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Part II:
An Open-Source 
Environment with C++

The previous part of the handbook was a high-level look at C++ and

how to architect a verification system by using layers. Now we focus on

a specific implementation of such a system. 

This part of the handbook introduces two open-source libraries, called

Teal and Truss, that together implement a verification environment that

uses C++. The authors and others have used these libraries at several

companies to verify real projects. 

The libraries are free and open source because the authors feel strongly

that this is the only way to unite and move the industry forward. Locking

up people’s “infrastructure” is not the way to encourage innovation and

standardization—both of which are needed if the verification industry is

to improve.

Consequently, you’ll find no simulator-company bias in these libraries.

These libraries work on all major simulators.

In this part we discuss the following:

� Teal, a C++-to-HDL interface that enables C++ for verification

� Truss, a layered verification framework that defines roles and 
responsibilities
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� How to use Teal and Truss to build a verification system

� A first example, showing how all the parts we talk about fit 
together
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Coming together is  a beginning. Keeping 
together is  progress. Working together is  
success.

Henry Ford

Building a verification system is a daunting task, but build we must.

That is why we use the technique of layering, to break the problem down.

By starting with the lowest layer—that is, the one that directly drives and

senses the wires—we can start to get some real work done. Still, because

C++ is not what most hardware engineers use for their HDL, we’ll need

an interface layer to connect the HDL with C++. Teal is just such an

interface. Teal tries to be as unobtrusive as possible, using terms borrowed

from the HDL domain, such as posedge and reg.

This chapter introduces Teal and shows how to use it. We’ll talk a bit

about the main parts of Teal—for example, how you can (fairly seam-

lessly) get and set values in the HDL, and how you can pause execution

until HDL signals change.
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Overview

Teal is a C++ class library for functional verification. Teal is tiny,

consisting of only a handful of source files, yet it provides the necessary

minimum features for verification. (A version of Teal is on the companion

CD.)

Teal, like Vera, SystemVerilog, and “e,” provides the illusion that the

verification system is in control of the chip. In Teal, you write a

verification_top() function, and create tests, generators, checkers,

drivers, and monitors. Each of these objects can appear to be running

independently of the chip, with each in its own thread of execution. Of

course, in reality these threads only execute in response to a chip wire

or register change. However, by driving wires and registers, the threads

do, in some sense, control the chip.

Teal is unobtrusive; it does not get in the way of your C or C++ structure.

You don’t put Teal calls everywhere you want to sample or drive a signal,

so Teal is also unobtrusive in the HDL code.

The authors realize that many companies have developed their own

version of an HDL-to-C/C++ interconnect. We encourage those compa-

nies to contact us and share their experiences, so Teal can be made better.

This is one of the reasons why Teal is open source.

What Teal provides

Teal enables functional verification by providing connections to HDL

signals and allowing actions based on changes in the HDL simulation.

It encourages the development of independent generators, checkers,

drivers, and monitors by providing management for user-created threads

that execute concurrently with the HDL simulation. Teal provides repeat-

ability and constrained random-number generation, as well as a simple

interface to pass in runtime arguments, either through the code or com-

mand line, or through “scenario” text files. Teal also provides flexible

message printing. 

This functionality provides the basis for functional verification, but it

serves as only a small part of a verification project. You must still write

code that stimulates the design, checks the output, and controls the
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randomness. That is the real work of a verification project. (The next

chapter talks about an open-source verification environment.)

Teal’s similarity to HDLs

Although Teal does make use of classes and inheritance in C++, your

algorithms for driving and sensing the wires can look close to what a

hardware engineer is used to.

As an example, suppose you had a signal, located at top.chip.address,

in your simulation and you wanted to get the value of it at the positive

edge of a clock. The Teal code would look this:

teal::vreg clock("top.clock");

teal::vreg address("top.chip.address");

teal::vout log("logger id");

at(posedge(clock));

log << "The current address is "<< address" << endm;

Don’t worry if this example is not clear. We’ll walk through each of these

Teal classes later. The point is that the at(posedge(clock)) should be

recognizable to Verilog coders. In addition, the address variable can be

used as a regular C++ integral variable.

A tiny but complete example

This chapter delves into the details about all of Teal’s classes, but let’s

look at a basic example of what a complete C++ example using Teal

looks like. It should not be hard to understand the code presented here,

assuming the reader has some familiarity with C++ (or C) and a general

knowledge of Verilog (or VHDL). 

In this example our chip implements a black-box function. Given a

reference clock, it samples a stimulus on the positive edge of the clock

and generates a response on the negative edge. To make things interesting,

let’s assume there is a three-clock latency from the stimulus to the

response.
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Here’s how Teal might be used to drive the stimulus and get the response: 

#include "teal.h"

using namespace teal;

#include <deque>

void verification_top(){

const int latency = 3;

const int number_of_iterations = 10;

teal::vreg system_clock("testbench.reference_clock");

std::deque<integer> stimulus_sent;

vreg stimulus("testbench.stimulus");

vreg response("testbench.response"); 

for (int i = 1; i <= number_of_iterations; i++) {

//drive the stimulus to the chip and remember it

at (posedge(system_clock));

integer stimulus_int; RAND_UINT32(stimulus_int);

stimulus = stimulus_int; //drive value to the chip

//save value sent

stimulus_sent.push_back(stimulus_int); 

//Read from HDL register "response" and print result

at (negedge(system_clock));

if (i >= latency) {

//Note! 'response' in line below reads from HDL

cout << "For stimulus " << stimulus_sent.front() 

<< " the chip produced " << response << endl;

stimulus_sent.pop_front();

}

} 

//need to collect last responses

for (int i(0); i < latency; ++i) {

cout << "For stimulus " << stimulus_sent.front() 

 << " the chip produced " << response << endl;

stimulus_sent.pop_front();

}

}

It should be noted that the above example puts all code in the

verification_top() function. However, this is not recommended for
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real projects, where a lot more structure is needed (as will be shown

throughout this handbook). The point here is that if you use Teal, you

won’t end up with code that is hard to understand. Teal is straightforward.

In this example we randomized a stimulus input and applied it to the

chip, then just printed the response. In a more realistic test, you would

have a model of the chip and compare the results to that model.
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Teal’s Main Components

It is important to decide on a “common currency” when designing a class

library. The rest of this chapter describes the common currency of the

Teal system—that is, the fundamental building blocks of Teal-based

verification.1 

The following is a summary of the most important classes and namespaces

of Teal; more detail is given in the following sections.

� The reg class—This is one of the most basic classes in Teal. Its 
main purpose is to provide arbitrary-length, four-state (1, 0, X, Z) 
“registers” with corresponding operations. The reg class is useful 
for performing algorithms in the precision of the hardware. It also 
provides register-slicing operations.

� The vreg class—This is probably the most commonly used class 
in Teal, as it connects C++ code to the HDL. The vreg class 
provides mechanisms to connect wires and registers in the HDL 
simulation so they can be used in C++ code as though they are 
built-in C++ variables. The vreg class is inherited from the reg 
class.

� The vout class—This Teal class is used for logging, to help trace 
what happens during a simulation. Modeled after the standard 
C++ cout object, the vout class provides the ability to report, for 
example, debug, error, and other informative messages in a 
consistent format that is coordinated with HDL outputs.

� The vlog class—This class is a global resource that coordinates 
all the logging from your C++ code. It receives all vout messages 

1. This is not a complete reference manual, but rather an overview of the capa-
bilities of Teal. 
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from the simulation and implements a filter chain, so you can add 
useful features such as replicating output to a file and removing 
messages or parts of messages.

� The memory namespace—This namespace provides an abstract 
interface for reading and writing memory. Internally, a group of 
memory banks are used to handle memory read and write 
requests, providing great flexibility. 

� The vrandom class—Because using random numbers for test 
values is a staple of modern verification, this class is Teal’s stable 
random-number generator. Though small, it provides thread-
aware, independent streams of stable random numbers that can be 
guided by a single master seed. Of course, the numbers all have 
their own seed as well.

� The dictionary namespace—This namespace is a global service 
that abstracts how to set parameters in your test. It provides 
functionality to get and retrieve parameters from code, the 
command line, or external “scenario” files.

� The run_thread() function—This function forks off a thread. 
You’ll use this whenever you have a function, such as a generator 
or monitor, that needs to operate independently of the test. This 
function provides a base capability for building transactors, 
drivers, checkers, and so on. 

� The at() function—This function allows a thread to pause until 
any of the HDL signals has changed. You provide a sensitivity list 
of vreg objects, with modifiers such as posedge, negedge, or 
change. Used with the run_thread() function, it allows several 
independent tasks to run simultaneously.

All of these classes are described in the following sections, along with

the small requirements that Teal puts on the HDL testbench (Teal needs

to be initialized from the HDL testbench), and a discussion of how to

create the “user-code entry point” function called verification_top().
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Using Teal

It’s time to dive into some details regarding how Teal can be used for

functional verification. This walk-through of Teal makes it easier to

understand the “real world” examples presented in subsequent chapters,

while illustrating how Teal can be used in your environment.

Initialization

Let’s start at the beginning. For Teal to be used, it must be initialized

from the HDL. This is done through an HDL function call that launches

Teal. When Teal starts up, it initializes itself, then calls a user-provided

function called verification_top(). 

Verilog is the HDL of choice in this handbook. Because Teal was devel-

oped to work with Verilog, many of Teal’s syntax and naming conventions

mimic those of Verilog.2 

Teal uses the Programming Language Interface (PLI 1.0 or 2.0) to connect

C++ code to HDL simulators. To this end, you must put a PLI call

somewhere in the HDL code to start Teal. This call is normally put in an

initial block at the top-level testbench, but it can be put anywhere and

called at any simulation time. The call is called $teal_top; and other

than a call for “back-door” memory access, it’s the only required HDL

call for Teal.

Your Verilog testbench should include the following:

module testbench;

...

initial

$teal_top;

...

endmodule;

That’s all there is to it. Teal will now start and run your test.

2. Unfortunately, while a Teal for VHDL is in the works, it wasn’t finished in 
time for publication. Contact the authors at www.trusster.com if you are inter-
ested.
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Your C++ test

When the simulation begins, the call to $teal_top causes Teal to start

the threading system and thereafter call a user-defined function called

verification_top(). The verification_top() could be as simple

as the following:

#include "teal.h"

void verification_top()

{

teal::vout log("first code");

log_ << "Hello Verification World" << teal::endm;

}

The verification_top() must be defined by the user, or Teal won’t

link. It normally instantiates other classes and calls their methods. (Sub-

sequent chapters will show example of this.)

Registers

Teal’s reg class implements a four-state logic, as well as all commonly

supported HDL operations while making sure that X’s and Z’s propagate

correctly. The class supports addition, subtraction, shifting, boolean

operations, and comparisons. As in any HDL, bit fields (or subranges)

are supported, and they can be on either side of the equal sign. (This will

be described in more detail in the next section.)

The vreg class builds on the reg class and adds the connection to an

HDL simulation. All events that happen to a wire/reg in either the C++

or HDL simulation get reflected on both sides. The vreg is one of the

most used classes in Teal, as it serves as the connection point between

HDL and C++.

Creating registers

Creating either a reg or vreg is easy. However, here is one of few places

where the two classes differ. When you create a vreg, you supply the

string HDL path to the corresponding HDL register, port, or wire you

want the variable to reflect. Teal then automatically links together the

C++ variable and the HDL signal, and also figures out the correct bit

length for the C++ class. 
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When you create a reg object you don’t supply a Verilog path, as there

is no connection to an HDL. There are several ways to create a reg. The

default is just like in Verilog, a one-bit variable. You can also give the

reg an initial value, in which case the register is 64 bits wide. If you

need a specific bit width, you can specify that after the initial value.

Here is an example of how you would construct a vreg and a reg:

vreg chip_register("testbench.chip.data");

reg cpp_register(0x7FFFFFFFFFFF,47);

The first line connects the variable chip_register to the HDL signal

located inside the chip instance of the testbench. The second line creates

a 47-bit register array and assigns it an initial value.

Working with a reg or vreg

Teal registers are written to act like built-in types as much as possible.

This makes working with them easy, and they support assignment to and

from most other built-in types; for example, assigning the value of an

int to a vreg and vice versa would look like this:

int drive_value(0x52571);

vreg v_signal("testbench.chip.signal");

// Assign a value to HDL signal

v_signal = drive_value; 

//...

// Sample an HDL signal, assign it to a_sampled_value

int a_sampled_value = v_signal.to_int(); 

The assignment above would work for reg’s as well.

In functional verification it is common to access individual fields in a

register, whether the contents are individual bits or strings of bits. Teal

provides the capability to access both, as the following example shows:

uint32 x; RAND32(x); //Assign a random value to x

reg a_reg(x,32);

reg a_field = a_reg(32,25); //bit 32..25 to a_field

cout << a_field;
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Registers have a number of logical and mathematical functions as well.

These functions help define the correct four-state behavior for operations,

and make the registers similar to C++’s built-in types. 

