$CM312 \\ Communications~utility Module^{\rm TM}$

User's Manual

BDM-610020017 Rev. B

CM312 Communications utilityModuleTM User's Manual

RTD Embedded Technologies, INC.

103 Innovation Blvd. State College, PA 16803-0906

Phone: +1-814-234-8087 FAX: +1-814-234-5218

E-mail

sales@rtd.com techsupport@rtd.com

web site
http://www.rtd.com

Revision History

08/07/2000 Initial release

12/01/2000 Added RS-422/485 enable bit in common register 4

6/5/2001 Changed RTD's address

12/4/2001 Added drawing for RS-422/485 configuration

Rev. A New Manual Naming Method

Rev. B 02/26/2009 corrected cable kit name and corrected company name

Published by:

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College, PA 16803-0906

Copyright 1999, 2002, 2003 by RTD Embedded Technologies, Inc.
All rights reserved
Printed in U.S.A.

The RTD Logo is a registered trademark of RTD Embedded Technologies. cpuModule and utilityModule are trademarks of RTD Embedded Technologies. PhoenixPICO and PheonixPICO BIOS are trademarks of Phoenix Technologies Ltd. PS/2, PC/XT, PC/AT and IBM are trademarks of International Business Machines Inc. MS-DOS, Windows, Windows 95, Windows 98 and Windows NT are trademarks of Microsoft Corp. PC/104 is a

their respective owners.

Table of Contents

CHAPTER 1 INTRODUCTION	2
CM312 COMMUNICATIONS UTILITYMODULE	
Features	
Connectors and Switches	
Recommended Cables	3
General Specifications	3
Jumpers and Switches	4
Locations	4
Locations Default Settings Descriptions HERNET EEPROM CONFIGURATION Default Settings	5
Default Settings	9
CHAPTER 2 INSTALLING THE UTILITYMODULE	11
RECOMMENDED PROCEDURE	
FINDING PIN 1 OF CONNECTORS	
Locations	
PC/104 Bus Connectors, CN1 and CN2	
FIRST COM PORT, CN3	
RS422 and RS485 Mode Pinout	
Notes on using RS422 or RS485 Modes	
SECOND COM PORT, CN4	
THIRD COM PORT, CN5	
FOURTH COM PORT, CN6	
Base Address of Common Registers	
10Base-T connector, CN8	
10BASE-T CONNECTOR, CN0	
10Base-2 connector, CN14	
POWER PROTECTION CIRCUITRY	
Module Power-Supply Protection	
CHAPTER 3 USING THE UTILITYMODULE SERAIL PORTS	
EXAR DOCUMENTATION	
1.5 MBPS SUPPORT	
Interrupt Sharing	24
CHAPTER 4 USING THE UTILITYMODULE ETHERNET POR	RTS26
DIAGNOSTIC LEDS	26
COL LED	26
LNK LED	26
BOOT ROM SOCKET	26
POWER CONSUMPTION	27
CHAPTER 5 SOFTWARE INSTALLATION	28
SOFTWARE INSTALLATION	28
THE CM312SET PROGRAM	
Using CM312SFT	28

NE1000 Mode	28
SOFTWARE DRIVERS	29
SERVER EXAMPLES	30
Novell Netware 2.2	30
To generate the 2.15 dedicated server from an existing Network Disk:	30
To generate the 2.2 server from an existing Network Disk:	31
Novell Netware 3.x/4.x	31
CLIENT EXAMPLES	33
ODI Drivers (IPX for NetWare)	33
ODI Drivers (IPX for MS Windows)	33
NDIS Drivers	
Packet Drivers	35
REMOTE BOOT EXAMPLES	
RPL from a WindowsNT server 3.5	36
Driver Disk	39
UTILITY DISK	39
CHAPTER 6 REFERENCE INFORMATION	40
ETHERNET REFERENCES	40
TYPES OF ETHERNET	40
TYPES OF ETHERNET CABLE	41
10BASE-T WIRING CONVENTION	
ETHERNET FRAMES	43
IEEE 802 MAC NUMBER	43
CHAPTER 7 RETURN POLICY AND WARRANTY	44
RETURN POLICY	44
LIMITED WARRANTY	

Table of Tables

TABLE 1 DEFAULT JUMPER SETTINGS	
TABLE 2 SWITCH AND JUMPER TABLES	6
TABLE 3 BASE ADDRESS TABLE FOR COM PORTS	8
TABLE 4 CONNECTOR TABLE	
TABLE 5 PC/104 XT BUS CONNECTOR	13
TABLE 6 PC/104 AT BUS CONNECTOR	14
TABLE 7 CONNECTOR CN3 IN RS-232 MODE	15
TABLE 8 CONNECTOR CN3 PIN LOCATION IN RS-232 MODE	
TABLE 9 CONNECTOR CN3 IN RS422/485 MODE	16
TABLE 10 CONNECTOR CN3 PIN LOCATION IN RS422/485 MODE	17
Table of Figures	
Figure 1 Switch & Jumper Locations	4
FIGURE 2 CONNECTOR LOCATIONS	12
FIGURE 3 RS-422/485 MODE CONFIGURATION	
FIGURE 4 CN8 RJ-45 JACK CONNECTOR	
FIGURE 5 RNC CONNECTOR CN14	22

Chapter 1 INTRODUCTION

This manual gives information on the CM312 Communications utilityModule. This module supports four versatile serial ports with jumper configurable IRQ lines and I/O addresses and one 10Base-T / 10Base-2 ethernet interface for your PC/104 applications.

CM312 Communications utilityModule

The CM312 Communications utilityModule was designed to provide four versatile serial ports and an ethernet interface to support the RTD Embedded Technologies, Inc. cpuModules and other standard PC/104 processor modules.

Features

The following are major features of the CM312 utilityModule.

Serial ports

- Compatibility with the Industry Standard 16C550
- Up to 1.5 Mbps baud transmit/receive operation (24Mhz)
- 16 byte transmit FIFO/16 byte receive FIFO with error flags
- Independent transmit and receive control
- Standard modem interface
- Jumper selectable to interrupt line, base address, RS232/RS422-485 mode per port
- Jumper selectable enable/disable per port
- Includes 42 different selectable I/O base addresses
- Extended temperature range: -40 to +85C
- Low power-consumption
- Typical from single +5V power supply

Ethernet

NE2000 compatible Ethernet controller

- LG Semicon 82C911 chipset
- internal 16k RAM

Multiple Ethernet interfaces

- 10Base-T UTP (unshielded twisted pair)
- 10Base-2 BNC

Software Configurable

- Jumperless configuration for I/O address, interrupt, mode
- Configuration stored in EEPROM

Boot ROM socket

Allows remote booting of cpuModule from file server

Software Included

• Self-explanatory diagnostic program included

Connectors and Switches

Connectors provided are:

- CN1: PC/104 Bus (XT)
- CN2: PC/104 Bus (AT)
- CN3: First COM port
- CN4: Second COM port
- CN5: Third COM port
- CN6: Fourth COM port
- CN8: 10Base-T port (RJ45)
- CN14: 10Base-2 port (BNC)

Switches provided are:

• SW1: COM ports address selection

Jumpers provided are:

- JP1: First COM port IRQ
- JP2: Second COM port IRQ
- JP3: Third COM port IRQ
- JP4: Fourth COM port IRQ
- JP5: Serial port clock source select
- JP7:
- JP8: First COM port mode and termination
- JP9: Second COM port mode and termination
- JP10: Third COM port mode and termination
- JP11: Fourth COM port mode and termination

Recommended Cables

XK-CM30

General Specifications

- Dimensions: 3.8 x 3.9 x 0.6" (97 x 100 x 16 mm)
- Weight (mass): 3.0 ounces (85 grams)
- Operating conditions:
- Temperature: 0 +70 degrees C
- Relative humidity: 0 95%, non-condensing
- Storage temperature: -55 to +125 degrees C

Configuring the utilityModule

The following sections contain information on configuring the utilityModule.

