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1.   Introduction 
  
 Embedded computers are no longer used as 
simple controllers. Instead, high-performance 
embedded processors perform complex algorithms and 
are linked together to form multiprocessors. Embedded 
computing provides students different take on 
computer system design because of the requirements 
imposed on these systems:  
• Embedded computing systems generally require 

real-time performance. Real-time and average-
time performance are very different animals. 

• Battery-powered embedded systems must meet 
very stringent energy requirements [Aus04]. 

• Although the software in embedded systems can 
be changed to optimize the overall system, the 
software must also meet the specifications of the 
application. 

As such, an architecturally-oriented embedded 
systems class emphasizes somewhat different concepts 
than a traditional, general-purpose computer architect-
ure class. An embedded computing architecture class 
must use a methodology to help students quickly get 
their hands around an unfamiliar application. They 
must explore a broad range of architectures. They 
should also explore trade-offs between architectural 
modifications and software modifications to meet 
system goals. 

Distributed embedded systems, which are built 
from networks of embedded processors, are also 
widely deployed. This paper will concentrate, however, 
on systems-on-chips. 

 
1.   Multiprocessor Systems-on-Chips 

 
Multiprocessor systems-on-chips (MPSoCs) 

[Jer04] are, first of all, systems-on-chips. They 
implement complete applications on a single chip. 
(Although as Rich Page points out, most systems-on-
chips are marketing single-chip solutions---they use 
one chip plus all the other chips that you need to make 
the SoC work.) MPSoCs are systems-on-chips that 
include one or more programmable processors. 

Systems-on-chips are generally adapted to the 
application to meet performance, power, and cost 
goals. Although modern VLSI fabrication technology 
provides us with very large chips, applications keep 
getting larger. Some markets are large enough that 
specialized architectures are inevitable and desirable. 

Multiprocessor systems-on-chips try to balance 
specialization and programmability. Programmable 
processors allow the SoC to be programmed after 
fabrication; MPSoCs are often referred to as platforms 
because they allow for many implementations of a 
given type of system. Programmability offers many 
advantages: the same chip can be used in several 
products, reducing product cost; design tasks can be 
compartmentalized; and the platform chip may have a 
longer shelf life than a highly specialized SoC. 

Because these are systems-on-chips, they generally 
aren’t traditional symmetric multiprocessors. They may 
use hardwired function units in addition to 
programmable processors. They may use several 
different instruction sets. They may have non-uniform 
memory spaces supported by asymmetric networks. 

 Many multiprocessor systems-on-chips are 
now available for several types of applications: 

• Mobile multimedia requires both high 
performance and low energy consumption. 
The ST Nomadik and TI OMAP architectures 
are MPSoCs that provide specialized architec-
tures for audio, video, and communications. 

• Home multimedia is not as tightly constrained 
on power as mobile multimedia but requires 
very high performance for applications like 
HDTV. The Philips Nexperia architecture is a 
well-known MPSoC for set-top box applica-
tions. 

• Networking requires very high performance 
and provides some opportunities for 
specialized parallelism. Network processors 
from Intel, Cisco, and others use hetero-
geneous architectures to process packets at 
high rates. 

 

Page 2 Workshop on Computer Architecture Education June 5, 2005



3. Architectural Challenges 
 

Embedded computing and MPSoCs make for a full 
employment act for computer architects.  We are in no 
danger of running out of applications that can make use 
of large amounts of computing power and that can 
support the design effort required to create an efficient 
application-specific platform. Several specific 
challenges flow out of our continuing need to design 
MPSoCs. 

Configurable processors, such as those provided 
by Tensilica, allow the SoC designer a convenient way 
of quickly building processors with customized 
instruction sets. One area in which designers need help 
is figuring out which instruction set extensions should 
actually be implemented. Another important goal is 
figuring out how to connecting configurable processors 
into multiprocessor networks. 

Hardware/software co-design [DeM01] is another 
way to increase system performance for a particular 
application. Accelerators, when properly designed, can 
significantly and efficiently increase performance. 
However, the application must be carefully analyzed to 
be sure that an accelerator actually improves overall 
performance. 

Heterogeneous multiprocessors for embedded 
applications generally implement pipelines of 
processes. Our own smart camera system [Oze05] is an 
example of a pipelineable application. The smart 
camera processes video in real time, using a number of 
distinct steps. The amount of work performed by these 
stages is generally data dependent and buffers are 
required to smooth out rates. As video data is 
processed, it is boiled down in size so that data rates at 
the end of the process are trivial compared to the input 
video data rates. Pipelined application architectures 
bring up both hardware and software questions about 
buffer management and rate control. 

Networks for embedded systems are another 
important challenge. Several networks have been 
proposed for on-chip use. Many of these are general-
purpose networks designed to be used in many 
different systems. However, our own experiments 
indicate that asymmetric networks offer significant 
advantages. 

 Balancing generality with efficiency is a key 
goal in MPSoC architectures. As we pointed out 
elsewhere [Wol05] even relatively simple consumer 
devices must now implement a wide range of 
functions. Consider what must be performed by simple 
devices like digital music players or digital cameras in 
addition to their core functions: 

• User interface. 
• Cryptography. 

• Networking, either through Internet or 
specialized protocols. 

• Digital rights management. 
• File systems that are compatible with PC file 

systems. 
This wide range of functions arguably calls for a 
general-purpose processor; on the other hand, some of 
these functions may call for application-specific 
hardware to meet performance/power goals. We do not 
yet fully understand the architectural implications of 
the networked consumer device. 

Overall, methodology is an important aspect of 
embedded system design that does not often come into 
play in general-purpose systems [Wol00]. Because 
embedded system designers need to design many 
systems and do so in a predictable amount of time with 
a predictable number of people, they need to develop 
methodologies that allow them to repeatably make 
reasonable decisions in new design domains. Giving 
students an insight into the design process can be as 
important as showing them specific design outcomes.   
 
4. Benchmarks 
 

Benchmarks are at least important in embedded 
computing as they are in general-purpose computing.  
When you are designing an application-specific 
system, the wrong choice of a benchmark program or 
input data for that program can lead to fatal 
misjudgments. 

I believe that larger programs make more useful 
design examples for embedded computing for several 
reasons. First, high-performance embedded systems 
typically run several different types of algorithms; it 
takes a certain amount of code to exhibit all that 
complexity.  Second, larger programs do a better job of 
exercising multi-tasking. Third, they give students a 
more realistic taste of the nature of embedded software 
and performance analysis. 

However, it is hard to get good benchmarks and 
data sets. Although several reference implementations 
of various standards are available, they can be very 
hard to use. Reference implementations may make 
inappropriate use of dynamic memory; they may also 
use inefficient algorithms for critical modules. For 
example, many reference video encoders come with 
full-search motion estimation, even though that algor-
ithm is not used in practice. Measurements made on 
unrealistic algorithms will lead to bad design decisions. 
 
5. Labs 
 

Laboratories are a critical part of an embedded 
systems course. As embedded systems become more 
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complex, it becomes harder to create an enriching set 
of labs for students. 

Most instructors worry about the cost of lab 
equipment, particularly if they want to reach a broad 
audience. Although many microprocessor manufac-
turers and third parties sell evaluation boards, the 
associated development system is a hidden cost of 
these boards. Some vendors provide software along 
with the board while others charge a good deal of 
money for development systems. Ideally, students 
should be able to install on their own machines student 
versions of the development systems they use in labs; 
in the FPGA world, Xilinx is an excellent model for 
how to make devices and tools accessible to students. 

Instructors can select from among a large number 
of uniprocessors, but it is hard to find a good 
experimental setup for multiprocessors. The TI OMAP 
processor is one of the very few embedded 
multiprocessors for which there exists an even 
moderately-priced development board, but that board is 
still expensive and the software environment is 
complex.  

Much development work must be done on 
simulators, both in the real world and in class. 
Uniprocessor performance and power simulators are 
widely available. Although several open-source 
multiprocessor simulators are available, most of them 
are designed for symmetric multiprocessors and cannot 
be easily modified to handle heterogeneous 
multiprocessors. The MESH simulator from CMU was 
developed to handle heterogeneous multiprocessors as 
seen in systems-on-chips. 
 
6. Conclusions 
 
We live in an exciting time in which we have the 
opportunity to develop a new generation of courses on 

high-performance embedded computing. But because 
these are complex systems, instructors have to be 
prepared to invest time to set up lectures and labs that 
mate their students’ interests with the applications that 
drive system-on-chip and large-scale distributed 
embedded systems. Although each institution has its 
own special requirements, particularly for labs, group 
effort may help us all build this new generation of 
courses. 
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Special Session on Embedded Systems 
Education 

 
 

Introduction 
 
 As computational components continue to decrease in size and increase in 
performance, they are being embedded into devices in new and innovative ways leading 
to a proliferation of embedded systems in our society heretofore never witnessed.  These 
devices introduce design and engineering challenges not always seen in general-purpose 
computing platforms, which are often the focus of modern computer engineering 
curricula.  For example, embedded applications often include real-time behavior, 
multiprocessing, complex computations, reactive input/output, and require long-term 
deployment using only remote power sources.  In addition, strict design constraints such 
as memory, power, size, cost, and time-to-market limitations, again not encountered in 
the design of most general-purpose systems, are the norm when designing embedded 
devices.   
 To produce graduates capable of addressing the specific issues applicable to 
embedded systems, it is necessary to incorporate these concepts into the computer 
engineering undergraduate curriculum.  However, it is difficult to introduce such a broad 
range of topics crossing many application domains into general undergraduate education. 
In many cases, students are presented with discrete concepts in many different classes 
that are applicable to embedded systems but are never presented a system-level view of 
the field.  This typically gives students the puzzle pieces but not the ability to connect the 
pieces to produce the full picture.  In other cases, embedded systems education has been 
relegated to “teach-the-tool” and “teach-the-technology” approaches, where students 
learn one particular processor, development environment, or software tool.   
 In order to advance the field of embedded computing and prepare future graduates for 
success as embedded systems engineers, a more systematic approach to embedded 
systems education is necessary.  This approach must provide students the fundamental 
concepts required of the field while also providing the more general understanding of the 
system-level concepts.  
 Toward this end, the Special Session on Embedded Systems Education held in 
conjunction with the Workshop on Computer Architecture Education (WCAE) will 
provide a venue for researchers and educators to exchange ideas related to embedded 
systems and embedded systems education.  The intent is that attendees and organizers 
will gain insightful information through paper presentations, an informal panel 
discussion, and interactions with others involved in the workshop.    
 
 
Kenneth Ricks 
Organizer, Special Session on Embedded Systems Education, WCAE 2005 
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Abstract 
 
A three-course sequence of cross-disciplinary real-time 
and embedded systems courses has been introduced at 
RIT•. We are teaching these courses in a studio-lab 
environment teaming computer engineering and software 
engineering students. The courses introduce students to 
programming both microcontrollers and more 
sophisticated targets, use of a commercial real-time 
operating system and development environment, 
modeling and performance engineering of these systems, 
and their interactions with physical systems. 
 

1. Introduction 
Embedded computers are now ubiquitous, often in 
common products where they are invisible to the user.  
These embedded processors provide special purpose 
functionality not found in general-purpose applications 
familiar to desktop computer users.  The standard 
computing curricula concentrate primarily on general-
purpose desktop applications and do not provide students 
with the opportunity to gain the necessary skills for 
engineering software in real-time and embedded systems. 

2. Real-time and embedded systems at RIT 
In Rochester Institute of Technology’s computer 
engineering program, senior projects often focus on real-
time and embedded systems, but there was no formal 
instruction in the engineering of these systems.  The 
software engineering program had an embedded systems 
application domain comprising three courses:  two 
standard operating systems courses offered by computer 
science and a concurrent programming course from 
computer engineering.  None of these courses directly 
addresses issues in developing real-time or embedded 
software; they were chosen because they were the closest 

                                                 
• Sections of this paper will also be presented at the Frontiers in 
Education 2005 Conference in October 2005. 

courses relevant to the domain. We decided that the best 
way to address these shortcomings in the real-time and 
embedded domain in both the computer engineering and 
software engineering curricula was to adopt a cross-
disciplinary approach. The presence of students from 
both programs created a unique opportunity for synergy 
at RIT.  The computer engineering students possess 
knowledge of electronics and control systems along with 
software development skills at the lower-levels.  The 
software engineering students possess significant 
knowledge of how to engineer complex software systems 
including the design and modeling of those systems.  
Developing software for real-time and embedded 
systems is where the skills of these two groups intersect.  

In July, 2003, we started work on the laboratory and the 
development of a three-course sequence.  Each of these 
upper-division courses is four academic quarter credit 
hours and meets for ten weeks of classes having a pair of 
two-hour studio sessions per week. In the studio-lab 
environment each class session mixes lecture material 
with hands-on exercises and projects in a flexible format. 
These courses are cross-listed in the software 
engineering and computer engineering programs.  
Registration is initially controlled with the goal of having 
an even mix between students from the two programs. 
To the extent possible we ensure that all project teams 
have a member from both computer engineering and 
software engineering. The students will bring together 
expertise from two domains and apply a common 
engineering approach for solving real-time and 
embedded system development problems.  To this point, 
we have offered the first two courses in the sequence 
several times. The third course is currently being offered 
for the first time in the spring 2005 academic quarter. 
The remainder of this paper describes our laboratory 
facilities, the syllabus for the three courses we developed 
and some initial results of the internal and external 
evaluation of the program. 
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Our funding came from the award of a National Science 
Foundation Course, Curriculum and Laboratory 
Improvement Adaptation and Implementation grant.  We 
identified the School of Computing and Software 
Engineering at Southern Polytechnic State University 
and the Department of Computer Science and 
Engineering at Arizona State University as the 
collaborating institutions that would provide course 
materials for adaptation into the courses we developed. 

3. Laboratory hardware facilities 
The studio lab developed for these courses consists of 
twelve student stations and an instructor’s station. The 
instructor’s station is configured with classroom control 
software that enables the capture, control and display of 
any of the student stations on the classroom video 
projector. Each student station is positioned to allow a 
pair of students to work together. Each station has a 
modern personal computer for software development and 
a 486-based single board computer as a target system.  
We are using a Diamond Systems [1] pc-104 board with 
timers, A/D converters, D/A converters, and digital I/O 
capability for the target systems. See Figure 1.  

To reduce the clutter in the student’s work area we 
eliminated the second monitor often attached to the 
target system. Students can view the output from the 
target system in a number of ways.  For text-based 
standard output, the target system development software 
provides a redirected console on the development system. 
We also have the VGA output converted to S-video and 
then fed into a USB S-video digitizer.  The digitizer’s 
software provides a picture-in-picture display shown in 
Figure 1. Finally, for projects that are generating VGA 
graphics output the student can view the full resolution 
video through the second input channel on the 
development station’s dual-input monitor. 

For the experiments involving programming a 
microcontroller, each station is also provided with a 
Motorola 68HC12 board, a custom designed interface 
board on which is mounted the microcontroller board, a 
custom binary LED-switch board for elementary binary 
input and output, a signal generator and a power supply.  

 
Figure 2 – M68HC12 Microcontroller, interface board, 
LED-Switch Board, Signal Generator and Power Supply. 

The last pieces of hardware to mention are primarily 
used in the third course in the sequence.  This course 
covers performance engineering of real-time and 
embedded systems. To motivate the need for system 
tuning of real-time systems we use the control of 
physical systems. The two systems we choose for the 
laboratory are from Quanser Systems [8]. We selected 
their inverted pendulum and ball and balance beam 
systems shown in Figures 3 and 4 respectively. In the 
third course the students also experiment with 
hardware/software co-design on a Digilent Spartan 3 
FPGA board [2] shown in Figure 5.  There is one FPGA 
system at each student station. 

 
Figure 3 – Quanser System Inverted Pendulum 

Figure 1 – PC Development environment and Diamond 
Systems pc-104 board target system showing picture-in-
picture target system console. 
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Figure 4 – Quanser System Ball and Balance Beam. 

 

 Figure 5 – Digilent Spartan 3 FPGA Board 

4. Laboratory software facilities 
There is a set of software tools to complement the 
hardware in the laboratory. The development stations are 
running the Windows XP Professional operating system. 
The MGTEK MiniIDE [7] supports assembly language 
programming on the 68HC12 microcontroller. We 
received a software grant from Wind River Systems [11] 
allowing the use of VxWorks and the Tornado integrated 
development environment.  This is the commercial real-
time operating system that the students utilize in the 
laboratory. Matlab and Simulink from The MathWorks 
[6] are used for simulating and controlling the Quanser 
experiments.  We received software grants from IBM [4] 
for the Rational Rose development suite and Rational 
Rose Real-Time as UML modeling tools.  Finally, the 
students work with Rhapsody from I-Logix [5] as a UML 
modeling tool. Rhapsody’s statechart modeling and code 
generation features are used heavily in the second course 
in the sequence. 

5. Course concepts 
We designed a sequence of three courses that provides 
the student with broad exposure to the real-time and 
embedded systems domain.  The first course, Real-Time 
and Embedded Systems, provides a general introduction 
to the area.  We expect that this course will have the 
largest appeal across both disciplines with some aspects 
particularly attractive to both the computer engineering 
and software engineering students.  The second course, 
Modeling of Real-Time Systems, has a stronger software 
engineering flavor.  It covers UML modeling of real-time 
and embedded systems.  The third course, titled 
Performance Engineering of Real-Time and Embedded 
Systems, deals with measurement of system performance, 
implementation of time-critical software and the fluid 
hardware/software boundary.  The next sections describe 
these three courses in detail. 

6. Real-time and Embedded Systems course 
The first course in this elective sequence is titled Real-
Time and Embedded Systems. It presents a general road 
map of real-time and embedded systems. It introduces a 
representative family of microcontrollers that exemplify 
unique positive features as well as limitations of 
microcontrollers in embedded and real-time systems. 
These microcontrollers are used as external, independent 
performance monitors of more complex real-time 
systems targeted on more robust platforms. The majority 
of this course presents material on a commercial real-
time operating system and using it for programming 
projects on development systems and embedded target 
systems. Some fundamental material on real-time 
operating systems is also presented. This course was first 
offered at RIT in the spring of 2003.  It has since been 
offered three more times. The textbook for the course is 
Real-Time Systems and Software by Shaw [9]. 

The topics covered by the class provide an introduction 
to the area.  Class discussion focuses primarily on the 
fundamentals of real-time systems. The project work 
spans the range from microcontroller assembly 
programming through to application development under 
a commercial real-time operating system. 

The topics covered by the Embedded and Real-Time 
Systems course include: 

• Introduction to Real-Time and Embedded Systems  
• Microcontrollers 
• Software Architectures for Real-Time Operating 

Systems 
• Requirements and Design Specifications 
• Decision Tables and Finite State Machines 
• Scheduling in Real-Time Systems 
• Programming for a commercial real-time operating 

system 
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• Development for Embedded Target Systems 
• Design Patterns for Real-Time Systems 
• Language Support for Real-Time 
• Real-Time and Embedded Systems Taxonomy 
• Safety Critical Systems 
 
There are several programming project assignments 
given to the students.  A pair of students works on each 
assignment.  As was mentioned previously, to the extent 
that the registration numbers permit, a software 
engineering and computer engineering student are paired 
together. This course has a mix of projects that allows 
the computer engineering student to provide the lead on 
some and the software engineering student to lead the 
others.  The project assignments for this course are: 

Microcontroller programming: students program the 
68HC12 microcontroller to act as an interval timer 
and as an independent system performance 
measurement device.  The microcontrollers used 
assembly language programs to measure and 
tabulate the inter-arrival times, the “jitter”, of a 
series of 1000 pulses for several experiments 
described later. The microcontroller’s timers have 
no difficulty measuring the arrival times or 
interarrival times of the pulses to 1.0 microsecond 
resolution.   

Real-Time Operating System multi-tasking primitives: 
the main goal for this project is to have the students 
become familiar with programming under a 
commercial real-time operating system.  Using 
VxWorks as an example of a commercial real-time 
operating system, students learn how to program 
using its concurrency and synchronization 
primitives.  The team must implement a concurrent 
system such as a transit simulation or an automated 
factory.  The programming is done within a 
simulated target system running on the development 
station. 

Real-Time Operating System performance 
measurements: there are two smaller projects that fall 
into this category.  These programs run on the target 
systems.  Both projects make use of the 
microcontroller project as a timing device. In the first 
project the students learn how to schedule a periodic 
task under VxWorks. This task is toggling a bit on 
the printer port. The microcontroller timer measures 
the inter-arrival time and jitter of these software-
generated periodic pulses. The second project 
measures the interrupt response time of the target 
system by having the microcontroller measure the 
time between generating an interrupt signal to the 
target and receiving its response.  These two projects 
are run on the target systems, and the microcontroller 

collects 1000 samples with 1.0 microsecond 
resolution and displays the results. 

Final project: there is a final programming project.  This 
project is usually of student motivated with each 
team thinking of a project.  We have seen 
implementations of user-level drivers for the devices 
on the target system, an ultrasound distance 
measurement, simple video games, and a digital 
oscilloscope. 

Students are presented with two different embedded 
processors and development environments and are 
confronted with the strengths and weaknesses of each 
platform/architecture and environment. 

Using Bloom’s Taxonomy as a guide, the learning 
outcomes for this course are given in Table 1. 

Table 1 
Learning Outcomes for Real-Time and 

Embedded Systems Course 
Knowledge 
 • List the scheduling algorithms commonly used in real-time 

systems. 
• Describe the steps required to build, install and run a 

software system on an embedded processor. 
Comprehension 
 • Discuss the event sequence for responding to an interrupt. 

Application 
 • Apply software engineering practices to the development 

of several small real-time systems. 
• Demonstrate the use of a micro-controller as an event 

timer. 
• Design and implement measurement tools to collect 

system performance data. 
• Design and implement a concurrent system on a real-time 

operating system. 
Analysis 
 • Measure the performance of a real-time operating system. 
Synthesis 
 • Design and implement a small-scale real-time application 

on a real-time operating system. 

7.  Modeling of Real-Time Systems course 
The second course is titled Modeling of Real-Time 
Systems. The course takes an engineering approach to 
the design of these systems by analyzing a model of the 
system before beginning implementation. The course 
discusses primarily UML based methodologies. 
Implementations of real-time systems are developed 
manually from the models and using automated tools to 
generate the code. At this point, this course has run 
twice.  Doing Hard Time by Douglass [3] is the textbook 
for the course. 

Topics covered by the Modeling of Real-Time Systems 
course include: 

• Introduction to Modeling of Real-Time Systems 
• Basic Concepts of Real-Time Systems 
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• Basic Concepts of Safety-Critical Systems 
• Use case analysis for real-time systems 
• Structural object analysis for real-time systems 
• Behavioral Analysis using statecharts 
• Design patterns for real-time and safety-critical 

systems 
• Threading and Schedulability 
• Real-Time Frameworks 
 
This course has the strongest software engineering 
emphasis. The projects progress through phases in the 
standard waterfall process model with emphasis on 
analysis and design of the software system. For the 
software engineering students this is continued practice 
in the UML modeling that they do in all the courses in 
their program.  The application areas chosen for the 
projects, i.e. embedded systems, are significantly 
different from the typical desktop and GUI-over-
database projects that they see in their other courses.  In 
this course the software engineering students take the 
lead on most projects.  Many computer engineering 
students have not done any UML modeling since their 
second-year software engineering course. The project 
assignments for this course are: 

Requirements and Architectural Design: this assignment 
starts with the user manual for a consumer electronic 
device. It requires the students to identify the actors 
in the system and do a use case analysis. This is then 
followed by an architectural design and high-level 
class structural design. A home blood pressure 
monitor and a digital video recorder are two devices 
that students have modeled for this project. 

Design and Implementation: this assignment starts with a 
clear statement of requirements and requires the team 
to do a class-level design and implementation.  We 
have used both end-user applications, (such as a four-
function calculator), and a simulation (of a controller 
for a chilled water air conditioning system). The 
implementation language is Java with the team 
implementing a graphical user interface to control the 
program. 

Code Generation: through this course we place an 
emphasis on statecharts as a mechanism for behavior 
modeling of real-time and embedded systems. In this 
project the students explore the code generation 
features of the modeling tool they use. The teams 
create a statechart-based definition of the behavior 
and automatically generate C++ code for the 
application. Typically, the team will be able to create 
a fully-functioning application entirely from within 
the statechart model. This is not to say that the team 
writes no C++ code. Some adornments to states are 
code snippets that get built into the code that the tool 

auto-generates. For this project we have used a four-
function calculator and garage door opener controller. 

