
RoboSail User Guide
Rev. 3

David Gaynor, Trevor Hooton, Eric Schneider, Brittany Strachota, Adela Wee
Advised by Andrew Bennett and Bradley Powers

April 26, 2013

Abstract

This document aims to provide basic instructions and recommen-
dations sufficient to guide a high school team through the process of
making a robotic sailboat for the RoboSail competition sponsored by
US Sailing. Basic hardware and software setup instructions, as well
as troubleshooting and competition advice are included. Provided
software and further instructions are designed to provide basic func-
tionality; students can pursue further enhancements to improve their
boat’s capabilities or performance.

1 Introduction

1.1 Executive Summary

Over the past two decades, high school students have been inspired and en-
couraged to pursue further education or careers in science and technology
through competitions like the FIRST Robotics Competition (FRC), FIRST
Tech Challenge (FTC), and SeaPerch. Although many of these participants
go on to pursue careers in technical fields, a recent study by the National
Science Foundation (NSF) showed that the United States produced only 10%
of the 5 million engineers who graduated in 2008 [7].

We have developed a robotic platform for use in RoboSail, a high school
autonomous sailing competition sponsored by US Sailing, designed to take

1

advantage of dropping hardware costs and increasing focus on encouraging
our youth to pursue a career in STEM (science, technology, engineering, and
math) fields. This platform is meant to serve as a low-cost “kit” that will al-
low students to develop a unique solution to the challenge of the competition
with appropriate scaffolding to ensure some measure of success regardless of
a team’s access to additional resources. The platform includes a one-meter
model sailboat, sensors and other hardware critical to the boat’s autonomous
operation, and a library of back-end software that students can use to bench
test sensors and quickly develop their own code.

1.2 Problem Space and Mission

This low-cost robotic sailboat platform provides students an opportunity to
develop technical and life skills as well as synthesize and apply facets of their
knowledge base. We hope the project will allow students to foster an interest
in technical fields, build valuable relationships, practice practical skills (pub-
lic speaking, teamwork, professionalism, problem solving), and tie together
aspects of business (fundraising, budgeting, marketing) with applied math
and science.

The SailBot collegiate autonomous sailboat competition, sponsored by
US Sailing, was first held in 2006, and has grown every year since [10]. The
program is at a point in its lifecycle that is conducive to expansion into the
secondary school market.

Successful high school robotics have drawn over 45,000 high school stu-
dents into the arena of robotic competition, bringing professionals and college
students along in mentor and volunteer roles. VEX and FIRST are household
names – a major criterion for success in this market. Tactics such as com-
petitive gameplay, restricted resources, and opportunities for business and
marketing thinking contribute to the popularity of these programs. A strong
mentorship model pervades the competitions at all levels and leads to ulti-
mate sustainability and a sense of ownership and pride in the participants, so
we encourage teams to seek committed mentors early in their establishment.

The following delineates the set-up processes for a basic robotic sailboat
to participate in this competition.

2

2 Computing

Different computing tasks have different requirements. Two main restric-
tions on the computational hardware for a robotic sailboat are size and in-
put/output (I/O). The AlaMode [2] is designed to interface with the Rasp-
berry Pi [9] in a complementary manner. The Pi handles input commands
over Wifi very nicely and the AlaMode has plentiful digital and analog I/O.
We have based our platform on the combination of Raspberry Pi and AlaM-
ode because of the solid, flexible capabilities of these devices and their low
cost (at the time of this writing, approximately $40 for the Raspberry Pi and
$50 for the AlaMode).

2.1 Raspberry Pi

The Raspberry Pi is a small computer well-suited for ”hacker” projects. It is
booted from an SD card containing a Linux operating system image custom-
tailored for the robotic sailboat. The SD card must be formatted, flashed,
and written by an external device. The file for the boat’s Raspberry Pi is
provided electronically, so students can flash an SD card following the in-
cluded instructions.

