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Abstract
This paper refines a well-known set of template models for agent-based modeling and offers new

reference implementations. It also addresses issues of design, flexibility, and ease of use that are relevant
to the choice of an agent-based modeling platform.

Contents
Template Model 1: Spatial Movement of Agents 2

Procedural Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Object-Oriented Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Template Model 2: Agent Growth 8

Template Model 3: Spatially Distributed Resources 10

Template Models 4, 5, 6, 7: Probes, Parameters, Histograms, and Stopping 13
Template Model 4: Click Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Template Model 5: Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Template Model 6: Dynamic Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Template Model 7: Stopping Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Template Model 8: Output Files 17

Template Models 9, 10, and 11: Randomization, Hierarchy, and Optimization 19
Template Model 11: Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Template Models 12 and 13: Entry, Exit, and Time-Series Plots 22
Template Model 13: Time-Series Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Template Model 14: Randomized Initializations 25

Template Model 15: Data-Based Model Initialization 26

Template Model 16: Interacting Agents of Different Types 29

Conclusion 31

1



This paper has two core objectives: to refine a well-known set of template models for agent-based mod-
eling, and to offer a new reference implementation. In pursuing these goals, we address issues of design,
flexibility, and ease of use that are relevant to the choice of an agent-based modeling platform.

The use of agent-based models (ABMs) has been growing rapidly in many fields, including evolutionary
biology, ecology, economics, epidemiology, game theory, political science, and sociology. Popular ABM
platforms include NetLogo (http://ccl.northwestern.edu/netlogo/), Swarm and Java Swarm (http:
//www.swarm.org), Repast (http://repast.sourceforge.net), and MASON (http://www.cs.gmu.edu/
%7Eeclab/projects/mason/). Each of these platforms has benefits and limitations that have been explored
in the literature (Tobias and Hofmann, 2004; Railsback et al., 2006). The most popular of these platforms
remains NetLogo, which is renowned for its combination good graphical capabilities, reasonable flexibility,
and excellent of ease of use. Railsback et al. (2006) also judge NetLogo to be the most professional platform
in terms of appearance and documentation. The most common complaint against NetLogo is its failure to
adopt an open source license, which some researchers view as a crucial component of scientific ABM research.

Railsback et al. (2006) discuss a collection of sixteen template models, which they designed as tools to
introduce and explore agent-based modeling (ABM) platforms. (Railsback et al. (2005) provide the full
model specifications.) The template models are intended to be “ridiculously simplified”. They illustrate
general modeling considerations required by many different real-world applications and do not constitute an
attempt to implement a specific real-world application. These template models have already proved their
usefulness. They are used in teaching and are chosen as a point of reference for introductory presentations of
new ABM platforms. Nevertheless, in this paper we propose to remove certain ambiguities, tighten certain
specifications, remove from the specification some implementation details, highlight additional learning goals,
and draw a clearer distinction between general programming goals and goals focused on the visual display
of information.

Railsback et al. (2005) provide reference implementations of the template models for a few popular
platforms. The template-model reference implementations are intended to be “simple and intuitive” rather
than clever or fast. As might be expected, the reference implementations clarify the intent of certain parts
of the specifications and highlight some of their limitations. The simplest and least verbose are the NetLogo
reference implementations. Robertson (2005) notes that, as an ABM platform, NetLogo excels at ease of use
and compactness of representation. This makes the NetLogo reference implementations particularly relevant
as a point of comparison for other ABM platforms.

In this paper we provide new reference implementations. The reference implementations use the Python
programming language. After modest initial start-up costs, our Python implementations of the template
models prove simple, readable, and short. That is, they are useful as reference implementations. We show
how use of a simple gridworld module allows for Python implementations that usually approach and often
exceed the simplicity of NetLogo, while providing improved readability and power. Following the intent of
the original reference implementations, our code emphasizes readability and ease of use (rather than speed or
generality). We also suggest a few advantages and disadvantages of using Python as an ABM platform. Since
NetLogo consistently receives high marks on these criteria, we take it as our primary point of comparison.

Template Model 1: Spatial Movement of Agents
The first template model provides a basic introduction to ABM platforms. The core programming goal is to
implement the random movement of agents in a simple two-dimensional space. That is, we must implement
a specified behavior for a base agent type that is spatially situated.

The background needed to attempt the first template model is platform dependent, but generally it
requires a modest introduction to programming on the chosen ABM platform. Required skills include the
use of basic built-in functions, definition and use of new functions, some understanding of variable scope
(local vs. global), use of a looping construct, iteration over a collection (of agents), and simple randomization
using built-in facilities.1 With this background, we can attempt the specification of the first template model.
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Specification: Template Model 1

World
• a 100 x 100 toroidal grid of possible agent positions

Setup
• create an iterable collection of 100 agents
• give each agent a unique, random position on the grid

Iteration
• each time step, each agent moves to a random, unoccupied neighboring location

Stopping Condition
• Not part of the specification.

Supplementary Detail
• agent positions are characterized by integer pairs (locations on the grid)
• no two agents share a position, not even initially
• agent movement is constrained to a Moore neighborhood of radius 4

– an agent must change position unless all neighboring locations are occupied
– the new position is a “random” selection from the unoccupied neighboring locations (no

particular algorithm or PRNG is specified)
– the move action must terminate, even if all neighboring locations are occupied

• the order in which agents move is unspecified, but agents must move sequentially (i.e., one at
a time)

• a “time step” is one iteration through the model schedule
Display Suggestions

• position: display each agent on screen at a position corresponding to its grid position
• shape: display agents as circles
• color: use a red fill color for agents
• size: make sure adjacent agents are easily distinguishable
• update: display once each iteration

Despite its simplicity, the original specification contained some minor ambiguities. The emphasized text
in our specification constitutes clarifying additions. We specify that the initial positions of agents are chosen
randomly subject to the constraint that locations are not shared. This addition is not very consequential
(and matches the NetLogo reference implementation). We also add that agents should be members of an
iterable collection. Most ABM platforms support iterable collections for each agent type, so this too is not
very consequential. More substantively, we explicitly specify that agents move sequentially. (This matches
the reference implementations.) Sequential movement ensures that two agents do not move to the same
location, and as Kahn (2007) notes, violation of this constraint can affect outcomes in later template models.

Finally, we explicitly specify that the move action must terminate. While this is the natural reading of the
original specification, it conflicts with the reference implementations.2 As Kahn (2007) notes, the reference
implementations use a simple loop that makes repeated random draws from the entire neighborhood until a
vacant cell is found. If there are no vacant cells, the program never escapes this loop. (Admittedly, this is a
low probability event in the first template model.) However we do not augment the specification to require
a specific algorithm, since the ease of any particular approach can be platform specific.

It is notable that the display suggestions have no essential relationship to the model specification. In fact,
one drawback of the original template model specifications is the lack of a clean separation of core modeling
goals and visual display considerations. We cannot address this fully without diverging substantially from
the original specifications, but a natural supplement to the template models is a cleaner separation of these
concerns. We will provide this on a template by template basis. One other drawback or the original
specification is the unnecessary narrowness of original interpretive framework. The authors of the original
template model specifications presumed an ecological emphasis and somewhat light-heartedly referred to
their agents as “bugs”. Our interest encompasses the social sciences, and we therefore stick with the more
generic term ‘agents’.

3

http://mathworld.wolfram.com/MooreNeighborhood.html
http://en.wikipedia.org/wiki/Pseudorandom_number_generator


Procedural Implementation
To implement the first template model, we need a description of the agents and a description of the “world”
in which the agents reside. The template models also make visual display suggestions, and we will implement
these as well. With such limited needs, we have many different options. Starting from scratch is entirely
feasible.3 Free and open source game development toolkits are also options: pygame (http://www.pygame.
org) and pyglet (http://www.pyglet.org) are fairly simple and very powerful. For the purposes of this
paper, however, we take a minimalist approach: we use a small gridworld module that provides a basic grid
topology, “patches”, and agents. Since Python 2.6, this approach provides ABM facilities that approach the
simplicity of NetLogo.

The properties of an Agent resemble those of a NetLogo “turtle”, which is the base NetLogo agent type.4
We will care primarily about the ability of these agents to report a current position and move to a new
location. We will access and set the position of an agent via its position attribute. A position is an x,y
pair of numbers, interpreted as Cartesian coordinates in a plane. (Generally, the coordinates can be floating
point numbers, but for the template models they will be integers.)

To facilitate comparison with NetLogo, we consider a preliminary version of the first template model
that is procedurally oriented. Our world will be a GridWorldGUI from the gridworld module; this class
handles a little grid-related accounting for us. For example, if myworld is a GridWorldGUI instance, we can
determine whether a location is unoccupied as myworld.is empty(location). With this background, we
get the following implementation of the first template model. (For completeness, we are including the entire
file.)

""" Template Model 1 (procedural): Random Movement on a Toroidal Grid """

import random
from gridworld import Agent, GridWorldGUI
from gridworld import moore_neighborhood, Torus

def initialize(agent):
agent.shape('circle')
agent.shapesize(0.25, 0.25)
agent.fillcolor('red')

def move(agent):
choice = choose_location(agent)
agent.position = choice

def choose_location(agent):
old_position = agent.position
hood = moore_neighborhood(radius=4, center=old_position)
random.shuffle(hood)
for location in hood:

if agent.world.is_empty(location):
return location

return old_position

def schedule():
for agent in myagents:

move(agent)

#create a 100x100 grid and a world based on this grid
mytorus = Torus(shape=(100,100))
myworld = GridWorldGUI(grid=mytorus)
#create 100 agents, located in our world, and then initialize them
myagents = myworld.create_agents(AgentType=Agent, number=100)
for agent in myagents:

initialize(agent)
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for ct in range(250): #run the model (250 iterations)
myworld.screen_updating = False
schedule()
myworld.screen_updating = True

Since this is our first model implementation, we will explicate the code. Readers with a little Python
programming experience may be able to simply read through the code and then skip ahead to the more object-
oriented implementation. (This invitation should not be taken for granted: it is a reasonable suggestion
because readability is an explicit Python language design goal.)

The source file begins with a documentation string. (Python docstrings are conventionally triple quoted;
triple quoted strings can include line breaks.) Immediately following the docstring are three import state-
ments. The first imports the random module from the standard library, giving us access to Python’s random
number facilities. The other two import useful objects from the gridworld module. We import Agent
and GridWorldGUI, two classes that will be useful for our simulation. After import, names are available
for use anywhere in our program (i.e., they are in our module’s global namespace). We also import the
moore neighborhood function, which can produce a Moore neighborhood of any specified radius, along with
the Torus class, which characterizes a rectangular grid that wraps at its boundaries.

Our approach will be to define a collection of functions that we can use to implement the simulation.5
Our first function simply initializes an agent. This initialization focuses on the visual display of the agent: we
set its shape, size, and color.6 We then attack the core of the first template model: the detailed description
of how an agent moves. We define a move function, which chooses a new location and then moves the agent
there. Location choice is delegated to a choose location function. Movement to a new location is handled
simply by assigning a new value to the agent’s position attribute.

