

 Computer Science Master’s Project

Component-based Simulation Visualization Toolkit

By

 Kewei Huang

Rensselaer Polytechnic Institute

Troy, NY 12180

1. Overview

Simulations become a necessary tool in the hands of researchers. Although most of scientific

computing is based on numerical solutions to partial differential equations, the discrete event

simulation and hybrid system [5,13] found wide applications in science and engineering. Even

within the research group at RPI within which this project has been done, the applications

encompassed spatially explicit simulations [16] including epidemic simulation [3,22], vector born

disease modeling [2], Lyme disease simulation [17,18], evolution of virulence [24] and epidemics

[23] as well as more general ecological models [21]. Other scientific applications of discrete event

simulations include speculative execution of scientific codes [4] and plasma simulation [25]. In

computer science, these methods are used to simulate embedded computer systems [1], distributed

and grid computing [19,20] and networking [26,30], including on-line network simulations [27],

network management applications [29] and large scale network dynamics studies [28].

Based on this broad experience in applications, the RPI group developed new rollback

procedure [15] and new synchronization protocol based on lookback [9.10], as well as new

approach to developing discrete event simulation based on components [6,7,8]. The new system,

called COST [11] includes a tool for configuring a simulation from its components [12] and found

its first application in emergency management [14]. It is difficult to configure simulations using

linear language and this observation was the motivation for this project: development of a

graphically oriented configuration tool.

 The Component-based Simulation Visualization Toolkit (CSVT) is to provide a visualization

interface for simulation programs (called simulation clients) to help simulation developers verify

and debug the simulation more easily and more comfortably. It is developed in Java, so users can

use it on any platform. The topology of the network simulation is provided in a text file, CSVT can

read in the topology file, and give an automatic layout solution. Then the user can adjust the graph

to meet his needs, and save the view into a serialized view file or a JPEG file.

2. User Manual

You can either create a text file describing the topology of the network, and use CSVT to read

in the text file, the topology will then be displayed in a graphic manner; or, customize the source

code of CSVT to meet your specific needs. For customizing CSVT, please refer to the third part of

this report, the implementation manual.

2.1 Function sets

A simulation is composed of a number of components. A component contains one or more

ports which are connected to corresponding ports of other components. Each simulation,

component, or port has a unique name.

The CSVT visualizes the topology of the simulation. In the simplest form, each component is

symbolized as a rectangle. However, the visualization of components should be extendable. New

symbols can be easily added by implementing customized JAVA drawing classes. The simulation

developer can then select a symbol for a component by specifying the desired drawing class. On the

contrary, a port is invariably represented by a triangle.

The CSVT allows the user to adjust the graphical structure of topology, such as moving and

changing the path of the link between ports. The topology itself, which is determined by the

simulation client, is not modifiable. Therefore, functionalities such as disconnecting a port, creating

a new component or a port, are not necessary.

After the user adjust the positions of components, ports, and links, the CSVT can save the

geographical information along with their names to a view file which is identified by the name of

the simulation. When the same simulation is restarted, the CSVT is able to retrieve such

information from the view file so that the user doesn’t need to fix the positions again.

2.2 Launching CSVT

CSVT can be started by “ java -classpath edu.rpi.cs.CSVT.CSVT”, under the CSVT directory.

The interface will be as the following:

2.3 How to use CSVT

2.3.1 Create a graph

There are three ways to create a CSVT graph.

1) File -> New Graph

In this way, you create a blank graph, and can use the tool box provided to add in

components from the component library. The component library can be customized to

meet your needs, that is, you can change the CSVT code to provide your own components.

CSVT supports Drag and Drop function, so creating a new graph is easy.

2) File -> Load Topology

You can also put the graph topology into a text file like this:

“ component source

component fifo

component server

component sink

outport source.out

inport fifo.in

outport fifo.out

inport fifo.next

inport server.in

outport server.out

outport server.next

inport sink.in

outport sink.out

connect source.out fifo.in

connect fifo.out server.in

connect server.next fifo.next

connect server.out sink.in”

 and the loaded CSVT graph will be as the following:

 then you can adjust the attributes of the components, and finally you can get the following:

3) File -> Open

This is just to open an existed CSVT graph file.

2.3.2 Output a graph

The adjusted view file can be saved into a serialized file by File -> Save As, or to a JPEG file

by File-> Save as JPEG.

2.3.3 Standard editing functions

CSVT supports copy, paste, cut and delete, and Undo/Redo functions for editing a graph.

2.3.4 Zoom in and out

You can zoom in to see in more detail, and zoom out to see the global scope.

2.3.5 View choices

You can customize the look and feel style by View->Look and Feel :

and some other view choices like Grid -> Visible:

2.3.6 Graph layout

 CSVT supports several automatic layout methods:

2.4 System requirements

CSVT has been developed under windows 2000, J2SE v1.4. It runs properly on Solaris

and Linux platform, but on Solaris, mouse right button doesn’t work, so to fully support

mouse function, currently better use under windows or Linux.

