EDK3664F Tutorial Manual |

EDK3664F
Low-Cost Evaluation Board
Tutorial Manual
for
Hitachi H8S, H8/300 Series C/C++ Compiler

For H8/300H Tiny
3664
On-chip FLASH Microcontroller

Issue 1.0 Jan-01 1

| EDK3664F Tutorial Manual

PREFACE

Product Warranty
The warranty periods against defects in materials and workmanship are as set out in the accompanying Customer
Information sheet.

Limitation of Warranty

The foregoing warranty does not cover damage caused by fair wear and tear, abnormal storage conditions, incorrect use,
accidental misuse, abuse, neglect, corruption, misapplication, addition or modification or by the use with other hardware or
software, as the case may be, with which the product is incompatible. No warranty of fitness for a particular purpose is
offered. The user assumes the entire risk of using the product. Any liability of Hitachi Micro Systems Europe Limited is limited
exclusively to the replacement of defective materials or workmanship.

Restrictions
Hitachi Micro Systems Europe Limited's products are not authorised for use in medical applications without prior written
consent. Such use includes, but is not limited to, life support systems.

Hardware Considerations

1. Earthing
This hardware is designed for use with equipment that is fully earthed. Ensure that all equipment used is appropriately
earthed. Failure to do so could lead to danger for the operator or damage to equipment.

2. Electrostatic Discharge Precautions
This hardware contains devices that are sensitive to electrostatic discharge. Ensure appropriate precautions are
observed during handling and accessing connections. Failure to do so could result in damage to the equipment.

3. Electromagnetic Compatibility
It is advised that suitable EMC precautions be observed.

Cautions

1. This document may be, wholly or partially, subject to change without notice.

2. Allrights reserved. No one is permitted to reproduce or duplicate, in any form, a part or this entire document without
Hitachi Micro Systems Europe Limited's written permission.

Trademarks

1. General
All brand or product names used in this manual are trademarks or registered trademarks of their respective companies
or organisations.

2. Specific
Microsoft, MS and MS-DOS are registered trademarks and Windows and Windows NT are
trademarks of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
ProComm® is a registered trademark of Datastorm Technologies.

Document Information
Product Code: D002770 11
Version: 1.0

January 2001

Copyright © Hitachi Micro Systems Europe Ltd. 2001. All rights reserved.

2 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

CONTENTS

(010 NN I N N SO 3
1. EDK USAGE TUTORIALS ..ottt sttt 5
11 TUTORIAL A “ON OFF ..ttt ettt b bbbttt h e b et e e sbe e b e e e e saeesbeenbeenbeens 6
111 SOUICE FIlB.... e b bbbt sb e bbbt et e e e b e 7
1.1.2 Programming the flash on 3664 USING FDTcccooiiiiiiiiiiie e 9
1.13 Connecting Hitachi Debugging Interface - MONItOrcccoccoviiiiiciiiciee e 10
1.1.4 RUNNING TULOFTAI A ..o bbb 11
12 TUTORIAL B: “FLASHER".......coiiiitiieiicte ettt sttt bbb bt 14
121 SOUICE FIES ..ottt bbbt b e et sb e et sbeneeneas 14
1.2.2 HDI-m Library file iINCIUSIONcovoiie e 14
1.2.3 Building the FLASHER PIOJECL........cccoviiieieeeie ettt 15
1.2.4 Flashing Tutorial B onto the EDK.........ccccviieiiiiie s 15
1.2.5 Setting and Viewing breakpointscoveeiiieieircieese s 16
1.2.6 Running the program and halting eXeCUtioNccccevvvierieiiciecrc e 17
1.2.7 VIEWING VAITADIESveveceee e ettt r e e e 18
1.2.8 Using HDI-M to modify @ variable...........cccveiiieiiiinn s 19

2. EMBEDDED CODE TUTORIALSoooiitest ettt 20
2.1 TUTORIAL C: “STATICS .ottt sttt et b et bttt be et sbe e ebe b e 21
2.1.1 Need fOor the StArtUP COUB.......viiiiiiire et re e eneas 21
2.1.2 Startup COAe AetaAl........cveieiesecire e s 21
2.1.3 VIEWING the StALICS...cuveieie it re e e e e e 23
2.14 RUNNING The COUB ..ot ra e nenrenns 24
2.15 Memory map for EDK3664F With HDI-Mcccveieiiiiicsc e 25
2.2 TUTORIAL D: “TIMERY ...ttt ettt ettt e et ebe b e 26
221 Setting the LED D2 t0 the COMTECE POIT......c.cceeiiiiiiieiiciieieeie e e 26
2.2.2 Accessing the control and Status FEISLErS........o.oiiiiiieiere e 26
2.2.3 THE tIMEE PIrOGIAMeiiiiiiieite ittt ettt e et bbbt se e b e besbeebe e e e e e 27
2.2.4 RUNNING TIMEE L.ttt bbb bbb 28
2.2.5 VAETALIONS ...ttt e bbbt e et b s besbeebeene e e e b nre s 29
2.3 TUTORIALE: “INTERRUPT ..ottt sttt ettt ettt sb e et b et sbe e nne e 31
2.3.1 Interrupts on the H8/300HTINY 3664Fcc.cieviieiiieice e 31
2.3.2 Creation 0f AN ISR N C ..o.viiicice et 31
2.3.3 INtErrUPtS AN HD =M ...ocuiiiiicc et re e ane s 32
2.34 Understanding the Interrupts TULOTIAlcccooviveieiiiie s 33
2.3.5 Viewing and Running the applicationc.cceviiieiiisienieere e 34
2.3.6 VAETALIONS ..ttt bbb bbbt b ettt enes 34
24 TUTORIAL F: “LONER ...ttt ettt ettt bbbt ie et ebe b e 35
24.1 Creation of a vector table in C without HDI-M ..o 35
2.4.2 Low level INItIaliSAtIONcccoiiiiiieiee e e 35
2.4.3 The MAIN() FUNCLION ... et 36
2.4.4 The Serial /O FUNCLIONSoc.oiiiiiieice e bbb e 36
2.4.5 Linking for stand-along COAB..........uiiiiiiii e 37
2.4.6 RUNNING The COOE ...t bbb 38
2.4.7 VAETALIONS ...ttt bbb e bbbttt sb e s besbe b e e ne e e e b nne s 38

3. NORMAL PROUJECT ..ottt ettt sttt sttt 39
3.1 “NORMAL’ PROJECT .eettitiieieitisteestesteseste st este st eabe st eetesbe e ebesbe et sbeseabesbeseebesbeseebesbeneesesneneas 40
3.11 Creating The NOrmal ProjECE.......cccvoeiiiiiicieieie et 40
3.1.2 HEW BUild CONfigUIatioNS.........ccviiieieiire st neens 40
3.2 ‘DEBUG’ CONFIGURATION FOR OPERATION WITH HDI-Mccoviiiiiniiiiinieisie e 40
321 Linker Setup and SECLION MaP.......ccveieriireiiseseee et ene s 40
3.2.2 Included files and COMPIIEr SEIUP......oiviiiiire e 41
3.3 ‘ReLEASE’ CONFIGURATION FOR STANDALONE OPERATION.......coveiiiirierenieriereaiesieesiesieneas 42
331 I =T =1 0 o PO 42

Issue 1.0 Jan-01 3

EDK3664F Tutorial Manual

F AN = N] 5, TSRO 43
4.1 BOARD OVERVIEW ...uttiiiiiiiiiiiiiitiie e e s se bttt e s e e e s s s ab bt et s s e s s s e sabb b e b e e e e e s s sbb et e s e s e s s saabb b b e e e s esssasabbaeess 43
4.2 I] 1N L6 1 TSRS 44
4.3 PINOUT FOR X1, X2, X3 & XA oottt st a e aba s 45
4.4 HB/3B64 MEMORY IMAP .. .ee ittt et ettt e et e st e st e e sbe e e sbe s e sbe e e b e s e ebeessbesssbeessbeeesbesesbeeeabesesres 46

4 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

1. EDK USAGE TUTORIALS

This manual answers, in tutorial form, the most common questions asked about using this evaluation board:

« How do | compile, link, download, and run a simple program?
< How does building an embedded application differ from application programming?
« How do | use Hitachi's tools?

Files referred to in this manual are installed using the project generator as you work through the tutorials. The tutorial
examples in this manual assume that installation procedures described in the EDK User manual have been completed.

Source code listings in this manual are for explanation purposes only. Due to software revisions, the listings may not be
identical to the listings on the disk.

Note: These tutorials are designed to show you how to use the EDK, and are not intended as a comprehensive
introduction to HDI-M, Hitachi Embedded Workshop (HEW) or the compiler toolchains - please consult the relevant
manuals for more in-depth information.

Issue 1.0 Jan-01 5

| EDK3664F Tutorial Manual

1.1 TuToRIAL A: “ON OFF”

The EDK is equipped with a TWO RED LEDs that may be controlled by a program. LED D1 is connected to the 3664F port 5
bit 7 (pin 30 on X3:underside of board / X4:topside of board). LED D2 can be connected to port 5 bit 6 (Board pin 31 on X3
| X4) or port 8 bit 2 (pin 19 on X3/ X4) by setting jumper J10 (see Section 2.2.1) . For this tutorial we will be using LED
D1. Below is a picture of the EDK3664F showing the LEDs.

0 X1 X2 X3 X4
.J1 ;.] o' o o Mmse
T @ &35
S92l & md4Ze 54
6o 2 o od] o 53
fleie @4le 52 D5
G0 d o o380 51
=1 @ &S0
tdo o o od9
1o o o o43
e @ o 47
- -] o380 46
'4pi e ©37@ 45
R=I R v o360 dd
‘e oan| 3664F D350 43
7ede] DIP42S | midead? el
S80Il B D330 4 {2
I el e @32e 40 J10:
10 a12 & @31 e 39
1l @l a oo 35 SDA SCL
A2 old o o290 37
j2elao of8o 35
14 olé o o7 o 35
190 o @ o34
ez 0 o BOOT ARMED arml
o o o 032 @
REE-I - [= B -) |
19017 0 oZeo 30
20018 o o29: 29
2l elde rtQ.E4E.EEl.
EEDQUD mEBoE?I m POWER
ecl e ool
P4 meao o o 8§35
1 ' RESET
iBOOT

EDK3664 Board layout

The numbers next to X2 and X3 are for DIP-42S package. The numbers next to X1 and X4 are for QFP-64 package. For
example Pin 3 on X1 and X2 is connected to Pin 59 on QFP-64 and Pin 1 on DIP-42S.

LED | X3/X4Pin | QFP-64Pin | DIP-42S Pin Pin Function
D1 30 27 23 Port 5 Bit 7/ SCL

This first tutorial example shows how to turn the LED D1 on and off. In the process, you will also learn:

» How to access on-board H8/300HTiny 3664F peripheral control registers.
How to set up an H8/300HTINY 3664F 1/O port for output.

How to toggle a bit on an H8/300HTINY 3664F 1/0 port.

How to download and run a simple program using the HDI debugger.

6 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

111 SOURCE FILE

Here is a listing of the source file On_Off.c:

#i ncl ude "i odefine. h" /* 3664 Onchip peripheral registers */
voi d mai n(void); /* function prototype */
voi d mai n(voi d)
{
| O. PCR5. BYTE = 0x80; /[* Set PORT 5 BIT 7 for output */
whi | e(1)
| O PDR5. BI T. B7 = 0; /[* turn on LED */
| O PDR5.BIT. B7 = 1; [* turn off LED */
}
}

To look at the program start Hitachi Embedded Workshop from the Windows Start Menu or from its icon:

L)

HEW 7 Hitachi Embedded Workshop
JJ<9-IE.$ Edit Project Options Buid Taols
. - ; £ [Hew CulbN -

e Open a new tutorial workspace from the ‘File | New Workspace...” menu or (= Open -
select ‘Create a new project workspace’ if you are presented with the = e #y

‘Welcome!" dialog.

Mew Workspace... k

Open Workspace. ..
Save Workspace

Cloze Workspace

a5

. Enter a name and path, for example: 3664 TutorialA and C:\..\3664 TutorialA, select “Hitachi H8S, H8/300
Standard” Tool chain and Project type “EDK3664F".

. Click OK to start the EDK3664F Project Generator wizard. Mew Project Workspace [=]x]
» Select “Tutorial Projects” as the type of project to generate Iﬂa“‘a L
and then click “Next". 3554_Tutorialt
= Cancel
Directony: ﬁl
e Choose “1. On/Off Tutorial” as the project to generate. [-veck 3664113664 _Tutorialé Browse. . |
. . LCPL family:
e Click “Finish” to create the project. [Hes He/a00 =
Tool chain:
The project generator wizard will create the project OnOff and | Hitachi HBS HE/300 Standard [~
insert the necessary files. (Bt e
@ Application

@ Azzembly Application
Demonstration

@ Ermpty Application

@ Library

Issue 1.0 Jan-01 7

| EDK3664F Tutorial Manual

. If the Workspace window is not visible, show it now by clicking the Workspace window icon on the toolbar:

(Alternatively you can select the ‘Window | Workspace’ menu item or press ‘Alt-K’ on the keyboard.)

