
1D hp-ADAPTIVE FINITE

ELEMENT PACKAGE

FORTRAN 90 IMPLEMENTATION

(1Dhp90)

Leszek Demkowicz and Chang-Wan Kim

Texas Institute for Computational and Applied Mathematics

The University of Texas at Austin

Austin, TX 78712

Abstract

This manual provides a description of a 1D hp-adaptive �nite element code for the

solution of a class of two-point boundary-value problems. The implementation is based

on hierarchial shape functions and allows for both h� and p� re�nements of the mesh,

based on a posteriori error estimation. The code includes an automatic hp-adaptive

strategy. Numerical results for several test problems illustrate the method.

Contents

1 Introduction 4

2 A General Two-Point Boundary Value Problem 5

2.1 Strong, or classical, form of the problem . 5

2.2 Weak (variational) formulation of the problem 6

3 Finite Element Method 9

3.1 Galerkin approximation . 9

3.2 Finite Element Method . 10

3.2.1 1D master element of an arbitary order 10

3.2.2 A 1D parametric element of arbitrary order 12

3.2.3 1D hp �nite element space. 14

3.2.4 Element sti�ness matrix and load vector 15

3.2.5 Taking into account the boundary conditions. Modi�ed element matrices 16

3.2.6 Global sti�ness matrix and load vector, the assembling procedure . . 17

3.3 Structure of a classical FE code . 20

4 Error estimation 23

4.1 A priori error estimation . 23

4.2 A posteriori error estimation . 24

4.2.1 The element implicit residual method 25

5 User Manual 27

5.1 Data structure in 1Dhp90 . 27

5.2 Organization of the code . 27

5.3 Mesh generation and postprocessing routines 28

5.4 Processing algorithms . 29

5.4.1 Evaluation of element matrices (elem pack/elem.f) 29

5.4.2 Modi�cation of the element matrices due to boundary conditions . . . 30

5.4.3 Assembling global matrices . 30

5.4.4 Solver . 32

5.4.5 Setting up data. Files . 32

6 Adaptivity 34

6.1 p-re�nement/unre�nement(meshmods pack/modord.f) 34

6.2 h-re�nement (meshmods pack/break.f) . 34

6.3 Natural order of elements (datastrs pack/nelcon.f) 34

6.4 h-unre�nement(meshmods pack/cluster.f) 34

6.5 The h-re�nements strategy . 35

6.6 Trading h-re�nements for p-re�nements . 35

6.7 Interactive re�nements . 36

6.8 The �nal hp-adaptive algorithm . 36

6.9 Examples of hp-adaptive solutions . 36

A Interface with a frontal solver 42

1 Introduction

The �nite element method is a general technique for constructing approximate solutions to

boundary value problems. The method involves dividing the domain of the solution into a

�nite number of simple subdomains, the �nite elements, and using variational concepts to

construct an approximation of the solution over the collection of �nite elements. Because

of the generality and richness of the idea underlying the method, it has been used with a

remarkable success in solving a wide range of problems in virtual all areas of engineering and

mathematical physics.

The goals of this manual are :

� to give a brief introduction to fundamental ideas of variational formulation, Galerkin

method, a posteriori error estimation, in context of a one dimensional �nite element

method,

� to introduce the reader to the concept of hp-adaptive Finite Element Methods,

� to provide a minimal user information for the package.

Consequently, we have decided to write this document in a format of lecture notes.

Indeed, it is our intention to use the notes in the ASE384P/EM 394F/CAM394F(Finite

Element Methods) [4] class taught in the ASE/EM Department and the CAM programs at

the University of Texas at Austin.

2 A General Two-Point Boundary Value Problem

2.1 Strong, or classical, form of the problem

We begin by considering a two-point boundary value problem of �nding a function u =

u(x); x 2 [0; l]. The strong form of the boundary-value problem consists of a second order,

ordinary di�erential equation,

�(a(x)u(x)0)0 + b(x)u0(x) + c(x)u(x) = f(x) x 2 (0; l); (2.1)

accompanied at each of the endpoints x = 0 or x = l with one of three possible boundary

conditions:

� Dirichlet boundary condition,

u(0) = 0 or u(l) = l; (2.2)

� Neumann boundary condition,

�a(0)u0(0) = 0 or a(l)u0(l) = l; (2.3)

� Cauchy boundary condition

�a(0)u0(0) + �0u(0) = 0 or a(l)u0(l) + �lu(l) = l: (2.4)

The Neumann boundary condition is just a special case of Cauchy boundary condition with

constant � = 0. For discussion of other possible boundary conditions including periodic

boundary conditions, see [4].

The data for the problem consist thus of :

� coe�cients of the di�erential operator a(x); b(x); c(x) (the material constants),

� right-hand side f(x) (the load),

� boundary conditions data �; .

2.2 Weak (variational) formulation of the problem

The weak formulation is a reformulation of the strong form and it is from this weak form

that the FE approach is established. Whenever a smooth classical solution to a problem

exists, it is also the solution of the weak problem. To establish the weak form of the strong

form given by equation (2.1), multiply (2.1) by an arbitary, so called, test function v(x), and

integrate over interval (0; l). We obtain

Z l

0

[�(a(x)u0(x))0 + b(x)u0(x) + c(x)u(x)] v(x) dx =
Z l

0

f(x)v(x) dx: (2.5)

Next, we integrate the �rst term by parts,

Z l

0

au0v0 dx� au0v jl0 +
Z l

0

bu0v dx +
Z l

0

cuv dx =
Z l

0

f(x)v dx : (2.6)

At this point, further derivation depends upon the kind of the boundary conditions

being used. In the case of Dirichlet boundary condition, we eliminate the boundary term by

restricting ourselves to only those test functions that vanish at that point. For example, if

we assume Dirichlet boundary condition at x = 0,

u(0) = (0); (2.7)

we have to assume that v(0) = 0.

In the case of Cauchy or Neumann boundary condition, we build the boundary condition

into the formulation by using it to calculate the derivative in terms of the boundary data,

and (in the case of Cauchy boundary condition) still unknown solution at that point. Thus

in the case of Dirichlet boundary condition at x = 0 and Cauchy boundary condition at

x = l, we get

8>>><
>>>:

Find u(x); u(0) = 0Z l

0

(au0v0 + bu0v + cuv) dx+ �lu(l)v(l) =
Z l

0

f(x)v dx+ lv(l)

for every test function v(x) such that v(0) = 0:

(2.8)

In the case of Neumann boundary condition, at x = l, constant �l = 0, and the boundary

term simply vanishes.

Notice that we have kept all terms involving solution u(x) on the left-hand side, and

the terms involving the test function v only, have been moved to the right-hand side of the

equation.