3. Implementation Manual

3.1 How to manage graphs

With CSVT’s JGraph class, you can display objects and their relations. A JGraph object

doesn't actually contain your data; it simply provides a view of the data. Like any non-trivial Swing

component, the graph gets data by querying its data model. Here's a picture of a graph:

Fig. 1: A directed graph

As the preceding figure shows, JGraph displays its data by drawing individual elements. Each

element displayed by the graph contains exactly one item of data, which is called a cell. A cell may

either be a vertex, an edge or a port. Vertices have zero or more neighbours, and edges have one or

no source and target vertex. Each cell has zero or more children, and one or no parent. (Instances of

ports are always children of vertices.)

3.1.1 Creating a Graph

 The following code creates a JGraph object:

JGr aph gr aph = new JGr aph() ;

. . .

JScr ol l Pane scr ol l Pane = new JScr ol l Pane(gr aph)

The code creates an instance of JGraph and puts it in a scroll pane. Jgraph’s constructor is

called with no arguments in this example. Therefore, JGraph will use an instance of

Def aul t Gr aphModel , create an instance of Gr aphVi ew for it, and add a sample graph to the

model.

Graph can be created by invoking the JGraph constructor. You should probably put the graph

inside a scroll pane, so that the graph won't take up too much space. You don't have to do anything

to support cell editing, selection, marquee selection, vertex and edge resizing and moving.

3.1.2 Customizing a Graph

After the network topology is loaded into the CSVT environment, you can customize the

attributes of the graph. CSVT offers the following forms of interactions:

• In-place editing

• Moving

• Cloning

• Sizing

• Bending (Adding/Removing/Moving edge points)

• Establishing Connections

• Removing Connections

All interactions can be disabled using set Enabl ed(f al se) . In-place editing is available

for both, vertices and edges, and may be disabled using set Edi t abl e(f al se) . The number of

clicks that triggers editing may be changed using set Edi t Cl i ckCount .

Moving, cloning, sizing, and bending, establishing connections and disconnecting edges may

be disabled using the respective methods, namely set Moveabl e, set Cl oneabl e,

set Si zeabl e, set Bendabl e, set Connect abl e and set Di sconnect abl e on the

graph instance.

The model offers finer control of connection establishment and disconnection based on the

accept sSour ce and accept sTar get methods. By overriding these methods, you can decide

for each (edge, port) pair if it is valid with respect to the edge’s source or target. (Before an edge is

disconnected from a port, the respective method is called with the port set to nul l to check if

disconnection is allowed.)

Cel l Vi ews offer yet another level of control in that they allow/disallow being edited, moved,

cloned, resized, and shaped, or connected/disconnected to or from other cells. (Note: In the context

of multiple views, a cell may be connectable in one view, and not connectable in another.)

There are a number of additional methods to customize CSVT, for example,

set Mi ni mumMove to set the minimum amount of pixels before a move operation is initiated, and

set SnapSi ze to define the maximum distance from a cell to be selected.

With set Di sconnect OnMove you can indicate if the selection should be disconnected

from the unselected graph when a move operation is initiated, set Dr agEnabl ed

enables/disables the use of Drag-and-Drop, and set Dr opEnabl ed sets if the graph accepts

Drops from external sources. (The latter also affects the clipboard, in that it allows/disallows paste

data from external sources.)

3.1.3 Responding to Interaction

You can either respond to mouse events, or to events generated by CSVT. CSVT offers the

following notifications:

• Changes to the model

• Changes to the view

• Changes to the selection

• Undoable edit happened

3.1.3.1. Undoable edit

CSVT is compatible to Swing’s Undo-Support. Each time the user performs an action, the

model dispatches an edit that describes the change. The edit provides an undo method to undo the

change.

If undo is called on an edit, the model fires a Gr aphModel Event , but it does not fire an

Undoabl eEdi t Event . The latter only fires if CSVT wants to indicate that an edit was added to

the command history, which is not the case for an undo. (In the context of multiple views, you

must use an instance of Gr aphUndoManager to ensure correctness.)

3.1.3.2. Responding to Mouse Events

For detection of double-clicks or when a user clicks on a cell, regardless of whether or not it

was selected, a MouseLi st ener should be used in conjunction with

get Fi r st Cel l For Locat i on. The following code prints the label of the topmost cell under

the mouse pointer on a doubleclick. (The get Fi r st Cel l For Locat i on method scales its

arguments.)

