
Copyright 1997 by R. Tront 5-1

5. OO Analysis and Design
‘Object orientation’ means different things to different people.
In this section, I want to de-emphasize the language syntax and
the inheritance/polymorphism issues of object orientation, so as
to be able to concentrate on object-oriented thinking, OO
systems analysis, OO architecture, and OO design. This will
allow you to better envision an object-oriented design
architecture in its proper form: Each external request made of a
system is implemented by a sequence of messages which flow
among a set of reactive software abstractions. The importance
and utility of this vision of a system’s architecture is under-
emphasized by most authors, but is key to understanding object
orientation.

The section will also discuss some other general object-oriented
issues like object modelling, encapsulation, abstraction, and even
‘impedance mismatches’ between the various phases of a
software project.

Readings: The appendices of this section of the lecture notes are
important if you do not understand data normalization or
relationship formalization.

Table of Contents
5. OO Analysis and Design.. 5-1

5.1 Background to Object Orientation ... 5-3
5.1.1 Software Engineering Phases.. 5-3
5.1.2 What Is Object-Orientation? ... 5-4
5.1.3 Psychological Motivation ... 5-5

5.2 Object-Oriented Analysis .. 5-7
5.2.1 Purpose of Analysis .. 5-7
5.2.2 The Act of Analysis .. 5-8

5.3 Object Modeling ... 5-9
5.3.1 Introduction to Modeling in General .. 5-9
5.3.2 Instances and Classes.. 5-11
5.3.3 Entities vs. Objects.. 5-12
5.3.4 Advantages of Encapsulation.. 5-13
5.3.5 Object Data Analysis .. 5-15

Copyright 1997 by R. Tront 5-2

5.3.6 Object Attributes and Attribute Values... 5-17
5.4 Object Relationship Diagrams .. 5-18

5.4.1 Object Icons .. 5-18
5.4.2 Relationships... 5-19

5.5 System Behavior ... 5-23
5.5.1 Event-based Partitioning ... 5-24
5.5.2 External Design (User Manual) .. 5-25
5.5.3 Use Case Scenarios ... 5-26

5.6 Object-Oriented Architectural Design ... 5-27
5.6.1 Object Communication Diagrams (OCD)....................................... 5-27
5.6.2 The Reactive Software Components... 5-30
5.6.3 Scenario Call Trace Design... 5-33

5.7 Synthesizing Object Requirements ... 5-35
5.7.1 Step 1 - Generate As Scenario-Starting Event List......................... 5-35
5.7.2 Step 2 - Blank Master OCD .. 5-35
5.7.3 Step 3 - Make an Internal Call Trace for Each Scenario 5-37
5.7.4 Step 4 - Take the Union of All Traces .. 5-43
5.7.5 Miscellaneous.. 5-46

5.8 Scenario Trace Design.. 5-48
5.8.1 Adding and Designing Non-User Scenarios 5-48
5.8.2 Labelling Semantic Order ... 5-50
5.8.3 Alternative Control Architectures... 5-51
5.8.4 Centralized Scenario Design... 5-52
5.8.5 Roundabout Route Scenario Design ... 5-55
5.8.6 Principle Object-based Scenario Design... 5-56
5.8.7 I/O Library Call Placement ... 5-57

5.9 Classes, Instances, and FSMs .. 5-58
5.9.1 Finite State Machines.. 5-58
5.9.2 Class Supervisor and Instances ... 5-64

5.10 Summary ... 5-66
5.11 Appendix A - Database Organization ... 5-68

5.11.1 Why Organize Data Properly? .. 5-68
5.11.2 B+ Trees .. 5-70

5.12 Appendix B - Normalization.. 5-73
5.12.1 First Normal Form .. 5-76
5.12.2 Second Normal Form .. 5-79
5.12.3 Third Normal Form... 5-83
5.12.4 Normalization Summary ... 5-85

5.13 Appendix C - Formalization .. 5-86
5.13.1 Foreign Keys ... 5-87
5.13.2 Associations .. 5-90

5.14 References ... 5-93

Copyright 1997 by R. Tront 5-3

5.1 Background to Object Orientation

5.1.1 Software Engineering Phases

Most projects have several phases. Software projects normally
have:
• An analysis phase to gather and record the requirements,
• A design phase to plan the architecture and implementation

strategies to be used, and
• An implementation phase where code is written.
• A quality assurance aspect. Final quality of the product is

assured by actions taken throughout the project. e.g.
- requirements, design, and code reviews,
- unit and system testing, and
- appropriate configuration management.

Approximately 15% of projects fail or are cancelled, usually
because of failure to do one or more of these important aspects
of the project properly.

Copyright 1997 by R. Tront 5-4

5.1.2 What Is Object-Orientation?

Often there are specialists who work on each aspect of a large
project. Object orientation means something different to each of
them:
• To business system analysts it means determining and focusing

on the business entities (e.g. sales item, customer, invoice, etc.)
about which information must be processed or recorded. This
pre-dates object-oriented languages.

• To a software designer, it is the architectural view that a
system satisfies each external command or event by the set of
actions resulting from the trace of calls/messages sent among
various reactive software components to implement that
request.

• To a programmer, it usually means programming language
syntax that allows the programmer to easily:

- view data as having reactive abilities, and
- re-use code via inheritance hierarchies, and
- have both type flexibility and ease of maintenance via

polymorphism.

In this section of the course, I want to de-emphasize the
language view so that we can concentrate on object-orientation
in general. Though the re-use, flexibility, and maintenance
which results from inheritance and polymorphic language
features are very important, it is a higher priority that you be
able to analyze, and think/architect/design software in a object-
oriented way.

If we can merge in a uniform and human-friendly way the
concepts of application domain entity modeling, a design
architecture where reactive software objects are driven by
command messages, and programming languages that naturally
embrace abstraction, objects, and both class and composition
hierarchies, we may really have something. This is what object
orientation is all about! This will require new diagram styles,
new design techniques, and new language features.

Copyright 1997 by R. Tront 5-5

5.1.3 Psychological Motivation

One of the more important aspects of development is that the
transition from one phase to another be as easy as possible. Any
‘impedance mismatch’ resulting from differing paradigms in
adjacent phases can be a source of human error and delay. Some
poorly managed projects aren’t even allowed a design phase,
which causes a really serious impedance problem (“start coding,
we’ll figure out the architecture along the way”).

By using paradigms that are natural to humans, and by using
them through every phase of a project, a smooth and less error
prone flow will happen in that very human of creations: the
project. Object orientation is such a paradigm.

It is also a known psychological principle that humans:
• grasp details, even within a single phase, faster if those details

are presented in a familiar paradigm.
• make less mistakes constructing or reviewing systems when

working in a familiar paradigm. (Remember you must review
other sub-systems in order to understand both how they can
cooperate with the sub-system you are responsible for, and to
review them in a quality assurance function).

• have less difficulty when reviewing or designing your sub-
system’s diagrams or code, when that work requires little
reference to another sub-system’s complicated internal details.
i.e. when those other sub-system’s can be regarded as
simplified abstractions.

Humans naturally understand the object-oriented paradigm, even
though they may not have previously been aware of this. For
instance a car is an object. It has:
• a stored identity (licence or serial number), and
• stored data about itself (odometer reading).
• the abilities to respond to requests (you can ask it to start, ask it

to turn on it’s left turn signal, etc.).

Copyright 1997 by R. Tront 5-6

We will later see that these are usually requirements of an object.

In addition, humans naturally simplify and bring organization to
their life by categorizing objects. The two most common ways
of categorizing objects are:
• membership in a class of similar instances (e.g. all Honda

Preludes, all black bears, all personnel records).
• composition or ownership. A truck is composed of it’s parts.

These categorizations are simplifying abstractions so that we
don’t have to mention or be distracted by the details of the whole
group. We don’t have to enumerate the identity of every Honda
Prelude in the world; we just say “Honda Preludes”. We don’t
have to list a truck’s parts when we refer to it, we just say “the
truck”. Abstraction is our only way to simplify a complex
system and world, and these are two powerful categorizations
that aid us to form abstractions.

In fact, we go even further and form abstraction hierarchies. e.g.
Honda Preludes are a sub-class of the larger abstraction we call
passenger vehicles. And a fleet can be made up of a number of
trucks, which in turn are composed of parts.

Don’t get the two hierarchies above mixed up! They are
orthogonal. One is a categorization by type classification. The
other is a categorization by composition (by construction or
aggregation). Both of these kinds of hierarchies can be smoothly
modeled and implemented with object-oriented designs and
implementations.

Copyright 1997 by R. Tront 5-7

5.2 Object-Oriented Analysis

5.2.1 Purpose of Analysis

The purpose of analysis is to gather and specify the requirements
for a new or revised application in a domain in which many of
the design and programming staff are not familiar. It is very
common for the staff not to know anything about an application
domain, its vocabulary, its acronyms, its essential operations.

e.g. Transport Canada keeps track of all pilot licences. Did you
know that an there are two classes of instrument rating (for
flying through cloud)? Each is valid for a different period of
time, and renewal requires the entry of a flight test into the
computer. Did you know that there is a night rating that can be
added you a pilot licence, and that there is only one kind of night
rating, and it is valid forever? Do you know whether the
instrument rating classes are 1 and 2, or A and B, or Private and
Commercial?

How can you design an write a program to automate this
domain, when you know nothing about it? Even when you get
to know something about it, there is usually something essential
that someone forgot to tell you or you forgot to ask about. This
discovery leads to late design changes or an unsatisfactory
application program.

Copyright 1997 by R. Tront 5-8

5.2.2 The Act of Analysis

The essence of object-oriented analysis pre-dates object-oriented
languages. For decades, designers of large information systems
using data bases have used a form of object-oriented analysis.

The 3 main elements of analysis are:
1) Gather information about the application domain and

automation requirements.
- One of the focuses is to determine the information entities (i.e.

objects) that must be stored in order for the application to
function.

- Another aspect is to determine the commands the system will
have to respond to.

- And another is to find out size and speed of the existing
computer, and the required speed of the application.

Information about all aspects of the proposed system is
gathered through:
- existing operations, software, or other written material.
- interviews
- existing forms
- visits to sites that will be automated
- measurements (e.g. number of inventory items, rate of

transactions).

2) Digest and organize the information until you understand it,
can draw and tabulate it. This requires both developing
object-relationship diagrams (ORDs), and tabulating all
external requests that can be made of the system (e.g.
commands). The diagrams may have hierarchies of class or
composition. Even the lists of commands may have
subcommands or indicate sub-handling of various errors for
each command.

3) Write a Requirements Specification document to record and
distribute the results of your analysis.

Copyright 1997 by R. Tront 5-9

5.3 Object Modelling

5.3.1 Introduction to Modelling in General

A model is a representation of a actual thing. To a child, a
model is something created which is a ‘smaller’ but adequate
likeness of the real thing. To a car dealer, a model is a bunch of
cars which are near identical (cf. object ‘class’). In systems
analysis, a model captures the essential nature of something by
indicating the essential details that need to be stored about things
of that ‘class’, or by illustrating the flow of stuff required
through a system, or by specifying the sequential ordering (e.g.
making paper in a pulp mill, getting a university degree) within a
process, etc.