You will see a tree display showing all the files in this project. ia
« To view the file On_Off.c double-click on the file in the Workspace window. A new -G 3664 Tutorials
indow will open showing the code above =+ Project Fes
wincow wilt op 9) % dbact o
: j intpra.c
on_off.c
File Component Details: resetprg. o
The #i ncl ude “iodefine.h” include at the start of the file sets up a data 5 sbik.c
. . . e - |E] wecttblc
structure that allows us to access the data direction register of the port, and also individual 553 Dependencies
bits of a byte of data, in this case the data register of the port. See H8/300H TINY 3664F | i 5] iodsfine.h
Series Hardware Manual, for details on how the data direction register is used to set 5] shikh
individual bits of ports for input or output. g i’:;k::"h

The #def i ne statement in iodefine.h assigns the data structure to an absolute address in ~ Eeroj...] < Mavi.. |
the H8/3664 memory space by using a pointer declaration:

#define 10 (*(volatile struct st_io *) OxFFDO) /* 10 Addr ess*/

Setting the structure to start at this address allows the structure elements to map onto the corresponding Port 5 peripheral
control registers in the device's address space. By taking the time to set up this structure, the actual code in the mai n()
function can be created very simply.

First we set bit 7 in the data direction register, which controls whether a particular bit of the port is for input or output, to one
to set the corresponding bit in the port as an output. By default all data direction bits are set to zero making all the port bits
inputs.

| O PCR5. BYTE = 0x80; /* Set PORT 5 BIT 7 for output all others inputs*/

The bit 7 pin of the port itself, and thus the LED D1, can then be controlled just by setting the individual value of hit 7 in the
port’s data register to a 1 (LED off) or a zero (LED on). We can do this very simply using the structure expression:

| O. PDR5. BI T. B7
| O. PDRS5. BI T. B7

0; /* turn on LED */
1; /* turn off LED */

These two statements are contained inside a whi | e(1) {..} loop, and so will alternate between setting the LED D1 on
and off forever, until we stop the program. Next we will try running the program.

« Click the Build project icon [¥¥ or press <F7>.

This will build the first tutorial and create an s-record for downloading onto the 3664 Flash.

8 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

112 PROGRAMMING THE FLASH ON 3664 USING FDT

Because the EDK3664 has limited RAM and is a single chip microcontroller the HDI monitor code is built with the user's
code. To debug the user code both user code and the monitor code must be programmed into flash whenever the user code
is built. The HDI monitor library has been built and linked with the user code for this project into an s-record which has the
same name as the project. The s-record is\ 3664_Tut or i al A\ debug\ 3664_Tut ori al A. not . Until this file is
flashed onto the microcontroller no debug can be performed with HDI.

To flash the EDK3664 first ensure that FDT and the 3664 Flash Kernels Patch have been installed from the EDK3664 CD
see user manual for installation instructions. Run FDT using the start menu item or the icon.
WARNING: Do not create an FDT workspace, we will be using the Quick Programming method!

e Once the ‘Welcome!" screen for FDT is displayed press CANCEL. DO NOT create a workspace. FDT should now be
running with no open workspace or file.

Now load the s-record created when the project was built
+ Load the s-record 3664 _Tut or i al A. not by selecting the menu item ‘File | Open’ or the icon | [

Once the s-record has been loaded into FDT it should be visible in the work area
Open the ‘FLASH Controller’ window

e Select the menu item ‘Image | Download
Image’ or the download image icon | g4

‘4” FLASH Development Toolkit - [3664_T utoriald_mot]
@ File Edit “iew Project Device |mage Tools Window Help

=lelx|
! DR ea¥ | siviee|)d|=s
EEEIEETEIEE

=l
21 Mo'workspace

Setup the ‘FLASH Controller’ window

e Select H8/3664 as the ‘Target device', select
BOOT mode and ensure that the ‘Select
Interface’ is set to Direct Connection. Ensure
correct COM Port is selected for the PC being
used.

ooooooon 02 24
oooooooe 00 4a
oooooolo oo 52
oooooole 02 06
oooooozo 00 8a
oooooonze 00 4a
00000030 00 ba
oooooon3g ed fe
00000040 01 44
oooooon4e B4 70
ooooooso 54 70
oooooonse B4 70
ooooo0en 54 70
ooooones 54 70

FLASH Controller: *3664_Tutorials mot* HE

— Device Selection

Target device:

LConnect |

¥ Usze default zettings
COM Port

@ BOOT Mode
 USER Program Mode

FLASH Size 32K
H&/3654F e - 00000070 54 70

| [RéM Size 1.75K 00000070 54 70
00000080 G54 70

00000083 54 70

~ Cammenik Ukenestiive Bt 00000090 G54 70

oooooon9s G54
oooo00an G4
oooo00as 54

Elark check | o1 - Select Interface: ooooo00k0 54 70
IDirect Cannection 'l I
Erase FLASH blocksl Bfg“;ﬂ'ua‘e — 5] 384 _Tutori..
™ Kermnel already resident

Download file 3664 Tutarials met’ o device |

IASH Controller: 3664 TutorialA.mot/™1l«l] 2]

|Mat Connected [4

Once this screen has been configured the EDK3664 must be placed in BOOT mode before a connection is made.

The EDK3664 is placed in BOOT mode using the switches S1 and S2.

e Connect the supplied serial cable to your PC and the ‘UART’ RS-232 port on the EDK and apply 5V to the EDK's power
terminals. The green power LED (D5) should light indicating power is being supplied to the board

Issue 1.0

Jan-01

EDK3664F Tutorial Manual

e Press the ‘ARM’ switch S2. The yellow ‘ARMED’ LED D4 will light indicating the EDK

can be placed in BOOT mode. BE’ ARMED EARM
e Press the ‘RESET/BOOT’ switch S1. The red ‘BOOT’ LED D3 will light indicating the .z
EDK is now in BOOT mode. If S1 is pressed again while the yellow ‘ARMED’ LED is lit

the EDK can be taken in and out of BOOT mode and the red ‘BOOT’ LED D3 will turn POWER
on and off to indicate this.

RESET
Once both the yellow ‘ARMED’ LED D4 and the red ‘BOOT' LED D3 are lit FDT can connect IBOOT

to the EDK and program it with the desired s-record.

e Press the ‘Connect’ button in the ‘FLASH Controller’ Window of FDT. FDT will connect to the EDK and the FDT output
window will indicate this.

« Once connected the ‘Download file project_name.mot to device’ button will be available. Press this button and FDT will
download the s-record to the device and the FDT output window will indicate this.

Once downloading of the s-record is complete the EDK can be taken out of BOOT mode and FDT disconnected from the
board

e Pressthe ‘RESET/BOOT switch S1. The red ‘BOOT' LED D3 will turn off indicating the EDK is not in BOOT mode.
e Press the ‘ARM’ switch S2. The yellow ‘ARMED’ LED D4 will turn off and the EDK cannot be put into BOOT mode.
« Press the ‘Disconnect’ button in the ‘FLASH Controller’ Window of FDT. FDT will disconnect from the EDK.

Now the ‘RESET/BOOT’ switch S1 can be used only as a RESET source to the H8/3664. Before trying to connect HDI to the
EDK ensure the connection with FDT is no longer operational, if it is HDI will not be able to acquire the serial port from the
Windows operating system

« Ensure the code is running on the EDK by pressing reset button S1 again

1.13 CONNECTING HITACHI DEBUGGING INTERFACE - MONITOR

Installed with HEW is the modular Hitachi Debugging Interface (HDI), an embedded monitor kernel programmed onto the
EDK (HDI-m) with the user code allows you to debug the user code running on it using HDI. For more information about the
HDI debugging monitor (HDI-m) on the EDK see the EDK3664 User Manual HDI Section.

e Connect the supplied serial cable to your PC and the ‘UART’ RS-232 port on the EDK and apply 5V to the power
terminals.
¢ Run HDI by clicking on the Launch Debugger icon on the HEW toolbar.

)

Launch Debugger

A Select Session dialog should appear as below,

* select a new session on H8/300H Monitor.

Select Seszion Ed |

{* Create a new session on ok

[H&/300H Manitar =l

E xit

i~ Previous session fils:

I C:AHEWA3EE4 Tutanald 3664 T utonialéhDebugh 2664 j Browse. .

10 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

You should see the window below appear.

n Hitachi Dobumanr Inferfare - - HBS /2600 Monitor
JJ Fle Edt VWiew Bun Memory Setup ‘window Help

IERCE:T -2 = ||[fEREs @ BEWER||[FRAEERTT @@
@
™
%
A
o
e
s
&
i

x> er\: 100 |5|’L—‘|xH

]|

[Lirk up [[NOm i

I

Note: The status bar shows the message ‘Link up’ to indicate successful connection to the HDI-M monitor on the
EDK. If the EDK does not link up ensure the Baud rate is set to 19200 and that the correct PC serial port is selected.

1.14 RUNNING TUTORIAL A

The executable code for Tutorial A is provided in file
C:\...\3664_TutorialA\debug\3664_TutorialA.abs.

* To download the code to the EDK, select the ‘File | Load Program..." menu option in HDI, or click on the Load Program
button in the Toolbar:

Menu Command: Accelerator Toolbar Button

File | Load Program none =
e Once the file has been specified, click on the OK button to perform the download.

‘Downloading...” should appear in the HDI status bar. If errors occur in downloading these will be displayed on the status bar
too. If errors occur this is an indication that the code programmed onto the chip is not the same as the code being
downloaded onto HDI. On completion of the download a status window should appear similar to the one below:

HDI B
Module name; C:AHEWY3EE4. Tutorialdh 3664 Tutonald\D ebugh 3664 Tutorialt, abs
Areas loaded:

00000190 - 000071930
000007100 - 0000018F
00000000 - 00000049
00000044, - 000000CS
0000153E - 000019ES

This information shows that HDI-m has loaded the file and summarises the memory regions used by the program.

Issue 1.0 Jan-01 11

EDK3664F Tutorial Manual

To start executing the program you must set the Program Counter (PC) register to the address of the beginning of the

mai n() function.

« HDI provides a simple method to see and edit the CPU registers - first open the Register window using one of the
command entry options listed below:

Menu Command: Accelerator Toolbar Button
View | Register Window Ctrl-R

The register window will appear.

El Registers EE=l E

Register [Value
ERO ooooozeo
ER1 0oo00Za6
ERZ oooooooao
ER3 gooooooo
ER4 oooooooao
ERS gooooooo
ERG 0O00aFEDO
ER7 OO00FEDO
B

+ CoR -0--HN---

e Use the mouse to position the cursor over the ‘PC' register value field and double-click on it. A register edit window will
appear, which should be set as below:

Remister - PC

Walue;

Imain oK I
Set b = |
I'W'hule Register j _lanc:e

The PC will now be set to the main() function, so you can perform a program step.

12 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

e To verify this open a source code window and choose C:\...\3664_TutorialA\On_Off.c from the file selection dialog.

Menu Command: Accelerator Toolbar Button

1
View | Program Window Ctrl-K int s

A window appears showing the C source code with the first line, corresponding to the PC value highlighted.

?\ Hitachd Deboping foferface - 3664_Tutoriald - H8/300H Monitor

File Edit “iew Bun Memory Setup “indow Help |

PR [reny | |iRpps OREE. RER |[HEBE - ®H PO
om0 3664 _Tutoriald ¢ M=ES | @ Registers @M= E3

Line |iddress |BEP [Label Jource B
5 oooo0144 _main vold main(wvoid)

a {

7 oooooi4s I0.PCRS.EYTE = 0x=B0; f* oget

Register|Value
ERO ooooozso
ER1 goooozZes
ERZ gooooooo
ER3 gooooooo

ooo0014e while (1} ER4 oooooooo
10 { ERS oooooooo
11 ooo001ld4e I0.PDRS.EIT.E7 = 0; /* turr ERA& O00o0FBDO
1z oooo01sz I0.PDRS.EIT.E7 = 1; /* turr ER7 O000FEBEDO

PC ooo144

14 00000158 } =il -+ comn —o--m---

EEERRREN T T

| For Help, press F1 [[)

e To make the screen layout more readable you might like to “dock” the register window. To do this click on the dock
button in the window’s title bar: E

The window will automatically dock to the right-hand side of the HDI main window. To dock to another side, just drag the
window by its title bar, a dotted outline will appear which will “snap” to the sides of the main window. When it snaps where
you want the window, release the mouse button and the window will dock. To undock a window just click the dock button
again.

e To execute the first line of the program, select the ‘Step Over’ command using one of the methods listed below.