Please read this entire section before attempting to use the utilityModule!

Jumpers and Switches

Locations

The figure below shows switch and jumper locations.

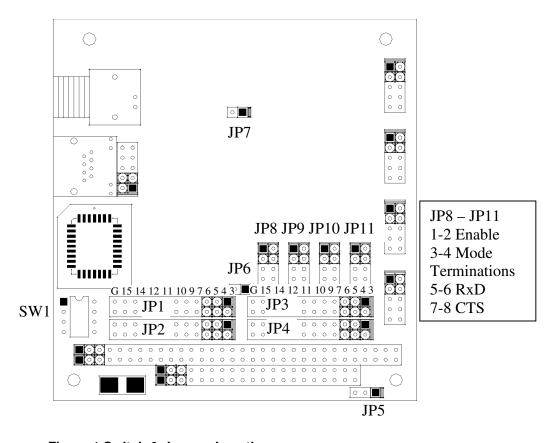


Figure 1 Switch & Jumper Locations

Default Settings

The utilityModule is delivered from the factory configured according to the following table.

Table 1 Default Jumper Settings

Jumper	Setting	Function		
JP1	3-4	IRQ4 for 1 st COM port		
G jumper	Installed	1K pull down resister on IRQ4 line		
JP2	1-2	IRQ3 for 2 nd COM port		
G jumper	Installed	1K pull down resister on IRQ3 line		
JP3	5-6	IRQ5 for 3 rd COM port		
G jumper	Installed	1K pull down resister on IRQ5 line		
JP4	13-14	IRQ10 for 4 th COM port		
G jumper	Installed	1K pull down resister on IRQ10 line		
JP5	2-3 installed	24 MHz / 13 input clock is selected for serial ports		
CLK jumper				
JP6	1-2 open	Enable Ethernet EEPROM		
EEPROM				
JP7	1-2 open	Not used, leave open		
	1-2 not	Enable port		
JP8	installed			
First	3-4 installed	Select RS-232 mode		
COM port	5-6 open	No termination on RxD (Not required for RS-232 mode)		
	7-8 open	No termination on CTS (Not required for RS-232 mode)		
	1-2 not	Enable port		
JP9	installed			
Second	3-4 installed	Select RS-232 mode		
COM port	5-6 open	No termination on RxD (Not required for RS-232 mode)		
	7-8 open	No termination on CTS (Not required for RS-232 mode)		
	1-2 not	Enable port		
JP10	installed			
Third	3-4 installed	Select RS-232 mode		
COM port	5-6 open	No termination on RxD (Not required for RS-232 mode)		
7-8 open		No termination on CTS (Not required for RS-232 mode)		
	1-2 not	Enable port		
JP11	installed			
Fourth	3-4 installed	Select RS-232 mode		
COM port	5-6 open	No termination on RxD (Not required for RS-232 mode)		
	7-8 open	No termination on CTS (Not required for RS-232 mode)		
SW1	All down	I/O base addresses at		
		3E8, 2E8, 280, 288 for 1 st , 2 nd , 3 rd and 4 th COM port respectively		

Descriptions

The following table describes the functions of the jumpers.

Table 2 Switch and Jumper tables

Jumper	Use			
JP 1	IRQ selection for COM1			
	G setting: jumper installed = 1K pull down resistor for the selected IRQ			
	Jumper removed = no pull down for the selected IRQ			
	Default: 3-4, IRQ4 is selected for CN3 with G jumper installed (1K pull-down)			
JP 2	IRQ selection for COM2			
	G setting: jumper installed = 1K pull down resistor for the selected IRQ			
	Jumper removed = no pull down for the selected IRQ			
	Default: 1-2, IRQ3 is selected for CN4 with G jumper installed (1K pull-down)			
JP3	IRQ selection for COM3			
	G setting: jumper installed = 1K pull down resistor for the selected IRQ			
	Jumper removed = no pull down for the selected IRQ			
	Default: 5-6, IRQ5 is selected for CN5 with G jumper installed (1K pull-down)			
JP 4	IRQ selection for COM4			
	G setting: jumper installed = 1K pull down resistor for the selected IRQ			
	Jumper removed = no pull down for the selected IRQ			
	Default: 13-14, IRQ10 is selected for CN6			
	With G jumper installed (1K pull-down)			
JP5	Input clock selection for serial ports			
	1-2 = select 24 MHz input clock to UART			
	2-3 = select 24 MHz / 13 input clock to UART			
	Default: 2-3 jumped, to select 1.8432 MHz to UART			
JP6	Ethernet EEPROM enable			
	1-2 installed = Factory use			
	1-2 open = Normal Operation			
	Default: 1-2 open to enable normal Ethernet EEPROM operation			
JP7	Reserved, leave open			
	1-2 installed = Not allowed			
	1-2 open = Normal operation			
	Default: 1-2 always open			

JP8	COM port configuration		
First	1-2 installed = Disable Port		
COM port	1-2 open = Enable Port		
	3-4 installed = select RS-232 mode		
	3-4 open = select RS-422/485 mode		
	5-6 installed = 120 ohm termination on RxD (for RS422/485 modes)		
	5-6 open = No termination on RxD (RS422/485 modes)		
	7-8 installed = 120 ohm termination on CTS (for RS422/485 modes)		
	7-8 open = No termination on CTS (RS422/485 modes)		
	1		
	Default: 1-2 and 3-4 installed, 5-6 and 7-8 open to select enabled for RS-232		
	mode with no termination		
JP9	COM port configuration		
Second	1-2 installed = Disable Port		
COM port	1-2 open = Enable Port		
Composit	3-4 installed = select RS-232 mode		
	3-4 open = select RS-422/485 mode		
	5-6 installed = 120 ohm termination on RxD (for RS422/485 modes)		
	5-6 open = No termination on RxD (RS422/485 modes)		
	7-8 installed = 120 ohm termination on CTS (for RS422/485 modes)		
	7-8 open = No termination on CTS (RS422/485 modes)		
	7 6 open – No termination on C15 (xts 122/165 modes)		
	Default: 1-2 and 3-4 installed, 5-6 and 7-8 open to select enabled for RS-232		
	mode with no termination		
JP10	COM port configuration		
Third	1-2 installed = Disable Port		
COM port	1-2 open = Enable Port		
COM port	3-4 installed = select RS-232 mode		
	3-4 instance = select RS-232 inode 3-4 open = select RS-422/485 mode		
	5-6 installed = 120 ohm termination on RxD (for RS422/485 modes)		
	5-6 open = No termination on RxD (RS422/485 modes)		
	7-8 installed = 120 ohm termination on CTS (for RS422/485 modes)		
	7-8 open = No termination on CTS (RS422/485 modes)		
	7-6 open – No termination on C13 (R3422/463 modes)		
	Default: 1-2 and 3-4 installed, 5-6 and 7-8 open to select enabled for RS-232		
	mode with no termination		
JP11	COM port configuration		
Fourth	1-2 installed = Disable Port		
COM port	1-2 open = Enable Port		
COM port	3-4 installed = select RS-232 mode		
	3-4 open = select RS-422/485 mode		
	5-6 installed = 120 ohm termination on RxD (for RS422/485 modes)		
	5-6 open = No termination on RxD (RS422/485 modes)		
	7-8 installed = 120 ohm termination on CTS (for RS422/485 modes)		
	7-8 open = No termination on CTS (RS422/485 modes)		
	, 6 open – 110 termination on C13 (100722/703 modes)		
	Default: 1-2 and 3-4 installed, 5-6 and 7-8 open to select enabled for RS-232		
	mode with no termination		
SW1	I/O base address switch. See Base Address Table for details		
0111	10 base address switch. See Dase Address Table for details		

