
ABSTRACT

SULE, AMBARISH MUKUND Hardware-Software Codesign of a Programmable

Wireless Receiver System-on-a-chip. (Under the direction of Prof. William Rhett

Davis).

With gate counts and system complexity growing rapidly, engineers have to find

efficient ways of designing hardware circuits. The advent of Hardware Description

Languages and synthesis methodologies improved designer productivity by raising

the abstraction level. With advances in semiconductor manufacturing technology,

however, there is still a growing productivity gap between the number of transistors-

per-chip that can be fabricated and the transistors-per-day that can be effectively

designed[13].

Increasing costs of design encourage reusing cores. Various kinds of Intellectual

Property(IP) cores are now widely available and are used in making Integrated Cir-

cuits(IC). These System-on-a-chip(SOC) ICs generally contain a microprocessor as

one of their IP cores in order to make them more flexible. This heterogeneity of

hardware has increased challenges in verification. It is widely estimated that be-

tween 60%–80% of the design effort is dedicated to verification[12] with almost half

of that time spent in construction and debugging of the simulation environments.

Unfortunately, the high costs of industrial IP have made it difficult to explore SOC

verification at Universities.

This thesis describes the building of a Programmable Wireless Receiver SOC using

hardware-software codesign techniques. The SOC is comprised of a general purpose

Central Processing Unit(CPU) and a baseband coprocessor with some glue logic. The

CPU used is open-source, making it appropriate for teaching SOC verification as part

of a university curriculum. The simulation environment adopted to verify the system

and its documentation is an important product of this thesis. The thesis can be used

as a guideline for designing CPU-based SOCs.

Hardware-Software Codesign of a Programmable Wireless Receiver
System-on-a-chip

by

Ambarish Mukund Sule

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial satisfaction of the
requirements for the Degree of

Master of Science

Department of Electrical and Computer Engineering

Raleigh

2003

Approved By:

Prof. Eric Rotenberg Prof. Alexander G. Dean

Prof. William Rhett Davis
Chair of Advisory Committee

To

Aai - Baba

ii

Biography

Ambarish Mukund Sule was born on 2nd December 1977 in Mumbai, India. He

received the Bachelor of Engineering (B.E.) Degree in Electronics Engineering from

Veermata Jijabai Technological Institute (V.J.T.I.), University of Mumbai in 1999.

He worked briefly as a Software Engineer at Infosys Technologies Ltd. Pune, India.

Thereafter he worked for about 2 years as an IC Design and Verification Engineer at

Texas Instruments, Bangalore, India.

Ambarish has been a graduate student in the Electrical and Computer Engineering

Department at North Carolina State University, Raleigh, NC since Fall 2001. He is a

member of the Honor Society of Phi Kappa Phi and a student member of the Institute

of Electrical and Electronics Engineers (IEEE). Since Fall 2002, he has been working

with the MUSE group of Prof. Rhett Davis in the field of ASIC and System-level

Design.

iii

Acknowledgements

First and foremost I would like to thank my parents and elder sister Anjali for

everything they have given me in life. It is only due to their love, support and

encouragement that I could achieve whatever I have achieved. Special thanks to my

father for continuously inspiring me with immense hard work and dedication towards

his goals. I thank my cousin brother Pushkar and sister-in-law Aparna Tamhane for

making me feel at home, 8000 miles away from home.

I sincerely thank my advisor Prof. Rhett Davis for giving me the opportunity to

work under his guidance. His vision and ideas are primarily responsible for the design

we built. His enthusiasm towards ASIC Design is really contagious and inspiring. I

have learned some fantastic things about ASIC Design tools from him and hope to

keep learning in the future.

I thank Prof. Eric Rotenberg for agreeing to be on my thesis committee and teach-

ing me some incredible things about computer architecture. I also thank Prof. Alexan-

der Dean for agreeing to be on my thesis committee and giving me the opportunity

to work on his Thrint Research Compiler.

Thanks are due to Ravi Jenkal for designing most parts of the Wireless Receiver

frontend I have used in the thesis. I thank Jiri Gaisler for designing the LEON-2

Processor and making it widely available as open source. Thanks to all the LATEX 2ε

developers and maintainers for creating this wonderful document typesetting system,

which I used for writing this thesis. Finally, I would like to thank John Goss from

IBM, Raleigh for making me his Teaching Assistant for the ASIC Verification Course

and also showing me a whole new perspective towards verification.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Overview . 1
1.2 Related Work . 2
1.3 Contribution . 3
1.4 Organization . 5

2 The LEON-2 Processor System 6
2.1 Overview of the Original LEON-2 System 6
2.2 Integer Unit . 8
2.3 Memory Interface . 10
2.4 UARTs . 12
2.5 Interrupt Controller . 13
2.6 Parallel I/O port . 13

3 Wireless System 15
3.1 Protocol . 15
3.2 Overall Design . 16
3.3 Wireless Frontend . 17
3.4 Decorrelator . 19
3.5 WLRCV Buffer . 20
3.6 Register File . 22

4 Integration of the WLSOC System 23
4.1 Stitching together the pieces . 23
4.2 Interrupts/Traps . 25

4.2.1 Overview of Interrupts and Traps 25

v

CONTENTS

4.2.2 Instruction-induced Traps . 25
4.2.3 Peripheral/External Interrupts 26

4.3 Memory Map . 27
4.3.1 Advanced High-speed Bus . 27
4.3.2 Advanced Peripheral Bus . 28

5 Tool Flow 33
5.1 Tool flow . 33

5.1.1 Nomenclature . 35
5.2 Xilinx System Generator . 36
5.3 Embedded Software . 37

5.3.1 Boot Code . 37
5.3.2 Device Drivers . 38
5.3.3 ISR for WLRCV . 38
5.3.4 Compiling . 39

5.4 Stimuli Generation . 41
5.5 Interface between Specman and C++ Code 44
5.6 Specman Checker . 46
5.7 Decompilation of the Embedded Software 48
5.8 Printing Debug Messages . 52
5.9 Testcase Characteristics . 57

6 Results 62
6.1 Simulation Results . 62
6.2 Synthesis Results . 63
6.3 Observations . 64
6.4 Future Directions . 65

Bibliography 66

A Specman Code 68

B C++ Code 75

C Embedded Software 79

D VHDL Code 83

vi

List of Figures

1.1 Introduction to HW/SW Coverification 2
1.2 Overview of the Wireless LAN SOC Cosimulation 4

2.1 Original LEON-2 System Conceptual Block Diagram 7
2.2 Overlapping Register Windows . 9
2.3 The Windowed r Registers (NWINDOWS=8) 10
2.4 Example Memory Interfaces connected to LEON-2 11
2.5 UART Block Diagram . 12

3.1 WLSOC Wireless Protocol . 16
3.2 Wireless Receiver Coprocessor Block Diagram 17
3.3 Wireless Receiver Frontend Block Diagram 18
3.4 Wireless Receiver Decorrelator Block Diagram 19
3.5 Wireless Receiver Buffer (Memory) Block Diagram 21

4.1 LEON Processor with Wireless Coprocessor Block Diagram 24
4.2 32-bit Trap Base Register (TBR) . 25
4.3 Wireless Receiver Programmable Registers 31

5.1 Simulation Flow for the WLSOC System 34
5.2 Flowchart Legend . 35
5.3 Generation of VHDL code from Matlab Simulink model 37
5.4 Cross-Assembly of the Boot Code . 39
5.5 Cross-Compilation of the Embedded Software 40
5.6 Generation of customized Specman state from e and C++ code . . . 45
5.7 Advantage of using HDL Wrappers 47
5.8 Decompilation of the Embedded Software 49
5.9 Printing Debug messages from Embedded Software in “0-time” . . . 56
5.10 Sequence of events (Timeline) in the simulation 58

vii

List of Tables

2.1 LEON-2 UART/IO Port Multiplexing 14

4.1 LEON-2 Precise/Deferred Trap Table 26
4.2 WLSOC Interrupt Table . 27
4.3 LEON-2 AHB Address Allocation . 28
4.4 LSOC APB Address Allocation . 28
4.5 Wireless Receiver Register Address Allocation 29

6.1 WLSOC Simulation wall-clock Time 62
6.2 WLSOC Synthesis Results . 63

viii

Chapter 1

Introduction

1.1 Overview

Embedded systems have a close-knit relationship between the hardware and the

software executing on it. In such systems, the traditional approach is to have different

hardware design and software design teams, which work separately. The software

team often starts integrating when the hardware team is in the final stages of its

development[16]. In general, at this later stage of the project, bugs found are more

difficult and costlier to rectify than if they were found earlier. It also takes much

larger time to find bug fixes at this stage.

Hardware-Software coverification is a technique to speed up the design of such

System-on-a-chip ASICs which use an embedded CPU core to control a bunch of

peripherals. Cosimulation or coverification intends to decrease the design time of the

system by overlapping the two debug cycles. Thus, hardware design teams simulate

their systems with a debug version of the software and the software design teams

simulate their software with behavioral models of the hardware, in effect codesigning

HW and SW. Both of them can keep updating the other team with newer versions of

1

1.2 Related Work

their code and speed up the effective design time.

1.2 Related Work

The Mentor Seamless tool[1] is a commercially available product that utilizes the

idea of coverification. Fig 1.1 shows a block diagram of an example coverification

tool. The HDL model of the Processor shown in the figure is replaced by a behavioral

���������	
����
���

���������

���

� �	����

���

���

��������	����������

���������

�

 �

��!"����

 ��
#	�����$	�� �	��#	�����$	��

�������
��
!����

Figure 1.1: Introduction to HW/SW Coverification[10]

Instruction Set Simulator (ISS) of the core. The ISS is connected to the HW simulator

by the coverification tool and is instantiated by a HDL wrapper. This HDL wrapper

has to behave like a bus functional model controlled by the ISS in order to provide the

HW design with cycles. Moreover, Seamless allows connection of a software debugger

2

1.3 Contribution

to the ISS.

The key to simulation speedup is to reduce the number of events in the HDL

Simulator[10]. The Seamless tool performs this task by replacing the memories used

in the simulation by special behavioral models which can communicate directly with

the ISS without starting hardware cycles (if configured to do so). This concept of

“0-time”1 tasks is very important in reducing HW cycles in a simulation. However,

Seamless is not a free CAD tool and it takes time to create Seamless CPU models. An

approach based on inexpensive and open-source tools is required to make the subject

accessible to universities.

1.3 Contribution

The thesis demonstrates the idea of HW-SW Coverification by verifying the design

of a Programmable Wireless Receiver SOC. This design uses the open-source SPARC

V8[2] compatible LEON-2 Processor[3] as the master and a Programmable Wireless

Receiver as a slave to perform a simple task of receiving a packet based on a simplistic

protocol. Section 3.1 has further details about the protocol we used. Fig 1.2 shows

the basic block diagram of the simulation environment used in the thesis. The main

components in the design the testcase uses are the UART Transmitter and Wireless

Receiver which are controlled by the LEON-2 Processor as slaves. The Processor

fetches instructions from the external memory, which is modeled in the testbench

for the design. Both the design and the testbench are simulated by the Modelsim

HDL Simulator[4]. The Memory contains a binary image of the embedded software

written in assembly language and C. The Stimuli for the Receiver is driven by a

Stimuli Generator, written in the e language[5] and simulated by the Specman tool.

Figures 5.1 and 5.10 show the complete simulation environment and testcase flow in

detail.

1A task which does not increment the simulation time in the HDL simulator

3

1.3 Contribution

������

��	
���

	���

���������
�

���
�
��

�
�
��
�

���
����

�
����

�� �

��!�

�� �
�
��"
��#

$��%���
&
"�

��&
����

	���

�
�
��
�

$���%��

'
�
�����

$��%���
&
"�

$(
����

�
��&

$�)�*��

+���
�"��,�-

���(��
&
*��#

���������(��
�

 ���
.%�

Figure 1.2: Overview of the Wireless LAN SOC Cosimulation

The flow presented does not use the Seamless tool. The main reason being that

there is no compatible SPARC V8 ISS available for Seamless as of this writing. The

flow tries to build comparable software debugging capabilities using free languages

like C, C++ and PERL. This would be a great economic advantage for University

students for their research. The only licenses required for the flow are for the Modelsim

HDL Simulator and Specman tool. Educational licenses were obtained for both these

tools. A simple decompiler (Section 5.7) is designed which can show the equivalent

C code that is being executed by the CPU during simulation. Similarly, a nearly

“0-time” method is designed to print debug messages from the embedded software

(Section 5.8).

4

1.4 Organization

The Programmable Receiver used has digital signal processing components, hence it

was designed using a tool which DSP designers generally prefer, i.e. Matlab Simulink.

Programmable capabilities were added by bringing out a lot of internal signals as

inputs to the chip. This design was then converted to VHDL using the Xilinx System

Generator. Finally, it was integrated with the LEON-2 Processor which acted as its

master in the system.

The simulation template presented in the thesis can be used for a range of designs

that have a CPU as the master and some programmable peripherals connected as

slaves to it. It shows an example of adding programmable capability to a digital signal

processing component designed in Matlab. Various heterogeneous languages and tools

are shown to be working together in tandem to fulfill the design and verification

objective.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 gives an overview of the

original LEON-2[3] Processor Core which will be used as the CPU for this project.

Chapter 3 describes the digital wireless receiver used as a coprocessor in this design,

called the WLSOC (Wireless LAN SOC) System. Chapter 4 describes the integration

of the Wireless Receiver Coprocessor with the LEON-2 System and the characteristics

of the resultant system. Chapter 5 gives an overview of the different languages and

tools used to verify the complete WLSOC system. Chapter 6 shows the wall-clock

time taken for the simulation of one testcase, and synthesis results for the system. It

concludes the thesis by making some important observations. The appendices at the

end of the chapter show some source code that was developed for this project.

5

Chapter 2

The LEON-2 Processor System

This chapter gives an overview of the original LEON-2[3] Processor Core which

will be used as the CPU for this project.

2.1 Overview of the Original LEON-2 System

The LEON-2 processor, designed by Jiri Gaisler, is a synthesisable VHDL model

of a 32-bit processor compliant with the IEEE-1754 SPARC V8 [18] architecture. It

is designed for embedded applications with the following features on-chip: separate

instruction and data caches, hardware multiplier and divider, interrupt controller, de-

bug support unit with trace buffer(DSU), two 24-bit timers, two UARTs, power-down

function, watchdog, 16-bit I/O port, PCI support and a flexible memory controller.

New modules can easily be added using the internal on-chip AMBA AHB and APB

buses[14].

Figure 2.1 depicts the original LEON-2 Processor Block Diagram. We have used

Version 1.0.10 of the VHDL model for this project. Our implementation does not in-

stantiate some of the optional modules from this core, viz. the multiplier and divider

inside the Integer Unit, Floating point Unit, the DSU unit and the PCI core. The

6

2.1 Overview of the Original LEON-2 System

�������

��	�
���
��	

�������

������	������

�������� ���

���	������

�������

����
�

����

������	

��	

������

���	������

 ����!

�" !

��#��	�

��$����	

����

������

%��&

��������

'(������������

�
��
�
��
��
�
!

)�

��

$�	������������!

���*��	��!��+

���

%'$,�-������!!��

$�	�����

*��	��!��+

Figure 2.1: Original LEON-2 System Conceptual Block Diagram[14]

SPARC architecture provides instruction set support for an implementation-defined

coprocessor. Our implementation does not include any instruction-executing copro-

cessor. The Wireless Receiver that we will be connecting as a slave does not fulfill

the SPARC definition of a coprocessor, that it should be able to execute instructions

having the opcodes CPop1 and CPop2.

The following sections give a brief overview of the various components and periph-

erals present in the LEON-2 Processor. The original characteristics of the component

are mentioned, along with any changes (if any) made for our implementation. The

Memory Map for the components connected to the AMBA AHB Bus and the periph-

erals connected to the AMBA APB Bus will be discussed in chapter 4. We do not

7

2.2 Integer Unit

use any of the timer blocks in our verification environment at present, hence those

are not described.