Definition: A model is an alternate representation with an
‘adequate likeness’ of the real thing.

Some of the alternate representations we in systems design may
use for the actual things are:
• a diagram or picture
• a form or computer record
• a process description, data flow diagram, or finite state

machine

The purpose of creating a model is to represent only the essential
characteristics of the thing so that:
• we may understand and clearly document the nature of the

thing,
• we may store the essence of the thing for later retrieval,
• we may communicate the nature of the thing to someone else,

Copyright 1997 by R. Tront 5-10

• they can think and/or reason about the correctness of the model
without:

- being distracted by the complexities of the complete real thing
(i.e. abstraction).

- having to travel to where the real thing is located.
- having to see the function of a real thing while it is operating

very fast.

• we needn’t waste space storing useless information about the
thing,

• we may write a program to implement a system which allows
humans to better administrate the processes in which the
‘thing’ participates.

Generally, three ‘aspects’ of an object-oriented system need to
be specified with models:
1) The data retained by the system for use in constructing later

outputs. This data and its relationships is documented with
an Object Relationship Diagram (ORD).

2) The sequence of messages (e.g. procedure calls) that
propagate through a system in response to each particular
command. These can be documented using some form of
Object Communication Diagram (OCD).

3) The behavior of generic object instances, and of the class
supervisor (shepherd), can be separately documented using
two Finite State Machines (FSM).

These 3 models are essential in the same way that an architect
must specify, via a 3-view drawing, the construction of an
unusually shaped building in order to transmit its exact shape to
the builder’s mind.

Copyright 1997 by R. Tront 5-11

5.3.2 Instances and Classes

One of the confusing things about OO is differentiating between
the term object ‘instance’ and object ‘class’.

Let me use an analogy. Let us consider a sales invoice class.
Each individual invoice record is an ‘instance’ of the invoice
‘class’ (or type) of record. The term ‘class’ means a general
classification or ‘type’ designation of categorization.

In a way, a class declaration is a skeleton for an instance. In
essence, it is like defining an object ‘type’. When you create
many variables of a particular type, you are creating instances of
the type. So class is like object type, and instance is like a
particular variable of that type classification.

When authors do not need to differentiate between the concept
of an invoice instance and invoice class, they will often use the
term invoice ‘object’. So the term ‘object’ may mean either
instance or class. I will try to differentiate as much as I can
between object ‘instance’ and object ‘class’ so you know which I
am referring to.

The concept of instances and class types is much wider than just
computer record types and record variables. In fact, during that
analysis phase we try to find actual objects in the application
domain that will likely become classes and instance records in
our application code. A good example is a ferry class and
individual ferry instances, a ferry sailing class and individual
sailing instances, a ferry reservation class and individual
reservations. These are real tangible things.

But not all object in our programs will represent physical things.
e.g. a time instance, or a queue instance. These latter examples
are either not physical, or are implementation objects added later
during the design phase to facilitate the operation of the
program.

Copyright 1997 by R. Tront 5-12

5.3.3 Entities vs. Objects

The data that a system needs to store is mainly computer records
of the instances of various classes in the application domain (e.g.
orders, customers). Traditionally in information systems
analysis, these things were called entities. Each entity class has
a record/structure type with a different layout of attribute fields.
Order instances have order ID number, part ID designator, and
quantity of order fields. Customer records have name, address,
and phone number record fields.

More recently, is has instead become popular to call domain
entities objects. The term ‘objects’ has an additional implied
meaning that the model of the object we are documenting
contains data plus reactive abilities (i.e. plus ‘operations’,
‘behavior’, ‘ability to control things’, ‘intelligence’, or
‘liveliness’(e.g. can be sent messages or ‘activated’)).

In fact, this idea is carried even further by OO languages.
Rather than procedures having data parameters, instead
object data is regarded as having operations/procedures that
can be triggered by a message. In fact, individual instance
records (not just ADT modules) are regarded as having
procedures.

e.g. Instead of (in C):
struct CustomerType custRecord;
printRec(custRecord, theFastPrinter);

You do this (in C++):
CustomerType custInstance;
custInstance.print(theFastPrinter);

Notice this is not like C, nor like Modula-2 where you would
have done ModuleName.print(). The symbolic name to the left
of the dot is a variable name (i.e. instance), not a module or
class/type name. The procedure now appears to be a field of the
instance, as if the instance ‘has/owns’ its procedures!

Copyright 1997 by R. Tront 5-13

5.3.4 Advantages of Encapsulation

The data and behavioral abilities of an object class are said
to be encapsulated together (like in an Abstract Data Type. The
encapsulation contains both the data representation (including
state) for a particular object class, as well as the operations
which describe what can be done to an object of that class (i.e.
what messages can be sent it, what functions can be invoked on
it). The internal state data of an instance can be used to control
how it reacts/behaves when operations (e.g. ‘withdraw) under
various (i.e. all) conditions/modes (e.g. ‘frozen’ bank account)
are invoked on/done to it.

One of the reasons objects (and abstract data types) have become
popular is that the encapsulating together of all the stuff about
something in one abstraction is natural for human beings. It is
our human nature to put together things which belong together.
And we make less mistakes when we are manipulating and
designing with natural feeling things.

Another reason that objects encapsulating data and operations
are important is that they are the correct way to group
program details about things so as to make maintenance easier!
Remember from your software engineering studies that >50% of
all programmer effort is spent modifying old code, rather than
writing virgin code. If instead you put all the data together,
separate from all the procedures (i.e. separate from the
behavioral aspects), then making fixes, enhancements, and
porting can be more difficult.

Generally during maintenance, we prefer to avoid tearing stuff
apart and re-arranging it. If the entire nature of each application
‘entity’ is encapsulated, then we are less likely to have to rip
them apart during maintenance (since they inherently ‘belong’
together). Oh, we may need to add extra data attributes to an
object, or change and add operations, or even add or delete
whole classes of objects to/from our design. But if we have done
our design right during initial analysis and design, then we are

Copyright 1997 by R. Tront 5-14

very unlikely during future maintenance to have to tear objects
apart, nor are we likely to have to merge partial aspects of two
objects. As an example, think of an airline reservation system.
No matter what kind of maintenance needs to be done on the
application code, there will always need to be aircraft objects (to
characterize the nature of the aircraft), flight objects (to store
time and load on particular trips), and passenger objects which
can be added to one or more (in the case of a return trip) flights.

Finally, encapsulating as much as possible about an domain
entity in one class, and therefore in one source module, will also
confine changes to editing only one module (and maybe a very
few that import types from it). This also eases maintenance.

Copyright 1997 by R. Tront 5-15

5.3.5 Object Data Analysis

Most recent analysis and design methodologies suggest that you
start analysis by first determining the stored object data and
relationships needed by the application, and leaving functional
abilities to later. This is done because:
• In information systems, this data and its logical organization is

central to the design of the system.
• Even real-time, non-information system applications which are

structured around objects tend to be more stable and easy to
evolve/maintain.

Please note that the objects to which I refer need not be just file
records. Any data record (e.g. a C struct in RAM) can be
thought of as a retained object. It is retained until some time
later in the program when it is needed! Sometimes these objects
are quite significant and have just as many attributes and
relationships as those in an information system database. And,
as you will see shortly, they often become key reactive
components in an object-oriented application!

In object data modeling, we try to determine an organized way
of diagramming and storing information about the various
relevant objects involved in the application domain. To a new
analyst, sometimes it is not immediately apparent what kinds of
data might need to be modeled.

Copyright 1997 by R. Tront 5-16

Examples of the object classes needing to be modeled within an
application might be:
• a physical object (e.g. person, aircraft, robot, printer).
• an incident or transaction that needs to be recorded either for

immediate use, for transmission to someone else, or for a
historical log (e.g. order, purchase, sale, boarding an airplane,
graduation, marriage, phone call). Note that a purchase is from
the purchaser’s application’s point of view, while a sale is from
the seller’s (usually you needn’t model both).

• a role (e.g. student, client, customer, manager, spouse).
• an intangible concept (e.g. bank account, time delay, date,

sound recording).
• a place (e.g. parking space, warehouse #3, the 13th floor heat

control).
• a relationship (e.g. customer’s sales representative, a flight’s

captain).
• a structure - e.g. the list of an airplane’s component part

numbers (body, wings, engines, tail), possibly even a
hierarchy. Or a container/list of things.

• an organization or organizational unit (e.g. university,
department, corporation, submarine crew, sports team).

• a displayable field (e.g. string, icon, image) or printed report,
or an I/O signal.

• Specifications or procedures- e.g. organic compound or recipe.

Copyright 1997 by R. Tront 5-17

5.3.6 Object Attributes and Attribute Values

We use the terms ‘object class’ to mean group of instances of
things which have the same set of attribute names (e.g. car’s
each have a licence number, color, and weight), but which have
different values for each of those characteristics (this is what
makes the instances of the same class different from each other).

It is common for a class of entity instances to be modelled as a
table of fixed length records:

STUDENT TABLE

This concept is in keeping with the view that a student file is a
list of fixed length records.

Each column represents an attribute of the type ‘student’ (i.e. a
field of a student record). The legal set of values that an
attribute may take on is called the domain of the attribute.
Examples are date = (1..31), and day= (Sunday..Saturday).

Each row represents a particular instance of a student. Often the
rows are sorted in order by a particular column or columns. That
column(s) is called the primary key.

You should now review the first part of Appendix A of this
section of the course lecture notes, and if taking Cmpt 275 also
the second part of Appendix A.

student-id student-name student-address student-phone high-school

93010-1234 Smith, Bill 123 Second St. 420-1234 Mt. Douglas

92010-4321 Jones, Jane 234 Third St. 123-4567 Burnaby

91111-1056 Able, Jim 345 Fourth Rd. 822-9876 John Oliver

Copyright 1997 by R. Tront 5-18

5.4 Object Relationship Diagrams

5.4.1 Object Icons

Let’s examine an example of an Object Relationship Diagram
(ORD) carefully. The one below shows two objects.

In is not clear whether they are object instances (since there titles
are singular) or entity classes (since only their attribute names
and not attribute values are shown). Normally in ORDs it is not
really important that you differentiate between whether the
boxes are classes or instances. You will probably find it best to
think of them as generic instances (not having had attribute
values assigned yet). i.e. they are an object storage/record layout
plan.

Note that instead of having the attributes listed horizontally, as
in the column titles of a table, we have the attributes listed
vertically. This is widely done, though there is no reason for this
except it makes the entity icons have a smaller maximum
dimension. Also, note that the attribute(s) on which the records
are sorted are called the primary key of the entity, and are
labelled with a ‘*’.

STUDENT HIGH-SCHOOL

* student-id

- student-name

- student-address

- student-phone

- high-school

* high-school

- school-address

- school-phone

Graduated
 From

Graduated

Copyright 1997 by R. Tront 5-19

5.4.2 Relationships

Object-Relationship Diagrams (ORDs) contain both entity
classes and the relationships between them. An example of a
relationship is that between a student and a high school.

