
A LATEX macro package for Message Sequence Charts
User Manual

Victor Bos Ton van Deursen Piotr Kordy Sjouke Mauw
Université du Luxembourg Université du Luxembourg Université du Luxembourg

victor.bos@ssf.fi ton.vandeursen@uni.lu piotr.kordy@uni.lu sjouke.mauw@uni.lu

Version A2.0, last update June 3, 2014

Describing MSC macro package version 2.0

Abstract

The MSC macro package facilitates the LATEX user to easily include Message Sequence
Charts in his texts. This document describes the design and use of the MSC macro
package.

Contents

1 New 2

2 Introduction 3

3 Background and motivation 3

4 Installation, copyright and system requirements 4

5 Quick start 5

6 Use of the MSC macro package 6
6.1 Options . 6
6.2 The MSC frame . 6
6.3 Levels . 7
6.4 Instances . 7
6.5 Messages . 9
6.6 Comments . 10
6.7 Actions . 12
6.8 Timers . 13
6.9 Time measurements . 14
6.10 Lost and found messages . 15
6.11 Conditions . 15
6.12 Generalized ordering . 16
6.13 Instance regions . 17
6.14 Instance creation and instance stop . 18
6.15 MSC references . 19

1

6.16 Inline expressions . 20
6.17 Gates . 21
6.18 High-level MSCs . 22
6.19 MSC documents . 25

7 Style parameters 26

8 Example 26

9 Acknowledgments 27

1 New

Version 2.00 is the result of a complete rewrite of the package. The main difference is
that the package is now implemented in TikZ instead of PSTricks, making it compatible
with pdfLaTex and beamer.

In addition the syntax has been slightly extended. It now supports the specification
of all options as a comma separated list in square brackets, while remaining backward
compatible. All lengths are now stored using pgf keys. As a result it is possible to change
sizes of shapes individually. Support for colors is added.

We are much indebted to Adrian Farmadin (Masaryk University, Czech Republic) for
initiating and contributing to this software rehaul.

Version 1.17 slightly modifies the handling of the offset argument of the \mess,
\setstoptimer, and \settimeout commands. All commands with an offset argument
can now properly handle real numbers as argument. Furthermore, the \topheaddist,
\firstlevelheight, and \instheadheight lengths are now taken into account when
computing the height of the instance and the \gatesymbolradius length is now properly
implemented.

The \condition* macro is now extended to dynamically resize a condition symbol
that spans multiple instances. The \condition* and \action* macros, introduced in the
previous release, no longer shrink to a size smaller than their non-starred counterparts.
The \condition and \action have crossed-out counterparts \ncondition and \naction

respectively.
A variation to the \stop command is implemented. Rather than drawing a cross to

denote that an instance has stopped, the \stop* command draws an instance footer.
Finally, the \create command no longer requires the creator parameter to be specified.

If it is not specified, no arrow is drawn from the creator to the dynamically created instance.

Version 1.16 solves a bug that was due to a change in syntax of the scalebox macro in
the PSTricks package.

The \action and \condition macros are extended with a starred option. The starred
version of the macros automatically adjusts the size of the rectangle and hexagon based on
the size of the contents.

Version 1.13 has a reimplementation of message commands in MSC diagrams. The
affected commands are: \create, \found, \lost, \mess, and \order. The new implemen-
tation provides more control over the placement of message labels.

2

The command \selfmesslabelpos has been removed.
The bounding box bug has been partly solved. Now, a white \fbox is drawn around

every (msc, mscdoc, hmsc) diagram. This makes it possible for dvips -E to compute the
correct bounding box for the diagrams. Due to the \fbox, each diagram is extended with
0.3pt on each side (left, top, right, and bottom). This bugfix fails if the background is not
white. The xdvi program shows the white \fbox in black with the result that diagrams
have two visible frames. This seems to be a bug of xdvi.

The lines around comments (\msccomment, Section 6.6) are changed from gray into
black. The reason for this is that the gray lines became invisible after converting the
document to HTML.

2 Introduction

The MSC language is a visual language for the description of the interaction between
different components of a system. This language is standardized by the ITU (International
Telecommunication Union) in Recommendation Z.120 [2]. An introductory text on MSC
can be found in [5]. MSCs have a wide application domain, ranging from requirements
specification to testing and documentation. An example of a Message Sequence Chart is in
Figure 1.

In order to support easy drawing of MSCs in LATEX documents, we have developed the
MSC macro package. The current version of the MSC macro package supports the following
MSC constructs: MSC frame, instances (both single line width and double line width),
messages (including self-messages and messages to the environment), actions, singular and
combined timer events (set, timeout, reset, set-timeout, set-stop), lost and found messages,
generalized order, conditions, coregions, activation regions, suspension regions, gates,
instance creation, instance stop, time measurements, references, and inline expressions. In
addition, there is support for HMSC’s (high-level MSCs) and MSCdocs.

In this manual we explain the design and the use of the MSC macro package. For a
complete overview of all features, we refer to the reference manual [1], which is included in
the distribution under the name refman.ps. Another way to learn how to use the MSC
macro package is to have a look at the LATEX source code of the manual and the source code
of the reference manual. They are included in the distribution under the names manual.tex
and refman.tex, respectively. The MSC constructs are simply introduced as syntactic
constructs. This paper is not meant to describe their use or meaning.

We list the backgrounds of the package and some design decisions in Section 3. Section 4
contains notes on installing the package. Section 5 contains an example of using the
package. It allows the impatient reader to quickly start using the package. The details of
using the package are explained in Section 6. In Section 7 the parameters are explained
which determine detailed layout of the various symbols. A large but meaningless example
is given in Section 8.

3 Background and motivation

Several commercial and non-commercial tools are available, which support drawing or
generating Message Sequence Charts. However, these tools are in general not freely
available and often not flexible enough to satisfy all user’s wishes with respect to the layout
and graphical appearance of an MSC. Therefore, people often use general drawing tools,

3

such as xfig to draw MSCs. However flexible this approach is, it takes quite some effort to
produce nice MSC drawings in a tool which is not dedicated to MSCs. Furthermore, when
drawing a number of MSCs it requires some preciseness in order to obtain a consistent set
of MSCs.

For these reasons, we have started the design of a set of LATEX macros which support
the drawing of MSCs. In this way, an MSC can be represented in LATEX in a textual format
and compiled into e.g. PostScript.

We aimed at satisfying the following requirements and design decisions.

• The package should follow the ITU standard with respect to shape and placement of
the symbols. (The current version supports the MSC2000 standard.)

• Static and dynamic semantics are not considered. The user is allowed to violate all
semantical restrictions and draw inconsistent MSCs. The package only supports ele-
mentary syntactical requirements.

• The package should offer functionality at the right level of abstraction. Rather than
supplying coordinates of pixels, the user should be able to express the placement of
symbols in terms of levels. Nevertheless, the textual representation of MSCs as defined
by the ITU standard has a level of abstraction which is too high for our purposes. It
lacks information about the actual positioning of the MSC symbols, while we think
that in our package this should be under user control.

• There should be only minimal automatic restructuring and layout of the MSC (e.g.
the relative positioning of two messages should be as defined by the user, even if the
messages are not causally ordered).

• The user can customize the appearance of the MSCs by manipulating an appropriate
set of parameters.