The weak (variational) formulation can be shown to be equivalent 1 to the classical form

of the boundary-value problem. We integrate back by parts and use the Fourier lemma

argument to recover the di�erential equation and Cauchy (Neumann) boundary condition at

x = l. Notice that there is no need to recover Dirichlet boundary condition, as it has been

simply rewritten into the weak formulation.

A precise mathematical setting is obtained by introducing the Sobolev space of the �rst

order H1(0; l), consisting of functions that are, together with their derivatives, square inte-

grable,

H1(0; l) = fv(x) :

Z l

0

v2 dx;
Z l

0

(v0)2 dx <1g: (2.9)

Next, we identify the subspace of kinematically admissible functions V, satisfying the homo-

geneous Dirichlet boundary condition,

V = fv 2 H1(0; l) : v(0) = 0g: (2.10)

The set of functions satisfying the nonhomogeneous Dirichlet boundary condition has a more

complicated algebraic structure of an a�ne subspace and can be identi�ed as the collection

of all sums u0 + v where u0 2 H1(0; l) is a lift of the boundary data, and v is an arbitrary

function from H1(0; l) satisfying the homogeneous Dirichlet boundary conditions:

fu 2 H1(0; l) : u(0) = 0g = u0 + V := fu0 + v : v 2 V g: (2.11)

The variational formulation can now be written in the form of the abstract variational

boundary-value problem 8<
:

Find u 2 u0 + V; such that

b(u; v) = l(v); 8v 2 V:
(2.12)

Here,

b(u; v) =
Z l

0

(au0v0 + bu0v + cuv) dx+ �lu(l)v(l) (2.13)

is a bilinear form of arguments u and v, and

l(v) =

Z l

0

f(x)v dx + lv(l) (2.14)

is a linear form of test function v.

Equivalently speaking, once we have found a particular function u0 2 H1(0; l) that sat-

is�es the nonhomogeneous Dirichlet data, we can make the substitution u = u0 + w where

1
up to regularity assumptions on the solution

w 2 V satis�es the homogeneous Dirichlet boundary conditions, and try to determine the

perturbation w. The corresponding abstract formulation is then as follows.

8<
:

Find w 2 V; such that:

b(w; v) = l(v)� b(u0; v); 8v 2 V
(2.15)

For the sake of simplicity of presentation, we shall use the particular choice of the bound-

ary conditions throughout the rest of these notes. All other cases can be treated in a

completely analogous way.

3 Finite Element Method

3.1 Galerkin approximation

With these preliminaries behind us, we are ready to consider Galerkin's method for construct-

ing approximate solutions to the variational boundary-value problem. Galerkin's method

consists of seeking an approximate solution to variational boundary-value problem in a �nite-

dimensional subspace Vh of space V .

This procedure leads to the following approximate variational boundary-value problem.

(
Find uh 2 u0 + Vh; such that:

b(uh; vh) = l(vh); 8vh 2 Vh
(3.16)

We introduce a �nite set of basis functions eh1; eh2; : : : ; ehN in V that span a �nite dimen-

sional subspace of test functions Vh in V . We then seek the approximate function uh 2 u0+Vh

in the form:

uh(x) = u0 +
NhX
k=1

uhkehk : (3.17)

The unknown coe�cients uhk; k = 1; 2; :::; Nh are called global degrees of freedom. Sub-

stituting the linear combination into the variational boundary-value problem (3.16), and

setting the test functions to the basis functions v = ehl; l = 1; 2; :::; Nh, we arrive at the

algebraic system of equations.

8>><
>>:

Find uhk; k = 1; 2; :::; Nh; such that:

b(u0 +
NhX
k=1

uhkehk; ; ehl) = l(ehl); l = 1; 2; :::; Nh
(3.18)

The approximate solution depends only on the space Vh and is independent of the basis

functions ehk. In order to simplify the notation, we shall drop now the approximate space

(mesh) index h remembering that all quantities related to the approximate problem depend

upon the index h.

Finally, using the linearity of the bilinear form b(u; v) in u, we are led to the following

system of linear equations. 8>>><
>>>:

Find uk; k = 1; : : : ; N; such that:

NX
k=1

ukSkl = Lmod
l ; l = 1; : : : ; N

(3.19)

Here Skl denotes the global sti�ness matrix

Skl = b(ek; el) =
Z l

0

(a
dek

dx

del

dx
dx + b

dek

dx
el + cekel) dx (3.20)

and Lmod
l stands for the modi�ed load vector

Lmod
l = l(el)� b(u0; el)

=

Z l

0

fel dx+ lel(l))�
Z l

0

(a
du0

dx

del

dx
dx+ b

du0

dx
el + cu0el) dx

(3.21)

The array:

Ll = l(el) =
Z l

0

fel dx+ lel(l) (3.22)

is called the (original) load vector. Notice the two di�erent meanings of letter l.

3.2 Finite Element Method

The Finite Element Method is a special case of the Galerkin method and di�ers from other

methods in the way the basis functions are constructed. Domain (0; l) is partitioned into

disjoint subdomains called �nite elements. Next, for each element K, we introduce the cor-

responding shape functions �K which eventually are glued together into the globally de�ned

basis functions ek in the Galerkin method.2 It is the construction of the basis functions that

distinguishes the FEM from other Galerkin approximations. We begin our presentation with

a discussion of the fundamental notions of the master element, the isoparametric element,

and the �nite element space. We shall recall the construction of the Galerkin basis functions

through the element shape functions and, �nally, introduce the notion of the hp interpolation.

3.2.1 1D master element of an arbitary order

Geometrically, the 1D master element K̂ coincides with the unit interval (0; 1). The element

space of shape functions X(K̂) is identi�ed as polynomials of order p,

X(K̂) = P
p(K̂) : (3.23)

Obviously, one can introduce many particular bases than span polynomials of order p.

In the present implementation, we have selected a simple set of hierarchical shape functions

2
Mathematically speaking, the basis functions are unions of contributing element shape functions and

zero function elsewhere.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.2

0 0.5 1
−0.1

0

0.1

0 0.5 1
−0.05

0

0.05

0 0.5 1
0

0.01

0.02

0.03

Figure 1: 1-D Hierarchical shape function

de�ned as follows.
�̂1(�) = 1� �

�̂2(�) = �

�̂3(�) = (1� �)�

�̂l(�) = (1� �)�(2� � 1)l�3; l = 4; : : : ; p+ 1

(3.24)

The functions admit a simple recursive formula:

�̂1(�) = 1� �

�̂2(�) = �

�̂3(�) = �̂1(�) � �̂2(�)

�̂l(�) = �̂l�1(�) � (�̂2(�)� �̂1(�)); l = 4; : : : ; p+ 1

(3.25)

Note that, except for the �rst two linear functions, the remaining shape functions vanish at

the element endpoints. For that reason they are frequently called the bubble functions, see

Fig 1.