Fundamentally, relationships are illustrations of links between
entities. These links are simply (but importantly) the referential
routes that could be traversed by the application code to find
other related data. Note that the high school attribute in the
student class is a foreign key which provides the information
needed to traverse R1. A foreign key is a value- or pointer-
based reference to particular related instance (e.g. particular high
school). Value-based foreign keys refer to the primary key of
the other related (i.e. foreign) object.

ORDs provide a map showing all possible ‘routes’ over which
the application can navigate around the data. For instance, given
a student object, how does the application code find out what
high school she went to? Answer: Look in the High School
attribute of that student. Alternately, how does the application
code find which students went to a particular high school?
Answer: Search the student objects and select all students that
went to that particular high school.

You can sometimes during analysis be alerted to a relationship
when seeing possessive grammar used. e.g. the student’s high

STUDENT HIGH-SCHOOL

* student-id

- student-name

- student-address

- student-phone

- high-school(R1)

* high-school

- school-address

- school-phone

Graduated
 From

Graduated

R1

Copyright 1997 by R. Tront 5-20

school, and the high school’s students. Careful though as
possessiveness is sometimes just an indicator of an attribute (e.g.
Student’s name).

The details of a relationship provide information necessary for
the design phase. The details include:
• multiplicity,
• optionality,
• relationship sparseness, and
• traversal frequencies.

We will only be concerned with multiplicity and optionality
(which together we call cardinality); the others are topics for
an advanced course.

A student has graduated from only one high school. But a high
school has likely graduated many students. The last sentence is
indicative of a 1-to-many (1:M) multiplicity. You will see
shortly, that both the multiplicity and optionality of the high
school-to-student relationship is important to database design.

The two objects in the ORD are joined by a line indicating the
‘graduated-from/graduated’ relationship. Relationships are
always two-way:
1) The student Graduated From the high school
2) The high school Graduated the student

The relationship phrases are by convention usually put near the
end of the relationship line for the direction that version of the
relationship name applies.

The ends of the relationship lines have cardinality symbols on
them. The symbols closest to the center of the line indicate the
optionality as either a 0 or 1. If 0, that means that some students
in our database may never have graduated from a high school,
and thus don’t have any relationship with a high school. (They
may be either mature students let in by special permission, or

Copyright 1997 by R. Tront 5-21

may have finished their high school qualification by attending a
college high-school-equivalency program). In that case, the
high-school attribute of such a student would be blank or null.

On the other hand, maybe we should insist that all university
students first have high school equivalency, and just allow
colleges to be listed in the high school file. These policies are
called ‘BUSINESS RULES’. As such, the cardinality is
determined not from some magic database theory, but from
actually asking an application area specialist what the case is:
optional (0) or mandatory (1)?

Note that you also have to determine the optionality for the other
direction: Is it possible to have a high school in the high school
file which has never sent a student to SFU?

You also, through research or interviews have to determine the
possible multiplicity for each direction. The multiplicity
symbols are located nearest the end of the relationship line. The
multiplicity symbol may be either 1 or . The latter symbol is
called a “crow’s foot” as it looks like a bird’s foot. It indicates
that a high school could have (be related to) more that one
student instance. An important database design factor is
whether, for a particular (high school) instance at one end of a
relationship, there exists multiple related (student) instances of
the other object class. This must be determined by the analyst
and documented on the ORD.

There are thus 4 combination of optionality and multiplicity for
one given end of a relationship line (and 4 for the other end too).
They will be shown below.

zero or one one and only one zero or more one or more

Copyright 1997 by R. Tront 5-22

Important note: Just because a relationship is optional or
multiple in one direction doesn’t mean it is in the other. The
two directions are entirely separate, and must be carefully
researched in both directions (what questions would you ask of
users?). The fact that an object icon exists on an ORD means
that an instance of it can exist. The question is, given its
existence, how many instances of another related class of entity
can there be that are related to the first?

An important aspect of relationships is that they must be
recorded (stored, remembered) somehow. Adding a foreign key
is one way.

You should now review Appendix B and C of this section of the
course lecture notes on Normalization and Formalization. Your
initial identification of the application objects in your system
may not have resulted in the best placement of the attributes into
objects. This will become immediately apparent as you review
Appendices B and C which show the attributes being
reorganized into different groupings, and even whole new
objects being added to help remember relationships.

Copyright 1997 by R. Tront 5-23

5.5 System Behavior
Recent methodologies suggests that you start analysis by
determining an application’s data model first. Even for non-
database projects, this identifies early the application domain
objects which will most likely form the core software elements
(i.e. reactive components) of the eventual implementation. In
particular, the names of the important objects, their attributes,
and their relationships are researched. Once this is done, we are
in a better position to plan the implementation of the behavior of
the system.

Previously, programs were regarded as a main module and
subprograms which implemented an application’s functionality.
The newer, more object-oriented view is that a system’s
behavior is simply made up of the sum of the behaviors of the
object classes and instances in the system. The objects
collaborate together during execution to get each user command
done, or handle each significant external event (e.g. network
packet arrival).

You can see why we had to identify the core object classes first,
as it is they what we now propose to embody with a behavioral
nature. But before we start writing code for the system’s
objects, we have to decide what behavior each will contribute to
the whole. The next question then, is what behavior does each
object class and instance need to export to the system, in order
that it satisfy it’s behavioral responsibilities to the application?
In the next few sub-sections of the lectures, I plan to introduce a
very beautiful mechanism to synthesize the required behavior for
each object class and instance from the required behavior of the
system.

Copyright 1997 by R. Tront 5-24

5.5.1 Event-based Partitioning

Modern applications are event-driven in nature. Think of your
personal computer; it idles for billions of instructions waiting for
an event like a mouse click, a clock tick, or network packet.

With this view, we will design the system by looking at how
each external command or scenario-starting event is handled by
the system. By looking at each external command/event one at a
time, we can reduce the scope of what we have to think about at
any point in the design process to handleable proportions. When
writing a requirements specification for a system, it is not
uncommon to first list or diagram all the sources of external
commands/events that the application must interact with (e.g.
keyboard, mouse, clock, network, printer, etc.). Then in more
detail, you should name/list each kind of event/command that the
application program is to handle from each source.

Copyright 1997 by R. Tront 5-25

5.5.2 External Design (User Manual)

Before beginning architectural design, it should not be
uncommon to write a draft user manual to firm up the externally-
observable behavior expected of the system for each user
command. This sounds weird to some people who feel the
manual is written after the coding is done. But you should
realize that:
• you can’t write the code until everyone on the team knows

what the program is supposed to ‘look like and behave like’!
• Often this look and behavior must be approved by someone

else, so rather than spending months first writing a program
that is not what the customer wants, you instead spend a week
writing a draft version of the user manual for customer pre-
approval.

• Many companies do not define a data model or write a draft
manual first. But work will seem better organized and often
proceed smoother if defining the data model and the proposed
behavioral nature of a new application is an early step in the
development process.

Copyright 1997 by R. Tront 5-26

5.5.3 Use Case Scenarios

An individual command may have several steps that should be
documented in the draft manual. An example sequence might
be clicking a menu command, entering several pieces of data in a
dialog box, then clicking OK, the application checking and
saving the entered data (often different pieces in different
objects), then finally telling the user that the command is done
and waiting for the user to click OK again. This is called a use
case scenario.

Later during architectural design, we must plan what part of
each step of a use case scenario will be handled by each
different object.

We could thus define:
• ‘scenario appearance design’ to be deciding how the progress

of a use case would appear to a user (i.e. write the user
manual), and

• ‘scenario call trace design’ (or ‘scenario implementation
design’) to be deciding the internal software interactions
needed to implement a use case.

Copyright 1997 by R. Tront 5-27

5.6 Object-Oriented Architectural Design
Though there are many aspects to architectural design, we will
concentrate here on the design of internal call traces for the
scenarios. [Rumbaugh96] states “designing the message flows is
the main activity of the design phase of development”.

5.6.1 Object Communication Diagrams (OCD)

It has been common for many years to sketch a diagram
indicating which procedures, or more recently which modules,
call/communicate/interact with which others. This provides an
interaction context which provides further understanding and
documentation of the purpose, responsibilities, and dependencies
of a module (often one module depends on services provided by
another via exported procedures from the other).

Very recently, we have started to diagram object (rather than
module) interactions, and thus have named such diagrams Object
Communication Diagrams (OCDs) or Object Interaction
Diagrams.

Typically, each object class in your ORD which is reactive
should be put in your OCD (note: some objects which are simply
data records are not reactive and needn’t show in the OCD).
You may consider modules which are not C++ objects (e.g. the
main program or other utility modules) to also be key reactive
components if they export procedures. The primary
consideration here is that we identify islands of reactive ability/
behavior/intelligence/data/control. These islands, working
together, implement the behavior of system.

Note that such a diagram is not to show ‘relationships’, but
instead interactions. Two objects which have no relationship
could potentially send messages (i.e. call) each other. So an
OCD is a somewhat orthogonal view of the objects in a system,
and provides a kind of 2nd dimension to their definition.

Copyright 1997 by R. Tront 5-28

The main concept here is to regard and diagram the system as a
collection of interacting reactive objects. The arrows show

MAIN

Mid-Level Module
#1 #2

ADT A Object C

Mid-Level Module

Object B

User Interface Module

Copyright 1997 by R. Tront 5-29

messages (e.g. procedure calls, sometimes called internal events)
moving from one object to another. Receiving objects must be
programmed to react appropriately to each message which they
receive.

Copyright 1997 by R. Tront 5-30

5.6.2 The Reactive Software Components

There are 5 kinds of reactive software components:
1) Function modules like the main and user interface (UI)

library modules (which have static and/or dynamic data).
2) Application domain object instances like particular

customers and invoices.
3) Application domain object class supervisors (i.e. shepherds),

to be discussed later.
4) Implementation domain object instances like queue and

timer instances
5) Implementation domain object class supervisors.

Notice that the first step in identifying the required reactive
components needed to build an application was object data
analysis. For a small application, if we simply add a main
module and a user interface module to the application domain
objects, we have an initial set of components which could make
up the program.

At program start, the main module is coded to first send start-up
messages (i.e. procedure calls) to the important modules telling
them to initialize themselves and their subordinates. The main
then creates any necessary transient objects, and finally sends a
kick-start message to the UI module indicating that it is now OK
to start accepting user commands.

So, to begin an Object Communication Diagram (OCD):

• First, put a module on the diagram to represent the main
program module.

• Then add a icon for each of the objects from your ORD. Do
not draw any of the relationship lines.

Copyright 1997 by R. Tront 5-31

• Next, add a module for each major external interface the
system will have. External interfaces are sources of events
that drive the system, and exits for output data and control
signals. e.g.

- Most systems typically will need a User Interface (UI) module.
- Some also include a Network Interface module which would

handle incoming and outgoing network packets.
- For systems which control external mechanisms (like robots in a

manufacturing process or a printer), a Process Control module is
necessary.

• Finally, you may want to add scenario control/orchestration
functions in some module/object of the system.

In the recent non-OO past, it has been suggested for small
applications that the main go at the top, the key application
abstractions representing objects from your Object Relationship
Diagram (ORD) go at the bottom, and some mid-level control
modules go in the middle.

