The Embedded I/O Company

TIP115

5 Channel SSI Interface with 'Listen Only' Mode

Version 1.0

User Manual

Issue 1.1 September 2004

D75115800

TEWS TECHNOLOGIES GmbH Am Bahnhof 7 Phone: +49-(0)4101-4058-0 e-mail: info@tews.com

25469 Halstenbek / Germany Fax: +49-(0)4101-4058-19 www.tews.com TEWS TECHNOLOGIES LLC 1 E. Liberty Street, Sixth Floor Phone: +1 (775) 686 6077 e-mail: usasales@tews.com

Reno, Nevada 89504 / USA Fax: +1 (775) 686 6024 www.tews.com

TIP115-10 This document contains information, which is 5 Channel SSI Interface with 'Listen Only' Mode proprietary to TEWS TECHNOLOGIES GmbH. Any reproduction without written permission is forbidden. TEWS TECHNOLOGIES GmbH has made any effort to ensure that this manual is accurate and complete. However TEWS TECHNOLOGIES GmbH reserves the right to change the product described in this document at any time without notice. TEWS TECHNOLOGIES GmbH is not liable for any damage arising out of the application or use of the device described herein. **Style Conventions** Hexadecimal characters are specified with prefix 0x, i.e. 0x029E (that means hexadecimal value 029E). For signals on hardware products, an ,Active Low' is represented by the signal name with # following, i.e. IP_RESET#. Access terms are described as: W Write Only R Read Only R/W Read/Write R/C Read/Clear R/S Read/Set ©1998-2004 by TEWS TECHNOLOGIES GmbH

IndustryPack is a registered trademark of SBS Technologies, Inc

Issue	Description	Date
1.0	First Issue	May 2004
1.1	Change of Control Register description	September 2004

Table of Contents

1	PROD	DUCT DESCRIPTION	5
2	TECH	NICAL SPECIFICATION	6
3	ID PR	OM CONTENTS	7
4	IP AD	DRESSING	8
	4.1	I/O Addressing	8
	4.2	Control Register	
	4.3	Data Word Low Register	.10
	4.4	Data Word High Register	
	4.5	Ready Status Register	.10
	4.6	Parity Error Status Register	.11
	4.7	Read Error Status Register	.11
	4.8	Interrupt Status Register	.12
	4.9	Interrupt Enable Register	.12
	4.10	Interrupt Vector Register	
	4.11	Start Convert CH0-CH4 Register	.13
5	OPER	ATION MODES	14
	5.1	Standard SSI Interface Controller	.14
	5.2	'Listen only' Mode	.15
	5.3	Mode behavior differences	.16
6	PIN A	SSIGNMENT – I/O CONNECTOR	17

Table of Figures

FIGURE 1-1 : BLOCK DIAGRAM	5
FIGURE 2-1 : TECHNICAL SPECIFICATION	6
FIGURE 3-1 : ID PROM CONTENTS	7
FIGURE 4-1 : TIP115 REGISTER SET	8
FIGURE 4-2 : CONTROL REGISTER	9
FIGURE 4-3 : READY STATUS REGISTER	10
FIGURE 4-4 : PARITY ERROR STATUS REGISTER	
FIGURE 4-5 : READ ERROR STATUS REGISTER	11
FIGURE 4-6 : INTERRUPT STATUS REGISTER	12
FIGURE 4-7 : INTERRUPT ENABLE REGISTER	12
FIGURE 5-1 : WIRING EXAMPLE: CHANNEL 0, SSI INTERFACE CONTROLLER MODE	
FIGURE 5-2 : WIRING EXAMPLE: CHANNEL 0, 'LISTEN ONLY' MODE	15
FIGURE 5-3 : MODE BEHAVIOR DIFFERENCES	16
FIGURE 6-1 : PIN ASSIGNMENT I/O CONNECTOR	17

1 Product Description

The TIP115 is an IndustryPack® compatible module for motion control applications.