Finally, we introduce the notion of the hp � interpolation over the master element.

Given a continuous function û(�); � 2 [0; 1], we de�ne its hp -interpolant ûhp as the sum

of the standard linear interpolant û1hp coinciding with function û at the endpoints, and a

H1
0 -projection of the di�erence û � û1hp onto the span of the bubble functions introduced

above. More precisely:

ûhp = û1hp + û2hp (3.26)

where

û1hp(�) = û(0)�̂1(�) + û(1)�̂2(�) (3.27)

and

û2hp =
p+1X
j=3

u2j �̂j(�) (3.28)

where the coe�cients u2j are determined by solving the following system of equations.

p+1X
j=3

u2j

Z
1

0

d�̂j

d�

d�̂k

d�
=

Z
1

0

d(û� û1hp)

d�

d�̂k

d�
; k = 3; : : : ; p+ 1 (3.29)

3.2.2 A 1D parametric element of arbitrary order

We consider now an arbitrary closed interval K = [xL; xR] � [0; l] and assume that K is the

image of the master element through some map xK :

K̂ = [0; 1] 3 � ! x = xK(�) 2 K (3.30)

The simplest choice is an a�ne map which may be convenietly de�ned through the master

element linear shape functions:

xK(�) = xL�̂(�) + xR�̂(�)

= xL(1� �) + xR�

= xL + �(xR � xL)

= xL + �hK

(3.31)

where hK = xR�xL is the element length. We assume that the map is invertible with inverse

x�1K , and de�ne the element space of shape functions X(K) as the space of compositions of

inverse x�1K and functions de�ned on the master element.

X(K) = fû � x�1K ; û 2 X(K̂)g

= fu(x) = û(�) where xK(�) = x and û 2 X(K̂) g
(3.32)

Consequently, the element shape functions are de�ned as:

�k(x) = �̂k(�) where xK(�) = x; k = 1; : : : ; p+ 1 : (3.33)

Note that, in general, the shape functions are no longer polynomials, unless the map xK

is an a�ne map. In such a case we speak about an a�ne element. For practical reasons,

most of the time, it is convenient that map xK is speci�ed using the master element shape

functions, i.e. it is a polynomial of order p:

xK(�) =
p+1X
j=1

xKj�̂(�) (3.34)

In such a case we talk about an isoparametric element. Coe�cients xKj will be identi�ed as

the geometry degrees of freedom (g.d.o.f.). Note that only the �rst two have the interpretation

of coordinates of the endpoints of element K.

In our implementation, we have restricted ourselves to the a�ne elements only. Conse-

quently, throughout the rest of this presentation, we shall assume that the summation in

3.34 extends over the linear shape functions only.

The hp-interpolation operator can now be generalized to an arbitrary element K. The

idea is to perform the interpolation procedure always on the master element. Given a con-

tinuous function u(x); x 2 K, de�ned over the element K, we compose it with the map

transforming the master element into element K,

û(�) = (u � xK)(�) = u(xK(�)); (3.35)

and �nd the corresponding hp-interpolant ûhp(�) de�ned on master element,

ûhp(�) =
p+1X
j=1

uj�̂j(�) : (3.36)

The �nal hp-interpolant over element K is de�ned as the composition of the master element

interpolant ûhp with the inverse of the element map xK ,

uhp(x) =
p+1X
j=1

uj�j(x) : (3.37)

Practically that means only that the coe�cients uj must be determined by solving the

appropriate system of equations on the master element.

Figure 2: Construction of the vertex nodes basis functions

3.2.3 1D hp �nite element space.

Let now interval (0; l) be covered with a FE mesh consisting of disjoint elements K. With

each element K we associate a possibly di�erent order of approximation p = pK, and element

length h = hK . The element endpoints with coordinates 0 = x0 < x1 < : : : < xN < xN+1 = l

will be called the vertex nodes. We de�ne the 1D hp �nite element space Xh
3, as the

collection of all functions that are globally continuous, and whose restrictions to element K

live in the element space of shape functions.

Xh = fuh(x) : u is continuous and ujK 2 X(K); for every element K g (3.38)

The global basis functions are classi�ed into two groups:

� the vertex nodes basis functions, and

� the bubble basis functions.

The basis function corresponding to a vertex node xk is de�ned as the union of the two

adjacent element shape functions corresponding to the common vertex and zero elsewhere.

The construction is illustrated in Fig 2.

The construction of the bubble basis functions is much easier. As the element bubble

shape functions vanish at the element endpoints, we need simply to extend them only by

3
One should really use a symbol Xhp as the discretization depends upon the element size h = hK and

order of approximation p = pK

the zero function elsewhere. The support4 of a vertex node basis function extends over the

two adjacent elements, whereas for a bubble function it is restricted just to one element.

Finally, the continuity of the approximation at the vertex nodes allows us to introduce

the concept of the global hp-interpolation. Given a continuous function u(x); x 2 [a; b], we

de�ne its hp-interpolant as the union of the contributing elements hp-interpolants:

uhp(x) = uKhp(x) where x 2 K (3.39)

with uKhp denoting the hp-interpolant over element K. For linear (�rst order) elements, the

hp interpolation reduces to the standard Lagrange interpolation. We emphasize that the

interpolation is done locally, separately over each element.

3.2.4 Element sti�ness matrix and load vector

Having selected an appropriate set of shape functions, we calculate the element sti�ness

matrix and load vector.

SK
ij :=

Z xR

xL

(a
d�i

dx

d�j

dx
dx+ b

d�i

dx
�j + c�i�j) dx

LK
j :=

Z xR

xL

f�j dx
(3.40)

The local (master element) coordinate system proves to be more convenient in the deriva-

tion of the element matrices. The matrices are calculated in the local coordinate system by

using the chain rule:

dx =
dx

d�
d�

d�k

dx
=
d�k

d�

d�

dx
:

(3.41)

After switching to the master element coordinate �, we obtain

SK
ij =

Z
1

0

(â
d�̂i

d�

d�

dx

d�̂j

d�

d�

dx
+ b̂

d�̂i

d�
�̂j + ĉ�̂i�̂j)

dx

d�
d�

LK
j =

Z
1

0

f̂ �̂j d� :

(3.42)

As before, symbol^ indicates the composition with the element map, e.g.,

â(�) = a(xK(�)): (3.43)

4
The support of a function is de�ned as the closure of a set over which the function takes on values

di�erent from zero.