4 Installation, copyright and system requirements

The MSC macro package is still under development. The authors appreciate any comments
and suggestions for improvements. The most recent version of the package can be downloaded
from http://satoss.uni.lu/mscpackage/.

The MSC macro package has a LaTeX Project Public License (LPPL), see http:

//www.latex-project.org/lppl.txt: As such, it is free of charge and can be freely
distributed. Furthermore, it is allowed to make modifications to the package, provided that
modified versions get different names. The authors accept no liability with respect to the
functioning of the package.

The MSC macro package runs with LATEX 2ε. It has been tested with LATEX 2ε version
dated 1998/06/01 using TEX version 3.14159. The following additional packages are
required: tikz, calc, and xstring. These packages are in general part of the standard LATEX 2ε
distribution. These additional packages can be obtained from the ctan database for LATEX
e.g. via the following URL: http://www.tex.ac.uk/. The tikz package is described shortly
in [4] or in the pgfmanual [6]. The generated output can be previewed with pdf/ps
previewing software. It may be needed to update all LATEX related software to a more recent
version in order to smoothly work with the MSC macro package.

The MSC macro package can be installed easily. Just put the file msc.sty in a directory
which is searched by LATEX for style files. The set of directories actually searched depends

4

http://satoss.uni.lu/mscpackage/
http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt
http://www.tex.ac.uk/

on the TEX installation, but often the current directory is included. UNIX users may have
to set the environment variable $TEXINPUTS to an appropriate value. For more details on
this topic consult documentation of your TEX installation.

5 Quick start

The MSC macro package is easy to use. Below is an example of the use of the package and
Figure 1 shows the generated MSC. The MSC macro package is activated by the clause

User

control

Machine 1

drill

Machine 2

startm1 startm2

free
output

msc Example

log

\begin{msc}{Example}

\declinst{usr}{User}{}

\declinst{m1}{Machine 1}{control}

\declinst{m2}{Machine 2}{drill}

\mess[label position=below]

{startm1}{usr}{m1}

\nextlevel

\mess{startm2}{m1}{m2}

\nextlevel

\mess{log}{m1}{envleft}

\nextlevel

\nextlevel

\mess{output}{m2}{usr}[2]

\mess{free}{m1}{usr}

\nextlevel

\end{msc}

Figure 1: The generated MSC

\usepackage{msc}. This package contains, among others, a definition of the environment
msc. This environment is used to draw MSCs. The MSC definition is surrounded by
the clauses \begin{msc}{Example} and \end{msc}. The name of the MSC, Example, is
displayed in the upper-left corner of the MSC.

The next four lines define the instances: \declinst{m1}{Machine 1}{control} defines
an instance with 〈nickname〉 m1 and a description consisting of two parts, namely, Machine
1 and control. The nickname is used in all subsequent references to this instance. The
first part of the description is drawn above the rectangular instance head symbol, and the
second part of the description is drawn inside the instance head symbol.

The following lines contain the definitions of the messages. Every message has a source
and a destination instance. The clause \mess[label position=below]{startm1}{usr}{m1}

defines a message with name startm1, which goes from instance usr to instance m1. Between
square brackets we can put optional list of options. Each option is comma separated from
another option. In this example we specify the placement of the label to be below the
message arrow.

In order to control the vertical placement of the messages, the MSC is divided into levels.
At every level, any number of messages may start. The vertical position of the end point
of a message is determined by the optional fourth argument of the message definition, as in
the clause \mess{output}{m2}{user}[2]. This argument is the vertical offset (in number
of levels) between the start point of the message (i.e., the current level) and its end point.
If the value is 0 the message is drawn horizontally. A negative offset means that the arrow

5

has an upward slope. Equivalently we could specify this value using option: \mess[level

shift=2]{output}{m2}{user}.
The clause \nextlevel is used to advance to the next level.

6 Use of the MSC macro package

6.1 Options

Each command supported by the MSC macro package can be provided with a list of options.
A list of options is surrounded by square brackets and options are separated by a comma. In
fact options are pgf keys and the parsing of options is done internally by the TikZ package.
All keys defined by the MSC macro package are prefixed by the /msc keyword. When a key
is not fully specified (i.e., it is specified without the /msc, /tikz or some other prefix) the
package will search first for the keys in the /msc namespace and if no key is found it will
search the default /tikz name space.

In the description below, optional arguments are marked in green.

6.2 The MSC frame

The msc environment is used for making MSC definitions. Thus, such a definition looks as
follows.

\begin{msc}[〈options〉]{〈msc name〉}
〈environment contents〉

\end{msc}

This declares the msc environment. The frame and the header of the MSC are drawn.
The argument 〈msc name〉 is the name of the MSC. The header of an MSC is formed
from the keyword msc, followed by the 〈msc name〉.
The size of the MSC frame is determined vertically by the number of levels occurring
in the MSC (see Section 6.3) and horizontally by the number of instances (see Sec-
tion 6.4).

/msc/title position=〈position〉 (no default, initially left)
Controls the position of the header of the MSC. Possible values of 〈position〉 are:
left, right, and center.

/msc/msc keyword=〈keyword〉 (no default, initially msc)
Specifies the 〈keyword〉 in the header.

/msc/title distance=〈distance〉 (no default, initially 0.2cm)
Specifies the 〈distance〉 between left/right side of the frame and the MSC header.

/msc/title top distance=〈distance〉 (no default, initially 0.2cm)
Specifies the 〈distance〉 between top of the frame and the (top of the) MSC header.

/msc/left environment distance=〈distance〉 (no default, initially 2cm)
Specifies the 〈distance〉 between the left-most instance and the left side of the
frame.

/msc/right environment distance=〈distance〉 (no default, initially 2cm)
Specifies the 〈distance〉 between the right-most instance and the right side of the
frame.

6

/msc/environment distance (no value)
Sets the keys right environment distance and left environment distance to
the provided value.

/msc/instance distance=〈distance〉 (no default, initially 0.6cm)
Sets the 〈distance〉 between the (vertical) instance lines.

/msc/draw frame=〈colour〉 (default , initially)
Sets the colour of the frame. If you do not want to draw a frame, set 〈colour〉 to
none. When 〈colour〉 is empty, then the last colour is used, usually black.

/msc/draw grid=〈grid type〉 (default grid, initially none)
Specifies if we want to draw the help grid in msc. Possible values for 〈grid type〉
are grid, color grid and none.

6.3 Levels

An MSC is vertically divided in levels. All events in an MSC are attached to a certain
level, or stretch out over several levels. Any number of events can be drawn at a certain
level. An event will always be drawn (or started) at the current level, unless a level offset
is specified (see e.g. the \mess command in Section 6.5). The 〈level offset〉 is a positive
integer number, which denotes at which level, relative to the current level, an event should
be drawn. Drawing starts at level 0. The following command is used to advance to the next
level.

\nextlevel[〈level offset〉]
The 〈lever offset〉 is a positive integer value which denotes the number of levels to
advance. By default, the value of 〈lever offset〉 is 1, which means drawing continues at
the next level.

The following keys influence the \nextlevel command:

/msc/first level height=〈distance〉 (no default, initially 0.6cm)
Specifies the 〈distance〉 between the instance start symbol and the first level.

/msc/level height=〈distance〉 (no default, initially 0.5cm)
Specifies the 〈distance〉 between two consecutive levels.

/msc/last level height=〈distance〉 (no default, initially 0.4cm)
Specifies the 〈distance〉 between the last level and the instance end symbol.