The following is an example of some of the supported register operations:

vreg addr(path + ".address");

addr += 2;

addr = addr >> 2;

addr = addr << 4;

if (addr > 0x64)...

if (addr != 0x1)...

Teal does something a little differently when comparing two registers.

Because reg is a four-state variable, Teal implements the operator==()

as the Verilog triple equal in HDLs. That is, Teal looks at both the 0/1

value and the X/Z value when comparing two registers.
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Logging Output

Because a lot of debugging is done by reading simulation log files, in

order to see a progression it is important to organize simulations well.

In other words, to enable postprocessing, error counting, messages, and

possibly filtering, it is important to have a consistent message format.

Fortunately, the logging facility in the Teal classes encourages such

uniformity. Teal comes with a standardized, customizable logging mech-

anism, called vout, which mimics C++’s standard streaming mechanism. 

Teal uses a two-level logging scheme, as shown in the following figure.

In any code that needs to print information, a vout object is created. As

many vout objects as needed can be created—which is good, because

each vout object can have a relevant instance name. 

Each vout object “under the covers” calls a global service vlog object.

This is done so that there is a single point of control where reordering,

demotion, changing, or deletion of parts of any message can be done.3

3.  Although describing this capability completely is beyond the scope of this 
handbook, subsequent chapters show several examples.
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Because vout is modeled after the standard C++ library stream

std::cout object, vout directly supports the output of the standard

types. However, by following a few simple guidelines, you can print

complex objects as conveniently as the standard types. 

To end a message, just call the Teal endm function. To describe a multiline

message, just use endl (like cout) where needed and use a final endm

at the end.

When you create a vout, you give it a string that represents the functional

area it is in. You can then build any number of message statements. For

example, note the following:

#include "teal.h"

using namespace teal;

void verification_top() {

vout log("a test");

log << teal_info << "val" << hex << 207218 << endm;

}

This example prints the following (assuming a thread of tx, a file of

uart.cpp, a line number of 313, and a simulation time of 77 ns):

[77 ns] [tx] [a test] [uart.cpp] [313] val 64'h32972

Teal displays the file and line number in the source code that originated

the message. This is useful when the same message comes from several

different places in the code. (Of course, this information can be sup-

pressed.)

pci_bfm

uart_checker verification_top

i2c_stimulus

vlog

vout vout

vout

vout

Vout and Vlog Objects in Teal



C h a p t e r  5 :  Te a l  B a s i c s

78 z z z z z z z Hardware Verif ication with C++

Note that when you finish a message statement (by using endm), the vout

instance adds the simulation time, the current thread name, and the

functional area to the message, then sends the message to the vlog global

service. It does not send the message as a text string, which would not

allow the efficient modification of the message; rather, it sends the

message as a set of pairs of IDs and strings. This allows you to instruct

the vlog instance to modify messages with respect to their components—

for example, to demote errors to a warning, or stop all output from a file

or a functional area.

The vout class also supports decimal, hexadecimal, and binary output.

You select the type of output by placing either a hex or dec or bin in

the message statement. The reg class also looks at the setting when the

reg is converted to a string.

However, you often do not need to use the global filtering mechanisms

of vlog. Instead, you can turn off the display of parts of a message

directly, at the vout instance. This is described in the Teal reference

manual (available on the accompanying CD).

Most verification systems have several levels, or types, of messages.

Teal, being no exception, uses the following general categories:

� teal_info— Used for standard messages.   

� teal_debug(<level>—Used when a test wants to display a little 
more diagnostic information. This is a level-sensitive output; the 
vout class has level-setting methods and accepts a level for debug 
messages. The message is displayed only if the level of the 
message is less than or equal to the level that is set.

� teal_error—The error type is used when the chip’s expected 
behavior is different from the expected. 

� teal_fatal—This more-severe error type ends the simulation 
after displaying the message. 

Examples of the above are provided in later examples.
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Using Test Parameters

It is often important in functional verification to provide test parameters.

These are frequently used, among other things, as constraints for random

tests. For, example, a single test case may have several different sets of

constraints, each of which covers a selected range of parameters or directs

the test into interesting corner cases.

Because such parameters are commonly used, Teal provides a standard,

flexible way of working with them. Test parameters can be defined by

means of text files, code, or command line entries. Teal handles simple

integer and string parameters as well as complex parameters.

The functionality of Teal’s parameters is defined in the dictionary

namespace. Teal maintains a list of parameter names and values, so that

a test, for example, can query the dictionary and recover the value. 

When you call the dictionary::read(std::string) function, Teal

reads a text file, takes the first word on each line as the parameter name,

and saves the rest of the line as data for that parameter. A special keyword,

#include, is used to open other files from within files. If a parameter is

repeated, the last definition is saved. 

In addition to using files, you can also use code to add parameters. When

you do this, you have the option of replacing an entry or not.

Parameters can also be entered on the command line. In this case, they

override any parameter set by a file or the code. In this way, a parameter

can have a default value but still be overridden by a script.

As an example, let’s suppose we are testing a UART interface. We have

a default parameter file that sets up default constraints, and then each

specific test overrides a few values as well as defines its own parameters.

The default parameter file could look like this:

//in default_parameters.txt:

force_parity_error 0

dma_enable 1

baud_rate 115200 921600

A specific parity-error test case could use the default parameter file and

override the force_parity_error setting like this:
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//in parity_error_test_parameters.txt:

stop_error_probability_range 32.81962 75.330

#include default_test_parameters.txt

force_parity_error 1

The #include default_test_parameters.txt line above tells the

dictionary to open the default_test_parameters.txt file. The

force_parity_error 1 repeats the force_parity_error parameter

and overrides the default value. 

It is not always appropriate to use files to pass parameters. Using files

can be good if you need to have many different test parameters and a few

basic tests. However, it can be clumsy to make sure the files stay with

the respective test code. Therefore, the examples later in this handbook

use the code mechanism. Nevertheless, including such files, or even

passing parameters on the command line, can be done after most of the

test is written, without having to modify the test itself.

So how do we pick up the parameters? The following is a complete basic

example of how these parameters could be retrieved:

#include "teal.h"

using namspace teal;

void verification_top() {

// reads file shown above

dictionary::read ("default_parameters.txt"); 

vout log ("first_parameter_example");

log << teal_info << "force_parity_error is " <<

dictionary::find ("force_parity_error") << endm;

}

Because most parameters are not strings, Teal provides a templated

function, find(), to convert parameters to the correct variable format.

The find function always returns a string—either an empty string ("")

if the parameter is not found, or the actual string associated with the

parameters. This function relies on the operator>> to be defined for the

variable class used. The operator>> is defined for all built-in types

(such as int, char, long, double, and so on). For your classes, you can

define your own operator>> and then use Teal’s find().

If defining an operator>>() is not appropriate for your class, or if you

don’t have a class but instead have a collection of built-in types, you can

use std::istringstream. This allows the code to create a stream from
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a string, from which you can then extract the chars, ints, doubles, and

so on, as needed.

For example, to read the stop_error_probability_range (from the

example above), you would use the following:

#include "teal.h"

using namespace teal;

void verification_top(){

dictionary::open("parity_error_test_parameters.txt");

//reads "32.81962 75.330" from stop_error parameter 
into ss

std::istringstream ss( 
dictionary::find("stop_error"));

double stop_error_min (0);

double stop_error_max (0);

ss >> stop_error_min >> stop_error_max;

vout log("showing double double reads");

log << "Stop error range is "<< stop_error_min <<;

 " to " << stop_error_max << endm;

}

The example above works for all integral built-in types.
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Accessing Memory

For most verification projects it is important to be able to access memory.

Sometimes you want to do this in zero simulation time. Allowing “back-

door” accesses of memory improves simulation performance, allows the

monitoring of memory for automatic checking, and makes it possible to

insert errors into memory for test purposes. Teal provides such a “back-

door” mechanism but also, of course, supports “front-door” access, which

can map some memory address ranges to a transactor-based model. 

Teal defines each accessible memory (transactor model or memory array)

as a memory_bank object. A memory_bank object can be accessed directly

through member functions called to_memory() and from_memory(),

but each memory can also be associated with an address range, through
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the add_map() function. In this way, memory can be accessed through

addressing by means of read() and write() functions. 

Working with address ranges has many advantages, because it creates

code that is easier to understand and is closer to production software.

The read() and write() functions can even be redefined in production

software to become simple integer pointers, as is often appropriate.

When writing a memory transactor, you must define your own

memory_bank object, but when working with HDL memories, put a

$teal_memory_note() in the HDL. Teal uses this call to make a

memory_bank object for you.

The following example shows how HDL memory arrays can be associated

with an address range and accessed. An example of how to write memory

transactors is in the UART example chapter.

A memory note example

The following diagram shows a small part of a larger testbench structure.

This environment verifies a graphics chip that saves graphical texture

information in its memory cache. In order to speed up simulation, back-

door loading of the texture into the chips memory is used. 

To support direct memory access you need three things. First you need

the Teal PLI function $teal_memory_note(), which is called for each

memory_1

memory_2

memory_3

memory_cache

hdl

GPU

memory_bank

c++

read() write()map()

Your verification code

memory_bank

memory_bank

Memory bank lookup

Memory Bank Objects
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memory register array to be accessed. This registers the array with Teal

and creates a memory object for that memory. Then you need to deffine

an address range for each memory instance to be used, allowing Teal to

translate from an address to a specific memory. Finally, once the address

range is established, you access that memory through read() and

write() functions. 

To do this in the environment pictured above, an initial line block is

added to the memory model (that is, the model is, instantiated as memory1,

memory2, and memory3, above). So part of the memory model looks like

this:

reg[31:0] memory_bank_1[1024:0]; //Actual memory array

//to register memory_bank_1 with Teal.

initial $teal_memory_note(memory_bank_1); 

reg[31:0] memory_bank_2[1024:0]; 

initial $teal_memory_note(memory_bank_2); 

reg[31:0] memory_bank_3[1024:0]; 

initial $teal_memory_note(memory_bank_3); 

As can be seen in the illustration, the memory model gets instantiated

t h r e e  t i m e s  a s  memory1 ,  memory2 ,  a n d  memory3 .  I n  t h e

verification_top() function, the three memories get address ranges

declared like this:

memory::add_map ("testbench.dut.memory_unit.memory_1", 

 0x100, 0x200);

// The following assums the subpath memory_2 is unique

memory::add_map ("memory_2", 0x201, 0x400); 

memory::add_map ("memory_3", 0x401, 0x600);

Now any test can access these memory spaces through simple read and

write function calls. Furthermore, neither reading nor writing memory

consumes any simulation time. A simple memory access would look like

this:

memory::write(0x10a, 22); //i.e 0xa in memory_1 = 22

if (memory::read(0x10a) != 22) {

vlog("memory_example_1") << teal_error 

<< "At memory_1[0xa] got " 

<< memory::read(0x10a) << " expected 22."

}
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Note that while the memory is written and read at 0x10A, the actual

memory is accessed at 0x0A. This is because of the add_map() that we

performed. This allows the rest of the verification system to read and

write memory as specified in the chip’s memory map. Teal takes care of

finding the correct memory bank to access, and then removing the

mapping offset.
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Constrained Random Numbers

It is important to have a stable, repeatable, seeded random-number

generator. Teal’s vrandom class provides independent streams of random

numbers that can be initialized from a string or file. There are also

convenient macros for the most common random calls, such as getting

a random integer value or getting a value from within a range.

The rest of this section describes the required initialization of the random

generator and some simple examples. 

Required initialization

Before using any random numbers you must initialize the random-number

generator. This is done by calling the init_with_seed() function and

passing it a 64 bit-seed value. It is recommended that higher-level code

keep track of this seed value and pass it to the random-number generator.

To initialize the random seed generator you would call the following:

uint64 master_seed; 

...

// master seed gets initilized by higher layer

vrandom::init_with_seed(master_seed);

After the random-number generator is initialized, it is ready to be used.

The examples in this handbook use the dictionary to get the master seed. 

Using random numbers

Because integers are so commonly used here, Teal provides a couple of

macros to deal with integers. After you have initialized the random-
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number generator you can call these macros directly. The most often

used macros are RAND_32 and RANDOM_RANGE, which generate a 32-bit

random value and a 32-bit value within a range, respectively. 

Here are some examples:

#include "teal.h"

using namespace teal;

void verification_top() {

uint32 a_rand32; RAND_32(a_rand32)

uint32 a_random_range; 

RAND_RANGE(a_random_range, 0, 0x030837);

vout log (" random number test");

log << "a_rand32 is " << a_rand32 << endm; 

log << "a_random_range is " << a_random_range << endm;

}

When you want to create more-elaborate random numbers, you need to

work with the vrandom class directly. The vrandom class is a simple

class that you can draw numbers from after it is created. This gives you

more direct control over the generation of random numbers. The base

vrandom class provides a uniform distribution, but you can create your

own classes to have segmented, logarithmic, or other distributions. 