Let us consider the body of the choose location function, which does the real work of the first tem-
plate model. We generate a Moore neighborhood of radius 4 around the agent’s current position as as
moore neighborhood(radius=4,center=old position), which returns a list of eighty (x,y) locations. An
agent must move to a random location in its neighborhood, so we shuffle (in place) the locations with the
random.shuffle function. We sequentially consider each location as a possible new position (thereby avoid-
ing the error in the reference implementations, discussed above). If the location is empty, we choose it. Note
that a gridworld.Agent has a world attribute. (When a world creates agents it sets this attribute.) To
determine whether a location is empty, an agent queries its world’s is empty method. If no new location is
empty, the agent chooses its current position. The choose location function returns a location, and the
move function sets the agents position to this location.

We have completed the hardest and most essential part of the first template model. Our schedule
function is relatively simple: it applies our move function to each of our agents. We will call schedule once
per iteration as long as the model is running.

We are now ready to set up and run the model. Following the specification, we create our 100 by 100 grid
as mytorus = Torus(shape=(100,100)). We then create our world as myworld = GridWorldGUI(grid=mytorus),
initializing our world with our torus topology. We then populate the world with 100 agents: a GridWorldGUI
also has a create agents convenience method, so we need only specify the number and type of agents that
we want. (Since we do not specify positions, the agents are positioned randomly when they are created.)
We then use our initialize function to prepare the agents for our simulation.

Running the model is essentially a matter of calling the schedule function repeatedly. However we also
perform a subsidiary, display-related task: we turn off screen updating before we start moving our agents,
and we turn screen updating back on after we are done moving our agents. This was requested by the
specification, and it substantially speeds the simulation. We arbitrarily stop after 250 iterations. (The
specification does not include a stopping criterion.)

Object-Oriented Implementation
For illustrative contrast, we reimplement the first template model with more object-oriented code. We can
again use Python, since it combines simplicity and power by supporting both procedural and object-oriented
programming paradigms.

This time we use the GridWorldGUI and Agent classes of the gridworld module as base classes for two
new classes, World01 and Agent01. Instead of defining four global functions to manipulate the objects in
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our model, we provide our objects with behavior by defining four corresponding methods. We initialize the
shape, size, and color of our agents with an initialize method. We add a move method to our agents,
which will be supported by a choose location method. These are analogues for three of the four functions
we defined in the procedural version. The fourth function was our schedule, which we now implement as
method of our world class.

Before proceeding, we should note two features of the gridworld module. Agent defines an initialize
method, intended to be overridden, which is automatically called as part of object initialization. Also,
GridWorldGUI defines a schedule method, intended to be overridden, which is called repeatedly by its run
method. So we propose the following design.

Agent01 extends gridworld.Agent
• New Methods: move, choose location
• Overridden Methods: initialize

World01 extends gridworld.GridWorldGUI
• Overridden Methods: schedule

Here we use the term ‘extends’ to indicate inheritance: Agent01 is a subclass of Agent. To say that
Agent01 extends Agent is to say that Agent01 inherits data and methods from Agent. Specifically, we will
use the position and the world data attributes that Agent01 inherits from Agent. Similarly, we will use
the is empty method that World01 inherits from GridWorldGUI, which reports whether a given location is
empty or occupied by another agent.

Explicit class definition has costs and benefits relative to other possible designs. The costs accrue pri-
marily to programming novices, which make them largely of pedagogical relevance. (This matters, since
pedagogy is a common use of the template models.) Object-oriented design requires an understanding of
class definition. In Python, this is a minimal barrier: understanding how NetLogo handles instance variables
(as required by the second template model) is a comparable cost.7 As a somewhat more substantial cost,
object-oriented design immediately requires a minimal understanding of inheritance: that a derived class
behaves like its base class, in the sense the it can receive the same method calls. As we develop our object-
oriented approach to the first template model, we will not find large advantages off-setting this initial cost.
However, as we work through additional template models, substantial advantages of a more object-oriented
approach become evident.

For most researchers choosing an ABM platform, the issue is not whether but rather when to use inheri-
tance. For example, NetLogo is strongly procedurally oriented and is designed for simple use, so the NetLogo
reference implementations initially can dodge the issue by relying on a kind of dynamic attribute creation
for the base agent class (using the turtles-own and patches-own keywords). But once a model requires
different types of agents, a discussion of the NetLogo concept of breed becomes unavoidable. Any reasonable
introduction to breeds will strongly overlap elementary discussions of class definition and inheritance.8

The NetLogo reference models do not introduce breeds until template model 16. We could similarly
postpone the introduction of inheritance, as illustrated by our procedural version of the first template
model. Postponement slightly decreases the background required to implement the first template model,
but it does not change the requirements for the set of template models. Additionally, an object-oriented
approach substantially simplifies the set of models. A comparison of our procedural implementation with
the following permits an assessment of the barrier to entry is raised by early use of a more object-oriented
approach.
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""" Template Model 1: Random Movement on a Toroidal Grid """

import random
from gridworld import Agent, GridWorldGUI
from gridworld import moore_neighborhood, Torus

class Agent01(Agent):
def initialize(self):

self.shape('circle')
self.shapesize(0.25, 0.25)
self.fillcolor('red')

def move(self):
choice = self.choose_location()
self.position = choice

def choose_location(self):
old_position = self.position
hood = moore_neighborhood(radius=4, center=old_position)
random.shuffle(hood)
for location in hood:

if self.world.is_empty(location):
return location

return old_position

class World01(GridWorldGUI):
def schedule(self):

for agent in self.agents:
agent.move()

if __name__ == '__main__': #setup and run the simulation
#create a 100x100 grid and a world based on this grid
mytorus = Torus(shape=(100,100))
myworld = World01(grid=mytorus)
#set up agents (create 100 agents, automatically initialized)
myagents = myworld.create_agents(AgentType=Agent01, number=100)
#run the world's schedule repeatedly
myworld.run(maxiter=250)

A reasonable first reaction is that this more object-oriented implementation appears nearly identical to
our procedural implementation. The four functions defined in the procedural version are clearly evident as
the three methods defined in the Agent01 class and the one method defined in the World01 class. (A method
definition is just a normal function definition that is part of a class definition.) A closer look reveals some
small differences, and we focus on those.

Again the module begins with a short docstring. The three import statements are unchanged. We then
define a new class, Agent01, which inherits from Agent and defines three methods. The initialize method
has one difference from our earlier function of the same name: the parameter name is self rather than
agent. This is is inessential: the choice of the name self is a standard Python convention to emphasize
that when we call this method on an instance, it will act on that instance itself. (We will return to this.)

The move method also mirrors our previous move function. There is one notable difference: instead of
the function call choose location(agent), we have the method call self.choose location().9 Similarly,
the choose location method is also essentially identical to our previous choose location function.

So far we have introduced only very minor changes in program logic, but they all reflect a more funda-
mental change in perspective: behavior is now an attribute of an agent. To give this a slightly misleading
but nevertheless suggestive phrasing, in the procedural design we do things to agents, whereas in the object-
oriented design our agents do things.

Our remaining changes are just as minor. Instead of defining a global schedule function, we subclass
GridWorldGUI and override its schedule method. The schedule method has three notable changes from
our earlier function of the same name. First, we do not have to turn screen updating on and off. (We
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will use the run method that our World01 inherits from GridWorldGUI, which handles this for us.) Second,
we will not access myagents as a global variable: instead we use the agents attribute of our World01,
which it inherits from GridWorldGUI. Finally, we replace the function call move(agent) with the method
call agent.move().

As before, we must take four steps to run our first simulation: create a grid of locations for our agents,
create a world based on that grid, populate the world with initialized agents, and run the scheduled actions
repeatedly. Each of these steps is familiar, and only the last changes substantively from our procedural
implementation. A World01 has a run method (inherited from GridWorldGUI) that repeatedly calls its own
schedule method, so myworld.run(maxiter=250) will run our simulation for 250 iterations. Our more
object-oriented implementation of the first template model is complete.

We add one modification that is not needed to implement the model: we run the simulation only if
name ==’main’. This is a purely forward looking change: we want to import Agent01 and World01 into

other modules without running our first template model. However, a module’s code is executed when the
module is imported. We could put the code to set up and run the model in a separate file, but for the
purposes of this paper, we wish to group our class definitions beside the code that creates and runs our
simulations. Our solution is to use the special module attribute, name , which is just the filename (as a
string) for an imported module. In contrast, the module executed as the main program is always assigned
the string ’ main ’ as its name. We can therefore condition on the value of name in order to prevent
some code from being executed when a module is imported. The code in the body of this if statement will
not be executed if the module is imported, but it will be executed if the module is executed as a script.10

This ensures that we can freely import our module into other scripts.

Template Model 2: Agent Growth
The second template model assumes completion of the first template model. (The template models are
generally sequential.) The new requirement is the addition of agent state in the form of data attributes. An
associated visual-display goal is the provision of visual clues to the state of each agent.11 Once again, the
emphasized text in our specification constitutes additions or changes to the original.

Specification: Template Model 2

World and Setup
• unchanged from model 1

Iteration (sequential)
• each agent moves
• each agent grows

Supplementary Detail
• movement: agents move as in model 1
• growth: each agent “grows” at a fixed rate

– each agent has an data attribute named size
– growth is a change in the “size“ attribute
– size is initialized to 1.0; the growth increment is 0.1

Display Suggestions
• position, shape, and update: as in model 1
• color: each agent’s fill color should represent its “size”. (Specifically, use white if size=0.0, red

if size>=10.0, and increasingly chromatic tints of red as “size” increases from 0 to 10.)
• delay: ensure that the agents’ color changes during the model’s first ninety iterations are not

too rapid for viewing

We clear up one ambiguity in the original specification, which says that the growth action “is scheduled
after the move action”. In accord with the NetLogo reference implementation, we interpret this to mean
that all agents move, and after that all agents grow. We also cut the growth increment from 1.0 to 0.1.
The growth increment is inessential to the model, aside from visual display considerations. Even after our
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change, on many platforms the color transition will take place too quickly to be easily seen, unless the model
iterations are radically delayed. We therefore add a new display suggestion: schedule a delay if needed for
comfortable viewing of the color transitions.

Note that the notion of size here is very abstract, and correspondingly so is the notion of growth. A
biologist might conceive of size as the physical size of the agent, while a social scientist might conceive of
size as the monetary value of the agent’s wealth.

With this background, we propose a basic design. As we take up the second template model, we would like
to take advantage of our work on the first template model. One approach to this is to simply copy our Agent01
code into the file that implements the second template model, modifying it where appropriate. Indeed,
examination of the NetLogo reference implementations reveals the use of this copy-and-paste approach. For
languages that support inheritance, a much better approach is to import into our second template model
any useful objects from the first template model.12 We therefore subclass Agent01 to define a new agent
class (Agent02). that has a new data attribute (size) and two new methods (grow and change color).
Additionally, we create a new class, named World02, for our new schedule of actions. Since World01 does
not offer much here, we again subclass GridWorldGUI in order to override its schedule method.

Agent02 extends Agent01
• New data attribute: size
• New Methods: grow, change color
• Overridden Methods: initialize

World02 extends GridWorldGUI
• Overridden Methods: schedule

With this design in hand, we are now ready to implement the second template model. We begin with three
import statements. We import the time module, which is in the Python standard library, so that we can use
its sleep function to delay our model iterations. From the gridworld module we import two familiar classes,
GridWorldGUI and Torus, along with an inessential but convenient function, ask. Analogously to the ask
command in NetLogo, this ask function applies a specified method to each object in an iterable collection.
(Thus ask(myagents, ’move’) is equivalent to for agent in myagents: agent.move().) Finally, from
our (obviously names) template01 module we import Agent01, which we intend to subclass.

