
XZ130

AGILENT ACQIRIS
PROGRAMMER’S

GUIDE

Programmer’s Guide ZM020130E Rev.E

Programmer’s Guide Page 2 of 63

June 2007

The information in this document is subject to change without notice and may not be construed in any way as a
commitment by Agilent Technologies Inc. While Agilent Technologies makes every effort to ensure the accuracy
and contents of the document it assumes no responsibility for any errors that may appear.

All software described in the document is furnished under license. The software may only be used and copied in
accordance with the terms of license. Instrumentation firmware is thoroughly tested and thought to be functional but
it is supplied “as is” with no warranty for specified performance. No responsibility is assumed for the use or the
reliability of software, firmware or any equipment that is not supplied by Agilent Technologies Inc. or its affiliated
companies.

Any versions of this manual which are supplied with a purchased product will be replaced at your request with the
latest revision in electronic format. At Agilent Technologies we appreciate and encourage customer input. If you
have a suggestion related to the content of this manual or the presentation of information, please contact your local
Acqiris representative or Acqiris Technical Support (support@acqiris.com) or come visit our web site at
http://www.acqiris.com.

Trademarks: product and company names listed are trademarks or trade names of their respective companies

Acqiris Headquarters:

Agilent Technologies SA
12, chemin des Aulx
CH-1228 Plan-les-Ouates
Geneva
Switzerland

Acqiris USA:

Agilent Technologies Inc.
P.O. Box 2203
Monroe, NY 10949
USA

Acqiris Asia-Pacific:

Agilent Technologies
Australia Pty Ltd
347 Burwood Highway,
Forest Hill VIC 3131
Australia

Tel: +41 22 884 32 90

Fax: +41 22 884 32 99

Tel: 845 782 6544

Fax: 845 782 4745

Tel: +61 3 9210 2890

Fax: +61 3 9210 5929

© Copyright Agilent Technologies Inc. June 2007

mailto:support@acqiris.com
http://www.acqiris.com/

Programmer’s Guide Page 3 of 63

CONTENTS

1. INTRODUCTION.. 5
1.1. Message to the User ... 5
1.2. Using this Manual .. 5
1.3. Conventions Used in This Manual ... 6
1.4. Warning Regarding Medical Use... 6
1.5. Warranty... 6
1.6. Warranty and Repair Return Procedure, Assistance and Support .. 6
1.7. System Requirements... 6

2. PROGRAMMING ENVIRONMENTS & GETTING STARTED.. 7
2.1. Visual C++... 7
2.2. LabWindows/CVI .. 7
2.3. LabVIEW... 8

2.3.1. LabView 7.x/8 with old LabView programs.. 9
2.3.2. AqDx Getting Started VI.. 10
2.3.3. AqDx Example Scope VI... 10
2.3.4. AqDx Accumulated Waveform Example VI ... 11
2.3.5. AqTx TC890 VI ... 12
2.3.6. AqTx TC890 VI ... 13

2.4. Visual Basic ... 13
2.5. MATLAB... 14
2.6. Wind River VxWorks (Tornado) ... 14

2.6.1. Compiling... 15
2.6.2. Loading .. 15
2.6.3. Running the Program ... 15

2.7. Linux .. 15
3. PROGRAMMING AN ACQIRIS INSTRUMENT... 16

3.1. Programming Hints .. 16
3.2. Device Initialization ... 16

3.2.1. PCI & VXI Identification by Order Found... 17
3.2.2. PCI Identification by Serial Number.. 17
3.2.3. PCI Identification by Bus/Slot Number ... 17
3.2.4. VXI Identification .. 18
3.2.5. PXI VISA & LabViewRT Identification.. 18
3.2.6. Firmware initialization (AP-FAMILY/12-bit-FAMILY/AC /SC/Time Counters) 18
3.2.7. Automatic Definition of MultiInstruments... 18
3.2.8. Manual Definition of MultiInstruments ... 19
3.2.9. AqGeo.map file positioning ... 20
3.2.10. Simulated Devices.. 21
3.2.11. Terminating an Application ... 21

3.3. Device Configuration ... 21
3.4. Configuring Averagers... 23

3.4.1. Basic configuration .. 23
3.4.2. Dithering .. 24
3.4.3. ‘Fixed Pattern’ Background Subtraction .. 24
3.4.4. Configuring Noise Suppressed Accumulation (NSA).. 25

3.5. Configuring SSR Analyzers ... 26
3.5.1. Acquisition Parameters .. 26
3.5.2. Readout configuration .. 27
3.5.3. Time stamps ... 28

3.6. Configuring PeakTDC Analyzers ... 28
3.7. Configuring AP101/AP201 Analyzers... 29
3.8. Configuring TC8xx Time Counters ... 29
3.9. Data Acquisition .. 30

3.9.1. Starting an Acquisition... 30

Programmer’s Guide Page 4 of 63

3.9.2. Checking if Ready for Trigger ... 30
3.9.3. Waiting for End of Acquisition .. 30
3.9.4. Stopping/Forcing a D1-style Acquisition... 32
3.9.5. Analyzer and PeakTDC Autoswitch mode ... 32

3.10. D1-style Data Readout ... 34
3.10.1. Reading Digitizer Waveforms with the Universal Read Function .. 35
3.10.2. Reading Sequences of Waveforms... 35
3.10.3. Averaging Waveforms in a Digitizer ... 37
3.10.4. Reading an Averaged Waveform from an Averager .. 38
3.10.5. Reading a RT Add/Subtract Averaged Waveform from an Averager.. 39
3.10.6. Reading SSR Analyzer Waveforms ... 40
3.10.7. Reading PeakTDC Analyzer Data and Histograms .. 41
3.10.8. Reading AP101/AP201 Analyzer Waveforms ... 42

3.11. T3-style Data Readout.. 47
3.12. Trigger Delay and Horizontal Waveform Position... 47
3.13. Horizontal Parameters in Acquired Waveforms... 48
3.14. Sequence Acquisitions ... 49
3.15. Timestamps .. 49
3.16. External Clock and Reference.. 50

3.16.1. External Reference ... 50
3.16.2. External Clock (Continuous).. 51
3.16.3. External Clock (Start/Stop) .. 53

3.17. ASBus Operation ... 54
3.17.1. Channel Numbering with ASBus ... 54
3.17.2. Trigger Source Numbering with ASBus .. 54

3.18. Special Operating Modes ... 56
3.18.1. Frequency Counter ... 56
3.18.2. ‘Start on Trigger’.. 57
3.18.3. ‘Sequence Wrap’.. 57

3.19. Readout of Battery Backed-up Memories .. 58
3.19.1. Preparations before Power-Off... 58
3.19.2. Recovery after Power-Off .. 58

3.20. Reading the Instrument Temperature ... 59
4. APPENDIX A: ESTIMATING DATA TRANSFER TIMES .. 60

4.1. Principles & Formulas.. 60
4.2. Examples.. 61
4.3. Comparison Chart for Typical Transfers.. 62

Programmer’s Guide Page 5 of 63

1. Introduction

1.1. Message to the User
Congratulations on having purchased an Agilent Technologies Acqiris data conversion product. Acqiris Instruments
are high-speed data acquisition modules designed for capturing high frequency electronic signals. To get the most out
of the products we recommend that you read the accompanying product User Manual, this Programmer's Guide and
the Programmer’s Reference manual carefully. We trust that the product you have purchased as well as the
accompanying software will meet with your expectations and provide you with a high quality solution to your data
conversion applications.

1.2. Using this Manual
This guide assumes you are familiar with the operation of a personal computer (PC) running a Windows 2000/XP or
other supported operating system. In addition you ought to be familiar with the fundamentals of the programming
environment that you will be using to control your Acqiris product. It also assumes you have a basic understanding
of the principles of data acquisition using either, a waveform digitizer, a digital oscilloscope, or other similar
instrument.

The User Manual that you also have received (or have access to) has important and detailed instructions concerning
your Acqiris product. You should consult it first. You will find the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you first receive your new Acqiris product.
Special attention should be paid to sections on safety, packaging and product handling. Before
installing your product please ensure that your system configuration matches or exceeds the
requirements specified.

Chapter 2 INSTALLATION, covers all elements of installation and performance verification. Before
attempting to use your Acqiris product for actual measurements we strongly recommend that you
read all sections of this chapter.

Chapter 3 PRODUCT DESCRIPTION, provides a full description of all the functional elements of your
product.

Chapter 4 RUNNING THE ACQIRIS DEMONSTRATION APPLICATION, describes either

the operation of AcqirisLive, an application that enables basic operation of Acqiris
digitizers or averagers in a Windows 2000/XP environment;

the operation of AP_SSRDemo and in the following chapter APx01Demo, applications
that enable basic operation of Acqiris analyzers in a Windows 2000/XP environment;

the operation of DemoTC, the demonstration program that enables basic operation of
Acqiris Time Counters in a Windows 2000/XP environment;

the operation of AcqirisAnalyzers, the demonstration program for the
SC240/AC240/SC210/AC210 from a PC running a Windows 2000/XP operating system.

This Programmer’s Guide is divided into 3 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how to use it.

Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING STARTED, provides a description for
programming applications using a variety of software products and development environments.

Chapter 3 PROGRAMMING AN ACQIRIS INSTRUMENT, provides information on using the device driver
functions to operate an Acqiris instrument.

The accompanying Programmer’s Reference manual is divided into 2 sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how to use it.

Chapter 2 DEVICE DRIVER FUNCTION REFERENCE, contains a full device driver function reference.
This documents the traditional Application Program Interface (API) as it can be used in the
following environments:

LabWindowsCVI, Visual C++, LabVIEW, MATLAB, Visual Basic, Visual Basic .NET.

Programmer’s Guide Page 6 of 63

1.3. Conventions Used in This Manual
The following conventions are used in this manual:

This icon to the left of text warns that an important point must be observed.

WARNING Denotes a warning, which advises you of precautions to take to avoid being electrically shocked.

CAUTION Denotes a caution, which advises you of precautions to take to avoid electrical, mechanical, or
operational damages.

NOTE Denotes a note, which alerts you to important information.

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text or a note

mono text is used for sections of code, programming examples and operating system commands.

Certain features are common to several different modules. For increased readability we have defined the following
families:

DC271-FAMILY DC135/DC140/DC211/DC211A/DC241/DC241A/
 DC271/DC271A/DC271AR/DP214/DP235/DP240

AP-FAMILY AP240/AP235/AP100/AP101/AP200/AP201

12-bit-FAMILY DC440/DC438/DC436/DP310/DP308/DP306

10-bit-FAMILY DC122/DC152/DC222/DC252/DC282

1.4. Warning Regarding Medical Use
The Agilent Technologies Acqiris cards are not designed with components and testing procedures that would ensure
a level of reliability suitable for use in treatment and diagnosis of humans. Applications of these cards involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user. These cards are not intended to be a substitute for any form of established process or equipment used
to monitor or safeguard human health and safety in medical treatment.

WARNING: The modules discussed in this manual have not been designed for making direct measurements
on the human body. Users who connect an Acqiris module to a human body do so at their own
risk.

1.5. Warranty
Please refer to the appropriate User Manual.

1.6. Warranty and Repair Return Procedure, Assistance and Support
Please refer to the appropriate User Manual.

1.7. System Requirements
Please refer to the appropriate User Manual.

Programmer’s Guide Page 7 of 63

2. Programming Environments & Getting Started
Agilent Technologies supplies sample programs as a starting point for the development of user-specific Acqiris
applications. For Windows systems there are samples for the Visual C/C++, Visual Basic, LabWindows/CVI,
LabVIEW, and MATLAB. For VxWorks real-time systems there are sample programs for Tornado. An Application
Program Interface (API) hlp file, with a shortcut named Acqiris Instrument Driver Help, is available and contains
condensed descriptions of all of the interface functions.

The API has been split into three families:

 Acqrs Generic functions - AqBx - these can be used for all Acqiris Instruments

 AcqrsD1 Digitizer functions - AqDx - to be used for Digitizers and Analyzers

 AcqrsT3 Time Counter functions - AqTx - to be used for the family of Time Counters

All of these functions are still contained in one library called AqDrv4. The LabView interface is split into the three
corresponding AqXX parts. The AcqrsD1 section includes redundant copies of the generic functions so that
backward calling compatibility can be maintained for existing code.

Preliminary remark: it is assumed in the following that the hardware and Acqiris software installations (see User
Manual chapter 2) have already been completed.

NOTE: Visual C/C++, VxWorks, and LabWindows/CVI all rely on the standard VISA types defined by
VXIplug&play Systems Alliance (VISA). The visatype.h include file can be found in the include directory created at
installation.

2.1. Visual C++
For digitizer users:

• Open either the project file GetStartedVC.dsp or GetStartedAvgVC.dsp in VisualC++ and build the project.

• Note that you should insert the lines

#include "AcqirisImport.h"

#include "AcqirisD1Import.h"

 at the beginning of every file that will access Acqiris D1 Driver functions.

• The project should link to the AqDrv4.lib file.

For time counter users:

• Open either the project file GetStartedTC840.dsp or GetStartedTC890.dsp in VisualC++ and build the
project.

• Note that you should insert the lines

#include "AcqirisImport.h"

#include "AcqirisT3Import.h"

 at the beginning of every file that will access Acqiris Time Counter Driver functions.

• The project should link to the AqDrv4.lib file.

2.2. LabWindows/CVI
• Open the project file GetStarted.prj in LabWindows/CVI and build the project.

• Note that you should insert the lines

#include "AcqirisImport.h"

 and either

#include "AcqirisD1Import.h"

 or

#include "AcqirisT3Import.h"

Programmer’s Guide Page 8 of 63

 at the beginning of every file that will access Acqiris Device Driver functions.

• The project should include the AqDrv4.lib file.

2.3. LabVIEW
The AqXX (Acqiris Digitizer) driver for LabVIEW conforms to National Instruments' Instrument Driver Standard. If
LabVIEW is installed on the target machine when the Acqiris software is installed, the AqXX driver interfaces will
be copied to the LabVIEW n\Instr.lib directory. The driver function VI’s can then be found on the Functions palette
(block diagram), Instrument Drivers subpalette. There is also a Getting Started VI, as well as some example VI’s.
The standard API help file is available from within LabVIEW. The Revision Query VI gives information on the
current version. There are actually many llb files, AqBx.llb, AqTx.llb, and AqDx.llb containing the routines shown
below. The AqDx_obs.llb has deprecated but still usable routines.

Under LabView8 the three families discussed above have been placed into 3 projects. Each project contains
Examples, Private, and Public Folders. The project folder also contains an Acqiris Xx Readme.html giving version
information. As an example, the Tx project looks as shown below:

The Example folder contains ready to use potential starting points for your own programs. Individual library
functions can be found at the Public level or in one of the 4 categories shown. Query functions are in the Utility
folder. The block diagram of the VI Tree.vi can be used to access individual functions. It allows quick and easy
access to all needed vi’s.

The AqBx Generic functions family contains the following vi’s.

The AqBx Examples section contains three very simple cases to show some basic functionality.

Programmer’s Guide Page 9 of 63

The AqDx Digitizer functions family contains the following vi’s. The diagram also shows the AqBx functions that
can be used. These AqBx functions are to be preferred over their AqDx equivalents.

The AqTx Time Counter functions family contains the following vi’s. The diagram also shows the AqBx functions
that need to be used.

2.3.1. LabView 7.x/8 with old LabView programs
If you have an existing LabView program you can still use it or develop futher under LabView 8. You can continue
to use the VI’s and libraries of the LabView 7.1 environment.

If you are still using the AqDx versions under LabView 7.x they will not immediately be found when you load your
vi. LabView will ask you which library should be used; you should enter the name of the library of obsolete
functions, AqDx_obs.llb.

Programmer’s Guide Page 10 of 63

2.3.2. AqDx Getting Started VI

This VI demonstrates how to use some of the basic components of the AqDx Acqiris Digitizer Driver. It finds and
initializes a digitizer, sets the basic parameters according to the controls on the front panel, and then acquires one
waveform. Note that the front panel controls should be set to their desired values before the VI is run.

2.3.3. AqDx Example Scope VI

This VI presents a basic, interactive virtual oscilloscope using the AqDx Digitizer Driver. Not all the functionality of
the Acqiris digitizers is supported in this program, but most of the most-commonly-used functions are demonstrated
in it.

Programmer’s Guide Page 11 of 63

2.3.4. AqDx Accumulated Waveform Example VI

This VI demonstrates how to use the Accumulate Waveform function of the Acqiris Digitizer Driver. It finds and
initializes a digitizer, sets the basic parameters according to the controls on the front panel, and then acquires and
accumulates waveforms as the user requests. Note that the front panel controls should be set to their desired values
before the VI is run.

Programmer’s Guide Page 12 of 63

2.3.5. AqTx TC890 VI

This VI demonstrates how to use a TC840 Time Counter. It finds and initializes an instrument, sets the basic
parameters according to the controls on the front panel, and then acquires and accumulates data as the user requests.
Note that the front panel controls should be set to their desired values before the VI is run.

Programmer’s Guide Page 13 of 63

2.3.6. AqTx TC890 VI

This VI demonstrates how to use a TC890 Time Counter. It finds and initializes an instrument, sets the basic
parameters according to the controls on the front panel, and then acquires and accumulates data on the common and
the chosen channel as the user requests. Note that the front panel controls should be set to their desired values before
the VI is run.

2.4. Visual Basic
Visual Basic support is available for Versions 5.0 or 6.0 with sample programs in the VB directory. Basic .NET
support (AcqrsD1Interface.vb) is also available but there are no sample programs yet.

The Visual Basic sample program comes in 8-bit and 12-bit versions. The 12-bit programs can also be used for the
10-bit digitizers. They each consist of 3 major parts:

1. The AcqrsD1Interface.bas file that contains the Visual Basic version of the interface to the Acqiris driver dll’s
(installed in the System directory). This file is needed for all Visual Basic projects involving Acqiris digitizers.

Programmer’s Guide Page 14 of 63

2. The AcqirisShow8.frm (or AcqirisShow12.frm) file that contains all the basic functionality of the sample
program, such as initialization, acquisition control and display.

3. The DevCtrlForm8.frm (or DevCtrlForm12.frm) file with the code for a dialog box for the control of a
complete digitizer.

The Visual Basic sample program is capable of managing several Acqiris digitizers attached to the computer and of
displaying one channel of one digitizer at a time. If no digitizer exists on the computer, it initializes 3 simulated
digitizers (in Sub Form_Initialize()). While it has enough functionality to permit a fairly complete operation of a
digitizer, many possible features were left out in order to keep the program simple to understand.

In order to run the Visual Basic sample program, you must have installed the Visual Basic Version 5.0 (or 6.0 but not
.NET):

• Start Visual Basic

• Use the menu File → Open Project… to point to the AcqirisShow1.vbp project file in the AcqirisLive\VB
directory and choose Open

• After the project is loaded, use the menu Run → Start or F5 to start executing the project. A waveform display
window should pop up, displaying a real (or simulated) waveform.

• Use the button Digitizer Control to make a dialog box appear. The top-most control Digitizer# permits the
choice of one of several digitizers (and to check how many were found). If no physical digitizer was found, the
program initializes 3 simulated digitizers, a DP110, DC240 and a DC110 (with the 2MB option). You can
change the simulated digitizers in Sub Form_Initialize().

• The program is stopped by clicking on the Close button (x) on the upper right hand side of the waveform display
window.

The waveform display window can be resized, but the dialog box cannot.

The acquisition mode Norm really is another Auto mode, with a slightly longer timeout period. A real Norm mode
without timeout would require a way for the user to regain control in situations where there is no trigger.

