

Explosimeter, toxic gas and oxygen detector OLCT60 model

User manual

The Fixed Gas Detection People

Copyright © 2011 by Industrial Scientific – Oldham S.A.S

First edition, English version

All rights reserved. No reproduction of all or part of this document, in any form, is permitted without the written consent of Industrial Scientific – Oldham S.A.S.

All of the information that is provided in this document is accurate to the best of our knowledge.

As a result of continuous research and development, the specifications of this product may be changed without prior notice.

Industrial Scientific Oldham S.A.S Rue Orfila Z.I. Est – BP 20417 F – 62027 ARRAS Cedex Tel: +33 (0)3 21 60 80 80 Fax: +33 (0) 3 21.60.80.00

Contents

Chapitre 1	Presentation	7
Purpose		7
Operating princ	cipie	8
Detector parts	and components	9
External eleme	nts	10
Internal elemer	nts	12
Labels and pict	ograms	12
Operation labe	els	13
Chapitre 2	Installation	17
Regulations an	d conditions of use	17
Necessary equ	ipment	17
Location of the	detector	18
Detector position	oning	18
Electrical powe	r supply	20
Connector cabl	e	20
Cable connecti	on	22
Use limitations		25
Transfer curve		26
Chapitre 3	Commissioning	27
Purpose of con	trol	27
Necessarv equ	ipment	27
Commissioning		
Stabilization tin). 16	
Display of the c	as measure	29
Zeroing		<u>2</u> 0
Adjustment of c	as sensitivity	31
, ,		
Chapitre 4	Preventive maintenance	33
Maintenance se	chedule	
Actions		34
Chapitre 5	Maintenance	35
	Table des matières	3
		1

Possible errors	S	35
Replacing sen	sor block (Explo, O ₂ , Tox, XP-IR)	36
Replacing the	OLCT IR – integrated version	37
Replacing the	OLCT IR – remote version	37
Initialization of	the sensor block	38
Zeroing and se	ensitivity adjustment (calibration)	40
Adjusting the o	optical zero (Ir-0)	45
Applicable coe	efficients for explosive gas calibration	47
Checking the I	ine current	49
Chapitre 6	Accessoires	50
Chapitre 7	Spare parts	52
Explosionproo	f sensor block	
Intrinsically sa	fe sensors	54
,		
Chapitre 8	I EC Statement of compliance	56
Chapitre 9	Technical specifications	60
Dimensional c	haracteristics	60
Complete dete	ector	62
Measuring ser	nsors	64
Chapitre 10	Special instructions for use in explosive	
environmen	ts and functional safety	68
General comm	nents	68
Metrological p	erformance for the detection of flammable gases	68
Threaded joint	S	69
Operating safe	ety	69
Reliability data	1	69
Chapitre 11	Fault and error codes	70
Chapitre 11 Errors (<i>E xx</i>)	Fault and error codes	70 70
Chapitre 11 Errors (<i>E xx</i>) Faults (<i>dEF xx</i>	Fault and error codes	70 70 70

Thank you for choosing this OLDHAM instrument.

All of the necessary actions have been taken in order to ensure your complete satisfaction with this equipment.

It is important that you read this entire manual carefully and thoroughly.

Limited liability

- OLDHAM INDUSTRIAL SCIENTIFIC shall not be held responsible for any damage to the equipment or for any physical injury or death resulting in whole or in part from the inappropriate use, installation, or storage of the equipment, which is the result of not complying with the instructions and warnings, and/or with the standards and regulations in force.
- OLDHAM INDUSTRIAL SCIENTIFIC does not support or authorize any business, person, or legal entity in assuming responsibility on behalf of OLDHAM INDUSTRIAL SCIENTIFIC, even though they may be involved in the sale of OLDHAM INDUSTRIAL SCIENTIFIC products.
- INDUSTRIAL SCIENTIFIC OLDHAM shall not be responsible for any damage, direct or indirect, or for damages and interests, direct or indirect, resulting from the sale and use of any of its products UNLESS SUCH PRODUCTS HAVE BEEN DEFINED AND CHOSEN BY OLDHAM INDUSTRIAL SCIENTIFIC FOR THEIR INTENDED USE.

Ownership clauses

- The drawings, specifications, and information herein contain confidential information that is the property of OLDHAM INDUSTRIAL SCIENTIFIC.
- This information shall not, either in whole or in part, be reproduced, copied, divulged, translated, or used for the manufacture or sale of INDUSTRIAL SCIENTIFIC OLDHAM equipment by physical, electronic, or any other means whatsoever and for any other reason without the prior consent of OLDHAM INDUSTRIAL SCIENTIFIC.

Warnings

- This is not a contractual document. INDUSTRIAL SCIENTIFIC OLDHAM reserves the right to alter the technical features of its equipment without prior notice if required in the best interest of its customers and with the aim of improving performance.
- READ THESE INSTRUCTIONS CAREFULLY BEFORE THE FIRST USAGE: these instructions should be read by all persons who have or will have responsibility for the use, maintenance, or repair of the instrument.
- This instrument shall only be deemed to be in conformance with the published performance if used, maintained, and repaired in accordance with the instructions of INDUSTRIAL SCIENTIFIC OLDHAM, its personnel or by personnel authorized by INDUSTRIAL SCIENTIFIC OLDHAM.

Warranty

 2-year warranty on defective parts and workmanship including return to the factory and unless misuse. The warranty does not cover consumable parts as sensors, filters, etc.

Disposal of the equipment

European Union (and EEE) only. This symbol indicates that, in conformity with DEEE Directive (2002/96/EC) and according to local regulations, this product may not be discarded together with household waste.

It must be disposed of in a collection area that is set aside for this purpose, for example at a site that is officially designated for the recycling of electrical and electronic equipment (EEE) or a point of exchange for authorized products in the event of the acquisition of a new product of the same type as before.

Chapter 1 | Presentation

Purpose

OLCT60 gas detectors are 4-20mA and 3-wire transmitters designed for measuring combustible and toxic gas as well as oxygen.

They are available:

- As anti explosion protection system with explosion proof enclosure and sensor block This version is approved and listed as OLCT60d.
- As anti explosion protection and inbuilt safety system with explosion-proof enclosure and safety sensor block. This version is available for electrochemical sensors only. This version is approved and listed as OLCT60id.

The versions that are presently available are listed on the following table.

	OLCT60d (1)	OLCT60 id (2)
Catalytic sensor	\checkmark	
Electrochemical sensor		
XPIR Infrared sensor	\checkmark	
OLCTIR Infrared sensor		

1: OLCT60 anti-explosion transmitter with inbuilt explosion-proof detector

2: OLCT60 anti-explosion transmitter with inbuilt intrinsically safe detector.

Table 1: Comparative table for gas detectors, OLCT60 series.

For detailed sensor features please see page 64 and following ones.

The OLCT60 series includes 2 transmitter versions:

- The OLCT60 version with fixed sensor. By this name one can tell whether the anti explosion transmitter is or is not combined with an inbuilt, intrinsically safe detection unit.
- The OLCT60D version with movable sensor By this name one can tell whether the anti explosion transmitter is or is not combined with an intrinsically safe, movable sensor.

The versions that are presently available are listed on the following table.

Name	Description	Illustration
OLCT60	ADF housing with inbuilt sensor block (ADF or intrinsically safe*).	
OLCT60D	ADF housing with 15 m movable sensor block (ADF or intrinsically safe*).	
OLCT60 / OLCT IR	ADF housing with ADF fixed sensor block type OLCT-IR.	a statement
OLCT60D / OLCT IR	ADF housing with ADF movable sensor block type OLCT-IR.	

(*) The intrinsically safe version is distinguished - among other features - by the color of the sensor block that is blue for intrinsically safe versions and raw stainless steed for explosion proof versions.

Operating principle

The measuring sensor converts the target gas into current. The current value is amplified, corrected temperature wise, linearised, and converted into a 4-20 mA proportional signal to the concentration of the measured gas and then conveyed through connecting cable to a centralized unit (measurement unit or industrial automation system).

The measuring sensor changes depending on the type of detector as shown in 2: OLCT60 anti-explosion transmitter with inbuilt intrinsically safe detector.

, on page 7.

Detector parts and components

OLCT60 detectors are made up of the following parts:

ld.	Description
1.	Manufacturer's Label
2.	Cover
3.	Display unit
4.	Electronic circuit board
5.	Fixed sensor block (explosimeter, toximeter and oxygen detector, infrared XP-IR).
6.	Enclosure
7.	Cable inlet gland
8.	Movable sensor block (explosimeter, toximeter and oxygen detector, infrared XP-IR)
9.	Connection cable for movable sensor block
10.	Adapter
11.	OLCT IR fixed sensor block
12.	OLCT IR movable sensor block

Figure 1: Main components of OLCT60 detectors.

External elements

Overview

ld.	Description
1.	Digital display See Figure 3 for more details
2.	Ground terminal
3.	Cover fixation screw
4.	Cable gland
5.	Inbuilt sensor block See 7 for more details
6.	Movable sensor block See 7 for more details
7.	Infrared sensor block, fixed type OLCT-IR. See 7 for more details
8.	Infrared sensor block, movable type OLCT-IR. See 7 for more details

OLCT60

OLCT60 D with movable sensor block

OLCT60/OLCT-IR fixed OLCT60/OLCT-IR movable Figure 2: View of the OLCT60 detectors from the outside.

Difference between ADF and SI sensors

Although they have different ATEX marking, the intrinsically safe, explosionproof sensors are visually distinguished by the color of the sensor block as following:

- Explosionproof sensor: Non-painted, stainless steel sensor equipped with sinter metal.
- Intrinsically safe sensor: Blue painted, stainless steel sensor equipped with sinter metal.

