Accessory 9PT

&8
x‘r Data Systems, Inc.

NEW IDEAS IN MOTION

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:
Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive
materials. If Delta Tau Data Systems, Inc. products are exposed to hazardous or conductive
materials and/or environments, we cannot guarantee their operation.

Accessory 9PT

Table of Contents

INTRODUGCTION ...ttt ettt st ste e st e e ete e s be e s eaeesabesabeesabesaseeaabessseesabesanseesabessabeesasessseesasesssaesnresanseesnseeans 1
NV S ST N T2 B I SOOI 1
WHAT ISAN ACTIVEX CONTROL?....ciiuteieieitieeeeiteeeeeteeeseitteeseitseesaasbesesasssesesaasesaaasbesesasssesssseesaastesesassssessssseesanssesesns 1
WWHAT CAN | USE PTALKD T WITH? ettt ettt ettt e e e ettt e e e te e e e et e e e e eabeeesaaseeessasseeassteeesassesassnsneeaanssesesnns 1
WHAT CAN PTALKDT DO FOR ME?......oiiiiiitiieeeitie e e eteee e ettt e e eetateeestteeasassesesaseeaaasbeeesassseasssseaasastesesasasesasseesanssesesnns 1
WHAT BUILT IN FUNCTIONS DOES PTALKDT HAVE?....c ittt ttee e ettt e e e tee e e st e e e s eate e e sennaeassnnneesennsneasans 1
WHAT YOU WILL NEED TOUSE PTALKDT ... ettt ettt e st s st e e st e e st ae e s s aae e e e nte e e sennae e s snnneesenneneennns 3
HOW DO | GET SUPPORT? ..eeeittieeiteeeeeitteeesateeesssseessssseeesaseeasssseesaastesesassssssassssssassesesansessssassessssssesesanssesesnssesessnsenes 3

INSTALLING/UNINSTALLING PTALKDT oottt ettt ettt eette e steeebessstessbessssessabesssessssessbessnsessnsessnsesans 4
BEFORE Y OU RUN SETUP.....cutiiitie ittt e st e sttt s st e stte s s te e sate e saeesateesaseesnteesaseesateesaseesaseesseesntessnseesatessaseesnsesansensnsesans 4
RUNNING SETUP ...ttieite ettt e et e sttt e s ee e stteesteesateesateesateesaseesateesaseesateesaseesateeaaseesabeesaseesateeenseesabessnseesatessnseesnseesnsensnseesns 4
VVHAT WAS INSTALLED? ... ttieeettiee e ctteeeeeetteeeeetteeeeetbeeesataeesebaeeesasbeeeaassaeeeassseeeaasbesesassseeesnsseesasbesesansesessnsseesansreeesnns 4

UNINSLalliNg PTAIKDT OCX......ccuiieiitirieteiteriete sttt sttt sttt st et et see st et e se et et e seese b e seebesbeneebesbeseenesreneas 6

HOW TO DESIGN WITH PTALKDT oottt ettt sre e st srte e s te e s sateesaae s sbeeensesesasesnsesessaessesensessnsenans 7
IN DESIGN IMODEcoiittiie et e e cteee e ettt e ettt e e ettt e e e etbeeeeeaseeeesaaeeaaaseeeeaasseeassssseaaansbeseaassesessssaeaaansseeesansseesansesasansrennanns 7
RUN TIME IMODEueiieiitii ettt eteee ettt e ettt e e ettt e e e e tb e e e e eteee e easeeaeaabeeeaassseeeansseeeeasbeeesansesesssseaasasbesesansseeeesnaeasanrenann 8

Distributing Your Final APPIICALIONcoiii et e s e e see e e 9
ALTERING, SAVING AND RETRIEVING PTALKDT SETTINGSAT RUN TIME ...uotiiiiiiie ettt 10
COMMUNICALION SEIHINGS ...veveeteeeeteieste e sttt s et e e st e s e sreste s e ese e e e sestestestesaeeseessessesessestesaeesessesaeesseneansessestensenns 10
LT = = TS =1 1] 0TS 10

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT oottt ettt ettt sreeeaee e saaeenree e saneenee e 12

OVERVIEW 1 iteeiuteeeteesteesteeste e sateesstessteesateesteeaatesaseeanseseseeenseeesseeeaseeeaseeeasee e seeenseeeseeanseseseeenseeeaseeenneeesseeenneeesnes 12
NS UCTIONS ... ettt ettt ettt et e e be e beebeeateebeesbeesbe e beenbesasesaeesaeesbeebeenseeaseebeaabeenbeeabesatesaeesbeesbnesreesseennes 12

YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT ..ottt enee e 16

OVERVIEW ...tiiiettieeectteeeeeette e e eetteeeeetbeeeeastaeeesbaeesaasbeseeasseeesaabeeae e sbeseaasseeesasbeeesansbese e ssesesasseeesansseessnsseeesasbenesansseesansees 16
1 1 (o1 o 16

PTALKDT REFERENCQGEottt ettt st e st e s ae e s te e enae e s eteeene e e taeenseeesseeenneeesneeenneeesnes 29
DOCUMENTATION CONVENTIONSceiiiutiieieitteeeeitteeeeteeeeaasseeeaasseeasasseaaaassessaassesasasssasaassessaasssssssnsssesasssesesansssessnsees 29
OVERVIEW ...t ittiee e eiteeeee ettt e e ettt eeestteeesaaseeeeaaaeaeaasbeeasasseeaeaaseeaaasbeseaanseeaesabeeasansseeeaanseeeessseeeaansseesannseeesasbeeenansseasannnns 29
e I B I I 10 = = 30

[0= o 1= TSRS 30
TS = o SR 30
[= o) S 1 T oo S 30
DEVICENUMDETcveeiviiite ettt ettt et et s e st e e s te e beesesaeeebeeebeenbeeabesabesaeesbeesbeebesaseeaeeebeabeenbesabeeabesbeesbeesbeensennnes 31
DOWNI OAODE BETEMD ...ttt sttt sttt b e et b e se st s b e s e e bt s b e se bt s b et e bt e b et e bt e b et e bt s be e ebenb et ene e 32
(L0 7Y g1 Ko T=To | o TR TR 32
(B L0V g1 o T=To | [0 L= 33
(D011 g1 o= To | e o RN 33
(Do 1 g1 Lo7=To |1V =T o ISP 34
DOWNIOBAIMAXETTOIS.......cuvieitteeiieeette et e ettt e sttt eeteeesbeesteeesaeeeebesassseabesessesebesaasessnbesaasessnbesaasessnbesasessnbesansenssesans 34
DOWNIOAAPAISEoevvictieete ettt sttt et e st s eebe e beeabeeabeebseebe e beeabesasesaeesaeesbeenbeeassebeeabeenbeenbesabesbeesbeesbeeseennes 35
DOWNIOAASNOWETTOIS ...ttt ettt et et e be e e b e et e et e e st e saaesaeesbeesbeenbesaesebeaebeebesnbesasesbeesbeesbeenseannes 35
LU 010 Y=o /Y o= o S 36
LU 010> To [o =S 36
LU o102 To [N (010 40 07) S 37
L 010> To RS oY e | =\ 37
e I B I Y/ =5 10 1 OO 38
1= T =T o =) S 38

Table of Contents i

Accessory 9PT

DoOWNIOAdFTTE (fIIE NAIME) ...t et bbbt bbbt b e bt b e 38
DPRDouble (LSB_WOId, MSB_WOIT)....coueieiiiiiieeiesiesieie ettt sttt st st sttt sb e et 40
DPRFixXed (LSB_WOId, MSB_ WOIT) ..c.eiitirieeiieeeieie ettt e e se et bbb e e eneene e besaesreenas 41
DPRDWordBit Set/Reset and BitSet MEINOUS..........cceiveiiiirieiieiee ettt 41
DPRGetDWord and DPRSetDWOrd MEthOUScc.oiueiiieiieee et e 42
DPRGetFloat and DPRSEtFIOat MEthOUScoveiiiieeceree s e 42
DPRGetWord and DPRSEWOrd MELNOUS..........cooiiieiriiieiise sttt st 43

[UL o X TSP 45
GetControlResponse (response, CONLrol Char).......ccviivererecercre e e e 45
LT (T AN S Q= o0 = S 45
GELLINECR (FESPONSE)..vtuvevieterueeseestesee e stestessessesseessessessessesseasesseessensessessessessesseessessessensesssssessesseesemseessessessensenes 46
GetRespONSe (1eSPONSE, COMMEANA)viviiiierieiiete ettt sttt ettt sttt et sb e e b b se bt sbe e eb e s b e e ebesaeseenesbeseeneabeneas 46
[SLINEWWVAITING () +.vveevereeneetereenietese ettt ettt bbbtk b et b b et e b et et e bt et et et et ee b 46
(0210 A5 = 11T 0o S () USSP 47
00 Y L O TSR 47
=TS Y o () SRS S 48
SV = 1 o Y () TS 49

S S (o (@ g =T (e 7= = Tox =) S 49

S = o [T =T @) 11007 g To 1 TS 49

S 00T 0T o 1= 1Y/ =T L= () 51
UploadData (file name, command, options, expected number of [iNES)cccevvvereiesieve e 51
PTALKDT EVENTS ..ttt sttt sh st e e bbbt s e e e e e s e e R a4 b eh e e b e e Rt e ss e e e b e ne e eR e eb e sheehe e e enrenneanennenneas 52
L 1 o S 52
TTOUDIE SNOOLING. ...+ttt ettt b bbb bbb e bt b e e eb e e bt b et e bt b et e bt b e e eb e b e s en e e s 52
DUAL PORTED RAM AUTOMATIC FEATURE EXAMPLE ..ottt sttt sttt s s e nee s 53
GLOSSARY OF TERMS ...ttt sttt st st b e et b e e b e b s e bt bese b et e se et e sbe st ebeebeseebesbeseenenbeneas 57
INDEX ettt sttt b et s bbbt 4 e b £ e R e SR e R R ARt SR e £ e AR e e Re R et e Rt b e bRt R et e nenbenbe e bt 59

Table of Contents

Accessory 9PT

INTRODUCTION

What is PTalkDT?

PTalkDT isauser-friendly interface to Delta Tau' s 32-bit driver PComm32. It is designed to provide
robust and efficient communication to PMAC®, Delta Tau’s Motion Computer. Since PComm32 will
continually evolveto include additional capabilities (i.e. VME PC’s, PCI etc), PTalkDT has been
designed so that your applications code wont be effected. Using PTalkDT ensures that your application
will work for many future releases of Delta Tau's 32-bit driver (and as a result many future capabilities
and versions of PMAC).

Unlike previous versions of communication libraries, PTalkDT isin the form of an ActiveX Control, a
new and upcoming form of library that is taking Windows programming by storm. PTakDT relievesyou
of the often cumbersome task of writing your own communication routines. Experienced programmers
know that communication functions play a critical rolein creating reliable application software. We have
taken all the pain out of writing communications software, and have provided what we fedl is the best
approach to creating aPMAC “MMI” (Man Machine Interface).

What is an ActiveX control?

ActiveX controls are the latest addition to Microsoft’s OLE (Object Linking and Embedding) family,
providing unprecedented compatibility to almost any devel opment geared application software. ActiveX
controls, sometimes referred to as reusable components, give you, the programmer, the easiest way to
incorporate advanced functionality into your applications with little or no programming. For those of you
familiar with OCXs, ActiveX controls are the next generation; they have an added array of functions for
networking ability.

What can | use PTalkDT with?