• The main module generally is only concerned with initializing
things, and shutting them down.

• The low level objects/modules often just provided storage
services for different data types.

• The mid-level modules are control/orchestration modules:
they control and sequence operations such as getting data one
record at a time from a storage object to print a report (storage
objects shouldn’t print!). The mid-level modules know which
storage object procedures are to be called in which order
(possibly in a loop) to accomplish each particular user
command (i.e. each use case scenario). The mid-level
modules also handle exceptions, such as a storage object
rejecting an attempt to read a non-existent record or running
out of space to write into.

Copyright 1997 by R. Tront 5-32

If each call arrow in the diagram can be labelled with the
message/procedure name it represents, this results in a diagram
that shows every name of call that every module/object has
to handle! Therefore, a complete and properly-labelled OCD
has the information on it to determine every procedure name that
needs to be exported by, and then coded in, every module/object.

Copyright 1997 by R. Tront 5-33

5.6.3 Scenario Call Trace Design

In order to determine each reactive component’s responsibilities
and the operations it must export, we will examine how each
module participates in each use case scenario. In order to reduce
the complexity of this design step, we do this one scenario at a
time.

In the movie industry, planning for a film segment to be shot is
often done on a ‘story board’. The sketches on this board are
like a comic book. They provide anticipated camera shots
(angles, scenery, costumes) at various moments through the
progression of the scene. In essence, the user manual provides
sketches of what the application will look like and do, at various
points through each scenario. It is a story board. Internal
scenario call trace design will also be done using a kind of story
board. It is a visual plan and textural explanation of which
procedure calls will be made (and why) between which objects
at each point during the execution of the scenario.

Note: We could also call this ‘scenario message trace design’,
because in the Smalltalk OO language, function calls are termed
‘sending a message’ to another object. Yet other names could be
‘scenario implementation design’, ‘scenario event trace design’,
or ‘scenario internal interaction design’.

External events will be the primary driver in our design process.
More specifically, a scenario-starting external event is a special
kind of external event which initiates a sequence of interactions
between the user and the application which carries out a use
case scenario as described by the use manual. In menu-driven
applications, menu selection events start most use case scenarios.
The activation of a menu command results in the application
receiving a message from MS-Windows. The user interface
component of the application which handles these messages

Copyright 1997 by R. Tront 5-34

subsequently makes procedure calls to other application objects
appropriate for the command, and these objects may in turn call
other objects or modules.

If the menu command starts a long dialog with the user to enter a
number of pieces of data (e.g. customer name, address, phone
number) one after the other, the calls may solicit other external
events associated with that scenario. These latter events are
termed ‘solicited’ as the application subsequently solicits
specific further input from the user as is needed to complete the
command. The application responds to each solicited event in
the appropriate way for that step of the scenario (e.g. read the
data, do something with it, prompt for the next entry).

Note: Some methodologies [Shlaer92] consider the calls from
one object/module to another to be ‘internal’ events. Each
object is then regarded as a finite state machine reacting
appropriately to internal events which hit it.

Copyright 1997 by R. Tront 5-35

5.7 Synthesizing Object Requirements
This subsection looks at a beautiful, step-by-step process by
which the requirements for individual reactive components can
be obtained from the overall system requirements (as embodied
in the use cases).

5.7.1 Step 1 - Generate A Scenario-Starting Event List

From the user manual, generate a list of all scenario-starting
external events that are required to be handled by the
application. There could be dozens or hundreds in a big system.

5.7.2 Step 2 - Blank Master OCD

An Object Communication Diagram is a diagram which shows
the objects from the ORD in a diagram without the relationships,
and shows additional reactive components such as main, UI,
network interface, and control modules. Generally, the objects
are not placed in the same position on the diagram page as they
were in the ORD (where they were arranged to make the
relationships most tidy). Instead, place the objects in a
hierarchical manner radiating away from the principle external
event sources (typically the user interface).

(Note: The newer UML notation does not have a master OCD
that shows all calls from all use case scenarios. Nonetheless, for
an individual scenario, UML does have a so called (object) ‘
Collaboration Diagram’ which is very similar. Collaboration
diagrams are just one of two different types of ‘Interaction
Diagrams’ offered by UML. Both types are equivalent, but so
called ‘Sequence Diagrams’ are portrayed differently. See the
“Quick Reference for Rational Rose 4.0 Unified Modelling
Language” authored by Rational Corporation in the course pak.

Copyright 1997 by R. Tront 5-36

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

Copyright 1997 by R. Tront 5-37

5.7.3 Step 3 - Make an Internal Call Trace for Each
Scenario

Make many copies of the blank OCD diagram, one for each
scenario-starting external event. For each scenario-starting
event, design a trace for the anticipated calls needed to
implement the proper response to that external event. (Some of
the design issues which impact the choice between different
trace options are discussed later). Document the trace on a
single, blank OCD page. (By confining ourselves to designing
one scenario’s implementation at a time, we need not be
distracted by arrows involved in other scenarios).

• The first scenario you should consider is the ‘program start’
event. This scenario should be designed to have the main
module send a tree of internal initialization events (i.e. calls)
to the key objects telling them to initialize (open their files, set
stack to empty, etc.). The principle of low coupling dictates
that the main module should not know the name of all the
objects/modules in the system, but only those directly below
it. Those mid-level objects in turn send initialization
messages to their subordinate objects. Any of these calls
might also create a number of default RAM objects necessary
for the initial functioning of the program. Once the system is
initialized, the main tells the external event source components
(e.g. the user and/or network interfaces) that they can start
accepting external events.

Copyright 1997 by R. Tront 5-38

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

4:start_accepting()

1: init_A()

2: init_B() 3: init_C()

Start-up Implementation Call Trace

Copyright 1997 by R. Tront 5-39

Label each message/call with a number indicating it’s
sequence in the execution of that scenario, and with the name
of the procedure being called.

• On another diagram, for the first external scenario-starting
event on your list, draw the trace of calls/messages that will be
sent from the external interface object receiving the starting
event to the principle reactive objects required to implement
the response to that event. This will, in turn, sometimes cause
an intermediate control/orchestrator object to send one or
more internal messages on to one or more other objects. Give
each internal message a sequence number and a name which
indicates what procedure is being called (or what the purpose
of the message is).
Each time you do this, you must think of all the internal object
interactions that could take place in handling a particular
external event. For instance, to register a student in a course
offering, you must first check whether the course offering
exists before adding a record to the association object called
student-registration.
For each diagram, it is usually necessary to document in either
a paragraph, list of steps, or pseudo-code, a textural
description of how the scenario is planned to be implemented.
e.g. “check course exists and has space, then add student to
course offering, and update available remaining course space”.
This provides reviewers and subsequent implementation
programmers with a more understandable idea of how the
scenario is to unfold.

Copyright 1997 by R. Tront 5-40

• On a yet another diagram (see next page), do the same for the
second user scenario-starting event on your list.

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

User Command #1 Implementation Call Trace

2:UC1()

3:add()

4:enqueue()

1:full?()

Copyright 1997 by R. Tront 5-41

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

User Command #2 Implementation Call Trace

2:UC2()

3:enqueue()

1:full?()

Copyright 1997 by R. Tront 5-42

• On a last diagram, show which module(s) can initiate program
shutdown, and the trace/tree of calls to the reactive
components which need to be informed of the upcoming
shutdown. Such components, upon being notified, shut files,
flush buffers, empty tanks, reset the video display mode (e.g.
from MS-Windows graphic mode back to DOS text mode,
etc.), and delete themselves as appropriate, before the main
program ends. (I have not drawn this trace to keep the
resulting OCM simple).

Copyright 1997 by R. Tront 5-43

5.7.4 Step 4 - Take the Union of All Traces

The result is the complete Object Communication Diagram:

start_accepting

init_A()

init_B() init_C()

Main Event Generator
(e.g. User Interface)

Senior Object A

Object B Object C

UC1()

add()

enqueue()

UC2()

enqueue()

full?()

Copyright 1997 by R. Tront 5-44

Notice in particular how two different scenarios both had calls to
the full() procedure of class Object_C. The (first) union
operation has merged these two into one arrow in the overall
OCD. All sequence numbers should be removed from the
labelled arrows since with so many different scenarios shown,
they no longer have relative meaning.

The result is a fantastic diagram!

• The (first) union synthesizes an OCD from which the
requirements spec for an object class can be determined.
Obviously, the class must export a function for each different
type of arrow entering it. e.g.

- The UI must export start_accepting().
- Object A must export init(), UC1(), and UC2().
- Object B must export init_B() and add().
- Object C must provide/export empty(), enqueue(), init_C(), and

enqueue().

• Notice that the above list seems to imply Object_C should
export enqueue() twice. By taking a second union, you can
merge the two different enqueue() calls to Object_C (which are
not merged by the first union because they are from different
callers), into one item in the list of procedures that Object_C
must export. Basically you must regard the list of exported
procedures as a true ‘set’ where duplicates are not allowed.

• In addition, you get a requirements spec for each object’s
responsibilities to call/notify other modules/objects. An
object will do some internal processing when called, and then
likely some interaction with other objects. The diagram shows
all the other objects that a particular object is planned to get
info or processing from, or must notify in order to fulfill its
responsibilities. e.g. Senior Object_A has the responsibility to
notify those below it that they should initialize themselves.

To make the double union more clear:

Copyright 1997 by R. Tront 5-45

1) The first union constructs the full OCD overlaying all the
individual scenario message traces together. Since it is
common that the same object could call a certain function in
another object in two different scenarios, this first union
removes this duplication. This is also why the trace arrow
sequence numbers must be removed, since a particular
arrow in an OCD can correspond to two or more sequence
numbers from different scenarios.

2) The second union is the union of the sets of calls from each
other reactive component to (say) object C. If two different
other components each call the same function in object C,
the second union removes the duplications from the list of
functions object C must support. e.g.
- set of calls from UI to object C = {full()}
- set of calls from A to C = {init_C(), enqueue()}
- set of calls from B to C = {enqueue()}
The second union is:
{full()} + {init_C, enqueue} + {enqueue()}
 = {full(), init_C(), enqueue()}
This resulting list is the set of functions which must be
exported via object_c.h and implemented in object_c.cpp!

Obviously the first union does not have to use transparencies, as
a CASE tool could automate drawing single scenario traces and
then taking the union (I don’t know of any CASE tools that do
this yet! I think it would be a great product.). In fact, only one
all encompassing union (which accomplishes both partial
unions) is needed if the tool doesn’t have to bother creating the
OCD for presentation to a software architect.

Copyright 1997 by R. Tront 5-46

5.7.5 Miscellaneous

The above strategy is very powerful as it constructively
synthesizes the requirements for individual modules and object
classes from an application’s external requirements. This makes
it an extremely appropriate technique to bridge the so called
‘design gap’ that exists between the end of analysis and the
beginning of writing code for individual modules.

Several methodologies suggest you should design critical
scenario architectures individually, using some kind of object
‘interaction’ diagram (and some accompanying descriptive text).
But none that I know of suggest that a significant benefit is to be
gained by graphically designing them all, then using the double
union to synthesize the requirements for every object. I hope
you appreciate the beauty of the technique.