Figure ?? on page ?? shows all lengths of the MSC macro package.

6.4 Instances

All instances have to be declared before they can be used. An instance consists of an instance
head symbol with an associated name, an instance axis and an instance end symbol. Normal
instances have a single line axis. Fat instances have a double line axis. The order of the
instance declarations determines the order in which the instances occur in the drawing.

An instance is declared with the following command.

\declinst*{〈nickname〉}{〈instance name above〉}{〈instance name within〉}
The starred version produces a fat instance. The 〈nickname〉 is used for referring to
this instance in the rest of the MSC definition. The 〈instance name above〉 is put above
the instance head symbol. The 〈instance name within〉 is put inside the instance head
symbol. MSC definition.

7

The keys associated with the command:

/msc/head height=〈height〉 (no default, initially 0.55cm)
Specifes the minimum 〈height〉 of the instance head symbol.

/msc/instance width=〈width〉 (no default, initially 1.6cm)
Specifes the minimum 〈width〉 of the instance head symbol.

/msc/head top distance=〈distance〉 (no default, initially 1.3cm)
Specifes the 〈distance〉 between top of the head symbols and frame.

/msc/foot height=〈height〉 (no default, initially 0.2cm)
Specifes the 〈height〉 of the instance foot symbol.

/msc/foot distance=〈distance〉 (no default, initially 0.7cm)
Specifes the 〈distance〉 between the instance foot symbol and the bottom of the MSC
frame.

/msc/environment distance=〈distance〉 (no default, initially)
Specifies the 〈distance〉 between the edge of the MSC and the first/last instance axis.

/msc/instance width=〈width〉 (no default, initially 1.6cm)
Specifies the 〈width〉 of the instance head and foot symbols.

/msc/label distance=〈distance〉 (no default, initially 1ex)
Specifies the 〈distance〉 between the instance head symbol and the part of the instance
name drawn above the head symbol.

/msc/draw head=〈colour〉 (no default, initially)
Sets the colour of the instance head. If you do not want to draw an instance head, set
〈colour〉 to none. When 〈colour〉 is empty, then the last colour is used, usually black.

The following MSC shows the declaration of an MSC with three instances. The first and
the last are normal instances (one line axis), whereas the second is a fat instance (double
line axis). The optional parameter values small, indicates that the small drawing style
should be used (see Section 7).

within

above
j

k

msc instances \begin{msc}[small values]{instances}

\declinst{i}{above}{within}

\declinst*{j}{}{j}

\declinst{k}{k}{}

\end{msc}

8

6.5 Messages

A message is denoted by an arrow from the sending instance to the receiving instance.
The instances are referred to by their nicknames. A message is defined with the following
command.

\mess*[〈options〉]{〈name〉}{〈sender〉}{〈receiver〉}[〈leveloffset〉]
The 〈name〉 of the message may be any string. The MSC macro package processes the
〈name〉 argument in LR-mode, see [3, page 36]. This means that the string will consist
of one line. To generate multi-line message names, use the standard parbox command,
see the Tricks section in the reference manual [1]. By default, the name of a message
label is drawn above the center of the arrow, but the optional keys label position,
side, and pos influence the actual location, as described below. The arrow starts at the
current level at the sending instance. The arrow ends at the current level plus the level
〈leveloffset〉, at the receiving instance. 〈leveloffset〉 can be also modified by specifying
keys level shift and offset. The 〈sender〉 and 〈receiver〉 should be the nicknames
of declared instances. Messages to or from the environment (i.e., the left or the right
side of the MSC frame) can be specified by setting the sender or the receiver argument
to one of the values envleft or envright. (Note: Since instances and environments
are treated equally in the implementation, at every position where the nickname of an
instance is required, also envleft and envright are allowed.)

In case the sending and the receiving instance are the same, the message is a self message.
A self message is drawn as a polyline connecting the instance axis to itself.

The starred version of the command, \mess*, produces the same result as \mess, except
that the arrow is drawn with a dashed line. This can be used to draw a method reply
(see [2]).

The following keys influence the messages:

/msc/level shift=〈integer〉 (no default, initially 0)
For non-self message, 〈integer〉 determines at which level message should arrive relative
to the starting level of the message.

/msc/offset=〈integer〉 (no default, initially 2)
For self message, 〈integer〉 determines how many levels the message arrow should ad-
vance.

/msc/side=〈side〉 (no default, initially left)
Determine the position of the arrow with respect to the instance axis. Valid values for
〈side〉 are left and right. In case of a non-self message the key is ignored.

/msc/label position=〈position〉 (no default, initially above)
Determines the position of the label.In case of non-self message, valid values for 〈position〉
are above, below, above left, above right, below left and below right. In case
of self message valid values are left and right and the default value is taken from
the value of the key side. As the implementation uses corresponding /tikz keys the
label position= part can be skipped.

/msc/pos=〈real〉 (no default, initially 0.5)
Determines the relative distance of the message label to the beginning of the message.
Valid values for 〈real〉 are real numbers in the closed interval [0, 1]. The key works in
similar way as /tikz/pos key.

9

/msc/self message width=〈width〉 (no default, initially 0.6cm)
Controls the 〈width〉 of the polyline used for drawing self-message.

/msc/label distance=〈distance〉 (no default, initially 1ex)
Specifies the 〈distance〉 between the label of a message and the message arrow. It has
the same effect as specifying the key /tikz/inner sep.

/msc/arrow scale=〈scale〉 (no default, initially 1.5)
The 〈scale〉 specifies by which factor should the message arrow be scaled. Influences all
arrows drawn in msc environment.

In Figure 2 we see MSC that shows an example of the use of messages. In this
sample MSC and the following MSCs in this section we will not list the complete textual
representations of the MSCs. For brevity we omit the environment call and the declarations
of the instances. Note the final \nextlevel command which is needed to make the instance
axis long enough to receive message a.

Figure 3 shows different options that can be used to position label. We use the keys
pos, label position and side to place the labels. Additionally we use /tikz/anchor key,
which is an alternative way to specify the placement of the label (see PGF Manual [6]).

i j k

self b
d

a

msc messages

c

\begin{msc}[small values,head top

distance=0.8cm]{messages}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\mess{a}{j}{i}[3]

\mess{self}{i}{i}[1]

\nextlevel

\mess*{b}{j}{k}

\mess[b]{c}{k}{envright}

\nextlevel

\mess{d}{k}[.6]{i}

\end{msc}

Figure 2: Example showing msc messages

6.6 Comments

Comments are additional texts to clarify (events on) an instance. The following command
can be used to add comments to an MSC diagram.

\msccomment[〈options〉]{〈text〉}{〈instance〉}
The 〈instance〉 parameter defines the instance to which the comment is attached. The
text of the comment is specified by the 〈text〉 parameter and is processed in LR-mode.
The key side affect the horizontal position relative to its instance.

The following key affects the drawing of the comment:

/msc/msccomment distance=〈distance〉 (no default, initially 1.1cm)
Specifies the 〈distance〉 at which the comment will be placed from the 〈instance〉 in-
stance.

