
Workshop on Computer Architecture Education
Sunday, June 5, 2005

Program Committee

Ed Gehringer, North Carolina State U.
Kenny Ricks, Univ. of Alabama
Jim Conrad, UNC–Charlotte

Additional Reviewers

Jeff Jackson, Univ. of Alabama
William Stapleton, Univ. of Alabama

Session 1. Welcome and Keynote, 8:30–9:35

 8:30 Welcome, Edward F. Gehringer, workshop organizer & Kenny Ricks, organizer of special session
 8:35 Keynote, “Embedded computer architectures in the MPSoC age,” Wayne Wolf, Princeton Univ 2

Session 2. Special Session on Embedded Systems 1, 9:35–10:30

 Introduction to Special Session, Kenneth Ricks ... 5
 9:35 “Embedded systems courses at RIT,” Roy S. Czernikowski and James R. Vallino, Rochester

Institute of Technology ... 6
10:00 “Experiences with the Blackfin architecture for embedded systems education,” Diana Franklin and

John Seng, California Polytechnic State University – San Luis Obispo ... 13
10:15 Discussion

Break 10:30–11:00
Session 3. Panel on Teaching Embedded Systems 11:00–12:30

 Alex Dean, North Carolina State University
 Yann-Hang Lee, Arizona State University
 Kenneth Ricks, University of Alabama
 Wayne Wolf, Princeton University

Lunch 12:30–1:45
Session 4. Regular Papers 1:45–3:30

 1:45 “SPIMbot: An engaging, problem-based approach to teaching assembly language programming,”
Craig Zilles, University of Illinois .. 20

 2:10 “QUILT: A GUI-based integrated circuit floorplanning enviroment for computer architecture
research and education,” Gregory J. Briggs, Edwin J. Tan, Nicholas A. Nelson, University of
Rochester, and David H. Albonesi, Cornell University ... 26

 2:30 “The ‘Little Man Storage’ model,” Larry Brumbaugh and William Yurcik, National Center for
Supercomputing Applications, University of Illinois .. 32

 2:50 “An emulated computer with assembler for teaching undergraduate computer architecture.”
Timothy D. Stanley and Mu Wang, Brigham Young University – Hawaii 38

 3:10 Discussion

Break 3:30–4:00
Session 5. Special Session on Embedded Systems 1I 4:00–5:15

 4:00 “An embedded systems course and course sequence,” Kenneth G. Ricks, William A. Stapleton,
and D. Jeff Jackson, University of Alabama ... 46

 4:25 “Hardware/software co-design of embedded real-time systems from an undergraduate
perspective,” Kevin C. Kassner, Dynetics Corp. and Kenneth G. Ricks, University of Alabama 53

 4:45 “Teaching microprocessor systems desing using a SoC and embedded Linux platform,” Yann-
Hang Lee and Aung Oo, Arizona State University ... 60

 5:00 Discussion

Embedded Computer Architectures in the MPSoC Age

Wayne Wolf
Dept. of Electrical Engineering

Princeton University
wolf@princeton.edu

1. Introduction

 Embedded computers are no longer used as
simple controllers. Instead, high-performance
embedded processors perform complex algorithms and
are linked together to form multiprocessors. Embedded
computing provides students different take on
computer system design because of the requirements
imposed on these systems:
• Embedded computing systems generally require

real-time performance. Real-time and average-
time performance are very different animals.

• Battery-powered embedded systems must meet
very stringent energy requirements [Aus04].

• Although the software in embedded systems can
be changed to optimize the overall system, the
software must also meet the specifications of the
application.

As such, an architecturally-oriented embedded
systems class emphasizes somewhat different concepts
than a traditional, general-purpose computer architect-
ure class. An embedded computing architecture class
must use a methodology to help students quickly get
their hands around an unfamiliar application. They
must explore a broad range of architectures. They
should also explore trade-offs between architectural
modifications and software modifications to meet
system goals.

Distributed embedded systems, which are built
from networks of embedded processors, are also
widely deployed. This paper will concentrate, however,
on systems-on-chips.

1. Multiprocessor Systems-on-Chips

Multiprocessor systems-on-chips (MPSoCs)

[Jer04] are, first of all, systems-on-chips. They
implement complete applications on a single chip.
(Although as Rich Page points out, most systems-on-
chips are marketing single-chip solutions---they use
one chip plus all the other chips that you need to make
the SoC work.) MPSoCs are systems-on-chips that
include one or more programmable processors.

Systems-on-chips are generally adapted to the
application to meet performance, power, and cost
goals. Although modern VLSI fabrication technology
provides us with very large chips, applications keep
getting larger. Some markets are large enough that
specialized architectures are inevitable and desirable.

Multiprocessor systems-on-chips try to balance
specialization and programmability. Programmable
processors allow the SoC to be programmed after
fabrication; MPSoCs are often referred to as platforms
because they allow for many implementations of a
given type of system. Programmability offers many
advantages: the same chip can be used in several
products, reducing product cost; design tasks can be
compartmentalized; and the platform chip may have a
longer shelf life than a highly specialized SoC.

Because these are systems-on-chips, they generally
aren’t traditional symmetric multiprocessors. They may
use hardwired function units in addition to
programmable processors. They may use several
different instruction sets. They may have non-uniform
memory spaces supported by asymmetric networks.

 Many multiprocessor systems-on-chips are
now available for several types of applications:

• Mobile multimedia requires both high
performance and low energy consumption.
The ST Nomadik and TI OMAP architectures
are MPSoCs that provide specialized architec-
tures for audio, video, and communications.

• Home multimedia is not as tightly constrained
on power as mobile multimedia but requires
very high performance for applications like
HDTV. The Philips Nexperia architecture is a
well-known MPSoC for set-top box applica-
tions.

• Networking requires very high performance
and provides some opportunities for
specialized parallelism. Network processors
from Intel, Cisco, and others use hetero-
geneous architectures to process packets at
high rates.

Page 2 Workshop on Computer Architecture Education June 5, 2005

3. Architectural Challenges

Embedded computing and MPSoCs make for a full
employment act for computer architects. We are in no
danger of running out of applications that can make use
of large amounts of computing power and that can
support the design effort required to create an efficient
application-specific platform. Several specific
challenges flow out of our continuing need to design
MPSoCs.

Configurable processors, such as those provided
by Tensilica, allow the SoC designer a convenient way
of quickly building processors with customized
instruction sets. One area in which designers need help
is figuring out which instruction set extensions should
actually be implemented. Another important goal is
figuring out how to connecting configurable processors
into multiprocessor networks.

Hardware/software co-design [DeM01] is another
way to increase system performance for a particular
application. Accelerators, when properly designed, can
significantly and efficiently increase performance.
However, the application must be carefully analyzed to
be sure that an accelerator actually improves overall
performance.

Heterogeneous multiprocessors for embedded
applications generally implement pipelines of
processes. Our own smart camera system [Oze05] is an
example of a pipelineable application. The smart
camera processes video in real time, using a number of
distinct steps. The amount of work performed by these
stages is generally data dependent and buffers are
required to smooth out rates. As video data is
processed, it is boiled down in size so that data rates at
the end of the process are trivial compared to the input
video data rates. Pipelined application architectures
bring up both hardware and software questions about
buffer management and rate control.

Networks for embedded systems are another
important challenge. Several networks have been
proposed for on-chip use. Many of these are general-
purpose networks designed to be used in many
different systems. However, our own experiments
indicate that asymmetric networks offer significant
advantages.

 Balancing generality with efficiency is a key
goal in MPSoC architectures. As we pointed out
elsewhere [Wol05] even relatively simple consumer
devices must now implement a wide range of
functions. Consider what must be performed by simple
devices like digital music players or digital cameras in
addition to their core functions:

• User interface.
• Cryptography.

• Networking, either through Internet or
specialized protocols.

• Digital rights management.
• File systems that are compatible with PC file

systems.
This wide range of functions arguably calls for a
general-purpose processor; on the other hand, some of
these functions may call for application-specific
hardware to meet performance/power goals. We do not
yet fully understand the architectural implications of
the networked consumer device.

Overall, methodology is an important aspect of
embedded system design that does not often come into
play in general-purpose systems [Wol00]. Because
embedded system designers need to design many
systems and do so in a predictable amount of time with
a predictable number of people, they need to develop
methodologies that allow them to repeatably make
reasonable decisions in new design domains. Giving
students an insight into the design process can be as
important as showing them specific design outcomes.

4. Benchmarks

Benchmarks are at least important in embedded
computing as they are in general-purpose computing.
When you are designing an application-specific
system, the wrong choice of a benchmark program or
input data for that program can lead to fatal
misjudgments.

I believe that larger programs make more useful
design examples for embedded computing for several
reasons. First, high-performance embedded systems
typically run several different types of algorithms; it
takes a certain amount of code to exhibit all that
complexity. Second, larger programs do a better job of
exercising multi-tasking. Third, they give students a
more realistic taste of the nature of embedded software
and performance analysis.

However, it is hard to get good benchmarks and
data sets. Although several reference implementations
of various standards are available, they can be very
hard to use. Reference implementations may make
inappropriate use of dynamic memory; they may also
use inefficient algorithms for critical modules. For
example, many reference video encoders come with
full-search motion estimation, even though that algor-
ithm is not used in practice. Measurements made on
unrealistic algorithms will lead to bad design decisions.

5. Labs

Laboratories are a critical part of an embedded
systems course. As embedded systems become more

June 5, 2005 Workshop on Computer Architecture Education Page 3

complex, it becomes harder to create an enriching set
of labs for students.

Most instructors worry about the cost of lab
equipment, particularly if they want to reach a broad
audience. Although many microprocessor manufac-
turers and third parties sell evaluation boards, the
associated development system is a hidden cost of
these boards. Some vendors provide software along
with the board while others charge a good deal of
money for development systems. Ideally, students
should be able to install on their own machines student
versions of the development systems they use in labs;
in the FPGA world, Xilinx is an excellent model for
how to make devices and tools accessible to students.

Instructors can select from among a large number
of uniprocessors, but it is hard to find a good
experimental setup for multiprocessors. The TI OMAP
processor is one of the very few embedded
multiprocessors for which there exists an even
moderately-priced development board, but that board is
still expensive and the software environment is
complex.

Much development work must be done on
simulators, both in the real world and in class.
Uniprocessor performance and power simulators are
widely available. Although several open-source
multiprocessor simulators are available, most of them
are designed for symmetric multiprocessors and cannot
be easily modified to handle heterogeneous
multiprocessors. The MESH simulator from CMU was
developed to handle heterogeneous multiprocessors as
seen in systems-on-chips.

6. Conclusions

We live in an exciting time in which we have the
opportunity to develop a new generation of courses on

high-performance embedded computing. But because
these are complex systems, instructors have to be
prepared to invest time to set up lectures and labs that
mate their students’ interests with the applications that
drive system-on-chip and large-scale distributed
embedded systems. Although each institution has its
own special requirements, particularly for labs, group
effort may help us all build this new generation of
courses.

6. References

[Aus04] Todd Austin, David Blaauw, Scott Mahlke,

Trevor Mudge, Chaitali Chakrabarti, and
Wayne Wolf, “Mobile Supercomputers,”
IEEE Computer, 37(5), May 2004, pp. 81-83.

[DeM01] Giovanni De Micheli, Rolf Ernst, and Wayne
Wolf, eds., Readings in Hardware/Software
Co-Design, Morgan Kaufman, 2001.

[Jer05] Ahmed A. Jerraya and Wayne Wolf,
“Hardware/software interface codesign for
embedded systems,” IEEE Computer, 38(2),
February 2005, pp. 63-69.

[Oze05] I. Burak Ozer, Tiehan Lu, and Wayne Wolf,
“Design of a real-time gesture recognition
system,” IEEE Signal Processing Magazine,
22(3), May 2005, pp. 57-64.

[Wol00] Wayne Wolf, Computers as Components:
Principles of Embedded Computing System
Design, Morgan Kaufman, 2000.

[Wol05] Wayne Wolf, “Multimedia applications of
systems-on-chips,” in Proceedings, DATE ‘05
Designers’ Forum, ACM Press, 2005, pp. 86-
89.

.

Page 4 Workshop on Computer Architecture Education June 5, 2005

Special Session on Embedded Systems
Education

Introduction

 As computational components continue to decrease in size and increase in
performance, they are being embedded into devices in new and innovative ways leading
to a proliferation of embedded systems in our society heretofore never witnessed. These
devices introduce design and engineering challenges not always seen in general-purpose
computing platforms, which are often the focus of modern computer engineering
curricula. For example, embedded applications often include real-time behavior,
multiprocessing, complex computations, reactive input/output, and require long-term
deployment using only remote power sources. In addition, strict design constraints such
as memory, power, size, cost, and time-to-market limitations, again not encountered in
the design of most general-purpose systems, are the norm when designing embedded
devices.
 To produce graduates capable of addressing the specific issues applicable to
embedded systems, it is necessary to incorporate these concepts into the computer
engineering undergraduate curriculum. However, it is difficult to introduce such a broad
range of topics crossing many application domains into general undergraduate education.
In many cases, students are presented with discrete concepts in many different classes
that are applicable to embedded systems but are never presented a system-level view of
the field. This typically gives students the puzzle pieces but not the ability to connect the
pieces to produce the full picture. In other cases, embedded systems education has been
relegated to “teach-the-tool” and “teach-the-technology” approaches, where students
learn one particular processor, development environment, or software tool.
 In order to advance the field of embedded computing and prepare future graduates for
success as embedded systems engineers, a more systematic approach to embedded
systems education is necessary. This approach must provide students the fundamental
concepts required of the field while also providing the more general understanding of the
system-level concepts.
 Toward this end, the Special Session on Embedded Systems Education held in
conjunction with the Workshop on Computer Architecture Education (WCAE) will
provide a venue for researchers and educators to exchange ideas related to embedded
systems and embedded systems education. The intent is that attendees and organizers
will gain insightful information through paper presentations, an informal panel
discussion, and interactions with others involved in the workshop.

Kenneth Ricks
Organizer, Special Session on Embedded Systems Education, WCAE 2005

June 5, 2005 Workshop on Computer Architecture Education Page 5

Embedded Systems Courses at RIT

Roy S. Czernikowski
Department of Computer Engineering

Rochester Institute of Technology
rsceec@rit.edu

 James R Vallino

Department of Software Engineering
Rochester Institute of Technology

J.Vallino@se.rit.edu

Abstract

A three-course sequence of cross-disciplinary real-time
and embedded systems courses has been introduced at
RIT•. We are teaching these courses in a studio-lab
environment teaming computer engineering and software
engineering students. The courses introduce students to
programming both microcontrollers and more
sophisticated targets, use of a commercial real-time
operating system and development environment,
modeling and performance engineering of these systems,
and their interactions with physical systems.

1. Introduction
Embedded computers are now ubiquitous, often in
common products where they are invisible to the user.
These embedded processors provide special purpose
functionality not found in general-purpose applications
familiar to desktop computer users. The standard
computing curricula concentrate primarily on general-
purpose desktop applications and do not provide students
with the opportunity to gain the necessary skills for
engineering software in real-time and embedded systems.

2. Real-time and embedded systems at RIT
In Rochester Institute of Technology’s computer
engineering program, senior projects often focus on real-
time and embedded systems, but there was no formal
instruction in the engineering of these systems. The
software engineering program had an embedded systems
application domain comprising three courses: two
standard operating systems courses offered by computer
science and a concurrent programming course from
computer engineering. None of these courses directly
addresses issues in developing real-time or embedded
software; they were chosen because they were the closest

• Sections of this paper will also be presented at the Frontiers in
Education 2005 Conference in October 2005.

courses relevant to the domain. We decided that the best
way to address these shortcomings in the real-time and
embedded domain in both the computer engineering and
software engineering curricula was to adopt a cross-
disciplinary approach. The presence of students from
both programs created a unique opportunity for synergy
at RIT. The computer engineering students possess
knowledge of electronics and control systems along with
software development skills at the lower-levels. The
software engineering students possess significant
knowledge of how to engineer complex software systems
including the design and modeling of those systems.
Developing software for real-time and embedded
systems is where the skills of these two groups intersect.

In July, 2003, we started work on the laboratory and the
development of a three-course sequence. Each of these
upper-division courses is four academic quarter credit
hours and meets for ten weeks of classes having a pair of
two-hour studio sessions per week. In the studio-lab
environment each class session mixes lecture material
with hands-on exercises and projects in a flexible format.
These courses are cross-listed in the software
engineering and computer engineering programs.
Registration is initially controlled with the goal of having
an even mix between students from the two programs.
To the extent possible we ensure that all project teams
have a member from both computer engineering and
software engineering. The students will bring together
expertise from two domains and apply a common
engineering approach for solving real-time and
embedded system development problems. To this point,
we have offered the first two courses in the sequence
several times. The third course is currently being offered
for the first time in the spring 2005 academic quarter.
The remainder of this paper describes our laboratory
facilities, the syllabus for the three courses we developed
and some initial results of the internal and external
evaluation of the program.

Page 6 Workshop on Computer Architecture Education June 5, 2005

Our funding came from the award of a National Science
Foundation Course, Curriculum and Laboratory
Improvement Adaptation and Implementation grant. We
identified the School of Computing and Software
Engineering at Southern Polytechnic State University
and the Department of Computer Science and
Engineering at Arizona State University as the
collaborating institutions that would provide course
materials for adaptation into the courses we developed.

3. Laboratory hardware facilities
The studio lab developed for these courses consists of
twelve student stations and an instructor’s station. The
instructor’s station is configured with classroom control
software that enables the capture, control and display of
any of the student stations on the classroom video
projector. Each student station is positioned to allow a
pair of students to work together. Each station has a
modern personal computer for software development and
a 486-based single board computer as a target system.
We are using a Diamond Systems [1] pc-104 board with
timers, A/D converters, D/A converters, and digital I/O
capability for the target systems. See Figure 1.

To reduce the clutter in the student’s work area we
eliminated the second monitor often attached to the
target system. Students can view the output from the
target system in a number of ways. For text-based
standard output, the target system development software
provides a redirected console on the development system.
We also have the VGA output converted to S-video and
then fed into a USB S-video digitizer. The digitizer’s
software provides a picture-in-picture display shown in
Figure 1. Finally, for projects that are generating VGA
graphics output the student can view the full resolution
video through the second input channel on the
development station’s dual-input monitor.

For the experiments involving programming a
microcontroller, each station is also provided with a
Motorola 68HC12 board, a custom designed interface
board on which is mounted the microcontroller board, a
custom binary LED-switch board for elementary binary
input and output, a signal generator and a power supply.

Figure 2 – M68HC12 Microcontroller, interface board,
LED-Switch Board, Signal Generator and Power Supply.

The last pieces of hardware to mention are primarily
used in the third course in the sequence. This course
covers performance engineering of real-time and
embedded systems. To motivate the need for system
tuning of real-time systems we use the control of
physical systems. The two systems we choose for the
laboratory are from Quanser Systems [8]. We selected
their inverted pendulum and ball and balance beam
systems shown in Figures 3 and 4 respectively. In the
third course the students also experiment with
hardware/software co-design on a Digilent Spartan 3
FPGA board [2] shown in Figure 5. There is one FPGA
system at each student station.

Figure 3 – Quanser System Inverted Pendulum

Figure 1 – PC Development environment and Diamond
Systems pc-104 board target system showing picture-in-
picture target system console.

June 5, 2005 Workshop on Computer Architecture Education Page 7

Figure 4 – Quanser System Ball and Balance Beam.

 Figure 5 – Digilent Spartan 3 FPGA Board

4. Laboratory software facilities
There is a set of software tools to complement the
hardware in the laboratory. The development stations are
running the Windows XP Professional operating system.
The MGTEK MiniIDE [7] supports assembly language
programming on the 68HC12 microcontroller. We
received a software grant from Wind River Systems [11]
allowing the use of VxWorks and the Tornado integrated
development environment. This is the commercial real-
time operating system that the students utilize in the
laboratory. Matlab and Simulink from The MathWorks
[6] are used for simulating and controlling the Quanser
experiments. We received software grants from IBM [4]
for the Rational Rose development suite and Rational
Rose Real-Time as UML modeling tools. Finally, the
students work with Rhapsody from I-Logix [5] as a UML
modeling tool. Rhapsody’s statechart modeling and code
generation features are used heavily in the second course
in the sequence.

5. Course concepts
We designed a sequence of three courses that provides
the student with broad exposure to the real-time and
embedded systems domain. The first course, Real-Time
and Embedded Systems, provides a general introduction
to the area. We expect that this course will have the
largest appeal across both disciplines with some aspects
particularly attractive to both the computer engineering
and software engineering students. The second course,
Modeling of Real-Time Systems, has a stronger software
engineering flavor. It covers UML modeling of real-time
and embedded systems. The third course, titled
Performance Engineering of Real-Time and Embedded
Systems, deals with measurement of system performance,
implementation of time-critical software and the fluid
hardware/software boundary. The next sections describe
these three courses in detail.

6. Real-time and Embedded Systems course
The first course in this elective sequence is titled Real-
Time and Embedded Systems. It presents a general road
map of real-time and embedded systems. It introduces a
representative family of microcontrollers that exemplify
unique positive features as well as limitations of
microcontrollers in embedded and real-time systems.
These microcontrollers are used as external, independent
performance monitors of more complex real-time
systems targeted on more robust platforms. The majority
of this course presents material on a commercial real-
time operating system and using it for programming
projects on development systems and embedded target
systems. Some fundamental material on real-time
operating systems is also presented. This course was first
offered at RIT in the spring of 2003. It has since been
offered three more times. The textbook for the course is
Real-Time Systems and Software by Shaw [9].

The topics covered by the class provide an introduction
to the area. Class discussion focuses primarily on the
fundamentals of real-time systems. The project work
spans the range from microcontroller assembly
programming through to application development under
a commercial real-time operating system.

The topics covered by the Embedded and Real-Time
Systems course include:

• Introduction to Real-Time and Embedded Systems
• Microcontrollers
• Software Architectures for Real-Time Operating

Systems
• Requirements and Design Specifications
• Decision Tables and Finite State Machines
• Scheduling in Real-Time Systems
• Programming for a commercial real-time operating

system

Page 8 Workshop on Computer Architecture Education June 5, 2005

• Development for Embedded Target Systems
• Design Patterns for Real-Time Systems
• Language Support for Real-Time
• Real-Time and Embedded Systems Taxonomy
• Safety Critical Systems

There are several programming project assignments
given to the students. A pair of students works on each
assignment. As was mentioned previously, to the extent
that the registration numbers permit, a software
engineering and computer engineering student are paired
together. This course has a mix of projects that allows
the computer engineering student to provide the lead on
some and the software engineering student to lead the
others. The project assignments for this course are:

Microcontroller programming: students program the
68HC12 microcontroller to act as an interval timer
and as an independent system performance
measurement device. The microcontrollers used
assembly language programs to measure and
tabulate the inter-arrival times, the “jitter”, of a
series of 1000 pulses for several experiments
described later. The microcontroller’s timers have
no difficulty measuring the arrival times or
interarrival times of the pulses to 1.0 microsecond
resolution.

Real-Time Operating System multi-tasking primitives:
the main goal for this project is to have the students
become familiar with programming under a
commercial real-time operating system. Using
VxWorks as an example of a commercial real-time
operating system, students learn how to program
using its concurrency and synchronization
primitives. The team must implement a concurrent
system such as a transit simulation or an automated
factory. The programming is done within a
simulated target system running on the development
station.

Real-Time Operating System performance
measurements: there are two smaller projects that fall
into this category. These programs run on the target
systems. Both projects make use of the
microcontroller project as a timing device. In the first
project the students learn how to schedule a periodic
task under VxWorks. This task is toggling a bit on
the printer port. The microcontroller timer measures
the inter-arrival time and jitter of these software-
generated periodic pulses. The second project
measures the interrupt response time of the target
system by having the microcontroller measure the
time between generating an interrupt signal to the
target and receiving its response. These two projects
are run on the target systems, and the microcontroller

collects 1000 samples with 1.0 microsecond
resolution and displays the results.

Final project: there is a final programming project. This
project is usually of student motivated with each
team thinking of a project. We have seen
implementations of user-level drivers for the devices
on the target system, an ultrasound distance
measurement, simple video games, and a digital
oscilloscope.

Students are presented with two different embedded
processors and development environments and are
confronted with the strengths and weaknesses of each
platform/architecture and environment.

Using Bloom’s Taxonomy as a guide, the learning
outcomes for this course are given in Table 1.

Table 1
Learning Outcomes for Real-Time and

Embedded Systems Course
Knowledge
 • List the scheduling algorithms commonly used in real-time

systems.
• Describe the steps required to build, install and run a

software system on an embedded processor.
Comprehension
 • Discuss the event sequence for responding to an interrupt.

Application
 • Apply software engineering practices to the development

of several small real-time systems.
• Demonstrate the use of a micro-controller as an event

timer.
• Design and implement measurement tools to collect

system performance data.
• Design and implement a concurrent system on a real-time

operating system.
Analysis
 • Measure the performance of a real-time operating system.
Synthesis
 • Design and implement a small-scale real-time application

on a real-time operating system.

7. Modeling of Real-Time Systems course
The second course is titled Modeling of Real-Time
Systems. The course takes an engineering approach to
the design of these systems by analyzing a model of the
system before beginning implementation. The course
discusses primarily UML based methodologies.
Implementations of real-time systems are developed
manually from the models and using automated tools to
generate the code. At this point, this course has run
twice. Doing Hard Time by Douglass [3] is the textbook
for the course.

Topics covered by the Modeling of Real-Time Systems
course include:

• Introduction to Modeling of Real-Time Systems
• Basic Concepts of Real-Time Systems

June 5, 2005 Workshop on Computer Architecture Education Page 9

• Basic Concepts of Safety-Critical Systems
• Use case analysis for real-time systems
• Structural object analysis for real-time systems
• Behavioral Analysis using statecharts
• Design patterns for real-time and safety-critical

systems
• Threading and Schedulability
• Real-Time Frameworks

This course has the strongest software engineering
emphasis. The projects progress through phases in the
standard waterfall process model with emphasis on
analysis and design of the software system. For the
software engineering students this is continued practice
in the UML modeling that they do in all the courses in
their program. The application areas chosen for the
projects, i.e. embedded systems, are significantly
different from the typical desktop and GUI-over-
database projects that they see in their other courses. In
this course the software engineering students take the
lead on most projects. Many computer engineering
students have not done any UML modeling since their
second-year software engineering course. The project
assignments for this course are:

Requirements and Architectural Design: this assignment
starts with the user manual for a consumer electronic
device. It requires the students to identify the actors
in the system and do a use case analysis. This is then
followed by an architectural design and high-level
class structural design. A home blood pressure
monitor and a digital video recorder are two devices
that students have modeled for this project.