/ / MouseLi st ener t hat Pr i nt s t he Cel l on Doubl ecl i ck

gr aph. addMouseLi st ener (new MouseAdapt er () {

 publ i c voi d mousePr essed(MouseEvent e) {

 i f (e. get Cl i ckCount () == 2) {

 / / Get Cel l under Mousepoi nt er

 i nt x = e. get X() , y = e. get Y() ;

 Obj ect cel l = gr aph. get Fi r st Cel l For Locat i on(x, y) ;

 / / Pr i nt Cel l Label

 i f (cel l ! = nul l) {

 St r i ng l ab = gr aph. conver t Val ueToSt r i ng(cel l) ;

 Syst em. out . pr i nt l n(l ab) ;

 }

 }

 }

}) ;

3.1.3.3. Responding to Model Events

If you want to handle model notifications, implement the Gr aphModel Li st ener interface

and add the instance using the method addGr aphModel Li st ener . The listeners are notified

when cells are inserted, removed, or when the label, source, target, parent or children of an object

have changed. (Make sure to also add an Obser ver to Gr aphVi ew in order to be notified of all

possible changes to a graph.)

The following code defines a listener that prints out information about the changes to the

model, and adds the listener to the graph’s model:

/ / Def i ne a Model Li st ener

publ i c c l ass Model Li st ener i mpl ement s Gr aphModel Li st ener {

 publ i c voi d gr aphCel l sChanged(Gr aphModel Event e) {

 Syst em. out . pr i nt l n(" Change: " +e. get Change())

 }

}

/ / Add an I nst ance t o t he Model

gr aph. get Model () . addGr aphModel Li st ener (new Model Li st ener ()) ;

3.1.3.4. Responding to View Events

Visual modifications are typically handled by the Gr aphVi ew, which extends the

Obser vabl e class. To respond to view-changes, implement the Obser ver interface and add it

to the view using the method addObser ver . Observers are notified when the size, position, color

etc. of a cell view has changed. (Note: If the model’s i sAt t r i but eSt or e returns t r ue, then

the view is bypassed, and all attributes are stored in the model.)

/ / Def i ne an Obser ver

publ i c c l ass Vi ewObser ver i mpl ement s Obser ver {

 publ i c voi d updat e(Obser vabl e o, Obj ect ar g) {

 Syst em. out . pr i nt l n(" Vi ew changed: " +o) ;

 }

}

/ / Add an I nst ance t o t he Vi ew

gr aph. get Vi ew() . addObser ver (new Vi ewObser ver ()) ;

3.1.3.5. Responding to Selection Changes

The following code prints out selection events:

/ / Def i ne a Sel ect i on Li st ener

publ i c c l ass MyLi st ener i mpl ement s Gr aphSel ect i onLi st ener {

 publ i c voi d val ueChanged(Gr aphSel ect i onEvent e) {

 Syst em. out . pr i nt l n(" Sel ect i on changed: " +e) ;

 }

}

/ / Add an I nst ance t o t he Gr aph

gr aph. addGr aphSel ect i onLi st ener (new MyLi st ener ()) ;

The preceding code creates an instance of MyLi st ener , which implements the

Gr aphSel ect i onLi st ener interface, and registers it on the graph.

3.1.3.6. Responding to Undoable Edits

To enable Undo-Support, a Gr aphUndoManager must be added using

addUndoabl eEdi t Li s t ener . The Gr aphUndoManager is an extension of Swing's

UndoManager that maintains a command history in the context of multiple views. You can safely

use an instance of UndoManager if your graph has only one view. Otherwise, a

Gr aphUndoManager must be used for correct behaviour.

3.1.4 Customizing a Graph’s Display

CSVT performs some look-and-feel specific painting. You can customize this painting in a

limited way. For example, you can modify the grid using set Gr i dCol or and set Gr i dSi ze,

and you can change the handle colors using set Handl eCol or and set LockedHandl e-

Col or . The background color may be changed using set Backgr ound.

3.1.4.1. Subclassing Renderers

If you want finer control over the rendering, you can subclass one of the default renderers, and

override its pai nt -method. A renderer is a Component -extension that paints a cell based on its

attributes. Thus, neither JGraph nor its look-and-feel-specific implementation actually contain the

code that paints a cell. Instead, CSVT uses the cell renderer’s painting code. A new renderer may be

associated with a cell by overriding the get Render er Component method of the corresponding

Cel l Vi ew, or the get Render er method for extensions of the Abst r act Cel l Vi ew class.

3.1.4.2. Adding new Cell Types to a Graph

The following code is to illustrate how to add new cell types and renderers. The code adds an

oval vertex to the graph. The easiest way to do this is by extending JGraph. Since JGraph

implements the Cel l Vi ewFact or y interface, it is in charge of creating views.

When creating a view, JGraph assumes a cell is a vertex if it is not an instance of Edge or

Por t , and calls the cr eat eVer t exVi ew method. Thus, we only need to override this method to

identify an oval vertex (based on a type test) and return the corresponding view.