You would create an object for your inherited class and draw a number

like this:

vrandom a_random("some string", some_integer);

uint32 a_random_value = a_random.draw();

The macros use the ANSI standard __FILE__ and __LINE__ for the string

and the integer. These parameters are hashed with the master seed and

are used to initialize this particular random-number generator. You may

want to pass in your own values. (For more details, see the reference

manual available on the CD.)
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Working with Simulation Events and Concurrency

Chips are massively parallel, which means they have many interfaces

working at once. So when we test them, we need parallelism in testing

as well. Teal provides the ability to start a thread and, if you want, wait

for it to complete.

Why does Teal provide this capability when there are already several

packages, both operating-system specific and in public domain? Most of

the current simulators will “core dump” if any thread runs after control

returns to the HDL simulator. Teal’s threads ensure that this does not

happen. It is this capability that provides the illusion that the C/C++ code

is in control of the simulation.

However, having many threads of execution is no good if we cannot pause

for some change in an HDL signal or to wait for another verification

thread. Fortunately, Teal provides this capability. As soon as you have

threads, you’ll need a mechanism for exchanging events between threads.

Teal calls this mechanism a semaphore.

Let’s back up a bit and talk about running a thread. The Teal function

run_thread() allows you to call a c-function in a new thread of execu-

tion. This is exactly how Teal starts your verification_top() function.

The next chapter shows how the run_thread() function can be made

more “object oriented,” but the base mechanism is a c-function. This

allows you to decide how object-oriented you want your threads. 

It is possible that you may have several verification_top() types of

functions and want to use that style for starting threads. To wait for a

thread to finish, the thread_join() function is used. How does Teal

know which function to wait on? The run_thread() function returns a

thread_id, which is passed to the thread_join() function.

Once you have started a thread, you’ll probably set some wires in the

chip and then wait for some response. To wait for a wire change, use the

at() function, which is intended to model the @(sensitivity list)

statement in Verilog. This function operates on a sensitivity list of vreg

signals, and the signals are matched on the posedge, negedge, or any

change. 
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Take, for example, a statement such as the following:

at(posedge (clk) || change (reset_n)); 

This statement would pause the current thread until either the clk signal

changed to a one or any change occurred in the reset_n signal. Execution

would then continue. 

As you build layers above this low-level wire layer, the threads them-

selves need to communicate. Teal’s uses its signal and wait class, sema-

phore, to accomplish this. As with threads, the reason Teal provides

these capabilities is to prevent a “core dump” in the simulator.

To communicate among threads, two threads need to share a semaphore

instance. Then one thread (or any number of threads) pauses by means

of a semaphore::wait() call. Another thread eventually gets some data

or reaches some condition and issues a semaphore::signal(). That

call unblocks the waiting thread. Because you cannot know the order of

the thread’s execution, a wait() may occur after the signal has occurred.

The decision regarding whether a thread should honor this previous signal

is up to you. If you want to wait for signals that occur only at the current

simulation time or later, use the wait_now() method.

There is one last point to make about threads. Sometimes you want to

make sure that only one thread is using a piece of code at a time. This is

common in a BFM that is accessed directly (as opposed to when a

queueing mechanism is used). In this case, the BFMs send, read, or write

methods must use a mutex class. A mutex is a mechanism that ensures

only one thread uses some shared resource at a time (as will be described

in the OOP part of this handbook).
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Summary

This chapter introduced an open-source C++-to-HDL interface, called

Teal. We talked a bit about how Teal starts up and is connected to your

testbench.

Teal’s register class was covered, along with its inherited class vreg.

These two common-currency classes are the backbone of the interface

to the HDL.

Logging is a very important capability of a verification system. Teal’s

vout class and the global service class vlog provide a uniform, yet very

flexible, logging capability.

Almost all tests need to have control parameters set by code or files.

Teal’s dictionary provides a global service for managing parameters.

The memory namespace of Teal can be used for both register access and

internal chip memory accesses. If reads and writes are extracted from

the actual underlying mechanism, different transactors can be used.

Random numbers are essential in verification systems. Teal provides a

stable, independent random-number generator.

We ended the chapter with a look at concurrency and Teal’s at() function.

We looked at the semaphore class and the mutex class for coordinating

different threads.
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For Further Reading

� The Teal User’s Manual, available at www.trusster.com, describes 
Teal in far more depth than this chapter does.

� For connecting the C++ code to the chip, a great handbook is 
Principles of Verilog PLI, by Swapnajit Mitra. 

� A standard reference manual on PLI/VPI is The Verilog PLI 
Handbook: A Tutorial and Reference Manual on the Verilog 
Programming Language Interface, by Stuart Sutherland.

http://www.trusster.com
http://www.trusster.com
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� The pthreads package, officially IEEE POSIX 1003.1c-1995, 
describes most of the capabilities that a multithreaded system 
needs. 
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Truss: A Standard 
Verification Framework
C H A P T E R  6

Truss, and verify. 

Anon.

Have you ever watched a building being constructed? Early in the

project, when the frame of the building is just a skeleton, it’s not clear

what the finished building will look like. However, as construction

continues, from the windows down to the cubicles that are our workplaces,

the intent of the framework becomes clear. In fact, a large part of the

building’s presence depends on the fundamental structure.

This same basic process occurs when we build a verification system.

Early in the project, the application framework is built. The result of

years of best practices from both the verification and software fields,

Truss is an application framework for verification. It is an implementa-

tion, and therefore makes some decisions about how things should be

structured. With verification as with construction, the framework sets

the tone for the system.
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Truss is a layered architecture, so you can choose how to implement the

layers. Although it makes very minimal assumptions, Truss does provide

some base classes and conventions as a guide.
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Overview

This chapter presents three main topics:

� The roles and responsibilities of the various major Truss 
components

� How these components work together

� How you adapt this framework for your verification system

This chapter builds on the two previous chapters of the handbook. It

implements an open-source verification infrastructure based on the dis-

cussion in the Layered Approach chapter. It also uses the Teal library

described in the last chapter as a connection between C++ and the

simulation.

Teal provides the fundamental elements of a verification system and

supports a wide array of methodologies. Truss, on the other hand, pro-

vides the infrastructure layers above Teal, adding a set of classes, tem-

plates, idioms, and conventions to facilitate the construction of an

adaptable verification system.

One of the tricks in building a reasonable system is to find the key

algorithm. The rest of the algorithms can usually fit around that key

algorithm. For example, in a video editing program the key algorithm is

all about getting the pace of the edits right. When you watch a movie,

that happy, sad, or scared feeling you get comes from how well-timed

and precise the changes in scene are.1 The authors, having developed

software for video editing systems, know that in this domain the key

algorithm is implemented by adjusting the edit points of a few seconds

of video while the video is constantly looping around those edits. This

is not a trivial thing to do, because multiple streams of video and audio,

1. Okay, emotions also come from the music, but everything works together.
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possibly with software algorithms to implement effects, are changing as

the user is adjusting the edit points.

In the verification domain, the key algorithm is the sequencing of the

various components of the system. The authors refer to this as “the

dance,” as there are usually a few interacting components involved. As

we talked about in the Layered Approach chapter, the top-level dance

takes place between the test, the testbench, and the watchdog timer. Truss

implements this dance in the verification_top() function—but Truss

does not stop there. The authors believe that this dance is the key

algori thm in several  layers  of  the system, so we created a

verification_component abstract base class. Also, we created

test_component and irritator base classes to be the “top” at the

interface and feature layers of the system. Recognizing and reusing the

dance is a significant part of Truss.

This chapter explains the major components of Truss, providing code

examples where appropriate. Subsequent chapters provide more-detailed

examples.
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General Considerations

The authors have worked on several different implementations of veri-

fication systems before Truss was available. While at a high level veri-

fication systems can be described uniformly, the language used to build

them has a lot to do with how a specific framework is constructed. 

Using a language other than C++

It is possible to build an OOP-based verification framework in languages

other than C++, but no other verification language on the market has the

OOP capabilities of C++. For example, when a language that does not

support operator overloading is used, the generic operator==() or copy

constructor cannot be used. To provide this basic required functionality,

a common generic base must then be used. Unfortunately, this warps the

framework and produces a fragile architecture—mostly because of the

unsafe type casting. As another example, with a language that has a
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compilation library (such as current HDLs), there is usually a failure to

make a distinction between interface and implementation. This leads to

a more-complicated framework, as test writers must separate the interface

from the implementation manually and repeatedly. C++ avoids these

problems.

Keeping it simple

A stated goal with both Teal and Truss is to avoid unnecessarily compli-

cated code. C++ has many powerful features, but many times they are

not appropriate. It is easy to get distracted with C++ techniques and

forget that the real goal is keeping the whole team productive. 

For example, implementing a generic interface for a verification com-

ponent, such as a transactor, as a template can be tricky. Sometimes using

the template can be more complicated than simply replicating code. 

Sometimes only a convention should be used. An example of this is the

generator concept. One could define an abstract base class, yet the

common methods come down to just start(), stop(), report(), and

a few others. It turns out that this concept of start(), stop(), and so

on is common to a large set of verification tasks, and is represented in

Truss as the abstract base class verification_component. However,

the concrete subclasses are inherited from verification_component

only if they use the bulk of the methods. Any smaller subset uses the

same named methods as a convention instead. 

In this way, the framework is not warped to fit a generic 
class. Even more important, your design is not warped to fit 
the generic class.

Truss implements a specific methodology for functional verification. As

in any endeavor to generalize, the terrain is fraught with peril. Never-

theless, as writing code entails making judgments about what is the

“right” decision, Truss attempts to generalize a style of verification.

Deciding on the right balance between generic and specific is a judgment

call for the team. The idea behind Truss is to foster a a small, usable,

and adaptable methodology for beginners through experts. As such, Truss
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provides an example of the techniques presented in Part III of this

handbook.
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Major Classes and Their Roles

Truss is an implementation of the layers talked about in the Layered

Approach chapter. Consequently, there are only a few top-level compo-

nents—the verification top, the testbench, the test, and the watchdog

timer. Each component has a specific role. These components and their

roles have been architected to allow a large amount of flexibility with a

relatively simple interface. These top-level components (and those the

next level down) are shown below:

The top-most C++ component is the verification_top() function,

whose role is to create and sequence the other components through a

standard test algorithm. (The algorithm is explained in detail in the next

section.) In addition, verification_top() initializes all global ser-

vices, such as logging, randomization, and the dictionary. 

Verification Component Hierachy

verification top

test watchdog 
timer

testbench

test 
component irritator

chip

C++
HDL



C h a p t e r  6 :  Tr u s s :  A  S t a n d a r d  Ve r i f i c a t i o n  F r a m e w o r k

96 z z z z z z z Hardware Verif ication with C++

The watchdog timer is a component created by verification_top().

This component’s role is to shut down a simulation after a certain amount

of time has elapsed, to make sure the simulation does not run forever. 

The testbench top-level component is the bridge between the C++ veri-

fication world and the HDL chip world. As such, the testbench’s role is

to isolate the tests (and test writers!) from having to know how C++

transactors, traffic generators, monitors, and so on interact with the chip.

Whether a bus functional model (BFM) writes to registers or forces wires

should not be of concern to the test writer. 

In addition, the testbench holds the configuration objects of the chip.

This is needed by the BFMs, transactors, and similar agents to be able

to configure the chip correctly. There is probably a configuration object

for each interface of the chip. For chips that contain internal functions,

such as dynamic memory allocation (DMA), there may be a configuration

object for each function.

The last, but certainly not the least, top-level component is the test itself,

whose role is to execute a specific functionality of the chip. It does this

by using the testbench-created BFMs, monitors, and generators. The test

is responsible for choosing among the testbench’s many configurations

and capabilities and exercising some subset of the chip’s functionality.

In general, the test contains very little code. This is because any code it

contains may need to be used in other tests as well. To support code that

is more adaptable, a test normally consists of several test components,

as will be discussed later. The exception is for directed tests, in which

case registers may be overwritten, specific traffic patters sent, or specific

corner cases exercised directly in the test component. 

Key test algorithm: The “dance”

The top-level components of the previous section have a complex, yet

necessary, set of interactions. This ensures the maximum flexibility for

a test, while providing a known set of interactions. This is one of the

tricky parts of a verification system. This section discusses this standard

algorithm, which we call the “dance.”

In general, the top-level components are created, randomized, and then

started. Then verification_top() waits for the test and testbench to

be completed. This is called the “polite” path. If the watchdog timer
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decides that a timeout has occurred, the “impolite” path is taken and the

simulation ends. 

The order of these calls can be better visualized on an event diagram, as

shown below. The four columns show the main components. Execution

starts at the top left line, and the arrows represent function calls to the

other components.