Display and LEDs

ld.	Description
1.	Digital display exhibiting the following readings:
	 gas measure and type alternated with gas unit. If an error occurs, the respective error code is displayed instead of the measure. Error codes are displayed along with the orange LED. Please revert to section <i>Readings on the display</i>, page Erreur ! Signet non défini.
	- Maintenance menus after accessing. Please revert to section Menus, page 14.
2.	Magnetic contact for menu selection
3.	Orange Error LED (detector fault or sensor configuration in progress)
4.	Green LED for electric power supply.
5.	Magnetic contact for validation.
6.	Magnet for magnetic contacts activation (marking 2 and 5).

Figure 3: Detailed view of the display and its related peripheries (LED and active zones).

Internal elements

The following internal components can be accessed by the user:

ld.	Description
1.	Electronic circuit board
2.	Terminal board

Figure 4: Detector internal view, display block taken off.

Labels and pictograms

The detectors has two identification labels, as shown below:

Manufacturer label

On the cover: this label features the main characteristics of the detector:

ld.	Description	
1.	ATEX marking	1 A State of the s
2.	Type of product	
3.	Manufacturer's name	
4.	IECx marking and maximum ATEX certification temperature (excluding metrological performance)	3
5.	Warning	
6.	EC and Ex certification mark	Figure 5: Manufacturer label

Side label

This label is located on the housing and includes the following information:

ld.	Description	
1.	Reference of the detector without sensor (P/N)	
2.	Disposal pictogram	

Operation labels At startup

The display will then show:

- An overview of the display segments and the LEDs to assess their troublefree operation.
- Sensitivity adjustment
- The manufacturing date code.
- The production number.
- The display of gas concentration after stabilization and test of the sensor.

Figure 7: Display steps at power up.

In normal operation

In normal operation, the display alternately shows the measured gas concentration, the type of gas and the gas unit. The *OK* green indicator is lit; the *FAULT* default indicator is off.

Indicator	Lit	Off
OK	Detector under voltage.	Detector off.
FAULT	Detector default or detector in maintenance mode.	Lack of detector default.
	See the <i>In operation with default or</i> error paragraph below.	
	FAULT	FAULT

%FH4

Figure 8: Display in normal operation.

%LIE

In operation with default or error

The display shows the error or default code (list of defaults on page 70). Simultaneously, the orange *FAULT* indicator is lit and the **----C** icon is displayed.

Figure 9: In case of an error or fault, the error or fault code is displayed. Concurrently, the orange *FAULT* indicator is lit.

The maintenance menus

These let you carry out maintenance operations (calibration, zeroing of the sensor's settings, internal zero adjustment in the case of an infrared sensor)

Access to maintenance menus is done when the cover is closed. All the necessary steps should be taken before opening the lid of the enclosure if it is installed in an ATEX zone, in particular:

- A fire permit from the appropriate department;
- Continuous use of a portable explosimeter;
- Use of an intrinsically safe multimeter;
- Reduction to an absolute minimum of the time involved.

This observation applies to all OLCT60 versions that are equipped with an intrinsically safe and explosion-proof sensor block.

Manuel utilisateur

Access

The access to the menus is done without opening the cover, with the use of a magnet (pos. 1) that will be positioned on the (yau) (pos. 2).

Figure 10: The positioning of the magnet on the VALID area allows access to the menu.

List of menus

An OLCT60 type sensor usually has two menus while OLCT 60 sensors with infrared sensor (XP-IR or OLCT - IR) have three menus.

Figure 11: Menus accessible on an OLCT60 (left) and an OLCT60 equipped with an infrared detection module (right).

Main functions in the menus

- CAL: access to the zero setting and sensitivity menu. See page 40.
- Init: initialization of the setting parameters. This function is only used after the changing of a sensor. See page Erreur ! Signet non défini..
- **Ir-0**: Zero adjustment of the optical part. This function is only used with an XP-IR or OLCT IR infrared sensor after the cleaning of the optical parts (lense and mirror on the OLCT IR). See page 45.

Use of the menus

Their detailed use is the subject of 0.

Chapter 2 | Installation

It is recommended to read the installation guide for use and maintenance of the detectors for flammable gases and oxygen (EN/IEC 60079-29-2) and toxic gases (EN 45544-4).

The installation will be done according to current standards, the classification of the area, in compliance with the current editions of standards EN/IEC 60079-14, EN/IEC 61241-14 and other national and/or local regulations.

Regulations and conditions of use

- The installation will be done according to current standards for installation in explosive areas especially regulations IEC/EN 60079-14 and IEC/EN 60079-17 (current editions) or according to other national standards.
- Generally, temperature conditions, the power supply voltages and power mentioned in this document are relative to explosion safety. This is not the operating temperatures of the detector.
- The equipment is authorized for use in Zones 1, 2, 21 and 22 for ambient temperatures ranging from -50 °C to + 70 °C.
- In the case of the OLCT60 D id version, the sensor block can be used in zones 0, 1, 2, 20, 21 and 22 if there is a remote transmitter. The transmitter itself may not be used in Zone 0 or 20.
- The detector must always be in contact with the ambient air. Thus:
 - Do not cover the detection module.
 - Do not use paint on the detection module.
 - Avoid dust deposits.

Necessary equipment

- Complete detector.
- Connector cable
- Fixing tools.
- Fixing material.

Location of the detector

The detector shall be positioned at the ground level, or on the ceiling at the same height as the airflow, or near to the air extraction ducts depending on the density of gas to detect or use. Heavy gases may be detected at the ground level, while light gases will be found at ceiling height. Gas densities are found on page 46.

Detector positioning

All version of the integrated measuring block excluding OLCTIR

The detector will be installed with the detector sensor pointing downwards. For explosive gas detectors only, any tilt of more than 45° from the vertical will lead to an inaccurate measurement.

Fixture of the enclosure shall be secured with 2 x M6 screws and the appropriate plugs for the supporting material. A special holder is available for mounting the detector on the ceiling (see section on *Accessories*).

Figure 12: Sensor pointing downwards (left) and maximum tilt angle for an explosimeter (right).

All version of the remote measuring block excluding OLCTIR

For explosive gas detectors only, any tilt of more than 45° from the vertical will lead to an inaccurate measurement.

Fixture of the enclosure shall be secured with $2 \times M6$ screws and the appropriate plugs for the supporting material. That of the block sensor will be done with at least $2 \times M6$ screws and the appropriate plugs for the supporting material. A special holder is available for mounting the detector on the ceiling (see section on *Accessories*).

Figure 13: Sensor pointing downwards (left) and maximum tilt angle for an explosimeter (right).

OLCTIR version with integrated measuring block only

The detector will be installed with the horizontal detector sensor and the arrow on the anti-projection device pointing upwards.

Fixture of the enclosure shall be secured with 2 x M6 screws and the appropriate plugs for the supporting material

Figure 14: OLCT IR detector MUST be laid horizontally, arrow pointing upwards.

OLCTIR IR version with remote measuring block only

The OLCT-IR detector will be installed with the horizontal detector sensor and the arrow on the anti-projection device pointing upwards.

Figure 15: OLCT IR must be laid horizontally, arrow pointing upwards.

Electrical power supply

Type of detector	Type of sensor	Power supply (Vcc)	Maximum current (mA)	Power consumed (W)
Explosimeter	Catalytic	16 to 32	140	2,24
Explosimeter	Infrared (XP-IR)	16 to 32	120	1,92
Explosimeter	Infrared (OLCT IR)	16 to 32	550	8,80
Toximeter	Electrochemical	16 to 32	80	1,28
Oxygen detector	Electrochemical	16 to 32	80	1,28
Freon	Semiconductor	16 to 32	140	2,24

Connector cable

The detector shall be connected to the central unit (measurement and automation unit) by a 3-wire shielded instrumentation cable, armoured if necessary. The choice of cable will be dictated by the particular requirements of the installation, distance, and type of detector (see table below).

Figure 16: The cable connecting the detector to the central unit should be chosen with care.

Type of detector	Type of sensor	Maximum length (km) for cable of cross- section as indicated			Maximum load resistance (Ω)
		0.5mm²	0.9 mm²	1.5mm²	
Upstream line voltage (Vcc)		24	24	24	
Explosimeter	Catalytic	0,55	1,0	1,7	250
Explosimeter	Infrared (XP-IR)	0,65	1,2	2,0	250
Explosimeter	Infrared (OLCT IR)	0,13	0,25	0,45	300
Toximeter	Electrochemical	1,0	1,8	3,0	250
Oxygen detector	Electrochemical	1,0	1,8	3,0	250
Freon	Semiconductor	0,55	1,0	1,7	250

Table 2: Table of line lengths.

The cable must have a braided screen to reduce the influence of electrical and radiofrequency interference. A cable such as AFNOR M 87-202-01-IT-15-EG-FA (Nexans) may be used. It shall be selected according to the type of detector and in accordance with the table shown hereinabove. Here are some more examples of suitable cables:

Non ATEX zone: CNOMO FRN05 VC4V5-F ATEX zone: GEVELYON (U 1000RHC1) ATEX zone: GVCSTV RH (U 1000) ATEX zone: xx-xx-09/15- EG-SF or EG-FA or EG-PF (U 300 compatible with M87202)

The maximum permissible length will depend on the cross-section of the cable conductors (see table) and on the minimum admissible supply voltage at the detector terminals.

Cable connection Switch off line power supply

On the central unit:

- 1. Inhibit any installation alarms to avoid unexpected triggering during operation.
- 2. Switch off the power to the detector.