/ / Over r i des JGr aph. cr eat eVer t exVi ew

pr ot ect ed Ver t exVi ew cr eat eVer t exVi ew(Obj ect v,

 Gr aphModel model ,

 Cel l Mapper cm) {

 / / Ret ur n an El l i pseVi ew f or El l i pseCel l s

 i f (v i nst anceof El l i pseCel l)

 r et ur n new El l i pseVi ew(v, model , cm) ;

 / / El se Cal l Super c l ass

 r et ur n super . cr eat eVer t exVi ew(v, model , cm) ;

}

The oval vertex is represented by the El l i pseCel l class, which is an extension of the

Def aul t Gr aphCel l class, and offers no additional methods. It is only used to distinguish oval

vertices from normal vertices.

/ / Def i ne El l i pseCel l

publ i c c l ass El l i pseCel l ext ends Def aul t Gr aphCel l {

 / / Empt y Const r uct or

 publ i c El l i pseCel l () {

 t hi s(nul l) ;

 }

 / / Const r uct Cel l f or User obj ect

 publ i c El l i pseCel l (Obj ect user Obj ect) {

 super (user Obj ect) ;

 }

}

The El l i pseVi ew is needed to define the special visual aspects of an ellipse. It contains an

inner class which serves as a renderer that provides the painting code. The view and renderer are

extensions of the Ver t exVi ew and Ver t exRender er classes, respectively. The methods that

need to be overridden are get Per i met er Poi nt to return the perimeter point for ellipses,

get Render er to return the correct renderer, and the renderer’s pai nt method.

/ / Def i ne t he Vi ew f or an El l i pseCel l

publ i c c l ass El l i pseVi ew ext ends Ver t exVi ew {

 s t at i c El l i pseRender er r ender er = new El l i pseRender er () ;

 / / Const r uct or f or Super cl ass

 publ i c El l i pseVi ew(Obj ect cel l , Gr aphModel model ,

 Cel l Mapper cm) { super (cel l , model , cm) ; }

 / / Ret ur ns Per i met er Poi nt f or El l i pses

 publ i c Poi nt get Per i met er Poi nt (Poi nt sour ce, Poi nt p) { … }

 / / Ret ur ns t he Render er f or t hi s Vi ew

 pr ot ect ed Cel l Vi ewRender er get Render er () {

 r et ur n r ender er ;

 }

 / / Def i ne t he Render er f or an El l i pseVi ew

 st at i c c l ass El l i pseRender er ext ends Ver t exRender er {

 publ i c voi d pai nt (Gr aphi cs g) { … }

 }

}

The reason for overriding get Render er instead of get Render er Component is that the

Abst r act Cel l Vi ew class, from which we inherit, already provides a default implementation of

this method that returns a configured Cel l Vi ewRender er , which in turn is retrieved through

the method that was overridden.

3.1.4.3. Adding Tooltips to a Graph

Tooltips can be implemented by overriding JGraph’s get Tool Ti pText method, which is

inherited from the JComponent class. The following displays the label of the cell under the

mouse pointer as a tooltip.

/ / Ret ur n Cel l Label as a Tool t i p

publ i c St r i ng get Tool Ti pText (MouseEvent e) {

 i f (e ! = nul l) {

 / / Fet ch Cel l under Mousepoi nt er

 Obj ect c = get Fi r st Cel l For Locat i on(e. get X() , e. get Y()) ;

 i f (c ! = nul l)

 / / Conver t Cel l t o St r i ng and Ret ur n

 r et ur n conver t Val ueToSt r i ng(c) ;

 }

 r et ur n nul l ;

}

The graph must be registered with Swing’s TooltipManager to correctly display tooltips. This

is done with the following code on startup:

Tool Ti pManager . shar edI nst ance() . r egi st er Component (gr aph)

3.1.4.4. Customizing In-Place Editing

In graphs that display complex structures, it is quite common to offer a property dialog instead

of the simple in-place editing. To do this, the Basi cGr aphUI ’s st ar t Edi t i ng and

compl et eEdi t i ng methods must be overridden. Then, in order to use this UI in a graph, the

graph’s updat eUI method must be overridden, too:

/ / Def i ne a Gr aph wi t h a Cust om UI

publ i c c l ass Di al ogGr aph ext ends JGr aph {

 / / Set s t he Cust om UI f or t hi s gr aph obj ect

 publ i c voi d updat eUI () {

 / / I nst al l a new UI

 set UI (new Di al ogUI ()) ;

 i nval i dat e() ;

 }

}

The Di al ogUI class takes the view’s editor, and puts it in a dialog, which blocks the frame

until the dialog is closed.

3.1.5 Dynamically changing a Graph

In CSVT, either the model or the view is modified, or they are modified in parallel with a

single transaction. When working on the model, objects that implement the Gr aphCel l interface

are used, whereas objects that implement the Cel l Vi ew interface are used in the context of a

Gr aphVi ew. Gr aphVi ews allow edit Cel l Vi ews , whereas Gr aphModel s allow to insert,

remove, and edit Gr aphCel l s .

In this chapter, a Def aul t Gr aphModel is used along with a graph that provides a view to

the model. This way, we can clarify which methods belong to the model, and which belong to the

view.