The TIP115 offers five independent channels. Each of these channels can be operated as a standard SSI interface controller or in a 'Listen only' Mode.

The standard SSI interface controller outputs a clock burst to the absolute encoder and receives the returned positional data. The SSI interface controller operates with a programmable clock rate from 1µs to 15µs and programmable data word length from 1 bit to 32 bit.

In 'Listen only' Mode the channel listens to an existing SSI interface to observe its data transfer. It takes both the SSI clock and data as inputs. In 'Listen only' Mode the channel also has a programmable data word length from 1 bit to 32 bit; the SSI clock rate of the observed SSI interface can be in the range of 1µs to 15µs.

In both modes the data word can be encoded in binary- or in Gray code and with odd, even or no parity.

The data inputs are galvanically isolated by high speed optocouplers. The level of the input and output signals is RS422. The data inputs are galvanically isolated by high speed optocouplers. The level of the input and output signals is RS422.

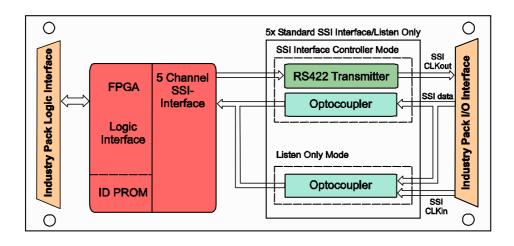


Figure 1-1 : Block Diagram

2 Technical Specification

IP Interface				
Interface	Single Size ANSI/VITA	IndustryPack® Logic Interface compliant to 4-1995		
ID ROM Data	Format I			
I/O Space	Used with n	o wait states		
Memory Space	Not used			
Interrupts	Only INTRE	Q0# is used		
DMA	Not support	ed		
Clock Rate	8 MHz			
Module Type	Type I			
SSI Interface	5 independent channels			
SSI CLK Output	Differential driver (RS422)			
SSI Data Input	Optically isolated differential input			
SSI Clock Rate	1µs to 15µs	1µs to 15µs		
SSI Data word length	Programma	ble from 1 bit to 32 bit		
Interrupts		0 for all 5 SSI channels;		
	2 registers a handling	and one Interrupt Vector for individual interrupt		
Interface Connector	50-conducto	or flat cable		
Power Requirements	70mA typica	al @ +5V DC, no load		
Physical Data	L			
Temperature Range	Operating	0 °C to +70 °C		
	Storage	-45°C to +125°C		
MTBF	331000 h			
Humidity	5 – 95 % non-condensing			
Weight	32 g			

Figure 2-1 : Technical Specification

3 ID PROM Contents

Address	Function	Contents
0x01	ASCII 'I'	0x49
0x03	ASCII 'P'	0x50
0x05	ASCII 'A'	0x41
0x07	ASCII 'C'	0x43
0x09	Manufacturer ID	0xB3
0x0B	Model Number	0x3A
0x0D	Revision	0x10
0x0F	Reserved	0x00
0x11	Driver-ID Low - Byte	0x00
0x13	Driver-ID High - Byte	0x00
0x15	Number of bytes used	0x0D
0x17	CRC	0x77
0x19	Version -10	0x0A

Figure 3-1 : ID PROM Contents

4 IP Addressing

4.1 I/O Addressing

The complete register set of the TIP115 is accessible in the I/O space of the IP.