10

I0 I1 I2

above

below
south

north

left
right

right left

east west

right left

below left

above right

SW

NE

msc Label reference points \begin{msc}[small values]{Label reference points}

\declinst{m0}{I0}{}

\declinst{m1}{I1}{}

\declinst{m2}{I2}{}

\nextlevel

\mess[label position=above]{above}{m0}{m1}

\nextlevel

\mess[label position=below]{below}{m1}{m2}

\nextlevel[2]

\mess[anchor=south,pos=0.1]{south}{m1}{m0}

\nextlevel

\mess[anchor=north]{north}{m2}{m1}

\nextlevel[2]

\mess[label position=left]{left}{m0}{m0}[2]

\mess[side=right,pos=0.9]{right}{m2}{m2}[2]

\nextlevel[4]

\mess[label position=right]{right}{m0}{m0}[2]

\mess[left,side=right]{left}{m2}{m2}[2]

\nextlevel[6]

\mess[anchor=east]{east}{m0}{m0}[-2]

\mess[anchor=west,side=right]{west}{m2}{m2}[-2]

\nextlevel[4]

\mess[right]{right}{m0}{m0}[-2]

\mess[side=right,left]{left}{m2}{m2}[-2]

\nextlevel[2]

\mess[below left]{below left}{m0}{m1}[2]

\mess[above right]{above right}{m1}{m2}[2]

\nextlevel[6]

\mess[anchor=south west]{SW}{m1}{m0}[-2]

\mess[anchor=north east,pos=0]{NE}{m2}{m1}[-2]

\nextlevel[2]

\end{msc}

Figure 3: Different placing the message labels

11

The following diagram shows how to use comments. In this diagram we modify the
distance between the frame and the instances in order to fit the comments inside the frame.

i j

start a

end

msc comments \begin{msc}[small values,

left environment distance=2.6cm,

right environment distance=1.9cm]{comments}

\declinst{i}{}{i}

\declinst{j}{}{j}

\mess{a}{i}{j}[2]

\msccomment[msccomment

distance=1.2cm]{start}{i}

\nextlevel[2]

\msccomment[side=right]{end}{j}

\nextlevel

\end{msc}

6.7 Actions

An instance can perform an action, which is denoted by a rectangle. There are two
commands to draw actions:

\action*[〈options〉]{〈name〉}{〈instance〉}
The action is attached at the current level to the 〈instance〉. The 〈name〉 is centered
inside the action symbol and is processed in LR-mode. The height and width of the
action symbol are adjusted so that the 〈name〉 fits inside a rectangle.

The starred version of the command, \action*, produces the same result as \action,
except that the width of the action is not adjusted.

The following keys determine the detailed drawing of the action symbol:

/msc/action width=〈width〉 (no default, initially 1.25cm)
Specifies the 〈width〉 of the action symbol.

/msc/action height=〈hegiht〉 (no default, initially 0.6cm)
Specifies the 〈height〉 of the action symbol.

\naction*[〈options〉]{〈name〉}{〈instance〉}
The \naction command produces an action box with a diagonal cross in it. It is
otherwise identical to the \action command.

The following example shows that after an action often a multiple level increment is
needed to obtain nice pictures.

i j
a

doit

doitnow
b

msc action \begin{msc}[small values, instance

distance=1.6cm]{action}

\declinst{i}{}{i}

\declinst{j}{}{j}

\mess{a}{j}{i}

\nextlevel

\naction{doit}{i}

\nextlevel[2]

\action*{doitnow}{i}

\nextlevel[2]

\mess{b}{i}{j}

\end{msc}

12

6.8 Timers

There are five commands to draw timer events.

\settimer[〈options〉]{〈name〉}{〈instance〉}
Setting of a timer is drawn as a line connecting the 〈instance〉 to the hour glass symbol.
The 〈name〉 is put near this symbol. The key side is determines on which side of
the instance axis the timer is drawn. The key self message width determines the
lenght of the arm between the symbol and the instance axis. The key label distance

determines the distance between the name and the timer symbol. The key arrow scale

determines the scaling of the arrow. hour glass symbol to the 〈instance〉.

\timeout[〈options〉]{〈name〉}{〈instance〉}
A time-out is represented by an arrow from an hour glass symbol to the 〈instance〉.

\stoptimer[〈options〉]{〈name〉}{〈instance〉}
Stopping a timer is drawn as a line connecting the 〈instance〉 with the timer stop symbol
(denoted by a cross).

\settimeout[〈options〉]{〈name〉}{〈instance〉}[〈offset〉]
The command \settimeout is a combination of the setting of a timer and a time out.
The 〈offset〉 denotes the number of levels between the two events.

\setstoptimer[〈options〉]{〈name〉}{〈instance〉}[〈offset〉]
Likewise, \setstoptimer is a combination of the setting of a timer and stopping a
timer.

/msc/offset=〈offset〉 (no default, initially 2)
The key holds the value of 〈offset〉. It denotes the number of levels between the two
events.

/msc/timer width=〈width〉 (no default, initially 0.3cm)
The key determines the 〈width〉 of the hour glass and the time out symbols.

The various timer symbols are shown in the following example.

i j k

T,50

TU

T,20

V

T

msc timers \begin{msc}[small values]{timers}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\settimer{T,50}{j}

\setstoptimer[r]{V}{k}[6]

\nextlevel[2]

\timeout{T}{j}

\settimeout{U}{i}

\nextlevel[2]

\settimer[r]{T,20}{j}

\nextlevel[2]

\stoptimer[r]{T}{j}

\end{msc}

13

6.9 Time measurements

There are several commands to add time measurements to an MSC.
\mscmark[〈options〉]{〈name〉}{〈instance〉}

This command attach an absolute time stamp to an event on an 〈instance〉. The 〈name〉
is the text attached to the mark symbol, which is a dashed polyline. The position of
the mark is determined by the keys position (above, below) and side (left,right).

/msc/position=〈position〉 (no default, initially above)
The key determines the position of the mark symbol relative to the marked event. The
allowed values for 〈position〉 are above, mid and below.

\measure*[〈options〉]{〈name〉}{〈instance1 〉}{〈instance2 〉}[〈offset〉]
This command connects two events from 〈instance1 〉 and 〈instance2 〉. The first event
is at the current level. The second event is 〈offset〉 levels lower than the first event.
Not that instead giving optional argument 〈offset〉 we can specify the key offset. The
〈name〉 is attached to the measure symbol. The measure symbol can be placed ath the
left or right of 〈instance1 〉. This is determined by the value of the key side. In the
starred version of the command arrow heads are at the outside of the measured interval.

In case the two events are far apart, the measure may be split in two parts. We use two
commands to draw this parts:
\measurestart*[〈options〉]{〈name〉}{〈instance〉}{〈gate〉}

Draws the first part of the measure. The points where these two parts should be
connected are drawn by a small cicle, to which the text 〈gate〉 in attached. In the
starred version of the command arrow heads are at the outside of the measured interval.

\measureend*[〈options〉]{〈name〉}{〈instance〉}{〈gate〉}
Draws the first part of the measure in similar way as \measurestart command.

Several keys can be used to control the detailed layout of the time measurement symbols.
The label distance key specify the distance between the label of a measurement and the
measurement symbol.
/msc/measure distance=〈distance〉 (no default, initially 0.6cm)

This key specifies at which 〈distance〉 the measurement symbols are drawn from the
〈instance〉 line.

/msc/measure symbol width=〈width〉 (no default, initially 0.2cm)
Specifies the 〈width〉 of the measurement triangle symbol.