The Pi behaves like a regular computer. One can plug in a monitor,
keyboard, mouse, and ethernet cable and treat it as a desktop, or install it
in a boat and communicate over wifi by opening an SSH (Secure SHell) to
communicate between two devices on the same network. Accessories that
use 3.3V logic and a USB cable that allow the user to directly plug into the
Raspberry Pi from a computer – eliminating the need for a spare keyboard,
mouse, or monitor setup – are available. (On a side note, that cable will only
allow you to communicate to the pi via command line and will not give you
access to the GUI.)

On the water, the ”thinking” takes place on the Pi. It receives inputs
down from the user (high-level commands such as waypoints and general be-
haviors) and up from the AlaMode (low-level sensor data). The ”think” code
on the Pi interprets all of this information, decides how to navigate through
the world, and sends commands to steer the boat down to the AlaMode,
which controls the sail and rudder. See Figure 1 for the data flow.

3

Figure 1: Completed roadkill with all components for testing.

The Raspberry Pi uses a Linux operating system, so users must learn how
to use bash (command line). Linux is open source, and plentiful documen-
tation is available online (see [5]). The ”think” code is written in Python, a
relatively straightforward programming language, again with plentiful docu-
mentation online. Communication between devices and ”nodes” of code (for
storing and transferring variables and data) uses ROS (Robot Operating Sys-
tem) [8], a communications protocol specifically designed for robotic systems
with multiple asynchronous processes, such as this one.

4

2.2 Arduino

The Arduino microcontroller is widely accepted as one of the easiest ways to
bridge the gap between computers and the real world. Wyolum, an interna-
tional group of hardware tinkerers, decided to take this open source hardware
and reconfigure it for the Raspberry Pi. The Arduino device is aptly named
the AlaMode, as it is designed to sit atop the Raspberry Pi.

The AlaMode has six analog inputs and fourteen digital inputs/outputs,
which is sufficient for a robotic sailboat with three or four sensors and a
pair of servo motors. There is a wealth of support for and information on the
Arduino Uno on arduino.cc and the AlaMode on Wyolum’s website (see [13]).

Arduino code is written in C or C++ and data communication to and
from the Pi uses ROS. However, for the purposes of this project, all of this
basic code is provided. You can treat the AlaMode as a black box. Plug all
the sensors in and run code in Python; don’t worry about the nuts and bolts
in between unless you have a special interest in the inner workings.

ADD SPECIFICS ON HOW IT IS USED FOR THIS BOAT.

3 Beginning Steps for Students

Here are a few short tutorials to get you and your team up and running!

3.1 Installing Linux

The Raspberry Pi runs Linux, so it is much easier to develop code in a Linux
environment than through a PC running Windows or Mac. An advantage
is that most pre-written snippets of code you will want and need will be far
easier to download in a Linux system than in Windows. Skip this step if you
do not want to install Linux.

One of the easiest ways to begin running Linux is with a virtual ma-
chine. You can find details and instructions for doing that with Linux here:
<http://www.psychocats.net/ubuntu/virtualbox>.
Install the latest version available.

5

<http://www.psychocats.net/ubuntu/virtualbox>

The virtual machine installation process is summarized in this guide in
the ’Working from Windows or Mac’ section. DREW SAYS THIS DID NOT
WORK FOR HIM.

3.2 Installing ROS

Everything ROS-related can be found on <www.ros.org>. In addition to
ROS resources, this site also supports an active ROS community that can be
queried for advice.

Immediately upon visiting the site, click ’Install’ for instructions sorted
by operating system. Ubuntu (a common Linux system) is the most common
operating system to use with ROS, but there are ROS instructions for Win-
dows, as well as other less commonly used operating systems, if you would
like to learn your way around ROS before installing Linux.

Once you have installed ROS, a number of tutorials can be found at <www.
ros.org> under the ’Tutorials’ link. It is recommended that you complete
all of these tutorials every time you install ROS on a computer, because
the beginner tutorials both teach the introductory lessons on ROS and walk
through a few settings that must be changed on each computer.