Address	Symbol	Description	Size (Bit)	Access
0x00	CONT0	Control Register Channel 0	16	R/W
0x02	DATAL0	Data Word Low Register Channel 0	16	R/W
0x04	DATAH0	Data Word High Register Channel 0	16	R
0x06	CONT1	Control Register Channel 1	16	R/W
0x08	DATAL1	Data Word Low Register Channel 1	16	R/W
0x0A	DATAH1	Data Word High Register Channel 1	16	R
0x0C	CONT2	Control Register Channel 2	16	R/W
0x0E	DATAL2	Data Word Low Register Channel 2	16	R/W
0x10	DATAH2	Data Word High Register Channel 2	16	R
0x12	CONT3	Control Register Channel 3	16	R/W
0x14	DATAL3	Data Word Low Register Channel 3	16	R/W
0x16	DATAH3	Data Word High Register Channel 3	16	R
0x18	CONT4	Control Register Channel 4	16	R/W
0x1A	DATAL4	Data Word Low Register Channel 4	16	R/W
0x1C	DATAH4	Data Word High Register Channel 4	16	R
0x21	READY	Data Ready Status Register	8	R
0x23	PAR_ERR	Parity Error Status Register	8	R
0x25	RD_ERR	Read Error Status Register	8	R
0x27	INTSTAT	Interrupt Status Register	8	R/W
0x29	INTENA	Interrupt Enable Register	8	R/W
0x2B	INTVEC	Interrupt Vector Register	8	R/W
0x2D	CONVERT	Start Convert CH0-CH4 Register	8	W

Figure 4-1 : TIP115 Register Set

4.2 Control Register

The Control Register is used to program the operation mode, clock speed (Standard SSI Interface Controller only), parity, the data encoding of the SSI encoder and the number of data bits coming from the serial absolute encoder. Each of the five SSI interfaces can be configured independently of the other by the corresponding Control Register.

This register is cleared automatically with the IP_RESET signal.

Bit	Symbol	Description	Access	Reset Value
15		Unused, always reads as '0'		
14	Mode	1 = 'Listen only' Mode 0 = Standard SSI Interface Controller	R/W	0
13	BC5	Number of Data Bits	R/W	0
12	BC4	Bits are used to program the number of bits of the serial		
11	BC3	absolute encoder. It can be read and written by software. The data bits can be programmed in the range from 1 to 32.		
10	BC2	BC5BC0 = 0x01 to $0x20$ means 1 to 32 bit.		
9	BC1	BC5BC0 = 0x00 not used		
8	BC0	BC5BC0 = 0x21 to 0x3F not used		
7	Coding	Data word coding 1 = Gray Code The data word is converted into binary code 0 = Binary Code	R/W	0
6	Zero Bit	Parity Bit with Zero Bit, controls the clock cycles 1 = two additional clock cycles 0 = one additional clock cycle are provided to get the parity bit	R/W	0
5	Even / Odd	Controls the parity detection 1 = odd parity 0 = even parity This bit is only useful if bit 4 is set to '1'.	R/W	0
4	Parity	Encoder with parity - If encoder provides a parity bit: 1 = detect parity errors	R/W	0
3	CR3	Clock Rate for encoder serial clock speed	R/W	0
2	CR2	The clock can be programmed in steps of 1µs in the range of		
1	CR1	1 to 15. A value of 0 for the clock rate will stop the operation of the SSI interface.		
0	CR0	The 'Listen only' Mode will ignore the Clock Rate setting; in this mode the Clock Rate will be detected automatically.		

Figure 4-2 : Control Register

Note that a value of 0x00 for BC5...BC0 is not used and will result an invalid SSI Data.

A value from 0x21 to 0x3F will also result an invalid SSI Data because of the limited 32 bit input shift register of the TIP115.

4.3 Data Word Low Register

The serial data of the encoder is shifted into the word wide registers Data Word Low and Data Word High. The Data Word Low Register holds the least significant word of the 32 bit shift register.

In Standard SSI Interface Controller a write access to the Data Word Low Register Channel X initiates a data transfer from the encoder independently of the other channels.

This register is cleared automatically with the IP_RESET signal.

The data register may not contain valid data if the serial data transfer is in progress (the corresponding ready bit is read as '0').

4.4 Data Word High Register

The serial data of the encoder is shifted into the word wide registers Data Word Low and Data Word High. The Data Word High Register holds the most significant word of the 32 bit shift register.

