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5. OO Analysis and Design
‘Object orientation’ means different things to different people.  
In this section, I want to de-emphasize the language syntax and 
the inheritance/polymorphism issues of object orientation, so as 
to be able to concentrate on object-oriented thinking, OO 
systems analysis, OO architecture, and OO design.  This will 
allow you to better envision an object-oriented design 
architecture in its proper form: Each external request made of a 
system is implemented by a sequence of messages which flow 
among a set of reactive software abstractions.  The importance 
and utility of this vision of a system’s architecture is under-
emphasized by most authors, but is key to understanding object 
orientation.

The section will also discuss some other general object-oriented 
issues like object modelling, encapsulation, abstraction, and even 
‘impedance mismatches’ between the various phases of a 
software project.

Readings: The appendices of this section of the lecture notes are 
important if you do not understand data normalization or 
relationship formalization.
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5.1  Background to Object Orientation

5.1.1  Software Engineering Phases

Most projects have several phases.  Software projects normally 
have:
• An analysis phase to gather and record the requirements, 
• A design phase to plan the architecture and implementation 

strategies to be used, and 
• An implementation phase where code is written.  
• A quality assurance aspect.  Final quality of the product is 

assured by actions taken throughout the project.  e.g. 
- requirements, design, and code reviews, 
- unit and system testing, and 
- appropriate configuration management.  

Approximately 15% of projects fail or are cancelled, usually 
because of failure to do one or more of these important aspects 
of the project properly.  
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5.1.2  What Is Object-Orientation?

Often there are specialists who work on each aspect of a large 
project.  Object orientation means something different to each of 
them:
• To business system analysts it means determining and focusing 

on the business entities (e.g. sales item, customer, invoice, etc.) 
about which information must be processed or recorded.  This 
pre-dates object-oriented languages.

• To a software designer, it is the architectural view that a 
system satisfies each external command or event by the set of 
actions resulting from the trace of calls/messages sent among 
various reactive software components to implement that 
request.

• To a programmer, it usually means programming language 
syntax that allows the programmer to easily: 

- view data as having reactive abilities, and 
- re-use code via inheritance hierarchies, and
- have both type flexibility and ease of maintenance via 

polymorphism.

In this section of the course, I want to de-emphasize the 
language view so that we can concentrate on object-orientation 
in general.  Though the re-use, flexibility, and maintenance 
which results from inheritance and polymorphic language 
features are very important, it is a higher priority that you be 
able to analyze, and think/architect/design software in a object-
oriented way.

If we can merge in a uniform and human-friendly way the 
concepts of application domain entity modeling, a design 
architecture where reactive software objects are driven by 
command messages, and programming languages that naturally 
embrace abstraction, objects, and both class and composition 
hierarchies, we may really have something.  This is what object 
orientation is all about!  This will require new diagram styles, 
new design techniques, and new language features.   
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5.1.3  Psychological Motivation

One of the more important aspects of development is that the 
transition from one phase to another be as easy as possible.  Any 
‘impedance mismatch’ resulting from differing paradigms in 
adjacent phases can be a source of human error and delay.  Some 
poorly managed projects aren’t even allowed a design phase, 
which causes a really serious impedance problem (“start coding, 
we’ll figure out the architecture along the way”).

By using paradigms that are natural to humans, and by using 
them through every phase of a project, a smooth and less error 
prone flow will happen in that very human of creations: the 
project.  Object orientation is such a paradigm.

It is also a known psychological principle that humans:
• grasp details, even within a single phase, faster if those details 

are presented in a familiar paradigm.
• make less mistakes constructing or reviewing systems when 

working in a familiar paradigm.  (Remember you must review 
other sub-systems in order to understand both how they can 
cooperate with the sub-system you are responsible for, and to 
review them in a quality assurance function).

• have less difficulty when reviewing or designing your sub-
system’s diagrams or code, when that work requires little 
reference to another sub-system’s complicated internal details.   
i.e. when those other sub-system’s can be regarded as 
simplified abstractions.

Humans naturally understand the object-oriented paradigm, even 
though they may not have previously been aware of this.  For 
instance a car is an object.  It has:
• a stored identity (licence or serial number), and 
• stored data about itself (odometer reading).  
• the abilities to respond to requests (you can ask it to start, ask it 

to turn on it’s left turn signal, etc.).
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We will later see that these are usually requirements of an object.

In addition, humans naturally simplify and bring organization to 
their life by categorizing objects.  The two most common ways 
of categorizing objects are:
• membership in a class of similar instances (e.g. all Honda 

Preludes, all black bears, all personnel records).
• composition or ownership.  A truck is composed of it’s parts.

These categorizations are simplifying abstractions so that we 
don’t have to mention or be distracted by the details of the whole 
group.  We don’t have to enumerate the identity of every Honda 
Prelude in the world; we just say “Honda Preludes”.  We don’t 
have to list a truck’s parts when we refer to it, we just say “the 
truck”.   Abstraction is our only way to simplify a complex 
system and world, and these are two powerful categorizations 
that aid us to form abstractions.  

In fact, we go even further and form abstraction hierarchies.  e.g.  
Honda Preludes are a sub-class of the larger abstraction we call 
passenger vehicles.  And a fleet can be made up of a number of 
trucks, which in turn are composed of parts.   

Don’t get the two hierarchies above mixed up!  They are 
orthogonal.  One is a categorization by type classification.  The 
other is a categorization by composition (by construction or 
aggregation).  Both of these kinds of hierarchies can be smoothly 
modeled and implemented with object-oriented designs and 
implementations.  
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5.2  Object-Oriented Analysis

5.2.1  Purpose of Analysis

The purpose of analysis is to gather and specify the requirements 
for a new or revised application in a domain in which many of 
the design and programming staff are not familiar.  It is very 
common for the staff not to know anything about an application 
domain, its vocabulary, its acronyms, its essential operations.  

e.g.  Transport Canada keeps track of all pilot licences.  Did you 
know that an there are two classes of instrument rating (for 
flying through cloud)?  Each is valid for a different period of 
time, and renewal requires the entry of a flight test into the 
computer.  Did you know that there is a night rating that can be 
added you a pilot licence, and that there is only one kind of night 
rating, and it is valid forever?   Do you know whether the 
instrument rating classes are 1 and 2, or A and B, or Private and 
Commercial?

How can you design an write a program to automate this 
domain, when you know nothing about it?  Even when you get 
to know something about it, there is usually something essential 
that someone forgot to tell you or you forgot to ask about.  This 
discovery leads to late design changes or an unsatisfactory 
application program.
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5.2.2  The Act of Analysis

The essence of object-oriented analysis pre-dates object-oriented 
languages.  For decades, designers of large information systems 
using data bases have used a form of object-oriented analysis.  

The 3 main elements of analysis are:
1) Gather information about the application domain and 

automation requirements.  
- One of the focuses is to determine the information entities (i.e. 

objects) that must be stored in order for the application to 
function.  

- Another aspect is to determine the commands the system will 
have to respond to.

- And another is to find out size and speed of the existing 
computer, and the required speed of the application.  

Information about all aspects of the proposed system is 
gathered through:
- existing operations, software, or other written material.
- interviews
- existing forms
- visits to sites that will be automated
- measurements (e.g. number of inventory items, rate of 

transactions).

2) Digest and organize the information until you understand it, 
can draw and tabulate it.  This requires both developing 
object-relationship diagrams (ORDs), and tabulating all 
external requests that can be made of the system (e.g. 
commands).  The diagrams may have hierarchies of class or 
composition.  Even the lists of commands may have 
subcommands or indicate sub-handling of various errors for 
each command.

3) Write a Requirements Specification document to record and 
distribute the results of your analysis.
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5.3  Object Modelling

5.3.1  Introduction to Modelling in General

A model is a representation of a actual thing.  To a child, a 
model is something created which is a ‘smaller’ but adequate 
likeness of the real thing.  To a car dealer, a model is a bunch of 
cars which are near identical (cf. object ‘class’).  In systems 
analysis, a model captures the essential nature of something by 
indicating the essential details that need to be stored about things 
of that ‘class’, or by illustrating the flow of stuff required 
through a system, or by specifying the sequential ordering (e.g. 
making paper in a pulp mill, getting a university degree) within a 
process, etc.   

Definition:   A model is an alternate representation with an 
‘adequate likeness’ of the real thing.

Some of the alternate representations we in systems design may 
use for the actual things are:
• a diagram or picture
• a form or computer record
• a process description, data flow diagram, or finite state 

machine

The purpose of creating a model is to represent only the essential 
characteristics of the thing so that: 
• we may understand and clearly document the nature of the 

thing,
• we may store the essence of the thing for later retrieval,
• we may communicate the nature of the thing to someone else,
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• they can think and/or reason about the correctness of the model 
without: 

- being distracted by the complexities of the complete real thing 
(i.e. abstraction).

- having to travel to where the real thing is located.
- having to see the function of a real thing while it is operating 

very fast.

• we needn’t waste space storing useless information about the 
thing,

• we may write a program to implement a system which allows 
humans to better administrate the processes in which the 
‘thing’ participates.

Generally, three ‘aspects’ of an object-oriented system need to 
be specified with models:
1) The data retained by the system for use in constructing later 

outputs.  This data and its relationships is documented with 
an Object Relationship Diagram (ORD).

2) The sequence of messages (e.g. procedure calls) that 
propagate through a system in response to each particular 
command.  These can be documented using some form of 
Object Communication Diagram (OCD).

3) The behavior of generic object instances, and of the class 
supervisor (shepherd), can be separately documented using 
two Finite State Machines (FSM).

These 3 models are essential in the same way that an architect 
must specify, via a 3-view drawing, the construction of an 
unusually shaped building in order to transmit its exact shape to 
the builder’s mind.
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5.3.2  Instances and Classes

One of the confusing things about OO is differentiating between 
the term object ‘instance’ and object ‘class’.

Let me use an analogy.  Let us consider a sales invoice class.  
Each individual invoice record is an ‘instance’ of the invoice 
‘class’ (or type) of record.  The term ‘class’ means a general 
classification or ‘type’ designation of categorization.  

In a way, a class declaration is a skeleton for an instance.  In 
essence, it is like defining an object ‘type’.  When you create 
many variables of a particular type, you are creating instances of 
the type.  So class is like object type, and instance is like a 
particular variable of that type classification.

When authors do not need to differentiate between the concept 
of an invoice instance and invoice class, they will often use the 
term invoice ‘object’.  So the term ‘object’ may mean either 
instance or class.  I will try to differentiate as much as I can 
between object ‘instance’ and object ‘class’ so you know which I 
am referring to.

The concept of instances and class types is much wider than just 
computer record types and record variables.  In fact, during that 
analysis phase we try to find actual objects in the application 
domain that will likely become classes and instance records in 
our application code.  A good example is a ferry class and 
individual ferry instances, a ferry sailing class and individual 
sailing instances, a ferry reservation class and individual 
reservations.  These are real tangible things.  