Simulated digitizers have fixed simulated input signals (sine waves, triangle waves or square waves) that cannot be
modified through the supplied API.

Note: The programming advice in the rest of this manual is given for the C language interface. However, it is equally
valid for Visual Basic. Refer to the file AcqrsD1Interface.bas for the correspondence between the Visual Basic and
C-language names of the Acqiris driver functions.

Note: There is no VB support for Time Counter modules.

2.5. MATLAB
MATLAB is a very powerful environment to analyse and display data. The interface from it to the Acqiris products
offers simple direct access to the Acqiris driver. An example is in the directory <AcqirisDxRoot>\MATLAB.

To use it,

either set the MATLAB current directory (cd Command) to <AcqirisDxRoot>\MATLAB

or the file from that directory to the directory of your choice.

GetStarted
Filename: Aq_GetStarted.m
Argument: No Argument

This first example shows you how to perform a single acquisition. The desired configuration is loaded. You
then start the acquisition, and read and plot the acquired data.

2.6. Wind River VxWorks (Tornado)
The VxWorks sample program is written for the Tornado environment. The GetStartedVxW.cpp file contains a
simple user program which:

• spawns a process with a large stack as needed by the Acqiris driver

• finds the Acqiris digitizers on the target machine

• initializes the first (or only) one

Programmer’s Guide Page 15 of 63

• configures some acquisition parameters (and rereads them for checking)

• loops (100 times) over a cycle that
- starts the acquisition
- waits for it to terminate
- reads the waveform

2.6.1. Compiling
This file can be compiled 'as is' within the GetStartedVxW.wsp Tornado workspace. However, please make sure to
run an update to the project dependencies. You may need to change the directory paths for the Tornado include files
and the Acqiris include files if you move the Tornado directory or use a different development environment. In the
latter case you must verify that the compilation flags

–D_VXWORKS –D_ACQIRIS are present.

2.6.2. Loading
First download the Low-Level (kernel-mode) VxWorks Device Driver file VxWorksDriverPCI.out to the target
machine, followed by the VxWorks Driver file AcqirisVxWUMode.out.

Finally, you should download the VxWorks application GetStartedVxW.out.

2.6.3. Running the Program
It is recommended that you follow the code with the debugger, since it is the only way to see the response of the
function calls immediately.

2.7. Linux
The AcqirisDemo program can simply be run from the AcqirisLinux directory by entering:

Demo/AcqirisDemo

The library /usr/lib/libAqDrv4.so is compiled with either gcc 3.3, 3.4, or 4.1; you need to have installed the desired
version.

The Linux GetStarted sample program is provided ready to run. It can also be created without the need of an
additional development application.

• Enter the command “cd usr/src”

• Run make to compile and link the program

• Note that the include and library paths are defined in the Makefile.

The GetStarted.cpp file contains a simple user program which:

• has globally allocated buffers to achieve optimal readout performance

• finds the Acqiris digitizers on the target machine

• initializes the first (or only) one

• configures some acquisition parameters (and rereads them for checking)

• loops (100 times) over a cycle that
- starts the acquisition
- waits for it to terminate
- reads the waveform

Programmer’s Guide Page 16 of 63

3. Programming an Acqiris Instrument

3.1. Programming Hints
When programming an Acqiris instrument it is important to remember that the Acqiris driver must be freshly loaded
(this is usually automatic) by any process that uses the modules. This means that each process starts over with a
completely clean view of the system and no knowledge of any previously determined calibration constants or
settings. Thus a calibration ought to be done before the modules are used for any acquisitions. Of course the system
may have to be recalibrated later if the temperature of the modules is changing. Users cannot expect to control
Acqiris modules with a succession of process invocations with each one executing a single command. Only one
process on a machine can have loaded the Acqiris driver at any given moment.

Most of the Acqrs and AcqrsXX driver functions are reentrant. After initialization, they are protected against
multiple calls from different threads. The unprotected routines are :

Acqrs_init Acqrs_initWithOptions Acqrs_getNbrInstruments

Acqrs_close Acqrs_closeAll

AcqrsD1_multiInstrAutoDefine AcqrsD1_multiInstrDefine AcqrsD1_multiInstrUndefineAll

Be sure to read the comments on the functions and their parameters in chapter 2, DEVICE DRIVER FUNCTION
REFERENCE of the Programmer's Reference Manual. Another valuable source is the header files:
AcqirisInterface.h, AcqirisD1Interface.h, or AcqirisT3Interface.h for C-like environements, or the equivalent
.bas or .vb files for Visual Basic.

The examples below do not check the return value of the Acqrs_… functions. In real applications, you should
always check the return values of functions.

3.2. Device Initialization
Before any (real or simulated) device can be used, each device must be initialized with a separate call to the function
Acqrs_InitWithOptions. For real devices, you can also use the slightly simpler function Acqrs_init. Both functions
return the instrumentID (whose value will be different for each device), which must be subsequently used in any
other function call. The arguments IDQuery and resetDevice are currently ignored. The use of the string arguments
resourceName and optionsString are explained with the initialization scenarios in the following sections.

If you use modules that are connected via ASBus, you need to configure them as MultiInstruments. This lets you
treat them as normal instruments with an increased number of channels. E.g. you can connect 3 DC270’s to form a
single 12-channel, 1 GS/s digitizer.

If needed, and before initializing the devices, a call to either

 Acqrs_getNbrInstruments can be used to learn how many instruments have been found.
However, a side-effect of this call will be to select the use of single instruments. This can be
manually circumvented as discussed below.

or

AcqrsD1_multiInstrumentAutoDefine can be used to automatically combine as MultiInstruments
modules that are connected via ASBus and return the total number of instruments found, including
individual modules without ASBus connections. It automatically searches for all sets of modules that
are connected with ASBus, and configures each such block as a single MultiInstrument.

As an alternative to automatic MultiInstrument definition, you can initialize each module individually with the
function Acqrs_InitWithOptions, and then combine some of them with the function AcqrsD1_multiInstrDefine.
This method provides better control over which modules are combined and in what order, at the expense of careful
book keeping of which instrumentID’s are available. For details, please refer to the section 3.2.8, Manual Definition
of MultiInstruments.

Programmer’s Guide Page 17 of 63

3.2.1. PCI & VXI Identification by Order Found
If you don’t know which and/or how many Acqiris instruments are present on the machine, use this code fragment:

ViSession instrumentID[10];
long nbrInstruments;
ViStatus status;
ViString options = "";
status = Acqrs_getNbrInstruments(&nbrInstruments);
// Initialize the instruments
for (long i = 0; i < nbrInstruments; i++)
{
 char resourceName[20];
 sprintf(resourceName, "PCI::INSTR%d", i);
 status = Acqrs_initWithOptions(resourceName, VI_FALSE, VI_FALSE,

options, &(instrumentID[i]));
}

The resource name must be of the form “PCI::INSTR0”, “PCI::INSTR1”, etc. This is true in spite of the fact that all
PCI, cPCI, and VXI instruments will be found. The integer part of the resource name will be referred to as the
deviceIndex. The API contains a function, Acqrs_getDevTypeByIndex, to allow you to determine the family of an
instrument before actually initializing it.

If there are several instruments in the system, the order in which they are found is not obvious. It depends on the
Windows 2000/XP Configuration Manager implementation, on the PCI bus topology in your computer, and possibly
on the BIOS.

3.2.2. PCI Identification by Serial Number
All Acqiris instruments are labeled with a unique serial number. For PCI digitizers you will find it on the front panel
and for CompactPCI instruments it is on the right injector/ejector handle. This same serial number is coded into an
on-board EEPROM that is read by the Device Driver upon initialization. You can therefore ask to initialize a specific
instrument by specifying its serial number:

ViSession instrumentID;
Acqrs_InitWithOptions("PCI::SER10047", VI_FALSE, VI_FALSE, "",

&instrumentID);

Note that the serial number must be contiguous to the keyword SER; leading zeros are accepted.

3.2.3. PCI Identification by Bus/Slot Number
While initialization by serial number is easy to implement, it has the drawback that anytime an instrument is replaced
by another one (e.g. if a failure occurred), the program has to be modified. The Acqiris API offers the possibility of
specifying the logical position of the device at initialization:

ViSession instrumentID;
Acqrs_InitWithOptions("PCI::BUS02::SLOT06", VI_FALSE, VI_FALSE, "",

&instrumentID);

Again, the bus and slot numbers must be contiguous to the keywords BUS and SLOT; leading zeros are accepted.

Unfortunately, it is not obvious at all by simple inspection, which bus and slot number a given PCI device occupies.
One way to find out is to use AcqirisLive and to observe the bus/slot numbers that can be found under the Help menu
selection in Instrument Information. Another way is to use the auto-identification initialization method and then to
interrogate each device with:

ViSession instrumentID;
char name[20];
long serialNbr, busNbr, slotNbr;
Acqrs_getInstrumentData(instrumentID, name, &serialNbr, &busNbr,

&slotNbr);

Programmer’s Guide Page 18 of 63

3.2.4. VXI Identification
Instruments in IX20x VXI Carrier modules will also be found by the driver. The resource name will be in the form
“VXI[board]::[logical_addr]::INSTR” like “VXI0::1::INSTR”.

3.2.5. PXI VISA & LabViewRT Identification
The driver can also be used in the VISA environment. In this case the resource name has the following allowed
forms:

"PXI<bus>::<device>::INSTR"
"PXI0::<bus>-<device>::INSTR"
"PXI0::CHASSIS<chassis>::SLOT<slot>::INSTR"

3.2.6. Firmware initialization (AP-FAMILY/12-bit-FAMILY/AC /SC/Time
Counters)

In these modules the on-board FPGA’s (field-programmable gate arrays) contain processor logic needed to
efficiently execute several crucial functions. For Windows and Linux users, they will be automatically programmed
at startup before calibration. The standard initialization using Acqrs_init can be used.

The name for the FPGA program file is a synthesis of model, FPGA destination, and option information. The file
name suffix is always ".bit". The automatic initialization mentioned above will load the FPGA files as follows:

• For the first time inititalization of a module needing an FPGA file, the desired file will be searched for in the
working directory of the application.

• Then the working directory will be searched for a file "AqDrv4.ini"

• Finally the directory pointed to by the environment variable "AcqirisDxDir" will be searched for a file
"AqDrv4.ini"

• The "AqDrv4.ini" file should contain the name of a directory which will also be searched for the appropriate
FPGA files. Here is a typical example of its contents:

[Acqiris]
fpgaPath=C:\Program Files\Acqiris\firmware
GeoMapPath=C:\Program Files\Acqiris\bin

The GeoMapPath entry will be described later in this chapter.

• The final path used will be remembered and used for all subsequent demands for this module. In particular
this applies if AcqrsD1_configMode is used to change functionality.

Additional VxWorks Instructions

For VxWorks users, the normal mechanism for finding the FPGA .bit files will not work; the driver has to be told
explicitly where to find them. This procedure is also shown in the GetStarted.cpp VxWorks sample program. Thus,
Acqrs_InitWithOptions has to be called with

ViString options = "cal=0";
status = Acqrs_InitWithOptions(resourceName, VI_FALSE, VI_FALSE, options,

&(instrumentID[i]));

Then, before using the desired module in any mode, you should execute code like that shown below:
 ViString FPGADirectoryName = "C:\firmware"; // or "C:\" for ETS
 Acqrs_configLogicDevice(instrumentID, NULL,
 FPGADirectoryName, 2);

As a final step you should now calibrate the instrument (which will cause the FPGA files to be loaded):

Status = Acqrs_calibrate(instrumentID);

3.2.7. Automatic Definition of MultiInstruments
The function AcqrsD1_multiInstrumentAutoDefine automatically searches for all sets of modules that are
connected with ASBus, and configures each such block as a single MultiInstrument. It then reports the total number

Programmer’s Guide Page 19 of 63

of instruments found, including individual modules without ASBus connections. You still need to retrieve the
instrumentID for each instrument by calling the function Acqrs_InitWithOptions afterwards, as shown below:

ViSession instrumentID[10];
long nbrInstruments;
ViStatus status;
ViString options = "";
status = AcqrsD1_multiInstrAutoDefine(&nbrInstruments);

// Retrieve the instrument identifiers
for (long i = 0; i < nbrInstruments; i++)
{
 char resourceName[20];
 sprintf(resourceName, "PCI::INSTR%d", i);
 status = Acqrs_InitWithOptions(resourceName, VI_FALSE, VI_FALSE,

options, &(instrumentID[i]));
}

The calls to Acqrs_InitWithOptions are needed to obtain the instrumentID’s. The physical digitizers were already
initialized when AcqrsD1_multiInstrumentAutoDefine was called.

The digitizers within a single MultiInstrument are numbered from 0 to (NbrModulesInInstrument – 1). In Acqiris
CC10x compactPCI crates, the module 0 is always closest to the controller slot, i.e. module numbers increase with
increasing front panel slot numbers. This statement is also applicable to CC121 crate configurations with both an
Acqiris acquisition module in one of the last 7 slots and with the PC running under Windows 2000 or XP. Users of
other systems or crates may need to provide AqGeo.map files to give the driver needed information. The GeoMapper
application described in the User Manuals can create this file. For details on channel and trigger source numbering,
please refer to section 3.17, ASBus Operation.

The master module is automatically chosen, according to these rules:

ASBus

• If modules of different memory lengths are combined, only modules with the shortest memory length can be
master modules

• The master module is chosen as near as possible to the center module, in order to minimize propagation
delays.

ASBus2 6U digitizers

• The master module is chosen as near as possible to the center module, in order to minimize propagation
delays. There can be at most 5 modules in the MultiInstrument.

ASBus2 3U digitizers

• The master module will be the rightmost of up to 3 modules.

The function Acqrs_getInstrumentData will return the information about the master module. If you want control
over which module is the master, and in which order they should appear, use the manual definition, described in the
next section.

3.2.8. Manual Definition of MultiInstruments
The function AcqrsD1_multiInstrDefine permits a 'manual' definition of how to combine multiple digitizers with
the ASBus. It cannot be used for ASBus2 instruments.

Use a code fragment like the following one for the manual combination of digitizers:
ViSession instrumentID[10], idList[6];
long nbrInstruments;
ViStatus status;
ViString options = "cal=0"; // since calibration will be performed

explicitly later
status = Acqrs_getNbrInstruments(&nbrInstruments);

Programmer’s Guide Page 20 of 63

// Initialize the digitizers
for (long i = 0; i < nbrInstruments; i++)
{
 char resourceName[20];
 sprintf(resourceName, "PCI::INSTR%d", i);
 status = Acqrs_InitWithOptions(resourceName, VI_FALSE, VI_FALSE,

options, &(instrumentID[i]));
}
// Now combine the first 3 digitizers (in inverse order)
idList[0] = instrumentID[2];
idList[1] = instrumentID[1];
idList[2] = instrumentID[0];
ViSession multiInstrID;
ViSession masterIndex = instrumentID[1];
long nbrInList = 3;
status = AcqrsD1_multiInstrDefine(idList, nbrInList, masterIndex,

&multiInstrID);
status = Acqrs_calibrate(multiInstrID);

The first part of the code above finds and initializes all individual digitizers, as shown in section 3.2.1, PCI & VXI
Identification by Order Found. Of course, you could also use one of the other 2 methods of identifying individual
digitizers.

After AcqrsD1_multiInstrDefine has executed successfully, the instrumentID’s in the list idList become
unavailable for further operations. You must use the returned multiInstrID to refer to the newly defined
MultiInstrument.

You are responsible for making sure that

• all participating digitizers are physically connected with ASBus bridges

• the modules are of the same model type

• the master module has no more memory than any other participating digitizer

• an AcqGeo.map file is available if needed by the driver

If the master module has more memory than any other digitizer, the combined instrument will work as long as you
never request more memory than that available in the unit with the shortest memory.

The digitizers within the 'manually' defined MultiInstrument are numbered from 0 to (nbrInList – 1), exactly as
presented in the digitizer list idList. For details on channel and trigger source numbering, please refer to section 3.17,
ASBus Operation.

3.2.9. AqGeo.map file positioning
For ASBus MultiInstruments in some systems the driver will need additional information about the physical ordering
of the modules. This information is stored in a file named AqGeo.map which the driver will load when an ASBus
instrument is defined. The driver will search for the AqGeo.map file as follows:

• First the file will be searched for in the working directory of the application.

• Then the working directory will be searched for a file "AqDrv4.ini"

• Finally the directory pointed to by the environment variable "AcqirisDxDir" will be searched for a file
"AqDrv4.ini"

• The "AqDrv4.ini" file should contain the name of a directory which will also be searched for the
AqGeo.map file. Here is a typical example of its contents:

[Acqiris]
GeoMapPath=C:\Program Files\Acqiris\bin

Programmer’s Guide Page 21 of 63

3.2.10. Simulated Devices
If you want to work with simulated devices, none of the methods above are applicable. Any module supported by the
driver can be simulated; analyzers and averagers generate data in digitizer mode. Any memory option available for
the module can be used for a call to Acqrs_setSimulationOptions as shown in this code fragment:

ViSession instrumentID;
ViStatus status;
status = Acqrs_setSimulationOptions("M2M");
// Initialize the instrument
status = Acqrs_InitWithOptions("PCI::DC110", VI_FALSE, VI_FALSE,

"simulate=TRUE", &(instrumentID));

The first function call sets the instrument options that you want to obtain, e.g. “M2M” for the long memory option of
a DC110. In the second call, you must specify “simulate=TRUE” (without any spaces!). The device driver creates a
simulated device of your choice. The resource name string is always of the form “PCI::aannn”, where aannn is a
valid instrument module name.

The simulation options will apply to all subsequent calls to Acqrs_InitWithOptions, until they are reset with
Acqrs_setSimulationOptions ("").

3.2.11. Terminating an Application
For an orderly shut down of your application, we recommend the following sequence:

// Stop the instruments
for (long i = 0; i < nbrInstruments; i++)
{
 status = AcqrsD1_stopAcquisition(instrumentID[i]);
 // or status = AcqrsT3_stopAcquisition(instrumentID[i]);
}
Acqrs_closeAll();

Stopping the acquisition of all instruments ensures that there is no further activity that could, for example, generate
an interrupt. The function Acqrs_closeAll shuts down the driver components in the correct order, and thus helps
avoid crashes of the application during closing.

3.3. Device Configuration
As a general rule it should be remembered that new values to be used by the modules, as set with the
AcqrsXX_config functions, are remembered by the driver software but not immediately acted upon. They will only
really be loaded into the instrument’s registers at the beginning of an acquisition when AcqrsXX_acquire is called.
At that time all necessary changes will be made and, depending on the type of changes, the driver will force itself to
wait the appropriate settling time before it starts the acquisition. This is done to ensure that the acquisition will occur
in the desired state. The program does not have to include ad hoc waits to allow the analog hardware to settle. The
settling times vary from none in the case of no change, to ~0.5 ms in the case of offset changes and to ~5 ms for relay
changes or changes between normal operation and External Clock Reference. In the special case of switching from
DC to AC coupling, the settling time is 100 ms. Time base setting changes also have associated settling times.

 NOTE: The special case of making transitions from low to high impedance is treated immediately to avoid the risk
of damaging the front-end circuitry of the digitizer. When making transitions from high to low impedance you must
ensure that large voltages are not applied before the change has really happened. Therefore it is recommended to
wait ~5 ms after having asked for an impedance change and before applying any large voltages. Impedance changes
can also affect other devices in the signal path.

Unneeded calls to the AcqrsXX_config functions should be avoided because they can delay the start of the next
acquisition.

NOTE: The AcqrsXX_get functions return the configuration values to be used for the next acquisition.