2.2 Integer Unit

The LEON-2 integer unit implements SPARC V8 integer instructions. It has an

internal 5-stage instruction pipeline. Since we do not include the multiplier and

divider, the boot code in our implementation emulates these functions in software.

The same is the case for floating point instructions.

To reduce the performance penalty for a function call or context switch, LEON-2

implements the SPARC concept of register windows. In order to configure the LEON-2

Processor, we must choose how many windows are suitable for our application.

SPARC requires an implementation to have between 2–32 general-purpose register

windows. Each register window has 16 registers, partitioned into 8 in registers and

8 local registers. These register windows are in addition to 8 global registers[18].

As shown in fig 2.2, at a given time, an instruction can access the 8 globals, and a

24-register windows into the current registers. The current window used is decided

by the current window pointer(CWP), which is a 5-bit field in the Processor State

Register(PSR). The outs of the CWP+1 window are addressable as the ins of the

current window and outs in the current window are the ins of window CWP-1. The

local registers are unique to each window. The register file is logically arranged in a

circular fashion, which means that the first window is adjacent to the last window [18].

The LEON-2 Processor VHDL model can be flexibly configured to have between 2–

32 windows. The choice of the number of windows depends upon the application and

area requirements. For our embedded application, a lot of windows are not required,

as would be by an high-performance application. Empirical measurements show that

the number of window overflow and underflow traps (explained later) in typical user

8

2.2 Integer Unit

���

�����

�

�����

������

�����

�

���	�

��	�

���
�

�

����

���

�����

�

�����

������

�����

�

���	�

��	�

���
�

�

����

���

�����

�

�����

������

�����

�

���	�

��	�

���
�

�

����

�
�����������

�
���������

�
�����������

����
�

������

����

�

����

�����

��������������
�������
����

Figure 2.2: 3 overlapping Register Windows and the 8 Global Registers[18]

code approximately halves for each window added, up to about 12 windows[18]. We

choose a value of 8 windows to minimize the area of the register file. Fig 2.3 shows

the circular nature of the 8 window register file, and the causes for changing the

current register window. On a function call or a trap, the callers outs become the

callee’s ins. This makes it possible to make a context switch by just changing the

current window and not bothering about copying the register file onto the stack, as

in a lot of other CPU architectures. A SAVE on the stack is explicitly required only

when all the register windows are used up. Thus, in cases of window overflow during

a TRAP or window underflow during a RESTORE, the embedded software has to

9

2.3 Memory Interface

��������

����

�	
��

��	�

�����

�

������

����	�

�����

�

������

����	�

�����

�

������

����	�

�����

�

������

����	�

�����

�

������

�

��	�

�����

�

������

�����

����	�

�

������

����	�

�

������

�����

����	�

���

���������
����

���!�

���"�

Figure 2.3: The Windowed r Registers (NWINDOWS=8)[18]

provide routines for explicitly saving or restoring the register file.

2.3 Memory Interface

The flexible memory interface handles a memory space of 2GB from hex addresses

00000000 to 7FFFFFFF. It provides interface signals for 512MB of PROM (00000000

to 1FFFFFFF), 512MB of memory mapped I/O devices (20000000 to 3FFFFFFF) and

a combined maximum of 1GB of SRAM and SDRAM (40000000 to 7FFFFFFF).

10

2.3 Memory Interface

����

��������

	
�

����

�

��������

��������

� �

�������

��

��

��

��

��

��

��

��

��

���

���

���

���

��

� �

�

�

�

�

�

�

�!��"#$��!%

�

����

�

��#&

�

����

�����

���'��(�

���)�*�

��*+���

������)���

�������)���

����

������

�����

��� ������

	���

����������

���

��	,��

������

Figure 2.4: Example Memory Interfaces connected to LEON-2 [14]

Fig 2.4 shows a possible way of connecting different interfaces to the LEON-2

Processor. The bold lines indicate the unidirectional Address lines, while the dotted

bold lines represent bidirectional data lines and the other signals are all unidirectional

control signals. The memory bus can be configured in 8-bit or 16-bit modes for low

bandwidth devices. In our implementation, the SDRAM interface is not enabled. Our

testbench uses 32KB of PROM and 256KB of SRAM, both being VHDL behavioral

models.

11

2.4 UARTs

2.4 UARTs

The LEON-2 Processor contains two 8-bit Universal Asynchronous Receiver Trans-

mitters (UARTs) on-chip. Our implementation instantiates both of them. The test-

case presented later in Chapter 5 shows an example utilizing one of the UARTs for

transmitting serial data. The baud-rate for the UARTs is individually programmable

and data is sent in 8-bit frames with one stop bit and an optional parity bit. All

internal details about the UART operation are obtained from the LEON-2 Processor

manual[14].

��������	�

�	�
�	����

������

��

����
������
��

��������

����
������
��

�������
�

������
	�

��������

�	�����������
��

������

��

�	�����������
��

��
�������������

��
�

�
�!

�
�!
"#$�
��%

&'�

Figure 2.5: UART Block Diagram[14]

The transmitter holding register (THR) acts as a buffer for the byte which has

to be transmitted. When the transmitter is enabled and ready to transmit, data is

transferred from the THR to the transmitter shift register (TSR) and sent out in a

serial fashion over the transmitter data output pin (TXD). On the receiver side, the

receiver holding register (RHR) acts as the buffer from which the LEON-2 Processor

can read the data received from the RXD input pin. In both cases, a transition

12

2.5 Interrupt Controller

from high to low on the data line indicates the start bit for a new frame. The least

significant bit of the byte is always transmitted or received first. In the inactive state,

both the RXD and TXD data pins stay at the high level. The Clear-to-send (CTSN)

and Ready-to-send (RTSN) signals are used when flow control is enabled as a means

of handshaking with the external receiver or transmitter.

2.5 Interrupt Controller

The interrupt controller manages a total of 15 interrupts, originating from internal

peripherals and external sources. The original LEON-2 core has 4 unused inter-

rupts. Our implementation does not enable the secondary interrupt controller, which

is needed if more than 4 peripherals asserting interrupts are added to the system.

Further details about the interrupt controller and the changes made for integrating

the wireless receiver can be obtained in section 4.2.

2.6 Parallel I/O port

The Parallel I/O Port available has 32 bits which can be individually programmed

as input or output. Some of the lower 16 bits of the I/O Port are multiplexed with

UART pins and External Interrupts as shown in table 2.1, while the higher 16 bits

of the I/O Port are multiplexed with the lower 16 bits of the Memory Data bus.

The higher 16 bits of the I/O Port are available in I/O mode only when the external

memory used has a data width of 8-bits or 16-bits.

This chapter gave an overview of the CPU being used in the design. The open-

source nature of the LEON-2 Processor and its SPARC instruction set and good

flexibility in adding, removing and configuring components make it an attractive

choice for this thesis. We had initially started work on the thesis using the OpenRISC

Processor core[6]. But we switched to the LEON-2 Processor because it was felt that:

• LEON-2 has a more widely used and proven standard architecture (SPARC)

compared to the newer OpenRISC architecture.

13

2.6 Parallel I/O port

I/O port Function Type Description Output Enabling condition

PIO[15] TXD1 Output UART1 transmitter data UART1 transmitter enabled
PIO[14] RXD1 Input UART1 receiver data -
PIO[13] RTS1 Output UART1 request-to-send UART1 flow-control enabled
PIO[12] CTS1 Input UART1 clear-to-send -
PIO[11] TXD2 Output UART2 transmitter data UART2 transmitter enabled
PIO[10] RXD2 Input UART2 receiver data -
PIO[9] RTS2 Output UART2 request-to-send UART2 flow-control enabled
PIO[8] CTS2 Input UART2 clear-to-send -
PIO[3] UART

clock
Input Use as alternative UART

clock
-

PIO[1:0] Prom
width

Input Defines prom width at
boot time

-

Table 2.1: LEON-2 UART/IO Port Multiplexing [14]

• The GNU Cross-Compiler toolchain for LEON-2 is much more easy to install.

• The VHDL source code for LEON-2 seems to be more stable and has fewer or

no bugs.

• LEON-2 comes with a set of well-written VHDL testcases and embedded soft-

ware.

• LEON-2 has a better user-friendly interface to configure and add/remove com-

ponents and peripherals.

The next chapter will give an overview of the Programmable Wireless Receiver

used in the WLSOC design.

14

Chapter 3

Wireless System

This chapter describes the Digital Wireless Receiver used in the WLSOC System.

The Wireless Receiver we designed is intended to receive its input from an off-chip

coherent analog RF receiver front-end, filter noise from the signal and extract and

store the data packet in its internal 128-byte buffer. It is designed using VHDL and

the Xilinx System Generator Blockset for Matlab Simulink. The use of the System

Generator blockset is made because it is a toolkit designed primarily for Digital

Signal Processing Applications. This design shows an example of how different design

languages can be used in their area of expertise and the different components then

integrated together to get the combined benefits of both.

3.1 Protocol

To simplify the design of the Wireless Receiver, a dummy protocol was devised

loosely based on some aspects of the 802.11b Ethernet Wireless LAN protocol. Fig 3.1

shows the structure of one packet used for data communication. The data payload of

the packet consists of exactly 128 characters or its 1024-bit ASCII equivalent. This

size is fixed to simplify the design of the receiver. If the length of a message is less than

128 characters, the data payload can always be padded with spaces to make it 128

character wide. This packet also needs a delimiter to delineate start of one packet and

15

3.2 Overall Design

�����������	

��
������������

���

��������������������

����

����������

��������������
����

Figure 3.1: WLSOC Wireless Protocol

end of another. The SFD(Start of frame delimiter) we use is 0000 0101 1100 1111,

identical to the IEEE 802.11b-1999 Long PLCP SFD [15]. The packet should also

contain some known bits (SYNC) which the receiver will expect and tune itself ac-

cordingly. Depending on the (changing) multi-path characteristics of the intermedi-

ate channel, these SYNC bits will be distorted to varying degrees at various points

of time. Correlating the known SYNC bits with the actual received bits, the receiver

can modify its internal LMS filter tap coefficients to equalize the external noise. This

“learning” of the external channel characteristics should be performed before every

packet data payload. The varying nature of noise in the channel is one of the factors

in determining the size of the packet. If it varies quite frequently, the LMS filter

should get a chance to adapt itself more frequently, and hence the size of the packet

should be smaller. A string of 8 ones is chosen as the SYNC bits in our system.

This is the data link layer structure for the packet. At the physical level, the

SYNC and data bits are spread by a spreading code of 15-bits to increase immunity

to wireless multichannel fading. Details about spreading will be covered in section 5.4

3.2 Overall Design

The overall function of the Wireless Receiver (WLRCV) is split into 4 blocks, viz.

the Frontend, Decorrelator, Buffer and Register File. Fig 3.2 shows the block diagram

of the design. The input from the analog RF Receiver is received from off-chip. The

Register File and buffer are read by the LEON-2 Processor using the AMBA APB

Bus. The Interrupt triggered by the Buffer is connected to the Interrupt Controller

of the LEON-2 Processor. Further details about the integration of the WLRCV with

16

3.3 Wireless Frontend

the LEON-2 Processor can be obtained from Chapter 4.

��������	
��

�������	��	����	�

���	������	� ������

�����

�������������

��������

�
�������

�
������	�

�����������

��	���� !

����� "	�
�

Figure 3.2: Wireless Receiver Coprocessor Block Diagram

3.3 Wireless Frontend

The frontend we used has been designed by Ravi Jenkal and Prof. Rhett Davis

from the ECE Department, NC State University. It will be used as a pre-verified

Intellectual Property core just as the LEON-2 Processor. The purpose of the Frontend

is to extract the chips one-by-one from the incoming noisy stream of data. Fig 3.3

shows the various components in the frontend. The SYNC bits in the packet are

helpful in tuning the 6-tap Linear Mean-Square Filter of the WLRCV to cancel the

noise in the channel. The synchronizer in the frontend tries to correlate the input

signal received with the known SYNC bits that it is expecting. As soon as it detects

this sequence at the input, it synchronizes the functioning of the LMS filter which

starts its training mode. Since the LMS filter is now expecting a series of 8 ones

converted to their spreading code, it tunes its internal taps to cancel the difference

between the expected and actual signals.

17

3.3 Wireless Frontend

���������	�

����
�
��	
����
�
��	

����	�

�����	�
�������

�������������	

����������	

�������	��

�
��������	

���������

 ���		�
���	

!������������	

	������

�����

����	��

"�	����
�

"��

�����

�������	

�
�

#����

����	��

Figure 3.3: Wireless Receiver Frontend Block Diagram

The Threshold input to the Synchronizer block is used a reference point by the

internal baseband clock synchronizing matched filter correlators to indicate that syn-

chronization has been achieved. The bigger the value of this signal, the longer it

will take for the synchronizer block to confirm synchronization. On the other hand, a

smaller value could trigger an earlier incorrect synchronization. The Synch interval

input to the Sync control block indicates how many cycles the matched filter corre-

lators run before resetting. The correlators should start afresh after they do not

find the expected SYNC bits for a long time, otherwise one of the correlators will

randomly reach the threshold, even though the SYNC signal is not present. If the

receiver comes out of reset while a packet has already started transmission, it has to

wait till the SYNC bits in the next packet to start receiving.

The µ signal is the LMS-adaptation scale-factor. It indicates how quickly the LMS

filter changes its tap coefficients to match the channel characteristics. Keeping a

18

3.4 Decorrelator

very low value will force the LMS filter to take a longer time to adapt, but it will

be a steady adaptation. A large value may result in huge fluctuations in the tap

coefficients, and the LMS filter may never converge to the intended sweet spot. The

Adapt interval indicates for how many cycles the LMS filter should adapt. The

Tap coefficients are driven out by the LMS filter so that external modules can read

them to find the channel characteristics.

3.4 Decorrelator

The decorrelator has the job of combining the chips from the input packet into

bits, bytes and words. Fig 3.4 shows the internal block diagram of the decorrelator.

The decorrelator receives the correct input chips from the frontend in the form of

������������

�	
����
���

���������������
���

�����������������
�����

��	
������

��� ��

���
��������

��!!�"�

 ����������

�#!!$�

#

$

�

�

 %����������

�#!!&�

�

#

'

&

�

(

)

*

+

�

(

)

*

+

�������� %��

��������,���

,���������

,�������� ��
-

-� ��

��

���	
 �

�

��
���
����	��"�

��
���
����	

&'

'#

& '

�����.���

����	������

/.�

�������"� ����
�������������

/.�

	
 �

�
 	

�
 	

Figure 3.4: Wireless Receiver Decorrelator Block Diagram

19

3.5 WLRCV Buffer

the signal input_stream, after the frontend decides which half-chips to discard. It

waits for the signal lms_adapted from the LMS filter which indicates that the filter

has adapted to the noise. The most significant bit (MSB) of input_stream is then

scanned to detect the presence of the 16-bit SFD sequence. As soon as the SFD is

detected, the comparator indicates the accumulator to start accumulating the chips

from the packet. The LFSR contains the spreading code 1001 1010 1111 000, and

is used as the reference for decorrelating the input stream. Every set of 15 chips from

the input stream should ideally either match the spreading code for a 0 bit or a 1 bit.

Each successive bit of the LFSR thus indicates whether the next chip from the input

stream should be added (in case of 0) or subtracted (in case of 1) to the already

accumulated result. Finally, after all 15 chips are accumulated (as indicated by the

chip_counter), it gives a 20-bit result which is ideally either 15 or −15. Due to noise,

it would not be this exact value, but closer to either one of them. The sign bit of the

sum, i.e. the MSB, is then considered the actual bit which was transmitted. This bit

is then sent to the current_byte register, which is a temporary holding place for the

incoming byte. Similarly, the bit_counter, and byte_counter help in accumulating

the bits and bytes into 32-bit words. Every time a 32-bit word is accumulated, it is

sent to the buffer for storage using the write_data and write_enable signals. A

word_counter (not shown in the diagram) keeps track of the number of words sent

to the buffer. When 32 words are sent, signaling the end of a packet, the start/stop

signal is deasserted to restart the SFD detection procedure for the next packet.