PTakDT can be used with the 32-bit version of Visua Basic, Visual C++ (4.x and beyond), 32 bit
Delphi or C++ Builder, and just about any development package that supports ActiveX controls. In this
manual, most of the examples and descriptions will pertain to Visual Basic (version 5.0) and Delphi
(Version 2.0).

What can PTalkDT do for me?

PTakDT provides you with avery stable and high-speed communications link to PMAC. Our intentisto
allow you to focus on the functionality of your MMI (Man Machine Interface) by removing the burden of
writing communication software to “talk” to Delta Tau’s PMAC (hence, the name PTalkDT). PTalkDT
gives your application instant communication capability to PMAC over the PC-bus, Dual Ported Ram or
seria port with you writing little or no code. Furthermore, PTalkDT has been designed to quickly trap
bugsin your code by centralizing the error handling (viaan “Event”, discussed later on).

What built in functions does PTalkDT have?

Two classes of functions (or, more technically speaking, methods) are included, “Basic Communication”
and “ Extended” Functions. This manual only covers the Basic Communication methods, among them:

DownloadFile This alows you to download atext file
or multiple text filesto PMAC. A
powerful string substitution
preprocessor isincluded.

Introduction 1

Accessory 9PT

Flush A useful method to clear out PMAC's
output string buffer before sending a
new command.

GetControlRes Sends a single control character to

ponse PMAC and retrieves any pending
string response from PMAC.

GetLineACK Retrieves a string response from
PMAC, stopping after receiving an
ACK character (ASCII value of 6)

GetLineCR Retrieves a response from PMAC,
stopping after receiving a CR character
(ASCII value of 13)

GetResponse This allows you send commands to and
receive string responses from PMAC in
one convenient method.

L oadSettings Retrieves the last saved
communication settings.

SendChar Send a single character to PMAC.

ShowPr operty Shows PTalkDT’ s property page for

Page modifying the communications
settings.

SaveSettings Stores PTalkDT communications
settings to disk.

UploadData This allows you to upload a series of
string responses from PMAC—
commonly used to obtain variables,
motion, and PLC programs from
PMAC.

DPR Read- Numeric Read/Write. Enable use of

Write DPR Automatic Features

All extended methods are prefixed with an “x” (i.e. xDPRRotBuf()) and are detailed in Delta Tau's 32 bit
driver manual (PComm32.DOC see Delta Tau's BBS or Web site WWW.DeltaTau.COM). Extended
functions are “rarely” used.

2 Introduction

Accessory 9PT

What You Will Need To Use PTalkDT

The minimum hardware and software requirements to install and support the use of PTalkDT are:

° IBM or compatible PC/AT (486, Pentium or higher CPU)
with 8 MB of memory, one 3.25" floppy disk drive, and one hard
disk drive with 3 MB of space

° VGA or SVGA display adapter

° Microsoft Windows 95, Windows NT

° Development environment supporting 32-bit OCX controls

such as Microsoft’s Visual Basic (4.x or greater), Visual C++
(4.x or greater), or Delphi (2.x or greater).

How do | get support?

If you encounter problems your first troubleshooting steps should be to:
1) Review this manual and the Troubleshooting Guide in the Appendix of this manual-- doing
this can save you time and money.

2) Get your Serial/Registration number from your diskettes or the back of your manual
Contact our technical support for PTalkDT by faxing, sending E-mail or calling the following
numbers (include serial number):

Fax: (818) 998-7807
Web Page WWW.DeltaTau.COM
E-mail: Support@DeltaTau.COM
VoiceCalls: (818) 998 2095

We hope that PTalkDT’ s ease of use and this manual will provide al the help you need. (HINT: E-mail
are the quickest, include your REGISTRATION NUMBERY!).

Introduction 3

Accessory 9PT

INSTALLING/UNINSTALLING PTALKDT

Before You Run Setup

Please take a few minutes before you install PTalkDT to do the following:
Read the README.TXT file on thefirst installation disk!

If there are corrections or additions to this manual, they will belisted in afile cadled README.TXT.
Thisfile can be displayed directly from the installation diskette using the Windows NOTEPAD uitility.
After the installation, thisfile can be read by double-clicking the PTakDT README icon in the newly
created program group.

Visual Basic users should install Visual Basic BEFORE PTakDT.

Running Setup

When you run the setup program to install PTalkDT on your computer, you will be able to specify where
on your hard driveto install PTalkDT. It is preferred toinstal it in the suggested directory for
consistency.
Windows 95
To run the setup program in Windows 95 click the Sart button from the taskbar and select the Run...
menu option. Insert the first distribution diskette labeled “Disk 1" and type
Azsetup
and press eNTER. Follow the installation instructions on the screen. |f you encounter any problems,
please refer to the Troubleshooting Guide in the Appendix of this manual.
Windows NT
To run the setup program in Windows NT, from the Program Manager select the File menu and select the
Run... menu option. Insert the first distribution diskette labeled “Disk 1" and type
A-setup
and press eNTER. Follow the installation instructions on the screen. If you encounter any problems,
please refer to the Troubleshooting Guide in the Appendix of this manual.

What Was Installed?

The installation will create a new program group called PTakDT. This group containsa README.TXT,
and DIFFERENCES.TXT icons, three Visua Basic project, one Delphi and one Visual C++ demo project
icons. The new program group will look something like this:

4 Installing/Uninstalling PTalkDT

Accessory 9PT

f5 PTalkDT S[=] E3
File Edit Yiew Help

= = %@"

FiE.-“-‘-.DME Differences WEB 5.0 Demo,
| ariable kar

Bt P
WiB 5.0 Demo, VB 50Demo, Delphi 2.0
Euxecutive Pr... Ilzage Demo, Usage

B ®&

YWisual C++ 5.0 PTALE Help Installation

Demo Script
Configure
PMAL Mot
110 object(s) |5.95KE 4

The DIFFERENCES.TXT file shows the changes between one rel ease an the next and will be useful for
those upgrading to a new version of PTalkDT.

The “Installation Script” isatext based script file used to create the installation you just used. This may
come in handy when it comes time for your own.

The “Configure PMAC Motion Applet” icon is used to add/remove or setup PMAC’sin your operating
system. A device number (starting from 0) will be associated with each PMAC you add. Use this same
device number when specifying which PMAC you want your PTalkDT ActiveX control to communicate
to (i.e. assign the DeviceNumber property).

We encourage you to run the Visual Basic and/or Delphi example projects. Please note that these will
only work if you have the corresponding development environment. |f you encounter problems trying to
communicate to your PMAC, runthe MOTION applet that islocated in your PTalk installation directory.
After you have tried the example projects, try and make a simple application of your own by following
the steps described in the section “ Y our First Visual Basic MMI with PTalkDT”. Then you might want to
look at the example programs code that is provided.

Note

In case you are interested, when these example programs were written, less than
5% of the development time was used for PMAC communications! Most of the
effort went into making the various screens for these programs.

Installing/Uninstalling PTalkDT 5

Accessory 9PT

Uninstalling PTalkDT OCX

It is highly suggested that you uninstall PTakDT before upgrading to a newer version of the product.

Windows 95

To uninstall PTalkDT, from Windows 95 click the Start button from the taskbar and select Settings then

Control Pandl.

Within the control panel select the Add/Remove Programsicon. Double click on the PTalkDT entry in
the list box or push the Add/Remove button to uninstall.

Tl

PladwwiFom Moacdod b Hoadan

Slirm

inzablinmial | 'windows Sabap]| Sierug Da |

Ta raisll 5 reea prograer o & Boppp ek oo CONOM

e vk indal
'i I-aln-nl.rrw#«ln o s sty :Mh-
ﬁmd.“rﬂw“ wid]
Thiat Aggest Dbyeers 0| 20 =
Fudll Tl Bl
armets Tomhi o iy 56
ey Do Prolereeal
Fbcrarod Yrmaal Lss
oy Wil S saree E
oo Pl ko wincowr® 58
P. [SF
[——— |
gk | ceew |

All files copied during the installation will be removed (only if other programs are not currently
dependent on them). Furthermore, if files have been added to the installation directory (i.e. program files
you created) then the uninstall wizard will report that not al directories could be deleted. Y ou will have

to manually remove these files.
Windows NT

In NT 3.51 there will be an"Uninstall" Icon in the program group created for PTalkDT during installation.
Double click the "Uninstall” Icon to uninstall PTalkDT. In NT 4.0 use the 95 procedure described above.

Installing/Uninstalling PTalkDT

Accessory 9PT

HOW TO DESIGN WITH PTALKDT

In Design Mode

First, configure your PMAC(s) in your system by running the “M OTION” applet located in your PTalk
installation directory.
For most of the remainder of this manual, all examples will be described assuming you are using
something similar to Visual Basic. If you are using a different development environment, the procedures
described here will be analogous.
First add the PTalkDT control to your development environments tool box. Thisis usually done by going
to the “Tool” menu, and then selecting “Components’.. Now place a PTalkDT within the form that you
are currently designing (Usually the main form of the application).

Note

PTakDT uses Delta Tau’ s time tested 32-bit driver, PComm32.

The next thing most folks will want to do is configure the many properties of PTakDT. This can be
done by viewing the custom property page for newly inserted PTalkDT. The custom property page can
be viewed by double clicking on the “Custom” property (in other development environments you may
double click the PTalkDT icon within the form).
=z - PTakDT1
|PTAkDTE FT4DT =]
Alphalsetc | ¢ gtagorired |

F
PTs&DTI

0 - DEYICED
True=
True
Tr=

Faice =|

How to Design with PTalkDT 7

Accessory 9PT

The custom property page is shown below:
Gererd | Download | Upload | Akt |

WELDOME! Thiz conhiol sliowes: pou 1o eadly inteilace with PMAC
Hlease select a PHAL Davice Mumber by messing thee bullon below

Bkl PR Davece Rumbai | [0

iﬁg‘&"‘_' 10 PMAL 5 aviie el
- g 5 "t F

\“_:_:;a Cuvesnt Communication Method
[0

If you are devel oping without a PMAC be sure to set the SimulateCommunication property to TRUE
(check the box) and skip the next paragraph.

To choose from all functioning PMACsin your system, press the “ Select PMAC Device Number button”.
Remember, the MOTION applet in the operating systems CONTROL PANEL will alow you to
add/remove or configure any PMAC(s) in your computer.

Each PTakDT control you add to your project isintended to talk to asingle PMAC. If your application
is going to communicate with more than one PMAC, you will need to add a separate PTakDT control for
each PMAC. Within asingle application, you are allowed to have a maximum of 8 PTalkDT controls. In
genera, itisavery good ideato use only one PTalkDT control per PMAC in your application's code.
Although the PTalkDT control has many important properties, here are a couple you should be familiar
with to begin with:

Properties Description

Enabled Sets and returns an internal PTalkDT variable which enables or disables
communications to the PMAC. Resetsitself back to FALSE if
communication can’t be established. If the Enabled property resets itself
back to FALSE, seethe LastError String property for info and also see the
CONTROL PANEL’sMOTION applet.

SimulateCommunication | Set to TRUE if developing without aPMAC in the system (DRY RUN)

Run Time Mode

Note
Communications can only be attempted during run time if the
SimulateCommunication property is set to FALSE AND the Enabled property
has been successfully set to TRUE.

Upon executing your application, communications will be initialized when the Enabled property is or has
been set to “True’. Thisisnot automatically done—you must set Enabled yourself (either in design
mode or in your code).

Note

During run time, the PTalkDT control icon is not visible.

8 How to Design with PTalkDT

Accessory 9PT

The PTakDT methods in the table below are typically used for communication. Again, if the Enabled
property is FALSE or SimulateCommunication is“ TRUE”, no communications to PMAC will actually
take place, and these methods will do nothing.