The first thing that verification_top() does is build the global logging

objects. These provide logging to a file and shut down the simulation

af ter  a  threshold number  of  errors  have been logged.  (See

truss_vout.h.)

new()

WatchdogTest Testbenchverification_top

randomize()

time_zero_setup()

out_of_reset()

start()

wait_for_completion()

report(“final”)

report(“timeout”)

Create
top
objects

Build and
configure

Main
test
run

Timeout
path

Test
results

The Dance

write_to_hardware()
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Then,  a f te r  the  g loba l  logging  objec ts  have  been  c rea ted ,

verification_top() allocates the top-level objects. The test is given

a pointer to the testbench, so that it can interact with the testbench. It is

also given a pointer to the watchdog timer, in case a part of the test wants

to force a shutdown or override the verification_top() default time-

outs. The watchdog is given a pointer to an object so that it can call the

final report method with a “watchdog timeout” string prefix.

At this point, all the top-level objects are constructed. As part of their

construction they are expected to have established default constraints.

Then verification_top() reads the dictionary file (if it exists). This

is to allow the test constraints file to override any default settings put

there during the construction of the test, the testbench, and their subor-

dinate components. 

After initializing the random-number generator, verification_top()

calls test->randomize(). Once the test is randomized, then 

testbench->randomize() is called.

At this point, it is expected that the test and testbench have built their

respective subcomponents and are ready to run the test. The first step is

the time_zero_setup() method, which is used to force wires and

initialize interfaces prior to bringing the chip out of reset.

As expected, the next step is out_of_reset(), which is used to bring

the chip out of its reset state and set it for initialization through the back-

door or register writes. 

The next step, write_to_hardware(), is where the BFMs are called to

initialize the chip. This can be done by either the test, the testbench, or

a combination of the two. What is appropriate depends on your situation,

as discussed in subsequent sections.

At this point the system is ready for traffic flow. The start() method

directs the testbench and test to start running. The testbench is started

first, to allow monitors and BFMs to start, followed by the watchdog

timer. Finally, the test is told to start(), which generates the actual

traffic.

Next, verification_top() calls wait_for_completion() on the test-

bench. If your design makes the testbench aware of what checkers are in

use, this call waits for the testbench checkers to complete. If not, this

method simply returns.
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Then verification_top() calls the test’s wait_for_completion().

If your design makes the test aware of what checkers are in use, this call

waits for them to complete. (This is the style used in the examples.)

At this point, the test is almost finished. The testbench and test are called

to report their final status.2 

Then verification_top() checks to see if any errors were reported.

If none were reported, the test is considered to have passed. It may seem

weak to accept that the absence of errors is sufficient to consider a test

passing. In practice, however, there is no other choice. At the top level,

one must trust that the lower-level objects do their jobs. Note that this

usually means that in-flight data must be weeded out as the checker

proceeds.

Now if the watchdog timer triggers, a different path is taken. The watch-

dog immediately calls the report method on verification_top(). Note

that the watchdog itself uses an HDL-based timeout, so that if the report

method hangs, the simulation still ends.
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The verification_component Abstract Base Class

While the test and the testbench are completely different classes as far

as their roles and responsibilities are concerned, their interface to

verification_top() is the same. For this reason a common class was

created. This common class, used as a base for both the test and testbench,

is called the verification_component.

The verification_component is an abstract base class. As such, it

provides pure virtual methods for the dance described in the previous

section. In addition, verification_component provides a constant

2. The authors have tried using the destructor as the final report mechanism. In 
practice, however, this becomes a difficult part of the design. This is because 
some destructors try to access deallocated memory or other objects that have 
already been destroyed. It then becomes tricky to “shut down” the simulation 
in the correct order, so as not to cause a crash or hang and still get errors print-
ed out. This is one area where verification is different from software, which 
generally does use destructors as part of the system design.
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name and a logger. The interface for verification_component is shown

below:

namespace truss {

class verification_component {
public: 

verification_component(const std::string& n);

virtual ~verification_component();
virtual void randomize() = 0;

virtual void time_zero_setup() = 0;

typedef enum {cold, warm} reset;
virtual void out_of_reset(reset) = 0;

virtual void write_to_hardware() = 0;

virtual void start() = 0;
virtual void stop() = 0;

virtual void wait_for_completion() = 0; 

virtual void report(const std::string prefix) = 0;
const std::string& name;

protected:

mutable teal::vout log_;
};

};

Although verification_component is a base for the test and the test-

bench, it is also useful as a base for other objects.

Detailed Responsibilities 
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of the Major Components

The previous sections discussed the roles of the major components and

how they were sequenced to run a test scenario. This section dives down

a level, discussing in more detail the specifications of the major compo-

nents. (Because verification_top() was discussed in detail in the

previous section, it is not discussed further here.)
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The testbench class

The testbench class has two main responsibilities. One is to isolate the

test writers from the actual wire interfaces. The other is to provide “one-

stop shopping” for all the generators, checkers, monitors, configuration

objects, and BFMs/drivers in the system. The reason to put all of your

components into a single object is to facilitate the adaptation of compo-

nents into multiple tests. In this way, a test writer can see all of the

possible “building blocks” that are available.

The testbench class can be a passive collection point for all these

components, or it can play an active role in bringing the chip out of reset,

generating traffic, and knowing when the test is done. In theory, only the

global functionality should be handled by the testbench. For example,

the testbench probably should bring the entire chip out of reset, while

the test can bring separate functionality out of reset. In practice, the test

and the testbench share the work.

In general, it is better to let the test or test components control the

simulation. This is because a test or test component can then be adapted

for several different types of tests. 

A more active testbench may, as a counterpoint, simplify a large number

of tests in a way that a test base class cannot, because the testbench has

direct access to all the chip’s wires.

Understand that the more test knowledge a testbench has, the more all

tests must act the same or have control over that testbench’s functions.

This can be good or bad. The specific responsibilities for control and

functionality—test or testbench—are, of course, up to the verification

team. 

As an implementation detail, Truss provides only a testbench_base

class. What verification_top() builds, however, is a testbench

object. You must provide a testbench.h, which declares a testbench

class. You will probably also have a testbench.cpp, which is inherited

from truss::testbench_base.
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Watchdog timer

The watchdog timer component is responsible for providing an “impo-

lite” shutdown if the test has executed for too long. The timer has two

timeout mechanisms: one triggers when the watchdog HDL timer trig-

gers, and the other triggers after the first trigger has occurred.3

The watchdog timer uses the dictionary to get its timeout values, which

are sent to the HDL on time_zero_setup(). The start() method starts

the timers. The HDL watchdog uses an internal timer. If it were to use a

passed-in clock, that clock may inadvertently be shut off.

Once either timer triggers, the watchdog HDL timer is notified and a

second timer is started. If this timer expires, $finish is called. This

might happen, for example, if there is some code in the report that is still

reading registers, but the chip is unable to respond.4

After the watchdog is notified of an HDL timeout, the report() method

in verification_top() is called. This allows the test to report which

checkers have completed and which have not, helping to provide a clue

as to why the simulation ran too long.

Test class

The test class is responsible for selecting, configuring, and running all

the appropriate generators, BFMs, monitors, and checkers. It is also

responsible for selecting the configuration of the chip to be used. 

While you could directly implement the above responsibilities in the test

class, Truss encourages another style. In Truss the test is intended to

consist of a number of independent, smaller components called test

components. These components are the ones that actually do the work;

the test’s role is to create, constrain, configure, and sequence the com-

3. The watchdog timer is simple in theory, but often hard to execute correctly. To 
be sure, it must have a clock and a countdown time, but even this basic level 
can be problematic. Should you use wall clock time, simulation time, or both? 
Should the HDL timer be internal or external? What resolution should it have? 
Should the test be able to extend or communicate the expected time of the run?

4. The authors worked on a project where the final report code read the status reg-
isters to make sure that functional area of the chip did not have any errors. 
However, when we added a power-down test irritator, the read hung the sys-
tem. It took us a while to find the offending code. 
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ponents, as appropriate for the test at hand. The reasoning behind having

multiple independent components is that this is close to the real operation

of the chip, where each feature is expected to operate simultaneously. In

reality, the chip has common resources that must sequence or arbitrate

the use of features. It is in these common resources where the more tricky

bugs lurk.

Using this method, the test’s direct responsibility is to map the features

of the chip (as presented by the testbench’s data members) to a set of

classes inherited from the test_component base class. The test would

then add constraints to adapt the test component to the test at hand, as

in the following example:

class ethernet_basic_packet : public test_base {

public:

ethernet_basic_packet(testbench* tb, watchdog* wd) :

ethernet_data_1(tb->e_generator_1, tb->e_bfm_1, 

tb->e_checker_1),

ethernet_data_2(tb->e_generator_2, tb->e_bfm_2, 

tb->e_checker_2),

pci_express_1(tb->pci_generator_1, tb->pci_bfm_1, 

tb->pci_checker_1) {}

void time_zero_setup(){
ethernet_data_1.time_zero_setup();

ethernet_data_2.time_zero_setup();

pci_express_1.time_zero_setup();

}

void out_of_reset(reset r) {
ethernet_data_1.out_of_reset(r);
ethernet_data_2.out_of_reset(r);
pci_express_1.out_of_reset(r);

}

void write_to_hardware() {
ethernet_data_1.write_to_hardware();
ethernet_data_2.write_to_hardware();
pci_express_1.write_to_hardware();

}

 void start(){
ethernet_data_1.start();
ethernet_data_2.start();
pci_express_1.start();

}
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 void wait_for_completion() { 
ethernet_data_1.wait_for_completion();
ethernet_data_2.wait_for_completion();
pci_express_1.wait_for_completion();

}

 void report(const std::string& prefix) {
ethernet_data_1.report(prefix);
ethernet_data_2.report(prefix);
pci_express_1.report(prefix);

}

private:

ethernet_test_component ethernet_data_1;

ethernet_test_component ethernet_data_2;

pci_irritator pci_express_1;

}

In the above example, the ethernet_basic_packet test uses three test

components, two of which are identical. It connects up the appropriate

testbench objects and forwards to every test component the following

test calls:

time_zero_setup() , out_of_reset() , start() ,

wait_for_completion(), and report()

So why do testing in this more complicated manner? In addition to the

previously mentioned idea of simulating close to real-world conditions,

an important reason is to maximize the adaptability of the test compo-

nents. In the example above, we used the same test component for both

Ethernet ports. Also, when the test components take in only the parts of

the testbench that they need, they (1) make explicit what they are using,

and (2) minimize the assumptions on the rest of the chip. This, as will

be highlighted in the single UART example in Part IV, allows a test

component to be reused for other chips that have only a subset of the

original chip’s functionality. 

Test components are critical to the adaptability of a verification system.

In general, the test components themselves do not know whether they

are running in parallel with other test components or are part of a series.

Thus, the most adaptable components are these test components, as will

be discussed further in the following sections.

As an implementation trick, verification_top() builds a test by using

a define called TEST. This trickery, set up by the makefile, allows the
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truss run script to compile in a different test, while leaving the rest of

the build image the same for all tests. This allows each test to be its own

class (inherited from test_base). This cleverness helps one avoid a bad

experience in the future. Assume that your team had written on the order

of 50 tests, and then a new test was created that required a new subphase

to be added to the dance. Although the other tests did not need this new

method, you cannot add the default method. This is because all the tests

are implemented as a test class. There is only one header test.h, and

50 different test.cpp files. By defining a base class, and then having

the actual test be an inherited class (with a different header file), one can

add methods to the base without affecting the existing tests.

There is one more part to a test that needs to be discussed. Often a test

is made better by the addition of random background traffic. This traffic,

be it register reads and writes, memory accesses, or just the use of other

interfaces, can uncover corner cases, such as bus contention, that would

not be found otherwise. 

These background-traffic test components are called irritators and inherit

from the test_component class. They differ from the standard test

component in that they continue their traffic generation until told to stop

by the test. Test components, by contrast, decide themselves when they

are done, as determined by specified metrics, such as a stop time or the

number of packets to send. (Irritators will be describe in more detail later

in this chapter.)

With background traffic irritators, the test is written essentially as before.

The exception is that the wait_for_completion() of the test calls the

primary test components’ wait_for_completion(). When the primary

component returns, the test calls stop_generation() on all the irritators

and waits for them by means of their wait_for_completion(). Then

the test returns control to user_main. (This is explained further in

subsequent sections and in the examples in the chapters that follow.)
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Test Component and Irritator Classes

As discussed in the previous section, test component-based design is

central to a Truss-based test system. The authors have found that sepa-

rating the test scenarios into test components has maximized the adapt-

ability of the system. By using test components and irritators, test writers

have been able to minimize their assumptions and distractions and con-

centrate on exercising the chip. Furthermore, other test writers can adapt

what was done in other functional areas and inherit irritators (if they are

not already present) for use as background traffic.

This section describes the responsibilities and interfaces of the

test_component and irritator abstract base classes.

The test component abstract base class

The test_component is an abstract base class whose role is to exercise

some interface of the chip. As discussed above, this functionality has

traditionally been included in the test. The test_component describes

the interface that all concrete implementations must follow.

In fact, you may have several types of test_component for a single

interface, for example, a register read/write one, a basic data path one,

and an error case one. The fact that these different exercises implement

the same interface simplifies reasoning about them.

In practice, most test components use a generator and a wire-level object.

Sometimes they may also be given a checker, depending on the designer’s

intent. 