Def aul t Gr aphModel model = new Def aul t Gr aphModel ()

JGr aph gr aph = new JGr aph(model) ;

3.1.5.1. Attributes

CSVT separates the model and the view. The model is defined by the Gr aphModel interface,

and contains objects that implement the Gr aphCel l interface, whereas the view is represented by

the Gr aphVi ew class, and contains objects that implement the Cel l Vi ew interface. The

mapping between cells and views is defined by the Cel l Mapper interface:

Fig. 4: Mapping between Gr aphCel l s and Cel l Vi ews

A model has zero or more views, and for each cell in the model, there exists exactly one

Cel l Vi ew in each Gr aphVi ew. The state of these objects is repesented by a map of (key, value)

pairs. Each Cel l Vi ew combines the attirbutes from the corresponding Gr aphCel l with its own

attributes.

When combining the attributes from a Gr aphCel l with the attributes from the Cel l Vi ew,

the graph cell’s attributes have precedence over the view’s attributes. The special val ue attribute

is in sync with the cell’s user object.

3.1.5.2. Dynamically Changing Attributes

The state of a cell, and likewise of a view is represented by its attributes. In either case, the

Gr aphConst ant s class is used to change the state in two steps:

1. Construct the object that constitutes the change

2. Execute the change on the model, or the graph view

Fig. 5: Using maps to change the state

To construct the object that constitutes the change, a new map is created using the

cr eat eMap method of the Gr aphConst ant s class. When a map is applied to a view’s or cell’s

state, it does not replace the existing map. The entries of the new map are added or changed

in-place. As a consequence, the Gr aphConst ant s class offers the set RemoveAt t r i but es

and set RemoveAl l methods, which are used to remove individual or all keys from the existing

state. (Note: The notion of states using maps closely resembles the structure of XML-documents.)

3.1.5.3. Automatically Changing Attributes

The updat e method of the Cel l Vi ew interface is used to message the Cel l Vi ew when

one of its attributes was changed programmatically, or one of its neighbours has changed attributes.

Thus, the updat e method is a good place to automatically set attributes, like for example the

points of an edge. To reflect changes to the view’s corresponding cell, for example to point to the

current source and target port, the r ef r esh method is used.

3.2 Working with the GraphModel

The model can be thought as an access point to two independent structures: the graph structure

and the group structure. The graph structure is based on the mathematical definition of a graph, ie.

vertices and edges. The group structure is used to enable composition of cells, ie. parents and

childs.

The graph structure is defined by the get Sour ce and get Tar get methods, which return

the source and target port of an object. The port in turn is a child of a vertex, which is used as an

indirection to allow multiple connection points.

The group structure is defined by the get Chi l d, get Chi l dCount , get I ndexOf Chi l d,

and get Par ent methods. The objects that have no parents are called roots, and may be retrieved

using the get Root At and get Root Count methods.

3.2.1 Inserting a Vertex into the Model

Here is a method that creates a new Def aul t Gr aphCel l and adds it to the model. The

method adds two ports to the cell, and creates a map which maps the cells to their attributes. The

attributes are in turn maps of (key, value) pairs, which may be accessed in a type-safe way by use of

the Gr aphConst ant s class:

voi d i nser t Ver t ex(Obj ect obj , Rect angl e bounds) {

 / / Map t hat Cont ai ns At t r i but e Maps

 Map at t r i but eMap = new Hasht abl e() ;

 / / Cr eat e Ver t ex

 Def aul t Gr aphCel l cel l = new Def aul t Gr aphCel l (user Obj ect) ;

 / / Cr eat e At t r i but e Map f or Cel l

 Map map = Gr aphConst ant s. cr eat eMap() ;

 Gr aphConst ant s. set Bounds(map, bounds) ;

 / / Associ at e At t r i but e Map wi t h Cel l

 at t r i but eMap. put (cel l , map) ;

 / / Cr eat e Def aul t Fl oat i ng Por t

 Def aul t Por t por t = new Def aul t Por t (" Fl oat i ng") ;

 cel l . add(por t) ;

 / / Addi t i onal Por t Bot t om Ri ght

 i nt u = Gr aphConst ant s. PERCENT;

 por t = new Def aul t Por t (" Bot t omr i ght ") ;

 / / Cr eat e At t r i but e Map f or Por t

 map = Gr aphConst ant s. cr eat eMap() ;

 Gr aphConst ant s. set Of f set (map, new Poi nt (u, u)) ;

 / / Associ at e At t r i but e Map wi t h Por t

 at t r i but eMap. put (por t , map) ;

 cel l . add(por t) ;

 / / Add Cel l (and Chi l dr en) t o t he Model

 Obj ect [] i nser t = new Obj ect [] { cel l } ;

 model . i nser t (i nser t , nul l , nul l , at t r i but eMap) ;

}

The first argument to the i nser t Ver t ex method is the user object – an object that contains

or points to the data associated with the cell. The user object can be a string, or it can be a custom

object. If you implement a custom object, you should implement its t oSt r i ng method, so that it

returns the string to be displayed for that cell. The second argument represents the bounds of the

vertex, which are stored as an attribute.