This technique could be easily automated. A Computer Aided
Software Engineering (CASE) tool could be written which
allows you to graphically enter a blank OCD (possibly using
objects from your ORD), and then construct scenario traces, one
scenario at a time. Finally, a computer is excellent at performing
unions to construct the overall OCD, and function prototypes for
each object class.

Please note that there are many alternatives in constructing the
trace of a scenario. This is where the real design decisions are
made. (The diagramming with a CASE tool and the double
union are basically just documenting the design decisions and
constructively gathering object specifications from the traces).
Trace alternatives will be discussed in the next section of the
course.

Finally, realize that the arrows you drew represented procedure
calls. Data can be passed back to the caller at the end of the call.
But not all systems support direct procedure calls. The
interaction between different applications, or between different
parts of a distributed application, often allow only one way

Copyright 1997 by R. Tront 5-47

messages. In this latter case, return data must be passed back by
an additional arrow added to the scenario message diagrams.
That is why I have been hesitant, or vague about calling the
arrows procedures. In some systems they might not be
procedures but one way operating system messages or network
packets!

Copyright 1997 by R. Tront 5-48

5.8 Scenario Trace Design
Each and every scenario should be designed with care before
you can truly know the system architecture. We will look at
three issues to be careful about.

5.8.1 Adding and Designing Non-User Scenarios

Firstly, you have to realize that certain previously un-thought of
scenarios may need to be necessary. These scenarios may not
even be part of the user scenarios. Good examples are the start-
up and shut down scenarios. Those of you familiar with modern
languages are aware that they often provide each module or class
with an initialization code fragment that is automatically
executed at start up. You might not think then that a start up
scenario is necessary, that each object or module can be written
to automatically initialize itself. Systems can definitely be
constructed to this way. But what if a system, while running,
needs to do a ‘warm reset’. For example, a user is tired of the
situation he has got himself in, and wants to reset everything to
its starting condition. Such a system needs a ‘re-start’ scenario.

Also, shut down is necessary for reasons other than just closing
files. For instance in a milk processing plant, you might want to
shut down the system. This requires telling all tank objects/
modules to drain themselves. Even if the main module or user
interface detects that the user wants to do a shut down, for
reasons of abstraction and design information hiding, the main or
UI might not even know that a tank object exists. The shutdown
scenario designer is aware of all the objects, and constructs a
trace which will get the necessary shutdown control signal down
to the tank via a trace of calls. This shutdown trace is
constructed to weave down through the abstractions one layer at

Copyright 1997 by R. Tront 5-49

a time since usually each object or module knows only about
those immediately below it.

Copyright 1997 by R. Tront 5-50

5.8.2 Labelling Semantic Order

Secondly, in addition to documenting which objects interact with
which other objects in a scenario, the numbers on a call event
trace document semantic ordering. Sometimes the tree of
traces could have several alternative orderings, only one or two
of which result in the correct processing of the scenario. If the
ordering is not made clear, a implementation programmer who
didn’t understand the overall system needs might write the
wrong code. For example, given an object which can be both
read and written, one scenario might require that the data be
written (i.e. initialized) before anything can be read from it.
Another scenario might need to read it first (in order to extract
and preserve the data) before over-writing it. Numbering the
individual calls in a trace documents the ordering you have
decided is correct for that particular scenario.

Several methodologists have published various numbering
schemes for the individual calls. In most, two calls with the
same precedence number indicate that they can be made in either
order. In some schemes, using numbers like 2 and 2’ mean that
either one or the other message is sent, but not both. Some
propose using 2* to indicate repetitive calls. And finally, some
assign meaning to decimal numbers (e.g. 2.1, 2.1.3, etc.). These
proposals are currently under debate in the OO community, and
no common standard currently exists.

Copyright 1997 by R. Tront 5-51

5.8.3 Alternative Control Architectures

Thirdly, as with all design, there are usually several alternate
ways to design a sequence of internal call events that will carry
out a particular scenario. For example, when the UI receives an
‘exit program’ command from the user, should it send messages
to all the objects telling them to shut down? Or should it call a
procedure in the main module which should then tell the objects
to shut down? ‘Design’ is choosing between workable
implementation alternatives to pick the one that is most
elegant, most easy to maintain, uses the least memory, and/or
is best performing.

Let us consider a simple reservation system. Generally a
reservation instance is for a particular flight, sailing, or video
rental instance, etc. A reservation typically is related to a
particular, say, sailing via a foreign key. When dealing with
user-entered data, we must use every effort to maintain
referential integrity of the database. Thus before creating a
reservation instance for a person on a sailing, we must check that
that particular sailing actually exists. This scenario
implementation can be designed in one of three alternative ways.
These three ways will be shown in the next 3 sub-sub-sections.

Copyright 1997 by R. Tront 5-52

5.8.4 Centralized Scenario Design

In this design, a particular reactive component which both is
informed when the scenario is to be initiated, and which
understands the scenario to be carried out, orchestrates the
execution of the scenario.

Although often not the ideal design, this component may the
event detector itself (e.g. user or network interface module), in
which case application scenario code (possibly unfortunately)
gets added to the UI or network interface module.

Sailing Reservation

1: checkExists() 2: makeReserv()

Detector (e.g. UI) and
Scenario-Starting Event

Scenario Orchestrator

Copyright 1997 by R. Tront 5-53

Alternatively, as shown below, an extra control module or object
can instead be added to house a function which orchestrates a
particular scenario. It is not unusual for this module to export
more than one function, one in fact for each scenario to be
orchestrated in an application (or for a particular subset of
scenarios in the application). The external event detector is
programmed to simply call the correct scenario orchestration
function given the particular scenario-starting event that it just
detected.

Sailing Reservation

2: checkExists() 3: makeReserv()

Scenario Description:
1) Prompt user for all info;
2) If Sailing exists
3) THEN make reservation
4) ELSE re-prompt user.

Event Detector (UI)

1:UC5()

Scenario-Control/Orchestration

Copyright 1997 by R. Tront 5-54

In both the above centralized schemes, the controller sends a
message first to the sailing object to check that the sailing exists,
then waits for the return from that call, then makes a call to the
reservation object (supervisor/shepherd) to actually create the
new reservation, the waits for that call to return. The centralized
control scheme has the advantage of cohesively encapsulating in
one function of one module (be it the Event detector or a special
orchestration component) the control and sequencing of internal
calls needed to carry out the processing needed in the scenario.
Its advantage is that if the control or sequencing of the scenario
might later during maintenance need change, only one function
in one module needs to be updated. Also notice that the sailing
and reservation objects do not communicate with each other, and
thus don’t have to know about each other (this is occasionally a
good design feature). On the other hand, the central object
unfortunately gets coupled to all the parameter types of all the
lower calls.

Notice the explanatory text or pseudo-code that can be included
under a scenario trace diagram to more fully document the logic
of the scenario. This pseudo-code might, for instance, indicate
whether the sailing information needed from the user is read by
the sailing module or by the central control module.

This pseudo-code may or may not eventually be put into any
particular module. It may end up in the central module, or
alternatively be spread out over several modules if either of the
following designs is adopted. It is therefore not to be thought of
as programming, but instead as documentation of the scenario
logic from an architect’s point of view, so that programmers
could later implement the design properly as per the architect’s
plan.

Copyright 1997 by R. Tront 5-55

5.8.5 Roundabout Route Scenario Design

The name of this section is a Tront’ism and is not widely used
terminology. The idea is that the orchestration control is not
centralized in one function but is distributed. Control is passed
from the scenario initiator (i.e. event detector) to the first module
which must supply preliminary checking or data, and then that
module forwards the request either directly or indirectly to the
final object. The control thus travels a rather roundabout path to
the usually rather important terminal object. When the
makeReserv() procedure is done, it returns control to the Sailing,
which in turn returns from the makeResIfSailingExits() to the
initiator.

This design strategy is particularly good if using asynchronous
one-way messages, rather than procedures calls, as it requires no
data to be returned to callers.

Sailing Reservation

1:makeResIfSailingExists()

2: makeReserv()

Scenario Description:
1) Ask Sailing if it exists, and if so
2) THEN have it make reservation
3) ELSE have it return an exception to

the initiator which will then
re-prompt the user.

Initiator

Copyright 1997 by R. Tront 5-56

5.8.6 Principle Object-based Scenario Design

Another decentralized design alternative has the initiator first
informing the principle application object involved (or class
supervisor), in our case the reservation class. After that, the
principle object (which may understand its creation needs best)
does whatever is necessary to accomplish the request. In the
example below, the reservation checks the sailing exists, waits
for the reply, then if ok makes a new instance of its type, and
then finally returns control to the initiator object.

Note that these diagrams do not show the procedure returns, but
this design requires an OK to be returned to the reservation via a
parameter/return value. Either that, or if using one way
messages, a return message would have to be added to the trace.

Initiator

Sailing Reservation
2: checkExists()

1: makeReserv()

Scenario Description:
1) Ask reservation to make an instance
2) It checks if Sailing exist.

If so reservation makes an instance,
3) ELSE return exception to initiator.

Copyright 1997 by R. Tront 5-57

5.8.7 I/O Library Call Placement

A troubling design question relates to whether all modules/
objects should be allowed to call the I/O library, or whether this
privilege should be restricted. This is of concern, as one major
maintenance headache is the possible future porting of the
application to a different operating system or hardware platform
(e.g. from MS-Windows to Mac). If you think this is likely, you
may want to keep I/O calls confined to be from within a few
modules (e.g. somewhat restricting you to centralized control),
or within only one module (each object sends its I/O requests to
the UI module which is the only one, by architectural policy,
allowed to call the OS I/O library). This reduces porting effort
as all I/O calls needing changing would be localized to a small
number of source modules.

On the other hand, this distributes information about the data
types of the attributes of every object needing I/O to the modules
allowed to do I/O. It might be better if a student object (which
defines the type and length of stud-name, address, phone) do it’s
own I/O. That way if a new attribute must be added, or should
the length of the address field or type of the phone number field
ever need changing, the changes would be restricted to this one
object class’s code.

There is no best answer. To port a distributed control
application, you could always implement a translation module.
Or perhaps C++ provides a good compromise. Define the
student phone number type in the student object, overload the
output operator for this type, and then let cout<< and cin>> work
as they see fit on that type. Unfortunately, now that most UIs
are GUI based, you must instead provide ‘convert to ASCII’
member functions for each attribute, and then the phone number
(previously an integer) can be displayed via the GUI API.

Copyright 1997 by R. Tront 5-58

5.9 Classes, Instances, and FSMs
In a particularly good OO development methodology [Shlaer92],
it is suggested that a excellent way to characterize the behavior
of objects is with finite state machines (FSMs). This is because
FSMs are perfect to specify the behavior of reactive components
such as software modules and objects. This sub-section of the
lectures will discuss the last step of the design process, object
behavioral design.

5.9.1 Finite State Machines

Finite state machines are a particularly good way to document
the required behavior of a reactive component. This is because a
FSM is driven by events, and the arrival of an event causes a
reaction by the FSM which is appropriate for it’s current state.
This is a very common type of behavior needed from software
components.