""" Template Model 2: Agent Growth """

import time
from gridworld import ask, GridWorldGUI, Torus
from template01 import Agent01

class Agent02(Agent01):
def initialize(self):

self.shape('circle')
self.shapesize(0.25, 0.25)
self.size = 1.0
self.change_color()

def grow(self):
self.size += 0.1
self.change_color()

def change_color(self):
g = b = max(0.0, 1.0 - self.size/10)
self.fillcolor(1.0, g, b)

class World02(GridWorldGUI):
def schedule(self):

time.sleep(0.2)
myagents = self.agents
ask(myagents, 'move')
ask(myagents, 'grow')
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if __name__ == '__main__':
myworld = World02(grid=Torus(shape=(100,100)))
myagents = myworld.create_agents(AgentType=Agent02, number=100)
myworld.run(maxiter=100) # run simulation
myworld.mainloop() # keep GUI open after `run` completes

Our new agent class, Agent02, has two new methods (grow and change color) and a new data attribute
(size). We initialize each agent’s shape, shapesize, and size, and then we initialize its color by calling its
change color method. The change color method sets the agent’s fillcolor based on its size, following the
display suggestions in the specification.

The grow method is almost trivial: as required by the specification, an agent adds 0.1 to its size each time
its grow method is called. Since the agent’s color should always reflect its size, the grow method then calls
the agent’s change color method. Using the default RGB color model, we specify colors as (red,green,blue)
triplets of floating point numbers between 0 and 1. The intensity of red is always 1.0. The intensity of green
and blue decreases from 1.0 to 0.0, as size increases from 0 to 10, and remains at 0 thereafter.

Agent02 is ready for use. We just need to create a collection of these agents and schedule their movement
and growth according to the specification. As before, we approach this by defining a new class (World02),
which subclasses GridWorldGUI in order to override its schedule method. We first schedule a brief sleep
(i.e., a suspension of the program execution), which provides us with time to examine the current state of
the visual display. The schedule method then retrieves an iterable collection of the agents, sequentially
calls the move method on each of these agents, and then sequentially calls the grow method on each of these
agents.

With our schedule in place, we can set up and run the simulation as in the first template model. We
introduce one slight change: after we run the model, we call the mainloop method of our world. For now,
this is just to keep our display visible after our simulation is done running. (We will return to this.)

We emphasize that our code listing is again complete. Although the second template model is slightly
more complex, its code is no lengthier than that for the first template model. (Of course this is due to our
import of Agent01.) This is a stark contrast to the NetLogo reference implementation of the second template
model, where we find that code size increases rapidly with the complexity of the model. While brevity is no
virtue if it sacrifices clarity, our Python code remains clear and readable. As early as the second template
model, we discover an evident strength of Python as an ABM platform.13

Template Model 3: Spatially Distributed Resources
In comparison to the modest goals of the first two template models, the third template model is somewhat
ambitious. The core programming goal is to introduce spatial resources in the form of spatially distributed
“cells” with which agents interact. This interaction changes the state of the cell and the state of the agent.
To make this concrete, we say that cells produce a resource, and agent growth is determined by the resource
it extracts from its cell. A secondary goal is to introduce a random change in state: cells produce randomly.

We remove two requirements from the original specification: we do not require that a “grid space object”
hold the cells, and we do not require that each cell store its occupant in an instance variable. We consider
these to be implementation details that users would have trouble confirming on many platforms.14 Even when
a model is implemented from the ground up, these are not sensible requirements: there are many competitive
designs. (For example, a cell might delegate the determination of its occupants to an intermediary, which
might maintain a mapping from cells to occupants.)

Furthermore, the rest of the specification (and its interpretive framework) make it more natural that an
agent “know” its cell than that a cell “know” its agent. For example, in the NetLogo reference implementation
a grow procedure is applied to each agent, which consumes from its cell and grows.15 We can conceive a more
patch-centered approach—say, applying a supply-agent procedure to each patch—but this is not natural,
necessary, or efficient.
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Specification: Template Model 3

Setup
• same as model 2, plus
• create a “cell” for each grid location

Iteration (sequential)
• each cell produces, which adds to its available supply
• each agent moves
• each agent grows

Supplementary Detail
• production: random, uniform between 0 and the cell’s maximum production rate

– a cell has an available supply of the produced resource (data attribute, initialized to 0.0)
and a maximum production rate (data attribute, initialized to 0.01)

– a cell’s production is added to its supply
• movement: agents move as in model 1
• growth: an agent grows by extracting from its cell

– an agent can interact with the cell at its position (specifically, it can extract the cell’s
supply)

– an agent has a maximum extraction rate (a data attribute, initialized to 1.0)
– an agent extracts whichever is smaller: its maximum extraction rate, or its cell’s supply
– agent growth equals the quantity it extracts
– a cell’s supply is reduced by the amount extracted

Display Suggestions
• unchanged from model 2

As a minor matter, we have adopted a somewhat more general description of the agent and cell activities.
The original specification suggested the following interpretation: cells grow food, which bugs eat to grow.
However many other interpretations are possible. (For example, itinerant laborers solicit paid jobs, which
add to their wealth.) Again, the interpretive framework of the template models is secondary: any serious
application to interactions between an agent and its spatial environment will require many more details.

With this background, we are ready to propose a design. We need to describe a cell that produces
something that can be taken by our agents. We also need to make some changes to our agent description,
so that it can appropriately consume and grow.

Cell03 extends gridworld.Patch
• New Data: supply, max produce
• New Methods: produce, give
• Overridden Methods: initialize

Agent03 extends Agent02
• New Data: max take
• New Methods: extract
• Overridden Methods: initialize, grow

World03 extends gridworld.GridWorldGUI
• Overridden Methods: schedule

At this point, our basic strategy should be growing familiar. We inherit as much as we can from past
work, and we add any new behavior we need. For example, Agent03 will inherit the patch here method
from Agent02, who inherited it from Agent01, who inherited in from gridworld.Agent. However, it must
override the grow method rather than inherit it from Agent02. We now move to discussion of the code.
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""" Template Model 3: Spatially Distributed Resources """

import random
from gridworld import ask, GridWorldGUI, Patch, Torus
from template02 import Agent02

class Cell03(Patch):
def initialize(self):

self.supply = 0.0
self.max_produce = 0.01

def produce(self):
self.supply += random.uniform(0, self.max_produce)

def give(self, amount):
amount = min(self.supply, amount)
self.supply -= amount
return amount

class Agent03(Agent02):
def initialize(self):

Agent02.initialize(self)
self.max_take = 1.0

def grow(self):
self.size += self.extract()
self.change_color()

def extract(self):
mycell = self.patch_here()
mytake = mycell.give(self.max_take)
return mytake

class World03(GridWorldGUI):
def schedule(self):

ask(self.patches, 'produce')
ask(self.agents, 'move')
ask(self.agents, 'grow')

if __name__ == '__main__':
myworld = World03(grid=Torus(shape=(100,100)))
mypatches = myworld.create_patches(PatchType=Cell03) #setup patches
myagents = myworld.create_agents(AgentType=Agent03, number=100)
myworld.run(maxiter=100)
myworld.mainloop()

For now, the only important thing we get by having Cell03 inherit from gridworld.Patch is that a
GridWorldGUI knows how to create instances of Patch. (We will use this when we set up the model.) All the
important cell behavior is new. We begin by overriding the initialize method, which is automatically called
during instance creation. This initializes the supply and max produce attributes of each cell. We define a
produce method to augment supply by a random amount, which is uniform between 0 and max produce.
And the give method will give from the cell’s current supply the amount requested (up to the entire supply),
while reducing the cell’s supply by the amount given.

An Agent03 has all the initializations of an Agent02, and we invoke by calling Agent02.initialize.
(This is for illustrative purposes: the gain from reusing the Agent02 initializations is tiny in this simple
class.) An Agent03 is an Agent02 that knows how to extract resources from its cell and to grows based
on this extraction. The grow method calls the agent’s extract method, and growth equals the amount
extracted. Given a call to its extract method, an Agent03 will try to extract its max take (e.g., its
maximum capacity). (Of course it can only extract up to its cell’s current supply.) The max take of an
Agent03 is set at initialization to 1.0.
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As usual, we create a schedule this by overriding the schedule method of GridWorldGUI. First we ask
each patch to produce, then we ask each agent to move, and finally we ask each agent to grow (by extracting
from its cell). With our schedule in place, we can set up and run our simulation as usual, with one small
change. Before we create our agents, we must create their environment (i.e., the cells). (This step has no
corollary in NetLogo, which always conveniently creates a patch environment for its agents, but it is required
by most ABM platforms.) Note that the specification still does not include a stopping condition, so our
decision to run the simulation for 100 iterations is in this sense arbitrary.

Template Models 4, 5, 6, 7: Probes, Parameters, Histograms, and
Stopping
The next three template models emphasize the GUI. In principle the GUI is a mere adjunct to ABM
platforms. In practice it has proved an important tool for model exploration and understanding. It therefore
receives a strong emphasis in the template models.

Template Model 4: Click Monitors
The core task of the fourth template model is to implement click monitors, or “probes”, fore both agents
and cells. A click monitor displays the state of an object type when the object receives a mouse click. The
specification is correspondingly simple.

Specification: Template Model 4

World, Setup, and Iteration
• unchanged from model 3 (with new supplementary detail)

User Interaction
• report agent size and cell supply in response to mouse clicks in the visual display

Display Suggestions
• as in model 3, plus
• display click monitor reports in the GUI

The ease of producing such probes varies substantially by platform. On some platforms it is a substantial
effort to probe both agents and cells (Railsback et al., 2006). NetLogo once again makes things easy: probes
for agents and cells are provided automatically and displayed in the GUI.16 We add probes explicitly using
our world’s add clickmonitor method, which takes as arguments a label for the display, an object type to
monitor, and an attribute (or attributes) whose values are to be monitored.17

""" Template Model 4: Probe Object State """

from gridworld import Torus
from template03 import Agent03 as Agent04, Cell03 as Cell04, World03

class World04(World03):
def initialize(self):

self.add_clickmonitor('Agent', Agent04, 'size')
self.add_clickmonitor('Cell', Cell04, 'supply')

if __name__ == '__main__':
myworld = World04(grid=Torus(shape=(100,100)))
mypatches = myworld.create_patches(PatchType=Cell04)
myagents = myworld.create_agents(AgentType=Agent04, number=100)
myworld.run(maxiter=100)
myworld.mainloop()
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The resulting code is very simple. We simply reuse Agent03 and Cell03 (renamed as Agent04 and
Cell04). We subclass World03 in order to override its initialize method. (Recall that the initialize
method is special: it is called when our world instance is initialized.) This is where one adds probes, using
the add clickmonitor method. We add two click monitors: one to report the size of a clicked agent, and
another to report the supply of a clicked cell.