Note: The vertex is passed to the i nser t method without its children. The fact that

parent-child relations are stored in the cells is used here to insert the children implicitly, without

providing a Par ent Map.

The at t r i but eMap argument is not used by the model. It is passed to the views to provide

the attributes for the cell views to be created. The third parameter of the i nser t call can be used

to provide properties, that is, attributes that are stored in the model.

3.2.2 Finding the Port of a Vertex

Since ports are treated as normal children in the model (using the model’s group structure), the

Gr aphModel interface may be used to find the “default port” of a vertex:

Por t get Def aul t Por t (Obj ect ver t ex, Gr aphModel model) {

 / / I t er at e over al l Chi l dr en

 f or (i nt i = 0; i < model . get Chi l dCount (ver t ex) ; i ++) {

 / / Fet ch t he Chi l d of Ver t ex at I ndex i

 Obj ect chi l d = model . get Chi l d(ver t ex, i) ;

 / / Check i f Chi l d i s a Por t

 i f (chi l d i nst anceof Por t)

 / / Ret ur n t he Chi l d as a Por t

 r et ur n (Por t) chi l d;

 }

 / / No Por t s Found

 r et ur n nul l ;

}

3.2.3 Inserting an Edge into the Model

The following method creates a new Def aul t Edge, and adds it to the model, along with the

connections to the specified source and target port.

voi d i nser t Edge(Obj ect obj , Por t sour ce, Por t t ar get) {

 / / Cr eat e Edge

 Def aul t Edge edge = new Def aul t Edge(user Obj ect) ;

 / / Cr eat e Connect i onSet f or I nser t i on

 Connect i onSet cs = new Connect i onSet (edge, sour ce, t ar get) ;

 / / Add Edge and Connect i ons t o t he Model

 Obj ect [] i nser t = new Obj ect [] { edge} ;

 model . i nser t (i nser t , cs, nul l , nul l) ;

}

The first argument represents the user object of the cell, and the second and third argument

specify the source and target port of the new edge. To insert connections into a graph model, an

instance of Connect i onSet is required. The instance is used to collect the new ports and targets

of edges, and execute the change as a single transaction.

3.2.4 Changing the Model

The Connect i onSet and Par ent Map classes are used to change the model. The

attributes may be changed using a map that contains cell, attributes pairs. The attributes are in turn

represented by maps of key, value pairs, which may be accessed in a type-safe way by using the

Gr aphConst ant s class.

Let edge, por t and ver t ex be instances of the Def aul t Edge, Def aul t Por t and

Def aul t Gr aphCel l classes, respectively; all contained in the model. This code changes the

source of edge to por t , the parent of por t to ver t ex , and the user object of ver t ex to the

String Hello World.

/ / Cr eat e Connect i on Set

Connect i onSet connect i onSet = new Connect i onSet () ;

connect i onSet . connect (edge, por t , t r ue) ;

/ / Cr eat e Par ent Map

Par ent Map par ent Map = new Par ent Map() ;

par ent Map. addEnt r y(por t , ver t ex) ;

/ / Cr eat e Pr oper t i es f or Ver t ex

Map pr oper t i es = Gr aphConst ant s. cr eat eMap() ;

Gr aphConst ant s. set Val ue(pr oper t i es, " Hel l o Wor l d") ;

/ / Cr eat e Pr oper t y Map

Map pr oper t yMap = new Hasht abl e() ;

pr oper t yMap. put (ver t ex, pr oper t i es) ;

/ / Change t he Model

model . edi t (connect i onSet , pr oper t yMap, par ent Map, nul l) ;

The last argument of the edi t call may be used to specify the initial edits that triggered the

call. The edits specified are considered to be part of the transaction. (This is used to implement

composite transactions, ie. transactions that change the model and the view in parallel.)

3.2.5 Changing the View

Each Gr aphCel l has one or more associated Cel l Vi ews, which in turn contain the

attributes. The attributes of a Cel l Vi ew may be changed using edi t Cel l s on the parent

Gr aphVi ew. In contrast to the pr oper t yMap argument used before, and the at t r i but eMap

argument used to insert cells into the model, the at t r i but eMap argument used here contains

instances of the Cel l Vi ew class as keys. The attributes, again, are maps of key, value pairs.

