

^1 USER MANUAL

^2 Accessory 9PT

^3 PtalkDT ActiveX Version 2.x

^4 xxx-9PTOBS-xxxx

^5 January 28, 2003

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support

Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive
materials. If Delta Tau Data Systems, Inc. products are exposed to hazardous or conductive
materials and/or environments, we cannot guarantee their operation.

Accessory 9PT

Table of Contents
INTRODUCTION ...1

WHAT IS PTALKDT?..1
WHAT IS AN ACTIVEX CONTROL?..1
WHAT CAN I USE PTALKDT WITH? ...1
WHAT CAN PTALKDT DO FOR ME?..1
WHAT BUILT IN FUNCTIONS DOES PTALKDT HAVE?..1
WHAT YOU WILL NEED TO USE PTALKDT...3
HOW DO I GET SUPPORT? ...3

INSTALLING/UNINSTALLING PTALKDT ..4
BEFORE YOU RUN SETUP...4
RUNNING SETUP ..4
WHAT WAS INSTALLED? ...4

Uninstalling PTalkDT OCX..6
HOW TO DESIGN WITH PTALKDT ...7

IN DESIGN MODE ...7
RUN TIME MODE ...8

Distributing Your Final Application ...9
ALTERING, SAVING AND RETRIEVING PTALKDT SETTINGS AT RUN TIME ...10

Communication Settings ...10
General Settings..10

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT ...12
OVERVIEW ...12

Instructions ...12
YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT ..16

OVERVIEW ...16
Instructions ...16

PTALKDT REFERENCE ..29
DOCUMENTATION CONVENTIONS ..29
OVERVIEW ...29
PTALKDT PROPERTIES ..30

Enabled ...30
LastError ..30
LastErrorString...30
DeviceNumber ..31
DownloadDeleteTemp ..32
DownloadDo...32
DownloadHide ..33
DownloadLog ...33
DownloadMap ..34
DownloadMaxErrors ..34
DownloadParse ..35
DownloadShowErrors ..35
UploadAppend ..36
UploadHide...36
UploadNoComments...37
UploadShowProgress ...37

PTALKDT METHODS ...38
DPRAvailable()...38

Table of Contents i

 Accessory 9PT

DownloadFile (file name) ...38
DPRDouble (LSB_word, MSB_word)...40
DPRFixed (LSB_word, MSB_word) ...41
DPRDWordBit Set/Reset and BitSet Methods...41
DPRGetDWord and DPRSetDWord Methods ..42
DPRGetFloat and DPRSetFloat Methods ..42
DPRGetWord and DPRSetWord Methods ..43
Flush ()...45
GetControlResponse (response, control char)..45
GetLineAck (response)..45
GetLineCR (response)...46
GetResponse (response, command) ..46
IsLineWaiting () ...46
LoadSettings () ...47
LockPMAC () ...47
ReleasePMAC() ...48
SaveSettings ()..49
SendChar (character) ...49
SendLine(Command) ..49
ShowPropertyPage ()...51
UploadData (file name, command, options, expected number of lines) ...51

PTALKDT EVENTS ..52
OnError ..52
Trouble Shooting...52

DUAL PORTED RAM AUTOMATIC FEATURE EXAMPLE...53
GLOSSARY OF TERMS ...57
INDEX ..59

ii Table of Contents

Accessory 9PT

INTRODUCTION

What is PTalkDT?
PTalkDT is a user-friendly interface to Delta Tau’s 32-bit driver PComm32. It is designed to provide
robust and efficient communication to PMAC, Delta Tau’s Motion Computer. Since PComm32 will
continually evolve to include additional capabilities (i.e. VME PC’s, PCI etc), PTalkDT has been
designed so that your applications code wont be effected. Using PTalkDT ensures that your application
will work for many future releases of Delta Tau’s 32-bit driver (and as a result many future capabilities
and versions of PMAC).
 Unlike previous versions of communication libraries, PTalkDT is in the form of an ActiveX Control, a
new and upcoming form of library that is taking Windows programming by storm. PTalkDT relieves you
of the often cumbersome task of writing your own communication routines. Experienced programmers
know that communication functions play a critical role in creating reliable application software. We have
taken all the pain out of writing communications software, and have provided what we feel is the best
approach to creating a PMAC “MMI” (Man Machine Interface).

What is an ActiveX control?
ActiveX controls are the latest addition to Microsoft’s OLE (Object Linking and Embedding) family,
providing unprecedented compatibility to almost any development geared application software. ActiveX
controls, sometimes referred to as reusable components, give you, the programmer, the easiest way to
incorporate advanced functionality into your applications with little or no programming. For those of you
familiar with OCXs, ActiveX controls are the next generation; they have an added array of functions for
networking ability.

What can I use PTalkDT with?
PTalkDT can be used with the 32-bit version of Visual Basic, Visual C++ (4.x and beyond), 32 bit
Delphi or C++ Builder, and just about any development package that supports ActiveX controls. In this
manual, most of the examples and descriptions will pertain to Visual Basic (version 5.0) and Delphi
(Version 2.0).

What can PTalkDT do for me?
PTalkDT provides you with a very stable and high-speed communications link to PMAC. Our intent is to
allow you to focus on the functionality of your MMI (Man Machine Interface) by removing the burden of
writing communication software to “talk” to Delta Tau’s PMAC (hence, the name PTalkDT). PTalkDT
gives your application instant communication capability to PMAC over the PC-bus, Dual Ported Ram or
serial port with you writing little or no code. Furthermore, PTalkDT has been designed to quickly trap
bugs in your code by centralizing the error handling (via an “Event”, discussed later on).

What built in functions does PTalkDT have?
Two classes of functions (or, more technically speaking, methods) are included, “Basic Communication”
and “Extended” Functions. This manual only covers the Basic Communication methods, among them:

DownloadFile This allows you to download a text file
or multiple text files to PMAC. A
powerful string substitution
preprocessor is included.

Introduction 1

 Accessory 9PT

Flush A useful method to clear out PMAC’s
output string buffer before sending a
new command.

GetControlRes
ponse

Sends a single control character to
PMAC and retrieves any pending
string response from PMAC.

GetLineACK Retrieves a string response from
PMAC, stopping after receiving an
ACK character (ASCII value of 6)

GetLineCR Retrieves a response from PMAC,
stopping after receiving a CR character
(ASCII value of 13)

GetResponse This allows you send commands to and
receive string responses from PMAC in
one convenient method.

LoadSettings Retrieves the last saved
communication settings.

SendChar Send a single character to PMAC.
ShowProperty
Page

Shows PTalkDT’s property page for
modifying the communications
settings.

SaveSettings Stores PTalkDT communications
settings to disk.

UploadData This allows you to upload a series of
string responses from PMAC—
commonly used to obtain variables,
motion, and PLC programs from
PMAC.

DPR Read-
Write

Numeric Read/Write. Enable use of
DPR Automatic Features

All extended methods are prefixed with an “x” (i.e. xDPRRotBuf()) and are detailed in Delta Tau’s 32 bit
driver manual (PComm32.DOC see Delta Tau’s BBS or Web site WWW.DeltaTau.COM). Extended
functions are “rarely” used.

2 Introduction

Accessory 9PT

What You Will Need To Use PTalkDT
The minimum hardware and software requirements to install and support the use of PTalkDT are:

•

•

•
•

IBM or compatible PC/AT (486, Pentium or higher CPU)
with 8 MB of memory, one 3.25” floppy disk drive, and one hard
disk drive with 3 MB of space

VGA or SVGA display adapter

Microsoft Windows 95, Windows NT
Development environment supporting 32-bit OCX controls

such as Microsoft’s Visual Basic (4.x or greater), Visual C++
(4.x or greater), or Delphi (2.x or greater).

How do I get support?
If you encounter problems your first troubleshooting steps should be to:

1) Review this manual and the Troubleshooting Guide in the Appendix of this manual-- doing
this can save you time and money.

2) Get your Serial/Registration number from your diskettes or the back of your manual
Contact our technical support for PTalkDT by faxing, sending E-mail or calling the following
numbers (include serial number):

 Fax: (818) 998-7807

Web Page WWW.DeltaTau.COM
E-mail: Support@DeltaTau.COM

Voice Calls: (818) 998 2095

We hope that PTalkDT’s ease of use and this manual will provide all the help you need. (HINT: E-mail
are the quickest, include your REGISTRATION NUMBER!).

Introduction 3

 Accessory 9PT

INSTALLING/UNINSTALLING PTALKDT

Before You Run Setup
Please take a few minutes before you install PTalkDT to do the following:
Read the README.TXT file on the first installation disk!
 If there are corrections or additions to this manual, they will be listed in a file called README.TXT.
This file can be displayed directly from the installation diskette using the Windows NOTEPAD utility.
After the installation, this file can be read by double-clicking the PTalkDT README icon in the newly
created program group.
 Visual Basic users should install Visual Basic BEFORE PTalkDT.