The code for creating our world, adding cells and agents, and running the simulation is by now familiar.
When we create our world, the two click monitors appear in the GUI (see Figure 1), and they display the
current state of the objects we click. This highlights a new reason for calling the mainloop method of our
world: the “main loop” is an event loop, which waits for and handles GUI events. In this case, it handles
our mouse click events.

Template Model 5: Model Parameters
The fifth template model introduces user settable model parameters. While the concept is not precisely
defined, the idea is that certain variables that govern the simulation should be easily settable by users of the
model.

Specification: Template Model 5

Setup and Iteration
• unchanged from model 4

Model Parameters
• initial number of agents (suggested default: 100)
• maximum extraction rate of agents (suggested default: 1.0)
• maximum production rate of cells (suggested default: 0.01)

Supplementary Detail
• model parameters should be easily settable by users of the model.

Display Suggestions
• as in model 4, plus
• enable GUI setting of model parameters (e.g., with sliders)
• include SetUp and Run buttons in the GUI (where “SetUp“ creates the agents (and patches if

needed), and “Run“ should run the simulation

We make two changes in the original specification. First, we do not require GUI parameter setting. While
this can be quite useful for experimentation with the model, use of the GUI for parameter setting interferes
with replicability, is an inefficient approach to testing model robustness, and is not a good ultimate practice
in a research setting. We therefore demote this to a display suggestion. Second, we add to the display
suggestions that provision of SetUp and Run buttons. This suggestion is a natural implication of allowing
parameter setting in the GUI: the parameters values must be determined before the model can be set up
and run. (Thus, for example, we find setup and go buttons in the NetLogo reference implementation.)

As Railsback et al. (2006) note, model parameters are often implemented as attributes of a model class.
For the three specified model parameters, we introduce three class variables to our World05 class. Since
patches and agents created by a GridWorldGUI know their world, they have access to these parameters as
attributes of their world.

With this background, we expect that the primary change from the third template model is a change
in the initialize methods of our cell, agent, and world classes. We add button and slider creation to the
initialization of our world. During their initializations, cells and agents need to access the parameter values
stored by their world. Correspondingly, we now move patch and agent creation into a setup method of our
world.
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""" Template Model 5: Parameters """

from gridworld import Patch, Torus
from template04 import Cell04, Agent04, World04

class Cell05(Cell04):
def initialize(self):

self.supply = 0.0
self.max_produce = self.world.cell_max_produce

class Agent05(Agent04):
def initialize(self):

Agent04.initialize(self)
self.max_take = self.world.agent_max_take

class World05(World04):
n_agents = 100
cell_max_produce = 0.01
agent_max_take = 1.0
def initialize(self):

World04.initialize(self)
self.add_slider('Initial Number of Bugs', 'n_agents', 10, 500, 10)
self.add_slider('Agent Max Extraction', 'agent_max_take', 0.0, 2.0, 0.1)
self.add_slider('Cell Max Production', 'cell_max_produce', 0.0, 0.1, 0.01)
self.add_button('Set Up', self.setup)
self.add_button('Run', self.run)
self.add_button('Stop', self.stop)

def setup(self):
mypatches = self.create_patches(PatchType=Cell05)
myagents = self.create_agents(AgentType=Agent05, number=self.n_agents)

if __name__ == '__main__':
myworld = World05( grid=Torus(shape=(100,100)) )
myworld.mainloop()

Let us focus on the initialize method of World05. We begin by invoking all the World04 initializations.
Then we add three sliders, one for each of the model parameters that we introduced as class variables. The
sliders allow users to set new values for these parameters. (This approach matches the NetLogo reference
implementation.) A slider is created with the add slider method, which needs a label, an attribute (of our
world) to be set, minimum and maximum possible values for the attribute, and a resolution (i.e., minimum
increment) for the slider. The values for these are not part of the specification, but clearly they should
encompass the default parameter values.

We then add the two specified buttons. As a convenience, we also add a Stop button, although this is
not required by the specification. Each button is created with the add button method, which requires as
arguments a label and a function. This function is called a “callback” (or “command”): it is called when the
button is clicked. Our buttons call the setup, run, and stop methods of our world.

Our World04 inherited run and stop methods from GridWorldGUI. We do not override these. It also
inherited a setup dummy method, intended to be overridden. We override setup to create our patches and
agents.

Recall that in template model 4 we saw that the mainloop method prepared our world to receive mouse
clicks. Here too it sets up event handling, and now these events include button clicks and slider adjustments.
We now use button clicks to set up and run the model.

Template Model 6: Dynamic Histogram
Agent-based models can generate a lot of data. Graphical summaries of the data can be helpful in under-
standing the model evolution and outcomes. The sixth template model addresses this need by requiring the
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production of a histogram to summarize the distribution of size among the agents.
We make a minor change in the original specification: we do not require that the histogram be displayed

in the GUI, and we thereby remove the implicit requirement that histogram generation be synchronous with
the simulation run. This reflects our view that the ability to synchronously view the histogram during a
simulation run is a convenience rather than a fundamental feature of an ABM platform. (For example,
MASON has no integrated graphing facilities, and lack of graphics documentation in Java Swarm suggests
this is not yet a priority.) Indeed, saving data from simulation runs and analyzing it with separate tools
is an reasonable and flexible approach to ABM assessment. We therefore demote GUI presentation of the
histogram to a display suggestion.

Specification: Template Model 6

Setup, Iteration, and Model Parameters
• as in model 5

Data Display
• produce a series of histograms that represents the evolution of the distribution of an agent

attribute
Supplementary Detail

• the histogram should be of the size attribute of agents
• the sampling frequency for the histogram is not specified, but should be high enough to be

informative about the evolution of this distribution
Display Suggestions

• use 10 bins for the histogram, with a minimum size of 0 and a maximum size of 10
• display a histogram chart in the GUI, and update the histogram as the simulation runs

Fine graphics control will always be complex, but even the ease of basic graph creation varies substantially
among platforms (Railsback et al., 2006). Once again NetLogo sets the standard for ease of basic use: to
add a continually updated histogram of turtle size to the NetLogo GUI, just place histogram [size] of
turtles in a procedure that will be called each iteration. The approach used by gridworld.py is only
slightly more complex and very flexible.

""" Template Model 6: Histogram """

from gridworld import Torus
from template05 import Agent05 as Agent06, World05

class World06(World05):
def initialize(self):

World05.initialize(self)
def get_sizes():

agents = self.get_agents(Agent06)
return list(agent.size for agent in agents)

self.add_histogram('Agent Sizes', get_sizes, bins=range(11))

if __name__ == '__main__':
myworld = World06(grid=Torus(shape=(100,100)))
myworld.mainloop()

We add a dynamic histogram to the GUI with the add histogram method of our world. This method
needs as arguments a title for the graph and a function that will be recomputed each iteration. When
called, this function must provide the data for the histogram. We therefore define a get sizes function,
which returns a list of agent sizes.18 In doing so, we add one forward looking refinement: we illustrate the
get agents method our world inherited from GridWorldGUI. This returns a list of the agents of the specified
type. (Of course currently all of our agents are of type Agent06, so we get a list of all agents.) From this,
we produce a list of the agent sizes. This is the data needed for our histogram. We create our world, set up
the model, and run the simulation as before. Our histogram appears in the GUI, where it is updated each
iteration.
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Template Model 7: Stopping Condition
Template model 7 simply adds a stopping condition to template model 6. The condition is that the model
iterations should stop when any agent reaches a size of 100 or larger.19

Specification: Template Model 7

Setup, Iteration, Model Parameters, and Data Display
• unchanged from model 6

Stopping Condition
• terminate iteration based on model state

Supplementary Detail
• base stopping condition on a cutoff for the agent size attribute
• the suggested cutoff is that any agent reaches size >= 100
• after stopping, completely exit the simulation

Display Suggestions
• as in model 6, plus
• close GUI when the simulation terminates

We scarcely change the original specification. As usual, we demote the GUI aspects to display suggestions.
We also remove a reference to “clean up steps” to be done upon termination, because these steps were not
specified (Railsback et al., 2006).20

There are many ways to approach this problem, but the most straightforward is to add a conditional
check to the schedule. (This is essentially the approach taken by the NetLogo reference implementation.)
We test for the stopping criterion, and once it is satisfied, we stop the simulation and exit the program.
Note that this approach is an implementation detail, and is not required by the specification. To stop the
iterative process we use the stop method that our world inherited from GridWorldGUI; to exit the mainloop
(and thus completely terminate the program) we use its exit method.21

""" Template Model 7: Stopping Condition """

from gridworld import Torus
from template06 import Agent06 as Agent07, World06

class World07(World06):
def schedule(self):

World06.schedule(self)
if max(agent.size for agent in self.agents) >= 100:

self.stop()
self.exit()

if __name__ == '__main__':
myworld = World07(grid=Torus(shape=(100,100)))
myworld.mainloop()

Template Model 8: Output Files
Railsback et al. (2006) point out that producing data for subsequent analysis is a core facility for ABM
platforms. For the eighth template model, we can break this into two parts: the production of summary
statistics, and file input-output operations. In template model 8, each iteration, a summary of the agent
states is computed and written to an output file.

We make a single substantive change in the original requirements: we drop the (implicit) requirement
that output be written as plain text.22 Plain text output has the great advantage of being human readable,
but when we generate a large amount of data this advantage is rapidly outweighted by speed (of reading and
writing) and eventually even file-size considerations. (Vaingast (2009) offers a good introductory discussion.)

17

http://ccl.northwestern.edu/netlogo/


Even if we settle on a plain text file format, many issues are unaddressed by the specification. Will the
data be written in a well-known format, such as the CSV format? (CSV is the most obvious format to use
for plain text data storage, since it is a standard spreadsheet format, but it is not the choice of the reference
implementations.) Will the data be documented in any way, at least with a file header (as is a common
first row in CSV files)? These are general concerns for data generation and maintenance. While we do
not attempt to force decisions into the specification, as the needs and resources of users vary widely, we do
introduce some output suggestions into the specification.

Specification: Template Model 8

Setup, Model Parameters, Data Display, and Stopping Condition
• unchanged from model 7

Iteration (sequential)
• as in model 7
• compute summary statistics for the model
• write model summary to a file

Supplementary Detail
• summary statistics are for the size of agents
• summary statistics should include the minimum, mean, and maximum size

Output Suggestions
• open, append to, and close the output file each iteration
• write output as plain text

– output from a single iteration is a single line in the text file
– use CSV format for the output file
– write a header as the first line in the log file

Display Suggestions
• as in model 7

Implementations of input-output facilities vary substantially: some platforms provide special classes to
facilitate file output, but Java-based platforms usually expect users to use the basic Java file-handling facilities
(e.g., the FileWriter class). As one expects, NetLogo provides fairly easy access to very basic facilities.23 In
contrast, Python’s input-output facilities are not only easy to use but also very powerful. Additionally, they
can be coupled with Python’s powerful string manipulation facilities to produce nicely formatted plain text
output.

We will use Python’s basic file handling abilities, as implemented in the built-in open command.24 We
provide two arguments to open: a filename (as a string) and a mode (as a string). The basic text modes
are ’r’ (read), ’w’ (write), or ’a’ (append). For example, we can open the file sizes.csv for writing with
the statement fh=open(’sizes.csv’,’w’). (The open command returns a file object, which we bind to the
name fh.) We can then write a string mystring to the file as fh.write(mystring).