Menu Command: Accelerator Toolbar Button
Run | Step Over F7 (T

* Repeat the ‘step over’ process for the next line and you will see the LED D1 on the board turn on. Step again and the
LED D1 turns off. Stepping repeatedly will cycle around the while() loop turning the LED D1 on and off.

e We would like to turn the LED D1 on and off without having to keep stepping in the debugger, you can use the Go
command to do this, try it:

Menu Command: Accelerator Toolbar Button

Run | Go F5 Bl
¢ You can stop the program running using the Halt command:

Menu Command: Accelerator Toolbar Button

Run | Halt ESC &
Did you see what you expected? Did the LED D1 flash on and off, or did it instead just glow dimly?
The LED D1 is actually flashing on and off, but the micro-controller is doing it so fast you cannot actually see it (instead it

looks dim). This is because the processor operates much faster than we can step manually. In order to see it flash at a rate
visible to humans, we need to slow it down using a delay. We will do this in the next tutorial.

Issue 1.0 Jan-01 13

| EDK3664F Tutorial Manual

12 TUTORIAL B: “FLASHER”
This tutorial shows how to build a program that automatically flashes the EDK's red LED D1, and how to use HDI-m to
download, run, and modify this program. In the process, you will see how to:

« Use header files for declaring data structures.
e Use adelay loop to set human-visible delays.
e Use HDI-m for examining and debugging a program.

121 SOURCE FILES
Here is a listing of the source file for Tutorial B:

#include "iodefine.h" /* register definition header file */

voi d mai n(voi d)

{
unsi gned short ii=0;
| O PCR5. BYTE = 0x80; /* Set PORT 5 BIT 7 for output all others inputs*/
while (1)
t
i1 ++;
if (ii == 30000)
{
| O PDR5. BI T. B7 = 0; /* turn on LED */
}
else if (ii == 60000)
{
| O PDR5.BIT. B7 = 1, /* turn off LED */
}
}
}

The structure definition and assignment that we did in Tutorial A to make it easy for us to access the on-chip peripheral
control registers has already been done for all the device’s peripheral registers and the code for this is in a header file called
‘iodefine.h’. This file is created when you generate a new project in HEW. So for this tutorial example all we have to do is
include the file in our C file:

#include "iodefine.h" /* register definition header file */

With this file included we can then use any structures or assignments declared in it in our C program. Note that each
separate C file that uses any of these definitions must #i ncl ude the header file in it.

In the mai n()) function the local variable i i is incremented in an endless whi | e loop and adds delay to the setting and
resetting of the LED D1 bit of port 5. When i i is equal to 30000 the LED D1 is switched on, when i i is equal to 60000 the
LED D1 is switched off. The unsi gned short ii hasarange of 0to 65535, so on reaching 65535 it increments back
to 0 thus keeping both i f andel se i f statements valid.

1.2.2 HDI-M LIBRARY FILE INCLUSION

By looking at the menu item ‘Options | Linker | Input’ you can see that the monitor library has been included in this build. The
library is in the project directory and is 3664HDIMLIB.lib. Use of this library is described in the next tutorials and specifically
in Section 3.2.

14 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

123 BUILDING THE FLASHER PROJECT

This next section will outline how to build a project to run with HDI-M. First start Hitachi Embedded Workshop from its icon or
the Windows Start Menu, the previous workspace will automatically be loaded.

e Create a new workspace as in Tutorial A, but this time call the project “3664_TutorialB” and select “2. Flasher tutorial”
as the project to generate in the Project generator wizard.

=l

R oot 1. I
EI@ 3664 _TutorialB

=23 Project Files

i % dhact.c

flazher o

3 intprg.c

a rezetprg.c

shrk.c

% vectthl o

-3 Dependencies

..... % indefine h

- E] shik.h

----- =] stackscth

----- % vecth
N EProj... |€|Navi... |

e Click the Build project icon [or press <F7>.

If it is not already open, the output window will open and the progress of the build will be displayed.

ﬂ Builditg - 3664_Tutorialb - Debug
¥
Fhase HE5 H8/300 C/C++ Compiler starting
C:%HEW"3664_TutarialBy36E64_T utarialB 3664 _TutarialB.c
H SERIES Evaluation Software

Ewvaluation period = Sun kar 11 05:00:00 2001
Phase HES HE/300 C/C++ Compiler finished

Fhase HE5 HE/300 1M OptLinker starting
1210 CANNOT FIND SECTION(C]
Phase HES HE/300 IM OptLinker finished

Fhaze H Seriez Stype Converter starting
Phase H Series Stype Converter finished

Evild Finished
0 Errars, 1w arhing

| AR, Build £ Findin Files , Version Control 7

You will see a warning from the linker “1210 CANNOT FIND SECTION(C)", this is not a major problem in this case. Section C
is used to store constant data and an entry has been put in the linker section options list for this section. The linker is
complaining that it cannot find any data for that section, because as this code has no Constants, no constant data is
generated. This will be explained further in Tutorial C Section 2.1.3.

1.2.4 FLASHING TUTORIAL B ONTO THE EDK

The HDI monitor library has been built with the user code for this project into an s-record which has the same name as the
project. The s-record is \ 3664 _Tut ori al B\ debug\ 3664_Tut ori al B. not . Until this file is flashed onto the
microcontroller no debug can be performed with HDI. Ensure that no programs are using the serial port (i.e. the last session
of HDI must be closed) and flash the 3664_Tut or i al B. not file onto the EDK using the same method described in
Tutorial A Section 1.1.2. Once programmed ensure that FDT is disconnected from the EDK and proceed to the next section
on debugging the code.

Issue 1.0 Jan-01 15

| EDK3664F Tutorial Manual

125 SETTING AND VIEWING BREAKPOINTS

Now launch the debugger again and this time load the file that we have just built
C:\..\3664_TutorialB\debug\3664 TutorialB.abs the same way as you did in Tutorial A.

Open the program window as before, this time with the file
C:\...\ 3664_TutorialB\Flasher.c.

e To set the PC register to the start of the program, click on the _main label in the Label column of the Program Window
to position the cursor, right-click to pop up the local menu and select ‘Set PC Here'. The line should then be highlighted
to show that it is at the current PC address.

¥ 3664_TutorialB_c [_ O] =]
Line |Address |BP |Lakel Source B
T 00oo01zZe _mainl unsigned short ii=0;

S Copy CHlhe

2 0o0001Ze) = 0xB0; /* Set PORT 5 BIT 7 for o
10 Find F3

11 0000014a s

1z Set Line.

13 0000013z
14 o0o0001z4

16 0000013a Aidd i/ atch DR3.EIT.B7 = 0; /* turn on LED */

16 00000140 _ GotoDisgsemby (ii == eoooo)

19 i

20 00000146 I0.PDRS.BIT.B7 = 1; /+ turn off LED */
21 }

-

]| oz

To check that the program does what we expect, we will first set breakpoints to stop at the line in the code where the port bit
controlling the LED D1 is toggled.

* To set a breakpoint, open the breakpoint control window using the commands shown below.

Menu Command: Accelerator Toolbar Button
View | Breakpoints Ctrl-B]
* Right-click in the breakpoint window to pop up the local menu, select

the ‘Add..." item and enter the address shown below: ,
Breakpoint address

114 else if (ii == 60000) |nm4

Once entered, the break window will show the new breakpoint, and [¥ Enable ﬂl
also the code window will have a black dot next to the line of code
in the BP column.

Bal Hitachi Dabungaing loterfsce - 3664_TutonialB - HB/300H Monitor

File Edit Wiew Run Memory Setup Window Help |

smsk||ieiay ||iEnms REE EL. RER |[BFEEBEL.D T

8 flasher.c M=
Line |Address |BP |Labe Source -
18 Q0000100 _main unsigned short 11=0;

19

20 00000102 T0.PCRS.BYTE = 0xB80; /% Set PORT % BIT 7 for ou
21
22 0000011e while (1)

23 {

24 00000106
25 00000108

27 0000010e
29 00000114 @

445
f (11 == 30000)

I0.PDR5.EIT.B7 = 0; /¥ turn on LED */
Tse if (i1 == 60000}

31 0000011a I0.PDRS.EIT.B7 = 1; /¥ turn off LED */

)
@
(B

33 }
34 I -

L | O

trencenl| | ERELIL PPES|

[For Help, press Fi INUM | Z

16 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

If the line you wish to break on is visible in the code window, a quicker way to set breakpoints is to double-click
in the BP column on the same line as the code.

You should see the black dot appear and an entry for that breakpoint appear in the breakpoint window.

If you double-click again you can remove the breakpoint, you should see the black dot in the program window and the entry
in the breakpoint window disappear.

« Ensure a breakpoint is set on address 0x114

WARNING: The EDK3664 will only allow ONE breakpoint to be assigned at any one time. If a breakpoint is set then
the command ‘Go to Cursor’ will not work as this command uses a temporary breakpoint.

1.2.6 RUNNING THE PROGRAM AND HALTING EXECUTION

e Torun to the breakpoint, select the Go command:

Menu Command: Accelerator Toolbar Button

Run | Go F5 Bl

The program stops and the yellow highlight bar will now be placed on the breakpoint in the main function in the code window.
The status bar indicates the cause of the break, i.e. that we have reached the breakpoint:

|Break = Breakpoint

The highlight bar shows the position in the code corresponding to the value of the program counter (PC) register and
indicates what will be the next instruction to be executed if we Go or Step.

WARNING: For EDK3664 the Breakpoints are controlled though the Address Break Controller. The line of code
where the breakpoint is placed is EXECUTED and the program stops on the next assembly line following the
breakpoint.

e Open a disassembly window by using the local menu item ‘GO Disassembly’

You will notice that the line where the breakpoint has been placed has been executed and the PC and highlighted line is on
the next line of code in this case at address 0x118 rather than 0x114!

B Artachi Debugming lafarfzce - 3664_TutorialB - H8/300H Monitor

File Edit Wiew Bun Memoy Setup Window Help |

tpmeE | ria | |RrRs QREELRER |[Haas . nedcas ||

i flasher.c [_ O] <]
Line [Addresz [EP |Labe Source -
18 00000100 _main unsigned short 11=0;

19

20 00000102 I0.PCRS.BYTE = 0xB0; /% Set PORT 5 BIT 7 for output all othe
21

22 0000011 while (1)

23 o

24 00000106 T4+

25 00000108 if (11 == 30000)

26

27 0000010e I0.PDRS.BIT.E7 = O; /f* turn on LED */

28

29 00000114 | else if (i1 == 60000)

31 0000011a } I0.PDRS.BIT.E7 = 1; /* turn off LED */

EHMII[H I)QWMEIEEMHE;SBH@%%ﬁ@@@l

00000112 40F2 BRA @H'0106:8

00000114 @ 7928EAED CMP W #H'EASD,EQ else if (ii == 6000
00000118 4604 BMNE @H'011E:8

0000011a 7FD87070 BSET #7 ,@H' FFFFDE:8 I0.POR5.BIT.E7
0000011e 40EG BRA @H'0106:8 while (1)

00000120 SEQ0019A _sbrk JSR @Fsp_regsvii:24 char *sbrk{unsigned long s
00000124 OFB4 MOW. L ERO, ER4 { 2
KN [

B

it

[EnabTe JFiTe/Line Symbo Address [Type .
flasher.c/29 00000114 PC breakpoint
[FarHelp, press F1 [[MU A

Issue 1.0 Jan-01 17

| EDK3664F Tutorial Manual

If you look at the LED D1 on the EDK it should be on.
* (Go again and you should see the LED D1 stay on and the program stop at the breakpoint again.

If you keep issuing the Go command you will see the LED D1 flash once the program is executed to the breakpoint about
60000 times!!.

Now we would like to run the code at full speed and see the delay loops making the flash of the LED D1 visible.

We can temporarily disable a breakpoint by selecting it in the Breakpoint window and choosing ‘Disable’ from the right-mouse
button local menu. If you do this you will see the black dot disappear from the Enable column in the Breakpoint window and
also the corresponding dot disappear from the BP column in the Program window. Alternatively you can double-click on the
dot in the Breakpoint window Enable column to toggle the enabled/disabled state for the breakpoint. Note even though the
breakpoint is disabled it is still valid and so no more breakpoints may be added.

* Make sure the breakpoint is disabled, and start the program running with the Go command.

You should now see the LED D1 flashing visibly on the EDK and the message on the status bar should read ‘User Program
is Running...".