Running Setup
When you run the setup program to install PTalkDT on your computer, you will be able to specify where
on your hard drive to install PTalkDT. It is preferred to install it in the suggested directory for
consistency.
Windows 95
To run the setup program in Windows 95 click the Start button from the taskbar and select the Run...
menu option. Insert the first distribution diskette labeled “Disk 1” and type

A:setup
 and press ENTER. Follow the installation instructions on the screen. If you encounter any problems,
please refer to the Troubleshooting Guide in the Appendix of this manual.
 Windows NT
To run the setup program in Windows NT, from the Program Manager select the File menu and select the
Run... menu option. Insert the first distribution diskette labeled “Disk 1” and type

A:setup
and press ENTER. Follow the installation instructions on the screen. If you encounter any problems,
please refer to the Troubleshooting Guide in the Appendix of this manual.

What Was Installed?
The installation will create a new program group called PTalkDT. This group contains a README.TXT,
and DIFFERENCES.TXT icons, three Visual Basic project, one Delphi and one Visual C++ demo project
icons. The new program group will look something like this:

4 Installing/Uninstalling PTalkDT

Accessory 9PT

The DIFFERENCES.TXT file shows the changes between one release an the next and will be useful for
those upgrading to a new version of PTalkDT.
The “Installation Script” is a text based script file used to create the installation you just used. This may
come in handy when it comes time for your own.
The “Configure PMAC Motion Applet” icon is used to add/remove or setup PMAC’s in your operating
system. A device number (starting from 0) will be associated with each PMAC you add. Use this same
device number when specifying which PMAC you want your PTalkDT ActiveX control to communicate
to (i.e. assign the DeviceNumber property).
We encourage you to run the Visual Basic and/or Delphi example projects. Please note that these will
only work if you have the corresponding development environment. If you encounter problems trying to
communicate to your PMAC, run the MOTION applet that is located in your PTalk installation directory.
After you have tried the example projects, try and make a simple application of your own by following
the steps described in the section “Your First Visual Basic MMI with PTalkDT”. Then you might want to
look at the example programs code that is provided.

Note

In case you are interested, when these example programs were written, less than
5% of the development time was used for PMAC communications! Most of the
effort went into making the various screens for these programs.

Installing/Uninstalling PTalkDT 5

 Accessory 9PT

Uninstalling PTalkDT OCX
It is highly suggested that you uninstall PTalkDT before upgrading to a newer version of the product.
Windows 95
To uninstall PTalkDT, from Windows 95 click the Start button from the taskbar and select Settings then
Control Panel.

Within the control panel select the Add/Remove Programs icon. Double click on the PTalkDT entry in
the list box or push the Add/Remove button to uninstall.

All files copied during the installation will be removed (only if other programs are not currently
dependent on them). Furthermore, if files have been added to the installation directory (i.e. program files
you created) then the uninstall wizard will report that not all directories could be deleted. You will have
to manually remove these files.
Windows NT
In NT 3.51 there will be an"Uninstall" Icon in the program group created for PTalkDT during installation.
Double click the "Uninstall" Icon to uninstall PTalkDT. In NT 4.0 use the 95 procedure described above.

6 Installing/Uninstalling PTalkDT

Accessory 9PT

HOW TO DESIGN WITH PTALKDT

In Design Mode
First, configure your PMAC(s) in your system by running the “MOTION” applet located in your PTalk
installation directory.
For most of the remainder of this manual, all examples will be described assuming you are using
something similar to Visual Basic. If you are using a different development environment, the procedures
described here will be analogous.
First add the PTalkDT control to your development environments tool box. This is usually done by going
to the “Tool” menu, and then selecting “Components”.. Now place a PTalkDT within the form that you
are currently designing (Usually the main form of the application).

Note

PTalkDT uses Delta Tau’s time tested 32-bit driver, PComm32.

The next thing most folks will want to do is configure the many properties of PTalkDT. This can be
done by viewing the custom property page for newly inserted PTalkDT. The custom property page can
be viewed by double clicking on the “Custom” property (in other development environments you may
double click the PTalkDT icon within the form).

How to Design with PTalkDT 7

 Accessory 9PT

 The custom property page is shown below:

If you are developing without a PMAC be sure to set the SimulateCommunication property to TRUE
(check the box) and skip the next paragraph.
To choose from all functioning PMACs in your system, press the “Select PMAC Device Number button”.
Remember, the MOTION applet in the operating systems CONTROL PANEL will allow you to
add/remove or configure any PMAC(s) in your computer.
Each PTalkDT control you add to your project is intended to talk to a single PMAC. If your application
is going to communicate with more than one PMAC, you will need to add a separate PTalkDT control for
each PMAC. Within a single application, you are allowed to have a maximum of 8 PTalkDT controls. In
general, it is a very good idea to use only one PTalkDT control per PMAC in your application's code.
Although the PTalkDT control has many important properties, here are a couple you should be familiar
with to begin with:
Properties Description
Enabled Sets and returns an internal PTalkDT variable which enables or disables

communications to the PMAC. Resets itself back to FALSE if
communication can’t be established. If the Enabled property resets itself
back to FALSE, see the LastErrorString property for info and also see the
CONTROL PANEL’s MOTION applet.

SimulateCommunication Set to TRUE if developing without a PMAC in the system (DRY RUN)

Run Time Mode
Note

 Communications can only be attempted during run time if the
SimulateCommunication property is set to FALSE AND the Enabled property
has been successfully set to TRUE.

Upon executing your application, communications will be initialized when the Enabled property is or has
been set to “True”. This is not automatically done—you must set Enabled yourself (either in design
mode or in your code).

 Note

During run time, the PTalkDT control icon is not visible.

8 How to Design with PTalkDT

Accessory 9PT

The PTalkDT methods in the table below are typically used for communication. Again, if the Enabled
property is FALSE or SimulateCommunication is “TRUE”, no communications to PMAC will actually
take place, and these methods will do nothing.
Methods Description
DownLoadFile() Download a file to PMAC.

Flush() Empty out PMAC’s input/output buffer.
GetControlResponse() Send PMAC a control character and retrieve any pending response

from PMAC.
GetResponse() Send PMAC a command, and retrieve the subsequent response.
LoadSettings() Restore the last stored communications configuration from disk.
SendChar() Send a single character to PMAC.
ShowPropertyPage() Show PTalkDT’s property page.
SaveSettings() Store PTalkDT’s communications configuration to disk.
UploadData() Upload a series of string responses to a file.
DPR Read-Write routines Numeric Read/Write. Enable use of DPR Automatic Features

The following simple Visual Basic example shows how to establish basic PMAC communications via the
PC Bus:
 Private Sub Form_Load ()
 Dim response As String
 Dim return_value As Long
 PTalkDT1.Enabled = True
 ‘ test communications by a query of motor status
 return_value = PTalkDT1.GetResponse(response, “?”)
 if return_value = 0 then ‘ if communications failed…
 ‘ An error occurred--, either handle here using use the

‘ LastError and LastErrorString properties of PTalkDT or
‘ have the OnError event handle this.

 endif
End Sub

Debugging
The OnError event is intended to be used for trouble shooting and debugging. If you can’t establish
communications, or if you are timing out, or if a PMAC error was generated, then this event will be
called. As a suggestion, your code associated with OnError may simply display the error message to
you (while developing), or perhaps act on the error without the user ever knowing a problem occurred
(good for release versions of your application). See the OnError event description for more details.

Distributing Your Final Application
When you create and distribute applications that use the PTalkDT control, you need to install the
appropriate files on the target computer and register the OCX with the operating system (The Setup Kit
included with Visual Basic, or Installshield provide tools to help you write setup programs that install
your applications correctly). Also, the “Installshield” text based script file used to create PTalkDT
installation is located in the installation directory (look for the *.IWZ file extension) for your viewing
pleasure.
For 95 or NT
Intall the MOTION.EXE control panel applet as well as the following files to the operating systems
“SYSTEM” directory:
MFC40.DLL

How to Design with PTalkDT 9

 Accessory 9PT

MSVCRT40.DLL
MSVCRT.DLL
MSVCIRT.DLL
MFC42.DLL
95 Users
Be sure to add the PTalkDT.OCX, PMAC.DLL, and PMAC.VXD files to the \WINDOWS\SYSTEM
directory.
NT Users
Be sure to add the PTalkDT.OCX, and PMAC.DLL to the \WINDOWS\SYSTEM32 directory. Also,
put the PMAC.SYS file in the \WINDOWS\SYSTEM32\DRIVERS subdirectory.

Notes

1. If you get a message similar to the following "Unable to start supporting
device driver." from the operating system you most likely do not have the
PTalkDT files correctly located.

2. Registering ActiveX’s can also be done with a utility often shipped with
the operating system. For example "REGSVR32.EXE" in Windows 95
can do this from the command line (i.e., REGSVR32.EXE
PTALKDT.OCX).