Use the following short code fragment for a device configuration:

Programmer’s Guide Page 22 of 63

// Configure
double sampInterval = 1.e-9, delayTime = 0.0;
long nbrSamples = 10000, nbrSegments = 1;
long channel = 1, coupling = 1, bandwidth = 0;
double fullScale = 2.0, offset = 0.0;
long trigCoupling = 0, trigSlope = 0;
double trigLevel = 20.0; // in % of vertical Full Scale !
AcqrsD1_configHorizontal(instrID, sampInterval, delayTime);
AcqrsD1_configMemory(instrID, nbrSamples, nbrSegments);
AcqrsD1_configVertical(instrID, channel, fullScale, offset, coupling,

bandwidth);
AcqrsD1_configTrigClass(instrID, 0, 0x00000001, 0, 0, 0.0, 0.0);
AcqrsD1_configTrigSource(instrID, channel, trigCoupling, trigSlope,

trigLevel, 0.0);

Comments:

• Channel numbers run from 1 to nbrChannels, not from 0! Segment numbers, however, run from 0 to
(nbrSegments – 1).

• If the desired sampling interval implies that multiple converters/channel will be needed a call to
AcqrsD1_configChannelCombination will be needed before the call to AcqrsD1_configHorizontal.

• Specifying more than 1 segment in AcqrsD1_configMemory implies the use of Sequence mode. The 10-bit-
FAMILY & DP1400 instruments offer additional functionality through AcqrsD1_configMemoryEx. This
includes the Simultaneous Multibuffer Acquisition and Readout (SMAR) mode to allow a higher loss-less
trigger rate. For 10-bit units with extended memory there is the possibility of restricting memory use to the
internal memory to reduce the maximum dead time between segments of a sequence acquisition.

• The 5 main configuration functions are protected against illegal or incoherent values. Thus, the system might
adapt the values you ask for. There are 5 'query' counterparts to these functions, AcqrsD1_getHorizontal,
AcqrsD1_getMemory, AcqrsD1_getVertical, AcqrsD1_getTrigClass, and AcqrsD1_getTrigSource, which
you can interrogate.

• The function AcqrsD1_configTrigClass configures the trigger class control parameters of the digitizer. For
most Acqiris products, the edge trigger class is the only class available. For this class, the available source
patterns are Channel 1 through 4 or the external triggers. The AcqrsD1_configTrigSource function configures
the source parameters coupling, slope, and level as shown in the example above. Notice that the functions
AcqrsD1_configTrigClass and AcqrsD1_configTrigSource must always be used together in order to complete
the setup of the trigger configuration. Refer to chapter 2, DEVICE DRIVER FUNCTION REFERENCE of
the Programmer's Reference Manual for a detailed description of these two functions.

• The helper functions AcqrsD1_bestSampInterval and AcqrsD1_bestNominalSamples are sometimes useful
for deciding on the nominal number of data points and the sampling interval to use for a given time window to
cover. If you ask for a nominal number of samples, the system actually needs some additional samples for
reasons of data alignment, acquisition stop-time overhead and other reasons. In some cases, the additional
'invisible' samples can exceed the number of 'visible' ones. The helper functions take such memory overheads
into account when advising you on the recommended sampling interval and number of samples. You are free to
ignore the advice, but the system is likely to adapt your setup values if the requested number of samples does not
fit the available memory.

• Specifying the value 0 for delayTime sets the trigger point to the beginning of the waveform. A negative value
corresponds to pre-trigger, a positive one to post-trigger. Refer to the section3.12, TRIGGER DELAY AND
HORIZONTAL WAVEFORM POSITIONfor a detailed explanation of the use of delayTime.

• For DC coupling the trigger levels in %FS as needed by AcqrsD1_configTrigSource can be calculated as
follows:
TriggerLevelPercent = 100*(TriggerLevelVolts + vOffset)/Fsrange;

• The granularity of a trigger value setting is limited by the hardware that uses an 8-bit DAC covering somewhat
more than the desired range.

• To set the external trigger range for a DC271-FAMILY, a 10-bit-FAMILY module, or an AP240/AP235 signal
analyzer platform, add a call to AcqrsD1_configVertical with channel = -1 before the call to
AcqrsD1_configTrigSource.

Programmer’s Guide Page 23 of 63

• The DP1400 dual source pattern triggers can be activated by calling the function AcqrsD1_configTrigClass
with an appropriate TrigClass and a sourcePattern indicating the two desired sources.

3.4. Configuring Averagers

3.4.1. Basic configuration
The averagers have 2 operational modes, digitizer and averager, controlled with the function:

AcqrsD1_configMode(instrID, mode, 0, 0);

The value mode can be set to 0 (digitizer) or 2 (averager).

The averager mode uses a number of additional configuration parameters, which describe the requested averaging
conditions.

Use the following short code fragment to configure an average of 1000 waveforms of 20’000 data points, with a
dithering range of ± 15 ADC LSB’s and a start delay of 128 samples for an AP100:

// Configure
long channelNbr = 0, nbrSamples = 20000, nbrWaveForms = 1000;
long ditherRange = 15, trigResync = 1;
long startDelay = 128, stopDelay = 0;

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “NbrSamples”, &nbrSamples);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “NbrWaveforms”, &nbrWaveForms);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “DitherRange”, &ditherRange);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “TrigResync”, &trigResync);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “StartDelay”, &startDelay);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “StopDelay”, &stopDelay);

Comments:

• The value channelNbr is usually 0. However, for AP240/AP235 Signal Analyzer platforms it can take on
the value of the desired channel for some of the parameters.

• When in averager mode, the following digitizer parameters are ignored:

 delayTime of the function AcqrsD1_configHorizontal is replaced by “StartDelay” and “StopDelay”
(in future software versions, the parameter sampInterval of the function AcqrsD1_configHorizontal is
likely to be replaced by “SampInterval”)

 nbrSamples and nbrSegments of the function AcqrsD1_configMemory are replaced by “NbrSamples”
and “NbrSegments”

• The values nbrSamples, startDelay and stopDelay must be integer multiples of the ‘averaging block size’,
which is always 16 in the AP100 or AP240/AP235 Dual-channel mode, and 32 in the AP200 or
AP240/AP235 Single-channel mode. If the supplied value is not an integer multiple of the ‘averaging block
size’, it is truncated to the next lower integer multiple. Thus, nbrSamples = 250 will be truncated to 240 (15
* 16) on an AP100, and to 224 (7 * 32) on an AP200. You can query the actual value with the function
AcqrsD1_getAvgConfig.

• The value startDelay controls the time between the trigger and the first data sample that is to be added to the
averager sum. It is expressed in samples and must be an integer multiple of the ‘averaging block size’,
which is always 16 in the AP100 or AP240/AP235 Dual-channel mode, and 32 in the AP200 or
AP240/AP235 Single-channel mode.

• The stopDelay permits the addition of an extra delay to the dead time between the averaging of subsequent
waveforms. Its minimum value may be zero. It also is expressed in samples and must be an integer multiple
of the ‘averaging block size’.

Programmer’s Guide Page 24 of 63

• The ditherRange value may be between 0 (no dithering) and 15 (max dithering). Please refer to the next
section for further explanations.

3.4.2. Dithering
Dithering reduces the effect of non-ideal differential non-linearity of the analog-to-digital converter, by adding or
subtracting small offsets to the input signal. The offset is constant during the acquisition of a single waveform, and
then modified to another value during the next waveform.

The dithering range, N is programmable between 0 (no dithering) and 15, with the function
AcqrsD1_configAvgConfig(instrID, channelNbr,

 “DitherRange”, N);

Dithering reduces the range of the ADC by N levels at the top and another N levels at the bottom. In order to avoid
any undesirable effects, you should make sure that the signal range of interest is within the reduced ADC range.

3.4.3. ‘Fixed Pattern’ Background Subtraction
If an averaging operation is executed while the input is open or no signal is applied, the averaged waveform should
tend to a constant value with a standard deviation σavg = σ / √N, where N is the number of waveforms in the average,
and σ is the standard deviation of a single waveform.

In reality, only random noise sources are averaged out, while those that are coherent with the sampling clock are not
reduced. The open-input averaged waveform thus represents the ‘fixed pattern’ background of the averager.
Subtracting this waveform from each subsequently acquired averaged waveform should result in more precise data.

In order to facilitate the acquisition of the ‘fixed pattern’ background, the Averager modules offer the following
possibilities:

• disconnection of the input with the value coupling = 0 in the function AcqrsD1_configVertical

• acquisition of an averaged waveform without a trigger signal with the value ‘TrigResync’ = 2 (free run) in the
function AcqrsD1_configAvgConfig. However, you get a better measurement of the ‘fixed pattern’ background
if you acquire with the same trigger conditions as the averaged waveforms that will be corrected. Typically, it is
better to continue using an external trigger signal, rather than ‘TrigResync’ = 2.

The ‘fixed pattern’ background should be acquired in the same conditions as the averaged waveforms that will be
corrected. In particular, the dithering range and the number of waveforms should be the same.

Use the following code fragment to acquire a ‘fixed pattern’ background with a free- running trigger:
const long channelNbr = 0;
double fsr, offset;
long coupl, bwidth, reSync, freeRun = 2;

// Make an acquisition, at the current conditions, but with
// “Grnd” coupling and free running trigger.
AcqrsD1_getVertical(instrID, 1, &fsr, &offset, &coupl, &bwidth);
AcqrsD1_configVertical(instrID, 1, fsr, offset, 0, bwidth);

AcqrsD1_getAvgConfig(instrID, channelNbr, “TrigResync”, &reSync);
AcqrsD1_configAvgConfig(instrID, channelNbr, “TrigResync”, &freeRun);

AcqrsD1_acquire(instrID);
long timeOut = 1000; // depends on conditions!
AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);

Programmer’s Guide Page 25 of 63

long nbrPoints = ???; // Should be the ‘current’ number of points!
long timeStampLo, timeStampHi, nbrReturnedSamples;
double horPos, sampTime;

// Read the Waveform directly to the Background buffer
double bckGndWform[nbrPoints];
AcqrsD1_readRealWform(instrID, 1, 0, 0, nbrPoints, bckGndWform,
&nbrReturnedSamples, &horPos, &sampTime, &timeStampLo, &timeStampHi);

// Restore the settings of the averager
AcqrsD1_configVertical(instrID, 1, fsr, offset, coupl, bwidth);
AcqrsD1_configAvgConfig(instrID, channelNbr, “TrigResync”, &reSync);

Use the following code fragment to acquire a ‘fixed pattern’ background, assuming that the external trigger can be
used and is already set:

const long channelNbr = 0;
double fsr, offset;
long coupl, bwidth, reSync, freeRun = 2;

AcqrsD1_acquire(instrID);
long timeOut = 1000; // depends on conditions!
AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);

long nbrPoints = ???; // Should be the ‘current’ number of points!
long timeStampLo, timeStampHi, nbrReturnedSamples;
double horPos, sampTime;

// Read the Waveform directly to the Background buffer
double bckGndWform[nbrPoints];
AcqrsD1_readRealWform(instrID, 1, 0, 0, nbrPoints, bckGndWform,
&nbrReturnedSamples, &horPos, &sampTime, &timeStampLo, &timeStampHi);

The examples above assume that the background and the averaged waveforms are read in Volts. In this case, the
background data points are simply subtracted from the averaged waveform.

However, if you read the background and the averaged waveforms as 32-bit sums, with the function
long bckGndWform[nbrPoints]; // Background as 32-bit sum
AcqrsD1_readData(instrID, channel, &readParams, waveformArray, &wfDesc,

&segDesc);

you must correct the average as follows:
corrWform[i] = waveformArray[i] - bckGndWform[i] + 128*nbrAvgWforms;

The last term corrects for the fact that the 32-bit data are unipolar and that for display purposes the corrected
waveform should be in the middle of the vertical range if the averaged waveform is the same as the background.

3.4.4. Configuring Noise Suppressed Accumulation (NSA)
As discussed in the User Manual Family of Averagers the module can be configured to only accept data above a
fixed threshold and, if desired, to shift the data in that case. Since these two values are expressed in Volts and used as
ADC counts they have to be converted before use. The User Manual describes this transformation that depends on
whether Data Inversion has been enabled. The NSA threshold functionality must be enabled and a threshold defined.
If this has been done the NSA base subtraction can also be enabled and will be activated using the defined base
value. The order of the calls to AcqrsD1_configAvgConfig is not important since the final decision is taken when the
acquisition is started. Here is an example:

Programmer’s Guide Page 26 of 63

const long channelNbr = 0;
double fsr,offset, threshold, base;

threshold = - offset; // place the threshold at the middle of the screen
base = threshold - fsr/10.; // place the base one division below the

threshold
// set the base and threshold voltage values
AcqrsD1_configAvgConfig(instrID, channelNbr, “Threshold”, &threshold);
AcqrsD1_configAvgConfig(instrID, channelNbr, “NoiseBase”, &base);

// enable the NSA functionality
AcqrsD1_configAvgConfig(instrID, channelNbr, “ThresholdEnable”,1);
AcqrsD1_configAvgConfig(instrID, channelNbr, “NoiseBaseEnable”,1);

3.5. Configuring SSR Analyzers

3.5.1. Acquisition Parameters
The AP235/AP240 SSR analyzers have 2 operational modes, normal and AutoSwitch, controlled with the function:
 AcqrsD1_configMode(instrID, mode, 0, 0);

The value mode can be set to 0 (normal) or 7 (AutoSwitch).

The AutoSwitch mode requires a number of additional configuration parameters that describe the requested
acquisition and readout conditions.

Use the following short code fragment to configure a buffered acquisition sequence of 800 waveforms of 5000 data
points, with a start delay of 128 samples:

// Common Configure

long nbrSamples = 5000, nbrSegments = 800;

long startDelay = 128, stopDelay = 0;

AcqrsD1_configMode(instrID, 7, 0, 0);
AcqrsD1_configAvgConfig(instrID, 0, “NbrSamples”, &nbrSamples);
AcqrsD1_configAvgConfig(instrID, 0, “NbrSegments”, &nbrSegments);
AcqrsD1_configAvgConfig(instrID, 0, “StartDelay”, &startDelay);
AcqrsD1_configAvgConfig(instrID, 0, “StopDelay”, &stopDelay);

Comments:

• The value of the third and fourth argumenta to AcqrsD1_configMode must always be 0.

• When in AutoSwitch mode, the following digitizer parameters are ignored:

• delayTime of the function AcqrsD1_configHorizontal is replaced by “StartDelay” and “StopDelay”

• nbrSamples and nbrSegments of the function AcqrsD1_configMemory are replaced by “NbrSamples”
and “NbrSegments” in the function AcqrsD1_configAvgConfig.

• The values nbrSamples, startDelay and stopDelay must be integer multiples of the ‘block size’, which is
always 16 in the AP240/AP235 Dual-channel mode, and 32 AP240/AP235 Single-channel mode. If the
supplied value is not an integer multiple of the ‘averaging block size’, it is truncated to the next lower
integer multiple. Thus, nbrSamples = 250 will be truncated to 240 (15 * 16) for a Dual-channel acquisition,
and to 224 (7 * 32) for a Single-channel acquisition. You can query the actual value with the function
AcqrsD1_getAvgConfig.

• The value startDelay controls the time between the trigger and when the first digitized data sample is stored.
It should also be noted that when startDelay is 0, the first few data points, 5 in the case of Dual-channel
mode and 10 in the Single-channel mode, will always be 0.

• The stopDelay permits the addition of an extra delay to the dead time between the acquisition of subsequent
waveforms. Its minimum value may be zero.

Programmer’s Guide Page 27 of 63

• Although not shown here, a call to AcqrsD1_configControlIO can be made in order to set a trigger veto
time to be respected after the receipt of a Prepare for Trigger signal on a Control I/O connector. This
feature is for AP101/AP201 analyzers only.

• Also not shown, is a call to the function AcqrsD1_configAvgConfig to set a timeout value for the
automatic completion of a segment in case the real trigger never arrives. This feature is for AP101/AP201
analyzers only.

3.5.2. Readout configuration
There are two possible ways of reading the data when in the SSR mode: user gates, and threshold gates. In all cases
the entire acquisition must be read; you cannot ask for fewer segments or points. If you want to read all of the data
you should define the appropriate gate. These setting are also controlled through the AcqrsD1_configAvgConfig
routine and therefore must be prepared before the acquisition is started. They can be set independently for each
channel if desired.
For user gate readout you have to define the groups of data samples that you want to read for each segment. If needed new values
for the gates can be defined during the acquisition process. They will become effective after the next call to
AcqrsD1_processData or AcqrsD1_acquire. Here is some sample code:

long g_gateLengthSum[3];

long g_lastGate[3];

long channel = 1, gate =1;

AcqrsD1_configAvgConfig(instrID, channel, “GateType”, &gate);

// you can define up to 4095 gates,

// GatePos and GateLength must both be multiples of 4

AqGateParameters configSetupData[100];

long configObj = SSR_Default;

long gateSize = 1000;

// this will be the size we want to read

g_gateLengthSum[channel] = 0;

g_lastGate[channel] = 1; // a very simple example

for(int g=0;g<g_lastGate[channel];g++)

{

 // the first gate starts with the first point

 configSetupData[g].GatePos = g * gateSize;

 configSetupData[g].GateLength = gateSize;

 g_gateLengthSum[channel] += configSetupData[g].GateLength + 8;

}

status = AcqrsD1_configSetupArray(instrID, channel, configObj,
 g_lastGate[channel], configSetupData);

For threshold gate readout you have to define the threshold value in volts. Data values greater than this will be
selected for readout. If desired you can use AcqrsD1_configAvgConfig with the "InvertData" parameter to choose
data values less than the threshold. In addition you can define the number of data values before and after each
selected value that you always want to see. This number is in the range 0 to 16. However, the value will always be
rounded up to the next highest multiple of 4. If two consecutive selected values are 32 or more samples apart a new
gate block will be generated. Otherwise, the current block will be continued. In all cases the data transferred will
always be a multiple of 4 samples and it will start on a sample whose time position is a multiple of 4. Alternatively
the number of data values before and the total number of values can be selected. Furthermore, a limit on the
maximum number of gates per segment can be set.

Programmer’s Guide Page 28 of 63

long channel = 1, gate =2;
AcqrsD1_configAvgConfig(instrID, channel, “GateType”, &gate);
long preSamples = 0, postSamples = 0, maxGates = 1;
double threshold = 0.0; // in Volts
long thresEnable = 1;
status = AcqrsD1_configAvgConfig(instrID, channel,
 "PreSamples", &preSamples);
status = AcqrsD1_configAvgConfig(instrID, channel,
 "PostSamples", &postSamples);
status = AcqrsD1_configAvgConfig(instrID, channel,
 "Threshold", &threshold);
status = AcqrsD1_configAvgConfig(instrID, channel,
 "NbrMaxGates", &maxGates);

3.5.3. Time stamps
The ‘On-board’ 10 MHz reference clock is used to increment a counter. The value of the counter is stored after the
trigger of each new segment. The value of the counter can be read by the software as shown here:

double SSRtimeStamp;

Acqrs_getInstrumentInfo(instrID, "SSRTimeStamp", &SSRtimeStamp);

Since each channel is controlled by its own FPGA the time stamps for the same segment are not necessarily the same
for the two channels. The command above works with the stamp of Channel 2.

In this release if the function is called before the first acquisition has been started the value returned will be 0!