The evaluation of the integrals in (3.42) is performed using numerical integration. In most

�nite element calculations, Gauss quadrature rules are used. We note that the Gauss rule

of order N will integrate exactly polynomials of degree 2N � 1. The explicit formulas for

evaluation (3.42) using Gauss quadrature are

SK
ij =

NlX
l=1

(
a(xl)

dêk

d�
(�l)

dêl

d�
(�l)

d�

dx

d�

dx
+ b(xl)

dêk

d�
(�l)êl(�l)

d�

dx
+ c(xl)êk(�l)êl(�l)

)
dx

d�
wl

LK
i =

NlX
l=1

f(xl)êl(�l)
dx

d�
wl

(3.44)

where, xl = xK(�l) is the value of element map xK calculated at integration point �l. Notice

that for an a�ne element K, dx
d�

= hK and d�
dx

= h�1K , are independent of integration point �l.

3.2.5 Taking into account the boundary conditions. Modi�ed element matrices

In the case of the �rst and the last element, element sti�ness matrix and load vector must

be modi�ed to incorporate changes due to the boundary conditions.

Dirichlet boundary condition at x = 0. We use the �rst element linear shape function

�1, premultiplied by 0, to construct the lift of the boundary conditions data. Instead of

eliminating the �rst shape test function, we rewrite the �rst row of the sti�ness matrix and

the load vector in such a form that would implicitly enforce condition u(0) = 0. The original

element matrices, 2
66664
S11 S12 � � � S1n
S21 S22 � � � S2n
...

...
...

...

Sn1 Sn2 � � � Snn

3
77775 (3.45)

2
66664
L1

L2

...

Ln

3
77775 (3.46)

get replaced with the modi�ed matrices of the form:2
66664
1 0 � � � 0

0 S22 � � � S2n
...

...
...

...

0 Sn2 � � � Snn

3
77775 (3.47)

K K K K4321

p=2 p=1p=4p=3

Figure 3: Finite element mesh

2
66664

0
L2 � 0S21

...

Ln � 0Sn1

3
77775 (3.48)

Here n = p+ 1 is the number of the element degrees of freedom.

Cauchy (Neumann) boundary condition at x = l. Addition of the boundary terms

to the bilinear and linear forms results in the following modi�ed element matrices.

2
66664
S11 S12 � � � S1n
S21 S22 + � � � � S2n
...

...
...

...

Sn1 Sn2 � � � Snn

3
77775 (3.49)

2
66664

L1

L2 + l
...

Ln

3
77775 (3.50)

3.2.6 Global sti�ness matrix and load vector, the assembling procedure

As global basis functions are constructed by gluing together element shape functions, the

additivity of integrals [4] implies that the entries of the global matrices are calculated by

accumulating the corresponding contributions from element matrices. This assembling pro-

cedure is pivotal in the Finite Element Method. We shall illustrate it with a simple mesh

consisting of four elements shown in Fig 3. The mesh consists of 4 elements denumerated

from the left to the right, K1; K2; K3 and K4. This ordering of elements induces the so called

natural order of nodes. We begin by listing all nodes of the �rst element, then continue with

those nodes of the second element that have not been listed yet, and so on. The order for

a2a1

4321

a3 a9 a8a7 a6a5 a4

KKKK
Figure 4: Natural order of nodes

1

4321

2 1178,9,1045, 62

KKKK
Figure 5: Natural order of global d.o.f.

nodes is depicted in Fig 4. Notice that, as the right vertex node of the element is listed

before its middle node, the natural order of nodes is not equivalent to denumerating simply

nodes from the left to the right. Finally, the natural order of nodes implies the correspond-

ing natural order of global degrees of freedom obtained by listing the nodal d.o.f., node after

node. The ordering is depicted in Fig 5. Notice the variable number of degrees of freedom

associated with the middle nodes and, in particular, no degrees of freedom associated with

the last middle node at all.

We are now ready to discuss the assembling procedure. We proceed with one element at

a time. The �rst element connectivites indicating the global d.o.f. numbers assigned to the

local ones are 1; 2; 3. Consequently, after assembling the �rst element matrices, the global

matrices will look as follows.

2
666666666666666666664

S1
11 S1

12 S1
13 : : : : : : : :

S1
21 S1

22 S1
23 : : : : : : : :

S1
31 S1

32 S1
33 : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

3
777777777777777777775

(3.51)

2
666666666666666666664

L1
1

L1
2

L1
3

:

:

:

:

:

:

:

:

3
777777777777777777775

(3.52)

Dotted entries indicate zeros. Similarly, the second element connectivites are 2,4,5, and 6.

After assembling the second element matrices, we obtain

2
666666666666666666664

S1
11 S1

12 S1
13 : : : : : : : :

S1
21 S1

22 + S2
11 S1

23 S2
12 S2

13 S2
14 : : : : :

S1
31 S1

32 S1
33 : : : : : : : :

: S2
21 : S2

22 S2
23 S2

24 : : : : :

: S2
31 : S2

32 S2
33 S2

34 : : : : :

: S2
41 : S2

42 S2
43 S2

44 : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

3
777777777777777777775

(3.53)

2
666666666664

L1
1

L1
2 + L2

1

L1
3

L2
2

L2
3

L2
4

...

3
777777777775

(3.54)

The (3.55) and (3.56) show the situation after assembling the third and the fourth element

contributions.

2
666666666666666666664

S1
11 S1

12 S1
13 : : : : : : : :

S1
21 S1

22 + S2
11 S1

23 S2
12 S2

13 S2
14 : : : : :

S1
31 S1

32 S1
33 : : : : : : : :

: S2
21 : S2

22 + S3
11 S2

23 S2
24 S3

12 S3
13 S3

14 S3
15 :

: S2
31 : S2

32 S2
33 S2

34 : : : : :

: S2
41 : S2

42 S2
43 S2

44 : : : : :

: : : S3
21 : : S3

22 + S4
11 S3

23 S3
24 S3

25 S4
12

: : : S3
31 : : S3

32 S3
33 S3

34 S3
35 :

: : : S3
41 : : S3

42 S3
43 S3

44 S3
45 :

: : : S3
51 : : S3

52 S3
53 S3

54 S3
55 :

: : : : : : S4
21 : : : S4

22

3
777777777777777777775

(3.55)

2
666666666666666666664

L1
1

L1
2 + L2

1

L1
3

L2
2 + L3

1

L3
3

L4
4

L3
2 + L4

1

L3
3

L3
4

L3
5

L4
2

3
777777777777777777775

(3.56)

3.3 Structure of a classical FE code

We are now in a position to sketch the computer ow diagram of a classical �nite element

code as in Fig 6.