Design and Implementation: this assignment starts with a
clear statement of requirements and requires the team
to do a class-level design and implementation. We
have used both end-user applications, (such as a four-
function calculator), and a simulation (of a controller
for a chilled water air conditioning system). The
implementation language is Java with the team
implementing a graphical user interface to control the
program.

Code Generation: through this course we place an
emphasis on statecharts as a mechanism for behavior
modeling of real-time and embedded systems. In this
project the students explore the code generation
features of the modeling tool they use. The teams
create a statechart-based definition of the behavior
and automatically generate C++ code for the
application. Typically, the team will be able to create
a fully-functioning application entirely from within
the statechart model. This is not to say that the team
writes no C++ code. Some adornments to states are
code snippets that get built into the code that the tool

auto-generates. For this project we have used a four-
function calculator and garage door opener controller.

Final Project: this project is a modeling exercise done as
a take-home final exam. Each student does a
thorough identification of actors, a use case analysis,
class structural design and system dynamic modeling
using sequence diagrams and statecharts. There is no
implementation of the systems which to date have
been a power window controller for a car and a
reverse vending machine that accepts containers for
recycling at a local supermarket.

Using Bloom’s Taxonomy the learning outcomes for this
course are given in Table 2.

Table 2
Learning Outcomes for Modeling Real-Time

Systems Course
Knowledge
 • Specify the characteristics of real-time and safety critical

systems.
Comprehension
 • Discuss the software process for the development of real-

time systems and contrast it with development for a
standard application.

• Identify architectural and design patterns for real-time
and safety critical systems.

Application
 • Apply architectural and design patterns in the analysis

and design of real-time systems.
Analysis
 • Model the dynamic behavior of a real-time system using

statecharts.
• Describe the requirements for simple real-time systems

using use cases.
• Model the structure of a real-time system using UML

class diagrams.
Synthesis
 • Implement a simple system on a real-time operating

system.

8. Performance Engineering of Real-Time
and Embedded Systems course

The third course is Performance Engineering of Real-
Time and Embedded Systems. This course is first being
offered during the spring quarter of 2005. As of this
writing, aspects of the course are still under
development. The course is roughly divided in half with
the first and second parts emphasizing performance of
real-time systems and embedded systems, respectively.
This course has an unusual combination of topics and we
have not identified a single textbook that is suitable. We
are covering the course topics with handouts and other
on-line resources for the students.

Topics covered by the Performance Engineering of Real-
Time and Embedded Systems course include:

• Performance measurements for real-time and
embedded systems

Page 10 Workshop on Computer Architecture Education June 5, 2005

• Profiling of program execution in embedded systems
• Exploration of linear control systems
• Interpretation of linear control parameters
• Hardware system description languages
• Hardware/software co-design

The real-time part of the course presents the control of
physical systems on an intuitive level. The intent is to
give exposure to control system structure and
performance rather than have student design control
systems. The software engineers have no background in
controls. The computer engineering students are able to
contribute to the analytical and control algorithms from
their required control systems courses and will take the
lead on these projects. Students perform experiments
with the inverted pendulum system and a ball and
balance beam. These experiments highlight the effect of
parameter tuning and system load on control of the
physical apparatus. In future offerings, this set of
experiments will culminate with student implementations
of software controllers.

The embedded systems part of the course uses our target
system as the computing element running the VxWorks
commercial real-time operating system. We deliberately
chose a rather slow (100MHz clock) 486 processor for
our target systems so that we could more easily monitor
loading effects. This is close to power management
policies in low-power embedded devices that prolong
battery life by slowing the clock speed. In subsequent
course offerings, input and output devices will be
connected through an FPGA I/O controller. Students
will measure initial system performance when the I/O
controller is a pass-through interface between the
processor and the devices. The current offering has the
students performing a set of JPEG image compressions,
first using an all-software approach on the target system,
and then off-loading some of the computations to an
attached FPGA board. The students will then be able to
make a hardware-software co-design tradeoff by placing
more device control functionality in the FPGA. At each
step the students will measure the change in system
performance as the boundary between hardware and
software is moved.

Using Bloom’s Taxonomy the learning outcomes for this
course are given in Table 3.

Table 3
Learning Outcomes for Performance

Engineering of Real-Time and Embedded
Systems Course

Knowledge
 • Identify PID control modes

• Identify the major characteristics of a Field-
Programmable Gate Array (FPGA)

Comprehension

 • Distinguish differences between PID control modes
• Contrast effects of system parameters on control of a

physical system.
Application
 • Profile the execution of an embedded system

• Be able to program an FPGA doing minor revisions to
VHDL code

Analysis
 • Describe hardware/software tradeoffs in the design of an

embedded system.
• Analyze the profiling data to determine which areas of

the program would benefit most from performance
tuning.

• Compare performance of systems based on performance
data.

Synthesis
 • Design a test and measurement plan to collect system

performance data.
• Demonstrate the effects of moving the

hardware/software boundary in a design

9. Evaluation plan
This project has two components in its evaluation plan.

External evaluation: a faculty member from one of our
collaborating institutions evaluated our work at the
end of the first year in May 2004. At this same time
we had an external review by someone working in
local industry developing real-time and embedded
systems. Near the end of the NSF funding period in
June 2005 we will again arrange a review by faculty
from our collaborating institutions and local
industrial representatives.

Course evaluations and surveys: students enrolled in the
courses are given concept surveys at the beginning
and end of each course to assess their domain
learning through each course. Course evaluations
will ask students to assess the course materials, the
laboratory environment, the teaching effectiveness
and whether the course has increased their interest in
real-time and embedded systems or helped them get
a co-op or full-time position.

10. Future work
This section describes some areas for improvement that
have been identified and other activities for the future.

• One challenge has been to develop courses
interesting to the software engineers and computer
engineers. The Modeling course is very well liked
by the software engineering students but is not as
attractive to the computer engineers. We need to
balance the topics better so as to make the composite
more attractive to both groups of students. Even the
SE students suggest that we select projects with
more explicit time-dependent requirements. We will
also consider designing a project that requires
implementation on the Java Micro Edition platform.

June 5, 2005 Workshop on Computer Architecture Education Page 11

• The main exposure to VxWorks is in our first
course. We do not have a strict prerequisite structure
within these three courses thus we are hesitant to put
projects requiring implementation on VxWorks in
the other two courses. We need to create a very
succinct tutorial on writing applications for
VxWorks that we can use in the two courses that
currently do not cover the RTOS in detail. It took us
quite a while to settle on a configuration for
VxWorks in the lab that could easily support 13
simultaneous target systems and give easy
distribution of new VxWorks images. We next need
to work on giving students the necessary control to
create their own images when their project is
developing a kernel-level driver. We will also
investigate the use of a real-time variant of Linux in
these courses.

• The lack of a suitable textbook for the performance
engineering course is an issue for that course. We
will assess the best approach to follow after the
course has run for its first time in our spring 2005
term.

• There are other devices that we would like to have
students use with their project work. At the top of
the list would be interfacing to cheap USB
webcams. Unfortunately, we have not yet identified
any cameras that publish their USB interface.

• A last element of dissemination of our work, which
will take place at the end of the project, is to collect
all of our course materials, projects, exams, etc. onto
a password protected website and publicize its
availability to the engineering education community.

• The facilities are mostly in place now and this has
attracted the attention of other faculty members. We
already have one faculty member scheduled to
develop a fourth course to be taught in the lab next
year.

11. Acknowledgements
This project is being conducted under the sponsorship of
a National Science Foundation grant under the Course,
Curriculum and Laboratory Improvement Program (NSF
DUE-0311269) and in collaboration with Professor
Yann-Hang Lee of Arizona State University and
Professor Ronald Schroeder of Southern Polytechnic
State University. We would also like to thank Mr. Todd
Mosher of Alstom Transport Systems for his review of
our project’s first year.

12. References
[1] Diamond Systems, http://www.diamondsystems.com.

[2] Diligent, http://www.digilentinc.com.

[3] Douglass, B. P., Doing Hard Time – Developing Real-Time
Systems with UML, Objects, Frameworks, and Patterns,
Addison Wesley, Reading, 1999.

[4] IBM Rational Software, http://www.rational.com.

[5] I-Logix, http://www.ilogix.com.

[6] The MathWorks, http://www.mathworks.com.

[7] MGTEK, http://www.mgtwk.com/miniide.

[8] Quanser Systems, http://www.quanser.com.

[9] Shaw, A. C., Real-Time Systems and Software, John Wiley
& Sons, Inc., New York, 2001.

[10] Starnes, T, "Microcomputers Infest the Home", Gartner
Research, Inc. 2002.

[11] Wind River Systems, http://www.windriver.com

Page 12 Workshop on Computer Architecture Education June 5, 2005

Experiences with the Blackfin Architecture for Embedded Systems Education

Diana Franklin John Seng

Dept. of Computer Science
California Polytechnic State University

San Luis Obispo, CA 93407
{franklin,jseng}@csc.calpoly.edu

Abstract

In the course of a major curriculum change at California
Polytechnic State University, the embedded processing course
was redesigned. During this process, the course had the op-
portunity to purchase new hardware. Analog Device’s Black-
fin processor was chosen based mostly on cost, but also on
performance, development environment, and documentation.

We first present our goals in the class. We then give an
overview of the Blackfin architecture and how the Blackfin fits
in with many of our goals. We then present the implementation
of an expansion board developed to interface with Blackfin’s
EZ-KIT Lite board.

We present our experiences with this setup in the hopes that
others who might be thinking of a similar curricular change
can learn from our successes and failures. We outline the
strengths and weaknesses of the Blackfin architecture as an
educational platform, followed by a discussion of our expe-
riences and a presentation of the support materials we devel-
oped to accompany the course, including lecture material and
laboratories. Finally, we discuss our future directions for our
uses with the board.

1. Introduction

Designing the curriculum for an embedded processing
course is especially difficult in today’s schools because of the
many conflicting goals in curricular design. The ideal would
be cheap, flexible, powerful hardware. This be shipped with
an industrial-strength, intuitive, feature-rich development en-
vironment. Finally, there would be a textbook available that
is targeted towards students rather than a manual targeted at
professionals. If we take a step back and look at the entire
curriculum, we would also like a processor that could be used
for a wide array of classes, such as digital signal processing,
as well as student projects.

Unfortunately, such a bundle of technology, and educa-
tional materials does not exist in a low-cost package. At
California Polytechnic State University, San Luis Obispo, we
chose to use Analog Device’s Blackfin processor. It satisfies
several of the above goals, mainly that it is cheap, general and
powerful hardware, coupled with a good development envi-
ronment, but it was not without disadvantages. Our students

used the manuals, augmented by lecture slides, but had no
textbooks.

In this paper, we explore the tradeoffs that are involved
in designing a single class, CPE 316, Embedded Systems,
at California Polytechnic State University, San Luis Obispo.
We describe our design and how it relates to those trade-
offs. Finaly, we augmented the original hardware and devel-
oped a detailed set of lecture slides that follow the Black-
fin, which currently has no textbook written for it. We
provide the class materials that we developed on-line at
http://www.csc.calpoly.edu/ franklin/316/Bundle.tgz

We begin by analyzing our curricular goals for the embed-
ded systems class in Section 3. We continue in Section 4
by describing the Blackfin architecture, our architecture of
choice, and the development environment provided. Section 5
presents the expansion board design and the flexibility it gives
to the labs. Sections 7 and 8 give a brief summary of our lec-
tures and labs from several instantiations of the class. We give
ideas for future development and conclude in Section 10.

2. Related Work

Embedded processing has become increasingly important,
and with its rise in industrial significance, the best way to
teach the concepts has been studied by several educators.

Many groups have looked at high-level approaches to im-
proving embedded processing education in the curriculum.
Michigan State University proposed an approach to integrate
embedded processing into the whole curriculum rather than
a single course [1]. A full curriculum targeted towards em-
bedded processing, including design from math classes and
engineering classes on up, has also been proposed [3]. They
stress that high-level principles, not specific information com-
mercial companies might want, should be emphasized.

We take on many of the practical matters in designing an
embedded processing course. We assume that the core topics
have already been decided. Our job is to convey this infor-
mation in a way that fits well with the rest of the curriculum,
is up to date, is not too costly, and fulfills as any educational
goals as possible.

June 5, 2005 Workshop on Computer Architecture Education Page 13

Course Integration Financial

textbook unlike MIPS inexpensive boards
intuitive software parallelism multiple courses
breadboard access DSP

Table 1. Summary of goals

3. Goals

As with any course development, there were disparate
goals in designing this course. We categorize our goals in one
of three categories. First, we had the normal goals that anyone
does with an embedded processing course, that of conveying
the information for the course in the most painless, efficient
manner. Second, we had issues with integrating this course
with the rest of the curriculum. Finally, we had financial con-
siderations to minimize the amount of hardware necessary to
purchase. These goals are summarized in Table 1.

CPE 316 at Cal Poly follows a year of digital design and
computer architecture. They have covered the first 7 chap-
ters of the P&H architecture text, ”Computer Organization &
Design” [4]. They have not yet covered interfacing processor
and peripherals or parallel processing. The students have also
taken at least a year of Java programming. The two courses
that are not in the prerequisite chain are C programming and
assembly programming (other than small portions in the ar-
chitecture course). Most students had taken one quarter of C,
though not all. Almost no students were familiar with partic-
ular C keywords integral to interfacing with devices.

Within the embedded processing course, we had several
goals. The hardware needs to be easy to use, with a develop-
ment environment that was intuitive and quick for the students
to pick up. Cal Poly is on the quarter systems, so the students
cannot waste much time learning new environments. In order
to allow control of interesting devices, it needs a mechanism
for students to connect their own breadboard to the processor.
Finally, the course needs a textbook. There were two choices
deemed acceptable - a textbook that is not tied to any single
processor coupled with manuals, or a textbook that was spe-
cific to our hardware. The former is possibly more realistic
for the workplace, although the latter is easier on the students.

No course is in isolation, so there are higher-level goals to
consider. Prior to this, the major language is MIPS because
of its use in the P&H’s architecture book [4]. Students should
have exposure to a variety of languages, so an assembly lan-
guage that illustrates a new set of features is useful. Finally,
the students have not yet been exposed to parallel processing,
so a language that allows parallel instructions is desirable.

The financial considerations are listed last, but in this econ-
omy in a public school, they often become the overriding fac-
tor. The boards must be either donated or inexpensive. In
order to amortize the cost of the boards, they should be used
for multiple classes. To this end, the processor should be pow-
erful and capable of digital signal processing tasks.

Fetch (1−3)
Dec

Addr

Calc Mem

Data Reg

Mult Arith

DataWriteback

��
�
��
�

��
�
��
�

��
�
��
� ���

�

��		

��

��
���� ��

�
��
�

���� ����

��
�
��
�

��
�
��
�

����

��
��

 ! "# $%

&'

DAGs

Figure 1. The 10-stage Blackfin Pipeline.

In the end, we were able to satisfy almost every goal except
for the textbook. In the rest of the paper, we present how we
satisfy the goals through the use of the EZ-Kit Lite Blackfin
board and special hardware attached to it. For a textbook,
we used a combination of detailed lecture slides and helpful
laboratories. We were not satisfied enough with the general
textbooks we found to require the students to purchase them.
Because this was a senior level course, we expected that this
was a more gentle introduction to the resources that will be
available on the job.

4. Blackfin Architecture

The Blackfin is a hybrid microcontroller and digital sig-
nal processor. We used the EZ-KIT Lite, which was obtained
at an educational discount from Analog Devices. We now
present the interesting details about the Blackfin environment
we had, split up into architecture, assembly language, soft-
ware development environment, and EZ-KIT Lite board.

4.1 Architecture

The Blackfin is an in-order, multi-issue processor. The
pipeline has two data paths throughout. The processing core
consists of a 10-stage pipeline. The pipeline is depicted in
Figure 1.

Instruction fetch requires three stages, with a decode stage
fourth. It fetches 64 bits each cycle, though serial instructions
require only 16 or 32 bits. It only executes 64 bits in a single
cycle in the presence of a 3-wide parallel instruction.

Stages five and six are for memory operations and branches
address calculations. It employs two Data Address Generators
(DAGs) for address calculations. Once the branch address is
calculated, it uses static branch prediction to go to the predi-
cated destination.

The Blackfin reads the data register file in cycle seven, and
then performs computations in cycle eight and nine. For com-
putation, it performs multiplication first and then has an alu
for accumulation or any other arithmetic operation. It also in-
cludes special-purpose video units. Data results are written in
cycle ten.

There are two register files - eight 32-bit data registers and
8 pointer registers. It also has several special-purpose regis-
ters for looping and memory address calculations. In addition,

Page 14 Workshop on Computer Architecture Education June 5, 2005

there are two 40-bit accumulators, one associated with each
multiply/ALU pair.

The Blackfin has three caches - two data and one instruc-
tion cache. There is also a very small instruction buffer in the
fetch unit that can hold short loops. In each cycle, you can
perform a load from all three caches. It may not perform two
loads to the same data cache in the same cycle.

The architecture of the Blackfin itself presented an excel-
lent opportunity to reinforce the ideas taught in the computer
architecture course. The pipeline was still in order, but it had
more pipeline stages and the stages were performed in a dif-
ferent order than the MIPS processor. The students were also
able to learn about static branch prediction, which was not
emphasized in the previous course. Finally, the presence of
dual data caches allows students to think consciously about
when their data is accessed in order to place data such that
you can access both caches in the same cycle.

4.2 Assembly Language Features

The Blackfin ISA has several unique features beyond the
simple MIPS instruction set. The main differences are the
address calculation features, control features, variable data
widths, and parallel processing.

The DAG allows for a very rich set of addressing modes.
In general, one can access a memory location at a constant
offset from a register index and increment the index in a single
instruction. Furthermore, it allows circular addressing with
a stride, automatically wrapping the pointer around when it
reaches the end of the buffer. It also has bit-reverse addressing
specifically designed for the FFT algorithm.

In order to maintain high performance with a 9-stage
pipeline, the Blackfin needs support for branching. The
Blackfin provides two major mechanisms to alleviate con-
trol hazards. First, it provides static branch prediction. Any
branch can be labeled to be predicted taken. Unfortunately,
this only saves four out of eight stall cycles. The address is
not calculated until cycle four, so for loops with a known num-
ber of iterations, the Blackfin provides a zero-overhead loop
mechanism in the fetch unit. It can keep track of two nested
loops at once. The entire loop is buffered in the unit, along
with the counter and the beginning and end program coun-
ters. This automatically provides the proper instruction, with
no stalls, until the loop is complete.

The Blackfin provides support for 16-bit operations as well
as 32-bit operations. It can either perform a single 16-bit oper-
ation on each ALU or have each 16-bit half of a 32-bit num-
ber be treated as a separate 16-bit value for the purposes of
arithmetic operations. This allows one to perform four 16-bit
operations in a single cycle when employing both ALUs.

Finally, as referred to above, the Blackfin allows limited
parallelism. It may perform two 16-bit and one 32-bit oper-
ation at once, drawn from a list of parallelizable operations.

Only one store may be performed each cycle, though one can
perform two loads. There are two DAGs, so address offsets
and updates may also be performed in parallel.

This instruction set satisfied all of the educational goals of
the assembly language. The advanced branching instructions
allowed for an excellent tie-in of core architectural material
to the course, and the parallel instructions provide a unique
opportunity. This was especially important because even cor-
rectly predicted branches as well as unconditional jumps had
a 4-cycle penalty. The ability to control branches in the as-
sembly language and think about the performance ramifica-
tion makes the knowledge more concrete.

4.3 Software

The software environment needed to be intuitive and easy
to pick up, especially in our quarter system. We use the Ana-
log Devices’ Visual DSP++ as an integrated development en-
vironment for the class. Visual DSP++ is designed to be
used with the EZ-KIT lite, a processor simulator, or with a
JTAG interface. This program allows programming the board
in Blackfin assembly or C and provides an overall interface
which is highly similar to other integrated development envi-
ronments.

The only problem with this software is a combination of
hardware problems and the license server. Occasionally, it
gets into a state in which the student can no longer control the
hardware. If they close the program, the license does not al-
ways return to the license server right away. Upon attempting
to restart the program, the license server will say it is out of
licenses. This requires a license server restart.

4.4 EZ-KIT Lite Board

The EZ-KIT Lite Board provides I/O opportunities for stu-
dents with the Blackfin chip. They provide flexibility in aug-
menting their design by having flash memory that can be used
to configure different input and output pins.

The most basic functions that are fun and easy to use are
the LEDs and the pushbuttons. The sample codes that come
with the board are simple for the instructor to understand. The
board also includes more advanced features like audio/video
and bus protocols.

There were two problems with the board. The board has
a set of switches on it that, if changed, cause the board to act
in odd ways. At Cal Poly, the labs are open to allow senior
project students to use hardware for their projects, but they are
not monitored at all times. Students will sometimes flip the
switches, and it is difficult to tell. This caused several students
to lose whole lab periods getting the hardware to work again.

Second, there is no good access for connecting a student
breadboard. Section 5 describes the expansion board designed

June 5, 2005 Workshop on Computer Architecture Education Page 15

to give students access to several input and output pins on the
EZ-KIT Lite board.

4.5 Documentation

The Blackfin architecture has a Hardware Reference Man-
ual(HWR) as well as a separate Instruction Set Architecture
Manual(ISA). In addition, the EZ-KIT Lite Board has a man-
ual. These manuals are all electronic. Students may request
hard-copies as well, though they are very large and heavy.

The Blackfin HWR and ISA manuals are very well indexed
and easy to navigate through Acrobat Reader. The EZ-KIT
Lite is a little more difficult to utilize efficiently. We found
that the students were more comfortable with the physical
versions of the books and had not had much experience with
electronic manuals. In retrospect, I wish I had done a half a
lecture on how to navigate the manuals effectively.

4.6 Discussion

The Blackfin 533x on the EZ-KIT Lite board satisfied our
hardware goals. It had an intuitive environment, though not
bug-free, it was inexpensive, it had an assembly language suf-
ficiently different from MIPS, allowed for parallel execution,
and had the functionality for digital signal processing. The
only thing it lacked was a simple interface to a student bread-
board.

Our experience with this hardware was mostly positive.
When problems occurred, though, it was very difficult to track
them down. It could be the students’ software, the hardware
switches, the connection to the development environment, or a
bad state. When restarted, sometimes the license server would
then fail.

To alleviate this, students should be counseled early in
the class to save working versions of their code to determine
whether a problem is with their code or the board. In addi-
tion, the students need easy access to someone who has the
authority to restart the license server.

5. Expansion Board Design

Although the Analog Devices’ EZ-KIT lite board is highly
integrated and provides excellent performance, the board is
not designed to be readily used in an educational environment.
Several of the board pins are connected to other chips and are
not available for use through on-board pin headers. Unfortu-
nately, the board does not provide easy access to input/output
pins. What the board does provide is a 3-socket expansion
interface intended to be used with other Analog Devices’ ex-
pansion cards. Each socket is a 90-pin connector with a fine
pitch spacing. We use this interface to connect a custom ex-
pansion board for use in a class lab environment.

Our expansion board contains simple circuitry to buffer
some of the input/outputs pins on the board. One fact to note
when using the I/O pins of the Blackfin is that the I/O pins
on the Blackfin processor use 3.3V interface circuitry. Con-
necting 5V circuits directly to the I/O pins would damage the
Blackfin. Instead, we used voltage level conversion buffers to
allow 5V circuitry to be used during the labs.

The expansion board design provides a modest number of
digital inputs and digital outputs. The design allows software
to control 8 digital outputs and 8 digital inputs. Should more
inputs and/or more outputs be required, an SPI I/O port ex-
pander would be good for that purpose. Also, a CD4094,
would work well as an output expander because of the shift-
and-store inteface it provides.

A 24-pin ribbon cable is used to connect the students’
breadboard with the Analog Devices’ board. On one end of
the cable is a polarized connector which connects with the ex-
pansion board, and on the other end is a 24-pin DIP socket
which plugs directly into a breadboard.

6. Textbook

Currently, no textbook exists for that targets the Blackfin
architecture. We considered a more general textbook, such as
Computers as Components [5]. Although this was useful to
use as instructors, and we incorporated some of the publicly
available on-line slides into the lectures, it was at such a high
level that we made it a recommended textbook, not a required
textbook.

This meant that are lecture notes were the only resource
the students had beyond the manuals. Our lectures slides are a
combination of high-level, general material, followed by spe-
cific information for the Blackfin architecture.

7. Lectures

The lecture slides were a combination of theoretical mate-
rial and Blackfin-specific implementation. The figures for the
Blackfin-specific material were obtained from the hardware
and ISA manuals [2].

We are releasing the slides so that they may be used as a
building block for someone to tailor their own slides if they
wish. They are by no means complete and will continue to be
developed as the class is taught more often.

7.1 Lecture Topics

We have created a set of lectures that cover the core em-
bedded processing subjects as well as additional special top-
ics that are related to architecture and embedded processing
in general. The core topics are:

• Memory-Mapped I/O / Polling

Page 16 Workshop on Computer Architecture Education June 5, 2005

• Interrupts

• Timers

• Ports / Buses

• DMA and Power

• analog / digital conversion

We also added several topics, ranging from architectural
lectures to tie the chip back to concepts introduced in the ar-
chitecture classes to pure C and assembly programming tech-
niques.

• Blackfin Overview / ISA describes the overall architec-
ture as well as giving examples on branching mecha-
nisms and loading and storing.

• Blackfin Pipeline gives details on what each pipeline
stage performs including timing diagrams of instruction
sequences and their stall cycles.

• Blackfin Calling Convention presents generic function
call convention with the specific rules of the Black-
fin processors. It also covers the difference in calling
convention between concentional functions and interrupt
handlers.

• Static Branch Prediction gives details on the zero-
overhead-loop instructions, static branch prediction, and
conditional instructions. It includes timing diagrams and
statistical performance problems. Finally, it relates the
branch penalties to what stages operations occur in the
pipeline.