A reactive component’s state is a remembrance of historical
context. The state is the current status or mode of the
component. Past (i.e. historical) events have caused the
component to change into the current mode. For instance, in
MS-Windows typing a <shift>-a actually causes 4 event
messages to be sent to your program:

1) the <shift> key is pressed.

2) the ‘a’ key is pressed.

3) the ‘a’ key is released.

4) the <shift> key is released.

Normally your winmain() function passes these messages back
to Window’s via the keyboard translation procedure.

Message 1 causes the keyboard translation component of MS-
Windows to change from the ‘unshifted’ to ‘shifted’ state.

Copyright 1997 by R. Tront 5-59

Message 2 causes the keyboard translation component to tell
your program an “A”, not an “a”, has been entered by the user.
It does this by first noting (i.e. referring to its memory of past
history) that it is in the shifted state. It then performs an action
appropriate to that past historical context (e.g. tells your program
about the “A”).

Message 3 is ignored. i.e. the keyboard translation component is
programmed to causes no action and makes no state change in
response to this event.

Message 4 causes no apparent action, but the internal state
variable is changed back to ‘unshifted’.

Thus if you worked for Microsoft, and were having to write or
document the required behavior of the keyboard translation
component of Windows, a FSM would be an idea medium to
document this reactive, historically context sensitive behavior!

In fact, many objects that software components model have
context sensitive behavior:
• You shouldn’t heat a milk tank if it is in the empty state.
• You shouldn’t create a diploma if a student hasn’t reached the

graduated state.
• You shouldn’t pop from a stack that is empty.
• Network connection objects often react to incoming packets in

different ways depending on their current state (e.g. depending
on what kind of packet they last sent).

I will elaborate on the stack example to show you the proper way
to program context-sensitive, software components.

Finite State machines can be documented either with state
transition/action diagrams, with tables, or with pseudo-code.
The diagram is the most intuitively appealing, so I will show you
it first.

Copyright 1997 by R. Tront 5-60

empty state

partfull state

full state

Push():

Pop():

Pop():

Push():

Pop():

[now_full]

[not_yet_full]

[now_empty]

[not_empty_yet]

Push():

THROW
empty_exception;

do_the_pop();

do_the_push();

THROW
full_exception;

Copyright 1997 by R. Tront 5-61

The ovals represent the states. They represent the appropriate
subset of the memory of all possible past history. Obviously a
finite state machine can’t remember everything that has
happened to it, so it remembers an appropriate finite subset.

The bold arrows represent events that can happen to the FSM.
In software, these are usually procedure calls to the component
modeling the FSM.

The rectangular boxes represent behavioral actions that are
executed by the FSM on its way to its next state.

The dim arrows indicate which state comes next. Most FSM
techniques do not use dim arrows guarded with exit conditions,
but I like them as they frequently can reduce the number of
rectangular boxes and arrows needed to fully document the
behavior.

I want to point out that when you call a procedure, the action
specified by the name of the procedure should not be viewed as
always being done. You should design your software
components such that if it is inappropriate in that state to fulfill
the ‘request’, the procedure will not do so. This is why I earlier
said objects have ‘intelligence’. They are programmed by you to
appear to make intelligent decisions. In the above diagram, you
can see that trying to pop from an empty stack will cause an
exception to be ‘thrown’ (C++ exceptions will be covered later).

I am now going to show you how to properly program software
components that have state. First, you need to define the
essential states. Second, export procedure signatures for each
named event/request/message that the component must handle.
Then put a switch statement as the outer block of each exported
procedure implementation.

Copyright 1997 by R. Tront 5-62

Class Stack{
enum StateType{empty, partfull, full};
StateType state; //initially empty.

public:
Value Pop(){ //public request for a pop.

switch(state){
case empty: //leave state the same and deny request.

 RAISE empty_exception;
break;

case partfull:do_the_pop();
if (now_empty) state:= empty
else state:= partfull;
break;

case full: do_the_pop();
state:= partfull;
break;

};//end switch.
}; //end Pop().

void Push(){ //public request for a push.
switch (state){

case empty: do_the_push();
state:= partfull;
break;

case partfull:do_the_push();
if (now_full) state:=full
else state:=partfull;
break;

case full: RAISE full_exception; //deny request.
break;

};//end switch.
};//end Push().

(*---*)
private:

void do_the_pop(){ ... //actually do the pop.
};
void do_the_push(){ ... //actually do the push.
};

};//end class

Copyright 1997 by R. Tront 5-63

This pseudo-code implements the FSM documented in the
previous diagram. You should take a moment to correlate these
two different representations of the same FSM.

Note the lovely manner in which each exported function is
implemented. Each begins with a switch statement which
determines whether the software abstraction will honor the
request, given the stack’s current state. The actual pushing and
popping is done in non-exported procedures near the bottom of
the module. If you write code this organized for most of your
life, I will be very proud of you.

One last note. Not all software components are historically
context sensitive. If you think your’s is not, you may have
overlooked something though; double check your analysis! If
you are sure, the component need only model a degenerate
event-response machine which has no (or only one) state. The
source code layout shown above is not needed, and the class/
module can just be written as a collection of exported procedures
implementing the requests.

Copyright 1997 by R. Tront 5-64

5.9.2 Class Supervisor and Instances

There are two behavioral parts of a software object class:
1) the reactive nature of the class instances.
2) the reactive nature of the class supervisor (shepherd).

Though it is not widely suggested, it is essential that you
understand the difference between these two separately reactive
parts of a class. This is because C++ syntax can blur them and
mix you up.

First, you must realize that the behavioral nature of each instance
in a class is identical. That’s why they are all in the same class!
They all store the same fields of data, and they all have identical
behavioral code. What is different about each is that each has
different values in their data fields (including different state
values). Therefore each may behave differently if sent the same
message. For instance, sending a pop message to the night stack
may cause a pop, but sending the identical message to the day
stack may cause different behavior. This is because each
instance might be in a different state.

On the other hand, each class has some supervisory functions
that it exports. And this supervisor can have some static
variables in which it keeps values relevant to the whole flock of
instances. For instance, it might have a count of the number of
instances, the average age of the instances, the total $ value of
the instances, or a boolean indicating whether one or more
instances are currently being used. Notice these are flock
attributes! They are items like count, average, total, or boolean
attributes of the flock. For this reason, only one copy is needed
of each of these ‘supervisor’/‘flock’ variables. In contrast,
instance attributes need a field in each instance.

When sending a message to a particular instance, you must
specify the ID of the instance you are sending it to. But to send
a message to the class supervisor, you specify the name of the

Copyright 1997 by R. Tront 5-65

class (in case different classes both export the same supervisory
function name like ‘init()’) and the exact function name.

Since the supervisor’s behavior may be historically context
sensitive, it can also be modeled and programmed as a separate
finite state machine. And, since it appears as a somewhat
different reactive component from the individual instances, you
may want to put it as a separate icon on an Object
Communication Diagram. Generally, you only put one copy of
the instance icon for a class in an OCD, and it is regarded as a
generic instance. If one instance sends a message to another
instance of the same class, this can be drawn as a loop from the
instance icon back to that same instance icon. e.g.

Notice that I have used ovals in this OCD rather than rectangles
to indicate that messages are sent between FSMs, not between
classes. In the Shlaer-Mellor OO methodology this is sometimes
used when you are trying to indicate one rectangular object has
two separate state machines (supervisor and instance state
machine models), each represented as an oval.

main component UI component

Student Supervisor

Student Instance

Copyright 1997 by R. Tront 5-66

5.10 Summary
We have taken a good introductory look at object orientation,
and at object-oriented data analysis. OOA is nothing new.
Information/database systems analysts have been doing it for
decades, but it is now realized that it provides a good beginning
to decomposing any large system into smaller components.
Normalization and formalization help us obtain a clear
organization in our head for this data. More recently, instead of
regarding this data as passive records, we now encapsulate
procedures with them to form the core reactive components of
our OO architecture.

Note that it is unclear where analysis ends, and design begins.
You must analyze (i.e. obtain through interviews, etc.) the
required system behavior as well. This should be listed in the
requirements spec. Normally design begins when you have to
firm up exactly how the system will look and feel in the draft
user manual (i.e. scenario appearance design).

Many software development methodologies lack a definitive
process to synthesize/derive the behavioral requirements for
programming a particular module from the overall requirements
of the application. A key to this derivation is to identify all the
use case scenarios that will need to be handled by the
application, and to take a few minutes to design the
implementation of each one thoughtfully (i.e. scenario
implementation design). This is often overlooked by
programmers who by their nature seem to want to start coding to
early. By enumerating use cases in the requirements spec and in
an early written user manual, and the start/reset/shutdown
scenarios, we create a list to drive the design process one
scenario at a time. The design process becomes the architecting
of each scenario implementation with due respect to the various
tactical alternatives.

If every scenario trace implementation is planned, a union of the
resulting individual scenario implementation designs will

Copyright 1997 by R. Tront 5-67

synthesize the list of exported services that each individual
reactive component (object or module) must provide! Then
examination for state-dependent behavior and subsequent coding
can begin on these individual components.

Unfortunately, you may notice that the design alternatives we
have discussed have conflicting advantages (you can’t have
everything), and compromises are necessary. Generally you
should take the path that will give you the least headaches now,
and the least effort later during maintenance (e.g. during later
fixing, enhancing, and porting).

Finally,
• We saw that finite state machines provide an ideal medium

with which to think about, document, and convey to
programmers the behavioral nature of the desired reactive
software components. This is because a module/object
instance’s behaviour is so often dependent on the previous
history of what has happened to it so far during execution (i.e.
its response to a particular function call is mode sensitive).

• In addition, finite state machines can be beautifully mapped
into a very clear source code using switch/case statement.
They thus provide a wonderful guide for the actual code
layout.

• And, don’t forget that care must be taken to differentiate
between the mode sensitivities of the class supervisor
component and of the class instances; they generally are quite
different and are thus represented as separate finite state
machines.

Copyright 1997 by R. Tront 5-68

5.11 Appendix A - Database Organization
We will now overview traditional information systems data
modelling, as it provides us with a fantastically logical way to
organize our data during the analysis phase of a project.

5.11.1 Why Organize Data Properly?

Information systems, by definition retain persistent data.
Persistent data, usually, but not always, mean data retained
overnight, between program executions, or over a power
shutdown. Integers in RAM memory are also `retained' for
shorter times, but the problems of informations systems are
usually that of:
• storing huge amounts of inter-related data,
• for long periods of time, and

being able to rapidly create outputs which have been composed
from the retained data, or to be able to easily and rapidly modify
particular data records!

Interestingly, learning how to organize persistent data gives
us wonderfully clear insights as to how to also organize even
our non-persistent (RAM) objects!