Final Project: this project is a modeling exercise done as 
a take-home final exam.  Each student does a 
thorough identification of actors, a use case analysis, 
class structural design and system dynamic modeling 
using sequence diagrams and statecharts.  There is no 
implementation of the systems which to date have 
been a power window controller for a car and a 
reverse vending machine that accepts containers for 
recycling at a local supermarket.  

Using Bloom’s Taxonomy the learning outcomes for this 
course are given in Table 2. 

Table 2 
Learning Outcomes for Modeling Real-Time 

Systems Course 
Knowledge 
 • Specify the characteristics of real-time and safety critical 

systems. 
Comprehension 
 • Discuss the software process for the development of real-

time systems and contrast it with development for a 
standard application. 

• Identify architectural and design patterns for real-time 
and safety critical systems. 

Application 
 • Apply architectural and design patterns in the analysis 

and design of real-time systems. 
Analysis 
 • Model the dynamic behavior of a real-time system using 

statecharts. 
• Describe the requirements for simple real-time systems 

using use cases. 
• Model the structure of a real-time system using UML 

class diagrams. 
Synthesis 
 • Implement a simple system on a real-time operating 

system. 

8. Performance Engineering of Real-Time 
and Embedded Systems course 

The third course is Performance Engineering of Real-
Time and Embedded Systems. This course is first being 
offered during the spring quarter of 2005. As of this 
writing, aspects of the course are still under 
development. The course is roughly divided in half with 
the first and second parts emphasizing performance of 
real-time systems and embedded systems, respectively. 
This course has an unusual combination of topics and we 
have not identified a single textbook that is suitable.  We 
are covering the course topics with handouts and other 
on-line resources for the students. 

Topics covered by the Performance Engineering of Real-
Time and Embedded Systems course include: 

• Performance measurements for real-time and 
embedded systems 
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• Profiling of program execution in embedded systems 
• Exploration of linear control systems 
• Interpretation of linear control parameters 
• Hardware system description languages 
• Hardware/software co-design 
 
The real-time part of the course presents the control of 
physical systems on an intuitive level. The intent is to 
give exposure to control system structure and 
performance rather than have student design control 
systems. The software engineers have no background in 
controls. The computer engineering students are able to 
contribute to the analytical and control algorithms from 
their required control systems courses and will take the 
lead on these projects.  Students perform experiments 
with the inverted pendulum system and a ball and 
balance beam.  These experiments highlight the effect of 
parameter tuning and system load on control of the 
physical apparatus.  In future offerings, this set of 
experiments will culminate with student implementations 
of software controllers. 

The embedded systems part of the course uses our target 
system as the computing element running the VxWorks 
commercial real-time operating system. We deliberately 
chose a rather slow (100MHz clock) 486 processor for 
our target systems so that we could more easily monitor 
loading effects. This is close to power management 
policies in low-power embedded devices that prolong 
battery life by slowing the clock speed. In subsequent 
course offerings, input and output devices will be 
connected through an FPGA I/O controller.  Students 
will measure initial system performance when the I/O 
controller is a pass-through interface between the 
processor and the devices.  The current offering has the 
students performing a set of JPEG image compressions, 
first using an all-software approach on the target system, 
and then off-loading some of the computations to an 
attached FPGA board. The students will then be able to 
make a hardware-software co-design tradeoff by placing 
more device control functionality in the FPGA.  At each 
step the students will measure the change in system 
performance as the boundary between hardware and 
software is moved. 

Using Bloom’s Taxonomy the learning outcomes for this 
course are given in Table 3. 

Table 3 
Learning Outcomes for Performance 

Engineering of Real-Time and Embedded 
Systems Course 

Knowledge 
 • Identify PID control modes 

• Identify the major characteristics of a Field-
Programmable Gate Array (FPGA) 

Comprehension 

 • Distinguish differences between PID control modes 
• Contrast effects of system parameters on control of a 

physical system. 
Application 
 • Profile the execution of an embedded system 

• Be able to program an FPGA doing minor revisions to 
VHDL code 

Analysis 
 • Describe hardware/software tradeoffs in the design of an 

embedded system. 
• Analyze the profiling data to determine which areas of 

the program would benefit most from performance 
tuning. 

• Compare performance of systems based on performance 
data. 

Synthesis 
 • Design a test and measurement plan to collect system 

performance data. 
• Demonstrate the effects of moving the 

hardware/software boundary in a design 

9. Evaluation plan 
This project has two components in its evaluation plan. 

External evaluation: a faculty member from one of our 
collaborating institutions evaluated our work at the 
end of the first year in May 2004. At this same time 
we had an external review by someone working in 
local industry developing real-time and embedded 
systems. Near the end of the NSF funding period in 
June 2005 we will again arrange a review by faculty 
from our collaborating institutions and local 
industrial representatives. 

Course evaluations and surveys: students enrolled in the 
courses are given concept surveys at the beginning 
and end of each course to assess their domain 
learning through each course. Course evaluations 
will ask students to assess the course materials, the 
laboratory environment, the teaching effectiveness 
and whether the course has increased their interest in 
real-time and embedded systems or helped them get 
a co-op or full-time position. 

10. Future work 
This section describes some areas for improvement that 
have been identified and other activities for the future. 

• One challenge has been to develop courses 
interesting to the software engineers and computer 
engineers.  The Modeling course is very well liked 
by the software engineering students but is not as 
attractive to the computer engineers. We need to 
balance the topics better so as to make the composite 
more attractive to both groups of students. Even the 
SE students suggest that we select projects with 
more explicit time-dependent requirements. We will 
also consider designing a project that requires 
implementation on the Java Micro Edition platform. 
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• The main exposure to VxWorks is in our first 
course. We do not have a strict prerequisite structure 
within these three courses thus we are hesitant to put 
projects requiring implementation on VxWorks in 
the other two courses.  We need to create a very 
succinct tutorial on writing applications for 
VxWorks that we can use in the two courses that 
currently do not cover the RTOS in detail. It took us 
quite a while to settle on a configuration for 
VxWorks in the lab that could easily support 13 
simultaneous target systems and give easy 
distribution of new VxWorks images. We next need 
to work on giving students the necessary control to 
create their own images when their project is 
developing a kernel-level driver.  We will also 
investigate the use of a real-time variant of Linux in 
these courses. 

• The lack of a suitable textbook for the performance 
engineering course is an issue for that course.  We 
will assess the best approach to follow after the 
course has run for its first time in our spring 2005 
term. 

• There are other devices that we would like to have 
students use with their project work. At the top of 
the list would be interfacing to cheap USB 
webcams. Unfortunately, we have not yet identified 
any cameras that publish their USB interface. 

• A last element of dissemination of our work, which 
will take place at the end of the project, is to collect 
all of our course materials, projects, exams, etc. onto 
a password protected website and publicize its 
availability to the engineering education community. 

• The facilities are mostly in place now and this has 
attracted the attention of other faculty members.  We 
already have one faculty member scheduled to 
develop a fourth course to be taught in the lab next 
year. 
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Abstract

In the course of a major curriculum change at California
Polytechnic State University, the embedded processing course
was redesigned. During this process, the course had the op-
portunity to purchase new hardware. Analog Device’s Black-
fin processor was chosen based mostly on cost, but also on
performance, development environment, and documentation.

We first present our goals in the class. We then give an
overview of the Blackfin architecture and how the Blackfin fits
in with many of our goals. We then present the implementation
of an expansion board developed to interface with Blackfin’s
EZ-KIT Lite board.

We present our experiences with this setup in the hopes that
others who might be thinking of a similar curricular change
can learn from our successes and failures. We outline the
strengths and weaknesses of the Blackfin architecture as an
educational platform, followed by a discussion of our expe-
riences and a presentation of the support materials we devel-
oped to accompany the course, including lecture material and
laboratories. Finally, we discuss our future directions for our
uses with the board.

1. Introduction

Designing the curriculum for an embedded processing
course is especially difficult in today’s schools because of the
many conflicting goals in curricular design. The ideal would
be cheap, flexible, powerful hardware. This be shipped with
an industrial-strength, intuitive, feature-rich development en-
vironment. Finally, there would be a textbook available that
is targeted towards students rather than a manual targeted at
professionals. If we take a step back and look at the entire
curriculum, we would also like a processor that could be used
for a wide array of classes, such as digital signal processing,
as well as student projects.

Unfortunately, such a bundle of technology, and educa-
tional materials does not exist in a low-cost package. At
California Polytechnic State University, San Luis Obispo, we
chose to use Analog Device’s Blackfin processor. It satisfies
several of the above goals, mainly that it is cheap, general and
powerful hardware, coupled with a good development envi-
ronment, but it was not without disadvantages. Our students

used the manuals, augmented by lecture slides, but had no
textbooks.

In this paper, we explore the tradeoffs that are involved
in designing a single class, CPE 316, Embedded Systems,
at California Polytechnic State University, San Luis Obispo.
We describe our design and how it relates to those trade-
offs. Finaly, we augmented the original hardware and devel-
oped a detailed set of lecture slides that follow the Black-
fin, which currently has no textbook written for it. We
provide the class materials that we developed on-line at
http://www.csc.calpoly.edu/ franklin/316/Bundle.tgz

We begin by analyzing our curricular goals for the embed-
ded systems class in Section 3. We continue in Section 4
by describing the Blackfin architecture, our architecture of
choice, and the development environment provided. Section 5
presents the expansion board design and the flexibility it gives
to the labs. Sections 7 and 8 give a brief summary of our lec-
tures and labs from several instantiations of the class. We give
ideas for future development and conclude in Section 10.

2. Related Work

Embedded processing has become increasingly important,
and with its rise in industrial significance, the best way to
teach the concepts has been studied by several educators.

Many groups have looked at high-level approaches to im-
proving embedded processing education in the curriculum.
Michigan State University proposed an approach to integrate
embedded processing into the whole curriculum rather than
a single course [1]. A full curriculum targeted towards em-
bedded processing, including design from math classes and
engineering classes on up, has also been proposed [3]. They
stress that high-level principles, not specific information com-
mercial companies might want, should be emphasized.

We take on many of the practical matters in designing an
embedded processing course. We assume that the core topics
have already been decided. Our job is to convey this infor-
mation in a way that fits well with the rest of the curriculum,
is up to date, is not too costly, and fulfills as any educational
goals as possible.
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Course Integration Financial

textbook unlike MIPS inexpensive boards
intuitive software parallelism multiple courses
breadboard access DSP

Table 1. Summary of goals

3. Goals

As with any course development, there were disparate
goals in designing this course. We categorize our goals in one
of three categories. First, we had the normal goals that anyone
does with an embedded processing course, that of conveying
the information for the course in the most painless, efficient
manner. Second, we had issues with integrating this course
with the rest of the curriculum. Finally, we had financial con-
siderations to minimize the amount of hardware necessary to
purchase. These goals are summarized in Table 1.

CPE 316 at Cal Poly follows a year of digital design and
computer architecture. They have covered the first 7 chap-
ters of the P&H architecture text, ”Computer Organization &
Design” [4]. They have not yet covered interfacing processor
and peripherals or parallel processing. The students have also
taken at least a year of Java programming. The two courses
that are not in the prerequisite chain are C programming and
assembly programming (other than small portions in the ar-
chitecture course). Most students had taken one quarter of C,
though not all. Almost no students were familiar with partic-
ular C keywords integral to interfacing with devices.

Within the embedded processing course, we had several
goals. The hardware needs to be easy to use, with a develop-
ment environment that was intuitive and quick for the students
to pick up. Cal Poly is on the quarter systems, so the students
cannot waste much time learning new environments. In order
to allow control of interesting devices, it needs a mechanism
for students to connect their own breadboard to the processor.
Finally, the course needs a textbook. There were two choices
deemed acceptable - a textbook that is not tied to any single
processor coupled with manuals, or a textbook that was spe-
cific to our hardware. The former is possibly more realistic
for the workplace, although the latter is easier on the students.

No course is in isolation, so there are higher-level goals to
consider. Prior to this, the major language is MIPS because
of its use in the P&H’s architecture book [4]. Students should
have exposure to a variety of languages, so an assembly lan-
guage that illustrates a new set of features is useful. Finally,
the students have not yet been exposed to parallel processing,
so a language that allows parallel instructions is desirable.

The financial considerations are listed last, but in this econ-
omy in a public school, they often become the overriding fac-
tor. The boards must be either donated or inexpensive. In
order to amortize the cost of the boards, they should be used
for multiple classes. To this end, the processor should be pow-
erful and capable of digital signal processing tasks.
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Figure 1. The 10-stage Blackfin Pipeline.

In the end, we were able to satisfy almost every goal except
for the textbook. In the rest of the paper, we present how we
satisfy the goals through the use of the EZ-Kit Lite Blackfin
board and special hardware attached to it. For a textbook,
we used a combination of detailed lecture slides and helpful
laboratories. We were not satisfied enough with the general
textbooks we found to require the students to purchase them.
Because this was a senior level course, we expected that this
was a more gentle introduction to the resources that will be
available on the job.

4. Blackfin Architecture

The Blackfin is a hybrid microcontroller and digital sig-
nal processor. We used the EZ-KIT Lite, which was obtained
at an educational discount from Analog Devices. We now
present the interesting details about the Blackfin environment
we had, split up into architecture, assembly language, soft-
ware development environment, and EZ-KIT Lite board.

4.1 Architecture

The Blackfin is an in-order, multi-issue processor. The
pipeline has two data paths throughout. The processing core
consists of a 10-stage pipeline. The pipeline is depicted in
Figure 1.

Instruction fetch requires three stages, with a decode stage
fourth. It fetches 64 bits each cycle, though serial instructions
require only 16 or 32 bits. It only executes 64 bits in a single
cycle in the presence of a 3-wide parallel instruction.

Stages five and six are for memory operations and branches
address calculations. It employs two Data Address Generators
(DAGs) for address calculations. Once the branch address is
calculated, it uses static branch prediction to go to the predi-
cated destination.

The Blackfin reads the data register file in cycle seven, and
then performs computations in cycle eight and nine. For com-
putation, it performs multiplication first and then has an alu
for accumulation or any other arithmetic operation. It also in-
cludes special-purpose video units. Data results are written in
cycle ten.

There are two register files - eight 32-bit data registers and
8 pointer registers. It also has several special-purpose regis-
ters for looping and memory address calculations. In addition,
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there are two 40-bit accumulators, one associated with each
multiply/ALU pair.

The Blackfin has three caches - two data and one instruc-
tion cache. There is also a very small instruction buffer in the
fetch unit that can hold short loops. In each cycle, you can
perform a load from all three caches. It may not perform two
loads to the same data cache in the same cycle.

The architecture of the Blackfin itself presented an excel-
lent opportunity to reinforce the ideas taught in the computer
architecture course. The pipeline was still in order, but it had
more pipeline stages and the stages were performed in a dif-
ferent order than the MIPS processor. The students were also
able to learn about static branch prediction, which was not
emphasized in the previous course. Finally, the presence of
dual data caches allows students to think consciously about
when their data is accessed in order to place data such that
you can access both caches in the same cycle.

4.2 Assembly Language Features

The Blackfin ISA has several unique features beyond the
simple MIPS instruction set. The main differences are the
address calculation features, control features, variable data
widths, and parallel processing.

The DAG allows for a very rich set of addressing modes.
In general, one can access a memory location at a constant
offset from a register index and increment the index in a single
instruction. Furthermore, it allows circular addressing with
a stride, automatically wrapping the pointer around when it
reaches the end of the buffer. It also has bit-reverse addressing
specifically designed for the FFT algorithm.

In order to maintain high performance with a 9-stage
pipeline, the Blackfin needs support for branching. The
Blackfin provides two major mechanisms to alleviate con-
trol hazards. First, it provides static branch prediction. Any
branch can be labeled to be predicted taken. Unfortunately,
this only saves four out of eight stall cycles. The address is
not calculated until cycle four, so for loops with a known num-
ber of iterations, the Blackfin provides a zero-overhead loop
mechanism in the fetch unit. It can keep track of two nested
loops at once. The entire loop is buffered in the unit, along
with the counter and the beginning and end program coun-
ters. This automatically provides the proper instruction, with
no stalls, until the loop is complete.

The Blackfin provides support for 16-bit operations as well
as 32-bit operations. It can either perform a single 16-bit oper-
ation on each ALU or have each 16-bit half of a 32-bit num-
ber be treated as a separate 16-bit value for the purposes of
arithmetic operations. This allows one to perform four 16-bit
operations in a single cycle when employing both ALUs.

Finally, as referred to above, the Blackfin allows limited
parallelism. It may perform two 16-bit and one 32-bit oper-
ation at once, drawn from a list of parallelizable operations.

Only one store may be performed each cycle, though one can
perform two loads. There are two DAGs, so address offsets
and updates may also be performed in parallel.

This instruction set satisfied all of the educational goals of
the assembly language. The advanced branching instructions
allowed for an excellent tie-in of core architectural material
to the course, and the parallel instructions provide a unique
opportunity. This was especially important because even cor-
rectly predicted branches as well as unconditional jumps had
a 4-cycle penalty. The ability to control branches in the as-
sembly language and think about the performance ramifica-
tion makes the knowledge more concrete.

4.3 Software

The software environment needed to be intuitive and easy
to pick up, especially in our quarter system. We use the Ana-
log Devices’ Visual DSP++ as an integrated development en-
vironment for the class. Visual DSP++ is designed to be
used with the EZ-KIT lite, a processor simulator, or with a
JTAG interface. This program allows programming the board
in Blackfin assembly or C and provides an overall interface
which is highly similar to other integrated development envi-
ronments.

The only problem with this software is a combination of
hardware problems and the license server. Occasionally, it
gets into a state in which the student can no longer control the
hardware. If they close the program, the license does not al-
ways return to the license server right away. Upon attempting
to restart the program, the license server will say it is out of
licenses. This requires a license server restart.

4.4 EZ-KIT Lite Board

The EZ-KIT Lite Board provides I/O opportunities for stu-
dents with the Blackfin chip. They provide flexibility in aug-
menting their design by having flash memory that can be used
to configure different input and output pins.

The most basic functions that are fun and easy to use are
the LEDs and the pushbuttons. The sample codes that come
with the board are simple for the instructor to understand. The
board also includes more advanced features like audio/video
and bus protocols.

There were two problems with the board. The board has
a set of switches on it that, if changed, cause the board to act
in odd ways. At Cal Poly, the labs are open to allow senior
project students to use hardware for their projects, but they are
not monitored at all times. Students will sometimes flip the
switches, and it is difficult to tell. This caused several students
to lose whole lab periods getting the hardware to work again.

Second, there is no good access for connecting a student
breadboard. Section 5 describes the expansion board designed
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to give students access to several input and output pins on the
EZ-KIT Lite board.

4.5 Documentation

The Blackfin architecture has a Hardware Reference Man-
ual(HWR) as well as a separate Instruction Set Architecture
Manual(ISA). In addition, the EZ-KIT Lite Board has a man-
ual. These manuals are all electronic. Students may request
hard-copies as well, though they are very large and heavy.

The Blackfin HWR and ISA manuals are very well indexed
and easy to navigate through Acrobat Reader. The EZ-KIT
Lite is a little more difficult to utilize efficiently. We found
that the students were more comfortable with the physical
versions of the books and had not had much experience with
electronic manuals. In retrospect, I wish I had done a half a
lecture on how to navigate the manuals effectively.

4.6 Discussion

The Blackfin 533x on the EZ-KIT Lite board satisfied our
hardware goals. It had an intuitive environment, though not
bug-free, it was inexpensive, it had an assembly language suf-
ficiently different from MIPS, allowed for parallel execution,
and had the functionality for digital signal processing. The
only thing it lacked was a simple interface to a student bread-
board.

Our experience with this hardware was mostly positive.
When problems occurred, though, it was very difficult to track
them down. It could be the students’ software, the hardware
switches, the connection to the development environment, or a
bad state. When restarted, sometimes the license server would
then fail.

To alleviate this, students should be counseled early in
the class to save working versions of their code to determine
whether a problem is with their code or the board. In addi-
tion, the students need easy access to someone who has the
authority to restart the license server.

5. Expansion Board Design

Although the Analog Devices’ EZ-KIT lite board is highly
integrated and provides excellent performance, the board is
not designed to be readily used in an educational environment.
Several of the board pins are connected to other chips and are
not available for use through on-board pin headers. Unfortu-
nately, the board does not provide easy access to input/output
pins. What the board does provide is a 3-socket expansion
interface intended to be used with other Analog Devices’ ex-
pansion cards. Each socket is a 90-pin connector with a fine
pitch spacing. We use this interface to connect a custom ex-
pansion board for use in a class lab environment.

Our expansion board contains simple circuitry to buffer
some of the input/outputs pins on the board. One fact to note
when using the I/O pins of the Blackfin is that the I/O pins
on the Blackfin processor use 3.3V interface circuitry. Con-
necting 5V circuits directly to the I/O pins would damage the
Blackfin. Instead, we used voltage level conversion buffers to
allow 5V circuitry to be used during the labs.

The expansion board design provides a modest number of
digital inputs and digital outputs. The design allows software
to control 8 digital outputs and 8 digital inputs. Should more
inputs and/or more outputs be required, an SPI I/O port ex-
pander would be good for that purpose. Also, a CD4094,
would work well as an output expander because of the shift-
and-store inteface it provides.

A 24-pin ribbon cable is used to connect the students’
breadboard with the Analog Devices’ board. On one end of
the cable is a polarized connector which connects with the ex-
pansion board, and on the other end is a 24-pin DIP socket
which plugs directly into a breadboard.

6. Textbook

Currently, no textbook exists for that targets the Blackfin
architecture. We considered a more general textbook, such as
Computers as Components [5]. Although this was useful to
use as instructors, and we incorporated some of the publicly
available on-line slides into the lectures, it was at such a high
level that we made it a recommended textbook, not a required
textbook.

This meant that are lecture notes were the only resource
the students had beyond the manuals. Our lectures slides are a
combination of high-level, general material, followed by spe-
cific information for the Blackfin architecture.

7. Lectures

The lecture slides were a combination of theoretical mate-
rial and Blackfin-specific implementation. The figures for the
Blackfin-specific material were obtained from the hardware
and ISA manuals [2].

We are releasing the slides so that they may be used as a
building block for someone to tailor their own slides if they
wish. They are by no means complete and will continue to be
developed as the class is taught more often.

7.1 Lecture Topics

We have created a set of lectures that cover the core em-
bedded processing subjects as well as additional special top-
ics that are related to architecture and embedded processing
in general. The core topics are:

• Memory-Mapped I/O / Polling
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• Interrupts

• Timers

• Ports / Buses

• DMA and Power

• analog / digital conversion

We also added several topics, ranging from architectural
lectures to tie the chip back to concepts introduced in the ar-
chitecture classes to pure C and assembly programming tech-
niques.

• Blackfin Overview / ISA describes the overall architec-
ture as well as giving examples on branching mecha-
nisms and loading and storing.

• Blackfin Pipeline gives details on what each pipeline
stage performs including timing diagrams of instruction
sequences and their stall cycles.

• Blackfin Calling Convention presents generic function
call convention with the specific rules of the Black-
fin processors. It also covers the difference in calling
convention between concentional functions and interrupt
handlers.

• Static Branch Prediction gives details on the zero-
overhead-loop instructions, static branch prediction, and
conditional instructions. It includes timing diagrams and
statistical performance problems. Finally, it relates the
branch penalties to what stages operations occur in the
pipeline.

• Parallel Processing covers statically scheduled parallel
programming, Blackfin parallel instructions, loop un-
rolling, and software pipelining.

• C for Assembly Programs presents C keywords that
range from necessary to useful when programming with
devices. First a brief overview of memory regions and
scope in C. The keywordsvolatile, register, static, in-
line are shown. A memory example of exploiting two
data banks is given. It moves on to several Blackfin-
specific tricks like the keywordrestrict, making easily-
recognizable circular buffers. Finally, it shows how to
interface C functions with assembly functions and use
inline assembly.

• Optimizing Code introduces the idea of profiling, Am-
dahl’s Law, and test input sets. It then presents several
optimization techniques like DMA, data locality, and
some simple examples of branch removal.

7.2 Discussion

The additional topics were taught only in the second in-
stantiation. This led to some different observances in the lab
work for the course.