Methods Description

DownL oadFileg() Download afileto PMAC.

Flush() Empty out PMAC’ s input/output buffer.

GetControlResponse() Send PMAC acontrol character and retrieve any pending response
from PMAC.

GetResponse() Send PMAC acommand, and retrieve the subsequent response.

L oadSettings() Restore the last stored communications configuration from disk.

SendChar () Send a single character to PMAC.

ShowPr oper tyPage() Show PTalkDT’ s property page.

SaveSettings() Store PTalkDT’ s communications configuration to disk.

UploadData() Upload a series of string responses to afile.

DPR Read-Writeroutines Numeric Read/Write. Enable use of DPR Automatic Features

Thefollowing ssmple Visua Basic example shows how to establish basic PMAC communications viathe
PC Bus:
Private Sub Form_L oad ()
Dim response As String
Dimreturn_value AsLong
PTakDT1.Enabled = True
‘ test communications by a query of motor status
return_value = PTalkDT1.GetResponse(response, “?’)
if return_value = 0 then * if communications failed...
* Anerror occurred--, either handle here using use the
‘ LastError and LastErrorString properties of PTalkDT or
‘ havethe OnError event handlethis.
endif
End Sub

Debugging

The OnError event isintended to be used for trouble shooting and debugging. If you can’t establish
communications, or if you are timing out, or if aPMAC error was generated, then this event will be
called. Asasuggestion, your code associated with OnError may simply display the error message to
you (while developing), or perhaps act on the error without the user ever knowing a problem occurred
(good for release versions of your application). See the OnError event description for more details.

Distributing Your Final Application

When you create and distribute applications that use the PTalkDT control, you need to install the
appropriate files on the target computer and register the OCX with the operating system (The Setup Kit
included with Visual Basic, or Installshield provide tools to help you write setup programs that install
your applications correctly). Also, the “Installshield” text based script file used to create PTalkDT
installation is located in the installation directory (look for the *.IWZ file extension) for your viewing
pleasure.

For 95 or NT

Intall the MOTION.EXE control panel applet aswell as the following files to the operating systems
“SYSTEM” directory:

MFC40.DLL

How to Design with PTalkDT 9

Accessory 9PT

MSVCRT40.DLL

MSVCRT.DLL

MSVCIRT.DLL

MFC42.DLL

95 Users

Be sureto add the PTal kDT .OCX, PMAC.DLL, and PMAC.VXD filesto the\WINDOWS\SY STEM
directory.

NT Users

Be sure to add the PTalkDT.OCX, and PMAC.DLL tothe\WINDOWS\SY STEM 32 directory. Also,
put the PMAC.SYSfile in the \WINDOWS\SY STEM 32\DRIVERS subdirectory.

Notes

1. If you get amessage similar to the following "Unable to start supporting
device driver." from the operating system you most likely do not have the
PTakDT files correctly located.

2. Registering ActiveX's can aso be done with a utility often shipped with
the operating system. For example "REGSVR32.EXE" in Windows 95
can do this from the command line (i.e., REGSVR32.EXE
PTALKDT.OCX).

Altering, Saving and Retrieving PTalkDT Settings At Run Time

Communication Settings

When you configure the PTalkDT to communicate (i.e. by using the CONTROL PANEL'sMOTION

applet) to PMAC the settings are saved in the operating systems registry under:
HKEY_LOCAL_MACHINE\System\CurrentControl Set\Services\PMAC\DEVICEO

for PMAC device 0 and
HKEY _LOCAL_MACHINE\System\CurrentControl Set\Services PMAC\DEVICE1

for PMAC deviceland soon....

Three communication properties that aren’t stored in the registry but rather in an initialization file are the
Enabled, SimulateCommunications and DeviceNumber properties. You may ensure that the state of
these properties will persist by calling PTalkDT’ s L oadSettings() at the beginning of your application
and SaveSettings() at the termination of your program.

General Settings

In addition to SimulateCommunication and DeviceNumber, the following properties may be
saved/restored in PTalkDT’ sinitialization file (via the SaveSettings()/L oad Settings() methods):

DownloadDo
DownloadPar se
DownloadL og
DownloadM ap
DownloadDeleteTemp
DownloadHide
DownloadShowErrors
DownloadM axErrors
UploadHide
UploadShowPr ogr ess
UploadNoComments
UploadAppend

10 How to Design with PTalkDT

Accessory 9PT

How to Design with PTalkDT

11

Accessory 9PT

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT

Overview

This section will guide you through building asimple Visual Basic 5.0 MMI (man-machine interface)
application using PTalkDT. The resulting application displays the value of PMAC' s constantly changing
servo counter register. The code generated here can be similarly constructed with other devel opment

environments.

Instructions

1. Start Visual Basic 5.0 and choose “ Standard EXE” for project type.
2. Choose Project from the top menu bar and select Components. Select the“PTalkDT Control”

module and then select the OK button.

Components

Contrals | Designersl Inzertable Dbiectsl

]|

[Microsoft Winsack Control 5.0

[Pinnacle-EPS Graph Conkraol

] PoinkCastListBozx: 1.0 Type Library
[Jportz 1.0 Type Library
FdEFTalkDT Activer Control madule
[Realtudio Activer Conkral Library
[]sequencer library

[]sheridan 30 Conkrals

[skruckuredaraphics library
[TLEMSMusCH

[]WCI First Impression Library
YT Formnula One Library
YT Visualspeller Library

—PTalkDT Actives Control module

[]5heridan TabMatebook QC¥ Contral

|

hd [gelected Items Only

Erowse. ., |

Location: CiyWIN9SLSYSTEMIPTALKDT, OCx
0k I Cancel | Apply
The PTalkDT icon [EraL | should appear at the bottom of your tool palette:

12

Your First Visual Basic MMI with PTalkDT

Accessory 9PT

3. Click onthe PTakDT icon and place it anywhere on ablank Visual Basic form.
4. With the PTakDT icon on the form selected, press F4 to view the Visual Basic PTalkDT property

window.

ay, roee®] - Hevoea® Yousl Basee |dengr] - el o))

B ple G Yo Projst Fgmed [stg Ban Jaoke jdHre fnces fip

g]
o-ooodn s

Trem
Thws
Fan
Fis
I

Tras
inm
Tram

o
il
Ll

wps ol

Beln-T oF W LSE s - e MERWR
il | [Pralbily Flskdl
(| dphanat | Caingared |
Al mtomi
P o |
oW e lcen e
ﬂ E - - oo il
L
T : = E r\-.-.-w.::.
o Bk
o - ——
- Kt i
E o [nabiac "\-"‘\-'
L
Lo
H E ::'l'.la‘hn;
:E 1 =
- [r—
1

Your First Visual Basic MMI with PTalkDT

13

Accessory 9PT

5. Now we will begin to form the user interface. To allow the user to select aPMAC in their system,
and modify PTalkDT’ s properties, place a button on the form and set the caption property to * Setup
PTalkDT".

- |} L

a] L]

6. Double click on the Setup PTalkDT button to associate code with the pressing of the button. Enter
the following code

Private Sub Commandl_Click(Q)
PTalkDT1.ShowPropertyPage
PTalkDT1.SaveSettings
End Sub
This code will call PTakDT’s ShowPropertyPage() and SaveSetings() methods when the Configure
button is pressed giving the user the ability to configure the appropriate communication settings at run
time and making them persistent. SaveSettings() combined with the use of L oadSettings() ensures that
the end users won’t have to reconfigure PTalkDT settings every time the user runs the program.
Setting the Enabled property to TRUE will reinitialize communication if required.
7. Now put the L oadSettings() method in the Form_L oad() method of the form by double clicking on
any “free” spot within the form. The routine should look like so when done:
Private Sub Form_Load()
PTalkDT1.LoadSettings
PTalkDT1.Enabled = True
End Sub
Setting the Enabled property to TRUE will guarantee that PTalkDT will at
least attempt to establish communication with the PMAC DeviceNumber
selected.
8. Next letsadd real time display of PMAC’ s servo clock. Add atext control and atimer control to the
form.

9. Pressrato view the timer’s property window.

14 Your First Visual Basic MMI with PTalkDT

Accessory 9PT

10. Set thetimer’s property I nterval to 10.

11.

12.

13.

Double click on the timer and add the following code (shown below in bold):

Private Sub Timerl Timer(Q)
Static Response As String
Static return_value as Long

return_value =PTalkDT1.GetResponse(Response, “RX0’")
Textl.Text = Response
End Sub

Press r5 to run your application. If all iswell the servo clock is very quickly being updated in your
newly created PTalkDT application. Try pressing the “ Setup PTalkDT” button to setup. |f you do
have a PMAC be sure to uncheck the “ SimulateCommunication” check box within the property page
window. Notice that the PTakDT icon is not visible during run time (neither is the timer control’s
icon).

For further examples, see the installation group box in your desktop’s “ Start\Programs’ menu. Also
check out Delta Tau' s BBS/Website. Study the code and feel free to use it in your own applications.

Your First Visual Basic MMI with PTalkDT 15

Accessory 9PT

YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT

Overview

This section will guide you through building a simple Microsoft Visual C++ MMI (man-machine
interface) application using PTalkDT. The resulting application displays the value of PMAC' s constantly
changing servo counter register. The code generated here can be similarly constructed with other
development environments.

Instructions

1. Start Visual C++.

2. Choose FILE from the top menu bar and select New. Highlight Project Workspace from the list box
and then select the OK button.

Mew

Mew: K

Cancel

Project "Workspace
Resource Script
Rezource Template Help
Binary File
Bitrmap File
lzan File
Curzor File

gl

3. Inthe next dialog box, select MFC AppWizard (exe) from the list box, type in a project name (such as
ExPTalk), and click on Create:

Mz Fimjisl Wi ket e

_
_ b |

ﬁ WFC Appiaiizai

|'E OLE Controfv'zand

i E‘I-ul:l'mrm
2 | Aeobcshon = [Fwmaz
B | DynamecLik Libsaiy
ot s 1
R RS =l [E MEDE Proects \ExP Tk B

4. Onthe next dialog box, select the Dialog Based radio button and click on Next >:

16 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

MFC AppWizard - Step 1 H|

= Application What twpe of application would you like to create?

" Single document
¢ Multiple documents

What language would you like pour resources in'?

| English [United States] (4PPWZENU.DLL = |

< Back I Memxt = I Finizh Cancel Help |

5. Onthelast dialog box, place a check mark for 3D controls, OLE automation, and OLE controls and
click on Finish:

MFC AppWizard - Step 2 of 4 |

“What features would pou like to include?

= Application

[T Context-zensitive Help
W 3D controls
What OLE support would you like to include’?

W OLE automation
¥ OLE controls

“Wiould you like to include 054 suppart?