The test_component class is not directly a verification_component,

but it has all the same phases.5 The test_component breaks down some

5. The primary reason for this is because verification_component repre-
sents a pattern, while test_component is an example of this pattern. The 
test_component has specific implementations of four of the 
verification_component methods. Also, test_component intro-
duces some of these same methods as nonvirtual. Finally, the sequencing of the 
methods is different from the test and testbench, the two top-level components 
that are verification components. These differences are critical for the integrity 
of the class.
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of the verification_component methods into finer detail, as one would

expect of a lower-level object. 

Below is the interface for the test_component base class.

namespace truss {

class test_component : 

protected virtual verification_component, 

protected thread {

public:

test_component(const std::string& n);

virtual void time_zero_setup() = 0;

virtual void out_of_reset(reset) = 0;

virtual void randomize() = 0;

virtual void write_to_hardware() = 0;

void start(); 

void stop();

void wait_for_completion();

void report(const std::string& prefix);

protected:

virtual void start_();

virtual void run_component_traffic_();

virtual void start_components_() = 0;

virtual void generate() = 0;

virtual void wait_for_completion_() = 0;

bool completed_;

};

}

The  me thods  time_zero_setup() ,  out_of_reset() ,  and

write_to_hardware() are provided to allow the test component to

interact with a BFM or driver. Note that a different, but equally valid,

architecture would keep the wire-layer components private in the test-

bench and sequence them by means of the top-level dance. This assumes

that the testbench knows what subset of the BFMs, drivers, and monitors,

to start up.

The start() method is used to start the test_component’s generator,

BFM, and so on. This method is implemented by a Truss utility class

called thread. A thread class runs another virtual method, start_(),

in a separate thread or execution. This allows a test class to do the obvious

thing and just call start() on all the test components the test uses.
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Let’s look at the start_() method, as it is the main starting point for

an interface of the chip. The start_() method runs two methods: a

start_components()  pu re  v i r tu a l  me t hod ,  an d  a  v i r tua l

run_component_traffic_() with a default implementation. The idea

behind the start_components_() method is that you call start() on

your generators, BFMs, and so on, as appropriate. (The examples part

of this handbook contains examples of test_component.)

The default run_component_traffic_() method calls randomize()

(to randomize the test component and its components), and then calls

generate(). In your randomize() method, randomize the data members

that will be used by generate() to cause some traffic to be generated.

In your generate(), take these data members and make the appropriate

calls to the generators in the testbench.

An AHB example

An example might make the roles a little clearer. (Remember that there

are several fully implemented examples in Part IV.) Suppose you are

creating a test component to test an AHB6 arbiter. The test component

acts as a master, generating read and write requests to a number of slaves. 

The generator in the testbench can generate a burst of reads or writes to

a given slave, using a specific burst length. Assume that the generator

has a channel interface that can take in an AHB transaction object. The

randomize function of your ahb_test_component might look like this:

void ahb_test_component::randomize() {

burst_length_ = generate_burst_length(min,max);
is_read_ = generate_type(min_type, max_type);

slave_ = generate_slave(min_slave, max_slave);

}

The corresponding generate() might look like this:

void ahm_test_component::generate() {

//addresses are picked by the generator

generator_—>queue_burst
(new AHB_transaction (burst_length, is_read_,

6. AMBA (Advanced Microcontroller Bus Architecture) high-performance bus.
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 slave_));
done_.signal();  //Signals that test_component is done

}

Notice that by nature these calls are executed in a one-shot manner. That

is, together they perform a single transaction. This is useful to allow an

irritator to inherit from this test component later, to sequence this

pattern any number of times and possibly change the randomization

constraints as well. 

So why have two separate methods?

By separating the randomization from the generation phases, one can

inherit different classes that either (1) have different randomization

characteristics (for example, logarithmic distributions of the burst length,

or a pattern); or (2) send the data through a filter first, then to the generator.

So now that the transaction has been generated, what should the

wait_for_completion() method do? Because the generation is occur-

ring in another thread, there should be a condition variable to commu-

nicate when it is done.

So the code might look like this:

void AHB_test_component::wait_for_completion_() {

  done_.wait();
}

Test-component housekeeping functionality

The test_component class also provides a basic housekeeping boolean

that tracks when you return from the wait_for_completion_() method.

This allows the report() method to determine whether you have con-

sidered the work of the component to have been completed or not. This

can be very useful in a timeout situation, to see which components have

not completed.

What you decide to do in the wait_for_completion_() depends on

how you view your test_component. One view is that it is a traffic

generator only, which can complete when the generation of traffic has

been queued. It is then up to the testbench or test to determine when the

chip has processed all the data. This will most likely involve a checker

or monitor.
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Another view is that your test_component represents a generate and

check path through the chip. In this case, the completion of

test_component signifies the completion of the entire exercise. (The

examples in this handbook use this view.) 

As always, the team must decide which view is better for 
their project. 

The irritator abstract base class

As discussed above, the test_component is set up as a one-shot traffic

generator. This works for tests that are directed, and for tests where the

completion event is predetermined—that is, tests that know before the

start() call what the end conditions are. 

However, sometimes it is not good design to have the test_component

determine when completion is achieved. This is the case when, for

example, you want to achieve a certain metric, and the measurement is

not appropriate information for the test_component. 

For example, you may want to send 100 bursts of some AHB traffic.

While this could be included in the ahb_test_component, you might

not want to measure completion by 100 bursts all the time. Instead, you

might want to write a test that looks at the number of hits each slave

device gets, and stop the test when all slave devices have been targeted.

As another alternative, you might want a test to run until some coverage

occurs, which could be any of the previous scenarios, or could involve

some internal state in the arbiter.

The irritator, inherited from test_component, is used for situations

such as these. The interface is shown below.

namespace truss {

class irritator : public virtual test_component {
  public:

  irritator(const std::string& n);

  virtual ~irritator() {}
  void stop_generation() {generate_ = false;}

 protected:

  virtual void start_();

  virtual void run_traffic_();
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  virtual bool continue_generation();
  virtual void inter_generate_gap() = 0;

  bool generate_;

 };

};

The i r r i ta tor  overrides  the run_traffic_() method of  the

test_component base class. It sets up a loop, calling the one-shot

r a n d o m i z a t i o n  a n d  g e n e r a t i o n  i n  t h e  test_component ’s

run_traffic_() methods. The implementation is shown below.

virtual void truss::irritator::run_traffic_() {

while (continue_generation()) {

test_component::run_component_traffic_();
intergenerate_gap();

}

}

The method continue_generation() just looks at a boolean, which is

toggled to false by a call to the stop_generation() method. This

allows an external class to stop the continual loop of randomization and

generation.

Note that there is a new virtual method in the irritator class, called

intergenerate_gap(). Because the irritator is continually generating

traffic, you might need a delay mechanism to prevent the generator from

flooding the chip. 

There are many ways to get this delay. For example, in one solution the

generator and attached BFM/driver could execute the generate request

as soon as it is called and thus take simulation time. In another solution,

the way to get a delay would be to have a fixed-depth generator and BFM/

driver channel.7 This would put back-pressure on this generate loop. In

still another solution, the generator could have a delay in clock cycles

before returning. 

Any of the above solutions is acceptable, but there is yet another choice.

That option is to have the irritator itself provide the delay mechanism.

7. This method is supported in Truss’s channel class.
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The intergenerate_gap() is a virtual method allowing you to imple-

ment an irritator-based delay. This allows the irritator to decide on the

throttle mechanism. Different subclasses could implement different pol-

icies. For example, an irritator could wait for a variable number of clock

cycles. Another example would be to measure some parameter on the

checker (such as packets in flight). 

As always, the team must decide what is appropriate.

Using the irritator

T h e  i r r i t a t o r  c o n t i n u e s  t h i s  g e n e r a t e / w a i t  l o o p  u n t i l  a

stop_generation() is called. But how do you decide when to stop the

irritator? The answer, of course, is “When the test reaches its goal.” One

goal could be that the “main reason” for the test has been achieved. For

example, you can have the main goal be a test component, perhaps one

that generates a fixed, but randomized, number of packets through a

particular chip interface. The global goal in this case would be for the

test component to achieve completion. Here is how the test code might

look:

void noisy_packet_test::wait_for_completion() {
//assume the data members include 

base_packet_exerciser, 
//the test component of interest and some std 

container 
//class with a list of irritators. 

basic_packet_exerciser_—>wait_for_completion();

std::for_each(irritators_.begin(), irritators_.end(), 
stop_generation());

std::for_each(irritators_.begin(), irritators_.end(), 

wait_for_competion());
}

Ignoring the nontrivial constraining, selecting, and creating of the test

component and irritators, what is accomplished in a few lines of code is

a shutdown sequence that is powerful, while being a fairly simple idiom.

Note that a verification team could decide to use only irritators in their

implementation. In that way, when to stop the test can then be determined

by looking either at a checker or possibly at elapsed simulation time.
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The complex part of the test would then become the randomization and

selection of irritators. The authors have worked on a variant of this

methodology, and the resulting verified chip was a first silicon success. 

z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z 

Summary

This chapter introduced Truss, an open-source application framework.

We revisited the benefits of an OOP language such as C++, but stressed

the need to keep things simple despite the power of this language, to

avoid writing code that is unnecessarily complicated.

We talked about the key algorithm of verification, which the authors

called the “dance.” We showed how the dance is used by the

verification_top() program to run a test. We discussed the roles and

responsibilities of the test, testbench, and watchdog timer, the main parts

of the top-level dance.

We discussed the verification_component abstract base class, which

provides pure virtual methods for the dance.

We then discussed the test_component and irritator classes, includ-

ing their responsibilities and interfaces.
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Truss Flow
C H A P T E R  7

Expensive solutions to all  kinds of problems 
are often signs of mediocrity.

Ingvar Kamprad, founder of IKEA

Have you ever bought and assembled a piece of furniture from IKEA?

In the store most of their furniture looks very simple, but when you get

it home and try to assemble it, you realize that it’s built from several

smaller and often confusing pieces. Even with IKEA’s famous assembly

instructions, showing the “intent” for each piece graphically, assembly

can still be confusing. Imagine how hard it would be without instructions.

The authors have had to learn many verification environments through

the years, and this has often been a very confusing experience. What

seems like a great concept with a well-defined structure at a high level

of abstraction is often obscured by troublesome details when you first

try to implement it. Many times the confusion is increased because of a

lack of description regarding how the high-level ideas are actually imple-

mented. To help reduce the confusion around Truss, this chapter describes

the “dance” in more detail. 
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Overview

This chapter looks at how the “dance” described in the preceding chapter

is actually implemented. It shows the order in which each method is

called, and describes the files to find the method, or its base. The chapter

then looks at the structure for the major components of Truss. 

First to be described is verification_top(), the first function called

in Truss and the base of the “dance.” Following this is a description of

the methods, and their class, through which files are called for each step.

Then the test component is described. This component follows a dance

similar to that of verification_top(), but for a different set of classes

and files.

The irritator c lass  is  described next .  While s imilar  to a

test_component, irritators have some unique method calls worth point-

ing out.

The last part of the chapter talks about steps that need to be taken to build

a new Truss project, by taking the more-abstract description of classes

and applying them to the first few tests in a new project.
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About verification_top.cpp

When the simulator executes the $teal_top call in the HDL, control is

p a s s e d  t o  t h e  verification_top()  f u n c t i o n  i n

verification_top.cpp under the truss directory. In this handbook we

refer to this function as the “dance,” or top function. It is this function

that interacts with your top-level components: the test, the testbench,

and the watchdog timer.

Let’s look at the dance with respect to the methods you have to write.

This is illustrated in the figure on the following page. A square box

indicates that the method has a default implementation, and a rounded

box indicates it needs to be defined for your project.
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your_test::new(testbench*, watchdog*, std::string)

testbench::new(std::string)

verification_top()

your_test::randomize()

testbench::randomize()

watchdog::time_zero_setup()

testbench::time_zero_setup()

your_test::time_zero_setup()

watchdog::out_of_reset()

testbench::out_of_reset ()

your_test::out_of_reset()

watchdog::write_to_hardware()

testbench::write_to_hardware()

your_test::write_to_hardware()

watchdog::start()

testbench::start()

$TRUSS_HOME/src/watchdog.cpp

your_test::start()

your_test::wait_for_completion()

testbench::wait_for_completion()

your_test::report(“Final Report”)

testbench::report(“Final Report”)

$PROJECT_HOME/verification/tests/your_test.cpp

$PROJECT_HOME/verification/testbench/top/testbench.cpp

Hold the reset line for 
the minimal amount,  
then release it. Return 
when registers can be 
accessed 

Pull wires/registers up or 
down before releasing the 
reset line

Perform top-level 
randomization, for example, 
chose interfaces or features 
to be tested

testbench

Legend

your_test

watchdog

watchdog::new(std::string) Build objects,
apply constraints

Push the configurations 
down to the hardware

Pause until the checkers 
are finished

Print which components 
have completed

Exercise the 
chip

The Dance – Detailed Flow
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The watchdog class is already written and should be sufficient for most

purposes. (We will not discuss the watchdog timer’s methods, because

they are relatively straightforward.) You’ll have to write the test and

testbench classes.