The first time this course was taught, before the C for As-
sembly lecture was included, students strongly preferred us-
ing assembly in the laboratories. After the addition of the C
lecture, students were much more comfortable using C, and
more than half of the students used C when they were given a
choice.

Before the calling convention lecture, students had very
little idea of how, from a register point of view, the handler
should be written. Some students were reserving registers
to be used as communication between the main loop and the
ISR, whereas others were destroying random registers without
realizing that this would affect the registers used in the main
loop. This greatly enhanced the understanding of both the un-
predictability of when the ISR is called and the importance of
register usage conventions.

For the rest of the extra lectures, they are very much bonus
material intended to reinforce concepts learned in either as-
sembly language courses or architecture courses. An embed-
ded processing course is the ideal place to do this, since this is
sometimes the first time students have needed to program in a
meaningful way at this level. In previous courses, they often
felt the assembly language was just an educational task with
no real purpose. Once they see the usefulness, one needs only
to bring in a performance-critical problem in order to expand
the focus of the course. This gives the opportunity to teach
about profiling and high-level code optimizations all the way
down to branch prediction, code scheduling, and pipelining.
It can serve as a great culmination of all of the software and
hardware skills the students have learned.

8. Labs

Our labs were designed with a few goals in mind. First, we
wanted to target the skill sets of polling, interrupts, and con-
trol. Second, we wanted to make the labs interesting so that
by the end of the quarter, the students could imagine them-
selves building a robot if called upon to do so. Finally, we
needed to fit everything in a 10-week course. The labs be-
low are not from a single instantiation of the class, but cho-
sen from various instantiations of the class. They are not
the entire assignments, either, but the portions that the stu-
dents found the most fun. The actual assignments had small
pieces that are not mentioned, culminating in a larger assign-
ment at the end. The full text of the labs can be perused at:
“http://www.csc.calpoly.edu/∼franklin/316/Labs.html.”
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8.1 Polling

The original polling labs were fairly uninteresting, only re-
quiring the students to respond to button presses by changing
patterns on the LEDs.

A proposed future lab would create a Simon Says game
where the LEDs would light up in a certain sequence, and
the player would need to repeat that sequence with the but-
tons. The computer would keep generating faster and longer
sequences until the player could no longer get the sequence
correct.

8.2 Interrupts

The interrupt lab was a ping-pong game, where the LEDs
represent the ball, and the buttons represent the paddles. A
player can lose by either pressing the button at the wrong time
or not pressing the button when the ball is there. At the end,
display a message that indicates both who won and why they
won. As the game continues, the ball needs to accelerate.

This lab served several purposes. It was fun for the stu-
dents, required thought as to how to detect all the ways to lose,
and allowed for some flexibility in design by having them de-
cide how to display the loss. Several students even imple-
mented extra functionality by allowing a game reset with one
of the other buttons. In one instantiation of the course, this
was the most successful lab.

8.3 Nested Interrupts

The nested interrupts assignment was a part of the inter-
rupts lab. They were to display morse code depending on
what button was pressed, but allow interruption of displaying
the different patterns depending on which other button was
pressed. They were to implementing the displaying of the
pattern in the interrupt service routine, not in the main pro-
gram.

8.4 Timers

For this lab, the students built a dimmer. The light’s bright-
ness was controlled by the amount of time the light was turned
on. Timers controlled the light turning on and off. When one
button is pressed, the light gets dimmer, and another causes
the light to get brighter.

The students enjoyed this lab very much. The biggest mis-
take was to change how often the light turned on and off with-
out ever turning the light on for a longer period than it was
turned off.

8.5 Advanced labs

In various instantiations of the class, the last lab involved
the students receiving input from external devices, performing
some operation and producing output for an external device.
These devices could be hooked up to the breadboard.

Servo Lab The servo lab used a standard hobby servo that
is controlled by a 1-2ms pulse with a period of 20 ms. If the
pulse width is 1ms, it is turned all the way to the left. At 2ms,
it is turned all the way to the right. You can place it anywhere
in between by adjusting the width between 1-2ms. The period
must stay constant at 20ms.

The servo was controlled by the buttons. There were two
instantiations - two buttons set them to far left and far right,
while the two middle buttons made the servo rotate slowly to
the left or right. In the other version, all four buttons deter-
mined four positions for the servo to point.

Potentiometer A potentiometer dial, when rotated, adjusts
the power it is sending between 0 and 5 volts. This is then
connected to an ADC0831 and read in by the students.

The ADC0831 interface was the most complex the students
encountered. They needed to transmit a chip select signal
along with a clock to the ADC0831 and then sample the in-
coming bit 8 times in order to obtain the 8-bit value for the
volt.

Students did not realize how precise the timing needed to
be about putting the chip select down before beginning the
clock, and then waiting a cycle before beginning the sample.

The potentiometer was used to control the LEDs. The
LEDs could either display the 8-bit number in binary, or it
could look more like a voltmeter with the number of lights
growing from one side or another.

The potentiometer and servo can be combined to have the
potentiometer control the servo. This involves more coordi-
nation for the students, but they thoroughly enjoyed getting
the hardware to work. This lab was a highpoint for many of
the students.

8.6 Discussion

There are many ways to design the labs. In our quarter-
system environment, we felt the need to streamline the labs so
that the students could learn the most concepts in the shortest
amount of time. This led to tradeoffs in how the labs were
structured as well as to how much information was provided
to them.

When designing the labs, we had a trade-off between small
problems that targeted specific skills and large labs that would
take fewer different files. Due to a combination of the de-
velopment environment and the fact that they were initially

Page 18 Workshop on Computer Architecture Education June 5, 2005



coding in assembly, the overhead with beginning a new pro-
gram was quite large. In retrospect, it is important that dif-
ferent parts merely build on each other and do not require a
new codebase. What were listed above are the core projects,
although the actual labs often include some smaller, simpler
parts before building to the full lab. The intent of the smaller
parts was to allow for more partial credit if students could
not get the whole thing working. In the future, teaching the
students about how to break down large projects in order to
test them thoroughly would have been better than cutting the
projects up into different parts that did not directly build on
each other.

There were also differences in how we implemented the
labs. The first instantiation of the course provided students
with only the manuals, requiring them to begin from scratch.
The second instantiation of the course provided sample code
(often the code similar to that shipped with the board) so that
they could use that as a baseline and modify it for the specific
assignment. In order to try to ensure the students took the time
to understand the given code, a set of questions was asked
about the sample code and turned in. This definitely made
it quicker for students who could learn from sample code to
finish the projects. Several groups that understood the con-
cepts completed early labs in very little time. Struggling stu-
dents resorted to some method of random code replacement,
not truly understanding the sample code and often not making
the changes to it in the right places. It is clear that for strong
students, the sample code method removed much of the te-
dium that would have been involved and took nothing away
from the learning. For the struggling students, however, it is
unclear which was better. With no sample code, they do not
know what to generate on their own, so it would take much
more time to solve the labs. On the other hand, if they solve
the early lab, that would give them a more solid foundation
to solve later labs. With sample code, they could more easily
fool themselves into thinking they were not so lost.

9. Future Work

Since the course is still in its first year, it will continue to
be developed in the coming years. In the future, we will be
augmenting our slides with material and improving the labo-
ratory projects.

For the lectures, the more general material was not in-
tegrated seamlessly into the Blackfin-specific details. More
work will be done in the following year with obtaining sup-
port materials for the students and integrating them into the
lecture slides.

In addition, more hardware components can give new and
interesting laboratory assignments. There are a variety of labs
that could be added for a course that is a semester long. This
would open up the possibility of an open-ended project for the
last month of the course. In addition, we did not have time to

touch upon code optimization in the laboratories. We could
give a task and have the students learn how to profile code,
time their code with on-board timers, and have a contest as to
which group had the fastest solution. The students were very
excited about such a prospect.

10. Conclusion

Embedded processing courses will always have a difficult
time keeping up with technology because students work at the
assembly level. Textbooks are hard-pressed to keep up with
the new hardware offerings, and schools face many pressures
when choosing a development platform.

We give analysis on what problems were faced in design-
ing our embedded processing course. We found a hardware
/ software environment that serves most of the goals set out,
and we have augmented the available materials with our own.
Our materials are now publicly available. The course was
largely successful, with just a few changes needed in the ma-
terial to present in order to make up for the lack of a textbook.
We hope others who choose the same setup will be able to
learn from our contributions of materials and experiences.
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ABSTRACT
This paper describes SPIMbot, an extension to James Larus’s
widely-used MIPS simulator SPIM, that allows virtual robots
to be controlled by writing programs in the MIPS assem-
bly language. SPIMbot was written to provide an engag-
ing environment to motivate students to learn assembly lan-
guage concepts. The SPIMbot tool allows the development
of scenarios—in which students must program the robot to
perform certain tasks—and provides the means to compete
two robots against each other.

In our sophomore/junior-level class, we structure the pro-
gramming component as a collection of structured assign-
ments that produce sub-components for the robot; these
sub-components are then used in a final open-ended pro-
gramming assignment to produce an entry for a SPIMbot
tournament. In our experience, this has been an effective
means of engaging students, with many students investing
time to aggressively optimize their implementations. SPIM-
bot has been effectively used in large classes and its source
code is freely available [8].

1. Introduction
As one of their “Seven Principles for Good Practice in

Undergraduate Education”, Chickering and Gamson [1] list
emphasizing time on task as number 5. They state:

Time plus energy equals learning. There is no
substitute for time on task.

Thus one of our chief tasks as undergraduate educators is
to develop activities that encourage our students to spend
time on the course concepts and approach them with de-
sire to master them. This paper describes one such set of
activities, focused on teaching concepts related to assembly
language programming.

In the remainder of this section, we describe the motiva-
tion for this work (Section 1.1) and abstractly how we use
SPIMbot to achieve our pedagogical goals. After discussing
the capabilities of the software (Section 2), we discuss, in
detail, how it was used in the Spring 2004 semester (Sec-
tion 3). We conclude, in Section 4, with a discussion of
student feedback that supports our assertion that SPIMbot
is an engaging way for students to learn assembly language
programming concepts.

1.1 Motivation
In teaching assembly programming in our Computer Sci-

ence curriculum1, we have two primary goals: 1) to pro-
1Assembly programming is taught in the context of the second

Figure 1: Example SPIMbot screen shot. The map
window shows the robot’s current location, orientation, and
virtual environment; in this scenario, SPIMbot can turn
on/off a paint trail allowing it to write out messages. Be-
hind the map window is the main window (unmodified from
xspim) that shows the MIPS processor’s machine state.

vide students a mental model of how a computer executes
their high-level language (HLL) programs, and 2) to pro-
vide the background knowledge necessary for later courses
on compilers and operating systems. To this end, we teach
the students about instruction sets, stacks and their man-
agement (including recursion), calling conventions, floating
point arithmetic, instruction encoding, I/O interfacing, and
interrupt handling.

If one is not careful, these topics can come across as dry.

semester-long class in a required two-class sequence in computer
architecture. The first class in the sequence teaches digital fun-
damentals: the digital abstraction, combinational logic, finite-
state machines, and basic architecture concepts (e.g., a single-
cycle implementation). The second class covers three main topics:
assembly programming, machine organization, and memory and
I/O systems; each topic receiving roughly a third of a semester.
As our undergraduates predominantly pursue software-oriented
(rather than hardware-oriented) careers, the goal of this second
class is to provide the practical understanding of computer hard-
ware necessary to be an effective programmer. Most students
continue their architecture sequence, taking a third course in ei-
ther high-performance architecture or embedded systems.
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The students’ limited programming experience (this class
is early in the curriculum) coupled with the inherent in-
efficiency of assembly programming can limit the scope of
programming assignments. Furthermore, the demands of
grading, especially in large enrollment classes where some
form of automation is necessary, require most assignments
to be rather structured. Examples of common assembly pro-
gramming assignments found at many universities include:
producing the Fibonacci sequence, string manipulation (re-
versing a string, toupper(), etc.), and sorting arrays. In
many cases, HLL source is provided, reducing such assign-
ments to somewhat mechanical translation.

The goal of SPIMbot was to produce an environment for
teaching assembly programming that was fun and interest-
ing, to motivate students to want to learn the material.
While there is a long history of using robots for instruc-
tion (e.g., [5]), the author’s inspiration came from Patricia
Teller’s presentation [7] at the 2003 Workshop for Computer
Architecture Education. In their semester-long course on as-
sembly programming concepts, students program 68HC11-
based robots to escape from mazes and chase other robots.
Pedagogically, programming robots has three appealing fea-
tures: 1) it is visceral: students like seeing their code control
motions and actions of objects in the physical world, 2) it is
cognitively challenging: debugging requires mapping robot
behavior back to the behavior specified in the code, and 3)
it provides a non-contrived way to expose students to I/O
programming.

The problem with (physical) robots is one of logistics;
in a high enrollment class—we have 100-150 students per
semester—acquiring, maintaining, and scheduling sufficient
resources is prohibitive. In contrast, virtual robots are cheap,
plentiful, take-up no space, require no maintenance, yet (for
students accustomed to interpreting computer-rendered vir-
tual realities) still provide the fundamental qualities of phys-
ical robots.

1.2 How we use SPIMbot
The central part of our implementation is the SPIMbot

tournament, a friendly competition between the programs
that the students write. The contest presents a challeng-
ing, multi-part task for the robots to perform. We use this
concrete task to motivate the presentation of the desired as-
sembly language concepts and the problem solving/design
process.

As most of our students have not been exposed to assem-
bly language previously, the SPIMbot tournament is the last
activity in our assembly language segment. We work up to
the contest by solving isolated sub-problems as program-
ming assignments. We start with small structured assign-
ments and then move onto larger structured assignments
before attempting the contest (a large open-ended assign-
ment). This structure lets us provide the students with
early, motivating successes.

Although it is the last assignment, we present the con-
test first, because it allows us to model a problem solving
process: a top-down design, followed by a bottom-up imple-
mentation. In class, we brainstorm approaches to the con-
test task, making it clear that there are multiple approaches.
Then, we identify sub-tasks necessary for accomplishing the
contest goal; these sub-tasks make up the structured pro-
gramming assignments leading up to the contest. The con-
test itself challenges students to figure out what they need to

implement and requires them to integrate the components
they’ve completed in previous assignments.

When it comes to covering the desired course material, the
fact that SPIMbot exists only in a virtual reality can be an
advantage, as we can structure that reality to include those
concepts that we want to teach. For example, two concepts
that we cover in the course are recursion and the implemen-
tation of linked-data structures. To incorporate these con-
cepts into our programming assignments, our Spring 2004
contest (see Section 3) involved an I/O device that returned
its output as a tree, requiring students to write a recursive
procedure to traverse the nodes of the tree.

After the students have submitted their contest entries,
we use one class period to hold a tournament. With each
competition lasting about 15 seconds, a double-elimination
tournament for 32 teams can easily be held in a 50-minute
class period. While this class time could be used for other
purposes, we believe that it successfully motivates students
to be actively engaged with course material outside of class
achieving our objectives.

A Note on Competition: As competition can be demo-
tivating if not handled properly [2, 3], we take a number
of steps to alleviate the potential downsides of competition:
1) performance in the competition is responsible for a min-
imal fraction (about 1 percent) of student’s final grade, 2)
students compete as teams, reducing the pressure on indi-
viduals, and 3) teams select team names allowing students
to compete anonymously.

2. SPIMbot Software
SPIMbot is an extension of James Larus’s widely-used

MIPS simulator SPIM [4]. SPIMbot involves three major
enhancements: 1) a framework for simulating robots and
their interactions with a virtual world, 2) a 2-D graphical
display to visualize the robots and their environments, and
3) support for concurrently simulating multiple programs—
each on their own virtual processor—allowing multiple robots
to be simultaneously active in a single virtual world.

Simulating the virtual world requires tracking and updat-
ing the state of the robots and other objects in the simu-
lated world. In addition to location, orientation, and veloc-
ity, we have to keep track of the state of any I/O devices.
Updating the world involves computing new locations for
objects based on their current velocities. Collision detec-
tion is performed to update an object’s velocity/orientation
(e.g., when a robot runs into a wall) and to allow inter-
action between robots and simulated objects (e.g., when a
robot picks up an object or pushes a button). Events in the
virtual world can also trigger events in the MIPS processor,
either updating the state of an I/O device and/or triggering
an interrupt.

To interact with the virtual world, SPIMbot provides the
robot programmer an (extensible) array of input/output de-
vices. These virtual I/O devices, like real I/O devices, have
their I/O registers mapped to memory addresses and, thus,
are accessed using normal loads and stores. Simple examples
include “sensors” that tell SPIMbot its or the opponent’s
(X,Y) coordinates and “actuators” to control its orientation.
The SPIMbot code is structured so that the collection of I/O
devices can easily be extended for a particular scenario. Fur-
thermore, SPIMbot includes a programmable interrupt con-
troller (PIC) that allows individual device interrupts to be
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enabled/disabled. Standard interrupts include the “bonk”
interrupt (raised when SPIMbot runs into something) and
timer interrupts (SPIMbot includes a programmable timer).
The collection of interrupts can also be extended.

To achieve a tight coupling between the virtual world and
the simulated MIPS code, we interleave the simulation of
the virtual world with that of the MIPS code. Every cycle
we execute a single instruction for each robot and update
the physical world based on the actions of the robots. Sim-
ulating multiple concurrent robots required eliminating the
use of global variables in SPIM’s parsing and simulation of
MIPS code; while currently we only simulate two robots,
this could easily be extended to any number. As there can
be interactions between the robots, we alternate each cycle
which robot is simulated first in an attempt to be fair.

The graphics are currently decidedly low tech—XWindows
drawing primitives are used to draw geometric shapes (lines,
boxes, circles, etc.)—but this appears to actually have two
advantages: 1) it is very simple; a minimal amount of de-
velopment time is required to add the rendering code for
a new scenario, and 2) it is not distracting; students can
focus on what the graphics represent instead of the graph-
ics themselves. Because the graphics are not demanding,
smooth animation can be achieved without state-of-the-art
hardware. In part this is because the graphical display need
not be rendered every cycle. Currently, we re-draw every
1024 cycles and can achieve a refresh rate over 60 Hz on a
1GHz laptop.

3. Example Scenarios
In this section, we discuss one scenario in detail to demon-

strate how we organize the competition and the assignments
that lead up to it and, then, discuss two other competitions
more briefly to demonstrate the expressiveness of SPIMbot.

3.1 Spring 2004: Token Collection
In the Spring 2004 semester, the competition revolved

around collecting “tokens”: 15 tokens were randomly placed
on a square map, tokens could be collected by driving over
them, and the location of tokens can be divined by using an
I/O device called the “scanner.” The winning robot was the
one that collected the most tokens by the end of competi-
tion.

Writing a program to compete in the contest involved: 1)
allocating memory for the results of a scan, 2) communi-
cating with the scanner to initiate a scan, 3) handling the
scanner’s interrupt, 4) searching the tree-like data structure
returned by the scanner for the location of tokens, and 5)
repeatedly orienting SPIMbot toward a token and recogniz-
ing when it has arrived, until all tokens have been collected.
As this represents a relatively difficult programming assign-
ment for students at this point in the curriculum, we broke
out major components of the program as individual pro-
gramming assignments. Below is a list of the structured
assignments that led up to the contest:

1. A SPIMbot introduction: write a simple interpreter
that reads a string of commands (e.g., turn, wait, paint
on/off) and invokes provided functions that perform
these actions. Introduces students to SPIM/SPIMbot
and exposes students to loops, arrays, calling func-
tions, control flow and I/O interfacing.

a t o k e n

a n a r e ab e i n gs c a n n e d a S P I M b o t
Figure 2: SPIMbot token collection competition.

2. Arctangent Approximation: given the (x,y) location
of 2 points, compute the angle to drive from one to
the other using a Maclaurin series expansion. Exposes
students to computing in floating point.

3. Tree Traversal: SPIMbot’s scanner returns the loca-
tion of the tokens embedded as leaves of a tree-like
data structure. Students write a recursive function
that traverses the tree. Exposes students to linked data
structures and recursive functions in assembly.

4. Interrupt Handler: write an interrupt handler for the
timer interrupt that commands SPIMbot to turn 90
degrees and resets the timer, resulting in SPIMbot
driving in a square. Introduces students to writing in-
terrupt handlers.

While the solutions to these assignments can be integrated
into a working contest entry, designing a competitive en-
try requires a little more effort. Three activities dominate
the execution time of most of the robots: scanner latency,
tree traversal, and collecting tokens. In a straight-forward
implementation, which scans the whole map at once, these
activities are performed completely sequentially (Figure 3a).

A higher performance implementation can be developed
which pipelines the scan/traversal/collection process. The
scanner can be programmed to scan only a portion of the
map at a time, and its latency is largely a function of the
area scanned. Once a small portion of the map has been
scanned, the robot can begin collecting tokens from that
portion while it requests the scan of the next region. In
this way, much of the scan latency can be overlapped with
the latency of tree traversals and token collection. Students
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s c a n c o l l e c tt r a v e r s ea )
b )

Figure 3: Pipelining the three sub-tasks reduces the

latency of the task. By scanning one-ninth of the map
at a time, the pipelined version (b) overlaps the collection of
tokens with the scanner latency, completing the task signifi-
cantly before the non-pipelined version (a).

found that breaking the map into 9-36 pieces and pipelining
the processing of those pieces resulted in good performance.
Another enhancement that students developed was driving
to the center of the region currently being scanned after all
known tokens had been collected.

Developing such a pipelined solution requires managing
concurrent activities and demonstrates the importance of in-
terrupts. The students learn first hand that their interrupt
handler must avoid clobbering the applications registers, be-
cause it could be called at any time. It also demonstrates
that pipelining—a concept we introduce in the machine or-
ganization portion of the class—is not a concept that is re-
stricted to hardware.

3.2 Fall 2004: Block Pushing
In the Fall 2004 semester, the contest revolved around

pushing blocks onto your side of the map (see Figure 4).
The contest had a fixed running time and the winner was
the one with the most blocks when time ran out. Elementary
physics were implemented so that robots could push blocks,
which in turn could push other blocks. An I/O device was
provided that could be queried to provide the location of
each of the blocks.

Like the token collecting contest, we integrated a compu-
tational challenge into the contest. Initially, a most of the
blocks are “locked” to one or both of the robots. When
a robot runs into a locked block, an interrupt is triggered
and the robot receives a six character string. This string
is a scrambled version of common english word, which, if
unscrambled, can be used to unlock the block for this robot
so that it can be pushed. As machine problems leading up
to the contest, students wrote a string compare function, a
function that would do a binary search of a sorted dictio-
nary looking for a given word, and a recursive function that
produces every permutation for a 6 character word. These
functions can be integrated to unscramble the scrambled
clues.

Because we provided the dictionary to the students ahead
of time, there was a significant opportunity to optimize the
unscrambling function by offline computation. The follow-
ing is representative of what the winning robots did: 1) sort

Figure 4: SPIMbot block pushing competition.

the characters in the scrambled word into a canonical or-
der (i.e., alphabetical order), 2) as only the 26 lower case
letters were used, each ascii character could be represented
in 5 bits; use this insight to translate the 6 char string into
an integer (6 * 5 bits = 30 bits), 3) do a binary search on
a precomputed table that maps these canonical integers to
the strings they encode.

3.3 Spring 2005: Maze Traversal
This Spring semester our contest goal was to completely

traverse a maze without being able to see the walls (see
Figure 5). Since the mazes we generate are unicursal (i.e.,
there are no isolated islands), the “right-hand rule” (i.e.,
never letting your right hand leave the wall) can be used tra-
verse the whole maze. Alas, SPIMbot does not have arms,
much less hands, but the right-hand rule algorithm can be
implemented with two interrupt handlers, by periodically
checking to see whether a wall is still to the right of you,
as follows: 1) request timer interrupts at a period so that
roughly one is received for each square visited; when a timer
interrupt is received, turn right and request another timer
interrupt, and 2) when you run into a wall (which triggers
a “bonk” interrupt), turn left. This was assigned to the
students as a machine problem.