But not all object in our programs will represent physical things.  
e.g. a time instance, or a queue instance.  These latter examples 
are either not physical, or are implementation objects added later 
during the design phase to facilitate the operation of the 
program.
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5.3.3  Entities vs. Objects

The data that a system needs to store is mainly computer records 
of the instances of various classes in the application domain (e.g. 
orders, customers).  Traditionally in information systems 
analysis, these things were called entities.  Each entity class has 
a record/structure type with a different layout of attribute fields.  
Order instances have order ID number, part ID designator, and 
quantity of order fields.  Customer records have name, address, 
and phone number record fields.

More recently, is has instead become popular to call domain 
entities objects.  The term ‘objects’ has an additional implied 
meaning that the model of the object we are documenting 
contains data plus reactive abilities (i.e. plus ‘operations’, 
‘behavior’, ‘ability to control things’, ‘intelligence’, or 
‘liveliness’(e.g. can be sent messages or ‘activated’)).  

In fact, this idea is carried even further by OO languages.  
Rather than procedures having data parameters, instead 
object data is regarded as having operations/procedures that 
can be triggered by a message.  In fact, individual instance 
records (not just ADT modules) are regarded as having 
procedures.

e.g.  Instead of (in C):
struct CustomerType custRecord;
printRec(custRecord, theFastPrinter);

You do this (in C++):
CustomerType custInstance;
custInstance.print(theFastPrinter);

Notice this is not like C, nor like Modula-2 where you would 
have done ModuleName.print().  The symbolic name to the left 
of the dot is a variable name (i.e. instance), not a module or 
class/type name.  The procedure now appears to be a field of the 
instance, as if the instance ‘has/owns’ its procedures!
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5.3.4  Advantages of Encapsulation

The data and behavioral abilities of an object class are said 
to be encapsulated together (like in an Abstract Data Type.  The 
encapsulation contains both the data representation (including 
state) for a particular object class, as well as the operations 
which describe what can be done to an object of that class (i.e. 
what messages can be sent it, what functions can be invoked on 
it).   The internal state data of an instance can be used to control 
how it reacts/behaves when operations (e.g. ‘withdraw) under 
various (i.e. all) conditions/modes (e.g. ‘frozen’ bank account) 
are invoked on/done to it.

One of the reasons objects (and abstract data types) have become 
popular is that the encapsulating together of all the stuff about 
something in one abstraction is natural for human beings.  It is 
our human nature to put together things which belong together.  
And we make less mistakes when we are manipulating and 
designing with natural feeling things.

Another reason that objects encapsulating data and operations 
are important is that they are the correct way to group 
program details about things so as to make maintenance easier!  
Remember from your software engineering studies that  >50% of 
all programmer effort is spent modifying old code, rather than 
writing virgin code.  If instead you put all the data together, 
separate from all the procedures (i.e. separate from the 
behavioral aspects), then making fixes, enhancements, and 
porting can be more difficult.  

Generally during maintenance, we prefer to avoid tearing stuff 
apart and re-arranging it.  If the entire nature of each application 
‘entity’ is encapsulated, then we are less likely to have to rip 
them apart during maintenance (since they inherently ‘belong’ 
together).  Oh, we may need to add extra data attributes to an 
object, or change and add operations, or even add or delete 
whole classes of objects to/from our design.  But if we have done 
our design right during initial analysis and design, then we are 
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very unlikely during future maintenance to have to tear objects 
apart, nor are we likely to have to merge partial aspects of two 
objects.  As an example, think of an airline reservation system.  
No matter what kind of maintenance needs to be done on the 
application code, there will always need to be aircraft objects (to 
characterize the nature of the aircraft), flight objects (to store 
time and load on particular trips), and passenger objects which 
can be added to one or more (in the case of a return trip) flights. 

Finally, encapsulating as much as possible about an domain 
entity in one class, and therefore in one source module, will also 
confine changes to editing only one module (and maybe a very 
few that import types from it).  This also eases maintenance.
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5.3.5  Object Data Analysis

Most recent analysis and design methodologies suggest that you 
start analysis by first determining the stored object data and 
relationships needed by the application, and leaving functional 
abilities to later.  This is done because:
• In information systems, this data and its logical organization is 

central to the design of the system.
• Even real-time, non-information system applications which are 

structured around objects tend to be more stable and easy to 
evolve/maintain.

Please note that the objects to which I refer need not be just file 
records.  Any data record (e.g. a C struct in RAM) can be 
thought of as a retained object.  It is retained until some time 
later in the program when it is needed!  Sometimes these objects 
are quite significant and have just as many attributes and 
relationships as those in an information system database.  And, 
as you will see shortly,  they often become key reactive 
components in an object-oriented application!

In object data modeling, we try to determine an organized way 
of diagramming and storing information about the various 
relevant objects involved in the application domain.  To a new 
analyst, sometimes it is not immediately apparent what kinds of 
data might need to be modeled.  
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Examples of the object classes needing to be modeled within an 
application might be:
• a physical object (e.g. person, aircraft, robot, printer).
• an incident or transaction that needs to be recorded either for 

immediate use, for transmission to someone else, or for a 
historical log (e.g. order, purchase, sale, boarding an airplane, 
graduation, marriage, phone call).  Note that a purchase is from 
the purchaser’s application’s point of view, while a sale is from 
the seller’s (usually you needn’t model both).

• a role (e.g. student, client, customer, manager, spouse). 
• an intangible concept (e.g. bank account, time delay, date, 

sound recording).
• a place (e.g. parking space, warehouse #3, the 13th floor heat 

control). 
• a relationship (e.g. customer’s sales representative, a flight’s 

captain).
• a structure - e.g. the list of an airplane’s component part 

numbers (body, wings, engines, tail), possibly even a 
hierarchy.  Or a container/list of things.

• an organization or organizational unit (e.g. university, 
department, corporation, submarine crew, sports team). 

• a displayable field (e.g. string, icon, image) or printed report, 
or an I/O signal.

• Specifications or procedures- e.g. organic compound or recipe.



Copyright 1997 by R. Tront 5-17

5.3.6  Object Attributes and Attribute Values

We use the terms ‘object class’ to mean group of instances of 
things which have the same set of attribute names (e.g. car’s 
each have a licence number, color, and weight), but which have 
different values for each of those characteristics (this is what 
makes the instances of the same class different from each other).

It is common for a class of entity instances to be modelled as a 
table of fixed length records:

STUDENT TABLE

This concept is in keeping with the view that a student file is a 
list of fixed length records.

Each column represents an attribute of the type ‘student’ (i.e. a 
field of a student record).  The legal set of values that an 
attribute may take on is called the domain of the attribute.  
Examples are date = (1..31), and day= (Sunday..Saturday).

Each row represents a particular instance of a student.  Often the 
rows are sorted in order by a particular column or columns.  That 
column(s) is called the primary key.

You should now review the first part of Appendix A of this 
section of the course lecture notes, and if taking Cmpt 275 also 
the second part of Appendix A.

student-id student-name student-address student-phone high-school

93010-1234 Smith, Bill 123 Second St. 420-1234 Mt. Douglas

92010-4321 Jones, Jane 234 Third St. 123-4567 Burnaby

91111-1056 Able, Jim 345 Fourth Rd. 822-9876 John Oliver
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5.4  Object Relationship Diagrams

5.4.1  Object Icons

Let’s examine an example of an Object Relationship Diagram 
(ORD) carefully.  The one below shows two objects.

     

In is not clear whether they are object instances (since there titles 
are singular) or entity classes (since only their attribute names 
and not attribute values are shown).  Normally in ORDs it is not 
really important that you differentiate between whether the 
boxes are classes or instances.  You will probably find it best to 
think of them as generic instances (not having had attribute 
values assigned yet).  i.e. they are an object storage/record layout 
plan.

Note that instead of having the attributes listed horizontally, as 
in the column titles of a table, we have the attributes listed 
vertically.  This is widely done, though there is no reason for this 
except it makes the entity icons have a smaller maximum 
dimension.  Also, note that the attribute(s) on which the records 
are sorted are called the primary key of the entity, and are 
labelled with a ‘*’.

STUDENT HIGH-SCHOOL

* student-id

-  student-name

-  student-address

-  student-phone

-  high-school

* high-school

-  school-address

-  school-phone

Graduated
    From

Graduated
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5.4.2  Relationships

Object-Relationship Diagrams (ORDs) contain both entity 
classes and the relationships between them.  An example of a 
relationship is that between a student and a high school.  

Fundamentally, relationships are illustrations of links between 
entities.  These links are simply (but importantly) the referential 
routes that could be traversed by the application code to find 
other related data.  Note that the high school attribute in the 
student class is a foreign key which provides the information 
needed to traverse R1.  A foreign key is a value- or pointer-
based reference to particular related instance (e.g. particular high 
school).  Value-based foreign keys refer to the primary key of 
the other related (i.e. foreign) object.

ORDs provide a map showing all possible ‘routes’ over which 
the application can navigate around the data.  For instance, given 
a student object, how does the application code find out what 
high school she went to?  Answer:  Look in the High School 
attribute of that student.  Alternately, how does the application 
code find which students went to a particular high school?  
Answer: Search the student objects and select all students that 
went to that particular high school.   

You can sometimes during analysis be alerted to a relationship 
when seeing possessive grammar used.   e.g. the student’s high 

STUDENT HIGH-SCHOOL

* student-id

-  student-name

-  student-address

-  student-phone

-  high-school(R1)

* high-school

-  school-address

-  school-phone

Graduated
    From

Graduated

R1



Copyright 1997 by R. Tront 5-20

school, and the high school’s students.  Careful though as 
possessiveness is sometimes just an indicator of an attribute (e.g. 
Student’s name).

The details of a relationship provide information necessary for 
the design phase.  The details include: 
• multiplicity, 
• optionality, 
• relationship sparseness, and 
• traversal frequencies.

We will only be concerned with multiplicity and optionality 
(which together we call cardinality); the others are topics for 
an advanced course.

A student has graduated from only one high school.  But a high 
school has likely graduated many students.  The last sentence is 
indicative of a 1-to-many (1:M) multiplicity.  You will see 
shortly, that both the multiplicity and optionality of the high 
school-to-student relationship is important to database design.  

The two objects in the ORD are joined by a line indicating the 
‘graduated-from/graduated’ relationship.  Relationships are 
always two-way:
1) The student Graduated From the high school
2) The high school Graduated the student

The relationship phrases are by convention usually put near the 
end of the relationship line for the direction that version of the 
relationship name applies.