It is possible to reset the time stamp using a hardware signal on the P1 or P2 connectors. This can be done with a call
like:

Long TSReset = 1;
status = AcqrsD1_configAvgConfig(instrID, channel, "P1Control",&TSReset);

3.6. Configuring PeakTDC Analyzers
Since PeakTDC processing can be viewed as an additional form of processing after SSR acquisition please refer to the
discussion in 3.5 Configuring SSR Analyzers for that part of process. In addition you will have to

// Configure peak detection
long numberOfTriggersPerSeg = 50, numberOfSegments = 1;

double startDelta=0.1,validDelta = 0.2;

AcqrsD1_configMode(instrID, 5, 0, 0);

AcqrsD1_configAvgConfig(instrID, 0, "NbrRoundRobins", &numberOfTriggersPerSeg);
AcqrsD1_configAvgConfig(instrID, 0, "NbrSegments", &numberOfSegments);
AcqrsD1_configAvgConfig(instrID, 0, " StartDeltaPosPeakV ", &startDelta);
AcqrsD1_configAvgConfig(instrID, 0, " ValidDeltaPosPeakV ", & validDelta);

// Configure histogram

long tdcMode = 1, tdcDepth = 1, tdcIncr = 2, tdcType = 1;

AcqrsD1_configAvgConfig(instrID, 0, " TdcHistogramMode", &tdcMode);
AcqrsD1_configAvgConfig(instrID, 0, " TdcHistogramDepth", &tdcDepth);
AcqrsD1_configAvgConfig(instrID, 0, " TdcHistogramIncrement", &tdcIncr);
AcqrsD1_configAvgConfig(instrID, 0, " TdcProcessType", &tdcType);
// if the acquisition has segments to be histogrammed independently

long tdcOverlay = 0;

AcqrsD1_configAvgConfig(instrID, 0, " TdcOverlaySegments", &tdcOverlay);

Programmer’s Guide Page 29 of 63

3.7. Configuring AP101/AP201 Analyzers
The models AP101/AP201 have 2 operational modes, normal and buffered (also called dual-memory), controlled
with the function:
 AcqrsD1_configMode(instrID, mode, 0, flags);

The value mode can be set to 0 (normal) or 3 (dual-memory). In mode = 3, the parameter flags sets the memory bank
into which to acquire (0 or 1).

The buffered mode uses a number of additional configuration parameters that describe the requested buffered
acquisition conditions.

Use the following short code fragment to configure a buffered acquisition sequence of 800 waveforms of 5000 data
points, with a start delay of 128 samples, into memory bank 1:

// Configure

long nbrSamples = 5000, nbrSegments = 800;

long startDelay = 128, stopDelay = 0;

AcqrsD1_configMode(instrID, 3, 0, 1);

AcqrsD1_configAvgConfig(instrID, 0, “NbrSamples”, &nbrSamples);
AcqrsD1_configAvgConfig(instrID, 0, “NbrSegments”, &nbrSegments);
AcqrsD1_configAvgConfig(instrID, 0, “StartDelay”, &startDelay);
AcqrsD1_configAvgConfig(instrID, 0, “StopDelay”, &stopDelay);

Comments:

• The value of the second argument to AcqrsD1_configAvgConfig must always be 0.

• When in buffered mode, the following digitizer parameters are ignored:

• delayTime of the function AcqrsD1_configHorizontal is replaced by “StartDelay” and “StopDelay”

• nbrSamples and nbrSegments of the function AcqrsD1_configMemory are replaced by “NbrSamples” and
“NbrSegments” in the function AcqrsD1_configAvgConfig.

• The values nbrSamples, startDelay and stopDelay must be integer multiples of the ‘acquisition block size’,
which is always 16 in the AP101, and 32 in the AP201. If the supplied value is not an integer multiple of the
‘acquisition block size’, it is truncated to the next lower integer multiple. Thus, nbrSamples = 250 will be
truncated to 240 (15 * 16) on an AP101, and to 224 (7 * 32) on an AP201. You can query the actual value
with the function AcqrsD1_getAvgConfig.

• The value startDelay controls the time between the trigger and when the first digitized data sample is stored.
The stopDelay permits the addition of an extra delay to the dead time between the acquisition of subsequent
waveforms. Its minimum value may be zero.

• Although not shown here, a call to AcqrsD1_configControlIO can be made in order to set a trigger veto
time to be respected after the receipt of a Prepare for Trigger signal on a Control I/O connector.

• Also not shown, is a call to the function AcqrsD1_configAvgConfig to set a timeout value for the
automatic completion of a segment in case the real trigger never arrives.

3.8. Configuring TC8xx Time Counters
Use the following short code fragment for a device configuration:

// Configure
long i, n_chan, slope = 0;
double trigLevel = 0.2;
double timout = 0.1;
Acqrs_getNbrChannels(instrumentID, &n_chan);
for(i=0; i< n_chan; i++)
 AcqrsT3_configChannel(instrumentID, i+1, slope, trigLevel, 0);
AcqrsT3_configChannel(instrumentID, -1, trigSlope, trigLevel, 0);
AcqrsT3_configAcqConditions (instrumentID, timeout, 0, 0);

Programmer’s Guide Page 30 of 63

Comments:

• Channel numbers run from 1 to nbrChannels, not from 0! The common channel uses the number –1.

• The configuration functions are protected against illegal or incoherent values. Thus, the system might adapt the
values you ask for. The 'query' counterpart of this function, AcqrsT3_getChannel, can be interrogated to learn
what the driver did to the values.

• The granularity of a threshold value setting is limited by the hardware that uses a 12-bit DAC covering the
desired range.

• The timeout for the acquisition must be chosen to allow the maximum reasonable value.

3.9. Data Acquisition
Instrument operation is preceded by configuring the instrument parameters and then starting the acquisition
sequence. New settings are only loaded into the module when the acquisition is started; there is one exception to this
rule as discussed for analyzer user gate definition in section 3.5.2 Readout configuration.

Similarly, you initiate an averaging operation by configuring the instrument parameters, including those that control
the averaging, and then starting the combined acquisition/averaging sequence. The Averager module resets the
accumulation buffers and then acquires the requested number of waveforms, each preceded by a front-panel trigger
signal, without any software intervention. The AcqrsD1_acquireEx function allows an AP100/AP200 Averager to
acquire additional data without resetting the accumulation.

Until the operation is terminated, your application is free to execute other tasks. There are several methods of
detecting when the acquisition/averaging operation has ended. Finally, you read the averaged waveform with the
function AcqrsD1_readData as described below.

If you want to acquire several (averaged) waveforms under the same conditions, there is no need to call the
AcqrsXX_config… functions again. It is sufficient to execute a loop over the “start, wait, read” functions. In
principle a subsequent start will happen considerably faster than the first one that was required to load the full
configuration.

3.9.1. Starting an Acquisition
Use the following line of code for starting an acquisition in a D1-style instrument:

AcqrsD1_acquire(instrID); // start the acquisition

or the following line of code for starting an acquisition on a Time Counter:
AcqrsT3_acquire(instrumentID); // start the acquisition

One such command is required for each module in use. However, if several digitizers are combined to a single
MultiInstrument with ASBus, only a single command is needed for the combined instrument.

3.9.2. Checking if Ready for Trigger
If many modules are being used it may be useful to know when they are all ready to accept a trigger. This can be
done by verifying that they are all finished with their pre-trigger phase (PreTrigger = 0) by using the call below to all
instruments (or the last instrument started):
Acqrs_getInstrumentInfo(instrID,"IsPreTriggerRunning",&PreTrigger);

3.9.3. Waiting for End of Acquisition
Usually data cannot be read from the instrument until the acquisition is terminated. The application may wait for an
acquisition to end either by polling or by waiting for interrupt.

(A) Simple Polling: use the following code fragment for polling the interrupt status:

Programmer’s Guide Page 31 of 63

ViBoolean done = 0;
long timeoutCounter = 100000;
while ((!done) && (--timeoutCounter > 0))
 AcqrsD1_acqDone(instrID, &done); // poll for status or
 //AcqrsT3_acqDone(instrID, &done); // the Time Counter equivalent

if (timeoutCounter <= 0) // timeout, stop acquisition
 STOP ACQUISITION

NOTE: The code above has the disadvantage of wasting CPU time while checking the instrument status during the
entire acquisition period. In addition, the timeout counter value should be set according to the expected acquisition
time, but the loop time depends on the CPU speed.

(B) More Efficient Polling: use this code fragment to release the polling thread for short periods:
ViBoolean done = 0;
long timeoutCounter = 100;
while ((!done) && (--timeoutCounter > 0))
{
 AcqrsD1_acqDone(instrID, &done); // poll for status or
//AcqrsT3_acqDone(instrID, &done); // the Time Counter equivalent
 Sleep(1);
}
if (timeoutCounter <= 0) // timeout, stop acquisition
 STOP ACQUISITION

This code puts the polling thread to sleep for periods of 1 ms at a time, letting other threads of the application or
other applications use the CPU time. Setting the timeout counter to 100 means that a total timeout period of 100 ms
is expected.

NOTE: This method still has some drawbacks:

• depending on the operating system, the 'Sleep' method often has a granularity of 10 ms or more, rounding any
smaller number up to this minimum value

• the response time of the application to the end of acquisition is 50% of the sleep time, on average. With a
granularity of 10 ms, the mean latency is therefore 5 ms. Thus, no more than 200 waveforms per second could
be acquired, because the application wastes time waiting for the acquisition to terminate.

(C) Waiting for Interrupt:
ViStatus status;
long timeOut = 100; // in ms
status = AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);
if (status == ACQIRIS_ERROR_ACQ_TIMEOUT) // timeout, stop

 STOP ACQUISITION

This method combines low CPU usage with very good response time:

The function enables the instrument’s 'end-of-acquisition' interrupt and sets up a semaphore that waits for this
interrupt. It then releases the thread by 'going to sleep', thus letting other threads of the application or other
applications use the CPU time. The function returns as soon as the interrupt occurs or when the timeout expires.

The equivalent of the above for a Time Counter would be:
ViStatus status;
long timeOut = 100; // in ms
status = AcqrsT3_waitForEndOfAcquisition(instrumentID, timeOut);

 if (status == ACQIRIS_ERROR_ACQ_TIMEOUT) // timeout, stop
 status = AcqrsT3_stopAcquisition(instrumentID);

We recommend using AcqrsXX_waitForEndOfAcquisition since it is the most efficient method. The interrupt
latency is of the order of several μs, and no CPU time is wasted.

Programmer’s Guide Page 32 of 63

3.9.4. Stopping/Forcing a D1-style Acquisition
The previous section shows a case where an ongoing acquisition must be stopped, typically because there is no
trigger. Also, in some situations you may want to use the digitizer to generate a system trigger under software
control.

If you still would like to have a valid snapshot of the current input signal, you should generate a trigger signal by
software, with the function AcqrsD1_forceTrig or AcqrsD1_forceTrigEx. Typically, the acquisition does not stop
immediately, since the digitizer may continue acquiring some additional data, depending on the delayTime and the
data acquisition time that were initially configured. Thus, the application should again wait for the acquisition to
terminate. Forcing a trigger does not make sense for averagers and analyzers and should not be done.
AcqrsD1_forceTrigEx allows you to generate a trigger out signal which can be synchronized with the sampling
clock if desired.

Use the following code fragment to replace STOP ACQUISITION in the previous section:
{
 AcqrsD1_forceTrig(instrID);
 if (AcqrsD1_waitForEndOfAcquisition(instrID, timeOut) ==
 ACQIRIS_ERROR_ACQ_TIMEOUT)
 {
 AcqrsD1_stopAcquisition(instrID);
 SCREAM, because a major error occurred
 }
}

Note that no timeout should ever occur when waiting for a 'forceTrig' to terminate, provided that the timeOut value
was made large enough. If a timeout does occur, this would indicate a failure in the digitizer or the entire system.

For users generating triggers under software control it may be desirable to do the data readout in a way that just gives
the acquired data points and ignores the correction of the data gotten from the horPos measurement of the time from
the trigger to the next data sample. This can be done using the flags parameter of the AqReadParameters structure.

3.9.5. Analyzer and PeakTDC Autoswitch mode
If with the PeakTDC mode the TdcHistogramMode parameter has been used to enable histogramming the desired
number of acquisitions will be taken automatically. As usual the acquisition must be initialized with a call to
AcqrsD1_acquire(instrID). When the acquisition has terminated the histogram data and the peak or gate data of the
last acquisition will be available for readout. The routines AcqrsD1_acqDone or
AcqrsD1_waitForEndOfAcquisition must be used.

For all other cases the AP Analyzers implement an autoswitch mode that allows the dead time between acquisitions
to be reduced to the minimum consistent with the readout of the data. As usual the first acquisition must be
initialized with a call to AcqrsD1_acquire(instrID). To allow the second acquisition to start as soon as possible a
call to AcqrsD1_processData (instrD,processType,1) follows immediately. Thereafter data can be read as soon as
the processing is terminated and then the go ahead for the next acquisition can be given as desired.

Programmer’s Guide Page 33 of 63

3.9.5.1. Sequence of actions for Autoswitch with event readout

The AutoSwitch semaphore is set by the software and cleared by the FPGA.
If the readout process is longer than the acquisition process, the AutoSwitch occurs directly after the software raises
the AutoSwitch semaphore.
At the moment that the ProcessingEnd interrupt occurs, the FPGA has already cleared the AutoSwitch.

acq Bank 0

readout

disabled int.

disabled int.

acq Bank 1

Processing0
int

AutoSwitch

Processing1
int

3

4

0

1

2

disabled int

21

S Description Software implementation

0 The software configures the mode, the
acquisition parameters, and the readout.

AcqrsD1_configMode(…);

AcqrsD1_configAvgConfig(…); …

1 The software starts the first acquisition. AcqrsD1_acquire(instrID);

2 The software sets the AutoSwitch semaphore.
To ensure the shortest response time this
arming function should be done on the order
of 10-20 μs before the expected acquisition
end.

AcqrsD1_processData(instrID, processType, 1);

processType = 0 is used for SSR & PeakTDC

 = 1,2,3, or 4 are for AP101/AP201 or
 PeakTDC

3 When the acquisition has finish, the FPGA
automatically switches the banks, starts a
new acquisition, a new processing and clears
the AutoSwitch semaphore.

4 Once the software receives the
ProcessingEnd interrupt, it can start the
readout.

status = AcqrsD1_waitForEndOfProcessing(instrID,
timeout);

AcqrsD1_readData(instrID, channel, &readParams,
waveformArray, &wfDesc, &segDesc);

 Go to 2 to continue.

Here is a sample bit of code showing this principle:

Programmer’s Guide Page 34 of 63

status=AcqrsD1_acquire(instrID); // Start the acquisition
processType = 0;

for (;;) //loop forever
{
 status=AcqrsD1_processData(instrID, processType, 1);
 status=AcqrsD1_waitForEndOfProcessing(instrID,timeout);
 status=AcqrsD1_readData(instrID, channel, &readPar, &adcArray,

&dataDesc, &segDesc);
}

To keep the same interface for the AP240 as was the case for the AP101/AP201, the processing step is kept but the
“dummy” processing value is used. Actually the software knows which processing is needed from the setup values
sent to AcqrsD1_configAvgConfig. Thus, the software must wait for the end of processing even if the “processing
mode” is set to NO_PROCESSING.

3.9.5.2. What happens when the AutoSwitch semaphore is not set
After the "processing" of an acquisition, if the semaphore is not set, the FPGA waits for further instructions. This
feature ensures that the software has finished with the old buffer and gives full compatibility with older software
implementations. If you make a call to AcqrsD1_stopAcquisition you shouldn't try to read the last acquisition's
data.

3.9.5.3. Changing acquisition settings while acquiring and reading events
If you want to change any of the acquisition settings you must

o terminate the current acquisition sequence
AcqrsD1_processData(instrID, processType, 2); // do a bank switch but do not

start

status = AcqrsD1_waitForEndOfProcessing(instrID, timeout); // usual wait

// finish reading the data associated with the old settings

AcqrsD1_readData(instrID, channel, &readParams, waveformArray, &wfDesc,
&segDesc);

o configure the instrument for the new values and start the new set of acquisitions
// go back to step 0 in the table above
AcqrsD1_configAvgConfig(…); …
AcqrsD1_acquire(instrID); …

3.10. D1-style Data Readout
For the reading of standard waveforms the AcqrsD1_readData routine should be used. The following older
routines will remain available but will no longer be discussed:

AcqrsD1_readCharWform

AcqrsD1_readCharSequence AcqrsD1_readRealWform

AcqrsD1_readRealSequence AcqrsD1_accumulateWform

You should use the function AcqrsD1_readData for all new programs. The older functions will not give support for
new instruments or new functionality. All variables of the AqReadParameters structure should be initialized; 0 can
be used for the reserved words.

For the readout of the averager data the read function AcqrsD1_readData described in 3.10.1 Reading Digitizer
Waveforms with the Universal Read Function should be used with readMode = 2 (ReadModeAvgW). For
reading data from analyzers please refer to 3.10.6 Reading SSR Analyzer Waveforms or 3.10.7 Reading
AP101/AP201 Analyzer Waveforms.

Programmer’s Guide Page 35 of 63

3.10.1. Reading Digitizer Waveforms with the Universal Read Function
 For the general case, which includes the reading of more complex waveforms, we provide a universal read function
AcqrsD1_readData.

Control of the read parameters is passed through the input structure AqReadParameters. For the description of the
output data an array of segment descriptors, AqSegmentDescriptor, and a waveform descriptor,
AqDataDescriptor, are returned. These structures are defined in the header file AcqirisDataTypes.h.

The following parameter setting can be used for reading a single waveform segment in 8-bit representation.
static long nbrSegments = 1; // readMode = 0 requires this value
const long nbrPoints = 1000;
char dataArray[nbrPoints+32];

AqReadParameters *readPar = new AqReadParameters;
AqDataDescriptor *dataDesc = new AqDataDescriptor;
AqSegmentDescriptor *segDesc = new AqSegmentDescriptor[nbrSegments];
readPar->dataType = 0; // 0 = byte
readPar->readMode = 0; // 0 = standard waveform
readPar->nbrSegments = nbrSegments;
readPar->firstSampleInSeg = 0;
readPar->segmentOffset = 0; // unused parameter
readPar->firstSegment = 0;
readPar->nbrSamplesInSeg = nbrPoints;
readPar->dataArraySize = sizeof(dataArray);
readPar->segDescArraySize = sizeof(AqSegmentDescriptor)*nbrSegments;
readPar->flags = 0;
readPar->reserved = 0;
readPar->reserved2 = 0.0;
readPar->reserved3 = 0.0;

status = AcqrsD1_readData(instrID, channel, readPar, dataArray ,

dataDesc, segDesc);

Comments:

• The segment numbers run from 0 to nbrSegments-1.

• The value of segDesc->horPos is the time interval in seconds between the first data point and the nominal time
origin of the trigger delay. It is always in the range [-sampTime, 0]. It is useful for a very precise positioning, to
a fraction of the sampling interval, of the waveform. In many applications, it can be ignored. Refer to section
3.13, HORIZONTAL PARAMETERS IN ACQUIRED WAVEFORMS, for a detailed explanation of horPos.
Return values have to be interpreted in the same way as for the other readout functions.

• Refer to the section 3.14, SEQUENCE ACQUISITIONS for detailed explanations on the interpretation of
segDesc->timeStampLo/Hi.

• It is important to zero the unused parameters at the end of the readPar structure. An incorrect value of flags can
be very confusing.

3.10.2. Reading Sequences of Waveforms
In certain situations, see APPENDIX A: ESTIMATING DATA TRANSFER TIMES, it can be more efficient (in
time) to read Sequence Waveforms with readMode = 1 (ReadModeSeqW). This mode transfers all of the data from
the digitizer to the local memory in a single DMA as opposed to calling AcqrsD1_readData many times thus using
a transfer per segment. The price to be paid is a higher memory requirement. It can also be used to transfer blocks of
segments in the case of very large memories.