3.5 WLRCV Buffer

The 128 character buffer is meant as temporary storage for the input packet, before

it can be read by the embedded software running on the LEON-2 Processor. Fig 3.5

shows the internal block diagram of the buffer. The storage is arranged in the form of

32 words of 32-bits each. The only device writing to this buffer will be the decorrelator.

The only legal way for the decorrelator to write into the buffer is to start from

address 0, and keep incrementing the address till it reaches the last word at address 31.

This would be one complete packet. When the next packet starts, it should revert

20

3.5 WLRCV Buffer

��������		
�

�

�

��

����������
�
���

������ �
�
��
�
��
�

�
��

����

����
�����

��� ������

�
���!����
�

"��
���#

����
�!����
�

�$������

%��&&
������
��

������"��
��� �

%���'()��

*�����
����
#����

Figure 3.5: Wireless Receiver Buffer (Memory) Block Diagram

back cyclically to address 0. Any other order would be considered incorrect with the

current design of the decorrelator. This cyclic transfer of data from the decorrelator

to the buffer allows us to make an important optimization in the design of the buffer.

Instead of letting the decorrelator indicate the write address into the buffer, the buffer

can keep an internal 5-bit write address counter which will start counting from 0 on

reset and increment every time a new word is written to the buffer. The counter will

revert back to 0 after 32 words have been written. This internal counter is shown

as the Write Pointer in fig 3.5. This method reduces some flexibility, but that is

21

3.6 Register File

not necessary for the current design. It would not be very difficult to bring out this

auto-incrementing counter as an input bus if it is required in a future implementation.

The LEON-2 Processor needs a way to read the contents of the buffer. Hence a read

data bus is provided, which connects to the AMBA bus in the System. In this case the

read address is driven by the LEON-2 Processor instead of being internally generated

like the write address. This gives the embedded software flexibility in reading the

buffer in any order that it wants, and also only so much as it wants. For example,

our simplistic protocol restricts the size of the packet to 128 characters. But an

application on the transmitter side might have a shorter message to send and might

just pad up the message with null characters. If the embedded software application

knows that this is the case, it can read just the relevant message and not waste cycles

in reading the other useless characters. The AMBA read address bus is shown as the

Read Pointer in fig 3.5.

3.6 Register File

The Register file allows the LEON-2 Processor to configure the Receiver and also

read internal signals like the tap coefficients of the LMS filter. The Programmable

features of the Register File and its place in the memory map of the WLSOC System

are described in section 4.3.2.

This chapter described the Programmable Wireless Receiver that will be used as

a slave of the LEON-2 Processor in the design. The next chapter describes the

procedure of integration of these 2 cores to form the WLSOC System.

22

Chapter 4

Integration of the WLSOC System

This chapter gives a description of how the integration of the Wireless Receiver

Coprocessor was performed with the LEON-2 System and the characteristics of the

resultant system.

4.1 Stitching together the pieces

The LEON-2 Processor and the Wireless Receiver are two blocks of reusable IP

VHDL cores which have to work together in this design. Chapter 2 showed a general

description of the base LEON-2 Processor. There are two places in the Processor

where additional devices can be connected. One is the AMBA AHB Bus and the

other place is the AMBA APB Bus. These buses are discussed further in section 4.3.

The AMBA AHB Bus is generally used for high-speed interconnects and is more

complicated among the two bus protocols. LEON-2 needs some interconnect just to

read and write the WLRCV Registers and the buffer memory. A complicated high-

speed interconnect in not required as the performance requirements are not stringent.

Neither does the WLRCV need the capability to act like a master to any other module.

Hence the AMBA APB Bus is well suited for this task. The AHB/APB Bridge is

the only master on the APB bus and is used as the medium to configure most of

the slave module configuration registers. As shown in fig 4.1, the WLRCV module is

23

4.1 Stitching together the pieces

connected to the AMBA APB Bus as a slave. The WLRCV interrupt is connected

to the Interrupt Controller just like other slave modules. The wireless signal data

input for WLRCV is driven by an external RF analog frontend. Sections 4.2 and 4.3

�������

��	�
���
��	

�������

������	������

�������� ���

���	������

�������

����
�

����

������	

��	

������

���	������

 ����!

�" !

��#��	�

��$����	

����

������

%��&

��������

'(������������

�
��
�
��
��
�
!

)�

��

$�	������������!

���*��	��!��+

���

%'$,�-������!!���.�	��/�����!!��������!!��

/�����!!

�������!!��

*/%"�0+

/%"�0

��	�����	

$�	�����

*��	��!��+

")

����	

Figure 4.1: LEON Processor with Wireless Coprocessor Block Diagram

discuss the changes in the Interrupt table and Memory Map of the WLSOC System

due to the addition of the WLRCV Module.

24

4.2 Interrupts/Traps

4.2 Interrupts/Traps

4.2.1 Overview of Interrupts and Traps

In a SPARC implementation, a trap is a vectored transfer of control to the supervi-

sor software through a special trap table that contains the first 4 instructions of each

trap handler. The base address of the table is established by the supervisor software,

by writing the Trap Base Address (TBA) field of an IU state register called the Trap

Base Register (TBR). The displacement within the table is determined by the type

of trap[18]. Fig 4.2 shows the significance of the different bits of the 32–bit Trap Base

�����������	�
�������

�
�	��

����� ���� ���

Figure 4.2: 32-bit Trap Base Register (TBR)

Register. Only the TBA bits can be written by software, while the tt bits are written

by hardware when a trap occurs. This register holds the address to which control is

transferred when a trap occurs.

Before it begins executing any instruction, the Instruction Unit selects the highest-

priority interrupt, and if there are any, causes a trap. Instruction-induced exceptions

cause precise or deferred traps while external interrupt requests cause an interrupting

trap. A precise trap occurs before any program-visible state has been changed by the

trap-inducing instruction. A deferred trap may occur after program-visible state is

changed. [18]

4.2.2 Instruction-induced Traps

Table 4.1 shows the various Precise and Deferred Traps implemented by LEON-2,

their priorities and the values written by the hardware into the tt field of the Trap Base

Register. The Priority and tt values are based on the generic SPARC standard [14].

25

4.2 Interrupts/Traps

Exception Request tt Pri Description

reset 0x00 1 Power-on reset
write error 0x2b 2 Write buffer error
instr access error 0x01 3 Error during instr fetch
illegal instruction 0x02 5 Unimplemented instruction
privileged instruction 0x03 4 Exec privileged instr in user mode
fp disabled 0x04 6 FP instr while FPU disabled
cp disabled 0x24 6 CP instr while CP disabled
watchpoint detected 0x0B 7 Instr or data watchpoint match
window overflow 0x05 8 SAVE into invalid window
window underflow 0x06 8 RESTORE into invalid window
reg hardware error 0x20 9 Reg file EDAC error (LEON-FT only)
mem addr not aligned 0x07 10 Mem access to unaligned address
fp exception 0x08 11 FPU exception
cp exception 0x28 11 Co-processor exception
data access exception 0x09 13 Access error LD or ST instr
tag overflow 0x0A 14 Tagged arithmatic overflow
divide exception 0x2A 15 Divide by zero
trap instruction 0x80–0xFF 16 Software Trap Instr (TA)

Table 4.1: LEON-2 Precise/Deferred Trap Table[14]

The register hardware error exception is implemented only on the Fault Tolerant

version of LEON-2 and is not present in the implementation that we used.

4.2.3 Peripheral/External Interrupts

The 15 interrupts are all implementation-dependent and LEON-2 uses all but 4

interrupts for its peripherals and external interrupts. To accomodate the Wireless

Receiver, we have connected its interrupt into the system such that it receives a

Priority of 20 and a tt value of 0x1C. This priority was chosen because it was the

next available unused slot in the already designed LEON-2 interrupt table.

Table 4.2 shows the complete Interrupt table for the Integrated WLSOC System.

26

4.3 Memory Map

Interrupt Request Priority tt

Interrupt 15 (Unused) 17 0x1F
Interrupt 14 (Unused) 18 0x1E
Interrupt 13 (Unused) 19 0x1D
WLSOC Receiver 20 0x1C
DSU Trace Buffer 21 0x1B
2nd Interrupt Controller 22 0x1A
Timer 2 23 0x19
Timer 1 24 0x18
Parallel I/O [3] 25 0x17
Parallel I/O [2] 26 0x16
Parallel I/O [1] 27 0x15
Parallel I/O [0] 28 0x14
UART 1 29 0x13
UART 2 30 0x12
AHB Error 31 0x11

Table 4.2: WLSOC Interrupt Table[14]

4.3 Memory Map

LEON-2 internally uses 2 types of on-chip buses: AMBA[11] AHB and APB. The

APB Bus (Advanced Peripheral Bus) is used to access on-chip slave peripheral reg-

isters, while the AHB Bus (Advanced High-speed Bus) is used for high-speed data

transfers.

4.3.1 Advanced High-speed Bus

LEON-2 uses the AMBA AHB bus mainly to connect the Processor I/D Cache

Controllers to the memory controllers and other (optional) high-speed units. The

implementation we used has IU as the only master on the AHB bus and the memory

controller and the APB bridge as the 2 slaves.

27

4.3 Memory Map

Address Range Size Mapping Module

0x00000000 – 0x1FFFFFFF 512 M Prom Memory Controller
0x20000000 – 0x3FFFFFFF 512 M Memory Bus I/O
0x40000000 – 0x7FFFFFFF 1 G SRAM and/or SDRAM
0x80000000 – 0x8FFFFFFF 256 M On-chip Registers APB Bridge
0x90000000 – 0x9FFFFFFF 256 M Debug Support Unit DSU

Table 4.3: LEON-2 AHB Address Allocation[14]

4.3.2 Advanced Peripheral Bus

The APB bridge connected to the AHB bus as a slave is the only master on the

APB Bus. Most on-chip peripheral registers are accessed through this bus. The

configuration and status registers of the Wireless Receiver are also connected to this

common bus.

Address Range Module

0x80000000 – 0x80000008 Memory Controller
0x80000014 – 0x80000018 Cache Controller
0x80000024 – 0x80000024 LEON-2 Configuration Register
0x80000040 – 0x8000006C Timers
0x80000070 – 0x8000007C UART1
0x80000080 – 0x8000008C UART2
0x80000090 – 0x8000009C Interrupt Controller
0x800000A0 – 0x800000AC I/O Port
0x80000300 – 0x80000AFC Wireless Receiver

Table 4.4: WLSOC APB Address Allocation[14]

Table 4.4 shows the Memory Map of the APB Bus for our LEON-2 implementation.

The empty address spaces in the Memory Map correspond to optional modules in the

generic LEON-2 Processor, which are not included.

Table 4.5 shows the memory map of the Configuration and Status Registers inside

the Wireless Receiver. The address space from addresses 0x80000730 to 0x80000AFC

28

4.3 Memory Map

Address Range Size (bytes) Register Read/Write

0x80000300 – 0x800006FC 1K Buffer Read-only
0x80000700 – 0x80000700 4 Adptint Read/Write
0x80000704 – 0x80000704 4 MU Read/Write
0x80000708 – 0x80000708 4 Synchint Read/Write
0x8000070C – 0x8000070C 4 Threshold Read/Write
0x80000710 – 0x80000710 4 Reset WLRCV Read/Write
0x80000714 – 0x80000714 4 Tapval1 Read-only
0x80000718 – 0x80000718 4 Tapval2 Read-only
0x8000071C – 0x8000071C 4 Tapval3 Read-only
0x80000720 – 0x80000720 4 Tapval4 Read-only
0x80000724 – 0x80000724 4 Tapval5 Read-only
0x80000728 – 0x80000728 4 Tapval6 Read-only
0x8000072C – 0x8000072C 4 Trigaddr Read/Write

Table 4.5: Wireless Receiver Register Address Allocation

is unused and can be used in future versions of the WLRCV. The significance of the

different Wireless Receiver Registers is as follows:

• Reset WLRCV: This register is used to bring the Wireless Receiver out of

reset. If Reset WLRCV[0] is 1, the Receiver is in reset state; if its 0, the Receiver

is out of reset state. Bits 31:1 of this Register are don’t care.

• Buffer: This acts as intermediate storage for the packet before it is being

moved to the memory. It is a 32-word space for storing one entire 128-character

packet. Currently, it is the job of software to read the contents of the buffer

as it is filled by the receiver. An alternative design could be a DMA controller

which automatically copies this data to main memory. The size of the buffer i.e.

32 words is chosen so that the entire packet fits into it at one time. A smaller

buffer would have reduced chip area but also have imposed more stringent real-

time requirements on the software. For example, a buffer of size 8 words would

trigger 4 interrupts for each packet, thus causing the ISR to be serviced 4 times

in the same duration that a packet takes to be received. Section 3.5 describes

the buffer in more detail.

29

4.3 Memory Map

• Adptint: Bits 7:0 of this register directly drive the signal Adapt interval as

shown in Fig 3.3. Bits 31:8 of this register are don’t care. It is interpreted as

an 8-bit unsigned value.

• µ: Bits 7:0 of this register directly drive the signal µ as shown in Fig 3.3. Bits

31:8 of this register are don’t care. It is interpreted as a 8-bit fixed point signed

value with 3 bits before the binary point and 5 bits after it.

• Synchint: Bits 7:0 of this register directly drive the signal Synch interval as

shown in Fig 3.3. Bits 31:8 of this register are don’t care. It is interpreted as

an 8-bit unsigned value.

• Threshold: Bits 7:0 of this register directly drive the signal Threshold as

shown in Fig 3.3. Bits 31:8 of this register are don’t care. It is interpreted as a

18-bit fixed point signed value with 10 bits before the binary point and 8 bits

after it.

• Tapval: The value of the 6 Tap Coeff outputs from the WLRCV frontend are

captured in these 6 32-bit registers. The software can read these 6 32-bit values

but cannot modify them.

• Trigaddr: As the WLRCV buffer is being continuously refilled by the hard-

ware, the software has to make sure that it reads the values in this buffer for

every packet received, before it is overwritten by the next packet. If the soft-

ware waits for the entire packet to arrive in the buffer and then starts copying

the data, it risks the possibility that the initial words of the buffer could be

overwritten in the meantime. The time it takes for the LEON-2 Processor to

service the WLRCV ISR may be more than the time between two successive

packets. Hence, it is advisable to start the ISR even before the 32-words have

been filled. It is also possible, that the embedded software knows that the mes-

sage is padded with dummy characters and does not need to wait for the entire

message to be downloaded into the buffer, before it can start processing it.

This register decides when the WLRCV would fire an interrupt to the LEON-2

30

4.3 Memory Map

Processor.

�������

����	���

�
��

���

���
���

��
��

��������

����

��
��

��������

������

�������

�������

������

���!����

Figure 4.3: Wireless Receiver Programmable Registers

Figure 4.3 shows a graphical view of how these registers are connected to the

Wireless Receiver module. The LEON-2 Processor has to program the Adptint, µ,

Synchint, Threshold and Trigaddr configuration registers and bring the Receiver out

of reset by writing into the Reset WLRCV Register. The different Tapval and Buffer

values are then generated by the Receiver. The LEON-2 Processor cannot modify the

tapval and buffer values. The software can only read them as status registers. The

fact that some of these programmable registers control internal signals in the WLRCV

module gives immense flexibility to the software to tune the receiver to its needs. Also,

31

4.3 Memory Map

by being able to read the tap coefficients, the user can get a better perspective of the

internals of the WLRCV module. In the same manner, more internal signals could be

controlled or observed by being brought out of the system and connected to registers

if needed.

This chapter described the integration of the Wireless Receiver Coprocessor with

the LEON-2 System and the characteristics of the resultant system. The next chapter

explains the different CAD tools that were used in the design and the resultant

coverification flow developed.

32

Chapter 5

Tool Flow

This chapter gives an overview of the different languages and CAD tools used in

the design.

5.1 Tool flow

The goal of this thesis was to integrate the Wireless Receiver designed in Simulink

as a slave of the LEON-2 Processor. Chapter 4 shows the manner in which the whole

system was integrated. This chapter will show the verification setup for the system.