Opening of the detector

Remove the 4mm hex screw locking the lid (notch 1) before unscrewing the lid of the detector.

Figure 17: Locating the hex screw (4 mm) locking the lid.

Cable preparation.

The cable shall be taken from the central unit (measurement and automation) to the point of measurement (see Figure 16). The passage, support, and protection of the cable shall be according to best practice .

Cable passage

It is essential that the instructions provided by the manufacturer of the compression gland are followed and the braided screen is correctly connected.

Figure 18: Example of connection of armored and unarmored cable.

Figure 19: Example of double compression cable gland for armored cable clamp.

Cable connection (OLCT60)

The connection of the cable between the detector and central unit should be made with the power off. The site must be equipotential.

Connect the cable to the detector side before connecting the central unit side. After the wiring has been completed, connect the cable shield to the ground terminal of the central unit.

Figure 20: Connections for a OLCT60 (d or id version).

Connection of the cable (OLCT60/OLCT IR remote)

The connection of the cable between the detector and central unit should be made with the power off. The site must be equipotential.

First carry out the connection between the OLCT IR cable (A notch and the detector (B-notch), as shown in Figure 21. The maximum distance is 15 meters. The type of cable to use is 02-IP-09-EG-FA or EG-SF or similar; see page 21.

Then connect the cable (C notch to the detector before the connection to the central unit as shown in Figure 20. After the wiring has been completed, connect the cable shield to the ground terminal of the central unit.

Figure 21: Connection for a OLCT60D/OLCT-IR. Ensure the specificity of the numbering of the connector marked «D» compared to the connector marked «E».

Connecting the enclosure to ground

Connect the enclosure ground terminal to earth according to the regulations.

In the OLCT60, this grounding can also be done by using the dedicated ground terminal located inside the housing.

Figure 22: Ground connection terminal

Closing the cover

Before connecting the cable to the terminal on the central unit, it is essential that the cover is completely closed. Firmly tighten the locking screw (see Figure 17, on page 22).

Use limitations

The gas detector sensors have certain limitations; it is essential to fully recognize these limitations (see 0).

Presence of specific components

 Vapor from silicone or sulphur-containing components can affect the catalytic gas detector sensors and thereby distort the measurements. If the sensors have been exposed to these types of compounds, an inspection or calibration will become necessary.

- High concentrations of organic solvents (e.g. alcohols, aromatic solvents, etc.) or exposure to quantities of gas greater than the specified range of measurement can damage the electrochemical sensors. Inspection or calibration is then recommended.
- In the presence of high concentrations of carbon dioxide (CO2 > 1% vol.), the oxygen-measuring electrochemical sensors can slightly overestimate the concentration of oxygen (0.1 to 0.5% volume).

Operation under low oxygen levels

- If an electrochemical detector sensor is used in an atmosphere comprising less than 1% oxygen for over one hour, the measurement may be an underestimate.
- If a semiconductor detector sensor is used in an atmosphere comprising less than 10% oxygen, the measurement may be an underestimate.
- If a semiconductor detector sensor is used in an atmosphere comprising less than 18% oxygen, the measurement may be an underestimate.

Transfer curve

The curve shown gives the transmitter output current as a function of the gas concentration. If you connect the transmitter to a different unit than the one provided by ISC Oldham, make sure that the transfer curve is fully compatible with the input characteristics of your device to ensure proper interpretation of the information provided by the transmitter. Similarly, the unit should provide sufficient voltage to compensate for any voltage drop in the cable.

Figure 23: transfer curve for a 4-20 Ma detector.

Chapter 3 | Commissioning

The actions described in this chapter are restricted to authorized and trained personnel as they are likely to undermine the reliability of detection.

This chapter describes:

- Zero adjustment.
- Sensitivity adjustment.
- The eventual adjustment of zero and sensitivity.

Purpose of control

Upon delivery, each sensor has been tested and calibrated. There is normally no need for a new calibration.

However, for safety, it is advisable to carry out checks of zero and sensitivity as shown below.

The detector lid shall remain completely closed; the adjustments are carried out through the window.

For a explosimetric detector, we recommended to calibrate the detector with the gas to be detected. When the user wishes to calibrate the detector with a gas other than that detected and programmed, refer to the table on page 46 for the use of recommended gas and the corresponding coefficient.

Necessary equipment

- Bottle of pure air.
- Bottle of standard gas, of suitable concentration for the measurement range (between 30 and 70% of the measurement range).

Commissioning

Prior checks

Check the following points:

- Wiring completed.
- Detector housing grounded.
- Connection made between the connector cable braided screen and central unit ground.
- Integrity of the mechanical mounting (fixings, cable gland, and cover) ensured.

Powering up detector

- 1. Inhibit any installation alarms to avoid unexpected triggering during operation.
- 2. Connect power to the detector line in accordance with the manufacturer's instructions.

Stabilization time

Filter mounting, it is essential to allow the detector temperature to stabilize. In addition, after turning the power on, certain sensors require a further pre-heating time. Any adjustment before the time indicated will result in an incorrect measurement, which may in turn compromise the safety of the goods and personnel. The total waiting time is summarized below:

- Explosimeter: 2 hours.
- Oxygen detector: 1 hour.
- Electrochemical detector: 1 hour, excluding
 - NO (nitrogen monoxide): 12 hours.
 - HCI (hydrochloric acid): 24 hours.
 - ETO (ethylene oxide): 24-36 hours.
- Semiconductor sensor: 4 hours.
- Infra-red detector (XP-IR): 2 hours.
- Infra-red detector (OLCT IR): 2 hours.

3 – Mise en service 29

Display of the gas measure

Normal mode

Alternately, the display shows the measured concentration and type of gas.

The *OK* green indicator is lit; the *FAULT* default indicator is off.

Figure 24: Display in normal operation.

FAULT

OK.

FAULT

OK

Sensor default

In case of a failure, the display shows «dEF» followed by a fault number.

In case of an internal electronic error, the display shows «E» followed by an error number.

In the two cases, the *FAULT* (default) indicator is lit. Proceed with the corrective action in compliance with page 35. The display shows the error or default code is found on page 70.

Ambiguity resolution

(only the catalytic version)

For safety reasons, when measuring a concentration of a flammable gas above 100% LEL, the display shows the «SUP» message and the default «FAULT» indicator is lit. Meanwhile, the measure is inactivated and the output signal is frozen at 23.2 mA.

To exit this mode, add the magnet to the **MENULAT** area after having verified the absence of the ATEX with a portable explosimeter for example.

Figure 25: Display in case of default.

Zeroing

Proceed as follows:

Figure 27: Zeroing.

- 1. Inhibit alarm signals on the central unit.
- 2. Place the calibration shroud onto the detector head (Figure 27, rep. B).
- 3. Branch the calibrator shroud to the pure air bottle (Pos. E) using a flexible hose (Pos. C).
- 4. Open the valve on the pure air bottle (flow rate 30 to 60 liters/hr or 60 to 120 liters/hr in the case of OLCT IR versions) (rep. D).
- 5. After the measurement has stabilized (approx. 2 minutes), read the display of the central measuring unit (rep. A).
- 6. If the expected value does not comply, proceed with the calibration (paragraph *Zeroing and sensitivity*, on page 40).
- 7. See paragraph Adjustment of gas sensitivity, on the next page.

Adjustment of gas sensitivity

For safety reasons, this procedures must come after the zeroing (page 29). Proceed as follows:

Figure 28: Sensitivity adjustment.

- 1. Once zeroing is completed, connect the calibration shroud to the standard gas bottle (Pos. E) using a flexible hose (Pos. C).
- 2. Open the valve on the standard gas bottle (flow rate 30 to 60 liters/hr or 60 to 120 liters/hr in the case of OLCT IR versions) (rep. D).
- 3. After the measurement has stabilized (approx. 2 minutes), read the display of the central measuring unit.
- 4. If the expected value does not comply, proceed with the calibration (paragraph *Zeroing and sensitivity*, on page 40).
- 5. Close the valve (rep. D) of the bottle and remove the calibration shroud (rep. B). Walt for the measured signal to return to zero and reset the alarm signals on the central unit. The zeroing and gas sensitivity procedure is completed. The detector can be used.

Chapter 4 | Preventive maintenance

Periodic checks enable the equipment and installation to remain in conformity and ensure reliable detection. This chapter describes what preventative action should be taken and at what intervals. Inspection and maintenance are carried out in accordance with standards in force EN60079-17 or IEC 60079-17, with whatever editions are in force or with other national standards.

Maintenance schedule

Gas detectors are safety devices. OLDHAM recommends the regular testing of fixed gas detection installations. This type of test consists of injecting standard gas into the detector at a sufficient concentration to activate the pre-set alarms. It is to be understood that this test is in no way a replacement for a detector calibration.

The frequency of gas tests depends on the industrial application where the detector is in use. Frequent inspections should be made in the months following the commissioning of the installation, and should then become more widely spaced provided that no significant deviation is observed. The interval between tests should not exceed 3 months. If a detector should fail to react in contact with the gas, calibration is essential. The frequency of calibrations shall be adjusted according to the results of the tests (humidity, temperature, dust, etc.); however, no longer interval than one year should occur.

The general manager should put safety procedures in place on-site. INDUSTRIAL SCIENTIFIC cannot be held responsible for their enforcement.

To attain a *SIL capability level* according to European standard EN 50402, *Requirements relating to the safety operation of fixed gas detection systems*, the maintenance interval for explosive gas detectors must be no more than 6 months. To obtain the *SIL capability 2 level*, the maintenance interval must be no more than 3 months.