A sequence of input data is read or generated in the preprocessor part. This includes

geometry and �nite element mesh data such as number of elements, element connectivity

information, node coordinates, initial order of approximation. This preprocessor may per-

form an automatic division of the domain into elements following some rules speci�ed by

user, and it may also provide graphical information on elements and nodes. The processor

part includes generation of the element matrices, SK
ij and LK

i using numerical integration,

imposition of the boundary conditions, assembly of global matrices, and solution of the equa-

tions for the degrees of freedom. In the postprocessor part, the output data is processed in

a desired format for a printout or plotting, and secondary variables that are derivable from

Calculte the element matrices

Apply the boundary conditions

Assemble global matrices

Solve the system of equations

PROCESSOR

PREPROCESSOR

Print out and plot results

Calculate quantities of interest

POSTPROCESSOR

Generate the mesh

Read input data

Figure 6: Computer ow diagram of a classical �nite element code

the solution are computed and printed. The results may also be output in a graphical form,

e.g. using contour plots.

4 Error estimation

4.1 A priori error estimation

The error introduced into the �nite element solution uh, because of the approximation of the

dependent variable u in an element, is inherent to any problem,

u � uh =
NhX
k=1

uhkehk: (4.57)

Here uh is the �nite element solution and u is the exact solution over the domain. We wish

to know how the error e = u � uh, measured in a meaningful way, behaves as the number

of elements and/or their order of approximation in the mesh is increased. There are several

ways in which one can measure the di�erence between any two functions u and uh. More

generally used measures of the di�erence of the two functions are energy norm, L2-norm and

maximum norm.

kekE =

(Z l

0

h
a(e0)2 + ce2

i
dx

)1=2

(4.58)

kekL2 =

(Z l

0

e2dx

)1=2

(4.59)

kek1 = max
0�x�l

j e(x) j (4.60)

The norms listed above are global, i.e. thay apply to th whole domain (0; l). Analogous

de�nitions hold for any element K:

kekE;K =

�Z
K

h
a(e0)2 + ce2

i
dx

�1=2
(4.61)

kekL2;K =

�Z
K
e2dx

�1=2
(4.62)

kek1;K = max
x2K

j e(x) j : (4.63)

As we re�ne the mesh by increasing h or p, we wish to know bounds on the error,

measured in the foregoing norms. Ordinarily, for a single element K, these estimates will be

of the form

kekK � C
hrK
psK

(4.64)

where C is a constant depending on the data of the problem (regularity of the solution),

hK stands for the element size (length) and pK denotes its order of approximation. The

exponents r and s are the measure of the rate of convergence of the method with respect to

the particular choice of the norm k � k and either h� or p� re�nements. In our hp-re�nment

strategy discussed in section 6, we shall use the fact that the h-convergence rate is limited

by two factors:

� order of approximation pK, and

� local regularity of the solution expressed in some appropriate norm expressed in terms

of derivatives of s+ 1 order.

More precisely,

r = minfp; sg (4.65)

A convergence rate r lower than order of approximation p indicates a low regularity of the

solution.

Estimates of this type require no information from the actual �nite element solution.

They are known prior to the construction of the solution, and called a priori estimates. The

a priori estimation of errors in numerical methods has long been an enterprise of numerical

analysts. Such estimates give information on the convergence and stability of various solvers

and can give rough information on the asymptotic behavior of errors in calculations as mesh

parameters are appropriately varied.

4.2 A posteriori error estimation

In some cases, a more detailed estimate of accuracy can be based on information obtained

from the �nite element solution itself. It is called an a posteriori error estimate and it

can be calculated only after the �nite element solution has been obtained. Interest in a

posteriori estimation for �nite element methods for elliptic boundary value problems began

with the pioneering work of Babuska and Rheinboldt [3]. In this note we will present the

element implicit residual method introduced in [5, 7, 1] and applied to a variety of problems

in mechanics and physics.

4.2.1 The element implicit residual method

We introduce the idea of the error estimation using the standard abstract variational formu-

lation,

(
u 2 u0 + V

b(u; v) = l(v) 8v 2 V :
(4.66)

Introducing a �nite element space Vh � V , we calculate the corresponding �nite element

solution u by solving the approximate problem :

(
uh 2 u0 + Vh
b(uh; vh) = l(vh); 8vh 2 Vh

(4.67)

The goal is to estimate the residual de�ned as

krkV 0 := sup
v2V

j b(uh; v)� l(v) j

kvkE
(4.68)

where k � kE denotes the energy norm,

kuk2E := a(u; u) : (4.69)

Here a(u; v) is identi�ed as a symmetric part of b(u; v) that de�nes a norm. For the particular

example discussed in the previous section, se may select

a(u; v) =
Z l

0

a(u0)2 dx + �lu(l)
2 : (4.70)

We have to assume then that a(x) � 0 and �l � 0. If, additionally, coe�cient c(x) � 0, we

can include it in the de�nition of the energy norm as well,

a(u; v) =
Z l

0

h
a(u0)2cu2

i
dx + �lu(l)

2 : (4.71)

REMARK 1 Mathematically speaking, the residual is a linear functional acting on space

V and it must be measured using the dual norm. Its choice depends upon the choice of the

norm used in the denominator. It can be shown [8] that for a class of self-adjoint problems

where b(u; v) = a(u; v), the residual is equal to the error measured in the energy norm.

We shall represent the residual in the form

r(uh; v) = b(uh; v)� l(v)

=
X
K

fbK(uh; v)� lK(v)� �K(v)g

=
X
K

rK(uh; v)

(4.72)

where, bK(u; v) and lK(v) are contributions to the bilinear and linear forms from element K

respectively, and �K(v) is an element ux functional. We will postulate the following two

main assumptions :

� the element residuals rK(uh; v) are in equilibrium with respect to the �nite element

space,

rK(uh; v) = bK(uh; v)� lK(v)� �K(v) = 0 8v 2 Vh(K) ; (4.73)

� Consistency condition, X
K

�K(v) = 0 8v 2 V : (4.74)

Here Vh(K) denotes the space of element K shape functions, possibly incorporating Dirichlet

boundary conditions if element K is adjacent to the Dirichlet boundary. Next we introduce

the local element Neumann problems :

(
Find �K 2 V (K)

aK(�K;) = rK(uh;) 8 2 V (K) :
(4.75)

Here V (K) = H1(K), except for the element adjacent to Dirichlet boundary at x = 0, for

which

V (K) = fv 2 H1(K) : v(0) = 0g : (4.76)

We can express now the mesh residual in terms of the element error indicator function �K ,

jr(uh; v)j = j
X
K

aK(�K; v)j

� (
X
K

k�Kk
2

K)
1=2
kvkE

(4.77)

This leads to the �nal estimate,

krkV 0 � (
X
K

k�h;Kk
2

K)
1=2 : (4.78)

5 User Manual

5.1 Data structure in 1Dhp90

We introduce two user-de�ned structures (module pack/data structure1D):

� type node,

� type element.

The attributes of a node include: node type (a character indicating whether the node

is a vertex or middle one), integer order of approximation, integer boundary condition ag,

a real array coord, containing geometrical degrees of freedom (node coordinate), and real

array dofs, containig the "actual" degrees of freedom. Both the geometry and the actual

d.o.f. are allocated dynamically, dependently upon the order of approximation for the node.