3.3 Installing Arduino on Linux

At the time of this writing, the best instructions for downloading Arduino
were found at <http://blog.markloiseau.com/2012/05/install-arduino-ubuntu/
>. Notice that these instructions are for Ubuntu 12.04. If they do not work
for you, search for ’Arduino install [your specific Linux distribution]’. The
instructions on Mark’s blog should work when followed to completion, in-
cluding ”Troubleshooting USB and the grayed out Serial Port” instructions
at the bottom of the article. These were necessary for us.

We experienced an interesting problem in Arduino set-up. When using
Arduino and trying to access the serial monitor, the communication between
the Arduino and computer often crashed. This problem was solved by follow-
ing the advice given in Reply 3 by Pheaver on this Arduino forum: <http:

//arduino.cc/forum/index.php?topic=126292.0>. In summary, there is

6

<www.ros.org>
<www.ros.org>
<www.ros.org>
<http://blog.markloiseau.com/2012/05/install-arduino-ubuntu/>
<http://blog.markloiseau.com/2012/05/install-arduino-ubuntu/>
<http://arduino.cc/forum/index.php?topic=126292.0>
<http://arduino.cc/forum/index.php?topic=126292.0>

sometimes an incorrect setting in an internal Arduino file when Arduino is in-
stalled on a Linux system. The serial monitor allows users to see communica-
tion between the Arduino and computer. An example use of the serial moni-
tor: <http://learn.adafruit.com/adafruit-arduino-lesson-5-the-serial-monitor/
overview>.

3.4 AlaMode Setup

The user manual for the AlaMode can be found here: <https://docs.

google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/

edit>. This contains useful information about how to set up your AlaMode
(there is a little soldering involved), how to power your AlaMode, and more.

3.4.1 Installing Arduino and Proper Settings

HOPEFULLY NOT NECESSARY - OUR RASPBERRY PI IMAGE SHOULD
HAVE THIS ON IT

This guide provides useful instructions for installing Arduino with the
proper settings (AlaMode Getting Started): <http://wyolum.com/projects/
alamode/alamode-getting-started/>

3.4.2 Running Arduino on Raspberry Pi

When you have Arduino code written on the Raspberry Pi, you can run it
one of several ways.

First, if you set up the Raspberry Pi with a screen, mouse, and keyboard
you can run Arduino code relatively easily. Once you log in to the Raspberry
Pi and type ’startx’ to begin the desktop mode, simply start the Arduino IDE,
change the device to AlaMode, change the Serial Port to /dev/ttyS0, and
run your code. Instructions and pictures can be found on page 8 of <https://
docs.google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/

edit>.

If you are trying to run Arduino code from the Pi-AlaMode combination
without a monitor of some sort, you need to follow the instructions in the
next section. The code package we provide should do this for you at a basic
level; venture into these areas if you wish to customize your computer.

7

<http://learn.adafruit.com/adafruit-arduino-lesson-5-the-serial-monitor/overview>
<http://learn.adafruit.com/adafruit-arduino-lesson-5-the-serial-monitor/overview>
<https://docs.google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/edit>
<https://docs.google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/edit>
<https://docs.google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/edit>
<http://wyolum.com/projects/alamode/alamode-getting-started/>
<http://wyolum.com/projects/alamode/alamode-getting-started/>
<https://docs.google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/edit>
<https://docs.google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/edit>
<https://docs.google.com/document/d/1HBvd3KNmcs632ZgO6t_u37B-qwV6P9o9FQe62lGkumM/edit>

3.4.3 Arduino from Command Line

The command line in Linux allows users to type commands that the com-
puter will run. When you connect to your Raspberry Pi over WiFi, you
will not be able to see the screen immediately. Instead, you will be able to
type commands that the Raspberry Pi then executes. Read more about the
command line at <http://linuxcommand.org/>.

You can run Arduino code on the Pi-AlaMode combination command line
by using tools found at <http://inotool.org/>. The easiest way to install
the tools is using ’pip install ino’ and following any other instructions on
the inotool website. After installation of ino, you can use the ’Quick Start
Tutorial’ on their website to practice using ino. A good way to test ino is to
first try it on your computer (if Arduino is installed) in conjunction with an
Arduino with which to test the sensors.