The computational challenge for this contest was to sort
an array of double precision floats to find the Nth highest
number (for varying N). Each time the correct value was
identified, the SPIMbot was provided additional “energy”;
energy could be used to drive faster, or, in large amounts, to
drive through walls for short periods of time. Incorrect an-
swers were penalized, so that the expected value of random
guessing would be negative.
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As a machine problem early in the semester, the students
implemented a bubble sort, but there is clearly much op-
portunity to do better. A number of students implemented
quicksort with the optimization of, at each stage, only sort-
ing the partition that contains the Nth number. A few
groups recognized that because a small error rate could be
tolerated, the computation could be done on the integer
pipeline only loading the top word of the doubles; this opti-
mization saves one cycle on each of the load, because lw.d is
translated into two instructions. The winning group realized
that, because multiple guesses were allowed, the penalty for
incorrect guesses was low enough that it was more efficient
to guess an expected range for the Nth value (based on the
properties of our random number generator) and perform
a single pass over the array guessing any number in that
range. In this way, their robot could maintain full energy
while constanting driving through walls; their run time was
minimized by finding the shortest path that visited every
square.

Scenario Implementation Time: After the Spring 2004
semester, we re-factored SPIMbot’s implementation to de-
couple the scenario-specific aspects from the core of SPIM-
bot’s implementation. With these changes in place, it is
rather straight-forward to implement new scenarios, by im-
plementing a collection of functions for supporting scenario-
specific initialization, physics, drawing, and I/O devices.
The Fall 2004 scenario required about a day to prepare;
this accounts for the time to implement both the SPIMbot
code, as well as the MIPS code to test the scenario (which
includes solutions to most of the structured assignments).
The Spring 2005 scenario took longer to implement (per-
haps a 40-hour week of programming time), but was largely
completed by an undergraduate.

4. Student Reaction
The Spring 2004 students had a quite positive opinion

of the SPIMbot assignments and student anecdotes suggest
that they found it engaging. Students were asked in an
anonymous electronic survey to rate their enjoyment of the
SPIMbot assignments on a 5-point scale (5: “very much
so” to 1: “not at all”). Of the 88 out of 99 students that
responded, the mode was a 5 and the mean was just under
4 (see Figure 6).

In the course evaluations, six students commented specif-
ically about SPIMbot when asked “What do you like about
this course?”, including the following quotes:

“I really liked the SpimBot Tournament. That
was the coolest thing I have done in a class. It
makes it a lot more fun”.

“I liked the MP’s, especially the SPIMbot Tour-
nament and how the MP was designed to make
us think of optimizations for ourselves.”

“... I also really liked the SPIMbot tournament”

The feedback was not uniformly positive, suggesting that
there remain opportunities for improvement. One student
mentioned SPIMbot in response to the question “What do
you NOT like about this course?”, giving the following re-
sponse:

“Spimbot. Pointless, difficult, and closed source,
so hard to see exactly what was happening, so
it’s not entirely useful”.

Figure 5: SPIMbot maze traversal competition. The
red squares are those that have only been visited by the red
robot; the purple squares have been visited by both the red
and blue robots (red + blue = purple). The black bars below
the map indicate energy.
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Figure 6: SPIMbot achieved high-level of student

enjoyment. Data shown for the 88 (out of 99) responding
students for the Spring 2004 semester.
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We have addressed this comment in more recent contests
by providing the SPIMbot source to the students when the
contest is assigned. By having the source, students can run
SPIMbot inside a debugger which helps them debug prob-
lems relating to interrupts, which are challenging to identify
from SPIM’s built-in debugger. We encourage students to
inspect the code by stating that they are free to exploit
any bugs they find2. A number of students do inspect the
source; in the Spring 2005 contest, we received many com-
ments about an unused “SPIMBOT CHEATER” #define

statement that was left in the code from when we were de-
veloping and testing the scenario. As the ability to efficiently
read source code is a skill that comes with practice (one not
emphasized early in our curriculum), organizing the contest
in this way motivates some students to study the code.

Another measure of student engagement is the effort they
expended. Along with their source code, students handed
in a short write-up describing any noteworthy aspects (gen-
erally optimizations) of their program. Of the 30 teams,
over 3/4’s of the teams attempted optimizations with half
completing significant optimizations:

• 15 teams (50%) described aggressive optimizations like
segmenting the scan and the aforementioned pipelin-
ing,

• 5 teams (17%) described modest optimizations like
greedily picking up the closest known token at any
time,

• 7 teams (23%) reported attempting no optimization,
and

• 3 teams (10%) reported attempting aggressive opti-
mizations, but failed to get them working, requiring
them to submit unoptimized versions.

Some of the teams that aggressively optimized their code
reported trying a variety of techniques or parameterizing
their code and tuning those parameters. Here are two stu-
dent comments:

“We tried many different strategies, including
sorting the nodes in order of increasing distance
from the spimbot, using an algorithm which heads
toward the closest node to spimbot each time
spimbot moves toward a new token, rescanning
token locations to determine if they have been
picked up, and breaking up the scans into dif-
ferent sizes. After trying all of these, we found
that the only one which sped up the collection of
tokens was breaking down the scan.”

“Our program does scans of size 25 thus giving
36 scans. We found this to be optimal because we
started out with scans of size 5 doing 900 scans
and found it to speed up as we approached 36.
We even went down to 16 and found it slowed
down as the scan sizes got bigger. Thus we have
an optimal scan size.”

2Interestingly, the first thing that many students look for
is a way to write to the memory image of the other robot,
which provides a nice segue to discussing virtual memory,
also covered in the course.

In the Fall 2004 semester, we had students report the
number of hours they contributed to the development of
their SPIMbot programs. While there was some variability,
most students spent 10-20 hours each, working in teams of
2-3 students.

A final metric of effort that students expended on their
contest entry is the number of lines of code. While lines of
code is a metric of little practical utility, it outlines the of the
work and the amount of effort the students put into it. The
assignments that the students handed in ranged from 186
to over 608 lines of code and data segments (not counting
blank lines and those containing only comments), with most
in the 200-400 lines of code range. For comparison, there
were about 130 lines of code provided in solutions that most
students incorporated into their designs.

In light of the age-old challenge of teaching a student body
with a diversity of aptitude (i.e., “How can we teach so
that all of the students learn the fundamentals, while still
pushing the best students?”), perhaps the SPIMbot tourna-
ment’s best use is providing the best students a challenge
that pushes them.

5. Future Work
As it stands, SPIMbot is derived from SPIM which is

only a functional simulator: each instruction takes a single
cycle. Given that our course teaches pipelining and cache
fundamentals, it would be desirable to enhance SPIM (as
was done for CLSPIM [6]) to model pipeline and cache stalls.
In this way, the course material would be unified in this final
project and students would be exposed to a more realistic
optimization scenario.
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Abstract

In this paper, wedescribea graphic editing tool called
QUILT (Quick Utility for Integrated circuit Layout and
Temperature modeling). QUILT permitsusers to rapidly
build floorplansof integratedcircuits,providing botha vi-
sualaid aswell asan input to theHotSpotsimulator. The
tool providesnumerousfeaturesfor estimatingcircuit per-
formance, such as interconnectdelay, and for generating
graphicalimagesfor publications.Asa graphicalandeasy
to use tool, QUILT is well suited for both research and
courseworkpurposes.

1. Introduction

An essentialelementof computerarchitectureeducation,
whetherat thelevel of anundergraduatehomework assign-
mentor doctoral-level research,is investigatingthe trade-
offs amongmultiple designcriteria, suchasperformance,
cost,andpowerdissipation.Themosthands-on,realworld,
avenuefor exploring computerengineeringtradeoffs is de-
signing, testing, and fabricating different integrated cir-
cuits and comparingtheir characteristics. However, the
prohibitively high time andmonetarycostsof theseactiv-
ities make themusefulonly for small circuitsor long term
projects. Hardware emulationvia FPGAsprovides more
rapid turnaroundtime yet suffers from two major limita-
tions. First, the densityof FPGAssignificantly lags that
of full-customCMOSdesigns,makingit necessaryto span
severalFPGAsfor large,microprocessor-level emulations.
Second,the internal hardwarestructureof FPGAsdiffers
considerablyfrom a full-customdesignmakingit difficult
to correlateperformanceandpowermeasurementsfrom the
FPGAto thatof thefull-customdesign.

For thesereasons,theuseof softwaresimulationfor ex-
ploring designtradeoffs is very popularin computerarchi-
tectureresearchandeducation,permittinglargesystemin-

�
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vestigationsto be performedvery rapidly. Although not
asaccurateasrealhardware,simulatorsproduceresultsfor
largescalesystemsin a matterof minutesor hours. Thus,
many tools,bothproprietaryandpublic-domain,have been
developedto study the performance,power, andtempera-
tureaspectsof differentarchitectures.Thereasonableaccu-
racy andrapidturnaroundtimesof thesetoolsmakesthem
highly appealing.

However, most popular simulation toolsets are text-
basedandcommand-linedriven.Whenusedfor taskssuch
asfloorplanning,suchinterfacesaretediousandleadto fre-
quentandhard-to-detecterrors. For instance,the input to
theHotSpottemperaturemodelingtool [7, 12] is a text file
containinga listing of x,y coordinatesandsizesof thefunc-
tional units. In the past,researchersmodifiedthis file us-
ing text editorsandmanuallycomputedeachcoordinate,a
tediousanderror-proneapproach.Thus,theprimemotiva-
tion for designingthe QUILT tool describedin this paper
wasto provideamoreproductivemeansto utilize HotSpot.
However, in thecourseof development,it becameapparent
thatQUILT wouldalsobeusefulin estimatingIC transistor
counts,roughfloorplanningfor very largescaleintegration
(VLSI) layout,producinggraphicswhichcanbeusedin re-
portsandpresentations,andasa generaleducationaltool.
Researchhasshown thattheuseof graphicaluserinterfaces
(GUIs) canincreaseproductivity andalsohelpto reinforce
conceptslearnedin theclassroom[1, 9].

The restof this paperdiscussesthe QUILT tool and is
organizedasfollows. Section2 describestheoperationof
QUILT in detail. Section3 givesa brief overview of the
technicalaspectsof thesoftware.Examplesof how QUILT
canbeusedin anacademicenvironmentaregiven in Sec-
tion 4. New featuresthatcanbeaddedontothecurrentver-
sionof thetool arediscussedin Section5, andconclusions
areprovidedin Section6.
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2. Detailed Description of the QUILT Tool

QUILT allows oneto easilybuild a floorplanasan in-
put for varioussimulationtools. Thecurrentversionis op-
timized for use with HotSpot. Userscan quickly adjust
their designsby simply “pushingpolygons”,and running
theHotSpotsimulationagain.This removesthe tediumof
manuallycomputingfunctionalunit coordinatesandallows
usersto focuson exploring designissues.Functionalunits
canbeeasilymovedandresized.On-chipinterconnectsare
alsosimulatedin detail.

2.1. General Structure

QUILT is a standaloneJava application.Themainfunc-
tion of the tool is to generatean input text file for a simu-
lator while viewing or editinga graphicalrepresentationof
the IC floorplanin a GUI. The tool wastestedwith a sim-
ulatorbasedon SimpleScalar3.0b[3] with Wattch[2] and
HotSpot[7, 12] extensions.

QUILT readsand writes HotSpotfloorplan coordinate
text files, andalsocolorizesthe floorplanbasedon power
or temperaturetracefiles. Thetool canbestartedfrom the
commandline andan existing floorplanfile canbe speci-
fied asa commandline option,or it canbegivena shortcut
icon and associatedwith .flp files similar to mostGUI
programs.

In additionto a text-basedcoordinatefile, QUILT lever-
agesJava’scapabilityto generateJPEGfilesto producelay-
out imagesthatcanbeusedin documents.

QUILT requiresvariousparametersfor the technology
nodeof interest.For our researchwith QUILT, weobtained
thesefromthe2003ITRSRoadmap[10]. Changingtoadif-
ferentnodeis a simplematterof replacingsomeconstants
with thedesirednode’s“Roadmap”values.

2.2. User Interface

When the tool is started,a GUI window is displayed
whichhasthelook andfeelof a typicaldrawing editor. The
drop-down menusarelocatedon thetop of thewindow. If
an input file wasspecifiedat startup, theeditingareawill
display a floorplan of the circuit layout. Figure 1 shows
QUILT displayinga sampleprocessor, in this casea modi-
fiedversionof theAlpha21264floorplan.

2.3. Floorplan Generation

A floorplancanbecreatedfrom scratchif desired.The
drop-down menusEdit, Mode, Zoom, Select andGener-
ate areusedto draw andedit abasicfloorplan.

New units canbe createdby specifyingtheir nameand
dimensions.SRAMscanbecreatedby choosinga memory
size.Level2cachecanautomaticallybelaidouttosurround
thecore.TheGenerate menuis shown in Figure2.

Figure 1. QUILT displa ying a sample processor
(modified Alpha 21264) floorplan

Figure 2. QUILT’s Generate drop-do wn menu

Onceunits have beencreated,they canbe resizedand
movedusingthreepossibleeditingmodes.Thefirst mode,
Move, simply allows a unit to betranslatedto new coordi-
nates.Thesecondmode,Resize (constant area), is use-
ful in that onecanadjustthe dimensionsof a unit, while
still retainingtheoriginalareaandthusthesamefunctional
capability(for example,to keepthenumberof bytesof an
SRAM constant).Finally, thethird modeallowsthedimen-
sionsto bechangedwithoutconstraint.

QUILT cancomputethetransistorcountfor a particular
functionalunit andtechnologynodeprojectedby theITRS
Roadmap. Figure 3 shows the pop-upwindow, obtained
by selectingthe function in the File menu,displayingthis
information.Thisoperationis usefulin estimatingthetotal
numberof transistorsusedin a design.

The Zoom andSelect menusmake it easyto zoomin
to, or selectacertainpartof, a unit, respectively.

Lastly, theEdit menu(Figure4) coverstypical edit op-
erations,aswell asa few extra operationsthathave proven
useful.TheJoin very close edges operationis especially
useful when importing HotSpotfloorplansthat had been
madeby hand.Thesefloorplansoftencontainsmallcalcu-
lation errors.Anotherfunction is Show overlapping and
underlapping points whichis usefulin verifying thatthere

June 5, 2005 Workshop on Computer Architecture Education Page 27



Figure 3. Windo w displa ying functional unit tran-
sistor count

arenospacesin thefloorplan.A commoncauseof HotSpot
floorplanerrorsaregapsbetweenunit edges,which act as
insulatorsduringtemperaturesimulation.

Figure 4. QUILT’s Edit drop-do wn menu

To recapitulateinformation regardinga particularunit,
anoptioncalledShow Unit Info in theFile menudisplays
awindow listing theunit’swidth, height,areaandx,y coor-
dinates.

Figure 5. Details of a functional unit in a pop-up
windo w

2.4. Interconnect

Interconnectdelay is of growing importancefor com-
puterarchitects.QUILT modelsmultiple typesof intercon-
nects,andcanbeeasilyextendedto otherapproaches.

Conventional metal interconnectsas well as optical
interconnectsare currently modeled,basedon estimates

Figure 6. QUILT inter connect delay estimator

from [4]. After two endpointshave beenselectedfor com-
munication,theprogrampresentsa list of theestimatedde-
lays usingeachtype of interconnect.The usercanselect
the desiredtype. Electricalconnectionsareautomatically
routedin a simpleManhattanstyle. Optical interconnects
aremodeledaspoint-to-pointlinks. Theareaconsumedby
the interconnectis alsodepicted(visible for interconnects
that aremany bits wide). Finally, the connectiondelayis
expressedin termsof clock cycles,for easeof comparison.
This is shown in Figure6.

2.5. HotSpot Usage

The primary file format of QUILT is the .flp (floor-
plan) file usedwith HotSpot. However, onecando much
morewith QUILT thanjustsave files for usewith HotSpot.

A singlemenufunction takescareof saving the floor-
planfile, runningHotSpot,anddepictingtheresultswithin
theeditor. Thefloorplanis automaticallycoloredto indicate
cool (blue)andhot (red)functionalunits.HotSpotsupports
runningfrom apower tracefile, whichmeansthatonedoes
not have to wait for a SimpleScalarsimulation to finish.
Rather, the power tracefile lists the power dissipationin
eachunit andHotSpotjust needsto recomputethethermal
interactions.

Oncea userhascompiledHotSpot,QUILT canquickly
run a HotSpotsimulationandimmediatelycolor thefloor-
planaccordingto temperature.Theusercanrearrangefunc-
tionalunitsaccordingto thermalconstraintsandre-simulate
instantly. This canbe very useful for designspaceexplo-
ration.

To use QUILT in this way, one must first producea
power trace file which is a listing of power consumed
by the processorunits. The simulator in HotSpotcalled
sim-template generatesthis tracefile aspartof its out-
put. The time it takes for resultsto be producedis on
theorderof seconds.An exampleusingthedemonstration
files includedwith HotSpotis shown in Figure7. Thecool
cachesarecoloredwith bluehuesandthehot integerunits
areindicatedwith redhues.
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Figure 7. QUILT displa ying a temperature-colored
floorplan

2.6. Graphic Image Generation

Graphicsarefrequentlyneededto clarify ideasandde-
pict resultsfor reportingpurposes.In the past,producing
thesegraphicsinvolvedmanuallyadjusting,resizingandre-
coloringa largenumberof functionalunits.QUILT largely
automatesthesetasks. Singlemenucommands,shown in
Figure8, permitthefloorplanto berecolored,fontsresized,
andlabelschanged.

Figure 8. QUILT’s Graphics drop-do wn menu

Thecoloringmayreflecteithertemperaturegradientsor
IC functionalitysuchascaches.Additionally, for multi-core
processors,thereis a “zoom effect” generator. This creates
a graphiccontaininga pictureof the entireprocessorwith
“zoom” linesleadingto animageof asinglecore,asshown
in Figure 9.

3. Implementation

QUILT was developedusing the Java Virtual Machine
environment which makes the software portable across
many computingplatforms,a commonneedin academic

Figure 9. The “zoom effect” for a chip multipr o-
cessor image: (a) floorplan for a proposed 4-core
multipr ocessing fault-tolerant processor , and (b)
closeup of one core [11]

settings.In its currentimplementation,thetool comesasa
single70kB file which is easilydistributableanddoesnot
requiretremendouscomputingresourcesto run.

Thissinglefile is a JavaArchive(JAR) file, andin many
operatingsystems,canbeexecutedsimplyby doubleclick-
ing on it. Since the JAR file is actually a compressed
archive, a userwho wishesto modify QUILT canuncom-
pressit to obtainthecompletesourcecode.

QUILT takes full advantageof the Java object model.
Each functional unit displayedis actually an instanceof
the Unit class, and interconnectsare membersof the
InterconnectLine class.Thetechnologynodeis also
encapsulatedin a separateclass,asaremany othercompo-
nentsof thesoftware.

Sun’s javax.swing packagewasusedto renderthe
graphicalinterface. The actualfloorplanediting areawas
madeby extendingtheJComponent class. By selecting
Sun’s standardgraphicalinterfacelibrary, QUILT’s source
codeshouldbeeasierto understandandextend.

4. Teaching and Research using QUILT

Simulatorsarewidely usedin computerarchitectureed-
ucation,as they permit designsto be analyzedrelatively
quickly and cheaply. However, text-basedsimulatorsare
not intuitive and they areproneto errorsthat canbe cor-
rectedonly with careful scrutiny. Although QUILT itself
is not a full simulatorin the strictestsense(its main task
is to providea front-endfor, anda graphicalrepresentation
of, thedatageneratedfor or usedby text-basedsimulators),
it enablesstudentsto comprehendresultsmoreeffectively.
Studiesconductedby FelderandBrent[5] usingaquestion-
nairedevelopedby FelderandSoloman[6] indicatedthat
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82%and63%of engineeringstudentsarevisualandsens-
ing learners,respectively. The researchersdefinedsensing
asorientedtowardsfactsandhands-onmethodsandvisual
learningpertainsto informationpresentedin picturesand
diagrams.

A simpleexerciseusingQUILT canbeorganizedin three
steps:configuration,simulation,andanalysis.Thefirst step
requiresthestudentto modify anexisting floorplanof a IC
chip by using the drawing tools as seenin Figures2 and
4. An exampleis shown in Figure1. If thermalsimulation
is to bedone,thefunctionalunit namesshouldcorrespond
to thepower outputslistedby Wattch. Thesimulationstep
is actuallynot performedin QUILT but throughHotSpot
and/orSimpleScalar. Thestudentcanmonitorandanalyze
datavisually (Figure7) while theSimpleScalarsimulation
is in progressor whenit is completed.

Therearemany otherexercisesthatarepossible.For in-
stance,studentscancomparelayoutsfor temperatureversus
interconnectdelay, or examinethethermalimpactof adding
newly proposedunits,splittingunits,etc.

In most computerengineeringcurricula, computerar-
chitectureis taught at two levels: an introductory level
coursetargetedtowards undergraduates,and a more ad-
vancedcoursedesignedfor upperclassand graduatestu-
dents. Due to the complexity of simulatorssuchas Sim-
pleScalar, WattchandHotSpot,exercisesinvolving theiruse
andmodificationareusuallycarriedout only in advanced
courses,even thoughthey areexcellent teachingtools. A
graphicalbasedtool suchasQUILT permitstheinstructorto
introducearchitecturalconceptsandsimulationskills early
in a student’seducation.

Using QUILT as a researchtool is not much different
from a classroomexercise.A furtherstepwould probably
involveproducinggraphicssuchasthetemperature-colored
(Figure7) or multicorefloorplan(Figure9) requiredaspart
of the documentationfollowing the research.The authors
haveusedQUILT to generateresultsfor two papers[8, 11].

5. Future Work

Although the authorshave usedQUILT for their own
work, thetool still hasroomfor improvement.For example,
when making presentationgraphics,XFig and PostScript
outputswouldbeuseful.Otherareasof improvementarein
easeof use,modeling,andnew functionalunit generation.

Fromaneducationalstandpoint,easeof useis important.
An on-line help systemcould be added.Additionally, the
editor shouldsupport“drag-and-drop”of unit placement,
similar to othervectorgraphicseditors.

Thesupportedmodelscouldalsobeimproved.Intercon-
nectmodelscouldbemoredetailedandmoretypesof inter-
connectscouldbeadded.Delayuncertaintybasedon tem-
peraturecould becalculated.Also, moretechnologynode
specificationscould be addedto the system;an easyway

to scalea floorplanto a differentfeaturesizewould alsobe
useful. The transistorcountwindow currentlyshows three
differentnumbersanda correctinterpretationrequiresthe
userto decideif thefunctionalunit is of a logic, SRAM or
DRAM type. QUILT could be improved to automatically
determinetheunit’s functiontypeanddisplaytheappropri-
atetransistorcount.

Whengeneratingnew units,it wouldbeusefulto beable
to createitems like queuesandregisterfiles basedon pa-
rameterssuchasnumberof portsandbytesize.An example
wouldbefor QUILT to readSimpleScalar.cfg configura-
tion files to automaticallygeneratefunctionalunits. ALUs
couldbepre-definedgivenanintegerwidth. Suchitemsare
impossibleto produceexactly, but canbe estimatedbased
oncurrentprocessordesigns.

Finally, theprogramhasbeendesignedwith modularity
andeaseof extensionin mind. Thecommunityis invited to
implementany new featuresthey desireandto sharethem
sothatall maybenefit.

6. Conclusion

In thepast,computerarchitecturesimulatorstendto be
text-basedwhich makesdebuggingandanalysisan incon-
venientprocess.Thisdistractscomputerarchitectsfrom fo-
cusingon themaintaskof designingandverifying new de-
signs. Previous researchon humanlearningandcognition
hasshown thatvisualactivity enhancesthepedagogicalex-
perience.

QUILT actsasaninterfacebetweenraw text dataandthe
user. It canrun on a varietyof computingplatformswhich
makesit accessibleto many users. Using QUILT enables
usersto make changesto IC layout quickly andto evalu-
ateandanalyzethe resultsof their modifications. Oneof
the featuresnot seenin other tools is the ability to gener-
ategraphicsfor hardcopiesor for usein presentationsand
documentation.

Finally, QUILT addressesthe issuesof temperatureand
interconnect.Thesearetwo areasof growing importance
for futuremicroprocessors,andneedincreasedemphasisin
theclassroom.This tool providesinteractive visualizations
whichareeffectivein helpingto meetthatneed.
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Abstract 

 
A simple but powerful storage model is described that 

has close correlation to generic storage systems. 
Extending the Little Man Computer paradigm developed 
by Stuart Madnick and John Donovan during the 1960s at 
MIT (where it was taught to all undergraduate computer 
science students), this paper describes a comparable 
development undertaken for disk and tape storage 
devices. A “Little Man Storage” paradigm is proposed to 
simplify the explanation of how storage devices function 
and how data is maintained by those devices.  
 