Hard disk drives have access times typically in the order of
0.016 seconds (16 ms). Unfortunately, this is still a million
times slower (i.e. 6 orders of magnitude) than the instruction
time of a 66 MIPS processor! To obtain fast (relative to the
processor) random access times requires very special techniques
to be used in data bases. Invariably, this requires that retained
records in a file all be the same length. That way, to read the
1000th record, you can simply position the read head of the disk
drive a distance (999 x Record_Size) from the beginning of the
file, and thus avoid reading all the records earlier in the file. It
also means that when a record is deleted, then another one
added, the added one can fit in the same length space as the one
deleted. (If the added record were shorter, some space would be

Copyright 1997 by R. Tront 5-69

wasted. If it was longer, it wouldn't fit and would have to be
placed elsewhere and the entire space from the deletion would be
wasted until a smaller record needed to be added.)

But not all data records appear to be of fixed length. For
instance a student and the courses she is taking this semester:

Student (student-id, semester, {course})

where {} is the Backus-Naur Form (BNF) symbol for zero or
more courses. This is called a repeating group by database
analysts.

For access performance, we would like to use fixed length disk
records, but some students take more courses than others. If say
we reserve space for 6 courses for every student, huge amounts
of space are wasted if most students only take 5 courses on
average.

Properly analyzing the data structure for such an application is
done by constructing a data model of the information that needs
to be retained, and modifying that model until you get:
1) fixed length records.
2) no wasted space due to empty or duplicated data.
3) fast random and sequential access.
4) fast insert and delete operations (not possible with simple

sorted records - why?)

Copyright 1997 by R. Tront 5-70

5.11.2 B+ Trees

This sub-sub-section gives a wonderful introduction to basic
database index trees and links.

Generally, characteristics 1) and 2) above are very important
tasks of the Analyst. On the other hand, characteristics 3) and 4)
are achieved by writing or purchasing database software that
uses the Indexed Sequential Access Method (ISAM) which is
based on B+ tree index structures on disk. This special kind of
tree is very short in height, thus requiring very few disk accesses
to traverse down to any randomly-chosen leaf. The tree is
always balanced so that no branches are very deep. The use of a
tree makes random disk searches, inserts, and deletes as fast as is
possible, which is very important as disks are orders of
magnitude slower than RAM. Additionally, the leaves are
sequentially accessible via a linear, doubly-linked (disk) list.
The sequential links make access of the `next' and `previous'
items in the sorted structure very fast.

Copyright 1997 by R. Tront 5-71

Here is a diagram of a database accessible via 2 different B+
trees, one for each of two different search keys.

J

C G M T

Bill Celine Harry Kathy Peter Valerie

50000

12500 30000 62300 85000

0750015100 50100 37300 7000099900

Copyright 1997 by R. Tront 5-72

Here are 3 advantages of B+ trees:
1) B+ trees are great as they have an upper tree part which

allows fast random access. Not only that, the nodes in the
upper part are often a full disk sector in size (512 bytes) and
thus provide a high order tree (one which many arrows
coming out of each node). This makes the tree height short,
to reduce the number of disk accesses. :<)

2) In B+ trees (not to be confused with B trees or binary trees),
the leaves of the tree are special nodes that are doubly-
linked to additionally provide rapid sequential access to the
`next' or `previous' record. :<)

3) Third, the data is not in the leaves or nodes of the tree.
Typically the data is in a separate file from the index nodes.
The each tree and sequential index nodes are normally in a
special file called an `index' file. The leaf nodes simply
contain the record or byte number of the data records in the
data file (as well as the forward and backward links). The
advantage of this is that you can have a single data file of
persons as shown above, and TWO index files/trees pointing
into it. One index file is for fast access by, say, name. And
the second index tree is for fast access by, say, driver's
licence number!

This is the fundamental disk data structure underlying
almost every database management system!

Copyright 1997 by R. Tront 5-73

5.12 Appendix B - Normalization
This whole sub-section should give you a good insight into
logically re-organizing the data attributes in a application such
that the correct attributes are encapsulated together in sensible
object classes.

Normalization is a process to modify the data model with the
goal of getting fixed length records (for better performance),
with little redundancy, and with few optional attribute fields (to
save space). Recall that structures in RAM are just fixed length
records, too, though it is easier and faster in RAM to have an
attribute of a structure point at a linked RAM list to implement
the effect of a variable length record. Nonetheless, learning how
to implement a system without variable length records will teach
you a lot about organizing your data.

In this sub-section I will try to give the rules which define the
steps of the process, and illustrate the steps in both a graphical
and textural form. I will use the familiar example of a university
set of database files, as this will make the learning process
easier. But don’t be deceived. In a familiar application,
normalization can be done by the analyst almost without
thinking because it is based more on common sense than on that
weird relational algebra you learn in a database course. On the
other hand, in an unfamiliar application area, we don’t have a
good sense of what needs to be stored as part of, or related to,
other things. Normalization is one important method by which
we distill the huge pile of info we get during analysis of an
unfamiliar application domain.

Before beginning normalization, you must determine as best you
can all the dependencies and cardinalities by asking about the
business rules. e.g. Each airliner has a licence number painted
on its tail. When storing information about a particular flight, is
the flight number or licence number the key? Can a particular
plane be used on different flight numbers? Can a flight have
many aircraft licence numbers? Maybe, but only on different

Copyright 1997 by R. Tront 5-74

days. So on a given day, the flight is the key, and the licence is
the designator attribute which specifies which plane will be used
on that flight.

Let’s say our database will need to hold a bunch of info about
students, the courses and semesters, and instructors. (This is a
good example as it is familiar to you, but a poor example as the
relationships and normalizations are easy because are familiar
with the application subject area. Remember in real life, you
will be asked to analysis unfamiliar subject areas!). Assume the
following attributes must be retained about a student.

stud-id

stud-name

address

phone

course

credit

semester

grade

course-room

instructor

instructor-office

We gathered this by interviews, looking at the university
calendar, course timetable, telereg instructions, forms, examples
of transcripts, and watching the current system in operation.

Repeated for
each course
taken.

Repeated for each
time a particular
course is attempted

Copyright 1997 by R. Tront 5-75

In addition to knowing the attributes, we have picked up an
understanding of some of the business rules.
1) Students take courses.
2) Students typically take more than one course in their life.
3) Students can fail courses, and can repeat the same course

later in a different semester. Students can thus take the
same course more than once.

4) Each time a student takes a course, they are assigned a
grade.

Notice I have underlined some nouns and cardinality info. This
is a sometimes helpful technique.

Copyright 1997 by R. Tront 5-76

5.12.1 First Normal Form

The above set of attributes are in unnormalized form. They are
in unnormalized form as the records needed for different
students would NOT all be the same length. This is an
unacceptable situation, as it will make fast access and fast insert/
deletes impossible, and waste lots of space due to disk
fragmentation. The solution is to (unfortunately) add
redundancy, by creating a separate row for each occurrence of a
student taking a course. (Note: we will later be able to remove
this redundancy, but it is a necessary starting step).

CLUE: The data that needs to be retained has repeating groups.

PROCEDURE: Remove repeating groups by adding extra rows
to hold the repeated attributes.

FIRST NORMAL FORM: Tables should have no repeating
groups.

The result is a single table with a compound (i.e. multi-attribute)
primary key.

1NF STUDENT TABLE

Notice that to find a certain row (e.g. find the grade for a
particular student in a particular course in a particular semester),
you must specify all 3 parts of the primary key. I have also put
the 3 attributes that make up the primary key together on the left,
and sorted the rows according to the resultant compound key.

student-id course semester grade stud-name

93010-1234 Cmpt 105 95-3 B John Smith

94444-9999 Cmpt 201 95-3 D Bill Jones

94444-9999 Cmpt 201 96-1 C+ Bill Jones

Copyright 1997 by R. Tront 5-77

This in effect creates a single entity class with a large number of
attributes:

So now we have fixed length records!

But, there are several problems with this data model:
• There is too much redundancy. For instance, if you think of

each entity instance as row in a table, we will be storing both a
student’s id, name, address, and phone number each time he
enrolls in a course. This is a ridiculous! We need to instead
have a separate file of students and the attributes that depend
on only the stud-id.

• There are insert anomalies that can occur. It is impossible to
admit a student to the university and enter him in this table,
unless he has enrolled in a course. This is because the table
uses a compound key composed of three different attribute
fields. None of these three fields can be null, as they are the
data we ask the database access software (ISAM B+ tree) to
use in its search. This software would fail if all three parts of
the key were not specified.

STUDENT-COURSE
* stud-id
* course
* semester
 - grade
 - stud-name
 - address
 - phone
 - course credit
 - course-room
 - instructor
 - instructor-office

Copyright 1997 by R. Tront 5-78

• There are delete anomalies which can occur. If this is the only
file which stored which room a course is held in a particular
semester, then if you deleted the row containing the only
student who had registered in the course so far, you would also
delete the only record of which classroom that course will be
take place in. This is also ridiculous!

• There are update problems which can occur. Because of all
the redundant data, if you wanted to change a woman student’s
name because she just got married, you would have to change
it in the rows corresponding to every instance of every course
she had ever taken! Again this is ridiculous. Though marriage
is not that frequent an occurrence for students (compared to the
frequency with which they take courses), this is nonetheless a
computationally burdensome task. And though many women
keep their maiden name these days, the university has to be
able to respond to those who do change their names, no matter
how many or few occur, because this is provincial law and
outside of the university’s jurisdiction to control. So this is a
business rule that has been imposed on the university’s
business. The analyst must also consider external rules that
can be found out from interviews with management, but are
not necessarily rules created by management dictate.

Copyright 1997 by R. Tront 5-79

5.12.2 Second Normal Form

CLUE: The problems in the 1st normal form (1NF)
organization is that there are non-key attributes which depend on
(i.e. are functions of) only part of the compound key. For
instance, address is only a function of the stud-id, and credit is
only a function of the course, not of the course + student +
semester.

PROCEDURE: Remove partial key dependencies.
Determine if there are any dependencies of non-key attributes on
only part of the compound key. If so, break the first normal
form table up into several tables such that in each table, each
non-key attribute is dependent on only the primary key of that
table.

Note that if the 1NF key is not compound, there cannot be partial
key dependencies, and the table will already be in 2NF!

SECOND NORMAL FORM: There are no non-key
attributes with partial key dependencies in any table.

For the university application, we ask about the business rules
that will tell us something about these dependencies. What we
are told is:
1) stud-name, address, and phone number are a function of

only the stud-id. Thus we can create a student file of only
this information.

2) credit is a function of only the course, and is independent of
which semester it is offered in, and which student is taking
it. We therefore must separate the concept of a ‘course’ and
that of a ‘course offering’ in a particular semester.

3) course-room, course-instructor, and instructor office is a
function of only the course and semester, and is independent
of which student is taking it.

4) only course grade is necessarily a function of all three parts
of the original primary key.

Copyright 1997 by R. Tront 5-80

To get the university application into 2NF, we separate the data
into 4 files, each with only the minimal number of attributes
needed in each file’s primary key. You will notice that it is a
much better organization of the data.

Copyright 1997 by R. Tront 5-81

Second Normal Form ERD:

* stud-id
* course
* semester
 - grade

STUDENT-REG

* course
* semester
 - course-room
 - instructor
 - instructor-office

COURSE OFFERING

* course
 - credit

COURSE

* stud-id
 - stud-name
 - address
 - phone

has

is of a

is registered via

is for a

is for a
particular

has

many

STUDENT

Copyright 1997 by R. Tront 5-82

That was quite a big leap. We could have first pulled out the
stuff that was just dependent only on course and semester. This
would have resulted in two entities, student and course. Then
we would have still found partial key dependencies in each of
those. This is quite common. When you do break a file up,
make sure you look again for partial key dependencies in each,
as it is often easier to see even more that you might not have
noticed in the big original 1NF organization!

