuration, 4 taps, 12 bit output 21: Full configuration, 8 taps, 8 bit output Refer to section 3.4.2 Setting the Camera Link Mode for details.
calculate PRNU algorithm	cpa	i i	Performs PRNU calibration according to the selected algorithm. The first parameter is the algorithm where i is: 1 = This algorithm first adjusts each tap's analog gain so that 8-13% of pixels within a tap are above the value specified in the target value parameter. PRNU calibration then occurs using the peak pixel in the region of interest. (Identical to ccp) 2 = Calculates the PRNU coefficients using the entered target value as shown below: PRNU Coefficient = Target (AVG Pixel Value) - (FPN+sdo value)The calculation is performed for all sensor pixels but warnings are only applied to pixels in the region of interest. This algorithm is useful for achieving uniform output across multiple cameras. 3 = This algorithm includes an analog gain adjustment prior to PRNU calibration. Analog gain is first adjusted so that the peak pixel value in tap's ROI is within 97 to 99% of the specified target value. It then calculates the PRNU coefficients using the target value as shown below: PRNU Coefficient, = Target

Mnemonic	Syntax	Parameters	Description
			The calculation is performed for all sensor pixels but warnings are only applied to pixels in the region of interest. This algorithm is useful for achieving uniform output across multiple cameras. 4 = This algorithm is the same as 2 with the exception that it only calculates PRNU for the pixels within the current Region of Interest (ROI). The second parameter is the target value to use in a range from 1024 to 4055 DN.
correction set sample	CSS	m	Set number of line samples averaged for pixel coefficient calculations or for output of gla command. Values: 256 , 512 , 1024 . Factory setting: 1024 Refer to Returning Averaged Lines of Video on page 77 for details.
display pixel coeffs	dpc	x1 x2	Displays the pixel coefficients in the order FPN, PRNU, FPN, PRNU, x1 = Pixel start number x 2= Pixel end number in a range from 1 to sensor pixel count .
end of line sequence	els	i	Sets the end-of-line sequence: 0 : Off 1 : On Refer to Refer to 3.5.3 End-of-line Sequence for details.
enable pixel coefficients	epc	ιi	 Sets whether pixel coefficients are enabled or disabled. The first parameter sets the FPN coefficients where i is: 0 = FPN coefficients disabled 1 = FPN coefficients enabled The second parameter sets the PRNU coefficients where i is: 0 = PRNU coefficients disabled 1 = PRNU coefficients enabled Refer to section Enabling and Disabling Pixel Coefficients on page 67 for details.
get camera model	gcm		Reads the camera model number.
get camera parameters	gcp		Reads all of the camera parameters.
get camera serial	gcs		Read the camera serial number.
get camera version	gcv		Read the firmware version and FPGA version.

Piranha ES-xx User Manual

Mnemonic	Syntax	Parameters	Description
get exposure mode	gem		Retrieves the current camera exposure mode.
get fpn coeff	gfc	x	Read the FPN coefficient x = pixel number to read in a range from 1 - sensor pixel count . Refer to Returning FPN Coefficients on page 62 for details.
get line	gl	х х	Gets a line of raw video (no digital processing or test pattern) displaying one pixel value after another and the minimum, maximum, and mean value of the sampled line. x = Pixel start number x = Pixel end number in a range from 1 to sensor pixel count. Refer to Returning a Single Line of Video on page 76 for details.
get line average	gla	х х	Read the average of line samples. x = Pixel start number x = Pixel end number in a range from 1 to sensor pixel count . Refer to Returning Averaged Lines of Video on page 77 for details.
get prnu coeff	gpc	x	Read the PRNU coefficient. x = pixel number to read in a range from 1 - sensor pixel count .
get signal frequency	gsf	i	Reads the requested Camera Link control frequency. 1 = EXSYNC frequency 2 = Spare 3 = Direction (1 = forward, 2 = reverse) 4 = Spare
help	h		Display the online help. Refer to section for details.
load pixel coefficients	lpc		Loads the previously saved pixel coefficients from non-volatile memory where <i>i</i> is: 0 = Factory calibrated coefficients 1 = Coefficient set one 2 = Coefficient set two 3 = Coefficient set three 4 = Coefficient set four
reset camera	rc		Reset the entire camera (reboot). Baud rate is not reset and reboots with the value last used.