Table 3 Base address table for COM ports

COM port addresses –base address in Hex for eight 8-bit registers							
SW1-4	SW-3	SW-2	SW-1	CN3	CN4	CN5	CN6
Down	Down	Down	Down	3E8	2E8	280	288
Down	Down	Down	Up	280	288	290	298
Down	Down	Up	Down	290	298	2A0	2A8
Down	Down	Up	Up	2A0	2A8	2B0	2B8
Down	Up	Down	Down	100	108	110	118
Down	Up	Down	Up	120	128	130	138
Down	Up	Up	Down	140	148	150	158
Down	Up	Up	Up	160	168	170	178
Up	Down	Down	Down	100	108	500	508
Up	Down	Down	Up	120	128	520	528
Up	Down	Up	Down	280	288	680	688
Up	Down	Up	Up	290	298	690	698
Up	Up	Down	Down	2A0	2A8	6A0	6A8
Up	Up	Down	Up	2B0	2B8	6B0	6B8
Up	Up	Up	Down	3E8	2E8	7E8	6E8
Up	Up	Up	Up	3F8	2F8	3E8	2E8

Ethernet EEPROM Configuration

The most important configuration options for the Ethernet section are set using the configuration program CM312SET.EXE, and then stored in a configuration EEPROM.

CM312SET is used to select:

- I/O Address
- Hardware interrupt number
- Media Type
- Remote Boot
- NE2000/1000 Compatibility Mode

Default Settings

The factory default settings for CM312SET options are:

Option	Factory Default		
I/O address	320h		
Interrupt	IRQ5		
Media type	AUTO		
Remote boot	Disabled		
Compatibility mode	NE2000		

Please refer to page 28 for information on changing these settings using CM312SET.

Chapter 2 INSTALLING THE UTILITY MODULE

Since the utilityModule uses a PC/104 stackthrough bus, the only hardware installation you will do is placing the module to the PC/104 stack. To do this, you will connect the PC/104 bus connector with the matching connector of another module.

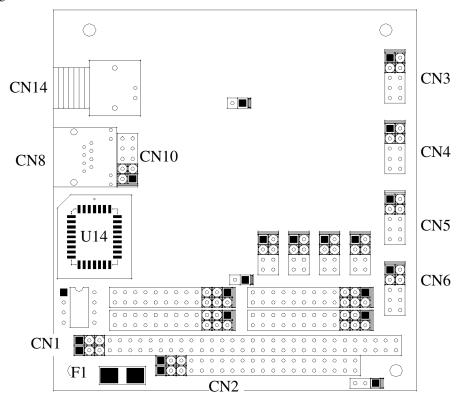
Recommended Procedure

We recommend you follow the procedure below to ensure that stacking of the modules does not damage connectors or electronics.

- Turn off power to the PC/104 system or stack.
- Select and install standoffs to properly position the utilityModule on the PC/104 stack.
- Touch a grounded metal part of the stack to discharge any buildup of static electricity.
- Remove the utilityModule from its anti-static bag.
- Check that keying pins in the PC/104 bus connector are properly positioned.
- Check the stacking order: make sure an XT bus card will not be placed between two AT bus cards, or it will interrupt the AT bus signals.
- Hold the utilityModule by its edges and orient it so the bus connector pins line up with the matching connector on the stack.
- Gently and evenly press the utilityModule onto the PC/104 stack.

CAUTION: Do not force the module onto the stack! Wiggling the module or applying too much force may damage it. If the module does not readily press into place, remove it, check for bent pins or out-of-place keying pins, and try again.

Connecting the utilityModule


The following sections describe connectors of the utilityModule.

Finding Pin 1 of Connectors

A white area silk-screened on the PC board indicates pin 1 of connectors. A square solder pad visible on the bottom of the PC board also indicates it.

Locations

The figure below shows connector locations.

Figure 2 Connector Locations

Table 4 Connector Table

Connector	Function	Size
CN1	PC/104 XT Bus	64 pin
CN2	PC/104 AT Bus	40 pin
CN3	1 st COM port	10 pin
CN4	2 nd COM port	10 pin
CN5	3 rd COM port	10 pin
CN6	4 th COM port	10 pin
CN8	10Base-T	RJ45
CN10	10Base-T	10 pin
CN14	10Base-2	BNC

PC/104 Bus Connectors, CN1 and CN2

Connectors CN1 and CN2 provide PC/104 bus connections. CN1 carries XT bus signals, and CN2 carries additional signals for the AT bus. The signals on CN1 and CN2 conform to the IEEE P966 standard for the PC/104 bus.

The following tables list the connector pinouts:

Table 5 PC/104 XT Bus Connector

PC/104 XT Bus Connector, CN1								
Pin	Row A	Row B						
1	IOCHCHK*	0V						
2	SD7	RESETDRV						
3	SD6	+5V						
4	SD5	IRQ9						
5	SD4	-5V						
6	SD3	DRQ2						
7	SD2	-12V						
8	SD1	ENDXFR*						
9	SD0	+12V						
10	IOCHRDY	(KEYING PIN)						
11	AEN	SMEMW*						
12	SA19	SMEMR*						
13	SA18	IOW*						
14	SA17	IOR*						
15	SA16	DACK3						
16	SA15	DRQ3						
17	SA14	DACK1*						
18	SA13	DRQ1						
19	SA12	REFRESH						
20	SA11	SYSCLK						
21	SA10	IRQ7						
22	SA9	IRQ6						
23	SA8	IRQ5						
24	SA7	IRQ4						
25	SA6	IRQ3						
26	SA5	DACK2*						
27	SA4	TC						
28	SA3	BALE						
29	SA2	+5V						
30	SA1	OSC						
31	SA0	0V						
32	0V	0V						

Table 6 PC/104 AT Bus Connector

PC	PC/104 AT Bus Connector, CN2							
Pin								
0	0V	0V						
1	SBHE*	MEMCS16*						
2	LA23	IOCS16*						
3	LA22	IRQ10						
4	LA21	IRQ11						
5	LA20	IRQ12						
6	LA19	IRQ15						
7	LA18	IRQ14						
8	LA17	DACK0*						
9	MEMR*	DRQ0						
10	MEMW*	DACK5*						
11	SD8	DRQ5						
12	SD9	DACK6*						
13	SD10	DRQ6						
14	SD11	DRQ6						
15	SD12	DRQ7						
16	SD13	+5V						
17	SD14	MASTER*						
18	SD15	0V						
19	(KEYING PIN)	0V						

Note:

Two locations on the bus have mechanical keying pins to help prevent misconnection of the PC/104 bus. These keying pins are a part of the PC/104 standard, and we strongly recommend you leave them in place.