Editing Control: IR-u:ord

F Check Box @ Radio Button
O Radio Button

[T windows Sockets

Fleaze enter a title far pour dialog:

IE:-:F'T alk,

< Back I Mext = I Finizh | Cancel | Help |

At this point, a set of C++ files have been generated in a directory with the same name as the project
name you selected. Go ahead and compile this newly created project and run it to verify it works
correctly. When you execute this program, a blank dialog box with an OK and CANCEL button should
appear:

Your First Microsoft Visual C++ MMI with PTalkDT 17

Accessory 9PT

&= ExPTalk

Cancel |

TODO: Flace dialog controls here,

Now, let’s go back and add the PTalkDT control to this dialog box.
From within the Visual C++ workspace environment, select to view the existing resources (which were
created by the AppWizard in the previous steps) and click on the Dialog resource. Y our screen should

look like this:
= Microzoft Developer Studio - ExPTalk - [ExPTalk.rc - IDD_EXPTALK_DIALOG [Dialog)]

File Edt Yiew Inzet Buld Tool: Layout Window Help

‘i%|ci-”| B&| 72| 22| 22| ios oic_ernoPrRTo =] & || Galga| K| [

| Wi = L] e ﬁlﬁl“%l’é:ﬁ:l@li‘ﬁl*&di<l _|
a E“FTaIk — .. [_I
El a Dialog B
e E[ID0_ExPTALK DIALOG]| | : |T Aa
-2 leon H C o abl|[M]] @
. ; 5 Cancel - —
% ‘-Sf:IrZi%r-wrahle E, TODO: Place dialog contrals here. 4' | Al O
- |
H| S| E
=S
... — . |5 |

<
EEER

18 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

6. With your mouse pointing to the dialog box (on the right, called “ExPTalk”), click the right mouse
button to expose the following pop-up menu and select Insert OLE Control...:

et e e ottt e e 1
gl ExPTalk | r

(B0t Cancel |

:, TODO: Pl oy

Haste

Ihzert OLE Cantral...

Sige o Eontert
Alian et Edges
Sigm e Edges

Check kMnemanics

Clazs\wizard...
Properties

7. A new dialog box will appear containing alist of available controls. Scroll down and choose the
control called PTalkDT Control and then click OK:

Insert OLE Control

OLE contral: N

PicClip Contral d
FICS Date Edit Control Cancel
Finnacle-BPS Graph Control
FLabel Contral Help
Pteszage Control —
ProgrezzBar Cantral _
Protovfiew Diagramming Contral [1D0]
PStatug Control

IHeaI.ﬁ.udin[tm] Activer Contral [32-bit] Eﬂ

Path:
EAMSDEVAPROJECTSSPTALKIEONDEBUGHPT ALK, DT

ail

Your First Microsoft Visual C++ MMI with PTalkDT

19

Accessory 9PT

The PTakDT control should now be visible in your dialog box:

8.

I S UL O
Al ExPT alk Il-‘
o | "
ﬁ TODO: Flace dialog controls here. é
F— e

Our next step isto use the MFC ClassWizard within Visual C++ to generate code that will create a
control classfor this newly added PTalkDT control. To do this, select the View menu and then
ClassWizard. The MFC ClassWizard dialog box will appear. Select the Member Variables tab.

Y our screen should look like this:

Meseage Maps | Mserber Vasables || OLE futomabory | OLE Everds | Clastinke |

Prigct Clad: na A Clage, = |

B =] [cEeFTekDng =

o Vaniabile |
E: AERFTabk*EFTakDlgh. E: AEePTakMEFTakDigopp
Cionieol | Ds: Trp= Mamber |
(oC PTAECTALY |
DICANCE] . |

DOk |

Diescrpton

o | caws | Hee |

20

Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

Highlight IDC_PTALKCTRL1 and press Add Variable. When you do this, the following dialog box will
appear:

Microsoft Developer Studio E

The OLE control "PTalk Contral has not been inzerted into the project. Developer Studio
will do thiz now and generate a C++ wrapper clasz for it

Cancel |

9. Select OK. On the next dialog box, select OK again.

10. The next dialog box will ask you to type in a name for the variable that will be used to access all of
PTakDT’s properties and methods in your C++ code. Use the name shown on the next page and
click on OK:

Add Member Yariable K|

tember vanable name; K |
{rm_PTak

Cancel |
LCateqarny:
IE:::ntru:uI j ﬂl
Yarable type:

|CPTalk =l

Dezcription;

map to CPT alk member

Your First Microsoft Visual C++ MMI with PTalkDT

21

Accessory 9PT

Click on OK again. At this point, the MFC ClassWizard has generated a new C++ file and header file
which contains the code to allow your to access all the functionality of PTalkDT! For each property, a
specific function has been created, making it easy to read or set the various PTalkDT properties. To see
these new functions created, select to view the classesin your project. When you do this, your screen
should look like this:

s, Hiorosofl Developsr Siudio - EaPT sk - [plalk. opp]

D Pl Ed yiw juen Bukt Tok widow Hep

|| @@ e oof|] fosveerr oeraTe =] & S|

53 8| 5| [T ok w2 Fiencn e T =T = e T =
JEH:FT-‘ laz B rEtarn rerule;
= 5 Lo N
+ W2 O ePT alApp
+ B2 O FT skl woid CPTalk::SechE
o W DT i
% fhoufioed] SaePropatty 0k
& CieaigLPCT S TR lpaow oot amse, DOWORD det ke B
LA TSTR 1H TETR lp=2wi
. .'.'”‘HI L'T et lpezllamatlame. LPCTETR lpszinec EOOL CRTalk::CazEr
% [FRDoubl(]) HOOL resuln;
* DPADa orcBiSe]) CarPeoparty (HI2H
& PR ordFeili) ratarn rerulk;
& PR ord]|]
& PRFped] .
& PR el e poid CPTalk::SazEn
: fige:ﬂ BanProperry (ISH
0 Wi 5
% DPRSaliwond]
& PSS Pios|| shoge CPTall: : Ger]
& DPRseiod]]]
L Fhahi] ghors repalc;
% GetbusDass] CavProparty (dad
Ll
W GaiBusTpps(] y FARMEn EaEmiE
% GaiChid] -
'I A -""r]"'"“""'"" _.|—|| weid CPTalk:: Satln
g Classiew | B PFresounceidiens | [2) Filsviem | 9 inioview | T A

22 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

11. We will now add atimer function to our dialog box which will use PTalkDT to continuously query
PMAC for information. We will use the MFC ClassWizard again to do this. Select the View menu

and then ClassWizard. The MFC ClassWizard dialog box will appear. Select the Message Maps tab

and locate and highlight the item called WM_TIMER in the Messages list box. Click on Add

Function and then OK.

Message Maps | Membes Varisbles | OLE tudomation | OLE Events | Clssinka |

Bropect Clas prae Add Class.. = |
[£FT a8 =] cEsFTakDyg = —
B AEWPTabEsPTalDigh, E:\ \ERPTab\EPTale Dk cop _ddfunciin |
Dbacd 10xe I 1 |
W _SE T LLIHS0R a
OC_PIALECTALT b SHIWAWHD D =l Ec Code |
DCAMCEL
OOk

WH_VEEYTOITEM

Wh VECROLL El
Mennbs |l
W Dol wakuchangs
W Drinaliskog OH_'wh_INITDLL DG
W DrPend O _WH_PAIMT
W Ol wenyDiegl oo OH_wi_QUEATORSGICON

Diescription |nchcales brresoed wkerval lor 2 ner hes dapsed

ok | cace | Hee |

A new function for the timer has now been created. We will add code to this function later on.

Your First Microsoft Visual C++ MMI with PTalkDT

23

Accessory 9PT

12. We must now change the name of the static text that was automatically placed there by the
AppWizard when the project wasfirst created. We will be using this text to display the response

from PMAC in our dialog box. Bring up the dialog box in the resource editor, double -click on the

static text and modify its variable name as shown on the next page. The name used hereis
IDC_TEXT.

= Migrosolit Developes Studio - ExPTalk - [ExPTalk.ic

IDD_EXPTALE_DIALDG [alogl)
[(E Fis B Vew kose Buld Toos Lawwt Wisdow Hap

| ||| ¥ [@|e| =e] k] [es_me_erA_veRRTo =] G|) |
@lﬂl,?’-l JE+FT ok wind? Rieacn 3 M |'h| .EIluE]l Etl hﬁlilﬂ

= EaPTalk esoumoes N |
= ol Dy

E0|IDD_EXFTALE,_DisllG
= @ =]
* () Shing Tabis

* - |) Weasoe

- n -
:TDMF‘I.n:-u-:iai:uwhle-n -

+ Vighls F Geoun I™ Helo ID
[Diesbisd ™ Tabdop

L] *]| Capticn [TODD: e diskog cort
HEER

Now bring up the ClassWizard again to create a usable variable so that we may access this static text in
our code. Select the View menu and then ClassWizard. The MFC ClassWizard dialog box will appear.
Select the Member Variables tab and locate and highlight theitem called IDC_TEXT in the Control 1D

list box. Click on Add Variable.., typein m_Text for the variable name and then OK twice to back out of
al the dialog boxes.

24 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

Mesage Maps Membel Vanables | OLE Auromabon | OLE Everts | Chass infa |

Fiomct Clazz porre Pk Dharts 'rI
[oria 5] ot L
B AEFT ol T ablllgh B BT sRMEFT skDlg cop

Comdnoll [Ois [vpe I it I

1N PTALECTALT CFT sl m P Tk I
ICAMCEL
DK (Add Membes Yatioble B |
Pbaratesr e e
s =]
Clarisd I

Calmpag

['vobsm = _ b |
[hesciiption ki e

|:3-!r|.| j

Diescuphion:] Qﬂﬂ

sinpbe L5l hanahs

13. We now need to add code to setup the properties of PTakDT to correspond to how you will be
communicating with PMAC. InthefileExPTalkDlg.CPP, locate the function
CExPTalkDIlg: :OnInitDialog and add the following code shown in bold:

BOOL CExPTalkDIlg::OnInitDialog()

{
CDialog: :OnlnitDialog();

Setlcon(m_hlcon, TRUE); // Set big i1con
Setlcon(m_hlcon, FALSE); // Set small icon

m_PTalkDT.SetEnabled(TRUE);
SetTimer(1l, 50, NULL);
return TRUE

14. Now locate the code for the CEXPTalkDlg: :OnTimer function. Thisfunction will be called on a
repeated basis about every 50 milliseconds. In this function we will place the code to query PMAC
for the contents of its servo clock register and copy this number to the static text variablem_Text.
Add the code shown in bold:

void CExPTalkDIg::OnTimer(UINT nlIDEvent)

{
// TODO: Add your message handler code here
TCHAR buf[255];
BSTR response = SysAllocString(L"");
m_PTalkDT.GetResponse(&response, ""RX0™);
USES_CONVERSION;

Your First Microsoft Visual C++ MMI with PTalkDT 25

Accessory 9PT

strcpy(buf,OLE2T(response));
m_Text = buf;

UpdateData (FALSE);
SysFreeString(response);

CDialog: :OnTimer(nIDEvent);

}

Also, add this #include statement after the
#include <afxpriv.h>

It should look like this after:
#include" stdafx.h"
#include" ExPtalk.h"
#include " ExPtalkDlg.h"
#include <afxpriv.h>

15) We must use the MFC ClassWizard one last time to created one last function. Select the View menu
and then ClassWizard. The MFC ClassWizard dialog box will appear. Select the Message Maps tab
and locate and highlight the item called DestroyWindow in the Messages list box. Click on Add
Function and then OK.

WFC Class'Wizasd E

Mestage Mapis | Mermber Vasables | OLE usormgion | OLE Events | Class info |

Broect: Llazs pamer AddCless. ~ |
[ExPT b #] [cEFTaADig =

E- AEWPT sbAEwPTalkDigh, - \EWPT sbAEPT sk Dig cpp g
Obiect (D Messages Distete Furction |
EET T [—

OC_PTALECTALT Craghe :I Edi Code |
OC_TEXT DeferdonPioe

DCARCEL

OaE Dl ol & s b
L oo ol
GeforoEalni j

Member furciore:

W DolatsE wchangs

W Orinliskyg OH_WH_IHITDIALOG
W DrPant OH_Wh_PAMT

W OrdusnOisdioon 0N wh OUEFYDRAGICON =
Diascripton Destooa e Wincows window attached 1o the Cind

[ok | ool | Hew |

L ocate this newly added function CExPTalkDlg: :DestroyWindow and add the code shown in bold:

BOOL CExPTalkDlg: :DestroyWindow()
{

KillTimer (1);

return CDialog: :DestroyWindow();

26 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PT

}
12. You are now ready to run your program. Press F5 to run the program. If your PMAC has been
configured appropriately in the CONTROL PANELsMOTION applet, you should see a number in

the label which is continually counting upwards. Notice that the PTalkDT icon is not visible during
run time.