For dataType = 0 or 1, the amount of memory needed (in bytes) is

Programmer’s Guide Page 36 of 63

arraySize ≥ segmentOffset * (nbrSegments+1) * (dataType + 1)

with

arraySize ≥ (nbrSamplesNom + currentSegmentPad) * (nbrSegments+1) * (dataType + 1)

and

segmentOffset≥, nbrSamplesInSeg

where

• the currentSegmentPad depends on the acquisition configuration and can be determined using the following
call,
Acqrs_getInstrumentInfo(instrID,”TbSegmentPad”,
 ¤tSegmentPad);

• the nbrSamplesNom is the nominal number of samples to record and may be different than what was asked
for! It can be determined using the following call,

AcqrsD1_getMemory(instrID,&nbrSamplesNom,&nbrSegments);

• the nbrSegments can either be taken from the result given just above or it can be freely reduced to a smaller
value in the case of a partial read of the data.

You have to make sure that you ask for this information after the acquisition configuration has been established. This
is the case after an acquisition has been completed with the new configuration.

Similarly, for dataType = 3 the amount of memory needed (in bytes) is

arraySize ≥ 8 * segmentOffset * (nbrSegments+1)

with

segmentOffset≥, nbrSamplesInSeg

and

 arraySize ≥ 8 * segmentOffset + (nbrSamplesNom + currentSegmentPad) * nbrSegments * (dataTypeADC
+ 1)

where dataTypeADC is 0 for the 8-bit instruments and 1 otherwise.

The following code can be used for reading a waveform sequence in 8 bit representation.

Programmer’s Guide Page 37 of 63

long nbrSegments = 10;
long nbrPoints = 1000;
char *dataArrayP;
long currentSegmentPad;
long nbrSamplesNom,nbrSegmentsNom;

AqReadParameters *readPar = new AqReadParameters;
AqDataDescriptor *dataDesc = new AqDataDescriptor;
AqSegmentDescriptor *segDesc = new AqSegmentDescriptor[nbrSegments];
readPar->dataType = 0; // 0 = byte
readPar->readMode = 1; // 1 = sequence waveform
readPar->nbrSegments = nbrSegments;
readPar->firstSampleInSeg = 0;
readPar->segmentOffset = nbrPoints;
readPar->firstSegment = 0;
readPar->nbrSamplesInSeg = nbrPoints;
readPar->flags = 0;
readPar->reserved = 0;
readPar->reserved2 = 0.0;
readPar->reserved3 = 0.0;

status = Acqrs_getInstrumentInfo

(instrID,”TbSegmentPad”,¤tSegmentPad);
// in this case the next call doesn’t have any surprises
status = AcqrsD1_getMemory(instrID,
 &nbrSamplesNom,&nbrSegmentsNom);
readPar->dataArraySize =

(nbrSamplesNom+currentSegmentPad)*(1+nbrSegments);

// here we show the malloc explicitly
dataArrayP = (char *)malloc(readPar->dataArraySize);
readPar->segDescArraySize = sizeof(AqSegmentDescriptor)*nbrSegments;
status = AcqrsD1_readData(instrID, channel, readPar, dataArrayP,

dataDesc, segDesc);

Comments:

The explicit malloc call will normally not be repeated for every acquisition. Obviously, a larger than needed
allocation is perfectly acceptable. Also, any space allocated this way ought to be returned to the heap at some point.

3.10.3. Averaging Waveforms in a Digitizer
The driver includes 4 functions provided to improve performance when averaging waveforms.

The first pair of functions, AcqrsD1_averagedData for any digitizer (and the older AcqrsD1_averagedWform for
8-bit digitizers only), are meant only for single channel, single segment operation. They average a predefined number
of waveforms, taking care of the acquisition loop internally. The client must supply a working array (dataArray or
waveformArray, for internal use) and an accumulation array (sumArray). The accumulation array is reset
automatically inside the function at the beginning of each call. When the function returns successfully, the
accumulation array contains the sample-by-sample sum of the waveforms. To get the average values, the array
elements must be divided by the number of acquisitions nbrAcq. If, for each acquisition, the trigger does not arrive
within the requested timeout after the beginning of the acquisition, the function returns with an error code.

The second pair of functions, AcqrsD1_accumulateData for any digitizer (and the older
AcqrsD1_accumulateWform for 8-bit digitizers only) can be used for multi-channel operation and can be called for
each acquisition the user wants to accumulate. It reads the waveform in the module, and performs a sample-by-

Programmer’s Guide Page 38 of 63

sample accumulation in the client array. Here again, the client must supply a working array (dataArray or
waveformArray, for internal use) and an accumulation array (sumArray). The client controls the acquisition, and
must reset the accumulation array appropriately.

In both cases, the allocation of the memory for the working array (dataArray or waveformArray) has been left to
the client for performance reasons. Its size must be at least the requested number of samples nbrSamples + 32, for
reasons of data alignment. The content of this working array is not meant to be used by the client.

Please note that in both cases, sub-sample timing information (i.e. horPos, see section 3.13, Horizontal Parameters
in Acquired Waveforms) is not taken into account.

3.10.4. Reading an Averaged Waveform from an Averager
Averaged waveforms can be read out either in Volts, or as 32-bit accumulated sums. In either case, we recommend
the use of the general-purpose read function AcqrsD1_readData, rather than the obsolete function
AcqrsD1_readRealWform.

3.10.4.1. Averaged Waveforms in Volts
You should use the general-purpose function AcqrsD1_readData. As long as the mode is still set to averager, either
function automatically divides the accumulated waveform sum by the number of acquired waveforms, and returns
the result in Volts. They also return zero into the variables horPos, tStampLo and tStampHi, since they are irrelevant
in the context of an averaged waveform.

Use this code fragment for the general-purpose function:
AqReadParameters readParams; // Read Definitions
AqDataDescriptor wfDesc; // Returned (common) waveform values
AqSegmentDescriptorAvg segDesc; // Returned segment values

long channel = 1, nbrSamples = 20000;
double waveformArray[20000];
readParams.dataType = ReadReal64; // Request Volts
readParams.readMode = ReadModeAvgW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(AqSegmentDescriptorAvg);
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, waveformArray, &wfDesc,

&segDesc);

Note: If you call a readout function while the acquisition mode is set to digitizer, it will return the last acquired single
waveform, possibly with some unpredictable results.

Note: The ‘raw’ sums can be read directly with a different function call (see next section). The relationship between
Volts and the raw sum is expressed by the following formula:

sum[i] = (volts[i] + offset + FS/2.0) * 256 * nbrWforms / FS

with the following definitions:

sum[i] 32-bit integer sum at position i, unipolar (i.e. 0 or positive)

volts[i] floating point voltage at position i, as returned by the code fragments above

offset offset in Volts, as set with AcqrsD1_configVertical

Programmer’s Guide Page 39 of 63

FS full scale range in Volts, as set with AcqrsD1_configVertical

nbrWforms number of summed waveforms

The value of ‘nbrWforms’ must be known, i.e. if the averaging process was interrupted before reaching the requested
number of waveforms, the formula above yields wrong results. As a check that the correct value of ‘nbrWforms’ was
used, the value of ‘sum[i]’, before conversion to an integer, must already be very close to an integer.

Use this code fragment for the ‘legacy’ function:
long channel = 1, segmentNumber = 0, nbrSamples = 20000;
long returnedSamples, tStampLo, tStampHi;
double waveformArray[20000], horPos, sampTime;
AcqrsD1_readRealWform(instrID, channel, segmentNumber, 0, nbrSamples,

waveformArray,&returnedSamples, &horPos,
&sampTime, &tStampLo, &tStampHi);

3.10.4.2. Averaged Waveforms as 32-bit Sums
You must use the general-purpose function AcqrsD1_readData.

Use this code fragment:
AqReadParameters readParams;// Read Definitions
AqDataDescriptor wfDesc; // Returned (common) waveform values
AqSegmentDescriptorAvg segDesc; // Returned segment values

long channel = 1, nbrSamples = 20000;
long waveformArray[20000];
readParams.dataType = ReadInt32; // Request 32-bit sums
readParams.readMode = ReadModeAvgW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(segDesc);
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, waveformArray, &wfDesc,

&segDesc);

The returned data values in waveformArray are unipolar, i.e. the raw ADC values are coded as values between 0 and
255, so that the summed data values may run between 0 and 255*N (N= number of waveforms in the sum).

3.10.5. Reading a RT Add/Subtract Averaged Waveform from an Averager
This case is significantly different than the normal averager case described above.

The ‘raw’ sums now have to be considered as signed values. The relationship between Volts and the raw sum is
expressed by the following formula:

sum[i] = volts[i] * 256 * nbrWforms / FS

with the same definitions as before. However, the user has to understand if the final result corresponds to the desired
signal or just half of it.

Programmer’s Guide Page 40 of 63

3.10.6. Reading SSR Analyzer Waveforms

3.10.6.1. SSR Mode Readout Data Format
In all cases data values are returned in the range [–128, +127]. The relationship between Volts and the raw data is
expressed by the following formula:

data[i] = (volts[i] + offset) * 256 / FS

with the following definitions:

data[i] 8-bit signed ADC value at position i

volts[i] floating point voltage at position i, as returned by the code fragments above

offset offset in Volts, as set with AcqrsD1_configVertical

FS full scale range in Volts, as set with AcqrsD1_configVertical

In all cases you must readout the entire acquisition. You cannot ask for a reduced number of segments.

3.10.6.2. Raw data
The complete data should only be read out using the gated data mode described below. An appropriate User Gate can
be defined to access all of the data.

3.10.6.3. Gated data
Data can be read for both user and threshold gate operation using readMode = 7 (ReadModeSSRW).

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes read. A
time stamp block, measuring the trigger time, will mark the beginning of each segment. Segment timestamps are
mixed in with the data and not available through the usual segDesc array. The entire time stamp is a 56-bit integer
counting in units of 100 ns.

Here is the Time Stamp format:

Marker block
31..24 (8 bits) 23..0 (24 bits)

Flag = 00000100 (0x04) Time Stamp MSB

TimeStamp LSB

The time stamp may be followed by a variable number of blocks of data with the following format:

Gate block
31..24 (8 bits) 23..0 (24 bits)

Flag = 00000000 Gate position from the origin of the acquisition (not the segment!)
31..0

Gate length (number of Data bytes, always a multiple of 4)
31..24 23..16 15..8 7..0

Data3 Data2 Data1 Data0

… … … Data4

When reading such data you should carefully check that you terminate correctly and do not read beyond the end of
the transmitted data nor generate unphysical time coordinates for the data.

3.10.6.4. Waveform storage requirements
When using the routine AcqrsD1_readData you must allocate waveform storage and inform the driver about the
number of bytes available.

Raw data readout requires exactly the number of bytes corresponding to the number of segments times the number of
data points per segment.

User gate readout for each segment requires 8 bytes for the time stamp and an overhead of 8 bytes for each gate. This
must be added to the total number of samples in all of the gates to get the required length for each segment and
multiplied by the number of segments to get the waveform array length.

Programmer’s Guide Page 41 of 63

For threshold gate readout the program should allocate the space needed for the worst case. This means 8 bytes for
the time stamp, 8 bytes for a gate block header and space for the total number of samples/segment. This must be
multiplied by the number of segments to get the waveform array length. It should be noted that the FPGA will
generate a single gate block if there are less than 32 data points "below" threshold between two desired data points.

3.10.7. Reading PeakTDC Analyzer Data and Histograms

3.10.7.1. Reading the gated data
The gated data of the current event can be read out as described in 3.10.6.3 Gated data. This is the only output
format that gives access to the segment time stamps.

3.10.7.2. Reading the data in the peak regions
The data of the peak regions in the current event can be read out using readMode = 10 (ReadModePeakPic).

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes read.
There will be a variable number of blocks of data with the following format:

Peak region block 8 points
31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Flag 00010010 0x00 Valid Left Valid Right
31..0 (32 bits)

Peak Position (= tmax)

31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Sample(tmax) Sample(tmax-1) Sample(tmax-2) Sample(tmax-3)

Sample(tmax+4) Sample(tmax+3) Sample(tmax+2) Sample(tmax+1)

Peak region block 16 points
31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Flag 00010001 0x00 Valid Left Valid Right
31..0 (32 bits)

Peak Position (= tmax)

31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Sample(tmax-4) Sample(tmax-5) Sample(tmax-6) Sample(tmax-7)

Sample(tmax) Sample(tmax-1) Sample(tmax-2) Sample(tmax-3)

Sample(tmax+4) Sample(tmax+3) Sample(tmax+2) Sample(tmax+1)

Sample(tmax+8) Sample(tmax+7) Sample(tmax+6) Sample(tmax+5)

The peak position is counted relative to the beginning of the first segment of the acquisition. Thus the position also
gives the segment number of the peak.

The sample data value is the raw data value.

Valid Left and Valid Right give the number of valid data points < tmax and > tmax respectively. Sample(tmax-
validLeft) and Sample(tmax+validRight) are the first and last valid points, respectively.

If you need to know the segment time stamps you can read the gated data. If the user or threshold gate parameters are
set appropriately the amount of unwanted data can be minimized.

3.10.7.3. Reading the peaks
The results for all of the peaks in the current event can be read out using readMode = 4 (ReadModePeak).

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes read.
There may be a variable number of blocks of data with the following format:

Peak block
31..24 (8 bits) 23 19..4 (16 bits) 3..0 (4 bits)

Programmer’s Guide Page 42 of 63

Flag 00010000
(0x10)

Unused Peak amplitude with ADC resolution Interpolated fractional part of
amplitude (1/16 LSB)

29..4 (26 bits) 3..0 (4 bits)

Peak Position with sample rate resolution Interpolated fractional part of
position (1/16 sample interval)

The peak position is counted relative to the beginning of the first segment of the acquisition. Thus the position also
gives the segment number of the peak.

The peak amplitude is the value acquired after baseline substraction.

When reading such data you should carefully check that you terminate correctly and do not read beyond the end of
the transmitted data nor generate unphysical time coordinates for the data.

If you need to know the segment time stamps you can read the gated data. If the user or threshold gate parameters are
set appropriately the amount of unwanted data can be minimized.

3.10.7.4. Reading the histogram
The accumulated histogram can be read out using readMode = 9 (ReadModeHistogram). The dataType and
dataArraySize must be selected to correspond to the size of the histogram and its bins.

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes read. The
individual histogram bins will be able to contains accumulated sums of either 2**32, as ViUInt32, or 2**16, as
ViUInt16.

Histogram bin is 32 bits wide
31..0

Bin0

…

Histogram bin is 16 bits wide

31..16 15..0

Bin 1 Bin 0

… …

3.10.8. Reading AP101/AP201 Analyzer Waveforms

3.10.8.1. Reading a Buffered Waveform Sequence
This section concerns AP101/AP201 Analyzers ONLY. In normal mode, you may read the acquired waveform(s) in
the same way as with any other digitizer, as described in the section 5.14, Data Readout, in the Standard Manual.

In buffered mode, you must use the functions AcqrsD1_readData to read out the accumulated waveform sequence,
as a single data record. E.g. if you configured nbrSamples = 5000 and nbrSegments = 800, you should specify
segmentNumber = 0 and nbrSamples = 4’000’000.

Before reading the buffered data, you must switch to the other memory bank. Typically, you also would start a new
acquisition before readout, but it is not required. This is done automatically in the autoswitch mode as a consequence
of the call to AcqrsD1_processData with a non-zero flag value. It can also be done with a call to
AcqrsD1_configMode

The read-function returns zero into the dataDesc variables horPos, tStampLo and tStampHi, since they are
unavailable in the context of a buffered waveform sequence.

With the function AcqrsD1_readData, use this code fragment:

Programmer’s Guide Page 43 of 63

AqReadParameters readParams; // Read Definitions
AqDataDescriptor dataDesc; // Returned waveform values
AqSegmentDescriptor segDesc; // Returned segment values

long channel = 1, nbrSamples = 4000000;
char waveformArray[4000000];
readParams.dataType = ReadInt8;
readParams.readMode = ReadModeStdW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

memoryBank = (memoryBank+1)&0x1; // switch to other bank
AcqrsD1_configMode(instrID, 3, 0, memoryBank);
AcqrsD1_acquire(instrID); //essential!!

AcqrsD1_readData(instrID, channel, &readParams, waveformArray, &dataDesc,

&segDesc);

The returned data array contains the acquired waveforms as a contiguous array. E.g. if you configured nbrSamples =
5000, the data points ‘waveformArray[0…4999]’ correspond to the first waveform, the data points
‘waveformArray[5000…9999]’ correspond to the second waveform etc.

3.10.8.2. Reading Gated Waveforms
For reading gated waveforms the actual desired gates should be set with the setup function
AcqrsD1_configSetupArray. This function should be called before AcqrsD1_acquire is invoked to acquire any
data that needs to be read using these gates. To read back the gate values, AcqrsD1_getSetupArray has to be used.
An example for the two routines is shown in the following code:

const int NbrGates = 64;
long channelNbr = 0;
long configObj = AvgGate;
long lastGate = NbrGates;
AqGateParameters gatePara[NbrGates];

for(int i=0;i<NbrGates;i++)
{
 gatePara[i].GateLength = 256;
 gatePara[i].GatePos = i*gatePara[i].GateLength;
}
AcqrsD1_configSetupArray(instrID, channelNbr, configObj, NbrGates,

gatePara);

The condition GateLength >= 4 is required. Both GateLength and GatePos must be multiples of 4.

You can read the gate parameters back, with this code:

Programmer’s Guide Page 44 of 63

const int NbrGates = 64;
long channelNbr = 0;
long configObj = AvgGate;
long lastGate;
AqGateParameters gatePara[NbrGates];

AcqrsD1_getSetupArray (instrID, channelNbr, configObj, NbrGates,
 gatePara, &lastGate);

Make sure to use a pointer to the last argument, since it returns the number of gates. lastGate cannot exceed the
number of gates being written.

To read the gated waveforms, use the function AcqrsD1_readData.
AqReadParameters readParams; // Read Definitions
AqDataDescriptor dataDesc; // Returned waveform values
AqSegmentDescriptor segDesc; // Returned segment values

long channel = 1, nbrSamples = 20000;
char waveformArray[20000];
readParams.dataType = ReadInt8;
readParams.readMode = ReadModeGateW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, waveformArray, &dataDesc,

&segDesc);

The returned data array contains the acquired waveforms as a contiguous array of dataDesc–
>returnedSamples bytes.

Note: Make sure that the waveformArray is large enough to hold the sum of all GateLength’s times the nbrSegments.
As a rule, the waveformArray has to have as a minimum size the sum of all the gate sizes times nbrSegments (
waveformArray > (∑ GateLength)* nbrSegments) .

Note: If, for each gate, the sum (GatePos + GateLength) exceeds the nbrSamplesInSeg, GatePos is reduced to
satisfy (GatePos + GateLength) <= nbrSamplesInSeg. If this is not sufficient, GateLength is shortened to satisfy that
condition.

3.10.8.3. Data Processing before Readout
In buffered mode. the AP101 offers the capability of processing the acquired data before readout. This operation
must be explicitly requested by the application, after the data acquisition has terminated.

Depending on the processing algorithms used, you may have to prepare the data processing by setting the appropriate
parameters with the function AcqrsD1_configSetupArray.

In the ‘peak-detect’ mode, the AP101 will return for each gate exactly 2 peaks, first the positive and then the
negative one (some of which might be marked as ‘invalid’ if no valid peak exists!). Thus, you should define the gates
in the same way as described in the previous section.