3.4.4 Working from Windows or Mac

If you are unable to install Linux directly on your machine...
Windows

If you are running Windows, you can run a virtual machine by doing the
following:

• Download the code examples for the Arduino and debug .ino files on a
Windows machine.

• Follow the instructions in this document for installing Arduino on your
computer (download Arduino, plug the Arduino into your computer,
point your computer toward the Arduino driver, run blink).

• Note that to power the servos, you will probably need to feed 9V
through the barrel connector in order to claim 5V (feeding 5V will
provide a voltage of approximately 4.7V, which might not be enough
to drive a servo).

Mac HEY GUYS, HOW DOES THIS WORK FOR MAC?

8

<http://linuxcommand.org/>
<http://inotool.org/>

4 Setting Up Sensors

A successful robotic sailboat must gather and process information about
its surroundings. Specifically, the boat must be able to sense its absolute
location, its heading, and the direction of the wind. To gather these data,
our boat, Mr. Robateau, uses a GPS, compass, and wind vane. Sensor
recommendations can be found in Appendix A.

If you have already acquired all the reccomended sensors, and want to
get started right away, go straight to our Quick Start Guide, in Appendix
C. Otherwise, for descriptions of each sensor and tips for testing, continue
reading.

4.1 Sensor Testing

We recommend assembling a ’roadkill’ that includes all hardware laid out
on a board for testing. Affix the components to a rigid, nonconductive (i.e.
Sintra R©, Lexan R©, acryclic) board with tape, laid out and labeled for clarity
(see Figure 2).

REPLACE WITH PHOTO OF NEW ROADKILL
REPLACE WITH PHOTO OF NEW ROADKILL

4.2 GPS

The recommended GPS (see Appendix A) is fairly accurate (2-5m) and re-
quires a battery to run. The GPS has a database of satellite/location in-
formation that it runs through when first booted up, also known as a cold
start, and uses the battery to store its last recorded location so that it will
be usable sooner. An Arduino tutorial for GPS is here: <http://learn.

adafruit.com/adafruit-ultimate-gps/direct-computer-wiring>.
AS SOON AS WE GET OUR CODE BASE ORGANIZED WE SHOULD

REPLACE THIS WITH OUR OWN CODE ALREADY LOADED ON THE
PI. INSERT PICTURE OF OUR FINAL GPS WIRING SETUP AND HOW
TO SOLDER TO THIS.

4.3 Compass

The recommended compass chip (see Appendix A) is a triple axis magnetic
sensor with a triple axis accelerometer for tilt compensation – very useful on

9

<http://learn.adafruit.com/adafruit-ultimate-gps/direct-computer-wiring>
<http://learn.adafruit.com/adafruit-ultimate-gps/direct-computer-wiring>

Figure 2: Mr. Robateau’s completed roadkill with all components for testing.

a boat rocking in the waves, propelled by a force that pushes it over! The
math used to process all this data is fairly complicated, but a code library
written by GitHub user ryantm converts the raw output of the compass to
a heading from 0◦to 360◦(see <https://github.com/ryantm/LSM303DLH>).
Use the most current files in this library to calibrate the compass.

The compass must be calibrated so that it reads the correct values. Fol-
low the steps in the callibration section of this guide.

INSERT PICTURE OF OUR FINAL COMPASS WIRING SETUP AND
HOW TO SOLDER TO THIS.

4.4 Wind Vane

The wind vane is a homemade device based on an absolute magnetic shaft
encoder (see Appendix A) that uses a Hall Effect sensor with a full 360◦range.
The encoder we used on Mr. Robateau is extremely low friction, as it spins

10

<https://github.com/ryantm/LSM303DLH>

using a bearing. The encoder is recommended over a potentiometer because
most potentiometers do not have a true 360◦range – they are usually about
40◦shy. Further, most potentiometers wear out over time because their con-
tacts are constantly rubbing against one another, unlike a magnetic encoder,
which uses no contact at all.