So now our program is running at full speed, but how do we stop it? To halt program execution:

Menu Command: Accelerator Toolbar Button

Run | Halt ESC 5107

The program will stop with the highlight bar in the Program window showing the current location and the User Break
message on the status bar ‘Break = User Break’

WARNING: Be very careful when placing breakpoints, always use the ‘Disassembly window’ and be aware of
instruction prefetches after branch instructions. A breakpoint set on a branch will break on the line of code that the
instruction branches to. A breakpoint set on a line of code after a branch may never be triggered because the line of
code may always be prefetched. Try putting a breakpoint at address 0x11a, this will never be triggered because the
compare and branch instructions before the code cause the code at Ox11a to always be prefetched.

1.2.7 VIEWING VARIABLES

We would like to view the value of the i i variable.

« Place the cursor in the code window over i i , after a short delay a tool-tip style information box will pop up showing the
value of i i . This gives you a quick way of viewing a variable’s value.

« Alternatively click to locate the cursor on the variable then use the right mouse button to pop up the local menu:

Lopy [t
Find... F3
Set dddress...

Set Ling...

Go To Cursor

Set PC Here

Instant Watch...

Add W atch

Go to Disassembly

e Select the Instant Watch... option, a dialog will open showing you thati i is equal to 0.
This dialog is useful if the variable is more complex e.g. a pointer, array or structure.

e Select the ‘Add Watch’ option and the main Watch window will open showing the count variable.

18 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

Note that the default display for the variable shows its value in hexadecimal (H'). However, our code test values are decimal
so it would be more useful to be able to view the value of the watched variable in decimal.

To change the radix of the watchpoint display, click on the variable name in the Watch window and pop up the local
menu, select Radix | Decimal:

The value in the watch window will then be displayed in decimal. The Watch window will display the current value of ii
whenever the program has stopped.

128

USING HDI-M TO MODIFY A VARIABLE

To see this working, set a breakpoint on the line of code where i is incremented (i i ++;) and Go to this point.

In the watch window, place the cursor on the i i variable, and press the right mouse button to show the Watch
window’s local menu again. Select ‘Edit Value' to display the dialog below:

E dit Value
Expression Iii 0K |
Current Yalue: 0 Cancel

New Yalue: |l

Now change the value of i i to 59999, and run to the next instruction, you should see that the value of i i has been
incremented to 60000. Step to the test:

if (ii == 30000)

Step again and you will see that the program steps past to the nexti f (') test as this test is not satisfied.

Step again and you will see that the next test is satisfied (we can see in the Watch window that i i does equal 60000)
and so the LED is turned off.

Issue 1.0 Jan-01 19

| EDK3664F Tutorial Manual

2.

EMBEDDED CODE TUTORIALS

Up to now all of our examples have assumed that we are writing code within the ‘friendly’ environment provided by HDI-M,
and that only the basic features of the H8/300HTINY 3664F are being used. This second set of tutorials provides an
example set of applications to allow you to write code which is intended for execution without HDI-M being present, i.e. code
for a final application.

The tutorials address the following issues:

Using the Hitachi Embedded Workshop(HEW) to build a project

Using an example startup code file which allows the static data sections to be initialised, provision is also made for stack
pointer initialisation, hardware setup and exit code.

The use of the on-chip timer module is examined. This highlights the use of the on-chip control registers and in
particular the interrupt mechanism within the EDK standard environment. This includes creation of the interrupt vector
table and the use of in-line hardware control functions to control the CPU from C.

The final tutorial allows the HDI-M monitor in flash to be replaced with a user's application code - this will then operate
without the overheads (but also the protection) of HDI-M, and represents the final version of an application which would
be used in target user hardware.

Throughout code listings are given, where appropriate, in the text.

20

Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

2.1 TuToRIAL C: “STATICS”

The source files for this tutorial are generated in the project “3. Statics tutorial”.
2.1.1 NEED FOR THE STARTUP CODE

Most C applications will have a certain number of variables which are of either global or module scope. These variables are
referred to as ‘static’, as they require statically allocated (i.e. at build time) space. Static variables may be of any valid type
and may, or may not, be given an initial value. In an embedded system the code is resident in some form of non-volatile
memory (ROM, Flash) and the application must boot from an uninitialised state at power-on. In such systems the static data
must be set to its initial values before the user's application code is called (i.e. before mai n() executes). In addition it is
common for the application’s data area to be located in some form of memory which requires the system hardware to be
initialised before it can be accessed e.g. RAM. These systems require startup code to perform the initialisation from reset,
and then to pass execution to the user code. If the user’s code should ever return from mai n() (not really a good idea in
an embedded system), then some valid operation should be performed, rather than randomly executing code which happens
to exist past the call to mai n() in the startup code.

The information on how to initialise the static areas must be stored in non-volatile memory (i.e. ROM), so that the startup
code knows what to do. However the most desirable situation is one where the user can happily forget about the startup
because initialisation information is automatically created and referenced using the compiler build tools. This is the goal of
tutorial C, to demonstrate that this code has indeed worked. A small example file statics.c is created and then run under HDI-
M to verify the result.

e Create a new workspace as we did in Tutorial B, but this time call the project “3664_TutorialC" and select “3. Statics
tutorial” as the project to generate in the Project generator wizard.

212 STARTUP CODE DETAIL

» Setup the reset vector

The vector table including the reset vector is defined in the file vecttbl.src and its associated include file vect.inc. As HDI-m
is being used the reset vector must pointto st art up() which is the HDI-m startup function. This is covered in Tutorial E
interrupt tutorial.

Here is a list of the startup code for resetprg.c. ==
| | =g
#i ncl ude frrachl ne. h>" =[5 3664_TutorialC
#i ncl ude stacksct. h Ela Proiect Files
#pragna entry Power ON Reset - [E dosete
intprg.c
extern void main(void); resetprg.c
extern void _I NI TSCT(void); =] shikc
:] shatics.c
#pragma section Reset PRG - E] wecttblc
= Dependencies
voi d Power ON_Reset (voi d); a = piodefineh
voi d Power ON_Reset (voi d) = h)
{ zhrk. b
set _i mask_ccr(0); ;‘ stackscth
_INITSCT(); e e =] wecth
/* Har dwar eSet up() ; */ /* Renove the comment when & Proj... I < _IMavi.. |
you use Hardware Setup */
mai n();
whi | e(1)
sl eep(); /* Catch return frommain */
}

Issue 1.0 Jan-01 21

| EDK3664F Tutorial Manual

The operations to be performed by the startup code are:

e Unmask all interrupts
set _i mask_ccr (0) is library function used to clear the interrupt mask bit of the system control register CCR.

e Setthe stack pointer to a valid address.

The initialisation process can be viewed in the function Power ON_Reset () in the project file resetprg.c. This function is
declared as the entry point of the system using the “entry” #pragma, this tells the compiler to insert assembly code at the
beginning of the function to set up the stack pointer using the section name S and the stack size stored in stacksck.h. For
more details on setting the stack see the Hitachi H8S, H8/300 Series C/C++ Compiler User's Manual [ADE-702-189].

#pragma entry Power ON_Reset

e Setthe static variables with initial values to the correct values.

* Reset all other static variables to 0.

According to the ANSI C language specification all uninitialised static data must be cleared to zero at startup. Any global
variable that has not been given initial value when it is declared can be classed as an uninitialised data variable and should
be initialised to zero. Similarly initialised static variables that have been given initial values when declared must be initialised
at startup with these values. For your C program to be able to manipulate the resultant initialised data it must reside in RAM.
However, the initial values for the data must be stored in non-volatile memory (to survive a power-on reset) and copied to
RAM at startup, thus initialising the data.

Static variable initialisation is done by a library function __INITSCT which is called from resetprg.c. Sections to be initialised
are defined in dbsct.c. If the user creates a data section with a different name from the standard sections then they must be
added to dbsct.c. Memory Sections are described in the 2.1.3.

e Call the hardware initialisation code.
If the comments are removed hardware initialisation function Har dwar eSet up() is called. It is up to you to define this
function and include it in your project if you need to initialise your hardware

A good example of low level initialisation is SDRAM setup. Most of Hitachi's microcontrollers have direct interfaces to many
different types of memory, but some of these interfaces have to be setup before the memory can be accessed. The interface
should be setup in Har dwar eSet up() , before static initialisation so that any static variables within this memory can be
initialised later in the startup code. For H8/3664 there is no external bus to interface so the Hardware setup file could be used
to initialise the microcontroller’s on chip peripherals. This is covered in Tutorial D Timer.

¢ Call the users main routine.
main() is called.

» Ifthe users code returns, call the exit routine.
Finally the Power ON_Reset () function ends with a sl eep() intrinsic function call to put the microcontroller into a
safe state.

WARNING: When using HDI-m the Power ON_Reset () function must always be used. This is explained in
STANDALONE Section 3.2.

22 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

213 VIEWING THE STATICS
The example C file Statics.c is shown below;

unsi gned char string[] = "hello world"; /* d obal variables */
int count;

void main (void)
int volatile |oc;
for (count=0; count<12; count++)
{ /* overwite the characters in string[] */

string[count] = "a'" + (unsigned char) count;
| oc++;

}

This file has been built to run with HDI-m. There are three variables in this code, two global and one local. The character
string st ri ng[] has an initial value, integer count does not and neither does the local int | oc.

By default the sections have the following names.

Hitachi
ANSI C Section Compiler/Linker
section name

Program P
Constants C
Initialised Data D
Uninitialised Data B

The uninitialised integer count is in section B (RAM) and is initialised to zero by _INITSCT. The local integer | oc is
uninitialised in accordance with the ANSI C specification and has an undetermined initial value.

The code in _INITSCT copies the initial value of st ri ng[] in ROM to EEI e R T O] HE
RAM. The initial value is in section D (ROM) and is copied to R (RAM), Input Dutput | Optiize | Section | Verity | Other |

this can be seen in the Ouput tab of the ‘Options | Linker | Output’ menu Fomat of load module
item.

Type of load module : IAbsqute

=
IIn output load module j

If the user adds their own section names using the #pragma section Lol e

statement 4 new sections could be created, for example: ROM to RAM mapped sections :
Fiom | Ram | Add..
#pragma section Reset PRG o R o |

If there is code following this section definition the code will be stored in
a section named PResetPRG CResetPRG DResetPRG and
BResetPRG. depending on the data types shown in the table above. I Generate map file
Load module directory :
DResetPRG and BResetPRG must be added to dbsct.c and [hewdema'evh2B23 utoral\D_TimerDebug Moy |
RResetPRG must be defined in the section definitions under menu item | Use tar subaammend o |
‘Options | Linker | Sections’. DResetPRG and RResetPRG must also be
added to the ROM to RAM mapping.

Cancel |

Custom sections are described in more detail in Section STANDALONE 3.2.

NOTE: If a section is defined in the link map (‘Options | Linker | Sections’ menu item) but no data is assigned to it the
linker will issue a warning 1210 Cannot Find Section(name).

Issue 1.0 Jan-01 23

| EDK3664F Tutorial Manual

214 RUNNING THE CODE

e Now disconnect HDI from the EDK and Flash it with the file C:\...\3664_TutorialC\debug\3664 TutorialC.mot as
described in Tutorial A. Disconnect FDT from the EDK and restat HDI and load
C:\...\3664_TutorialC\debug\3664_TutorialC.abs

* Open a program window for Statics.c and place a breakpoint at the first line of code in main(). Place a watch on the
three variables | oc,stri ng[] and count using the same method used in Tutorial B.

The watch window should show something similar to the picture. It can be seen from | prs—w—— ST
this that before initialisation | oc has no value, as it is a stack based local variable. Talue
count and the character string st ri ng[] have random values. los

count HTffff

+atring ={ 0x00ffcd40e }

« Now reset the processor and then Step once.

Menu Command: Accelerator Toolbar Button
Run | Reset - T

A source code window will open showing the resetprg.c file with the PC highlight bar in the Power ON_Reset ()
function:

This first step will have executed the assembly code that sets up the stack pointer (you can check in the disassembly window
if you want to verify this).
e Step again to set the interrupt mask, the

highlight will now be on the call to the Mesewge _____________________________________MEEK)

. Line |Address |BP |Label Source Al
_|N|TSCT() fUnCtlon. 14 0oo0ooz4 _PowerON void PowerON Reset(wvoid)
e If you Step Over this call while inspecting | 13 {
. . 1ea goo0o003e set imask ccri0);
the Watch Window you will see that the |[1- goooooze INITSCT ()7
variables string[] and count |is
™ . . 19 d ;
have now been initialised, with our initial | 5. // Hardwaresetup()
data and zero respectively. 21 00000042 main();
22
[Watch Window EIM= k3 oooooose while (1)
eme Talue 24 gooooo4s sleepi);
| loc 25 0000004 = } -
count H'0O000 Kl L
+string ="hello world"

Now both count and stri ng[] have been initialised but the local | oc has not, its value is in fact blank. This is
because local variables only have a valid scope inside their functions i.e. local to them.

e Letthe program continue with the Go command, it will stop at the breakpoint in main().