1. Overview 
For over forty years the Little Man Computer (LMC) 
paradigm has proved to be a simple but powerful and 
long-lived tool for teaching computer architecture to 
undergraduates in a field where a product is considered 
obsolete after 5 years (8 generations!). The authors of this 
paper have taught for many years with LMC simulators 
and have documented how LMC simulators can be useful 
teaching tools [1-4].  However, as computer architectures 
have evolved over time, subsystems within computers 
have also grown in complexity and capability such that 
their operation can no longer be effectively explained to 
undergraduates without new educational support.   

In this paper we propose a new paradigm for teaching 
about storage systems, a core embedded subsystem 
coordinated with the larger computer architecture that has 
grown in complexity and capability to necessitate separate 
treatment.  In fact many storage systems today have 
under-utilized processor capabilities such that we feel 
teaching storage systems may actually have an impact on 
future developments.     

We propose a “Little Man Storage” model for teaching 
about storage systems consisting of elements similar to 
“Little Man Computer”.  By using ecological design in 
which model elements have intuitive meaning from 
human experience, we believe that a Little Man Storage 
(LMS) model may provide benefit in courses where 
storage systems are studied comparable to the impact of 

Little Man Computer.   The LMS paradigm is consistent 
with the SNIA Shared Storage Model [5] that was 
developed to help standardize storage concepts across 
vendor platforms.  This paper provides a conceptual 
overview of LMS as a precursor to a simulator 
implementation. It is our hope for feedback that can be 
incorporated into near-term development. This paper is 
meant as a discussion of educational techniques for 
communicating complex concepts in a learning 
environment and not as a tutorial, we assume readers a 
basic understanding of disk storage devices and how they 
store and manage data.        

The remainder of the paper is organized as follows: 
after reviewing the LMC paradigm in Section 2, the LMS 
model is described in Section 3. In Section 4 the relevant 
LMS conceptual elements identified.  Section 5 compares/ 
contrasts LMC and LMS to highlight our contribution. In 
Sections 6 and 7 file storage and data management are 
modeled. The discussion and examples focus exclusively 
on disk storage. An example is given of a typical storage 
processing operation that illustrates the individual steps 
within the operation and examples are also given that 
show the changes that occur in the storage device itself. 
Although not discussed in this paper, a small subset of 
this material can be used to illustrate tape/cartridge 
processing.  
 
2. The Little Man Computer Paradigm 
 

The LMC paradigm has stood the test of time as a 
conceptual device for helping students understand the 
processing that takes place inside a computer. One of its 
greatest strengths is its simplicity. The paradigm consists 
of a walled mailroom, 100 mailboxes numbered 00 
through 99, a calculator, a two digit location counter, an 
input basket, and an output basket. Each mailbox is 
designed to hold a single slip of paper upon which is 
written a three digit decimal number. Note that each 
mailbox has a unique address and the contents of each 
mailbox are separate from its address. The calculator can 
be used for input/output operations, temporarily store 
numbers, and to add and subtract numbers. The two-digit 
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location counter is used to increment the count each time 
the Little Man executes an instruction. The location 
counter has a reset located outside of the mailroom. 
Finally there is the “Little Man” himself, depicted as a 
cartoon character, who performs tasks within the walled 
mailroom. Figure 1 illustrates the major components of 
the LMC paradigm. Other than the reset switch for the 
location counter, the only communication a user has with 
the Little Man is via slips of paper with three digit 
numbers put into the input basket or retrieved from the 
output basket. 

 

 
Figure 1. Little Man Computer and the Walled 

Mailroom 
 
    The authors have written several papers [1-4] 
describing use of a LMC simulator to enhance the quality 
of computer science courses, specifically those that 
emphasize architecture, hardware/software, and operating 
systems concepts. The two simulators developed by the 
authors are part of a larger worldwide effort to construct 
LMC simulators some of which are described in [3].  We 
feel these widespread developments validate both the 
utility and continuous interest in the LMC paradigm. 
 
3. The LMS Model 
 

We intend to leverage the LMC paradigm with 
corresponding conceptual analogies. In particular, the 
basic philosophy utilized in the LMC model is to 
minimize the functional details and physical structure 
while still allowing the important conceptual features to 
be clearly illustrated. The LMS model described here 
would have been valid with the disks of 30 years ago. 
However, more importantly it provides insight into 
modern storage systems. Furthermore, this paper 
describes a model, not a working simulation, but all the 
moveable pieces for the working simulation are presented. 

Recall that a disk storage device contains several 
moveable components including: a) the revolving platters 
where data are stored, b) an access arm that moves to the 
designated location for the data and c) a mechanism for 
copying data between the buffers and the hard drive 

during input and output operations. Little Man Storage 
itself, again depicted as a cartoon character, performs all 
three of these functions.  
 
4. LMS Hardware 
 

The LMS disk device consists of two platters where 
data can be stored on both sides of a platter. Both the top 
and bottom surfaces of each platter surface contain three 
concentric tracks. Hence, the storage device consists of 
three cylinders. Each track consists of eight areas and all 
areas store exactly 512 bytes of data. Table 1 specifies the 
numbering scheme used to identify actual locations on the 
device. Figure 2 shows both sides of a platter. 
 

Table 1. Basic Hardware Components of LMS 
 

Storage Device  
Components 

ID Numbering Scheme for the 
Component 

3 cylinders 0, 1, 2 (independent of platter surface) 

4 tracks per cylinders 0, 1, 2, 3 (0/1 1st platter & 2/3 2nd platter) 
8 areas per track 0, 1, 2, 3, 4, 5, 6, 7 (same data each area) 

 
Figure 2. Both Sides of a Disk Platter 

 

Side 1 

A
B

C

7 0

6

5 2

1

4 3

Side 0 

a
b

c

7 0

6

5 2

1

4 3
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Areas can be referenced with values from 000 to 237. 
Address xyz identifies the location of the cylinder, platter, 
and area respectively. The small size of the storage device 
allows decimal numbers to be used for all three values, 
which simplifies addressing. Total disk capacity is 48K 
(=3 cylinders * 4 tracks/cylinder * 8 areas/ track * .5K 
bytes/area. Figure 2 shows one of the two platters in the 
storage device. The three area locations denoted by a, b, 
and c in Figure 2 have addresses of 007, 100 and 202 
respectively. Area locations A, B and C have addresses of 
017, 110 and 212 respectively. An alternative approach 
that was briefly considered that numbered the areas from 
00 to 95. 

 
Figure 3. Physical Components that comprise an 

LMS Storage Device 

The LMS model consists of the physical components 
shown in Figure 3. The disk controller is ‘Little Man’ 
(cartoon character) who provides the intelligence for disk 
operation and can perform a limited number of simple 
functions. In particular, LMS decodes and executes the 
commands sent to it from the attached server/computer. In 
implementing the commands, LMS uses one of its arms to 
read-data-from and write-data-to the hard drive (HD). The 
HD consists of the platters where data is actually stored. 
Communication paths called I/O buses connect the 
storage device to the source/destination of its data. 
Buffers are intermediate storage areas (pieces of paper) 
where data is placed both prior to copying it to storage 
and after retrieving it from storage and before sending it 
to the external device. There is one buffer (piece of paper) 
for data going in each direction. 

In adhering to the LMC simplification principle, the 
disk contains no cache. Likewise, there are no auxiliary or 
reserved areas/tracks that can be used to replace parts of 
the disk that become defective. If part of an LMS device 
becomes inoperable, there is no way to designate 
processing options. No timing considerations are provided 
for any of the electromechanical components of the 
devices. Little Man Storage performs all the physical 
processing associated with the device. This includes using 
one arm to rotate the platters in the HD, using the other 
arm to move over a specific cylinder and then with the 
same arm copying the data to/from the HD. 
 
5. Comparing Little Man Computer and 
Little Man Storage 
 

Table 2 provides a comparison of the environments 
provided by the two paradigms and the types of physical 
acts that the Little Man must perform in each of them. 
 

Table 2. Comparing LMC and LMS 
Characteristics 

 
Environment/Physical Act 
Compared 

Little Man 
Computer 
(LMC) 

Little Man 
Storage 
(LMS) 

historic relevance of paradigm from 1960’s to 
present 

from 1970’s to 
present  
 

type of hardware device 
described 

computer disk storage 
device 
 

actual hardware location  
of Little Man intelligence 

CPU control 
unit 

storage 
controller 
 

locations where data is stored 100 mailboxes 
(00-99) 

96 disk areas 
(000-237) 
 

methods for performing I/O 
operations 

read/write slips 
of paper 

read/write disk 
areas 
 

programmable device? yes no 

I/O bus(es) to /External 
  Devices 
  such as 
  Server(s) +  
  Computers 

Disk Controller 
 

This is Little Man Storage 

HD 

Input B
uffer 

O
utput B

uffer 
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6. File Storage and Data Management 
 

The LMS storage device consists of 96 areas where 94 
areas are used to store data and 2 areas are reserved to 
help manage the other 94. Area 000 contains a LIST of all 
files stored on the device. This is the only (the root) LIST 
on the disk. It is of fixed size (one area) and cannot be 
expanded. Table 3 shows the values stored in the LIST for 
several files. The location of the initial data in the file is 
specified in the Area Start Location as a (cylinder, platter, 
area) location. For simplicity, there are no attributes that 
can be assigned to a file. When a file is created, LMS 
adds a new row in the LIST. A new row is always added 
following the last or bottommost current LIST entry. If a 
file is deleted, its line in the LIST is erased. This is 
denoted as <blank> in Table 3. 
 

Table 3. LIST Structure for the Disk 
 

File Name Size (Bytes) Area  Start Creation Date 
 
ALPHA.doc 
 

 
10 

 
006 

 
06/06/2005 

 
X.Y.Z 5000 128 09/18/1997 

 
<blank> - - - 

 
NextFile1234.txt 0 225 12/25/2002 

 
************** - - - 

 
Area 001 is used to manage the data areas that the 

device contains. Each of the 94 data areas either holds 
data associated with a file or is a free (unused) area. New 
files and additions to existing files obtain their storage 
from the free areas. It is the job of LMS to utilize this 
information in area 001 to retrieve and store files. LMS 
must also modify this information when necessary. 

Initially, when the disk is first formatted, LMS marks 
areas 002 through 237 as free. This information is kept in 
a Free-Area-List. Whenever a file is created, one or more 
of the free areas are assigned to hold its data. When a file 
is deleted, the areas where its data were stored are 
returned to the Free-Area-List. Area 001 holds the Area 
Utilization List (AUL), where LMS stores information 
about the data areas. There are 96 entries in the AUL. The 
first two are used to manage the Free-Area-List and are 
described in the next section. The others entries are either 
used to identify the storage areas assigned to individual 
files or are a part of the Free-Area-List. Table 4 shows the 
initial portion of an AUL after 2 files have been written to 
the storage device. One file occupies 4 areas (002, 003, 
005 and 006) while the second file occupies a single area 
(004). A value of 999 identifies the final area in a file. 
Note that areas 007 and 008 are either part of the same 
file or both are free areas. Free areas are shown in italics. 
LMS itself does all of this reading and writing of 
information. 

Table 4. Contents of Area 001 Showing Storage 
Allocation after Two Files are Written 
 

Area Number Next Area Location in File 
000  007 (first free area)  * 
001       00N (last free area)  * 
002  003 (file continuation) 
003  005 (file continuation) 
004  999 (end of file) 
005  006 (file continuation) 
006  999 (end of file) 
007  008 
   . . .   . . . 
237  999 

 
Table 3 shows that the LIST entry for a file identifies only 
the first area assigned to it. The rest of the file location 
information is stored in the AUL. The AUL identifies the 
areas that are linked together to provide storage for the 
file. The final area contains a Next Area Location value of 
999, meaning this is the last area associated with the file. 
Storage for a file need not be in contiguous areas. The 
areas that are not assigned to any file are tied together in 
the Free-Area-List. The areas at the beginning of this list 
are used to satisfy subsequent requests for storage. The 
Table 4 structure is actually an oversimplification used to 
clarify processing details. In reality, the AUL only needs 
to contain the rightmost column of values since LMS can 
determine the Area Number from its physical position in 
the list (by counting from the beginning of the list). 
 
7. Additional Storage Model Parameters 
 

LMS must remember three important values. It uses 
the first value to find an initial free area for new files and 
additions to existing files. This value is stored as the very 
first entry in the AUL (see Table 4). When additional 
storage is needed, LMS looks in this location and begins 
writing data to the corresponding area it identifies. 
Additional free areas can then be determined using the 
Free-Area-List. Once the last free area needed for the 
current processing operation is determined, its Next Area 
Location (the next free area) becomes the new first value 
in the AUL. Similarly, the second entry in the AUL 
identifies the final area in the Free-Area-List. When a file 
is deleted, its areas are added to the Free-Area-List 
following the area identified in the second AUL entry. 
The final area added to the list becomes the new value in 
location 2 of the AUL. 

The third important value is the final entry in the LIST, 
which is identified by following it with a ‘fake’ file name 
entry of ‘********************’. The LIST is a white 
board where LMS writes entries for new files at the 
bottom of the board and erases entries for deleted files. 
Once the bottom of the board is reached, the LIST is 
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considered full and must be ‘reorganized’. If there are 
unused erased rows on the board, rows on the bottom are 
copied to the currently erased rows and then erased from 
the bottom of the board. Following the LMC principle of 
simplicity, the LMS model places restrictions on the LIST 
structure and on the number of files that can be stored. 
With some effort this limit can be raised and 
subdirectories can also be used. Since this clearly will 
result in a more complexity, it is not discussed here.  

Whenever a file is created, it is assigned one initial 
area. If no data are written to the file, LMS writes 
***End-of-File*** at the beginning of the area. An area is 
never split between two distinct files. Hence, every file 
requires at least one area of storage and the maximum 
number of files is 94. An alternative approach that was 
strongly considered assigns the Start Location entry in the 
LIST for an empty file to a special value such as 999. 
 
8. Storage Processing Operations 
 

In the same manner that the CPU of a computer 
executes instructions, a storage device controller such as 
Little Man Storage is capable of executing a pre-defined 
group of commands that create, delete, store, retrieve and 
process data. Although some storage devices support a 
wider range of operations, we limit LMS to five 
commands as shown in Table 5. LMS processes complete 
files and individual records must be identified in the 
application programs (since storage devices are unaware 
of logical records). Each buffer can hold one area of data. 
A physical record consists of all the data in an area. LMS 
determines the actual location of a physical record that it 
needs by combining information from the command itself, 
the LIST, and the AUL. Each command is composed of 
steps in the same way that CPU instructions are composed 
of steps. EXAMPLE 1 illustrates the steps performed as 
part of a Read File command.  
 

Table 5. Basic I/O Commands Supported by LMS 
 

Command OpCode Processing Performed by Command 
Create File 00 Write an entry in the LIST, including 

create date, etc. 
Initialize one Free-Area-List area to 
***End-of-File***. 

Delete File 01 Erase the file entry from the LIST. 
Return all AUL entries associated with 
the file to the Free-Area-List. 

Read File 02 Begin in the LIST and then go through 
the corresponding AUL entries. 
With the alternative approach noted 
above, can also start in the AUL table.  

Write File 03 Add data starting with the first area on 
the Free-Area-List. 
Write ***End-of-File*** after the last 
record is written. 

Append File 04 Follow the AUL entries for the file to 
the one containing 999. 
Add new records in a new area and 
replace 999 with new area number. 

All commands have the same basic syntax |op-
code|filename|optional data|. In the case of Write and 
Append commands, the data to be written immediately 
follows the command code and file name. Op-codes are 1 
byte in length, while file names are 20 bytes and can 
contain any printable characters. For example, |3|MY-
NEW-INFO             |*****| is a command to write 5 
asterisks to a file called MY-NEW_INFO. 

EXAMPLE 1: A paper is placed in the input buffer 
that says to get the data in the ALPHA.doc file. LMS 
looks at the command in the buffer and reads it, noting the 
command code (02) and the file name. LMS looks in the 
LIST and sees that initial data in ALPHA.doc begins in 
area 002. It rotates the disk until that area can be 
accessed. It copies the data from area 006 to the output 
buffer. LMS then looks in the AUL and notes the entry 
for area 006 identifies additional ALPHA.doc data in area 
013. It uses one arm to move the disk to this location and 
the other arm to copy the data from 013 to the output 
buffer. This processing continues for every area where 
ALPHA.doc data is stored. When an AUL entry of 999 is 
found, the Read File operation is complete. 
 
9. Detailed Processing Examples 
 

Two examples are now given to illustrate all of the 
LMS components discussed to this point. Throughout all 
of these examples an unrealistic assumption is made that 
every operation is performed successfully. There is no 
way to recover from an invalid or incorrect operation. 

EXAMPLE 2: It is assumed that the HD is formatted 
and all 94 data areas are free. File AA is created and 
several small records are written to it. File BB is created 
and enough records are written to it to fill three areas. 
Several additional records are then added to AA, 
requiring a new area to be allocated using an Append File 
command. A third file GG is created, but no records are 
written to it. Finally, file DD is created and three areas 
have data written to them. Figure 4 shows the relevant 
areas following the processing. The first two areas contain 
the LIST and the AUL. 
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Figure 4. Disk Status Following the I/O 

Operations in EXAMPLE 2 
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EXAMPLE 3: This example begins immediately after 
the processing in EXAMPLE 2 has completed. File AA is 
deleted. Two new files called SS and RR are created and 
one byte of data is written to each file. Additional records 
are then written to SS. Figure 5 shows the relevant areas 
following the processing. 
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Figure 5. Disk Status Following the I/O Operations in 

EXAMPLE 3 
 
 
10. Summary 
 
We have introduced a new Little Man Storage model for 
teaching about computer storage systems. While this 
paper focuses primarily on conveying disk storage 
concepts, work is underway for developing a Little Man 
Storage software simulator that extends the storage 
concepts demonstrated beyond disks.  Results from the 
educational use of this model will also provide feedback 
on the effectiveness of this model in targeted learning 
environments. 
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Abstract 
An eight-bit computer has been designed using an open 
source logic emulation package called “Multimedia Logic” 
from www.softronix.com.  The intent of the project was to 
make clear to computer science students how the data path 
and control lines work to provide computer functionality. 

This computer is an excellent teaching aid because: 

1. All registers, ALU outputs, control lines, and 
memory outputs are instrumented. 

2. Instructions can be executed with a single step 
switch or run with a clock. 

3. The architecture is quite simple, with separate 
memory devices for data and instructions.    

4. It is supported with an assembler patterned after 
the MIPS assembler used with the SPIM 
simulator. 

5. An ASCII output display is available. 

The instruction set designed for this computer includes: 
Add from memory, Add immediate, Load from memory to 
the input register, save from the output register to memory, 
jump to the address given by the immediate, jump to the 
address given by the immediate if the last add produced a 
zero result, and halt.     

The design includes an instruction format of three bits of 
operation code followed by five bits of immediate. 

Using this design as a launching point, students have been 
encouraged to design their own computers.   Some 
excellent designs have been submitted.  These include an 
elaborate multi-cycle 16-bit design, and many application 
specific designs.   

This paper provides details of this computer design, 
assembler and example programs as well as descriptions of 
designs submitted by students.   

Categories and Subject Descriptors 
B.6 Hardware / Logic Design / Simulation. 

C.1.1 Computer Systems Organization / Computer 
Architectures  

General Terms 
Design, Human Factors, Theory 

Keywords 
Logic Simulation, Computer Design, Binary Visualization,  
Multimedia Logic  

1. Introduction 
The concepts of computer architecture are some times very 
difficult for beginning computer science students to 
visualize because the action is all happening at the electron 
level in microscopic circuits.  By building on knowledge 
from other courses students may be able to visualize what 
is happening in circuits, but many layers of abstraction are 
involved.  For example, if one builds a computer with TTL 
circuits, there is a level of abstraction in the relation ship 
between circuit pin outs and logic elements.  There is also a 
complex chain of detail between circuits that is visible only 
with logic probes or additional expensive instrumentations.  
Also when a student has spent the time to understand and 
master the breadboard circuit the semester is over, the 
circuit is disassembled and used for the next class.   

The emulated logic approach the authors have developed 
overcomes these limitations in understanding the details of 
computer architecture.  The circuits are designed by 
“wiring” up logic elements with all data inputs coming in 
on the left, control signals coming in from the bottom, and 
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outputs exiting from the right.  The high level devices like 
memory circuits and ALU’s look like the devices in 
schematic diagrams, making these devices easier to 
visualize.  By designing simple circuits the operation of the 
individual components can be understood.  At the 
completion of the class the students can take the design 
with them.   

While the focus of this paper is an emulated computer for 
teaching architecture, a series of introductory circuits used 
to develop an understanding of the components that make 
up a digital computer are also provided.  Many of the 
concepts of digital logic are difficult to grasp without 
practical experience.  Some use prototyping boards with 
small scale digital circuits to design and build examples of 
digital devices [1].  Others use a hardware design language, 
like Verilog, to illustrate and teach digital logic concepts 
[5].  One school even uses students actors to emulate 
instruction flow in a computer [6]. 

The 8-bit computer will be thoroughly documented starting 
in section three.  

2. Component Learning Projects and 
Outcomes 
A number of projects built and demonstrated by students 
will be given in this section.  We will start with simple 
projects and advance to more complex designs.  Each 
design will be demonstrated with the presentation of this 
paper at the conference. 

2.1 Calculator with Binary and Hexadecimal 
Outputs 

 
 

The first project, illustrated in fig 1, is a calculator that 
takes two four-bit inputs, from hexadecimal keypads, and 
provides an output in both binary and hexadecimal, based 
on a function selected.  The function is selected with the 
selector switch.  The functions available in the ALU are: 
addition, subtraction, multiplication, division, equal, less 
than, shift right and shift left.   

This is a nice project to start with as it builds on the ALU 
device example that is provided with Multimedia Logic.   

The learning outcomes of this project are: familiarity with 
the ALU, comparing hexadecimal and binary, exploring 
properties of binary numbers under operations like the 5-6 
operation shown in figure 1 to see the two’s complement 
binary notation of a negative one.   

2.2 Scanned Memory to Output Display  

 
 

This project, shown figure 2, connects the output of a 
memory device to an ANSII display device.  Then by 
sequentially scanning the memory addresses with a counter 
connected to a clock, the content of the memory is sent to 
the display.  In this case the content of the memory is “  
HELLO WORLD! ”.  For this project, only the first sixteen 
locations in memory are used, however, with an 8-bit 
counter, 256 locations could be used.   

In Multimedia Logic the memory contents can be read from 
a “text” file or written to during the simulation.  In this case 
the memory contents are loaded from a file and the 
memory is treated as a read-only memory (ROM).   

Learning outcomes from this project are: an understanding 
of the relationship between memory address lines and data 
output lines, understanding counters, and clock oscillators, 
and synchronous data transfer from memory to display.   

2.3 Programmable Calculator 

 
 

This project, shown in figure 3, is a combination of the first 
two, using scanned memory to provide functions and data 
to an ALU.  This project begins the comparison to a real 

Figure 1. Calculator with Binary and 
Hexadecimal Outputs 

Figure 2.  Scanned Memory to Output Display 

Figure 3.   Programmable Calculator 
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computer, with the upper memory serving as data memory, 
the lower memory which provides functions to the ALU as 
a program memory, and the counter as a program counter.   

The learning outcomes of this design are observation of the 
different things that a series of binary lines can be, from 
instructions to data to addresses, to clock pulses.  This is 
where we also learn about data paths and control paths. 

2.4 Four-Bit Adder 

 
 

These next two projects are designed to understand the 
inner workings of an ALU.  The first, shown in figure 4, is 
a ripple carry binary adder.  Two four-bit values are 
provided on the hexadecimal key pads and the results of 
the addition are displayed on the seven segment displays.  
By inverting the B inputs and making the C input for the 
first stage one the adder can be converted to a subtraction 
unit, illustrating the algorithm for converting a binary 
number to its two’s complement negative.  

 

The most important learning outcome of this design is an 
appreciation for how logic circuits can perform the kinds of 
operations we see computers perform.  

2.5 Four-Bit ALU 
This project, shown in figure 5, illustrates the complexity 
in the design of an ALU.  This ALU, designed after the 
one-bit ALU from Patterson (Figure 6), can And, Or, Add, 
and Subtract.  It is very useful for illustrating the bitwise 
operations of And and Or.  For example the output 
illustrated above is the bit wise And of 3 and 5.   