This register is cleared automatically with the IP_RESET signal.

The data register may not contain valid data if the serial data transfer is in progress (the corresponding ready bit is read as '0').

4.5 Ready Status Register

The Ready Status Register is a byte wide read only register. This register indicates that the data transfer between the encoder is completed and the position data can be read. When the position data was read, the Ready Status Bit is reset to '0'.

The Ready Status Bit is set after every data transmission, even if a parity or a read error was issued.

Bit	Symbol	Description	Access	Reset Value
7:5		Unused, always reads as '0'		
4	RDY4	Ready Bit	R	0
3	RDY3	1 = Data Ready (set after every completed transmission)		
2	RDY2	In Standard SSI Interface Controller Mode Ready Bit = '0' indicates a transmission in progress.		
1	RDY1	In 'Listen only' Mode the Ready Bit is set to '0' when a		
0	RDY0	transmission is in progress or the data word was read.		

Figure 4-3 : Ready Status Register

4.6 Parity Error Status Register

The Parity Error Status Register is a byte wide read only register. The register indicates that a parity error is detected at the last data transmission. If no parity error is detected at the last data transmission, the status register bit is set to '0'. During a transmission the parity error bit is not valid.

The parity error status is updated only if the parity enable bit of the corresponding channel is set to '1'. Otherwise the parity status is read as '0'.

Bit	Symbol	Description	Access	Reset Value
7:5		Unused, always reads as '0'		
4:0	PAR_ERR4	Parity Error	R	0
3	PAR_ERR3	1 = Parity Error at the last data transmission		
2	PAR_ERR2	0 = No error at the last data transmission		
1	PAR_ERR1			
0	PAR_ERR0			

This register is cleared automatically with the IP_RESET signal.

Figure 4-4 : Parity Error Status Register

4.7 Read Error Status Register

The Read Error Status Register is a byte wide read only register. The register indicates that a read error was detected at the last data transmission. A read error is only issued for channels which operate in 'Listen only' Mode.

Reasons for a read error are:

- The number of data bits set in the Control Register does not match the actual data word length.
- Only a partial transmission was received (this can happen when the mode is switched and a transmission is in progress on the observed SSI interface).

This register is cleared automatically with the IP_RESET signal.

Bit	Symbol	Description	Access	Reset Value
7:5		Unused, always reads as '0'		
4	RD_ERR4	Read Error	R	0
3	RD_ERR3	1 = Data is invalid because of an error during the last		
2	RD_ERR2	transmission 0 = Data OK		
1	RD_ERR1	This bit is only valid for channels in 'Listen only' Mode.		
0	RD_ERR0	For channels in SSI Interface Controller Mode this bit will always read '0'		

Figure 4-5 : Read Error Status Register

4.8 Interrupt Status Register

The Interrupt Status Register is a byte wide read/write only register.

The interrupt status is updated only if the interrupt enable bit of the corresponding channel is set to '1'. Otherwise the interrupt status is read as '0'.

Bit	Symbol	Description	Access	Reset Value
7:5		Unused, always reads as '0'		
4	INTSTAT4	Interrupt Status	R/W	0
3	INTSTAT3	1 = Data Ready Interrupt		
2	INTSTAT2	0 = no interrupt		
1	INTSTAT1	To quit the interrupt status, write a '1' to the corresponding bit.		
0	INTSTAT0			

This register is cleared automatically with the IP_RESET signal.

Figure 4-6 : Interrupt Status Register

4.9 Interrupt Enable Register

The Interrupt Enable Register is a byte wide read/write register. The register controls the data ready interrupt of the channel 0 to channel 4.

Bit	Symbol	Description	Access	Reset Value
7:5		Unused, always reads as '0'		
4	INTENA4	Interrupt Enable	R/W	
3	INTENA3	1 = Data Ready Interrupt enabled		
2	INTENA2	An interrupt will be issued when a transmission completes an the READY status bit is set to '1'		
1	INTENA1	0 = Interrupt disabled		
0	INTENA0			

This register is cleared automatically with the IP_RESET signal.