The individual components of the system like the LEON-2 Processor and the Wireless

Receiver are assumed to be thoroughly verified and would not be verified again at

the unit-level. The glue logic that binds these two modules together was verified at

the unit-level before integrating.

The main function of the WLSOC is to receive a packet from the Wireless Receiver

Network and store it into memory accessible by LEON-2 so that the embedded soft-

ware can process it further. This procedure requires the cooperation of the software

with the hardware. The software has to program the appropriate configuration regis-

ters in the Receiver, wait till a packet is received, and copy it from the Receiver Buffer

to the main memory. In our test setup, we programmed the software to transmit ev-

ery byte of the packet through the UART present in the system. An external UART

33

5.1 Tool flow

Receiver was present to receive this packet, which would later be reconstructed and

compared with the original packet to verify that the WLSOC functions as intended.

��������

�����	��

����
�������

������������

�������

������

�� !�"

#!���!����

��$
�%$

$��&��

%�!��' '(��

�
�
���� !&

������

��$�

�%$

)�
��
�
*�
��
+
�!
�,
-
�

��& ����

���.������	��

�������'++��

��$�

��$

)�
�
&
*�
��
+
�!
�,
/
�

�
��$��

�� !�"�$��

0�� ����1����'�!�

�0+�� '���#22�

�

��+��

��0�#�������

.���(�����������

� (�&&�&

0!3�4'��

���+�'"�%!��

&�(��

������

���! +����
���'��� (���

���.,

.�'�� �����

���.�#!�3��

�!���!�

�0+�� '��

���.������	��

�0+�� '��$
��

0+�� '�5����

�����3'��

Figure 5.1: Simulation Flow for the WLSOC System

Figure 5.1 shows the testbench setup for the WLSOC System. The various im-

portant blocks in the system are displayed along with their interactions. The blocks

enclosed by the internal dotted box represent a conceptual view of the LEON-2 Pro-

cessor with only the relevant blocks. The outer dotted box encloses VHDL compo-

34

5.1 Tool flow

nents of the testbench like the external memory (RAM). The rectangular boxes with

curved corners represent the Specman[5] Stimuli Generators or Checkers/Monitors.

The dotted arrows represent the interaction between Specman and VHDL Code. Us-

ing this interface, the e code can drive and monitor the value of VHDL signals. The

solid lines represent VHDL buses or signals. The AHB, APB, Memory and I/O buses

are all bidirectional. The arrow between the Specman UART Config monitor and

Receiver represent exchange of data between two Specman units.

The Integer Unit in the LEON-2 Processor uses the AMBA AHB Bus to fetch

instructions from the external memory through the Memory Controller. The AMBA

APB Bus is used to program the configuration registers in the Memory Controller,

the UART, External I/O and the Wireless Receiver. The muxed signals of the UART

and External I/O are programmed in the UART-mode to make use of the UART

Transmitter. The Decompiler and testmod modules print useful debugging informa-

tion during the simulation. Specman code is used to generate the stimuli, monitor

internal AMBA bus activity and verify the UART transmitted packet. These modules

and their interactions will be explained in detail in the rest of the chapter.

5.1.1 Nomenclature

����������	�
����

�	
��������

���������	�
����

�	
��������

������������

���

����
����������

����������
	�

���	���	�
���

�	
��������

������������	�
����

����������	�

���	���	�
���

�	
��������

������������	�
����

����������	�

Figure 5.2: Flowchart Legend

35

5.2 Xilinx System Generator

Figure 5.2 shows the meaning of different symbols used in the Flowcharts here-

on. These charts illustrate the tool flow needed to prepare the system simulation.

Rectangular blocks indicate input and output files used in the process. The oval

blocks represent the tool used for the transformation. In the Legend shown, the

Program P1 acts on the Input File IF1 to produce the Output File OF1.

In addition to the tool flow, the relationships of the various simulation files have

been included in the charts. A dashed rectangular block with rounded corners repre-

sents an important function name in the file represented by the solid-line rectangular

block. A double-arrow represents a function from another file being called or trig-

gered during simulation of the system. In the Legend shown, Function Fx2 from File

F2 is triggered due to some action taken in Function Fx1 from File F1. Functions

Fx1 and Fx2 may have been written in different languages like VHDL and C.

5.2 Xilinx System Generator

The first step in the simulation process is the generation of VHDL code for the

Wireless Receiver Simulink Model (wlsoc.mdl). Simulation models can be generated

using the Xilinx System Generator Tool. Care should be taken to use blocks from

only the Xilinx Blockset in this Simulink Model. Figure 5.3 shows the steps per-

formed in this process. Xilinx System Generator is available only on the Microsoft

Windows Platform. Since the rest of the tools are executed on the Unix Platform, the

generated VHDL files for the Wireless Receiver are converted into UNIX format using

the dos2unix program. Xilinx System Generator is primarily used for implementing

FPGA-based DSP systems, hence some post-processing needs to be for synthesizing

this VHDL for an ASIC. We use the BEE flow[7] from UC Berkeley for accomplishing

this.

36

5.3 Embedded Software

���������

	
��
�����

��������
�������

������
������

���������

	
��
�����

�����
�������

��������

 �!
�������

 �!
����

Figure 5.3: Generation of VHDL code from Matlab Simulink model

5.3 Embedded Software

The next step is the design of the Embedded Software to execute on the LEON-2

Processor. The main parts of the Software are the initial boot code and low-level

Traps, device drivers (configuration) for the UART and WLRCV and an Interrupt

Service Routine for the WLRCV.

5.3.1 Boot Code

The main job of the boot code (file:boot.S) for the LEON-2 Processor is initializing

the Registers viz. the Processor State Register, Window Invalid Mask Register and

Trap Table Register. It also initializes most of the LEON-2 Configuration Registers

as well as the entire general-purpose circular Register file. This portion of code is

relocated by the linker command file linkboot to the ROM starting at hex address

0x0. This is the reset location for the LEON-2 Processor. Rest of the assembly and

37

5.3 Embedded Software

C code is relocated by the linker command file linkleon to the RAM starting at hex

address 0x40000000.

The later portion of the boot code (file:locore1.S) initializes the Trap Table with the

appropriate Service Routines for Hardware traps and Interrupts. Notable hardware

traps include Register Window Overflow/Underflow and Floating Point Instruction

Trap1. The Interrupt Service Routines are written in C and the Trap Table uses

assembly code to transfer control to these ISRs.

5.3.2 Device Drivers

The device driver for the UART (file:uart.c) configures UART1 for transmission,

with Parity enabled. Fastest possible transmission is done by configuring the scaler

value to 1. This allows the UART to transmit one bit every 16 clock cycles. The device

driver for the WLRCV configures the adptint, synchint, µ and threshold registers and

brings it out of reset. The WLRCV can then proceed to receive Wireless Packets.

5.3.3 ISR for WLRCV

The Interrupt Service Routine for the WLRCV (file:isr.c) is responsible for pro-

cessing the packet received and stored in the WLRCV Buffer. It copies this entire

packet from the Buffer to main memory. This frees up the WLRCV to receive the

next packet in the same buffer space. For verification purposes, this packet is then

transmitted in terms of characters out of the UART. After writing each character

to the UART Transmitter Holding Register(THR), the ISR keeps polling the UART

Status Register to find out when the THR is empty, so that it can write the next

character.

38

5.3 Embedded Software

������

������	�
��

���������
����

������

�

�����

���������
����

��������

�������������������

��������

����������
������

����

� ����������

!�����

��������
�

��������������

���������
�

��"
���

����
��
� ��
�����#�

 $%&
�'����(��
���

Figure 5.4: Cross-Assembly of the Boot Code with sparc-rtems-gcc [ROM Section]

5.3.4 Compiling

The Embedded Software consisting of the assembly and C files has to be compiled

and the data converted to a format which can be used by the VHDL memories for

Hardware-Software cosimulation. Figures 5.4 and 5.5 show the steps in generating

such files. The sparc-rtems-gcc compiler used for the purpose executes on the Sun

Solaris machine, but generates SPARC binary code for the LEON-2 Processor, hence

it is called a Cross-Compiler. The linker command file organizes the different sec-

tions in the program into various memory locations. For example, a typical scenario

would be to put the code sections in the program (.text section) in ROM and data

sections (.data, .bss, .stab) in RAM. As indicated before, in our case, all the sections

except the initial boot code are arranged in RAM with code sections starting from

hex address 0x40000000 and data sections immediately following the code sections.

Fig 5.4 shows the procedure for creating the ROM data file. The sparc-rtems-gcc

tool assembles the boot.S file and relocates the sections to hex address 0x0. Fig 5.5

1Our instantiation of the LEON-2 Processor emulates Floating Point Instructions in Software

39

5.3 Embedded Software

���������

	
����
����

���������������

���������

��������

������

	������������������

���������������

�������������

�����������

������

���������������

����������� �

	
����!�� ��"������

���#����

	$��#������������

$��#

�����������������

����������� �

	%��&��"�����������

&"����������!�����

����� ��������

������������

��'���!

����������� �

	%�����������

(���)�

�!�����*����

������������

��'�"��

�������

(���)�

������������������

��)��������

��(�������������

������������

��'���!

���������

	(�����!�+�������&(�+�

	(�����!��,�

(�+-��*� ��.������

Figure 5.5: Cross-Compilation of Embedded Software with sparc-rtems-gcc [RAM
Section]

40

5.4 Stimuli Generation

shows the procedure for creating the RAM Data files. Linking causes relocation

and symbol references relative to hex address 0x40000000. The sparc-rtems-strip

tool strips out the Symbol Table information from the binary executable and the

sparc-rtems-objcopy tool purges the .comment section. These are required only for

debugging purposes, and are not used by the LEON-2 Processor for execution. The

sparc-rtems-objdump program finally transforms this binary program into an assem-

bly program in text file, which can be parsed by a VHDL procedure.

The final outputs of these transformations are the rom.dat, ram.dat and sdram.rec

files which are read by the testbench components, viz. the ROM, RAM and SDRAM

VHDL Memory models. Although we do not enable the SDRAM Controller in the

design, the flow to generate the sdram.rec file is still present. This file can be used if

needed in the future. The SDRAM model used is a Micron SDRAM Simulation Model

which reads in initial data in Motorola S-Records format. Hence the SDRAM initial

data file sdram.rec is in the S-Records format. Conversion to the S-Records format

implicitly removes any debugging information, hence explicit stripping of the debug

information and .comment section is not required. The RAM Model uses VHDL text

parsing features to parse an object-dump of the code in assembly format. Hence, this

is the format of the ram.dat initial data file.

5.4 Stimuli Generation

The WLSOC System is supposed to receive wireless packets conforming to our

dummy protocol, periodically train itself according to noise in the channel, then filter

the noise and retrieve the original message. While verifying the system, it is necessary

to simulate the effects of channel noise by altering the original signal before feeding

it to the WLSOC System. This is precisely what our Stimuli Generation procedure

does. The generator mimics the data an analog frontend would have supplied to

the digital portion of the Wireless Receiver. Verisity’s Specman Elite tool[5] is used

for this process because it implements a high-level language called e which allows

writing testcases with the use of abstraction and constraint-based random generation.

41

5.4 Stimuli Generation

Although e is a very good language by itself, it does not have the inherent capability

to handle fixed-point or floating-point numbers. Since the stimuli to be generated in

our case requires fixed-point numbers to simulate the effect of channel noise, we take

the help of C++ to complete the fixed-point aspect of the generation process.

The e code starts by generating a random message of 128 characters, in accordance

with our protocol mentioned in section 3.1. A readable string of a meaningful message

can be written, but even this has to be padded to make its size equal to 128 characters.

Each character is then individually converted to its 8-bit ASCII equivalent. This

converts the packet to 128× 8 = 1024 bits. Each bit is then spread for the purpose

of increasing noise immunity, as indicated in chapter 15 of the reference [17]. The

15-chip spreading code used for each bit having value 1 is 1001 1010 1111 000 and

that used for each bit having value 0 is 0110 0101 0000 111. The size of the packet

is now 1024× 15 = 15360 chips . This is the entire data payload of the packet.

This packet also needs a delimiter to delineate start of one packet and end of an-

other. The SFD(Start of frame delimiter) we use is 0000 0101 1100 1111, identical

to the 802.11b-1999 Long PLCP SFD [15]. This SFD is prepended to the data pay-

load without spreading. The packet should also contain some known bits (SYNC)

which the receiver will expect and tune itself accordingly. Depending on the (chang-

ing) characteristics of the intermediate channel, these SYNC bits will be distorted to

varying degrees at various points of time. Correlating the known SYNC bits with the

actual received bits, the receiver can modify its internal LMS filter tap coefficients

to equalize the external noise. This “learning” of the external channel characteristics

should be performed before every packet data payload. The varying nature of noise

in the channel is one of the factors in determining the size of the packet. If it varies

quite frequently, the LMS filter should get a chance to adapt itself more frequently,

and hence the size of the packet should be smaller. A string of 8 ones is chosen as the

SYNC bits in our system. They are spread and prepended to the SFD. The size of

the control portion of the packet thus becomes (8× 15) + 16 = 136 chips . The total

size of the packet becomes 136 + 15360 = 15496 chips . This is the actual ideal packet

42

5.4 Stimuli Generation

that is transmitted by the wireless transmitter.

To model the distortions seen by the received analog signal due to the imperfect

channel, the e Code first converts all the 0 chips in the packet to −1. Further

processing requires fixed-point capability and hence the e code passes this entire

packet of 15496 chips to a C++ function. Details of the interface between Specman

and C++ code are explained in the section 5.5.

As indicated in chapter 6 of reference[17], the receiver has to sample the input at

twice the chip rate for eliminating the baseband clock offset problem. Hence, the

verification environment has to provide two half-chips for every chip in the packet.

The C++ function starts off by duplicating every chip into two half-chips . The initial

offsets for the two sampling instants of the input signal by the analog frontend are

pegged at 0.7. Sampling instants for all the later samples are successively decreased

by the Baseband Frequency tolerance (25 × 10−6) of the crystal oscillators. This

tolerance represents an offset between the transmit and receive clocks. The ideal

input signal, when it changes from −1 to +1 or vice versa, is assumed to change in

the form of a sine wave. The values for the half-chips are derived by sampling this sine

wave in case the value changes from one half-chip to another, or kept at the ideal case

if there is no change. This tries to simulate the effect of the analog frontend sampling

the RF input signal. The next effect simulated is the noise added to the channel. The

packet chips are convoluted with the channel characteristics. The channel model is

chosen to be the UMTS Pedestrian-A Channel Model. The channel coefficients for

this model are (1, 0.327, 0.11, 0, 0.0724) [9]. The convolution formula used is:

y[k] =
∞∑
n=4

x[k − n]h[n] (5.1)

In formula 5.1, y[k] is the output of the convoluter or the input to be given to the

WLSOC Receiver. h[n] is the channel characteristics array and x[k − n] is the input

vector or the current half-chips. n is the number of tap coefficients we are modeling.

k varies till the number of half-chips, i.e. 30996. Finally, random white gaussian noise

is added to this packet.

43

5.5 Interface between Specman and C++ Code

The WLSOC System accepts the half-chip inputs as 8-bit fixed point values with

3 bits before the binary point, and 5 bits after the binary point. The most significant

bit is the sign bit. Thus, the input values should saturate between +4 and −4. Since

Specman cannot handle fixed point numbers, the C++ code multiplies each input

value by 32 before passing the entire list of 8-bit numbers to Specman. Multiplying

by 32 is analogous to shifting left by 5 bits, which are the number of bits supposed to

be after the binary point. Specman interprets these numbers as signed integers from

+128 to −128, but the WLSOC system correctly interprets them as between +4 and

−4. The stimuli is applied by Specman at the half-chip clock rate which is twice the

LEON-2 Processor and rest of the system clock rate.

5.5 Interface between Specman and C++ Code

In section 5.4 we have seen that the stimuli generation requires e and C++. C++

was preferred over C, to take advantage of its Standard Template Library(STL) ca-

pabilities. Personally, I find the memory allocation and management capabilities of

C++ more user-friendly than C. Calling C or C++ functions from e code requires

the creation of a special customized Specman state from the e and C/C++ files. A

compile script called sn compile.sh is provided by Specman for compiling the source

files. By default, this script is tuned for integrating C code. We had to make minor

modifications in our flow since we were using C++ code. Firstly, we modified the

sn compile.sh to use the g++ compiler to compile the C++ program instead of gcc.