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

 
 

Learning outcomes of this project include an appreciation 
of how multiplexers make possible the control path in a 
computer—and again, an appreciation of how gates can be 
combined to produce computer functions.  

3. An Emulated Computer for Teaching 
Computer Architecture 
Providing a computer that is very well instrumented, 
visible on one page and easy to demonstrate, was the main 
goal of this design effort.  In my computer architecture 
classes I ask my students to design an emulated computer.  
This design was one I produced to illustrate what I wanted 
from my students.   I suggested they start with an 
instruction set and register design and build a computer 
from this foundation.  For this eight-bit computer, an 
instruction format of three bits of operation code and five 
bits of immediate was chosen. This instruction format 
provides for eight instructions.  These with mnemonics are: 

1. adi - Add the immediate value to the input register 
and place in the output register,  

2. adm - Add memory location addressed by the 
immediate to the input register and place in the 
output register, 

3. lmi - Load the contents of the memory location 
addressed by the immediate value to the input 
register, 

4. som - Save the output register to the memory 
location addressed by the immediate value, 

5. ji - Jump to the location given in the immediate, 

Figure 5.   Four-bit ALU 

Figure 4.   Four-bit Adder Figure 6.   One-bit ALU from Patterson [4] 
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6. jzi - Jump to the location given by the immediate 
if the result of the last addition was zero, 

7. om - Output the data from the memory location 
addressed by the immediate to the output display 
device, 

8. hlt - Halt operation. 

The physical architecture was to use two separate 
memories, to hold the data and program.  This parallels the 
MIPS emulator PC SPIM which has a “.data” segment of 
memory holding constant data and a “.text” segment that 
contains the machine instructions.  This construction 
simplifies the data path of the computer, but limits the 
capability to do recursion.  The design includes an input 
register and an output register.   

This design is a complete eight-bit, single cycle, stored 
program computer.  The data paths are connected at the 
start of the clock cycle at then at the clock transition 

registers and memory are writing enabled.   This enables 
demonstration of the inputs to commands being set up and 
then the operation being executed.   

One non-physical device available in the logic emulator 
used is a binary controlled text display.  This device can be 
seen just below the vertical column of control line 
indicators.  This display shows one of sixteen lines of text, 
depending on the binary inputs to the device.  In this case 
the device is used to show the operation being set up in the 
computer.   

The memory devices can be used as read-only devices 
reading content from an underlying file, or they can be 
initialized with a file and altered dynamically during 
program execution. For registers memory devices with all 
address lines grounded are used.   

One limitation of this emulation package is the absence of a 
2-by-8 multiplexer.  As a result the multiplexers are 
assembled by stacking a series of 1-by-2 multiplexers 

 
Figure 7.  Eight-bit teaching computer design implemented in multimedia logic 
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partially overlapping one another.   Since this emulator is 
published with its source code, I have built versions of this 
computer using a version of the software with a modified 
ALU that has an A out and a B out instruction.  Then the 
multiplexer stacks can be replaced with ALUs.  I have not 
included this design because it uses ALUs in a non-
standard way and because the design could not be used 
with the emulator down loaded from the emulator’s web 
site.   

4. Sample Programs for the Computer 
With this set of instructions a number of demonstration 
programs have been written.  The file underlying the 
memory has a format that includes two hexadecimal digits 
that are the memory content for each line.  The memory 
ignores any additional information on the line.  So 
following the operation code or data a comment can be 
given.  This allows instruction documentation information 
to be included with each line.  These include a program to 
send a string in data memory to the output display device, a 
program with an up counting loop and a down counting 
loop to display the letters of the alphabet and halt at Z, and 
a program to display various size boxes on the display.   

The design includes two ALUs, one incrementing the 
program counter and one performing the additions.  
Memory devices include a data memory, program memory, 
input register, output register, program counter, and an 
operation decode ROM.  The nicest feature of 
implementing a computer design this way, rather that in a 
breadboard, is the much greater instrumentation of 
registers, and data lines.  One can see each value as the 
computer steps through the program. 

Three sample programs are included in this section.   

4.1 Sample Program 1, ABCs. 
This first program was designed to be simple but use all 
eight of the operations of this computer.  It consists of a 
loop that counts up one memory location from ASCII A to 
ASCII Z, and counts down in another location to halt the 
computer after 26 letters.  To implement this program the 
memory contents in the following tables are place into the 
data and program memories.  Note that in these tables that 
the two hex digits in each line are the actual output from 
the memory device and the rest of the line is a comment. 
Data and program memory files are shown if tables 1 and 2 
below.  The output is shown with figure 7 above. 

 

  

4.2 Sample Program 2, Hello World.  
The second program was to be the simplest possible, like 
the “Hello World” used to introduce all programming 
languages. For this program a string in the data memory is 
sent character by character to the output screen and then 
the program loops back to the beginning.  The lack of 
instructions to update program memory based on 
calculations prevents the use of simple iteration to 
implement this program.  The data and program memory 
files are show in tables 3 and 4 and the output is shown in 
figure 8. 

c4     Output from memory location 04 
44     Load input register from memory location 4 
01     Add I (01) to input register 
64     Save output register in  memory location 04  
c4     Output from memory location 04 
41     load input register from memory location 01 
22     Add from memory location 02 
61     Save output register to memory location 02 
aa     Jump if last calculation result was zero to 0a  
80     Jump to memory location 00(+1) 
e0     Halt execution 
 

Table 2.  Program memory content  
for program 1 

00     zero (not used) 
19     Hex for character count in alphabet 
ff      Twos complement negative one 
fe      Twos complement negative two (not used) 
41     ASCII code for letter A 
41     (not used) 
41          " 
00          " 
00          " 
00          " 
 

Table 1.  Data memory content for program 1 
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4.3 Sample Program 3, Triangle. 
This program was written to test the assembler discussed in 
the next section.  It uses two nested loops to print a triangle 

on the output screen.  Data and program memory files are 
given below and the output is shown in figure 8. 

 
  

 

c0    Output from memory location 00 
c1    Output from memory location 01 
c2    Output from memory location 02 
c3    Output from memory location 03 
c4    Output from memory location 04 
c5    Output from memory location 05 
c6    Output from memory location 06 
c7    Output from memory location 07 
c8    Output from memory location 08 
c9    Output from memory location 09 
ca    Output from memory location 0A 
cb    Output from memory location 0B 
cc    Output from memory location 0C 
cd    Output from memory location 0D 
ce    Output from memory location 0e 
80    Jump to Zero (+1) 
 

Table 4.  Program memory content  
for program 2 

45          Load input register from memory location 5 (zero) 
20          Add memory location 0 (column)  to input register 
62          Save result in memory location 2 (column step) 
63          Save result in memory location 3 (row step) 
c6  lp1:  Output from memory location 6 (symbol "*") 
44          Load input register from memory location 4 (neg 
one) 
22          Add from memory location 2 (column step) 
62          Save result in memory location 2 (colmn step) 
a9          Jump on zero to lp2: 
83          Jump to lp1: 
23   lp2:  Add from memory location 3 (row step) 
63          Save result in memory location 3 (row step) 
b6          Jump on zero to :hlt 
c7          Output from memory location 7 (new line) 
45          Load input register from memory location 5 (zero)    
20          Add memory location 0 (column)  to input register 
44          Load input register from memory location 4 (neg 
one) 
20          Add memory location 0 (column)  to input register 
60          Save result in memory location 0 (column) 
45          Load input register from memory location 4 (neg 
one) 
20          Add memory location 0 (column)  to input register 
62          Save result in memory location 2 (column step) 
83          Jump to lp1: 
eo  hlt:    Halt 

Table 6.  Program memory content for program 3 

06    column (size of triangle) 
03     row  (not used in program) 
00    column step 
00     row step 
ff      negative one (allows decrementing  ) 
00     zero 
2a     symbol "*" 
0d     new line 

Table 5.  Data memory content for program 3 

20  Space 
20  Space 
48 H  
45 E 
4c L 
4c L 
4f  O 
20  Space 
57 W 
4f O 
52 R 
4c L 
44 D 
21 ! 
0d  New Line 
 

Table 3.  Data memory content for program 2 
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Figure 8.  Output screens for programs 2 and 3 

5. The Assembler in PERL 
To add to the utility of this computer, an assembler was 
designed in the PERL language.  As the assembler runs it 
generates text files that can be loaded into the data and 
program memory in the simulated computer.  The 
assembler allows symbolic linking between the data and 
the program and allows symbolic naming of jump 
locations.  The assembler was patterned after the assembler 
imbedded in the MIPS emulator PC SPIM.  
This assembler starts execution by asking the user for data 
and program memory file names.  Then the user sees the 
screen from the table below which gives a review of the 
instruction set of this computer and then provides a sample 
input file to show the syntax that must be used.  When the 
line with the stop command is given, the program closes 
the files and returns. 

6. Student Computer Designs 
Using this computer and its design process as an example, 
computer architecture students have been required to 
design a computer of their own from the registers and 
instruction set to layout and implementation with example  
programs.  The first design from a student team was an 
elaborate 16-bit design that used eight cycles to decode and 
execute each instruction with the idea of demonstrating a 
pipeline implementation.  This computer consisted of eight 
pages of logic.  While this computer represents a great deal 
of effort on the part of the students involved, it is not as 
useful for demonstration because parts of the display are on 
separate pages and can not be viewed simultaneously. 
Some students had difficulty designing a computer starting 
with operations and layout.  For these students the 
approach that seemed to work best was to start with an 
application they would like to demonstrate on their 
computer and then design a computer to meet that 
requirement.  Some examples of the application-motivated 
designs were for an electronic door lock and a “Whack a 
Mole” game.   
 

7. Comments from Students 
In this section, student’s comments are provided to show 
the value of this approach to teaching the inner-workings 
of a computer.  One student, Daniel McCallum, wrote in an 
email [2] after completing Computer Organization: 

“Multimedia Logic has helped me a lot to comprehend 
many of the complex ideas behind the workings of a 
computer.  It helps me see things visually and can look at 
things one step at a time. For example how an ALU works 
made a lot more sense when I could put it together and take 
it apart myself, using Multimedia Logic.  Another big 
aspect of Multimedia Logic was that I can see all the 
different switches, gates, etc. visually and have come to 
understand how basically a computer does what it does.”  
 
Several students commented that they now understood how 
circuits make computers and how computer functions can 
be made from simple switching logic devices.  Students 
that previously used breadboard devices commented that 
understanding what was going on was much easier in the 
emulated environment because each register can be 
instrumented individually. 

 **********         Operation Code       ********** 
 ****************************************** 
 *********    adi- Add Immediate           ********* 
 *********    adm- Add Memory            ********* 
 *********    lmi- Load Mem -> Ri        ********* 
 *********    som- Save Ro-> Mem       ********* 
 *********    ji- Jump Immediate           ********* 
 *********    jzi- J on z Im                     ********* 
 *********    om- Out Mem Im              ********* 
 *********    Hlt- Halt                            ********* 
 ****************************************** 
 
 ************* Sample  Input ************** 
 ****************************************** 
 .data  
 (PLease Input Data for DataMem.) 
 numlet:26d  
 negone:ffh  
 acode:41h  
 .text  
 (PLease Input Data for ProgramMem.) 
 omi acode  
 start:lmi acode  
 adi 01d  
 som acode  
 om acode  
 lmi negone  
 adm numlet  
 som numlet  
 jzi stop  
 ji start  
 stop:hlt  
 ******************************************** 

Table 7.  Assembler Output 
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8. Limitations of Multimedia Logic 
One difficulty encountered with Multimedia Logic is the 
unexplained dropping of wires from saved files.  This 
occurs the first time a new file is saved and seems to be a 
problem with overlapping components.  For example a 
horizontal row of eight light-emitting diodes will lose 
connection to every other light when saved, if they are 
placed adjacent to each other and are vertically lined up.  
The “work-around” for this problem is to stagger the lights 
slightly in the vertical direction.  This vertical staggering 
can be seen in figures 1, 3 and 5.  

9. Summary 
A number of designs built in Multimedia Logic have 
shown to be useful to students in gaining an understanding 
the inner workings of a computer and related technology.  
Students in computer architecture classes have successfully 
used this tool to design many eight-bit and even two 
sixteen-bit computers, most with single cycle designs, but 
two with multi-cycle designs.  Through this experience the 
details of how switches can make computers becomes very 
clear. 
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Abstract 
 

Recently, the University of Alabama Department 
of Electrical and Computer Engineering adopted 
curricular changes to incorporate embedded systems 
into its computer engineering core course sequence.  
One of the major changes implemented was the 
creation of a senior lecture/laboratory combination 
specifically dedicated to embedded systems.  This 
paper describes the specific lecture and laboratory 
content of this senior-level course and how this course 
fits within the new curriculum a The University of 
Alabama. 
 
1.   Background/Introduction 
  

The faculty of the Computer Engineering program 
at The University of Alabama has undertaken a project 
of pedagogical improvement by incorporating a focus 
on embedded systems that is pervasive throughout the 
computer engineering curriculum. There are several 
driving factors behind this decision. Embedded systems 
represent a major fraction of the digital systems market 
as indicated by the fact that embedded systems 
represent a key technology in the automotive, 
consumer electronics, industrial automation, military 
and aerospace applications, office automation, 
telecommunication and data-communication industries 
[1-3]. There is also significant regional interest in 
embedded systems with several major automotive and 
other manufacturing industries located in the state of 
Alabama and surrounding areas [4]. 

As much as 98% of all 32-bit microprocessors 
currently in use worldwide are used in embedded 
systems [5]. However, most computer engineering 
programs teach programming and design skills that are 
appropriate for a general-purpose computer operating 
under control of a commercial operating system rather 
than for the more specialized embedded systems [6]. 
Additionally, instruction in embedded systems can 
increase opportunities for breadth in a curriculum as 
these systems naturally involve hardware and software 
components that interface to various electrical, 

mechanical, and chemical processes. Thus embedded 
systems education is an excellent example of an area of 
study that requires depth and rigor while maintaining 
breadth required for meeting emerging workforce and 
education needs of U.S. industry [4, 7]. 

The rapid proliferation of embedded systems 
requires an increasing number of engineers trained in 
microcontroller-based systems, real-time concepts, 
hardware/software co-design, distributed processing, 
hardware/software integration, and system-level issues 
in embedded systems design. Instructional material is 
just beginning to appear in this area and the 
development of this focus area, associated instructional 
materials, and evaluation materials will allow us to 
better serve our students and, more importantly, to 
provide material for this emerging area that can be 
adapted for use by others. 

This embedded systems focus is important in the 
context of distinguishing our programs at The 
University of Alabama. The embedded systems focus 
will directly affect three degree programs: Computer 
Engineering, Computer Science, and Electrical 
Engineering. The majority of computer engineering 
programs deal primarily with design and programming 
for general-purpose computers. Traditionally, we also 
have offered a broad exposure to computer engineering 
topics in our curriculum and conducted research in a 
number of areas. Recent self-assessments of our 
program utilizing both the IEEE/ACM model computer 
engineering curriculum [8] and a set of nationally 
recognized and comparable programs led us to choose 
to adopt a more focused curriculum model. Because of 
our limited size and resources, we believe that focusing 
both our education and research efforts on a single 
theme, namely embedded systems, will allow us to 
progress in both areas. A web-based search for 
“embedded systems education” using the ASEE 
database and internet search engines reveals a scarcity 
of programs focusing on embedded systems, 
particularly in the U.S. Southeastern region. We 
believe that successful implementation of this focused 
effort in a niche area will serve as a model for many 
other similarly sized programs [4]. 
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2. The University of Alabama Computer 
Engineering Core Course Sequence 
 

The plan for reforming the curriculum will involve 
each of the courses in the Computer Engineering 
program shown in Figure 1. In this figure, the arrows 
denote a prerequisite relationship between the courses. 
The comprehensive plan builds upon each of these 
courses to provide an enriched experience for the 
students.  

 

ECE380
Digital Logic

4 credit with lab

ECE383
Microcomputers
4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit

ECE380
Digital Logic

4 credit with lab

ECE383
Microcomputers
4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit  
 
Figure 1. Computer Engineering Core Curriculum 

with Embedded Systems Focus 
 

The first course in the sequence of Figure 1, ECE 
380 - Digital Logic, is a four-hour lecture/laboratory 
combination class incorporating traditional 
combinational and sequential logic design and digital 
design using VHDL. The embedded systems theme is 
incorporated into this class through exercises that, for 
example, include digital counter designs in the context 
of watchdog timers common in embedded processors, 
pulse width modulation (PWM) circuit design, and 
complex state machine designs for typical embedded 
system tasks such as bus arbitration. Altera’s Quartus II 
electronic design automation software is used to 
provide the students with system design and simulation 
experience. This course is required for students in all 
three directly affected engineering disciplines. Along 
with the nature of the subject material, this student 
diversity makes this course especially well-suited for 
the incorporation of multidisciplinary team-based 
learning. Finally, basic designs from exercises in this 
course are used as components in larger, more complex 
designs in subsequent courses. Proper design 
techniques as well as design reuse are stressed. 

The second course, ECE 383 – Microcomputers, 
builds on a foundation of traditional architectural topics 
such as register, memory, bus, and instruction set 
design to incorporate embedded systems topics such as 
peripheral interfacing, analog-to-digital (A/D) 
conversion, device control, interrupt management, and 
system reliability. Metrowerks CodeWarrior is used to 

provide a modern development environment for 
programming and debugging the software portions of 
system design. Students expand the use of Altera’s 
Quartus II software introduced in ECE 380 to produce 
custom interface logic to connect a microprocessor 
with a variety of peripheral devices. We also introduce 
the basic use of Mentor Graphics software for 
facilitating hardware/software co-design and board-
level design issues. As with ECE 380, this course is 
required for students in all three directly affected 
engineering disciplines facilitating the incorporation of 
multidisciplinary team-based learning. 

The third course, ECE 480/481 - Digital Systems 
Design, is a four hour lecture/laboratory combination 
class that focuses on the design and test of digital 
systems components including basic arithmetic and 
logic components, and digital systems interfaces 
including PWM designs, and mouse, keyboard and 
video display drivers. VHDL-based designs are 
implemented on FPGA devices. System-on-a-
Programmable-Chip design methodologies are 
introduced. Special emphasis on testing includes an 
introduction to device-embedded logic analyzers and 
their use for debugging SoPC designs.  Specific topical 
material introduced includes hardware description 
languages, electronic design automation, logic circuit 
testing and testable design, SOC design and intellectual 
property (IP) cores. Software tools for electronic 
design automation from Altera and Mentor Graphics 
corporations are used, allowing students previously 
exposed to these toolsets to become more proficient in 
their use. More advanced features of these toolsets are 
introduced including floor planning, advanced timing 
analysis, and synthesis options. Additional toolsets are 
introduced including both design-for-test and 
hardware/software co-design for embedded processors. 
Additionally, the Mentor Graphics toolset includes 
capabilities for engineering project management that 
are used to manage the execution of best design 
practices throughout project assignments. Specific 
embedded systems concepts that are covered include 
embedded processor design, peripheral integration and 
SOC solutions for embedded systems. Integration of 
custom hardware and software with existing 
components is emphasized. Hardware/software co-
design is addressed by integrating and expanding basic 
projects from the first two courses: ECE 380 and ECE 
383 [4]. 

The fourth course, ECE 484 – Computer 
Architecture, is a three hour course that incorporates 
embedded systems concepts into the context of 
computer architectural issues.  Traditional computing 
architectures are introduced, evaluated, and contrasted 
with embedded systems architectures [9].  Specifically, 
architectural design tradeoffs associated with the 
processor(s), input/output (I/O), and memory are 
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discussed.  Performance evaluation and analysis is also 
contrasted between a general-purpose MIPS 
architecture and architectures used in embedded 
systems.  Hardware/software co-design is introduced, 
and the relationships between the software and 
hardware components of computing systems are 
discussed.    

The fifth course, ECE 486/487 – Embedded 
Systems, is a four hour lecture/laboratory combination 
class.  It is described in detail in the following sections 
of this paper.   

The sixth course, ECE 493 – Special Topics, 
provides flexibility in the curriculum by allowing 
advanced embedded systems concepts to be introduced 
on a regular as-needed basis. Such topics would 
include, but are not limited to, real-time systems, 
distributed embedded systems, hardware/software co-
design methodologies and design 
verification/validation/testing. 

The seventh course, ECE 494 – Capstone Design, 
culminates the undergraduate engineering design 
experience by providing a semester-long, team-
oriented design project building on the skills learned in 
a previous senior-level lecture/laboratory course. 
Candidate lecture/laboratory courses preceding the 
Capstone Design course include ECE 480/481 Digital 
Systems Design and ECE 486/487 Embedded Systems. 
All facets of the previously introduced software tools 
will be exercised in this course. Design projects such as 
programmable logic devices and SOC solutions in 
robotic car competitions [10] and projects following 
the IEEE Computer Society International Design 
Competition model [11] will be used. Since the design 
is team oriented, this course also provides the 
opportunity to assess student teaming skills and the 
pedagogies used throughout the curriculum for 
instruction in teaming [4]. 
 
3. ECE 486/487 Embedded Systems 
 

The ECE 486/487 Embedded Systems 
lecture/laboratory course is a new course resulting from 
the curriculum reform activities.  The following 
sections describe the concepts covered in the lecture, 
how these concepts relate to the IEEE/ACM model 
curriculum, the laboratory activities, and the hardware 
and software currently used for the laboratory 
assignments.   

 
3.1  Lecture Material 

 
The course begins with an introduction to 

embedded systems.  This portion of the lecture 
provides general definitions of embedded systems, 
examples of common embedded systems, and 
distinguishes embedded systems from other types of 

computing systems.  Also, general characteristics of 
embedded systems are given and functional and non-
functional metrics used to evaluate system design and 
performance are described.  Background material such 
as Moore’s Law is presented to explain the broad 
emergence of embedded systems throughout our 
society.  This leads to a justification of embedded 
systems as a focus area within computer engineering 
and the corresponding need for embedded systems 
education.  This material corresponds to various core 
components of the IEEE/ACM model curriculum 
including “History and overview of embedded systems 
– ESY0” and “Classification of embedded systems – 
ESY6”, as well as one elective component of the model 
called “Software engineering considerations – ESY7”.   

The next set of lectures is designed to concentrate 
on the design of embedded systems.  Specifically, ad-
hoc, top-down, and bottom-up design methodologies 
are shown to be inadequate as general-purpose 
methodologies due to the varying system requirements 
and characteristics across multiple embedded systems 
applications.  Hardware/software co-design is 
introduced and compared to the other methodologies.  
Its uses a domain-independent process abstraction to 
describe system behavior which delays hardware and 
software allocation and mapping decisions making it 
more suitable as a general-purpose approach for these 
applications.  The main goals of this concept are that 
embedded systems designers must be able to perform 
hardware and software design tradeoffs and analysis.  
Computational models used to describe system 
behavior are also introduced.  These lecture concepts 
correlate to several of the components in the “Software 
engineering considerations – ESY7” section of the 
model curriculum which is recommended as elective 
material [8].   

The aforementioned lecture materials represent a 
high-level, abstract view of embedded systems.  Some 
of these concepts, particularly the design 
methodologies, are difficult for students to grasp, and 
students have indicated that these sections of the 
lecture are their least favorite.  The following sets of 
lectures deal with more tangible concepts that are more 
easily mapped to hands-on laboratory assignments.  
Students have indicated a higher level of interest in this 
material.   

The next set of lectures is designed to discuss 
typical I/O activities and related concepts required of 
embedded systems.  Specifically, data acquisition, A/D 
conversion, digital-to-analog (D/A) conversion, 
sampling rates, the Nyquist rule, A/D resolution, 
“system” resolution, PWM, timers, timer resolution, 
communication protocols, direct memory access, and 
specific I/O devices such as keypads, and UARTs are 
discussed.  Many of these concepts are introduced 
earlier in the course sequence, but in this case a 
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concerted effort is made to put these concepts into a 
“system” context.  For example, A/D conversion is 
introduced in ECE 383 in the context of an on-chip 
converter incorporated with the microprocessor.  In 
ECE 486, A/D conversion is again discussed, but this 
time it is seen as part of a data acquisition system and 
the A/D converter is incorporated as an off-chip I/O 
peripheral device.  In this case, the A/D converter 
resolution and sampling rate are compared to the 
requirements of the “system” within the context of the 
specific real-world data being collected.  These topics 
are listed as components in two parts of the model 
curriculum including “Fundamentals of embedded 
systems – ESY1” (core) and “Hardware considerations 
– ESY3” (elective) [8].    