The ends of the relationship lines have cardinality symbols on 
them.  The symbols closest to the center of the line indicate the 
optionality as either a 0 or 1.  If 0, that means that some students 
in our database may never have graduated from a high school, 
and thus don’t have any relationship with a high school.  (They 
may be either mature students let in by special permission, or 
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may have finished their high school qualification by attending a 
college high-school-equivalency program).  In that case, the 
high-school attribute of such a student would be blank or null.

On the other hand, maybe we should insist that all university 
students first have high school equivalency, and just allow 
colleges to be listed in the high school file.  These policies are 
called ‘BUSINESS RULES’.   As such, the cardinality is 
determined not from some magic database theory, but from 
actually asking an application area specialist what the case is: 
optional (0) or mandatory (1)?  

Note that you also have to determine the optionality for the other 
direction:  Is it possible to have a high school in the high school 
file which has never sent a student to SFU?

You also, through research or interviews have to determine the 
possible multiplicity for each direction.   The multiplicity 
symbols are located nearest the end of the relationship line.  The 
multiplicity symbol may be either 1 or .  The latter symbol is 
called a “crow’s foot” as it looks like a bird’s foot.  It indicates 
that a high school could have (be related to) more that one 
student instance.  An important database design factor is 
whether, for a particular (high school) instance at one end of a 
relationship, there exists multiple related (student) instances of 
the other object class.  This must be determined by the analyst 
and documented on the ORD.

There are thus 4 combination of optionality and multiplicity for 
one given end of a relationship line (and 4 for the other end too).  
They will be shown below.  

zero or one one and only one zero or more one or more
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Important note:  Just because a relationship is optional or 
multiple in one direction doesn’t mean it is in the other.  The 
two directions are entirely separate, and must be carefully 
researched in both directions (what questions would you ask of 
users?).  The fact that an object icon exists on an ORD means 
that an instance of it can exist.  The question is, given its 
existence, how many instances of another related class of entity 
can there be that are related to the first?

An important aspect of relationships is that they must be 
recorded (stored, remembered) somehow.  Adding a foreign key 
is one way.

You should now review Appendix B and C of this section of the 
course lecture notes on Normalization and Formalization.  Your 
initial identification of the application objects in your system 
may not have resulted in the best placement of the attributes into 
objects.  This will become immediately apparent as you review 
Appendices B and C which show the attributes being 
reorganized into different groupings, and even whole new 
objects being added to help remember relationships.
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5.5  System Behavior
Recent methodologies suggests that you start analysis by 
determining an application’s data model first.  Even for non-
database projects, this identifies early the application domain 
objects which will most likely form the core software elements 
(i.e. reactive components) of the eventual implementation.  In 
particular, the names of the important objects, their attributes, 
and their relationships are researched.   Once this is done, we are 
in a better position to plan the implementation of the behavior of 
the system.  

Previously, programs were regarded as a main module and 
subprograms which implemented an application’s functionality.  
The newer, more object-oriented view is that a system’s 
behavior is simply made up of the sum of the behaviors of the 
object classes and instances in the system.  The objects 
collaborate together during execution to get each user command 
done, or handle each significant external event (e.g. network 
packet arrival).  

You can see why we had to identify the core object classes first, 
as it is they what we now propose to embody with a behavioral 
nature.  But before we start writing code for the system’s 
objects, we have to decide what behavior each will contribute to 
the whole.  The next question then, is what behavior does each 
object class and instance need to export to the system, in order 
that it satisfy it’s behavioral responsibilities to the application?  
In the next few sub-sections of the lectures, I plan to introduce a 
very beautiful mechanism to synthesize the required behavior for 
each object class and instance from the required behavior of the 
system.
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5.5.1  Event-based Partitioning

Modern applications are event-driven in nature.  Think of your 
personal computer; it idles for billions of instructions waiting for 
an event like a mouse click, a clock tick, or network packet.  

With this view, we will design the system by looking at how 
each external command or scenario-starting event is handled by 
the system.  By looking at each external command/event one at a 
time, we can reduce the scope of what we have to think about at 
any point in the design process to handleable proportions.  When 
writing a requirements specification for a system, it is not 
uncommon to first list or diagram all the sources of external 
commands/events that the application must interact with (e.g. 
keyboard, mouse, clock, network, printer, etc.).  Then in more 
detail, you should name/list each kind of event/command that the 
application program is to handle from each source. 
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5.5.2  External Design (User Manual)

Before beginning architectural design, it should not be 
uncommon to write a draft user manual to firm up the externally-
observable behavior expected of the system for each user 
command.  This sounds weird to some people who feel the 
manual is written after the coding is done.  But you should 
realize that:
• you can’t write the code until everyone on the team knows 

what the program is supposed to ‘look like and behave like’!  
• Often this look and behavior must be approved by someone 

else, so rather than spending months first writing a program 
that is not what the customer wants, you instead spend a week 
writing a draft version of the user manual for customer pre-
approval.

• Many companies do not define a data model or write a draft 
manual first.  But work will seem better organized and often 
proceed smoother if defining the data model and the proposed 
behavioral nature of a new application is an early step in the 
development process.
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5.5.3  Use Case Scenarios

An individual command may have several steps that should be 
documented in the draft manual.   An example sequence might 
be clicking a menu command, entering several pieces of data in a 
dialog box, then clicking OK, the application checking and 
saving the entered data (often different pieces in different 
objects), then finally telling the user that the command is done 
and waiting for the user to click OK again.  This is called a use 
case scenario. 

Later during architectural design, we must plan what part of 
each step of a use case scenario will be handled by each 
different object.

We could thus define:
• ‘scenario appearance design’ to be deciding how the progress 

of a use case would appear to a user (i.e. write the user 
manual), and 

• ‘scenario call trace design’ (or ‘scenario implementation 
design’) to be deciding the internal software interactions 
needed to implement a use case. 
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5.6  Object-Oriented Architectural Design
Though there are many aspects to architectural design, we will 
concentrate here on the design of internal call traces for the 
scenarios.  [Rumbaugh96] states “designing the message flows is 
the main activity of the design phase of development”.

5.6.1  Object Communication Diagrams (OCD)

It has been common for many years to sketch a diagram 
indicating which procedures, or more recently which modules, 
call/communicate/interact with which others.  This provides an 
interaction context which provides further understanding and 
documentation of the purpose, responsibilities, and dependencies 
of a module (often one module depends on services provided by 
another via exported procedures from the other).  

Very recently, we have started to diagram object (rather than 
module) interactions, and thus have named such diagrams Object 
Communication Diagrams (OCDs) or Object Interaction 
Diagrams.

Typically, each object class in your ORD which is reactive 
should be put in your OCD (note: some objects which are simply 
data records are not reactive and needn’t show in the OCD).  
You may consider modules which are not C++ objects (e.g. the 
main program or other utility modules) to also be key reactive 
components if they export procedures.  The primary 
consideration here is that we identify islands of reactive ability/
behavior/intelligence/data/control.  These islands, working 
together, implement the behavior of system.

Note that such a diagram is not to show ‘relationships’, but 
instead interactions.  Two objects which have no relationship 
could potentially send messages (i.e. call) each other.  So an 
OCD is a somewhat orthogonal view of the objects in a system, 
and provides a kind of 2nd dimension to their definition. 



Copyright 1997 by R. Tront 5-28

  

The main concept here is to regard and diagram the system as a 
collection of interacting reactive objects.  The arrows show 

MAIN

Mid-Level Module
#1 #2

ADT  A Object C

Mid-Level Module

Object  B

User Interface Module
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messages (e.g. procedure calls, sometimes called internal events) 
moving from one object to another. Receiving objects must be 
programmed to react appropriately to each message which they 
receive.
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5.6.2  The Reactive Software Components

There are 5 kinds of reactive software components:
1) Function modules like the main and user interface (UI) 

library modules (which have static and/or dynamic data).
2) Application domain object instances like particular 

customers and invoices.
3) Application domain object class supervisors (i.e. shepherds), 

to be discussed later. 
4) Implementation domain object instances like queue and 

timer instances
5) Implementation domain object class supervisors.

Notice that the first step in identifying the required reactive 
components needed to build an application was object data 
analysis.  For a small application, if we simply add a main 
module and a user interface module to the application domain 
objects, we have an initial set of components which could make 
up the program.   

At program start, the main module is coded to first send start-up 
messages (i.e. procedure calls) to the important modules telling 
them to initialize themselves and their subordinates.  The main 
then creates any necessary transient objects, and finally sends a 
kick-start message to the UI module indicating that it is now OK 
to start accepting user commands.

So, to begin an Object Communication Diagram (OCD): 

• First, put a module on the diagram to represent the main 
program module.  

• Then add a icon for each of  the objects from your ORD.  Do 
not draw any of the relationship lines.  
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• Next, add a module for each major external interface the 
system will have.  External interfaces are sources of events 
that drive the system, and exits for output data and control 
signals.  e.g.

- Most systems typically will need a User Interface (UI) module.  
- Some also include a Network Interface module which would 

handle incoming and outgoing network packets.  
- For systems which control external mechanisms (like robots in a 

manufacturing process or a printer), a Process Control module is 
necessary. 

• Finally, you may want to add scenario control/orchestration 
functions in some module/object of the system. 

In the recent non-OO past, it has been suggested for small 
applications that the main go at the top, the key application 
abstractions representing objects from your Object Relationship 
Diagram (ORD) go at the bottom, and some mid-level control 
modules go in the middle.

• The main module generally is only concerned with initializing 
things, and shutting them down.  

• The low level objects/modules often just provided storage 
services for different data types.

• The mid-level modules are control/orchestration modules: 
they control and sequence operations such as getting data one 
record at a time from a storage object to print a report (storage 
objects shouldn’t print!).  The mid-level modules know which 
storage object procedures are to be called in which order 
(possibly in a loop) to accomplish each particular user 
command (i.e. each use case scenario).  The mid-level 
modules also handle exceptions, such as a storage object 
rejecting an attempt to read a non-existent record or running 
out of space to write into.
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If each call arrow in the diagram can be labelled with the 
message/procedure name it represents, this results in a diagram 
that shows every name of call that every module/object has 
to handle!  Therefore, a complete and properly-labelled OCD 
has the information on it to determine every procedure name that 
needs to be exported by, and then coded in, every module/object.
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5.6.3  Scenario Call Trace Design

In order to determine each reactive component’s responsibilities 
and the operations it must export, we will examine how each 
module participates in each use case scenario.  In order to reduce 
the complexity of this design step, we do this one scenario at a 
time.

In the movie industry, planning for a film segment to be shot is 
often done on a ‘story board’.  The sketches on this board are 
like a comic book.  They provide anticipated camera shots 
(angles, scenery, costumes) at various moments through the 
progression of the scene.  In essence, the user manual provides 
sketches of what the application will look like and do, at various 
points through each scenario.   It is a story board.  Internal 
scenario call trace design will also be done using a kind of story 
board.  It is a visual plan and textural explanation of which 
procedure calls will be made (and why) between which objects 
at each point during the execution of the scenario.