Actions

OLCT60

Periodic maintenance comprises the following actions:

- Removal of dust from the sensor's protective housing, using only a dry cloth. No
 water or solvents should be used. Severely dusty heads or sensors should be
 replaced immediately.
- For use in dusty explosive atmospheres, the user should undertake full and regular cleaning to avoid the build-up of dust. The maximum permissible thickness of a dust layer must be less than 5 mm.
- Replacement of screws: if the screws on the fire-proof part "d" of the body need to be replaced, screws of equal quality or better than A4.70 should be used.
- Zero inspection with pure air; see page 29. Comply with the actions described in this paragraph in case of deviation.
- Gas sensitivity check; see page 30. Comply with the actions described in this paragraph in case of deviation.

OLCT60/ OLCT IR

Refer to the specific OLCT IR manual.

Chapter 5 | Maintenance

Maintenance primarily comprises changing any sensors that no longer meet their initial metrological characteristics.

Since they are liable to affect detection reliability, the tasks described in this chapter are reserved for authorized trained personnel only. Inspection and maintenance shall be carried out in accordance with standards EN60079-17 or IEC 60079-17, with whatever editions are in force or with other national standards.

Possible errors

Observed default	Possible cause	Action	(page)
Line current 0 mA	Connector cable	Check cable	49
	Power supply	Check voltage to the detector terminals	-
	Electronic card	Change sensor	-
0 mA < Line current < 1mA	Sensor	Change sensor	49
	Line resistance too high	Check cable	-
	Power supply		-
		Check voltage to the detector	
		terminals	-
	Standard gas not consistent	Check the contents of the standard gas	-
Zero setting not possible	Sensor	Change sensor	49
	Electronic card	Change sensor	
Sensitivity adjustment not possible	Sensor	Change sensor	49
	Electronic card	Change sensor	
«SUP» display	Ambiguity resolution activated	Inhibit the ambiguity resolution with the magnet.	29
		Check the sensitivity	42
		5 - Maintenance	35

The table below summarizes the various possible detector errors.

Replacing sensor block (Explo, O₂, Tox, XP-IR)

This paragraph is not applied to OLCT IR. Refer to the two paragraphs *Replacing the OLCT IR* on the next page.

The sensor block or detection module encloses the actual detector sensor and the corresponding electronics. A sensor block can only be associated with a defined detector; so an oxygen detection module will not be installed in the place of a explosimetric block.

Frequency of replacement

The sensor block needs to be replaced every time when zeroing, performing gas calibration or preventive maintenance are no longer possible.

Exchanging of the sensor

Step	Action
1.	Prepare the following elements:
	 New sensor block.
	 4 mm Allen wrench.
	 Calibration set (bottle, shroud, etc.)
2.	Inhibit alarm signals on the central unit.
3.	Turn the OLCT60 off.
4.	Loosen the locking screw in the sensor head and rotate the sensor head 30 degrees counterclockwise.
5.	Unplug the connector and remove the defective sensor head.
6.	Replace the worn out detector head with an identical new one.
7.	Reassemble in reverse order and tighten the locking screw.
8.	Restore power by OLCT60 to the central unit.
9.	Install the OLCT60 as explained in detail in the <i>Initialization of the sensor block</i> pagraph on page 37.
Replacing the OLCT IR – integrated version

Contact the manufacturer or distributor.

Replacing the OLCT IR – remote version

Exchanging the detector

Step	Action
1.	Prepare the following elements:
	 New OLCT IR detector.
	 4 mm Allen wrench.
	Calibration set (bottle, shroud, etc.)
2.	Inhibit alarm signals on the central unit.
3.	Turn the OLCT60 off.
4.	Open the defective OLCT-IR connection terminal and disconnect it.
5.	Dismount the defective OLCT-IR and put the new one in.
6.	Carry out the connections. Refer to the <i>Connection of the cable</i> (OLCT60/OLCT IR remote version) paragraph on page 23.
7.	Reassemble in reverse.
8.	Restore power by OLCT60 to the central unit.
9.	Install the OLCT60 as explained in detail in the <i>Initialization of the sensor block</i> paragraph on page 37.

Initialization of the sensor block

Selection of the initializing menu (Init)

Step	Action	Illustration
1a.	After the startup phase, the screen will shows the gas content (it may be wrong at this point). Position the magnet on the value for 3 seconds.	≪LIE
1b.	Until the icon is displayed	- *LIE
	present the magnet 3 consecutive times on the $(MENU/ \blacktriangle V)$ in the 3 seconds.	- «LIE
1c.	The calibration menu (CAL) is displayed.	
1d.	Present the magnet on the MENU/AT.	
1e.	The initialization menu (Init) is displayed.	_In IL

Initialization of the sensor block

This procedure performs zeroing of the electrical parameters of the measuring detector.

Step	Action	Illustration
2a.	The <i>Init</i> screen is displayed, present the magnet once on <u>valo</u> .	
2b.	The display indicates « CnF » (<i>Confirmation</i>).	_EnF
2c.	Position the magnet on the	

OLCT60 Manuel utilisateur

38

2d.	The display indicates « nOn » (<i>No</i>).	
2e.	Position the magnet once on the MENU/AT to change <i>No</i> to Yes.	
2f.	Position the magnet once on the value to validate the choice. The procedure is then ended and the detector automatically resets.	
2g.	Wait 4 seconds during the display of the startup page.	♦ 8.8.8 -•• % 8 8 4 •101 •102
2h.	The version number of the software is displayed.	r 1.3
2i.	The manufacturing date code is displayed.	
2j.	The serial number is displayed.	
2k.	Display count-down starts.	59
21.	When count-down is over, the measuring page is displayed on screen. The sensor is operational.	%LIE
2m.	Subsequently check the gas operation as explained on pages 29 and 30.	Luur

Zeroing and sensitivity adjustment (calibration)

This paragraph will be followed in measuring or control of the zero (page 29) and/or the sensitivity (page 30) to show deviation from the expected values.

For safety reasons, it is important to adjust zeroing and gas sensitivity.

If you purposely or automatically exit the application, the previous values will be maintained.

The sensor leaves the maintenance mode and returns to the measuring mode after 10 minutes of inactivity on the value or MENU/AV.

For infrared sensor versions

This paragraph will be used for the XP-IR or OLCT IR sensor. This menu is not available on other types of sensors.

In this case, the use of a XP-IR or OLCT-IR type infrared detection module it is imperative to zero the optics before proceeding as indicated in the *Optical zeroing* on page 45.

Passage in calibration mode

Step	Action	Illustration
1a.	Position the magnet on the ALID for 3 seconds.	%LIE
1b.	Until the C icon is displayed	- %LIE
	present the magnet 3 consecutive times on the (MENU/▲▼) in the 3 seconds.	- %LIE
1c.	The calibration menu (CAL) is displayed.	

Zeroing

Step	Action	Illustration
2a.	The calibration menu (CAL) is displayed.	
	Position the magnet once on	
2b.	The display now shows a zero indicating the starting of the zero-setting phase.	[] -
2c.	Position the magnet once on the	
2d.	The display indicates the actual zero value (potential offset value).	0-
2e.	Place the injection cap and inject pure air from the bottle (flow at 30 to 60 liters/hr).	
	Wait approximately 2 minutes for the stabilization of the measure.	
	The zero of a CO2 sensor block must be tested with recycled bottled air or, even better, with nitrogen. Never consider ambient air as a zero value.	
2f.	The display eventually indicates a value that is different than zero.	51
	Position the magnet once on the value.	
2g.	«GE» (<i>Standard gas</i>) is displayed to indicate that the system has switch over to the sensitivity adjustment phase.	G E

Adjustment of gas sensitivity

Accessing the sensitivity adjustment menu

Step	Action	Illustration
3a	«GE» (<i>Standard gas</i>) is displayed to indicate that the system has switched over to the sensitivity adjustment phase.	GE

Establishing the concentration of standard gas

Step	Action	Illustration
4a	Position the magnet once on the	
4b.	The displayed value corresponds to the default standard gas value, that is 50 in this case.	020
	The hundredths digit flashes.	
4c.	Adjusting the second digit after decimal point	050
	Adjust the value of the hundredth figure by setting the magnet each time on <u>MENU/AV</u> . Each time you activate the magnet, you increase the second digit after decimal point.	
4d.	Adjust the value of the hundredths by setting the magnet once on	
4e.	Adjusting the first digit after decimal point	050
	The tenths digit flashes. Repeat the same procedure as for the hundredths.	6E
4f.	Adjusting the number of units	
	The unit digit flashes. Repeat the same procedure as for the hundredths.	<i>GE</i>
4g	Validate the digit of the units by setting the magnet once on <u>valid</u> .	
4h.	End of the setting of the standard gas value.	