Secondly, the C++ function definitions in the program were prepended by the key-

words extern "C". This forced the g++ compiler to not mangle the function names,

which it usually does for a C++ program. Internally, the interfacing mechanism used

by Specman uses C functions which cannot link together with a C++ program having

mangled names. Hence the change.

Since the data types used by Specman and C++ are different, special data types

need to be typedef ed in the C++ program which can receive and return data from

and to e . This is also done automatically by the sn compile.sh script. It analyzes

44

5.5 Interface between Specman and C++ Code

����������

����������	

�
���
������	

��������������

���

��
�������������

�
����
��
�������������

����
�������������

������������

�
���
������	

����������������� ���

!��
�������

��!�
��"������������#��

��
��������	��!$�	��������

��
���
��%��	�

���
�����

�����
����#������������

��!�
��"���
����#��

�����������������#��

�������
�����������#��

��
������&	������������

�����
�&���
�
�&����

������������

Figure 5.6: Generation of customized Specman state from e and C++ code

the e code and generates an header file consisting of the required typedef s specific

to that Specman program. As seen in fig 5.6, the header file wireless .h is generated

from the Specman file wireless.e. This header file is then #included in the C++

file wireless.cpp. The compilation of the C++ program using g++ creates a posi-

tion independent object file wireless pic.o. This object code is then combined with

the Specman code, again using the sn compile.sh script, to create our customized

Specman state wireless.esv and a shared object file libsn wireless.so. The Specman

state can be thought to represent a compiled version of the e code as opposed to

the Specman file which is loaded or interpreted at run-time. The shared object file

contains the linking interface between Modelsim and the wireless.esv Specman state.

45

5.6 Specman Checker

In this way, the specific advantages of both e and C++ can be obtained by inter-

facing these two languages together.

5.6 Specman Checker

We have seen the Stimuli Generation portion of the Specman code. Specman also

has the responsibility of checking the validity of the data transmitted by the UART1

Transmitter. It does so by monitoring the UART1 Transmission lines for any activity.

The UART1 TXD signal is usually pulled to a high state and remains there in a state

of inactivity. When this signal is pulled low by the Transmitter, it indicates the

start of transmission of a new character. The e code thereafter starts accumulating

the individual bits one after another and forms the entire character after 8 bits. It

then waits for the next character and so on till all the 128 characters in the packet

are received. This entire packet is then compared with the packet that was actually

generated as stimuli and if they are the same, the test is declared passed.

There are a few configuration details to be passed on between the embedded soft-

ware and the Specman code in this case. The embedded software can configure the

UART with different values for the scaler reload register, with or without the parity

bit and even or odd parity. It may or may not enable the flow control and loop-back

modes. In short, to extract the correct bits from the UART Transmission line, the

e code should know how the UART has been configured. For example, if the scaler

value has been programmed as 1, the duration of one bit transmitted is 16 cycles,

whereas if the scaler value is 5, the same duration would go up to 48 cycles. Clearly,

without knowing this information, the Receiver might receive more or less bits than

were actually transmitted.

An inflexible method for the Specman UART Receiver to work would be to decide

beforehand how the particular testcase will configure the UART and hardcode the

same values for the Receiver e code. This approach does not offer any flexibility

for changing the testcases. A solution to this problem can be obtained if Specman

46

5.6 Specman Checker

keeps monitoring the internal signals in the UART. As shown in fig 5.1, whenever

the UART configuration registers are changed by the software, the Specman UART

Config Monitor can indicate these changes to the Specman UART Receiver. By thus

unobtrusively monitoring the internal UART signals, Specman permits any change

in the software and still guarantees that the external receiver will adapt to the new

values.

����������	�

��
�����������

��
���

����������	�

������
�

�
��

������
��������

�����
���

�!� ���"

����������	�

��
���������#�

��
���

����������	�

������
�

�
�#

������
��������

�����
��#

�
���$���� �%��
$����

�
�����&����

'���
(���

��������)����������*���+�� ��������)����������*���+�#

Figure 5.7: Advantage of using HDL Wrappers

The Specman UART Config Monitor and Receivers are intended to work together.

Also, they are written in a very modular way. This means that they are prevented

from accessing HDL signal names using their absolute paths. This would have made

them not only design-specific, but also instance-specific. Instead, they access limited

signals, all from the same HDL instance. If the functionality of a Specman Bus

functional Model (BFM) requires accessing signals from different HDL instances, or

the signal names may not be uniform for all HDL instances, it is advisable to use

47

5.7 Decompilation of the Embedded Software

an HDL wrapper. This HDL wrapper acts as a standardizing medium for the signal

names. Irrespective of where this wrapper is instantiated in the HDL hierarchy, it

will still allow the Specman BFM connected to it to access the signals with their

standard names. As shown in fig 5.7, there could be more than one implementation

of the same core in the same or different chips. A particular designer may decide

to name the UART transmission signal as TXD or trans_data. Without the use of

a wrapper, 2 different Specman BFMs would have to be written for these designs.

But with the use of an appropriately instantiated HDL wrapper, Specman just sees

a uniform version of the UART Receiver in both cases. It still accesses the receiver

data line as rxd and request-to-send line as rtsn. The special e data structure that

facilitates the use of relative signal names is called a unit as opposed to the data

structure struct which uses absolute signal names.

This section showed how the use of a VHDL wrapper and a configuration monitor

gives modularity and flexibility to the design. The concept of a wrapper is not specific

to VHDL designs only. The HDL design could be in Verilog as well, and it would still

work fine as long as the testbench connects the HDL design and wrapper together

correctly. Either a multi-HDL simulator would have to be used in this case or the

wrapper could be written in Verilog as well. In fact, the Specman code would still

work with the Verilog wrapper without any changes, as long as it has the same

standardized port and signal names.

5.7 Decompilation of the Embedded Software

While debugging software code, it is beneficial to have the facility of stepping

through the assembly or C code and analyzing the results after each step. In our

current setup, the software has been converted to a VHDL memory compatible for-

mat for the purpose of simulation. It has already lost any resemblance to C code

and all debugging information. While the integer unit of LEON-2 is executing each

assembly instruction, the VHDL behavioral model can have some extra code to print

out information about this instruction. This will help correlate the hardware signals

48

5.7 Decompilation of the Embedded Software

with what is currently being executed. Such a disassembler is already included with

the LEON-2 Simulation Environment.

Although the disassembler is of great help in debugging assembly-level code, it

would be better to have a decompiler to debug high-level C code. While cross-

compiling the embedded software, we stripped debug information from the binary

executable, but the original binary code still had that information. In our case, we

use a copy of this binary code to extract and display the C code as the corresponding

assembly instructions are executed during the simulation.

���������	

��
��	������

�		

����������

�������

��

�����������

���������������

����

�������������

����������	�������

���������

���������������

 ���������

 ����������� �������

!�������"����

��#��	����$�������

���������������������

%��	������ ����&����

���������'��

()��!�	�����#������

()�����	�����$�������

��������������������

��#��	�����������

)����������

��	����������	���

�����������#�%���

*�������+���

�����,

�����������

�������+�����

������'��

()��!�	�����������

()��!��	�����$����	�

������()��!��	�����

�������#�����	����������

Figure 5.8: Decompilation of the Embedded Software

Figure 5.8 shows the steps performed to display the decompiled C code when the

simulation is in progress. The general idea behind this process is to correlate each

49

5.7 Decompilation of the Embedded Software

line of C code with the first hex address of the set of assembly instructions into which

this line is converted to. For example, the C code to initialize the adptint register

with the hex value 0x3C is as follows:

// ADPTINT = 0x3C

*(volatile int *)(PREGS + ADPTINT_REG) = 0x3C;

PREGS and ADPTINT REG are #defined with the hex addresses 0x80000000 and

0x700 respectively. Their addition gives the address for the adptint register i.e.

0x80000700. The volatile keyword indicates to the compiler NOT to optimize this

piece of code, as adptint is not a general-purpose register or memory location. Hence,

it should not be replaced with any other register or memory address. The correspond-

ing SPARC V8 assembly code for this line (obtained from sparc-rtems-objdump) is

as follows:

40001cd8: sethi %hi(0x80000400), %o0

40001cdc: or %o0, 0x300, %g3 ! 80000700 <LEON_REG+0x700>

40001ce0: mov 0x3c, %g2

40001ce4: st %g2, [%g3]

Every line contains the hex address of the assembly code followed by the assem-

bly instruction. LEON REG was defined in the linker command file to be equal

to the address 0x80000000. What we can correlate from this information is that

whenever the LEON-2 Processor executes the assembly instruction at 0x40001cd8,

it has actually started executing the C code mentioned above. In a similar man-

ner, we can create a hash table correlating such “C-block” hex address with their

corresponding C code. At the end of the 2nd assembly instruction, the address deref-

erencing feature of sparc-rtems-objdump has hinted that 80000700 might be equal

to LEON_REG+0x700. The dereferencer does not know the context in which the value

was used in the assembly code and hence is just guessing, but nevertheless it is a

good guess most of the time. For example, in some other case, a program could be

using the value 0x80000700 as data. Since this is coincidentally equal to the ad-

dress LEON_REG+0x700, the dereferencer would again hint (incorrectly) that the data

80000700 is equal to the address LEON_REG+0x700. It has to be mentioned that these

comments (whether right or wrong) do not affect the decompilation procedure at all.

50

5.7 Decompilation of the Embedded Software

As shown in fig 5.8, a PERL script disasC.pl parses the output of the program

sparc-rtems-objdump to create such a hash table in the form of another perl script

called disassembled.pl. The reason for creating another PERL script was program-

ming efficiency. In this method, the parsing process is done only once as opposed to

every time a new assembly instruction is executed. During simulation, the decom-

piler has to call this script with the hex address of the assembly instruction currently

executed. Depending on whether this hex address is a start address of a “C-block”

or not, the disassembled.pl script will print the corresponding C code or not do any-

thing. It is interesting to note that this PERL script relies totally on the output

from sparc-rtems-objdump to display the C code. This output usually not only in-

cludes executable C statements, but also the comments written in the C program.

For example, in our previous example, the comment “// ADPTINT = 0x3C” would

also be printed along with the decompiled code, thus displaying the actual intent of

the programmer rather than just the C code.

As simulation proceeds, it is the job of VHDL code to decide when to trigger

disassembled.pl. As shown in fig 5.8 the VHDL procedure trace from file debug.vhd

calls another procedure disasC from VHDL package flipkg. This procedure relies on

the Foreign Language Interface (FLI) mechanism available in Modelsim VHDL to

trigger the C function disasC, present in the shared library disaspkg.sl. The creation

of this shared library is accomplished using the native gcc compiler and ld linker

tools available. The C function disasC takes in the requisite address as an input

parameter and uses the Standard C function system to call the disassembled.pl script.

To reduce these inter-language calls, the hash table script could have been generated

in the C language; but since PERL already has inherent support for hash tables or

associative arrays, it was preferred in relation to C. While simulating with Specman

and Modelsim, the Specman terminal acts as stdout and hence this C code is logged

in the Specman log file.

The Foreign Language Interface (FLI) Mechanism used here is Modelsim-specific

and changes will have to be made for using with other VHDL Simulators. There is no

51

5.8 Printing Debug Messages

standardized VHDL Programmers Language Interface (PLI) as such, but efforts are

being made by the IEEE DASC VHDL PLI Task Force[8]. If the LEON-2 testbench is

written in Verilog, the standardized Verilog PLI mechanism could be used to call the

C function disasC. Interaction between Specman and Modelsim is well documented

in their manuals and takes place though the FLI since this is a VHDL simulation.

For a Verilog simulation, the Verilog PLI would have been utilized.

This section showed how the effects of changes in software code could be observed

and matched with the corresponding changes in the hardware signals, resulting in

hardware-software codesign. The Seamless tool from Mentor Graphics[1] is another

tool which gives similar codesign capabilities. Our procedure, though uses the freely

available languages C and PERL and hence is cost effective.

5.8 Printing Debug Messages

In addition to decompiler capabilities, we would like the system to have the capa-

bility to print debug messages from the software side. For example, a programmer

should be able to insert such messages in his code:

lr->uartctrl1 = (TX_EN | PAR_EN);

lr->uartscaler1 = 1;

printf_wlsoc("UART1 Configuration Completed");

printf_wlsoc("Starting UART2 Configuration");

lr->uartctrl2 = (RX_EN | PAR_EN | RIRQ_EN);

Here we assume that print_wlsoc is some basic implementation of the standard

printf function. When high-level C programs encounter such display statements,

they usually call an appropriate low-level OS routine which handles the responsibility

of feeding the correct data to the display device. In this case, we can use the I/O

area of the WLSOC System to simulate a similar effect. The general idea is to use

a specific address on the I/O port to exchange information between the Embedded

Software and a VHDL Monitor that is monitoring this address.

52

5.8 Printing Debug Messages

One method can be to write every character of a message string to the predefined

address which we can call as the Display Port. The VHDL monitor which is moni-

toring this port can then accumulate all the characters and finally display them on

the screen. Thus, a possible implementation of this function could be as follows:

// Use the I/O Area as a Display Port

#define DISPLAY_PORT 0x28000000

void printf_wlsoc(char *message){

while (*(message++) != ’\0’){

*(volatile char *)(DISPLAY_PORT) = (char)(*message);

}

// Tell the VHDL Monitor to print the accumulated message

*(volatile char *)(DISPLAY_PORT) = ’\0’;

}

Although this method will work, it has one important drawback. The amount of

simulation cycles that the function uses up is dependent on the length of the message

itself. Moreover, the simulation cycles used are really worthless, in the sense that there

is no useful work being done in the system by the software. The more such useless

cycles present, bigger will be the size of the waveform files, more will be the system

resources used, all with no significant advantage being gained. Bigger designs will

have a bigger penalty in this regard. While observing such waveforms, the user will

have to ignore large chunks of useless cycles, making debugging somewhat irritating.

As an aside, another important place where simulation cycles are wasted is dur-

ing the fetching of instructions from memory. Once the fetch interface is thoroughly

verified, all these fetches do not contribute to the verification of the rest of the sys-

tem. The Mentor Seamless tool addresses this problem by replacing both the CPU

and Memory models with special models which can communicate directly with each

other without utilizing even a single simulation cycle. This special CPU model thus

“magically” fetches instructions in “0-time”. Simulation cycles are still utilized for

communication between other sections of the system, like between the CPU and con-

figuration registers.

53

5.8 Printing Debug Messages

Getting back to the problem of wasted simulation cycles due to debug messages,

a possible solution could be to use pre-coded messages instead of entire character

strings. Both the C and VHDL programs could have a predetermined agreement on

a fixed number of messages that can be used for debugging. This would drastically

reduce the size of the display function as follows:

// Use the I/O Area as a Display Port

#define DISPLAY_PORT 0x28000000

void printf_wlsoc(int msg_code){

// Tell the VHDL Monitor to decode the message

*(volatile int *)(DISPLAY_PORT) = msg_code;

}

This method would always execute in the same number of simulation cycles irre-

spective of the size of the message. Then, if the message "UART1 Configuration

Completed" has the code 0 and the message "Starting UART2 Configuration" has

the code 1, the previous C code example would now change to:

lr->uartctrl1 = (TX_EN | PAR_EN);

lr->uartscaler1 = 1;

printf_wlsoc(0);

printf_wlsoc(1);

lr->uartctrl2 = (RX_EN | PAR_EN | RIRQ_EN);

The corresponding VHDL Monitor pseudo-code would be something like:

constant msg_array = {

"UART1 Configuration Completed",

"Starting UART2 Configuration"

}

.....

if (message request received) { print msg_array(msg_code); }

The drawback for this method is that there has to be perfect coordination between

the C and VHDL programs regarding the meaning of the message codes. There is

little scope for flexibility. Every time a new message is added to the list, the VHDL

code needs to be changed and compiled.