• Parallel Processing covers statically scheduled parallel
programming, Blackfin parallel instructions, loop un-
rolling, and software pipelining.

• C for Assembly Programs presents C keywords that
range from necessary to useful when programming with
devices. First a brief overview of memory regions and
scope in C. The keywordsvolatile, register, static, in-
line are shown. A memory example of exploiting two
data banks is given. It moves on to several Blackfin-
specific tricks like the keywordrestrict, making easily-
recognizable circular buffers. Finally, it shows how to
interface C functions with assembly functions and use
inline assembly.

• Optimizing Code introduces the idea of profiling, Am-
dahl’s Law, and test input sets. It then presents several
optimization techniques like DMA, data locality, and
some simple examples of branch removal.

7.2 Discussion

The additional topics were taught only in the second in-
stantiation. This led to some different observances in the lab
work for the course.

The first time this course was taught, before the C for As-
sembly lecture was included, students strongly preferred us-
ing assembly in the laboratories. After the addition of the C
lecture, students were much more comfortable using C, and
more than half of the students used C when they were given a
choice.

Before the calling convention lecture, students had very
little idea of how, from a register point of view, the handler
should be written. Some students were reserving registers
to be used as communication between the main loop and the
ISR, whereas others were destroying random registers without
realizing that this would affect the registers used in the main
loop. This greatly enhanced the understanding of both the un-
predictability of when the ISR is called and the importance of
register usage conventions.

For the rest of the extra lectures, they are very much bonus
material intended to reinforce concepts learned in either as-
sembly language courses or architecture courses. An embed-
ded processing course is the ideal place to do this, since this is
sometimes the first time students have needed to program in a
meaningful way at this level. In previous courses, they often
felt the assembly language was just an educational task with
no real purpose. Once they see the usefulness, one needs only
to bring in a performance-critical problem in order to expand
the focus of the course. This gives the opportunity to teach
about profiling and high-level code optimizations all the way
down to branch prediction, code scheduling, and pipelining.
It can serve as a great culmination of all of the software and
hardware skills the students have learned.

8. Labs

Our labs were designed with a few goals in mind. First, we
wanted to target the skill sets of polling, interrupts, and con-
trol. Second, we wanted to make the labs interesting so that
by the end of the quarter, the students could imagine them-
selves building a robot if called upon to do so. Finally, we
needed to fit everything in a 10-week course. The labs be-
low are not from a single instantiation of the class, but cho-
sen from various instantiations of the class. They are not
the entire assignments, either, but the portions that the stu-
dents found the most fun. The actual assignments had small
pieces that are not mentioned, culminating in a larger assign-
ment at the end. The full text of the labs can be perused at:
“http://www.csc.calpoly.edu/∼franklin/316/Labs.html.”

June 5, 2005 Workshop on Computer Architecture Education Page 17

8.1 Polling

The original polling labs were fairly uninteresting, only re-
quiring the students to respond to button presses by changing
patterns on the LEDs.

A proposed future lab would create a Simon Says game
where the LEDs would light up in a certain sequence, and
the player would need to repeat that sequence with the but-
tons. The computer would keep generating faster and longer
sequences until the player could no longer get the sequence
correct.

8.2 Interrupts

The interrupt lab was a ping-pong game, where the LEDs
represent the ball, and the buttons represent the paddles. A
player can lose by either pressing the button at the wrong time
or not pressing the button when the ball is there. At the end,
display a message that indicates both who won and why they
won. As the game continues, the ball needs to accelerate.

This lab served several purposes. It was fun for the stu-
dents, required thought as to how to detect all the ways to lose,
and allowed for some flexibility in design by having them de-
cide how to display the loss. Several students even imple-
mented extra functionality by allowing a game reset with one
of the other buttons. In one instantiation of the course, this
was the most successful lab.

8.3 Nested Interrupts

The nested interrupts assignment was a part of the inter-
rupts lab. They were to display morse code depending on
what button was pressed, but allow interruption of displaying
the different patterns depending on which other button was
pressed. They were to implementing the displaying of the
pattern in the interrupt service routine, not in the main pro-
gram.

8.4 Timers

For this lab, the students built a dimmer. The light’s bright-
ness was controlled by the amount of time the light was turned
on. Timers controlled the light turning on and off. When one
button is pressed, the light gets dimmer, and another causes
the light to get brighter.

The students enjoyed this lab very much. The biggest mis-
take was to change how often the light turned on and off with-
out ever turning the light on for a longer period than it was
turned off.

8.5 Advanced labs

In various instantiations of the class, the last lab involved
the students receiving input from external devices, performing
some operation and producing output for an external device.
These devices could be hooked up to the breadboard.

Servo Lab The servo lab used a standard hobby servo that
is controlled by a 1-2ms pulse with a period of 20 ms. If the
pulse width is 1ms, it is turned all the way to the left. At 2ms,
it is turned all the way to the right. You can place it anywhere
in between by adjusting the width between 1-2ms. The period
must stay constant at 20ms.

The servo was controlled by the buttons. There were two
instantiations - two buttons set them to far left and far right,
while the two middle buttons made the servo rotate slowly to
the left or right. In the other version, all four buttons deter-
mined four positions for the servo to point.

Potentiometer A potentiometer dial, when rotated, adjusts
the power it is sending between 0 and 5 volts. This is then
connected to an ADC0831 and read in by the students.

The ADC0831 interface was the most complex the students
encountered. They needed to transmit a chip select signal
along with a clock to the ADC0831 and then sample the in-
coming bit 8 times in order to obtain the 8-bit value for the
volt.

Students did not realize how precise the timing needed to
be about putting the chip select down before beginning the
clock, and then waiting a cycle before beginning the sample.

The potentiometer was used to control the LEDs. The
LEDs could either display the 8-bit number in binary, or it
could look more like a voltmeter with the number of lights
growing from one side or another.

The potentiometer and servo can be combined to have the
potentiometer control the servo. This involves more coordi-
nation for the students, but they thoroughly enjoyed getting
the hardware to work. This lab was a highpoint for many of
the students.

8.6 Discussion

There are many ways to design the labs. In our quarter-
system environment, we felt the need to streamline the labs so
that the students could learn the most concepts in the shortest
amount of time. This led to tradeoffs in how the labs were
structured as well as to how much information was provided
to them.

When designing the labs, we had a trade-off between small
problems that targeted specific skills and large labs that would
take fewer different files. Due to a combination of the de-
velopment environment and the fact that they were initially

Page 18 Workshop on Computer Architecture Education June 5, 2005

coding in assembly, the overhead with beginning a new pro-
gram was quite large. In retrospect, it is important that dif-
ferent parts merely build on each other and do not require a
new codebase. What were listed above are the core projects,
although the actual labs often include some smaller, simpler
parts before building to the full lab. The intent of the smaller
parts was to allow for more partial credit if students could
not get the whole thing working. In the future, teaching the
students about how to break down large projects in order to
test them thoroughly would have been better than cutting the
projects up into different parts that did not directly build on
each other.

There were also differences in how we implemented the
labs. The first instantiation of the course provided students
with only the manuals, requiring them to begin from scratch.
The second instantiation of the course provided sample code
(often the code similar to that shipped with the board) so that
they could use that as a baseline and modify it for the specific
assignment. In order to try to ensure the students took the time
to understand the given code, a set of questions was asked
about the sample code and turned in. This definitely made
it quicker for students who could learn from sample code to
finish the projects. Several groups that understood the con-
cepts completed early labs in very little time. Struggling stu-
dents resorted to some method of random code replacement,
not truly understanding the sample code and often not making
the changes to it in the right places. It is clear that for strong
students, the sample code method removed much of the te-
dium that would have been involved and took nothing away
from the learning. For the struggling students, however, it is
unclear which was better. With no sample code, they do not
know what to generate on their own, so it would take much
more time to solve the labs. On the other hand, if they solve
the early lab, that would give them a more solid foundation
to solve later labs. With sample code, they could more easily
fool themselves into thinking they were not so lost.

9. Future Work

Since the course is still in its first year, it will continue to
be developed in the coming years. In the future, we will be
augmenting our slides with material and improving the labo-
ratory projects.

For the lectures, the more general material was not in-
tegrated seamlessly into the Blackfin-specific details. More
work will be done in the following year with obtaining sup-
port materials for the students and integrating them into the
lecture slides.

In addition, more hardware components can give new and
interesting laboratory assignments. There are a variety of labs
that could be added for a course that is a semester long. This
would open up the possibility of an open-ended project for the
last month of the course. In addition, we did not have time to

touch upon code optimization in the laboratories. We could
give a task and have the students learn how to profile code,
time their code with on-board timers, and have a contest as to
which group had the fastest solution. The students were very
excited about such a prospect.

10. Conclusion

Embedded processing courses will always have a difficult
time keeping up with technology because students work at the
assembly level. Textbooks are hard-pressed to keep up with
the new hardware offerings, and schools face many pressures
when choosing a development platform.

We give analysis on what problems were faced in design-
ing our embedded processing course. We found a hardware
/ software environment that serves most of the goals set out,
and we have augmented the available materials with our own.
Our materials are now publicly available. The course was
largely successful, with just a few changes needed in the ma-
terial to present in order to make up for the lack of a textbook.
We hope others who choose the same setup will be able to
learn from our contributions of materials and experiences.

References

[1] B. Chang, D. Rover, and M. Mutka. A multi-pronged approach
to bringing embedded systems into undergraduate education. In
ASEE, 1998.

[2] A. Devices.Blackfin Processor Family Manuals. ADI, 2005.
[3] S. Guangfan, W. Peidong, L. Jinbao, and W. Kaizhu. A curicu-

lum design and consideration for the embedded systems. In
ICITA204, 2004.

[4] D. A. Patterson and J. L. Hennessy.Computer Organization &
Design. Morgan Kaufmann, 2004.

[5] W. Wolf. Computers as Components. Morgan Kaufmann, 2001.

June 5, 2005 Workshop on Computer Architecture Education Page 19

SPIMbot: An Engaging, Problem-based Approach to Teaching Assembly Language
Programming

Craig Zilles
Department of Computer Science

University of Illinois at Urbana-Champaign

zilles@cs.uiuc.edu

ABSTRACT
This paper describes SPIMbot, an extension to James Larus’s
widely-used MIPS simulator SPIM, that allows virtual robots
to be controlled by writing programs in the MIPS assem-
bly language. SPIMbot was written to provide an engag-
ing environment to motivate students to learn assembly lan-
guage concepts. The SPIMbot tool allows the development
of scenarios—in which students must program the robot to
perform certain tasks—and provides the means to compete
two robots against each other.

In our sophomore/junior-level class, we structure the pro-
gramming component as a collection of structured assign-
ments that produce sub-components for the robot; these
sub-components are then used in a final open-ended pro-
gramming assignment to produce an entry for a SPIMbot
tournament. In our experience, this has been an effective
means of engaging students, with many students investing
time to aggressively optimize their implementations. SPIM-
bot has been effectively used in large classes and its source
code is freely available [8].

1. Introduction
As one of their “Seven Principles for Good Practice in

Undergraduate Education”, Chickering and Gamson [1] list
emphasizing time on task as number 5. They state:

Time plus energy equals learning. There is no
substitute for time on task.

Thus one of our chief tasks as undergraduate educators is
to develop activities that encourage our students to spend
time on the course concepts and approach them with de-
sire to master them. This paper describes one such set of
activities, focused on teaching concepts related to assembly
language programming.

In the remainder of this section, we describe the motiva-
tion for this work (Section 1.1) and abstractly how we use
SPIMbot to achieve our pedagogical goals. After discussing
the capabilities of the software (Section 2), we discuss, in
detail, how it was used in the Spring 2004 semester (Sec-
tion 3). We conclude, in Section 4, with a discussion of
student feedback that supports our assertion that SPIMbot
is an engaging way for students to learn assembly language
programming concepts.

1.1 Motivation
In teaching assembly programming in our Computer Sci-

ence curriculum1, we have two primary goals: 1) to pro-
1Assembly programming is taught in the context of the second

Figure 1: Example SPIMbot screen shot. The map
window shows the robot’s current location, orientation, and
virtual environment; in this scenario, SPIMbot can turn
on/off a paint trail allowing it to write out messages. Be-
hind the map window is the main window (unmodified from
xspim) that shows the MIPS processor’s machine state.

vide students a mental model of how a computer executes
their high-level language (HLL) programs, and 2) to pro-
vide the background knowledge necessary for later courses
on compilers and operating systems. To this end, we teach
the students about instruction sets, stacks and their man-
agement (including recursion), calling conventions, floating
point arithmetic, instruction encoding, I/O interfacing, and
interrupt handling.

If one is not careful, these topics can come across as dry.

semester-long class in a required two-class sequence in computer
architecture. The first class in the sequence teaches digital fun-
damentals: the digital abstraction, combinational logic, finite-
state machines, and basic architecture concepts (e.g., a single-
cycle implementation). The second class covers three main topics:
assembly programming, machine organization, and memory and
I/O systems; each topic receiving roughly a third of a semester.
As our undergraduates predominantly pursue software-oriented
(rather than hardware-oriented) careers, the goal of this second
class is to provide the practical understanding of computer hard-
ware necessary to be an effective programmer. Most students
continue their architecture sequence, taking a third course in ei-
ther high-performance architecture or embedded systems.

Page 20 Workshop on Computer Architecture Education June 5, 2005

The students’ limited programming experience (this class
is early in the curriculum) coupled with the inherent in-
efficiency of assembly programming can limit the scope of
programming assignments. Furthermore, the demands of
grading, especially in large enrollment classes where some
form of automation is necessary, require most assignments
to be rather structured. Examples of common assembly pro-
gramming assignments found at many universities include:
producing the Fibonacci sequence, string manipulation (re-
versing a string, toupper(), etc.), and sorting arrays. In
many cases, HLL source is provided, reducing such assign-
ments to somewhat mechanical translation.

The goal of SPIMbot was to produce an environment for
teaching assembly programming that was fun and interest-
ing, to motivate students to want to learn the material.
While there is a long history of using robots for instruc-
tion (e.g., [5]), the author’s inspiration came from Patricia
Teller’s presentation [7] at the 2003 Workshop for Computer
Architecture Education. In their semester-long course on as-
sembly programming concepts, students program 68HC11-
based robots to escape from mazes and chase other robots.
Pedagogically, programming robots has three appealing fea-
tures: 1) it is visceral: students like seeing their code control
motions and actions of objects in the physical world, 2) it is
cognitively challenging: debugging requires mapping robot
behavior back to the behavior specified in the code, and 3)
it provides a non-contrived way to expose students to I/O
programming.

The problem with (physical) robots is one of logistics;
in a high enrollment class—we have 100-150 students per
semester—acquiring, maintaining, and scheduling sufficient
resources is prohibitive. In contrast, virtual robots are cheap,
plentiful, take-up no space, require no maintenance, yet (for
students accustomed to interpreting computer-rendered vir-
tual realities) still provide the fundamental qualities of phys-
ical robots.

1.2 How we use SPIMbot
The central part of our implementation is the SPIMbot

tournament, a friendly competition between the programs
that the students write. The contest presents a challeng-
ing, multi-part task for the robots to perform. We use this
concrete task to motivate the presentation of the desired as-
sembly language concepts and the problem solving/design
process.

As most of our students have not been exposed to assem-
bly language previously, the SPIMbot tournament is the last
activity in our assembly language segment. We work up to
the contest by solving isolated sub-problems as program-
ming assignments. We start with small structured assign-
ments and then move onto larger structured assignments
before attempting the contest (a large open-ended assign-
ment). This structure lets us provide the students with
early, motivating successes.

Although it is the last assignment, we present the con-
test first, because it allows us to model a problem solving
process: a top-down design, followed by a bottom-up imple-
mentation. In class, we brainstorm approaches to the con-
test task, making it clear that there are multiple approaches.
Then, we identify sub-tasks necessary for accomplishing the
contest goal; these sub-tasks make up the structured pro-
gramming assignments leading up to the contest. The con-
test itself challenges students to figure out what they need to

implement and requires them to integrate the components
they’ve completed in previous assignments.

When it comes to covering the desired course material, the
fact that SPIMbot exists only in a virtual reality can be an
advantage, as we can structure that reality to include those
concepts that we want to teach. For example, two concepts
that we cover in the course are recursion and the implemen-
tation of linked-data structures. To incorporate these con-
cepts into our programming assignments, our Spring 2004
contest (see Section 3) involved an I/O device that returned
its output as a tree, requiring students to write a recursive
procedure to traverse the nodes of the tree.

After the students have submitted their contest entries,
we use one class period to hold a tournament. With each
competition lasting about 15 seconds, a double-elimination
tournament for 32 teams can easily be held in a 50-minute
class period. While this class time could be used for other
purposes, we believe that it successfully motivates students
to be actively engaged with course material outside of class
achieving our objectives.

A Note on Competition: As competition can be demo-
tivating if not handled properly [2, 3], we take a number
of steps to alleviate the potential downsides of competition:
1) performance in the competition is responsible for a min-
imal fraction (about 1 percent) of student’s final grade, 2)
students compete as teams, reducing the pressure on indi-
viduals, and 3) teams select team names allowing students
to compete anonymously.

2. SPIMbot Software
SPIMbot is an extension of James Larus’s widely-used

MIPS simulator SPIM [4]. SPIMbot involves three major
enhancements: 1) a framework for simulating robots and
their interactions with a virtual world, 2) a 2-D graphical
display to visualize the robots and their environments, and
3) support for concurrently simulating multiple programs—
each on their own virtual processor—allowing multiple robots
to be simultaneously active in a single virtual world.

Simulating the virtual world requires tracking and updat-
ing the state of the robots and other objects in the simu-
lated world. In addition to location, orientation, and veloc-
ity, we have to keep track of the state of any I/O devices.
Updating the world involves computing new locations for
objects based on their current velocities. Collision detec-
tion is performed to update an object’s velocity/orientation
(e.g., when a robot runs into a wall) and to allow inter-
action between robots and simulated objects (e.g., when a
robot picks up an object or pushes a button). Events in the
virtual world can also trigger events in the MIPS processor,
either updating the state of an I/O device and/or triggering
an interrupt.

To interact with the virtual world, SPIMbot provides the
robot programmer an (extensible) array of input/output de-
vices. These virtual I/O devices, like real I/O devices, have
their I/O registers mapped to memory addresses and, thus,
are accessed using normal loads and stores. Simple examples
include “sensors” that tell SPIMbot its or the opponent’s
(X,Y) coordinates and “actuators” to control its orientation.
The SPIMbot code is structured so that the collection of I/O
devices can easily be extended for a particular scenario. Fur-
thermore, SPIMbot includes a programmable interrupt con-
troller (PIC) that allows individual device interrupts to be

June 5, 2005 Workshop on Computer Architecture Education Page 21

enabled/disabled. Standard interrupts include the “bonk”
interrupt (raised when SPIMbot runs into something) and
timer interrupts (SPIMbot includes a programmable timer).
The collection of interrupts can also be extended.

To achieve a tight coupling between the virtual world and
the simulated MIPS code, we interleave the simulation of
the virtual world with that of the MIPS code. Every cycle
we execute a single instruction for each robot and update
the physical world based on the actions of the robots. Sim-
ulating multiple concurrent robots required eliminating the
use of global variables in SPIM’s parsing and simulation of
MIPS code; while currently we only simulate two robots,
this could easily be extended to any number. As there can
be interactions between the robots, we alternate each cycle
which robot is simulated first in an attempt to be fair.

The graphics are currently decidedly low tech—XWindows
drawing primitives are used to draw geometric shapes (lines,
boxes, circles, etc.)—but this appears to actually have two
advantages: 1) it is very simple; a minimal amount of de-
velopment time is required to add the rendering code for
a new scenario, and 2) it is not distracting; students can
focus on what the graphics represent instead of the graph-
ics themselves. Because the graphics are not demanding,
smooth animation can be achieved without state-of-the-art
hardware. In part this is because the graphical display need
not be rendered every cycle. Currently, we re-draw every
1024 cycles and can achieve a refresh rate over 60 Hz on a
1GHz laptop.

3. Example Scenarios
In this section, we discuss one scenario in detail to demon-

strate how we organize the competition and the assignments
that lead up to it and, then, discuss two other competitions
more briefly to demonstrate the expressiveness of SPIMbot.

3.1 Spring 2004: Token Collection
In the Spring 2004 semester, the competition revolved

around collecting “tokens”: 15 tokens were randomly placed
on a square map, tokens could be collected by driving over
them, and the location of tokens can be divined by using an
I/O device called the “scanner.” The winning robot was the
one that collected the most tokens by the end of competi-
tion.

Writing a program to compete in the contest involved: 1)
allocating memory for the results of a scan, 2) communi-
cating with the scanner to initiate a scan, 3) handling the
scanner’s interrupt, 4) searching the tree-like data structure
returned by the scanner for the location of tokens, and 5)
repeatedly orienting SPIMbot toward a token and recogniz-
ing when it has arrived, until all tokens have been collected.
As this represents a relatively difficult programming assign-
ment for students at this point in the curriculum, we broke
out major components of the program as individual pro-
gramming assignments. Below is a list of the structured
assignments that led up to the contest:

1. A SPIMbot introduction: write a simple interpreter
that reads a string of commands (e.g., turn, wait, paint
on/off) and invokes provided functions that perform
these actions. Introduces students to SPIM/SPIMbot
and exposes students to loops, arrays, calling func-
tions, control flow and I/O interfacing.

a t o k e n

a n a r e ab e i n gs c a n n e d a S P I M b o t
Figure 2: SPIMbot token collection competition.

2. Arctangent Approximation: given the (x,y) location
of 2 points, compute the angle to drive from one to
the other using a Maclaurin series expansion. Exposes
students to computing in floating point.

3. Tree Traversal: SPIMbot’s scanner returns the loca-
tion of the tokens embedded as leaves of a tree-like
data structure. Students write a recursive function
that traverses the tree. Exposes students to linked data
structures and recursive functions in assembly.

4. Interrupt Handler: write an interrupt handler for the
timer interrupt that commands SPIMbot to turn 90
degrees and resets the timer, resulting in SPIMbot
driving in a square. Introduces students to writing in-
terrupt handlers.

While the solutions to these assignments can be integrated
into a working contest entry, designing a competitive en-
try requires a little more effort. Three activities dominate
the execution time of most of the robots: scanner latency,
tree traversal, and collecting tokens. In a straight-forward
implementation, which scans the whole map at once, these
activities are performed completely sequentially (Figure 3a).

A higher performance implementation can be developed
which pipelines the scan/traversal/collection process. The
scanner can be programmed to scan only a portion of the
map at a time, and its latency is largely a function of the
area scanned. Once a small portion of the map has been
scanned, the robot can begin collecting tokens from that
portion while it requests the scan of the next region. In
this way, much of the scan latency can be overlapped with
the latency of tree traversals and token collection. Students

Page 22 Workshop on Computer Architecture Education June 5, 2005

s c a n c o l l e c tt r a v e r s ea)
b)

Figure 3: Pipelining the three sub-tasks reduces the

latency of the task. By scanning one-ninth of the map
at a time, the pipelined version (b) overlaps the collection of
tokens with the scanner latency, completing the task signifi-
cantly before the non-pipelined version (a).

found that breaking the map into 9-36 pieces and pipelining
the processing of those pieces resulted in good performance.
Another enhancement that students developed was driving
to the center of the region currently being scanned after all
known tokens had been collected.

Developing such a pipelined solution requires managing
concurrent activities and demonstrates the importance of in-
terrupts. The students learn first hand that their interrupt
handler must avoid clobbering the applications registers, be-
cause it could be called at any time. It also demonstrates
that pipelining—a concept we introduce in the machine or-
ganization portion of the class—is not a concept that is re-
stricted to hardware.

3.2 Fall 2004: Block Pushing
In the Fall 2004 semester, the contest revolved around

pushing blocks onto your side of the map (see Figure 4).
The contest had a fixed running time and the winner was
the one with the most blocks when time ran out. Elementary
physics were implemented so that robots could push blocks,
which in turn could push other blocks. An I/O device was
provided that could be queried to provide the location of
each of the blocks.

Like the token collecting contest, we integrated a compu-
tational challenge into the contest. Initially, a most of the
blocks are “locked” to one or both of the robots. When
a robot runs into a locked block, an interrupt is triggered
and the robot receives a six character string. This string
is a scrambled version of common english word, which, if
unscrambled, can be used to unlock the block for this robot
so that it can be pushed. As machine problems leading up
to the contest, students wrote a string compare function, a
function that would do a binary search of a sorted dictio-
nary looking for a given word, and a recursive function that
produces every permutation for a 6 character word. These
functions can be integrated to unscramble the scrambled
clues.

Because we provided the dictionary to the students ahead
of time, there was a significant opportunity to optimize the
unscrambling function by offline computation. The follow-
ing is representative of what the winning robots did: 1) sort

Figure 4: SPIMbot block pushing competition.

the characters in the scrambled word into a canonical or-
der (i.e., alphabetical order), 2) as only the 26 lower case
letters were used, each ascii character could be represented
in 5 bits; use this insight to translate the 6 char string into
an integer (6 * 5 bits = 30 bits), 3) do a binary search on
a precomputed table that maps these canonical integers to
the strings they encode.

3.3 Spring 2005: Maze Traversal
This Spring semester our contest goal was to completely

traverse a maze without being able to see the walls (see
Figure 5). Since the mazes we generate are unicursal (i.e.,
there are no isolated islands), the “right-hand rule” (i.e.,
never letting your right hand leave the wall) can be used tra-
verse the whole maze. Alas, SPIMbot does not have arms,
much less hands, but the right-hand rule algorithm can be
implemented with two interrupt handlers, by periodically
checking to see whether a wall is still to the right of you,
as follows: 1) request timer interrupts at a period so that
roughly one is received for each square visited; when a timer
interrupt is received, turn right and request another timer
interrupt, and 2) when you run into a wall (which triggers
a “bonk” interrupt), turn left. This was assigned to the
students as a machine problem.

The computational challenge for this contest was to sort
an array of double precision floats to find the Nth highest
number (for varying N). Each time the correct value was
identified, the SPIMbot was provided additional “energy”;
energy could be used to drive faster, or, in large amounts, to
drive through walls for short periods of time. Incorrect an-
swers were penalized, so that the expected value of random
guessing would be negative.