Injecting standard gas

Step	Action	Illustration
5a.	The display indicates «S» (Sensitivity).	5-
5b.	Place the calibration shroud on the detector head and open the cock of the standard gas bottle (flow at 30 to 60 l/hr).	
5c.	Position the magnet once on the	
5d.	The displayed value keeps changing until it stabilizes. Wait approximately 2 minutes for the stabilization of the measure.	
5e.	As soon as the instrument stabilizes at a value, set the magnet on value once to exit the sensitivity adjustment function. Now go the next step as described on the following page.	52

Validating your calibration

Step	Action	Illustration
6a.	The display indicates «CnF» (<i>Confirmation</i>).	EnF
6b.	Position the magnet once on the	
6c.	The display indicates «nOn» (<i>No</i>).	
6d.	To validate and confirm your calibration values set the magnet once on $MENU/AV$ to change N_i into Yes and then on $VALID$ to confirm.	0.1
	Continue as under paragraph End of zero-poir adjustment and calibration.	C
6e	Otherwise place the magnet once on	-
	When you do so, the detector will return to the measuring mode after 1 minute countdown without applying any of the previous adjustments.	_nUn _→

End of the zero-setting and calibration procedure

Step	Action	Illustration
7a	The display will show for instance «59» and start counting these seconds down before switching the detector back on.	59
	Please note: This value will depend on the type of sensor.	
7b.	Close the cock of the standard gas bottle and remove the calibration shroud.	
7c.	As soon as the countdown is over, the gas ambient concentration must be shown on the display. The detector is now active.	%LIE
	Restore the alarm signals on the central unit.	
7d.	If the display shows «dEF» (Default) followed by the fault number, it means that the detector is not active.	dEF
	Check the fault code number (page 70) and implement the recommended remedies. See page 35.	

Adjusting the optical zero (Ir-0)

(as in the case of XP-IR and OLCT-IR versions)

This menu strictly applies for detectors types XP-IR and OLCT IR prior to calibration of the zero-point and the sensitivity or after cleaning of the optical parts (see page 40). Cleaning of the optical parts is described in the manual of the OLCT-IR.

Selecting the menu

Step	Action	Illustration
1a.	Position the magnet on the value for 3 seconds.	%LIE
1b.	Until the C icon is displayed	-• %LIE
	present the magnet 3 consecutive times on the MENU/▲▼ in the 3 seconds.	-• %LIE
1c.	The calibration menu (CAL) is displayed.	
1d.	Place the magnet twice on MENU/ AV.	
1e.	The calibration menu (<i>Ir-0</i>) is displayed.	_ Ir - 0
1f.	Inject pure air for 2 minutes and then just place the magnet on \square .	8004.
1g.	The display indicates « CnF » (<i>Confirmation</i>).	_EnF
1h.	Position the magnet once on the	

1i.	The display indicates « nOn » (<i>No</i>).	្កពិក
1j.	Position the magnet once on the MENULAT to change <i>No</i> to Yes and adjust the optical zero point.	0.1
	Position the magnet once on the valid	
	Please continue as in paragraph Changing over to calibration mode, page 40.	
1k.	Position the magnet on <u>value</u> to confirm <i>No</i> and exit the calibration function.	

46

Applicable coefficients for explosive gas calibration

Catalytic sensor type VQ1

The applicable coefficients are shown in the following table.

Gas	Gross formula	LEL (%)	LSE (%)	Flash point(°C)	Vapour density	Coefficient Calibration of	Coefficient Calibration of	Coefficient Calibration of	Coefficient Calibration of
		(70)	(70)			methane gas CH4	meinane gas CH4	methane gas CH4	metnane gas CH4
Acetone	C3H6O	2,15	13,00	-18	2,1	1,65	1,20	0,90	0,80
Acetylene	C2H2	1,50	100	-18	0,9	2,35	1,75	1,25	1,15
Ammonia	NH3	15,00	30,20	<-100	0,6	0,90	0,65	0,50	0,45
Butane	C4H10	1,50	8,50	-60	2,0	1,90	1,50	1,00	0,90
Ethane	C2H6	3,00	15,50	135	1,0	1,50	1,10	0,80	0,75
Ethanol	C2H6O	3,30	19,00	13	1,6	2,15	1,70	1,30	1,00
Petrol - Super SP95	1	1,10	~6,0	21	3 to 4	1,80	1,35	1,00	0,90
Ethylene	C2H4	2,70	34,00	- 135	1,0	1,65	1,20	0,90	0,80
L.P.G.	Prop+But	1,65	~9,0	<-50	1,9	1,65	1,20	0,90	0,80
Gas oil	Rocket fuel	0,60	~6,0	55	>4	3,20	2,60	1,70	1,55
Natural gas	CH4	5,00	15,00	-188	0,6	1,05	0,75	0,60	0,55
Heptane	C7H16	1,10	6,70	-4	3,5	2,20	1,80	1,20	1,05
Hexane	C6H14	1,20	7,40	-23	3,0	2,10	1,70	1,15	1,05
Hydrogen	H2	4,00	75,60	-	0,069	1,25	1,00	0,70	0,60
Methane	CH4	5,00	15,00	-188	0,55	1,00	0,75	0,55	0,50
Nonane	C9H20	0,70%	5,60	31	4,4	4,00	3,20	2,65	2,10
Octane	C8H18	1,00	6,00	12	3,9	2,70	2,00	1,45	1,30
Pentane	C5H12	1,40	8,00	-49	2,5	2,10	1,70	1,15	1,00
Propane	C3H8	2,00	9,5	-104	1,6	1,55	1,10	0,85	0,75
Propylene	C3H6	2,00	11,70	-107,8	1,5	1,65	1,20	0,90	0,80
Styrene	C8H8	1.1	8,00	31	3.6	6,30	5,30	3,50	3,00
Toluene	C7H8	1,20	7	5	3,1	4,00	2,95	2,15	1,90
Xylene	C8H10	1,00	7,60	25	3,7	4,00	2,90	2,15	1,90

: recommended gas for detector calibration

Table 3: Coefficients for the calibration of catalytic detectors equipped with a standard sensor VQ1 $\,$

Anti-poison sensor type 4F

Raw	Formula gas	LEL LEL	LSE %	Vapour density	CH Coefficient₄	H Coefficient ₂	Butane Coefficient
Acetone	C_3H_6O	2,15	13,0	2,1	2,24		1,1
Acetylene	C_2H_2	1,5	100	0,9	1,22	1,1	
2- Butanone	C_4H_8O	1,8	11,5	2,5	2,46		1,2
Ethylene	C_2H_4	2,7	34,0	0,98	1,47		
Natural gas	CH4	5,0	15,0	0,55	1,05		

The reference coefficients are:

recommended gas for detector calibration

Table 4: Coefficients for the calibration of catalytic detectors equipped with an anti-poison sensor 4F.

Example (first line of the table)

Calibration of an «acetone» detector with standard gas at 1% butane concentration. Value to be entered when defining standard gas («GE», step 4b, page 42): <u>1% (injected butane</u>) x 100 x 0.95 (butane/acetone coefficient) = 63 % LEL <u>1.5 % (LEL butane</u>)

Please note:

- LEL values vary according to the source
- Coefficients are accurate to ± 15 %.
- For other gases/vapors consult our technical service.

Checking the line current

Figure 29: Checking the current generator of the detector.

Proceed as follows:

- 1. Checking the detector for proper power supply (+24V between terminal 2 and 3).
- 2. Switching the multimeter over to current measurement (0.20 or 0.40 mA scale).
- Make sure to first inhibit the collection system in order to avoid any interference. Disconnect the signal wire (terminal 1, Pos. B) by branching the detector to acquisition system. Branch the «COM» terminal to the multimeter (Pos. D) to terminal 2 (0 V) of the detector (Pos. A).
- 4. Branch «mA» terminal to the multimeter (Pos. D) to terminal 1 (signal) of the detector (Pos. A).
- 5. The current must be 4 mA (Pos. C) when pure air is injected onto the sensor and 20 mA at standard gas concentrations of 100% of the reference measuring scale.
- 6. At end of all checks and controls, branch the signal wire on terminal 1 (Pos. B) with the acquisition system of the detector.

Chapter 6 | Accessories

The following accessories do not apply for OLCT60/OLCT-IR. For the latter please revert to the OLCT-IR manual.

Accessories	Utilization	Illustration	Illustration
Set of tools	Set of maintenance tools		6147870
OLCT60/OLCT IR calibration set	Please read OLCT IR manual The shroud is difference and the gas flow is adjustable between 60 and 120 I/h.		
Gas inlet pipe	makes standard gas filling into the sensor easier. Effects on the measurement: similar measurement as for a natural distribution pattern. Effects on response time: none.		6331141
Gas recirculation head	Allows <i>bypass</i> measuring. Effects on measurement: no effect if calibration is done at the same conditions (pipe, flow). Effects on response time: none.	J	6327910 ∞
Splash-guard	Protects the detector against splashing liquids. Effects on measurement: none. Effects on response time: the response time at natural diffusion may increase for certain gases. Please consult our technical office.		6792844
Remote gas injection head	Allows the detection of ambient gases and concurrent detection of the presence of standard gas injection hose. Strictly for explosive gases. Effects on the measurement: none. Effects on response time: disregardable.		6327911

Accessories	Utilization	Illustration	Illustration
Mobile PTFE protection filter	Protects the gas inlet against splashing and powder contamination. Effects on the measurement: no effect, but can be used to detect O ₃ , HCL, HF, CL ₂ . Effects on response time: increased response time (please ask our technical office for high-density gas > 3 and low concentrations < 10 ppm).		6335975
Ceiling gas collector	Allows the sensor to detect gas more quickly. (ceiling mount)	6	6323620
	Effects on the measurement: none.		
	Effects on response time: may increase by 10%		
Magnet	Used for menu selection through the detector glass.	ARE DER ARE LEDE	6155651

Chapter 7 | Spare parts

Spare parts list for different detectors

Spare parts must be original INDUSTRIAL SCIENTIFIC parts. Use of non-original spare parts may impair safety of the instrument.