The following example illustrates marks and measurements in an MSC..

i j kt=0.0
m1 t=0.3

0.6

m2

0.2
g

m3t=1.0
0.2

g

msc Time measurements \begin{msc}[small values]{Time measurements}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\mess{m1}{i}{j}[1]

\mscmark{t=0.0}{i}

\measure{0.6}{i}{j}[4]

\nextlevel

\mscmark[position=above,side=right]{t=0.3}{j}

\nextlevel[3]

\mess{m2}{j}{k}

\measurestart*[side=right]{0.2}{k}{g}

\nextlevel[6]

\mess{m3}{k}{i}

\mscmark[position=below,side=left]{t=1.0}{i}

\measureend*[side=right]{0.2}{k}{g}

\nextlevel

\end{msc}

14

6.10 Lost and found messages
\lost[〈options〉]{〈name〉}{〈gate〉}{〈instance〉}

A lost message is denoted by an arrow starting at an instance and ending at a filled circle.
The argument 〈instance〉 determines the instance to which the arrow is attached. The
〈name〉 of the message is put above the message arrow. The 〈gate〉 is a text associated to
the circle. The keys side, label position, pos, label distance and self message

width function in similar way as in the \mess command (Section 6.5). That is, side
controls the placement of the lost or found message with respect to the instance axis.
The label position and pos controls the placement of the 〈name〉 with respect to the
message arrow. The key self message width determines the length of the arrow and
labeldistance specifies the distance between the name and the arrow.

\found[〈options〉]{〈name〉}{〈gate〉}{〈instance〉}
A found message is denoted by an arrow starting at an open circle and ending at an
instance. Otherwise the command is identical to the \lost command.

/msc/lost symbol radius=〈radius〉 (no default, initially 0.24cm)
Determines the 〈radius〉 of the circle for lost and found messages.

The following example shows a found and a lost message.

i j
m

g p
n

msc lost and found \begin{msc}[small values]{lost and found}

\declinst{i}{}{i}

\declinst{j}{}{j}

\found{m}{g}{i}

\nextlevel

\mess{p}{i}{j}

\nextlevel

\lost[side=right]{n}{}{j}

\end{msc}

6.11 Conditions

There are two commands to draw condition boxes:

\condition*[〈options〉]{〈text〉}{〈instance list〉}
A condition is denoted by a hexagon. It is used to express that the system has entered
a certain state. A condition relates to a number of instances. All conditions which
take part in the condition are covered by the condition symbol. The other instances are
drawn through the condition symbol.

The 〈text〉 is placed in the center of the condition. The 〈instance list〉 expresses which
instances take part in the condition. It is a list of nicknames of instances, separated by
commas. Take care not to add extra white space around the nicknames, since this is
considered part of the nickname in LATEX. The order in which the instances are listed
is immaterial.

The starred version of the command \condition*, produces the same result as the
command \condition, except that the width of the condition symbol is not adjusted
to fit the contents of the hexagon.

\ncondition*[〈options〉]{〈text〉}{〈instance list〉}
The \ncondition command produces a condition with a diagonal cross in it. It is
otherwise identical to the \condition command.

15

There are several keys that controls the shape of the condition symbol:

/msc/condition height=〈hegiht〉 (no default, initially 0.6cm)
Determines the 〈height〉 of the condition symbol.

/msc/condition overlap=〈distance〉 (no default, initially 0.5cm)
The 〈distance〉 determines the width of the part of the condition symbol which extends
over the rightmost/leftmost contained instance axis.

The following example contains some conditions.

i j k

some condition

m
a

C D

A, B, C

msc conditions \begin{msc}[small values]{conditions}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\condition{some condition}{i,k}

\nextlevel[3]

\mess{m}{i}{j}

\action{a}{k}

\nextlevel

\condition{C}{i}

\ncondition{D}{j}

\nextlevel[2]

\condition{A, B, C}{i,j,k}

\nextlevel[2]

\end{msc}

6.12 Generalized ordering

A generalized order is treated much like a regular message (see Section 6.5). There are
three differences: a generalized order is drawn with a dotted line, it has no label, and the
arrow head is in the middle of the line. A generalized order is defined with the following
command.

\order[〈options〉]{〈sender〉}{〈receiver〉}[〈level offset〉]
The 〈sender〉 and 〈receiver〉 are the nicknames of the instances which are connected by
the generalized ordering symbol. At the 〈receiver〉 instance, the generalized ordering
symbol ends at the current level plus the 〈level offset〉. The 〈level offset〉 is an optional
integer value, with default 0.

In case 〈sender〉 and 〈receiver〉 denote the same instance, the order is a self order.
The placement of the order arrow of a self order is controlled by the key side. It can
have values left (meaning that the ordering symbol is drawn left of the instance axis)
and right (meaning that the ordering symbol is drawn right of the instance axis). By
default it is drawn at the left side of the instance.

The position of the arrow is controlled with the pos key. The key selfmessage width

specify the width of the polyline used for drawing orderings on a single instance axis.
The key arrow scale controls the size of the arrow.

Orderings to or from the environment (i.e., the left or the right side of the MSC frame)
can be specified by setting the sender or the receiver argument to the value envleft or
envright.

16

An example of a generalized order is given in the following diagram.

i j

msc generalized order

m
k

\begin{msc}[head top distance=0.8cm]

{generalized order}

\declinst{i}{}{i}

\declinst{j}{}{j}

\mess{m}{envleft}{i}

\order{i}{j}[1]

\nextlevel

\mess{k}{j}{envright}

\nextlevel

\end{msc}

6.13 Instance regions

A part of the instance axis can be drawn in a different style. Such a part is called an instance
region. The following regions are supported: coregion (the instance axis is dashed, which
means that the order of the attached instances is immaterial), suspension region (a small
rectangle with dashed left and right sides, which denotes that the instance is suspended),
activation region (a small filled rectangle, which denotes that the instance has control).

The following commands are used to draw an instance region.

\regionstart[〈options〉]{〈type〉}{〈instance name〉}
After this command the instance axis of 〈intstance name〉 is drawn in the shape deter-
mined by 〈type〉 starting from the current level. The 〈type〉 can have values coregion,
suspension, and activation.

\regionend{〈instance name〉}
After this command the instance axis for the 〈instance name〉 is drawn in the usual way.
In other words it ends current region.

The following keys controll the shape of on instance region:

/msc/region bar width=〈width〉 (no default, initially 0.15cm)
Determines the 〈width〉 of the coregion start and end symbol.

/msc/region width= Determines the width of the activation and suspension rectangle. (no
default, initially 0.4cm)

In the following example, several instance regions are demonstrated. Note that the relative
order of \mess, \regionstart, and \regionend commands does not matter. Also notice
that the second activation region on i ends with a method reply (which is produced by the
command \mess*).

17

i j k

m

p
q

r
s

msc regions \begin{msc}[small values]{regions}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\regionstart{activation}{i} \nextlevel[3]

\regionend{i}

\mess{m}{i}{j} \nextlevel

\regionstart{coregion}{j} \nextlevel

\regionstart{suspension}{k}

\mess{p}{j}{k} \nextlevel

\regionstart{activation}{i}

\mess{q}{j}{i} \nextlevel

\regionend{j} \nextlevel[3]

\regionend{i}

\mess*{r}{i}{j} \nextlevel

\mess{s}{j}{k}

\regionend{k} \nextlevel

\end{msc}

6.14 Instance creation and instance stop

The MSC language offers constructs for dynamic instance creation and instance destruction.
An instance can dynamically create another instance by issuing a create command. An
instance creation is drawn as a dashed message arrow. At the side of the arrow head,
the instance head symbol for the created instance is drawn. An instance end symbol does
not denote the end of the specified process, but merely the end of its current description.
Therefore, a different symbol is needed which denotes that an instance stops before the end
of the MSC in which it is contained. The instance stop symbol is a cross.