Altering, Saving and Retrieving PTalkDT Settings At Run Time

Communication Settings
When you configure the PTalkDT to communicate (i.e. by using the CONTROL PANEL’s MOTION
applet) to PMAC the settings are saved in the operating systems registry under:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\PMAC\DEVICE0
for PMAC device 0 and
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\PMAC\DEVICE1
 for PMAC device 1 and so on….
Three communication properties that aren’t stored in the registry but rather in an initialization file are the
Enabled, SimulateCommunications and DeviceNumber properties. You may ensure that the state of
these properties will persist by calling PTalkDT’s LoadSettings() at the beginning of your application
and SaveSettings() at the termination of your program.

General Settings
In addition to SimulateCommunication and DeviceNumber, the following properties may be
saved/restored in PTalkDT’s initialization file (via the SaveSettings()/LoadSettings() methods):

 DownloadDo
 DownloadParse
 DownloadLog
 DownloadMap
 DownloadDeleteTemp
 DownloadHide
 DownloadShowErrors
 DownloadMaxErrors
 UploadHide
 UploadShowProgress
 UploadNoComments
 UploadAppend

10 How to Design with PTalkDT

Accessory 9PT

.

How to Design with PTalkDT 11

 Accessory 9PT

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT

Overview
This section will guide you through building a simple Visual Basic 5.0 MMI (man-machine interface)
application using PTalkDT. The resulting application displays the value of PMAC’s constantly changing
servo counter register. The code generated here can be similarly constructed with other development
environments.

Instructions
1. Start Visual Basic 5.0 and choose “Standard EXE” for project type.
2. Choose Project from the top menu bar and select Components. Select the “PTalkDT Control”

module and then select the OK button.

The PTalkDT icon should appear at the bottom of your tool palette:

12 Your First Visual Basic MMI with PTalkDT

Accessory 9PT

3. Click on the PTalkDT icon and place it anywhere on a blank Visual Basic form.
4. With the PTalkDT icon on the form selected, press F4 to view the Visual Basic PTalkDT property

window.

Your First Visual Basic MMI with PTalkDT 13

 Accessory 9PT

5. Now we will begin to form the user interface. To allow the user to select a PMAC in their system ,

and modify PTalkDT’s properties, place a button on the form and set the caption property to “Setup
PTalkDT”.

6. Double click on the Setup PTalkDT button to associate code with the pressing of the button. Enter

the following code

Private Sub Command1_Click()
 PTalkDT1.ShowPropertyPage
 PTalkDT1.SaveSettings
End Sub
This code will call PTalkDT’s ShowPropertyPage() and SaveSetings() methods when the Configure
button is pressed giving the user the ability to configure the appropriate communication settings at run
time and making them persistent. SaveSettings() combined with the use of LoadSettings() ensures that
the end users won’t have to reconfigure PTalkDT settings every time the user runs the program.
Setting the Enabled property to TRUE will reinitialize communication if required.
7. Now put the LoadSettings() method in the Form_Load() method of the form by double clicking on

any “free” spot within the form. The routine should look like so when done:
Private Sub Form_Load()
 PTalkDT1.LoadSettings
 PTalkDT1.Enabled = True
End Sub
Setting the Enabled property to TRUE will guarantee that PTalkDT will at
least attempt to establish communication with the PMAC DeviceNumber
selected.
8. Next lets add real time display of PMAC’s servo clock. Add a text control and a timer control to the

form.

9. Press F4 to view the timer’s property window.

14 Your First Visual Basic MMI with PTalkDT

Accessory 9PT

10. Set the timer’s property Interval to 10.

11. Double click on the timer and add the following code (shown below in bold):

Private Sub Timer1_Timer()
Static Response As String
Static return_value as Long

return_value =PTalkDT1.GetResponse(Response,“RX0”)
Text1.Text = Response

End Sub

12. Press F5 to run your application. If all is well the servo clock is very quickly being updated in your
newly created PTalkDT application. Try pressing the “Setup PTalkDT” button to setup. If you do
have a PMAC be sure to uncheck the “SimulateCommunication” check box within the property page
window. Notice that the PTalkDT icon is not visible during run time (neither is the timer control’s
icon).

13. For further examples, see the installation group box in your desktop’s “Start\Programs” menu. Also
check out Delta Tau’s BBS/Website. Study the code and feel free to use it in your own applications.

Your First Visual Basic MMI with PTalkDT 15

 Accessory 9PT

YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT

Overview
This section will guide you through building a simple Microsoft Visual C++ MMI (man-machine
interface) application using PTalkDT. The resulting application displays the value of PMAC’s constantly
changing servo counter register. The code generated here can be similarly constructed with other
development environments.

Instructions
1. Start Visual C++.
2. Choose FILE from the top menu bar and select New. Highlight Project Workspace from the list box

and then select the OK button.

3. In the next dialog box, select MFC AppWizard (exe) from the list box, type in a project name (such as
ExPTalk), and click on Create:

4. On the next dialog box, select the Dialog Based radio button and click on Next >:

16 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

5. On the last dialog box, place a check mark for 3D controls, OLE automation, and OLE controls and

click on Finish:

At this point, a set of C++ files have been generated in a directory with the same name as the project
name you selected. Go ahead and compile this newly created project and run it to verify it works
correctly. When you execute this program, a blank dialog box with an OK and CANCEL button should
appear:

Your First Microsoft Visual C++ MMI with PTalkDT 17

 Accessory 9PT

 Now, let’s go back and add the PTalkDT control to this dialog box.
From within the Visual C++ workspace environment, select to view the existing resources (which were
created by the AppWizard in the previous steps) and click on the Dialog resource. Your screen should
look like this:

18 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

6. With your mouse pointing to the dialog box (on the right, called “ExPTalk”), click the right mouse
button to expose the following pop-up menu and select Insert OLE Control…:

7. A new dialog box will appear containing a list of available controls. Scroll down and choose the

control called PTalkDT Control and then click OK:

Your First Microsoft Visual C++ MMI with PTalkDT 19

 Accessory 9PT

The PTalkDT control should now be visible in your dialog box:

8. Our next step is to use the MFC ClassWizard within Visual C++ to generate code that will create a

control class for this newly added PTalkDT control. To do this, select the View menu and then
ClassWizard. The MFC ClassWizard dialog box will appear. Select the Member Variables tab.
Your screen should look like this:

20 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

Highlight IDC_PTALKCTRL1 and press Add Variable. When you do this, the following dialog box will
appear:

9. Select OK. On the next dialog box, select OK again.

10. The next dialog box will ask you to type in a name for the variable that will be used to access all of

PTalkDT’s properties and methods in your C++ code. Use the name shown on the next page and
click on OK:

Your First Microsoft Visual C++ MMI with PTalkDT 21

 Accessory 9PT

Click on OK again. At this point, the MFC ClassWizard has generated a new C++ file and header file
which contains the code to allow your to access all the functionality of PTalkDT! For each property, a
specific function has been created, making it easy to read or set the various PTalkDT properties. To see
these new functions created, select to view the classes in your project. When you do this, your screen
should look like this:

22 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

11. We will now add a timer function to our dialog box which will use PTalkDT to continuously query
PMAC for information. We will use the MFC ClassWizard again to do this. Select the View menu
and then ClassWizard. The MFC ClassWizard dialog box will appear. Select the Message Maps tab
and locate and highlight the item called WM_TIMER in the Messages list box. Click on Add
Function and then OK.

A new function for the timer has now been created. We will add code to this function later on.

Your First Microsoft Visual C++ MMI with PTalkDT 23

 Accessory 9PT

12. We must now change the name of the static text that was automatically placed there by the
AppWizard when the project was first created. We will be using this text to display the response
from PMAC in our dialog box. Bring up the dialog box in the resource editor, double -click on the
static text and modify its variable name as shown on the next page. The name used here is
IDC_TEXT.

Now bring up the ClassWizard again to create a usable variable so that we may access this static text in
our code. Select the View menu and then ClassWizard. The MFC ClassWizard dialog box will appear.
Select the Member Variables tab and locate and highlight the item called IDC_TEXT in the Control ID
list box. Click on Add Variable.., type in m_Text for the variable name and then OK twice to back out of
all the dialog boxes.