Explosionproof sensor block

Illustration	Description
6 313 685	OLCT60 0-100% LEL sensor block type VQ1
6 313 872	OLCT60 0-100% LEL butadiene/acetylene sensor block type VQ1
6 313 974	OLCT60 Anti-poison 0-100% LEL sensor block type 4F
6 313 687	OLCT60 0-100% vol CH4 sensor block
6 313 986	Sensor block OLCT60, 0-100% vol H2 or SF6
6 314 060	Infrared sensor block 0-100% LEL CH4 (5% vol) for OLCT60 XP IR
6 314 093	Infrared sensor block 0-100% LEL CH4 (4.4% vol) for OLCT60 XP IR
6 314 094	Infrared sensor block 0-100% LEL C3H8 (propane) for OLCT60 XP IR
6 314 095	Infrared sensor block 0-100% LEL C4H10 (butane) for OLCT60 XP IR
6 314 096	Infrared sensor block 0-100% LEL Isobutane for OLCT60 XP IR
6 314 098	Infrared sensor block 0-100% LEL GPL (5% vol) for OLCT60 XP IR
6 314 099	Infrared sensor block 0-100%vol CH4 for OLCT60 XP IR
6 314 100	Infrared sensor block 0-5% vol. CO2 for OLCT60 XP IR
6 314 101	Infrared sensor block 0-10% vol. CO2 for OLCT60 XP IR
6 313 710	Sensor block OLCT60 02 0 – 30% vol
6 313 688	Cathalytic sensor block NH3 0-5000 ppm for OLCT60
6 313 707	Sensor block OLCT60 NH3 0-100 ppm
6 313 708	Sensor block OLCT60 NH3 0-1000 ppm
6 313 894	Sensor block OLCT60 NH3 0-5000 ppm
52 OLC	Г60

Illustration	Description
6 313 690	Sensor block OLCT60 CO 0-100 ppm
6 313 691	Sensor block OLCT60 CO 0-300 ppm
6 313 692	Sensor block OLCT60 CO 0-1000 ppm
6 313 693	H2-compensated sensor block OLCT60 CO 0-1000 ppm
6 313 695	Sensor block OLCT60 H2S 0-30 ppm
6 313 965	Sensor block OLCT60 H2S 0-30 ppm, no HC-interference
6 313 696	Sensor block OLCT60 H2S 0-100 ppm
6 313 697	Sensor block OLCT60 H2S 0-1000 ppm
6 313 698	Sensor block OLCT60 NH3 0-100 ppm
6 313 699	Sensor block OLCT60 NH3 0-300 ppm
6 313 700	Sensor block OLCT60 NH3 0-1000 ppm
6 313 706	Sensor block OLCT60 H2 0-2000 ppm
6 313 772	Sensor block ADF OLCT60 methylene – methylene chloride
6 313 773	Sensor block ADF OLCT60 R12
6 313 774	Sensor block ADF OLCT60 R134A
6 313 775	Sensor block ADF OLCT60 MOS

Intrinsically safe sensors

Illustration	Description
6 313 748	Sensor block OLCT60 SI 02 0 – 30% vol
6 313 728	Sensor block OLCT60 SI NH3 0-100 ppm
6 313 729	Sensor block OLCT60 SI NH3 0-1000 ppm
6 313 895	Sensor block OLCT60 SI NH3 0-5000 ppm
6 313 694	H2-compensated sensor block OLCT60 SI CO 0-1000 ppm
6 313 711	Sensor block OLCT60 SI CO 0-100 ppm
6 313 712	Sensor block OLCT60 SI CO 0-300 ppm
6 313 713	Sensor block OLCT60 SI CO 0-1000 ppm
6 313 716	Sensor block OLCT60 SI H2S 0-30 ppm
6 313 717	Sensor block OLCT60 SI H2S 0-100 ppm
6 313 718	Sensor block OLCT60 SI H2S 0-1000 ppm
6 313 719	Sensor block OLCT60 SI NO 0-100 ppm
6 313 720	Sensor block OLCT60 SI NO 0-300 ppm
6 313 721	Sensor block OLCT60 SI NO 0-1000 ppm
6 313 722	Sensor block OLCT60 SI NO2 0-10 ppm
6 313 723	Sensor block OLCT60 SI NO2 0-30 ppm
6 313 727	Sensor block OLCT60 SI H2 0-2000 ppm
6 313 730	Sensor block OLCT60 SI HCI 0-30 ppm
6 313 731	Sensor block OLCT60 SI HCI 0-100 ppm
6 313 724	Sensor block OLCT60 SI SO2 0-10 ppm
6 313 725	Sensor block OLCT60 SI SO2 0-30 ppm
6 313 726	Sensor block OLCT60 SI SO2 0-100 ppm
6 313 734	Sensor block OLCT60 SI CI2 0-10 ppm
6 313 746	Sensor block OLCT60 SI ETO 0-50 ppm
6 313 732	Sensor block OLCT60 SI HCN 0-10 ppm
6 313 733	Sensor block OLCT60 SI HCN 0-30 ppm
6 313 736	Sensor block OLCT60 SI COCI2 0-1 ppm
6 313 740	Sensor block OLCT60 SI CIO2 0-3 ppm
6 313 735	Sensor block OLCT60 SI O3 0-1 ppm

54

OLCT60

Illustration	Description
6 313 737	Sensor block OLCT60 SI PH3 0-1 ppm
6 313 739	Sensor block OLCT60 SI HF 0-10 ppm
6 313 738	Sensor block OLCT60 SI ASH3 0-1 ppm
6 313 747	Sensor block OLCT60 SI SiH4 0-50 ppm

Chapter 8 | I EC Statement of compliance

The page below reproduces the EC statement of compliance for the detector series OLCT60.

IDUSTRIAL	Manufa	cturer Declaration of Conformity
CIENTIFIC	(AND INCOMENTS AND
		TRI DELIVE ATMOSPHER
La Société Industrial Scientific OLDHAi être utilisé en Atmosphères Explosives dési suivantes (<i>The Company Industrial Scientific OLD</i> material intended for use in Explosive Atm Directives:) Détectours	M, ZI Est, 62000 A gné ci-après, est co HAM, ZI Est 6206 oospheres, complies	rras France, atteste que le matériel neuf destiné à nforme aux exigences des Directives Européennes 0 Arras France, declares that the following new with the requirements of the following European tratage OLCT 60.
Deactaurs	at gut (ous a	
I) Directive Européenne AT	EX 94/9/CE du 2	3/03/94 : Atmosphères Explosives
The European Directive A	TEX 94/9/CE of 2	3/03/94: Explosive Atmospheres
N° de l'Attestation CE de type du matéri (N° of EC type examination certificate)	el :	INERIS 01ATEX0027X
Normes européennes de référence (Refe	rence European	Standards)
a) OLCT 60 règles de Construction(rules of c	onstruction) :	EN50014, 50018, 50020, 50284, 50281-1-1
Catégorie (category) :		
OLCT60d : EX II 2 GD / EEx	d IIC T6 (T85°C)	IP66
OLCT60id: EX II 2 (1) GD / E	Ex d [ia] ia IIC T4	(135 °C) IP66
EX II 1 GD / EEx	ia IIC T4 (135 °C) j	our l'élément déporté (for remote detection head)
Note: l'équipement n'est pas impacté par les modifica equipment is not impacted by the substantial modifica.	tions substantielles des n tions of the applicable h	ormes harmonisées des séries EN 60079-0, -1 et -11 (the irmonized standards series EN 60079-0, -1 and -11)
b) OLCT60 relié aux centrales de détection (d autres centrales de détection conformes à (or o	connected to control others control units	units) MX32, MX42A, MX48, MX52, MX62 ou compliant to) ATEX 94/9/CE, Annex II, Ch1.5
Performances métrologiques pour la détection combustible gases and oxygen) : EN 50054, E Exigences et essais pour les appareils utilisant 50271 (OLCT60 Version >=1.10)	des gaz combustible N 50057 (Methane du logiciel <i>(require</i>	s et de l'oxygène (Performance requirements for - capteur (sensor) standard C1000), EN 50104 ments and tests for apparatus using software): EN
N° de la Notification Assurance Qualité e (N° of the Production Quality Assu	le Production de l' rance Notificati	usine de Arras INERIS 00ATEXQ403 on of the Arras factory)
Délivrés par l'Organisme notifié sous le (Issued by the Notified Body n°0080)	numér o 0080:	INERIS, rue Taffanel, 60550 Verneuil en Halatte, France.
II) Directive Européenne CEM 89 The European Directive EMC	0/ 336/CEE du 3 /0 89/ <i>336/CEE of 3/</i> 0	5/89 : Compatibilité Electromagnétique 05/89 : Electromagnetic compatibility
Normes harmonisées appliquées : (Harmonised applied Standards)		EN 50270 - 1999
Arras, le 20/10/09 La Person The ATEX Au	ne Autorisée ATEX horized Representa	Lionel Witrant
Industrial Scientific Oldham ZI EST - B.P. 417		With
DULL ARRANCEMENT - FRANCE		