Your First Microsoft Visual C++ MMI with PTalkDT 27

Accessory 9PT

PTALKDT REFERENCE

Documentation Conventions

This manual uses the following notational conventions:
Source code and data structures are displayed in a monospaced

typeface.
Note
Warnings or important information are bounded on top and bottom with single
lines.
Overview

As mentioned before, PTalkDT isa 32-bit ActiveX control designed to handle all communications
between your application and Delta Tau’'s PMAC. It is meant to be used asaPMAC application
development tool. You may use PTakDT in any 32 bit OLE container application such as Visual Basic,
Delphi , etc. PTakDT’s built-in features make most communications tasks as easy as calling asimple
method (function).

Note:

PTakDT will force PMAC' s |-variable 3=2 at all times to ensure high speed and
efficient communications.

PTalkDT Reference 29

Accessory 9PT

PTalkDT Properties

Enabled

Data Type

Boolean or Long Integer

Default Value

Zero (for “False”)

Description

Enables or disables PTalkDT from communicating with PMAC.

Remarks

Used to specify or determine if PTalkDT is allowed to communicate with PMAC. You must set this
property to “True” and SimulateCommunication to “False” to allow PTalkDT to communicate to
PMAC.

Note

At end of the ShowPr opertyPage() method the Enabled property is set to True
internally. If communication was successful, the Enabled property retains the True
value.

LastError

Data Type

Long Integer

Default Value

0

Description

Used in the debugging of an application using PTalkDT.

Remarks

Used to read the state of PTalkDT’ s most recent communications error. This property isusually used in
the debugging of an application. You may want to set this property to O just before calling aPTalkDT
method. Then recheck LastError for a non-zero error code. The error may be due to a PMAC reported
error (i.e. invalid command) or bad parameters passed to a PTalkDT method.

See Also

LastErrorString, OnError

LastErrorString

Data Type

String

Default Value

NULL

Description

Used in the debugging of an application using PTakDT.

Remarks

Returnsthe last error string generated. The error may be due to a PMAC reported error (i.e. invalid
command) or bad parameters passed to a PTakDT method. See also the OnError () event..

See Also

30 PTalkDT Reference

Accessory 9PT

LastError, OnError

DeviceNumber

Data Type
Long Integer
Default Value
0
Description
Used to uniquely identify which PMAC device the PTalkDT will use to communicate to.
Remarks
The CONTROL PANEL’'s “MOTION” applet may be used to add/remove or setup PMAC’sin your
operating system. A device number (starting from 0) will be associated with each PMAC you add. Use
this same device number when specifying which PMAC you want your PTakDT ActiveX control to
communicate to.
See Also
Enabled, SimulateCommunication

PTalkDT Reference

31

Accessory 9PT

DownloadDeleteTemp

Data Type

Boolean or Long Integer

Default Value

>0 True

Description

For use with the DownloadFile() method. To eliminate any intermediary files that are created after
downloading, set this property to True.

Remarks

Intermediary fileswill be created if the DownloadPar se method is set to true. The files created will have
the same name as the original argument to DownloadFile(), but the extensions will be “PMA”, “LOG”,
“56K”.

See Also

DownloadDo, DownloadHide, DownloadL og, DownloadPar se, DownloadM ap,
DownloadShowErrors, DownloadM axErrors

DownloadDo

Data Type

Boolean or Long Integer

Default Value

>0 True

Description

Used when the DownloadFile() method is called. To only to Macro parsing and compiling of PLCC'’ s set
this property to False and the end resulting file (* .56K) will not get downloaded to PMAC.
Remarks

Rarely used

See Also

DownloadDeleteT emp, DownloadHide, DownloadL og, DownloadPar se, DownloadM ap,
DownloadShowErrors, DownloadM axErrors

32 PTalkDT Reference

Accessory 9PT

DownloadHide

Data Type

Boolean or Long Integer

Default Value

True

Description

Used when the DownloadFile() method is called. To hide the DownloadFile() dialog set this valueto
True.

Remarks

Can be set in the property page.

See Also

DownloadDeleteT emp,DownloadDo, DownloadL og, DownloadPar se, DownloadM ap,
DownloadShowErrors, DownloadM axErrors

DownloadLog

Data Type
Boolean or Long Integer

Default Value

False

Description

Used when the DownloadFile() method is called. To have the event log of the DowloadFile() method
recorded, set this property to True. Thefile created will have the same name as the argument to
DownloadFile() method but have the “LOG” file extension (i.e. “MYFILE.LOG”).

Remarks

Can be set in the property page.

See Also

DownloadDeleteT emp, DownloadDo, DownloadHide, DownloadPar se, DownloadM ap,
DownloadShowErrors, DownloadM axErrors

PTalkDT Reference

33

Accessory 9PT

DownloadMap

Data Type
Boolean or Long Integer
Default Value
False
Description
Used when the DownloadFile() method is called. To create a cross referencing of MACROS used set
this property to True. Thefile created will have the same name as the argument to DownloadFile() but
with the “MAP’ extension.
Remarks
To be of any use, the DownloadPar se property must be set to True.
See Also
DownloadDeleteT emp,DownloadDo, DownloadHide, DownloadL og, DownloadPar se,,
DownloadShowErrors, DownloadM axErrors

DownloadMaxErrors

Data Type
Long Integer
Default Value
10
Description
Used when the DownloadFile() method is called. This property limits the number of errors before the
DownloadFile() method aborts.
Remarks
Can be set in the property page.
See Also
DownloadDeleteT emp, DownloadDo, DownloadHide, DownloadL og, DownloadPar se,
DownloadMap, DownloadShowErrors

34 PTalkDT Reference

Accessory 9PT

DownloadParse

Data Type

Boolean or Long Integer

Default Value

True

Description

Used when the DownloadFile() method is called. If the file you are downloading has PLCC's or macro
definitions, then you' [l want to set this property to True. Otherwise, if thefileis strictly PMAC native
code with no PLCC' sfeel free to set DownloadPar se to False.

Remarks

Can be set in the property page.

See Also

DownloadDeleteT emp, DownloadDo, DownloadHide, DownloadL og, DownloadM ap,
DownloadShowErrors, DownloadM axErrors

DownloadShowErrors

Data Type

Boolean or Long Integer

Default Value

False

Description

Used when the DownloadFile() method is called. If errors occurred in the downloading of afile and this
property is set to True, the log file that was created will be shown in NotePad.EXE.
Remarks

If the DownloadL og property is False no Errors will be shown.

See Also

DownloadDeleteT emp, DownloadDo, DownloadHide, DownloadL og, DownloadPar se,
DownloadM ap, DownloadM axErrors

PTalkDT Reference 35

Accessory 9PT

UploadAppend

Data Type

Boolean or Long Integer

Default Value

False

Description

Used in the UploadData() method. When uploading data to afile, you have the option of overwriting the
existing file (UploadAppend = False) or appending to the existing one (UploadAppend = True)
Remarks

Can be set in the Property Page

See Also

UploadHide, UploadNoComments, UploadShowPr ogr ess

UploadHide

Data Type

Boolean or Long Integer

Default Value

True

Description

Used in the UploadData() method. To have the UploadData() methods dialog box hide itself, set this
property to True.

Remarks

Can be set in the Property Page

See Also

UploadAppend, UploadNoComments, UploadShowPr ogr ess

36 PTalkDT Reference

Accessory 9PT

UploadNoComments

Data Type

Boolean or Long Integer

Default Value

False

Description

Used in the UploadData() method. The specified file that will be created (or appended to—see the other
options), will contain no comments, i.e. only the actual uploaded responses will be written into the file.
Remarks

Can be set in the Property Page

See Also

UploadAppend, UploadHide, UploadShowPr ogr ess

UploadShowProgress

Data Type
Boolean or Long Integer
Default Value
True
Description
During the upload process (if the dialog box is not hidden), a progress bar will be shown, indicating the
upload status if this property is set to True. To use thisoption correctly, you must specify a positive value
for num_lines argument to the UploadData() method. Also, num lines should be as close as possible to
the expected number of responses to be received.
Remarks
Can be set in the Property Page
See Also
UploadAppend, UploadHide, UploadNoComments

PTalkDT Reference 37

Accessory 9PT

PTalkDT Methods

DPRAvailable()

Description

Used to check to see that Dual Ported Ram is available for use with PTalkDT.

Return Value

A Boolean value indicating whether or not PTalkDT was able to access PMAC' s Dual Ported Ram.

Visual Basic & Delphi

[form] .controlname.ConfigureDriver

value = Mainform._.PTalkl.ConfigureDriver

C++

BOOL controlname->ConfigureDriver()

value = PTalkDT->ConfigureDriver()

Remarks

This method is useful for those applications that will use PMAC’s Dual Ported Ram. Y ou may disable
that portion of your application that uses DPR if this function returns False.

DownloadFile (file name)

Description

Downloads atext file (or a series of files) to PMAC and checks for errors.
Return Value

Non-zero if successful, zero when afailure occurred.

Visual Basic & Delphi

[form].ctriIname.DownloadFile (Filename$, options As Long)

Mainform.PTalkDT1.Downloadfile (“c:\files\main.pmc™)

C++

BOOL controlname->DownloadFile (char *Ffilename,long options)
PTalkDT1->Downloadfile (“c:\\files\\main.pmc’)

Remarks

This method is useful for downloading commands and programsto PMAC. A full preprocessor is built in
and iswill beinvoked if the DownloadPar se property has been set to TRUE. The only parameter
filename is a string containing the full path of any valid ASCI| text file that contains preprocessor or
PMAC compatible code. Of course the following properties should be set up before this method is called:

38 PTalkDT Reference

Accessory 9PT

Property

What it does

DownloadDo

Used when the DownloadFile() method is
called. Toonly to Macro parsing and
compiling of PLCC'’ s set this property to False
and the end resulting file (*.56K) will not get
downloaded to PMAC.

DownloadDeleteTemp

Intermediary files will be created if the
DownloadPar se method is set to true. The
files created will have the same name as the
origina argument to DownloadFile(), but the
extensions will be“PMA”, “LOG”, “56K".

DownloadHide

Used when the DownloadFile() method is
called. To hide the DownloadFile() dialog set
thisvalueto True.

DownloadLog

Used when the DownloadFile() method is
caled. To havetheevent log of the
DowloadFile() method recorded, set this
property to True. Thefile created will have
the same name as the argument to
DownloadFile() method but have the “LOG”
file extension (i.e. “MYFILE.LOG").

DownloadMap

Used when the DownloadFile() method is
called. To create a cross referencing of
MACROS used set this property to True. The
file created will have the same name as the
argument to DownloadFile() but with the
“MAP’ extension.

DownloadMaxErrors

Used when the DownloadFile() method is
called. Thisproperty limitsthe number of
errors before the DownloadFile() method
aborts.

DownloadParse

Used when the DownloadFile() method is
caled. If thefile you are downloading has
PLCC' s or macro definitions, then you' [l want
to set this property to True. Otherwise, if the
fileis strictly PMAC native code with no
PLCC'sfedl freeto set DownloadPar se to
False.

DownloadShowErrors

Used when the DownloadFile() method is
called. If errorsoccurred in the downloading
of afile and this property is set to True, the
log file that was created will be shown in
NotePad.EXE.