24 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

13. We now need to add code to setup the properties of PTalkDT to correspond to how you will be

communicating with PMAC. In the file ExPTalkDlg.CPP, locate the function
CExPTalkDlg::OnInitDialog and add the following code shown in bold:

BOOL CExPTalkDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 m_PTalkDT.SetEnabled(TRUE);
 SetTimer(1, 50, NULL);
 return TRUE
}

14. Now locate the code for the CExPTalkDlg::OnTimer function. This function will be called on a

repeated basis about every 50 milliseconds. In this function we will place the code to query PMAC
for the contents of its servo clock register and copy this number to the static text variable m_Text.
Add the code shown in bold:

void CExPTalkDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here
 TCHAR buf[255];
 BSTR response = SysAllocString(L"");
 m_PTalkDT.GetResponse(&response,"RX0");
 USES_CONVERSION;

Your First Microsoft Visual C++ MMI with PTalkDT 25

 Accessory 9PT

 strcpy(buf,OLE2T(response));
 m_Text = buf;
 UpdateData (FALSE);
 SysFreeString(response);

 CDialog::OnTimer(nIDEvent);

}

Also, add this #include statement after the

#include <afxpriv.h>

It should look like this after:

#include "stdafx.h"
#include "ExPtalk.h"
#include "ExPtalkDlg.h"
#include <afxpriv.h>

15) We must use the MFC ClassWizard one last time to created one last function. Select the View menu
and then ClassWizard. The MFC ClassWizard dialog box will appear. Select the Message Maps tab
and locate and highlight the item called DestroyWindow in the Messages list box. Click on Add
Function and then OK.

Locate this newly added function CExPTalkDlg::DestroyWindow and add the code shown in bold:

BOOL CExPTalkDlg::DestroyWindow()
{

 KillTimer (1);

 return CDialog::DestroyWindow();

26 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

}
12. You are now ready to run your program. Press F5 to run the program. If your PMAC has been

configured appropriately in the CONTROL PANELs MOTION applet, you should see a number in
the label which is continually counting upwards. Notice that the PTalkDT icon is not visible during
run time.

Your First Microsoft Visual C++ MMI with PTalkDT 27

Accessory 9PT

PTALKDT REFERENCE

Documentation Conventions
This manual uses the following notational conventions:

Source code and data structures are displayed in a monospaced
typeface.

Note

Warnings or important information are bounded on top and bottom with single
lines.

Overview
As mentioned before, PTalkDT is a 32-bit ActiveX control designed to handle all communications
between your application and Delta Tau’s PMAC. It is meant to be used as a PMAC application
development tool. You may use PTalkDT in any 32 bit OLE container application such as Visual Basic,
Delphi , etc. PTalkDT’s built-in features make most communications tasks as easy as calling a simple
method (function).

Note:

PTalkDT will force PMAC’s I-variable I3=2 at all times to ensure high speed and
efficient communications.

PTalkDT Reference 29

 Accessory 9PT

PTalkDT Properties

Enabled
Data Type
Boolean or Long Integer
Default Value
Zero (for “False”)
Description
Enables or disables PTalkDT from communicating with PMAC.
Remarks
Used to specify or determine if PTalkDT is allowed to communicate with PMAC. You must set this
property to “True” and SimulateCommunication to “False” to allow PTalkDT to communicate to
PMAC.

Note

At end of the ShowPropertyPage() method the Enabled property is set to True
internally. If communication was successful, the Enabled property retains the True
value.

LastError
Data Type
Long Integer
Default Value
0
Description
Used in the debugging of an application using PTalkDT.
Remarks
Used to read the state of PTalkDT’s most recent communications error. This property is usually used in
the debugging of an application. You may want to set this property to 0 just before calling a PTalkDT
method. Then recheck LastError for a non-zero error code. The error may be due to a PMAC reported
error (i.e. invalid command) or bad parameters passed to a PTalkDT method.
See Also
LastErrorString, OnError

LastErrorString
Data Type
String
Default Value
NULL
Description
Used in the debugging of an application using PTalkDT.
Remarks
Returns the last error string generated. The error may be due to a PMAC reported error (i.e. invalid
command) or bad parameters passed to a PTalkDT method. See also the OnError() event..
See Also

30 PTalkDT Reference

Accessory 9PT

LastError, OnError

DeviceNumber
Data Type
Long Integer
Default Value
0
Description
Used to uniquely identify which PMAC device the PTalkDT will use to communicate to.
Remarks
The CONTROL PANEL’s “MOTION” applet may be used to add/remove or setup PMAC’s in your
operating system. A device number (starting from 0) will be associated with each PMAC you add. Use
this same device number when specifying which PMAC you want your PTalkDT ActiveX control to
communicate to.
 See Also
Enabled, SimulateCommunication

PTalkDT Reference 31

 Accessory 9PT

DownloadDeleteTemp
Data Type
Boolean or Long Integer
Default Value
 >0 True
Description
For use with the DownloadFile() method. To eliminate any intermediary files that are created after
downloading, set this property to True.
 Remarks
Intermediary files will be created if the DownloadParse method is set to true. The files created will have
the same name as the original argument to DownloadFile(), but the extensions will be “PMA”, “LOG”,
“56K”.
See Also
DownloadDo, DownloadHide, DownloadLog, DownloadParse, DownloadMap,
DownloadShowErrors, DownloadMaxErrors

DownloadDo
Data Type
Boolean or Long Integer
Default Value
>0 True
Description
Used when the DownloadFile() method is called. To only to Macro parsing and compiling of PLCC’s set
this property to False and the end resulting file (*.56K) will not get downloaded to PMAC.
Remarks
Rarely used
See Also
DownloadDeleteTemp, DownloadHide, DownloadLog, DownloadParse, DownloadMap,
DownloadShowErrors, DownloadMaxErrors

32 PTalkDT Reference

Accessory 9PT

DownloadHide
Data Type
Boolean or Long Integer
Default Value
True
Description
Used when the DownloadFile() method is called. To hide the DownloadFile() dialog set this value to
True.
Remarks
Can be set in the property page.
See Also
DownloadDeleteTemp,DownloadDo, DownloadLog, DownloadParse, DownloadMap,
DownloadShowErrors, DownloadMaxErrors

DownloadLog
Data Type
Boolean or Long Integer

Default Value
False
 Description
Used when the DownloadFile() method is called. To have the event log of the DowloadFile() method
recorded, set this property to True. The file created will have the same name as the argument to
DownloadFile() method but have the “LOG” file extension (i.e. “MYFILE.LOG”).
Remarks
Can be set in the property page.
See Also
DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadParse, DownloadMap,
DownloadShowErrors, DownloadMaxErrors

PTalkDT Reference 33

 Accessory 9PT

DownloadMap
Data Type
Boolean or Long Integer
Default Value
False
Description
Used when the DownloadFile() method is called. To create a cross referencing of MACROS used set
this property to True. The file created will have the same name as the argument to DownloadFile() but
with the “MAP” extension.
 Remarks
To be of any use, the DownloadParse property must be set to True.
See Also
DownloadDeleteTemp,DownloadDo, DownloadHide, DownloadLog, DownloadParse,,
DownloadShowErrors, DownloadMaxErrors

DownloadMaxErrors
Data Type
Long Integer
Default Value
10
 Description
Used when the DownloadFile() method is called. This property limits the number of errors before the
DownloadFile() method aborts.
Remarks
Can be set in the property page.
 See Also
DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadLog, DownloadParse,
DownloadMap, DownloadShowErrors

34 PTalkDT Reference

Accessory 9PT

DownloadParse
Data Type
Boolean or Long Integer
Default Value
True
Description
Used when the DownloadFile() method is called. If the file you are downloading has PLCC’s or macro
definitions, then you’ll want to set this property to True. Otherwise, if the file is strictly PMAC native
code with no PLCC’s feel free to set DownloadParse to False.
 Remarks
Can be set in the property page.
See Also
DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadLog, DownloadMap,
DownloadShowErrors, DownloadMaxErrors

DownloadShowErrors
Data Type
Boolean or Long Integer
Default Value
False
Description
Used when the DownloadFile() method is called. If errors occurred in the downloading of a file and this
property is set to True, the log file that was created will be shown in NotePad.EXE.
Remarks
If the DownloadLog property is False no Errors will be shown.
 See Also
DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadLog, DownloadParse,
DownloadMap, DownloadMaxErrors

PTalkDT Reference 35

 Accessory 9PT

UploadAppend
Data Type
Boolean or Long Integer
Default Value
False
Description
Used in the UploadData() method. When uploading data to a file, you have the option of overwriting the
existing file (UploadAppend = False) or appending to the existing one (UploadAppend = True)
Remarks
Can be set in the Property Page
See Also
UploadHide, UploadNoComments, UploadShowProgress

UploadHide
Data Type
Boolean or Long Integer
Default Value
True
Description
Used in the UploadData() method. To have the UploadData() methods dialog box hide itself, set this
property to True.
Remarks
Can be set in the Property Page
 See Also
UploadAppend, UploadNoComments, UploadShowProgress

36 PTalkDT Reference

Accessory 9PT

UploadNoComments
Data Type
Boolean or Long Integer
Default Value
False
Description
Used in the UploadData() method. The specified file that will be created (or appended to—see the other
options), will contain no comments, i.e. only the actual uploaded responses will be written into the file.
 Remarks
Can be set in the Property Page
See Also
UploadAppend, UploadHide, UploadShowProgress

UploadShowProgress
Data Type
Boolean or Long Integer
Default Value
True
Description
During the upload process (if the dialog box is not hidden), a progress bar will be shown, indicating the
upload status if this property is set to True. To use this option correctly, you must specify a positive value
for num_lines argument to the UploadData() method. Also, num_lines should be as close as possible to
the expected number of responses to be received.
Remarks
Can be set in the Property Page
 See Also
UploadAppend, UploadHide, UploadNoComments

PTalkDT Reference 37

 Accessory 9PT

PTalkDT Methods

DPRAvailable()
Description
Used to check to see that Dual Ported Ram is available for use with PTalkDT.
Return Value
A Boolean value indicating whether or not PTalkDT was able to access PMAC’s Dual Ported Ram.
Visual Basic & Delphi
[form].controlname.ConfigureDriver
value = Mainform.PTalk1.ConfigureDriver
C++
BOOL controlname->ConfigureDriver()
value = PTalkDT->ConfigureDriver()
Remarks
This method is useful for those applications that will use PMAC’s Dual Ported Ram. You may disable
that portion of your application that uses DPR if this function returns False.