CE/ATEX119 rev d

INDUSTRIAL SCIENTIFIC	DECLA	ARATION DE CONFORMITE CONSTRUCTEUR			
OLDHAM	-(
La Société Industrial Scientific Oldha utilisé en Atmosphères Explosives désig	m, ZI Est 62 mé ci-après e	2000 Arras France, atteste que le matériel neuf destiné à être est conforme aux exigences des Directives Européennes:			
Dé	tecteur	de gaz OLCT IR			
I) Directive Européenne	ATEX 94/9	P/CE du 23/03/94 : Atmosphères Explosives			
N° Attestation CE de Type du matériel :		INERIS 03ATEX0141X			
Normes européennes de référence :					
a) Règles de Construction:		EN 60079-0, EN60079-1, EN60079-7, EN60079-11, EN 61241-0, EN61241-1 T ambiante : -50°C +65°C			
Version OLCT IR E:	(Ex)	II 2 GD / Ex d e ia IIC T4 Ex tD A21 IP66 T135°C			
Version OLCT IR M25 ou 34 NPT :	₹3	II 2 GD / Ex de IIC T4 Ex tD A21 IP66 T135°C			
 b) Quand relié aux centrales de détection MX32, MX42A, MX48, MX52, MX62 ou autres centrales de détection conformes à la Directive ATEX 94/9/CE, Annexe II, Chl.5 Performances métrologiques pour la détection des gaz combustibles: EN 61779-1.EN 61779-4 (aza de référence Méthane et Propane) 					
- Exigences et essais pour les appareils EN 50271 (Version logicielle	s utilisant du OLCT IR ≫	logiciel =1.35)			
c) Sécurité de fonctionnement pour: la détection des gaz combustibles		EN50402 (Version logicielle OLCT IR >=1.4)			
Processus de développement :		EN61508 (niveau SIL2, phases 1 à 9, 13 à 15)			
Données de fiabilité :					
SIL Capability Apu	PFDAVG	SFF DC MTBF			
SIL 2 3.5 10-7/h	1.6 10-3	90% 72.3% 28 ans			
(Note : se reporter à l	la notice d'u	tilisation pour les conditions d'utilisation)			
N° de la Notification Assurance Quali	té de Produ	ction de l'usine d'Arras : INERIS 00ATEXQ403			
Délivrés par l'Organisme notifié sous	le numéro (080: INERIS, rue Taffanel, 60550 Verneuil en Halatte, France.			
II) Directive Européenne CEM	M 89/336/C	EE du 3/05/89 : Compatibilité Electromagnétique			
Normes harmonisées appliquées :		EN 50270			
Arras, le 17/02/09 La Personn	ie Autorisée	ATEX Lionel Witrant			
Industrial Scientific Oldham ZI.EST-B.P.417 62027 ARRAS Cedex-FRANCE Tel +33 321 60 80 80 Fax +33 321 60 80 00		Directeur Technique			

Directeur Technique Engineering Director

Chapter 9 | Technical specifications

Dimensional characteristics

Figure 30: Dimensional characteristics of OLCT60 detectors with fixed and mobile sensor.

OLCT60 Manuel utilisateur

60

Figure 31: Dimensional characteristics of OLCT 60/OLDT-IR detectors with fixed and mobile sensor.

Complete detector

Power supply to the detector terminals:	15 - 30 Vcc.
Average consumption based on	Catalytic: 140 mA.
the sensor block type (active display):	 Electrochemical: 80 mA.
	 XP-IR infrared: 120 mA.
	 Infrared OLCT IR: 550 mA.
Output current (signal) :	 Current source encoded from 0 - 23 mA (non isolated)
	 Linear 4 to 20 mA current reserved for measurement
	 Electronic fault or no power supply : 0 mA.
	■ Fault: <1 mA.
	 Maintenance mode: 2 mA.
	 Off-scale: Current greater than 23 mA.
	 Uncertainty factor: 20 mA.
Maximum resistance per cable	 Catalytic: 32 Ω loop (1 km and 1.5 mm2)
unit) :	 Electrochemical: 48 Ω loop (1.5 km and 1.5 mm2)
	 XP-IR infrared: 48 Ω loop (1.5 km and 1.5 mm2)
	 infrared OLCT IR: 8 Ω loop (250 m and 1.5 mm2)
Maximum load resistance	 250 Ω (catalytic or electrochemical sensor block).
	 250 Ω (XP IR sensor block).
	 250 Ω (XP IR sensor block).
Display :	 4 digit LCD with background illumination.
	 Pictograms indicating the active function.
	 Menu display
	 Green LED (OK): Powering up.
	 Orange LED (FAULT): fault or maintenance.
Type of cable:	3 active wires screened between detector and centralized unit.
Cable inlet:	Integrated gland type M25 is standard. Other types on request.
Maximum cable diameter handled by the detector :	2 -12 mm for integrated glands.
Electromagnetic compatibility:	to EN 50270.
Protection class	IP66.
62 OLCT60	

Explosive environments:	(ADF version)
	Ex d IIC T6. Ambient temperature: –20 °C à +60°C.
	(Ex) II 2 GD.
	Version with SI sensor block, toxic gas and oxygen only
	Ex d [ia] ia IIC T4
	Ambient temperature: -20 °C à +60°C.
	Ex II 2 GD.
	Please note: Ambient temp. = 55°C with inbuilt gland.
	Fixed version OLCT IR
	Ex d IIC T6 (for OLCT60)
	Ex de IIC T4 (for OLCT IR M25)
	(Ex) II 2 GD.
	Mobile version OLCT IR
	Ex d IIC T6 (for OLCT60)
	Ex de ia IIC T4 (for mobile OLCT IR)
	(€x) 2 GD.
Mass weight:	 1.6 kg without sensor block.
	 2.1 kg with sensor block.
	 4,1 kg with OLCT-IR block.
Materials:	Painted aluminum with epoxy polyester coating.
Operation temperature:	Electronics: -25 °C à +55 °C.
	Sensors: according to the type of sensor.
Stocking temperature:	Electronics: -25 °C à +60 °C.
	Sensors: according to the type of sensor.
Type of detected gas and range of measurement:	Depending on the connected sensor block. See following paragraphs.

Measuring sensors

Type of gas		Measuring range (ppm)	ADF sensor	SI sensor	Temperat ure range (°C)	%HR	Precision (ppm)	Average life (months)	Tps pos. T50/T90 (s)	Storage time and conditions
Explosive gas	Infrared OLCT IR	0-100% LEL			-25 to +55	0-99	+/- 5% (CH4) +/- 3% (HC)	>60	9/15 (CH4) (e) 7/8 (CH4) (f)	(a)
	Infrared XP IR	0-100% LEL			-25 to +55	0-95	+/- 5%	48	11/30 (CH4)	(a)
	Catalytic	0-100% LEL	•		-25 to +55	0-95	+/-1 % LEL (from 0 through 70% LEL)	40	6/15 (CH4)	(b)
AsH3	Arsine	1,00			-20 to +40	20-90	+/- 0,05	18	30/120	(a)
Cl2	Chlorine	10,0			-20 to +40	10-90	+/- 0,4	24	10/60	(a)
CIO2	Chlorine dioxide	3,00			-20 to +40	10-90	+/- 0,3	24	20/120	(a)
со	Carbon monoxide	100 300 1000		:	-20 to +50	15–90	+/- 3 (range: 0-100)	40	15/40	(a)
CO2	Carbon dioxide	0-5% vol.			-25 to +55	0-95	+/- 3%	48	11/30	(a)
COCI2	Phosgene	1,00			-20 to +40	15-90	+/- 0,05	12	60/180	©
ETO	Ethylene oxide	30,0		•	-20 to +50	15–90	+/- 1,0	36	50/240	(a)
H2	Hydrogen	2000			-20 to +50	15-90	+/- 5%	24	30/50	(a)
H2S	Hydrogen sulphide	30,0 100 1000			-25 to +50	15–90	+/- 1.5 (range: 0-30)	36	15/30	(a)
HCI	Hydrogen chloride	30,0 100			-20 to +40	15-95	+/- 0.4 (range: 0-30)	24	30/150	(a)
HCN	Hydrogen cyanide	30,0			-25 to +40	15-95	+/- 0.3 (range: 0-10)	18	30/120	©
HF	Hydrogen fluoride	10,0			-10 to +30	20-80	+/- 5%	12	40/90	©
NH3	Ammonia	100 1000 5000			-20 to +40	15–90	+/- 5 +/- 20 +/- 150 or 10%	24	25/70 20/60 60/180	(a)
NO	Nitrogen monoxide	100 300 1000			-20 to +50	15–90	+/- 2 (range: 0-100)	36	10/30	(a)
NO2	Nitrogen dioxide	30,0			-20 to +50	15-90	+/-0,8	24	30/60	(a)
O2	Oxygen	0-30% vol.	•	•	-20 to +50	15–90	0,4% Vol (15 through 22% O2)	28	6/15	(a)
O3	Ozone	1,00			0 to +40	10-90	+/- 0,03 (0 through 0,2 ppm) +/- 0,05 (0,2 through 1 ppm)	18	40/120	©
PH3	Phosphine	1,00			-20 to +40	20-90	+/- 0,05	18	30/120	(a)
SiH4	Silane	50,0			-20 to +40	20–95	+/- 1,0	18	25/120	(a)
64	OI CT60									

OLCT60

Type of gas		Measuring range (ppm)	ADF sensor	SI sensor	Temperat ure range (°C)	%HR	Precision (ppm)	Average life (months)	Tps pos. T50/T90 (s)	Storage time and conditions
SO2	Sulphur dioxide	10,0 30,0 100		:	-20 to +50	15–90	+/- 0.7 (range: 0-10)	36	15/45	(a)
CH3CI	Chloro- methane	500	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
CH3CI	Dichloro- methane	500	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R12		1 % vol.	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R22		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R123		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
FX56		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R134 a		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R142 b		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R1 1		1 % vol.	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R23		1 % vol.	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R141 b		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R143 a		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R404 a		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R507		2000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R410 a		1000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R32		1000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)

Type of gas	Measuring range (ppm)	ADF sensor	SI sensor	Temperat ure range (°C)	%HR	Precision (ppm)	Average life (months)	Tps pos. T50/T90 (s)	Storage time and conditions
Freon R227	1 % vol.	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R407 c	1000			-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Freon R408 a	1000	•		-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/90	(d)
Ethanol	500			-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/60	(d)
Toluene	500			-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/60	(d)
Isopropanol	500			-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/60	(d)
2-Butanone (MEK)	500			-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/60	(d)
Xylene	500			-20 to +55	20–95	+/- 15% (20 through 70% PE)	40	25/60	(d)

a) +4°C through +20°C. 20 % hrough 60 % HR 1 bar ± 10 % maximum 6 months b) -25°C through +60°C.
 20% hrough 60% HR
 1 bar ± 10%
 maximum 6 months

© +4°C through +20°C. 20 % hrough 60 % HR 1 bar ± 10 % maximum 3 months (d) -20°C through +50°C.
 20 % hrough 60 % HR
 1 bar ± 10 %
 maximum 6 months

e) with shroud

66

f) without shroud

Chapter 10Special instructionsfor usein explosiveenvironmentsand functionalsafety

General comments

The OLCT60 sensors conform to the requirements of European Directive ATEX 94/9/CE relating to explosive Dust and Gas atmospheres. On account of their metrological performance as tested by the accredited organization INERIS, the OLCT60 transmitter detectors intended for the measurement of explosive gases are classed as safety devices according with the European Directive and may, therefore, contribute to limiting the risks of explosion.