The entire information about a mesh is now stored in two allocatable arrays, ELEMS and

NODES, as declared in the data structure module. The module also includes a declaration

for a number of integer attributes of the whole mesh.

The following parameters are relevant at the moment:

NRELIS - number of elements in the initial mesh,

NRELES - total number of elements in the mesh,

NRNODS - total number of nodes in the mesh,

MAXEQNS - maximum number of equations to be solved,

MAXNODS - maximum number of nodes,

MAXELES - maximum number of elements,

NREQNS - actual number of equations to be solved.

Parameters MAXEQNS and NREQNS are placed into the code in anticipation of using

the code for the solution of systems of equations. In the code both parameters are set to

one.

5.2 Organization of the code

The code is organized in the following subdirectories:

� blas pack - basic linear algebra routines,

� commons - system common blocks,

� data pack - exact solution and material data,

� datstrs pack - data structure routines,

� errest pack - error estimation routines,

� elem pack - element routines,

� �les - system �les, sample input �les,

� frontsol pack - frontal solver routines,

� gcommons - graphics common blocks,

� graph 1D - actual graphics routines for the code,

� graph util - graphics utilities,

� graph interf - graphics interface routines,

� main program - driver for the code,

� meshgen pack - initial mesh generation routines,

� meshmods pack - mesh modi�cation routines,

� module pack - data structure moduli,

� solver1 pack - interface with frontal solver,

� utilities pack - general utilities.

5.3 Mesh generation and postprocessing routines

Mesh generation (datastrs pack/meshgen.f). A sequence of input data is read from

(�les/input). These include:

� MAXELES,MAXNODS - maximum number of elements and nodes in the mesh (the

corresponding memory is allocated dynamically),

� NRELIS - number of (uniform size) elements in the initial mesh,

� norder - (uniform) order of approximation for the initial mesh elements,

� XL - length of interval (0; l) to set up the boundary-value problem,

� ibc1, ibc2 - boundary conditions ags.

A sample input �le input can be found in directory �les.

Printing out content of data structure arrays (datastrs pack/result.f). The routine

prints out the current content of the data structure arrays inlcuding the complete information

on elements and nodes. It can be conveniently used for debugging the code.

Graphical output (graph 1D/graph1D.f). Th routine displays a graphical representation

of the current mesh and plots the corresponding exact and numerical solutions. The scale

on the right prescribes the color code for di�erent orders of approximation p = 1; : : : ; 8.

5.4 Processing algorithms

We discuss quickly a number of algorithms pivotal in the implementation of any Finite

Element Method: the calculation of element matrices, modi�cation due to the boundary

conditions, and the assembling procedure. Please consult the corresponding routines for

details.

5.4.1 Evaluation of element matrices (elem pack/elem.f)

In : element number Nel

Out : element sti�ness matrix Sk1;k2 and load vector Lk1

determine the element order of approximation and select the corresponding

Gauss quadrature,

determine the element vertex nodes, xL; xR (geometry d.o.f.), h = xR � xL,

initiate element sti�ness matrix Sk1;k2 and load vector Lk1 ,

for each integration point �l,

evaluate the physical coordinate, xl = xL + �lh,

evaluate master element shape functions �̂k and their derivatives with respect to

the master element coordinate d�̂k
d�

evaluate the derivatives of the shape functions with respect to the physical coordinate:
d�k
dx

= d�̂k
d�

1

h

determine the weight, w = wl � h,

get load f = f(xl)

get material constants,a = a(xl); b = b(xl); c = c(xl)

for each d.o.f. k1,

accumulate for the load vector entries:

Lk1 = Lk1 + f�k1w

for each d.o.f. k2,

accumulate for the sti�ness matrix entries:

Sk1;k2 = Sk1;k2 + (a �
d�k2
dx

d�k1
dx

+ b �
d�k2
dx

�k1 + c � �k2�k1) � w,

end of the second loop through the d.o.f.,

end of the �rst loop through the d.o.f.,

end of loop through integration points.

5.4.2 Modi�cation of the element matrices due to boundary conditions

In : element number Nel, element sti�ness matrix Sk1;k2, and load vector Lk1

Out : Sk1;k2, Lk1 after BC modi�cation

get BC ags for the element vertex nodes

for each vertex node, i = 1; 2,

CASE : Dirichlet boundary

get BC data ,

for each d.o.f. k,

if (k=i) then

Lk =

zero out the i�the row of sti�ness matrix,

Skk = 1,

Lk = Lk � Sik � ,

Sik = 0.

endif

end of loop through d.o.f.,

CASE : Neumann boundary

get BC data �; ,

accumulate for the sti�ness matrix and load vector:

Sii = Sii + �,

Li = Li + .

end of loop through vertex nodes

5.4.3 Assembling global matrices

We �rst have to establish a global denumeration for all basis functions. In principle, one

could follow the numbering of the nodes and then the numbering of the corresponding nodal

shape functions. However, in general, such a denumeration may not be optimal from the

point of view of minimizing the bandwidth. Besides, as a result of re�nements/unre�nements

of the mesh, nodes may no longer be numbered using consequtive integers. We shall adopt

the philosophy that we are always given an order of elements. One such order, called the

natural order of elements is provided by routine datstrs pack=nelcon and will be discussed

in the next section. Given the order of elements and an order of nodes for each element, we

can de�ne the natural order of nodes. Finally, following the order of shape functions (d.o.f.)

for each of the nodes, we can de�ne the natural order of d.o.f., see the discussion in the

previous section. On the practical level, we may introduce an extra attribute for each node

nod in the mesh, say nbij(nod) equal to the number of the �rst corresponding d.o.f. in the

global, natural order of d.o.f. The pointers are determined in the following way:

initiate array nbij with zeros

initiate d.o.f. counter idof = 0

for each element nel

for each element node i

get the global node number: nod = ELEMS(nel)%nodes(i)

skip if nbij(nod) 6= 0, i.e. the node has already been visited

set the counter for the �rst d.o.f. of the node: nbij(nod) = idof + 1

determine the number of d.o.f. ndof corresponding to the node

update the counter: idof = idof + ndof

end of loop through element nodes

end of loop through elements

Once the bijection between the local d.o.f. and the global denumeration of d.o.f. (the

connectivities) has been established, the assembling procedure follows the standard algo-

rithm.

for each element nel in the mesh

calculate element local matrices Aloc; Bloc

for each nodal d.o.f. i

establish element d.o.f. connectivities:loc con(nel; i) = nbij(nod) + i� 1

end of loop through nodal d.o.f.

for each element d.o.f. i

determine the connectivity: k = loc con(nel; i)

accumulate for the global load vector:

Bglob(k) = Bglob(k) +Bloc(i)

for each element d.o.f. j

determine the connectivity: l = loc con(nel; i)

accumulate for the global sti�ness matrix:

Aglob(k; l) = Aglob(k; l) + Aloc(i; j)

end of the second loop through element d.o.f.

end of the �rst loop through element d.o.f.

end of loop through elements

5.4.4 Solver

Routines assembling the global matrices, and solving the corresponding system of equations

are to be provided by the user. For the sake of presenting an operational code, we include

in the code an interface with a (more complicated) frontal solver discussed shortly in the

Appendix.