The following commands are used for instance creation and instance stop.

\dummyinst[〈options〉]{〈created instance〉}
This command reserve space for on instance which will be created dynamically. \dummyinst
command is mixed with the declarations of normal instances (see the \declinst com-
mand, Section 6.4). The argument 〈created instance〉 is the nickname of the instance
that will be created later.

\startinst[〈options〉]{〈instance name〉}{〈text above〉}{〈text inside〉}
This command create an instance. The created instance must have been declared first
with the \dummyinst command. The name of the created instance consists of two parts.
The part called 〈text above〉 is placed above the instance head and the 〈text inside〉 is
centered within the instance head.

\create[〈options〉]{〈name〉}{〈creator〉}{〈instance name〉}{〈text above〉}{〈text inside〉}
This command is identical to \dummyinst command except it allows to specify the
creator of the instance. The command results in a horizontal message arrow labelled
with 〈name〉. The arrow starts at the current level at the instance with the nickname
〈creator〉 and ends at the current level at the instance head of the instance with nickname
〈instance name〉. As with normal messages, placement of the message label is controlled
by the keys label position and pos.

18

\stop*[〈options〉]{〈instance name〉}
An instance is stopped with the \stop command. The 〈instance〉 is the nickname of the
stopped instance. The instance axis is not drawn any further below the level at which
the \stop command is issued. Also, the instance foot symbol is not drawn.

If the \stop* command is used, then the instance foot symbol is drawn instead of the
stop symbol.

/msc/stop width=〈width〉 (no default, initially 0.5cm)
The 〈width〉 determines the size of the stop symbol.

Take care not to specify any events on an instance which has not yet been created or
which has already been stopped. However, it is possible to create an instance after it has
stopped, as showed in the next example.

i k
p

j
kick

ok

again

msc dynamic instances \begin{msc}[small values]{dynamic instances}

\declinst{i}{}{i}

\dummyinst{j}

\declinst{k}{}{k}

\mess{p}{i}{k}

\nextlevel[3]

\create[label position=below]{kick}{k}{j}{}{j}

\nextlevel[2]

\stop*{k}

\nextlevel

\mess{ok}{j}{i}

\nextlevel

\stop{j}

\nextlevel[2]

\startinst{k}{}{again}

\nextlevel[2]

\end{msc}

6.15 MSC references

Within an MSC a reference to other MSCs can be included. Such a reference is drawn as
a rectangle with rounded corners, covering part of the MSC. The following commands are
used to draw MSC references.

\referencestart[〈options〉]{〈nickname〉} {〈text〉}{〈left instance〉}{〈right instance〉}
The reference symbol starts at the level where the \referencestart command is used,
and ends at the level where the corresponding \referenceend command occurs. These
commands correspond if they have the same 〈nickname〉. The 〈text〉 is placed in the
center of the reference symbol. The reference covers all instances from 〈leftinstance〉 to
〈rightinstance〉.
The left and right edge of the reference symbol are 〈nickname〉left and 〈nickname〉right,
where 〈nickname〉 is the nickname of the MSC reference as defined in the \referencestart
command. These names can be used at every place where the nickname of an instance
is required, e.g. as the sender or receiver of a message.

\referenceend[〈options〉]{〈nickname〉}
This command end the reference 〈nickname〉 that has been started with the \referencestart
command.

19

The following keys affect the drawing of reference symbol:

/msc/left reference overlap=〈distance〉 (no default, initially 1cm)
Determines the 〈distance〉 between the left edge of the reference symbol and the leftmost
covered instance axis.

/msc/right reference overlap=〈distance〉 (no default, initially 1cm)
Determines the 〈distance〉 between the right edge of the reference symbol and the right-
most covered instance axis.

The following example shows the usage of references:

i j k
a

b
a reference

another reference

msc references

c

\begin{msc}[small values]{references}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\mess{a}{j}{k}

\nextlevel

\referencestart{r}{a reference}{i}{j}

\nextlevel

\mess{b}{rright}{k}

\nextlevel[2]

\referenceend{r}

\nextlevel[2]

\referencestart{p}{another reference}{i}{k}

\nextlevel

\mess{c}{envright}{pright}

\nextlevel[4]

\referenceend{p}

\end{msc}

6.16 Inline expressions

An inline expression is a part of an MSC on which an operation is defined. A rectangle
surrounds the part of the MSC containing the operands. The operands are separated
by horizontal dashed lines. The operator is placed in the upper left corner of the inline
expression symbol. The following commands are used to draw inline expressions.

\inlinestart[〈options〉]{〈nickname〉}{〈operator〉}{〈left instance〉}{〈right instance〉}
Starts the inline expression at the current level. The inline expression spans over the
instances from 〈left instance〉 to 〈right instance〉. The 〈operand〉 is placed in the upper
left corner of the rectangle. The left and right edge of the inline expression symbol are
named 〈nickname〉left and 〈nickname〉right, where 〈nickname〉 is the nickname of
the inline expression as defined in the \inlinestart command. These names can be
used at every place where the nickname of an instance is required, e.g. as the sender or
receiver of a message.

\inlineseparator[〈options〉]{〈nickname〉}
Draws a dashed line at the current level for the inline expression with nickname 〈nickname〉.

\inlineend*[〈options〉]{〈nickname〉}
Ends the inline expresion with the nickname 〈nickname〉 at the current level. The
command \inlineend* does the same as the command \inlineend, except that the
bottom line of the rectangle is This is used to indicate that the operand is optional.
dashed.

20

/msc/left inline overlap=〈distance〉 (no default, initially 1cm)
Determines the 〈distance〉 which is a distance between the left edge of the inline expres-
sion symbol and the leftmost included instance axis.

/msc/right inline overlap=〈distance〉 (no default, initially 1cm)
Determines the 〈distance〉 which is a distance between the right edge of the inline
expression symbol and the rightmost included instance axis.

The following example shows how to draw inline expressions:

i j k

a

b

c

alt

d

par

e
f

opt

msc inline expressions

e

\begin{msc}[small values]{inline expressions}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\inlinestart{exp1}{par}{i}{k} \nextlevel

\mess{a}{k}{j} \nextlevel

\inlinestart[left inline overlap=0.6cm]

{exp2}{alt}{i}{j} \nextlevel[2]

\mess{b}{j}{i} \nextlevel

\inlineseparator{exp2} \nextlevel

\mess{c}{j}{i} \nextlevel

\inlineend{exp2} \nextlevel

\inlineseparator{exp1} \nextlevel

\mess{d}{j}{k} \nextlevel

\inlineend{exp1} \nextlevel

\inlinestart{exp3}{opt}{i}{j} \nextlevel

\mess{e}{envright}{exp3right}

\mess{e}{exp3right}{j} \nextlevel

\mess{f}{j}{i} \nextlevel

\inlineend*{exp3}

\end{msc}

6.17 Gates

A gate determines a connection point for messages.
The following command can be used to draw gates.