Note:  We could also call this ‘scenario message trace design’, 
because in the Smalltalk OO language, function calls are termed 
‘sending a message’ to another object.  Yet other names could be 
‘scenario implementation design’, ‘scenario event trace design’, 
or ‘scenario internal interaction design’.

External events will be the primary driver in our design process.  
More specifically, a scenario-starting external event is a special 
kind of external event which initiates a sequence of interactions 
between the user and the application which carries  out a use 
case scenario as described by the use manual.  In menu-driven 
applications, menu selection events start most use case scenarios.  
The activation of a menu command results in the application 
receiving a message from MS-Windows.  The user interface 
component of the application which handles these messages 
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subsequently makes procedure calls to other application objects 
appropriate for the command, and these objects may in turn call 
other objects or modules.  

If the menu command starts a long dialog with the user to enter a 
number of pieces of data (e.g. customer name, address, phone 
number) one after the other, the calls may solicit other external 
events associated with that scenario.  These latter events are 
termed ‘solicited’ as the application subsequently solicits 
specific further input from the user as is needed to complete the 
command.  The application responds to each solicited event in 
the appropriate way for that step of the scenario (e.g. read the 
data, do something with it, prompt for the next entry).

Note:  Some methodologies [Shlaer92]  consider the calls from 
one object/module to another to be ‘internal’ events.  Each 
object is then regarded as a finite state machine reacting 
appropriately to internal events which hit it.
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5.7  Synthesizing Object Requirements
This subsection looks at a beautiful, step-by-step process by 
which the requirements for individual reactive components can 
be obtained from the overall system requirements (as embodied 
in the use cases).

5.7.1  Step 1 - Generate A Scenario-Starting Event List

From the user manual, generate a list of all scenario-starting 
external events that are required to be handled by the 
application.  There could be dozens or hundreds in a big system.

5.7.2  Step 2 - Blank Master OCD

An Object Communication Diagram is a diagram which shows 
the objects from the ORD in a diagram without the relationships, 
and shows additional reactive components such as main, UI, 
network interface, and control modules.  Generally, the objects 
are not placed in the same position on the diagram page as they 
were in the ORD (where they were arranged to make the 
relationships most tidy).  Instead, place the objects in a 
hierarchical manner radiating away from the principle external 
event sources (typically the user interface).

(Note:  The newer UML notation does not have a master OCD 
that shows all calls from all use case scenarios.  Nonetheless, for 
an individual scenario, UML does have a so called (object) ‘ 
Collaboration Diagram’ which is very similar.  Collaboration 
diagrams are just one of two different types of ‘Interaction 
Diagrams’ offered by UML.  Both types are equivalent, but so 
called ‘Sequence Diagrams’ are portrayed differently.  See the 
“Quick Reference for Rational Rose 4.0 Unified Modelling 
Language” authored by Rational Corporation in the course pak.
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Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C
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5.7.3  Step 3 - Make an Internal Call Trace for Each 
Scenario

Make many copies of the blank OCD diagram, one for each 
scenario-starting external event.  For each scenario-starting 
event, design a trace for the anticipated calls needed to 
implement the proper response to that external event. (Some of 
the design issues which impact the choice between different 
trace options are discussed later).  Document the trace on a 
single, blank OCD page.  (By confining ourselves to designing 
one scenario’s implementation at a time, we need not be 
distracted by arrows involved in other scenarios).

• The first scenario you should consider is the ‘program start’ 
event.  This scenario should be designed to have the main 
module send a tree of internal initialization events (i.e. calls) 
to the key objects telling them to initialize (open their files, set 
stack to empty, etc.).  The principle of low coupling dictates 
that the main module should not know the name of all the 
objects/modules in the system, but only those directly below 
it.  Those mid-level objects in turn send initialization 
messages to their subordinate objects.  Any of these calls 
might also create a number of default RAM objects necessary 
for the initial functioning of the program.  Once the system is 
initialized, the main tells the external event source components 
(e.g. the user and/or network interfaces) that they can start 
accepting external events. 
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Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

4:start_accepting()

1: init_A()

2: init_B() 3: init_C()

Start-up Implementation Call Trace
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Label each message/call with a number indicating it’s 
sequence in the execution of that scenario, and with the name 
of the procedure being called.

• On another diagram, for the first external scenario-starting 
event on your list, draw the trace of calls/messages that will be 
sent from the external interface object receiving the starting 
event to the principle reactive objects required to implement 
the response to that event.  This will, in turn, sometimes cause 
an intermediate control/orchestrator object to send one or 
more internal messages on to one or more other objects.  Give 
each internal message a sequence number and a name which 
indicates what procedure is being called (or what the purpose 
of the message is).
Each time you do this, you must think of all the internal object 
interactions that could take place in handling a particular 
external event.  For instance, to register a student in a course 
offering, you must first check whether the course offering 
exists before adding a record to the association object called 
student-registration.
For each diagram, it is usually necessary to document in either 
a paragraph, list of steps, or pseudo-code, a textural 
description of how the scenario is planned to be implemented.  
e.g. “check course exists and has space, then add student to 
course offering, and update available remaining course space”.  
This provides reviewers and subsequent implementation 
programmers with a more understandable idea of how the 
scenario is to unfold.
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• On a yet another diagram (see next page), do the same for the 
second user scenario-starting event on your list.  

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

User Command #1 Implementation Call Trace

2:UC1()

3:add()

4:enqueue()

1:full?()
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Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

User Command #2 Implementation Call Trace

2:UC2()

3:enqueue()

1:full?()
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• On a last diagram, show which module(s) can initiate program 
shutdown, and the trace/tree of calls to the reactive 
components which need to be informed of the upcoming 
shutdown.  Such components, upon being notified, shut files, 
flush buffers, empty tanks, reset the video display mode (e.g. 
from MS-Windows graphic mode back to DOS text mode, 
etc.), and delete themselves as appropriate, before the main 
program ends.  (I have not drawn this trace to keep the 
resulting OCM simple).
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5.7.4  Step 4 - Take the Union of All Traces

The result is the complete Object Communication Diagram:

start_accepting

init_A()

init_B() init_C()

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

UC1()

add()

enqueue()

UC2()

enqueue()

full?()
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Notice in particular how two different scenarios both had calls to 
the full() procedure of class Object_C.  The (first) union 
operation has merged these two into one arrow in the overall 
OCD.  All sequence numbers should be removed from the 
labelled arrows since with so many different scenarios shown, 
they no longer have relative meaning.

The result is a fantastic diagram!  

• The (first) union synthesizes an OCD from which the 
requirements spec for an object class can be determined.  
Obviously, the class must export a function for each different 
type of arrow entering it.  e.g. 

- The UI must export start_accepting().
- Object A must export init(), UC1(), and UC2().
- Object B must export init_B() and add().
- Object C must provide/export empty(), enqueue(), init_C(), and 

enqueue().

• Notice that the above list seems to imply Object_C should 
export enqueue() twice.  By taking a second union, you can 
merge the two different enqueue() calls to Object_C (which are 
not merged by the first union because they are from different 
callers), into one item in the list of procedures that Object_C 
must export.  Basically you must regard the list of exported 
procedures as a true ‘set’ where duplicates are not allowed.

• In addition, you get a requirements spec for each object’s 
responsibilities to call/notify other modules/objects.  An 
object will do some internal processing when called, and then 
likely some interaction with other objects.  The diagram shows 
all the other objects that a particular object is planned to get 
info or processing from, or must notify in order to fulfill its 
responsibilities.  e.g. Senior Object_A has the responsibility to 
notify those below it that they should initialize themselves.

To make the double union more clear:
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1) The first union constructs the full OCD overlaying all the 
individual scenario message traces together.  Since it is 
common that the same object could call a certain function in 
another object in two different scenarios, this first union 
removes this duplication.  This is also why the trace arrow 
sequence numbers must be removed, since a particular 
arrow in an OCD can correspond to two or more sequence 
numbers from different scenarios.

2) The second union is the union of the sets of calls from each 
other reactive component to (say) object C.  If two different 
other components each call the same function in object C, 
the second union removes the duplications from the list of 
functions object C must support.  e.g.
- set of calls from UI to object C = {full()}
- set of calls from A to C = {init_C(), enqueue()}
- set of calls from B to C = {enqueue()}
The second union is:
{full()} + {init_C, enqueue} + {enqueue()}
      = {full(), init_C(), enqueue()}
This resulting list is the set of functions which must be 
exported via object_c.h and implemented in object_c.cpp!

Obviously the first union does not have to use transparencies, as 
a CASE tool could automate drawing single scenario traces and 
then taking the union (I don’t know of any CASE tools that do 
this yet!  I think it would be a great product.).  In fact, only one 
all encompassing union (which accomplishes both partial 
unions) is needed if the tool doesn’t have to bother creating the 
OCD for presentation to a software architect.
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5.7.5  Miscellaneous

The above strategy is very powerful as it constructively 
synthesizes the requirements for individual modules and object 
classes from an application’s external requirements.  This makes 
it an extremely appropriate technique to bridge the so called 
‘design gap’ that exists between the end of analysis and the 
beginning of writing code for individual modules.  

Several methodologies suggest you should design critical 
scenario architectures individually, using some kind of object 
‘interaction’ diagram (and some accompanying descriptive text).  
But none that I know of suggest that a significant benefit is to be 
gained by graphically designing them all, then using the double 
union to synthesize the requirements for every object.  I hope 
you appreciate the beauty of the technique.

This technique could be easily automated.  A Computer Aided 
Software Engineering (CASE) tool could be written which 
allows you to graphically enter a blank OCD (possibly using 
objects from your ORD), and then construct scenario traces, one 
scenario at a time.  Finally, a computer is excellent at performing 
unions to construct the overall OCD, and function prototypes for 
each object class.

Please note that there are many alternatives in constructing the 
trace of a scenario.  This is where the real design decisions are 
made.   (The diagramming with a CASE tool and the double 
union are basically just documenting the design decisions and 
constructively gathering object specifications from the traces).  
Trace alternatives will be discussed in the next section of the 
course.

Finally, realize that the arrows you drew represented procedure 
calls.  Data can be passed back to the caller at the end of the call.  
But not all systems support direct procedure calls.  The 
interaction between different applications, or between different 
parts of a distributed application, often allow only one way 
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messages.  In this latter case, return data must be passed back by 
an additional arrow added to the scenario message diagrams.  
That is why I have been hesitant, or vague about calling the 
arrows procedures.  In some systems they might not be 
procedures but one way operating system messages or network 
packets!
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5.8  Scenario Trace Design
Each and every scenario should be designed with care before 
you can truly know the system architecture.  We will look at 
three issues to be careful about.