54

5.8 Printing Debug Messages

The process we used is a bit more computationally expensive, but removes the

problem of useless simulation cycles and also gives a lot of flexibility to the embedded

software. Rather than use inflexible message codes, this process can use complete

message strings of any arbitrary length. It takes advantage of the fact that all these

message strings will be stored as part of the binary executable of the software. The

software can just pass the address of these strings to the display port and the VHDL

monitor can use this address to extract the message from the binary executable. The

C code will now become:

// Use the I/O Area as a Display Port

#define DISPLAY_PORT 0x28000000

void printf_wlsoc(char *message){

// Pass the address of the string to the VHDL monitor

*(volatile int *)(DISPLAY_PORT) = (int)(message);

}

.....

print_wlsoc("UART1 Configuration Completed");

print_wlsoc("Starting UART2 Configuration");

An object dump of the binary executable will show something like:

Contents of section .text:

40005648 55415254 3120436f 6e666967 75726174 UART1 Configurat

40005658 696f6e20 436f6d70 6c657465 64000000 ion Completed...

40005668 53746172 74696e67 20554152 54322043 Starting UART2 C

40005678 6f6e6669 67757261 74696f6e 00000000 onfiguration....

40005688 3cd203af 9ee75616 3e7ad7f2 9abcaf48 <.....V.>z.....H

The first column shows the hex address, the next 4 columns show the ASCII values of

the characters while the last column shows the actual characters. In the case of the

first message, the hex address passed to the VHDL monitor would be 40005648 while

for the second message, it will be 40005668. It would be best to leave the message

extraction procedure, which involves parsing this output of sparc-rtems-objdump, to

a PERL script. Hence, we will have to again use the FLI to accomplish the same.

Figure 5.9 shows the steps performed in this extraction process. As before, the

intermediate C functions are written in the file disaspkg.c and they are compiled and

55

5.8 Printing Debug Messages

���������	

��
��	������

�		

����������

�������

��

�����������

���������������

����

����	�������

�������� �����!��

	����������������������

��!��	����"�����	����

����������	�������

���#����������������

���������#��

$%&����	�����!������

$%&�����	"�����	����

��������������������

��!��	���������	����

&����������������

�������

��������#��

$%&�����������������

�������������'(�������!��

	�������������������

Figure 5.9: Printing Debug messages from Embedded Software in “0-time”

linked to get the shared library disaspkg.sl. The VHDL I/O Monitor is the testmod

entity which is connected to the I/O port as shown in Figure 5.1. The Monitor calls

the VHDL procedure XtractMsg from the VHDL package flipkg, which triggers the C

function XtractMsg from the previous shared library. Finally, the C function makes a

system call to invoke the PERL script XtractMsg.pl with the address of the message

string as an input parameter. XtractMsg.pl starts parsing the last column from

the objdump till it encounters a “.” character, indicating the end of message. This

prevents the character “.” from appearing in a message, although this can be rectified

by parsing the 2nd to 4th columns and using the ASCII code for a null character (00)

as the delimiter. As before, the Specman terminal acts as stdout and this is where

the message will be printed.

56

5.9 Testcase Characteristics

This section showed how the embedded software can very flexibly print debug

messages during its execution, without wasting a lot of simulation cycles. The current

implementation prints only constant strings, since they have to be part of the binary

executable. Notable additions to this method could be to allow variables in the

message like an actual C standard library printf statement. This can be accomplished

by using various other I/O addresses for messages with a constant number of variables.

The embedded software can then pass the address of the message followed by the

data value of the variable to these new display ports. The VHDL Monitor will know

how many parameters to expect depending on the address of the display port, and

reconstruct the entire message accordingly.

5.9 Testcase Characteristics

The interaction between various components is already described. This section

explains how all these various verification components work together in tandem to

create a successful testcase for the WLSOC System. The overall goal of the testcase

is to verify that the WLSOC System can accept noisy RF input from the wireless

channel, extract the 128 character string message from it and transmit it out of the

UART Transmitter.

Figure 5.10 shows the timeline for the simulation. The nomenclature followed in

the figure is as follows. The timeline is for the Hardware simulation cycles and not

the actual wall-clock time. Rectangular vertical strips represent procedures that take

more than 0 simulation cycles to execute. The circles represent processes that take

0 simulation cycles. The dotted arrows indicate triggering of some event due to an

action taken in some other event. A straight arrow with double heads indicates one

function calling another function. The callee function can be in another language

from the caller function. As can be seen in the figure, the simulation starts off by

de-asserting the reset for the system and ends when the e code determines that one

packet has been successfully received by the WLRCV and transmitted out of the

UART1 transmitter without any changes.

57

5.9 Testcase Characteristics

���

�

�����	

���

��

�

�� ��

��

��

��

���

�����

����������

�

���

������

�����

������

�� ��

����!

 �""��
#"��$

%���

&'���

�����

�
()����

*����!�

!��������

+''�

�'��

���

��% ,���

���"�

���*�"�

�--"���

#"��$

�'� �!

��!�

%� �����

"''-

%���

���--��

%��.����

/��0

���

�'��

/��0

#���

����

���

/��0

01

������

�

��''-

/��0

�'� �!

/��0

�1

������

�

�

����2

-��2��

�03�

0
%�

�
%&

&���$�

�44 �-��*��

*������

����*�"5	�

�'��"��*

�,�� &���$�6� �
��

�� ��

��% ,���

���"�

�� ��

��% ,���

���"�

�
 �

��% ���-"�5

*����!�

Figure 5.10: Sequence of events (Timeline) in the simulation

58

5.9 Testcase Characteristics

All the events marked in the timeline are described below in detail. Important

VHDL events are as follows:

V1: Testbench starts clock, asserts and de-asserts reset.

V2: LEON starts fetching and executing instructions. The disassembler if

enabled, prints the instructions as they are executed. The decompiler if

enabled, is invoked for every assembly instruction.

V3: WLRCV Frontend starts receiving stimuli from e code, recognizes the

SYNC bits and trains the LMS filter.

V4: Decorrelator detects SFD. Buffer starts accumulating words received from

the Decorrelator.

V5: Buffer fires an interrupt to the Interrupt Controller after the programmed

number of words are received.

V6: UART starts transmitting the 128 characters one after another.

Specman Events:

E1: wireless.e converts a 128-character message string to ASCII values and

invokes the C++ program to insert sampling and channel noise. One

packet with 30996 half-chips is ready. This procedure takes 0 simulation

cycles.

E2: The half-chips in the packet are fed as stimuli to the design on every clock

edge.

E3: The UART Config Monitor spies on the Configuration values written in

the UART1 configuration registers. This procedure takes 0 simulation

cycles.

E4: The UART Receiver starts receiving the characters one after another and

reconstructs the entire packet.

59

5.9 Testcase Characteristics

E5: The complete received packet is checked to make sure that it is the same

as the original packet generated by the Stimuli Generator. This procedure

takes 0 simulation cycles. Specman declares the test pass or fail and stops

all simulation.

Embedded assembly/C events:

EAC1: Embedded Software starts executing boot code. Initializes internal

SPARC Registers.

EAC2: Initialize WLRCV Configuration Registers. Enable WLRCV Interrupt.

Infinite loop till this Interrupt is asserted.

EAC3: WLRCV Interrupt is trapped, Trap table transfers control to WLRCV

ISR.

EAC4: Start WLRCV ISR. Initialize UART Configuration Registers.

EAC5: Transfer each byte (total:128) from the packet in the buffer to the

UART1 Transmitter Holding Register. Wait till it is transferred to the

UART1 Transmitter Shift Register.

EAC6: Infinite loop till WLRCV Interrupt is asserted.

Native C events:

C1: FLI invokes C function disasC which invokes disassembled.pl. This pro-

cedure takes 0 simulation cycles.

C2: FLI invokes C function XtractMsg which invokes XtractMsg.pl. This pro-

cedure takes 0 simulation cycles.

PERL events:

P1: disasC.pl uses the hash table to decompile the current assembly instruc-

tion. This procedure takes 0 simulation cycles.

60

5.9 Testcase Characteristics

P2: XtractMsg.pl parses the objdump output of the binary executable to ex-

tract the constant debug string. This procedure takes 0 simulation cycles.

C++ events:

CPP1: C++ code in wireless.cpp inserts sampling noise and channel noise in

the packet and returns it back to e code. This procedure takes 0 simula-

tion cycles.

This chapter explained the overall simulation flow in detail and described the var-

ious events taking place in the testcase for the WLSOC System. The next chapter

concludes the thesis with some results and observations.

61

Chapter 6

Results

This chapter shows some synthesis and simulation results of the design and con-

cludes the thesis with some observations.

6.1 Simulation Results

The simulation flow presented in this thesis utilizes a lot of tools and the heavy

interaction between them degrades simulation performance. One important perfor-

mance degrader is the Decompiler and Disassembler used during simulation. Table

Configuration Time (Min:Sec)

Decompiler and Disassembler enabled 32:35
Decompiler and Disassembler disabled 20:25

Table 6.1: WLSOC Simulation wall-clock Time

6.1 shows the actual wall-clock time utilized by the simulation flow for one testcase.

The machine used was a 4-CPU Sun machine having 16GB Physical Memory, with

each of the 4 SPARC V9 processors running at 900Mhz. The OS loaded on the

system was Solaris 5.8. It can be seen that the performance penalty for using the

decompiler and disassembler is about 60%. This penalty would vary with the num-

ber of instructions in the program. For example, if the program becomes larger, the

62

6.2 Synthesis Results

Property Clk Period WLRCV LEON-2

Cell Count — 30682 24699
Area — 2349544 1895810
Critical Path Delay 60 ns 48327 ps 15572 ps

30 ns 28231 ps —
Slack 60 ns 11410 ps 41169 ps

30 ns 1525 ps —
Clock Sinks — 2270 1953

Table 6.2: WLSOC Synthesis Results

size of the hash table in the PERL script disassembled.pl would get larger and that

would increase this decompiler penalty. On the contrary, if the hardware blocks in the

design increase, that should approximately maintain the same absolute decompiler

penalty, but reduce the comparable percentage penalty. Also, this penalty should be

seen in the perspective of the added advantage of debugging SW at the same time as

the hardware. Using the decompiler is much better than trying to make sense of the

hardware signals to find out what instructions are being executed.

6.2 Synthesis Results

The WLSOC design was synthesized using a standard-cell library designed in-

house for the TSMC 0.25 µm process using MOSIS SCMOS-DEEP rules. It is a

simple standard-cell library having only 20 cells. Since required memories were not

present in the technology library, the LEON-2 Processor was synthesized with the

memories as black boxes. The synthesis was done to get a feel of how fast the design

could be run. The LEON-2 Processor synthesis scripts were included with its HDL

source code. The synthesis flow used for the WLSOC System was the INSECTA

section of the BEE flow[7] from UC Berkeley. Table 6.2 shows the cell count, standard

cell area, critical path delay, slack and clock sink information for both WLRCV and

the LEON-2 Processor. The Wireless Receiver uses 2 clocks, hence it has 2 lines for

the critical path delay and slack columns. The 30ns clock period is for the half-chip

63

6.3 Observations

clock while the chip-rate 60ns period clock is for all the other components in the

WLSOC design.

6.3 Observations

This thesis presented a simulation and verification flow for designing a Program-

mable Wireless Receiver SOC. The range of designs suitable for such a flow are

those which have a CPU as a master and programmable peripherals connected to

it. Although the Protocol used is a pretty simple one, it has illustrated some good

hardware-software design and verification practices that can be reused by other de-

signs. Most of the design as well as verification components designed for the thesis

can be reused for other projects.

With current semiconductor processes, the cost of re-spin of a chip due to bugs is

great. Good verification practices play an important role in avoiding re-spins. If an IP

core is already proven in silicon, it greatly reduces the probability of finding bugs in

that core. This is an important reason for encouraging reuse. Since the sources of IP

cores can be quite varied, they could be written in different languages, for different

simulation environments, to be used in varied situations. It becomes a challenge

to integrate them homogeneously in one environment. The template shown in this

thesis is one such example of integration. The thesis also shows a path of integrating

Matlab Simulink circuits designed for the Xilinx FPGA with an embedded CPU and

synthesizing for an ASIC.

Hardware-Software codesign helps in finding bugs earlier and generally reduces the

cost of fixing them. Since the Software gets to run on the actual hardware models,

it can be checked for actual real-time constraints. The hardware debugging process

gains too, because it gets tested with real hardware rather than signals stimulated

with a pseudo software modeler.

64

6.4 Future Directions

6.4 Future Directions

The Xilinx Simulink tool is currently present only for the Windows OS while the

Specman tool is available for the Unix OS. It would be great to use the constraint-

random stimulus generation and checker capabilities in Specman to verify the IP core

in Simulink format itself, rather than after converting it to VHDL.

A more sophisticated method of debugging the software could be to try and connect

a real debugger like gdb to the hardware simulation. The debug message printing

utility could be modified to accept variables much like a real printf. An actual chip

with a more practical Wireless Protocol, or some other coprocessor could be designed

using this approach. DMA capabilities can be added to the coprocessor so that it

lessens the real-time burden on the software ISR.

65

Bibliography

[1] Seamless Hardware/Software Co-Verification tool, available from Mentor Graph-

ics, at http://www.mentor.com/seamless.

[2] SPARC International, Inc. Internet homepage at http://www.sparc.org.

[3] LEON-2 Processor Internet homepage at http://www.gaisler.com/leon.html.

[4] Modelsim HDL Simulator available from Model Technology at http://www.

model.com/products/modelsim_pe_se.asp.

[5] Specman and the e Verification Language, available from Verisity Design, Inc.

at http://www.verisity.com.

[6] OpenRISC 1000, a free, open source 32-bit RISC Architecture core available at

http://www.opencores.org/projects/or1k.

[7] Berkeley Emulation Engine Flow, available at http://bwrc.eecs.berkeley.

edu/Research/BEE/doc/designflow/tutorials.htm.

[8] IEEE Design Automation Standards Committee VHDL PLI Task Force Internet

homepage at http://www.eda.org/vhdlpli.

[9] 3GPP TR 25.890 v1.0.0. Technical report, May 2002. http://www.3gpp.org.

[10] Thomas W. Albrecht, Johann Notbauer, and Stefan Rohringer. HW/SW

CoVerification Performance Estimation & Benchmark for a 24 Embed-

ded RISC Core Design. In 35th Design Automation Conference, 1998.

66

http://www.mentor.com/seamless
http://www.sparc.org
http://www.gaisler.com/leon.html
http://www.model.com/products/modelsim_pe_se.asp
http://www.model.com/products/modelsim_pe_se.asp
http://www.verisity.com
http://www.opencores.org/projects/or1k
http://bwrc.eecs.berkeley.edu/Research/BEE/doc/designflow/tutorials.htm
http://bwrc.eecs.berkeley.edu/Research/BEE/doc/designflow/tutorials.htm
http://www.eda.org/vhdlpli
http://www.3gpp.org

BIBLIOGRAPHY

available from http://www.sigda.org/Archives/ProceedingArchives/Dac/

Dac98/papers/1998/dac98/pdffiles/48_4.pdf.

[11] ARM Limited. AMBA� Specification, May 1999. Rev 2.0.

[12] Janick Bergeron. Writing Testbenches, Functional Verification of HDL Models.

Kluwer Academic, 2002.

[13] William Rhett Davis. A Hierarchical, Automated Design Flow for Low-Power,

High-Throughput Digital Signal Processing ICs. PhD thesis, 2002.

[14] Gaisler Research. The LEON-2 Processor User’s Manual, January 2003. Ver-

sion 1.0.10.

[15] IEEE. Standards for Information Technology - Local and Metropolitan Area

Network - 802.11b Wireless LAN MAC and PHY specification, Sep 1999.

[16] Russ Klein and Ross Nelson. Seamless CVE Hardware/Software Co-Verification

Technology, available at http://www.mentor.com/soc/fulfillment/hwsw_

coverif_659.pdf.

[17] John Proakis. Digital Communications. McGraw Hill, 1995.