Figure 4-7 : Interrupt Enable Register

4.10 Interrupt Vector Register

The Interrupt Vector Register is a byte wide read/write register. It is cleared automatically with the IP_RESET signal. Interrupt vector is loaded by software.

4.11 Start Convert CH0-CH4 Register

The Start Convert Register is a byte wide write only register. It is used to start the data transmission for all SSI channels simultaneously.

If the clock rate is set to 0x00 in a Control Register the corresponding SSI channel don't start the data transmission.

Only channels in SSI Interface Controller Mode will start a transmission.

5 **Operation Modes**

5.1 Standard SSI Interface Controller

In this mode the channel operates as standard SSI Interface Controller. Setup the SSI Interface Controller in the Control Register. Set the clock rate, the number of data bits and the data word encoding. Note that the parity- and the zero bit are not included in the data word length. A data transfer is initiated through a write to the Data Word Low- or the Start Convert Register. The SSI Interface Controller will generate a clock burst, on which the absolute encoder returns its positional data. The SSI Controller receives the positional data, performs a Gray code to binary conversion when the data word encoding is set to 'Gray Code' and checks, if enabled, the parity. The end of the data transfer is indicated by the Ready bit and, if enabled, an interrupt will be issued. The positional data can then be read in the Data Word Registers.

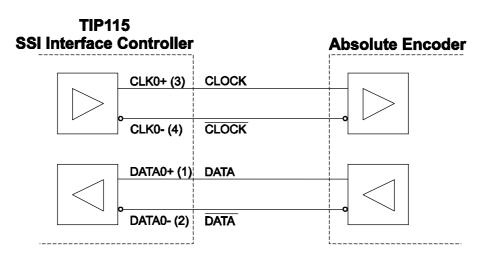


Figure 5-1 : Wiring Example: Channel 0, SSI Interface Controller Mode

In this mode the "Read Error" always reads as '0'.

5.2 'Listen only' Mode

In 'Listen only' Mode the channel listens to an existing SSI interface to observe its data transfer. It takes both the SSI clock and data as inputs. Setup the Control Register according to the observed SSI interface. Set the number of data bits and the data word encoding. Note that the parity- and the zero bits are not included in the data word length. The Clock rate setting in the Control Register is 'don't care'; the Clock rate of the observed SSI interface will be detected automatically. A data transfer is initiated by the observed SSI Interface Controller. The positional data will be received and a Gray code to binary conversion and a parity check will be performed (if enabled). The end of the data transfer is indicated by the Ready bit and (if enabled) an interrupt. The positional data can then be read in the Data Word Registers. Reading the Data Word Registers will reset the Ready bit to '0'.

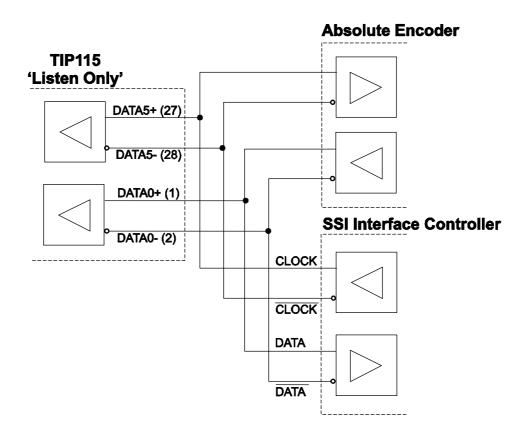


Figure 5-2 : Wiring Example: Channel 0, 'Listen only' Mode

In this mode the Clock rate setting in the Control Register is ignored; the Clock rate will be detected automatically. Writes to the Data Word Low- and the Start Convert Register are also ignored for channels in this mode.