The following changes the border color of ver t ex to black:

/ / Wor k on t he Gr aph’ s Vi ew

Gr aphVi ew v = gr aph. get Vi ew() ;

/ / Cr eat e At t r i but es f or Ver t ex

Map at t r i but es = Gr aphConst ant s. cr eat eMap() ;

Gr aphConst ant s. set Bor der Col or (at t r i but es, Col or . bl ack) ;

/ / Get t he Cel l Vi ew t o use as Key

Cel l Vi ew cel l Vi ew = v. get Mappi ng(ver t ex, f al se) ;

/ / Cr eat e At t r i but e Map

Map at t r i but eMap = new Hasht abl e() ;

at t r i but eMap. put (cel l Vi ew, pr oper t i es) ;

/ / Change t he Vi ew

v. edi t Cel l s(at t r i but eMap) ;

Bibliography

[1] S. Azzaro and B.K. Szymanski, ̀ `Simulating Dedicated UNIX PC-Based Application Systems,''

Proc. 1990 Winter Simulation Conference, O. Balci, R.P. Sadowski, R.E. Nance (edts), New

Orleans, LA, December 1990, pp. 831-838.

[2] T. Caraco, S. Glavankov, G. Chen, B.K. Szymanski, T. Ohsumi, and J. Flaherty, ``Vector-borne

infection with stage-structured transmission: a spatial model for Lyme disease,'' The American

Naturalist, 160, No. 3, 2002, in print.

[3] T. Caraco, W. Maniatty, and B.K. Szymanski, ``Epidemics Modeling and Simulation on a

Parallel Machine,'' Proc. Int. Conference on Applied Modelling and Simulation, Vancouver, Canada,

July 21-23, 1993, pp. 69-70.

[4] G. Chen, H. Lamehamedi, A. Vargun, and B.K. Szymanski, ``Web-Enabled and Speculative

High Performance Computing,'' Proc. Int. SGI User's Conference, SGI2000, Cracow, Poland,

October, 2000, AGH Press, Cracow, 2000, pp. 75-90.

[5] G. Chen and B.K. Szymanski, ``Linking spatially explicit parallel continuous and discrete

models,'' Proc. Winter Simulation Conference, Orlando, Florida, December 2000, IEEE Computer

Press, Los Alamitos, CA, pp. 1705-1712.

[6] G. Chen and B.K. Szymanski, ``A Component Model for Discrete Event Simulation,'' Parallel

Processing and Applied Mathematics, 4th International Conference PPAM 2001, Naleczow, Poland,

September 9-12, 2001 (Revised Papers), September 2001, LNCS vol. 2328, Springer Verlag, Berlin,

June 2002, pp. 580-594.

[7] G. Chen and B.K. Szymanski, ``Component-Based Simulation,'' Proc. European Simulation

Multiconference, ESM2001, SCS Press, Delft, Netherlands, 2001, pp. 68-75.

[8] G. Chen and B.K. Szymanski, ``Component-Oriented Simulation Architecture: Towards

Interoperability and Interchangeability,'' Proc. 2001 Winter Simulation Conference, B.A. Peters, J.S.

Smith, D.J. Medeiros, and M.W. Rohrer, eds., SCS Press, 2001, pp. 495-501.

[9] G. Chen and B.K. Szymanski, ``Lookback: A New Way of Exploiting Parallelism in Discrete

Event

Simulation,'' Proc. 16th Workshop on Parallel and Distributed Simulation, Washington, DC, May

12-15, 2002, IEEE CS Press, pp. 153-162.

[10] G. Chen and B.K. Szymanski, ``Lookahead, Rollback and Lookback, Searching for

Parallelism in Discrete Event Simulation,'' Proc. SCSC 2002 Summer Computer Simulation

Conference, July 2002.

[11] G. Chen and B.K. Szymanski, ``COST: A Component-Oriented Discrete Event Simulator,''

Proc.Winter Simulation Conference, WSC02, December 2002, in print.

[12] G. Chen and B.K. Szymanski, ``Configuring Parallel Simulations Using Component Based

Approach,'' Proc. Virtual World Simulation Conference, WMC03, Orlando, FL, January, 2003, to

appear.

[13] G. Chen, B.K. Szymanski, and T. Caraco, ``Multiparadigm Simulations in Modeling Spread of

Lyme Disease,'' Proc. ESM2000: 14th European Simulation Multiconference, Ghent, Belgium,

May 23-26, 2000, Rik Van Landeghem (edt), SCS Press, Delft, Netherlands, 2000, pp. 631-638.

[14] G. Chen, B.K. Szymanski, and L. Wilson, ``Component-Based Simulation and Agent-Based

Brokering: Towards Ad Hoc Simulations in Crisis and Emergency Management,'' Proc. Computer

Networks and Distributed Systems Modeling and Simulation, CNDS'03, Orlando, FL, January 2003,

in print.

[15] E. Deelman and B.K. Szymanski, ``Breadth-First Rollback in Spatially Explicit Simulations,''

Proc. PADS97, 11th Workshop on Parallel and Distributed Simulation, Burg Lockenhaus, Austria,

June 10-13, 1997, pp. 124-131, IEEE Computer Society, Los Alamitos, CA.

[16] E. Deelman and B.K. Szymanski, ``Simulating Spatially Explicit Problems on High

Performance Architecture,'' Journal of Parallel and Distributed Computing, 62, 2002, pp. 446-467.