DownloadFile (file name)
Description
Downloads a text file (or a series of files) to PMAC and checks for errors.
Return Value
Non-zero if successful, zero when a failure occurred.
 Visual Basic & Delphi
[form].ctrlname.DownloadFile (filename$, options As Long)
Mainf
C++

orm.PTalkDT1.Downloadfile (“c:\files\main.pmc”)

BOOL controlname->DownloadFile (char *filename,long options)
PTalkDT1->Downloadfile (“c:\\files\\main.pmc”)
Remarks
This method is useful for downloading commands and programs to PMAC. A full preprocessor is built in
and is will be invoked if the DownloadParse property has been set to TRUE. The only parameter
filename is a string containing the full path of any valid ASCII text file that contains preprocessor or
PMAC compatible code. Of course the following properties should be set up before this method is called:

38 PTalkDT Reference

Accessory 9PT

Property What it does
DownloadDo Used when the DownloadFile() method is

called. To only to Macro parsing and
compiling of PLCC’s set this property to False
and the end resulting file (*.56K) will not get
downloaded to PMAC.

DownloadDeleteTemp Intermediary files will be created if the
DownloadParse method is set to true. The
files created will have the same name as the
original argument to DownloadFile(), but the
extensions will be “PMA”, “LOG”, “56K”.

DownloadHide Used when the DownloadFile() method is
called. To hide the DownloadFile() dialog set
this value to True.

DownloadLog Used when the DownloadFile() method is
called. To have the event log of the
DowloadFile() method recorded, set this
property to True. The file created will have
the same name as the argument to
DownloadFile() method but have the “LOG”
file extension (i.e. “MYFILE.LOG”).

DownloadMap Used when the DownloadFile() method is
called. To create a cross referencing of
MACROS used set this property to True. The
file created will have the same name as the
argument to DownloadFile() but with the
“MAP” extension.

DownloadMaxErrors Used when the DownloadFile() method is
called. This property limits the number of
errors before the DownloadFile() method
aborts.

DownloadParse Used when the DownloadFile() method is
called. If the file you are downloading has
PLCC’s or macro definitions, then you’ll want
to set this property to True. Otherwise, if the
file is strictly PMAC native code with no
PLCC’s feel free to set DownloadParse to
False.

DownloadShowErrors Used when the DownloadFile() method is
called. If errors occurred in the downloading
of a file and this property is set to True, the
log file that was created will be shown in
NotePad.EXE.

About the Preprocessor
The preprocessor provides the ability to use #include file statements and macro string substitution in your
code just like in the C and C++ languages. Delta Tau’s PMAC Executive Program supports this same use
of #include file and macro string substitution.

Extensive use of macro string substitution can provide very readable code with little need for comments.
The following table describes all the preprocessor directives.
 Example Description

PTalkDT Reference 39

 Accessory 9PT

#define name {command or
variable}

#define COUNTER P1 Declares the name of a macro string
substitution. For every occurrence
of name, the preprocessor will
substitute in {command or
variable}.

 #define DEBUG_MODE Declares a variable name that can be
used for compiler directives.

#include “filename” #include “macros.txt”
#include
“C:\\PE\\macros.txt”

Preprocess and download the
specified file from the current
directory or given path. This is
useful for including multiple files as
part of the download.

 #ifdef DEBUG_MODE …
#else
…; (this code
ignored)#endif

Tests to see if name has been
previously declared. If so, the
subsequent lines of code are
included in the download.

 #ifndef DEBUG_MODE
…
#else
…; (this code ignored)
#endif

Tests to see if name has NOT been
previously declared. If name has
NOT been declared, the subsequent
lines of code (until the next #else or
#endif) are included in the
download.

 #ifdef DEBUG_MODE
…
#else
…
#endif

In the example, if DEBUG_MODE
has not been declared, the lines of
code following the #else are
included in the download. This
directive provides a means to
alternate lines of code when the
#ifdef or #ifndef conditions are
false.

 #ifdef DEBUG_MODE
…
#else
…
#endif

For every #ifdef or #ifndef, you
must include a matching #endif.

DPRDouble (LSB_word, MSB_word)
Description
Converts a PMAC 48 bit floating point data value (as found in PMAC’s Dual Port RAM) to a 64 bit
floating point value compatible with Visual Basic, C++, Delphi, etc.
Return Value
A 64-bit floating point value (of type double) converted from the passed in parameters.

Visual Basic & Delphi
[form].controlname.DPRDouble (lo_val as Long,hi_val As Long)
value
C++

 = Mainform.PTalk1.DPRDouble (lo_val,hi_val)

double controlname->DPRDouble (long lo_val,long hi_val)
value = PTalkDT->DPRDouble (lo_val,hi_val)
Remarks

40 PTalkDT Reference

Accessory 9PT

Floating point values within PMAC’s internal memory are stored as 48-bit numbers. Floating point
values in your PC’s memory are typically stored as 32-bit values (float or single) and 64-bit values
(double). These formats are not directly compatible. When accessing various floating point registers in
PMAC’s Dual Port RAM, they can be accessed by reading two 32-bit integers (or “words”) and
combining them to form a PC-compatible 64-bit number. For this function, the first word, LSB_word,
specified in the parameters is treated as the least significant word. And the second word, MSB_word, is
the most significant word. This function will prove very useful when reading the many floating point
registers in the Real Time Buffer section of PMAC’s Dual Port RAM.

DPRFixed (LSB_word, MSB_word)
Description
Converts a PMAC 48 bit integer data value (as found in PMAC’s Dual Port RAM) to a 64 bit floating
point value compatible with Visual Basic, C++, Delphi, etc.
Return Value
A 64-bit floating point value (of type double) converted from the passed in parameters.
[form].controlname.DPRFixed (lo_val as Long,hi_val As Long)
value
C++

 = Mainform.PTalk1.DPRFixed (lo_val,hi_val)

double controlname->DPRFixed (long lo_val,long hi_val)
value = PTalkDT->DPRFixed (lo_val,hi_val)
Remarks
Integer values within PMAC’s internal memory are stored as 48-bit numbers. Floating point values in
your PC’s memory are typically stored as 32-bit values (float or single) and 64-bit values (double). These
formats are not directly compatible. When accessing various integer based registers in PMAC’s Dual
Port RAM, they can be accessed by reading two 32-bit integers (or “words”) and combining them to form
a PC-compatible 64-bit number. For this function, the first word, LSB_word, specified in the parameters
is treated as the least significant word. And the second word, MSB_word, is the most significant word.
This function will prove very useful when reading the many integer based registers in the Real Time
Buffer section of PMAC’s Dual Port RAM such as motor position.

DPRDWordBit Set/Reset and BitSet Methods
DPRDWordSetBit (offset, bit_position)
DPRDWordResetBit (offset, bit_position)
DPRDWordBitSet (offset, bit_position)

Description
These functions can be used to set (assign a bit value of 1), reset (assign a bit value of 0), or query,
respectively, the state of an individual bit within a 32 bit integer located in the address space of PMAC's
Dual Ported Ram.
Return Value
DPRDWordSetBit and DPRDWordResetBit return “True” if successful, otherwise “False”.
DPRDWordBitSet returns the value of the bit being queried, either a 1 or 0.
Visual Basic & Delphi
[form].ctrlname.DPRDWordSetBit (offset as long, bit As long)
[form].ctrlname.DPRDWordResetBit (offset As long, bit As long)
[form].ctrlname.DPRDWordBitSet (offset As long, bit As long)
Call
C++

Mainform.PTalk1.DPRWordSetBit (&H0800&,2)

BOOL controlname-> DPRDWordSetBit ong offset, long bit) (l
BOOL controlname-> DPRDWordResetBit (long offset, long bit)
BOOL controlname-> DPRDWordBitSet (long offset, long bit)

PTalkDT Reference 41

 Accessory 9PT

PTalkDT->DPRFixed (0x800,2)
Remarks
The offset parameter is the number of PMAC addresses from the base address of the DPR within the
PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR address is
$DFFF). For example to specify address $D200 in the DPR use a value of $200 (that is hex 200, or 512
decimal)
The bit parameter specifies the bit within the double word. Valid ranges for bit are from 0 to 31.