In the testbench constructor, instantiate your generators, checkers,

BFMs, and so on. (This assumes that your team has decided to put these

interface objects in the testbench rather than in the test components.)

Then add your constraints by using the dictionary. These constraints will

be picked up by your generators and configuration objects to guide the

randomization. Initially, you will probably have no constraints.

The test’s constructor will create all the test components and irritators

that it needs.

In the testbench::randomize() method, randomize your local vari-

ables and then call randomize() on lower-level components, as appro-

priate. Your testbench may have configuration objects for each interface

or feature that is used to configure the chip. 

The test::randomize() method is similar, in that the test randomizes

each test_component it owns. In addition, the test may select some

subset of all the components and irritators it owns.

The testbench::time_zero_setup() method is where you drive wires

prior to letting the chip out of reset. You may need to wait for the PLL

to lock, or set up “sensor” pins on the chip in this method.

The test::time_zero_setup() usually just calls all the active test

component’s time_zero_setup(). This is to allow test components that

have a “plug-in” behavior, such as USB and PCI Express, to perform

their initial training. (To use this method is a judgment call, as you may

want to bring up an interface later in the simulation.)

The testbench::out_of_reset() will bring the chip to a stable state

that can accept register access. If the team so decides, you could use

test::out_of_reset() to reset the chip.

The write_to_hardware() methods in both the test and the testbench

are where you perform register writes to move your selected configura-

tions to the chip. The test’s write_to_hardware() method usually just

calls the same named method on all its test components. This is because

the actual register writes will occur in the BFM or driver. One exception
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is when you are writing a direct test, and it’s easier just to write the

registers at the test level.

The testbench::start() method, if it knows which interfaces and

features are in use, starts up all the BFMs, monitors, and drivers. Depend-

ing on your architecture, it may also start the generators and checkers.

The test::start() method usually just calls the start() method on

all its owned test components.

The wait_for_completion() methods in the test and testbench are used

to pause the verification system until the test is finished. Although there

are many ways to do this, the examples in this handbook just allow the

checkers to say when the test is completed.

The report() method in both top-level objects reports their status. For

the testbench, it is usually appropriate to report the configurations

selected. For the test, it usually just calls the test components.

That’s it. This may seem like a lot of methods to write, but you probably

do not need to perform tasks in all the methods. Later in this chapter, we

will talk about the order in which you might want to implement these

methods.
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The Test Component Dance

Did you notice that most of the time the test just called the same named

methods on the test component? That’s because verification has a fractal

structure, with repeated patterns. The top-level dance is repeated, with

a few changes, in the test. This time, instead of verification_top()

calling the steps, the test does. The test_component also plays a role,

subdividing the start() method into several lower-level methods, as

shown in the following figure.

The run_component_traffic_() method has a standard implementa-

tion, which calls randomize() and then generate_(). The random-

ize() method has the same purpose it had for the top-level components:

to randomize your random variables. The next method called,
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generate_() picks up the results of the randomization and interacts

with the generator to exercise a feature or an interface of the chip.

Now, it may seem strange that these methods are implemented like this.

However, the idea is to separate the various concerns of the test compo-

nent: starting, randomization, and generation. This, as will be discussed

in Part III of the book, creates more adaptable and less brittle code. The

organization also sets up the irritator, making the transition from a fixed

test to an irritator relatively painless.

your::new(generator, bfm, checker)

your::randomize()

your::time_zero_setup()

your::out_of_reset()

your::write_to_hardware()

test_component::start()

your::generate_()

test_component:wait_for_completion()

test_component::final_report (“Final Report”)

Start your generator, 
BFM, and checker

Performs the same 
function as the 
top-level components

Set up and run your
“main traffic” method

Wait for your 
checker to complete

test_component::start_()

your::start_components_()

test_component::run_component_traffic_()

$PROJECT_HOME/verification/test_components/your_test_component.cpp

your_test_component:wait_for_completion_ ()

$TRUSS_HOME/inc/truss_test_component.h
called from the same named method in test

Test Component Dance – Detailed Flow

base implementation provided

you must implement 

Your 
test

The test builds
your test component

Legend
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The Irritator Dance

The irritator is an inherited class of test_component. Its purpose is

to generate background “noise” while the test concentrates on some

specific area of the chip. In some sense, using irritators is a way to emulate

the real world, where many of a chip’s features and interfaces are used

simultaneously.

So what does an irritator add to or change from the test_component?

Only one method is changed, and two methods are added. All these

changes involve the new run_traffic() method, shown in the figure

below.

The irritator overrides the run_component_traffic_() method

f rom the  test_component  base ,  and  ca l l s  t he  base  c l a s s

run_component_traffic_() method in a loop. This is the nature of an

irritator: it just keeps on going until told to stop. The method that

stops the loop is stop_generation(), which is usually called by your

your::randomize()

test_component::start()

your::generate_()

Start your generator, 
BFM, and checker

Set up and run your 
“main traffic” method

test_component::start_()

your::start_components_()

test_component::run_component_traffic_()

$PROJECT_HOME/verification/test_components/your_irritator.cpp

$TRUSS_HOME/inc/test_component.h, and irritator.h

The Irritator Dance – Detailed Flow

you may implement

you must implement 

irritator::run_component_traffic_()

your::inter_generate_gap_() Pause the generate loop

from your_test::start()

until irritator::stop_generation() Called by test

Legend
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test once the main feature or interface has finished being tested. This

will be shown in detail in the Part IV of this handbook.

One method you will have to implement is inter_generate_gap_().

This method may be empty, for a couple of reasons. 

� Your channel has a limited depth, and this limit is used to apply 
back-pressure to your system.

� Your generator has a built-in delay of some form. 

In this handbook we use the checker to throttle the system—because we

want to keep a certain amount of data in flight, and the checker is the

only agent that knows what has been generated and what has been

received. (The chip can handle an unlimited number of back-to-back

transactions.)

That’s all there is to building an irritator. Note that you will probably

start with a test component, and then evolve it into an irritator. It will

probably be many weeks into your project before the first irritator is

built, but for coverage and finding congestion bugs, irritators are a good

choice.

In fact, your first test will probably be even more rudimentary. This first

test is the focus of the next section.
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Compiling and Running Tests

The sections above described the main building blocks of Truss. The

following chapters, as well as later examples, will show how these still

somewhat abstract concepts get implemented for real projects. However,

before we start looking at more concrete examples, there is one more

problem to consider: that of compiling and running a verification envi-

ronment.

All verification environments need some type of run script to compile

and build both the RTL and verification code. In a large project this is

not a simple task, because one must track a lot of code, as well as many

tools and options.

A goal for Truss is to provide a production-grade run script and makefiles

as open-source components. At the moment, a reasonable run script and
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rudimentary makefiles are provided. They are a good starting point for

a run script and provide enough functionality to handle the examples in

this handbook. It is the authors’ hope that through community effort,

these scripts can be fleshed out into something better.

Truss run script

The Truss run script controls which files are compiled and run. It is

written in Perl and has a number of switches that controls its actions.

The script will first compile all the C++ files, then compile all the HDL

files, then link all files into a single executable, and finally launch the

simulation. After the simulation finishes, it checks the status of the test

run. (This script is used to build and run all the examples on the companion

CD.) The script is written in Perl, and can be located at $TRUSS_HOME/

bin/truss).

Truss uses some environment variables to “understand” its environment.

By using environment variables (instead of .tool_rc files, for example),

the system’s assumptions are both obvious and flexible.Truss uses only

a small number of environment variables, as listed below.

The file named setup in each of the bin subdirectories of each example

on the CD has default values for the TEAL_HOME, TRUSS_HOME,

and PROJECT_HOME environment variables. You’ll need to set SIM

and SIMULATOR_HOME as appropriate for your environment.

Variable Function

SIM Simulator name (such as ncsim, mti, aldec, or vcs)

SIMULATOR_HOME Path to the simulator install area

TEAL_HOME Path to Teal’s source files

TRUSS_HOME Path to Truss install area

PROJECT_HOME Path to top of the current verification project
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Switches

The Truss run script has a number of switches to control its execution.

Below is a table that expands on descriptions of the most important

switches. 

For a full description of all switches from a command line, run the

following:

$TRUSS_HOME/bin/truss --help

Switch Function

--help Prints longer help message

--test <test_name> Runs the $PROJECT_HOME/testcases/<test_name> 
test.

--clean [options] Cleans appropriate selection of the system. Default 
selection is USER. The following options are available:
LOGS - Deletes simulation log files
CPP - Deletes user-compiled C++ code
HDL - Deletes user-compiled HDL code
USER - Deletes all user-generated code (LOGS, CPP, 
HDL)
TRUSS - Deletes compiled Truss files
TEAL - Deletes compiled Teal files
ALL - Deletes all of the above
This switch can be repeated (--clean CPP --clean HDL)

--simulator <SIM> Selects appropriate simulator from supported list. If 
switch is not used, then run script reads $SIM. If neither 
$SIM or --simulator is used script will fail.

--seed <seed value> Sets random seed to integer <seed value>

--run <number> Runs the selected test a number of times

--sim <sim> Builds and runs using <sim> as the simulator.
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The Truss makefile

As is customary in the coding world, a makefile is used to build the

objects and archives.1 The Truss makefile may be a good starting point

for your makefiles. Almost all of the directories in the examples include

a standard makefile, located in the /inc/Makefile subdirectory of

Truss. As with the truss script, this makefile is both too simple and too

complex. 

The makefile for three sources is shown below.

STATIC_LIB = $(LIB)/directory_name.$(SIM).a

INC = -I../a_referenced_directory 

SRCS = \

    $(SRC)/file_one.cpp \

    $(SRC)/file_two.cpp \

    $(SRC)/file_three.cpp 

include $(TRUSS_HOME)/inc/Makefile

The first line identifies the output static library name. The next three

lines identify the source files. The last line includes the standard makefile.

Most makefiles follow this form.

The Truss makefile has all the compiler switches to build the sources for

a variety of simulators.
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The First Test: A Directed Test

Because starting something new is not always easy, this section helps

make the process easier by addressing how a first test can be written in

Truss. This section concentrates on the steps you need to do, and how a

test can be built up from scratch. The next chapter shows a complete first

example and focuses more on the flow.

Your first test will probably be a simple directed test, with a

test_component that does not have a generator and possibly not even

a checker. It will probably interact directly with the BFM or driver.

1. The final shared object is built by the truss script.
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Focus your initial efforts on the driver and BFM. Write a “first cut” at

the driver class, making it have the methods that seem right to you. You

may or may not need a monitor, depending on the protocol or feature to

be tested.

Next, create a testbench that includes that driver/BFM and think about

how to get clocks to the chip and get it out of reset.

Now make a test class and get the whole thing compiling. Before moving

on to connecting the test to the driver with a test component, make sure

the chip is cleanly out of reset, as this can be done by the testbench’s

out_of_reset() method.

The next step is to make a simple test_component. This component

will probably just be a directed exercise, with perhaps a few reads and

writes or just a few calls to the driver. Note that you may use the

test_component pre-implemented methods if you are comfortable with

them, but for a first test it might be better just to override the start()

method directly. This is because that’s easier than remembering where

to put your randomization and traffic-generation code.

If there is any configuration, use the chip’s default configuration. Don’t

try to randomize anything yet.

Doing the checking can be tricky, so let’s worry about that last. We’ll

probably be looking at waveforms for the first few days anyway.

Now build a test that has your test_component as a data member.

Initially, have the test call the same named methods on your test compo-

nent.

Note that the wait_for_completion() method probably just returns,

if you implemented the start() method. However, if you used the

generate_() method of the standard test_component, you’ll want to

trigger a condition variable at the end of your generate(). Then, the

wait_for_completion() would just wait for the signal to be triggered,

as shown below:

class your_test_component {

//...your other code here...

private:

teal::condition done_;

}
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Then, in the last line of the your_test_component::generate_()

method, do this:

void your_test_component::generate_() 

{

//...your directed exercise code here...

done_.signal();

}

Then your wait_for_completion_() would look like this:

void your_test_component::wait_for_completion_()

{

done_.wait ();

}

That’s it! You have created your first Truss-based test.

The Second Test: 
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Adding Channels and Random Parameters

Software engineers count “one,” “two,”—and then “many.” This is

because only the first three times they use a technique are significant.

After that, everything looks like “many.” By writing the first test, we’ve

counted “one.” Now we will count “two.” The next section will cover

the “many.”

In this, the second test, we’ll get more sophisticated. We’ll add the agent

layers and also add the generator and checker. These are the steps you

need in order to create more advanced, randomized tests. You will

probably create several directed tests before you need these additional

features, but because this is a book we need to keep moving along.