About the Preprocessor

The preprocessor provides the ability to use #include file statements and macro string substitution in your
code just like in the C and C++ languages. Delta Tau’s PMAC Executive Program supports this same use
of #include file and macro string substitution.

Extensive use of macro string substitution can provide very readable code with little need for comments.
The following table describes all the preprocessor directives.

| | Example

| Description

PTalkDT Reference

39

Accessory 9PT

#define name { command or
variable}

#define COUNTER P1

Declares the name of amacro string
substitution. For every occurrence
of name, the preprocessor will
substitute in { command or
variable}.

#define DEBUG_MODE

Declares avariable name that can be
used for compiler directives.

#include* filename”

#include “macros.txt”
#include
“C:\\PE\\macros.txt”

Preprocess and download the
specified file from the current
directory or given path. Thisis
useful for including multiple files as
part of the download.

#ifdef DEBUG_MODE
#else

..; (this code
ignored)#endif

Tests to see if name has been
previously declared. If so, the
subsequent lines of code are
included in the download.

#iftndef DEBUG_MODE

#else
..; (this code ignored)
#endif

Teststo seeif name has NOT been
previously declared. If name has
NOT been declared, the subsequent
lines of code (until the next #else or
#endif) are included in the
download.

#ifdef DEBUG_MODE
#else

#endif

In the example, if DEBUG_MODE
has not been declared, the lines of
code following the #else are
included in the download. This
directive provides ameansto
alternate lines of code when the
#ifdef or #ifndef conditions are
false.

#ifdef DEBUG_MODE
#else

#endif

For every #ifdef or #ifndef, you
must include a matching #endif.

DPRDouble (LSB_word, MSB_word)

Description

Converts aPMAC 48 bit floating point data value (as found in PMAC’s Dua Port RAM) to a 64 bit

floating point value compatible with Visual Basic, C++, Delphi, etc.

Return Value

A 64-bit floating point value (of type double) converted from the passed in parameters.

Visual Basic & Delphi

[form] .controlname.DPRDouble (lo_val as Long,hi_val As Long)

value = Mainform.PTalkl.DPRDouble (lo_val,hi_val)

C++

double controlname->DPRDouble (long lo_val,long hi_val)
value = PTalkDT->DPRDouble (lo_val, hi_val)

Remarks

40

PTalkDT Reference

Accessory 9PT

Floating point values within PMAC’ sinternal memory are stored as 48-bit numbers. Floating point
valuesin your PC’s memory are typically stored as 32-bit values (float or single) and 64-bit values
(double). These formats are not directly compatible. When accessing various floating point registersin
PMAC' s Dual Port RAM, they can be accessed by reading two 32-bit integers (or “words’) and
combining them to form a PC-compatible 64-bit number. For this function, the first word, LSB_word,
specified in the parameters is treated as the least significant word. And the second word, MSB_word, is
the most significant word. This function will prove very useful when reading the many floating point
registers in the Real Time Buffer section of PMAC’s Dual Port RAM.

DPRFixed (LSB_word, MSB_word)

Description

Converts a PMAC 48 bit integer data value (as found in PMAC’s Dua Port RAM) to a 64 bit floating
point value compatible with Visual Basic, C++, Delphi, etc.

Return Value

A 64-bit floating point value (of type double) converted from the passed in parameters.
[form].controlname.DPRFixed (lo_val as Long,hi_val As Long)

value = Mainform.PTalkl.DPRFixed (lo_val,hi_val)

C++

double controlname->DPRFixed (long lo_val,long hi_val)

value = PTalkDT->DPRFixed (lo_val,hi_val)

Remarks

Integer values within PMAC' sinternal memory are stored as 48-bit numbers. Floating point valuesin
your PC's memory are typically stored as 32-bit values (float or single) and 64-bit values (double). These
formats are not directly compatible. When accessing various integer based registersin PMAC’ s Dual
Port RAM, they can be accessed by reading two 32-bit integers (or “words”) and combining them to form
a PC-compatible 64-bit number. For this function, the first word, LSB_word, specified in the parameters
istreated as the least significant word. And the second word, MSB_word, is the most significant word.
This function will prove very useful when reading the many integer based registersin the Real Time
Buffer section of PMAC's Dua Port RAM such as motor position.

DPRDWordBit Set/Reset and BitSet Methods

DPRDWordSetBit (offset, bit_position)
DPRDWordResetBit (offset, bit_position)
DPRDWordBitSet (offset, bit_position)

Description

These functions can be used to set (assign a bit value of 1), reset (assign a bit value of 0), or query,
respectively, the state of an individual bit within a 32 bit integer located in the address space of PMAC's
Dual Ported Ram.

Return Value

DPRDWordSetBit and DPRDWor dResetBit return “True” if successful, otherwise “False”.
DPRDWor dBitSet returns the value of the bit being queried, either a1 or 0.

Visual Basic & Delphi

[form].ctriname.DPRDWordSetBit (offset as long, bit As long)
[form].ctriname.DPRDWordResetBit (offset As long, bit As long)
[form].ctriname.DPRDWordBitSet (offset As long, bit As long)

Call Mainform.PTalkl.DPRWordSetBit (&H0800&,2)

C++

BOOL controlname-> DPRDWordSetBit (long offset, long bit)

BOOL controlname-> DPRDWordResetBit (long offset, long bit)

BOOL controlname-> DPRDWordBitSet (long offset, long bit)

PTalkDT Reference 41

Accessory 9PT

PTalkDT->DPRFixed (0x800,2)

Remarks

The offset parameter is the number of PMAC addresses from the base address of the DPR within the
PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR addressis
$DFFF). For example to specify address $D200 in the DPR use avalue of $200 (that is hex 200, or 512
decimal)

The bit parameter specifies the bit within the double word. Valid ranges for bit are from 0 to 31.

DPRGetDWord and DPRSetDWord Methods

DPRGetDWord (base address offset)

DPRSetDWord (base address offset, value)

Description

These functions can be used to read and write 32 bit integers from and to PMAC's Dual Ported RAM.
Return Value

DPRGetDWord returns the 32 bit integer read from PMAC's Dual Ported Ram. DPRSetDWord returns
“True” if successful, “False” if afailure occurred.

Visual Basic & Delphi

[form] .ctriname.DPRDGetDWord (offset As long) As long

[form] .ctriname.DPRDSetDWord (offset As long,value As long)

value = Mainform.PTalkl.DPRGetWord (&HO0800&)

C++
long controlname-> DPRDGetDWord (long offset)
BOOL controlname-> DPRDSetDWord (long offset, long value)
value = PTalkDT->DPRGetWord (0x800)
Remarks
The base_addr_offset parameter is the number of PMAC addresses from the base address of the DPR
within the PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR
address is $DFFF). For example to specify address $D200 in the DPR use avalue of $200 (that is hex
200, or 512 decimal)
Example
Var
aBool : Bool;
along : Longlint;
offset : Longint ;
aString: string[11];
begin
/I Assign offset of 512 from DPR Base Address (PMAC Address $D200)
offset = 512;
along := Forml.PTalkCtrll._DPRGetDWord(offset);
Str(aShort, aString); // Converttoastring
Edit8.Text := aString; //Writeto an edit box
I Writeto first 4 bytes of DPR
aBool := Forml.PTalkCtrll1l.DPRSetDWord(0O,aShort);
end;

DPRGetFloat and DPRSetFloat Methods

DPRGetFloat (offset)
DPRSetFloat (offset, value)
Desdcription

42 PTalkDT Reference

Accessory 9PT

These functions can be used to read and write 32 floating point values from and to PMAC's Dual Ported
Ram.
Return Value
DPRGetFloat returns the 32 bit floating point value read from PMAC's Dual Ported RAM.
DPRSetFloat returns “ True” if successful, “False” if afailure occurred.
Visual Basic & Delphi
[form].ctriname.DPRDGetFloat (offset As long) As long
[form].ctriname.DPRDSetFloat (offset As long,value As Single)
value = Mainform.PTalkl.DPRGetFloat (&H0800&)
C++
float controlname-> DPRDGetFLoat (long offset)
BOOL controlname-> DPRDSetFloat (long offset, float value)
value = PTalkDT->DPRGetFloat (0x800);
Remarks
The offset parameter is the number of PMAC addresses from the base address of the DPR within the
PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR addressis
$DFFF). For example to specify address $D200 in the DPR use avalue of $200 (that is hex 200, or 512
decimal
PMAC'Q special m-variable format "F' may be used to easily assign 32 bit
floating point values to Dual Ported RAM.
Example
Var

aBool : Bool;

aFloat : Single;

offset : Longint ;

begin
offset := 100; // Assign offset from PMAC's base address
aFloat = 1.2345; /I Assign float

aBool := Forml.PTalkCtrll.DPRSetFloat(offset,aFloat);
aFloat := Forml.PTalkCtrl1.DPRGetFloat(offset);
end;

DPRGetWord and DPRSetWord Methods

DPRGetWord(bank, offset)

DPRSetWord(bank, offset, value)

Description

These functions can be used to read and write 16 bit integers from and to PMAC's Dual Ported RAM.
Return Value

DPRGetWord returns the 16 bit integer read from PMAC's Dual Ported Ram. DPRSetWord returns
“True” if successful, “False” if afailure occurred.

Visual Basic & Delphi

[form].ctriname.DPRGetWord (bank As Long,offset As long) As long
[form].ctriname.DPRSetWord (bank As Long,offset As Long,value As integer)
Visual Basic

value = Mainform._PTalkl.DPRGetWord ("X",&H0800&)

Delphi

// 88 = "X* in ASCII

value = Mainform.PTalkl.DPRGetWord (88,&H0800&)
C++

long controlname-> DPRDGetWord (long bank,long offset)
BOOL controlname-> DPRDSetWord (long bank,long offset, int value)

PTalkDT Reference 43

Accessory 9PT

value = PTalkDT->DPRGetWord ("X",0x800);

Remarks

The bank parameter specifiesPMAC's X or Y address space. Use avalue of 24 for X or 25for Y (or
more intuitively an ASCII character "x", "X", or "y", "Y™").

The offset parameter is the number of PMAC addresses from the base address of the DPR within the
PMAC address space. PMAC's Dual Ported Ram base address is always $D000 (the last DPR addressis
$DFFF). For example to specify address $D200 in the DPR use avalue of $200 (that is hex 200, or 512
decimal).

PMAC'Q m-variable formats "X" and “Y” may be used to easily assign 16 bit
integers to Dual Ported RAM (i.e. ml1l->X:$D200,0,16,s).

Example
Var
aBool : Bool;
ashort : short;
offset : Longint ;
astring: string[100];
begin

/I Read from PMAC DPR Address X$D200
offset := 512;
ashort := Forml.PTalkCtrl1l.DPRGetWord("X",offset);
Str(aShort, aString); /I Convert to astring
Edit8.Text := aString; // Writeto an edit box

/I Write to first two bytes of DPR
aBool :=Forml.PTalkCtrl1l._.DPRSetWord("X",offset,aShort);
end;

44 PTalkDT Reference

Accessory 9PT

Flush ()

Description

Empties PMAC’ s response buffer and character 1/0 port.

Return Value

“True” for success else “False”

Visual Basic & Delphi

[form] .controlname.Flush

Call Mainform_.PTalkl.Flush

C++

BOOL controlname->Flush ();

PTalkDT->Flush();

Remarks

Empties the contents of PMAC’ s output buffer queue and strips out any remaining charactersin PMAC's
ASCII queue. The charactersthat get “Flushed” can not be read. Note that this method has no
parameters.