If you have other modules without keying pins, we suggest you modify them to include keying.

First COM port, CN3

The first serial port is implemented on connector CN3. It can be configured as a PC compatible full duplex RS232 port or as half- or full duplex RS422 or RS485 through mode jumper JP8. The I/O address is configurable in respect to SW1 address table, and corresponding interrupt is also selectable through jumper JP1 to be IRQ3, IRQ4, IRQ5, IR6, IRQ7, IRQ9, IRQ10, IRQ11, IRQ12, IRQ14 and IRQ15. But you need to make sure that there are no resource conflicts on the I/O base address and interrupt line you choose.

The serial port is implemented with a 16C550-compatible UART (Universal Asynchronous Receiver/Transmitter). This UART is capable of baud rates up to 1.5 M with the 24 MHz clock input and 115.2K with the 24 MHz / 13 clock input.

RS232 Serial Port (Default)

The full-duplex RS232 mode is the default setting on the utilityModule. With this mode enabled, connector CN3 must be connected to RS232 compatible devices. The following table gives the connector pinout and shows how to connect to an external serial connector, either DB25 or DB9 compatible.

Connector CN3 in RS-232 Mode

Table 7 Connector CN3 in RS-232 Mode

CN3 Pin	Signal	Function	In/out	DB25	DB9
1	DCD	Data Carrier Detect	In	8	1
2	DSR	Data Set Ready	In	6	6
3	RXD	Receive Data	In	3	2
4	RTS	Request To Send	Out	4	7
5	TXD	Transmit Data	Out	2	3
6	CTS	Clear To Send	In	5	8
7	DTR	Data Terminal Ready	Out	20	4
8	RI	Ring Indicate	In	22	9
9,10	GND	Signal Ground		7	5

Facing the connector pins, the pinout is pictured in the following,

Table 8 Connector CN3 pin location in RS-232 Mode

9	7	5	3	1
GND	DTR	TXD	RXD	DCD
GND	RI	CTS	RTS	DSR
10	8	6	4	2

RS422 or RS485 Serial Port

You can change the mode switch to set the first port as RS422 or RS485. In this case, you must connect CN3 to an RS422 or RS485 compatible device.

When using RS422 or RS485 mode, you can use the port in either half-duplex (two-wire) or full-duplex (four-wire) configurations. For half-duplex (2-wire) operation, you must connect RXD+ to TDX+, and connect RXD- to TXD-.

Note! Two 120-ohm termination resistors are provided on the utilityModule. Termination is usually necessary on all RS-422 receivers and at the ends of the RS-485 bus. If the termination resistor is required, it can be enabled by closing jumper JP8 5-6 for RxD and/or 7-8 CTS.

RS422 and RS485 Mode Pinout

The following table gives the pinout of connector CN3 when RS422 or RS485 modes are enabled.

Table 9 Connector CN3 in RS422/485 Mode

CN3 Pin	Signal	Function	In/out	DB9
1	RTS-	Request to send (-)	Out	1
2	RTS+	Request to send (+)	Out	6
3	RXD-	Receive Data (-)	In	2
4	TXD+	Transmit Data (+)	Out	7
5	TXD-	Transmit Data(-)	Out	3
6	RXD+	Receive Data (+)	In	8
7	CTS-	Clear to send (-)	In	4
8	CTS+	Clear to send (+)	In	9
9,10	GND	Signal Ground		5

Facing the connector pins, the pinout is pictured in the following,

Table 10 Connector CN3 pin location in RS422/485 Mode

9	7	5	3	1
GND	CTS-	TXD-	RXD-	RTS-
GND	CTS+	RXD+	TXD+	RTS+
10	8	6	4	2

Notes on using RS422 or RS485 Modes

When using the serial port in RS422 or RS485 mode, the serial receiver is always enabled, however the serial transmitter is enabled and disabled under software control in the following two ways.

By default, the transmitter is enabled by manipulating the Request To Send (RTS*) signal of the serial port controller. This signal is controlled by writing bit 1 of the Modem Control Register (MCR) as follows:

- If MCR bit 1 = 1, then RTS* = 0, and serial transmitter is disabled
- If MCR bit 1 = 0, then RTS* = 1, and serial transmitter is enabled

For more information on the serial port registers, including the MCR, please refer to a standard PC-AT hardware reference for the 16C550 UART, or refer to RTDUSA application note ANC102 at http://www.rtdusa.com

The other way to enable the serial transmitter is to write 1 to its corresponding bit of the utilityModule's internal common register 4, which sets the serial transmitter in "always on" mode. Please refer to Internal Common Register Section for detail.

Second COM port, CN4

Please refer to the previous section on the first COM port CN3 for the description on CN4.

Third COM port, CN5

Please refer to the previous section on the first COM port CN3 for the description on CN5.

Fourth COM port, CN6

Please refer to the previous section on the first COM port CN3 for the description on CN6.

CM312 common registers

The utilityModule includes 5 common registers to provide additional information and software control that is not required for normal COM port operation, but may be helpful in determining the status of the board and configuring of the board. The following two sections give the location and definition of the common registers.

Base Address of Common Registers

The utilityModule common registers are located 800h above the address of the first enabled COM port. That is, assuming that "X" in hex is the first enabled COM port base address, which can be any of the valid addresses listed in the Com Port Address Table, the base address for the common registers is "Y" in hex, then,

$$Y = X + 800h$$

For example, if the switches of SW4 are set all DOWN position which makes CN3 = 3E8h, CN4 = 2E8h, CN5 = 280h and CN6 = 288h, then according to the algorithm, the common registers base address (BA) will be the following depending the setting of enable switch SW2 for each serial port,

If CN3 is enabled then,

$$BA = 3E8h + 800h = BE8h$$

Else if CN3 is disabled AND CN4 is enabled then,

$$BA = 2E8h + 800h = AE8h$$

Else if CN3 and CN4 are disabled AND CN5 is enabled then,

$$BA = 280h + 800h = A80h$$

Else if CN3, CN4 and CN5 are disabled AND CN4 is enabled then,

$$BA = 288h + 800h = A88 A80h$$

Else if CN3, CN4, CN5 and CN6 are disabled then,

Common Registers are disabled

End If

Common Register definitions

BA + 0 – Interrupt Status (Read Only)								
7 6 5 4 3 2 1 0							0	
Reserved	Reserved	TxRDY*	RxRDY*	CN6	CN5	CN4	CN3	

For each CNx bit:

0 = Not interrupting

1 = Interrupt set

TxRDY*

0 = indicates a buffer ready for at least one of the four transmit channels

1 = indicates that all transmit buffers are full

RxRDY*

0 = indicates one or more of the receive channels has data ready to read

1 = indicates that all receive buffers are empty

Reserved reads as 0

BA + 1 - Address Switch (Read Only)								
7	6	5	4	3	2	1	0	
Reserved	Reserved	Reserved	Reserved	SW1-4	SW1-3	SW1-2	SW1-1	

For each bit, see table above

0 = Down

1 = Up

Reserved reads as A to tag on the address register.