5.8.1  Adding and Designing Non-User Scenarios

Firstly, you have to realize that certain previously un-thought of 
scenarios may need to be necessary.  These scenarios may not 
even be part of the user scenarios.   Good examples are the start-
up and shut down scenarios.  Those of you familiar with modern 
languages are aware that they often provide each module or class 
with an initialization code fragment that is automatically 
executed at start up.  You might not think then that a start up 
scenario is necessary, that each object or module can be written 
to automatically initialize itself.  Systems can definitely be 
constructed to this way.  But what if a system, while running, 
needs to do a ‘warm reset’.  For example, a user is tired of the 
situation he has got himself in, and wants to reset everything to 
its starting condition.  Such a system needs a ‘re-start’ scenario.

Also, shut down is necessary for reasons other than just closing 
files.  For instance in a milk processing plant, you might want to 
shut down the system.  This requires telling all tank objects/
modules to drain themselves.  Even if the main module or user 
interface detects that the user wants to do a shut down, for 
reasons of abstraction and design information hiding, the main or 
UI might not even know that a tank object exists.  The shutdown 
scenario designer is aware of all the objects, and constructs a 
trace which will get the necessary shutdown control signal down 
to the tank via a trace of calls.  This shutdown trace is 
constructed to weave down through the abstractions one layer at 
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a time since usually each object or module knows only about 
those immediately below it.
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5.8.2  Labelling Semantic Order

Secondly, in addition to documenting which objects interact with 
which other objects in a scenario, the numbers on a call event 
trace document semantic ordering.   Sometimes the tree of 
traces could have several alternative orderings, only one or two 
of which result in the correct processing of the scenario.  If the 
ordering is not made clear, a implementation programmer who 
didn’t understand the overall system needs might write the 
wrong code.  For example, given an object which can be both 
read and written, one scenario might require that the data be 
written (i.e. initialized) before anything can be read from it.  
Another scenario might need to read it first (in order to extract 
and preserve the data) before over-writing it.  Numbering the 
individual calls in a trace documents the ordering you have 
decided is correct for that particular scenario. 

Several methodologists have published various numbering 
schemes for the individual calls.  In most, two calls with the 
same precedence number indicate that they can be made in either 
order.  In some schemes, using numbers like 2 and 2’ mean that 
either one or the other message is sent, but not both.  Some 
propose using 2* to indicate repetitive calls.   And finally, some 
assign meaning to decimal numbers (e.g. 2.1, 2.1.3, etc.).  These 
proposals are currently under debate in the OO community, and 
no common standard currently exists.
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5.8.3  Alternative Control Architectures

Thirdly, as with all design, there are usually several alternate 
ways to design a sequence of internal call events that will carry 
out a particular scenario.  For example, when the UI receives an 
‘exit program’ command from the user, should it send messages 
to all the objects telling them to shut down?  Or should it call a 
procedure in the main module which should then tell the objects 
to shut down?  ‘Design’ is choosing between workable 
implementation alternatives to pick the one that is most 
elegant, most easy to maintain, uses the least memory, and/or 
is best performing.

Let us consider a simple reservation system.  Generally a 
reservation instance is for a particular flight, sailing, or video 
rental instance, etc.  A reservation typically is related to a 
particular, say, sailing via a foreign key.  When dealing with 
user-entered data, we must use every effort to maintain 
referential integrity of the database.  Thus before creating a 
reservation instance for a person on a sailing, we must check that 
that particular sailing actually exists.  This scenario 
implementation can be designed in one of three alternative ways.  
These three ways will be shown in the next 3 sub-sub-sections.
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5.8.4  Centralized Scenario Design

In this design, a particular reactive component which both is 
informed when the scenario is to be initiated, and which 
understands the scenario to be carried out, orchestrates the 
execution of the scenario.  

Although often not the ideal design, this component may the 
event detector itself (e.g. user or network interface module), in 
which case application scenario code (possibly unfortunately) 
gets added to the UI or network interface module.

Sailing Reservation

1: checkExists() 2: makeReserv()

Detector (e.g. UI) and
Scenario-Starting Event

Scenario Orchestrator
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Alternatively, as shown below, an extra control module or object 
can instead be added to house a function which orchestrates a 
particular scenario.  It is not unusual for this module to export 
more than one function, one in fact for each scenario to be 
orchestrated in an application (or for a particular subset of 
scenarios in the application).  The external event detector is 
programmed to simply call the correct scenario orchestration 
function given the particular scenario-starting event that it just 
detected.   

Sailing Reservation

2: checkExists() 3: makeReserv()

Scenario Description:
1) Prompt user for all info;
2) If Sailing exists
3) THEN make reservation
4) ELSE re-prompt user.

Event Detector (UI)

1:UC5()

Scenario-Control/Orchestration
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In both the above centralized schemes, the controller sends a 
message first to the sailing object to check that the sailing exists, 
then waits for the return from that call, then makes a call to the 
reservation object (supervisor/shepherd) to actually create the 
new reservation, the waits for that call to return.  The centralized 
control scheme has the advantage of cohesively encapsulating in 
one function of one module (be it the Event detector or a special 
orchestration component) the control and sequencing of internal 
calls needed to carry out the processing needed in the scenario.  
Its advantage is that if the control or sequencing of the scenario 
might later during maintenance need change, only one function 
in one module needs to be updated.  Also notice that the sailing 
and reservation objects do not communicate with each other, and 
thus don’t have to know about each other (this is occasionally a 
good design feature).  On the other hand, the central object 
unfortunately gets coupled to all the parameter types of all the 
lower calls.

Notice the explanatory text or pseudo-code that can be included 
under a scenario trace diagram to more fully document the logic 
of the scenario.  This pseudo-code might, for instance, indicate 
whether the sailing information needed from the user is read by 
the sailing module or by the central control module.  

This pseudo-code may or may not eventually be put into any 
particular module.  It may end up in the central module, or 
alternatively be spread out over several modules if either of the 
following designs is adopted.  It is therefore not to be thought of 
as programming, but instead as documentation of the scenario 
logic from an architect’s point of view, so that programmers 
could later implement the design properly as per the architect’s 
plan.
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5.8.5  Roundabout Route Scenario Design

The name of this section is a Tront’ism and is not widely used 
terminology.  The idea is that the orchestration control is not 
centralized in one function but is distributed.  Control is passed 
from the scenario initiator (i.e. event detector) to the first module 
which must supply preliminary checking or data, and then that 
module forwards the request either directly or indirectly to the 
final object.  The control thus travels a rather roundabout path to 
the usually rather important terminal object.  When the 
makeReserv() procedure is done, it returns control to the Sailing, 
which in turn returns from the makeResIfSailingExits() to the 
initiator.    

This design strategy is particularly good if using asynchronous 
one-way messages, rather than procedures calls, as it requires no 
data to be returned to callers.

Sailing Reservation

1:makeResIfSailingExists()

2: makeReserv()

Scenario Description:
1) Ask Sailing if it exists, and if so
2) THEN have it make reservation
3) ELSE have it return an exception to 

the initiator which will then 
re-prompt the user.

Initiator
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5.8.6  Principle Object-based Scenario Design

Another decentralized design alternative has the initiator first 
informing the principle application object involved (or class 
supervisor), in our case the reservation class.  After that, the 
principle object (which may understand its creation needs best) 
does whatever is necessary to accomplish the request.  In the 
example below, the reservation checks the sailing exists, waits 
for the reply, then if ok makes a new instance of its type, and 
then finally returns control to the initiator object.  

Note that these diagrams do not show the procedure returns, but 
this design requires an OK to be returned to the reservation via a 
parameter/return value.  Either that, or if using one way 
messages, a return message would have to be added to the trace.

Initiator

Sailing Reservation
2: checkExists()

1: makeReserv()

Scenario Description:
1) Ask reservation to make an instance
2) It checks if Sailing exist.  

If so reservation makes an instance,
3) ELSE return exception to initiator.
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5.8.7  I/O Library Call Placement

A troubling design question relates to whether all modules/
objects should be allowed to call the I/O library, or whether this 
privilege should be restricted.  This is of concern, as one major 
maintenance headache is the possible future porting of the 
application to a different operating system or hardware platform 
(e.g. from MS-Windows to Mac).  If you think this is likely, you 
may want to keep I/O calls confined to be from within a few 
modules (e.g. somewhat restricting you to centralized control), 
or within only one module (each object sends its I/O requests to 
the UI module which is the only one, by architectural policy, 
allowed to call the OS I/O library).  This reduces porting effort 
as all I/O calls needing changing would be localized to a small 
number of source modules.

On the other hand, this distributes information about the data 
types of the attributes of every object needing I/O to the modules 
allowed to do I/O.  It might be better if a student object (which 
defines the type and length of stud-name, address, phone) do it’s 
own I/O.  That way if a new attribute must be added, or should 
the length of the address field or type of the phone number field 
ever need changing, the changes would be restricted to this one 
object class’s code. 

There is no best answer.  To port a distributed control 
application, you could always implement a translation module.  
Or perhaps C++ provides a good compromise.  Define the 
student phone number type in the student object, overload the 
output operator for this type, and then let cout<< and cin>> work 
as they see fit on that type.  Unfortunately, now that most UIs 
are GUI based, you must instead provide ‘convert to ASCII’ 
member functions for each attribute, and then the phone number 
(previously an integer) can be displayed via the GUI API.
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5.9  Classes, Instances, and FSMs
In a particularly good OO development methodology [Shlaer92], 
it is suggested that a excellent way to characterize the behavior 
of objects is with finite state machines (FSMs).  This is because 
FSMs are perfect to specify the behavior of reactive components 
such as software modules and objects.  This sub-section of the 
lectures will discuss the last step of the design process, object 
behavioral design.

5.9.1  Finite State Machines

Finite state machines are a particularly good way to document 
the required behavior of a reactive component.  This is because a 
FSM is driven by events, and the arrival of an event causes a 
reaction by the FSM which is appropriate for it’s current state.  
This is a very common type of behavior needed from software 
components.

A reactive component’s state is a remembrance of historical 
context.  The state is the current status or mode of the 
component.  Past (i.e. historical) events have caused the 
component to change into the current mode.  For instance, in 
MS-Windows typing a <shift>-a actually causes 4 event 
messages to be sent to your program:

1) the <shift> key is pressed.

2) the ‘a’ key is pressed.

3) the ‘a’ key is released.

4) the <shift> key is released.

Normally your winmain() function passes these messages back 
to Window’s via the keyboard translation procedure.  

Message 1 causes the keyboard translation component of MS-
Windows to change from the ‘unshifted’ to ‘shifted’ state.
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Message 2 causes the keyboard translation component to tell 
your program an “A”, not an “a”, has been entered by the user.  
It does this by first noting (i.e. referring to its memory of past 
history) that it is in the shifted state.  It then performs an action 
appropriate to that past historical context (e.g. tells your program 
about the “A”).