Mnemonic	Syntax	Parameters	Description
restore factory settings	rfs		Restore the camera's factory settings. FPN and PRNU coefficients reset to 0. Refer to section 3.6 Saving and Restoring Settings for details.
region of interest	roi	хуху	Sets the pixel range affected by the cag , cao , g1 , g1a , ccf , cpa and ccp commands. The parameters are the pixel start and end values (x) and the column start and end values (y) in a range from 1 to sensor pixel count . Refer to section 3.5.1 Setting a Region of Interest for details.
reset pixel coeffs	rpc		Reset the pixel coefficients to 0. Refer to section Enabling and Disabling Pixel Coefficients on page 67 for details.
restore user settings	rus		Restore the camera's last saved user settings and FPN and PRNU coefficients. Refer to section 3.6 Saving and Restoring Settings for details.
set analog gain	sag	tf	Sets the analog gain in dB. t = Tap value. 0 for all taps or 1- number of CCD taps for individual tap selection. f= gain value specified from -10 to +10 Refer to Analog Signal Processing: Setting Analog Gain and Offset on page 54 for details.
set analog offset	sao	ti	Sets the analog offset. t = 0 for all taps or 1 to number of CCD taps for individual tap selection. i= Offset value in a range from 0 to 255 (12-bit LSB). Offset increases with higher values. Refer to Analog Signal Processing: Setting Analog Gain and Offset for details.
set binning horizontal	sbh	m	Sets the horizontal binning value. Available values are 1 , 2 , 4 , or 8 . Refer to section 3.3.4 Increasing Sensitivity with Binning on page 37 for details.
set baud rate	sbr	i	Set the speed of camera serial communication port. Baud rates: 9600 , 19200 , 57600 , and 115200 . Default: 9600. Refer to section Setting Baud Rate on page 30 for details.

Piranha ES-xx User Manual

Mnemonic	Syntax	Parameters	Description
set binning vertical	sbv	m	Sets the vertical binning value. Available values are: 1 to 8 (ES-80) 1 to 4 (ES-82) Refer to section 3.3.4 Increasing Sensitivity with Binning on page 37 for details.
set ccd direction	scd	i	 Sets the CCD shift direction where: 0 = Forward TDI shift direction. 1 = Reverse TDI shift direction. 2 = Externally controlled direction control via Camera Link control CC3. Available only in TDI Mode
set digital offset	sdo	ti	Subtracts the input value from the video signal prior to FPN correction. t = Tap value. 0 for all taps or 1- number of CCD taps for individual tap selection. i = Offset in a range from 0 to 511DN. Refer to Setting Digital Offset on page62 for details.
set exposure mode	sem	m	 Set the exposure mode: 3 = External SYNC, maximum exposure time 7 = Internal programmable SYNC, maximum exposure time. Factory setting.
set fpn coeff	sfc	хі	Set the FPN coefficient. x =pixel number within the range 1 to sensor pixel count . i = FPN value within the range 0 to 511 (12-bit LSB). Refer to Performing FPN Correction on page 62 for details.
set fpn range	sfr	ххі	Set a range of pixel FPN coefficients x =first pixel number of the range. x =last pixel number of the range i =coefficient value in a range from 0 to 2048 . Refer to Setting a Range of FPN Coefficients on page 62 for details.
set lower threshold	slt	i	The pixels below the lower threshold are checked for and reported in the end-of-line sequence in a range from 0- 4095 . Refer to section 3.5.3 End-of-line Sequence for details.