BA + 2 Enable/Disable Jumpers (Read Only)								
7	6	5	4	3	2	1	0	
Reserved	Reserved	Reserved	Reserved	CN6	CN5	CN4	CN3	

For each CNx bit:

Jumper installed = 0 = Port is disabled

Jumper open = 1 = Port is enabled

Reserved reads as 0

BA + 3—Reserved							
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Reserved reads as 0

	BA + 4 RS-422 RTS operation (W)								
7	6	5	4	3	2	1	0		
Reserved	Reserved	Driver Enable	IntSel	CN6	CN5	CN4	CN3		

Driver Enable:

0 = All ports in RS-422/485 mode will have the drivers disabled

1 = All ports in RS-422/485 mode will have the drivers controlled as selected in register 4 and 5

Default to 0 to have drivers disabled during power up. User must program to a 1 to use RS-422/485 mode.

IntSel:

0 = MCR bit-3 controls the three state interrupt output.

1 = Overrides MCR bit-3 and interrupt outputs are enabled continuously.

Default to 0 to set COM ports in normal mode

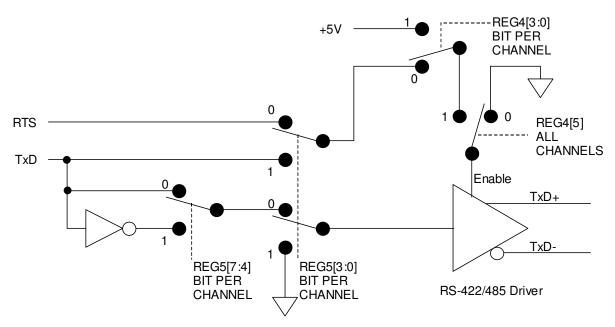
For each CNx bit:

0 = use RTS to enable transmitter, default case

1 = transmitter always on

BA + 5 RS-422 TxD operation (W)							
7	6	5	4	3	2	1	0
TxD+/-CN6	TxD+/-CN5	TxD+/-CN4	TxD+/-CN3	CN6	CN5	CN4	CN3

For each CNx bit:


0 = use RTS to enable transmitter or transmitter always on as defined by BA + 4 register CNx bit

1 = Use TxD to enable transmitter, transmitter data is tied low

For each Txd+/-CNx bit if corresponding CNx bit is 1:

0 =Use TxD to enable transmitter

1 = Use inverted TxD to enable transmitter

RS-422/485 mode configuration. All switches are shown in power on default conditions.

Figure 3 RS-422/485 Mode Configuration

10Base-T connector, CN8

Connector CN8 is for UTP (Unshielded Twisted Pair) wiring normally used for 10Base-T Ethernet. It is wired in parallel with CN10. Don't try to use both CN8 and CN10 at the same time.

The following table gives the pinout of CN8.

Pin	Signal	Function	in/out
1	TX+	Transmit +	out
2	TX-	Transmit -	out
3	RX+	Receive +	in
4	N.C.	not connected	
5	N.C.	not connected	
6	RX-	Receive -	in
7	N.C.	not connected	
8	N.C.	not connected	

The figure below shows the pin numbering of CN8 when **looking into the connector**:

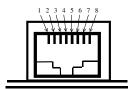


Figure 4 CN8 RJ-45 Jack Connector

CN8 is a standard female RJ-45 connector. One example of a mating plug is:

• AMP 5-554739-3 (unshielded)

10Base-T connector, CN10

Connector CN10 is for UTP (Unshielded Twisted Pair) wiring normally used for 10Base-T Ethernet. It is wired in parallel with CN8. Don't try to use both CN8 and CN10 at the same time.

The following table gives the pinout of CN10.

Pin	Signal	Function	in/out
1	TX+	Transmit +	out
2	RX-	Receive -	in
3	TX-	Transmit -	out
5	RX+	Receive +	in
4, 6 - 10	N.C.	not connected	

10Base-2 connector, CN14

Connector CN14 is a BNC bayonet connector for coaxial cable normally used with 10Base-2 Ethernet.

The pinout of CN14 is:

Pin	Signal	Function	in/out
1	SIGNAL	Signal to 50 ohm cable	in/out
2	GND	Signal Ground	

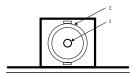


Figure 5 BNC Connector CN14

Power Protection Circuitry

To reduce the risk of damage due to power-supply problems, the utilityModule includes several protective components.

Module Power-Supply Protection

The utilityModule includes a component to help prevent damage due to problems with the +5Vdc power supply from the PC/104 bus. Protection is provided for:

- Over-current
- Reversed polarity
- Excessive voltage

This protection is only for the utilityModule, and will not protect other devices in a PC/104 stack.

The protective fuse is replaceable and is available from electronics suppliers. Its description and part number is:

Littelfuse Nano² SMF 1.0 amp, R451-001

Caution: Replace fuses only with parts of identical current and voltage rating.

Chapter 3 USING THE UTILITY MODULE SERAIL PORTS

The utilityModule features an EXAR quad UART 16C550 compatible 16C554D part.

EXAR Documentation

Due to the complexity of the EXAR serial chip, it is impossible for us to reproduce all programming information in this manual. If you will be doing in-depth programming of the serial port controller, we suggest you obtain the 16C554D datasheet from the manufacturer.

The 16C554D datasheet is available on-line in electronic format as an Adobe Acrobat (. PDF) file on the EXAR website:

www.exar.com

You may also contact:

EXAR corporation

248720 Kato Road

Fremont, CA 94538

Or by phone/fax:

Phone: 510 668 7017

Fax: 510 668 7017

1.5 Mbps support

With 24 MHz clock input selected (JP5, 1-2), the utilityModule is capable of provide data rates up to 1.5 Mbps in RS422/RS485 mode. Since RS-232 standard restricts data rate to 20 Kbps, you might experience failure at higher data rate above 252 Kbps with 24 MHz clock select for the utilityModule.

Interrupt Sharing

Interrupt sharing is a mechanism which allows different devices sharing same active high IRQ lines on the PC/104 bus, given that there is a interrupt sharing circuit associated with each device. The utilityModule provides interrupt-sharing circuits for all the serial ports; thus it allows sharing of one IRQ line among the serial ports in the utilityModule. However, user needs to be careful to share an IRQ line with devices in the system elsewhere, and be sure that other devices also share their IRQ lines as well. For instance, users should be aware of that the IRQ3/IRQ4 associated with serial port J3/J4 on RTDUSA cpuModule are not shareable. And if the utilityModule is in the same system with RTDUSA cpuModule, be advised not to use/share IRQ3/IRQ4 for the utilityModule unless you have serial ports on the cpuModule disabled.

Interrupt sharing in a PC/104 system requires one 1K pull-down resistor per IRQ line for all the devices that share the IRQ. Installing a G jumper in the utilityModule will pull its associated IRQ line down with 1K resistor. That is, for example, if IRQn is shared among four serial ports on the utilityModule, only one G jumper needs to be installed for IRQn line. If more than one G jumper are installed, the pull-down on IRQn line will be much stronger that expected 1K ohm, which will prevent interrupt controller from functioning correctly.

Let consider two cases to demonstrate the concepts for the above discussion. Let us assume that IRQ5 and IRQ10 are not used and driven by other devices in the system. For the first case, IRQ10 line is shared among the four serial ports and for the second case IRQ5 is shared for port 1 and port 2, while IRQ10 is shared among port 3 and port 4.

The following two tables listed the interrupt jumper settings for each case respectively.