[18] SPARC International, Inc. The SPARC Architecture Manual, 1992. Version 8.

67

http://www.sigda.org/Archives/ProceedingArchives/Dac/Dac98/papers/1998/dac98/pdffiles/48_4.pdf
http://www.sigda.org/Archives/ProceedingArchives/Dac/Dac98/papers/1998/dac98/pdffiles/48_4.pdf
http://www.mentor.com/soc/fulfillment/hwsw_coverif_659.pdf
http://www.mentor.com/soc/fulfillment/hwsw_coverif_659.pdf

Appendix A

Specman Code

This appendix shows some important e Code used in the project. The first file is

the wireless.e file used for generating stimuli for the WLSOC System. This file also

has the code to call the C++ function for generating noise.

-- File: wireless.e

-- Author: Ambarish Sule

-- Description: Generate and apply Test Vectors for the WLSOC System

<’

define ‘SIZE_OF_WLSOC_PACKET 128 ; -- no. of characters

// Alias the input signal names

define ‘WLSOC_CLK clk;

define ‘WLSOC_RESET reset;

define ‘WLSOC_INPUT data;

define ‘WLSOC_MU mu;

define ‘WLSOC_THRESH thresh;

define ‘WLSOC_SYNCHINT synchint;

define ‘WLSOC_ADPTINT adptint;

define RUNTIME_UPPER_BOUND 1M; // default boundary for

// the whole environment

extend sys {

test_mode: test_mode;

};

struct test_mode {

68

Appendix A Specman Code

max_runtime: int;

keep soft max_runtime == RUNTIME_UPPER_BOUND;

// here you should add other test configuration fields

};

extend global {

start_test() is also { // set global configuration of tick_max

set_config(run, tick_max, sys.test_mode.max_runtime);

};

};

extend sys {

wlsoc_transmitter : wlsoc_transmitter_def is instance;

keep wlsoc_transmitter.hdl_path() ==

"/tbleon/tb/p0/leon0/mcore0/wlsoc_entire0/wlsoc_top";

};

-- This unit will be used to generate the data packet and

-- inject it into the wlsoc system

unit wlsoc_transmitter_def {

event clk_fall is fall(’‘WLSOC_CLK’)@sim;

distort_packet(input_list : list of int) : list of int

is C routine distort_packet_C;

run() is also {

’~/tbleon/tb/rf_input’ = 0;

start stimuli();

};

stimuli()@clk_fall is {

var ADPTINT_CONST : uint(bits:8) = 60;

var MU_CONST : uint (bits:8) = 1; -- From the .dat file

var SYNCHINT_CONST : uint (bits:8) = 59;

var THRESH_CONST : uint (bits:18) = (({0;0;0;0;0;1;1;0;0;

1;0;0;0;0;0;0;0;0}.as_a(list of bit)).reverse())[:];

var packet : list of int (bits:8) = gen_packet("Hello WLSOC!

This is my 1st message. Send it to the UART please");

’~/tbleon/tb/rf_input’ = 0;

wait [90]*cycle;

for each (one_chip) in packet {

69

Appendix A Specman Code

’~/tbleon/tb/rf_input’ = one_chip;

wait cycle;

};

packet = gen_packet("Hello WLSOC! This is the 2nd message.

See if you can handle this");

for each (one_chip) in packet {

’~/tbleon/tb/rf_input’ = one_chip;

wait cycle;

};

’~/tbleon/tb/rf_input’ = 0;

wait; -- Infinite wait

};

gen_packet(message : string) : list of int(bits:8) is {

var packet_bytes : list of byte;

var packet_bits : list of bit;

var packet_chips : list of bit;

var packet_chip_ints : list of int(bits:8);

var SYNC : list of bit = {1;1;1;1; 1;1;1;1}; -- 8 ones

var SFD : list of bit = {0;0;0;0; 0;1;0;1; 1;1;0;0; 1;1;1;1};

var blank_string : string = " ";

packet_bytes = message.as_a(list of byte);

packet_bytes.resize(‘SIZE_OF_WLSOC_PACKET, TRUE, %{" "},

TRUE); -- Append spaces to the message

packet_bits = pack(packing.low, packet_bytes);

packet_chips = pack(packing.low,spread(SYNC),SFD,

spread(packet_bits));

packet_chip_ints = packet_chips.apply((((it.as_a(int))*2)-1).

as_a(int(bits:8)));

-- e to C++ interface :-

-- Pass this entire list to C++ to further preprocess it:-

packet_chip_ints = (distort_packet(packet_chip_ints

.as_a(list of int))).as_a(list of int(bits:8));

return packet_chip_ints;

}; // gen_packet()@clk_rise is

spread(packet_bits : list of bit) : list of bit is {

var spreader_for_1 : list of bit =

{1;0;0;1;1;0;1;0;1;1;1;1;0;0;0};

var spreader_for_0 : list of bit = spreader_for_1.apply(~it);

70

Appendix A Specman Code

var packet_chips : list of bit;

packet_chips.clear();

for each (one_bit) in packet_bits {

if (one_bit==0) {packet_chips.add(spreader_for_0)}

else if (one_bit==1) {packet_chips.add(spreader_for_1)};

};

return packet_chips;

};

};

’>

-- End of wireless.e

The next e file shown is the uart.e file which contains the e code for the UART

Configuration Monitor and UART Receiver BFM.

-- File: uart.e

-- Author: Ambarish Sule

-- Description: An External UART Receiver for the LEON-2 Processor

<’

// Alias the signals in the tb with more readable names

define ‘TOP_TB /tbleon/tb/p0/leon0;

define ‘UART_CLK ‘TOP_TB/clk;

define ‘UART_RESET ‘TOP_TB/resetn;

define ‘AMBA_PSEL apbi.psel;

define ‘AMBA_PENABLE apbi.penable;

define ‘AMBA_PWDATA apbi.pwdata;

define ‘AMBA_PADDR apbi.paddr;

define ‘AMBA_PWRITE apbi.pwrite;

define ‘UART_RXD rxd;

define ‘UART_TXD txd;

define ‘UART_CTS ctsn;

define ‘UART_RTS rtsn;

// UART Register Addresses

define ‘UART_DATAREG_ADDR 0x0;

define ‘UART_STSREG_ADDR 0x4;

define ‘UART_CTRLREG_ADDR 0x8;

define ‘UART_SCLRREG_ADDR 0xC;

71

Appendix A Specman Code

// UART Register Bits assignment

define ‘UART_RECENB_BIT 0;

define ‘UART_TRXENB_BIT 1;

define ‘UART_RECINTENB_BIT 2;

define ‘UART_TRXINTENB_BIT 3;

define ‘UART_PARSEL_BIT 4;

define ‘UART_PARENB_BIT 5;

define ‘UART_FLCTRL_BIT 6;

define ‘UART_LOOPBACK_BIT 7;

define ‘UART_EXTCLK_BIT 8;

extend sys {

event reset_change is change (’‘UART_RESET’) @sim;

event clk_rise is rise (’‘UART_CLK’) @sim;

UART_BFM1 : UART_BFM is instance;

keep UART_BFM1.hdl_path()=="/tbleon/tb/uart_wrapper1";

keep UART_BFM1.ID==1;

UART_CONFIG_BFMS : list of UART_CONFIG_BFM is instance;

keep UART_CONFIG_BFMS.size()==2;

keep for each (UCB) in UART_CONFIG_BFMS {

UCB.ID == index+1;

UCB.hdl_path() == appendf("/tbleon/tb/p0/leon0/mcore0/uart%d",

(index+1));

};

}; // extend sys

unit UART_BFM {

ID:uint(bits:2);

RegData:uint(bits:32);

// The variable ReceivingPkt will be true if a packet is

// already being received. In that case, a falling edge on RXD

// is NOT considered as start of packet.

ReceivingPkt:bool;

keep soft ReceivingPkt==FALSE;

event clk_rise is rise (’clk’) @sim;

event clk_fall is fall (’clk’) @sim;

event RXD_fall is fall(’‘UART_RXD’) @clk_rise;

event start_of_packet is true(ReceivingPkt==FALSE) and @RXD_fall;

on start_of_packet {

72

Appendix A Specman Code

ReceivingPkt=TRUE;

start ReceivePacket();

};

ReceivePacket() @clk_fall is {

var loop : uint=0; var cyc : uint=0;

var DataRecdUint : uint(bits:8)=0;

var DataRecdString : string = "";

var ScalerValue : uint(bits:32) =

sys.UART_CONFIG_BFMS[ID].RegScaler;

for {loop=0; loop<=7; loop+=1} do {

for {cyc=0; cyc<8*(ScalerValue+1);cyc+=1} do {

wait @clk_fall; -- Wait 8*(scaler+1) clk cycl for next data bit

};

DataRecdUint[loop:loop] = ’‘UART_RXD’;

};

unpack(packing.low, %{8’b0, DataRecdUint}, DataRecdString);

sys.ReceiveNextChar(DataRecdString);

ReceivingPkt=FALSE;

};

run() is also {

RegData = sys.UART_CONFIG_BFMS[ID].RegData;

};

};

extend sys {

EntireReceivedPacketString : string;

keep soft EntireReceivedPacketString=="";

quadnum : uint (bits:5); keep soft quadnum==0;

quadstring : string; keep soft quadstring=="";

charnum : uint (bits:2); keep soft charnum==0;

ReceiveNextChar(NextChar : string) is {

quadstring = append(NextChar,quadstring);

if (charnum==3) { -- Means one quadchar is filled

charnum=0;

EntireReceivedPacketString = append(EntireReceivedPacketString,

quadstring);

quadstring = "";

if (quadnum==31) { -- The entire packet has been received!!!

outf("\nTime : %d ps : Entire Packet received!!!\n",sys.time);

outf("\nTime : %d ps : The entire message is %s\n",

sys.time, EntireReceivedPacketString);

73

Appendix A Specman Code

stop_run();

} else {

quadnum = quadnum + 1;

}; -- if !(quadnum==7)

} else {

charnum = charnum + 1;

}; -- if !(charnum==3)

}; -- ReceiveNextChar(char NextChar) is

};

unit UART_CONFIG_BFM {

event clk_rise is rise (’clk’) @sim;

event clk_fall is fall (’clk’) @sim;

event UART_accessed is true(’‘AMBA_PSEL’==1 and

’‘AMBA_PENABLE’==1)@clk_fall;

event UART_written is true(’‘AMBA_PWRITE’==1)@clk_fall

and @UART_accessed;

ID : uint(bits:2); keep soft ID==0;

RegData : uint (bits : 32); keep soft RegData==0;

RegStatus : uint (bits : 32); keep soft RegStatus==0;

RegControl : uint (bits : 32); keep soft RegControl==0;

RegScaler : uint (bits : 32); keep soft RegScaler==0;

on UART_written {

update_config_regs();

};

update_config_regs() is {

var Address : uint(bits:4) = ’‘AMBA_PADDR[3:0]’;

var RegDataString : string;

case Address {

‘UART_DATAREG_ADDR : { RegData = ’‘AMBA_PWDATA’;

unpack(packing.low, %{8’b0, RegData}, RegDataString); };

‘UART_STSREG_ADDR : { RegStatus = ’‘AMBA_PWDATA’; };

‘UART_CTRLREG_ADDR : { RegControl = ’‘AMBA_PWDATA’; };

‘UART_SCLRREG_ADDR : { RegScaler = ’‘AMBA_PWDATA’; };

};

}; // update_config_regs()

}; // unit UART_CONFIG_BFM

’>

-- End of uart.e

74

Appendix B

C++ Code

This appendix shows the only C++ file wireless.cpp used in the project for adding

noise to the input packet generated.

-- File: wireless.cpp

-- Author: Ambarish Sule

-- Description: Add noise in the Test Packet for the WLSOC System

#include <iostream>

#include <math.h>

#include "wireless_.h" // The special .h file created by sn_compile.sh

using namespace std;

#define PI 3.14159265

extern "C" SN_LIST(int) distort_packet_C(

SN_TYPE(wlsoc_transmitter_def) unit_wlsoc_transmitter,

SN_LIST(int) original_list

);

extern "C" float eyefilt(int v1, int v2, int v3, float time, float r);

// Convert a transmitted value to appropriate matched filter output

float eyefilt(int v1, int v2, int v3, float time, float r) {

float transstop = (1-r)/2.0;

float transstart = r+transstop;

float outval = (float)v2;

75

Appendix B C++ Code

if((time>transstop) && (time<transstart)) { return outval; };

if (time < transstop) {

if (v2 == v1) { return outval; }

outval = outval * sin((time/transstop)*(PI/2));

return outval;

};

// if T=time > transtart // <---- Implicit if statement

if (v2 == v3) { return outval; };

outval=outval*sin(((1-time)/transstop)*(PI/2));

return outval;

};// float eyefilt(float v1, float v2, float v3, float time, float r)

SN_LIST(int) distort_packet_C(

SN_TYPE(wlsoc_transmitter_def) unit_wlsoc_transmitter,

SN_LIST(int) original_list

)

{

int original_list_size = SN_LIST_SIZE(original_list);

int formatted_list_size = 2 * original_list_size;

int *original_list_array = new int[original_list_size];

// The new list will be double the size!!

int *formatted_list_array = new int[formatted_list_size];

float *formatted_time_list_array = new float[formatted_list_size];

for (int loop_var=0; loop_var<original_list_size; loop_var++) {

original_list_array[loop_var] =

SN_LIST_GET(original_list, loop_var, int);

};

double offset = 0.7;

float bbt = 0.000025; // Baseband Frequency Tolerance in ppm

for (int k_loop=0; k_loop<formatted_list_size; k_loop++) {

formatted_time_list_array[k_loop] = offset - ((int)offset);

int ceil_offset = (int)offset + 1;

if (ceil_offset > original_list_size) {

formatted_list_array[k_loop]=0;

} else {

formatted_list_array[k_loop]=original_list_array[ceil_offset-1];

};

offset += (0.5 - (bbt/2.0));

};

76

Appendix B C++ Code

// --

// This has "doubled" all the original sample values

// Till now, the values are +1 or -1 only

// Now starts the actual fun

// --

float channel_charac[] = {1, 0.327, 0.11, 0, 0.0724};

const int filterlen = 5; // no. of elements in channel_charac array

float *eye_list_array =

new float[formatted_list_size+(filterlen-1)];

float r = 0.2;

// Clear out the initial 5 "x" vector elements

for (int i_loop=0; i_loop<=(filterlen-1); i_loop++){

eye_list_array[i_loop]=0;

};

// There should be atleast 3 elements for the next for loop to work

eye_list_array[0+(filterlen-1)] = eyefilt(-formatted_list_array[0],

formatted_list_array[0],

formatted_list_array[1],

formatted_time_list_array[0],

r);

for (int k_loop=1; k_loop<(formatted_list_size-1); k_loop++) {

eye_list_array[k_loop+(filterlen-1)] =

eyefilt(formatted_list_array[k_loop-1],

formatted_list_array[k_loop],

formatted_list_array[k_loop+1],

formatted_time_list_array[k_loop],

r);

};

eye_list_array[formatted_list_size-1+(filterlen-1)] =

eyefilt(-formatted_list_array[formatted_list_size-2],

formatted_list_array[formatted_list_size-1],

-formatted_list_array[formatted_list_size-1],

formatted_time_list_array[formatted_list_size-1],

r);

// The "eyefilt" stage is done. Now for the convolution

// h[] is the channel characteristic array.

// x[] is the input vector

// y[] is the convoluted vector

//for i=0 to buflen-1

// y[i]=0;

// for j=0 to filterlen-1

77

Appendix B C++ Code

// y[i]=x[i-j]*h[j]+y[i];

float *convoluted_list_array =

new float[formatted_list_size+(filterlen-1)];

for (int i_loop=(filterlen-1);

i_loop<formatted_list_size+(filterlen-1); i_loop++) {

convoluted_list_array[i_loop]=0;

for (int j_loop=0; j_loop<filterlen; j_loop++) {

convoluted_list_array[i_loop] +=

(eye_list_array[i_loop-j_loop] * channel_charac[j_loop]);

};

};

// Convert our final floating point list into a format which

// SPECMAN will understand, i.e. good old signed integers!!!