The different architectures to support interfacing 
required for the I/O activities previously mentioned is 
the focus of another set of lectures.  In particular, bus-
based architectures are discussed and specific designs 
are created.  Bus communication protocols are 
compared, master-slave relationships are defined, and 
system activities are decomposed into atomic bus 
transactions.  Bus arbitration is introduced, 
multiprocessor bus architectures are described, and bus 
saturation is defined and explored.  Finally, interrupt-
driven and polled I/O are described, compared, and 
contrasted in terms of hardware design, software 
design, and system performance.  All of these topics 
satisfy many of the components in the following parts 
of the model curriculum:  “Language issues – ESY2” 
(core), “Hardware considerations – ESY3” (elective), 
“Mapping between languages and hardware – ESY4” 
(core), “Classification of embedded systems – ESY6” 
(core), “Particular techniques and applications – 
ESY8” (elective), and “High integrity software systems 
– ESY10” (elective) [8].  

Another set of lectures is designed to address 
memory concepts.  These lectures cover different 
memory technologies and discuss particular 
applications of each.  The technologies are compared 
and contrasted based upon their operational 
characteristics.  Also, memory system hierarchical 
design and caching are introduced.  The localities of 
reference upon which memory system design is based 
are used to show the importance of memory system 
design and its effect on overall system performance.  
The particular aspect of the model curriculum 
incorporated into these lectures is “Mapping between 
languages and hardware – ESY4” (core) [8]. 

The last set of lectures is designed to introduce 
real-time issues.  Real-time systems are defined and the 
various types are compared and contrasted.  Real-time 
operating systems are discussed and their performance 
goals are described as they relate to I/O activities and 
memory operation addressed in earlier lectures.  For 
example, at this point students seem to recognize and 

understand the effects of caching on real-time 
performance and the minimization of interrupt latency 
with real-time operating systems.  The students have 
shown genuine excitement about being able to relate 
such concepts.  Scheduling is also introduced at this 
point.  Since we have already defined the process 
abstraction and the concurrent process model of 
computation, it is easy to address process scheduling, 
preemption, non-preemption, priority-based 
scheduling, and priority assignments based upon 
popular algorithms such as the rate-monotonic 
algorithm.   These topics correlate to the following 
parts of the model curriculum:  “Language issues – 
ESY2” (core), “Mapping between languages and 
hardware – ESY4” (core), “Real-time operating 
systems – ESY5” (elective), and “Classification of 
embedded systems – ESY6” (core) [8].  

 
3.2  Laboratory Hardware and Software 

 
The hardware and software dedicated to the 

embedded systems laboratory assignments uses a 
single-bus architecture built around the VMEbus.  The 
VMEbus is a standardized bus protocol designed for 
I/O intensive operations and often used in industrial, 
military, and aerospace embedded applications [12].  
Each of the three lab stations consists of two single-
board-computers (SBC) connected to the VMEbus, one 
6U-sized combination VMEbus CDROM drive and 
hard drive for each SBC, and one shared A/D board 
consisting of 64 differential analog input channels also 
connected to the VMEbus.  One SBC is loaded with the 
Windows XP Professional operating system and the 
second SBC is loaded with Redhat Linux version 9.0 
running the 2.4.20-6 Linux kernel.  A customized 
library of software functions compatible with the C 
programming language is available for use on each 
platform.  The functions make interfacing to the 
VMEbus address space easy and eliminate the need for 
timely driver development for the specific hardware 
used.  Each of the three lab stations allows for remote 
login via the Internet.  This promotes sharing of the 
hardware.  Remote login does not provide for 
interacting directly with the equipment in some cases, 
for example setting up analog input into the A/D board.  
But, it does allow for software development which 
accounts for a majority of the time spent using the 
stations.   

Although the VMEbus is seen almost exclusively 
in industrial, military, and aerospace applications, it is 
surprisingly useful for academic embedded systems 
activities.  In addition to using its asynchronous 
protocol as an example of such bus communications, 
the flexibility of the VMEbus makes it perfect for 
demonstrating many other topics discussed in the 
IEEE/ACM model curriculum.  For example, SBCs can 
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be easily added to a VMEbus backplane to produce a 
multiprocessor.  The SBCs can be the same producing 
a homogenous multiprocessor, or each can be different, 
even executing different operating systems, to produce 
a heterogeneous multiprocessor.  Various memory 
configurations can be set up by adding global memory 
cards to a VMEbus system.  Multiprocessors and 
shared memory provide the opportunity to address 
mutual exclusion, concurrency, and inter-process 
communication issues.  Various operating systems 
including real-time operating systems are readily 
available for VMEbus SBCs.  With such an operating 
system, detailed timing analysis of system performance 
and real-time scheduling concepts can be investigated.  
The VMEbus supports various bus arbitration methods, 
has a prioritized 7-level interrupt protocol, supports 
multiple bus masters, has a data transfer rate of 40 
Mbytes per second, and is standardized.  Its thorough 
I/O support makes it easy to study polled I/O, interrupt-
driven I/O, standard and memory-mapped I/O 
configurations, arbitration for multiple interrupting 
devices, starvation, and bus saturation concepts.  One 
final benefit of the VMEbus is that there are many 
vendors and many choices for VMEbus devices 
making off-the-shelf components common, relatively 
inexpensive, and simple to use.   

 
3.3  Laboratory Activities 

 
 The laboratory activities are chosen to supplement 
the lecture material.  Each assignment is made with the 
goal of supporting the “system” concept of an 
embedded system.  So, in each case, overall system 
performance is a concern.  Based upon the data 
presented in [13], the C programming language is used 
for approximately 80% of all embedded systems, and 
assembly language is used for approximately 10%.  
Since assembly language is the choice for earlier 
courses in the UA sequence, such as ECE 383, this is 
the best time to introduce C as a high-level 
programming language suitable for embedded 
applications.  By doing so, the laboratory addresses a 
core topic in the IEEE/ACM model curriculum called 
“Language Issues – ESY2”.  This specifically refers to 
a need for the description of various programming 
languages used in embedded systems and the 
specification of a guide for when such languages are 
appropriate [8].  Finally, each assignment will use the 
VMEbus systems described in the previous section or 
will involve a software simulation of some embedded 
systems component.   
 Another important aspect of the laboratory 
assignments is that the technical data necessary to 
program the hardware and to use the custom C 
software libraries is not presented in a formal fashion.  
Instead, students are responsible for gathering the 

necessary information from the technical 
documentation accompanying the laboratory hardware 
and software, i.e. technical manuals.  This type of 
experience is invaluable to embedded systems 
engineers who will be faced with this task early and 
often in their careers, often dealing with documentation 
that is poorly written and filled with errors.  Thus, the 
laboratory activities provide an opportunity to assess 
student learning in an unstructured environment.   
 The first two laboratory assignments involve the 
creation of a data acquisition system.  The particular 
analog data collected from the real-world is not as 
much of a concern as how the data is collected and 
what is done with the data.  For the first iteration of the 
course, the students collected environmental data 
including temperature, light, and humidity.  The 
sensors and the circuitry required were pre-selected and 
set up for the students.  This represents a case where 
practicing engineers are given an I/O component, i.e. a 
sensor package, with which to work and must integrate 
that package into the data acquisition system.  In this 
way, the students can focus on system integration 
activities and avoid electronic design issues they 
should have been exposed to earlier in the curriculum 
and that tend to distract some students from the goal of 
the current exercise.  For the first laboratory 
assignment, students create a data acquisition system 
that uses polled I/O to collect environmental data at a 
specified rate.  The time required for the A/D 
conversion and the responsiveness of the overall 
system is collected.  In the second lab, the students 
create the same data acquisition system that is 
interrupt-driven.  In this case, the interrupt latency is 
measured and compared to the system timing of the 
polled I/O system.  Creating the same functionality 
using two different approaches has proven to be a 
valuable technique in demonstrating important 
differences in performance and implementation.  These 
two assignments also support many of the interfacing 
topics covered in the lecture portion of the course 
including general I/O configurations, writing interrupt-
service routines, and decomposing bus-based 
communication into atomic bus transactions using 
master-slave relationships. 
 Another lab assignment that is used is that of 
creating a software simulation of a memory hierarchy.  
For this assignment, there is no direct connection to the 
VMEbus hardware, although students are encouraged 
to write their simulations using the lab stations to 
promote further familiarity with those systems.  For 
this assignment, students are required to develop a 
simulation of a memory hierarchy configured 
according to user input.  Once configured, the 
simulations must be able to accurately track memory 
performance given a set of memory references.  
Considering that many embedded applications have 
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predictable workloads, memory performance prediction 
and configuration is a necessary component of 
embedded systems development.   
 The final laboratory assignment involves real-time 
scheduling.  Like the previous lab, the students are 
asked to develop a software simulation of a real-time 
scheduler configured according to user input.  Possible 
configuration options include preemption or non-
preemption, static or dynamic priority assignment, 
periodic or aperiodic task execution, independent tasks 
or tasks having precedence constraints.  This 
assignment incorporates many concepts discussed in 
the IEEE/ACM model curriculum and included as part 
of the lecture material.  For example, real-time 
operating system issues are addressed, as well as 
different priority assignment algorithms such as rate-
monotonic and earliest-deadline-first.  Scheduling 
processes also ties back into the concurrent process 
model of computation mentioned earlier as a technique 
used to describe system behavior.  Students can now 
see the effects of different functional decompositions 
and different granularities of decomposition.   
 
4. Future changes to ECE 486/487 
 
 After the first complete offering of this course with 
its associated laboratory assignments, it is evident that 
several adjustments must be made.  First, a complete 
co-design laboratory assignment must be produced to 
complement the lecture material on this subject.  Co-
design is a rather abstract topic for students to 
understand especially if they have little to no design 
experience.  The problems encountered up to this point 
with introducing such an assignment include finding a 
suitable system with the scope appropriate for a 1-2 
week assignment, a system that will provide obvious 
and limited design choices after using trade-off 
analysis, and conquering the learning curve associated 
with design environments using co-design.   
 A second addition to the course includes 
expanding the software simulation assignments to 
incorporate the VMEbus systems.  Adding a real-time 
operating system to one SBC will make it easy to 
incorporate the VMEbus systems into the scheduling 
assignments.  Also, the VMEbus SBCs have cache 
memories and configurable caching options including 
the ability to turn caching off to support hard, real-time 
applications.  With limited effort, it should be 
straightforward to incorporate the VMEbus systems 
into the memory simulator assignments.   
 Finally, additional lab assignments must be 
introduced to complement other lecture topics such as 
multiprocessing.  As embedded systems continue to 
increase in complexity, multiprocessing is becoming a 
necessary topic as opposed to an “advanced” topic and 
must be incorporated into the class.  The VMEbus 

systems readily support multiprocessing and this must 
become a fundamental part of the course. 
 In addition to adding laboratory assignments to the 
course, the course lecture and lab materials must be 
generalized in such a way as to make them available 
for use by others.  The generalized versions of the 
materials should incorporate feedback generated from 
student assessment of the current materials.  
Assessment strategies are currently being defined.   
 
5. Conclusions 
 

The University of Alabama has reformed its 
Computer Engineering curriculum in order to 
incorporate an embedded systems theme throughout its 
core course sequence.  One large component of these 
changes involves the introduction of a senior-level 
lecture/laboratory combination course concentrating on 
embedded systems.  This course is integrated into the 
core course sequence and its lecture topics are derived 
from the IEEE/ACM model computer engineering 
curriculum.  The laboratory assignments are designed 
to complement the lecture topics, and they also 
incorporate many of the topics, both core topics and 
elective topics, mentioned in the model curriculum.  
The laboratory assignments make use of a system 
architecture designed around the VMEbus.  The 
VMEbus is shown to provide a powerful, flexible 
platform from which to teach many of the concepts in 
the model curriculum.   
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Abstract 

 
The increasing complexity of embedded systems 

parallels the difficulty of adequately preparing students 
to design them. Two topics key to the success of a 
graduate in the area of embedded systems are 
hardware/software co-design and real-time computing. 
This paper serves as a case study describing how an 
undergraduate applied hardware/software co-design in 
the design of a spectrum analyzer with real-time 
constraints for a Capstone senior design project.  The 
goal of this work is to produce a co-design approach 
more suited for undergraduates having little design 
experience.   

1.   Introduction 
 

How can we prepare our electrical and computer 
engineering students to design embedded systems? 
There is so much material to cover at the undergraduate 
level it hardly seems possible to adequately prepare 
students for a career in embedded systems 
development. Thus, educators are faced with the 
difficult task of selecting a subset of critical topics to 
include in their curriculum. Two critical topics are 
hardware/software (HW/SW) co-design and real-time 
computing. In spring 2004 The University of Alabama 
offered for the first time an embedded systems class at 
the undergraduate level. An educational result of this 
course was the design of a spectrum analyzer with real-
time constraints which was successfully completed 
December 2004 as a Capstone Design project. This 
paper is an examination of how HW/SW co-design was 
employed in an undergraduate design class.  
Completion of such a project suggests that a student is 
well prepared for a career in embedded systems 
development.  The remainder of this paper is organized 
as follows.  First, some background material is 
presented describing HW/SW co-design.  Traditional 
implementations are presented that lead to a 

customized implementation implemented by the 
author.  A short description is then given about the 
specific design project undertaken in this effort.  This 
is followed by a detailed description of the custom 
HW/SW co-design technique as applied to this specific 
project.  Finally some conclusions and observations are 
made.   
 
2. Background 
 

Hardware/software co-design is a design 
methodology which exploits the synergism of hardware 
and software through their concurrent design [1] and 
achieves this by delaying the allocation decision. 
Hence, as much as possible is known about the system 
prior to allocating pieces of the system to the hardware 
or software domains. This methodology has two 
primary advantages; more time to evaluate tradeoffs 
and it creates better hardware/software interfaces. 
However, it requires engineers to be familiar with both 
hardware and software caveats. Any design 
methodology should: 
• provide a checklist for the design process 
• facilitate the communication of design team 

members 
• help to predict costs 
• aid in the creation of a working prototype 
• aid in the creation of a timeline for the 

development cycle 
• help with the identification of metrics 
• aid with requirements specification, and 
• assist with the development of test procedures. 
 

The goal of HW/SW co-design is to do all of these 
things as well as allow designers to “predict” 
implementation, “incrementally refine” a design over 
“multiple levels of abstraction”, and create a “working 
first implementation” [2]. HW/SW co-design is a 
cyclic design methodology. Implementations of 
HW/SW co-design are as varied as embedded systems 
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themselves. Institutions and individuals tailor the 
methodology to fit their application and institutional 
framework. All these different implementations make it 
difficult to apply co-design, especially for an 
undergraduate student having limited design 
experience.  An implementation of HW/SW co-design 
suitable for an undergraduate applying it (the 
methodology) for the first time was needed. To meet 
this requirement a custom version (shown in Figure 4) 
based upon Wolf’s and Axelsson’s descriptions of 
HW/SW co-design was created [2, 4].  

Wolf’s and Axelsson’s implementations of HW/SW 
co-design are presented here for reference and 
comparison to the author’s version.  In [2], Wolf 
divides co-design into four major tasks: 
• partitioning the function to be implemented into 

smaller, interacting pieces; 
• allocating those partitions to microprocessors or 

other hardware units, where the function may be 
implemented directly in hardware or in software 
running on a microprocessor; 

• scheduling the times at which functions are 
executed, which is important when several 
functional partitions share one hardware unit; 

• mapping a generic functional description into an 
implementation on a particular set of 
components, either as software suitable for a 
given processor or logic which can be 
implemented from the given hardware libraries. 

 
In [3] Wolf also describes HW/SW co-design in the 

following way: “Front end activities such as 
specification and architecture simultaneously consider 
hardware and software aspects. Similarly, back-end 
integration and testing consider the entire system. In 
the middle, however, development of hardware and 
software components can go on relatively 
independently – while testing of one will require stubs 
of the other, most of the hardware and software work 
can proceed relatively independently” [3]. A block 
diagram of the co-design process from [3] is shown in 
Figure 1.  Wolf’s two descriptions of HW/SW co-
design are very different, yet they both demonstrate the 
core concept of delayed allocation. 

Though the cyclic nature of co-design is missing 
from Figure 1, it is demonstrated in Axelsson’s 
diagram shown in Figure 2. The structure of Figure 2 
also emphasizes the delayed allocation decision by 
including allocation as a separate task in the design 
flow diagram.  Axelsson [4] defines the tasks in his 
figure as follows: 
• System behavioral description, giving an 

executable specification of what the system is 
supposed to do. 

 
 

Figure 1.  A simple HW/SW co-design methodology [3]. 
 
 

 
 

Figure 2. Axelsson’s diagram of HW/SW Co-design [4]. 
  
• Hardware architecture selection, describing 

what hardware components should be used and 
how they should be connected. 

• Partitioning, deciding which parts of the system 
behavior should be realized by what parts of the 
hardware architecture. 

 
Please note that Axelsson’s use of the term partitioning 
is analogous to our use of allocation thus far.  

Figure 3 is a comparison of Axelsson’s design flow 
diagram and a typical top-down model. This figure 
illustrates the advantage of a detailed behavioral 
description that is domain independent; the more 
information known about a system prior to hardware 
architecture selection the better. 
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                                                     HW/SW Co-Design                                    Top-Down 
 

Figure 3.  Axelsson’s diagram versus a typical top-down model. 
 
 

Figure 4 shows the author’s flow diagram for HW/SW 
co-design.  The nomenclature used here is slightly 
different from that of Wolf and Axelsson.  
• Specification, usually consists of a collection of 

metrics, both functional and non-functional, 
which provide a precise description of the top-
level system attributes and requirements. 
Examples of metrics include throughput, 
latency, unit cost, NRE cost, power 
consumption, maintainability, and time-to-
market.  

• Partitioning is the action of breaking the system 
functionality into small domain-independent, 
concurrent and interacting/communicating 
processes. The size of the processes is called the 
granularity. The result of the partitioning step 
should be a fully defined behavioral description 
of the system, with well defined interfaces 
between processes. Performance requirements 
for the processes such as frequency, throughput, 
and latency should also be defined. 

• Allocation is the action of assigning each 
process to either the hardware domain or the 
software domain. Communication bandwidth 
alternatives/limitations between hardware and 
software should be considered. For example, 
two processes exchanging lots of data frequently 
would likely best exist in the same domain. 

• Hardware Architecture means describing what 
hardware components should be used and how 
they should be connected [4] to support the 
execution of the processes.  

• Mapping is the selection of specific hardware 
components and mapping the processes onto 
parts of the hardware architecture. This includes 
mapping processes from the software domain to 
the processor(s) on which they will be executed. 
Much consideration should be given to the 
execution requirements of the processes. 
Manufacturability should be considered during 
component selection. 

• Synthesis is the implementation of the hardware 
and software processes for the selected 
hardware. 

• Integration is the recombination and testing of 
processes and interfaces after implementation. 

• Scheduling is the assignment of resources to all 
system processes such that their execution 
requirements are satisfied including inter-
process communication dependencies.  

 
Those who are familiar with HW/SW co-design may 

not see the need to break the design process down into 
this many steps.  However, undergraduates find this 
decomposition beneficial because it requires one to 
think about each step separately and consider trade-offs 
that may not have otherwise be considered. Figure 5 
shows how this design flow compares to Axelsson’s.  
Allocation is placed above hardware architecture 
because the allocation process provides helpful 
intuition going into the hardware architecture selection. 
This was done even though the first hardware 
architecture selection usually causes some immediate 
feedback into the allocation. 
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Figure 4.  Customized diagram of HW/SW co-design. 
Dashed arrows indicate feedback paths that may not 

occur in every design. 
 

Scheduling appears near the end of the design process, 
though a system schedule is defined in the partitioning 
step and considered throughout the design process.  
The finer granularity of the design tasks makes them 
more manageable for an undergraduate without much 
intuition gained through experience. The direct 
correlation to the definitions listed above serve as a 
reference to keep the student on track during each 
design task.  For these reasons this design flow is 
believed to be much more accessible to undergraduates 
applying HW/SW co-design for the first time. The 
remainder of this paper is a case study of how this 
customized HW/SW co-design methodology was used 
in the design of a spectrum analyzer with real-time 
constraints for a Capstone senior design project. 
 

3.  Project Background 
 

The project under examination is the design of an 
FFT based low-bandwidth real-time spectrum analyzer. 
The inspiration for the project was an ASIP designed 
by SiWorks Inc. This FFT processor is capable of 
computing a 1024-point FFT in just 250 clock cycles. 
Unfortunately these chips were not available for 
purchase during the initial stages of the design project. 
Ultimately the implementation technology used to 
compute the FFT was an FPGA. This resulted in a 

computational bandwidth well beyond that of our 
specifications and the analog interface. The customer 
for the design was the Department of Electrical and 
Computer Engineering at The University of Alabama 
for use in sophomore and junior level laboratories. The 
goal of the project was to design and build a beta 
prototype of a stand-alone spectrum analyzer with 
these basic requirements: 
• enough bandwidth to view the spectrum of 

ADSL signals 
• a flexible input interface for general purpose use 
• VGA interface 
• $300 proposed maximum unit cost per thousand 
 

The user interface and VGA resolution details were not 
specified.  One of the primary metrics was the real-
time requirement.  These goals were met and surpassed 
with the exception of some op-amp stability issues and 
one known firmware bug.  The specifications of the 
completed system are listed in Table 1. 
 

Table 1. 
Specifications of Completed System 

 

Real-Time 

-- Input data stream sampled 

continuously 

-- Every sample must be processed 

-- No results are to be discarded 

FFT size 1024 points 

Frequency Range 0 to 1.10 MHz 

Resolution 1.95 kHz 

Sample Frequency 4 MHz 

Input Voltage Range 0 to 100Vpeak 

Input Impedance 1MΩ, 20pF 

Input Range Selection Automatic 

System Latency 
-- 0.5 ms (input to video processor) 

-- 80 ms (input to display) 

Configuration Interface PS/2 Mouse 

Output Interface VGA (640x480x6-bit color) 

Power Source Single Phase, 120V, 60Hz 

Manufacturability No BGA or leadless chip packages 

Unit Cost per Thousand $87.44 

 
4. Implementing HW/SW Co-Design 
 

The original ad-hoc system diagram that was created 
prior to the application of HW/SW co-design is shown 
in Figure 6.  
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          Customized Co-Design             Axelsson’s Co-Design 
 

Figure 5.  Customized design flow versus Axelsson’s. 
 
 
It is evident from the figure that partitioning, 
allocation, and hardware architecture selection were all 
occurring simultaneously. Early in a design process 
very little is known about how the system will 
function; therefore, at that point it is dangerous to 
attempt to define a hardware-architecture to support the 
operation of the system.  Instead, Figure 7 shows a 
system partitioning resulting from a co-design 
approach.  The immediate advantage of applying 
HW/SW co-design is a domain and architecture 
independent partitioning.  Figure 8 shows one 
component of the system, the system control unit, 
decomposed into its constituent parts.  This is the 
progression of partitioning that should continue until 
the processes are simple enough that they are readily 
implemented and the interfaces between them are fully 
defined, representing a system having the desired 
granularity.  The partitioning step is also the time to 
define performance requirements for the processes 
such as frequency, throughput and latency. These will 
be important factors to consider in the mapping step to 
ensure that the final scheduling process will be 
successful.  

During the allocation, hardware architecture, and 
mapping stages many tradeoffs must be analyzed 
before settling on a particular system implementation.  

It is during these stages of the co-design process that 
decisions must be made that may ultimately affect the 
partitioning and even the system specification.  These 
are the feedback loops built into the co-design process 
that lead to multiple iterations through this process 
before project completion.  For example, the original 
intent was to use an FPGA to implement a custom 
optimization of the FFT algorithm to achieve the 
desired performance. However, during initial hardware 
architecture selection it was realized that a sufficiently 
large FPGA would be cost prohibitive. The next 
alternative explored was an FFT ASIP although those 
found were not available (Zarlink PDSP16510, I&C 
Tech. STARFFT).  Finally it was decided to use a DSP, 
the TI TMS320C6711, which is a 272-pin BGA device. 
It met the minimum performance requirements, was 
inexpensive and readily available. Having made this 
selection required a re-partitioning of the system. This 
second top-level partitioning is that shown in Figure 7. 
As part of the allocation, each process was assigned an 
anticipated implementation technology. At this point 
dual-port RAM was the chosen implementation 
technology for buffering. Unfortunately, dual-port 
RAM is very expensive in sizes as large as 1Kbyte. 
The memory did not need to be random access, so a 
2Kbyte FIFO from TI, SN74V235, was used instead.   
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Figure 6. Original ad-hoc system partitioning. 
 