Jumper	Setting	Function
JP1	13-14	IRQ10 for 1 st COM port
G jumper	Installed	1K pull down resister added on IRQ10
		from PORT1
JP2	13-14	IRQ10 for 2 nd COM port
G jumper	Removed	No pull down resister added on IRQ10
		from PORT2
JP3	13-14	IRQ10 for 3 rd COM port
G jumper	Removed	No pull down resister added on IRQ10
		from PORT3
JP4	13-14	IRQ10 for 4 th COM port
G jumper	Removed	No pull down resister added on IRQ10
		from PORT4

Table 11 Jumper Settings for interrupt sharing Case 1

Table 12 Jumper Settings for interrupt sharing Case 2

Jumper	Setting	Function
JP1	5-6	IRQ5 for 1 st COM port
G jumper	Installed	1K pull down resister added on IRQ5
		from PORT1
JP2	5-6	IRQ5 for 2 nd COM port
G jumper	Removed	No pull down resister added on IRQ5
		from PORT2
JP3	13-14	IRQ10 for 3 rd COM port
G jumper	Installed	1K pull down resister added on IRQ10
		from PORT3
JP4	13-14	IRQ10 for 4 th COM port
G jumper	Removed	No pull down resister added on IRQ10
		from PORT4

Chapter 4 USING THE UTILITY MODULE ETHERNET PORTS

Using the utilityModule is straightforward, and essentially identical to any other Ethernet card.

When CM312 module is powered on, data in the EEPROM on board is transferred to Ethernet controller's internal configuration registers. The data in the EEPROM contains information configuration such as the base address of the card, the active interrupt line on the PC/104 bus for Ethernet access, the media type in use, etc. The factory default setting of the board is at I/O address 0x320 and IRQ 5. And if there is a resource conflicting, you need to change your setting on CM312 with the other I/O boards removed temporally by executing CM312SET program as described in the later chapter.

The following sections describe:

- Diagnostic LEDs
- Boot ROM socket
- Power Consumption

Diagnostic LEDs

If CN8, the RJ45 connector, has two LEDs that are used to indicate status and provide some diagnostic information in case of malfunctions.

Name	Meaning	Normal State
COL	Collision Detected	Off
LNK	Link established (UTP)	On (10Base-T only)

COL LED

The LED is normally off, and flashes when the module detects a collision on the network. Collisions may be due to low-quality cable, which allows crosstalk between the transmit and receive pairs, miswiring, or a malfunctioning device on the network.

LNK LED

The LED is turned on when a valid 10Base-T link is detected by the chipset. It is only active when using the 10Base-T UTP connection with link integrity checking enabled. If it is off, the UTP wiring may be broken or incorrect, link integrity checking may be disabled, or you may be using the 10Base-2 or AUI interface.

Boot ROM Socket

In some applications, you may wish to use the boot ROM socket of the utilityModule to boot a connected cpuModule from a remote server.

The socket will accomodate a 32 pin PLCC EPROM or Flash memory devices of size 8k, 16k, 32k, or 64k bytes. The device must be a byte-wide architecture.

The boot ROM feature can be enabled using the CM312SET program described on page 28.

Power Consumption

Power consumption of the utilityModule depends on which Ethernet interface is used and the degree of activity on the network.

The following table gives typical power consumption:

Configuration	AUI	TP	BNC	
Consumption	200 mA	200 mA	200 mA	

Chapter 5 SOFTWARE INSTALLATION

This chapter contains information on:

- Software installation
- The CM312SET Program
- Server Examples
- Client Examples
- Client Remote Boot Examples

Software installation

There is no installation program for the supplied software. We suggest you create a directory named /CM312 on your target drive, and copy all files and subdirectories from the supplied floppy disk into that directory.

The CM312SET Program

The /TOOLS directory of the supplied floppy disk contains the setup and diagnostic utility, CM312SET.EXE.

Using CM312SET

Since CM312 utility module is a jumperless I/O board, complete software configurable with all its configuration data stored in EEPROM, CM202SET is a utility program that let you view or change the existing setting of the board.

When you run the CM312SET program, the utility looks at all possible I/O addresses.

If no module is found or if there is a conflicting, the utility quits with a message.

When the module is found and correctly operating, the utility displays lines indicating the active I/O address, the interrupt, the Media Type in use, the compatibility mode selected (NE2000 or NE1000), and the MAC address of the board.

You can use the program to change settings for I/O address, Interrupt, Media Type, Remote Boot Prom, and compatibility mode and save your selection either into the configuration registers or to both registers and EEPROM. Saving to registers only will allow you to perform test with the settings in your system, but the settings will be lost when power off. In order to change the setting for future operation, you need to save your changes to both registers and EEPROM. These settings then are recalled from EEPROM whenever the module is reinitialized.

NE1000 Mode

NE1000 mode can be used to allow the utilityModule to operate with an 8-bit (XT) cpuModule. In NE1000 mode, only IRQ2, IRQ3, IRQ4, IRQ5 are available. You cannot use IRQ10, IRQ11, IRQ12, IRQ15 with an 8-bit system bus.

Software drivers

The floppy supplied with the utilityModule contains the following (or newer) versions of drivers.

NetWare 4.x Client and Server Drivers:

• use the NE2000/NE1000 compatible drivers provided with the Operating System

NetWare 3.x Server

• use the NE2000/NE1000 compatible drivers provided with the Operating System

NetWare 2.x Server

• use the NE2000/NE1000 compatible drivers provided with the Operating System

ODI Workstation:

- NE2000.COM Ver. 1.54
- NE1000.COM Ver. 1.28

NDIS Drivers 3.0

- Windows for Workgroups
- Windows95
- Windows NT3.x, NT4.x
- use the NE2000 compatible drivers provided with the Operating System

LanManager for DOS

• use the NE2000/NE1000 compatible drivers provided with the Operating System

LanManager for OS/2

• use the NE2000/NE1000 compatible drivers provided with the Operating System

Packet Driver

- NE2000.COM Ver. 4.1
- NE1000.COM Ver. 11.5.3

The directory structure of the disk is:

```
+---NDIS30
+---NETWARE
     +---NW286
          +---FS
     +---NW3.X
     +---NW4.X
     +---NWODI
+---MSLANMAN.DOS
     +---DRIVERS
          +---ETHERNET
          +---NE2000
          +---NE1000
          +---NIF
+---MSLANMAN.OS2
     +---DRIVERS
          +---ETHERNET
          +---NE2000
          +---NE1000
          +---NIF
+---PACKET.DRV
+---TOOLS
```

Server Examples

The following examples illustrates configuration of the module for use as a server.

Novell Netware 2.2

The NE2000 Netware Driver is configurable and may operate with a variety of selections for I/O Address and Interrupt. These options should be selected via ECONFIG, DCONFIG and NETGEN (for 2.15) or INSTALL (for 2.2) utilities, which are provided with the Netware distribution diskettes.

To generate the 2.15 dedicated server from an existing Network Disk:

- 1) Create NET\$OS. This can be done from any station attached to the network server.
- run netgen:
- -Select Network Configuration (Our driver)
- -Link/Configure Netware Operating System
- 2) Now that NET\$OS has been generated, do the Netware Installation.