A typical acquisition/processing/readout sequence in autoswitch buffered mode would be:

1. Configure the APXXX for appropriate channel, timebase, trigger, and gate parameters.

2. Start the first acquisition.

Programmer’s Guide Page 45 of 63

3. Give the order to switch banks and start the next acquisition and data processing on the current acquisition
as soon as possible. The processing can overlap with the data acquisition since it automatically deals with
the memory bank that is not selected for acquisition. If you need to read the original data choose the "no
processing" option.

4. Wait for the processing to be terminated, read the processed result. Note that the processing will not destroy
the originally acquired data.

5. You may now do any additional processing in your computer. However, you cannot read the original data
at this point without perturbing the acquisition.

6. Now that you have finished all work with the current data you can loop to (3) above.

A typical acquisition/processing/readout sequence in explicit buffered mode would be:

7. Configure the APX01 for appropriate channel, timebase, trigger, and gate parameters.

8. Start the first acquisition.

9. Wait for the first acquisition to terminate.

10. Switch the memory bank and start a new acquisition in the second bank. Note that you must start the new
acquisition to make the memory bank switch happen.

11. Start data processing. This can overlap with the data acquisition since it automatically deals with the
memory bank that is not selected for acquisition.

12. After processing has terminated, read the processed result. Note that the processing will not destroy the
originally acquired data.

13. You may now do any additional processing in your computer. However, you cannot read the original data
at this point without perturbing the acquisition.

14. Wait for the new acquisition to terminate.

15. If you need to read the original data, e.g. for diagnostics on the processing algorithm, you may now do so.

16. Loop to (4.) above.

You need to implement a method to interrupt the infinite loop whenever required. However, you should make sure
that you leave the acquisition in a well-determined state for future operation.

The explicit acquisition/processing/readout sequence described above is shown in the following code:
AqReadParameters readParams; // Read Definitions
AqDataDescriptor dataDesc; // Returned waveform values
long channel = 1, segmentNumber = 0;
long nbrPeaks = 2 * nbrGates; // nbrGates is defined by user
long waveformArray[2 * nbrPeaks];
long memoryBank = 0, timeout = 5000; // timeout = 5 seconds
// Insert whatever is required for Vertical
// and Trigger configuration

AcqrsD1_configMode(instrID, 3, 0, memoryBank);
AcqrsD1_acquire(instrID); // Acquire into bank 0
AcqrsD1_waitForEndOfAcquisition(instrID, timeout);
// At this point, you should check the return value!

Programmer’s Guide Page 46 of 63

bool finished = false;
while(!finished)
{
 memoryBank = (memoryBank + 1)&0x1;// switch to other bank
 AcqrsD1_configMode(instrID, 3, 0, memoryBank);
 AcqrsD1_acquire(instrID); // start new acquisition
 AcqrsD1_processData(instrID, 0, 0);// start processing
 AcqrsD1_waitForEndOfProcessing(instrID, timeout);
 // At this point, you should check the return value!

 readParams.dataType = ReadReal64;
 readParams.readMode = ReadModePeak;
 readParams.nbrSegments = 1;
 readParams.firstSampleInSeg = 0;
 readParams.segmentOffset = 0;
 readParams.firstSegment = 0; // Read first segment
 readParams.nbrSamplesInSeg = 2* nbrPeaks; // pos and neg peak
 readParams.dataArraySize = 2 * sizeof(double) * nbrPeaks;
 readParams.segDescArraySize = 0;

readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

 AcqrsD1_readData(instrID, channel, &readParams, waveformArray,

&dataDesc, NULL);
 //...analyse and store data

 AcqrsD1_waitForEndOfAcquisition(instrID, timeout);
 //...read original data if desired
 //...check on loop termination conditions and set ‘finished’
}

The returned waveformArray contains exactly 2*nbrGates peaks, each of which is described by 2 double precision
floating-point values. The first pair of doubles contains the positive peak position, within the gate (in units of
samples), and the amplitude (in codes). The second pair of doubles contains the negative peak position and its
amplitude. The peak amplitude is a signed number in the range
[–128.0,+127.0] with the two extreme values indicating underflow/overflow conditions. The peak position is
normally positive. Negative values are used for warnings. In particular, the value –DBL_MAX indicates that no peak
was found. The #define of DBL_MAX can be found in the float.h include file. Each peak contains the following two
words:

0 – 63

Peak Position (in samples from start of gate)

0 – 63

Peak Amplitude (in ADC units)

Use the following code to obtain the peak positions for the i'th gate:
double *positivePeakPos = &waveformArray[0+8*i];
double *negativePeakPos = &waveformArray[4+8*i];

Programmer’s Guide Page 47 of 63

3.11. T3-style Data Readout
For the reading of timer data the AcqrsT3_readData routine should be used.

Control of the read parameters is passed through the input structure AqT3ReadParameters. The output format is
determined by these values as well as the type of module in use.

TC890 TOF modules use a direct read out of the modules data for maximum throughput. The PC does not have to
analyze the data coming from the module. The data are packed into 4-byte timer hits for each signal.

TC840 modules have a two phase readout. The Acqiris driver software in the PC analyzes the raw data as read from
the modules to derive the final timer results. These are presented in double floating point format or an integer count
of the time in the specified time granularity of the module.

The TC890 data are coded on 32 bits as described below. This includes:

 Event on the channel 1 to 6, time relative to the common channel event

 Event on the common input, each common event are numbered, even the common event that are lost if the
internal Buffer is Full.

 Aux IO Event Marker.

 Switch marker.

[31] Overflow Indicates the time value is not good because the real-time counter reached its maximum value.
When the data is a marker this bit is also set ‘1’.
if [30..28] = 0 to 6 => channel overflow
if [30..28] = 7 => marker

[30..28] DataType Type of the current data, Common channel, Channel number or Marker
0 for common (or channel 0)
1-6 for channel 1-6
7 denote the data is a Marker

[27..0] Time Channel 0: The value plus one is the number of hit of the common channel
 Channel 1 to 6: The value is the time between the channel and the common.
 Marker: Value=0 Switch marker: Switch from Auxiliary input A
 Value=1 Switch marker: Common channel Event count.
 Value=2 Switch marker: Memory Full.
 Value=16 Marker: Auxiliary input B marker.

3.12. Trigger Delay and Horizontal Waveform Position
When using a digitizer the user has 3 instrument setup variables with which to position the acquired waveform in
time:

• sampInterval: the sampling interval (inverse of the sampling frequency)

• nbrSamples: the number of samples to acquire

• delayTime: the nominal trigger delay

 sampInterval

Trigger

delayTime

nbrSamples

Programmer’s Guide Page 48 of 63

By convention, the nominal trigger delay is taken relative to the beginning of the trace, i.e. relative to the left edge of
a real or virtual display grid. It can be interpreted as the time from the trigger to the start of waveform recording. If
this number is positive, recording starts after the trigger (post-trigger acquisition). If it is negative, recording starts
before the trigger (pre-trigger acquisition). In reality, the acquisition always runs before any trigger occurs, and
delayTime controls the time between the trigger and the stopping of the acquisition:

delayTime Time until Acquisition Stop Comments

- sampInterval
* nbrSamples

0 Trigger point is at the right edge of grid, i.e. at the end of
the nominal waveform (100 % pre-trigger)

< 0 sampInterval * nbrSamples
+ delayTime

Trigger point is at the desired point within the grid

0 sampInterval * nbrSamples Trigger point is at the left edge of grid, i.e. at the
beginning of the nominal waveform (0 % pre-trigger)

> 0 sampInterval * nbrSamples
+ delayTime

Trigger point is to the left of the grid, i.e. before the
beginning of the nominal waveform (post-trigger)

Note that delayTime is not allowed to become more negative than - sampInterval * nbrSamples, because it is
impossible to stop the acquisition before the trigger occurs.

3.13. Horizontal Parameters in Acquired Waveforms
Triggers usually occur asynchronously with respect to the sampling clock. Thus, between similar events, the time
from the trigger to the next sampling clock varies randomly in the range [0 … sampInterval].

The true time reference for any waveform is the trigger point, not the sampling times, because the trigger is attached
to a given feature of the waveform (e.g. a transition at a predetermined level). For highly stable displays, it is
important to know the time between the trigger and the next sampling clock to within a fraction of the sampling
interval, and to place the displayed data points in such a way that the trigger point stays at a constant position. This is
particularly important for persistence displays or highly zoomed random-interleaved displays, as generated from
overlaid segments, where a single waveform (or waveform segment) contributes only a few data points to the
display.

Acqiris digitizers feature a Trigger Time Interpolator (TTI), which measures the time between the trigger event and
the next sampling clock to a fraction of the sampling interval. It permits very precise positioning of the acquired trace
in highly zoomed displays, particularly when multiple acquisitions of the same signal are used. In many other
applications, this value can be ignored.

The following drawing completes the description of a 'real-life' waveform:

delayTime

Trigger

hOffset horPos

sampInterval First data point
Time Origin

 nbrSamples

Programmer’s Guide Page 49 of 63

• The value of delayTime positions exactly the left edge of the display (or the exact nominal beginning of the
waveform) with respect to the “stable” trigger time, which is the real reference point. We define the time 'trigger
time + delayTime' as the time origin for the waveform, which is equivalent to saying that the trigger always
occurs exactly at the time -delayTime.

• The first data point of the waveform is defined as the last acquired data point before the time origin. It is indexed
with i = 0 in the formula below.

NOTE: It is important to realize that if a single segment is read (e.g. with AcqrsD1_readData) the first data point
will be dataArray[readPar.indexFirstPoint] and that this is not necessarily the first point given.

• The exact position of the first data point with respect to the time origin is a negative number horPos. It is by
definition in the range [-sampInterval, 0].

• The time between the trigger and the first data point hOffset need not be recorded since it can always be
computed as delayTime + horPos. Note: delayTime + horPos < delayTime by definition.

• In order to obtain a very stable image, even in a highly zoomed display, the user only needs to position the
acquired data points with the aid of horPos, by using the following formula for the x-position of point i with
respect to the left edge of the display:

x[i] = horPos + i * sampInterval

3.14. Sequence Acquisitions
For digitizers in Sequence acquisition mode, multiple waveforms are acquired autonomously, with a single start
command AcqrsD1_acquire. Whenever a trigger is received, the current acquisition segment is normally terminated.
The digitizer then automatically initializes another acquisition into the next memory segment, until all requested
segments are filled.

3.15. Timestamps
The 10-bit-Family of digitizers implements a timestamp to measure the time of the trigger for each acquisition
segment. These timestamps can be used to calculate the time between any two triggers for any pair of triggers over
multiple acquisitions.

The other, “older” Acqiris digitizers feature a 'timestamp' in order to measure the time between the triggers of
consecutive segments in the same acquisition. In fact, the timestamp counter is started when the Sequence acquisition
is started, and keeps counting during the entire sequence. The difference between the timestamps of any pair of (not
necessarily adjacent) segments is the time between their respective triggers.

The timestamp value is returned as a 64-bit integer, in units of picoseconds, with a resolution identical to that of the
trigger time interpolator (see the appropriate product User manual). The waveform readout function
AcqrsD1_readData returns the timestamp value as 2 32-bit values. In order to do time differences, you should
transform them into a 64-bit integer:

• In Visual C/C++, use the 64-integer __int64 as follows:

__int64 timeStamp = timeStampHi;
timeStamp = timeStamp<<32 + (unsigned long)timeStampLo;

Arithmetic operations between such integers can be done as with shorter integers.

You also can convert a timestamp difference to an extended floating point number, and do arithmetic operations
as with other variables:

double deltaTime = (double)(timeStamp – previousStamp);

• In Visual Basic, use a decimal Variant variable as follows:

Const Two16 As Variant = 65536
Const Two32 As Variant = Two16 * Two16
Dim timeStamp As Variant, previousStamp as Variant
Dim timeDiff as Variant, xStampLo as Variant
...
If (tStampLo < 0) Then
 xStampLo = Two32 – Abs(tStampLo)
Else

Programmer’s Guide Page 50 of 63

 xStampLo = tStampLo
End If
timeStamp = CDec(tStampHi * Two32) + xStampLo
...
timeDiff = timeStamp – previousStamp

Arithmetic operations between such decimal variants can be done as with other integer variables.
The manipulation of tStampLo is somewhat complicated because this variable is a signed 32-bit integer, but
must be added as an unsigned integer to the (shifted) tStampHi.

• In LabVIEW, convert the timestamp to an extended floating point number, and do arithmetic operations as with
other variables.

• In LabWindows/CVI, the easiest way to manipulate timestamps is to convert them first to doubles:
ViReal64 dlow, dhigh, tstamp;
dlow = (ViReal64)low;
dhigh = (ViReal64)high;
tsamp = dlow + 4294967296.0 * dhigh;

3.16. External Clock and Reference
The external reference mode replaces the internal 10 MHz reference clock with an external one at the same or a
similar frequency, from which the actual sampling clock is derived.

In the external clock mode, a waveform is sampled according to a clock derived from transitions of the external clock
signal through the user-defined threshold. We distinguish between continuous external clock operation and start/stop
external clock operation.

All external clock/reference modes are configured with the function AcqrsD1_configExtClock.

The external clock/reference signal should have a peak-peak amplitude of at least

• 0.5 V for the DC135/DC140/DC211A/DC241A/DC271A/DC271AR and 10-bit-FAMILY,

• 1 V for the other DC271-Family digitizers, the 12-bit-Family, the AC/SC Analyzers, the DP1400, and the
AP Averagers and Analyzers,

• 2 V peak to peak for all other models.

. The inputThreshold value should be set to the center of the signal.

3.16.1. External Reference
This external reference mode (clockType = 2) simply replaces the internal 10 MHz reference clock with an external
one at the same or a similar frequency. Alternatively, for the
DC135/DC140/DC211/DC211A/DC241/DC241A/DC271/DC271A/DC271AR, the AC/SC and the 10-bit-FAMILY,
the PXI 10 MHz System Clock can be used as the reference.

If you need a more precise timebase, or want to ensure that the timebases of several modules are at exactly the same
frequency, you should use clockType = 2 in the function, and apply an external 10 MHz signal. All other settings of
the digitizer are exactly the same as with an internal reference clock.

If you need to sample at a rate that deviates from the nominal values, you may apply an external reference signal
with a constant frequency in the range of

• [9.97, 10.03] MHz for the DP1400 and the 10-bit-FAMILY

• [9.0, 11.0] MHz for the 12-bit-FAMILY

• [9.0, 10.2] MHz for all other modules.

You need to correct for the reference frequency difference in your application since the digitizer and the driver do not
take the deviations into account.

NOTE: A square wave with better than 5 ns risetime should be used. This is needed to avoid false or multiple
transitions on a slower risetime signal. Alternatively, a >2 V amplitude signal could be used.

NOTE: When using this capability please make sure that the module is correctly synchronized on the signal. This
might require adjusting the threshold. If this is not the case the data will be useless and calibration can fail in rather
obscure ways.

Programmer’s Guide Page 51 of 63

3.16.2. External Clock (Continuous)
The continuous external clock mode (clockType = 1) permits the application to the digitizer of a continuous,
constant frequency, external clock in order to sample at an arbitrary frequency. This mode uses normal triggering,
from the input signal or through the external trigger input

We need to distinguish between first generation digitizers (models DP105, DP106, DP110, DP111, DP210, DP211,
DP212, DC110, DC240, DC265, DC270), second generation digitizers of the DC271-FAMILY (models DC135,
DC140, DC211, DC211A, DC241, DC241A, DC271, DC271A, DC271AR, DP214, DP235, DP240), the
AP240/AP235 signal analyzer platforms, the AC210/AC240/SC210/SC240 analyzers, and the 12-bit-FAMILY
(DC440, DC438, DC436, DP310, DP308, DP306), and third generation digitizers (models DC122, DC152, DC222,
DC252, DC282, DP1400) since their behavior in this mode is quite different. AP200/AP201/AP100/AP101
Averagers and Analyzers are considered to be first generation modules.

The horizontal control parameters sampInterval and delayTime as defined by AcqrsD1_configHorizontal are
ignored. You need to give the driver the current input frequency and the requested sampling frequency with the
variables inputFrequency and sampFrequency of the function AcqrsD1_configExtClock.

The input frequency inputFrequency must be between 10 MHz and 500 MHz in the first generation models, while it
must be between 20 MHz and 2000 MHz for the second generation DC271-FAMILY or AP240/AP235 signal
analysis platforms or, for the 12-bit-FAMILY, between 100 MHz and the value for the maximum allowed sampling
frequency. Note that for normal operation of the 12-bit-FAMILY digitizers the sFmax for each converter should be
kept above 50 MHz.

The acceptable values for sampFrequency are dividers (sFmax/n) of the maximum allowed sampling frequency,
sFmax, where n = 1,2,4,8,20,40,80,200,… The sFmax depends on the model and on the number of combined
channels nbrConvertersPerChannel of AcqrsD1_configChannelCombination:

Model Input

Frequency
range (MHz)

sFmax vs. nbrConvertersPerChannel

 1 2 4

DC122 100 – 2000 2 × inputFrequency

DC135 20 – 2000 ¼ × inputFrequency ½ × inputFrequency

DC140 20 – 2000 ½ × inputFrequency 1 × inputFrequency

DC152 100 – 2000 1 × inputFrequency 2 × inputFrequency

DC211/DC211A 20 – 2000 2 × inputFrequency

DC222 100 – 2000 4 × inputFrequency

DC241/DC241A 20 – 2000 1 × inputFrequency 2 × inputFrequency

DC252 100 – 2000 2 × inputFrequency 4 × inputFrequency

DC271/DC271A
 / DC271AR

20 – 2000 ½ × inputFrequency 1 × inputFrequency 2 × inputFrequency

DC282 100 – 2000 1 × inputFrequency 2 × inputFrequency 4 × inputFrequency

DC436 100 – 200 ½ × inputFrequency

DC440/DC438 100 – 220 1 × inputFrequency

DP1400 10 – 2000 1 × inputFrequency 2 × inputFrequency

DP214 20 – 2000 1 × inputFrequency

DP235/AP235 20 – 1000 ½ × inputFrequency 1 × inputFrequency

DP240/AP240 20 – 2000 ½ × inputFrequency 1 × inputFrequency

DP306 100 – 200 ½ × inputFrequency

DP308 100 – 200 1 × inputFrequency

DP310 100 – 220 1 × inputFrequency

Programmer’s Guide Page 52 of 63

Model Input
Frequency

range (MHz)

sFmax vs. nbrConvertersPerChannel

 1 2 4

AC210/SC210 20 – 2000 ½ × inputFrequency

AC240/SC240 20 – 2000 ½ × inputFrequency 1 × inputFrequency

1st generation 100 – 500 1 × inputFrequency

Example: When using a DC241 with 2 combined channels, and an external clock frequency of 1800 MHz (=
inputFrequency), the possible sampling frequencies are 3.6 GS/s, 1.8 GS/s, 900 MS/s and 450 MS/s.

The ratio of sFmax to inputFrequency can also be learned at run-time by using a call to
Acqrs_getInstrumentInfo(instrID," ExtCkRatio", &ratio).

The system computes the required memory overhead (in data samples) on the basis of the current sampFrequency
and nbrConvertersPerChannel. Use the function AcqrsD1_bestNominalSamples to obtain the maximum
available memory, after setting these parameters.

The equivalent of delayTime is defined with the value delayNbrSamples, which only applies to external clock
operation. The actual delay value is easily computed as follows:

 delay = (delayNbrSamples – nbrSamples) / sampFrequency

Example: In a 1st generation module with an external clock running at 200 MHz, if you wanted to acquire 2000 data
points at 50 MS/s with the trigger point at the end of the first quarter of the time window, you would use the code:

AcqrsD1_configMemory(instrID,2000,1);
AcqrsD1_configExtClock(instrID,1,threshold, 1500, 2.0e+8, 5.0e+7);
AcqrsD1_acquire(instrID); // start the acquisition
AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);

The value of delayNbrSamples is 1500 because 500 points need to be acquired before and 1500 points after the
trigger, in order to position the trigger point at the 1st quarter of the time window.