Remember that the generator and monitor generally have pure virtual

methods to communicate the results of their work. We’ll add our agents

to these methods. There will be an agent for the generator, the driver/

BFM, the monitor, and the checker. Why all this complexity? Because

there are many interconnection techniques, each one involving some



C h a p t e r  7 :  Tr u s s  F l o w

128 z z z z z z z Hardware Verif ication with C++

architectural trade-offs. These trade-offs are talked about at length in the

OOP Connections chapter in Part III of this handbook.

To make the connection between the agents, we’ll use a Truss channel.

So let’s digress a bit and look at a channel.

The channel classes

Verification systems have a lot of producer/consumer relationships. For

example, a generator can be considered a producer and a BFM considered

a consumer. However, it is a good idea to minimize the knowledge and

assumptions of the interface between these two loosely cooperating

objects. One way to decrease the coupling between these components is

to use an intermediary object. An intermediary object would allow the

two communicating objects to be anonymous or separated in time. The

concept behind this object is called a pipe, mailbox, or channel. Truss

uses the term channel.

Truss separates the roles of producer and consumer by having two abstract

base classes, channel_get and channel_put. This clarifies the roles of

the two communicating objects. For example, the constructor of a gen-

erator would take in a channel_put class, because it puts data into a

channel. A monitor’s constructor would also take in a channel_put

class. A BFM or checker’s constructor, on the other hand, would take in

a channel_get class. 

In Truss, the channel_get and channel_put classes are templated.

This is one of the very few places where Truss uses templating. Don’t

worry if you don’t understand all the details of the code in a first read-

through; these templates are not hard to use, as will be shown in the

chapter discussing a single UART example.

The reason we use a template is to encourage a strongly typed channel.

Another reason is to allow you to have the choice of using pointers or

actual objects and data in the channel. In general, the authors use pointers

to objects only when virtual methods are needed. Otherwise, we put the

objects themselves in the channel. This simplifies any memory-manage-

ment issues.

The channel class joins the two concepts channel_put and

channel_get. This class adds the storage for the actual data, as well as
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the signaling and mutual-exclusion mechanisms. In addition, channel

also supports a depth concept, for designs that want to implement back-

pressure in that way. The interface for a channel class, as well as the

base classes, are in /truss/inc/truss_channel.h on the CD.

The channel class also provides for other channel_put objects to be

attached to a channel. This allows the data of one put() to be replicated

across many channels. The common use for this is when a generator

creates a data item and both the checker and BFM should get the data.

It is also useful if there are multiple listeners to a channel, such as in an

Ethernet broadcast, or multiple monitors for a data interface.

Building the second test

Now that we have channels, let’s use them for the agents. This section

is a bit high level, because every situation is different. We’ll give general

direction, but after you read this chapter, take a look at the next chapter

for a first complete example. 

Let’s say that you are working on a chip interface called my_interface.

You might have a generator that looks like this:

namespace my_interface {

class my_data;

class generator {

public:

void generate(); //make one 

virtual void post_generate_(const my_data&) = 0; 

}

}

We are concerned with the post_generate_() method. This is a pure

virtual method, so we must implement it in our inherited class. Let’s

assume we want to add a channel interface, like so:

#include "generator.h"

namespace my_interface {

typedef channel_put <my_data> generated_channel;

class generator_agent: public generator {

public:

generator_agent(generated_channel* out)

: out(out){}
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virtual void post_generate_(const my_data& d) {

out_—>put(d);

}

private:

generated_channel* out_

};

};

By building a generator_agent, we have abstracted how the generator

gets the created data to the driver/BFM. 

A similar situation exists in the monitor:

namespace my_interface {

class results;

class monitor: public truss::thread {

public:

void start(); 

//the connection method

virtual void data_received_(const results&) = 0;

};

};

And likewise for an agent for the monitor:

#include "monitor.h"

namespace my_interface {

typedef channel_put <results> generated_channel;

class monitor_agent : public monitor {

public:

monitor_agent(out_channel* out) : out_(out) {}

virtual data_received_(const results&) {

out_—>put(r);

}

private:

out_channel* out_;

};

};

But what about the other side of the channels? These objects are the

driver_agent and checker_agent, respectively. Their job is to take

the data out of a channel and act on the data. 
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Remember, we are discussing channels here because that’s how we

wanted to implement the agent layer. This could have easily been a more

generic producer/consumer model, or an event-driven method, but imple-

ment what feels correct for you. (All the examples in this handbook use

channels.)

Here are the classes for the driver and checker and the inherited classes

for their agents:

namespace my_interface {

class driver {

public:

void send_data(const my_data&);

}

typedef channel_get <my_data> input;

class driver_agent : public driver,

 public truss::thread {

public:

driver_agent(input* drain) : drain_(drain) {}

//must have a start to drain the channel

void start_() {

for (;;) {

send_data(drain_—>get());

}

}

private:

input* drain_;

};

class checker {

public:

check_data(const my_data&, const results&);

};

typedef channel_get <results> checker_in;

class checker_agent : public checker, 

  public truss::thread {

public:

checker_agent(generated_channel* generated, 

checker_in* actual) : 
generated_ (generated), actual_(actual) {}
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void start_() {

//Check the data!

for (;;) 

check_data(generated_—>get(), 

 checker_in—>get());

}

private:

generated_channel* generated_;

checker_in* checker_in_;

};

};

The authors realize that there is a lot of code to look at, but just skim it

over to get the general idea. The general technique is to inherit a class,

add a channel, and append _agent to the name.

After the agents have been built, they should be added to the testbench.

The testbench holds the generators, drivers, monitors, and so on. The

test, on the other hand, holds the test components.

Building the second test’s test_component

The test_component is relatively straightforward. A test_component

constructor takes in the parts of the testbench you need. Remember, the

entire testbench is not taken as a parameter, because then we would have

to make assumptions about the name of the parts we needed. Also, by

taking in only the parts we need, several of our test components can be

used in the same chip.

The most likely candidates for the constructor’s parameters are the

generator, the driver, and the checker. 

The rest of the test component usually just forwards its calls to the

appropriate objects. An example test component is shown below.

namespace an_interface {

typedef class bfm;

typedef class generator;

typedef class checker;

};

#include "truss.h"
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namespace an_interface {

class a_test_component : public truss::test_component {

public:

a_test_component(const std::string n,generator* g, 

bfm* b, checker* c);

virtual void time_zero_setup() {

 bfm_>time_zero_setup();};

};

virtual void out_of_reset(reset r) {

bfm_—>out_of_reset(r)};

};

virtual void randomize() {/* next section */;}

virtual void write_to_hardware() {

bfm_—>write_to_hardware();

};

protected:

virtual void generate() {generator_—>generator();};

virtual void wait_for_completion_() {

checker_—>wait_for_completion();

};

virtual void start_components_() {

bfm_—>start(); checker_—>start();

};

private:

generator* generator_;

 bfm*       bfm_;

checker*   checker_;

};

};

Although your actual test component will be a bit different from the code

above, the general form will probably be the same.
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Adjusting the second test’s parameters

As soon as you introduce randomization into a test, you’ll probably want

some knobs to control the randomization. Sweeping most parameters

through an entire integer range would chew up a whole lot of simulation

time. Besides, it’s probably either (1) not interesting, or (2) unacceptable

to the register associated with the integer. 

A knob is a technique that uses other variables to control the range of a

random variable, either directly or indirectly. In this example we’ll

concentrate on controlling the random variables directly. (The examples

in the handbook use the Teal dictionary feature to pass parameters from

a number of sources to the method that will use the knob variables.)

For example, consider a test for a CPU. Assume that a cpu_generator

class has a send_one_operation() method that is called by a

test_component to tell the cpu_generator to create one random oper-

ation. The generator is guided by dictionary variables. It is best to put

the variables to randomize in a separate function at the top of the source

file, because the seeding depends on line number. That way, the sequence

of values selected does not change if the code below is reorganized. Of

course, new random values chosen will be different for each master seed. 

Here is an example function for generating the operand_a variable of

a CPU operation:

namespace {

uint32 get_operand_a(uint32 min_v, uint32 max_v) {

uint32 returned; RAND_RANGE(returned, min_v, 
max_v); return returned;

}

};

In the cpu_generator, the following lines could be used:

static uint32 min_operand_a = 

dictionary::find(name_ + "_min_operand_a", 0);

static uint32 max_operand_a = 

dictionary::find(name_ + "_max_operand_a", ~0);

operand_a = get_operand_a(min_operand_a,max_operand_a);

This same style is used for the other operand and the operator variables.
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So who sets the knobs? There are four ways: (1) use the default specified

in the dictionary::find() call as the second parameter; (2) put the

knob value on the command line; (3) use a knob configuration file; or

(4) (finally) write code to use the dictionary::put() call, which is the

mechanism used in our example. Note that because the Teal dictionary

is used, both the command line and the knob file can be added later

without the need to modify any of the example code.

The test constrains the test component with respect to the number of

times the generator is called. Of course, this specifies the number of

operations sent to the arithmetic logic unit (ALU). The code is shown

below.

teal::dictionary::put(test_component_—>name + 

"_min_operations", "4",  
teal::dictionary::default_only);

teal::dictionary::put(test_component_—>name + 

"_max_operations", "10",  
teal::dictionary::default_only);

Note that the name of the test_component is used. This allows the test

to pick any name for the test_component and still have the code work.

However, be careful with the spelling of the knob variables. They must

be spelled the same in both the find and the put routines in order to

make a connection.

Now that the randomization and knobs are connected, we have completed

writing the second test. In some ways, this test is rather sophisticated. It

uses the Truss framework, and adds agents by using channels to connect

the wire-layer classes to the transaction-layer classes. 

The testbench created and wired up the generator, driver, monitor, and

checker. The testbench can bring the chip out of reset and start the

monitor.

The test itself is rather reasonable. It creates and connects the test

component to the generator, driver, and checker in the testbench. 
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Mix-and-Match Test Components

So now what do you do after creating this second, more-sophisticated

test? You do what we verification engineers always do—create more

tests! As these tests are being written, new test components will also be

created, some of which could be used in several tests. Deciding which

test components to adapt to different tests is the major activity (besides

writing more tests) after you have written the first two tests. This is the

“many” count that we talked about earlier.

Of course, you’ll be doing other test-related activities, such as adding

randomness to the existing tests and looking over your verification test

plan to make sure you know when you’re done. 

And how do you go about adapting a test component from one test into

another? You could just put the new test component in the test and wait

until both of them are completed. However, as explained in the Truss

Basics chapter, there is another way: use the Truss concept of irritators,

and warm over, or “recrystallize,” the existing test component to an

irritator.

Converting the test components to irritators usually just involves deriving

the existing test component with the truss::irritator component.

Then, the appropriate methods will be overridden and the only method

you have to write is inter_generate_gap_(). There are many ways to

implement a gap, from the simplest (pausing a number of clock cycles),

to the more complex (using back-pressure and bursty traffic). If the

checker were inherited from Truss’s checker, you can also just wait for

generated data to be checked.

This process of writing a new test continues for all the rest of the features

and interfaces of the chip. Remember, the more irritators a test has, the

more likely it is to model what actually happens when the chip design is

realized in silicon.
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Summary

This chapter tried to clear the fog of how to go about using Truss. We

started with a review of the top-level dance, and then showed that the

dance also existed in other layers of the system.

We looked at the tools provided by Truss, which are the truss execution

script and a standard makefile.

We covered writing the first test, concluding that it will probably be a

directed test. Then, we took the test up a notch, adding connection agents

to the generator, driver, monitor, and checker. We introduced the Truss

channel as the interconnect technique, but noted that there are many other

techniques.

We looked a bit at control knobs, a technique for passing parameters to

constrain randomization. (There are many techniques for constraining

random-variable generation.) This chapter showed how to harness Teal’s

dictionary to hook up bounds for randomization.

We finally discussed what to do after the second test. The idea is to write

more tests for that interface or feature, and also test the rest of the chip.

The key part of writing more tests is to keep an eye out for what you can

“steal” (rather, “adapt”) for other tests. By creating irritators, you can

use the functionality of other tests as background activities. In this way,

the chip is stressed more—and more faults are found prior to production.
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Truss Example
C H A P T E R  8

I  know that you believe you understand what 
you think I  said, but I 'm not sure you realize 
that what you heard is not what I  meant. 

Robert McCloskey

Coding is tricky, because we take the great ideas, techniques, and trade-
offs and actually make decisions. We put fingers to the keyboard, and
decisions are made and trade-offs are fixed in code. Furthermore, learning
a new technique only makes the coding task more difficult. An example, or
several examples, can help put the technique into perspective.

This chapter is the first example of how to use Teal and Truss in a

verification system. It’s useful to build and run some example code when

learning something new. So, install the code on the CD and noodle around

with it a bit. You can add printf’s and change the code a bit.

If you want, use this chapter as a guide to some of the more interesting

parts. This chapter is not quite a map to the “homes of the movie stars.”