On the server PC you are configuring:

- boot DOS from a floppy
- login to the network server
- run netgen and select Netware Installation
- reboot from hard disk

To generate the 2.2 server from an existing Network Disk:

- Boot DOS from a floppy
- login to the network server
- Run install (when prompted to, select NE2000 driver)
- reboot from hard drive

Novell Netware 3.x/4.x

Use the install.nlm utility loaded from the server console, "load ...\install", to create an autoexec file as shown below:

AUTOEXEC.NCF

file server name BIGKAHOONAS ipx internal net 10 load c:\ne2000 PORT=360 INT=5 bind ipx to ne2000 net=1 mount all

Typing SERVER at the DOS prompt will load the server and our driver.

Be sure ne2000.lan is in the c:\ directory

Driver configurable options are:

IO BASE

May be set by including the following in the command line:

Port = xxx ; where xxx can be 300, 320, 340, 360

Be sure the board is set to the same I/O address, otherwise the driver won't find the board and the message "Hardware Error - NE2000 Bank Select port failed to respond." will appear.

INTERRUPT NUMBER

May be set by including the following in the command line:

Int = x ; where x can be 2, 3, 4, 5, 10, 11, 12, 15

Defaults to EEPROM configuration if not present

NODE ADDRESS

The board has a unique IEEE address, but it may be overwritten by including the following in the command line:

Node = xxxxxxxxxxxx

Where xxxxxxxxxx is a 12 digit hex number (non-multicast or broadcast)

The default is the board's unique IEEE address if this line is not present.

FRAME TYPE

May be set by including the following in the command line

Frame = <type>

where <type> is ETHERNET_802.3, ETHERNET_802.2, ETHERNET_II, ETHERNET_SNAP

This defaults to ETHERNET_802.3 if the line is not present.

MEDIA TYPE SELECTION

The user may select the media type to be used. This option is specified via parameter passing in the command line.

The parameter name is "**MEDIA_TYPE=**" . The value following the keyword must be one of the following:

- "AUTO" for automatic selection.
- "10BASET" for 10BaseT.
- "AUI" for AUI interface.

If the MEDIA_TYPE keyword is not present the driver will use the module's EEPROM default.

Client Examples

The following examples illustrates configuration of the module for use as a client.

ODI Drivers (IPX for NetWare)

STARTNET.BAT

cd\net lsl ne2000 ipxodi netx /PS=Server_neme Login_name

NET.CFG (in c:\net directory)

LINK DRIVER NE2000
PORT 360
INT 5
FRAME ETHERNET_802.3
FRAME ETHERNET_II
FRAME ETHERNET_802.2
FRAME ETHERNET_SNAP
MEDIA_TYPE AUI
NODE ADDRESS EC1000013114

ODI Drivers (IPX for MS Windows)

In this examples we have used the ODI drivers that are used by NetWare too. You can find them in the directory \NETWARE\NWODI\ of the drivers floppy disk. Windows for workgroup see them as "IPX monolitic" drivers.

AUTOEXEC.BAT

@echo off
path C:\WFW.DOS;c:\;c:\dos
prompt \$p\$g
cd\WFW.DOS
lsl
ne2000
ipxodi
net start

CONFIG.SYS

files=40 buffers=40 device=C:\WFW.DOS\ifshlp.sys LASTDRIVE=Z

NET.CFG

Link Support buffers 8 850

LINK DRIVER NE2000 PORT 360 INT 5 FRAME ETHERNET_802.3 FRAME ETHERNET_II FRAME ETHERNET_802.2 FRAME ETHERNET_SNAP

PROTOCOL.INI

[network.setup] version=0x3110 netcard=ipxmono,1,IPXMONO,1 lana0=ipxmono,1,mono

[IPXMONO] LANABASE=0

NDIS Drivers

Create a startup disk using WinNT 3.50:

- Run the program Network Client Administrator (in the group Network Administration).
- choose:

Make Network Installation Startup Disk (Continue)

Path E:\Clients (E: = CD-ROM di WINNT3.50)

Share Name Clients

or

Use Existing Share Directory

and hit (OK)

• choose:

Network Client: Network Client v3.0 for MS-DOS and Windows

Network Adapter Card: NE2000 compatible

and hit (OK)

• choose:

(name for the client computer)

Network Protocol: NWLink IPX Compatible Protocol

hit (OK) (OK)

this creates a startup floppy for the module.

AUTOEXEC.BAT

@echo off
path=a:\net

a:\net\net initialize a:\net\nwlink a:\net\net start net use z: \\SERVER_NT\Clients echo Running Setup... z:\msclient\netsetup\setup.exe /\$

CONFIG.SYS

files=30 device=a:\net\ifshlp.sys lastdrive=z DEVICE=A:\NET\HIMEM.SYS DEVICE=A:\NET\EMM386.EXE NOEMS DOS=HIGH,UMB

PROTOCOL.INI

[network.setup] version=0x3110 netcard=ms\$ne2clone,1,MS\$NE2CLONE,1 transport=ms\$ndishlp,MS\$NDISHLP transport=ms\$nwlink,MS\$NWLINK lana0=ms\$ne2clone,1,ms\$nwlink lana1=ms\$ne2clone,1,ms\$ndishlp

[ms\$ne2clone] drivername=MS2000\$ INTERRUPT=5 IOBASE=0x360 ; SlotNumber=1

[protman] drivername=PROTMAN\$ PRIORITY=MS\$NDISHLP

[MS\$NDISHLP] drivername=ndishlp\$ BINDINGS=ms\$ne2clone

[ms\$nwlink] drivername=nwlink\$ FRAME=Ethernet_802.2 BINDINGS=ms\$ne2clone LANABASE=0

Packet Drivers

The packet driver is loaded using the following syntax:

NE2000 [-n] [-d] [-w] <packet_int_no> <int_level> <io_addr>

Using the default settings, this would be entered as:

NE2000 0x60 0x5 0x340

If the use of ODI drivers is requested or preferred, it is possible to use the ODI packet driver:

LSL NE2000 IPXODI ODIPKT 1 0x60

NET.CFG

LINK SUPPORT buffers 8 850

LINK DRIVER NE2000

PORT 360
INT 5
FRAME ETHERNET_802.3
FRAME ETHERNET_II
FRAME ETHERNET_802.2
FRAME ETHERNET_SNAP
PROTOCOL IPX 0 ETHERNET_802.3

Remote Boot Examples

The following examples illustrate configuration of the module for use in a remote boot application.

RPL from a WindowsNT server 3.5

- 1. Install RPL Service on your WindowsNT Server
- 2. Copy DOS 6.22 files in WINNT35\RPL\RPLFILES\BINFILES\DOS622
- 3. Copy NE2000.DOS in WINNT35\RPL\BBLOCKS\NDIS;

remember not to flag the files IO.SYS and MSDOS.SYS as Hidden or System.