5.4.5 Setting up data. Files

As the main goal of this 1D code is rather academic and focuses more on studying the �nite

element method than solving practical problems, we shall accept a rather unusual way of

inputing data. Namely, we shall assume that we do know the exact solution together with

its �rst and second derivatives. The purpose of our �nite element computations will be just

to compute the �nite element approximation and study the error. Consequently, we shall

assume that the data to the problem : load f(x) and boundary condition data will always

be calculated using the exact solution (by calling routine data pack/exact.f). That way we

can minimize the number of changes in the code when we want to study a di�erent solution.

The material data (operator coe�cients a(x); b(x); c(x) and Cauchy boundary data �) have

to be set independently in routines data pack/getmat.f and getc.f.

Files. All �les are placed in directory �les. Besides the input �le containing the data for

the initial mesh generation, discussed earlier, the code opens an output �le (used e.g. by

routine datstrs pack/result), and an additional �le result to be discussed in the next section.

Both �les output and result are automatically opened by the code and need no user's action.

Running the code

Step 1: De�ne a boundary-value problem, and select an exact solution that you want to

reproduce with the FE code. Modify routines data pack/getmat.f, data pack/getc.f, and

data pack/exact.f accordingly.

Step 2: Prepare the input �le.

Step 3: Use the provided make�le to compile and link the code.

Step 4: Type a.out to execute the code. If the input �le is correct, and the initial mesh

has been generated successfully, the code will display the main menu that includes the

possibility of solving the problem, printing out the content of the data structure arrays, and

displaying the mesh with the corresponding exact and approximate solutions. The forth

option, automatic hp-re�nements, will be discussed in the next section. Please disregard the

call to a testing routine which has been used for debugging.

6 Adaptivity

6.1 p-re�nement/unre�nement(meshmods pack/modord.f)

Modifying order of approximation for an element is easy as it a�ects only its middle node.

The memory allocated for the middle node d.o.f. has to be either expanded or shortened

depending upon the new order of approximation. If the order is increased then the new d.o.f.

are initiated with zeros.

6.2 h-re�nement (meshmods pack/break.f)

Breaking an element involves creating two new entries in data structure array ELEMS for

the element sons, and creating one new vertex node and two new middle nodes in array

NODES. The sons have the same order of approximation as their father, their d.o.f. are

initiated in routine meshmods pack/inidofh.f in such a way that the new representation of

the solution will exactly match the one corresponding to the single father element. We do

not delete the middle node of the father.

During the h-re�nement, the information about the family tree is stored. This includes

storing the information on elements' fathers and sons. The concept is illustrated in Fig. 7.

6.3 Natural order of elements (datastrs pack/nelcon.f)

The numbering of elements in the initial mesh (from the left to the right) and the family

tree structure induce the corresponding natural order of elements. The idea is to follow the

leaves of the tree and the ordering of elements in the initial mesh, compare Fig. 7.

6.4 h-unre�nement(meshmods pack/cluster.f)

A re�ned element can be back unre�ned. The corresponding entries for its element sons

and their nodes are deleted from the data structure arrays. We admit a situation in which

the unre�ned element will have a greater order of approximation than its sons. The new

d.o.f. for the unre�ned element are evaluated in routine elem pack/project.f by perform-

ing hp-interpolation of the old representation of the solution using the clustered element

shape functions. Having done the interpolation (projection), we evaluate the corresponding

interpolation error using the energy norm.

5

4321

6

1211

109

87

Figure 7: The family tree for a sequence of h-re�nements of elements 1,3,7,10. The dotted

line indicates the natural order of elements

6.5 The h-re�nements strategy

Having calculated the element residuals in routine errest pack/errest.f , we break (h-re�ne)

elements with the biggest residuals. More precisely, given a percentage perc of the total

residual (squared) (set to perc=60 in the code), we reorder elements according to their

residuals, and re�ne the �rst M elements from the list that contribute with perc percentage

to the global residual. The operation is performed in routine meshmods pack/re�ne.f.

6.6 Trading h-re�nements for p-re�nements

When re�ning the mesh, we do not attempt to choose between h- and p-re�nements . Instead,

after the problem has been solved on the h-re�ned mesh, we try to trade the h-re�ned elements

for p-re�nements. Towards this goal we �rst solve the problem on the h-re�ned mesh. Next

we loop through all just h-re�ned elements and compute for each of them the corresponding

local (numerical) h-convergence rate of the residual. If the rate is optimal, i.e. it is equal

to, or it exceeds the corresponding order p of approximation for the element, we unre�ne

(cluster) the element, and trade the h-re�nement for a p-re�nement, i.e. we increase p to

p+1. A rate of convergence below the order of approximation p, indicates a lower regularity,

compare estimate (4.64), and in such a case, we leave the h-re�ned element unchanged.

The formal algorithm looks as follows. Note the tollerance factor :9.

for each just h-re�ned element K

if element order pK � 7 then

estimate the new element residual by summing up the residuals for its sons

compute the numerical convergence rate rK
if rK � 0:9 � pK then

cluster back the element

increase element order from pK to pK + 1

endif

endif

end of loop through re�ned elements

Consult the meshmods pack/trade.f routine for details.

6.7 Interactive re�nements

In many problems, we may use our experience on the problem at hand to begin with a

better than uniform initial mesh produced by the mesh generator. The graph 1D/graph1D.f

routine that displays a graphical representation of the mesh and the current solution, allows

also for an interactive mesh modi�cation using the mouse.

6.8 The �nal hp-adaptive algorithm

Fig. 8 presents the �nal, automatic hp-re�nements algorithm. The algorithm can be invoked

from the main program menu by selecting the automatic hp-re�nements option. Parameter

tol - acceptable error tollerance in per-cent of the energy norm of the solution has to be

input from the keyboard. After each re�nement, the corresponding number of d.o.f. in the

mesh and the computed FE error are written to �le �les/result, automatically open by the

program. The data can later be used to visualize the corresponding convergence rates by

selecting the option rates from the graphics program.

6.9 Examples of hp-adaptive solutions

Problem 8><
>:

�u00 = f(x) x 2 (0; 1)

u(0) = 0

u0(1) = g(x)

(6.79)

All convergence rates are represented using the log-log scale, in terms of the total number

of degrees-of-freedom.