Mnemonic	Syntax	Parameters	Description
set mirror mode	smm	i	 Set the camera's mirror mode: 0: Pixels readout left to right (1 to 4096 or 8192) 1: Pixels readout right to left (8092 or 4096 to 1) Refer to 3.4.4 Setting the Pixel Readout
set output throughput	sot	m	 Direction for details. This command works in conjunction with the clm command and determines the Camera Link strobe rate. 40 = 2 taps at 20MHz 80 = 2 taps at 40MHz 80 = 4 taps at 20MHz 160 = 2 taps at 80MHz or 4 taps at 40MHz 320 = 4 taps at 80MHz or 8 taps at 40MHz 640 = 8 taps at 80MHz Refer to section 3.4.3 Setting the Camera Throughput for details on using this command. Available settings are dependent on your camera model.
set pretrigger	spt	i	Set the pretrigger to a value from 0 to 16 .
set prnu coeff	spc	хі	Set the PRNU coefficient. x =pixel number within the range 1 to sensor pixel count . i = PRNU value within the range 0 to 28671 .
set prnu range	spr	ii x	Set a range of pixel PRNU coefficients i=first pixel number of the range i=last pixel number of the range x=coefficient value in a range from 0 to 28671. Refer to Setting a Range of PRNU Coefficients on page 65 for details.
set subtract background	ssb	ti	Subtract the input value from the output signal. t = Tap value. 0 for all taps or 1 to number of CCD taps for individual tap selection. i = Subtracted value in a range from 0 to 4095 . Refer to Subtracting Background on page 61 for details.

Mnemonic	Syntax	Parameters	Description
set sync frequency	ssf	i	Set the frame rate to a value from: TDI ES-80-08k40: 3499.56-34305.3 ES-80-08k80: 3499.87-68610.6 ES-80-04k40: 3499.87-68610.6 ES-82-04k40: 3499.87-55020.6 ES-82-04k80: 3499.87-11111.0 Area ES-80-08k40: 1-3084.5 ES-80-08k80: 1-6169.0 ES-80-04k40: 1-6169.0 ES-82-04k40: 1-1084.7 ES-82-04k80: 1-2080.7 Value rounded up/ down as required. Refer to Setting Frame Rate on page 41 for details.
set system gain	ssg	ti	Set the digital gain. t = tap selection, either 1 to number of CCD taps, or 0 for all taps i = Digital gain in a range from 0 to 65535. The digital video values are multiplied by this number. Refer to Setting Digital Gain on page 61 for details.
stage select	stg	i	 Sets the number of TDI stages. Allowable values are: 16 or 32 for ES-80 models 8 or 16 for ES-82 models Refer to 3.3.2 Selecting the Number of CCD Integration Stages for details.
set upper threshold	sut	i	The pixels equal to or greater than the upper threshold are checked for and reported in the end-of-line sequence in a range from 0-4095 . Refer to 3.5.3 End-of-line Sequence for details.
set video mode	SVM	i	 Switch between normal video mode and test patterns: 0: Normal video mode 1: Test pattern 2: Test pattern 3: Test pattern Refer to section 3.7.1 Generating a Test Pattern for details.
set TDI mode	tdi	i	Set the camera's operating mode. 0: Area Mode 1: TDI Mode Refer to section 3.5.1 for details.

Mnemonic	Syntax	Parameters	Description
update gain reference	ugr		Changes 0dB gain to equal the current analog gain value set with the sag command. Refer to section Analog Signal Processing: Setting Analog Gain and Offset for details.
verify temperature	vt		Check the internal temperature of the camera
verify voltage	vv		Check the camera's input voltages and return OK or fail
write FPN coefficients	wfc	ì	 Write all current FPN coefficients to EEROM where <i>i</i> is: 1 = FPN coefficient set one 2 = FPN coefficient set two 3 = FPN coefficient set one 4 = FPN coefficient set two Refer to section 3.6.2 Saving and Restoring PRNU and FPN Coefficients for details.
write PRNU coeffs	wpc	i	 Write all current PRNU coefficients to EEROM where <i>i</i> is: 1 = PRNU coefficient set one 2 = PRNU coefficient set two 3 = PRNU coefficient set one 4 = PRNU coefficient set two Refer to section 3.6.2 Saving and Restoring PRNU and FPN Coefficients for details.
write user settings	wus		Write all of the user settings to EEROM. Refer to section 3.6.1 Saving and Restoring Factory and User Settings for details.

Appendix **B**

EMC Declaration of Conformity

NOTE: PENDING

We,

Teledyne DALSA 605 McMurray Rd., Waterloo, ON CANADA N2V 2E9

declare under sole responsibility, that the product(s):

ES-80-04k40-00-R ES-80-08k40-00-R ES-80-08k80-00-R

ES-82-04K40-00-R ES-82-04K80-00-R

fulfill(s) the requirements of the standard(s)

CISPR-22:1997 EN 50082-1:1997 EN 61000-4-2; +/- 6kV CD, +/-8kV AD:1995 EN 61000-4-3; 3V/m:1996 EN 61000-4-4; 500V, 1100V:1995

This product complies with the requirements of the Low Voltage Directive 73/23/ EEC and the EMC Directive 89/336/ EEC and carries the CE mark accordingly.