You can see that | oc now has a value, because the PC is now in the scope of the local variable i.e. in its function.

. (@ watch Wind [o]_ O] x]
Local variables are stored on the stack and the values that they have are Nam = valuc
indeterminate, being whatever happens to be at that location on the stack. Therefore || 10< H'c400
they need to be initialised manually in the code as the compiler does not initialise || <o9=® Honon .
+string ="hello world

them on the stack, alternatively the STATIC keyword could be used to ensure that
the local variable is stored at a memory location.

int |oc=0; or static int |oc;

Now test the execution of the main code by setting a break after the main() function call in Power On_Reset () (line
0x46) and running to this break. The string variable st ri ng[] will now contain the sequence ‘abcdefghijkl' rather than
‘Hello World".

24 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

215 MEMORY MAP FOR EDK3664F WITH HDI-M

The processor on the EDK is in single chip mode and cannot be changed. This means the chip is in normal mode with on-
chip ROM(Flash) enabled. The processor can access 64Khytes of memory space (see H8/300HTINY 3664F Hardware
Manual CPU Section) HDI-M sets up system registers in order to communicate with the user code, these peripheral registers
should not be changed once HDI-M is running. The Peripherals used by HDI-M are:

1. SCI3 for serial communications
2. Address Break controller for stepping and breakpoint control
3. NMI control for Flash Programming

EDK H8\3664F TINY Memory Map with HDI-m

H'0000
Vector area
H'0034
HDI-Monitor code.
(Relocatable)
6Kbytes
H'17F6
Free FLASH.
(For User Code)
26Kbytes
H'7FFF
Unpopulated
H'F780
Flash work Area And
User RAM 1Kbytes
H'FB80
Internal RAM
For User code
778Bytes
H'FEBA
Internal RAM
For Monitor Work Area
(Relocatable)
245Bytes
H'FF80
Internal Registers
H'FFFF

Issue 1.0 Jan-01 25

| EDK3664F Tutorial Manual

2.2 TuToRIAL D: “TIMER”

221

The EDK is equipped with a TWO RED LEDs that may be controlled by a program. LED D1 is connected to the 3664F port 5
bit 7 (pin 30 on X3:underside of board / X4:topside of board). LED D2 can be connected to port 5 bit 6 (Board pin 31 on X3
| X4) or port 8 hit 2 (pin 19 on X3/ X4) by setting jumper J10. Below is a description of jumper, LED and pin positions. A
table of LED to port, bit and board pin is also below. For a more detailed description of the pin out of the EDK refer to the
EDK3664F User manual.

SETTING THE LED D2 TO THE CORRECT PORT

For this tutorial we will be using LED D2 connected to port 8 bit 2 (X3/X4 PIN 19) which is also a timer output pin.
e Ensure J10 is connected with a jumper block across 2-3 as shown below.

. . X1 X2 X3 X4
Jumper lQ with NO Block Fitted. J1 ;:] = o e
‘lllegal setting ™ sg0 o ® o535
oL S ses
J10. tlel o m4le 52 D5
GEod o o390 51
& 630 o o o350
tdo o o od9
1o =] o Zg
Jumper 10 with Block Fitted 1-2 . 3856 5385 46
:LED D2 connected to Port 5 Bit 6 aese 3664F A
Eogo @300 43 o~
7e3e] DIP428 @3de 47 !
T . 4
J10 <4 - —|—-—--=#H ——--%gﬂ#mg)@ (D1]
0 it o130 o0a a5 = ‘SDA SCL
42 old o bz
JER =N -] aZED 36
. . 4 el e o27e 35
Jumper 10 with Block Fitted 2-3 3o o ° 23 BOOT ARMED EARMI
'LED D2 connected to Port 8 Bit 2 7o o s o3 @
19 0l7 0 oZeo 30
L 51 15 ocie o5
J10 2o = Bl
P4 I
?E] eeu e " RESET
iBOOT
EDK3664 Board layout
LED | J10 Block X3/X4 QFP-64 | DIP-42S Pin Function
Position Pin Pin Pin
p | D2 1-2 31 26 22 Port 5 Bit 6 / SDA
—p | D2 2-3 19 38 30 Port 8 Bit 2 / FTIOB

2.2.2 ACCESSING THE CONTROL AND STATUS REGISTERS

The H8/300HTINY 3664F microcontroller contains a lot more than simply a CPU. A whole host of peripherals are available
to you for use in a target application. Each peripheral module has a set of control and status registers, which act as the
interface to the CPU, many peripherals also have pins associated with them, which act as the interface to the outside world.
Each peripheral can signal a change in its status by setting bits in one of its registers, or by sending an interrupt to the CPU,
prompting immediate action.

The control and status registers of the peripheral modules are memory mapped, each one having a unique address at the
top of the address space. Registers vary in type, from byte wide to long word wide and from read/write to read or write only.
To allow simple access to the registers the flexible casting feature of C may be used. As we saw in Tutorials A and B, a
symbol can be defined which corresponds to the access inside the address of the given register. This requires the address,
which is a constant integer value, to be treated as an address reference (i.e. a pointer), and then pointer indirection to be
used to access the contents of the address. To further complicate matters, the entire construct must be declared as ‘volatile’
to stop the C compiler from optimising away accesses to the register. This is because the registers may be modified by
some operation other than one performed by the CPU, and thus the compiler can have no visibility of this. Optimising
compilers often remove accesses to what appears to be redundant information - this must be stopped in the case of
peripheral control and status registers, hence the use of the ‘volatile’ keyword.

\ 26 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

If you remember in Tutorial A we defined the i/o registers as below:

#define 10 (*(volatile struct st_io *)OxFFDO) /* 10 Addr ess*/

and in Tutorial B we learned that to simplify the construction of user code the header file iodefine.h has been created which
contains all of the on-chip peripheral registers for the H8/300HTINY 3664F.

The file iodefine.h follows the naming scheme used in the hardware manual. The name of the structure corresponds to that
of the peripheral module, and the structure elements to the control registers and even individual bits in those registers.

Note: The addresses used in the header file are those defined in the hardware manual for the device operating in
64kbyte mode - if an address greater than 64K Bytes is offered to the CPU, the most significant bits are ignored.
Thus there is no need to re-write the file for use in 64KByte systems.

2.2.3 THE TIMER PROGRAM

The Tutorial project ‘4. Timer Tutorial’ contains the source files for this tutorial, the main module Timer.c is listed below. The
application flashes the LED D2 using one of the on-chip 16 bit timer modules, Timer W, instead of by software. We will use
the timer to output a PWM square wave signal on timer output TIOB which is multiplexed with Port 8 Bit 2 of the device, to
which the LED D2 is connected via J10 2-3 on the EDK. Port 8 and the timer output TIOB both share this pin, but cannot use
it at the same time. The cycle period for the waveform is set by the value in the timer's TGRA register and the duty cycle is
set by the value in the TGRB register.

When the timer is enabled it will start counting up. When the value in the TCNT register matches the value in the TGRB
register the output of the pin will go to 1 turning the LED D2 off, and the counter will continue to increment. When the value in
the TCNT register matches the value in the TGRA register the TCNT register will be reset to zero, causing the cycle to reset
and the output of the pin to be cleared turning the LED D2 on.

TCNT value

Counter cleared by
/ TGRA compare match

TGRB |- om o e o o e e e e e e T o
H'0000

TIO BJ

Time

e Generate a new tutorial project as done in previous tutorials but this time select ‘4. Timer Tutorial’ and call it
3664 _TutorialD. The following workspace view should be seen.

ia

= 3664_TutorialD
Ela Project Files
i e[F dbscte

% tirne.
. % wectthl.c
E-23 Dependencies
..... =] iodefine.h
.. % zhrk.h
- |E] stackscth

----- % wecth
N ZEproj... IQNavi... |

e View the file Timer.c by double clicking on it in the workspace window

Issue 1.0 Jan-01 27

EDK3664F Tutorial Manual

#i ncl ude "i odefine. h"

/* Define constants for peripheral register vaules */

#define TCR. CCLR 1 /* Set TCNT cleared by TGRA match */
#defi ne TCR_CKS 3 /* C ock source internal/8 */
#define TMR PWWB 1 /* PWM node in channel B */
#define TCR_TOB 0 /* output O on TIOB at start */
voi d mai n(voi d)

vol atil e unsigned short duty;

TMRW GRB = duty = Ox7fff; /* Set duty of LED 50% by GRB */

TMRWTMR. BI T. CTS = 1, /* Start Timer W*/

whi | e(1)

TMRW GRB = duty; /* Change duty cycle */

}
voi d Har dwar eSet up(voi d)

MSTCRL. BI T. MSTTW = O; /* Enabl e TimerWnodule */
TMRW TMR. BI T. CTS = 0; /* Timer off */

TMRW TCR BI T. CCLR = TCR CCLR; /* TCNT clear on GRA natch */
TMRWTCR BIT.CKS = TCR CKS; /* O ock = phi/8*/

TVMRW TMR BI T. PAWB = TMR_PWVB; /* PWM node for channel B */
TMRW TCR. BI T. TOB = TCR _TOB; /* initial output is 0 */
TMRW GRA = Oxffff; /* Set cycle period by GRA */

}

e The function Har dwar eSet up() sets up the control registers in the timer module. In order for it to be called we
must ensure the function is called at the start of resetprg.c.

« resetprg.c then calls mai n() in which the duty cycle register is set up and the timer started.

« The program then goes into a loop setting the duty cycle (this is so that we can easily modify the value).

224 RUNNING TIMER

e Build the code generated from the project generator.

e Now disconnect HDI from the EDK and Flash it with the file C:\...\3664_TutorialD\debug\3664_TutorialD.mot as
described in Tutorial A. Disconnect FDT from the EDK and restart HDI and load
C:\...\3664_TutorialD\debug\3664_TutorialD.abs

e Open a code window with Timer.c and set a breakpoint at the start of main().

¢ Reset Go and the program should stop at the breakpoint.

Menu Command: Accelerator Toolbar Button

Run | Reset Go Shift-F5

< Step over the instruction to set the duty cycle

e Step over the instruction to start the timer, you should see the LED D2 start flashing with a duty cycle of 50%.

« Remove the breakpoint on main()

e Set a breakpoint in the while() loop where the duty duty cycle is changed and Go to the breakpoint. (Remember to
check if the instruction will break the process)

e Open alocal watch window , you can see the value of the variable duty.

Menu Command: Accelerator Toolbar Button

View | Locals Ctrl-Shift-w

28 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

Now you can modify the duty value in the Local watch window by double-
clicking on the value field in the window, try a new value of H'1fff.

Edit ¥alue
« (o again to write the value into the TGRB register and you will see .
the duty cycle of the LED flash has changed on EDK. Try different = =" ED [o |
duty cycle values and see what effect it has on the LED's flashing. At - __Corcel |
Mew ' alue: lH'ﬂff—

2.25 VARIATIONS

You could try changing the period value in the TGRA register to change the cycle time for the LED D2 flashing or modify the
program to vary the duty cycle and create different PWM patterns.

Issue 1.0 Jan-01 29

EDK3664F Tutorial Manual |

2.3 TUuTORIAL E: “INTERRUPT”

231 INTERRUPTS ON THE H8/300HTINY 3664F

In most user applications the rapid response of the system to external stimuli is essential, in such systems the CPU must be
informed of the change in the system status immediately. To rely on polled tests of the various peripheral control registers
represents a large CPU overhead. The H8/300H TINY series of microcontrollers all support a wide range of on-chip
peripherals; each being capable of generating at least one CPU interrupt. In addition the CPU may be signalled from external
devices using the NMI or one of the IRQ interrupt signals. In this tutorial we will use the TGRB compare/match interrupt of the
PWM Timer W to vary the duty cycle of the flashing LED D2.

The H8/300H TINY architecture provides direct hardware support for interrupts, via the interrupt controller. Each interrupt
source is allocated a special vector address. The vector address is used to store the address of the interrupt service routine
(ISR) which is to be executed when the relevant interrupt is accepted. The interrupt controller tests the priority level of an
incoming interrupt against the priority level that the CPU will currently accept. If the incoming interrupt is higher than the
current CPU interrupt mask level (stored in the condition code register), then interrupt processing begins. The program
counter (PC) and the condition code register (CCR) are stacked, and the PC set to the value contained in the relevant vector
address. Execution then continues from the new PC value. The ISR should be terminated with a return from exception (RTE)
instruction to ensure that the PC and CCR are correctly restored on exit.