June 5, 2005 Workshop on Computer Architecture Education Page 23

As a machine problem early in the semester, the students
implemented a bubble sort, but there is clearly much op-
portunity to do better. A number of students implemented
quicksort with the optimization of, at each stage, only sort-
ing the partition that contains the Nth number. A few
groups recognized that because a small error rate could be
tolerated, the computation could be done on the integer
pipeline only loading the top word of the doubles; this opti-
mization saves one cycle on each of the load, because lw.d is
translated into two instructions. The winning group realized
that, because multiple guesses were allowed, the penalty for
incorrect guesses was low enough that it was more efficient
to guess an expected range for the Nth value (based on the
properties of our random number generator) and perform
a single pass over the array guessing any number in that
range. In this way, their robot could maintain full energy
while constanting driving through walls; their run time was
minimized by finding the shortest path that visited every
square.

Scenario Implementation Time: After the Spring 2004
semester, we re-factored SPIMbot’s implementation to de-
couple the scenario-specific aspects from the core of SPIM-
bot’s implementation. With these changes in place, it is
rather straight-forward to implement new scenarios, by im-
plementing a collection of functions for supporting scenario-
specific initialization, physics, drawing, and I/O devices.
The Fall 2004 scenario required about a day to prepare;
this accounts for the time to implement both the SPIMbot
code, as well as the MIPS code to test the scenario (which
includes solutions to most of the structured assignments).
The Spring 2005 scenario took longer to implement (per-
haps a 40-hour week of programming time), but was largely
completed by an undergraduate.

4. Student Reaction
The Spring 2004 students had a quite positive opinion

of the SPIMbot assignments and student anecdotes suggest
that they found it engaging. Students were asked in an
anonymous electronic survey to rate their enjoyment of the
SPIMbot assignments on a 5-point scale (5: “very much
so” to 1: “not at all”). Of the 88 out of 99 students that
responded, the mode was a 5 and the mean was just under
4 (see Figure 6).

In the course evaluations, six students commented specif-
ically about SPIMbot when asked “What do you like about
this course?”, including the following quotes:

“I really liked the SpimBot Tournament. That
was the coolest thing I have done in a class. It
makes it a lot more fun”.

“I liked the MP’s, especially the SPIMbot Tour-
nament and how the MP was designed to make
us think of optimizations for ourselves.”

“... I also really liked the SPIMbot tournament”

The feedback was not uniformly positive, suggesting that
there remain opportunities for improvement. One student
mentioned SPIMbot in response to the question “What do
you NOT like about this course?”, giving the following re-
sponse:

“Spimbot. Pointless, difficult, and closed source,
so hard to see exactly what was happening, so
it’s not entirely useful”.

Figure 5: SPIMbot maze traversal competition. The
red squares are those that have only been visited by the red
robot; the purple squares have been visited by both the red
and blue robots (red + blue = purple). The black bars below
the map indicate energy.

051 01 52 02 53 03 5
1 2 3 4 5S t u d e n t E n j o y m e n t (h i g h e r i s b e t t e r)N umb erof St ud ent s

Figure 6: SPIMbot achieved high-level of student

enjoyment. Data shown for the 88 (out of 99) responding
students for the Spring 2004 semester.

Page 24 Workshop on Computer Architecture Education June 5, 2005

We have addressed this comment in more recent contests
by providing the SPIMbot source to the students when the
contest is assigned. By having the source, students can run
SPIMbot inside a debugger which helps them debug prob-
lems relating to interrupts, which are challenging to identify
from SPIM’s built-in debugger. We encourage students to
inspect the code by stating that they are free to exploit
any bugs they find2. A number of students do inspect the
source; in the Spring 2005 contest, we received many com-
ments about an unused “SPIMBOT CHEATER” #define

statement that was left in the code from when we were de-
veloping and testing the scenario. As the ability to efficiently
read source code is a skill that comes with practice (one not
emphasized early in our curriculum), organizing the contest
in this way motivates some students to study the code.

Another measure of student engagement is the effort they
expended. Along with their source code, students handed
in a short write-up describing any noteworthy aspects (gen-
erally optimizations) of their program. Of the 30 teams,
over 3/4’s of the teams attempted optimizations with half
completing significant optimizations:

• 15 teams (50%) described aggressive optimizations like
segmenting the scan and the aforementioned pipelin-
ing,

• 5 teams (17%) described modest optimizations like
greedily picking up the closest known token at any
time,

• 7 teams (23%) reported attempting no optimization,
and

• 3 teams (10%) reported attempting aggressive opti-
mizations, but failed to get them working, requiring
them to submit unoptimized versions.

Some of the teams that aggressively optimized their code
reported trying a variety of techniques or parameterizing
their code and tuning those parameters. Here are two stu-
dent comments:

“We tried many different strategies, including
sorting the nodes in order of increasing distance
from the spimbot, using an algorithm which heads
toward the closest node to spimbot each time
spimbot moves toward a new token, rescanning
token locations to determine if they have been
picked up, and breaking up the scans into dif-
ferent sizes. After trying all of these, we found
that the only one which sped up the collection of
tokens was breaking down the scan.”

“Our program does scans of size 25 thus giving
36 scans. We found this to be optimal because we
started out with scans of size 5 doing 900 scans
and found it to speed up as we approached 36.
We even went down to 16 and found it slowed
down as the scan sizes got bigger. Thus we have
an optimal scan size.”

2Interestingly, the first thing that many students look for
is a way to write to the memory image of the other robot,
which provides a nice segue to discussing virtual memory,
also covered in the course.

In the Fall 2004 semester, we had students report the
number of hours they contributed to the development of
their SPIMbot programs. While there was some variability,
most students spent 10-20 hours each, working in teams of
2-3 students.

A final metric of effort that students expended on their
contest entry is the number of lines of code. While lines of
code is a metric of little practical utility, it outlines the of the
work and the amount of effort the students put into it. The
assignments that the students handed in ranged from 186
to over 608 lines of code and data segments (not counting
blank lines and those containing only comments), with most
in the 200-400 lines of code range. For comparison, there
were about 130 lines of code provided in solutions that most
students incorporated into their designs.

In light of the age-old challenge of teaching a student body
with a diversity of aptitude (i.e., “How can we teach so
that all of the students learn the fundamentals, while still
pushing the best students?”), perhaps the SPIMbot tourna-
ment’s best use is providing the best students a challenge
that pushes them.

5. Future Work
As it stands, SPIMbot is derived from SPIM which is

only a functional simulator: each instruction takes a single
cycle. Given that our course teaches pipelining and cache
fundamentals, it would be desirable to enhance SPIM (as
was done for CLSPIM [6]) to model pipeline and cache stalls.
In this way, the course material would be unified in this final
project and students would be exposed to a more realistic
optimization scenario.

6. Acknowledgments
This work was supported by NSF CAREER award 434

CCF 03-47260.

7. REFERENCES
[1] A. W. Chickering and Z. F. Gamson. Seven principles

for good practive in undergraduate education.
American Association for Higher Education Bulletin,
39:3–7, 1987.

[2] B. G. Davis. Tools for Teaching. Jossey-Bass, San
Francisco, CA, 2001.

[3] E. M. F. III and L. Silvestri. Effects of Rewards,
Competition and Outcome on Intrinsic Motivation.
Journal of Instructional Psychology, 19:3–8, 1992.

[4] J. Larus. SPIM: A MIPS R2000/R3000 Simulator.
http://www.cs.wisc.edu/∼larus/spim.html.

[5] S. Papert. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

[6] A. Rogers and S. Rosenberg. Cycle level SPIM.
Technical report, Department of Computer Science,
Princeton University, Princeton, NJ, October 1993.

[7] P. Teller, M. Nieto, and S. Roach. Combining Learning
Strategies and Tools in a First Course in Computer
Architecture. In Workshop on Computer Architecture
Education, held in conjunction with the 30th Annual
International Symposium on Computer Architecture,
June 2003.

[8] C. Zilles. SPIMbot.
http://www-faculty.cs.uiuc.edu/∼zilles/spimbot.

June 5, 2005 Workshop on Computer Architecture Education Page 25

QUILT: A GUI-based Integrated Circuit Floorplanning Environment for
Computer Architecture Research and Education

�

GregoryJ.Briggs,EdwinJ.Tan,NicholasA. Nelson
ElectricalandComputerEngineering

Universityof Rochester
Rochester, NY14627�

grbriggs� etan� ninelson� @ece.rochester.edu

David H. Albonesi
ComputerSystemsLaboratory

CornellUniversity
Ithaca,NY14853

albonesi@csl.cornell.edu

Abstract

In this paper, wedescribea graphic editing tool called
QUILT (Quick Utility for Integrated circuit Layout and
Temperature modeling). QUILT permitsusers to rapidly
build floorplansof integratedcircuits,providing botha vi-
sualaid aswell asan input to theHotSpotsimulator. The
tool providesnumerousfeaturesfor estimatingcircuit per-
formance, such as interconnectdelay, and for generating
graphicalimagesfor publications.Asa graphicalandeasy
to use tool, QUILT is well suited for both research and
courseworkpurposes.

1. Introduction

An essentialelementof computerarchitectureeducation,
whetherat thelevel of anundergraduatehomework assign-
mentor doctoral-level research,is investigatingthe trade-
offs amongmultiple designcriteria, suchasperformance,
cost,andpowerdissipation.Themosthands-on,realworld,
avenuefor exploring computerengineeringtradeoffs is de-
signing, testing, and fabricating different integrated cir-
cuits and comparingtheir characteristics. However, the
prohibitively high time andmonetarycostsof theseactiv-
ities make themusefulonly for small circuitsor long term
projects. Hardware emulationvia FPGAsprovides more
rapid turnaroundtime yet suffers from two major limita-
tions. First, the densityof FPGAssignificantly lags that
of full-customCMOSdesigns,makingit necessaryto span
severalFPGAsfor large,microprocessor-level emulations.
Second,the internal hardwarestructureof FPGAsdiffers
considerablyfrom a full-customdesignmakingit difficult
to correlateperformanceandpowermeasurementsfrom the
FPGAto thatof thefull-customdesign.

For thesereasons,theuseof softwaresimulationfor ex-
ploring designtradeoffs is very popularin computerarchi-
tectureresearchandeducation,permittinglargesystemin-

�
This researchwassupportedin part by NationalScienceFoundation

grantCCR-0304574.

vestigationsto be performedvery rapidly. Although not
asaccurateasrealhardware,simulatorsproduceresultsfor
largescalesystemsin a matterof minutesor hours. Thus,
many tools,bothproprietaryandpublic-domain,have been
developedto study the performance,power, andtempera-
tureaspectsof differentarchitectures.Thereasonableaccu-
racy andrapidturnaroundtimesof thesetoolsmakesthem
highly appealing.

However, most popular simulation toolsets are text-
basedandcommand-linedriven.Whenusedfor taskssuch
asfloorplanning,suchinterfacesaretediousandleadto fre-
quentandhard-to-detecterrors. For instance,the input to
theHotSpottemperaturemodelingtool [7, 12] is a text file
containinga listing of x,y coordinatesandsizesof thefunc-
tional units. In the past,researchersmodifiedthis file us-
ing text editorsandmanuallycomputedeachcoordinate,a
tediousanderror-proneapproach.Thus,theprimemotiva-
tion for designingthe QUILT tool describedin this paper
wasto provideamoreproductivemeansto utilize HotSpot.
However, in thecourseof development,it becameapparent
thatQUILT wouldalsobeusefulin estimatingIC transistor
counts,roughfloorplanningfor very largescaleintegration
(VLSI) layout,producinggraphicswhichcanbeusedin re-
portsandpresentations,andasa generaleducationaltool.
Researchhasshown thattheuseof graphicaluserinterfaces
(GUIs) canincreaseproductivity andalsohelpto reinforce
conceptslearnedin theclassroom[1, 9].

The restof this paperdiscussesthe QUILT tool and is
organizedasfollows. Section2 describestheoperationof
QUILT in detail. Section3 givesa brief overview of the
technicalaspectsof thesoftware.Examplesof how QUILT
canbeusedin anacademicenvironmentaregiven in Sec-
tion 4. New featuresthatcanbeaddedontothecurrentver-
sionof thetool arediscussedin Section5, andconclusions
areprovidedin Section6.

Page 26 Workshop on Computer Architecture Education June 5, 2005

2. Detailed Description of the QUILT Tool

QUILT allows oneto easilybuild a floorplanasan in-
put for varioussimulationtools. Thecurrentversionis op-
timized for use with HotSpot. Userscan quickly adjust
their designsby simply “pushingpolygons”,and running
theHotSpotsimulationagain.This removesthe tediumof
manuallycomputingfunctionalunit coordinatesandallows
usersto focuson exploring designissues.Functionalunits
canbeeasilymovedandresized.On-chipinterconnectsare
alsosimulatedin detail.

2.1. General Structure

QUILT is a standaloneJava application.Themainfunc-
tion of the tool is to generatean input text file for a simu-
lator while viewing or editinga graphicalrepresentationof
the IC floorplanin a GUI. The tool wastestedwith a sim-
ulatorbasedon SimpleScalar3.0b[3] with Wattch[2] and
HotSpot[7, 12] extensions.

QUILT readsand writes HotSpotfloorplan coordinate
text files, andalsocolorizesthe floorplanbasedon power
or temperaturetracefiles. Thetool canbestartedfrom the
commandline andan existing floorplanfile canbe speci-
fied asa commandline option,or it canbegivena shortcut
icon and associatedwith .flp files similar to mostGUI
programs.

In additionto a text-basedcoordinatefile, QUILT lever-
agesJava’scapabilityto generateJPEGfilesto producelay-
out imagesthatcanbeusedin documents.

QUILT requiresvariousparametersfor the technology
nodeof interest.For our researchwith QUILT, weobtained
thesefromthe2003ITRSRoadmap[10]. Changingtoadif-
ferentnodeis a simplematterof replacingsomeconstants
with thedesirednode’s“Roadmap”values.

2.2. User Interface

When the tool is started,a GUI window is displayed
whichhasthelook andfeelof a typicaldrawing editor. The
drop-down menusarelocatedon thetop of thewindow. If
an input file wasspecifiedat startup, theeditingareawill
display a floorplan of the circuit layout. Figure 1 shows
QUILT displayinga sampleprocessor, in this casea modi-
fiedversionof theAlpha21264floorplan.

2.3. Floorplan Generation

A floorplancanbecreatedfrom scratchif desired.The
drop-down menusEdit, Mode, Zoom, Select andGener-
ate areusedto draw andedit abasicfloorplan.

New units canbe createdby specifyingtheir nameand
dimensions.SRAMscanbecreatedby choosinga memory
size.Level2cachecanautomaticallybelaidouttosurround
thecore.TheGenerate menuis shown in Figure2.

Figure 1. QUILT displa ying a sample processor
(modified Alpha 21264) floorplan

Figure 2. QUILT’s Generate drop-do wn menu

Onceunits have beencreated,they canbe resizedand
movedusingthreepossibleeditingmodes.Thefirst mode,
Move, simply allows a unit to betranslatedto new coordi-
nates.Thesecondmode,Resize (constant area), is use-
ful in that onecanadjustthe dimensionsof a unit, while
still retainingtheoriginalareaandthusthesamefunctional
capability(for example,to keepthenumberof bytesof an
SRAM constant).Finally, thethird modeallowsthedimen-
sionsto bechangedwithoutconstraint.

QUILT cancomputethetransistorcountfor a particular
functionalunit andtechnologynodeprojectedby theITRS
Roadmap. Figure 3 shows the pop-upwindow, obtained
by selectingthe function in the File menu,displayingthis
information.Thisoperationis usefulin estimatingthetotal
numberof transistorsusedin a design.

The Zoom andSelect menusmake it easyto zoomin
to, or selectacertainpartof, a unit, respectively.

Lastly, theEdit menu(Figure4) coverstypical edit op-
erations,aswell asa few extra operationsthathave proven
useful.TheJoin very close edges operationis especially
useful when importing HotSpotfloorplansthat had been
madeby hand.Thesefloorplansoftencontainsmallcalcu-
lation errors.Anotherfunction is Show overlapping and
underlapping points whichis usefulin verifying thatthere

June 5, 2005 Workshop on Computer Architecture Education Page 27

Figure 3. Windo w displa ying functional unit tran-
sistor count

arenospacesin thefloorplan.A commoncauseof HotSpot
floorplanerrorsaregapsbetweenunit edges,which act as
insulatorsduringtemperaturesimulation.

Figure 4. QUILT’s Edit drop-do wn menu

To recapitulateinformation regardinga particularunit,
anoptioncalledShow Unit Info in theFile menudisplays
awindow listing theunit’swidth, height,areaandx,y coor-
dinates.

Figure 5. Details of a functional unit in a pop-up
windo w

2.4. Interconnect

Interconnectdelay is of growing importancefor com-
puterarchitects.QUILT modelsmultiple typesof intercon-
nects,andcanbeeasilyextendedto otherapproaches.

Conventional metal interconnectsas well as optical
interconnectsare currently modeled,basedon estimates

Figure 6. QUILT inter connect delay estimator

from [4]. After two endpointshave beenselectedfor com-
munication,theprogrampresentsa list of theestimatedde-
lays usingeachtype of interconnect.The usercanselect
the desiredtype. Electricalconnectionsareautomatically
routedin a simpleManhattanstyle. Optical interconnects
aremodeledaspoint-to-pointlinks. Theareaconsumedby
the interconnectis alsodepicted(visible for interconnects
that aremany bits wide). Finally, the connectiondelayis
expressedin termsof clock cycles,for easeof comparison.
This is shown in Figure6.

2.5. HotSpot Usage

The primary file format of QUILT is the .flp (floor-
plan) file usedwith HotSpot. However, onecando much
morewith QUILT thanjustsave files for usewith HotSpot.

A singlemenufunction takescareof saving the floor-
planfile, runningHotSpot,anddepictingtheresultswithin
theeditor. Thefloorplanis automaticallycoloredto indicate
cool (blue)andhot (red)functionalunits.HotSpotsupports
runningfrom apower tracefile, whichmeansthatonedoes
not have to wait for a SimpleScalarsimulation to finish.
Rather, the power tracefile lists the power dissipationin
eachunit andHotSpotjust needsto recomputethethermal
interactions.

Oncea userhascompiledHotSpot,QUILT canquickly
run a HotSpotsimulationandimmediatelycolor thefloor-
planaccordingto temperature.Theusercanrearrangefunc-
tionalunitsaccordingto thermalconstraintsandre-simulate
instantly. This canbe very useful for designspaceexplo-
ration.

To use QUILT in this way, one must first producea
power trace file which is a listing of power consumed
by the processorunits. The simulator in HotSpotcalled
sim-template generatesthis tracefile aspartof its out-
put. The time it takes for resultsto be producedis on
theorderof seconds.An exampleusingthedemonstration
files includedwith HotSpotis shown in Figure7. Thecool
cachesarecoloredwith bluehuesandthehot integerunits
areindicatedwith redhues.

Page 28 Workshop on Computer Architecture Education June 5, 2005

Figure 7. QUILT displa ying a temperature-colored
floorplan

2.6. Graphic Image Generation

Graphicsarefrequentlyneededto clarify ideasandde-
pict resultsfor reportingpurposes.In the past,producing
thesegraphicsinvolvedmanuallyadjusting,resizingandre-
coloringa largenumberof functionalunits.QUILT largely
automatesthesetasks. Singlemenucommands,shown in
Figure8, permitthefloorplanto berecolored,fontsresized,
andlabelschanged.

Figure 8. QUILT’s Graphics drop-do wn menu

Thecoloringmayreflecteithertemperaturegradientsor
IC functionalitysuchascaches.Additionally, for multi-core
processors,thereis a “zoom effect” generator. This creates
a graphiccontaininga pictureof the entireprocessorwith
“zoom” linesleadingto animageof asinglecore,asshown
in Figure 9.

3. Implementation

QUILT was developedusing the Java Virtual Machine
environment which makes the software portable across
many computingplatforms,a commonneedin academic

Figure 9. The “zoom effect” for a chip multipr o-
cessor image: (a) floorplan for a proposed 4-core
multipr ocessing fault-tolerant processor , and (b)
closeup of one core [11]

settings.In its currentimplementation,thetool comesasa
single70kB file which is easilydistributableanddoesnot
requiretremendouscomputingresourcesto run.

Thissinglefile is a JavaArchive(JAR) file, andin many
operatingsystems,canbeexecutedsimplyby doubleclick-
ing on it. Since the JAR file is actually a compressed
archive, a userwho wishesto modify QUILT canuncom-
pressit to obtainthecompletesourcecode.

QUILT takes full advantageof the Java object model.
Each functional unit displayedis actually an instanceof
the Unit class, and interconnectsare membersof the
InterconnectLine class.Thetechnologynodeis also
encapsulatedin a separateclass,asaremany othercompo-
nentsof thesoftware.

Sun’s javax.swing packagewasusedto renderthe
graphicalinterface. The actualfloorplanediting areawas
madeby extendingtheJComponent class. By selecting
Sun’s standardgraphicalinterfacelibrary, QUILT’s source
codeshouldbeeasierto understandandextend.

4. Teaching and Research using QUILT

Simulatorsarewidely usedin computerarchitectureed-
ucation,as they permit designsto be analyzedrelatively
quickly and cheaply. However, text-basedsimulatorsare
not intuitive and they areproneto errorsthat canbe cor-
rectedonly with careful scrutiny. Although QUILT itself
is not a full simulatorin the strictestsense(its main task
is to providea front-endfor, anda graphicalrepresentation
of, thedatageneratedfor or usedby text-basedsimulators),
it enablesstudentsto comprehendresultsmoreeffectively.
Studiesconductedby FelderandBrent[5] usingaquestion-
nairedevelopedby FelderandSoloman[6] indicatedthat

June 5, 2005 Workshop on Computer Architecture Education Page 29

82%and63%of engineeringstudentsarevisualandsens-
ing learners,respectively. The researchersdefinedsensing
asorientedtowardsfactsandhands-onmethodsandvisual
learningpertainsto informationpresentedin picturesand
diagrams.

A simpleexerciseusingQUILT canbeorganizedin three
steps:configuration,simulation,andanalysis.Thefirst step
requiresthestudentto modify anexisting floorplanof a IC
chip by using the drawing tools as seenin Figures2 and
4. An exampleis shown in Figure1. If thermalsimulation
is to bedone,thefunctionalunit namesshouldcorrespond
to thepower outputslistedby Wattch. Thesimulationstep
is actuallynot performedin QUILT but throughHotSpot
and/orSimpleScalar. Thestudentcanmonitorandanalyze
datavisually (Figure7) while theSimpleScalarsimulation
is in progressor whenit is completed.

Therearemany otherexercisesthatarepossible.For in-
stance,studentscancomparelayoutsfor temperatureversus
interconnectdelay, or examinethethermalimpactof adding
newly proposedunits,splittingunits,etc.

In most computerengineeringcurricula, computerar-
chitectureis taught at two levels: an introductory level
coursetargetedtowards undergraduates,and a more ad-
vancedcoursedesignedfor upperclassand graduatestu-
dents. Due to the complexity of simulatorssuchas Sim-
pleScalar, WattchandHotSpot,exercisesinvolving theiruse
andmodificationareusuallycarriedout only in advanced
courses,even thoughthey areexcellent teachingtools. A
graphicalbasedtool suchasQUILT permitstheinstructorto
introducearchitecturalconceptsandsimulationskills early
in a student’seducation.

Using QUILT as a researchtool is not much different
from a classroomexercise.A furtherstepwould probably
involveproducinggraphicssuchasthetemperature-colored
(Figure7) or multicorefloorplan(Figure9) requiredaspart
of the documentationfollowing the research.The authors
haveusedQUILT to generateresultsfor two papers[8, 11].

5. Future Work

Although the authorshave usedQUILT for their own
work, thetool still hasroomfor improvement.For example,
when making presentationgraphics,XFig and PostScript
outputswouldbeuseful.Otherareasof improvementarein
easeof use,modeling,andnew functionalunit generation.

Fromaneducationalstandpoint,easeof useis important.
An on-line help systemcould be added.Additionally, the
editor shouldsupport“drag-and-drop”of unit placement,
similar to othervectorgraphicseditors.

Thesupportedmodelscouldalsobeimproved.Intercon-
nectmodelscouldbemoredetailedandmoretypesof inter-
connectscouldbeadded.Delayuncertaintybasedon tem-
peraturecould becalculated.Also, moretechnologynode
specificationscould be addedto the system;an easyway

to scalea floorplanto a differentfeaturesizewould alsobe
useful. The transistorcountwindow currentlyshows three
differentnumbersanda correctinterpretationrequiresthe
userto decideif thefunctionalunit is of a logic, SRAM or
DRAM type. QUILT could be improved to automatically
determinetheunit’s functiontypeanddisplaytheappropri-
atetransistorcount.

Whengeneratingnew units,it wouldbeusefulto beable
to createitems like queuesandregisterfiles basedon pa-
rameterssuchasnumberof portsandbytesize.An example
wouldbefor QUILT to readSimpleScalar.cfg configura-
tion files to automaticallygeneratefunctionalunits. ALUs
couldbepre-definedgivenanintegerwidth. Suchitemsare
impossibleto produceexactly, but canbe estimatedbased
oncurrentprocessordesigns.

Finally, theprogramhasbeendesignedwith modularity
andeaseof extensionin mind. Thecommunityis invited to
implementany new featuresthey desireandto sharethem
sothatall maybenefit.

6. Conclusion

In thepast,computerarchitecturesimulatorstendto be
text-basedwhich makesdebuggingandanalysisan incon-
venientprocess.Thisdistractscomputerarchitectsfrom fo-
cusingon themaintaskof designingandverifying new de-
signs. Previous researchon humanlearningandcognition
hasshown thatvisualactivity enhancesthepedagogicalex-
perience.

QUILT actsasaninterfacebetweenraw text dataandthe
user. It canrun on a varietyof computingplatformswhich
makesit accessibleto many users. Using QUILT enables
usersto make changesto IC layout quickly andto evalu-
ateandanalyzethe resultsof their modifications. Oneof
the featuresnot seenin other tools is the ability to gener-
ategraphicsfor hardcopiesor for usein presentationsand
documentation.

Finally, QUILT addressesthe issuesof temperatureand
interconnect.Thesearetwo areasof growing importance
for futuremicroprocessors,andneedincreasedemphasisin
theclassroom.This tool providesinteractive visualizations
whichareeffectivein helpingto meetthatneed.