In case of a partial transmission a read error will be issued in the Read Error Status Register. To detect read errors, the width of the first SSI Clock pulse is measured to detect the clock rate. This clock rate is multiplied by 4 and used as initial value for a watchdog timer. Every new received bit resets the watchdog timer, until either the programmed data word length is reached (successful read) or a timeout occurs (read error). In case of a timeout the Read Error bit is set to '1'.

Reasons for a read error are:

- The number of data bits set in the Control Register does not match the actual size of the transmission.
- Only a partial transmission was monitored (this can happen when the mode is switched and a transmission is in progress on the observed SSI interface).

In case of a SSI communication in progress when the mode is switched to 'Listen only', a read error will be issued for the first reading.

5.3 Mode behavior differences

	Standard SSI Interface Mode	'Listen only' Mode	
Control Register	Control Register fully used Bit 14 (MODE) is set to '0'	Clock rate setting in Control Register is 'don't care' Bit 14 (MODE) is set to '1'	
Ready Register	Ready bit = '0' during transmission	Ready bit = '0' during transmission or when the data word was read	
Read Error Register	Read Error bit is always '0'	Read Error bit is set to '1' on a erroneous transmission	
Connections	Connect SSI Data with 'DATA' inputs. Connect SSI Clock with 'CLK' inputs.	Connect SSI Data with 'DATA' inputs. Connect SSI Clock with 'CLKIN' inputs.	
Data Transfer Start	Data transfer is initiated through a write to the Data Word Low- or Start Convert Register	Data transfer is initiated from external SSI Interface Controller	

Figure 5-3 : Mode behavior differences

6 Pin Assignment – I/O Connector

Pin	Signal	Comment	Pin	Signal	Comment
1	DATA0+	SSI DATA CH0+	26	GND	Ground
2	DATA0-	SSI DATA CH0-	27	CLKIN0+	SSI CLKin CH0+
3	CLK0+	SSI CLKout CH0+	28	CLKIN0 -	SSI CLKin CH0-
4	CLK0-	SSI CLKout CH0-	29	-	Do not connect
5	GND	Ground	30	-	Do not connect
6	GND	Ground	31	CLKIN1 +	SSI CLKin CH1+
7	DATA1+	SSI DATA CH1+	32	CLKIN1 -	SSI CLKin CH1-
8	DATA1-	SSI DATA CH1-	33	-	Do not connect
9	CLK1+	SSI CLKout CH1+	34	-	Do not connect
10	CLK1-	SSI CLKout CH1-	35	GND	Ground
11	DATA2+	SSI DATA CH2+	36	GND	Ground
12	DATA2-	SSI DATA CH2-	37	CLKIN2 +	SSI CLKin CH2+
13	CLK2+	SSI CLKout CH2+	38	CLKIN2 -	SSI CLKin CH2-
14	CLK2-	SSI CLKout CH2-	39	-	Do not connect
15	GND	Ground	40	-	Do not connect
16	GND	Ground	41	CLKIN3 +	SSI CLKin CH3+
17	DATA3+	SSI DATA CH3+	42	CLKIN3 -	SSI CLKin CH3-
18	DATA3-	SSI DATA CH3-	43	-	Do not connect
19	CLK3+	SSI CLKout CH3+	44	-	Do not connect
20	CLK3-	SSI CLKout CH3-	45	GND	Ground
21	DATA4+	SSI DATA CH4+	46	GND	Ground
22	DATA4-	SSI DATA CH4-	47	CLKIN4 +	SSI CLKin CH4+
23	CLK4+	SSI CLKout CH4+	48	CLKIN4 -	SSI CLKin CH4-
24	CLK4-	SSI CLKout CH4-	49	-	Do not connect
25	GND	Ground	50	-	Do not connect

Figure 6-1 : Pin Assignment I/O Connector

The pins marked with 'Do not connect' are occupied with active RS422 line driver outputs, which are reserved for internal use. To avoid contentions, leave this pins open.