DPRGetDWord and DPRSetDWord Methods
DPRGetDWord (base_address_offset)
DPRSetDWord (base_address_offset, value)
Description
These functions can be used to read and write 32 bit integers from and to PMAC's Dual Ported RAM.
Return Value
DPRGetDWord returns the 32 bit integer read from PMAC's Dual Ported Ram. DPRSetDWord returns
“True” if successful, “False” if a failure occurred.
Visual Basic & Delphi
[form].ctrlname.DPRDGetDWord (offset As long) As long
[form].ctrlname.DPRDSetDWord (offset As long,value As long)
value = Mainform.PTalk1.DPRGetWord (&H0800&)

C++
long controlname-> DPRDGetDWord (long offset)
BOOL controlname-> DPRDSetDWord (long offset, long value)
value = PTalkDT->DPRGetWord (0x800)
Remarks
The base_addr_offset parameter is the number of PMAC addresses from the base address of the DPR
within the PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR
address is $DFFF). For example to specify address $D200 in the DPR use a value of $200 (that is hex
200, or 512 decimal)
Example
Var
 aBool : Bool;
 aLong : LongInt;
 offset : LongInt ;
 aString: string[11];
begin
// Assign offset of 512 from DPR Base Address (PMAC Address $D200)
 offset := 512;
 aLong := Form1.PTalkCtrl1.DPRGetDWord(offset);
 Str(aShort, aString); // Convert to a string
 Edit8.Text := aString; // Write to an edit box
// Write to first 4 bytes of DPR
 aBool := Form1.PTalkCtrl1.DPRSetDWord(0,aShort);
end;

DPRGetFloat and DPRSetFloat Methods
DPRGetFloat (offset)
DPRSetFloat (offset, value)
Desdcription

42 PTalkDT Reference

Accessory 9PT

These functions can be used to read and write 32 floating point values from and to PMAC's Dual Ported
Ram.
Return Value
DPRGetFloat returns the 32 bit floating point value read from PMAC's Dual Ported RAM.
DPRSetFloat returns “True” if successful, “False” if a failure occurred.
Visual Basic & Delphi
[form].ctrlname.DPRDGetFloat (offset As long) As long
[form].ctrlname.DPRDSetFloat (offset As long,value As Single)
value = Mainform.PTalk1.DPRGetFloat (&H0800&)
 C++
float controlname-> DPRDGetFLoat (long offset)
BOOL controlname-> DPRDSetFloat (long offset, float value)
value = PTalkDT->DPRGetFloat (0x800);
 Remarks
The offset parameter is the number of PMAC addresses from the base address of the DPR within the
PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR address is
$DFFF). For example to specify address $D200 in the DPR use a value of $200 (that is hex 200, or 512
decimal)
PMAC's special m-variable format "F" may be used to easily assign 32 bit
floating point values to Dual Ported RAM.
Example
Var
 aBool : Bool;
 aFloat : Single;
 offset : LongInt ;
begin
 offset := 100; // Assign offset from PMAC's base address
 aFloat := 1.2345; // Assign float
 aBool := Form1.PTalkCtrl1.DPRSetFloat(offset,aFloat);
 aFloat := Form1.PTalkCtrl1.DPRGetFloat(offset);
end;

DPRGetWord and DPRSetWord Methods
DPRGetWord(bank, offset)
DPRSetWord(bank, offset, value)
 Description
These functions can be used to read and write 16 bit integers from and to PMAC's Dual Ported RAM.
Return Value
DPRGetWord returns the 16 bit integer read from PMAC's Dual Ported Ram. DPRSetWord returns
“True” if successful, “False” if a failure occurred.
Visual Basic & Delphi
[form].ctrlname.DPRGetWord (bank As Long,offset As long) As long
[form].ctrlname.DPRSetWord (bank As Long,offset As Long,value As integer)
Visual Basic
value = Mainform.PTalk1.DPRGetWord ('X',&H0800&)
Delphi
// 88 = 'X' in ASCII
value = Mainform.PTalk1.DPRGetWord (88,&H0800&)
C++
long controlname-> DPRDGetWord (long bank,long offset)
BOOL controlname-> DPRDSetWord (long bank,long offset, int value)

PTalkDT Reference 43

 Accessory 9PT

value = PTalkDT->DPRGetWord ('X',0x800);
Remarks
The bank parameter specifies PMAC's X or Y address space. Use a value of 24 for X or 25 for Y (or
more intuitively an ASCII character ''x", "X", or "y", "Y").
The offset parameter is the number of PMAC addresses from the base address of the DPR within the
PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR address is
$DFFF). For example to specify address $D200 in the DPR use a value of $200 (that is hex 200, or 512
decimal).
PMAC's m-variable formats "X" and “Y” may be used to easily assign 16 bit
integers to Dual Ported RAM (i.e. m1->X:$D200,0,16,s).
Example
Var
 aBool : Bool;
 aShort : short;
 offset : LongInt ;
 aString: string[100];
begin
// Read from PMAC DPR Address X$D200
 offset := 512;
 aShort := Form1.PTalkCtrl1.DPRGetWord('X',offset);
 Str(aShort, aString); // Convert to a string
 Edit8.Text := aString; // Write to an edit box
// Write to first two bytes of DPR
aBool:=Form1.PTalkCtrl1.DPRSetWord('X',offset,aShort);
end;

44 PTalkDT Reference

Accessory 9PT

Flush ()
Description
Empties PMAC’s response buffer and character I/O port.
Return Value
“True” for success else “False”
Visual Basic & Delphi
[form].controlname.Flush
Call
C++

Mainform.PTalk1.Flush

BOOL controlname->Flush ();
PTalkDT->Flush();
Remarks
Empties the contents of PMAC’s output buffer queue and strips out any remaining characters in PMAC’s
ASCII queue. The characters that get “Flushed” can not be read. Note that this method has no
parameters.

 GetControlResponse (response, control char)
Description
Sends a control character to PMAC and waits for PMAC’s response.
Return Value
Non-zero if successfull, zero when a failure occurred.
Visual Basic & Delphi
[form].ctrlname.GetControlResponse (Response As String,
 controlChar As Integer)
Mainform.PTalk1.GetControlResponse (Response, 16)
 C++
BOOL controlname->GetControlResponse (char *response,

char control);
result = PTalkDT->GetControlResponse (response,’P’);
 Remarks
Sends a control character to PMAC and waits up to Timeout iterations for PMAC’s response.

Note

Control-T will not get sent by this function. This is to avoid putting PMAC in a
full-duplex mode. Doing so will keep PTalkDT from re-establishing
communications the next time the application is run.

GetLineAck (response)
 Description
Gets a string from PMAC up to the terminating <ACK> character.
Return Value
Number of characters retrieved.
Visual Basic & Delphi
[form].controlname.GetLineAck (Response As String)
Mainform.PTalk1.GetLineAck (Response)
C++
long controlname->GetLineAck (char *response);
result = PTalkDT->GetLineAck (response);
Remarks

PTalkDT Reference 45

 Accessory 9PT

Communications routine for receiving a response from PMAC. Certain commands can cause PMAC’s
response to contain multiple <CR> characters. This will receive the entire response up to the terminating
<ACK> character or timeout condition. This response string can be as large as 16000 characters.
For most applications the GetResponse method should be used instead of GetLineAck. Exceptions
would be when you want to receive something from PMAC without sending a command as in a terminal
program.

GetLineCR (response)
 Description
Gets a string from PMAC up to the terminating <CR> character.
Return Value
Number of characters retrieved
Visual Basic & Delphi
[form].controlname.GetLineCr (Response As String)
Mainform.PTalk1.GetLineAck (Response)
C++
long controlname->GetLineAck (char *response);
result = PTalkDT->GetLineAck (response);
Remarks
Communications routine for receiving a response from PMAC. This routine will read a pending response
up to the next <CR> or <ACK> character.
Although PMAC will respond to commands with a terminating <ACK> character, sometimes only the
part of PMAC’s response up to the next <CR> is desired at the moment. In this situation the GetLineCR
method can be used.

For most applications the GetResponse method should be used instead of GetLineCR. Exceptions
would be when you want to receive something from PMAC without sending a command as in a terminal
program.
Response string will never be greater than 255 characters.

GetResponse (response, command)
Description
Sends a string to PMAC and waits for PMAC’s response.
Return Value
Non-zero if successfull, zero when a failure occurred.
Visual Basic & Delphi
[form].controlname.GetResponse (Response As String,
 command As String)
Mainform.PTalk1.GetResponse (Response,”#1P”)
C++
BOOL controlname->GetResponse (char *response,char *command);
result = PTalkDT->GetResponse (response,”#1P”);
Remarks
General purpose communications routine for sending a command, and receiving a consequential response
from PMAC. Response will never be greater than 16,000 characters. Command should not be greater
than 250 characters if using Bus or Serial Port, and should not exceed 150 characters if using the Dual
Ported Ram.