We can implement the eighth template model simply by extending World07. We add two new class vari-
ables (logfile and logformat), add two new methods (header2logfile and log2logfile), and override
two methods (setup and schedule).

Our setup keeps the World07 set up but appends logging of a header and an initial data summary to our
log file. Data logging is handled by a new log2logfile method, which retrieves a list of agent sizes, gets
the summary statistics, and appends them to our output file. We handle data description with describe,
which is a gridworld convenience function.25 This has functionally similar to Swarm’s Averager class.
It takes a list of numbers as its argument and returns a Python dictionary of descriptive statistics, with
keys including the self-explanatory min, max, and mean. The expression self.logformat.format(**stats)
uses our logformat string to format the corresponding values in the stats dictionary. (This offers a nice
illustration of the power and flexibility of using a Python format string). This is all it takes to log our data
in CSV format.
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""" Template Model 8: Log Model State Information to File """

from gridworld import Torus, describe
from template07 import Agent07 as Agent08, World07

class World08(World07):
logfile = 'c:/temp/sizes.csv'
logformat = '\n{min}, {mean}, {max}'
def setup(self):

World07.setup(self)
self.header2logfile() # write header to logfile
self.log2logfile() # log initial state to logfile

def schedule(self):
World07.schedule(self)
self.log2logfile()

def header2logfile(self):
logheader = "minimum, mean, maximum"
fh = open(self.logfile, 'w')
fh.write(logheader)
fh.close()

def log2logfile(self):
agents = self.get_agents(AgentType=Agent08)
sizes = list(agent.size for agent in agents)
stats = describe(sizes)
fh = open(self.logfile, 'a')
fh.write( self.logformat.format(**stats) )
fh.close()

if __name__ == '__main__':
myworld = World08(grid=Torus(shape=(100,100)))
myworld.mainloop()

We have one last change to make, and that is to the schedule. We begin with the schedule of World07,
but we append to it the data logging we want to do for each iteration. With that adjustment, we are done
with the eighth template model. We set up and run the simulation as before.

Template Models 9, 10, and 11: Randomization, Hierarchy, and
Optimization
In the template models, each agent moves once each iteration. However, we have not specified the order in
which agents they move. Neglecting this has different implications on different platforms. For example, the
most commonly used iterable collection in NetLogo is the “agent set”. Iteration over a NetLogo agent set
retrieves agents in random order. (For example, when we ask a NetLogo agent set to take an action, the
individual agents are asked in random order to take this action.) In contrast, the basic iterable collection of
gridworld is a Python list, which is not randomized. However, gridworld provides separate askrandomly
and ask functions, allowing us to explicitly state whether or not we want to shuffle our agents before making
our method calls. This has some advantages: shuffling the agents is a computational expense, which we
should incur on an as needed basis.

In the first eight template models, the one place order might matter is when we ask agents to move.
(Since occupation is unique, when one agent moves to a cell, the next agent cannot move to that cell.)
Randomizing the order in which agents move can help us avoid artifacts, such as unintended first mover
advantages. The ninth template model specifies that agents move in random order. We make no changes to
the original specification.
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Specification: Template Model 9

Setup, Model Parameters, Iteration, Data Display, and Stopping Condition
• unchanged from model 8 (but with a new supplementary detail)

Supplementary Detail
• each iteration, the order in which agents move is randomized

After the eighth template model, implementation is of the ninth is trivial: in our schedule we simply
change ask(self.agents, ’move’) to askrandomly(self.agents, ’move’). So we will not repeat the
code here. Instead we will focus on our implementation of the tenth template model, which requires a
slightly larger change.

The tenth template model drops randomization of agent moves in favor of hierarchical priority: “bigger”
agents get to move before “smaller” agents. (This will matter when we get to our next template model.)
On a biological interpretation, this hierarchy might suggest an advantage of physical size. On a economic
interpretation, the hierarchy might suggest an advantage of the wealthiest individuals when choosing from
the available economic opportunities.

Specification: Template Model 10

Setup, Model Parameters, Iteration, Data Display, and Stopping Condition
• unchanged from model 8 (but with new supplementary detail)

Supplementary Detail
• the order in which agents move is determined by their size attributes: bigger agents move

before smaller agents

Sorting is fairly simple on most ABM platforms. (Most use the built-in sorting facilities of their imple-
mentation languages.) Some require the user to implement a boolean comparison, and others want a sort
key (i.e., a function whose values determine the sort order). For example, NetLogo’s sort-by command
requires a user implemented boolean comparison, while Python’s sorted function takes a sort key.

""" Template Model 10: Hierarchy """

from gridworld import ask, Torus
from template08 import World08

class World10(World08):
def sortkey10(self, agent):

return agent.size
def schedule(self):

ask(self.patches, 'produce') #from model 3
#version 10: agents move in size order
agents = sorted(self.agents, key=self.sortkey10, reverse=True)
ask(agents, 'move') #from model 1
ask(agents, 'grow') #from model 3
self.log2logfile() #from model 8
if max(agent.size for agent in agents) >= 100: #from model 7

self.stop()
self.exit()

if __name__ == '__main__':
myworld = World10(grid=Torus(shape=(100,100)))
myworld.mainloop()

Implementation is of the tenth template model is a very small modification of the eighth: we just need
to sort agents by size before they move. World10 therefore extends World08 by adding a new method, our
sort key sortkey10. This takes an agent as its argument and returns the agent’s size. We also override
schedule in order to sort agents before they move. (The rest of the schedule should be familiar after our
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work on the previous template models.) Python’s built-in sorted function handles the sorting for us, once
we specify our sort key. (Note that by default sorting is lowest to highest, so we set the reverse keyword
argument to True.) With out World10 definition in place, we set up and run the simulation as usual.

Template Model 11: Optimization
Recall that we defined a choose location method for Agent01, which we did not subsequently override.
Location choice has remained random. Such agents have very limited agency. In the eleventh template
model, we add interest to our agents by adding optimization to their movement.

We remove a couple ambiguities in the original specification. Substantively, we make it clear that the
hierarchical movement of model 10 still applies. As a minor matter, we resolve “ties” in a specific way: an
agent’s choice among multiple best cells is random. Of course, since each cell’s supply is a random floating
point number, the probability that tie resolution will be required is very low. (However, during the initial
iterations of later models, ties will be much more likely.)

Specification: Template Model 11

Setup, Model Parameters, Iteration, Data Display, and Stopping Condition
• unchanged from model 10 (but with new supplementary detail)

Supplementary Detail
• agent movement is no longer random

– an agent explores cell its neighborhood and moves to the cell that has the largest supply
– an agent’s neighborhood is still a Moore neighborhood of radius 4, but now the agent’s

current cell is included
– in case of a tie, the agent moves to a random choice of the best cells

We will reuse our Cell05 class, renaming it to Cell11. We will essentially reuse our World10 class:
World11 just overrides setup to use our new Agent11. The only substantial changes are to our agent
class. Agent11 has two new methods: the new sortkey11 method, which provides a key for sorting cells
by their supply, and an overridden choose location method, which picks the best location in the agent’s
neighborhood.

""" Template Model 11: Optimization """

import random
from gridworld import Torus
from template05 import Agent05, Cell05 as Cell11
from template10 import World10

class Agent11(Agent05):
def sortkey11(self, cell):

return cell.supply
def choose_location(self):

hood = self.neighborhood('moore', 4)
MyType = self.__class__
hood4move = [ cell for cell in hood if not cell.get_agents(MyType) ]
hood4move.append(self.patch_here())
random.shuffle(hood4move)
best_cell = max(hood4move, key=self.sortkey11)
return best_cell.position

class World11(World10):
def setup(self):

mypatches = self.create_patches(PatchType=Cell11)
myagents = self.create_agents(Agent11, number=self.n_agents)
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if __name__ == '__main__':
myworld = World11(grid=Torus(shape=(100,100)))
myworld.mainloop()

We focus on this choose location method. An Agent11 must choose the unoccupied neighboring cell
with the greatest supply. So first we retrieve a list of all the cells in a Moore neighborhood of radius four.
Then we filter out the occupied patches. (The expression cell.get agents(AgentType) returns a list of
the agents of type AgentType on cell, which has a boolean value of False if the list is empty.) We want the
agent to consider its own cell as well, so we retrieve it with the agent’s patch here method (inherited from
gridworld.Agent and append it to the list. Then we shuffle the list as a way to ensure that any “ties” will
be resolved randomly. The best cell is the one with the greatest supply. We can use Python’s built-in max
function to do the maximization, as long as we supply an appropriate key (sortkey11) on which to base the
comparison. Having discovered the best patch, choose location returns its position. This is our agent’s
choice of the best location for its move.

Template Models 12 and 13: Entry, Exit, and Time-Series Plots
In some agent-based models, agents remain in the model during the entire simulation. Other models require
that agents exit or enter the simulation as it runs. For example, “bugs” in a biological model may exit
through death and enter via birth, or “firms” in an economic model may exit through bankruptcy and enter
as new start ups. The twelfth template model illustrates this common need of agent-based simulations:
existing agents have a fixed probability of exit, and new agents enter when existing agents “split”.

We make two changes to the original specification. We addresses a potential first mover advantage to the
split action by specifying that agents split in random order. We also remove some ambiguities by clarifying
that new agents will not immediately exit and by specifying that an agent makes its attempts to split and
then dies (implying that its position remains occupied during the split action).

Specification: Template Model 12

Setup and Data Display
• unchanged from model 11 (with new supplementary detail)

Model Parameters
• as in model 11, plus
• probability of agent exit (suggested default: 0.05)

Iteration
• as in model 11, then
• each “big” agent splits
• each “smaller” agent exits with a fixed probability

Supplementary Detail
• split: each agent of size > 10.0 makes five attempts to produce a new agent, and then exits

– agents take the split action in random order
– to produce a new agent requires finding an unoccupied location in a randomly searched

Moore neighborhood of radius 3, where no more than 5 cells may be searched for each
attempt to produce a new agent
∗ when an unoccupied cell is found, it becomes the position of a new agent, and search

terminates
∗ if all five cells are occupied, search terminates, and the attempt to bring a new agent

into the world fails
– each new agent has initial size of 0.0

• exit: each “smaller” agent (except the new entrants) exits the simulation with fixed probability
– the probability of agent exit is a model parameter

Stopping Condition:
• the number of agents reaches 0, or the number of iterations exceeds 1000
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We approach the twelfth template model by very slightly extending World11 to implement our new
schedule and by extending Agent11 to handle the split action and to accommodate a chance of exit. This
leads to the following design.