Place of Issue Waterloo, ON, CANADA

Date of Issue

April 2005

Name and Signature of authorized person

EMC:

Hank Helmond Quality Manager, Teledyne DALSA Corp.

Hund

This Declaration corresponds to EN 45 014.

Appendix C

Revision History

Rev Number	Change Description	Date
00	Preliminary release	April 30, 2009
01	ES-82 models added to manual.	February 10, 2010
02	 -Revised mechanical diagram added with sensor alignment measurement taken from tooling holes on front plate. -ES-80-04K40 listed maximum line rate revised to the correct value of 68 KHz. -Base Camera Link modes 2 and 3 added to ES-80-08k40 model description. 	April 11, 2011

Index

A

applications, 6 Area Mode, 35

В

binning, 37 horizontal, 37 vertical, 38

С

calibrating the camera, 53, 58 calibration errors, 66 overview, 58 results, 66 steps, 59 camera dimensions, 87 messages, 89 output configuration, 42 camera control signals, 26 Camera Link connector, 25 mode, 48 outputs, 26 camera settings current, 69 factory, 69 restoring, 69 retrieving, 78 saving, 69 user, 69 clocking signals, 26 coefficients diabling, 67 enabling, 67 loading, 67 resetting, 67 command format, 30 parameters, 30 commands, 34 list, 91 conectors Camera Link, 25 connectors, 23 Hirose, 25

power, 25

D

data bus, 26 data rate, 8, 10, 13, 15, 18 digital signal processing, 61 direction externally controlled, 36 web movement, 36 DVAL, 26 dynamic range, 8, 10, 13, 15, 18

E

electrical specs, 7, 10, 12, 15, 17 EMC Declaration of Conformity, 101, 103 end-of-line sequence, 67 error messages, 89 exposure modes overview, 39 EXSYNC, 26 external trigger, 26

F

fiber-optic light sources, 85 filters, 86 flat field correction, 54–60 FPN, 8, 9, 11, 13, 16, 18, 58 FVAL, 26

G

gain, 5, 8, 10, 11, 13, 15, 16, 18, 52, 55, 57 analog, 58 gain ranges, 8, 10, 13, 15, 18

Η

halogen light sources, 85 help, 30 Hirose connector, 25 hot mirror, 86

illumination, 85 input/ output, 23 inputs (user bus), 26 installation, 23 interface electrical, 7, 10, 12, 15, 17 mechanical, 7, 10, 12, 15, 17 optical, 7, 9, 12, 14, 17, 85

L

LED, 24 lens modeling, 86 light sources, 85 line rate, 8, 10, 13, 15, 18 line statistics, 76 LVAL, 26

Μ

MDR26 connector, 23 mechanical drawing, 87 mechanical specs, 7, 10, 12, 15, 17 mode Area, 35 TDI, 35 models, 6

Ν

NEE, 8, 11, 13, 16, 18

0

offset optimizing, 52 online help, 30 operating modes, 38 optical interface, 85 optical specs, 7, 9, 12, 14, 17 output signals, 26

P

performance specifications, 7 pixel rate, 43, 45, 46, 47, 48 pixel readout, 50 pixel statistics, 76 power connectors, 25 guidelines, 25 pretrigger, 51 PRNU, 58

R

readout configuring, 42 direction, 49 mirroring, 49 rebooting, 72 resolution, 7, 9, 12, 14, 17 responsivity, 8, 11, 13, 16, 18 roi. See Region of Interest

S

SEE, 8, 11, 13, 15, 18 sensitivity level, 35 sensor, 20 serial interface, 29 defaults, 29 settings factory, 33 statistics, 76 STROBE, 26

T

tap readout direction, 49 TDI Mode, 35 temperature measurement, 77 test patterns, 73 timing, 27, 28 camera, 27, 28 Camera Link, 27, 28 mode 3, 40 mode 7, 40 trigger external, 26

V

video data, 77 voltage measurement, 78

W

warning messages, 89