SN_LIST(int)formatted_list = SN_LIST_NEW(int);

SN_LIST_CHANGE(formatted_list, formatted_list_size);

for (int index_loop=0;index_loop<formatted_list_size;index_loop++){

SN_LIST_SET(formatted_list, index_loop,

(int)(32*convoluted_list_array[(index_loop+(filterlen-1))]));

};

// Delete the huge arrays created in C++

// WARNING:- delete ONLY the arrays created in C++

// DO NOT try to delete the lists created using the SN_LIST macros

// The Specman Garbage Collector will handle these for us

delete original_list_array;

delete formatted_list_array;

delete formatted_time_list_array;

delete convoluted_list_array;

delete eye_list_array;

return formatted_list;

};

// End of wireless.cpp

78

Appendix C

Embedded Software

This appendix shows some important parts of the Embedded Software used in the

project. The first file locore1.S shows changes made to the TRAP Table for the

LEON-2 Processor.

/***

locore1.S (Traps for LEON-2)

***/

/* Entry for traps which jump to programmer-specified trap handler.*/

#define TRAP(H) mov %psr, %l0; sethi %hi(H), %l4;

jmp %l4+%lo(H); mov %tbr, %l3;

#define TRAPL(H) mov %g0, %l0; sethi %hi(H), %l4;

jmp %l4+%lo(H); nop;

#define ISR(PERIPHERAL) _ ## PERIPHERAL: call PERIPHERAL; nop;

jmpl %l1, %g0; rett %l2; nop; nop;

/* Unexpected trap will halt the processor */

#define BAD_TRAP ta 0; nop; nop; nop;

/* Software trap. Treat as BAD_TRAP */

#define SOFT_TRAP BAD_TRAP

.seg "text"

.global _trap_table, start, _start, _hardreset

/* Hardware traps */

start:

79

Appendix C Embedded Software

_trap_table: /* 0x40000000:- %tbr will contain this value

the base of the TRAP TABLE */

_hardreset:

TRAPL(_reset); ! 00 reset trap

BAD_TRAP; ! 01 instruction_access_exception

TRAP(_skipn); ! 02 illegal_instruction

BAD_TRAP; ! 03 priveleged_instruction

BAD_TRAP; ! 04 fp_disabled

TRAP(_window_overflow); ! 05 window_overflow

TRAP(_window_underflow); ! 06 window_underflow

BAD_TRAP; ! 07 memory_address_not_aligned

TRAP(fptrap); ! 08 fp_exception

TRAP(_skipn); ! 09 data_access_exception

BAD_TRAP; ! 0A tag_overflow

TRAP(_skipn); ! 0B watchpoint_exception

BAD_TRAP; ! 0C undefined

BAD_TRAP; ! 0D undefined

BAD_TRAP; ! 0E undefined

BAD_TRAP; ! 0F undefined

BAD_TRAP; ! 10 undefined

/* Interrupt entries */

TRAP(_AHB_ERROR_ISR); ! 11 interrupt level 1

/* TRAP(_reex); ! 11 interrupt level 1 */

TRAP(_UART2_ISR); ! 12 interrupt level 2 */

TRAP(_UART1_ISR); ! 13 interrupt level 3

TRAP(_EXT0_ISR); ! 14 interrupt level 4

TRAP(_EXT1_ISR); ! 15 interrupt level 5

TRAP(_EXT2_ISR); ! 16 interrupt level 6

TRAP(_EXT3_ISR); ! 17 interrupt level 7

TRAP(_TIMER1_ISR); ! 18 interrupt level 8

TRAP(_TIMER2_ISR); ! 19 interrupt level 9

TRAP(_INTRCTRL2_ISR); ! 1A interrupt level 1

TRAP(_DSUTRACE_ISR); ! 1B interrupt level 11

TRAP(_WLSOC_ISR); ! 1C interrupt level 12

TRAP(_irqh); ! 1D interrupt level 13

TRAP(_irqh); ! 1E interrupt level 14

TRAP(_irqh); ! 1F interrupt level 15

BAD_TRAP; BAD_TRAP; BAD_TRAP; BAD_TRAP; ! 20 - 23 undefined

BAD_TRAP; ! 24 cp_disabled

BAD_TRAP; BAD_TRAP; BAD_TRAP; ! 25 - 27 undefined

80

Appendix C Embedded Software

BAD_TRAP; ! 28 cp_exception

BAD_TRAP; BAD_TRAP; ! 29 - 2A undefined

TRAP(_reexn); ! 2B data_store_error

! BAD_TRAPS till 7F

BAD_TRAP; BAD_TRAP; BAD_TRAP; BAD_TRAP; ! 2C - 2F undefined

.............................

BAD_TRAP; BAD_TRAP; BAD_TRAP; BAD_TRAP; ! 7C - 7F undefined

/* Software traps */

SOFT_TRAP; SOFT_TRAP; TRAP(spil); ! 80 - 82

TRAP(_flush_windows) ! 83

TRAP(_skip); SOFT_TRAP; SOFT_TRAP; SOFT_TRAP; ! 84 - 87

! SOFT_TRAPS till FF

SOFT_TRAP; SOFT_TRAP; SOFT_TRAP; SOFT_TRAP; ! 88 - 8B

............................

SOFT_TRAP; SOFT_TRAP; SOFT_TRAP; SOFT_TRAP; ! FC - FF

ISR(AHB_ERROR_ISR); ! Jump to AHB_ERROR_ISR() in C Code

ISR(UART2_ISR);

ISR(UART1_ISR);

ISR(EXT0_ISR);

ISR(EXT1_ISR);

ISR(EXT2_ISR);

ISR(EXT3_ISR);

ISR(TIMER1_ISR);

ISR(TIMER2_ISR);

ISR(INTRCTRL2_ISR);

ISR(DSUTRACE_ISR);

ISR(WLSOC_ISR); ! Jump to WLSOC_ISR() written in C code

The next file isr.c shows the changes made due to addition of the WLSOC Interrupt

Service Routine.

/***

isr.c (Interrupt Service Routines for LEON-2)

***/

// PREGS=0x80000000, BUFFER_START=0x300

char *cpbuffer_pointer = (volatile char *)(PREGS + BUFFER_START);

char *wlsoc_message;

81

Appendix C Embedded Software

void WLSOC_ISR() {

const int cpbuffer_length=32*4;

int wlsoc_message_charno=0;

// set UART pins multiplexed with Parallel I/O in UART mode

lr->piodir = 0x0000AA00;

// enable UART1 for transmission

// TX_EN=2, PAR_EN=32

lr->uartctrl1 = (TX_EN | PAR_EN);

lr->uartscaler1 = 1;

// Disable all the UART2 transmission/reception

lr->uartctrl2 = 0;

lr->uartscaler2 = 1;

wlsoc_message_charno = 0;

// Put some value for transmission

while (wlsoc_message_charno < cpbuffer_length) {

// Loading UART1 with next character

lr->uartdata1 = *(cpbuffer_pointer++);

wlsoc_message_charno++;

// Wait till the Transmitter Holding Register is empty

// TX_THR_EMPTY=4

while (((lr->uartstatus1) & TX_THREMPTY) == 0) {};

};

};

82

Appendix D

VHDL Code

This appendix shows some important VHDL Designs used in the project. The

first file is the decorrelator.vhd file which has the decorrelator design in the WLRCV

System.

--

-- Entity: decorrelator

-- File: decorrelator.vhd

-- Author: Ambarish Sule

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD.STD_LOGIC_ARITH.ALL;

entity decorrelator is

port (

input_stream : in std_logic_vector(15 downto 0);

lms_adapted : in std_logic;

clk : in std_logic;

reset : in std_logic;

write_enable : out std_logic;

write_data : out std_logic_vector(31 downto 0)

);

end decorrelator;

architecture behavioral of decorrelator is

signal SFD_DETECTED : boolean;

signal DATA_PAYLOAD : boolean;

83

Appendix D VHDL Code

signal LFSR : std_logic_vector(14 downto 0);

begin -- behavioral

LFSR_process : process(clk, reset)

constant LFSR_initial : std_logic_vector(14 downto 0) :=

"010011010111100";

begin

if reset = ’1’ then

LFSR <= LFSR_initial;

elsif clk’event and clk = ’1’ then

if DATA_PAYLOAD = true then

LFSR <= LFSR_initial;

else

LFSR <= to_stdlogicvector(to_bitvector(LFSR) rol 1);

end if;

end if;

end process;

DETECT_SFD : process (clk, reset)

constant SFD_SEQUENCE : std_logic_vector(15 downto 0)

:= not("0000010111001111");

variable CURRENT_STREAM : std_logic_vector(15 downto 0);

begin -- process

if (reset = ’1’) then

DATA_PAYLOAD <= false;

CURRENT_STREAM := (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge

if ((lms_adapted = ’1’) and (SFD_DETECTED = false)) then

CURRENT_STREAM :=

to_stdlogicvector(to_bitvector(CURRENT_STREAM) sll 1);

CURRENT_STREAM(0) := input_stream(15);

if (CURRENT_STREAM = SFD_SEQUENCE) then

DATA_PAYLOAD <= true;

else

DATA_PAYLOAD <= false;

end if;

end if; -- if (lms_adapted = ’1’) then

end if;

end process;

DECORRELATE_DATA : process (clk, reset)

variable bit_counter : unsigned(2 downto 0); -- count 7 to 0

variable byte_counter : unsigned(1 downto 0); -- count 3 to 0

84

Appendix D VHDL Code

variable chip_counter : unsigned(3 downto 0); -- count 14 to 0

variable word_counter : unsigned(4 downto 0); -- count 31 to 0

variable current_word : unsigned(31 downto 0);

variable current_byte : unsigned(7 downto 0);

variable current_sum : signed(19 downto 0);

alias current_bit : std_logic is current_sum(19);

begin -- process

if (reset = ’1’) then -- asynchronous reset (active high)

current_sum :=(others=>’0’); current_bit :=’0’;

current_word:=(others=>’0’); current_byte :=(others => ’0’);

bit_counter :=(others=>’1’); byte_counter :=(others => ’1’);

chip_counter:=(others=>’1’); word_counter :=(others => ’1’);

write_enable <= ’0’; SFD_DETECTED <= false;

elsif (clk’event and clk = ’1’) then -- rising clock edge

if ((DATA_PAYLOAD = true) or (SFD_DETECTED = true))then

if (chip_counter = 1) then

current_byte(7-conv_integer(bit_counter)):=not(current_bit);

bit_counter := bit_counter - 1;

current_sum := (others => ’0’);

chip_counter := conv_unsigned(15, 4);

else -- !if (chip_counter = 1)

chip_counter := chip_counter - 1;

if LFSR(14) = ’0’ then

current_sum := current_sum + signed(input_stream(15) &

input_stream(15) & input_stream(15) & input_stream);

else

current_sum := current_sum - signed(input_stream(15) &

input_stream(15) & input_stream(15) & input_stream);

end if;

end if;

if (bit_counter = 7 and chip_counter = 15) then

case conv_integer(byte_counter) is

when 0 => current_word(31 downto 24) := current_byte;

when 1 => current_word(23 downto 16) := current_byte;

when 2 => current_word(15 downto 8) := current_byte;

when 3 => current_word(7 downto 0) := current_byte;

when others => null;

end case;

byte_counter := byte_counter - 1;

current_byte := (others => ’0’);

end if;

if (byte_counter=3 and bit_counter=7 and chip_counter=15) then

85

Appendix D VHDL Code

if SFD_DETECTED = true then

write_enable <= ’1’;

else

write_enable <= ’0’; -- ANDing with SFD_DETECTED

end if;

word_counter := word_counter - 1;

else

write_enable <= ’0’; -- after 1 ns;

end if;

if (word_counter=31 and byte_counter=3 and bit_counter=7

and chip_counter = 15 and SFD_DETECTED = true) then

SFD_DETECTED <= false; -- Detect another SFD

else

SFD_DETECTED <= true;

end if;

else -- !if (DATA_PAYLOAD = true)

SFD_DETECTED <= false;

end if; -- if (DATA_PAYLOAD = true)

if SFD_DETECTED = false then

write_enable <= ’0’;

end if;

write_data <= std_logic_vector(current_word);

end if; -- rising clock edge

end process;

end behavioral;

The next file is the cpbuf.vhd file which has the buffer design in the WLRCV System.

--

-- Entity: cpbuf

-- File: cpbuf.vhd

-- Author: Ambarish Sule

-- Description: A 32-byte "Round-Robin" buffer with separate

-- Read and Write ports

--

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use work.iface.all;

entity cpbuf is

generic (

86

Appendix D VHDL Code

AddressWidth : integer := 5; -- Width of the address bus

DataWidth : integer := 32); -- Width of the Data Bus

port (

rst : in std_logic; -- Reset Input for the module

clk : in clk_type; -- Clock Input for the module

cpbufin : in cpbuf_in_type; -- Input lines to the buffer

cpbufout : out cpbuf_out_type -- Output lines from buffer

);

end cpbuf;

architecture rtl of cpbuf is

begin -- rtl

regprocess : process (clk, rst)

type buftype is array(0 to 31) of std_logic_vector(31 downto 0);

variable buf : buftype;

variable rdata : std_logic_vector(31 downto 0);

variable wdata : std_logic_vector(31 downto 0);

variable write_address : unsigned(4 downto 0);

-- After these many words, the buffer will generate an interrupt

variable trigger_address : unsigned(4 downto 0) :=

ieee.std_logic_arith.conv_unsigned(5, 5);

begin -- process regprocess

if (rst = ’1’) then -- asynchronous reset (active high)

buf := (others => (others => ’0’));

write_address := (others => ’0’);

elsif (clk’event and clk = ’1’) then -- rising clock edge

if (cpbufin.write_enable) = ’1’ then

buf(ieee.std_logic_arith.conv_integer(write_address))

:= cpbufin.write_data(31 downto 0);

write_address := write_address + 1;

if (write_address = trigger_address) then

cpbufout.cpbuf_intr <= ’1’;

else

cpbufout.cpbuf_intr <= ’0’;

end if;

else

cpbufout.cpbuf_intr <= ’0’;

end if;

-- The Read data bus is always driven

rdata := buf(ieee.std_logic_arith.conv_integer(

87

Appendix D VHDL Code

ieee.std_logic_arith.unsigned(cpbufin.read_address)));

cpbufout.read_data <= rdata;

end if; -- elsif (clk’event and clk = ’1’)

end process regprocess;

end rtl;

88

	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Related Work
	1.3 Contribution
	1.4 Organization

	2 The LEON-2 Processor System
	2.1 Overview of the Original LEON-2 System
	2.2 Integer Unit
	2.3 Memory Interface
	2.4 UARTs
	2.5 Interrupt Controller
	2.6 Parallel I/O port

	3 Wireless System
	3.1 Protocol
	3.2 Overall Design
	3.3 Wireless Frontend
	3.4 Decorrelator
	3.5 WLRCV Buffer
	3.6 Register File

	4 Integration of the WLSOC System
	4.1 Stitching together the pieces
	4.2 Interrupts/Traps
	4.2.1 Overview of Interrupts and Traps
	4.2.2 Instruction-induced Traps
	4.2.3 Peripheral/External Interrupts

	4.3 Memory Map
	4.3.1 Advanced High-speed Bus
	4.3.2 Advanced Peripheral Bus

	5 Tool Flow
	5.1 Tool flow
	5.1.1 Nomenclature

	5.2 Xilinx System Generator
	5.3 Embedded Software
	5.3.1 Boot Code
	5.3.2 Device Drivers
	5.3.3 ISR for WLRCV
	5.3.4 Compiling

	5.4 Stimuli Generation
	5.5 Interface between Specman and C++ Code
	5.6 Specman Checker
	5.7 Decompilation of the Embedded Software
	5.8 Printing Debug Messages
	5.9 Testcase Characteristics

	6 Results
	6.1 Simulation Results
	6.2 Synthesis Results
	6.3 Observations
	6.4 Future Directions

	Bibliography
	A Specman Code
	B C++ Code
	C Embedded Software
	D VHDL Code