Instead, it is more like a mariner’s map. It helps you to navigate in tricky

waters.
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Overview

This chapter provides a first complete example of using Truss, where

you can actually compile and run the code. The code is not as complex

as what you would encounter in a fully featured chip. However, all the

main parts are here to consider. The source files may seem silly or overly

complex for the chip we are trying to test, but we are trying to demonstrate

how to structure a verification system for a real project. Your chips will

have plenty of complexity to manage.

This chapter does not walk through every code file. We are all capable

of reading code. What it does instead is look at some of the more important

aspects of the verification system.

z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z 

Directory Structure

In order to help you navigate the source files, it’s good to show the main

directories that comprise a Truss-based system (shown below). We’ve

also included only the main files we will be working with.

verificationresultsrtl

bin test_components testbench tests vip

alutop

Directory Structure

setup test_component.cpp,.h

testbench.v,cpp,h
hdl_paths.h

alu_test.cpp,h

alu_driver.cpp,h
alu_monitor.cpp,h
alu_generator.cpp,h
alu_checker.cpp,h

alu_top.v

truss

inc src

truss_verification_top.
cpp,h

truss.h
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The source code for the chip is in the /rtl directory. How does the

truss run script know this? The file /verification/testbench/top/

hdl_paths.vc is used to specify the paths to the RTL and the RTL

include directories. This is so that the RTL files can be rooted in a place

different from the verification directory.

The /results directory is where you run the tests from. It also can be

wherever you want. The authors generally put this directory in some non-

backed-up networked storage area that is independent of the source-code

control system. In the handbook example, the /results directory is

placed in /examples/alu, at the same level as the /verification

directory.

The /verification directory contains all the source code for the

verification system. The /bin directory is there for the project’s local

scripts. The authors usually put a setup script there and alias setup to it. 

The other four subdirectories—

/tests, /testbench, /vip, and /test_components

—are where the actual source files are. The /tests directory is where

your test_name.cpp and test_name.h exist. These files are used when

you give the --test <test_name> option to the truss script. (Use the

--config option to the truss script to select a directory.)

The /testbench/top directory contains the C++ and HDL sources for

the top-level testbench. If you have more than one chip in your simulation,

it may be useful to have /testbench/<chip_name> directories.

The /vip directory is where chip interface classes go. There should be

a subdirectory for each interface and major feature you need to test. The

idea is that the code in these directories is fairly portable, and may contain

purchased VIP as well as project and company-created VIP. In our

example, there is only the /alu directory.

The /test_components directory contains the scenarios that you want

to run. For this example, we’ll only run one scenario, called

test_component.
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Theory of Operation

We’ll be testing a really basic ALU chip. It takes in two 32-bit operands

and performs a simple logic or arithmetic function. We’ll use a legacy

c-model for comparison with what the chip produces. The output consists

of a result and an “operation complete” status interrupt. The test-

bench.v will instantiate this ALU module and provide system clocks

for the chip and verification system.

The main objects are shown below.

Because there is only one interface in the chip, we’ll just refer to the

components by their functionality. In other words, we’ll say “driver,”

although in a chip with many drivers we would need to say which interface

we are talking about. (Note that we do scope the code in an ALU

namespace.) 

In the testbench C++ class, we have all the components of the ALU

interface layer. There is a wire-layer driver and monitor, with their

accompanying agents. There is a generator and a checker. The checker

alu

C-model

alu::driver alu::monitor

alu_test

testbench.v

alu::monitor_agent

alu::generator alu::checker

alu::driver_agent

ALU Example: Objects and Connections

wire

agent 

transaction

alu::generator_agent

alu::test_component



A Practit ioner’s Handbook z z z z z z z 143

T h e o r y  o f  O p e r a t i o n

is interesting, because we have a legacy c-model of the chip, which will

be used by the checker.

There is also a test_component class, which runs a random number of

operations through the chip. And, of, course, there is a alu_test class,

which builds a test_component, giving it the generator, checker, and

driver from the testbench.

The following illustrates the wires used by the verification system:

The driver and the monitor take care of the protocol into and out of the

chip. The testbench takes care of bringing the chip out of reset.

The remaining sections highlight some specific “points of interest” in

the code. The code itself, being the first example, is not that big. If you

want to follow the code through its execution, start with the Truss

verification_top.cpp, then move on to testbench.cpp and

test.cpp.

alu

HDL testbench

ALU Example: Wires and Objects

32operand_a

32operand_b

2op_code

32op_result

op_done

re
se

t_
do

ne

re
se

t_
n

1
cl

oc
k

1

alu::testbench

1op_valid

alu::driver

alu::monitor

1 1
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Running the Simple ALU Example

You might want to see the log messages on the screen, so let’s talk about

how to run the example. In the /examples/alu_tutorial/bin direc-

tory, there is a setup script. If you look at the setup file, it sets up a few

environment variables that are needed by the run and make tools. 

First, source the setup file, then execute the following:

$TRUSS_HOME/bin/truss -—test tutorial_test

The truss command has many more options; type truss —-help for a

synopsis.

You should see the C++ source files being compiled, and then the test

should run. When the test runs, a series of printouts will announce the

flow through the test. Remember that, by default, Teal prints the file and

line number of the message. 
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Points of Interest

The next few sections address specific places in the code. These sections

follow the general way you go about hooking up a chip to a Truss-based

verification system.

For example, the first thing to be concerned with is bringing the chip out

of reset. After that, you’ll probably want to pick an interface and write

the driver and monitor classes. Then, you decide upon some specific

operations you want to perform and write the test component to exercise

the interface or feature. 

In general, the test builds the test components and ends when the last

o pe r a t i on  c o m pl e te s — t h a t  i s ,  w he n  t he  t e s t  c o m p on e n t ’s

wait_for_completion() returns. 
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Power-on Reset

Most chips have a power-on reset sequence. This sequence can be basic,

or rather complicated. In this example we address a basic sequence. 

The chip has a reset line, which is pulled low to initiate a reset. After

the line is asserted, the chip performs its reset sequence. This chip only

needs a fixed-duration pulse.

The testbench class is responsible for bringing the chip out of reset.

The testbench methods time_zero_setup() and out_of_reset() are

called by the top program to bring the chip on line. In our ALU example,

we’ll use a reference clock to count a number of cycles to keep the

reset_n low.

Below are the snippets of code that perform the chip reset. The methods

are located in testbench.cpp. Note that the verification_top()

provided a path to the top of the testbench; the path is stored in the

variable top_.

This method is called first by verification_top():

void testbench::time_zero_setup() {

teal::vreg reset(top_ + ".reset");

reset = 0;

}

Then, this method is called:

const teal::unit32 reset_count = 10;

void testbench::out_of_reset(reset r) {

teal::vreg reset(top_ + ".reset");

teal::vreg clock (top_ + ".clock");

reset = 1;

for (int i(0); i < reset_count; ++i) {

teal::at(teal::posedge(clock));

}

reset = 0;

}

That’s all there is to it. Now the chip is ready for operation.
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Driver and Monitor Protocol

Now that the chip is out of reset, we can start to drive it. This chip has

a simple protocol for sending operations to perform. Assuming op_done

is asserted, the driver puts op_code, operand_a, and operand_b on the

wire. Then it asserts do_op and waits for op_done to be asserted. The

code to do this is in alu_driver.cpp and is shown below:

void alu::driver::send_operation(const operation& op){

op_code_ = op.code;

operand_a_ = op.operand_a;

operand_b_ = op.operand_b;

op_valid_ = 1;

at (posedge(op_done_)); //wait until accepted

op_valid_ = 0;

at (negedge(op_done_));

}

The variables above with the trailing “_” are data members and are Teal

vreg objects that are connected to the chip.

The monitor code is fairly simple as well. The monitor uses a Truss utility

thread c lass  ca l led  run_loop.  I t  consis ts  of  two methods,

loop_condition() and loop_body(), which are run in a separate

thread. The idea is that a large number of monitors are infinite loops of

“wait for trigger” and then “gather data.” This class represents that

concept.

The loop_condition() method of the monitor waits for op_done to go

high. The loop_body() method then copies the result into a local vari-

able. It then calls the pure virtual method operation_completed() to

connect to the monitor agent. Here is the code, in cpu_monitor.cpp:   

void alu::monitor::loop_condition_()

{

at (posedge(operation_done_));

}

bool alu::monitor::loop_body_()

{

receive_completed_(result_.to_int());

return true; //continue loop

} 
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Other than the reset logic (and the watchdog timer), the monitor and

driver are the only code to interact with the chip wires.

Next we’ll look at how we come up with the operations to be sent to the

driver.
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The alu_test_component

We now run a random sequence of operations through the ALU, testing

t h e  b a s i c  o p e r a t i o n s  w i t h  r a n d o m  o p e r a n d s .  T h e

test_component::start_components_() method is used to run this

exercise.

The code is shown below.

void alu::test_component::start_components_() 

{

driver_->start(); 

checker_->start();

} 

Like most test components, this one just starts the lower-level compo-

nents. 
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Checking the Chip

Because we do verification for a living, the automated checking of the

chip’s results is important. In our case, we have a legacy c-model of the

ALU and will use it to check that the answer is what we expected. The

checker waits for the monitor agent to deliver a completed operation.

Then it uses the inputs sent by the generator to have the c-model come

up with the expected result. 
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The c-model prototype is shown below.

#if defined(__cplusplus)

extern "C" {

#endif

unsigned int alu_model(unsigned int a,unsigned int b,

  unsigned char op);

#if defined(__cplusplus)

}

#endif

Note that the ifdefs allow the code to be compiled by both C and C++

code.

This key algorithm is in checker.cpp and is shown below.

void alu::checker::start_()

{

for (;;) {

operation gen = generated_->get();

teal::uint32 actual = actual_->get();

if (alu_model (gen.operand_a, gen.operand_b,

 gen.op_code) == actual) {

log_ << teal_info << " EXPECTED: sent " << gen

<< " == " << actual << endm;

}

else {

log_ << teal_error << " sent " << gen 

<< " !=  " << actual << endm;

}

if (!generated_->size()) {

completed_flag_.signal();

return;

}

}

}

The checker works fine as long as the operation_done is in synch with

the result. However, the checker can be wrong if the monitor misses a

result or somehow inserts an extra one. We could have registered the chip

inputs at the same time as we got the results. However, by doing this we
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make the assumption that there are no queuing or pipe stages in the ALU.

This assumption works fine for our example, but it is probably not valid

for most ALUs.
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Completing the Test

When does the test stop? When verification_top() calls the test’s

wait_for_completion(), which in turn calls the test component’s

wait_for_completion().

In turn, the test component’s wait_for_completion() calls the

checker’s wait_for_completion(). The authors agree that this sounds

silly, but in the later examples we actually do a bit more than just forward

the call. 

In the end of the forwarding chain, it’s the checker that actually decides

when the test is done. This makes sense, because the checker is the best

able to “judge” what the chip did and when all the inputs have been

checked.

But how does the checker know? There are many possible ways, but in

this example the checker assumes that when the generated data channel

runs dry, the test is over. This is a valid assumption—as long as you make

sure that the generator can always be one step ahead of the checker. (If

your chip has any latency, this is not a hard assumption to sustain.1)

The checker code is shown below—

void tutorial::checker::wait_for_completion()

{

completed_flag_.wait();

//note that the checking thread completed normally

completed_ = true; 

}

—and at the bottom of the main check loop:

1. Note that an intergenerate delay should not affect when the expected data are 
sent to the checker. The point is that even when delays are inserted, this model 
should be valid.
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if (!generated_—>size()) {

completed_flag_.signal();

return;

}

Remember that after the wait_for_completion() returns, the top calls

the report() method in the test. The test calls the test_component’s

report() method, which in turn calls the checker’s report() method.

The report() method prints the state of the completed_ boolean. In

this way, when you have multiple test components and the watchdog

timer shuts the simulation down, you can tell which checkers have not

completed.
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Summary

This chapter is a tutorial on the Truss framework. We exercised a simple

ALU, but implemented all the parts of a Truss-based verification system.

The main objects and their connections were shown. The directory

structure was introduced so we can find our way around the code. Then,

the chip and the HDL connections were shown.

After laying out the verification system and showing how to run the

example, we looked at how the chip was to be brought out of reset. We

did a quick side tour to talk about how to run the example. Running the

example produces many log messages, but this is probably a good thing

when one is learning.

We showed how to bring the chip out of reset and how the driver and

monitor interfaced with the chip. One point to note is that while this

interface consisted of only a few wires, many interfaces in real protocols

are this small. Of course, your code will be more detailed.

We looked at an important part of the verification system, the checker.

In this example, the checker used a c-model to check that the chip was

working correctly.

The last thing we looked at was how the test stopped. We looked at the

normal path, ignoring the watchdog timer. We showed how the checker

was in charge, pausing the end of the test until all the generated data had
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been checked. The interesting point to note is that the checker may have

had errors, but it will continue until all generated data have been checked.

The Truss utility class error_threshold can be used to terminate the

s i m u l a t i o n  i n  t h e  c a s e  o f  e x c e s s i v e  e r r o r s .  T h e  Tr u s s

verification_top() does this.

Whew! We made it through the first example. Time for a coffee break

and some foosball!
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