In this H8/300H Tiny we can only use interrupt mode 0. This means that the | bit in the CCR is the interrupt mask bit. If | is set
to 0 interrupts will be enabled, i.e. not masked. See the H8/3664F Hardware Manual Interrupt Section for more information
on interrupt control

2.3.2 CREATIONOF AN ISRINC

It is often desirable to write all your application code in C, where possible. The Hitachi tools support extensions to the ANSI C
language to allow interrupt service routines (ISR) to be written. As mentioned above an ISR is distinguished from a normal
function by the fact that it is terminated using a RTE instruction. However, this is not the only difference. ISRs are by nature
asynchronous and thus you cannot rely on the state of the registers on entry to the function. In addition the ISR must
preserve the state of all registers, as there is no way of telling which registers were currently in use by the CPU when the
exception occurred.

You also need to create an entry in the vector table that gives the address of the ISR for the given interrupt. Each vector is
located at a fixed address, so care must be taken to place it correctly. To define a function as an ISR, simply precede it by
the following form of statement:

#pragme interrupt (I NT_TMYN

This instructs the compiler to treat the function | NT_TMW when it is defined in the source code as an ISR, and hence to
preserve the register values, and to terminate with a RTE instruction. When the interrupt occurs the corresponding ISR
function address is fetched from the vector table and the program will jump to that address. Therefore the address of the
I NT_TMMISR needs to be stored in the correct place in the vector table. When you create a new project in HEW, several
files defining the vector table and ISRs are created:

vecttbl.c - actually defines the vector table itself and the vector entries
vect.h - declares the ISR function names as external symbols
intprg.c - a default ISR function for all interrupts not used by HDI-m or the User's Code (a ‘catch-all’)

An added complication when using HDI-M is that the vector table is located from address H'0, which is in the Flash ROM
area used by HDI-m and the user’s code. To allow us to develop with interrupts, the HDI-monitor must be built with the user
code and the power on reset vector must point to HDI-m code. HDI-m also uses the serial and address break interrupts so
these cannot be used if HDI-m is built with the user code

Issue 1.0 Jan-01 31

| EDK3664F Tutorial Manual

2.3.3 INTERRUPTS AND HDI-M

e Generate a new tutorial project as done in previous tutorials but this time select ‘5. Interrupt Tutorial’ and call it
3664 _TutorialE. The following workspace view should be seen.

Vecttbl.c actually defines the vector table itself and creates a section named DVECTTBL =l
which contains the power on reset function vector and also a section named DINTTBL which |- EZE SR
contains the vector entries for all interrupts available on the H8/3664F. As this project has Bl 3664_TutorialE
been built for use with HDI-m the Reset vector in DVECTTBL points to the power on reset e %”'ZE‘SE':E;
vector for HDI-m. L =) intenuptc
P g] intprg.c
If HDI-m is to be used this power on reset vector must always be used. [B resetprge
-Power on reset vector when using HDI-mis st ar t up() . ::% ibe[ckucbl]
-3 Dependencies
Within the interrupt table DINTTBL there are 3 interrupts that cannot be changed if operation : E E pindefine.h
with HDI-m is desired. These vectorsare: | = §] sbik.h
-NMlinterrupt NM capt ur e() for flash programming controt | =] stackscth
-SCI3 interrupt SCI i nt () for communications between the PC and the EDK | 5 veeth
-UBC interrupt UBCi nt () for breakpoint control.) Proj... |€|Na\ti... |

If any of these interrupt functions are omitted from the interrupt table HDI-m will not operate correctly.

All other interrupts in this table are serviced by ‘catch all’ functions defined in intprg.c. All the functions are blank except one,
the timer interrupt | NT_TMWA() is commented out. This is the interrupt routing for the timer used in this tutorial. The ISR
I NT_TMA() can be found in Interrupt.c.

If you want to add your own interrupt functions it is advisable to keep the same names already in the tables and simply
comment out the ‘catch all’ function in intprg.c and write another elsewhere. Always remember to use the following compiler
syntax when writing an interrupt routine.

#pragma i nterrupt (interrupt name)

Here is the code listing for intprg.c

#pragma section I ntPRG

voi d Dumy(void){;}

/* void NM capture(void){;} Monitor NM capture */
void | NT_TRAPO(void){;}

voi d | NT_TRAP1(void){;
voi d | NT_TRAP2(void){;
voi d | NT_TRAP3(voi d){;
/* void UBC nt(void){;} Moni tor address break interrupt */
void I NT_SDT(void){;}

void INT_I RQO(void){;}

void INT_I RQL(void){;}

void INT_I RQR(void){;}

void INT_I R@B(void){;}

void | NT_WKP5(void){;}

voi d | NT_TMAOVF(void){;}

/* dummy*/

/* void INT_TMAvoid){;} Used in tutorial E main() function */
void I NT_TM/(void){;}

/* void SClint(void){;} Monitor serial port interrupt */
void INT_I2C(void){;}

voi d | NT_ADEND(voi d){;}

32 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

2.34 UNDERSTANDING THE INTERRUPTS TUTORIAL

The file Interrupt.c contains the source for the tutorial:

#i ncl ude <machine.h> /* So that we can use | anguage extensions for enbedded systens */
#i ncl ude "i odefine. h"

/* Define constants for peripheral register vaules */

#define TCR_CCLR /* Set TCNT cleared by TGRA match */
#defi ne TCR_CKEG /* Default clock edge */

#define TCR_TPSC /* O ock source internal/256 */
#define TCR_TOB /* Set pin ouput nodes: TIOB */

/* Function Prototypes */
voi d mai n(void);

voi d Har dwar eSet up(voi d);
#pragme interrupt (I NT_TMYN

voi d mai n(voi d)

{
unsi gned short duty;
TMRW GRB= duty = Ox7fff; /* Set duty of LED 50% by TGRB */
TMRW TMR BI T. CTS = 1; /* Start Channel 1 */
whi le(1); /* Loop forever */
}

voi d Har dwar eSet up(voi d)
{

set _i mask_ccr(0);
MSTCRL. BI T. MSTTW = 0;
TMRW TMR. BI T. CTS = 0;

Enabl e interrupts to CPU */
Enabl e Ti ner W nodul e */
Timer off */

—~— —
* ok ok

TMRW Tl ER BYTE &= 0x00;
TMRW TSR BYTE &= 0x00;

dissable all interrupts */
Cl ear any pending interrupts */

——
EE

TMRW TCR. BI T. CCLR = TCR CCLR; /* TCNT clear on GRA natch */
TMRWTCR BIT.CKS = TCR CKS; /* O ock = phi/8*/
TMRW TMR BI T. P\WB = TMR_PWVB; /* PWM node for channel B */
TMRW TCR. BI T. TOB = TCR _TOB; /* initial output is 0 */
TVMRW GRA = Oxffff; /* Set cycle period by GRA */
TMRWTIER BIT.OVIE = O; /* Disable the OVERFLOW i nterrupt */
TMVRWTIER BIT.IMEB = 1; /* Enable the GRB Match interrupt */
}
voi d | NT_TMA(voi d)
{
TMRW TSR BI T. | MFB &= O0; /* clear B conpare/match bit */
TMRW GRB - = 0x400; /* Decrenent duty value by 400 */

}

The main function is very similar to the main function from Tutorial D. Because the ISR changes the duty value we do not
need to do this in the main and so it just sits in a whi | e () loop.

The I NT_TMA(voi d) function is the interrupt service routine. This corresponds to the symbol entry in the vector table
definition in vecttbl.c. The first line clears the timer's compare/match interrupt bit, if the interrupt is not cleared, another
interrupt will immediately be generated on return from the ISR.

The second line in the ISR decrements the duty value in the TGRB register to shorten the ‘off’ time of the LED, when
it is decremented past 0 the value in the register will underflow and start again at a high value i.e. with a short pulse
on the LED. Note we decrement the value rather than increment it, because if we incremented then very shortly after
returning from the interrupt, we would get a compare/match on this larger value (as the timer is still counting) rather
than waiting until another complete cycle period has been completed.

The startup function Har dwar eSet up() has been increased to include an additional line of code to enable the Timer
module channel B compare/match interrupt:;

TVMVRWTIER BIT.IMEB = 1; /* Enable the GRB Match interrupt */

This causes an interrupt to occur whenever the value in the TCNT register matches that in the TGRB register. The special
function set_imask_ccr(0) is added, this is an in-line function to insert an instruction to change the CCR values and unmask

Issue 1.0 Jan-01 33

| EDK3664F Tutorial Manual

the interrupts, in order to use this special function we have to include the header file machine.h. This contains a number of
functions definitions to allow access to CPU operations like accessing the condition code register (CCR) and using specific
instructions e.g. trapa, sleep, movfpe, eepmov, mac, rotlw, dsub, nop. These functions may be used in an application to gain
access to the CPU, they should be used with care as they directly control the underlying hardware and are not subject to
checking by the compiler. For more information on these function see the Hitachi H8S, H8/300 Series C/C++ Compiler User's
Manual [ADE-702-189].

2.35 VIEWING AND RUNNING THE APPLICATION

e Select the project 3664 TutorialE and execute a build to create the debug absolute load file, and an S-record to
download to flash using FDT.

e Now disconnect HDI from the EDK and Flash it with the file C:\...\3664_TutorialE\debug\3664 TutorialE.mot as
described in Tutorial A. Disconnect FDT from the EDK and restart HDI and load
C:\...\3664_TutorialE\debug\3664_TutorialE.abs

* Open a code window with the file interrupt.c and set a breakpoint at the following line in the ISR INT_TMW:

TMRW GRB - = 0x400; /* Decrenent duty value by 1000 */

e Open an /O register window. It is H83664.i0 located in the HDI directory. Install it using menu item ‘Setup | Configure

Platform’
Menu Command: Accelerator Toolbar Button
View | I/OArea Ctrl-l 1M

This window lists all of the on-chip peripheral modules, you can expand the module name to show its registers by double-
clicking on the module name. Expand the W_16_Bit_Free_Running_Timer module. You can see the duty cycle value in the
GRB register.

* Reset GO and the program should stop at the W 16 Bit Free Running Timer
breakpoint. 0000FFB0 TMEW H'48
OO0OFFE1 TCRW HTOO
You should see the GRB updated with the initial duty DOODOFFS2 TIERW H™70
value H'7fff and the LED start flashing with a duty cycle UODOFFSS THRW HUan
£ 5004 O000FFS94 TICRO H'00
oFSU%. 0000FFBS TIORL H'88
OO0OFFE& TCNT H'FF
* Run to the breakpoint again. DODOFF28 GRA H'"FFFF
OO00FFEA GRE H'FFFF
You should see the GRB value decrement by H'400, UODOFFSC GRC H'FFFF
. . . . OJO0OFFEE GRD HTFFFF ;I
continue running and stopping at the breakpoint. You

can see the duty value change and the corresponding flash period of the LED also change. Note that when the program is
stopped the duty value does not change even though the LED continues to flash and compare/match occurs. Although this
does in fact cause an interrupt request, HDI masks interrupts while the program is stopped.

« Remove the breakpoint and Go.

You cannot see the TGR1B value decrement while the program is running, however you can see the duty value of the LED
flash change.

WARNING: To use this I/O window HDI-m must read a mode bit at address H'FFF1. This is the address for the
SYSCR2 register which controls the subactive clock frequency. A 1 must be written to this register in order for the
I/0O window to be used and so the subactive clock cannot be /8.

2.3.6 VARIATIONS

Once interrupts have been mastered programming for real-time applications becomes much simpler. In addition the removal
of polled loops enables many tasks to be performed, seemingly at the same time. In tutorial E_Interrupt the main program
does nothing as it just sits in a while() loop, you could try performing some useful operation in this loop Alternatively you
could try using some of the other on-chip modules. See the H8S hardware users manual for more information on them.

34 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

2.4 TuToRIAL F: “LONER”

The final example simply takes the code from Tutorial E and makes it run on the EDK without HDI-M. The aim of this
example is to show that an application can be created using these tools which will be capable of running ‘stand-alone’. The
majority of the work has already been done - the startup code was created in Tutorial C, the peripheral register address
header file was used in Tutorials B & D and the interrupt vector table was explained in Tutorial E. This example uses similar
source files that were used in Tutorial E. The main difference is that since HDI-m will not be resident, a real power on reset
vector must be created and not one that calls HDI-m initialisation function st ar t up() . Tutorial F is a version of Tutorial E
Interrupt that will run from Flash without HDI-m. Also since HDI is no longer using the UART serial interface this is now
available to our application, we will use it to write a sign on banner and echo back characters from an external terminal (in
this case Hyperterminal).

24.1 CREATION OF A VECTOR TABLE IN C WITHOUT HDI-M

e Generate a new tutorial project as done in previous tutorials but this time select ‘6. Loner Tutorial’ and call it
3664 TutorialF.