IsLineWaiting ()

Used to determine if PMAC is waiting to say something to the host. Description

46 PTalkDT Reference

Accessory 9PT

non-zero : PMAC has an ASCII response pending for the host Return Value
zero : PMAC does not have an ASCII response pending for host

[form].controlname.IsLineWaiting
result = Mainform.PTalk1.IsLineWaiting

Visual Basic & Delphi

BOOL controlname->IsLineWaiting (); C++
result = PTalkDT->IsLineWaiting();

This method is excellent for creating applications which will periodically check to see if PMAC has an
ASCII response for the Host computer. Instead of calling GetResponse to see if a response is pending
use IsLineWaiting instead. IsLineWaiting will not remove any contents of PMAC’s output buffer, and
will not timeout. Note that this method does not have parameters.

Remarks

LoadSettings ()
Description
Loads the last stored PTalkDT settings.
Return Value
Non-zero if successfull, zero when a failure occurred.
Visual Basic & Delphi
[form].controlname. LoadSettings
resul
C++

t = Mainform.PTalk1. LoadSettings

BOOL controlname-> LoadSettings();
result = PTalkDT-> LoadSettings();
Remarks

Loads the last stored parameters via the SaveSettings method. If the Enabled property is set to TRUE
before this method is called, communication will be re-attempted after the settings have been loaded.
Settings include the following properties:
DeviceNumber
SimulateCommunication
DownloadDo
DownloadParse
DownloadLog
DownloadMap
DownloadDeleteTemp
DownloadHide
DownloadShowErrors
DownloadMaxErrors
UploadHide
UploadShowProgress
UploadNoComments
UploadAppend

LockPMAC ()
Description
Locks the PMAC resource from other threads and processes.
Return Value
None

PTalkDT Reference 47

 Accessory 9PT

Visual Basic & Delphi
[form].controlname. LockPMAC
Mainf
C++

orm.PTalk1.LockPMAC

void controlname-> LockPMAC();
PTalkDT-> LockPMAC();
Remarks
To be used in conjuction with ReleasePMAC(). These two methods lock and release the PMAC resource
respectively. This should only be used very sparingly to ensure that no cross talk occurs when using the
SendChar(), SendLine() and any GetLine() methods. All other communication methods are thread safe.
For Example:
 LockPmac() // Hold off any other processes or threads
 SendLine(“?”) // Send the line
 GetLineACK(response) // Get the response
 ReleasePMAC() //Let other threads have access to PMAC

ReleasePMAC()
Description
Releases the PMAC resource for other threads and processes
Return Value
None
Visual Basic & Delphi
[form].controlname.ReleasePMAC
Mainform.PTalk1.ReleasePMAC
C++

void controlname-> ReleasePMAC();
PTalkDT->ReleasePMAC();
Remarks

To be used in conjuction with LockPMAC(). These two methods lock and release the PMAC resource.
This should only be used very sparingly to ensure that no cross talk occurs when using the SendChar(),
SendLine() and any GetLine() methods. All other communication methods are thread safe.
For Example:
 LockPmac() // Hold off any other processes or threads
 SendLine(“?”) // Send the line
 GetLineACK(response) // Get the response
 ReleasePMAC() //Let other threads have access to PMAC

48 PTalkDT Reference

Accessory 9PT

SaveSettings ()
Description
Saves the current communications settings.
Return Value
Non-zero if successfull, zero when a failure occurred.
Visual Basic & Delphi
[form].controlname.SaveSettings
Mainform.PTalk1. SaveSettings
C++
BOOL controlname->SaveSettings();
result =
Remarks

 PTalkDT->SaveSettings();

Stores the following properties to an initialization file whose name is the same as PTalkDT’s name
property (i.e. PTalkDT1.ini)
DeviceNumber
SimulateCommunication
DownloadDo
DownloadParse
DownloadLog
DownloadMap
DownloadDeleteTemp
DownloadHide
DownloadShowErrors
DownloadMaxErrors
UploadHide
UploadShowProgress
UploadNoComments
UploadAppend

SendChar (character)
Description
Sends a single ASCII character, aChar, to PMAC.
Return Value
Non-zero if successfull, zero when a failure occurred.
Visual Basic & Delphi
[form].controlname.SendChar (character As Long)
Mainform.PTalk1. SendChar(Asc(“P”))
C++
BOOL controlname-> SendChar(long character);
result = PTalkDT->SendChar(‘P’);
Remarks
Sends a single ASCII character to PMAC without waiting for PMAC to respond. This will come in
handy when you need to send characters one at a time either in a terminal or when sending control
characters.

SendLine(Command)
Description
Sends a string to PMAC.
Return Value

PTalkDT Reference 49

 Accessory 9PT

Non-zero if successfull, zero when a failure occurred.
Visual Basic & Delphi
[form].controlname.SendLine (command As String)
Mainform.PTalk1.GetResponse (”ListProg1”)
C++
BOOL controlname->SendLine har *command); (c
result = PTalkDT->GetResponse (”ListProg1”);
Remarks

This function is here only for backward compatibility. Use GetResponse() instead. If you find that you
have to use this function follow these instructions very carefully.
SendLine() sends PMAC a command string. PMAC WILL HAVE A RESPONSE TO THE SENT
COMMAND. If PMAC has two or more pending responses for the host computer, the PMAC will
suspend the running of all PLC’s and motion programs, as well as any incoming ASCII commands.
Therefore, always call GetLineACK() after using SendLine() to purge any pending response from PMAC.
One last very important thing. Use the LockPMAC() method before the SendLine() and the
ReleasePMAC() method after the GetResponse() call to ensure that your program won’t cause any
“CROSS TALK” amongst other threads or processes that are using Delta Tau’s 32 bit driver, PComm32.
 For Example:
 LockPmac() // Hold off any other processes or threads
 SendLine(“?”) // Send the line
 GetLineACK(response) // Get the response
 ReleasePMAC() //Let other threads have access to PMAC

50 PTalkDT Reference

Accessory 9PT

ShowPropertyPage ()
Description
Displays a dialog box for modifying PTalkDT’s properties.
Return Value
Non-zero if successfull, zero when a failure occurred.
Visual Basic & Delphi
[form].controlname.ShowPropertyPage
result = Mainform.PTalk1.ShowPropertyPage
C++
BOOL controlname->ShowPropertyPage();
result = PTalkDT->ShowPropertyPage();
Remarks

Displays a user-friendly dialog for modifying PTalkDT’s at run time. This is the same dialog shown
when the custom property is double clicked from within Visual Basic’s property window.

UploadData (file name, command, options, expected number of lines)
Description
Uploads a series of responses from a PMAC command to a text file.
Return Value
Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi
[form].ctrlname.UploadData (filename As String, command As String,
number_of_lines As Long)
Mainform.PTalkDT1.UploadData (“c:\files\main.pmc”,”i0..1023”,1023)
Mainform.PTalkDT1.UploadData (“c:\files\plc1.pmc”,”list plc 1”,0)
C++
BOOL controlname->UploadData (char *filename,char *command,long number_of_lines)
result = PTalk1->UploadData (“c:\\files\\main.pmc”,”i0..1023”,1023)
Remarks
This method is useful for receiving a series of responses from PMAC and writing them to a file. With
this method you can upload items such as motion and PLC programs, I-, P-, Q- and M- variables, and
gathered data to a data file. By default, helpful comments are also written into the file, including a time
and date stamp. The first parameter filename is the full path of any valid ASCII text file that will contain
the upload data. The second parameter command is the actual command string that will be sent to PMAC
to generate the upload data. The third parameter number_of_lines specifies the number of expected lines
so that the optional progress bar can show the correct progress status during the upload. For example, if
the command was I0..1023 (which uploads the values of I-variables I0 through I1023), you expect to
receive 1024 responses and you would set number_of_lines equal to 1024. The following PTalkDT
properties summarizes the available options:

PTalkDT Reference 51

 Accessory 9PT

Name of Option Description

UploadNoComments Only the actual uploaded responses will be written into the file.
UploadHide The usual dialog box that appears showing the progress of the upload

is not shown. As a result, you will not be able to cancel the upload
process before it completes.

UploadAppend If the specified file already exists, the newly uploaded data will be
appended to the end of the specified file. If the specified file does not
exist, it will be created.

UploadShowProgress During the upload process (if the dialog box is not hidden), a progress
bar will be shown, indicating the upload status. To use this option
correctly, you must specify a positive value for number_of_lines.
Also, this value should be as close as possible to the expected number
of responses to be received.