Agent12 extends Agent11
• New Methods: split, propagate, chance

World12 extends World11
• New Data: agent_exit_probability
• Overridden Methods: schedule, setup

World12 is a very small extension of World11. As usual, we modify the setup method so that it creates
agents and cells of from most recent classes. We also add a new class variable, agent exit probability, for
our new model parameter.26 Finally, we must append two agent actions (split and chance) to the World11
schedule, along with our new stopping condition.27

""" Template Model 12: Entry and Exit """

import random
from gridworld import ask, askrandomly, Torus
from template11 import Agent11, Cell11 as Cell12, World11

class Agent12(Agent11):
def split(self):

if self.size > 10:
self.propagate()
self.die()

def propagate(self):
SplitClass = self.__class__ #splits share agent class
hood4split = self.neighborhood('moore', radius=3)
cells4split = list()
for i in range(5): #5 attempts

for cell in random.sample(hood4split,5): #5 tries per attempt
if cell not in cells4split and not cell.get_agents(SplitClass):

cells4split.append(cell)
break

splitlocs = list(cell.position for cell in cells4split)
splits = self.world.create_agents(SplitClass, locations=splitlocs)
for agent in splits:

agent.size = 0.0
return splits

def chance(self):
if self.is_alive:

if random.uniform(0,1) < self.world.agent_exit_probability:
self.die()

class World12(World11):
agent_exit_probability = 0.05
def schedule(self):

World11.schedule(self)
agents = askrandomly(self.agents, 'split')
ask(agents, 'chance')
if (self.iteration==1000) or (len(self.agents)==0):

print self.iteration, len(self.agents)
self.stop()

def setup(self):
mypatches = self.create_patches(PatchType=Cell12)
myagents = self.create_agents(Agent12, number=self.n_agents)
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if __name__ == '__main__':
myworld = World12(grid=Torus(shape=(100,100)))
myworld.mainloop()

Turning to Agent12, consider the new chance method. Each agent has an is alive attribute which
is set to False if the agent’s dies method is called. (“Dying” is a model specific concept, which might
represent physical death, failure of a firm, or even retirement of a worker.) The chance method draws from
a standard uniform distribution and compares the draw to the agent exit probability model parameter.
A small draw removes a “living” agent from the simulation; by default this happens five per cent of the time.

The real work of the twelfth template model is in the split action, where “bigger” agents propagate
themselves and then die. Our very simple split method handles this by delegating propagation to a
propagate method, which is where the real work takes place. Here we begin by specifying that successors
(or “splits”) will share the agent’s type. Following the specification, we consider a Moore neighborhood
of radius 3 as possible locations for these successors. We create an empty list to hold the cells that can
accept successors — i.e., unoccupied neighboring cells. An agent gets five attempts to split (i.e., produce
a successor), but for each potential successor the agent must find an empty cell within five tries. Each try
is a random choice from the neighborhood. To implement this, we use the sample function of the random
module to retrieve five random cells, which we check sequentially until we either find an empty cell or run
out of options. This approach yields a list of empty cells, one for each successful split. We determine the
position of each of these cells, and create the new agents at those locations. All that is left to do is to set
the size of each new agent to zero, according to the specification.

Railsback et al. (2006) note that the twelfth template model is substantially more complex than the
preceding models. They found themselves forced to resort to “clumsy and complex methods” on most
platforms. The exception, once again, was NetLogo, and even so their NetLogo reference implementation is
nearly 300 lines of code. Additionally, the closed-source nature of NetLogo proved problematic. While adding
and removing agents during a simulation is very simple in NetLogo, they found the documentation inadequate
to determine whether an agent will execute its actions in the same iteration that it was created.28 Our Python
implementation of the twelfth template model relies completely on open source code, is not “clumsy”, and
avoids disheartening complexity (despite a nested loop that in turn nests a conditional branch).

Template Model 13: Time-Series Plot
The time-series behavior of the state of a simulation model is often interesting and informative. For example,
starting with template model 12, we may wish to examine how the number of agents changes over time. The
thirteenth template model requires the production of a time-series plot of the number of agents. The focus
is visual data analysis: such plots can help us to understand the evolution of the simulation.

Specification: Template Model 13

Setup, Iteration, and Model Parameters
• as in model 12

Data Display
• as in model 12, plus
• produce a time-series plot that displays the evolution of a model statistic over time

Supplementary Detail
• the plot should display the number of agents “alive” at each iteration
• update frequency for the plot is not specified, but the update frequency should be high enough to

be informative about the evolution of this distribution
Display Suggestions

• display the plot in the GUI, and update it as the simulation runs

As a minor relaxation of the specification, we do not require that the plot be displayed in a GUI. This
removes an implicit requirement that plot generation be synchronous with the model run and demotes GUI
presentation of the plot to a display suggestion. Our reasons are unchanged from those given for model 6.
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With that background, let us add a time-series plot to our GUI. NetLogo again epitomizes ease of use
for very basic plots: to add a plot of the number of turtles to the NetLogo display, just place plot count
turtles in a procedure that will be called each iteration.29 The gridworld approach is similar and very
flexible: use the add plot method of our world (as inherited from GridWorldGUI), which needs as arguments
a title for the graph and a function that will be recomputed each iteration. This function must provide a
single data point for the plot.

""" Template Model 13: Time-Series Plot """

from gridworld import Torus
from template12 import Agent12 as Agent13, World12

class World13(World12):
def initialize(self):

World12.initialize(self)
def number_living():

return len(self.get_agents(Agent13))
self.add_plot('Number of Agents', number_living)

if __name__ == '__main__':
myworld = World13(grid=Torus(shape=(100,100)))
myworld.mainloop()

To implement the thirteenth template model, we make no changes to Agent12, which we rename as
Agent13. Our World13 is just a World12 with two items appended to its initialization: the addition of a
time series plot (using addplot), and the definition of the function number living. This function, which
we provide as an argument to addplot, simply returns the number (len) of agents in the simulation at the
time it is called. This completes the thirteenth template model.

Template Model 14: Randomized Initializations
One of the great strengths of agent-based modeling is that we have no need for a representative agent.
Randomization can be a natural way to introduce initial heterogeneity. The object of the fourteenth template
model is to illustrate the randomization of agent initialization. Each initial agent draws an initial size from
a normal distribution, with mean and standard deviation that are user settable. The specification then
requires that size be truncated at a minimum of zero.

Specification: Template Model 14

Model Parameters
• as in model 13, plus
• mean of distribution of sizes of initial agents (default: 0.1)
• standard deviation of distribution of sizes of initial agents (default: 0.03)

World, Setup, Iteration and Stopping Condition
• as in model 13, plus
• the initial agents are initialized with a random size

– size is based on a draw from a normal distribution
– mean and standard deviation of this distribution are model parameters
– if the size draw is less than 0.0, it is set to 0.0

Display Suggestions
• as in model 13, plus
• allow GUI setting of the new model parameters
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We make one substantive clarification of the original specification, which said only that a check is intro-
duced to limit size to a minimum of zero. This could mean that negative draws are set to zero or alternatively
that negative draws are discarded in favor of a new draw (i.e., a truncated normal distribution). We remove
this ambiguity by adopting the first interpretation as the simplest reading of the original specification.30 Our
only other change is the usual demotion of GUI parameter setting to a display suggestion.

Our agent type and world type will be largely identical to those in template model 13. Word14 has
two new parameters, which we name agent size mean and agent size sd. As usual, we introduce these
parameters as class variables, which are initialized with the specified default values. World14 reuses the
initialize method of World13 and then appends two sliders corresponding to the new parameters. (We
discussed the add slider method in the fifth template model.)

""" Template Model 14: Randomized Initializations """

import random
from gridworld import Torus
from template13 import Agent13, World13

class Agent14(Agent13):
def initialize(self):

Agent13.initialize(self)
mean = self.world.agent_size_mean
sd = self.world.agent_size_sd
size_drawn = random.normalvariate(mean, sd)
self.size = max(0.0, size_drawn)

class World14(World13):
agent_size_mean = 0.1
agent_size_sd = 0.03
def initialize(self):

World13.initialize(self)
self.add_slider('Init. Size Mean', 'agent_size_mean', 0.0, 1.0, 0.1)
self.add_slider('Init. Size SD', 'agent_size_sd', 0.0, 0.1, 0.01)

if __name__ == '__main__':
myworld = World14(grid=Torus(shape=(100,100)))
myworld.mainloop()

Most ABM platforms provide a fairly extensive collection of distributions for (pseudo) random number
generation. The random module of the Python standard library provides a variety of distributions including
the normal. We use the normalvariate function to initialize our first collection of agents.

Agent14 overrides only the initialize method of Agent13. We keep all of the Agent13 initializations,
and we then set the agent’s size randomly. An agent retrieves the mean (agent size mean) and standard
deviation (agent size sd) from its world, draws from a normal distribution with these parameters, and
then sets its size to the maximum of this draw or 0. Once we have defined our new world and agent classes,
we are ready to create a World14 instance and enter its main loop as usual.

Template Model 15: Data-Based Model Initialization
The fifteenth template model makes no fundamental changes in the characterization of agents or cells.
However it requires that cell production rates be based on a data file. The data in this file provides a
production rate at each location, and the shape of the grid must be determined by the listed locations.

Making the model set-up depend on data read from a file is the core change in the model, but the
specification includes a few additional changes: agents must choose randomly among their best possible
moves, agents are located on a bounded rectangular grid (instead of a torus), cell production is no longer
random, and cells should change color to reflect their supply. While these are fairly minor changes, including
them all does lengthen the specification of the fifteenth template model.
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Specification: Template Model 15

World
• a rectangular grid of possible agent locations

Setup
• read in a given file of cell data
• determine the grid shape based on the cell data
• create a rectangular grid (not a torus) based on the shape implied by the cell data (see below)
• create a patch for each grid location
• set a production rate for each patch based on the cell data
• create agents as in model 14

Model Parameters, Iteration, and Stopping Condition
• as in model 14 (but with new supplementary detail)

Supplementary Detail
• cell data file (from http://condor.depaul.edu/~slytinen/abm/):

– the unzipped file format is plain text
– the first three lines are header information (to be discarded)
– each additional line provides three space-delimited numbers: an integer x coordinate, an

integer y coordinate, and a floating point production rate.
• Moore neighborhood: on a rectangular grid (instead of a torus) our neighborhood definition

must change: locations off the grid are now unavailable (instead of wrapping)
• movement: an agent randomly resolves “ties” for best cell
• production: each iteration a cell produces the amount specified by the file of cell data (i.e.,

production is no longer random)
Display Suggestions

• as in model 14, plus
• display cells in the GUI
• base a cell’s color on its supply
• a cell is green when supply is 0.5 or higher and shades to black as supply goes to 0

Other Suggestions
• if the platform does not easily allow dynamic setting of the grid size, preset the grid size using

the grid shape implicit in the data file, which is 251 (‘x‘ values of 0 to 250) by 113 (‘y‘ values
from 0 to 112)

We make few changes to the original specification. Most substantively, we remove the implementation
details for random “tie” resolution, as we consider implementation details extraneous to the specification. The
randomization itself is important to avoid movement artifacts (Railsback et al., 2005). Similarly, we do not
require that the change in the grid (from torus to rectangle) be implemented as a change in the move method
of agents, since agents might have direct access to an appropriately constrained neighborhood. Finally, we
add a few details about the cell data file format, and we demote display specifications to suggestions.31

We are ready to propose a design using new world and cell types. Cell15 extends Cell03 by adding
a change color method and overrides initialize to set an initial color. It also overrides the produce
method to make production deterministic. World15 is just World14 with a slightly more complex setup
method, since our set up depends on the cell data we must read from a file.