7. Acknowledgments

We wish to acknowledgeJosephToscanofor his refer-
encesto thevisualstudiesperformedonhumanlearning.

References

[1] D. Bodemeret al. The active integration of information
duringlearningwith dynamicandinteractive visualisations.
LearningandInstruction, 14(3):325–341,2004.

Page 30 Workshop on Computer Architecture Education June 5, 2005

[2] D. Brooks,V. Tiwari, andM. Martonosi.Wattch:A Frame-
work for Architectural-Level Power AnalysisandOptimiza-
tions. In Proceedingsof the 27th InternationalSymposium
onComputerArchitecture, pages83–94,Vancouver, Canada,
Jun2000.

[3] D. BurgerandT. Austin. TheSimpleScalarToolset,Version
2.0.TechnicalReportTR-97-1342,Universityof Wisconsin-
MadisonComputerSciencesDepartment,Jun1997.

[4] G. Chenet al. Electricalandoptical on-chipinterconnects
in futuremicroprocessors.In Proceedingsof theIEEEInter-
nationalSymposiumon Circuits andSystems, Kobe,Japan,
May 2005.

[5] R. M. FelderandR. Brent. UnderstandingStudentDiffer-
ences.Journal of EngineeringEducation, 94(1):57–72,Jan
2005.

[6] R. M. Felder and B. A. Soloman. Index of Learning
Styles. World Wide Web, http://www.ncsu.edu/
felder-public/ILSpage.html.

[7] W. Huang et al. Compact Thermal Modeling for
Temperature-AwareDesign. In Proceedingsof the41stDe-
sign AutomationConference, pages878–883,San Diego,
CA, Jun2004.

[8] N. A. Nelsonet al. Allevating ThermalConstraintswhile
MaintainingPerformancevia Silicon-BasedOn-ChipOpti-
cal Interconnects.In Workshopon UniqueChipsand Sys-
tems, pages45–52,Austin,TX, Mar 2005.

[9] O.K. ParkandR.Hopkins.Instructionalconditionsfor using
dynamicvisual displays: A review. InstructionalScience,
21:427–449,1993.

[10] Process,Integration, Device and Structures. The Interna-
tional Technology Roadmapfor Semiconductors. World
Wide Web, http://public.itrs.net/Files/
2003PIDS/PIDS2003.pdf, 2003edition,2003.

[11] M. W. Rashidet al. Exploiting Coarse-GrainVerification
Parallelismfor Power-EfficientFaultTolerance.In Proceed-
ingsof the14thInternationalConferenceon Parallel Archi-
tecturesandCompilationTechniques, Sep2005.

[12] K. Skadronet al. Temperature-AwareMicroarchitecture.In
Proceedingsof the 30th InternationalSymposiumon Com-
puterArchitecture, pages2–13,SanDiego,CA, Jun2003.

June 5, 2005 Workshop on Computer Architecture Education Page 31

The ‘Little Man Storage’ Model

Larry Brumbaugh William Yurcik

National Center for Supercomputing Applications (NCSA)
University of Illinois Urbana-Champaign

{ljbrumb,byurcik}@ncsa.uiuc.edu

Abstract

A simple but powerful storage model is described that

has close correlation to generic storage systems.
Extending the Little Man Computer paradigm developed
by Stuart Madnick and John Donovan during the 1960s at
MIT (where it was taught to all undergraduate computer
science students), this paper describes a comparable
development undertaken for disk and tape storage
devices. A “Little Man Storage” paradigm is proposed to
simplify the explanation of how storage devices function
and how data is maintained by those devices.

1. Overview
For over forty years the Little Man Computer (LMC)
paradigm has proved to be a simple but powerful and
long-lived tool for teaching computer architecture to
undergraduates in a field where a product is considered
obsolete after 5 years (8 generations!). The authors of this
paper have taught for many years with LMC simulators
and have documented how LMC simulators can be useful
teaching tools [1-4]. However, as computer architectures
have evolved over time, subsystems within computers
have also grown in complexity and capability such that
their operation can no longer be effectively explained to
undergraduates without new educational support.

In this paper we propose a new paradigm for teaching
about storage systems, a core embedded subsystem
coordinated with the larger computer architecture that has
grown in complexity and capability to necessitate separate
treatment. In fact many storage systems today have
under-utilized processor capabilities such that we feel
teaching storage systems may actually have an impact on
future developments.

We propose a “Little Man Storage” model for teaching
about storage systems consisting of elements similar to
“Little Man Computer”. By using ecological design in
which model elements have intuitive meaning from
human experience, we believe that a Little Man Storage
(LMS) model may provide benefit in courses where
storage systems are studied comparable to the impact of

Little Man Computer. The LMS paradigm is consistent
with the SNIA Shared Storage Model [5] that was
developed to help standardize storage concepts across
vendor platforms. This paper provides a conceptual
overview of LMS as a precursor to a simulator
implementation. It is our hope for feedback that can be
incorporated into near-term development. This paper is
meant as a discussion of educational techniques for
communicating complex concepts in a learning
environment and not as a tutorial, we assume readers a
basic understanding of disk storage devices and how they
store and manage data.

The remainder of the paper is organized as follows:
after reviewing the LMC paradigm in Section 2, the LMS
model is described in Section 3. In Section 4 the relevant
LMS conceptual elements identified. Section 5 compares/
contrasts LMC and LMS to highlight our contribution. In
Sections 6 and 7 file storage and data management are
modeled. The discussion and examples focus exclusively
on disk storage. An example is given of a typical storage
processing operation that illustrates the individual steps
within the operation and examples are also given that
show the changes that occur in the storage device itself.
Although not discussed in this paper, a small subset of
this material can be used to illustrate tape/cartridge
processing.

2. The Little Man Computer Paradigm

The LMC paradigm has stood the test of time as a
conceptual device for helping students understand the
processing that takes place inside a computer. One of its
greatest strengths is its simplicity. The paradigm consists
of a walled mailroom, 100 mailboxes numbered 00
through 99, a calculator, a two digit location counter, an
input basket, and an output basket. Each mailbox is
designed to hold a single slip of paper upon which is
written a three digit decimal number. Note that each
mailbox has a unique address and the contents of each
mailbox are separate from its address. The calculator can
be used for input/output operations, temporarily store
numbers, and to add and subtract numbers. The two-digit

Page 32 Workshop on Computer Architecture Education June 5, 2005

location counter is used to increment the count each time
the Little Man executes an instruction. The location
counter has a reset located outside of the mailroom.
Finally there is the “Little Man” himself, depicted as a
cartoon character, who performs tasks within the walled
mailroom. Figure 1 illustrates the major components of
the LMC paradigm. Other than the reset switch for the
location counter, the only communication a user has with
the Little Man is via slips of paper with three digit
numbers put into the input basket or retrieved from the
output basket.

Figure 1. Little Man Computer and the Walled

Mailroom

 The authors have written several papers [1-4]
describing use of a LMC simulator to enhance the quality
of computer science courses, specifically those that
emphasize architecture, hardware/software, and operating
systems concepts. The two simulators developed by the
authors are part of a larger worldwide effort to construct
LMC simulators some of which are described in [3]. We
feel these widespread developments validate both the
utility and continuous interest in the LMC paradigm.

3. The LMS Model

We intend to leverage the LMC paradigm with
corresponding conceptual analogies. In particular, the
basic philosophy utilized in the LMC model is to
minimize the functional details and physical structure
while still allowing the important conceptual features to
be clearly illustrated. The LMS model described here
would have been valid with the disks of 30 years ago.
However, more importantly it provides insight into
modern storage systems. Furthermore, this paper
describes a model, not a working simulation, but all the
moveable pieces for the working simulation are presented.

Recall that a disk storage device contains several
moveable components including: a) the revolving platters
where data are stored, b) an access arm that moves to the
designated location for the data and c) a mechanism for
copying data between the buffers and the hard drive

during input and output operations. Little Man Storage
itself, again depicted as a cartoon character, performs all
three of these functions.

4. LMS Hardware

The LMS disk device consists of two platters where
data can be stored on both sides of a platter. Both the top
and bottom surfaces of each platter surface contain three
concentric tracks. Hence, the storage device consists of
three cylinders. Each track consists of eight areas and all
areas store exactly 512 bytes of data. Table 1 specifies the
numbering scheme used to identify actual locations on the
device. Figure 2 shows both sides of a platter.

Table 1. Basic Hardware Components of LMS

Storage Device
Components

ID Numbering Scheme for the
Component

3 cylinders 0, 1, 2 (independent of platter surface)

4 tracks per cylinders 0, 1, 2, 3 (0/1 1st platter & 2/3 2nd platter)
8 areas per track 0, 1, 2, 3, 4, 5, 6, 7 (same data each area)

Figure 2. Both Sides of a Disk Platter

Side 1

A
B

C

7 0

6

5 2

1

4 3

Side 0

a
b

c

7 0

6

5 2

1

4 3

June 5, 2005 Workshop on Computer Architecture Education Page 33

Areas can be referenced with values from 000 to 237.
Address xyz identifies the location of the cylinder, platter,
and area respectively. The small size of the storage device
allows decimal numbers to be used for all three values,
which simplifies addressing. Total disk capacity is 48K
(=3 cylinders * 4 tracks/cylinder * 8 areas/ track * .5K
bytes/area. Figure 2 shows one of the two platters in the
storage device. The three area locations denoted by a, b,
and c in Figure 2 have addresses of 007, 100 and 202
respectively. Area locations A, B and C have addresses of
017, 110 and 212 respectively. An alternative approach
that was briefly considered that numbered the areas from
00 to 95.

Figure 3. Physical Components that comprise an

LMS Storage Device

The LMS model consists of the physical components
shown in Figure 3. The disk controller is ‘Little Man’
(cartoon character) who provides the intelligence for disk
operation and can perform a limited number of simple
functions. In particular, LMS decodes and executes the
commands sent to it from the attached server/computer. In
implementing the commands, LMS uses one of its arms to
read-data-from and write-data-to the hard drive (HD). The
HD consists of the platters where data is actually stored.
Communication paths called I/O buses connect the
storage device to the source/destination of its data.
Buffers are intermediate storage areas (pieces of paper)
where data is placed both prior to copying it to storage
and after retrieving it from storage and before sending it
to the external device. There is one buffer (piece of paper)
for data going in each direction.

In adhering to the LMC simplification principle, the
disk contains no cache. Likewise, there are no auxiliary or
reserved areas/tracks that can be used to replace parts of
the disk that become defective. If part of an LMS device
becomes inoperable, there is no way to designate
processing options. No timing considerations are provided
for any of the electromechanical components of the
devices. Little Man Storage performs all the physical
processing associated with the device. This includes using
one arm to rotate the platters in the HD, using the other
arm to move over a specific cylinder and then with the
same arm copying the data to/from the HD.

5. Comparing Little Man Computer and
Little Man Storage

Table 2 provides a comparison of the environments
provided by the two paradigms and the types of physical
acts that the Little Man must perform in each of them.

Table 2. Comparing LMC and LMS
Characteristics

Environment/Physical Act
Compared

Little Man
Computer
(LMC)

Little Man
Storage
(LMS)

historic relevance of paradigm from 1960’s to
present

from 1970’s to
present

type of hardware device
described

computer disk storage
device

actual hardware location
of Little Man intelligence

CPU control
unit

storage
controller

locations where data is stored 100 mailboxes
(00-99)

96 disk areas
(000-237)

methods for performing I/O
operations

read/write slips
of paper

read/write disk
areas

programmable device? yes no

I/O bus(es) to /External
 Devices
 such as
 Server(s) +
 Computers

Disk Controller

This is Little Man Storage

HD

Input B
uffer

O
utput B

uffer

Page 34 Workshop on Computer Architecture Education June 5, 2005

6. File Storage and Data Management

The LMS storage device consists of 96 areas where 94
areas are used to store data and 2 areas are reserved to
help manage the other 94. Area 000 contains a LIST of all
files stored on the device. This is the only (the root) LIST
on the disk. It is of fixed size (one area) and cannot be
expanded. Table 3 shows the values stored in the LIST for
several files. The location of the initial data in the file is
specified in the Area Start Location as a (cylinder, platter,
area) location. For simplicity, there are no attributes that
can be assigned to a file. When a file is created, LMS
adds a new row in the LIST. A new row is always added
following the last or bottommost current LIST entry. If a
file is deleted, its line in the LIST is erased. This is
denoted as <blank> in Table 3.

Table 3. LIST Structure for the Disk

File Name Size (Bytes) Area Start Creation Date

ALPHA.doc

10

006

06/06/2005

X.Y.Z 5000 128 09/18/1997

<blank> - - -

NextFile1234.txt 0 225 12/25/2002

************** - - -

Area 001 is used to manage the data areas that the

device contains. Each of the 94 data areas either holds
data associated with a file or is a free (unused) area. New
files and additions to existing files obtain their storage
from the free areas. It is the job of LMS to utilize this
information in area 001 to retrieve and store files. LMS
must also modify this information when necessary.

Initially, when the disk is first formatted, LMS marks
areas 002 through 237 as free. This information is kept in
a Free-Area-List. Whenever a file is created, one or more
of the free areas are assigned to hold its data. When a file
is deleted, the areas where its data were stored are
returned to the Free-Area-List. Area 001 holds the Area
Utilization List (AUL), where LMS stores information
about the data areas. There are 96 entries in the AUL. The
first two are used to manage the Free-Area-List and are
described in the next section. The others entries are either
used to identify the storage areas assigned to individual
files or are a part of the Free-Area-List. Table 4 shows the
initial portion of an AUL after 2 files have been written to
the storage device. One file occupies 4 areas (002, 003,
005 and 006) while the second file occupies a single area
(004). A value of 999 identifies the final area in a file.
Note that areas 007 and 008 are either part of the same
file or both are free areas. Free areas are shown in italics.
LMS itself does all of this reading and writing of
information.

Table 4. Contents of Area 001 Showing Storage
Allocation after Two Files are Written

Area Number Next Area Location in File
000 007 (first free area) *
001 00N (last free area) *
002 003 (file continuation)
003 005 (file continuation)
004 999 (end of file)
005 006 (file continuation)
006 999 (end of file)
007 008

237 999

Table 3 shows that the LIST entry for a file identifies only
the first area assigned to it. The rest of the file location
information is stored in the AUL. The AUL identifies the
areas that are linked together to provide storage for the
file. The final area contains a Next Area Location value of
999, meaning this is the last area associated with the file.
Storage for a file need not be in contiguous areas. The
areas that are not assigned to any file are tied together in
the Free-Area-List. The areas at the beginning of this list
are used to satisfy subsequent requests for storage. The
Table 4 structure is actually an oversimplification used to
clarify processing details. In reality, the AUL only needs
to contain the rightmost column of values since LMS can
determine the Area Number from its physical position in
the list (by counting from the beginning of the list).

7. Additional Storage Model Parameters

LMS must remember three important values. It uses
the first value to find an initial free area for new files and
additions to existing files. This value is stored as the very
first entry in the AUL (see Table 4). When additional
storage is needed, LMS looks in this location and begins
writing data to the corresponding area it identifies.
Additional free areas can then be determined using the
Free-Area-List. Once the last free area needed for the
current processing operation is determined, its Next Area
Location (the next free area) becomes the new first value
in the AUL. Similarly, the second entry in the AUL
identifies the final area in the Free-Area-List. When a file
is deleted, its areas are added to the Free-Area-List
following the area identified in the second AUL entry.
The final area added to the list becomes the new value in
location 2 of the AUL.

The third important value is the final entry in the LIST,
which is identified by following it with a ‘fake’ file name
entry of ‘********************’. The LIST is a white
board where LMS writes entries for new files at the
bottom of the board and erases entries for deleted files.
Once the bottom of the board is reached, the LIST is

June 5, 2005 Workshop on Computer Architecture Education Page 35

considered full and must be ‘reorganized’. If there are
unused erased rows on the board, rows on the bottom are
copied to the currently erased rows and then erased from
the bottom of the board. Following the LMC principle of
simplicity, the LMS model places restrictions on the LIST
structure and on the number of files that can be stored.
With some effort this limit can be raised and
subdirectories can also be used. Since this clearly will
result in a more complexity, it is not discussed here.

Whenever a file is created, it is assigned one initial
area. If no data are written to the file, LMS writes
End-of-File at the beginning of the area. An area is
never split between two distinct files. Hence, every file
requires at least one area of storage and the maximum
number of files is 94. An alternative approach that was
strongly considered assigns the Start Location entry in the
LIST for an empty file to a special value such as 999.

8. Storage Processing Operations

In the same manner that the CPU of a computer
executes instructions, a storage device controller such as
Little Man Storage is capable of executing a pre-defined
group of commands that create, delete, store, retrieve and
process data. Although some storage devices support a
wider range of operations, we limit LMS to five
commands as shown in Table 5. LMS processes complete
files and individual records must be identified in the
application programs (since storage devices are unaware
of logical records). Each buffer can hold one area of data.
A physical record consists of all the data in an area. LMS
determines the actual location of a physical record that it
needs by combining information from the command itself,
the LIST, and the AUL. Each command is composed of
steps in the same way that CPU instructions are composed
of steps. EXAMPLE 1 illustrates the steps performed as
part of a Read File command.

Table 5. Basic I/O Commands Supported by LMS

Command OpCode Processing Performed by Command
Create File 00 Write an entry in the LIST, including

create date, etc.
Initialize one Free-Area-List area to
End-of-File.

Delete File 01 Erase the file entry from the LIST.
Return all AUL entries associated with
the file to the Free-Area-List.

Read File 02 Begin in the LIST and then go through
the corresponding AUL entries.
With the alternative approach noted
above, can also start in the AUL table.

Write File 03 Add data starting with the first area on
the Free-Area-List.
Write ***End-of-File*** after the last
record is written.

Append File 04 Follow the AUL entries for the file to
the one containing 999.
Add new records in a new area and
replace 999 with new area number.

All commands have the same basic syntax |op-
code|filename|optional data|. In the case of Write and
Append commands, the data to be written immediately
follows the command code and file name. Op-codes are 1
byte in length, while file names are 20 bytes and can
contain any printable characters. For example, |3|MY-
NEW-INFO |*****| is a command to write 5
asterisks to a file called MY-NEW_INFO.

EXAMPLE 1: A paper is placed in the input buffer
that says to get the data in the ALPHA.doc file. LMS
looks at the command in the buffer and reads it, noting the
command code (02) and the file name. LMS looks in the
LIST and sees that initial data in ALPHA.doc begins in
area 002. It rotates the disk until that area can be
accessed. It copies the data from area 006 to the output
buffer. LMS then looks in the AUL and notes the entry
for area 006 identifies additional ALPHA.doc data in area
013. It uses one arm to move the disk to this location and
the other arm to copy the data from 013 to the output
buffer. This processing continues for every area where
ALPHA.doc data is stored. When an AUL entry of 999 is
found, the Read File operation is complete.

9. Detailed Processing Examples

Two examples are now given to illustrate all of the
LMS components discussed to this point. Throughout all
of these examples an unrealistic assumption is made that
every operation is performed successfully. There is no
way to recover from an invalid or incorrect operation.

EXAMPLE 2: It is assumed that the HD is formatted
and all 94 data areas are free. File AA is created and
several small records are written to it. File BB is created
and enough records are written to it to fill three areas.
Several additional records are then added to AA,
requiring a new area to be allocated using an Append File
command. A third file GG is created, but no records are
written to it. Finally, file DD is created and three areas
have data written to them. Figure 4 shows the relevant
areas following the processing. The first two areas contain
the LIST and the AUL.

 0 1 2 3 4 5 6 7

00

-

-

AA

BB

BB

BB

AA

GG

01

DD

DD

DD

-

-

-

-

-

02

-

-

-

-

-

-

-

-

Figure 4. Disk Status Following the I/O

Operations in EXAMPLE 2

Page 36 Workshop on Computer Architecture Education June 5, 2005

EXAMPLE 3: This example begins immediately after
the processing in EXAMPLE 2 has completed. File AA is
deleted. Two new files called SS and RR are created and
one byte of data is written to each file. Additional records
are then written to SS. Figure 5 shows the relevant areas
following the processing.

 0 1 2 3 4 5 6 7

00

-

-

-

BB

BB

BB

-

GG

01

DD

DD

DD

SS

RR

SS

-

-

02

-

-

-

-

-

-

-

-

Figure 5. Disk Status Following the I/O Operations in

EXAMPLE 3

10. Summary

We have introduced a new Little Man Storage model for
teaching about computer storage systems. While this
paper focuses primarily on conveying disk storage
concepts, work is underway for developing a Little Man
Storage software simulator that extends the storage
concepts demonstrated beyond disks. Results from the
educational use of this model will also provide feedback
on the effectiveness of this model in targeted learning
environments.

11. References

[1] W. Yurcik and L. Brumbaugh, “Using LMC Simulator
Assembly Language to Illustrate Major Programming
Concepts,” Info. Systems Education Conf. (ISECON), 2001.

[2] W. Yurcik and L. Brumbaugh, “A Web-Based Little Man
Computer Simulator,” 32nd Technical Symposium of Computer
Science Education (SIGCSE), pp. 204-208, 2001.

[3] W. Yurcik and H. Osborne, “A Crowd of Little Man
Computers: Visual Computer Simulator Teaching Tools,”
Winter Simulation Conference (WSC), 2001.

[4] W. Yurcik, J. Vila, and L. Brumbaugh, "An Interactive Web-
Based Simulation of a General Computer Architecture," IEEE
Intl. Conf. on Engineering & Computer Education (ICECE),
2000.

[5] SNIA Shared Storage Model White Paper.
<http://www.snia.org/tech_activities/shared_storage_model/
SNIA-SSM-text-2003-04-13.pdf>

June 5, 2005 Workshop on Computer Architecture Education Page 37

An Emulated Computer with Assembler for
Teaching Undergraduate Computer Architecture

Timothy Daryl Stanley, PhD

Brigham Young University Hawaii, #1854
55-220 Kulanui Street

Laie, Hawaii 96762-1294
(808) 293-3388

 stanleyt@byuh.edu

Mu Wang
Brigham Young University Hawaii, #1854

55-220 Kulanui Street
Laie, Hawaii 96762-1294

mw024@byuh.edu

Abstract
An eight-bit computer has been designed using an open
source logic emulation package called “Multimedia Logic”
from www.softronix.com. The intent of the project was to
make clear to computer science students how the data path
and control lines work to provide computer functionality.

This computer is an excellent teaching aid because:

1. All registers, ALU outputs, control lines, and
memory outputs are instrumented.

2. Instructions can be executed with a single step
switch or run with a clock.

3. The architecture is quite simple, with separate
memory devices for data and instructions.

4. It is supported with an assembler patterned after
the MIPS assembler used with the SPIM
simulator.

5. An ASCII output display is available.

The instruction set designed for this computer includes:
Add from memory, Add immediate, Load from memory to
the input register, save from the output register to memory,
jump to the address given by the immediate, jump to the
address given by the immediate if the last add produced a
zero result, and halt.

The design includes an instruction format of three bits of
operation code followed by five bits of immediate.

Using this design as a launching point, students have been
encouraged to design their own computers. Some
excellent designs have been submitted. These include an
elaborate multi-cycle 16-bit design, and many application
specific designs.

This paper provides details of this computer design,
assembler and example programs as well as descriptions of
designs submitted by students.

Categories and Subject Descriptors
B.6 Hardware / Logic Design / Simulation.

C.1.1 Computer Systems Organization / Computer
Architectures

General Terms
Design, Human Factors, Theory

Keywords
Logic Simulation, Computer Design, Binary Visualization,
Multimedia Logic

1. Introduction
The concepts of computer architecture are some times very
difficult for beginning computer science students to
visualize because the action is all happening at the electron
level in microscopic circuits. By building on knowledge
from other courses students may be able to visualize what
is happening in circuits, but many layers of abstraction are
involved. For example, if one builds a computer with TTL
circuits, there is a level of abstraction in the relation ship
between circuit pin outs and logic elements. There is also a
complex chain of detail between circuits that is visible only
with logic probes or additional expensive instrumentations.
Also when a student has spent the time to understand and
master the breadboard circuit the semester is over, the
circuit is disassembled and used for the next class.

The emulated logic approach the authors have developed
overcomes these limitations in understanding the details of
computer architecture. The circuits are designed by
“wiring” up logic elements with all data inputs coming in
on the left, control signals coming in from the bottom, and

Page 38 Workshop on Computer Architecture Education June 5, 2005

outputs exiting from the right. The high level devices like
memory circuits and ALU’s look like the devices in
schematic diagrams, making these devices easier to
visualize. By designing simple circuits the operation of the
individual components can be understood. At the
completion of the class the students can take the design
with them.

While the focus of this paper is an emulated computer for
teaching architecture, a series of introductory circuits used
to develop an understanding of the components that make
up a digital computer are also provided. Many of the
concepts of digital logic are difficult to grasp without
practical experience. Some use prototyping boards with
small scale digital circuits to design and build examples of
digital devices [1]. Others use a hardware design language,
like Verilog, to illustrate and teach digital logic concepts
[5]. One school even uses students actors to emulate
instruction flow in a computer [6].

The 8-bit computer will be thoroughly documented starting
in section three.

2. Component Learning Projects and
Outcomes
A number of projects built and demonstrated by students
will be given in this section. We will start with simple
projects and advance to more complex designs. Each
design will be demonstrated with the presentation of this
paper at the conference.

2.1 Calculator with Binary and Hexadecimal
Outputs

The first project, illustrated in fig 1, is a calculator that
takes two four-bit inputs, from hexadecimal keypads, and
provides an output in both binary and hexadecimal, based
on a function selected. The function is selected with the
selector switch. The functions available in the ALU are:
addition, subtraction, multiplication, division, equal, less
than, shift right and shift left.

This is a nice project to start with as it builds on the ALU
device example that is provided with Multimedia Logic.

The learning outcomes of this project are: familiarity with
the ALU, comparing hexadecimal and binary, exploring
properties of binary numbers under operations like the 5-6
operation shown in figure 1 to see the two’s complement
binary notation of a negative one.

2.2 Scanned Memory to Output Display

This project, shown figure 2, connects the output of a
memory device to an ANSII display device. Then by
sequentially scanning the memory addresses with a counter
connected to a clock, the content of the memory is sent to
the display. In this case the content of the memory is “
HELLO WORLD! ”. For this project, only the first sixteen
locations in memory are used, however, with an 8-bit
counter, 256 locations could be used.