Message 3 is ignored.  i.e. the keyboard translation component is 
programmed to causes no action and makes no state change in 
response to this event.

Message 4 causes no apparent action, but the internal state 
variable is changed back to ‘unshifted’.

Thus if you worked for Microsoft, and were having to write or 
document the required behavior of the keyboard translation 
component of Windows, a FSM would be an idea medium to 
document this reactive, historically context sensitive behavior!

In fact, many objects that software components model have 
context sensitive behavior:
• You shouldn’t heat a milk tank if it is in the empty state.
• You shouldn’t create a diploma if a student hasn’t reached the 

graduated state.
• You shouldn’t pop from a stack that is empty.
• Network connection objects often react to incoming packets in 

different ways depending on their current state (e.g. depending 
on what kind of packet they last sent).

I will elaborate on the stack example to show you the proper way 
to program context-sensitive, software components.  

Finite State machines can be documented either with state 
transition/action diagrams, with tables, or with pseudo-code.  
The diagram is the most intuitively appealing, so I will show you 
it first.
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empty state

partfull state

full state

Push():

Pop():

Pop():

Push():

Pop():

[now_full]

[not_yet_full]

[now_empty]

[not_empty_yet]

Push():

THROW 
empty_exception;

do_the_pop();

do_the_push();

THROW 
full_exception;
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The ovals represent the states.  They represent the appropriate 
subset of the memory of all possible past history.  Obviously a 
finite state machine can’t remember everything that has 
happened to it, so it remembers an appropriate finite subset.

The bold arrows represent events that can happen to the FSM.  
In software, these are usually procedure calls to the component 
modeling the FSM.

The rectangular boxes represent behavioral actions that are 
executed by the FSM on its way to its next state.

The dim arrows indicate which state comes next.  Most FSM 
techniques do not use dim arrows guarded with exit conditions, 
but I like them as they frequently can reduce the number of 
rectangular boxes and arrows needed to fully document the 
behavior.

I want to point out that when you call a procedure, the action 
specified by the name of the procedure should not be viewed as 
always being done.  You should design your software 
components such that if it is inappropriate in that state to fulfill 
the ‘request’, the procedure will not do so.  This is why I earlier 
said objects have ‘intelligence’.  They are programmed by you to 
appear to make intelligent decisions.  In the above diagram, you 
can see that trying to pop from an empty stack will cause an 
exception to be ‘thrown’ (C++ exceptions will be covered later).

I am now going to show you how to properly program software 
components that have state.  First, you need to define the 
essential states.  Second, export procedure signatures for each 
named event/request/message that the component must handle.  
Then put a switch statement as the outer block of each exported 
procedure implementation.
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Class Stack{
enum StateType{empty, partfull, full};
StateType state;  //initially empty.

public:
Value Pop(){  //public request for a pop.

switch(state){
case empty: //leave state the same and deny request.

  RAISE empty_exception; 
break;

case partfull:do_the_pop();
if (now_empty) state:= empty
else state:= partfull;
break;

case full: do_the_pop(); 
state:= partfull;
break;

};//end switch.
}; //end Pop().

void Push(){  //public request for a push.
switch (state){

case empty: do_the_push();
state:= partfull;
break;

case partfull:do_the_push();
if (now_full) state:=full
else state:=partfull;
break;

case full: RAISE full_exception;  //deny request.
break;

};//end switch.
};//end Push().

(*-------------------------------------------------*)
private:

void do_the_pop(){  ... //actually do the pop.
};
void do_the_push(){ ... //actually do the push.
};

};//end class
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This pseudo-code implements the FSM documented in the 
previous diagram.  You should take a moment to correlate these 
two different representations of the same FSM.

Note the lovely manner in which each exported function is 
implemented.  Each begins with a switch statement which 
determines whether the software abstraction will honor the 
request, given the stack’s current state.  The actual pushing and 
popping is done in  non-exported procedures near the bottom of 
the module.  If you write code this organized for most of your 
life, I will be very proud of you.

One last note.  Not all software components are historically 
context sensitive.  If you think your’s is not, you may have 
overlooked something though; double check your analysis!  If 
you are sure, the component need only model a degenerate 
event-response machine which has no (or only one) state.  The 
source code layout shown above is not needed, and the class/
module can just be written as a collection of exported procedures 
implementing the requests.
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5.9.2  Class Supervisor and Instances

There are two behavioral parts of a software object class:
1) the reactive nature of the class instances.
2) the reactive nature of the class supervisor (shepherd).

Though it is not widely suggested, it is essential that you 
understand the difference between these two separately reactive 
parts of a class.  This is because C++ syntax can blur them and 
mix you up.

First, you must realize that the behavioral nature of each instance 
in a class is identical.  That’s why they are all in the same class!  
They all store the same fields of data, and they all have identical 
behavioral code.  What is different about each is that each has 
different values in their data fields (including different state 
values).  Therefore each may behave differently if sent the same 
message.  For instance, sending a pop message to the night stack 
may cause a pop, but sending the identical message to the day 
stack may cause different behavior.  This is because each 
instance might be in a different state.

On the other hand, each class has some supervisory functions 
that it exports.  And this supervisor can have some static 
variables in which it keeps values relevant to the whole flock of 
instances.   For instance, it might have a count of the number of 
instances, the average age of the instances, the total $ value of 
the instances, or a boolean indicating whether one or more 
instances are currently being used.   Notice these are flock 
attributes! They are items like count, average, total, or boolean 
attributes of the flock.  For this reason, only one copy is needed 
of each of these ‘supervisor’/‘flock’ variables.  In contrast, 
instance attributes need a field in each instance.

When sending a message to a particular instance, you must 
specify the ID of the instance you are sending it to.  But to send 
a message to the class supervisor, you specify the name of the 
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class (in case different classes both export the same supervisory 
function name like ‘init()’) and the exact function name.

Since the supervisor’s behavior may be historically context 
sensitive, it can also be modeled and programmed as a separate 
finite state machine.  And, since it appears as a somewhat 
different reactive component from the individual instances, you 
may want to put it as a separate icon on an Object 
Communication Diagram.  Generally, you only put one copy of 
the instance icon for a class in an OCD, and it is regarded as a 
generic instance.   If one instance sends a message to another 
instance of the same class, this can be drawn as a loop from the 
instance icon back to that same instance icon.  e.g. 

Notice that I have used ovals in this OCD rather than rectangles 
to indicate that messages are sent between FSMs, not between 
classes.  In the Shlaer-Mellor OO methodology this is sometimes 
used when you are trying to indicate one rectangular object has 
two separate state machines (supervisor and instance state 
machine models), each represented as an oval.

main component UI component

Student Supervisor

Student Instance
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5.10  Summary
We have taken a good introductory look at object orientation, 
and at object-oriented data analysis.  OOA is nothing new.  
Information/database systems analysts have been doing it for 
decades, but it is now realized that it provides a good beginning 
to decomposing any large system into smaller components.  
Normalization and formalization help us obtain a clear 
organization in our head for this data.  More recently, instead of 
regarding this data as passive records, we now encapsulate 
procedures with them to form the core reactive components of 
our OO architecture.

Note that it is unclear where analysis ends, and design begins.  
You must analyze (i.e. obtain through interviews, etc.) the 
required system behavior as well.  This should be listed in the 
requirements spec.  Normally design begins when you have to 
firm up exactly how the system will look and feel in the draft 
user manual (i.e. scenario appearance design).

Many software development methodologies lack a definitive 
process to synthesize/derive the behavioral requirements for 
programming a particular module from the overall requirements 
of the application.  A key to this derivation is to identify all the 
use case scenarios that will need to be handled by the 
application, and to take a few minutes to design the 
implementation of each one thoughtfully (i.e. scenario 
implementation design).  This is often overlooked by 
programmers who by their nature seem to want to start coding to 
early.  By enumerating  use cases in the requirements spec and in 
an early written user manual, and the start/reset/shutdown 
scenarios, we create a list to drive the design process one 
scenario at a time.  The design process becomes the architecting 
of each scenario implementation with due respect to the various 
tactical alternatives.  

If every scenario trace implementation is planned, a union of the 
resulting individual scenario implementation designs will 
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synthesize the list of exported services that each individual 
reactive component (object or module) must provide!   Then 
examination for state-dependent behavior and subsequent coding 
can begin on these individual components.

Unfortunately, you may notice that the design alternatives we 
have discussed have conflicting advantages (you can’t have 
everything), and compromises are necessary.  Generally you 
should take the path that will give you the least headaches now, 
and the least effort later during maintenance (e.g. during later 
fixing, enhancing, and porting).

Finally, 
• We saw that finite state machines provide an ideal medium 

with which to think about, document, and convey to 
programmers the behavioral nature of the desired reactive 
software components.  This is because a module/object 
instance’s behaviour is so often dependent on the previous 
history of what has happened to it so far during execution (i.e. 
its response to a particular function call is mode sensitive).  

• In addition, finite state machines can be beautifully mapped 
into a very clear source code using switch/case statement.  
They thus provide a wonderful guide for the actual code 
layout.  

• And, don’t forget that care must be taken to differentiate 
between the mode sensitivities of the class supervisor 
component and of the class instances; they generally are quite 
different and are thus represented as separate finite state 
machines.
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5.11  Appendix A - Database Organization
We will now overview traditional information systems data 
modelling, as it provides us with a fantastically logical way to 
organize our data during the analysis phase of a project.  

5.11.1  Why Organize Data Properly?

Information systems, by definition retain persistent data.  
Persistent data, usually, but not always, mean data retained 
overnight, between program executions, or over a power 
shutdown.  Integers in RAM memory are also `retained' for 
shorter times, but the problems of informations systems are 
usually that of:
• storing huge amounts of inter-related data, 
• for long periods of time, and 

being able to rapidly create outputs which have been composed 
from the retained data, or to be able to easily and rapidly modify 
particular data records!

Interestingly, learning how to organize persistent data gives 
us wonderfully clear insights as to how to also organize even 
our non-persistent (RAM) objects!

Hard disk drives have access times typically in the order of 
0.016 seconds (16 ms).  Unfortunately, this is still a million 
times slower (i.e. 6 orders of magnitude) than the instruction 
time of a 66 MIPS processor!  To obtain fast (relative to the 
processor) random access times requires very special techniques 
to be used in data bases.  Invariably, this requires that retained 
records in a file all be the same length.  That way, to read the 
1000th record, you can simply position the read head of the disk 
drive a distance  (999 x Record_Size) from the beginning of the 
file, and thus avoid reading all the records earlier in the file.  It 
also means that when a record is deleted, then another one 
added, the added one can fit in the same length space as the one 
deleted.  (If the added record were shorter, some space would be 
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wasted.  If it was longer, it wouldn't fit and would have to be 
placed elsewhere and the entire space from the deletion would be 
wasted until a smaller record needed to be added.)