Equivalently, you could have computed the time window to be 2000 x 20 ns = 40 μs. The delay would therefore have
to be -10 μs to get the trigger point to the 1st quarter of the time window. Since nbrSamples = 2000 and
sampFrequency = 5.0e+7, you would obtain delayNbrSamples = 1500.

Since the sampling frequency is known in this clock mode, through the variable sampFrequency, any read functions
correctly return the value of the sampling interval.

In addition, if the user-supplied clock frequency inputFrequency is > 800 MHz on DC271-FAMILY digitizers or in
all cases for 10-bit and 12-bit digitizers, the system correctly measures the value horPos and returns it with any
waveform read function, such as AcqrsD1_readData. Thus, the time position of the sampled data points can be
known to within a small fraction of the sampling interval, permitting very precise timing measurements as with the
internal clock. However, the digitizer must be calibrated at the external clock frequency in use, whenever
inputFrequency or sampFrequency are changed. Use this code:

// We assume that a normal calibration has been done, either
// during initialization, or explicitly
AcqrsD1_configExtClk(..) // Set to (cont) Ext Clk
// Make sure to apply the same external frequency as the value
// ‘inputFrequency’, set in the function call above
Acqrs_calibrateEx(instrID, 2, 0, 0);

The function Acqrs_calibrateEx with calType = 2 readjusts some timing calibration constants, but does not modify
any vertical adjustment values, such as gain or offset.

In first generation digitizers, or when inputFrequency is ≤ 800 MHz in the second generation digitizers (or
AP/AC/SC analyzers in the digitizer mode), the data read functions will return horPos = 0.0, equivalent to a timing
uncertainty of ± 0.5 samples. For implementation reasons, the acquired waveform in fact has a timing uncertainty
that is twice as large, i.e. ± 1 samples. In this case, the trigger timestamps of the sequence acquisition mode are not
available.

Depending on the ratio of sampFrequency/inputFrequency , a waveform is sampled either on negative-going
transitions of the external clock signal through the user-defined threshold or, when the ratio is > 1, on both of the
transitions.

Programmer’s Guide Page 53 of 63

NOTE: First generation digitizers that have more than one converter/channel (DC240, DP210, and DP211) will
generate two data samples for each sampling interval. You must dimension your acquisition and readout for twice
the normal amout of data and can then either, drop every other data sample from the record, or average the two data
values which could enhance the signal to noise ratio.

3.16.3. External Clock (Start/Stop)
The start/stop external clock mode (clockType = 4) permits the application of a (variable) external clock. It should
not be used for the DP1400, 10-bit, or 12-bit digitizers. The clock can be setup to give bursts during which the
frequency is between 10 MHz and 500 MHz. The first sample of each burst may have to be ignored. The waveform
is sampled on positive-going transitions of the external clock signal through the user-defined threshold. Thus, the
sampling rate is equal to the input frequency.

For digitizers and Averagers/Analyzers in the digitzer mode, there is no concept of trigger when a Start/Stop clock is
used. Therefore, all trigger parameters will be ignored. This also means that there is no concept of sequence
acquisition. Operation in a channel combined mode is not possible.

The AC/SC Analyzers can be used in this mode. A continuous clock frequency of up to 800 MHz, to give 800 MS/s
sampling, will work.

In this mode, the horizontal control parameters sampInterval and delayTime are completely ignored, as well as the
value of delayNbrSamples. The waveform length is, as usual, controlled by the number of samples in the function
AcqrsD1_configMemory. Careful synchronization between the function calls to the driver and the generation of the
clock burst is required.

There are 2 ways of terminating an acquisition in the start/stop mode:

1. Generate a number of clock transitions that corresponds exactly to the requested number of samples, and
stop the acquisition with the function AcqrsD1_stopAcquisition. This requires that the host computer
obtain some external signal when the clock sequence is terminated.

2. Generate some extra clock transitions, which will fully terminate the acquisition. You can then use the
functions AcqrsD1_acqDone or AcqrsD1_waitForEndOfAcquisition to detect the end of acquisition.

Example for Termination (1): if you wanted to acquire 20 waveforms of 2000 data points each, at a sampling rate of
33.3 MHz, and a time distance of 5 µs between the waveforms, you would use:

AcqrsD1_configMemory(instrID, 40000, 1);
AcqrsD1_configExtClock(instrID, 4, threshold, 0, 33.3e6, 33.3e6);
AcqrsD1_acquire(instrID); // start the acquisition

 Generate 20 bursts of 2000 clock pulses at 33.3 MHz. At the end, you need
to inform the host computer to terminate the acquisition and:

AcqrsD1_stopAcquisition(instrID);
AcqrsD1_readXXXWform(instrID, . . .);

Note that the sampling rate and the time between bursts have no incidence on the configuration parameters of the
digitizer, i.e. they appear nowhere.

Example for Termination (2): if you wanted to acquire 5000 waveforms of 200 data points each, you would write:
AcqrsD1_configMemory(instrID, 100000, 1);
AcqrsD1_configExtClock(instrID, 4, threshold, 0, 0.0, 0.0);
AcqrsD1_acquire(instrID); // start the acquisition

 Generate 5000 bursts of 200 clock pulses at the required frequency. At the
end, you need to generate ≥ 160/320/640 additional clock pulses.

AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);
AcqrsD1_readXXXWform(instrID, . . .);

The 320 (640 on 2 GS/s, or 1280 on 4 GS/s digitizers) extra clocks could be generated by 1 or more extra bursts of
200 clock cycles or a special burst. There is no risk of overwriting the earliest data, since the memory is not circular
in this mode.

Comments valid for both termination mechanisms:

Programmer’s Guide Page 54 of 63

Although the function AcqrsD1_acquire sets it to the ready state, the digitizer cannot actually record data while the
external clock is idle. The clock burst must start after the digitizer has been started, and it must start in a very clean
way, i.e. the first pulse must be already well over the threshold and its width must be ≥ 1 ns.

The digitizer sees the multiple clock bursts as a single acquisition. It knows neither the sampling frequency, nor the
time difference between the waveforms. It simply acquires a number of data points. In termination mechanism (2) it
also records the extraneous points and then stops.

When reading the data, the multiple waveforms appear as a contiguous waveform. The only way of distinguishing
one waveform from the other is by counting samples, i.e. the first 2000 samples belong to the 1st waveform, the next
2000 to the 2nd etc. It is therefore imperative to exactly control the number of clocks in a burst.

 NOTE: If the time difference between 2 bursts is > 100 ns, the digitizer tends to drift into saturation, from which it
has to recover when the next burst resumes. The first data sample of such a burst is thus invalid. In many cases, this
first data sample is sufficiently different from the rest of the waveform that it can serve as a ‘segment marker’.

NOTE: Digitizers that have more than one converter/channel (DC211, DC240, DC241, DP210, DP211, and
DP214) will generate two (four-for theDC211) data samples for each sampling interval. You must dimension your
acquisition and readout for twice (4x) the normal amout of data and can then either, drop the extra data sample from
the record, or average the data values which could enhance the signal to noise ratio.

3.17. ASBus Operation
The ASBus and ASBus2 are intended to synchronize a number of similar CompactPCI modules, in order to make
them appear as a single instrument with more channels. After a number of digitizers have been combined with the
functions AcqrsD1_multiInstrAutoDefine (or AcqrsD1_multiInstrDefine for ASBus only), each combined
instrument can be controlled, when using its instrumentID, with the same functions as single digitizers. We
recommend the use of the automatic function, unless you need special control over the order in which the digitizers
are numbered within the MultiInstrument. Please refer to the function AcqrsD1_multiInstrAutoDefine, for details.

If you mix modules (of the same model number) with different memory lengths, you must make sure that you never
use more than the shortest memory length available. Otherwise, you will get invalid data on the short memory
modules. Under ASBus, the automatic function always assigns the clock master role to a module with the shortest
memory, with the result that the function AcqrsD1_configMemory refuses to accept memory lengths beyond the
shortest. When configuring manually, you might want to do the same. Otherwise, you need to explicitly check your
requested memory lengths.

3.17.1. Channel Numbering with ASBus
In a MultiInstrument, input channels are numbered from 1 to nbrChannels. The number of channels can be retrieved
with the function call:

Acqrs_getNbrChannels(instrID, &nbrChannels);

Channel 1 corresponds to channel 1 of module 0. Channel numbers increase first through module 0, then through
modules 1, 2 etc.

For Acqiris CC10x crates when a MultiInstrument is defined with AcqrsD1_multiInstrAutoDefine, module 0 is
always closest to the controller slot (), whereas with AcqrsD1_multiInstrDefine, it corresponds to the first module
in the initializing list. The Acqiris CC121 crates have a different ordering; please refer to the Acqiris CC121
CompactPCI Crate User Manual.

E.g. when combining 3 DC270 4-channel digitizers, you would use channel number 10 in the function calls
config/get_MultiInput, config/get_Vertical and readChar/RealWform, if you wanted to refer to Input 2 of the
third DC270.

Channel numbering does not depend on which module is the actual clock or trigger master.

3.17.2. Trigger Source Numbering with ASBus
Acqiris digitizers do not necessarily have as many internal triggers as channel inputs, nor exactly one external
trigger. You should retrieve, for every MultiInstrument, additional information with the following calls:

Programmer’s Guide Page 55 of 63

Acqrs_getInstrumentInfo(instrID, "NbrInternalTriggers", &nbrIntTrigs);
Acqrs_getInstrumentInfo(instrID, "NbrExternalTriggers", &nbrExtTrigs);
Acqrs_getInstrumentInfo(instrID, "NbrModulesInInstrument", &nbrModules);
nbrIntTrigsPerModule = nbrIntTrigs /nbrModules;

nbrExtTrigsPerModule = nbrExtTrigs /nbrModules;

In a MultiInstrument composed of 4 DC240 (2 channel, 2 GS/s digitizers), you would get 8 internal trigger sources, 4
external trigger sources and 4 for the value of nbrModules. Thus, nbrIntTrigsPerModule would be 2 and
nbrExtTrigsPerModule would be 1, as expected for a DC240.

Internal triggers are associated to the input channels, and follow the same numbering rules.

External triggers follow similar rules, i.e. extTrig = 1 corresponds to external trigger 1 of the first module, extTrig =
2 corresponds to external trigger 2 of the first module (if nbrExtTrigsPerModule > 1) or to external trigger 1 of the
second module etc. The externalTrigger 2 is the name used for the PXI Bus Star Trigger.

The functions AcqrsD1_configTrigSource and AcqrsD1_getTrigSource use the explicit trigger channel number,
with the internal trigger channel running from 1 to nbrIntTrigs, and the external trigger running from –1 to –
nbrExtTrigs. Note that 0 is an invalid trigger source, resulting in an error code.

The functions AcqrsD1_configTrigClass and AcqrsD1_getTrigClass encode the trigger source in a 32-bit source
pattern:

31 30 20 - 29 16 – 19 5 - 15 4 3 2 1 0
Ext 1 Ext 2 Other Ext Trigs Module Other Int Trigs In 5 In 4 In 3 In 2 In 1

[0] IN 1 Internal trigger channel 1

[1] IN 2 Internal trigger channel 2

[2..4] IN 3, IN 4, IN 5 Internal trigger channels 3, 4, 5

[5..15] OTHER INT
TRIGS

Other internal trigger channels within a module, up to 16.

[16..19] MODULE Module Number, running from 0 to (nbrModules – 1).
In single digitizers, this field must be zero.
In MultiInstruments, the trigger source number must be broken into a
module number and a trigger channel number within the module.

[20..29] OTHER EXT
TRIGS

Other external trigger channels within a module, up to 12.

[30] EXT 2 External trigger channel 2

[31] EXT 1 External trigger channel 1

In future digitizers with trigger pattern capabilities, several trigger bits could be set simultaneously. However, no
trigger pattern capabilities between different modules can be coded, i.e. only a single module in a MultiInstrument
can be the trigger source, although the source in the single module might be a pattern. For these reasons, the module
number must be coded explicitly.

To translate a trigger channel number trigChan into a trigger source pattern, use the following code:
 if (trigChan > 0) // Internal Trigger
 {
 long moduleNbr = (trigChan - 1) / nbrIntTrigsPerModule;
 long inputNbr = (trigChan - 1) % nbrIntTrigsPerModule;
 srcPattern = (moduleNbr<<16) + (0x1<<inputNbr);
 }
 else if (trigChan < 0) // External Trigger
 {
 trigChan = -trigChan;
 long moduleNbr = (trigChan - 1) / nbrExtTrigsPerModule;
 long inputNbr = (trigChan - 1) % nbrExtTrigsPerModule;
 srcPattern = (moduleNbr<<16) + (0x80000000>>inputNbr);
 }

Programmer’s Guide Page 56 of 63

 else
 PROBLEM!

Note that moduleNbr and inputNbr start from 0. An 'industrial strength' implementation should contain some
checks on the range of trigChan and/or inputNbr.

3.18. Special Operating Modes
Some Acqiris digitizers offer alternative operating modes, which are controlled with the function
AcqrsD1_configMode. The default state of any digitizer is mode = 0 and flags = 0, corresponding to the normal
digitizer operation, as described in the other sections of this manual.

3.18.1. Frequency Counter
This is an option available for the DC140 and DC135 digitizers. It is implemented with a signal counter that counts
trigger signals from the user-requested channel. A time counter generates the user-programmed aperture time, during
which the measurement is performed.

The user-requested signal channel has to be programmed for the expected signal characteristics; the standard config
functions should be used to set the full-scale, coupling, offset and trigger threshold. The HF trigger mode may be set
by the driver software on the basis of the user-supplied target frequency value. In order to obtain the best results, it is
recommended to adjust the full scale and offset so that they span the expected input signal. In addition, the trigger
threshold should be set to approximately the center of the signal voltage range. Calls to AcqrsD1_configVertical
and AcqrsD1_configTrigClass are needed. If an external time base reference is desired, AcqrsD1_configExtClock
should be called. If the totalize in gate functionality is desired the source of the gate must be set with the function
AcqrsD1_configControlIO, with the parameters connector = 1 (I/O A) or 2 (I/O B) and signal = 9. Note that when
this mode is in use the Enable trigger input (signal = 6) functionality of AcqrsD1_configControlIO cannot be used.

The function AcqrsD1_configFCounter sets the parameters specific to the frequency measurements.
 AcqrsD1_configFCounter(instrID, channel, type, targetValue, apertureTime,

0.0, 0);

Comments:

• Channel numbers run from 1 to the available number of signal channels in the digitizer.

• The value type is 0 for Frequency, 1 for Period, 2 for Totalize by Time and 3 for Totalize by Gate.

• The targetValue is an estimator of the expected result. If no estimate is possible, use the value 0.0. This
value is only used to activate the HF trigger mode which extends the useable frequency range. By default,
the frequency range is extended except:

type Measurement Divide by 1

0 Frequency if targetValue is smaller than 1 kHz (1000.0) and larger than 0.0

1 Period if targetValue is larger than 1ms (0.001)

2 Totalize by Time always (the HF mode is never used)

3 Totalize by Gate always (the HF mode is never used)

• The apertureTime defines the minimum time for a frequency measurement (it may be longer if the
frequency is very low!). In the Totalize by Time mode, the value of apertureTime determines the time
window during which the input pulses are counted.

The frequency counter mode is set with the function AcqrsD1_configMode, with mode = 6.

After configuring the instrument parameters, the measurement sequence is started with the function
AcqrsD1_acquire. This function returns before the measurement is terminated. The user must wait until it is
terminated with the functions AcqrsD1_acqDone or AcqrsD1_waitForEndOfAcquisition. For the case of Totalize
by Gate the program must stop the acquisition by making a call to the function AcqrsD1_stopAcquisition.

FC results can be readout with the function AcqrsD1_readFCounter. The result is always a single double precision
number whose units are those appropriate for the type of measurement chosen.

Programmer’s Guide Page 57 of 63

3.18.2. ‘Start on Trigger’
The ‘Start on Trigger’ mode begins data recording only upon receipt of a trigger signal, and stops after nbrSamples
data points are acquired. Not all digitizers are capable of this mode;

those that never have it are the DC110, DC240, DC265, DC270, and the 12-bit digitzers ;

others (DP105, DP106, DP110, DP111, DP210, DP211, DP212) can have it as an option only.

It is useful in the special case where the sampling rate is less than the maximum possible and where an optimum time
correlation between the trigger and the sampling clock is required (typically when averaging waveforms). This mode
also requires that the trigger is available before the waveform of interest.

In the ‘Normal’ mode, data recording begins at the time of arming, with the function AcqrsD1_acquire. The trigger
occurs asynchronously to the sampling clock, and thus will fall randomly anywhere within a sampling interval. When
averaging waveforms, this will result in an effective bandwidth reduction since the waveforms are randomly shifted
with respect to each other by up to ± ½ sampling interval.

In ‘Start on Trigger’ mode, the trigger occurs before recording starts. It still occurs asynchronously with respect to
the internal VCO (which is always running). However, if the requested sampling rate is less than the VCO frequency
(e.g. 100 MS/s, while the clock runs at 500 MHz), then the time correlation between the trigger and the effective
sampling clock is within ± ½ VCO time interval, not ± ½ sampling interval. Therefore when averaging, the
bandwidth reduction will be less than in the ‘normal’ mode.

The value delayTime in the function AcqrsD1_configHorizontal is ignored. As usual, the digitizer requires some
memory overhead for additional samples. The function AcqrsD1_bestNominalSamples returns the maximum
number of available samples.

Use this code to use the ‘Start on Trigger’ mode:
AcqrsD1_configXXX(..); // configure other parameters
AcqrsD1_configMode(instrID, 0, 0, 1);
AcqrsD1_acquire(instrID);
AcqrsD1_waitForEndOfAcquisition(instrID, timeout);
// Read out data etc. before calling again “AcqrsD1_acquire”

Note that the function AcqrsD1_acquire is still needed. However, it behaves somewhat differently in that is does not
start data recording but waits until a trigger signal is received.

Due to some circuit delays, the waveform recording starts approximately 20ns after the receipt of the trigger signal.
Furthermore the first data points may be invalid. For the DC271 family, this means that the first 8 ns worth of data
should be ignored for sampling rates 4 GS/s > SR > 500 MS/s and the first 4 ns, 16 points, for SR = 4 GS/s.

3.18.3. ‘Sequence Wrap’
The normal operation of the digitizer requires that it stop recording waveforms when the pre-defined number of
segments has been acquired. Thus, nbrSegments triggers are needed to acquire the requested number of segments
into the same number of different memory sections. After the acquisition has terminated, all of the waveform
segments are finally available for readout.

The ‘Sequence Wrap’ mode also pre-defines the desired number of different memory sections, but it permits a larger
number of triggers. After the first nbrSegments waveform segments are acquired, the digitizer ‘wraps’ around to the
first memory segment and keeps on recording waveforms. This sequence can go on indefinitely, since no hardware
condition will stop it. The only way to terminate this infinite loop is to stop it with the function
AcqrsD1_stopAcquisition.

This mode is useful when only the last N out of many occurrences of a signal are of interest. E.g. if you search for a
rare event out of many occurrences, and you only can determine its interest after the event has occurred, then the
‘Sequence Wrap’ mode is applicable.