In Multimedia Logic the memory contents can be read from
a “text” file or written to during the simulation. In this case
the memory contents are loaded from a file and the
memory is treated as a read-only memory (ROM).

Learning outcomes from this project are: an understanding
of the relationship between memory address lines and data
output lines, understanding counters, and clock oscillators,
and synchronous data transfer from memory to display.

2.3 Programmable Calculator

This project, shown in figure 3, is a combination of the first
two, using scanned memory to provide functions and data
to an ALU. This project begins the comparison to a real

Figure 1. Calculator with Binary and
Hexadecimal Outputs

Figure 2. Scanned Memory to Output Display

Figure 3. Programmable Calculator

June 5, 2005 Workshop on Computer Architecture Education Page 39

computer, with the upper memory serving as data memory,
the lower memory which provides functions to the ALU as
a program memory, and the counter as a program counter.

The learning outcomes of this design are observation of the
different things that a series of binary lines can be, from
instructions to data to addresses, to clock pulses. This is
where we also learn about data paths and control paths.

2.4 Four-Bit Adder

These next two projects are designed to understand the
inner workings of an ALU. The first, shown in figure 4, is
a ripple carry binary adder. Two four-bit values are
provided on the hexadecimal key pads and the results of
the addition are displayed on the seven segment displays.
By inverting the B inputs and making the C input for the
first stage one the adder can be converted to a subtraction
unit, illustrating the algorithm for converting a binary
number to its two’s complement negative.

The most important learning outcome of this design is an
appreciation for how logic circuits can perform the kinds of
operations we see computers perform.

2.5 Four-Bit ALU
This project, shown in figure 5, illustrates the complexity
in the design of an ALU. This ALU, designed after the
one-bit ALU from Patterson (Figure 6), can And, Or, Add,
and Subtract. It is very useful for illustrating the bitwise
operations of And and Or. For example the output
illustrated above is the bit wise And of 3 and 5.

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

Learning outcomes of this project include an appreciation
of how multiplexers make possible the control path in a
computer—and again, an appreciation of how gates can be
combined to produce computer functions.

3. An Emulated Computer for Teaching
Computer Architecture
Providing a computer that is very well instrumented,
visible on one page and easy to demonstrate, was the main
goal of this design effort. In my computer architecture
classes I ask my students to design an emulated computer.
This design was one I produced to illustrate what I wanted
from my students. I suggested they start with an
instruction set and register design and build a computer
from this foundation. For this eight-bit computer, an
instruction format of three bits of operation code and five
bits of immediate was chosen. This instruction format
provides for eight instructions. These with mnemonics are:

1. adi - Add the immediate value to the input register
and place in the output register,

2. adm - Add memory location addressed by the
immediate to the input register and place in the
output register,

3. lmi - Load the contents of the memory location
addressed by the immediate value to the input
register,

4. som - Save the output register to the memory
location addressed by the immediate value,

5. ji - Jump to the location given in the immediate,

Figure 5. Four-bit ALU

Figure 4. Four-bit Adder Figure 6. One-bit ALU from Patterson [4]

Page 40 Workshop on Computer Architecture Education June 5, 2005

6. jzi - Jump to the location given by the immediate
if the result of the last addition was zero,

7. om - Output the data from the memory location
addressed by the immediate to the output display
device,

8. hlt - Halt operation.

The physical architecture was to use two separate
memories, to hold the data and program. This parallels the
MIPS emulator PC SPIM which has a “.data” segment of
memory holding constant data and a “.text” segment that
contains the machine instructions. This construction
simplifies the data path of the computer, but limits the
capability to do recursion. The design includes an input
register and an output register.

This design is a complete eight-bit, single cycle, stored
program computer. The data paths are connected at the
start of the clock cycle at then at the clock transition

registers and memory are writing enabled. This enables
demonstration of the inputs to commands being set up and
then the operation being executed.

One non-physical device available in the logic emulator
used is a binary controlled text display. This device can be
seen just below the vertical column of control line
indicators. This display shows one of sixteen lines of text,
depending on the binary inputs to the device. In this case
the device is used to show the operation being set up in the
computer.

The memory devices can be used as read-only devices
reading content from an underlying file, or they can be
initialized with a file and altered dynamically during
program execution. For registers memory devices with all
address lines grounded are used.

One limitation of this emulation package is the absence of a
2-by-8 multiplexer. As a result the multiplexers are
assembled by stacking a series of 1-by-2 multiplexers

Figure 7. Eight-bit teaching computer design implemented in multimedia logic

June 5, 2005 Workshop on Computer Architecture Education Page 41

partially overlapping one another. Since this emulator is
published with its source code, I have built versions of this
computer using a version of the software with a modified
ALU that has an A out and a B out instruction. Then the
multiplexer stacks can be replaced with ALUs. I have not
included this design because it uses ALUs in a non-
standard way and because the design could not be used
with the emulator down loaded from the emulator’s web
site.

4. Sample Programs for the Computer
With this set of instructions a number of demonstration
programs have been written. The file underlying the
memory has a format that includes two hexadecimal digits
that are the memory content for each line. The memory
ignores any additional information on the line. So
following the operation code or data a comment can be
given. This allows instruction documentation information
to be included with each line. These include a program to
send a string in data memory to the output display device, a
program with an up counting loop and a down counting
loop to display the letters of the alphabet and halt at Z, and
a program to display various size boxes on the display.

The design includes two ALUs, one incrementing the
program counter and one performing the additions.
Memory devices include a data memory, program memory,
input register, output register, program counter, and an
operation decode ROM. The nicest feature of
implementing a computer design this way, rather that in a
breadboard, is the much greater instrumentation of
registers, and data lines. One can see each value as the
computer steps through the program.

Three sample programs are included in this section.

4.1 Sample Program 1, ABCs.
This first program was designed to be simple but use all
eight of the operations of this computer. It consists of a
loop that counts up one memory location from ASCII A to
ASCII Z, and counts down in another location to halt the
computer after 26 letters. To implement this program the
memory contents in the following tables are place into the
data and program memories. Note that in these tables that
the two hex digits in each line are the actual output from
the memory device and the rest of the line is a comment.
Data and program memory files are shown if tables 1 and 2
below. The output is shown with figure 7 above.

4.2 Sample Program 2, Hello World.
The second program was to be the simplest possible, like
the “Hello World” used to introduce all programming
languages. For this program a string in the data memory is
sent character by character to the output screen and then
the program loops back to the beginning. The lack of
instructions to update program memory based on
calculations prevents the use of simple iteration to
implement this program. The data and program memory
files are show in tables 3 and 4 and the output is shown in
figure 8.

c4 Output from memory location 04
44 Load input register from memory location 4
01 Add I (01) to input register
64 Save output register in memory location 04
c4 Output from memory location 04
41 load input register from memory location 01
22 Add from memory location 02
61 Save output register to memory location 02
aa Jump if last calculation result was zero to 0a
80 Jump to memory location 00(+1)
e0 Halt execution

Table 2. Program memory content
for program 1

00 zero (not used)
19 Hex for character count in alphabet
ff Twos complement negative one
fe Twos complement negative two (not used)
41 ASCII code for letter A
41 (not used)
41 "
00 "
00 "
00 "

Table 1. Data memory content for program 1

Page 42 Workshop on Computer Architecture Education June 5, 2005

4.3 Sample Program 3, Triangle.
This program was written to test the assembler discussed in
the next section. It uses two nested loops to print a triangle

on the output screen. Data and program memory files are
given below and the output is shown in figure 8.

c0 Output from memory location 00
c1 Output from memory location 01
c2 Output from memory location 02
c3 Output from memory location 03
c4 Output from memory location 04
c5 Output from memory location 05
c6 Output from memory location 06
c7 Output from memory location 07
c8 Output from memory location 08
c9 Output from memory location 09
ca Output from memory location 0A
cb Output from memory location 0B
cc Output from memory location 0C
cd Output from memory location 0D
ce Output from memory location 0e
80 Jump to Zero (+1)

Table 4. Program memory content
for program 2

45 Load input register from memory location 5 (zero)
20 Add memory location 0 (column) to input register
62 Save result in memory location 2 (column step)
63 Save result in memory location 3 (row step)
c6 lp1: Output from memory location 6 (symbol "*")
44 Load input register from memory location 4 (neg
one)
22 Add from memory location 2 (column step)
62 Save result in memory location 2 (colmn step)
a9 Jump on zero to lp2:
83 Jump to lp1:
23 lp2: Add from memory location 3 (row step)
63 Save result in memory location 3 (row step)
b6 Jump on zero to :hlt
c7 Output from memory location 7 (new line)
45 Load input register from memory location 5 (zero)
20 Add memory location 0 (column) to input register
44 Load input register from memory location 4 (neg
one)
20 Add memory location 0 (column) to input register
60 Save result in memory location 0 (column)
45 Load input register from memory location 4 (neg
one)
20 Add memory location 0 (column) to input register
62 Save result in memory location 2 (column step)
83 Jump to lp1:
eo hlt: Halt

Table 6. Program memory content for program 3

06 column (size of triangle)
03 row (not used in program)
00 column step
00 row step
ff negative one (allows decrementing)
00 zero
2a symbol "*"
0d new line

Table 5. Data memory content for program 3

20 Space
20 Space
48 H
45 E
4c L
4c L
4f O
20 Space
57 W
4f O
52 R
4c L
44 D
21 !
0d New Line

Table 3. Data memory content for program 2

June 5, 2005 Workshop on Computer Architecture Education Page 43

Figure 8. Output screens for programs 2 and 3

5. The Assembler in PERL
To add to the utility of this computer, an assembler was
designed in the PERL language. As the assembler runs it
generates text files that can be loaded into the data and
program memory in the simulated computer. The
assembler allows symbolic linking between the data and
the program and allows symbolic naming of jump
locations. The assembler was patterned after the assembler
imbedded in the MIPS emulator PC SPIM.
This assembler starts execution by asking the user for data
and program memory file names. Then the user sees the
screen from the table below which gives a review of the
instruction set of this computer and then provides a sample
input file to show the syntax that must be used. When the
line with the stop command is given, the program closes
the files and returns.

6. Student Computer Designs
Using this computer and its design process as an example,
computer architecture students have been required to
design a computer of their own from the registers and
instruction set to layout and implementation with example
programs. The first design from a student team was an
elaborate 16-bit design that used eight cycles to decode and
execute each instruction with the idea of demonstrating a
pipeline implementation. This computer consisted of eight
pages of logic. While this computer represents a great deal
of effort on the part of the students involved, it is not as
useful for demonstration because parts of the display are on
separate pages and can not be viewed simultaneously.
Some students had difficulty designing a computer starting
with operations and layout. For these students the
approach that seemed to work best was to start with an
application they would like to demonstrate on their
computer and then design a computer to meet that
requirement. Some examples of the application-motivated
designs were for an electronic door lock and a “Whack a
Mole” game.

7. Comments from Students
In this section, student’s comments are provided to show
the value of this approach to teaching the inner-workings
of a computer. One student, Daniel McCallum, wrote in an
email [2] after completing Computer Organization:

“Multimedia Logic has helped me a lot to comprehend
many of the complex ideas behind the workings of a
computer. It helps me see things visually and can look at
things one step at a time. For example how an ALU works
made a lot more sense when I could put it together and take
it apart myself, using Multimedia Logic. Another big
aspect of Multimedia Logic was that I can see all the
different switches, gates, etc. visually and have come to
understand how basically a computer does what it does.”

Several students commented that they now understood how
circuits make computers and how computer functions can
be made from simple switching logic devices. Students
that previously used breadboard devices commented that
understanding what was going on was much easier in the
emulated environment because each register can be
instrumented individually.

 ********** Operation Code **********
 **
 ********* adi- Add Immediate *********
 ********* adm- Add Memory *********
 ********* lmi- Load Mem -> Ri *********
 ********* som- Save Ro-> Mem *********
 ********* ji- Jump Immediate *********
 ********* jzi- J on z Im *********
 ********* om- Out Mem Im *********
 ********* Hlt- Halt *********
 **

 ************* Sample Input **************
 **
 .data
 (PLease Input Data for DataMem.)
 numlet:26d
 negone:ffh
 acode:41h
 .text
 (PLease Input Data for ProgramMem.)
 omi acode
 start:lmi acode
 adi 01d
 som acode
 om acode
 lmi negone
 adm numlet
 som numlet
 jzi stop
 ji start
 stop:hlt
 **

Table 7. Assembler Output

Page 44 Workshop on Computer Architecture Education June 5, 2005

8. Limitations of Multimedia Logic
One difficulty encountered with Multimedia Logic is the
unexplained dropping of wires from saved files. This
occurs the first time a new file is saved and seems to be a
problem with overlapping components. For example a
horizontal row of eight light-emitting diodes will lose
connection to every other light when saved, if they are
placed adjacent to each other and are vertically lined up.
The “work-around” for this problem is to stagger the lights
slightly in the vertical direction. This vertical staggering
can be seen in figures 1, 3 and 5.

9. Summary
A number of designs built in Multimedia Logic have
shown to be useful to students in gaining an understanding
the inner workings of a computer and related technology.
Students in computer architecture classes have successfully
used this tool to design many eight-bit and even two
sixteen-bit computers, most with single cycle designs, but
two with multi-cycle designs. Through this experience the
details of how switches can make computers becomes very
clear.

10. Acknowledgments
Thanks to George Mills of www.softronix.com, who has
graciously made his product, Multimedia Logic, available
for free download and included the source code.

And a special thanks to the faculty and students of our
computer science department who have encouraged me in
this effort by their enthusiastic support.

11. References
[1] Hoffman, Mark E., The Case for More Digital Logic in

Computer Architecture, Conferences in Research and
Practice in Information Technology, Vol. 30.

[2] McCallum, Daniel, Email of 6/25/2004.
[3] Mills, George, www.softronix.com, Multimedia Logic

download kit and source kit.
[4] Patterson, David A., and Hennessy, John L. Computer

Organization and Design, the Hardware/Software
Interface, 2nd Edition, Morgan Kaufmann Publishers .

[5] Patterson, David A., and Hennessy, John L. Computer
Organization and Design, the Hardware/Software
Interface, 3nd Edition, Morgan Kaufmann Publishers .

[6] Powers, Kris D., “Teaching Computer Architecture in
Introductory Computing: Why? And How?” Sixth
Australasian Computing Education Conference
(ACE2004), Dunedin.

[7] Wolffe, Greg, Yurcik, William, Osborne, Hugh, and
Holliday, Mark, “Teaching Computer
Organization/Architecture With Limited Resources
Using Simulators”, SIGCSE 2002, ACM Press,
Northern Kentucky USA, Feb/March 2002.

June 5, 2005 Workshop on Computer Architecture Education Page 45

An Embedded Systems Course and Course Sequence

Kenneth G. Ricks*
Electrical and Computer

Engineering
The University of Alabama

Tuscaloosa, AL 35487, USA
kricks@coe.eng.ua.edu

* Contact Author

William A. Stapleton
Electrical and Computer

Engineering
The University of Alabama

Tuscaloosa, AL 35487, USA

D. Jeff Jackson
Electrical and Computer

Engineering
The University of Alabama

Tuscaloosa, AL 35487, USA

Abstract

Recently, the University of Alabama Department
of Electrical and Computer Engineering adopted
curricular changes to incorporate embedded systems
into its computer engineering core course sequence.
One of the major changes implemented was the
creation of a senior lecture/laboratory combination
specifically dedicated to embedded systems. This
paper describes the specific lecture and laboratory
content of this senior-level course and how this course
fits within the new curriculum a The University of
Alabama.

1. Background/Introduction

The faculty of the Computer Engineering program
at The University of Alabama has undertaken a project
of pedagogical improvement by incorporating a focus
on embedded systems that is pervasive throughout the
computer engineering curriculum. There are several
driving factors behind this decision. Embedded systems
represent a major fraction of the digital systems market
as indicated by the fact that embedded systems
represent a key technology in the automotive,
consumer electronics, industrial automation, military
and aerospace applications, office automation,
telecommunication and data-communication industries
[1-3]. There is also significant regional interest in
embedded systems with several major automotive and
other manufacturing industries located in the state of
Alabama and surrounding areas [4].

As much as 98% of all 32-bit microprocessors
currently in use worldwide are used in embedded
systems [5]. However, most computer engineering
programs teach programming and design skills that are
appropriate for a general-purpose computer operating
under control of a commercial operating system rather
than for the more specialized embedded systems [6].
Additionally, instruction in embedded systems can
increase opportunities for breadth in a curriculum as
these systems naturally involve hardware and software
components that interface to various electrical,

mechanical, and chemical processes. Thus embedded
systems education is an excellent example of an area of
study that requires depth and rigor while maintaining
breadth required for meeting emerging workforce and
education needs of U.S. industry [4, 7].

The rapid proliferation of embedded systems
requires an increasing number of engineers trained in
microcontroller-based systems, real-time concepts,
hardware/software co-design, distributed processing,
hardware/software integration, and system-level issues
in embedded systems design. Instructional material is
just beginning to appear in this area and the
development of this focus area, associated instructional
materials, and evaluation materials will allow us to
better serve our students and, more importantly, to
provide material for this emerging area that can be
adapted for use by others.

This embedded systems focus is important in the
context of distinguishing our programs at The
University of Alabama. The embedded systems focus
will directly affect three degree programs: Computer
Engineering, Computer Science, and Electrical
Engineering. The majority of computer engineering
programs deal primarily with design and programming
for general-purpose computers. Traditionally, we also
have offered a broad exposure to computer engineering
topics in our curriculum and conducted research in a
number of areas. Recent self-assessments of our
program utilizing both the IEEE/ACM model computer
engineering curriculum [8] and a set of nationally
recognized and comparable programs led us to choose
to adopt a more focused curriculum model. Because of
our limited size and resources, we believe that focusing
both our education and research efforts on a single
theme, namely embedded systems, will allow us to
progress in both areas. A web-based search for
“embedded systems education” using the ASEE
database and internet search engines reveals a scarcity
of programs focusing on embedded systems,
particularly in the U.S. Southeastern region. We
believe that successful implementation of this focused
effort in a niche area will serve as a model for many
other similarly sized programs [4].

Page 46 Workshop on Computer Architecture Education June 5, 2005

2. The University of Alabama Computer
Engineering Core Course Sequence

The plan for reforming the curriculum will involve
each of the courses in the Computer Engineering
program shown in Figure 1. In this figure, the arrows
denote a prerequisite relationship between the courses.
The comprehensive plan builds upon each of these
courses to provide an enriched experience for the
students.

ECE380
Digital Logic

4 credit with lab

ECE383
Microcomputers
4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit

ECE380
Digital Logic

4 credit with lab

ECE383
Microcomputers
4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit

Figure 1. Computer Engineering Core Curriculum

with Embedded Systems Focus

The first course in the sequence of Figure 1, ECE
380 - Digital Logic, is a four-hour lecture/laboratory
combination class incorporating traditional
combinational and sequential logic design and digital
design using VHDL. The embedded systems theme is
incorporated into this class through exercises that, for
example, include digital counter designs in the context
of watchdog timers common in embedded processors,
pulse width modulation (PWM) circuit design, and
complex state machine designs for typical embedded
system tasks such as bus arbitration. Altera’s Quartus II
electronic design automation software is used to
provide the students with system design and simulation
experience. This course is required for students in all
three directly affected engineering disciplines. Along
with the nature of the subject material, this student
diversity makes this course especially well-suited for
the incorporation of multidisciplinary team-based
learning. Finally, basic designs from exercises in this
course are used as components in larger, more complex
designs in subsequent courses. Proper design
techniques as well as design reuse are stressed.

The second course, ECE 383 – Microcomputers,
builds on a foundation of traditional architectural topics
such as register, memory, bus, and instruction set
design to incorporate embedded systems topics such as
peripheral interfacing, analog-to-digital (A/D)
conversion, device control, interrupt management, and
system reliability. Metrowerks CodeWarrior is used to

provide a modern development environment for
programming and debugging the software portions of
system design. Students expand the use of Altera’s
Quartus II software introduced in ECE 380 to produce
custom interface logic to connect a microprocessor
with a variety of peripheral devices. We also introduce
the basic use of Mentor Graphics software for
facilitating hardware/software co-design and board-
level design issues. As with ECE 380, this course is
required for students in all three directly affected
engineering disciplines facilitating the incorporation of
multidisciplinary team-based learning.

The third course, ECE 480/481 - Digital Systems
Design, is a four hour lecture/laboratory combination
class that focuses on the design and test of digital
systems components including basic arithmetic and
logic components, and digital systems interfaces
including PWM designs, and mouse, keyboard and
video display drivers. VHDL-based designs are
implemented on FPGA devices. System-on-a-
Programmable-Chip design methodologies are
introduced. Special emphasis on testing includes an
introduction to device-embedded logic analyzers and
their use for debugging SoPC designs. Specific topical
material introduced includes hardware description
languages, electronic design automation, logic circuit
testing and testable design, SOC design and intellectual
property (IP) cores. Software tools for electronic
design automation from Altera and Mentor Graphics
corporations are used, allowing students previously
exposed to these toolsets to become more proficient in
their use. More advanced features of these toolsets are
introduced including floor planning, advanced timing
analysis, and synthesis options. Additional toolsets are
introduced including both design-for-test and
hardware/software co-design for embedded processors.
Additionally, the Mentor Graphics toolset includes
capabilities for engineering project management that
are used to manage the execution of best design
practices throughout project assignments. Specific
embedded systems concepts that are covered include
embedded processor design, peripheral integration and
SOC solutions for embedded systems. Integration of
custom hardware and software with existing
components is emphasized. Hardware/software co-
design is addressed by integrating and expanding basic
projects from the first two courses: ECE 380 and ECE
383 [4].

The fourth course, ECE 484 – Computer
Architecture, is a three hour course that incorporates
embedded systems concepts into the context of
computer architectural issues. Traditional computing
architectures are introduced, evaluated, and contrasted
with embedded systems architectures [9]. Specifically,
architectural design tradeoffs associated with the
processor(s), input/output (I/O), and memory are

June 5, 2005 Workshop on Computer Architecture Education Page 47

discussed. Performance evaluation and analysis is also
contrasted between a general-purpose MIPS
architecture and architectures used in embedded
systems. Hardware/software co-design is introduced,
and the relationships between the software and
hardware components of computing systems are
discussed.

The fifth course, ECE 486/487 – Embedded
Systems, is a four hour lecture/laboratory combination
class. It is described in detail in the following sections
of this paper.

The sixth course, ECE 493 – Special Topics,
provides flexibility in the curriculum by allowing
advanced embedded systems concepts to be introduced
on a regular as-needed basis. Such topics would
include, but are not limited to, real-time systems,
distributed embedded systems, hardware/software co-
design methodologies and design
verification/validation/testing.

The seventh course, ECE 494 – Capstone Design,
culminates the undergraduate engineering design
experience by providing a semester-long, team-
oriented design project building on the skills learned in
a previous senior-level lecture/laboratory course.
Candidate lecture/laboratory courses preceding the
Capstone Design course include ECE 480/481 Digital
Systems Design and ECE 486/487 Embedded Systems.
All facets of the previously introduced software tools
will be exercised in this course. Design projects such as
programmable logic devices and SOC solutions in
robotic car competitions [10] and projects following
the IEEE Computer Society International Design
Competition model [11] will be used. Since the design
is team oriented, this course also provides the
opportunity to assess student teaming skills and the
pedagogies used throughout the curriculum for
instruction in teaming [4].

3. ECE 486/487 Embedded Systems

The ECE 486/487 Embedded Systems
lecture/laboratory course is a new course resulting from
the curriculum reform activities. The following
sections describe the concepts covered in the lecture,
how these concepts relate to the IEEE/ACM model
curriculum, the laboratory activities, and the hardware
and software currently used for the laboratory
assignments.

3.1 Lecture Material

The course begins with an introduction to

embedded systems. This portion of the lecture
provides general definitions of embedded systems,
examples of common embedded systems, and
distinguishes embedded systems from other types of

computing systems. Also, general characteristics of
embedded systems are given and functional and non-
functional metrics used to evaluate system design and
performance are described. Background material such
as Moore’s Law is presented to explain the broad
emergence of embedded systems throughout our
society. This leads to a justification of embedded
systems as a focus area within computer engineering
and the corresponding need for embedded systems
education. This material corresponds to various core
components of the IEEE/ACM model curriculum
including “History and overview of embedded systems
– ESY0” and “Classification of embedded systems –
ESY6”, as well as one elective component of the model
called “Software engineering considerations – ESY7”.

The next set of lectures is designed to concentrate
on the design of embedded systems. Specifically, ad-
hoc, top-down, and bottom-up design methodologies
are shown to be inadequate as general-purpose
methodologies due to the varying system requirements
and characteristics across multiple embedded systems
applications. Hardware/software co-design is
introduced and compared to the other methodologies.
Its uses a domain-independent process abstraction to
describe system behavior which delays hardware and
software allocation and mapping decisions making it
more suitable as a general-purpose approach for these
applications. The main goals of this concept are that
embedded systems designers must be able to perform
hardware and software design tradeoffs and analysis.
Computational models used to describe system
behavior are also introduced. These lecture concepts
correlate to several of the components in the “Software
engineering considerations – ESY7” section of the
model curriculum which is recommended as elective
material [8].

The aforementioned lecture materials represent a
high-level, abstract view of embedded systems. Some
of these concepts, particularly the design
methodologies, are difficult for students to grasp, and
students have indicated that these sections of the
lecture are their least favorite. The following sets of
lectures deal with more tangible concepts that are more
easily mapped to hands-on laboratory assignments.
Students have indicated a higher level of interest in this
material.

The next set of lectures is designed to discuss
typical I/O activities and related concepts required of
embedded systems. Specifically, data acquisition, A/D
conversion, digital-to-analog (D/A) conversion,
sampling rates, the Nyquist rule, A/D resolution,
“system” resolution, PWM, timers, timer resolution,
communication protocols, direct memory access, and
specific I/O devices such as keypads, and UARTs are
discussed. Many of these concepts are introduced
earlier in the course sequence, but in this case a

Page 48 Workshop on Computer Architecture Education June 5, 2005

concerted effort is made to put these concepts into a
“system” context. For example, A/D conversion is
introduced in ECE 383 in the context of an on-chip
converter incorporated with the microprocessor. In
ECE 486, A/D conversion is again discussed, but this
time it is seen as part of a data acquisition system and
the A/D converter is incorporated as an off-chip I/O
peripheral device. In this case, the A/D converter
resolution and sampling rate are compared to the
requirements of the “system” within the context of the
specific real-world data being collected. These topics
are listed as components in two parts of the model
curriculum including “Fundamentals of embedded
systems – ESY1” (core) and “Hardware considerations
– ESY3” (elective) [8].