But not all data records appear to be of fixed length.  For 
instance a student and the courses she is taking this semester:

Student (student-id, semester, {course})

where {} is the Backus-Naur Form (BNF) symbol for zero or 
more courses.  This is called a repeating group by database 
analysts.

For access performance, we would like to use fixed length disk 
records, but some students take more courses than others.  If say 
we reserve space for 6 courses for every student, huge amounts 
of space are wasted if most students only take 5 courses on 
average.  

Properly analyzing the data structure for such an application is 
done by constructing a data model of the information that needs 
to be retained, and modifying that model until you get:
1) fixed length records.
2) no wasted space due to empty or duplicated data.
3) fast random and sequential access.
4) fast insert and delete operations (not possible with simple 

sorted records - why?)
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5.11.2  B+ Trees

This sub-sub-section gives a wonderful introduction to basic 
database index trees and links.

Generally, characteristics 1) and 2) above are very important 
tasks of the Analyst.  On the other hand, characteristics 3) and 4) 
are achieved by writing or purchasing database software that 
uses the Indexed Sequential Access Method (ISAM) which is 
based on B+ tree index structures on disk.  This special kind of 
tree is very short in height, thus requiring very few disk accesses 
to traverse down to any randomly-chosen leaf.  The tree is 
always balanced so that no branches are very deep.  The use of a 
tree makes random disk searches, inserts, and deletes as fast as is 
possible, which is very important as disks are orders of 
magnitude slower than RAM.  Additionally, the leaves are 
sequentially accessible via a linear, doubly-linked (disk) list.  
The sequential links make access of the `next' and `previous' 
items in the sorted structure very fast.
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Here is a diagram of a database accessible via 2 different B+ 
trees, one for each of two different search keys.  
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Here are 3 advantages of B+ trees:
1) B+ trees are great as they have an upper tree part which 

allows fast random access.  Not only that, the nodes in the 
upper part are often a full disk sector in size (512 bytes) and 
thus provide a high order tree (one which many arrows 
coming out of each node).  This makes the tree height short, 
to reduce the number of disk accesses.    :<)

2) In B+ trees (not to be confused with B trees or binary trees), 
the leaves of the tree are special nodes that are doubly-
linked to additionally provide rapid sequential access to the 
`next' or `previous' record.   :<)

3) Third, the data is not in the leaves or nodes of the tree.  
Typically the data is in a separate file from the index nodes.  
The each tree and sequential index nodes are normally in a 
special file called an `index' file.  The leaf nodes simply 
contain the record or byte number of the data records in the 
data file (as well as the forward and backward links).  The 
advantage of this is that you can have a single data file of 
persons as shown above, and TWO index files/trees pointing 
into it.  One index file is for fast access by, say, name.  And 
the second index tree is for fast access by, say, driver's 
licence number!

This is the fundamental disk data structure underlying 
almost every database management system!
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5.12  Appendix B  -  Normalization
This whole sub-section should give you a good insight into 
logically re-organizing the data attributes in a application such 
that the correct attributes are encapsulated together in sensible 
object classes.

Normalization is a process to modify the data model with the 
goal of getting fixed length records (for better performance), 
with little redundancy, and with few optional attribute fields (to 
save space).  Recall that structures in RAM are just fixed length 
records, too, though it is easier and faster in RAM to have an 
attribute of a structure point at a linked RAM list to implement 
the effect of a variable length record.  Nonetheless, learning how 
to implement a system without variable length records will teach 
you a lot about organizing your data.

In this sub-section I will try to give the rules which define the 
steps of the process, and illustrate the steps in both a graphical 
and textural form.  I will use the familiar example of a university 
set of database files, as this will make the learning process 
easier.  But don’t be deceived.  In a familiar application, 
normalization can be done by the analyst almost without 
thinking because it is based more on common sense than on that 
weird relational algebra you learn in a database course.  On the 
other hand, in an unfamiliar application area, we don’t have a 
good sense of what needs to be stored as part of, or related to, 
other things.  Normalization is one important method by which 
we distill the huge pile of info we get during analysis of an 
unfamiliar application domain.

Before beginning normalization, you must determine as best you 
can all the dependencies and cardinalities by asking about the 
business rules.  e.g. Each airliner has a licence number painted 
on its tail.  When storing information about a particular flight, is 
the flight number or licence number the key?  Can a particular 
plane be used on different flight numbers?  Can a flight have 
many aircraft licence numbers?  Maybe, but only on different 
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days.  So on a given day, the flight is the key, and the licence is 
the designator attribute which specifies which plane will be used 
on that flight.

Let’s say our database will need to hold a bunch of info about 
students, the courses and semesters, and instructors.  (This is a 
good example as it is familiar to you, but a poor example as the 
relationships and normalizations are easy because are familiar 
with the application subject area.  Remember in real life, you 
will be asked to analysis unfamiliar subject areas!).  Assume the 
following attributes must be retained about a student.

stud-id

stud-name

address

phone

course

credit

semester

grade

course-room

instructor

instructor-office

We gathered this by interviews, looking at the university 
calendar, course timetable, telereg instructions, forms, examples 
of transcripts, and watching the current system in operation.

Repeated for 
each course 
taken.

Repeated for each 
time a particular 
course is attempted
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In addition to knowing the attributes, we have picked up an 
understanding of some of the business rules.
1) Students take courses.
2) Students typically take more than one course in their life.
3) Students can fail courses, and can repeat the same course 

later in a different semester.  Students can thus take the 
same course more than once.

4) Each time a student takes a course, they are assigned a 
grade.

Notice I have underlined some nouns and cardinality info.  This 
is a sometimes helpful technique.
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5.12.1  First Normal Form

The above set of attributes are in unnormalized form.  They are 
in unnormalized form as the records needed for different 
students would NOT all be the same length.  This is an 
unacceptable situation, as it will make fast access and fast insert/
deletes impossible, and waste lots of space due to disk 
fragmentation.  The solution is to (unfortunately) add 
redundancy, by creating a separate row for each occurrence of a 
student taking a course.  (Note: we will later be able to remove 
this redundancy, but it is a necessary starting step).

CLUE: The data that needs to be retained has repeating groups.

PROCEDURE: Remove repeating groups by adding extra rows 
to hold the repeated attributes.

FIRST NORMAL FORM:  Tables should have no repeating 
groups.

The result is a single table with a compound (i.e. multi-attribute) 
primary key.  

1NF STUDENT TABLE

Notice that to find a certain row (e.g. find the grade for a 
particular student in a particular course in a particular semester), 
you must specify all 3 parts of the primary key.  I have also put 
the 3 attributes that make up the primary key together on the left, 
and sorted the rows according to the resultant compound key.

student-id course semester grade stud-name

93010-1234 Cmpt 105 95-3 B John Smith

94444-9999 Cmpt 201 95-3 D Bill Jones

94444-9999 Cmpt 201 96-1 C+ Bill Jones
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This in effect creates a single entity class with a large number of 
attributes:

So now we have fixed length records!

But, there are several problems with this data model:
• There is too much redundancy.  For instance, if you think of 

each entity instance as row in a table, we will be storing both a 
student’s id, name, address, and phone number each time he 
enrolls in a course.  This is a ridiculous!  We need to instead 
have a separate file of students and the attributes that depend 
on only the stud-id.

• There are insert anomalies that can occur.  It is impossible to 
admit a student to the university and enter him in this table, 
unless he has enrolled in a course.  This is because the table 
uses a compound key composed of three different attribute 
fields.  None of these three fields can be null, as they are the 
data we ask the database access software (ISAM B+ tree) to 
use in its search.  This software would fail if all three parts of 
the key were not specified.

STUDENT-COURSE
*  stud-id
*  course
*  semester
 -  grade
 -  stud-name
 -  address
 -  phone
 -  course credit
 -  course-room
 -  instructor
 -  instructor-office
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• There are delete anomalies which can occur.  If this is the only 
file which stored which room a course is held in a particular 
semester, then if you deleted the row containing the only 
student who had registered in the course so far, you would also 
delete the only record of which classroom that course will be 
take place in.  This is also ridiculous!

• There are update problems which can occur.  Because of all 
the redundant data, if you wanted to change a woman student’s 
name because she just got married, you would have to change 
it in the rows corresponding to every instance of every course 
she had ever taken!  Again this is ridiculous.  Though marriage 
is not that frequent an occurrence for students (compared to the 
frequency with which they take courses), this is nonetheless a 
computationally burdensome task.  And though many women 
keep their maiden name these days, the university has to be 
able to respond to those who do change their names, no matter 
how many or few occur, because this is provincial law and 
outside of the university’s jurisdiction to control.   So this is a 
business rule that has been imposed on the university’s 
business.  The analyst must also consider external rules that 
can be found out from interviews with management, but are 
not necessarily rules created by management dictate.
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5.12.2  Second Normal Form

CLUE:  The problems in the 1st normal form (1NF) 
organization is that there are non-key attributes which depend on 
(i.e. are functions of) only part of the compound key.   For 
instance, address is only a function of the stud-id, and credit is 
only a function of the course, not of the course + student + 
semester.

PROCEDURE:  Remove partial key dependencies.  
Determine if there are any dependencies of non-key attributes on 
only part of the compound key.  If so, break the first normal 
form table up into several tables such that in each table, each 
non-key attribute is dependent on only the primary key of that 
table.

Note that if the 1NF key is not compound, there cannot be partial 
key dependencies, and the table will already be in 2NF!

SECOND NORMAL FORM:  There are no non-key 
attributes with partial key dependencies in any table.

For the university application, we ask about the business rules 
that will tell us something about these dependencies.  What we 
are told is:
1) stud-name, address, and phone number are a function of 

only the stud-id.  Thus we can create a student file of only 
this information.

2) credit is a function of only the course, and is independent of 
which semester it is offered in, and which student is taking 
it.  We therefore must separate the concept of a ‘course’ and 
that of a ‘course offering’ in a particular semester.

3) course-room, course-instructor, and instructor office is a 
function of only the course and semester, and is independent 
of which student is taking it.

4) only course grade is necessarily a function of all three parts 
of the original primary key.
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To get the university application into 2NF, we separate the data 
into 4 files, each with only the minimal number of attributes 
needed in each file’s primary key.  You will notice that it is a 
much better organization of the data.
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Second Normal Form ERD:

*  stud-id
*  course
*  semester
 -  grade

STUDENT-REG

*  course
*  semester
 -  course-room
 -  instructor
 -  instructor-office

COURSE OFFERING

*  course
 -  credit

COURSE

*  stud-id
 -  stud-name
 -  address
 -  phone

has

is of a

is registered via

is for a

is for a 
particular

has

many

STUDENT
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That was quite a big leap.  We could have first pulled out the 
stuff that was just dependent only on course and semester.  This 
would have resulted in two entities, student and course.  Then 
we would have still found partial key dependencies in each of 
those.  This is quite common.  When you do break a file up, 
make sure you look again for partial key dependencies in each, 
as it is often easier to see even more that you might not have 
noticed in the big original 1NF organization!