 

 
 

Figure 7.  Co-design top-level system partitioning. 
 

 

 
 

Figure 8.  Partitioning of the system control unit. 
 

As another example, there were concerns about the 
thermal characteristics of the circuit board and 
difficulty in mounting the device prior to proceeding 
with the hardware architecture using the 
TMS320C6711.  The specifications were changed to 
include manufacturability, which meant no BGA parts. 
This required another tradeoff to a different DSP 
device, the TMS320C5402 which comes in a 144-pin 
QFP. This processor is capable of computing the FFT 
at an input sample rate of greater than 2MHz. The last 
frequency bin in the FFT corresponds to Fsample/2 
providing a 1MHz bandwidth, just barely satisfying the 

minimum performance requirements. Therefore this 
change did not affect the partitioning, allocation, or the  
hardware architecture used for the TMS320C6711.  

As another example of these feedback loops through 
the co-design process, changes were required to 
prevent aliasing.  In order to prevent aliasing 
(frequencies above Fsample/2 from wrapping around into 
the low end of the spectrum), a low-pass filter was 
needed to attenuate the frequencies above Fsample/2 to 
less than the LSB of the input data; the input data being 
the output of a 10-bit ADC. However, the -3dB point 
of the filter needed to be 1MHz or higher to meet the 
performance requirements. To meet the minimum 
performance requirements two DSPs would need to be 
used in parallel, each one processing every other set of 
data, to compute the FFT. By putting two DSPs in 
parallel and using a six-pole Bessel low-pass filter the 
Fsample would be 4MHz. With this new configuration 
the -3dB point was calculated to be 1.10MHz.  Again, 
these changes would ripple through all phases of the 
co-design process resulting in a new partitioning, 
allocation, and hardware architecture shown in Figure 
10.   

One final example of the need for feedback in the co-
design process resulted from the introduction of new 
technology midway through the design process.  In this 
case, it was discovered that Altera had recently made 
an FFT IP core available on their web site.  The FFT IP 
core could be configured as a streaming FFT (one input 
and one output every clock cycle), meaning the entire 
system could be pipelined requiring little additional 
memory for buffering and greatly simplifying the 
overall implementation of the system.  It was also 
determined that the Altera Cyclone EP1C12Q240C7, 
the largest FPGA offered by Altera or Xilinx and 
available in the QFP package, was available and within 
budget.  The embedded memory blocks in the cyclone 
line of FPGAs are true dual-port RAM. A review of the 
partitioning showed that switching from the DSPs and 
external FIFOs would not require changing the 
algorithms;  disregarding those for the VGA interface 
which would in fact be simplified due to the interfaces 
being completely internal to the FPGA.  The decision 
was made to change the mapping to make use of this 
new technology.  This resulted in yet another cycle 
through the co-design process starting with partitioning 
and continuing through allocation, hardware 
architecture, all the way to the system integration, 
scheduling and testing phases.   

The final top-level system partitioning using the 
FPGA device is shown in Figure 9.  The final 
partitioning shows remarkable similarity to the original 
system partitioning shown in Figure 7, with the 

Page 58 Workshop on Computer Architecture Education June 5, 2005



exception that Figure 9 has significantly more detail at 
the top level.  Finally, a screen shot of the output of the 
system and a photo of the finished spectrum analyzer 
are shown in Figure 11.   

5. Conclusions 
 

This case study demonstrates that the application of 
HW/SW co-design can be employed in senior design 
classes to increase the complexity of projects 
accomplishable by undergraduate students. The custom 
HW/SW co-design process presented here should be 
applicable to any embedded system. The structure of 
the design flow diagram and the accompanying 
definitions make it ideally suited for undergraduates. 
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Figure 9.  Final top-level system partitioning. 
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Figure 10.  One version of the hardware architecture. 
 
 

 

 

 
 

Figure 11.  System output (top) and completed spectrum analyzer (bottom). 
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Abstract 

In traditional microprocessor systems design courses, 
students learn to develop assembly language programs to 
control peripherals, handle interrupts, and perform I/O 
operations. We adopt a 32-bit StrongARM architecture on 
the Motorola MX1ADS board with Embedded Linux to 
present a modern microprocessor system design course. 
With this new platform, we use a high-level language to 
develop projects that accelerate the students� learning 
curve. Embedded Linux also provides the necessary 
flexibility and tool set required for students to debug their 
own projects. Our students' responded very positively to 
this change. They were excited about the renewed course 
structure, the updated learning environment, and the 
challenging projects.  
 

1. Introduction 
Embedded systems are designed for dedicated 

applications running in control systems. The unique 
feature of such systems is the capability to perform timely 
and predictable operations in response to concurrent 
requests arriving from the external environment. To create 
an effective embedded system one must properly employ 
the appropriate system architecture, hardware/software 
interfaces, peripheral devices, and software components. 
Currently, embedded systems companies are facing with a 
shortage of engineers having the appropriate skills to 
respond to market opportunities [8]. Therefore, embedded 
software engineering has emerged as a key element for 
curriculums in Computer Science, Computer Engineering, 
and Electrical Engineering at universities throughout the 
world. 

To teach the subject of software/hardware integration 
and I/O interfaces, undergraduate computer science and 
engineering programs incorporate a microprocessor 

 
 1 This course development project is supported in part by NSF 
Educational Innovation Grant EIA-0122600, the Consortium for 
Embedded and Inter-Networking Technologies (CEINT), and 
Motorola University Program. 

system and applications course. In the course, students 
develop assembly language programs to control 
peripherals, handle interrupts, and perform I/O operations. 
Then students perform experiments with a target single-
board microprocessor system integrated with typical 
interface circuits such as programmable timers, serial 
ports and parallel ports. Unfortunately, this approach fails 
to keep pace with industry technology. This lag is 
prompted by the advent of rapid prototyping development 
of microelectronic systems that includes: 

a. SoC-based platforms for embedded applications: 
The system-on-a-chip (SoC) devices have made great 
progress along with the ever-growing number of 
transistors that can be integrated on a chip.  

b. Abundant I/O interfaces: Besides programmable 
timers, serial ports, and parallel ports, there are several 
new I/O standards designed for human interfaces, 
multimedia, networking, and inter-IC/device 
communication.  

c. I/O programming with high-level languages: For 
software portability, modularity, and readability, high-
level programming languages have been used in all levels 
of software development. An appropriate use of 
programming languages and software structures often 
leads to reusable embedded software. 

 Our traditional computer engineering curriculum also 
taught relatively outdated techniques in the subjects of 
software/hardware integration and interface. The 
�Microprocessor System Design� course emphasizes 
assembly language programming and exercises only a 
limited number of I/O interfaces. The course falls short in 
addressing state-of-the-art interfacing technology and 
emerging applications.  

In our curriculum development project sponsored by 
the NSF EIA program, we redesigned the microprocessor 
system design class. Our goals were to provide a learning 
environment which aligned with emerging technology and 
improved the effectiveness of instruction. We also 
developed a laboratory environment which incorporated 
cutting-edge programming approaches to manage 
hardware components in SoC platforms. This renewed 
course goes beyond the inclusion of various interfaces and 
devices. The course focuses on the appropriate software 
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structures using a mixture of high-level and assembly 
language programming, I/O operations in modern 
operating systems, and reusable software components. 

In this paper, we will explore the challenges and 
successes we encountered in implementing this new 
microprocessor system design class. The course serves as 
the first of three embedded system courses in our 
curriculum. Section 2 presents background information on 
the embedded system curriculum at Arizona State 
University (ASU).  In Section 3, we will present the new 
course design followed by the course objectives, the 
course material and the setup of the laboratory 
environment for programming projects.  Section 4 will 
cover some of our lessons learned and feedback from our 
students. In Section 5 we conclude our discussion. 

2. Background 
ASU, Motorola, and Intel formed a not-for-profit 

Consortium for Embedded and Inter-Networking 
Technologies (CEINT) in 2001 [3]. CEINT developed an 
infrastructure to support a strong curriculum in embedded 
systems. The end product was a concentrated path in 
Computer Systems Engineering, which consisted of an 
Embedded Systems Development, Embedded Systems 
Engineering, and Embedded Systems Capstone course 
[1].  

We wanted to provide students with the opportunity to 
learn practical development techniques using the 
Embedded Systems Development course. To accomplish 
this goal, we chose Motorola MX1ADS boards using 
MontaVista�s HardHat Linux Toolkit. Although we 
discussed both assembly level and high level 
programming development, C was the main language 
used for developing projects.  This particular combination 
of programming language, development environment, and 
microcontroller architecture is rare for an introductory 
level embedded systems class.   

At the same time, the students were challenged to get 
quickly up to speed on the fundamentals required to use 
the new development environment and tools. Most of the 
students did not have strong backgrounds in developing 
software for Linux.  To lessen this steep learning curve, 
we provided laboratory demonstrations and walked 
through simple development projects in small groups.  
We also provided online tutorials, sample Linux drivers, 
and low level C code examples for students to study. 

In this course, we introduced students to memory 
devices, memory controllers, buses, handling interrupts, 
DMA, timers, counters, UART, SPI, I2C, parallel I/O, 
keypad, LCD, touch panels, and A/D - D/A converters. 
The students also developed device drivers for timers, 
PWM, UART, gpio, and SPI eeprom as class projects. 
Other available features such as watchdog timer, blue 

tooth technology, USB, and CMOS sensors were left for 
more advanced courses in the sequence. 

Assembly language teaches the students about the 
detailed architecture of the hardware.  This gives students 
an appreciation for high level constructs implemented in 
assembly language [2]. However, implementing all 
software programs in assembly language neither practical 
nor desired. In fact, assembly-language programming is 
no longer the best choice for developing embedded 
systems, due to the availability of excellent compilers and 
the rising complexity of software projects [6][9]. 

3. Course Design 
3.1. Course Objectives  

The objectives of the course are to familiarize the 
students with hardware-software interfaces, hardware 
designs of microprocessor systems and peripheral devices 
and their communication protocols. Students work at 
acquiring technical knowledge and applying this 
knowledge to the development of programs for 
controlling peripheral devices and interfaces. Thus, the 
students learn to analyze and synthesize suitable solutions 
for building integrated hardware/software systems capable 
of interacting with external world.  

3.2. Course Content 
The revamped course places emphasis on  

software/hardware integration and I/O programming, the 
incorporation of the state-of-the-art SoC platforms, and 
emerging embedded system development tools. Our plan 
is to gear the integration of hardware modules to construct 
embedded systems and the programming models and 
characteristics of various I/O interfaces and peripherals. 
The course syllabus is established as follows: 

Course Syllabus: Microprocessor System Design 
 

Course Goals:  
• Develop an understanding for using a CPU core as a 

component in system-level design. 
• Develop the ability to integrate the CPU core with 

various interface units in embedded systems. 
• Gain the necessary skills for programming and 

debugging I/O operations to manage peripherals for 
embedded applications. 

Major topics covered: 
• Introduction and review of instruction set and 

assembly language programming, instruction 
execution cycle and timing (4 lectures) 

• C programming for embedded systems (2 lectures) 
• Interrupts and I/O multiplexing (2 lectures)  
• Parallel I/O interface and signal handshaking (1 

lecture) 
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• Timers and counters (2 lectures)  
• Serial communication: UART, SPI, and I2C (4 

lectures) 
• Keypad and LCD interfaces (3 lectures) 
• Transducers and sensors, touch panels, A/D-D/A 

converters (3 lectures) 
• Memory devices, SRAM, DRAM, flash memory, 

and SDRAM controller  (3 lectures) 
• Buses, access arbitration, timing, and bus protocols 

(2 lectures) 
Laboratory projects: 

• Introduction project on understanding the 
programming environment on a target development 
board. 

• 3-4 small (1-2 weeks) assignments on programming 
and interfacing with various peripheral units. 

• 2 medium (3-4 weeks) sized projects to build 
applications integrating multiple devices.  

 
 

As shown in the syllabus, the course started with an 
introduction to the ARM architecture and instruction sets. 
We then discussed C programming for embedded systems 
which included accessing I/O registers, bit manipulation, 
C calling convention, and in-line assembly. The students 
used the ARM Software Development Toolkit (ARM 
SDT 2.02u) to develop and debug their assembly/C 
programs in an ARM instruction set simulator called an 
ARMULATOR.  

Following the introduction to ARM architecture and 
programming, we presented the overall architecture of 
MX1 processor and the connection to peripheral 
interfaces. For the I/O interfaces and interrupt signals, we 
started the discussion with the general-purpose 
input/output (GPIO) and handshaking signals. Since most 
I/O functions and peripheral interfaces are multiplexed at 
the I/O pads, the lectures focused on the programming 
techniques for configuring I/O pins and functions. 
Similarly, interrupt multiplexing and configuration 
techniques were discussed, followed by interrupt vectors 
and ISR operations. This allowed us to look into each 
peripheral interface in subsequent lectures. 

The peripheral interfaces covered in the class included 
a timer, pulse-width modulator, UART, SPI, I2C, LCD 
controller, and touch panel controller. The lectures 
addressed the basic design principles, the internal register 
configuration of the peripheral interfaces, and interrupt 
mechanisms. The timing diagrams of the signal 
waveforms at I/O pins were discussed to illustrate the 
interaction of programming model and device operations. 
In addition, the schematics of the MX1ADS development 
board were used to show the connections of MX1 

processor with external interface circuits and devices. 
While discussing LCD and touch panel controllers, the 
lectures also encompassed general raster display devices 
and A/D converters. 

After discussing the selected peripheral interfaces and 
the programming techniques, the lectures focused on the 
memory structure of microprocessor systems. Both the 
abstract model and physical memory architecture of the 
SRAM and DRAM were explored. We paid special 
attention to synchronous DRAM, their timing 
characteristics, and access modes. We used the Micron 
MT48LC32M8A2 as an example of SDRAM. 

The interconnection mechanism of microprocessor 
systems is also an important subject of the course. We 
focused on the bus architecture and the protocols of PC�s 
XT, AT, ISA, and PCI buses. The general bus designs, 
including synchronous/asynchronous, bus arbitration, and 
block transfer were also covered. The final topic covered 
optimization techniques of bus performance such as 
pipelined transfers and split transactions. 

3.3. Hardware Platform for Lab Projects 
Although our goal was to teach the general principles 

of the microcontroller architecture and system design, we 
desired to have a target platform available to students to 
use for experimentation. We decided to use a 32-bit RISC 
platform instead of a traditional 8-bit architecture such as 
the Intel 8051 and Motorola 6811. There were three 
motivating factors in choosing a 32-bit RISC architecture 
over an 8-bit architecture.  First, we wanted to use a 
current technology so that students would be well 
prepared for a career in the embedded systems industry. 
Second, we wanted to introduce multiple peripheral 
devices and bus technologies that were only available on 
32-bit architectures. And finally, we had received a large 
endowment from industry partners to provide equipment 
and classroom support for the 32-bit architecture. 

The target hardware platform had to include a high 
performance SoC microprocessor for which popular 
interfaces were available and configurable. To acquire 
additional support to build the experimental environment, 
we contacted the Motorola�s Dragonball University 
Program, sponsored by Motorola SPS in 2003. The 
University Program considered our approach for 
software/hardware integration as an effective instructional 
method for embedded systems software development, and 
donated thirty Dragonball MX1 development boards 
(MX1ADS) for our lab. Motorola also agreed to provide 
all necessary technical support to expedite the installation 
of lab equipment.  

To facilitate various projects, the SoC-based 
development boards are accompanied with a peripheral 
board on which various devices are installed. Figure 1 
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depicts a typical development system that enables 
programming development for different I/O projects.  
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Figure 1. The target development system for lab 

assignment 

3.4. Software Platform for Lab Projects 
Embedded Linux was chosen as the software platform 

on the MX1ADS boards. The fine modularity of Linux 
components allowed us to customize the Linux kernel for 
the course. Only the device drivers required to boot the 
target board were kept in the Embedded Linux build. This 
enabled students to load their drivers as modules. 
Additionally, Linux provided a rich set of freely available 
debugging tools and environments, such as printk, strace, 
gdb, ksymops, and klogd. With MontaVista�s Linux, we 
established the software development environment shown 
in Figure 2. 

Influence from industrial trends also played a 

significant role in our decision to use Linux.  Currently, 
Linux is one of the preferred choices in the embedded 
system industry due to the availability of kernel source 
code without loyalties.  This has lead toward recent trends 
of Linux becoming a dominant platform in embedded 
controllers. According to a survey conducted by the 
Venture Development Corporation, the estimated 
worldwide shipments of embedded Linux operating 
systems, add-on components, and related services reached 

over $60.0 million in 2003.  This number is projected to 
reach over $115 million in 2006 [4]. 

In the target environment, students test their software 
components to manage peripheral devices. Since the I/O 
addresses are a part of the kernel address space and are 
protected, software components are developed as loadable 
device drivers modules. User applications use the drivers 
through standard file operations such as open, close, read, 
write, and ioctl. Interrupt service routines can also be 
registered as the modules are installed. This approach is 
quite attractive since the software for hardware interfaces 
are modular and embedded as a part of the operating 
system to support user applications. For students who 
have not taken any operating system courses, it may be 
challenging to comprehend the software structure and 
kernel APIs, and to develop kernel modules.  

 

Figure 3. A pseudo driver for exercising kernel I/O 
address space and interrupts 

To assist students with Linux specific driver 
development, we provided several example driver 
modules to illustrate the interactions between user 
applications and device drivers. One example is a pseudo 
driver, shown in Figure 3, which allows a user application 
to access memory locations in the I/O address space. 
When read or write functions are called, a command 
structure consisting of an I/O address and a data field is 
passed from the user application to the driver. The driver 
then reads from or writes to the I/O address. Hence, the 
student�s application program can manipulate and access 
various control and status registers of peripheral 
controllers. To illustrate interrupt-driven data transfer, we 
added a ring buffer in the pseudo driver with which I/O 
data can be saved for subsequent read calls. Blocked 
driver function calls and the interaction with ISRs are 
demonstrated using a wait queue, interruptible_sleep_on, 
and wake_up_interruptible kernel functions. In addition, 
the pseudo driver makes use of asynchronous notification 
to emulate interrupts to user application programs. An 
ISR can invoke kill_fasync to signal a user application 
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handler once it is registered. The signal handler can then 
take an action or pass the status changes to the main 
program. This pseudo driver also provides a great 
example to build character device drivers for some 
peripheral devices.  

3.5. Sample Projects 
To reduce the learning curve on Linux device driver 

development models and Linux kernel application 
programming interfaces (API), we provided a driver 
framework for each assignment. This allowed the students 
to concentrate on writing the hardware/software interface 
code rather than worrying about Linux�s internal device 
driver interface. For example, the following segment of 
code is part of the driver framework we provided to 
students to develop a timer driver.  
 
int init_module() 
{ 
    int result;                                                                                                                                                                                                                                                                 
    /* register our character device */ 
    result = register_chrdev(IO_major, driverName,  &IOBridge_fops); 
                                                                                                                                              
    if (result < 0) { 
        printk("<1>%s: Can't get major %d\n", driverName, IO_major); 
        return result; 
    } 
                                                                                                                                              
    if (IO_major == 0) 
    { 
        IO_major = result; 
    } 
    
    // initialize hardware timer 
    timer_init(); 
          
    // Register timer interrupt from the kernel. 
    if (request_irq(TIMER_IRQ, timerISR, 0, "Timer2", NULL)) { 
        printk("<1> Unable to get IRQ for Timer 2\n"); 
      unregister_chrdev(IO_major, driverName); 
        return -EBUSY; 
    }                                                                                                                                                                                                                                                                    
    return 0; 
} 
 
void cleanup_module()  /* This function is called when we do rmmod. */ 
{ 
    printk("<1>Freed %s\n", driverName); 
    free_irq(TIMER_IRQ, NULL); 
    unregister_chrdev(IO_major, driverName); 
} 
 
void timer_init() { 
} 
 
void timerISR(int irq, void *dev_id, struct pt_regs *reg) { 
} 

In terms of projects, the platform enabled many 
development assignments with peripheral device 
controllers and hardware configurations. The following 
lists some sample projects given in the Fall of 2004. 

1. Measurement of execution of the CRC-32 procedure 
with a hardware timer. The measurement was done in 
the eLinux environment on MX1ADS target board 
using MontaVista�s DevRocket IDE on a Windows PC 
or Linux workstation.  

2. Development of an interrupt-driven mouse driver for a 
serial mouse. The project employed a Microsoft 2-
button serial mouse (Version 2.0A) attached to UART 
serial port. The driver compiles three mouse 
movement data packages and then reports any 
movement to the user applications.  

3. Development of a driver for an external memory 
device. A Microchip 25LC640 EEPROM which 
consisted of 256 32-byte pages (or blocks) was used. 
The EEPROM contained an SPI interface. Hence, all 
commands and data transfer operations are done via a 
SPI bus controller. The project introduced students to 
the important concept of timing in device driver 
programming. 

For the first project, we provided a Linux character 
driver capable of writing and reading registers on the 
target board.  The students were tasked with developing 
an application to measure the execution time of a given 
program by using the hardware timer. This assignment 
introduced students to the Linux device driver model and 
software-hardware interface.  

Next, the serial mouse driver project allowed students 
to apply their theoretical understanding of UART to 
develop an interrupt driven mouse driver. The driver uses 
an asynchronous I/O signal to communicate between the 
application and device driver in the kernel. We provided a 
framework for asynchronous I/O implementation in the 
Linux device driver. 

The overall goal of the assignments was to reinforce 
classroom learning by providing the students with 
interesting projects. This gave them a greater 
understanding of theoretical concepts and a feeling of 
satisfaction upon completion of the projects [2]. 

4. Outcome and Evaluation 
At the end of the semester, we surveyed the students 

about their learning experience. Twenty-eight out of 
forty-four students responded to the survey (64%). The 
survey questions are grouped into five categories: C 
programming, the Linux development environment, 
system architecture and system-level design, peripherals 
and projects, and overall satisfaction. 

According to the survey, over 80% of the students 
agreed their understanding of C programming language 
has increased and that they were comfortable with 
developing device drivers using C. Even though the 
students were not familiar with the tools and development 
platform we used in class, we found that they were able to 
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learn them quickly. About 73% of the students suggested 
that they were able to use the tools effectively at the end 
of semester. 

The most challenging issue was the lack of proficiency 
in C programming and Linux development environments. 
We are planning to integrate a Linux environment in some 
prerequisite classes and add more emphasis on C in basic 
programming courses in the future. 

5. Conclusion 
Similar to many computer engineering curriculums, 

the microprocessor system design course at ASU has 
focused on teaching hardware/software interfacing and 
the management of peripheral devices. The previous 
approach of using assembly language and 
microcontroller-based platforms had been in place for 
more than a decade. It allowed the students to appreciate 
machine level processor operations and hand optimization 
to achieve the efficiency of assembly programs. However, 
with the advent of modern software development tools 
and the wide-spread use of embedded systems 
applications, a change in course material becomes 
inevitable. 

There are a few important initiatives used in our 
approach for the microprocessor system design course. 
First, the use of assembly language for software 
development to control peripheral interfaces should be 
minimized. Students must be able to assess the cases 
where the use of assembly code can be justified.  This 
would include encapsulating assembly code in well-
defined interfaces and incorporating the code in software 
components as required. Second, the use of a broad set of 
peripheral interfaces including serial buses, LCD 
controller, touch panel, and data acquisition should be 
introduced. Finally, a practical software development and 
execution environment should be utilized so that students 
can gain familiarity with modern tools to build structured 
software components for embedded applications. 

With these initiatives, the microprocessor system 
design course was transformed and introduced in the Fall 
of 2004. It was anticipated that knowledge gaps would 
exist in some of the prerequisite courses.  Hence, we 
assumed that students may encounter difficulty with the 
required learning curve. However, we were surprised and 
satisfied with students� reception to the course. In general, 
students were excited about the new course structure, the 
updated learning environment, and the challenging 
projects, although complaints over the large amount of 
manuals and data sheets still existed. Overall, we believe 
this course was successful and we look forward to the 
development of the more advanced courses in the 
Embedded Systems curriculum. 
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