[17] E. Deelman, B.K. Szymanski, and T. Caraco,``Parallel Discrete Event Simulation of Lyme

Disease,'' Biocomputing: Proc. 1996 Pacific Symposium, Hawaii, HI, January 1996, L. Hunter and

T. Klein (edts), World Scientific Publishing Corp., Singapore, 1996, pp. 191-202.

[18] E. Deelman, B.K. Szymanski, and T. Caraco, ``Simulating Lyme Disease Using Parallel

Discrete Event Simulation,'' Proc. 1996 Winter Simulation Conference, J.M. Charnes, D.M.

Morrice, D.T. Brunner and J.J. Swain, San Diego, December 1996, pp. 1191-1198.

[19] H. Lamehamedi, Z. Shentu, B.K. Szymanski, and E. Deelman, ``Simulation of Dynamic Data

Replication Strategies in Data Grids,'' Proc. 12th Heterogeneous Computing Workshop (HCW2003),

Nice, France, April 2003, submitted.

[20] H. Lamehamedi, B.K. Szymanski, and E. Deelman, ``Data Replication Strategies in Grid

Environments,'' Proc. 5th Int. Conference on Algorithms and Architectures for Parallel Processing,

ICA3PP2002, Beijing, China, October 2002, IEEE Computer Science Press, Los Alamitos, CA,

2002, pp. 378-383.

[21] W. Maniatty, B.K. Szymanski, and T. Caraco, ``Implementation and Performance of the

Parallel Ecological Simulations,'' Proc. Applications in Parallel and Distributed Computing,

Caracas, Venezuela, April 1994, IFIP Transactions A-44, C. Girault (ed), North Holland,

Amsterdam, 1994, pp. 93-102.

[22] B. Maniatty, B.K. Szymanski, and T. Caraco, ``TEMPEST: A Fast Spatially Explicit Model of

Epidemics on Parallel Machines,'' Proc. High Performance Computing Symposium, A. Tentner (ed),

San Diego, CA, April 10-14, 1994, SCS Press, San Diego, CA, pp. 114-119.

[23] W. Maniatty, B.K. Szymanski, and T. Caraco, ̀ `High-Performance Simulation of Evolutionary

Aspects of Epidemics,'' Applied Parallel Computing, B. Kagstrom et al (eds), Papers presented at

4th Int. Workshop, PARA'98, June 16, 1998, Umea, Sweden, Lecture Notes in Computer Science,

Vol. 1541, Springer-Verlag, Berlin, 1998, pp. 322-331.

[24] W. Maniatty, B.K. Szymanski, and T. Caraco, ``High-Performance Computing Tools for

Modeling Evolution in Epidemics,'' Proc. 32nd Annual Hawaii Int. Conference on System Science,

Maui, January 1999, IEEE Computer Society, Los Alamitos, CA, 1998, CD disk, 10 pages,

(Abstracts, pp. 318-319).

[25] M. Nibhanapudi, C. Norton, and B.K. Szymanski, ``Plasma Simulation on Networks of

Workstations using the Bulk-Synchronous Parallel Model,'' Proc. Int. Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA'95), Athens, GA, November 1995,

CSREA, 1995, pp. 13--22.

[26] B.K. Szymanski, Q. Gu, and Y. Liu, ``Time-Network Partitioning for Large-Scale Parallel

Network Simulation under SSFNet,'' Proc. Applied Telecommunication Symposium,} San Diego,

CA, April 14-17, 2002, SCS Press, pp. 90-95.

[27] B.K. Szymanski, Y.Liu, A. Sastry, and K. Madnani, ``Real-Time On-Line Network

Simulation,'' Proc. 5th IEEE Int. Workshop on Distributed Simulation and Real-Time Applications

DS-RT 2001, IEEE Computer Society Press, Los Alamitos, CA, 2001, Cincinnati, OH, August

13-15, 2001, pp. 22-29.

[28] B.K. Szymanski, A. Saifee, A. Sastry, Y. Liu and K. Madnani, ``Genesis: A System for

Large-scale Parallel Network Simulation,'' Proc. 16th Workshop on Parallel and Distributed

Simulation, Washington, DC, May 12-15, 2002, IEEE CS Press, pp. 89-96.

[29] T. Ye, S. Kalyanaraman, B. Mo, B.K. Szymanski, D. Harrison, B. Sikdar, H. Kaur, and K.

Vastola, ̀ `Network Management and Control Using Collaborative On-line Simulation,'' Proc. IEEE

Int. Conference on Communications ICC2001, IEEE Computer Science Press, Los Alamitos, CA,

2001, Helsinki, Finland, June 2001.

[30] J.-F. Zhang, J. Jiang, and B.K. Szymanski, ``A Distributed Simulator for Large-Scale

Networks with On-Line Collaborative Simulators,'' Proc. European Multisimulation Conference,

vol. II, pp. 146-150, Warsaw, Poland, June 1999.