GetControlResponse (response, control char)

Description
Sends a control character to PMAC and waits for PMAC’ s response.
Return Value
Non-zero if successfull, zero when afailure occurred.
Visual Basic & Delphi
[form].ctriIname.GetControlResponse (Response As String,

controlChar As Integer)
Mainform_.PTalkl.GetControlResponse (Response, 16)
C++
BOOL controlname->GetControlResponse (char *response,

char control);

result = PTalkDT->GetControlResponse (response,’P”);
Remarks
Sends a control character to PMAC and waits up to Timeout iterations for PMAC’ s response.

Note

Control-T will not get sent by this function. Thisisto avoid putting PMACina
full-duplex mode. Doing so will keep PTakDT from re-establishing
communications the next time the application is run.

GetLineAck (response)

Description

Gets a string from PMAC up to the terminating <ACK> character.
Return Value

Number of characters retrieved.

Visual Basic & Delphi

[form] .controlname.GetLineAck (Response As String)
Mainform_PTalkl.GetLineAck (Response)

C++

long controlname->GetLineAck (char *response);
result = PTalkDT->GetLineAck (response);

Remarks

PTalkDT Reference 45

Description

Accessory 9PT

Communications routine for receiving aresponse from PMAC. Certain commands can cause PMAC's
response to contain multiple <CR> characters. Thiswill receive the entire response up to the terminating
<ACK> character or timeout condition. This response string can be as large as 16000 characters.

For most applications the GetResponse method should be used instead of GetLineAck. Exceptions
would be when you want to receive something from PMAC without sending a command as in aterminal
program.

GetLineCR (response)

Description
Gets astring from PMAC up to the terminating <CR> character.
Return Value
Number of charactersretrieved
Visual Basic & Delphi
[form] .controlname.GetLineCr (Response As String)
Mainform_.PTalkl.GetLineAck (Response)
C++
long controlname->GetLineAck (char *response);
result = PTalkDT->GetLineAck (response);
Remarks
Communications routine for receiving aresponse from PMAC. Thisroutine will read a pending response
up to the next <CR> or <ACK> character.
Although PMAC will respond to commands with a terminating <ACK> character, sometimes only the
part of PMAC’ s response up to the next <CR> is desired at the moment. In this situation the GetLineCR
method can be used.

For most applications the GetResponse method should be used instead of GetLineCR. Exceptions
would be when you want to receive something from PMAC without sending a command as in a terminal
program.

Response string will never be greater than 255 characters.

GetResponse (response, command)

Description

Sends a string to PMAC and waits for PMAC' s response.

Return Value

Non-zero if successfull, zero when afailure occurred.

Visual Basic & Delphi

[form] .controlname.GetResponse (Response As String,
command As String)

Mainform_PTalkl.GetResponse (Response,”#1P’")

C++

BOOL controlname->GetResponse (char *response,char *command);

result = PTalkDT->GetResponse (response,”#1P”");

Remarks

General purpose communications routine for sending a command, and receiving a consequential response
from PMAC. Response will never be greater than 16,000 characters. Command should not be greater
than 250 charactersif using Bus or Serial Port, and should not exceed 150 charactersif using the Dual
Ported Ram.

IsLineWaiting ()

Used to determine if PMAC iswaiting to say something to the host.

46 PTalkDT Reference

Return Value

Accessory 9PT

non-zero : PMAC has an ASCII response pending for the host
zero : PMAC does not have an ASCII response pending for host

Visual Basic & Delphi [form].controlname.lsLineWaiting

C++

Remarks

result = Mainform.PTalkl.IsLineWaiting

BOOL controlname->IsLineWaiting ;
result = PTalkDT->IsLineWaiting();

This method is excellent for creating applications which will periodically check to see if PMAC has an
ASCII response for the Host computer. Instead of calling GetResponse to seeif aresponseis pending
use IsLineWaiting instead. |sLineWaiting will not remove any contents of PMAC’ s output buffer, and
will not timeout. Note that this method does not have parameters.

LoadSettings ()

Description

Loadsthe last stored PTalkDT settings.

Return Value

Non-zero if successfull, zero when afailure occurred.

Visual Basic & Delphi

[form].controlname. LoadSettings
result = Mainform.PTalkl. LoadSettings
C++

BOOL controlname-> LoadSettings();
result = PTalkDT-> LoadSettings();
Remarks

Loads the last stored parameters via the SaveSettings method. If the Enabled property is set to TRUE
before this method is called, communication will be re-attempted after the settings have been loaded.
Settings include the following properties:

DeviceNumber

SimulateCommunication

DownloadDo

DownloadPar se

DownloadL og

DownloadM ap

DownloadDeleteTemp

DownloadHide

DownloadShowErrors

DownloadM axErrors

UploadHide

UploadShowProgr ess

UploadNoComments

UploadAppend

LockPMAC ()

Description

L ocks the PMAC resource from other threads and processes.
Return Value

None

PTalkDT Reference 47

Accessory 9PT

Visual Basic & Delphi
[form] .controlname. LockPMAC
Mainform.PTalkl.LockPMAC
C++
void controlname-> LockPMACQ);
PTalkDT-> LockPMACQ);
Remarks
To be used in conjuction with ReleasePM AC(). These two methods lock and rel ease the PMAC resource
respectively. This should only be used very sparingly to ensure that no cross talk occurs when using the
SendChar (), SendLineg() and any GetL ing() methods. All other communication methods are thread safe.
For Example:
LockPmac() // Hold off any other processes or threads
SendLine(**?”) // Send the line
GetLineACK(response) // Get the response
ReleasePMAC() //Let other threads have access to PMAC

ReleasePMAC()

Description

Releases the PMAC resource for other threads and processes
Return Value

None

Visual Basic & Delphi

[form].controlname.ReleasePMAC
Mainform.PTalkl.ReleasePMAC
C++

void controlname-> ReleasePMAC(Q);
PTalkDT->ReleasePMACQ);
Remarks

To be used in conjuction with LockPMAC(). These two methods lock and release the PMAC resource.
This should only be used very sparingly to ensure that no cross talk occurs when using the SendChar (),
SendLine() and any GetLine() methods. All other communication methods are thread safe.
For Example:

LockPmac() // Hold off any other processes or threads

SendLine(**?”) // Send the line

GetLineACK(response) // Get the response

ReleasePMAC() //Let other threads have access to PMAC

48 PTalkDT Reference

Accessory 9PT

SaveSettings ()

Description

Saves the current communications settings.

Return Value

Non-zero if successfull, zero when afailure occurred.

Visual Basic & Delphi

[form] .controlname.SaveSettings
Mainform_.PTalkl. SaveSettings
C++

BOOL controlname->SaveSettings();
result = PTalkDT->SaveSettings();
Remarks

Stores the following properties to an initialization file whose name is the same as PTalkDT’ s name
property (i.e. PTalkDTL.ini)
DeviceNumber

SimulateCommunication

DownloadDo

DownloadPar se

DownloadL og

DownloadM ap

DownloadDeleteTemp

DownloadHide

DownloadShowErrors

DownloadM axErrors

UploadHide

UploadShowProgr ess
UploadNoComments

UploadAppend

SendChar (character)

Description

Sends asingle ASCII character, aChar, to PMAC.

Return Value

Non-zero if successfull, zero when afailure occurred.

Visual Basic & Delphi

[form] .controlname.SendChar (character As Long)

Mainform_.PTalkl. SendChar(Asc(“P’*))

C++

BOOL controlname-> SendChar(long character);

result = PTalkDT->SendChar(“P?);

Remarks

Sends asingle ASCII character to PMAC without waiting for PMAC to respond. Thiswill comein
handy when you need to send characters one at atime either in aterminal or when sending control
characters.

SendLine(Command)

Description
Sends a string to PMAC.
Return Value

PTalkDT Reference

49

Accessory 9PT

Non-zero if successfull, zero when afailure occurred.

Visual Basic & Delphi

[form] .controlname.SendLine (command As String)
Mainform.PTalkl.GetResponse (’ListProgl’)

C++

BOOL controlname->SendLine (char *command);
result = PTalkDT->GetResponse (’ListProgl™);

Remarks

Thisfunction is here only for backward compatibility. Use GetResponse() instead. If you find that you
have to use this function follow these instructions very carefully.
SendLine() sends PMAC acommand string. PMAC WILL HAVE A RESPONSE TO THE SENT
COMMAND. If PMAC hastwo or more pending responses for the host computer, the PMAC will
suspend the running of al PLC’s and motion programs, as well as any incoming ASCII commands.
Therefore, aways call GetLineACK() after using SendLine() to purge any pending response from PMAC.
One last very important thing. Use the LockPMAC() method before the SendLine() and the
ReleasePMAC() method after the GetResponse() call to ensure that your program won’t cause any
“CROSS TALK” amongst other threads or processes that are using Delta Tau’' s 32 bit driver, PComm32.

For Example:

LockPmac() // Hold off any other processes or threads

SendLine(**?””) // Send the line

GetLineACK(response) // Get the response

ReleasePMAC() //Let other threads have access to PMAC

50 PTalkDT Reference

Accessory 9PT

ShowPropertyPage ()

Description

Displays adialog box for modifying PTalkDT’ s properties.
Return Value

Non-zero if successfull, zero when afailure occurred.
Visual Basic & Delphi

[form] .controlname.ShowPropertyPage

result = Mainform.PTalkl.ShowPropertyPage
C++

BOOL controlname->ShowPropertyPage();
result = PTalkDT->ShowPropertyPage();

Remarks

Displays a user-friendly dialog for modifying PTalkDT’ s at run time. Thisisthe same dialog shown
when the custom property is double clicked from within Visual Basic’s property window.

UploadData (file name, command, options, expected number of lines)

Description

Uploads a series of responses from a PMAC command to atext file.

Return Value

Non-zero if successful, zero when afailure occurred.

Visual Basic & Delphi

[form].ctriname.UploadData (Filename As String, command As String,

number_of _lines As Long)

Mainform.PTalkDT1.UploadData (“c:\Ffiles\main.pmc”,”i0..1023,1023)
Mainform.PTalkDT1.UploadData (“c:\Ffiles\plcl.pmc”,”list plc 17,0)

C++

BOOL controlname->UploadData (char *filename,char *command, long number_of lines)
result = PTalkl->UploadData (“c:\\files\\main.pmc”,”i0..1023",1023)

Remarks

This method is useful for receiving a series of responses from PMAC and writing them to afile. With
this method you can upload items such as motion and PLC programs, |-, P-, Q- and M- variables, and
gathered data to adatafile. By default, helpful comments are also written into the file, including atime
and date stamp. Thefirst parameter filename is the full path of any valid ASCII text file that will contain
the upload data. The second parameter command is the actual command string that will be sent to PMAC
to generate the upload data. The third parameter number_of _lines specifies the number of expected lines
so that the optional progress bar can show the correct progress status during the upload. For example, if
the command was 10. . 1023 (which uploads the values of I-variables 10 through 11023), you expect to
receive 1024 responses and you would set number_of lines equal to 1024. Thefollowing PTakDT
properties summarizes the available options:

PTalkDT Reference 51

Accessory 9PT

Name of Option Description
UploadNoComments Only the actual uploaded responses will be written into thefile.
UploadHide The usual dialog box that appears showing the progress of the upload

isnot shown. Asaresult, you will not be able to cancel the upload
process before it compl etes.

UploadAppend If the specified file already exists, the newly uploaded datawill be
appended to the end of the specified file. If the specified file does not
exist, it will be created.

UploadShowProgr ess During the upload process (if the dialog box is not hidden), a progress
bar will be shown, indicating the upload status. To use this option
correctly, you must specify a positive value for number_of_lines.
Also, this value should be as close as possible to the expected number
of responses to be received.