Cell15
• inherits data and methods from Cell03
• New Methods: change color
• Overridden Methods: initialize, produce

World15
• inherits data and methods from World14
• Overridden Methods: setup
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Note that we need not change the move method of our agent. One reason is that our implementation
of template model 11 already correctly handles tie resolution. The other reason is a convenience of the
gridworld module: an Agent has a neighbors method that queries its world, correctly handling the topology
of that world. (E.g., for a Torus, it returns a list of patches that includes locations that “wrap” on the torus,
while for a RectangularGrid patches beyond the boundary are not returned.) As a result, our agent
description does not change at all.

""" Template Model 15: Data-Based Initialization """

from gridworld import RectangularGrid
from template03 import Cell03
from template14 import Agent14 as Agent15, World14

def read_celldata(filename):
location2value = dict()
maxx, maxy = 0, 0
fh = open(filename,'r')
for _ in range(3):

trash = next(fh) #discard 3 lines
for line in fh:

x, y, prodrate = line.split()
x, y = int(x), int(y)
maxx, maxy = max(x,maxx), max(y,maxy)
prodrate = float(prodrate)
location2value[(x,y)] = prodrate

location2value['shape'] = (maxx+1,maxy+1)
return location2value

class Cell15(Cell03):
def initialize(self):

self.supply = 0.0
self.change_color()

def produce(self):
self.supply += self.max_produce #no longer random
self.change_color()

def change_color(self):
r = b = 0
g = min(2*self.supply, 1.0)
self.set_fillcolor(r, g, b)

class World15(World14):
def setup(self):

celldata = read_celldata('Cell.Data')
shape = celldata.pop('shape')
self.set_grid(RectangularGrid(shape=shape))
patches = self.create_patches(PatchType=Cell15)
for (x,y), prodrate in celldata.items():

patches[x][y].max_produce = prodrate
myagents = self.create_agents(Agent15, number=self.n_agents)

if __name__ == '__main__':
myworld = World15(grid=None)
myworld.mainloop()

We do not gain much in having Cell15 inherit from our previous cell types. We reuse the give method
we implemented for Cell03, but we override the initialize and produce methods. Our new initialize
method simply sets an initial supply of zero, as before, but then changes the cell’s color to match its supply.
Our new produce method deterministically (instead of randomly) augments the cell’s supply and then
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changes the cell’s color to match its new supply. (Note that max produce now denotes this deterministic
production level.) The new change color method is used to set the cell’s color to a shade of green, as
specified. Once again we set the colors via the default RGB color model, which we discussed during the
specification of the second template model.

World15 is identical to World14 except for the new setup method. As part of setup, we read the cell
data from file using the helper function read celldata.32 This reads each line of the cell data file, discarding
the first three and collecting the data from the others. It returns a Python dictionary mapping locations to
production rates. It also computes the implicit shape of the grid but keeping track of the maximum values
for each coordinate. We set our world’s grid to a RectangularGrid (no longer a Torus), with dimensions
based on the discovered shape. We then create our patches and set max produce for each patch based on
the data. As the final step in our setup, we create our agents. At this point we are read to create our world
and enter its main loop, as usual.

Template Model 16: Interacting Agents of Different Types
The core programming goal of the sixteenth template model is to introduce a new agent type that can
interact with our previous agent type. This interaction changes the state of one or more cells and the state
of the agents. To lend concreteness, we will say our agents are hunters and prey.

Specification: Template Model 16

Model Parameters, World, and Setup
• as in model 15, plus
• create 200 randomly distributed “hunters”

Iteration (sequential)
• as in model 15, then
• each hunter hunts

Stopping Condition
• as in model 15

Supplementary Detail
• a cell may contain a hunter and a prey
• hunting: hunters randomly search for prey and “kill” the first found

– search randomly samples (without replacement) a Moore neighborhood of radius 1, center
included

– if another hunter is found in a cell, search terminates, and the hunter and remains at its
current location.

– if another hunter is not found in a cell, but a prey is found, search terminates, and the
hunter moves to the cell and “kills” the prey

– if no neighboring cell contains another hunter or a prey, the hunter moves randomly to an
unoccupied cell

– prey are removed from the simulation as soon as they are “killed”
Display Suggestions

• as in model 15, plus
• hunters are colored yellow with the classic (arrowhead) shape

Our changes to the original specification are primarily an effort to reduce ambiguity. Kahn (2007) points
out an important ambiguity in the original specification: does search terminate whenever a hunter is encoun-
tered during cell search, or only if a prey is encountered and there is already a hunter in its cell? We follow the
reference implementations and adopt the first interpretation.33 Also, the original specification simply refers
to the “immediately neighboring cells” of a hunter, but we specify that this is a Moore neighborhood of radius
1. This is the apparent intent of the original wording, and it matches the NetLogo reference implementation.
A substantive clarification is that we specify that search terminates if another hunter is found during the
search.34 As a very minor change, we remove the implementation detail that random search be implemented
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with a shuffled list and replace it with the underlying requirement that sampling from the neighborhood be
done without replacement. Finally, we remove the pointless requirement that prey be created before hunters,
we add a display suggestion for the color and shape of the hunters.

Our implementation reuses Agent15, now renamed as Prey. Our World16 overrides the schedule and
setup methods of World15 and make no other changes. And we introduce a Hunter class that extends our
basic Agent class with a new hunt method.

""" Template Model 16: Interacting Agents of Different Types """

import random
from gridworld import Agent, ask, askrandomly, Torus
from template15 import Agent15 as Prey, Cell15 as Cell16, World15

class Hunter(Agent):
def initialize(self):

self.fillcolor('yellow')
self.shapesize(0.75,0.75)

def hunt(self):
hunthood = self.neighborhood('moore', radius=1, keepcenter=True)
random.shuffle(hunthood)
change_position = True
for patch in hunthood:

hunters = patch.get_agents(AgentType=Hunter)
prey = patch.get_agents(AgentType=Prey)
if hunters and not self in hunters:

change_position = False
break

elif prey:
prey.pop().die()
self.position = patch.position
change_position = False
break

if change_position:
newcell = random.choice(hunthood)
self.position = newcell.position

class World16(World15):
def schedule(self):

ask(self.patches, 'produce')
prey = self.get_agents(AgentType=Prey)
prey = sorted(prey, key=self.sortkey10, reverse=True)
ask(prey, 'move')
ask(prey, 'grow')
askrandomly(prey, 'split')
ask(prey, 'chance')
hunters = self.get_agents(Hunter) #model 16
askrandomly(hunters, 'hunt') #model 16
self.log2logfile()

def setup(self):
World15.setup(self)
hunter_locations = self.get_random_locations(200)
hunters = self.create_agents(Hunter, locations=hunter_locations)

if __name__ == '__main__':
myworld = World16(grid=None)
myworld.mainloop()

Our new Hunter class overrides the initialize method of Agent simply to set a color and size. The
real work is in the new hunt method. A hunter starts by retrieving a neighborhood for hunting. This
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is shuffled. The hunter begins searching with the variable change position set to True: we will negate
this upon encountering another hunter or upon moving to the position of a discovered prey. The hunter
sequentially considers each patch in the shuffled neighborhood, retrieving a list of hunters and a list of prey
from that patch. Each list might be empty. If the hunters list contains another hunter, search terminates
and the hunter does not change position. Otherwise, if the prey list contains a prey, search terminates and
the hunter moves to that position and “kills” the prey. If no hunters are encountered and no prey found in
the entire neighborhood, the hunter moves to a random cell in the neighborhood.

Figure 1: Figure 1: Template Model 16, GUI Display

Our new World16 class retains all the initializations and parameters of World15. It also reuses the setup
method, but appends the creation of 200 hunters at random locations. The real change is in the schedule,
although that too is largely familiar. We still have patches produce and agents (prey) move, grow, split, and
(possibly) exit. Only the next two statements are truly new: we need to retrieve a list of hunters and ask
them to hunt. Since there can be a first mover advantage in hunting, the hunters hunt in random order. We
create our world and run the simulation as in model 15. Figure 1 captures the state of the GUI during a
model run that keeps the default parameter values.

Conclusion
The template models discussed by Railsback et al. (2006) have proven useful to instructors and researchers
for ABM platform introduction and comparison. So have the reference implementations of (Railsback et al.,
2005). However they contain some ambiguities, weaknesses, and errors. Rather than propose a new set
of template models, we attempt to refine the existing set, and we provide a new, supporting reference
implementation.

Reference implementations are important for removing remaining ambiguities in the specification and for
providing concrete illustrations of implementation strategies. We present readable reference implementations
that can serve these purposes. Our reference implementations retain the original emphasis on being “simple
and intuitive” rather than clever or fast. However we also address issues of design, flexibility, and ease of use
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that are relevant to instructors and researchers choosing an agent-based modeling platform. Specifically, we
explore some of the costs and advantages of taking an object-oriented approach to the template models. We
provisionally conclude that the primary cost is a slight front-loading of the skill set needed to begin modeling
and that the (somewhat language specific) benefits can include reusability, maintainability, compactness,
clarity, and readability.

Railsback et al. (2005) conveniently provide reference implementations for a variety of platforms. In
comparison, the Python implementations introduced by this paper are more compact, readable, and correct.
They therefore provide a useful code resource for those who wish to utilize the template model specifications.
Additionally, they add to the literature on the choice of ABM platforms. Our reference implementations show
how a general purpose programming language such as Python can be readily exploited as a very powerful
and yet easy to use ABM platform.

References
Downey, A. B. (2009). Python for Software Design: How to Think Like a Computer Scientist. Cambridge,

UK: Cambridge University Press.

Hunt, A. and D. Thomas (1999). The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley
Professional.

Isaac, A. G. (2008, June). Simulating evolutionary games: A python-based introduction. Journal of Artificial
Societies and Social Simulation 11 (3), paper 8. http://jasss.soc.surrey.ac.uk/11/3/8.html.

Izquierdo, L. R. (2007). Netlogo 4.0 quck guide. http://luis.izqui.org/resources/
NetLogo-4-0-QuickGuide.pdf.

Kahn, K. (2007). Comparing multi-agent models composed from micro-behaviours. In J. Rouchier, C. Cioffi-
Revilla, G. Polhill, and K. Takadama (Eds.), M2M 2007: Third International Model-to-Model Workshop,
pp. 165–177.

Kuhlman, D. (2008, August). Python 101 - introduction to python. http://www.rexx.com/~dkuhlman/
python_101/python_101.html.

Langton, C. (1996). Simplebug swarm tutorial. Technical report, Santa Fe Institute. As updated by the
Swarm Development Team. http://ftp.swarm.org/pub/swarm/apps/objc/sdg/.

Railsback, S., S. Lytinen, and V. Grimm (2005, December). Stupidmodel and extensions: A template and
teaching tool for agent-based modeling platforms. Technical report, Swarm Development Group.

Railsback, S. F., S. L. Lytinen, and S. K. Jackson (2005). Stupidmodel implementation source code. http:
//condor.depaul.edu/%7Eslytinen/abm/StupidModel/.

Railsback, S. F., S. L. Lytinen, and S. K. Jackson (2006, September). Agent-based simulation platforms:
Review and development recommendations. Simulation 82 (9), 609–623.

Robertson, D. A. (2005, December). Agent-based modeling toolkits netlogo, repast, and swarm. Academy
of Management Learning and Education 4 (4), 525.