Note that in going to 2NF we also had to ask questions about the
cardinalities to show on the resultant ORD. These cardinalities
did not come from the normalization process; we had to
specifically understand or ask about the application domain
rules. I have shown reasonable assumptions for the (business)
rules regarding cardinality in a university application.

With the data model in 2NF, we can notice the following:
• There is now far less redundancy in the organization. Note

that a student’s name doesn’t have to be stored with each of his
many registrations, and the course credit needn’t be stored for
every course offering.

• a student doesn’t have to be registered in a course for the
student to be initially admitted to the university.

• A course, and the room that a course offering will be located
in, can be entered even when there are no students registered in
that offering yet.

• Most of the update problems have been solved.

Copyright 1997 by R. Tront 5-83

5.12.3 Third Normal Form

There is still problems with the 2NF data model. The course
instructor’s office is stored for every occurrence of a course
offering. If a professor teaches 4 courses over a year, why do we
need to stored his office 4 times. Surely, offices are only a
function of the prof’s name, not his name + course teaching
assignments! This also causes some remaining insert/delete/
update anomalies.

CLUE: The problems in the 2nd normal form (2NF)
organization is that there are is an object class with non-key
attributes which depend on (i.e. are functions of) other non-key
attributes. For instance, instructor-office is a function of the
instructor name, and not both of, or either of, course + semester!

PROCEDURE: Remove non-key dependencies. Determine if
there are any non-key attributes with dependencies on any other
non-key attribute(s). If so, split the table so that the functional
dependency is enumerated in its own separate table.

THIRD NORMAL FORM: Every table is in 2NF and
additionally, there are no non-key table attributes with
dependencies on other non-key attributes (except that
dependencies on columns which are also ‘candidate’ keys are
allowed; this is a subtle issue covered in database courses).

The one object class in the previous ORD that does have a non-
key attribute with a dependency on another non-key, non-
candidate-key field is instructor-office. Instructor-office is
purely a function of only the instructor’s name. Also note that
we can’t move instructor and instructor-office to the course file,
as a course can have several instructors teach it over the span of
several semesters, or even during one semester. The solution is
illustrated on the next diagram.

Copyright 1997 by R. Tront 5-84

Third Normal Form ERD:

* stud-id
* course
* semester
 - grade

STUDENT-REG

* course
* semester
 - course-room
 - instructor

COURSE OFFERING

* course
 - credit

COURSE

* stud-id
 - stud-name
 - address
 - phone

has

is of a

is registered via

is for a

is for a
particular

has

many

STUDENT

* instructor
 - instructor-office

INSTRUCTOR

has a

instructs a

Copyright 1997 by R. Tront 5-85

See that each time we go to a higher normal form things get
more and more logically organized.

Question: What if course is offered twice in the same semester?

Question: Will making instructor a part of course offering’s key
solve this? Answer: No. Why?

5.12.4 Normalization Summary

In normalization, we are seeking to make sure that attributes
depend:
• on the key (1NF)
• on the whole key (2NF), and
• on nothing but the key (3NF).

When fully normalized, the data is finally arranged in a manner
such that:
a) all records are fixed length,
b) there are no insert/delete anomalies that would mess up the

recording of certain information,
c) there are no update anomalies that need to be constantly handled,
d) there is little redundancy (no more than is needed to handle the

above factors).

Re-organizing data into a higher normal form usually, but not
always, saves space and improves overall performance. You can
study more about this in a database course. You will also study
even higher forms of normalization (e.g. 5NF).

Copyright 1997 by R. Tront 5-86

5.13 Appendix C - Formalization
Remember that some relationships are optional. For example, in
application that records all persons and marriages, we must
efficiently store data indicating whether a particular person is
married or not, and if so to whom). Formalization is
determining the appropriate storage representation actually
needed for an application to ‘remember’ that a particular
relationship between two instances actually exists, and if so
between which instances.

Often, the process of normalization will automatically
accomplish formalization for you. But in a number of situations,
such as when using CASE tools, we must tell the CASE tools
which attributes are foreign keys, and which foreign keys
formalize which of the many possibly relationship lines leaving
an object. This is critical since in a large multi-person project,
often a foreign key may not have the same name as the key it
refers to!

Let us look at an example. Here is an ORD for properties and
property owners. We will assume a person may own several
properties.

* name
 - address
 - phone number

OWNER

* address
 - area
 - annual taxes

PROPERTY

owns

owned
 by

Copyright 1997 by R. Tront 5-87

5.13.1 Foreign Keys

This is a nice diagram but does not provide for the storage of
the relationships regarding which properties are owned by
which owners. This is what is meant by ‘formalization’. The
way to formalize most relationships is to add a foreign key to
one end of each relationship according to the following rules:
• If the multiplicity on one end of the relationship line is many,

and on the other end one, then put the foreign key in the many
end.

• If the multiplicity on the two ends of the relationship line is
both one, then put the foreign key in the optional end. If both
ends are optional, then put the foreign key in either end.

• If the multiplicity on the two ends of the relationship line is
both many, the you will need to form a new object called an
‘association’.

In the above case, we use the first rule.

I have added an attribute called “owner” to the ‘many’ end of the
above relationship. This attribute, when stored on disk as part of
each property entity, records/stores the relationship!

In addition, I have given the relationship a designator (R1), and
written this designator beside the foreign key attribute. This is
to clear up any misunderstanding that might occur since

* name
 - address
 - phone number

OWNER

* address
 - area
 - annual taxes
 - owner (R1)

PROPERTY

owns

owned
 byR1

Copyright 1997 by R. Tront 5-88

PROPERTY “owner” and the OWNER’s “name” attributes are
synonyms. They are two names for the same thing. i.e. the
value of an owner foreign key attribute in a PROPERTY entity
is the name of the property owner as recorded in the primary key
of the OWNER entity. By this I am saying that owner is a
reference to that property’s owner’s OWNER record.

Once we have relationships formalized (i.e. stored), we can use
them to navigate the ORD to satisfy application operations. e.g.
Given the address of a property, I can find the owner’s phone
number by:

- first, searching the PROPERTY file for a PROPERTY record
whose address attribute value equals the address of the property.

- second, in that record, get the owner’s name by looking at the
character string stored in the owner attribute,

- third, look in the PROPERTY_OWNER file for a record whose
name = that string.

- finally, look at that PROPERTY_OWNER’s record to get the
correct phone number.

This is what I meant earlier when I said that an ORD was a
referential map. It shows you all the possible journey directions
you can take when referring from one object instance to any
related ones.

Note that I can also travel a relationship the other way. Given
an owner, I can search the property file for all (i.e. the set of)
properties owned by a particular owner.

Note: If we had wrongly added the foreign key to the opposite
end of the relationship, the property owner records would then
have repeated groups as an owner can own any number of
properties. Clearly this leads to variable length records. The
best thing is to, as suggested above, add the foreign key to the
relationship end with the higher multiplicity.

Here is the student registration system with all the foreign keys
identified.

Copyright 1997 by R. Tront 5-89

* stud-id(R1)
* course(R2)
* semester(R2)
 - grade

STUDENT-REG

* course(R3)
* semester
 - course-room
 - instructor(R4)

COURSE OFFERING

* course
 - credit

COURSE

* stud-id
 - stud-name
 - address
 - phone

has

is of a

is registered via

is for a

is for a
particular

has

many

STUDENT

* instructor
 - instructor-office

INSTRUCTOR

has a

instructs a

R1

R2

R3

R4

Copyright 1997 by R. Tront 5-90

5.13.2 Associations

In what are called ‘many-to-many’ relationships, where the
multiplicity is ‘many’ at both ends of the relationship line,
adding a foreign key is not enough to formalize the relationship.
Instead, a whole new object called an association is needed if
you are to keep all records of fixed length.

Continuing with our property registration system, let us now
assume that we have recently been told that we have to adjust
our system to handle the business rule that a property may be
owned by several owners (i.e. partners).

Now a PROPERTY can have several owner attributes (i.e.
repeated group, ---> variable length records). In fact there is no
way to nicely formalize this simply with a single foreign key.
Or with a foreign key in both ends!

We must create a new associative object to store the information
about which properties are owned by which and how many
owners. (The need for this becomes even more obvious when
you consider that you should also store what percentage of each
property each owner owns).

* name
 - address
 - phone number

OWNER

* address
 - area
 - annual taxes
 - owner (R1)

PROPERTY

owns

owned
 byR1

Copyright 1997 by R. Tront 5-91

When formalizing a many-to-may relationship with an
associative object, the new object will have as a primary key, at
least the UNION of the primary keys of the original two objects!
This means the primary key of the associative object will be
compound! This allows any and all possible pairs of
PROPERTY instances and OWNER instances to be recorded via
the association.

address owner percentage

123 9th Ave. Smith, Bill 49.5

123 9th Ave. Jones, Jane 50.5

500 First St. Able, Jim 100

999 3rd Ave. Able, Jim 100

* name
 - address
 - phone

OWNER

* address
 - area
 - annual taxes

PROPERTY

R3
* address(R2)
* owner (R3)
 - percentage

LAND TITLE

Refers
to

title
recorded
by

R2

has property
titles

records

Copyright 1997 by R. Tront 5-92

Here we see that such an association can both record the fact that
123 9th Ave. can be owned by two partners, and that Jim Able
can own two different properties.

Note: When reading the above ORD, we know the address
attribute in the LAND TITLE entity is the address of a property
and not of an owner, because the analyst was kind enough to
annotate the address attribute to indicate it is a foreign key which
formalizes R2. Thus in addition to clarifying some synonym
problems, annotating foreign keys can also clarify some
homonym problems.

Often the normalization process will generate associative objects
automatically for you, as in the university student database (can
you find the association?). Other times you may have to do it
your self as part of the design phase. And you may have to
manually resolve synonym and homonym problems.

Note that an association is might not be an application domain
object. It just be a creation of the implementation needed by the
application. On the other hand, sometimes it is a physical object
in the application domain. An example would be a property
deed, which is a legal document stating property ownership.

Finally, the above formalization recommendations may not be
optimum (memory or performance-wise) for relationships which
are very sparse (not may instances participate in the
relationship), or which are traversed during execution very
frequently or infrequently. Nonetheless, it is an sound
introduction to the concept of formalization.

Copyright 1997 by R. Tront 5-93

5.14 References
[Booch98] “The Unified Modelling Language User Guide” by
Grady Booch, James Rumbaugh, and Ivar Jacobson, Addison-
Wesley, 1998.

[Shlaer 92] “Object Lifecycles: Modelling the World in States”
by Sally Shlaer and Stephen Mellor, Prentice-Hall, 1992.

[Rumbaugh96] “To Form A More Perfect Union” by James
Rumbaugh in Journal Of Object-Oriented Programming, January
1996, pp. 14-18.