The encoder is wired as shown in Figure 3. The connector used is called
a micro jst plug specific to JR servos. You can also buy a pre-wired 4- or 6-ft
length of cable with this connector from US Digital, but we found it more
convenient to purchase multiple connectors and use spare PWM wire.

Note that these are all guidelines for you to get up and running! Feel free
to experiment with different shafts, fin sizes, materials, et cetera.

You will need to make a ’fin’ with enough surface area to move the en-
coder as the wind goes by. Cut a small fin shape from a rigid, lightweight
material, such as styrene foam used for making model airplanes or cardstock
wrapped with duct tape. Attach this to a small (about 4”) length of wire
with a small amount of durable tape. We used 1/32” carbon rod on Mr.
Robateau, but an unbent paperclip would also suffice.

Poke a small hole through a coffee stirrer/tube-shaped material that fits
over the end of the encoder shaft and push the wind vane through it. We
used 1/8” diameter aluminum tube and placed shrink tubing over the hole
to hold the vane snugly (see Figure 4).

The encoder should be mounted carefully near the top of the mast such
that it does not interfere with the sails’ motion and can catch a true sample
of wind.

We used a wire saddle to mount the encoder in its waterproof case (see
the ’Waterproofing’ section of this guide). Mark a mounting hole after posi-
tioning the saddle on the wide plastic portion of the mast (see Figure 5).

Drill a hole in the center of the marking to accommodate mounting hard-
ware and attach the wire saddle to the mast (see Figure 6).

The waterproofed encoder fits into this mounted wire saddle.

11

Figure 3: Encoder wiring.

Note that the encoder has a full 360◦range, but it is impossible to discern
the beginning and end of it from the outside. It is likely that the encoder
will not be installed straight. However, any offset error can be accounted for
in software. On startup, simply set the vane pointing in the direction you
wish 0◦to be and run the calibration script.

12

Figure 4: Wind vane assembled.

5 Wireless Communication

We recommend the Edimax wifi dongle (with high gain antenna) shown in
Table 1 on page 29. It is simple to connect to wifi through the Pi. A great
tutorial can be found on Adafruit’s website: <http://learn.adafruit.com/
adafruits-raspberry-pi-lesson-3-network-setup/overview>.

In order to emulate competition protocol, the following router and wifi
range extender is recommended (as a similar setup will be used at competi-
tion): Asus RT-N66U Dual-band Wireless-N900 and Amped Wireless High
Power Omni-Directional 12dBi WiFi Antenna. This allows us to accomodate
boats that require b/g/n WiFi and teams are able to choose the type of WiFi
they will use on their boat. We recommend testing the range while on the
water before selecting a bandwidth. In general, we have found that n has the
lowest range but the highest capacity to carry data, and b has a farther range
than n but the lowest capacity to carry data. Without the range extender,
wifi with the high gain Edimax has a maximum range of about 500-700 ft on
land.

Maintain the wifi antenna mounted to the boat in a vertical position. The
antenna broadcasts orthogonal to the direction it points, so if the antenna is

13

<http://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/overview>
<http://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/overview>

Figure 5: The silver marking was made after positioning the wire saddle on
the wide plastic portion of the mast.

horizontal, it will not broadcast a signal toward your computer (see Figure 7).

This is especially important to consider when waterproofing the dongle.
We recommend coating all connections in a long-cure epoxy, specifically West
Marine’s ”West Systems” 105 Epoxy Resin and 205/206 Hardeners (206 is
slower and is a bit easier to deal with). Be sure to coat all joints and points of
connection sufficiently (see Figure 8). Note that non-5 minute epoxies have
a stage in the curing process in which they are flexible and can be easily

14

Figure 6: Wire saddle mounted to the mast.

trimmed with the use of an x-acto/utility knife.

The WiFi dongle has a moving joint; be careful not to get any epoxy on
it. Also be sure it cannot be twisted off (that is another area that is prone
to leaks) and if properly cured, if you try to twist it off, the lower joint of
the antenna will pop off instead. This is actually desirable, as it will allow
you to silicone the inside (because if water got in there as well, it would wick
down into the board and potentially destroy the dongle). The silicone allows
for the antenna to remain flexible even after curing.