While this mode even ‘works’ for nbrSegments = 1, in practice the value of nbrSegments should be at least 2. It is
important to note that after the acquisition of a segment, the digitizer automatically advances to the next memory
section and immediately (with a dead time of ~ 1 μs) starts recording into it. Thus, the very last memory segment will
necessarily contain uninteresting data, since it will not be stopped with a trigger, but be terminated with the software
command AcqrsD1_stopAcquisition.

Use this code to use the ‘Sequence Wrap’ mode:

Programmer’s Guide Page 58 of 63

AcqrsD1_configXXX(..); // configure other parameters
AcqrsD1_configMode(instrID, 0, 0, 2);
AcqrsD1_acquire(instrID);
.
.
AcqrsD1_stopAcquisition(instrID);

The time at which the sequence is terminated with the function AcqrsD1_stopAcquisition depends on an external
event, e.g. operator intervention.

When reading the segments, the segment number should take on the values 0,…(nbrSegments-1). They correspond
to the memory section numbers in the digitizer, not the time order of the acquired segments.

Example: if nbrSegments = 8, the time order of the acquired segments might be (depending on when the sequence
was stopped) 5, 6, 7, 0, 1, 2, 3, 4. Here, the ‘oldest good’ segment is the 5th segment, followed by the 6th, 7th, 8th, 1st
etc. The ‘youngest’ useful segment is the 3rdone, while the 4th segment corresponds to the segment that was being
recorded when the stop-command was received. The 4th segment (in this example) typically does not contain any
useful data.

3.19. Readout of Battery Backed-up Memories
Acqiris digitizers with the battery back-up option permit retaining acquired waveforms during periods of time when
the power might be interrupted.

3.19.1. Preparations before Power-Off
A digitizer only remembers the digitized data array, but not all of the parameters that are needed to interpret the
waveform. These parameters are normally retained in the driver, but are typically lost when power is lost or when the
controlling application is terminated.

It is therefore necessary for the application to transfer the relevant parameters before power-off, typically to a disk,
in such a way that they are again available when restarting the application after power is restored. The following
parameters must be transferred to persistent storage, for each instrument:

• Parameters of AcqrsD1_configHorizontal, i.e. sampling interval and delay

• Parameters of AcqrsD1_configMemory, i.e. number of samples and number of segments

• Parameters of AcqrsD1_configVertical, i.e. Full Scale and offset (the coupling is not relevant!), for each
channel of interest

• Two calibrated delay parameters, as obtained with the function calls
 Double delayOffset, delayScale;
 Acqrs_getInstrumentInfo(ID, "DelayOffset", &delayOffset);
 Acqrs_getInstrumentInfo(ID, "DelayScale", &delayScale);

The functions Acqrs_getInstrumentInfo should be called just before the start of the acquisition, i.e. before calling
AcqrsD1_acquire, but after all AcqrsD1_config… functions.

3.19.2. Recovery after Power-Off
In order to read a battery backed-up waveform, you need to execute a special sequence of initialization functions

1. Initialize the digitizer with the following function call:
Acqrs_InitWithOptions(resourceName, false, false, "CAL=FALSE", &instrID);

It is important to specify “CAL=FALSE” to prevent any calibration in the digitizer, which would destroy any
retained data.

2. Call the functions AcqrsD1_configHorizontal, AcqrsD1_configMemory, AcqrsD1_configVertical (for each
channel!) with the same parameters that were used in the original acquisition.

Programmer’s Guide Page 59 of 63

3. Call the function AcqrsD1_restoreInternalRegisters, with the parameters delayOffset and delayScale. In case
these parameters are not available (e.g. due to earlier software versions), you should use the values –20.0e-9 for
delayOffset and 5.0e-12 for delayScale.

4. Call the function AcqrsD1_readData to read the battery backed-up data.

Failing to restore the originally used digitizer parameters may result in erroneous data. After data recovery, and
before using the digitizer for any new acquisitions, don’t forget to calibrate the instrument with the function
Acqrs_calibrate.

3.20. Reading the Instrument Temperature
The temperature of an instrument can be obtained with the following code:

long temperature; // will be in degrees C
Acqrs_getInstrumentInfo(instrID, "Temperature", &temperature);

When multiple digitizers are combined via ASBus to a MultiInstrument, use the strings "Temperature 0",
"Temperature 1"… to refer to the individual modules.

NOTE: The returned temperature value corresponds to the ambient temperature on the main printed-circuit board,
typically near the timebase circuit. It cannot represent all possible temperature values that are present on the circuit.
Values ≥ 60 oC indicate that the circuit is near its operational limit, and a cooling failure occurred or better cooling
should be installed.

We recommend keeping the temperature as low as possible, since a 10oC reduction in circuit temperature is expected
to improve the mean-time-between-failures (MTBF) by a factor of 2.

We also recommend reading the temperature when the instrument is stopped. The read operation may generate small
signal perturbations through cross talk, if it is executed while an acquisition is in progress.

Programmer’s Guide Page 60 of 63

4. Appendix A: Estimating Data Transfer Times
The time to transfer a waveform may be a significant part of the execution time of a program, and thus becomes an
important design consideration for new applications. We present here a simple timing model with the aim of
predicting the transfer time for digitizer readout as a function of the number of segments, number of samples, CPU
speed and the operating system.

4.1. Principles & Formulas
The function AcqrsD1_readData for readMode = 0 executes a direct waveform transfer from the digitizer memory
to the user-allocated buffer, for a single segment at a time. Since direct-to-memory access (DMA) is used, this is the
most time-efficient method for segments of 10'000 or more samples. However, each segment requires its own DMA
setup. When segments are very short, the transfer overhead starts to dominate the overall transfer time. After the
transfer the data in the buffer is ready to be used.

The function AcqrsD1_readData for readMode = 1 (ReadModeSeqW) reduces the overhead time by transferring
with a single DMA a complete digitizer memory image to the host computer memory. The memory image is
composed of a number of segments, each of which is a circular buffer. The first data point of interest in the circular
buffer may be anywhere, and its position usually changes randomly between acquisitions. Thus, after the DMA is
terminated, the driver must copy data from the image to the final linear buffer for each segment. This method is
therefore only interesting for relatively short segments. However, if timing is not an important consideration, it offers
the convenience of a single function call for the complete transfer of a waveform sequence.

Formulas for estimating the transfer times in μs are:

• AcqrsD1_readData for readMode = 0:

XfrNMOvhdMT DMA ⋅⋅+⋅=1

• AcqrsD1_readData for readMode = 1 (ReadModeSeqW):

() CpyNMXfrExtraNMOvhdMOvhdT bufferDMA ⋅⋅+⋅+⋅+⋅+=2

with the following definitions:

M Number of segments

N Number of samples per segment

Xfr Transfer time per sample in μs, typically 0.01 ??

DMAOvhd

DMA overhead time (per segment) in μs

bufferOvhd

Circular buffer analysis overhead time (per segment) in μs

Extra Number of 'overhead' data points per segment

Cpy Time to copy a sample in μs

The formulas above assume that M and N correspond to the number segments and samples set with the function
AcqrsD1_configMemory. If fewer segments or samples are transferred, the timing might be somewhat less
favorable than estimated by the formula.

1. The transfer time Xfr is typically 0.009 to 0.01 μs (9 - 10 ns) per 8-bit sample for digitizers directly inserted on
the PCI bus of the host computer or connected through the SBS-Bit3 interface (Acqiris model number IC200). If
a digitizer is connected through the National Instruments MXI-3 interface, Xfr is typically 0.012 μs (12 ns). Of
course, these times would get larger, if there was considerable additional I/O traffic on the PCI bus.

2. The DMA overhead time OvhdDMA is approximately (50'000 μsec) / (Pentium CPU speed in MHz). Thus, for a
250 MHz Pentium OvhdDMA is ~ 200 μs, and for a 500 MHz Pentium it is ~ 100 μs.
With applications running under Windows 95, OvhdDMA has been observed to be ~ 20% lower.

3. The circular buffer analysis overhead time Ovhdbuffer is ~ (2'500 μs) / (Pentium CPU speed in MHz). Thus, for a
250 MHz Pentium Ovhdbuffer is ~ 10 μs, and for a 500 MHz Pentium ~ 5 μs.

Programmer’s Guide Page 61 of 63

4. An Extra number of data samples must be transferred to the host computer with the memory image. It depends
on the sampling interval (in ns) and on the digitizer type. Here are some rough values:

Extra Type

300 / sampInterval + 98 digitizers with ≤ 1 GS/s maximum sampling rates

300 / sampInterval + 194 digitizers with 2 GS/s maximum sampling rates or DC271-FAMILY
instruments set for a combine channel mode allowing 2 GS/s

300 / sampInterval + 386 DC271-FAMILY instruments set for a 4 GS/s combine channel mode

5. The copying time Cpy per 8-bit sample is ~ (5 μs) / (Pentium CPU speed in MHz).
Thus, for a 250 MHz Pentium Cpy is ~ 0.02 μs, and for a 500 MHz Pentium it is ~ 0.01 μs.

Benchmarks were run on 266 and 550 MHz Pentiums, running under Windows 98 and NT. The observed transfer
times agreed with the formula within better than 20%.

• dataType=3:

Add the conversion time T3 for conversion from ADC codes to Volts, to T2 or T1 respectively:

ConvNMT ⋅⋅=3

where Conv is the conversion time per sample in microseconds. It is ~ (35 μs) / (Pentium CPU speed in
MHz). Thus, for a 250 MHz Pentium Conv is ~ 0.14 μs, and for a 500 MHz Pentium ~ 0.07 μs.

4.2. Examples
(A) DP210 in a 800 MHz Pentium:

Transferring single records of 100'000 samples, recorded at 2 GS/s:

672192480125.35.62
00625.001.00001001

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ106310005.621 =+=⋅⋅+⋅=

()
s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ169800625.000010001.0672100125.35.62
2

=⋅+⋅++=

⋅⋅+⋅+⋅+⋅+=

It is therefore more favorable to use the function AcqrsD1_readData for readMode = 0.

Transferring 100 segments of 1000 samples, recorded at 2 GS/s:

672192480125.35.62
00625.001.00001100

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ725001.010001005.621001 =⋅⋅+⋅=⋅⋅+⋅=
()

s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ267200625.0000110001.06721100125.31005.62
2

=⋅⋅+⋅⋅+⋅+=

⋅⋅+⋅+⋅+⋅+=

The function AcqrsD1_readData for readMode = 1 (ReadModeSeqW) is about 2.7 times faster.

Programmer’s Guide Page 62 of 63

(B) DC270 connected to a 500 MHz Pentium with a MXI-3 interface:

Transferring single records of 100'000 samples, recorded at 100 MS/s:

12096102405100
01.0012.00001001

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ130012001001 =+=⋅⋅+⋅=

()
s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ230601.0000100012.01201005100
2

=⋅+⋅++=

⋅⋅+⋅+⋅+⋅+=

It is therefore more favorable to use the function AcqrsD1_readData for readMode = 0.

Transferring 1000 segments of 500 samples each, recorded at 500 MS/s:

2169622405100
01.0012.05000001

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ00010600060001001 =+=⋅⋅+⋅=

()
s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ6921801.05000001012.0716000150001100
2

=⋅⋅+⋅⋅+⋅+=

⋅⋅+⋅+⋅+⋅+=

The function AcqrsD1_readData for readMode = 1 (ReadModeSeqW) is about 5 times faster.

4.3. Comparison Chart for Typical Transfers

Time in ms 250 MHz Pentium 500 MHz Pentium 800 MHz Pentium

of
Segments

Samples/
Segment

T1 T2 R T1 T2 R T1 T2 R

1 200 0.20 0.22 1.10 0.10 0.12 1.13 0.06 0.08 1.17
1 1 K 0.21 0.25 1.17 0.11 0.13 1.20 0.07 0.09 1.22
1 10 K 0.30 0.52 1.72 0.20 0.31 1.56 0.16 0.23 1.45
1 100 K 1.20 3.22 2.68 1.10 2.11 1.92 1.06 1.70 1.60
1 1 M 10.2 30.2 2.96 10.1 20.1 1.99 10.0 16.3 1.62

10 200 2.02 0.43 0.21 1.02 0.26 0.25 0.65 0.19 0.30
10 1 K 2.10 0.67 0.32 1.10 0.42 0.38 0.73 0.32 0.45
10 10 K 3.00 3.37 1.12 2.00 2.22 1.11 1.63 1.79 1.10
10 100 K 12.0 30.4 2.53 11.0 20.2 1.84 10.6 16.4 1.54
10 1 M 102 300 2.94 101 200 1.98 101 163 1.62

100 200 20.2 2.47 0.12 10.2 1.67 0.16 6.45 1.37 0.21
100 1 K 21.0 4.87 0.23 11.0 3.27 0.30 7.25 2.67 0.37
100 10 K 30.0 31.9 1.06 20.0 21.3 1.06 16.2 17.3 1.06
100 100 K 120 302 2.52 110 202 1.83 106 164 1.54

1000 200 202 22.9 0.11 102 15.8 0.16 64.5 13.2 0.20
1000 1 K 210 46.9 0.22 110 31.8 0.29 72.5 26.2 0.36
1000 10 K 300 317 1.06 200 212 1.06 163 170 1.06
8000 200 1616 182 0.11 816 126 0.15 516 105 0.20

Programmer’s Guide Page 63 of 63

Time in ms 250 MHz Pentium 500 MHz Pentium 800 MHz Pentium
8000 1 K 1680 374 0.22 880 254 0.29 580 209 0.36
8000 2 K 1760 614 0.35 960 414 0.43 660 339 0.51

Comments:

• We assume a 2 GS/s digitizer running at the highest sampling rate, direct connection of the digitizer to the host
PCI bus or through the SBS-Bit3 interface (Acqiris model number IC200), Windows NT.

• 12 TTR =
If R > 1.0, a loop over AcqrsD1_readData for readMode = 0 is faster than AcqrsD1_readData for readMode =
1 (ReadModeSeqW).

Time in ms 866 MHz Pentium

of
Segments

Samples/
Segment

T1 T2 R

1 200 0.03 0.04 1.22
1 1 K 0.04 0.05 1.21
1 10 K 0.12 0.17 1.45
1 100 K 0.98 2.12 2.15
1 1 M 9.85 25.5 2.59

10 200 0.3 0.14 0.46
10 1 K 0.35 0.27 0.76
10 10 K 1.21 1.61 1.33
10 100 K 11.6 16.2 1.40
10 500 k 45.4 94.4 2.08
100 200 3.00 0.92 0.31
100 1 K 4.27 2.37 0.56
100 10 K 16.1 15.0 0.93
100 50 K 44.7 74.2 1.66

1000 200 47.2 13.5 0.29
1000 1 K 44.3 23.4 0.53
1000 5 K 85.9 87.8 1.02
8000 200 457 64.8 0.14
8000 500 496 202 0.41

Comments: Measured under the Linux OS.

	1. Introduction
	1.1. Message to the User
	1.2. Using this Manual
	1.3. Conventions Used in This Manual
	1.4. Warning Regarding Medical Use
	1.5. Warranty
	1.6. Warranty and Repair Return Procedure, Assistance and Support
	1.7. System Requirements

	2. Programming Environments & Getting Started
	2.1. Visual C++
	2.2. LabWindows/CVI
	2.3. LabVIEW
	2.3.1. LabView 7.x/8 with old LabView programs
	2.3.2. AqDx Getting Started VI
	2.3.3. AqDx Example Scope VI
	2.3.4. AqDx Accumulated Waveform Example VI
	2.3.5. AqTx TC890 VI
	2.3.6. AqTx TC890 VI

	2.4. Visual Basic
	2.5. MATLAB
	2.6. Wind River VxWorks (Tornado)
	2.6.1. Compiling
	2.6.2. Loading
	2.6.3. Running the Program

	2.7. Linux

	3. Programming an Acqiris Instrument
	3.1. Programming Hints
	3.2. Device Initialization
	3.2.1. PCI & VXI Identification by Order Found
	3.2.2. PCI Identification by Serial Number
	3.2.3. PCI Identification by Bus/Slot Number
	3.2.4. VXI Identification
	3.2.5. PXI VISA & LabViewRT Identification
	3.2.6. Firmware initialization (AP-FAMILY/12-bit-FAMILY/AC /SC/Time Counters)
	3.2.7. Automatic Definition of MultiInstruments
	3.2.8. Manual Definition of MultiInstruments
	3.2.9. AqGeo.map file positioning
	3.2.10. Simulated Devices
	3.2.11. Terminating an Application

	3.3. Device Configuration
	3.4. Configuring Averagers
	3.4.1. Basic configuration
	3.4.2. Dithering
	3.4.3. ‘Fixed Pattern’ Background Subtraction
	3.4.4. Configuring Noise Suppressed Accumulation (NSA)

	3.5. Configuring SSR Analyzers
	3.5.1. Acquisition Parameters
	3.5.2. Readout configuration
	3.5.3. Time stamps

	3.6. Configuring PeakTDC Analyzers
	3.7. Configuring AP101/AP201 Analyzers
	3.8. Configuring TC8xx Time Counters
	3.9. Data Acquisition
	3.9.1. Starting an Acquisition
	3.9.2. Checking if Ready for Trigger
	3.9.3. Waiting for End of Acquisition
	3.9.4. Stopping/Forcing a D1-style Acquisition
	3.9.5. Analyzer and PeakTDC Autoswitch mode
	3.9.5.1. Sequence of actions for Autoswitch with event readout
	3.9.5.2. What happens when the AutoSwitch semaphore is not set
	3.9.5.3. Changing acquisition settings while acquiring and reading events

	3.10. D1-style Data Readout
	3.10.1. Reading Digitizer Waveforms with the Universal Read Function
	3.10.2. Reading Sequences of Waveforms
	3.10.3. Averaging Waveforms in a Digitizer
	3.10.4. Reading an Averaged Waveform from an Averager
	3.10.4.1. Averaged Waveforms in Volts
	3.10.4.2. Averaged Waveforms as 32-bit Sums

	3.10.5. Reading a RT Add/Subtract Averaged Waveform from an Averager
	3.10.6. Reading SSR Analyzer Waveforms
	3.10.6.1. SSR Mode Readout Data Format
	3.10.6.2. Raw data
	3.10.6.3. Gated data
	3.10.6.4. Waveform storage requirements

	3.10.7. Reading PeakTDC Analyzer Data and Histograms
	3.10.7.1. Reading the gated data
	3.10.7.2. Reading the data in the peak regions
	3.10.7.3. Reading the peaks
	3.10.7.4. Reading the histogram

	3.10.8. Reading AP101/AP201 Analyzer Waveforms
	3.10.8.1. Reading a Buffered Waveform Sequence
	3.10.8.2. Reading Gated Waveforms
	3.10.8.3. Data Processing before Readout

	3.11. T3-style Data Readout
	3.12. Trigger Delay and Horizontal Waveform Position
	3.13. Horizontal Parameters in Acquired Waveforms
	3.14. Sequence Acquisitions
	3.15. Timestamps
	3.16. External Clock and Reference
	3.16.1. External Reference
	3.16.2. External Clock (Continuous)
	3.16.3. External Clock (Start/Stop)

	3.17. ASBus Operation
	3.17.1. Channel Numbering with ASBus
	3.17.2. Trigger Source Numbering with ASBus

	3.18. Special Operating Modes
	3.18.1. Frequency Counter
	3.18.2. ‘Start on Trigger’
	3.18.3. ‘Sequence Wrap’

	3.19. Readout of Battery Backed-up Memories
	3.19.1. Preparations before Power-Off
	3.19.2. Recovery after Power-Off

	3.20. Reading the Instrument Temperature

	4. Appendix A: Estimating Data Transfer Times
	4.1. Principles & Formulas
	4.2. Examples
	4.3. Comparison Chart for Typical Transfers