The different architectures to support interfacing
required for the I/O activities previously mentioned is
the focus of another set of lectures. In particular, bus-
based architectures are discussed and specific designs
are created. Bus communication protocols are
compared, master-slave relationships are defined, and
system activities are decomposed into atomic bus
transactions. Bus arbitration is introduced,
multiprocessor bus architectures are described, and bus
saturation is defined and explored. Finally, interrupt-
driven and polled I/O are described, compared, and
contrasted in terms of hardware design, software
design, and system performance. All of these topics
satisfy many of the components in the following parts
of the model curriculum: “Language issues – ESY2”
(core), “Hardware considerations – ESY3” (elective),
“Mapping between languages and hardware – ESY4”
(core), “Classification of embedded systems – ESY6”
(core), “Particular techniques and applications –
ESY8” (elective), and “High integrity software systems
– ESY10” (elective) [8].

Another set of lectures is designed to address
memory concepts. These lectures cover different
memory technologies and discuss particular
applications of each. The technologies are compared
and contrasted based upon their operational
characteristics. Also, memory system hierarchical
design and caching are introduced. The localities of
reference upon which memory system design is based
are used to show the importance of memory system
design and its effect on overall system performance.
The particular aspect of the model curriculum
incorporated into these lectures is “Mapping between
languages and hardware – ESY4” (core) [8].

The last set of lectures is designed to introduce
real-time issues. Real-time systems are defined and the
various types are compared and contrasted. Real-time
operating systems are discussed and their performance
goals are described as they relate to I/O activities and
memory operation addressed in earlier lectures. For
example, at this point students seem to recognize and

understand the effects of caching on real-time
performance and the minimization of interrupt latency
with real-time operating systems. The students have
shown genuine excitement about being able to relate
such concepts. Scheduling is also introduced at this
point. Since we have already defined the process
abstraction and the concurrent process model of
computation, it is easy to address process scheduling,
preemption, non-preemption, priority-based
scheduling, and priority assignments based upon
popular algorithms such as the rate-monotonic
algorithm. These topics correlate to the following
parts of the model curriculum: “Language issues –
ESY2” (core), “Mapping between languages and
hardware – ESY4” (core), “Real-time operating
systems – ESY5” (elective), and “Classification of
embedded systems – ESY6” (core) [8].

3.2 Laboratory Hardware and Software

The hardware and software dedicated to the

embedded systems laboratory assignments uses a
single-bus architecture built around the VMEbus. The
VMEbus is a standardized bus protocol designed for
I/O intensive operations and often used in industrial,
military, and aerospace embedded applications [12].
Each of the three lab stations consists of two single-
board-computers (SBC) connected to the VMEbus, one
6U-sized combination VMEbus CDROM drive and
hard drive for each SBC, and one shared A/D board
consisting of 64 differential analog input channels also
connected to the VMEbus. One SBC is loaded with the
Windows XP Professional operating system and the
second SBC is loaded with Redhat Linux version 9.0
running the 2.4.20-6 Linux kernel. A customized
library of software functions compatible with the C
programming language is available for use on each
platform. The functions make interfacing to the
VMEbus address space easy and eliminate the need for
timely driver development for the specific hardware
used. Each of the three lab stations allows for remote
login via the Internet. This promotes sharing of the
hardware. Remote login does not provide for
interacting directly with the equipment in some cases,
for example setting up analog input into the A/D board.
But, it does allow for software development which
accounts for a majority of the time spent using the
stations.

Although the VMEbus is seen almost exclusively
in industrial, military, and aerospace applications, it is
surprisingly useful for academic embedded systems
activities. In addition to using its asynchronous
protocol as an example of such bus communications,
the flexibility of the VMEbus makes it perfect for
demonstrating many other topics discussed in the
IEEE/ACM model curriculum. For example, SBCs can

June 5, 2005 Workshop on Computer Architecture Education Page 49

be easily added to a VMEbus backplane to produce a
multiprocessor. The SBCs can be the same producing
a homogenous multiprocessor, or each can be different,
even executing different operating systems, to produce
a heterogeneous multiprocessor. Various memory
configurations can be set up by adding global memory
cards to a VMEbus system. Multiprocessors and
shared memory provide the opportunity to address
mutual exclusion, concurrency, and inter-process
communication issues. Various operating systems
including real-time operating systems are readily
available for VMEbus SBCs. With such an operating
system, detailed timing analysis of system performance
and real-time scheduling concepts can be investigated.
The VMEbus supports various bus arbitration methods,
has a prioritized 7-level interrupt protocol, supports
multiple bus masters, has a data transfer rate of 40
Mbytes per second, and is standardized. Its thorough
I/O support makes it easy to study polled I/O, interrupt-
driven I/O, standard and memory-mapped I/O
configurations, arbitration for multiple interrupting
devices, starvation, and bus saturation concepts. One
final benefit of the VMEbus is that there are many
vendors and many choices for VMEbus devices
making off-the-shelf components common, relatively
inexpensive, and simple to use.

3.3 Laboratory Activities

 The laboratory activities are chosen to supplement
the lecture material. Each assignment is made with the
goal of supporting the “system” concept of an
embedded system. So, in each case, overall system
performance is a concern. Based upon the data
presented in [13], the C programming language is used
for approximately 80% of all embedded systems, and
assembly language is used for approximately 10%.
Since assembly language is the choice for earlier
courses in the UA sequence, such as ECE 383, this is
the best time to introduce C as a high-level
programming language suitable for embedded
applications. By doing so, the laboratory addresses a
core topic in the IEEE/ACM model curriculum called
“Language Issues – ESY2”. This specifically refers to
a need for the description of various programming
languages used in embedded systems and the
specification of a guide for when such languages are
appropriate [8]. Finally, each assignment will use the
VMEbus systems described in the previous section or
will involve a software simulation of some embedded
systems component.
 Another important aspect of the laboratory
assignments is that the technical data necessary to
program the hardware and to use the custom C
software libraries is not presented in a formal fashion.
Instead, students are responsible for gathering the

necessary information from the technical
documentation accompanying the laboratory hardware
and software, i.e. technical manuals. This type of
experience is invaluable to embedded systems
engineers who will be faced with this task early and
often in their careers, often dealing with documentation
that is poorly written and filled with errors. Thus, the
laboratory activities provide an opportunity to assess
student learning in an unstructured environment.
 The first two laboratory assignments involve the
creation of a data acquisition system. The particular
analog data collected from the real-world is not as
much of a concern as how the data is collected and
what is done with the data. For the first iteration of the
course, the students collected environmental data
including temperature, light, and humidity. The
sensors and the circuitry required were pre-selected and
set up for the students. This represents a case where
practicing engineers are given an I/O component, i.e. a
sensor package, with which to work and must integrate
that package into the data acquisition system. In this
way, the students can focus on system integration
activities and avoid electronic design issues they
should have been exposed to earlier in the curriculum
and that tend to distract some students from the goal of
the current exercise. For the first laboratory
assignment, students create a data acquisition system
that uses polled I/O to collect environmental data at a
specified rate. The time required for the A/D
conversion and the responsiveness of the overall
system is collected. In the second lab, the students
create the same data acquisition system that is
interrupt-driven. In this case, the interrupt latency is
measured and compared to the system timing of the
polled I/O system. Creating the same functionality
using two different approaches has proven to be a
valuable technique in demonstrating important
differences in performance and implementation. These
two assignments also support many of the interfacing
topics covered in the lecture portion of the course
including general I/O configurations, writing interrupt-
service routines, and decomposing bus-based
communication into atomic bus transactions using
master-slave relationships.
 Another lab assignment that is used is that of
creating a software simulation of a memory hierarchy.
For this assignment, there is no direct connection to the
VMEbus hardware, although students are encouraged
to write their simulations using the lab stations to
promote further familiarity with those systems. For
this assignment, students are required to develop a
simulation of a memory hierarchy configured
according to user input. Once configured, the
simulations must be able to accurately track memory
performance given a set of memory references.
Considering that many embedded applications have

Page 50 Workshop on Computer Architecture Education June 5, 2005

predictable workloads, memory performance prediction
and configuration is a necessary component of
embedded systems development.
 The final laboratory assignment involves real-time
scheduling. Like the previous lab, the students are
asked to develop a software simulation of a real-time
scheduler configured according to user input. Possible
configuration options include preemption or non-
preemption, static or dynamic priority assignment,
periodic or aperiodic task execution, independent tasks
or tasks having precedence constraints. This
assignment incorporates many concepts discussed in
the IEEE/ACM model curriculum and included as part
of the lecture material. For example, real-time
operating system issues are addressed, as well as
different priority assignment algorithms such as rate-
monotonic and earliest-deadline-first. Scheduling
processes also ties back into the concurrent process
model of computation mentioned earlier as a technique
used to describe system behavior. Students can now
see the effects of different functional decompositions
and different granularities of decomposition.

4. Future changes to ECE 486/487

 After the first complete offering of this course with
its associated laboratory assignments, it is evident that
several adjustments must be made. First, a complete
co-design laboratory assignment must be produced to
complement the lecture material on this subject. Co-
design is a rather abstract topic for students to
understand especially if they have little to no design
experience. The problems encountered up to this point
with introducing such an assignment include finding a
suitable system with the scope appropriate for a 1-2
week assignment, a system that will provide obvious
and limited design choices after using trade-off
analysis, and conquering the learning curve associated
with design environments using co-design.
 A second addition to the course includes
expanding the software simulation assignments to
incorporate the VMEbus systems. Adding a real-time
operating system to one SBC will make it easy to
incorporate the VMEbus systems into the scheduling
assignments. Also, the VMEbus SBCs have cache
memories and configurable caching options including
the ability to turn caching off to support hard, real-time
applications. With limited effort, it should be
straightforward to incorporate the VMEbus systems
into the memory simulator assignments.
 Finally, additional lab assignments must be
introduced to complement other lecture topics such as
multiprocessing. As embedded systems continue to
increase in complexity, multiprocessing is becoming a
necessary topic as opposed to an “advanced” topic and
must be incorporated into the class. The VMEbus

systems readily support multiprocessing and this must
become a fundamental part of the course.
 In addition to adding laboratory assignments to the
course, the course lecture and lab materials must be
generalized in such a way as to make them available
for use by others. The generalized versions of the
materials should incorporate feedback generated from
student assessment of the current materials.
Assessment strategies are currently being defined.

5. Conclusions

The University of Alabama has reformed its
Computer Engineering curriculum in order to
incorporate an embedded systems theme throughout its
core course sequence. One large component of these
changes involves the introduction of a senior-level
lecture/laboratory combination course concentrating on
embedded systems. This course is integrated into the
core course sequence and its lecture topics are derived
from the IEEE/ACM model computer engineering
curriculum. The laboratory assignments are designed
to complement the lecture topics, and they also
incorporate many of the topics, both core topics and
elective topics, mentioned in the model curriculum.
The laboratory assignments make use of a system
architecture designed around the VMEbus. The
VMEbus is shown to provide a powerful, flexible
platform from which to teach many of the concepts in
the model curriculum.

6. References

[1] Gannod, G. C., Golshani, F., Huey, B., Lee, Y. H.,
Panchanathan, S., and Pheanis, D., “A Consortium-based
Model for the Development of a Concentration Track in
Embedded Systems”, 2002 Proceedings of the American
Society for Engineering Education Annual Conference and
Exposition, session 1532.

[2] Wolf, W., “Rethinking embedded microprocessor
education”, In Proceedings of the 2001 American Society for
Engineering Education Annual Conference and Exposition,
Albuquerque, NM, 2001.

[3] Wolf, W., Madsen, J., “Embedded systems education for
the future”, In Proceedings of the IEEE, 88(1), pp. 23 . 30,
January 2000.

[4] Stapleton, W. A., Ricks, K. G., Jackson, D. J.,
“Implementation of an Embedded Systems Curriculum” 20th
International Conference on Computers and Their
Applications (CATA’04), New Orleans, Louisiana: ISCA,
pp. 302-307 (March 2005).

[5] Turley, J., “The Two Percent Solution,” Embedded
Systems Programming, December 2002,
www.embedded.com/story/OEG20021217S0039.

June 5, 2005 Workshop on Computer Architecture Education Page 51

[6] Ganssle, J., “A Call for a New Curriculum,”
Embedded.Com, May 2002, www.embedded.com/
story/OEG20020530S0075.

[7] “From Analysis to Action: Undergraduate Education in
Science, Mathematics, Engineering and Technology”,
National Research Council, National Academy Press,
Washington, DC, 1996, http://www.nap.edu/
catalog/9128.html.

[8] The IEEE Computer Society/ACM, Computing Curricula,
www.computer.org/education/cc2001/.

[9] Hennessy, J., Patterson, D., Computer Architecture: A
Quantitative Approach, 3rd Edition, Morgan Kaufmann,
2003.

[10] Georgia Institute of Technology, School of Electrical
and Computer Engineering, http://users.ece.gatech.edu/
~hamblen/4006/projects/nios_robot/ECE4006_page.html.

[11] IEEE Computer Society, Computer.org, Computer
Society International Design Competition 2003,
http://computer.org/CSIDC/.

[12] IEEE Standard for A Versatile Backplane Bus: VMEbus,
ANSI/IEEEANSI/IEEE Std 1014-1987, 1987.

[13] Lewis, Daniel W., Fundamentals of Embedded Software,
Prentice Hall, Upper Saddle river, New Jersey, 2002.

Page 52 Workshop on Computer Architecture Education June 5, 2005

Hardware/Software Co-Design of Embedded Real-Time Systems from an
Undergraduate Perspective

Kevin C. Kassner*
RF & Electronic Systems Department

Dynetics Corporation
Huntsville, AL 35806, USA
kevin.kassner@dynetics.com

*Contact author

Kenneth G. Ricks

Electrical and Computer Engineering
The University of Alabama

Tuscaloosa, AL, 35487, USA
kricks@coe.eng.ua.edu

Abstract

The increasing complexity of embedded systems

parallels the difficulty of adequately preparing students
to design them. Two topics key to the success of a
graduate in the area of embedded systems are
hardware/software co-design and real-time computing.
This paper serves as a case study describing how an
undergraduate applied hardware/software co-design in
the design of a spectrum analyzer with real-time
constraints for a Capstone senior design project. The
goal of this work is to produce a co-design approach
more suited for undergraduates having little design
experience.

1. Introduction

How can we prepare our electrical and computer
engineering students to design embedded systems?
There is so much material to cover at the undergraduate
level it hardly seems possible to adequately prepare
students for a career in embedded systems
development. Thus, educators are faced with the
difficult task of selecting a subset of critical topics to
include in their curriculum. Two critical topics are
hardware/software (HW/SW) co-design and real-time
computing. In spring 2004 The University of Alabama
offered for the first time an embedded systems class at
the undergraduate level. An educational result of this
course was the design of a spectrum analyzer with real-
time constraints which was successfully completed
December 2004 as a Capstone Design project. This
paper is an examination of how HW/SW co-design was
employed in an undergraduate design class.
Completion of such a project suggests that a student is
well prepared for a career in embedded systems
development. The remainder of this paper is organized
as follows. First, some background material is
presented describing HW/SW co-design. Traditional
implementations are presented that lead to a

customized implementation implemented by the
author. A short description is then given about the
specific design project undertaken in this effort. This
is followed by a detailed description of the custom
HW/SW co-design technique as applied to this specific
project. Finally some conclusions and observations are
made.

2. Background

Hardware/software co-design is a design
methodology which exploits the synergism of hardware
and software through their concurrent design [1] and
achieves this by delaying the allocation decision.
Hence, as much as possible is known about the system
prior to allocating pieces of the system to the hardware
or software domains. This methodology has two
primary advantages; more time to evaluate tradeoffs
and it creates better hardware/software interfaces.
However, it requires engineers to be familiar with both
hardware and software caveats. Any design
methodology should:
• provide a checklist for the design process
• facilitate the communication of design team

members
• help to predict costs
• aid in the creation of a working prototype
• aid in the creation of a timeline for the

development cycle
• help with the identification of metrics
• aid with requirements specification, and
• assist with the development of test procedures.

The goal of HW/SW co-design is to do all of these
things as well as allow designers to “predict”
implementation, “incrementally refine” a design over
“multiple levels of abstraction”, and create a “working
first implementation” [2]. HW/SW co-design is a
cyclic design methodology. Implementations of
HW/SW co-design are as varied as embedded systems

June 5, 2005 Workshop on Computer Architecture Education Page 53

themselves. Institutions and individuals tailor the
methodology to fit their application and institutional
framework. All these different implementations make it
difficult to apply co-design, especially for an
undergraduate student having limited design
experience. An implementation of HW/SW co-design
suitable for an undergraduate applying it (the
methodology) for the first time was needed. To meet
this requirement a custom version (shown in Figure 4)
based upon Wolf’s and Axelsson’s descriptions of
HW/SW co-design was created [2, 4].

Wolf’s and Axelsson’s implementations of HW/SW
co-design are presented here for reference and
comparison to the author’s version. In [2], Wolf
divides co-design into four major tasks:
• partitioning the function to be implemented into

smaller, interacting pieces;
• allocating those partitions to microprocessors or

other hardware units, where the function may be
implemented directly in hardware or in software
running on a microprocessor;

• scheduling the times at which functions are
executed, which is important when several
functional partitions share one hardware unit;

• mapping a generic functional description into an
implementation on a particular set of
components, either as software suitable for a
given processor or logic which can be
implemented from the given hardware libraries.

In [3] Wolf also describes HW/SW co-design in the

following way: “Front end activities such as
specification and architecture simultaneously consider
hardware and software aspects. Similarly, back-end
integration and testing consider the entire system. In
the middle, however, development of hardware and
software components can go on relatively
independently – while testing of one will require stubs
of the other, most of the hardware and software work
can proceed relatively independently” [3]. A block
diagram of the co-design process from [3] is shown in
Figure 1. Wolf’s two descriptions of HW/SW co-
design are very different, yet they both demonstrate the
core concept of delayed allocation.

Though the cyclic nature of co-design is missing
from Figure 1, it is demonstrated in Axelsson’s
diagram shown in Figure 2. The structure of Figure 2
also emphasizes the delayed allocation decision by
including allocation as a separate task in the design
flow diagram. Axelsson [4] defines the tasks in his
figure as follows:
• System behavioral description, giving an

executable specification of what the system is
supposed to do.

Figure 1. A simple HW/SW co-design methodology [3].

Figure 2. Axelsson’s diagram of HW/SW Co-design [4].

• Hardware architecture selection, describing

what hardware components should be used and
how they should be connected.

• Partitioning, deciding which parts of the system
behavior should be realized by what parts of the
hardware architecture.

Please note that Axelsson’s use of the term partitioning
is analogous to our use of allocation thus far.

Figure 3 is a comparison of Axelsson’s design flow
diagram and a typical top-down model. This figure
illustrates the advantage of a detailed behavioral
description that is domain independent; the more
information known about a system prior to hardware
architecture selection the better.

Page 54 Workshop on Computer Architecture Education June 5, 2005

 HW/SW Co-Design Top-Down

Figure 3. Axelsson’s diagram versus a typical top-down model.

Figure 4 shows the author’s flow diagram for HW/SW
co-design. The nomenclature used here is slightly
different from that of Wolf and Axelsson.
• Specification, usually consists of a collection of

metrics, both functional and non-functional,
which provide a precise description of the top-
level system attributes and requirements.
Examples of metrics include throughput,
latency, unit cost, NRE cost, power
consumption, maintainability, and time-to-
market.

• Partitioning is the action of breaking the system
functionality into small domain-independent,
concurrent and interacting/communicating
processes. The size of the processes is called the
granularity. The result of the partitioning step
should be a fully defined behavioral description
of the system, with well defined interfaces
between processes. Performance requirements
for the processes such as frequency, throughput,
and latency should also be defined.

• Allocation is the action of assigning each
process to either the hardware domain or the
software domain. Communication bandwidth
alternatives/limitations between hardware and
software should be considered. For example,
two processes exchanging lots of data frequently
would likely best exist in the same domain.

• Hardware Architecture means describing what
hardware components should be used and how
they should be connected [4] to support the
execution of the processes.

• Mapping is the selection of specific hardware
components and mapping the processes onto
parts of the hardware architecture. This includes
mapping processes from the software domain to
the processor(s) on which they will be executed.
Much consideration should be given to the
execution requirements of the processes.
Manufacturability should be considered during
component selection.

• Synthesis is the implementation of the hardware
and software processes for the selected
hardware.

• Integration is the recombination and testing of
processes and interfaces after implementation.

• Scheduling is the assignment of resources to all
system processes such that their execution
requirements are satisfied including inter-
process communication dependencies.

Those who are familiar with HW/SW co-design may

not see the need to break the design process down into
this many steps. However, undergraduates find this
decomposition beneficial because it requires one to
think about each step separately and consider trade-offs
that may not have otherwise be considered. Figure 5
shows how this design flow compares to Axelsson’s.
Allocation is placed above hardware architecture
because the allocation process provides helpful
intuition going into the hardware architecture selection.
This was done even though the first hardware
architecture selection usually causes some immediate
feedback into the allocation.

June 5, 2005 Workshop on Computer Architecture Education Page 55

Figure 4. Customized diagram of HW/SW co-design.
Dashed arrows indicate feedback paths that may not

occur in every design.

Scheduling appears near the end of the design process,
though a system schedule is defined in the partitioning
step and considered throughout the design process.
The finer granularity of the design tasks makes them
more manageable for an undergraduate without much
intuition gained through experience. The direct
correlation to the definitions listed above serve as a
reference to keep the student on track during each
design task. For these reasons this design flow is
believed to be much more accessible to undergraduates
applying HW/SW co-design for the first time. The
remainder of this paper is a case study of how this
customized HW/SW co-design methodology was used
in the design of a spectrum analyzer with real-time
constraints for a Capstone senior design project.

3. Project Background

The project under examination is the design of an
FFT based low-bandwidth real-time spectrum analyzer.
The inspiration for the project was an ASIP designed
by SiWorks Inc. This FFT processor is capable of
computing a 1024-point FFT in just 250 clock cycles.
Unfortunately these chips were not available for
purchase during the initial stages of the design project.
Ultimately the implementation technology used to
compute the FFT was an FPGA. This resulted in a

computational bandwidth well beyond that of our
specifications and the analog interface. The customer
for the design was the Department of Electrical and
Computer Engineering at The University of Alabama
for use in sophomore and junior level laboratories. The
goal of the project was to design and build a beta
prototype of a stand-alone spectrum analyzer with
these basic requirements:
• enough bandwidth to view the spectrum of

ADSL signals
• a flexible input interface for general purpose use
• VGA interface
• $300 proposed maximum unit cost per thousand

The user interface and VGA resolution details were not
specified. One of the primary metrics was the real-
time requirement. These goals were met and surpassed
with the exception of some op-amp stability issues and
one known firmware bug. The specifications of the
completed system are listed in Table 1.

Table 1.
Specifications of Completed System

Real-Time

-- Input data stream sampled

continuously

-- Every sample must be processed

-- No results are to be discarded

FFT size 1024 points

Frequency Range 0 to 1.10 MHz

Resolution 1.95 kHz

Sample Frequency 4 MHz

Input Voltage Range 0 to 100Vpeak

Input Impedance 1MΩ, 20pF

Input Range Selection Automatic

System Latency
-- 0.5 ms (input to video processor)

-- 80 ms (input to display)

Configuration Interface PS/2 Mouse

Output Interface VGA (640x480x6-bit color)

Power Source Single Phase, 120V, 60Hz

Manufacturability No BGA or leadless chip packages

Unit Cost per Thousand $87.44

4. Implementing HW/SW Co-Design

The original ad-hoc system diagram that was created
prior to the application of HW/SW co-design is shown
in Figure 6.

Page 56 Workshop on Computer Architecture Education June 5, 2005

 Customized Co-Design Axelsson’s Co-Design

Figure 5. Customized design flow versus Axelsson’s.

It is evident from the figure that partitioning,
allocation, and hardware architecture selection were all
occurring simultaneously. Early in a design process
very little is known about how the system will
function; therefore, at that point it is dangerous to
attempt to define a hardware-architecture to support the
operation of the system. Instead, Figure 7 shows a
system partitioning resulting from a co-design
approach. The immediate advantage of applying
HW/SW co-design is a domain and architecture
independent partitioning. Figure 8 shows one
component of the system, the system control unit,
decomposed into its constituent parts. This is the
progression of partitioning that should continue until
the processes are simple enough that they are readily
implemented and the interfaces between them are fully
defined, representing a system having the desired
granularity. The partitioning step is also the time to
define performance requirements for the processes
such as frequency, throughput and latency. These will
be important factors to consider in the mapping step to
ensure that the final scheduling process will be
successful.

During the allocation, hardware architecture, and
mapping stages many tradeoffs must be analyzed
before settling on a particular system implementation.

It is during these stages of the co-design process that
decisions must be made that may ultimately affect the
partitioning and even the system specification. These
are the feedback loops built into the co-design process
that lead to multiple iterations through this process
before project completion. For example, the original
intent was to use an FPGA to implement a custom
optimization of the FFT algorithm to achieve the
desired performance. However, during initial hardware
architecture selection it was realized that a sufficiently
large FPGA would be cost prohibitive. The next
alternative explored was an FFT ASIP although those
found were not available (Zarlink PDSP16510, I&C
Tech. STARFFT). Finally it was decided to use a DSP,
the TI TMS320C6711, which is a 272-pin BGA device.
It met the minimum performance requirements, was
inexpensive and readily available. Having made this
selection required a re-partitioning of the system. This
second top-level partitioning is that shown in Figure 7.
As part of the allocation, each process was assigned an
anticipated implementation technology. At this point
dual-port RAM was the chosen implementation
technology for buffering. Unfortunately, dual-port
RAM is very expensive in sizes as large as 1Kbyte.
The memory did not need to be random access, so a
2Kbyte FIFO from TI, SN74V235, was used instead.