The information given in the following sections should be respected and taken into account by the manager of the site where the equipment is installed. As far as the aim of improving the health and safety of workers who are exposed to the risks of explosive atmospheres is concerned, refer to European Directive ATEX 1999/92/CE.

Metrological performance for the detection of flammable gases

OLCT60 detectors are equipped with a VQ1 catalytic sensor in compliance with IEC / EN 60079-29-1. Suitability requirements for use as flammable gas, class 0-100% LEL Group II, reference gas 0-100% LEL Methane and Propane.

These detectors are classed as safety devices according to ATEX 94/9/CE and may, therefore, contribute to limiting the risks of explosion. For this to be so, they must be connected to Oldham type MX15, MX32, MX42A, MX43, MX48, MX52 or MX62 detection units, or otherwise connected to measurement units with 4-20 Ma inputs conforming to section 1.5 of Annex II of Atex Directive 94/9/CE and compatible with their characteristics (see transfer curve).

Cable inlets:

These shall be of a type certified for use in explosive atmospheres. They shall be protected to (or better than) IP66 and shall be installed in accordance with standard ICE/EN 60079-14 (whatever edition is in force), and possibly in accordance with further

OLCT60

68

requirements related to the local or national regulations. The cables should be suitable for use at a temperature equal to or greater than 80°C.

Threaded joints

The threaded joints on the OLCT60 may be lubricated to maintain explosion-proof protection. Only non-hardening lubricants or non-corrosive agents having no volatile solvents may be used. Warning: silicone based lubricants are strictly forbidden, since they contaminate the OLCT60 detector elements.

Operating safety

The detector is certified by INERIS to be in conformity with the requirements of standard EN 50402 for *SIL capability* 1 et 2 for the CH4 and HC versions. Applicable since 2005, these Standards are concerned with electrical apparatuses for the detection and measurement of oxygen or toxic or flammable gases or vapors, and define the requirements relating to the safety function of fixed gas detection systems. The detector has been developed in conformity with standard EN/CEI 61508. The safety function of the OLCT60 detector is the detection of flammable gases using catalytic technology and a 4-20 Ma current output proportional to the gas concentration expressed as a percentage of LEL, respectively from 0 to 100% LEL. In the event of a power failure, the output current will assume a fall-back value less than or equal to 1 Ma or greater than or equal to 23 Ma. The safety function is no longer valid after power has been switched on, during the time take by the measuring sensor stabilize, and during start-up tests, the output current shall be in maintenance mode (2 Ma).

Reliability data

The analysis reported by INERIS with no. CGR 74448 of July 6th 2006 has allowed the assessment of the following datum: Annual failure rate of combustible gas detectors: λ_{DU} annual = 4,42.10⁻² equipped with a catalytic sensor VQ1. The gas detector OLCT60 is compliant to EN50271. As mentioned under the field of application of the foregoing Standards, the detector may be also used for industrial applications requiring an integrity level 1 or 2 to CEI61508. The maintenance period should not exceed 6 and 3 months respectively for a SIL Capability Level 1 and 2.

Please note: the calculated failure rates are strictly valid over the actual life time of the most sensitive elements (limited time interval 3 - 5 years). Past this term, the foregoing rate is no longer significant due to aging of the measuring sensors.

Chapter 10 | Fault and error codes

Errors (E xx)

Errors are exclusively generated when a communication trouble occurs between the sensor and the internal board. Errors are identified in the following format *Exx* (whereas *xx* corresponds to the error code). No corrective action is possible for the operator. In this case, sensors must be returned to the manufacturer or his local agent.

N°	Cause
35 à 39	Communication error with the sensor
40-42	Communication error with the infrared sensor block (OLCT-IR).

Figure 32: Example of communication errors

Faults (*dEF xx*)

A fault signal alerts about a material fault (voltage, sensor etc...)

Here below is the list of possible faults. Please note that the occurrence of more than one fault is not displayed by showing a sequence of the reference code numbers but rather by adding them up to each other.

If , for example, a zero fault (code 1) and a sensitivity fault (code 2) are detected, the display will show the fault code 3. In this case the analogic output signal will equal 1 mA.

N°	Cause	
1	Zero fault after calibration	
2	Sensitivity fault after calibration	_
4	Sensor worn out after calibration	
8	Memory problem.	
16	Excessive negative signal.	
32	Measuring beyond upper range.	
64	Fault after an internal control	
256	Line voltage too low.	Figur
512	RAM memory problem.	exam
1024	Memory programmation problem.	
ABS	No sensor block.	

Figure 33: Display example of a fault code 3.

Index

Α

Accessoires, 51 Actions d'entretien, 36 Affichage Au démarrage, 13 Codes d'erreur, 71 Codes défaut, 71 Alimentation électrique, 22 Anomalies, 37 Atmosphère explosive, 69 Avertissements, 6

В

Bloc cellule, 9

С

Câblage 4-20 mA, 25, 26 Câble Connexion, 24, 25, 26 Longueur de ligne, 23 Câble de liaison, 22 Calibration, 42 Cellule Initialisation, 40 Remplacement, 38, 39 SI, 11 Cellule ADF, 11 Conditions d'utilisation, 19

Ε

Entretien Actions, 36 Périodicité, 35

L

Lever de doute, 31 Limites d'utilisation, 27 Limites de responsabilité, 5

Μ

Maintenance, 37 Menus Accès, 15 Liste, 15 Principales fonctions, 16 Utilisation, 16 Mise à la terre, 27 Mise en service, 30 Mise sous tension, 30

Ρ

Performances de métrologie, 69 Périodicité d'entretien, 35 Pièces de rechange, 53

R

Réglage Gaz étalon (teneur), 44 Sensibilité, 44 Sensibilité (contact), 11 Zéro, 43 Zéro (contact), 11 Remplacement cellule, 38, 39

S

Sécurité de fonctionnement, 69, 70

V

Voyant

OLCT60 Manuel utilisateur

72
Fault, 14 OK, 11, 14 Voyants, 11 Optique, 46 Réglage zéro, 43 Réglage zéro optique, 46

Ζ

Zéro Contrôle, 32

We guarantee

Plus points

To respond quickly and efficiently to your consultancy needs or order tracking throughout the world via our customer service department.

To respond as rapidly as possible to all questions of a technical nature.

2

1

Quality

TO assure you of the best quality of our products and service in conformity with the international Standards and directives in force.

3 Inspection & Reliability

To provide you with reliable equipment. The quality of our production is an essential condition for this reliability. This is guaranteed by virtue of very strict checks that are carried out when raw materials come in, both during the course of and at the end of manufacture (all equipment that is sent out is configured to your individual requirements).

4

Commissioning

If required, to commission your equipment by our Ism-ATEX qualified specialists. An extra safety guarantee.

Training

To provide targeted training programs.

7

Project department

Our team will investigate all your gas and flame detection projects via on-site investigations or from drawings. . We can even suggest pre-project studies, design, installation and maintenance of the safety system in ATEX or non ATEX zones in accordance with the applicable rules

Maintenance contract

To suggest revolving maintenance contracts that are tailored to your needs in order to guarantee you perfect safety:

- · One or more annual visits, including consumables
- · Renewable by tacit agreement,
- Including adjustment of fixed or portable gas detectors, and inspection of control systems.

8 On-site repair

74 OLCT60

To rapidly send our After Sales Service specialists to you. This is made possible by our facilities in France and abroad.

Factory repairs

To deal with any problem that cannot be resolved on-site by dispatching the equipment back to the factory. Teams of **specialist technicians** will get to work on repairing your equipment as quickly as possible, thereby minimizing your downtime.

For all After Sales Service in France, contact us by email at <u>servicecenter@oldhamgas.com</u> Or by telephone to 0800-OLDHAM (0800 653 426).

The Fixed Gas Detection People

EUROPEAN PLANT AND OFFICES

Z.I. Est - rue Orfila B.P. 20417 - 62027 ARRAS Cedex FRANCE Tél.: 33 3 21 60 80 80 - Fax: 33 3 21 60 80 00 Web site : http://www.oldhamgas.com

AMERICAS

Tel. : +1 412 788 4353 Fax : +1 412 788 8353 info@indsci.com **ASIA PACIFIC** Tel.: +65-6561-7377 Fax: +65-6561-7787 sales@isc-cn.com

EUROPE

Tel. : +33 3 21 60 80 80 Fax : +33 3 21 60 80 00 info@oldhamgas.com