15

Figure 7: Antenna in proper position before applying epoxy.

6 Radio Controller

The Vela model boat comes packaged with a two-channel transmitter and
receiver RC remote. However, for autonomous operations you may find that
it has an insufficient number of channels. We highly recommend each team
purchases a receiver and transmitter made by either JR, Spectrum, or Futaba
with at least four channels. Additionally, you may need the four-channel mul-
tiplexer from Pololu (see Table 1 on page 29) in order to switch between
teleoperation and autonomous control. If all channels are connected, you can
have full autonomous or full manual control. If you require one channel of
autonomy and one channel of manual control (autonomous sail and manual
rudder) you can function at a base level by plugging the sail servo into the
multiplexer.

If you require a farther range via remote control, you can replace the

16

Figure 8: Coating connections in epoxy. Be sure to coat all joints and points
of connection.

2.4Ghz hardware with a 900Mhz version.

Note that most boats only come with two servo channels – rudder and
sail. If you desire greater control over your boat, you may need to acquire a
receiver and transmitter with more than five channels.

7 Installing Hardware on the Boat

7.1 Waterproofing

Before putting anything out in the water, all of your equipment must be
splash proof (and relatively dunk-proof, too). Here are a few tutorials de-
tailing Mr. Robateau’s waterproofing.

Waterproofing the Encoder
The encoder needs to be waterproofed and mounted to the mast. You can

17

use anything from a large-diameter straw to an empty lip balm tube to water-
proof; just make sure the ends are sealed! You will probably need an empty
lip balm tube, petroleum jelly, silicone sealant, and maybe a popsicle stick.
First, cut off the bottom of the tube. Drill a hole just a little larger than the
encoder shaft in the cap. Fit the encoder in, making sure the mini jst plug
is in place. Fill the tube with petroleum jelly, reattach the ends, and apply
either hot glue or silicone sealant to both ends. Some excess petroleum jelly
will probably come out of the drilled hole for the encoder shaft (see Figure
9). Wipe this excess away from the shaft; a small amount will not hinder
mobility or performance. Drill two holes into the plastic on top of the mast,
and use a ziptie to hold it in place.

Figure 9: Top of encoder capsule with excess petroleum jelly coming out of
drilled hole for encoder shaft. Wipe this excess away.

Mounting the Encoder to the Mast
Things you will need: The completed waterproof encoder assembly and a
similarly sized holder for electrical cabling (like a cable clamp or saddle tie).
Attach the mount to the encoder assembly and mark the hole on the mast

18

Figure 10: Bottom of waterproofed encoder capsule.

through which you aim to mount it. Drill out this hole and fix it in place with
a nut and bolt. Run a cable tie through, or if it is the one piece, you are done.

INSERT MOUNTING ENCODER PICTURE HERE
Mounting the Brain

Things you will need: A locking, sealing plastic box (3.5 oz or so), silicone
sealant, velcro, hardware, 3/8” quick release pneumatic connectors, flexible
3/8” pneumatic hose, a small amount of Duct Seal (a.k.a. monkey dung),
5-pin Wago 222 connectors (to act as a power distribution block)
Alternatives to pneumatic connectors: bulkhead/IP 67 cables made by Adafruit
Highly recommended tools: Dremel with cutting disks, sanding drums, and
drill bits

19

One does not need to cut a hole in the boat to fit the box, but it is im-
portant to consider that the higher the center of mass, the more likely the
boat is to tip. We cut a hole in Mr. Robateau’s deck so we could situate the
electronics as low as possible, keeping the center of mass low.

For any boat, the relation of the center of mass to the center of buoyancy
is extremely important, and generally you want the distance between them
to be as great as possible. A low center of mass will be most stable.

Cutting a hole in the deck:
WARNING: Fiberglass is an irritant and can harm your lungs! Before cut-
ting, ensure you have the proper safety gear, including a dust mask, safety
glasses, thick gloves, and a labcoat/long sleeved shirt or jacket. Make sure
your skin is protected/covered before sanding, grinding, or cutting into the
boat’s hull.