\gate*[〈options〉]{〈gate name〉}{〈instance name〉}
The unstarred version produces a normal (invisible) gate. The starred version produces
a visible gate (a small dot). The gate is drawn at the current level at the instance
〈instance name〉 (which can also be the left and right edge of e.g. an MSC reference).
The 〈gate name〉 is attached to the gate. The positioning of the 〈gate name〉 relative
to the gate is determined by the keys side (left or right) and position (above, mid
or below).

There are several keys to control the size and shape of the gate symbol:

/msc/gate symbol radius=〈radius〉 (no default, initially 0.05cm)
The 〈radius〉 defines the radius of the gate symbol.

The next example shows a number of gates.

21

i j k

g

c

h′

ref

msc gates

b
h

\begin{msc}[small values]{gates}

\declinst{i}{}{i}

\declinst{j}{}{j}

\declinst{k}{}{k}

\referencestart{r}{ref}{i}{j}

\nextlevel

\gate{g}{rright}

\mess{b}{rright}{envright}

\gate[r][c]{h}{envright}

\nextlevel[2]

\mess{c}{rright}{k}

\gate*[l][b]{$h’$}{rright}

\nextlevel[2]

\referenceend{r}

\end{msc}

6.18 High-level MSCs

A High-level MSC (HMSC) is a drawing which defines the relation between a number of
MSCs. It is composed of a start symbol (an upside down triangle), a number of end symbols
(represented by triangles), a number of MSC references (these are rectangles with rounded
corners), a number of conditions (hexagons) and possibly several connection points (circles).
These symbols are connected by arrows.

The following commands can be used to draw HMSCs.

\begin{hmsc}[〈options〉]{〈hmsc name〉}(〈llx 〉,〈lly〉)(〈urx 〉,〈ury〉)
〈environment contents〉

\end{hmsc}

In order to draw HMSCs, a new environment is defined, which is called hmsc. The
command to begin this environment has several arguments.

The header of an HMSC is formed from the value of the key hmsc keyword (initially
hmsc), followed by the 〈hmsc name〉. The positioning of the header depends on the key
title position. The possible values are left, right and center. The keys title

top distance and title distance control the distances of the header from the frame.
The size of the HMSC frame is calculated automatically unless the optional parameters
(〈llx 〉,〈lly〉) and (〈urx 〉,〈ury〉) are specified. In such case the frame is determined by the
coordinates of the lower-left corner,(〈llx 〉,〈lly〉) , and the coordinates of the upper-right
corner, (〈urx 〉,〈ury〉).
/msc/hmsc keyword=〈keyword〉 (no default, initially hmsc)

The 〈keyword〉 will be a starting word in a header of HMSC.

/msc/north hmsc margin=〈distance〉 (no default, initially 0.5cm)
The 〈distance〉 determines the north margin of hmsc environment

/msc/south hmsc margin=〈distance〉 (no default, initially 0.5cm)
The 〈distance〉 determines the south margin of hmsc environment

/msc/east hmsc margin=〈distance〉 (no default, initially 0.5cm)
The 〈distance〉 determines the east margin of hmsc environment

/msc/west hmsc margin=〈distance〉 (no default, initially 0.5cm)
The 〈distance〉 determines the west margin of hmsc environment

/msc/west hmsc margin=〈distance〉 (no default, initially 0.5cm)
The 〈distance〉 determines the west margin of hmsc environment

22

/msc/hmsc margin=〈distance〉 (style, no default)
Sets the north hmsc margin, south hmsc margin, west hmsc margin, east hmsc

margin to 〈distance〉.
In the HMSC we can draw number of symbols. Each symbol is in fact a node and

〈options〉 can be used to specify for example the placement relative to the other nodes. The
following commands are used to draw the symbols:

\hmscstartsymbol[〈options〉]{〈nicknamee〉}(〈x 〉,〈y〉)
Draws an equilateral triangle pointed down representing the start symbol. The 〈nickname〉
can be used later as a reference to the drawn symbol. Optional 〈x 〉 and 〈y〉 specify the
coordinates at which the symbol should be drawn.

/msc/start symbol (style, no value)
A style that is applied to draw a triangle node in the \hmscstartsymbol command.

/msc/hmsc symbol width=〈width〉 (no default, initially 0.7cm)
Sets the width of the triangle of the start and end symbol in hmsc to the 〈width〉.

\hmscendsymbol[〈options〉]{〈nickname〉}(〈x 〉,〈y〉)
The command in identical to \hmscstartsymbol command but draws an equilateral
triangle pointed up representing the start symbol.

/msc/end symbol (style, no value)
A style that is applied to draw a triangle node in the \hmscendsymbol command.

\hmscreference[〈options〉]{〈nickname〉}{〈text〉}(〈x 〉,〈y〉)
Draws a 〈text〉 inside a frame with rounded corners. The 〈nickname〉 can be used later
to connect it to other hmsc elements.

/msc/reference (style, no value)
A style that is applied to draw a reference node in the \hmscreference command.

/msc/reference height=〈height〉 (no default, initially 0.7cm)
Sets the minimal height of the reference to 〈height〉.

/msc/reference width=〈width〉 (no default, initially 1.4cm)
Sets the minimal width of the reference to 〈width〉.

\hmsccondion[〈options〉]{〈nickname〉}{〈text〉}(〈x 〉,〈y〉)
Draws a 〈text〉 inside a rectangular frame with diamond shaped sides. The 〈nickname〉
can be used later to connect it to other hmsc elements.

/msc/hmsc condition height=〈height〉 (no default, initially 0.7cm)
Sets the minimal height of the condition to 〈height〉.

/msc/hmsc condition width=〈width〉 (no default, initially 1.4cm)
Sets the minimal width of the condition to 〈width〉.

\hmscconnection[〈options〉]{〈nickname〉}(〈x 〉,〈y〉)
Draws a small circle symbolizing connection at coordinates (〈x 〉,〈y〉). Later we can refer
to the connection using 〈nickname〉.

/msc/hmsc connection radius=〈distance〉 (no default, initially 0.05cm)
Sets the radius of the connection symbol to the 〈distance〉

23

The HMSC grid is not drawn, but used to control the positioning of the HMSC symbols
(startsymbol, endsymbol, reference, condition, and connection). The center of each
symbol is drawn on the grid point with coordinates (〈x 〉,〈y〉). Each symbol also has a
〈nickname〉 for later reference.

\hmscreference{nickname}{text}(x,y)

\hmsccondition{nickname}{text}(x,y)

\hmscconnection{nickname}(x,y)

\arrow{from-nickname}[coord-list]{to-nickname}

HMSC symbols can be connected by means of the arrow command. This draws an
arrow from the symbol with nickname from-nickname to the symbol with nickname
to-nickname. The optional argument coord-list can be used if the line connecting the
source and the destination should not be straight. The coord-list has the following syntax:
(x1,y1)(x2,y2)...(xk,yk). This means that the connecting line goes through the points
with coordinates (x1,y1), (x2,y2), . . . , (xk,yk).

Arrows always leave the start symbol at the bottom. They enter the end symbol at the
top. Arrows start and end either at the middle of the top or at the middle of the bottom of a
reference and condition symbol. The incoming (outgoing) direction of the arrow determines
whether it will start (end) at the top or at the bottom.