Terna, P. (2009). Imaginary or actual artificial worlds using a new tool in the abm perspective. Working
paper, University of Torino, Department of Economics and Public Finance, University of Torino, Torino,
Italy. As presented at theOrganized Sessions of the NYC Computational Economics and Complexity Work-
shop of the Eastern Economic Association Meetings, 2009. http://andromeda.rutgers.edu/%7Ejmbarr/
EEA2009/terna.doc.

Tobias, R. and C. Hofmann (2004). Evaluation of free java-libraries for social-scientific agent based simula-
tion. Journal of Artificial Societies and Social Simulation 7 (1), Article 6. http://jasss.soc.surrey.
ac.uk/7/1/6.html.

32

http://condor.depaul.edu/~slytinen/abm/
http://jasss.soc.surrey.ac.uk/11/3/8.html
http://luis.izqui.org/resources/NetLogo-4-0-QuickGuide.pdf
http://luis.izqui.org/resources/NetLogo-4-0-QuickGuide.pdf
http://www.rexx.com/~dkuhlman/python_101/python_101.html
http://www.rexx.com/~dkuhlman/python_101/python_101.html
http://ftp.swarm.org/pub/swarm/apps/objc/sdg/
http://condor.depaul.edu/%7Eslytinen/abm/StupidModel/
http://condor.depaul.edu/%7Eslytinen/abm/StupidModel/
http://andromeda.rutgers.edu/%7Ejmbarr/EEA2009/terna.doc
http://andromeda.rutgers.edu/%7Ejmbarr/EEA2009/terna.doc
http://jasss.soc.surrey.ac.uk/7/1/6.html
http://jasss.soc.surrey.ac.uk/7/1/6.html


Vaingast, S. (2009). Beginning Python Visualization: Crafting Visual Transformation Scripts. Books for
Professionals by Professionals. New York, NY: Apress. ISBN: 978-1430218432.

van Rossum, G. (2003, May). Python main() functions. All Things Pythonic: A Weblog by Guido van van
Rossum. http://www.artima.com/weblogs/viewpost.jsp?thread=4829.

Zelle, J. M. (2003). Python Programming: An Introduction to Computer Science. Franklin Beedle and
Associates. ISBN 978-1887902991.

Notes
1 We therefore assume readers have read an introduction to Python. See Kuhlman (2008) for a quick introduction, Isaac

(2008) for a narrower but more applied introduction, or Zelle (2003) for a textbook introduction. We also refer to some basic
NetLogo, which is quickly introduced in (Izquierdo, 2007). Note that we use the term ‘function’ to refer to callable subroutines
of any type, even when a specific platform may adopt a different terminology.

2 The original specification says that if an occupied location is selected, “then another new location is chosen”. However, for
the reference implementations, the phrase “another new location” was evidentally interpreted as “a new random draw from the
entire neighborhood” rather than “a new (i.e., different) random draw from the neighborhood”, so we are more explicit.

3 To start entirely from scratch, we could implement basic agents, patches, and worlds as Python classes. We could also
implement a visual display environment using the Tkinter graphical user interface (GUI) toolkit, which is part of the Python
standard library. Even though Tkinter is extremely simple to use, presenting a GUI toolkit is an unnecessary burden for the
present paper. Those interested in examining such an approach should look at Swampy (Downey, 2009). We should also
mention SLAPP, a recent Python implementation of the Swarm protocol (Terna, 2009). (The standard reference for the Swarm
protocol has become (Langton, 1996).)

4 The gridworld module is at http://econpy.googlecode.com/svn/trunk/abm/gridworld/gridworld.py. The agents pro-
vided by the gridworld module are based on the Turtle class of the turtle module, which is part of the Python standard
library. Like NetLogo, but unlike most other ABM platforms, Python provides a basic agent class (in its turtle module) along
with automatic visual display of the agent instances. It depends (for graphs only) on Matplotlib, a popular free and open
source Python graphics library. Matplotlib in turn depends on NumPy, a popular free and open source scientific computing
library. These libraries are very simple to install on common platforms and are widely used in scientific computing. It is worth
noting that the turtle module implements separate classes to isolate the movement and positioning methods from the drawing
methods, making it easy to implement agent-based models without visual displays. Since the template models emphasize visual
display, we will not explore this further. However, readers may wish to examine the excellent online turtle.py documentation,
especially the documentation of the motion methods.

6 An overview of function definition can be found in the Python tutorial: http://docs.python.org/tutorial/controlflow.
html#defining-functions

6 We call the shape method to set the shape, the shapesize method to set the size of this shape, and the fillcolor method
to set the fill-color of our agent. If we were working directly with a turtle.Turtle, we would also want to which ensures that
an instance begins life with its pen up (so that it is not drawing as it moves) and its speed set to 0 (i.e., to “jump”, so that it
is moving at maximum speed). However a gridworld.Agent handles these initializations for us.

7 For an introduction to class definition, see the tutorial discussion: http://docs.python.org/tutorial/classes.html#
a-first-look-at-classes

8 See http://ccl.northwestern.edu/netlogo/docs/dictionary.html#breed. Note that a NetLogo turtle can change breeds.
(So a breed is essentially an instance attribute of a NetLogo turtle.)

9 Note that no argument is passed. If myagent is an instance of Agent01, then myagent.move() and Agent01.move(myagent)
mean the same thing. This means that the first parameter of a method definition is special: when the method is called on an
instance, the first argument is automatically provided, and it is the instance itself. The first parameter name is (conventionally)
called self for this reason. This sometimes feels a little peculiar to programmers coming from other languages, but most Python
programmers come to feel that it is an excellent, explicit design choice. Python uses self roughly like *this in C++ or the
this reference in Java and C#, except that it is never implicit.

10 For an extended discussion of this strategy, see (van Rossum, 2003).
11 Inexplicably, the Netlogo reference implementations delay adding these color changes until template model 3.
12 When appropriate, we would like to honor the DRY principle (“don’t repeat yourself”), which provides an important rule

for the production of maintainable code. A good discussion of the DRY principle can be found in (Hunt and Thomas, 1999).
Note that NetLogo does not offer convenient mechanisms for class definition and reuse, although recent versions allow some
reuse through file inclusion.

13 Improved compactness of the code base may be achievable in NetLogo 4.1 by using the experimental includes keyword.
(For example, procedure definitions can be grouped together for inclusion.)

14 Even when relatively easy to confirm, as with the gridworld module, the information is fundamentally irrelevant to the
user. Railsback et al. (2006) discuss how their specified design was picked as “easiest” for the MASON, Repast, and Swarm
implementations, again confirming that it is just an implementation detail. Note that neither of the deleted requirements would
make much sense to a user of the NetLogo platform. NetLogo users do not worry about creating a grid space, since Netlogo
automatically creates patches, and users can simply apply the turtles-here command to a patch (or turtle) without worrying
how this is implemented.
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15 The NetLogo reference implementation does not use the turtles-here command nor even the patch-here command. It
relies instead on a convenient but very implicit NetLogo feature: a procedure call on a turtle that uses data attributes owned
by patches will access, and alter, that turtle’s patch’s values.

17 As a result, there is no separate NetLogo reference implementation for the fourth template model.
17 One may also include any keyword arguments appropriate to a Tkinter label widget, which gives substantial control over

the appearance of the click-monitor display. By default, monitors are updated each iteration, but click monitors always display
the value obtained at the last click.

18 Here we define get sizes in the body of our initialize method, taking advantage of Python’s support of closure, but we
could alternatively have added a new get sizes method to World06.

19 Kahn (2007) notes that the Netlogo reference implementation erroneously stops at a size of 1000. This affects nothing of
substance in this template model.

20 In the present context, we can imagine two interpretations of possible clean up: resetting the model in order to begin a
new simulation run, or housekeeping prior and subsequent termination of the process running the simulation. The NetLogo
reference implementation addresses neither of these. The first interpretation conflicts with the instruction to close the graphics
windows. The second should be otiose with any modern operating system. For example, memory used by the simulation should
be released back to the operating system when the process running the simulation terminates.

21 Note that the stop method of a GridWorldGUI simply sets that world’s stop attribute to True, and this attribute is tested
each iteration by the run method. One implication is that we can call stop anywhere in the schedule, and the schedule will still
be completely before the the model run terminates. (If stopping with only partial execution of the schedule is desired, we can
of course add a return statement to our conditional branch.)

22 We also suggest opening, appending to, and closing the file each iteration, so that a model crash does is less likely to cause
data loss. A minor change is that we make it clearer that the minimal amount of information to be written each iteration is
the minimum, mean, and maximum size. More information can be written at the user’s discretion. For example, the NetLogo
reference implementation also writes currentTime, which is simply the iteration number, and also writes a header at the top of
the file.

23 A difficulty for new users will be learning to distinguish between file-write, file-type, and file-print.
24 This is the best match to the reference implementations. However it is worth noting that the Python standard library

includes the csv module, which makes it particularly simple to write CSV files. In this paper we do not introduce the csv
module, but interested readers should consider the csv.DictWriter class.

25 Use of describe is for purposes of illustration: we are logging only the minimum, mean, and maximum agent size, which
we could readily compute with Python’s built-in functions as min(sizes), sum(sizes)/len(sizes), and max(sizes). This is
essentially the approach of the NetLogo reference implementation, although NetLogo also provides mean as a built-in command.

27 The original specification parameterized survival probability, which is the complement of our exit probability. Note that
we have already addressed setting parameters in the GUI, so in parallel with the NetLogo reference implementation, we will
not do that here.

27 We do not need to worry about the model 7 stopping condition, as model 12 agents never reach the size cutoff for
that to apply. Therefore for presentational simplicity, we can just ignore it. Although the NetLogo reference implementation
inexplicably uses a different stopping codition, but we do not alter the specification to match that.

28 The NetLogo 4 user manual now clarifies this: only agents in the agent set at the time the ask command executes will run
the commands.

29 The default behavior of a NetLogo plot is to continually add points, which make the plots uninformative during long
simulation runs. The time-series plot provided by gridworld provides a window on the most recent iterations, which is arguably
more informative.

30 Unfortunately, the NetLogo reference implementation of the fourteenth template model does provide guidance as it does
not conform to the original specification. The initial agents are given size 1.0 instead of a random size, new agents are given a
random size instead of a size of 0.0, and the random size is not truncated at 0.0.

31 Kahn (2007) notes a couple problems with the Netlogo reference implementation of the fifteenth template model. Of some
importance, the Netlogo implementation neglects to drop the random determination of the production rate. A minor problem is
that patch coloring in the Netlogo implementation does not follow the display suggestion. We note in addition that the Netlogo
implementation does not set the grid size based on its reading the file of cell data.

32 Note that Python can simply iterate over the distributed .zip file, but we stick the the apparent presumption in the
specification that the compressed text file will be unzipped before use. We name the decompressed file Cell.Data.

34 As Kahn notes this has some odd implications. (Adjacent hunters will remain stationary until prey comes within range.)
Experimenting with alternatives to this specification will be a natural extension of the sixteenth template model.

34 For example, the NetLogo reference implementation first asks if there are hunters on a cell, and then asks if there are prey.
Since hunting stops if a hunter is found (there is no identity testing), in that implementation, a hunter will never find a prey
on its own cell. However the NetLogo implementation also errs in not including that cell in the list of neighbors, so a hunter
will never search its own cell in any case.
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