The Aquacraft Vela includes a support for one of the stays that may need
to be removed in order to cut a slot for the box. Proceed with caution,
watching for the piece of plywood that runs underneath the deck behind the
mast to distribute the load from the stay that was just removed. It is okay
to cut into some of it, but minimize the material removed.

Place your container on the deck of the boat to determine and mark the
best placement (see Figure 11). Remove the container and carefully trace
the footprint of your box onto a sheet of paper. Cut it out with a precision
blade and check the fit of your box to that template. Repeat until you reach
the flanges of your box, then tape the template onto the deck of your ship
and cut it carefully. If you are concerned about cutting into something you
shouldn’t have, take a drill and drill a small hole through the deck first to
see if it is made of fiberglass and wood or just fiberglass at that point. To get
past the foam layer underneath, take a long utility knife or a carving knife
and cut away at the styrofoam. Proceed with caution and keep gloves on –
there is a sharp layer of fiberglass on top.

Mounting the rest of the electronics:
You should take the time to sketch out where you want your electronics to
go. Our plastic box was tall enough to mount the Raspberry Pi on the side

20

Figure 11: Place your container on the deck of your boat to find and mark
optimal placement.

wall instead of on the bottom of the box. Most of the electronics, if not
all, can be mounted with velcro. Try to minimize the number of exposed
contacts (use heat shrink if available) and make sure all holes in the box are
properly sealed. You will most likely want to mount the GPS facing upward.

Here are some detailed pictures of Mr. Robateau’s electronics setup.
PUT PICS OF BOX HERE.

8 Before Turning On The System Checklist

Here are some things you should make do before powering up your roadkill.

1. LABEL ALL WIRES!

2. Check wiring

• Power and 5V are plugged in to terminal blocks

• BEC (5V regulator) is plugged into terminal blocks

• Was BEC programmed to 5V (you can easily check this by using
a voltmeter to measure the output voltage)?

• Wires plugged into 5V are not also plugged into ground

3. Reduce risk of killing electronics

21

• Are all boards in cases/insulated in some way?

• Did you ground yourself/wear a grounding strap before handling
electrical components?

9 Calibration Guide

When your hardware is mounted on the boat and you have completed the
Quick Start manual found at the end of this document, ensuring your sen-
sors are publishing data and your servos respond to your commands, you are
ready to calibrate your robotic sailboat.

The purpose of calibration is to align your sensor outputs to the real-world
phenomena they are measuring. For instance, it is practically impossible to
install the encoder such that the 0 value points straight ahead. It is quite
simple, however, to determine what the offset actually is and subtract it from
the measured value later.

To calibrate your hardware, follow this procedure:

• Start

– SSH in to the Pi and run calibrate.launch to begin the calibration
protocols

• Encoder

– Point the wind vane directly forward to set the 0 value

– The code will write this value to SensorOffsets.txt

• Servos

– Lay a protractor over the rudder with 90◦pointing directly back-
wards

– Use the left and right arrow keys to turn the rudder to 45◦

– Press ’q’ to lock in the rudder servo’s minimum angle

– Repeat for 90◦and 135◦

22

– Use the up and down arrow keys to let the sail all the way out to
90◦from the boat

– press ’q’ to lock in the sail’s maximum angle

– Repeat for a sail angle of 0◦

– The code will write these values to SensorOffsets.txt

• Compass

– Rotate the compass all the way about each of its three axes

– The code will capture the xmin, xmax, ymin, ymax, zmin and
zmax values and write their values to SensorOffsets.txt

• GPS

– The GPS requires no calibration. It outputs latitude and longi-
tude data out of the box. The conversion to UTM happens after
data is acquired.

• When data comes in from the sensors or is sent out to the servos, it
will be calibrated according to these values (check out sensors.py and
servos.py for the implementation)

• In a perfect world, you would only need to calibrate your boat once.
However, it is important to check that your sensors are publishing the
values you expect and recalibrate if necessary.