June 5, 2005 Workshop on Computer Architecture Education Page 57

Figure 6. Original ad-hoc system partitioning.

Figure 7. Co-design top-level system partitioning.

Figure 8. Partitioning of the system control unit.

As another example, there were concerns about the
thermal characteristics of the circuit board and
difficulty in mounting the device prior to proceeding
with the hardware architecture using the
TMS320C6711. The specifications were changed to
include manufacturability, which meant no BGA parts.
This required another tradeoff to a different DSP
device, the TMS320C5402 which comes in a 144-pin
QFP. This processor is capable of computing the FFT
at an input sample rate of greater than 2MHz. The last
frequency bin in the FFT corresponds to Fsample/2
providing a 1MHz bandwidth, just barely satisfying the

minimum performance requirements. Therefore this
change did not affect the partitioning, allocation, or the
hardware architecture used for the TMS320C6711.

As another example of these feedback loops through
the co-design process, changes were required to
prevent aliasing. In order to prevent aliasing
(frequencies above Fsample/2 from wrapping around into
the low end of the spectrum), a low-pass filter was
needed to attenuate the frequencies above Fsample/2 to
less than the LSB of the input data; the input data being
the output of a 10-bit ADC. However, the -3dB point
of the filter needed to be 1MHz or higher to meet the
performance requirements. To meet the minimum
performance requirements two DSPs would need to be
used in parallel, each one processing every other set of
data, to compute the FFT. By putting two DSPs in
parallel and using a six-pole Bessel low-pass filter the
Fsample would be 4MHz. With this new configuration
the -3dB point was calculated to be 1.10MHz. Again,
these changes would ripple through all phases of the
co-design process resulting in a new partitioning,
allocation, and hardware architecture shown in Figure
10.

One final example of the need for feedback in the co-
design process resulted from the introduction of new
technology midway through the design process. In this
case, it was discovered that Altera had recently made
an FFT IP core available on their web site. The FFT IP
core could be configured as a streaming FFT (one input
and one output every clock cycle), meaning the entire
system could be pipelined requiring little additional
memory for buffering and greatly simplifying the
overall implementation of the system. It was also
determined that the Altera Cyclone EP1C12Q240C7,
the largest FPGA offered by Altera or Xilinx and
available in the QFP package, was available and within
budget. The embedded memory blocks in the cyclone
line of FPGAs are true dual-port RAM. A review of the
partitioning showed that switching from the DSPs and
external FIFOs would not require changing the
algorithms; disregarding those for the VGA interface
which would in fact be simplified due to the interfaces
being completely internal to the FPGA. The decision
was made to change the mapping to make use of this
new technology. This resulted in yet another cycle
through the co-design process starting with partitioning
and continuing through allocation, hardware
architecture, all the way to the system integration,
scheduling and testing phases.

The final top-level system partitioning using the
FPGA device is shown in Figure 9. The final
partitioning shows remarkable similarity to the original
system partitioning shown in Figure 7, with the

Page 58 Workshop on Computer Architecture Education June 5, 2005

exception that Figure 9 has significantly more detail at
the top level. Finally, a screen shot of the output of the
system and a photo of the finished spectrum analyzer
are shown in Figure 11.

5. Conclusions

This case study demonstrates that the application of
HW/SW co-design can be employed in senior design
classes to increase the complexity of projects
accomplishable by undergraduate students. The custom
HW/SW co-design process presented here should be
applicable to any embedded system. The structure of
the design flow diagram and the accompanying
definitions make it ideally suited for undergraduates.

6. References

[1] G. De Michell, R. K. Gupta, “Hardware/software co-design”,

Proceedings of the IEEE, Vol. 85, no. 3, March 1997, pp. 349.

[2] W. H. Wolf, “Hardware-Software Co-Design of Embedded

Systems”, in Proceedings of the IEEE, Vol. 82, no. 7, July
1994, pp. 967-989.

[3] W. H. Wolf, Computers as Components, Principals of

Embedded Computing System Design, Morgan Kaufmann, New
York, New York, 2001, pp. 502–503.

[4] J. Axelsson, “Hardware/Software Partitioning of Real-Time

Systems”, IEE Colloquium on Partitioning in Hardware-
Software Codesigns, February 13, 1995, pp. 5/1-5/8.

Figure 9. Final top-level system partitioning.

June 5, 2005 Workshop on Computer Architecture Education Page 59

Figure 10. One version of the hardware architecture.

Figure 11. System output (top) and completed spectrum analyzer (bottom).

Page 60 Workshop on Computer Architecture Education June 5, 2005

Teaching Microprocessor Systems Design Using a SoC and Embedded Linux
Platform 1

Yann-Hang Lee and Aung Oo

Department of Computer Science & Engineering
Arizona State University

yhlee@asu.edu, aung.oo@asu.edu

Abstract

In traditional microprocessor systems design courses,
students learn to develop assembly language programs to
control peripherals, handle interrupts, and perform I/O
operations. We adopt a 32-bit StrongARM architecture on
the Motorola MX1ADS board with Embedded Linux to
present a modern microprocessor system design course.
With this new platform, we use a high-level language to
develop projects that accelerate the students� learning
curve. Embedded Linux also provides the necessary
flexibility and tool set required for students to debug their
own projects. Our students' responded very positively to
this change. They were excited about the renewed course
structure, the updated learning environment, and the
challenging projects.

1. Introduction
Embedded systems are designed for dedicated

applications running in control systems. The unique
feature of such systems is the capability to perform timely
and predictable operations in response to concurrent
requests arriving from the external environment. To create
an effective embedded system one must properly employ
the appropriate system architecture, hardware/software
interfaces, peripheral devices, and software components.
Currently, embedded systems companies are facing with a
shortage of engineers having the appropriate skills to
respond to market opportunities [8]. Therefore, embedded
software engineering has emerged as a key element for
curriculums in Computer Science, Computer Engineering,
and Electrical Engineering at universities throughout the
world.

To teach the subject of software/hardware integration
and I/O interfaces, undergraduate computer science and
engineering programs incorporate a microprocessor

 1 This course development project is supported in part by NSF
Educational Innovation Grant EIA-0122600, the Consortium for
Embedded and Inter-Networking Technologies (CEINT), and
Motorola University Program.

system and applications course. In the course, students
develop assembly language programs to control
peripherals, handle interrupts, and perform I/O operations.
Then students perform experiments with a target single-
board microprocessor system integrated with typical
interface circuits such as programmable timers, serial
ports and parallel ports. Unfortunately, this approach fails
to keep pace with industry technology. This lag is
prompted by the advent of rapid prototyping development
of microelectronic systems that includes:

a. SoC-based platforms for embedded applications:
The system-on-a-chip (SoC) devices have made great
progress along with the ever-growing number of
transistors that can be integrated on a chip.

b. Abundant I/O interfaces: Besides programmable
timers, serial ports, and parallel ports, there are several
new I/O standards designed for human interfaces,
multimedia, networking, and inter-IC/device
communication.

c. I/O programming with high-level languages: For
software portability, modularity, and readability, high-
level programming languages have been used in all levels
of software development. An appropriate use of
programming languages and software structures often
leads to reusable embedded software.

 Our traditional computer engineering curriculum also
taught relatively outdated techniques in the subjects of
software/hardware integration and interface. The
�Microprocessor System Design� course emphasizes
assembly language programming and exercises only a
limited number of I/O interfaces. The course falls short in
addressing state-of-the-art interfacing technology and
emerging applications.

In our curriculum development project sponsored by
the NSF EIA program, we redesigned the microprocessor
system design class. Our goals were to provide a learning
environment which aligned with emerging technology and
improved the effectiveness of instruction. We also
developed a laboratory environment which incorporated
cutting-edge programming approaches to manage
hardware components in SoC platforms. This renewed
course goes beyond the inclusion of various interfaces and
devices. The course focuses on the appropriate software

June 5, 2005 Workshop on Computer Architecture Education Page 61

structures using a mixture of high-level and assembly
language programming, I/O operations in modern
operating systems, and reusable software components.

In this paper, we will explore the challenges and
successes we encountered in implementing this new
microprocessor system design class. The course serves as
the first of three embedded system courses in our
curriculum. Section 2 presents background information on
the embedded system curriculum at Arizona State
University (ASU). In Section 3, we will present the new
course design followed by the course objectives, the
course material and the setup of the laboratory
environment for programming projects. Section 4 will
cover some of our lessons learned and feedback from our
students. In Section 5 we conclude our discussion.

2. Background
ASU, Motorola, and Intel formed a not-for-profit

Consortium for Embedded and Inter-Networking
Technologies (CEINT) in 2001 [3]. CEINT developed an
infrastructure to support a strong curriculum in embedded
systems. The end product was a concentrated path in
Computer Systems Engineering, which consisted of an
Embedded Systems Development, Embedded Systems
Engineering, and Embedded Systems Capstone course
[1].

We wanted to provide students with the opportunity to
learn practical development techniques using the
Embedded Systems Development course. To accomplish
this goal, we chose Motorola MX1ADS boards using
MontaVista�s HardHat Linux Toolkit. Although we
discussed both assembly level and high level
programming development, C was the main language
used for developing projects. This particular combination
of programming language, development environment, and
microcontroller architecture is rare for an introductory
level embedded systems class.

At the same time, the students were challenged to get
quickly up to speed on the fundamentals required to use
the new development environment and tools. Most of the
students did not have strong backgrounds in developing
software for Linux. To lessen this steep learning curve,
we provided laboratory demonstrations and walked
through simple development projects in small groups.
We also provided online tutorials, sample Linux drivers,
and low level C code examples for students to study.

In this course, we introduced students to memory
devices, memory controllers, buses, handling interrupts,
DMA, timers, counters, UART, SPI, I2C, parallel I/O,
keypad, LCD, touch panels, and A/D - D/A converters.
The students also developed device drivers for timers,
PWM, UART, gpio, and SPI eeprom as class projects.
Other available features such as watchdog timer, blue

tooth technology, USB, and CMOS sensors were left for
more advanced courses in the sequence.

Assembly language teaches the students about the
detailed architecture of the hardware. This gives students
an appreciation for high level constructs implemented in
assembly language [2]. However, implementing all
software programs in assembly language neither practical
nor desired. In fact, assembly-language programming is
no longer the best choice for developing embedded
systems, due to the availability of excellent compilers and
the rising complexity of software projects [6][9].

3. Course Design
3.1. Course Objectives

The objectives of the course are to familiarize the
students with hardware-software interfaces, hardware
designs of microprocessor systems and peripheral devices
and their communication protocols. Students work at
acquiring technical knowledge and applying this
knowledge to the development of programs for
controlling peripheral devices and interfaces. Thus, the
students learn to analyze and synthesize suitable solutions
for building integrated hardware/software systems capable
of interacting with external world.

3.2. Course Content
The revamped course places emphasis on

software/hardware integration and I/O programming, the
incorporation of the state-of-the-art SoC platforms, and
emerging embedded system development tools. Our plan
is to gear the integration of hardware modules to construct
embedded systems and the programming models and
characteristics of various I/O interfaces and peripherals.
The course syllabus is established as follows:

Course Syllabus: Microprocessor System Design

Course Goals:
• Develop an understanding for using a CPU core as a

component in system-level design.
• Develop the ability to integrate the CPU core with

various interface units in embedded systems.
• Gain the necessary skills for programming and

debugging I/O operations to manage peripherals for
embedded applications.

Major topics covered:
• Introduction and review of instruction set and

assembly language programming, instruction
execution cycle and timing (4 lectures)

• C programming for embedded systems (2 lectures)
• Interrupts and I/O multiplexing (2 lectures)
• Parallel I/O interface and signal handshaking (1

lecture)

Page 62 Workshop on Computer Architecture Education June 5, 2005

• Timers and counters (2 lectures)
• Serial communication: UART, SPI, and I2C (4

lectures)
• Keypad and LCD interfaces (3 lectures)
• Transducers and sensors, touch panels, A/D-D/A

converters (3 lectures)
• Memory devices, SRAM, DRAM, flash memory,

and SDRAM controller (3 lectures)
• Buses, access arbitration, timing, and bus protocols

(2 lectures)
Laboratory projects:

• Introduction project on understanding the
programming environment on a target development
board.

• 3-4 small (1-2 weeks) assignments on programming
and interfacing with various peripheral units.

• 2 medium (3-4 weeks) sized projects to build
applications integrating multiple devices.

As shown in the syllabus, the course started with an
introduction to the ARM architecture and instruction sets.
We then discussed C programming for embedded systems
which included accessing I/O registers, bit manipulation,
C calling convention, and in-line assembly. The students
used the ARM Software Development Toolkit (ARM
SDT 2.02u) to develop and debug their assembly/C
programs in an ARM instruction set simulator called an
ARMULATOR.

Following the introduction to ARM architecture and
programming, we presented the overall architecture of
MX1 processor and the connection to peripheral
interfaces. For the I/O interfaces and interrupt signals, we
started the discussion with the general-purpose
input/output (GPIO) and handshaking signals. Since most
I/O functions and peripheral interfaces are multiplexed at
the I/O pads, the lectures focused on the programming
techniques for configuring I/O pins and functions.
Similarly, interrupt multiplexing and configuration
techniques were discussed, followed by interrupt vectors
and ISR operations. This allowed us to look into each
peripheral interface in subsequent lectures.

The peripheral interfaces covered in the class included
a timer, pulse-width modulator, UART, SPI, I2C, LCD
controller, and touch panel controller. The lectures
addressed the basic design principles, the internal register
configuration of the peripheral interfaces, and interrupt
mechanisms. The timing diagrams of the signal
waveforms at I/O pins were discussed to illustrate the
interaction of programming model and device operations.
In addition, the schematics of the MX1ADS development
board were used to show the connections of MX1

processor with external interface circuits and devices.
While discussing LCD and touch panel controllers, the
lectures also encompassed general raster display devices
and A/D converters.

After discussing the selected peripheral interfaces and
the programming techniques, the lectures focused on the
memory structure of microprocessor systems. Both the
abstract model and physical memory architecture of the
SRAM and DRAM were explored. We paid special
attention to synchronous DRAM, their timing
characteristics, and access modes. We used the Micron
MT48LC32M8A2 as an example of SDRAM.

The interconnection mechanism of microprocessor
systems is also an important subject of the course. We
focused on the bus architecture and the protocols of PC�s
XT, AT, ISA, and PCI buses. The general bus designs,
including synchronous/asynchronous, bus arbitration, and
block transfer were also covered. The final topic covered
optimization techniques of bus performance such as
pipelined transfers and split transactions.

3.3. Hardware Platform for Lab Projects
Although our goal was to teach the general principles

of the microcontroller architecture and system design, we
desired to have a target platform available to students to
use for experimentation. We decided to use a 32-bit RISC
platform instead of a traditional 8-bit architecture such as
the Intel 8051 and Motorola 6811. There were three
motivating factors in choosing a 32-bit RISC architecture
over an 8-bit architecture. First, we wanted to use a
current technology so that students would be well
prepared for a career in the embedded systems industry.
Second, we wanted to introduce multiple peripheral
devices and bus technologies that were only available on
32-bit architectures. And finally, we had received a large
endowment from industry partners to provide equipment
and classroom support for the 32-bit architecture.

The target hardware platform had to include a high
performance SoC microprocessor for which popular
interfaces were available and configurable. To acquire
additional support to build the experimental environment,
we contacted the Motorola�s Dragonball University
Program, sponsored by Motorola SPS in 2003. The
University Program considered our approach for
software/hardware integration as an effective instructional
method for embedded systems software development, and
donated thirty Dragonball MX1 development boards
(MX1ADS) for our lab. Motorola also agreed to provide
all necessary technical support to expedite the installation
of lab equipment.

To facilitate various projects, the SoC-based
development boards are accompanied with a peripheral
board on which various devices are installed. Figure 1

June 5, 2005 Workshop on Computer Architecture Education Page 63

depicts a typical development system that enables
programming development for different I/O projects.

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(USB interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(serial interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(USB interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(serial interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Figure 1. The target development system for lab

assignment

3.4. Software Platform for Lab Projects
Embedded Linux was chosen as the software platform

on the MX1ADS boards. The fine modularity of Linux
components allowed us to customize the Linux kernel for
the course. Only the device drivers required to boot the
target board were kept in the Embedded Linux build. This
enabled students to load their drivers as modules.
Additionally, Linux provided a rich set of freely available
debugging tools and environments, such as printk, strace,
gdb, ksymops, and klogd. With MontaVista�s Linux, we
established the software development environment shown
in Figure 2.

Influence from industrial trends also played a

significant role in our decision to use Linux. Currently,
Linux is one of the preferred choices in the embedded
system industry due to the availability of kernel source
code without loyalties. This has lead toward recent trends
of Linux becoming a dominant platform in embedded
controllers. According to a survey conducted by the
Venture Development Corporation, the estimated
worldwide shipments of embedded Linux operating
systems, add-on components, and related services reached

over $60.0 million in 2003. This number is projected to
reach over $115 million in 2006 [4].

In the target environment, students test their software
components to manage peripheral devices. Since the I/O
addresses are a part of the kernel address space and are
protected, software components are developed as loadable
device drivers modules. User applications use the drivers
through standard file operations such as open, close, read,
write, and ioctl. Interrupt service routines can also be
registered as the modules are installed. This approach is
quite attractive since the software for hardware interfaces
are modular and embedded as a part of the operating
system to support user applications. For students who
have not taken any operating system courses, it may be
challenging to comprehend the software structure and
kernel APIs, and to develop kernel modules.

Figure 3. A pseudo driver for exercising kernel I/O
address space and interrupts

To assist students with Linux specific driver
development, we provided several example driver
modules to illustrate the interactions between user
applications and device drivers. One example is a pseudo
driver, shown in Figure 3, which allows a user application
to access memory locations in the I/O address space.
When read or write functions are called, a command
structure consisting of an I/O address and a data field is
passed from the user application to the driver. The driver
then reads from or writes to the I/O address. Hence, the
student�s application program can manipulate and access
various control and status registers of peripheral
controllers. To illustrate interrupt-driven data transfer, we
added a ring buffer in the pseudo driver with which I/O
data can be saved for subsequent read calls. Blocked
driver function calls and the interaction with ISRs are
demonstrated using a wait queue, interruptible_sleep_on,
and wake_up_interruptible kernel functions. In addition,
the pseudo driver makes use of asynchronous notification
to emulate interrupts to user application programs. An
ISR can invoke kill_fasync to signal a user application

User Space

�.
sig
handler
sig mask
sig
pending
�.

Register signal
handler with task

structure Task structure
for the user

process

Kernel Space

Core Kernel

Device driver
module with

registered IRQ

IRQs

memory-
mapped

IO�s

Asynchronou
s signals

Register user
process for

signaling and
read/write to

IO�s
Signal

Handler(s)

Application
code

buffers

interrupts

Host PC workstation

ARM elf
gcc cross-
compiler

Embedded Linux

MontaVista IDE

cygwin
GDB Server

Target MX1 ADS

Applications

Windows

GDB
debugger

DB MX1 ADS board
support package

Figure 2. The target software development environment
for MX1 ADS

Page 64 Workshop on Computer Architecture Education June 5, 2005

handler once it is registered. The signal handler can then
take an action or pass the status changes to the main
program. This pseudo driver also provides a great
example to build character device drivers for some
peripheral devices.

3.5. Sample Projects
To reduce the learning curve on Linux device driver

development models and Linux kernel application
programming interfaces (API), we provided a driver
framework for each assignment. This allowed the students
to concentrate on writing the hardware/software interface
code rather than worrying about Linux�s internal device
driver interface. For example, the following segment of
code is part of the driver framework we provided to
students to develop a timer driver.

int init_module()
{
 int result;
 /* register our character device */
 result = register_chrdev(IO_major, driverName, &IOBridge_fops);

 if (result < 0) {
 printk("<1>%s: Can't get major %d\n", driverName, IO_major);
 return result;
 }

 if (IO_major == 0)
 {
 IO_major = result;
 }

 // initialize hardware timer
 timer_init();

 // Register timer interrupt from the kernel.
 if (request_irq(TIMER_IRQ, timerISR, 0, "Timer2", NULL)) {
 printk("<1> Unable to get IRQ for Timer 2\n");
 unregister_chrdev(IO_major, driverName);
 return -EBUSY;
 }
 return 0;
}

void cleanup_module() /* This function is called when we do rmmod. */
{
 printk("<1>Freed %s\n", driverName);
 free_irq(TIMER_IRQ, NULL);
 unregister_chrdev(IO_major, driverName);
}

void timer_init() {
}

void timerISR(int irq, void *dev_id, struct pt_regs *reg) {
}

In terms of projects, the platform enabled many
development assignments with peripheral device
controllers and hardware configurations. The following
lists some sample projects given in the Fall of 2004.

1. Measurement of execution of the CRC-32 procedure
with a hardware timer. The measurement was done in
the eLinux environment on MX1ADS target board
using MontaVista�s DevRocket IDE on a Windows PC
or Linux workstation.

2. Development of an interrupt-driven mouse driver for a
serial mouse. The project employed a Microsoft 2-
button serial mouse (Version 2.0A) attached to UART
serial port. The driver compiles three mouse
movement data packages and then reports any
movement to the user applications.

3. Development of a driver for an external memory
device. A Microchip 25LC640 EEPROM which
consisted of 256 32-byte pages (or blocks) was used.
The EEPROM contained an SPI interface. Hence, all
commands and data transfer operations are done via a
SPI bus controller. The project introduced students to
the important concept of timing in device driver
programming.

For the first project, we provided a Linux character
driver capable of writing and reading registers on the
target board. The students were tasked with developing
an application to measure the execution time of a given
program by using the hardware timer. This assignment
introduced students to the Linux device driver model and
software-hardware interface.

Next, the serial mouse driver project allowed students
to apply their theoretical understanding of UART to
develop an interrupt driven mouse driver. The driver uses
an asynchronous I/O signal to communicate between the
application and device driver in the kernel. We provided a
framework for asynchronous I/O implementation in the
Linux device driver.

The overall goal of the assignments was to reinforce
classroom learning by providing the students with
interesting projects. This gave them a greater
understanding of theoretical concepts and a feeling of
satisfaction upon completion of the projects [2].

4. Outcome and Evaluation
At the end of the semester, we surveyed the students

about their learning experience. Twenty-eight out of
forty-four students responded to the survey (64%). The
survey questions are grouped into five categories: C
programming, the Linux development environment,
system architecture and system-level design, peripherals
and projects, and overall satisfaction.

According to the survey, over 80% of the students
agreed their understanding of C programming language
has increased and that they were comfortable with
developing device drivers using C. Even though the
students were not familiar with the tools and development
platform we used in class, we found that they were able to

June 5, 2005 Workshop on Computer Architecture Education Page 65

learn them quickly. About 73% of the students suggested
that they were able to use the tools effectively at the end
of semester.

The most challenging issue was the lack of proficiency
in C programming and Linux development environments.
We are planning to integrate a Linux environment in some
prerequisite classes and add more emphasis on C in basic
programming courses in the future.

5. Conclusion
Similar to many computer engineering curriculums,

the microprocessor system design course at ASU has
focused on teaching hardware/software interfacing and
the management of peripheral devices. The previous
approach of using assembly language and
microcontroller-based platforms had been in place for
more than a decade. It allowed the students to appreciate
machine level processor operations and hand optimization
to achieve the efficiency of assembly programs. However,
with the advent of modern software development tools
and the wide-spread use of embedded systems
applications, a change in course material becomes
inevitable.

There are a few important initiatives used in our
approach for the microprocessor system design course.
First, the use of assembly language for software
development to control peripheral interfaces should be
minimized. Students must be able to assess the cases
where the use of assembly code can be justified. This
would include encapsulating assembly code in well-
defined interfaces and incorporating the code in software
components as required. Second, the use of a broad set of
peripheral interfaces including serial buses, LCD
controller, touch panel, and data acquisition should be
introduced. Finally, a practical software development and
execution environment should be utilized so that students
can gain familiarity with modern tools to build structured
software components for embedded applications.

With these initiatives, the microprocessor system
design course was transformed and introduced in the Fall
of 2004. It was anticipated that knowledge gaps would
exist in some of the prerequisite courses. Hence, we
assumed that students may encounter difficulty with the
required learning curve. However, we were surprised and
satisfied with students� reception to the course. In general,
students were excited about the new course structure, the
updated learning environment, and the challenging
projects, although complaints over the large amount of
manuals and data sheets still existed. Overall, we believe
this course was successful and we look forward to the
development of the more advanced courses in the
Embedded Systems curriculum.

6. References
[1] Gerald C. Gannod, et. al., �A Consortium-based Model for

the Development of a Concentration Track in Embedded
Systems�, Proceeding of the 2002 American Society for
Engineering Education Annual Conference & Exposition.

[2] Chris Hudson, �Teaching Microcontroller Technology �
learning through play�, IEEE International Symposium on
Engineering Education: Innovation in Teaching, Learning
and Assessment, Volume: Day 1, 4 January 2001.

[3] David C. Pheanis, �CEINT Internship Program�, 33rd
ASEE/IEEE Frontiers in Education Conference, November
2003.

[4] Chris Lanfear, Steve Balacco, �The Embedded Software
Strategic Market Intelligence Program, 2004�, Venture
Development Corporation, July 2004.

[5] Seongsoo Hong, �Embedded Linux Outlook in the PostPC
Industry�, Proceeding of the Sixth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, 2003.

[6] Frank Vahid, �Embedded System Design: UCR's
Undergraduate Three-Course Sequence�, Proceedings of
the 2003 IEEE International Conference on
Microelectronic Systems Education, 2003

[7] Naehyuck Chang and Ikhwan Lee, �Embedded System
Hardware Design Course Track for CS Studnets�,
Proceeding of the 2003 IEEE International Conference on
Microelectronic Systems Education, 2003.

[8] Shlomo Pri-Tal, John Robertson, Ben Huey, �An Arizona
Ecosystem for embedded Systems�, IEEE International
Conference on Performance, Computing, and
Communications, 4-6 April 2001.

[9] Konstantin Boldyshev, �Linux Assembly HOWTO,�
http://www.linuxselfhelp.com/HOWTO/Assembly-
HOWTO/index.html.

Page 66 Workshop on Computer Architecture Education June 5, 2005

	kassner.pdf
	1. Introduction
	3. Project Background
	5. Conclusions