» If you now look at the linker section map in HEW (menu item |rrmempr ey e
‘Options | Linker | Section’) you can see that the reset vector
section DVECTTBL is placed at H'O followed by the interrupt
vector section DINTTBL as in previous tutorials.

Input I Dutputl Optimize Section |Verify | Other |

Fielozatable gection start address

Address Section - Add..
. . H'00000000 | DVECT...
The interrupt vector table must be located at this address to ensure . [OINTTEL Wodfy. |
. . . . 000000 i
startup code is executed first on reset. The startup code in file PReselt oGt
resetprg.c does not change but the power on reset vector points to Hnonnion; £ | —
Power On_Reset () rather than the HDI-m initialisation function D _ genove |
" $ABSED
startup(). FES16D il il
C3$DSEC
C4BSEC =i Up Down

The vector table definition in vecttblt.c does not contain any of the Generats estaral symbel e -
HDI-m interrupts described in Section 2.3.3. instead these peripherals r =
are available to the user.

|

Eemoye

Note also that in the menu item 'Options | Linker | Input’ there is NO
inclusion of the HDI-m Iibrary file. [~ Use extemal subcommand file ok

Cancel |

2.4.2 LOW LEVEL INITIALISATION

As we saw in the previous tutorials, low level initialisation occurs before the user's code is called in order to set up the bus
protocol and essential peripherals. Since we are running stand-alone we cannot rely on HDI to initialise the EDK environment
for us. Therefore we must do it ourselves in Har dwar e _set up() which is shown in the source below from Loner.c.

voi d Har dwar eSet up(voi d)

set _i mask_ccr(0); /* Enable interrupts to CPU */
MSTCRL. BI T. MSTTW = 0; /* Enabl e TimerWnodule */

TMRW TMR. BI T. CTS = 0; /* Timer off */

TMRW Tl ER BYTE &= 0x00; /* dissable all interrupts */

TMRW TSR BYTE &= 0x00; /* Clear any pending interrupts */
TMRW TCR. BI T. CCLR = TCR _CCLR;, /* TCNT clear on GRA match */
TMRWTCR BIT.CKS = TCR. CKS; /* O ock = phi/8*%/

TVMVRWTMR BI T. PAWB = TMR_PWVB; /* PWM node for channel B */

TMRW TCR BI T. TOB = TCR _TOB; /* initial output is 0 */

TVMRW GRA = Oxffff; /* Set cycle period ~1s by GRA */
TMRWTIER BIT.OVIE = O; /* Disable the OVERFLOW i nterrupt */
TMRWTIER BIT.IMEB = 1; /* Enable the GRB Match interrupt */
/* Serial Port 3 Setup */

IO PMRL.BIT. TXD = 1; /* Enable SCI3 TX out */
InitSCl3(SCl_Init_Data); /* initialise serial port */

}

Most of this file is identical to Tutorial E except for the initialisation of the serial port SCI3. This function is described in
Section 2.4.4.

Issue 1.0 Jan-01 35

| EDK3664F Tutorial Manual

2.4.3 THE MAIN() FUNCTION

The mai n() function in is displayed below:

#i ncl ude <machine.h> /* So that we can use | anguage extensions for enbedded systens */
#i ncl ude "i odefine. h"

#i nclude "SCl 3. h"

/* Define constants for peripheral register values */

#define TCR_CCLR 1 /* Set TCNT cleared by TGRA match */
#defi ne TCR_CKS 3 /* C ock source internal/8 */
#define TMR_PWB 1 /* PWM node in channel B */

#define TCR_TOB 0 /* output O on TIOB at start */

/* SCI Initialisation data structure */

struct SCl _Init_Params SCl _I nit_Dat a={ B9600, P_NONE, 1, 8};
/* Function Prototypes */

voi d mai n(void);

voi d Har dwar eSet up(voi d);

#pragma i nterrupt (I NT_TMA

voi d mai n(voi d)

{ vol atil e unsigned short duty;
TMRW GRB = duty = Ox7FFF; /* Set duty cycle at 50%in GRB */
TMRWTMR. BI T. CTS = 1, /* Start the timer */
Put Str((unsigned char *)"\r\nEDK3664F Denp serial output\r\n");
whi | e(1)
{ Put Char (Get Char ());

) }

voi d | NT_TMA(voi d)

{ TMRW TSR BI T. | MFB &= O0; /* Clear the interrupt */

) TMRW GRB - = 0x400; /* Decrenent duty cycle by 0x400 */

This function is much like Tutorial E's mai n() function. Three serial functions have been added, one to print out a text
string and the others to echo any characters received by the serial port input in the while statement. The timer interrupt also
remains unchanged.

244 THE SERIAL /O FUNCTIONS

SCI3.c and SCI3.h are the files containing the four serial functions shown in the table below.

Function Return Arguments Description :
ER] ool
Initial il port using dat -z 3664_TutorialF
o e struct Ini |? |s?s senad potr using data 5123 Projsot Files
ni unsigned char SCI_Init_Params in structure and returns error g dbsel.c
flags intprg.c
wvedby | i B loner.c
GetChar | unsigned char | void Retums a character received by | [reselprg.c
- - SCI3 - shrk.c
PutChar | void unsigned char Transmits a character | || . 5003 c
; . Transmits a string of characters | || | - 5] vecttbl.c
* .
PutStr | void unsigned char (NULL terminated) £1-E3 Dependencies
----- E] indefine.h
shik.h
This is example code for control of the SCI3 port. The initialisation function takes a structure scith
containing four variables setin SCI _| ni t _Dat a: stacksct h
----- =] wecth

{st ruct SCl _Init_Parans — @ij... WI—

unsi gned char Baud; baud rate regi ster value BRR */
unsi gned char Parity; Parity P_NONE, P_EVEN, P_ODD */
unsi gned char Stops; Nunber of stop bits 1,2 */

unsi gned char Length; Length of byte transmitted 7,8 */

—~ —— —
* %k ok ok

}
struct SCl_Init_Parans SCl_|nit_Data={B9600, P_NONE, 1, 8};

The baud rate can be either B9600 for 9600 baud or B19200 for 19200 baud.

| 36 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

245 LINKING FOR STAND-ALONE CODE

For an application to exist successfully in a stand-alone environment like the EDK, it must be able to stand the removal of
power from the system and initialise itself from a subsequent Power-On reset condition. To achieve this the parts of the
application which setup the system, including all of the code and constant sections must be placed non-volatile memory,
such as Flash.

In order to be able to store and modify variables and data structures, these must exist in RAM.

To allow the system to start correctly the stack will be placed in the on-chip. Below is the linker map file for Tutorial F in
C:\...\3664_TutorialF\debug\3664_TutorialF.H8L, this file lists information about how the linker has built the application and
where it has located the program sections according to the addresses defined in the HEW linker options. You can see that
the data sections have been placed in on-chip RAM.

ent _Power ON_Reset

ro (D, R

p "c:\hew 3664_Tutorial F\3664_Tut ori al F\ Rel ease\ 3664_Tut ori al F. nap"

noopti m ze

st

DVECTTBL, DI NTTBL(00) , PI nt PRG, PReset PRG(034) , P, C, D, $ABS8D, $ABS16D, C$DSEC, C$BSEC(0100) , B, $AB

S8B, $ABS16B, R, $ABS8R, $ABS16R, S(0FB80)

0 "c:\hew 3664 _Tutorial F\3664_Tutori al F\ Rel ease\ 3664_Tut ori al F. abs"
"c:\hew 3664_Tutorial F\ 3664_Tut ori al F\ Rel ease\ dbsct. obj "

\ hew\ 3664_Tut ori al F\ 3664_Tut ori al F\ Rel ease\ sbrk. obj "

\ hew\ 3664_Tut ori al F\ 3664_Tut ori al F\ Rel ease\vecttbl.obj"

\ hew\ 3664_Tut ori al F\ 3664_Tut ori al F\ Rel ease\reset prg. obj "

\ hew\ 3664_Tut ori al F\ 3664_Tut ori al F\ Rel ease\ Loner. obj "

\ hew\ 3664_Tut ori al F\ 3664_Tut ori al F\ Rel ease\i nt prg. obj "

\ hew\ 3664_Tut ori al F\ 3664_Tut ori al F\ Rel ease\ SCI 3. obj "

ib "c:\hewtool s\hitachi\h8\3 _0a_0O\lib\c38hn.lib"

ib "c:\hewtool s\hitachi\h8\3_0a_0\lib\ec2hn.lib"

o
C:
C:
C:
(o
C:
(o
C:

EXI

Another difference in linking compared with Tutorial E concerns the H8S_H8/300 OptLinker options{Release] BE

output format of the absolute load module. gt Output | Opinie | Section | Vesiy | Oter |

Format of load module : |

Since we wish to program the absolute file into the Flash memory
rather than debugging it with HDI-m, we want an S-Record format Type of loag mocile - [Absclte [
output file rather than a SYSROF debug file, the build process Debuginformation =~ [None =
includes a final build phase that creates a .mot s-record file from the
.abs file. Also debug information is of no use to us, by default the

ROM to RaM mapped sections :

tput format for the “Release” build configuration is to not includ = [fam [ew.
output format for the “Release” build configuration is to not include D g
debug information in the output file. ferove |

« You can inspect these options in the Ouput tab of the ‘Options |
Linker..." dialog in HEW.

¥ Generate map fil

. Load module directory :
e The s-record final bunq pha;e setup can be viewed in ‘Options | [e*hendemotevb2E23Rtutarak F_LanerFeleas Madiy.. |
S-Type Converter..." dialog in HEW.

™ Use extemal subcommand file ak. | Cancel |

e Loading the built file into the Flash device using Hitachi's Flash
Development Toolkit (FDT) as discussed in the Tutorial A Section 1.1.2.

Issue 1.0 Jan-01 37

| EDK3664F Tutorial Manual

2.4.6 RUNNING THE CODE

e Ensure that FDT is disconnected from the EDK and jumper J10 is fitted with a Jmﬁ
block connecting Pins 2-3. Press the reset button S1 on the EDK . SDA SCL

This will reinitialise the H8/300HTINY 3664F into normal execution mode. An RS-232 BDDT ARMED
cable may then be connected to the ‘UART' port of the EDK3664F. The LED should start ARM
to flash with a decreasing duty.
To verify that the character echo code is functioning as previously described in this H POWER
tutorial: RESET
BOOT

e Start a terminal emulation program (such as Hyperterminal)

< Connect to the EDK with the correct protocol settings set in Loner.c, the structure st ruct SCI _I nit_Parans
SCl _Init_Data={B9600, P_NONE, 1, 8}; in this case 9600 baud, 8 bit, no parity, 1 stop.

e On pressing reset button S1 the RED LED D2 should start to flash with the varying duty cycle, indicating correct
operation of the interrupt code and you should see the sign on banner.

i dumb - HyperT erminal [_ (O]
File Edit “iew Call Transfer Help

D] 5(3] ol

EDK3664F Demo serial output
Type in some text to confirm
Correct code operation on
EDK3664F_

Connected 00:07:31 AMSI 9600 8-M-1

« Characters typed on the keyboard should be echoed back in the terminal window.

2.4.7 VARIATIONS

Now that successful programming of the on-chip FLASH has been completed, it is possible to program the H8/300HTINY
3664F with any application.

38 Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

3. NORMAL PROJECT

The EDK3664 Project generator comes with a ‘Normal’ project generater as well as the ‘Tutorial’ and ‘Completed’ project
generator. This section of the tutorial manual explains this function of the Normal Project and the 2 build configurations. One
build configuration is ‘Debug’ which provides an empty project which is already linked to HDI-m Library code enabling the
user code to run with HDI through the serial port SCI3. The other configuration is ‘Release’ which provides an empty project
without HDI-m code for standalone operation on the EDK, much like Tutorial F.

Issue 1.0 Jan-01 39

| EDK3664F Tutorial Manual

3.1 ‘NORMAL’ PROJECT

311 CREATING THE NORMAL PROJECT

< Generate a new Workspace as done in previous tutorials but this time select ‘Normal Project’ and call it
3664_Standalone.

3.1.2 HEW BuILD CONFIGURATIONS

All the files generated by the Normal project generation wizard are common to both build configurations. HEW allows you to
define different configurations for building executable modules from the same set of source files in a project. Each different
configuration may have different compiler, assembler and linker options and may exclude files from the build. When you
create the Normal project, two configurations ‘Debug’ and ‘Release’ are created automatically. You can select the current

H85.H8/300 OptLinker options(Debug) HE
e -
Input | Outpt | Dpinize - Section | vegl | Other | File Edi Froject Opfions Build Took Window Help
Felocatable section start address : et s
- 2) B S [Debug M ERRRERE
Address Section ;I AdtL I ' JJ
Emon -~ @ Release _|
LEl] Tadifi.. | = 3664 _Standalone - - 2 |
HOOO0FESD gABSBB EI@ 3664_Standalone | ||—
e . . =
$EESTER [mets configuration from the standard tool bar:
QABSBH Eemove |
JBsTeR 1 ¥ If you use the EDK project generator wizard to create a new project,
S_TOP i i i i -
T e S0 oo the Debug configuration will set up the linker to place the HDI-m

Generate external symbaol file :

Library file and its associated setup in the code, so that HDI-m can

sa | download your application to the board.