Note that in going to 2NF we also had to ask questions about the 
cardinalities to show on the resultant ORD.  These cardinalities 
did not come from the normalization process; we had to 
specifically understand or ask about the application domain 
rules.  I have shown reasonable assumptions for the (business) 
rules regarding cardinality in a university application.

With the data model in 2NF, we can notice the following:
• There is now far less redundancy in the organization.  Note 

that a student’s name doesn’t have to be stored with each of his 
many registrations, and the course credit needn’t be stored for 
every course offering.

• a student doesn’t have to be registered in a course for the 
student to be initially admitted to the university.  

• A course, and the room that a course offering will be located 
in, can be entered even when there are no students registered in 
that offering yet.

• Most of the update problems have been solved.
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5.12.3  Third Normal Form

There is still problems with the 2NF data model.  The course 
instructor’s office is stored for every occurrence of a course 
offering.  If a professor teaches 4 courses over a year, why do we 
need to stored his office 4 times.  Surely, offices are only a 
function of the prof’s name, not his name + course teaching 
assignments!  This also causes some remaining insert/delete/
update anomalies.

CLUE:  The problems in the 2nd normal form (2NF) 
organization is that there are is an object class with non-key 
attributes which depend on (i.e. are functions of) other non-key 
attributes.   For instance, instructor-office is a function of the 
instructor name, and not both of, or either of, course + semester!

PROCEDURE:  Remove non-key dependencies.  Determine if 
there are any non-key attributes with dependencies on any other 
non-key attribute(s).  If so, split the table so that the functional 
dependency is enumerated in its own separate table.

THIRD  NORMAL FORM:  Every table is in 2NF and 
additionally, there are no non-key table attributes with 
dependencies on other non-key attributes (except that 
dependencies on columns which are also ‘candidate’ keys are 
allowed; this is a subtle issue covered in database courses).

The one object class in the previous ORD that does have a non-
key attribute with a dependency on another non-key, non-
candidate-key field is instructor-office.  Instructor-office is 
purely a function of only the instructor’s name.  Also note that 
we can’t move instructor and instructor-office to the course file, 
as a course can have several instructors teach it over the span of 
several semesters, or even during one semester.  The solution is 
illustrated on the next diagram.
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Third Normal Form ERD:

*  stud-id
*  course
*  semester
 -  grade

STUDENT-REG

*  course
*  semester
 -  course-room
 -  instructor

COURSE OFFERING

*  course
 -  credit

COURSE

*  stud-id
 -  stud-name
 -  address
 -  phone

has

is of a

is registered via

is for a

is for a 
particular

has

many

STUDENT

*  instructor
 -  instructor-office

INSTRUCTOR

has a

instructs a
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See that each time we go to a higher normal form things get 
more and more logically organized.  

Question: What if course is offered twice in the same semester?

Question:  Will making instructor a part of course offering’s key 
solve this?  Answer:  No.  Why?

5.12.4  Normalization Summary

In normalization, we are seeking to make sure that attributes 
depend:
• on the key (1NF)
• on the whole key (2NF), and
• on nothing but the key (3NF).

When fully normalized, the data is finally arranged in a manner 
such that:
a) all records are fixed length, 
b) there are no insert/delete anomalies that would mess up the 

recording of certain information,
c) there are no update anomalies that need to be constantly handled,
d) there is little redundancy (no more than is needed to handle the 

above factors).

Re-organizing data into a higher normal form usually, but not 
always, saves space and improves overall performance.  You can 
study more about this in a database course.  You will also study 
even higher forms of normalization (e.g. 5NF).
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5.13  Appendix C  -  Formalization
Remember that some relationships are optional.  For example, in 
application that records all persons and marriages, we must 
efficiently store data indicating whether a particular person is 
married or not, and if so to whom).  Formalization is 
determining the appropriate storage representation actually 
needed for an application to ‘remember’ that a particular 
relationship between two instances actually exists, and if so 
between which instances.  

Often, the process of normalization will automatically 
accomplish formalization for you.  But in a number of situations, 
such as when using CASE tools, we must tell the CASE tools 
which attributes are foreign keys, and which foreign keys 
formalize which of the many possibly relationship lines leaving 
an object.  This is critical since in a large multi-person project, 
often a foreign key may not have the same name as the key it 
refers to!  

Let us look at an example.  Here is an ORD for properties and 
property owners.  We will assume a person may own several 
properties. 

*  name
 -  address
 -  phone number

OWNER

*  address
 -  area
 -  annual taxes

PROPERTY

owns

owned
 by
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5.13.1  Foreign Keys

This is a nice diagram but does not provide for the storage of 
the relationships regarding which properties are owned by 
which owners.  This is what is meant by ‘formalization’.  The 
way to formalize most relationships is to add a foreign key to 
one end of each relationship according to the following rules:  
• If the multiplicity on one end of the relationship line is many, 

and on the other end one, then put the foreign key in the many 
end.

• If the multiplicity on the two ends of the relationship line is 
both one, then put the foreign key in the optional end.  If both 
ends are optional, then put the foreign key in either end.

• If the multiplicity on the two ends of the relationship line is 
both many, the you will need to form a new object called an 
‘association’.

In the above case, we use the first rule.

I have added an attribute called “owner” to the ‘many’ end of the 
above relationship.  This attribute, when stored on disk as part of 
each property entity, records/stores the relationship!  

In addition, I have given the relationship a designator (R1), and 
written this designator beside the foreign key attribute.   This is 
to clear up any misunderstanding that might occur since 

*  name
 -  address
 -  phone number

OWNER

*  address
 -  area
 -  annual taxes
 -  owner (R1)

PROPERTY

owns

owned
 byR1
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PROPERTY “owner” and the OWNER’s “name” attributes are 
synonyms.  They are two names for the same thing.  i.e. the 
value of an owner foreign key attribute in a PROPERTY entity 
is the name of the property owner as recorded in the primary key 
of the OWNER entity.  By this I am saying that owner is a 
reference to that property’s owner’s OWNER record.  

Once we have relationships formalized (i.e. stored), we can use 
them to navigate the ORD to satisfy application operations.  e.g. 
Given the address of a property, I can find the owner’s phone 
number by:

- first, searching the PROPERTY file for a PROPERTY record 
whose address attribute value equals the address of the property.

- second, in that record, get the owner’s name by looking at the 
character string stored in the owner attribute,

- third, look in the PROPERTY_OWNER file for a record whose 
name = that string.

- finally, look at that PROPERTY_OWNER’s record to get the 
correct phone number.

This is what I meant earlier when I said that an ORD was a 
referential map.  It shows you all the possible journey directions 
you can take when referring from one object instance to any 
related ones.

Note that I can also travel a relationship the other way.  Given 
an owner, I can search the property file for all (i.e. the set of) 
properties owned by a particular owner.  

Note: If we had wrongly added the foreign key to the opposite 
end of the relationship, the property owner records would then 
have repeated groups as an owner can own any number of 
properties.  Clearly this leads to variable length records.  The 
best thing is to, as suggested above, add the foreign key to the 
relationship end with the higher multiplicity. 

Here is the student registration system with all the foreign keys 
identified.
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*  stud-id(R1)
*  course(R2)
*  semester(R2)
 -  grade

STUDENT-REG

*  course(R3)
*  semester
 -  course-room
 -  instructor(R4)

COURSE OFFERING

*  course
 -  credit

COURSE

*  stud-id
 -  stud-name
 -  address
 -  phone

has

is of a

is registered via

is for a

is for a 
particular

has

many

STUDENT

*  instructor
 -  instructor-office

INSTRUCTOR

has a

instructs a

R1

R2

R3

R4
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5.13.2  Associations

In what are called ‘many-to-many’ relationships, where the 
multiplicity is ‘many’ at both ends of the relationship line, 
adding a foreign key is not enough to formalize the relationship.  
Instead, a whole new object called an association is needed if 
you are to keep all records of fixed length.  

Continuing with our property registration system, let us now 
assume that we have recently been told that we have to adjust 
our system to handle the business rule that a property may be 
owned by several owners (i.e. partners).

Now a PROPERTY can have several owner attributes (i.e. 
repeated group, ---> variable length records).  In fact there is no 
way to nicely formalize this simply with a single foreign key.  
Or with a foreign key in both ends!  

We must create a new associative object to store the information 
about which properties are owned by which and how many 
owners.  (The need for this becomes even more obvious when 
you consider that you should also store what percentage of each 
property each owner owns).  

*  name
 -  address
 -  phone number

OWNER

*  address
 -  area
 -  annual taxes
 -  owner (R1)

PROPERTY

owns

owned
 byR1
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When formalizing a many-to-may relationship with an 
associative object, the new object will have as a primary key, at 
least the UNION of the primary keys of the original two objects!  
This means the primary key of the associative object will be 
compound!  This allows any and all possible pairs of 
PROPERTY instances and OWNER instances to be recorded via 
the association.

address owner percentage

123 9th Ave. Smith, Bill 49.5

123 9th Ave. Jones, Jane 50.5

500 First St. Able, Jim 100

999 3rd Ave. Able, Jim 100

*  name
 -  address
 -  phone

OWNER

*  address
 -  area
 -  annual taxes

PROPERTY

R3
*  address(R2)
*  owner (R3)
 -  percentage

LAND TITLE

Refers
to

title
recorded
by

R2

has property
titles 

records
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Here we see that such an association can both record the fact that 
123  9th Ave. can be owned by two partners, and that Jim Able 
can own two different properties.

Note:  When reading the above ORD, we know the address 
attribute in the LAND TITLE entity is the address of a property 
and not of an owner, because the analyst was kind enough to 
annotate the address attribute to indicate it is a foreign key which 
formalizes R2.  Thus in addition to clarifying some synonym 
problems, annotating foreign keys can also clarify some 
homonym problems.

Often the normalization process will generate associative objects 
automatically for you, as in the university student database (can 
you find the association?).  Other times you may have to do it 
your self as part of the design phase.  And you may have to 
manually resolve synonym and homonym problems.

Note that an association is might not be an application domain 
object.  It just be a creation of the implementation needed by the 
application.  On the other hand, sometimes it is a physical object 
in the application domain.  An example would be a property 
deed, which is a legal document stating property ownership.

Finally, the above formalization recommendations may not be 
optimum (memory or performance-wise) for relationships which 
are very sparse (not may instances participate in the 
relationship), or which are traversed during execution very 
frequently or infrequently.  Nonetheless, it is an sound 
introduction to the concept of formalization.
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