PTalkDT Events

OnError

Description
Signalswhen a PTalkDT initialization or communications error has occured.
Visual Basic
Private Sub PTalkl OnError(ByVal ErrorNumber As Long, ErrorString As String)
FormDebug.Textl._Text = Str(ErrorNumber)
FormDebug.Text2_.Text = ErrorString
ErrorCount = ErrorCount + 1
FormDebug.Text3 = Val(ErrorCount)
End Sub
Remarks
The OnError event was meant to be used for trouble shooting. If you can't establish communications, if
you are timing out, if aPMAC error was generated etc. then this event will notify you. Your codein this
routine may simply display the message, ErrorString, to the user (good for developing), or perhaps act on
the Error Code without the end user ever knowing a problem occurred (good for releases). The ErrorCode
and ErrorString parameters passed in this event represent the LastError and LastError String properties
just modified state.
See Also
PMAC Software Reference Manual \ On line commands\ 16 for an explanation of PMAC Errors.

Trouble Shooting

To seeif the problem you are encountering is communications related, try disabling the communications
viathe SimulateCommunication property.

Symptom Cause

PTakDT can't seemto load or fails unpredictably. | Visual Basic users should be sure to install Visual
Basic first then PTakDT second.

Y ou can't establish serial communications but Some PMAC firmware versions (before 1.16A) set
everything works O.K. once you run the PMAC the hardware handshaking lines incorrectly on

52 PTalkDT Reference

Accessory 9PT

Executive Program.

power up or reset. To get around this problem
short pins4 & 5 (CTS & RTS, clear to send and
reguest to send) on the PC's seria port connector.

Y ou can't establish serial communications period.

Are you using a known working serial cable? You
may just want to see exactly what your PMAC's
baudrate is and use that.

If your PMAC has been put in full-duplex mode
(by sending it a control-t) communications with
PTakDT will not occur.

Putting a jumper on the board to put it in afactory
default state (E51 on PMACL, E3 on PMAC2)
should eliminate this problem.

Check the port setup from the operating systems
control panel. Also, try the supplied
“HyperTerminal” application.

Serial communicationsislosing characters.

Set up your COM port from the Control Panel of
the operating system. Make sure that you are NOT
using a FIFO, and that HARDWARE FLOW
CONTROL is being used.

In Microsoft Visual C++ after inserting a PTalkDT
control, you can't see any of the member variables
displayed in the class wizard.

The operating system'’s language may not be set to
English (US).

Communications routines return “True”, but don’t
really work.

SimulateCommunications may be set to “True”

Unable to register PTALKDT.OCX.

PTALKDT.OCX cannot accesssome DLL’sor

DLL’s of the correct version.

a Makesure PMAC.DLL isinthe SYSTEM
directory

b. Look at the supplied installation script, and
check it’s accuracy

Dual Ported Ram Automatic Feature Example

The example below illustrates how to make use of PMAC's automatic Dual Ported Ram features. Inthis
case were using the "Fixed Real Time Data Buffer" which has motor specific information. All 8 motor
actual positions are being displayed using atimer procedure. The example was done in Delphi and is

included in the distribution.

procedure TForm1.Timer2Timer(Sender: TObject);

var
aBool Bool ;
ashort short;
astring: string[100];

LongLow: Longlnt;

LongHigh: Longlint;

position: double;
begin

// Tell PMAC we are busy reading, Y:$D009,
Forml_PTalkDTCtr11_DPRSetWord(89,9,1);

aBool :=

89 = "Y" 1n ASCII

PTalkDT Reference

53

Accessory 9PT

// Read in servo timer,

ashort :

X:$D009, 88 = "X" in ASCII
Forml.PTalkDTCtrI1.DPRGetWord(88,9);

aShort := aShort and $7FFF;// Bit 15 is a handshake bit, mask off
Str(aShort, aString);

Editl3.Text

asString;

// Read iIn Motor Actual Positions, 2 long words that need to be
// converted to a float via a special method

LongLow := Forml.PTalkDTCtrll1l.DPRGetDWord(20);
LongHigh := Forml1.PTalkDTCtrll1.DPRGetDWord(21);
position := Forml.PTalkDTCtrll1l.DPRFixed(LongLow,LongHigh);
position := position/(32*96); // Ix08 *32 scale factor
eM1.Text := FloatToStr(position);
LongLow := Forml.PTalkDTCtrl1.DPRGetDWord(35);
LongHigh := Forml.PTalkDTCtrl1.DPRGetDWord(36);
position := Forml.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
position := position/(32*96); // Ix08 *32 scale factor
eM2_.Text := FloatToStr(position);
LongLow := Forml_PTalkDTCtrl1_DPRGetDWord(50);
LongHigh := Forml.PTalkDTCtrl1l.DPRGetDWord(51);
position = Forml.PTalkDTCtrll.DPRFixed(LongLow,LongHigh);
position := position/(32*96); // 1x08 *32 scale factor
eM3.Text := FloatToStr(position);
LongLow := Forml.PTalkDTCtrl1.DPRGetDWord(65);
LongHigh := Forml1.PTalkDTCtrl1.DPRGetDWord(66);
position := Forml.PTalkDTCtrl1l.DPRFixed(LongLow,LongHigh);
position := position/(32*96); // Ix08 *32 scale factor
eM4_.Text := FloatToStr(position);
LongLow := Forml_PTalkDTCtrl1_DPRGetDWord(80);
LongHigh := Forml1_PTalkDTCtrl1_DPRGetDWord(81);
position := Forml.PTalkDTCtrll1l._DPRFixed(LongLow,LongHigh);
position := position/(32*96); // 1x08 *32 scale factor
eM5.Text := FloatToStr(position);
LongLow := Forml.PTalkDTCtrll1l.DPRGetDWord(95);
LongHigh := Forml1.PTalkDTCtrl1.DPRGetDWord(96);
position := Forml.PTalkDTCtrll1l.DPRFixed(LongLow,LongHigh);
position := position/(32*96); // Ix08 *32 scale factor
eM6.Text := FloatToStr(position);
LongLow := Forml.PTalkDTCtrl1_.DPRGetDWord(110);
LongHigh = Forml.PTalkDTCtrl1l.DPRGetDWord(111);
position := Forml.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
position := position/(32*96); // Ix08 *32 scale factor
eM7_.Text := FloatToStr(position);
LongLow := Forml.PTalkDTCtrll1l.DPRGetDWord(125);
LongHigh := Forml1.PTalkDTCtrll1.DPRGetDWord(126);
position := Forml.PTalkDTCtrll1l.DPRFixed(LongLow,LongHigh);
position := position/(32*96); // Ix08 *32 scale factor
eM8.Text := FloatToStr(position);
// Tell PMAC we are not busy anymore
aBool := Forml.PTalkDTCtrll.DPRSetWord(89,9,0);

end;

54 PTalkDT Reference

Accessory 9PT

PTalkDT Reference

55

Accessory 9PT

GLOSSARY OF TERMS

directive

An instruction that tells the downloader how to process this or the upcoming lines of afile.

preprocess

The act of parsing afile and executing al the downloader directives in preparation for downloading the file
to PMAC.

event
A function that is automatically called when a certain condition(s) occur.

property

An attribute (or variable) of an OCX control that configures, enables, or disables a certain feature of the
control.

DPRAM

This stands for dual port RAM. This hardware option of PMAC alows you to share memory between
PMAC and the host computer. DPRAM is useful for high speed communications and data exchange
between PMAC and the host computer

upload

Thisisthe process of transferring information, usually program files and data, from the PMAC to the host
computer.

download

Thisisthe process of sending information, usually program files and data, from the host computer to
PMAC.

methods
All featured functionsin an OCX are reffered to as methods. Methods give the OCX its capabilities.

PMAC

The motion computer from Delta Tau Data Systems. PMAC stands for Programmable Multi-Axis
Controller.

MMI

This stands for Man Machine Interface. An MMI isthe software that is used by a machine user to operate a
machine. It isthe software on the host computer that the operator uses to control the machine.

OCX control

Thisacollection of library functions designed to make difficult programming tasks easy. OCX controls are
the latest addition to Microsoft's OLE 2.0. They are sometimes referred to as reusable components. OCX
controls are improved and enhanced VBXs.

Glossary of Terms 57

Accessory 9PT

PTalkDT
PTakDT isacommunications OCX control designed to communicate to Delta Tau’s PMAC.

58

Glossary of Terms

Accessory 9PT

INDEX

I ndex

59

Accessory 9PT

Download Directives
#define name { command or variable}, 40
#include "filename", 40

Events
OnError, 54

Methods
DownloadFile, 2, 10, 38
DPRDouble, 40
DPRDWord, 41
DPRFixed, 41
DPRFloat, 43
DPRGetDWord, 42
DPRWord, 44
Flush, 2, 46
GetControlResponsg, 2, 10, 46
GetLineAck, 2, 47
GetLineCR, 2, 47
GetResponse, 2, 48
IsLineWaiting, 48
LoadSettings, 2, 49
SaveSettings, 2, 51
SendChar, 2, 51
ShowPropertyPage, 2, 10, 53
UploadData, 2, 53

Properties
Enabled, 30
LastError, 30
LastErrorString, 31

60 I ndex

	INTRODUCTION
	What is PTalkDT?
	What is an ActiveX control?
	What can I use PTalkDT with?
	What can PTalkDT do for me?
	What built in functions does PTalkDT have?
	What You Will Need To Use PTalkDT
	How do I get support?

	INSTALLING/UNINSTALLING PTALKDT
	Before You Run Setup
	Running Setup
	What Was Installed?
	Uninstalling PTalkDT OCX

	HOW TO DESIGN WITH PTALKDT
	In Design Mode
	Run Time Mode
	Distributing Your Final Application

	Altering, Saving and Retrieving PTalkDT Settings At Run Time
	Communication Settings
	General Settings

	YOUR FIRST VISUAL BASIC MMI WITH PTALKDT
	Overview
	Instructions

	YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT
	Overview
	Instructions

	PTALKDT REFERENCE
	Documentation Conventions
	Overview
	PTalkDT Properties
	Enabled
	LastError
	LastErrorString
	DeviceNumber
	DownloadDeleteTemp
	DownloadDo
	DownloadHide
	DownloadLog
	DownloadMap
	DownloadMaxErrors
	DownloadParse
	DownloadShowErrors
	UploadAppend
	UploadHide
	UploadNoComments
	UploadShowProgress

	PTalkDT Methods
	DPRAvailable()
	DownloadFile (file name)
	DPRDouble (LSB_word, MSB_word)
	DPRFixed (LSB_word, MSB_word)
	DPRDWordBit Set/Reset and BitSet Methods
	DPRGetDWord and DPRSetDWord Methods
	DPRGetFloat and DPRSetFloat Methods
	DPRGetWord and DPRSetWord Methods
	Flush ()
	GetControlResponse (response, control char)
	GetLineAck (response)
	GetLineCR (response)
	GetResponse (response, command)
	IsLineWaiting ()
	LoadSettings ()
	
	
	
	
	C++
	Remarks

	LockPMAC ()
	ReleasePMAC()
	
	
	
	
	Remarks

	SaveSettings ()
	SendChar (character)
	SendLine(Command)
	
	
	
	
	Remarks

	ShowPropertyPage ()
	UploadData (file name, command, options, expected number of lines)

	PTalkDT Events
	OnError
	Trouble Shooting
	
	
	
	
	
	Symptom
	Cause

	Dual Ported Ram Automatic Feature Example

	GLOSSARY OF TERMS
	
	
	
	directive
	preprocess
	event
	property
	DPRAM
	upload
	download
	methods
	PMAC
	MMI
	OCX control
	PTalkDT

	INDEX