Perform h-refinements

Is the global residual acceptable?

Solve the problem on the current mesh

Solve the problem on the new mesh

Estimate the error

Modify interactively the initial mesh

Input data and generate initial mesh

NO

YES
STOP

Trade h-refinements for p-refinements

Figure 8: Flow chart for the hp-adaptive FE code

Example 1: A smooth solution. uexact(x) = sin(x). Error tolerance tol = 0:01 per-cent

of the energy norm of the solution.

Figure 9: Example 1: Final hp mesh with the corresponding (indistinguishable) numerical

and exact solutions

Figure 10: Example 1: Rates of convergence

This is a very smooth solution. The algorithm chooses from start to use p-re�nements

only. In this case, the hp-method reduces just to the p-method. Decreasing the error toller-

ance reveals also that, as the number of degrees-of-freedom grows, the order of approximation

p is increased uniformly. This is consistent with the hp approximation theory, see e.g. [2].

Example 2: A singular solution. uexact(x) = x0:6. Error tolerance tol = 1 per-cent of

the energy norm of the solution.

Please use routine result to verify that the mesh is geometrically graded towards the

singularity at x = 0, with the order of approximation p increasing linearly from p = 1 at the

Figure 11: Example 2: Final hp mesh with the corresponding (indistinguishable) numerical

and exact solutions

Figure 12: Example 2: Rates of convergence

singularity to p = 3 away from it. This is consistent with the well known result of Babuska

and Gui, see e.g. [2].

Example 3: A solution with an internal layer. uexact(x) = atan60: � (x � :5). Error

tolerance tol = 1 per-cent of the energy norm of the solution.

When the error tollerance is decreased, the algorithm continues to choose exclusively the

p-re�nements only. Moreover, the order of approximation p stays essentially uniform. Thus,

we might say that the initial h-re�nements help to resolve the scale and to construct an

optimal initial mesh only. Once the mesh is determined, the uniform p-re�nements again

turn out to be asymptotically optimal. Of course, the point is that, in practical computations,

we always work in the preasymptotic range only.

Figure 13: Example 3: Final hp mesh with the corresponding (indistinguishable) numerical

and exact solutions

Figure 14: Example 3: Rates of convergence

Acknowledgements: The authors are much indebted to Professors Ivo Babu�ska and J.

Tinsley Oden for numerous discussions regarding the subject of hp mesh optimization.

References

[1] M. Ainsworth,J.T. Oden, \A Posteriori Error Estimation in Finite Element Analysis",

Comput. Meth. Appl. Mech. Engrg., 142, 1-88, 1997.

[2] I. Babu�ska and B. Q. Guo, \Approximation Properties of the hp Version of the Finite

Element Method", Computer Methods in Applied Mechanics and Engineering, Special

Issue on p and hp- Methods, eds. I Babu�ska and J. T. Oden, 133, 319-346, 1996.

[3] I.Babuska and W.C.Rheinboldt, \A Posteriori Error Estimates for the Finite Element

Method", Int. J. Numer. Meth. Engng. 12, 1597-1615, 1978.

[4] E. Becker, J.T. Oden and G. Carey, An Introduction to Finite Elements, Prentice Hall,

1985.

[5] L. Demkowicz, L. J.T. Oden, and T.Strouboulis, \Adaptive Finite Elements for Flow

Problems with Moving Boundaries.Part 1: Variational Principles and A Posteriori Error

Estimates", Comput. Meth. Appl. Mech. Engrg., 46, 217-251, 1984.

[6] L.Demkowicz,J.T.Oden, W. Rachowicz and O.Hardy, \Toward a Universal hp-Adaptive

Finite Element Strategy, Part 1. Constrained Approximation and Data Structure", Com-

put. Meth. Appl. Mech. Engrg. 77 , 79-112, 1989.

[7] J.T.Oden, L.Demkowicz, T.Strouboulis, and P.Devloo, Adaptive Method for Problems

in Solid and Fluid Mechanics, Accuracy Estimates and Adaptive Re�nements in Finite

Element Computations, John Wiley-Sons Ltd. , 249-280, 1986.

[8] J.T.Oden, L.Demkowicz, W. Rachowicz and T.A.Westermann, \Toward a Universal hp-

Adaptive Finite Element Strategy, Part 2. A Posteriori Error Estimation", Comput. Meth.

Appl. Mech. Engrg. 77 , 113-180, 1989.

[9] W. Rachowicz, J.T.Oden and L.Demkowicz, \Toward a Universal hp-Adaptive Finite

Element Strategy, Part 3. Design of hp Meshes", Comput. Meth. Appl. Mech. Engrg. 77

, 181-212, 1989.

A Interface with a frontal solver

The frontal solver is a popular choice among direct solvers for �nite element codes due to its

natural implementation in an 'element by element' scheme. In this method, a 'front' sweeps

through the mesh, one element at a time, assembling the element sti�ness matrices into a

global matrix. The distinction from the standard assembling procedure is that, as soon as

all of the contributions for a given dof have been accumulated, that dof is eliminated from

the system of equations using standard Gaussian operations. Thus, in the frontal solver

approach the operations of assembling and elimination occur simultaneousely. The global

sti�ness matrix never needs to be fully assembled, and this leads to the signi�cant savings

in memory that has given the frontal solver its popularity.

Here we will only describe the interface with the frontal solver, not the solver itself.

The interface is constructed via four routines, all located in the solver1 pack directory:

solve1:f ,solin1:f , solin2:f , and solout:f . We will now give an overview of these routines.

For coding details we refer to the source codes in solver1 pack.

The frontal solution consists of two steps: prefront, and elimination. The prefront re-

quires two arrays on input: in and iawork. For each element, in contains the number of

nodes associated with the corresponding modi�ed element, and iawork contains a listing of

nicknames for the nodes of the modi�ed element. The nicknames are de�ned as follows: for

a given node 'j',

nickj = j � 1000 + ndof (A.80)

where ndof is the number of degrees of freedom associated with the node, i.e. is equal 1 for

a vertex node, and p� 1 for a middle node of order p. With this information, the prefront

produces the destination vectors which, for a given element, denote at what stage of the

frontal solution each of its nodes can be eliminated. Once this information is constructed,

the elimination phase can begin. Solve1:f prepares arrays in and iawork, calls the prefront

routines, and then calls the main elimination routines. Thus, this routine is seen to be the

primary driver of the frontal solver.

The other interface routines are simply for auxilliary purposes. For a given element,

solin1:f returns a listing of the destination vectors of the associated modi�ed element,

solin2:f returns the modi�ed element sti�ness matrix and load vector, and solout:f takes the

solution values returned from the frontal solver and inserts them into the data structure (for a

given node, the values of the corresponding dof must be placed into the NODES(nod)%dof

entry).