_= || In the Release configuration the sections are defined to create an
absolute module that you can program into the Flash ROM of the
[~ Use estemal subcommand fil | cancel || device for standalone operation (i.e. without HDI-m).
3.2 ‘DEBUG’ CONFIGURATION FOR OPERATION WITH HDI-M

This configuration will generate a standard s-record for downloading to the EDK for operation with HDI.
< Ensure the Configuration is set to Debug

3.2.1 LINKER SETUP AND SECTION MAP

e Select the menu item ‘Options | Linker | Sections’ and inspect the linker section map shown above:
The Linker section map for the ‘Debug’ Configuration contains 5 extra section names for HDI-m:

Section Name Description Location Size
Pmon HDI-m Code Flash | 6010 bytes
Cmon HDI-m Constants Flash | 72 bytes
Bmon HDI-m Uninitialised Data RAM 111 bytes
MONSTACK HDI-m Stack pointer RAM 132 bytes
S TOP User initial stack pointer | RAM | seestacksct.h
Address

When these section are linked with the code care must be taken that they are all in valid memory locations. Check the link

map file 3664_STANDALONE.map to ensure this is the case and check with Section 4.4 H8/3664 Memory Map.

e Select the menu item ‘Options | Linker | Input’ and inspect the libraries built with ‘Debug’ configuration. Ensure that
3664HDIMLIB.lib HDI-m Library file is included

WARNING: S_TOP is set by the user code but it must be placed after the user stack section S in the linker sections
window. This Section name is used by HDI-m Library to set the reset stack S for the user code.
Power _ONReset () must always be the name of the users startup function and it must always be where the user
stack is set using #pragma entry Power ON_Reset

HDI-m Library uses the Power _ONReset () function name in referencing user startup code, this CANNOT be

changed.

| 40

Jan-01 Issue 1.0

EDK3664F Tutorial Manual |

3.2.2 INCLUDED FILES AND COMPILER SETUP

This Project contains many of the same files seen previously. The main difference
vector tables now contain a conditional preprocessor command shown below:;

is the vecttbl.c and vect.h files. The reset

1] x|
#pragma section VECTTBL @ """" ials
voi d *RESET_Vectors[] = { /* 0 Power On Reset */ ; "
#i f def DEBUG /* Monitor Reset capture */ E”ﬁ? StandAlone
#el se B3 C source file
~ (void *)(PowerON_Reset) /* User standal one Reset */ © B dhacte
;t.endl f ! j intprg.c
' =] main.c
If the symbol DEBUG is defined then the HDI-m Library initialisation function % 'T;:t':"g'c
startup() is the reset function otherwise Power ON_Reset () is the N —
funct : -mfg]vecumc
reset function 123 Dependencies
)]] - |E] iodefine.h
For the interrupt vector table the same method is employed to include the HDI-m - [F] shik.h
interrupt vectors =] stackscth
—[E] wecth

#i f def DEBUG

@ijecix | ‘@:lNaxrigatiun |

(void *)NM capt ure, /* Monitor NM capture */
#el se
(void *)(INT_NM), /* User NM for standal one build configuration */
#endi f
#i fdef DEBUG
(void *)(UBCint), /* Monitor address break interrupt */
#el se
(void *)(INT_UBC), /* User address break interrupt for standal one configuration */
#endi f
#i fdef DEBUG
(void *)(SClint), /* Serial port interrupt */
#el se
(void *)(INT_SC), /* User Serial port interrupt for standal one configuration */
#endi f

The DEBUG defined symbol is added to the project via the compiler options in the following manor

+ Open the Compiler options dialog (Options |
Compiler | Source...) dialog and select the E--E_ID o Source | Object | List | Optimize | Gther | CPU |
“Defines” option from the “Show entries for:” o oo e Shon e
drop down list. [Defncs |

* Click on the “Add...” button, a symbol entry Define | vaise [e |
dialog appears: e |

e Enter the symbol “DEBUG" for the defined ferove |
macro name. ovess_|

e The symbol DEBUG is now defined.

Macro: IDEBUG MI

This results in the application vector table Beplacement : |

containing HDI-m interrupt and power on vectors

if the Debug configuration is built, o]| _ced | [oc | Ccoed |

As stated before Power ONReset () must have the user stack initialised by declaring #pragnma entry
Power _ONReset () in resetprg.c, the user hardware initialisation code can then be placed in. The user application code
can then be written in the mai n() function in Main.c. Remember that some of the memory is used by HDI-M library code
as described in Section 3.2.1

SN

Issue 1.0 Jan-01 1

| EDK3664F Tutorial Manual

3.3 ‘RELEASE’ CONFIGURATION FOR STANDALONE OPERATION

This configuration will generate a standard s-record for downloading to the EDK for operation without any debugger. This is
the same as Tutorial F but without any functionality, i.e. blank mai n(') and Har dwar eSet up() functions.
« Ensure the Configuration is set to ‘Release’

331 LINKER SETUP

e Select the menu item ‘Options | Linker | Sections’ and inspect the linker section map, check that there are no HDI-m
sections defined.

e Select the menu item ‘Options | Linker | Input’ and select the “Defines” option from the “Show entries for:” drop down list.
Check to see that the symbol DEBUG is NOT defined.

All the same files are used in this configuration but all H8/3664 hardware is available because HDI-m is not built with this
code.

42 Jan-01 Issue 1.0

EVB2623F Tutorial Manual |

4. APPENDIX

4.1 BOARD OVERVIEW

DIP-42S Pin Out
| 2 m}“ e SERIAL /O
J1E -e
+ / v * s Green LED D5:
Gio 2 41 o 53 Power
J1 2 PSR 400 52 D5K
. 6204 0330 51
o o .
+ tio o ® o Red LED D2:
Lo » D48 Port 5 Bit 6 /
Avce - B -] adfde 44 Port 8 Bit 2
- EEAY
507)
- 3664F 5390 43 Red LED D1:
7ede DIP-428 m3de 42 orl Port 5 Bit 7
.8 0ll o 0330 4] {3
soee St mE}
1 ol3 0 5306 38 SDA SCL
a 290 37
Jig g%a g geeg a6 Red LED D3:
14 0lé o o7 o 35
NMI 0 2 ° 23 BOOR ARMED m - Boot Mode
70 o o 032 Activated
Gnd £, . £ o3 x|
+ 20018 0 o230 29 | Yellow LED D4:
cloelfe oodm 28
= -ToUI N -] @23 27 POWER EDK Armed for
P4 [.I'] EELEN] mEEe 26
PA X840 o o 08 Boot Mode
1 T oA " A ReseT
I I IBOOT

QFP-64 Pin Out

Issue 1.0 Jan-01 43

| EVB2623F Tutorial Manual

4.2 LED PIN Out
LED J10Block | X3/X4 | QFP-64 Pin | DIP-42S Pin Pin Function
Position Pin
D1 - 30 27 23 Port 5 Bit 7/ SCL
D2 1-2 31 26 22 Port 5 Bit 6 / SDA
D2 2-3 19 38 30 Port 8 Bit 2/ FTIOB
Jumper 10 with NO Block Fitted.
:lllegal setting e XW
J1Y 75 s & e
11- T -] @ B33
J10 591 o @4413954
5o EYPE D5
EE0d o o390 51
tio o e
Jumper 10 with Block Fitted 1-2 cs s e 0%
:LED D2 connected to Port 5 Bit 6 ieco gg;gzg I
‘e msn| 3664F £350 43 ¢ ‘e
7edp] DIP425 | w3deaze
> "TPTTY FRPTPRYS ey PR T J10g @
J10 perte ek, B s
:
}25 E . o BoOT ARMEDEARM
. . 70 o LR =]
Jumper 10 with Block Fitted 2-3 ig e o e .23
:LED D2 connected to Port 8 Bit 2 goolg o mesnes
PA[I8):5 , - o Lngn
] 1°ﬁ1 d e
44 Jan-01 Issue 1.0

EVB2623F Tutorial Manual |

4.3

X1/X2

oO~NO U WNBE

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

NOTES:

QFP-64
57
58
59
60
61
62
63

(o]
Sy

coO~NO O WNEF

DIP42S

A WNPRE

17
18
19
20
21

PINOUT FOR X1, X2, X3 & X4

PIN DESCRIPTION
PB6/AN8
PB7/AN7
PB3/AN3
PB2/AN2
PB1/AN1
PBO/ANO
NC

NC

NC

NC

Avcc

X2 (note 1)
X1 (note 1)
VCL

RES*
TEST

Vss

OSC2 (note 2)
OSC1 (note 2)
Vce
P50/WKPO
P51/WKP1
NC

NC

NC

NC
P52/WKP2
P53/WKP3
P54/WKP4
P55/WKP5
P10/TMOV
P11

X3/X4

©CoOoO~NOO~WNEPR

1-pins 12 & 13 from X1 are always connected to the H8/3664
pins 13 & 13 from X2 depend on jumpers J2/J3 for function (Rev B boards only)
2 - pins 18 & 19 from X1 are always connected to the H8/3664
pins 18 & 19 from X2 depend on jumpers J5/J6 for function (Rev B boards only)

QFP-64
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25

DIP-42S

42
41
40
39

38
37
36
35
34
33
32
31
30
29
28
27

26
25
24
23
22

PIN DESCRIPTION
PB5/AN5
PB4/AN4
P17/IRQ3*TRGV
P16/IRQ2*
P15/IRQ1*
P14/IRQO*
NC

NC

NC

NC
P22/TXD
P21/RXD
P20/SCK3
P87

P86

P85
P84/FTIOD
P83/FTIOC
P82/FTIOB
P81/FTIOA
P8O/FTCI
NMI*

NC

NC

NC

NC
P76/TMOV
P75/TMCIV
P74/TMRIV
P57/SCL
P56/SDA
P12

Issue 1.0

Jan-01

45

| EVB2623F Tutorial Manual

4.4 H8/3664 MEMORY MAP
HDI-m Example Memory Map H8\3664F Memory Map
H'0000
Vector area Vector area
H'0034
HDI-Monitor code.
(Relocatable) Free FLASH
6Kbytes 32Kbytes
H'17F6
Free FLASH.
(For User Code)
26Kbytes
H'7FFF
Unpopulated Unpopulated
H'F780
Flash work Area And Flash work Area And
1Kbyte User Ram 1Kbyte User RAM
H'FB80
Internal RAM
For User code
778Bytes Internal RAM
H'FESA For User code
Internal RAM 1Kbytes
For Monitor Work Area
(Relocatable)
245Bytes
H'FF80
Internal Registers Internal Registers
H'FFFF
46 Jan-01 Issue 1.0

	Hardware Considerations
	Contents
	EDK Usage Tutorials
	Tutorial A: “ON OFF”
	Source File
	Programming the flash on 3664 Using FDT
	Connecting Hitachi Debugging Interface - Monitor
	Running Tutorial A

	Tutorial B: “FLASHER”
	Source Files
	HDI-m Library file inclusion
	Building the FLASHER Project
	Flashing Tutorial B onto the EDK
	Setting and Viewing breakpoints
	Running the program and halting execution
	Viewing variables
	Using HDI-M to modify a variable

	Embedded Code Tutorials
	Tutorial C: “STATICS”
	Need for the startup code
	Startup code detail
	Viewing the Statics
	Running the Code
	Memory map for EDK3664F With HDI-m

	Tutorial D: “TIMER”
	Setting the LED D2 to the correct port
	Accessing the control and status registers
	The timer program
	Running timer
	Variations

	Tutorial E: “INTERRUPT”
	Interrupts on the H8/300HTINY 3664F
	Creation of an ISR in C
	Interrupts and HDI-m
	Understanding the Interrupts Tutorial
	Viewing and Running the application
	Variations

	Tutorial F: “LONER”
	Creation of a vector table in C without HDI-m
	Low level Initialisation
	The MAIN() function
	The Serial I/O Functions
	Linking for stand-alone code
	Running the code
	Variations

	Normal Project
	‘Normal’ Project
	Creating The Normal Project
	HEW Build Configurations

	‘DEBUG’ Configuration for operation with HDI-m
	Linker Setup and Section Map
	Included files and Compiler Setup

	‘Release’ Configuration for STANDALONE operation
	Linker Setup

	Appendix
	Board Overview
	LED Pin Out
	H8/3664 Memory Map