- 4. From a DOS window run RPLCMD
- 5. add Vendor:

VendorName=00E0C7

comment=RTDUSA NE2000

6. add boot (b - a):

BootName= DOS

VendorName=00D081

BBCFile=BBLOCK\NETBEUI\NE2000\DOSBB.CNF

7. Restart WindowsNT and start RPL Service.

Now the cpuModule used with the utilityModule can remotely boot DOS from WindowsNT Server

DOSBB.CNF

; DOS on NE2000 Ethernet
BASE D0H
RPL BBLOCK\RPLBOOT.SYS
LDR BBLOCK\RPLSTART.COM ~
DAT BBLOCK\NETBEUI\NE2000\PROTOCOL.INI
DRV BBLOCK\RPLDISK.SYS ~ ~ ~
EXE BBLOCK\RPLPRO1.COM ~ 2 ~

```
EXE BBLOCK\I13.COM ~ ~ ~
EXE BBLOCK\RPLBIND2.EXE ~ ~
EXE BBLOCK\PROTMAN.EXE ~ ~
EXE BBLOCK\RPLBIND1.EXE ~ ~
;DRV BBLOCK\IPXNDIS.DOS ~ ~ ~
;DRV BBLOCK\TCPDRV.DOS /I:C:\LANMAN.DOS ~ ~
EXE BBLOCK\NETBEUI\NETBEUI.EXE ~ 10 ~
DRV BBLOCK\NDIS\NE2000.DOS ~ ~ ~
DRV BBLOCK\PROTMAN.DOS /I:C:\LANMAN.DOS ~ M
PROTOCOL.INI
[protman]
drivername = protman$
dynamic = yes
priority = netbeui
[netbeui xif]
drivername = netbeui$
bindings = ne2000_nif
names = 6
ncbs = 12
packets = 20
pipeline = 10
sessions = 6
stacksize = 512
lanabase = 0
[xnsnb_xif]
drivername = xnsnb\$
bindings = ne2000 nif
load = xnsnb[cbr]
lanabase = 1
[xnstp_xif]
drivername = xnstp$
bindings = ne2000_nif
load = xnstp[ub]
lanabase = 1
[tcpip_xif]
drivername = TCPIP$
disabledhcp = (TCPIP_NO_DHCP)
ipaddress0 = (TCPIP_ADDRESS)
subnetmask0 = (TCPIP_SUBMASK)
defaultgateway0 = (TCPIP\_GATEWAY)
tcpsegmentsize = 1450
tcpwindowsize = 1450
 nbsessions = 6
load = tcptsr[c],tinyrfc[c],emsbfr[cr]
```

unload = "unloadt /notsr[dc]" bindings = ne2000_nif

lanabase = 1

[ipx_xif] drivername = ipx\$ load = ipxmark[u],ipx[u] unload = ipxrel[c] bindings = ne2000_nif lanabase = 1

[msdlc_xif] drivername = msdlc\$ bindings = ne2000_nif load = msdlc[ub] unload = msdlc[u]

[ne2000_nif] drivername = NE2\$ INTERRUPT=5 IOBASE = 0x360

Driver Disk

Utility Disk

The utilityModule includes menu driven diagnostic program. Loop back plugs are required to run this program.

Chapter 6 REFERENCE INFORMATION

This chapter contains reference information concerning:

- Ethernet References
- Types of Ethernet
- Types of Ethernet Cable
- Ethernet Frames
- IEEE 802 MAC Number

Ethernet References

To learn more about Ethernet, you might start with:

Charles Spurgeon's Ethernet Website:

http:wwwhost.ots.utexas.edu/ethernet/ethernet-home.html

This site provides thorough overviews of 10 Mbps and faster Ethernet.

Types of Ethernet

There are three standard types of 10 Megabit Ethernet, of which 10Base-T is by far the most common, and 10Base-5 is by far the least common.

Ethernet Type	Nickname	Data transfer rate	Topology	Cable type	Maximum Segment length
10Base-T	"Cheapernet"	10 Mbps	Star	100 ohm UTP (unshielded twisted pair)	100 m 328 ft
10Base-2	"Thin" Ethernet	10 Mbps	Bus	RG-58 coaxial	185 m 607 ft
10Base-5	"Thick" Ethernet	10 Mbps	Bus	RG-11 coaxial	500 m 1640 ft

Types of Ethernet cable

Ethernet uses one of three standard cable types:

Ethernet Type	Cable type	Impedance	Denomination
10Base-T	UTP	100 Ohm	unshielded twisted pair
10Base-2	RG-58	50 Ohm	Ethernet thin
10Base-5	RG-11	50 Ohm	Ethernet thick (yellow
			cable)

Note: Although 8-conductor telephone wire is commonly used for 10Base-T connections, this type wire is not the correct 100 ohm UTP, as it does not use twisted-pairs. Using such wire may cause excessive crosstalk, resulting in a large number of collisions and poor network performance.

10Base-T Wiring Convention

10Base-T Ethernet uses the following wiring convention when connecting a node to a hub. It is suggested you use this convention for consistency:

_	First End			Second End		_
RJ45 PIN	Pair No.	wire color		Pair No.	wire color	RJ45 PIN
1	3	W-G	to	2	W-O	1
2	3	G	to	2	О	2
3	2	W-O	to	3	W-G	3
4	1	BL	to	1	BL	4
5	1	W-BL	to	1	W-BL	5
6	2	О	to	3	G	6
7	4	W-BR	to	4	W-BR	7
8	4	BR	to	4	BR	8

Note: W-G = White-Green

G = Green

W-O = White-Orange

O = Orange

W-BL = White-Blue

BL = Blue

W-BR = White-Brown

BR = Brown

Ethernet frames

The following are standard Ethernet frames.

ETHERNET_II Primarily used by TPC/IP
 ETHERNET_802.3 Default frame for Netware 3.11
 ETHERNET_802.2 Default frame for Netware 3.12 and 4.x

• ETHERNET_SNAP Primarily used by Appletalk

IEEE 802 MAC number

The CM202 utilityModule is identified with an Organizationally Unique Identifier (OUI) and company_id number:

00-D0-81

The MAC (Media Access Control) number of the utilityModule is thus:

00-D0-81-xx-xx-xx

where the last three bytes are the serial number of the board, unique for each adapter.

Chapter 7 RETURN POLICY AND WARRANTY

Return Policy

If you wish to return a product to the factory for service, please follow this procedure:

Read the Limited Warranty to familiarize yourself with our warranty policy.

Contact the factory for a Return Merchandise Authorization (RMA) number.

Please have the following available:

- Complete board name
- Board serial number
- A detailed description of the board's behavior

List the name of a contact person, familiar with technical details of the problem or situation, **along** with their phone and fax numbers, address, and e-mail address (if available).

List your shipping address!!

Indicate the shipping method you would like used to return the product to you.

We will not ship by next-day service without your pre-approval.

Carefully package the product, using proper anti-static packaging.

Write the RMA number in large (1") letters on the outside of the package.

Return the package to:

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College PA 16803-0906 USA

Limited Warranty

RTD Embedded Technologies, Inc. warrants the hardware and software products it manufactures and produces to be free from defects in materials and workmanship for one year following the date of shipment from RTD Embedded Technologies, INC. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, RTD Embedded Technologies will repair or replace, at its option, any defective products or parts at no additional charge, provided that the product is returned, shipping prepaid, to RTD Embedded Technologies. All replaced parts and products become the property of RTD Embedded Technologies. Before returning any product for repair, customers are required to contact the factory for an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input voltages, improper or insufficient ventilation, failure to follow the operating instructions that are provided by RTD Embedded Technologies, "acts of God" or other contingencies beyond the control of RTD Embedded Technologies), OR AS A RESULT OF SERVICE OR MODIFICATION BY ANYONE OTHER THAN RTD Embedded Technologies. EXCEPT AS EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND RTD Embedded Technologies EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION OF THIS WARRANTY. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED ABOVE, THE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL RTD Embedded Technologies BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, AND SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College PA 16803-0906 USA

Our website: www.rtd.com