There are several parameters to control the size and shape of the symbols (see
Section 7). These are \hmscconditionheight (the height of the condition symbol),
\hmscconditionwidth (the width of the condition symbol, excluding the left and
right angular parts), \hmscreferenceheight (the height of the reference symbol),
\hmscreference width (the width of the reference symbol), \messarrowscale{size} (a
command to set the size of the arrow head of a connection line); setconnectiontype(type)
(set the shape of the polyline connection the symbols; type can be straight, rounded, and
curved), \startsymbolwidth (the width of the start and end symbol), \topnamedist (sets
the distance between the top of the HMSC frame and the HMSC header).

An example of an HMSC is in the following diagram. Notice that the width and height
of reference symbols are changed locally (i.e., between { and } braces) just before the big
reference b is defined.

24

A

this is a
big hmsc
reference

Again

OkBreak

Do it!

hmsc High level \begin{hmsc}{High level}(-3,0)(3,12)

\hmscstartsymbol{s}(0,10)

\hmscreference{a}{A}(0,9)

\hmscconnection{c}(0,7.5)

{\setlength{\hmscreferencewidth}{2cm}

\setlength{\hmscreferenceheight}

{3\baselineskip}

\hmscreference{b}{\parbox{1.9cm}

{\centering this is a big hmsc reference}

}(0,6)}

\hmsccondition{t}{Again}(1,4.5)

\hmsccondition{ok}{Ok}(0,3.5)

\hmsccondition{q}{\textit{Break}}(-2,3.5)

\hmscendsymbol{e1}(-2,2)

\hmscreference{do}{Do it!}(0,2)

\hmscendsymbol{e2}(0,1)

\arrow{s}{a}

\arrow{a}{c}

\arrow{c}{b}

\arrow{c}[(-2,7.5)]{q}

\arrow{b}{q}

\arrow{q}{e1}

\arrow{b}{ok}

\arrow{ok}{do}

\arrow{do}{e2}

\arrow{b}{t}

\arrow{t}[(1,3.5)(2.5,3.5)(2.5,7.5)]{c}

\end{hmsc}

6.19 MSC documents

An MSCdoc is a drawing which contains various declarations of objects used in the MSC
description. For drawing MSCdocs he following commands are provided.

\begin{mscdoc}[headerpos]{mscdocname}{text}(llx,lly)(urx,ury)

\end{mscdoc}

\reference{text}(x,y)

\separator{y}

As for MSC and HMSC, a new environment is defined, which is named mscdoc. The
command to begin an MSCdoc has several arguments. The argument headerpos is optional.
It controls positioning of the header of the MSCdoc. This argument can have values l (for a
left aligned header), c (for a centered header) and r (for a right aligned header). The header
of an MSCdoc is formed from the keyword mscdocument, followed by the mscdocname. The
text is placed left-aligned below the MSCdoc header. The size of the MSCdoc frame is
determined by coordinates of the lower-left corner, (llx,lly), and the coordinates of the
upper-right corner, (urx,ury).

The MSCdoc grid is not drawn, but used to control the positioning of the MSC references.
The center of such a reference is drawn on the grid point with coordinates {x,y}.

The separator command draws a dashed horizontal line. The MSC references above
the separator are the exported, while the ones below the separator are local.

There are several parameters to control the size and shape of the symbols (see Section 7).
\mscdocreferenceheight (the height of the reference symbol), \mscdocreferencewidth

25

(the width of the reference symbol), \topnamedist (sets the distance between the top of
the MSCdoc frame and the MSCdoc header).

An example of an MSCdoc is in the following diagram. Notice that the size of references
in an MSCdoc had to be changed for the last reference.

a b

c d

This is a two-line
reference

mscdoc My declarations
\begin{mscdoc}{My declarations}%

(0,0)(6,8)

\reference{a}(1,6)

\reference{b}(3,6)

\reference{c}(1,4)

\reference{d}(3,4)

\separator{3}

\mscset{reference width=4.5cm}

\mscset{reference height=2\baselineskip}

\reference{%

\parbox{4cm}%

{\raggedright This is a

two-line reference}}

(3,1.5)

\end{mscdoc}

7 Style parameters

8 Example

Figure 4 on page 28 shows the MSC defined in the following LATEX fragment.

\begin{msc}{Example}

\declinst{usr}{The user}{User}

\declinst{m1}{Control}{M1}

\dummyinst{m2}

\declinst{m3}{Another Machine}{M3}

\create{start}{m1}{m2}{Processing}{M2}

\mess{msg 0}{envleft}{usr}

\mess{msg 1}{envright}{m2}[1]

\nextlevel

\mess{msg 2}{usr}{m1}

\order{m1}{m2}[4]

\action{a}{m3}

\nextlevel

\found{msg x}{}{usr}

\nextlevel

\mess{msg 3}{usr}{m2}[-1]

\coregionstart{m1}

\settimeout{S}{m3}[2]

26

\nextlevel

\mess{msg 4}{m1}{usr}

\coregionstart{m2}

\settimer[r]{T}{m3}

\nextlevel

\mess[r]{msg 5}{m2}{m2}[3]

\mess{msg 6}{usr}{usr}[2]

\nextlevel

\mess{msg 7}{m2}{usr}

\timeout[r]{T}{m3}

\nextlevel

\coregionend{m2}

\nextlevel

\coregionend{m1}

\stoptimer[r]{T’}{m3}

\nextlevel

\lost[r]{msg y}{Mach 1}{usr}

\mess{msg 8}{m1}{envright}

\nextlevel

\condition{condition 1}{usr,m2}

\setstoptimer[r]{U}{m3}

\nextlevel[2]

\stop{usr}

\end{msc}

9 Acknowledgments

Thanks are due to the following people for providing us with useful input: Cas Cremers,
Hugo Jonker, Peter Peters, Saša Radomirović, Michel Reniers, and Pim Vullers.

References

[1] V. Bos, T. van Deursen, and S. Mauw. A LATEX macro package for Message Sequence
Charts—Reference Manual—Describing MSC macro package version 2.0, December 2010.
Included in MSC macro package distribution.

[2] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). Geneva, 2011.

[3] L. Lamport. LATEX—A Document Preparation System—User’s Guide and Reference
Manual. Adsison-Wesley, 2nd edition, 1994. Updated for LATEX 2ε.

27

User

The user

M1

Control

M3

Another Machine

M2

Processing
start

msg 2

amsg x
msg 3

msg 4
T

S

msg 7
Tmsg 6

msg 5

T’msg y
Mach 1

condition 1
U

msc Example

msg 0
msg 1

msg 8

Figure 4: A menagerie of MSC symbols

[4] Andrew Mertz and William Slough. Graphics with tikz. The PracTEX Journal, (1),
2007.

[5] E. Rudolph, P.Graubmann, and J. Grabowski. Tutorial on message sequence charts
(MSC’96). In FORTE, 1996.

[6] T Tantau. Tikz and pgf: Manual for version 2.10, 2010.

28

	New
	Introduction
	Background and motivation
	Installation, copyright and system requirements
	Quick start
	Use of the MSC macro package
	Options
	The MSC frame
	Levels
	Instances
	Messages
	Comments
	Actions
	Timers
	Time measurements
	Lost and found messages
	Conditions
	Generalized ordering
	Instance regions
	Instance creation and instance stop
	MSC references
	Inline expressions
	Gates
	High-level MSCs
	MSC documents

	Style parameters
	Example
	Acknowledgments