PTalkDT Events

OnError
Description
Signals when a PTalkDT initialization or communications error has occured.
Visual Basic
Private Sub PTalk1_OnError(ByVal ErrorNumber As Long, ErrorString As String)
 FormDebug.Text1.Text = Str(ErrorNumber)
 FormDebug.Text2.Text = ErrorString
 ErrorCount = ErrorCount + 1
 FormDebug.Text3 = Val(ErrorCount)
End Sub
Remarks
The OnError event was meant to be used for trouble shooting. If you can’t establish communications, if
you are timing out, if a PMAC error was generated etc. then this event will notify you. Your code in this
routine may simply display the message, ErrorString, to the user (good for developing), or perhaps act on
the ErrorCode without the end user ever knowing a problem occurred (good for releases). The ErrorCode
and ErrorString parameters passed in this event represent the LastError and LastErrorString properties
just modified state.
See Also
PMAC Software Reference Manual \ On line commands \ I6 for an explanation of PMAC Errors.

Trouble Shooting
To see if the problem you are encountering is communications related, try disabling the communications
via the SimulateCommunication property.

Symptom Cause

PTalkDT can't seem to load or fails unpredictably. Visual Basic users should be sure to install Visual
Basic first then PTalkDT second.

You can't establish serial communications but
everything works O.K. once you run the PMAC

Some PMAC firmware versions (before 1.16A) set
the hardware handshaking lines incorrectly on

52 PTalkDT Reference

Accessory 9PT

Executive Program. power up or reset. To get around this problem
short pins 4 & 5 (CTS & RTS, clear to send and
request to send) on the PC's serial port connector.

You can't establish serial communications period. Are you using a known working serial cable? You
may just want to see exactly what your PMAC's
baudrate is and use that.

If your PMAC has been put in full-duplex mode
(by sending it a control-t) communications with
PTalkDT will not occur.

Putting a jumper on the board to put it in a factory
default state (E51 on PMAC1, E3 on PMAC2)
should eliminate this problem.
Check the port setup from the operating systems
control panel. Also, try the supplied
“HyperTerminal” application.

Serial communications is losing characters. Set up your COM port from the Control Panel of
the operating system. Make sure that you are NOT
using a FIFO, and that HARDWARE FLOW
CONTROL is being used.

In Microsoft Visual C++ after inserting a PTalkDT
control, you can't see any of the member variables
displayed in the class wizard.

The operating system's language may not be set to
English (US).

Communications routines return “True”, but don’t
really work.

SimulateCommunications may be set to “True”

Unable to register PTALKDT.OCX. PTALKDT.OCX cannot access some DLL’s or
DLL’s of the correct version.
a. Make sure PMAC.DLL is in the SYSTEM

directory
b. Look at the supplied installation script, and

check it’s accuracy

Dual Ported Ram Automatic Feature Example
The example below illustrates how to make use of PMAC's automatic Dual Ported Ram features. In this
case were using the "Fixed Real Time Data Buffer" which has motor specific information. All 8 motor
actual positions are being displayed using a timer procedure. The example was done in Delphi and is
included in the distribution.
procedure TForm1.Timer2Timer(Sender: TObject);
var
 aBool : Bool;
 aShort : short;
 aString: string[100];
 LongLow: LongInt;
 LongHigh: LongInt;
 position: double;
begin
 // Tell PMAC we are busy reading, Y:$D009, 89 = "Y" in ASCII
 aBool := Form1.PTalkDTCtrl1.DPRSetWord(89,9,1);

PTalkDT Reference 53

 Accessory 9PT

 // Read in servo timer, X:$D009, 88 = "X" in ASCII
 aShort := Form1.PTalkDTCtrl1.DPRGetWord(88,9);
 aShort := aShort and $7FFF;// Bit 15 is a handshake bit, mask off
 Str(aShort, aString);
 Edit13.Text := aString;
 // Read in Motor Actual Positions, 2 long words that need to be
 // converted to a float via a special method
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(20);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(21);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM1.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(35);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(36);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM2.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(50);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(51);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM3.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(65);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(66);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM4.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(80);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(81);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM5.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(95);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(96);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM6.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(110);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(111);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM7.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(125);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(126);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM8.Text := FloatToStr(position);

 // Tell PMAC we are not busy anymore
 aBool := Form1.PTalkDTCtrl1.DPRSetWord(89,9,0);
end;

54 PTalkDT Reference

Accessory 9PT

PTalkDT Reference 55

Accessory 9PT

GLOSSARY OF TERMS
directive

An instruction that tells the downloader how to process this or the upcoming lines of a file.

preprocess

The act of parsing a file and executing all the downloader directives in preparation for downloading the file
to PMAC.

event

A function that is automatically called when a certain condition(s) occur.

property

An attribute (or variable) of an OCX control that configures, enables, or disables a certain feature of the
control.

DPRAM

This stands for dual port RAM. This hardware option of PMAC allows you to share memory between
PMAC and the host computer. DPRAM is useful for high speed communications and data exchange
between PMAC and the host computer

upload

This is the process of transferring information, usually program files and data, from the PMAC to the host
computer.

download

This is the process of sending information, usually program files and data, from the host computer to
PMAC.

methods

All featured functions in an OCX are reffered to as methods. Methods give the OCX its capabilities.

PMAC

The motion computer from Delta Tau Data Systems. PMAC stands for Programmable Multi-Axis
Controller.

MMI

This stands for Man Machine Interface. An MMI is the software that is used by a machine user to operate a
machine. It is the software on the host computer that the operator uses to control the machine.

OCX control

This a collection of library functions designed to make difficult programming tasks easy. OCX controls are
the latest addition to Microsoft’s OLE 2.0. They are sometimes referred to as reusable components. OCX
controls are improved and enhanced VBXs.

Glossary of Terms 57

 Accessory 9PT

PTalkDT

PTalkDT is a communications OCX control designed to communicate to Delta Tau’s PMAC.

58 Glossary of Terms

Accessory 9PT

INDEX

Index 59

 Accessory 9PT

Download Directives

#define name {command or variable}, 40

#include "filename", 40

Events

OnError, 54

Methods

DownloadFile, 2, 10, 38

DPRDouble, 40

DPRDWord, 41

DPRFixed, 41

DPRFloat, 43

DPRGetDWord, 42

DPRWord, 44

Flush, 2, 46

GetControlResponse, 2, 10, 46

GetLineAck, 2, 47

GetLineCR, 2, 47

GetResponse, 2, 48

IsLineWaiting, 48

LoadSettings, 2, 49

SaveSettings, 2, 51

SendChar, 2, 51

ShowPropertyPage, 2, 10, 53

UploadData, 2, 53

Properties

Enabled, 30

LastError, 30

LastErrorString, 31

 Index 60

	INTRODUCTION
	What is PTalkDT?
	What is an ActiveX control?
	What can I use PTalkDT with?
	What can PTalkDT do for me?
	What built in functions does PTalkDT have?
	What You Will Need To Use PTalkDT
	How do I get support?

	INSTALLING/UNINSTALLING PTALKDT
	Before You Run Setup
	Running Setup
	What Was Installed?
	Uninstalling PTalkDT OCX

	HOW TO DESIGN WITH PTALKDT
	In Design Mode
	Run Time Mode
	Distributing Your Final Application

	Altering, Saving and Retrieving PTalkDT Settings At Run Time
	Communication Settings
	General Settings

	YOUR FIRST VISUAL BASIC MMI WITH PTALKDT
	Overview
	Instructions

	YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT
	Overview
	Instructions

	PTALKDT REFERENCE
	Documentation Conventions
	Overview
	PTalkDT Properties
	Enabled
	LastError
	LastErrorString
	DeviceNumber
	DownloadDeleteTemp
	DownloadDo
	DownloadHide
	DownloadLog
	DownloadMap
	DownloadMaxErrors
	DownloadParse
	DownloadShowErrors
	UploadAppend
	UploadHide
	UploadNoComments
	UploadShowProgress

	PTalkDT Methods
	DPRAvailable()
	DownloadFile (file name)
	DPRDouble (LSB_word, MSB_word)
	DPRFixed (LSB_word, MSB_word)
	DPRDWordBit Set/Reset and BitSet Methods
	DPRGetDWord and DPRSetDWord Methods
	DPRGetFloat and DPRSetFloat Methods
	DPRGetWord and DPRSetWord Methods
	Flush ()
	GetControlResponse (response, control char)
	GetLineAck (response)
	GetLineCR (response)
	GetResponse (response, command)
	IsLineWaiting ()
	LoadSettings ()
	
	
	
	
	C++
	Remarks

	LockPMAC ()
	ReleasePMAC()
	
	
	
	
	Remarks

	SaveSettings ()
	SendChar (character)
	SendLine(Command)
	
	
	
	
	Remarks

	ShowPropertyPage ()
	UploadData (file name, command, options, expected number of lines)

	PTalkDT Events
	OnError
	Trouble Shooting
	
	
	
	
	
	Symptom
	Cause

	Dual Ported Ram Automatic Feature Example

	GLOSSARY OF TERMS
	
	
	
	directive
	preprocess
	event
	property
	DPRAM
	upload
	download
	methods
	PMAC
	MMI
	OCX control
	PTalkDT

	INDEX