10 Testing Your Code

Whether you are writing you own code or simply testing your system with
the supplied Olinoboat code, you must be able to walk through each step of
the code and test it at each point. This both lets you know exactly what the
boat is doing at each point, and also lets you ensure that what the boat is
doing is correct.

Appendix D delineates a series of tests that will help you determine what
the code is trying to do. These tests assume that your roadkill is set up and
plugged into an Arduino, as you will see in the appendix. The Communica-
tions Testing guide also assumes knowledge from the Quick Start guide and

23

the ROS tutorials, so in going through the tests you may need to learn a few
new things.

You will run into strange, unforeseeable problems while testing, and will
need to find your way out of them. Looking to the internet for help is never
a bad idea as a first step. Best of luck!

11 Pre-sail Checklist

There are several ’checks’ and other measures that must be taken before
each time the boat is launched on the water including, but not limited to,
the following.

1. Check battery voltage

• voltage should be above 7.4V for a 2-cell LiPo or 11.1V for a 3-cell
LiPo

2. Check battery connector seals

• make sure you cannot see the terminals and that you cannot push
the connectors any closer

3. Ensure mast is secure

• post in depression

• ensure stays are tensioned properly, which in general means tight-
ened evenly to the point where there is no slack in the stays but
they don’t ’hum’ when plucked

4. Latch all hatches securely

• position such that seals are properly aligned

• perform a light ’tug test’ on each latch

5. Check for any other water entry points; ensure they are sealed

• screw holes

• seals around electronics container

24

• seals around pneumatic connectors/bulkheads

6. Check the connectivity between devices

• follow directions in the connections testing manual

12 Competition

12.1 Things to Expect

Upon arriving at competition you should receive a packet of information
including instructions about general setup and logistical information (eg.
connecting wirelessly to the boat during competition, the debugging center
that will be available – either a laptop with a console cable or a full desktop
setup to plug the Raspberry Pi into), schedule for the competition, and
various other pertinent details.

12.2 Wireless Connectivity

Be creative when naming your team’s router (perhaps use your team name
in some way). The competition router will likely be named something like
’RoboSail’ or ’RoboSail20xx’, so avoid similarly general names.

12.3 Computers

A main computer will likely be provided at competition.

12.4 Prepare Cupcakes

For optimal performance at competition (for you and your boat), bring a
minimum of one dozen baked goods (ideally cupcakes) along. Bake with care.
Patriotic decoration is preferable. We understand that RoboSail judges tend
to appreciate sweets.

12.5 Maintenance and Repair

Your boat will likely require some maintenance or repair over the course of
any competition. Your team can be prepared for most fixes with a handful

25

of important things.

• set of screwdrivers

• spare [quick-setting] waterproofing sealant (silicone, rubber tubing, hot
glue)

• strong tape

• spare batteries and charger

• patches for sail and hull of boat

26

References

[1] Adafruit. [Online]. Available: <http://learn.adafruit.com/

pi-video-output-using-pygame/overview,http://learn.

adafruit.com/adafruit-ultimate-gps/direct-computer-wiring>.

[2] AlaMode - purchase. [Online]. Available: <http://www.makershed.com/
AlaMode_for_Raspberry_Pi_p/mkwy1.htm>.

[3] Common Core State Standards Initiative, [Online]. Available: <www.

corestandards.org>.

[4] FIRST. [Online]. Available: <www.usfirst.org>.

[5] ”The Linux Documentation Project,” [Online]. Available: <http://www.
tldp.org/>.

[6] ”Understanding RC LiPo Batteries,” [Online]. Available: <http://www.
rchelicopterfun.com/rc-lipo-batteries.html>.

[7] ”Higher Education in Science and Engineering” [Online]. Available:
<http://www.nsf.gov/statistics/seind12/pdf/c02.pdf>.

[8] ROS.org. [Online]¿ Available: <http://www.ros.org/wiki/>.

[9] Raspberry Pi - purchase. [Online]. Available: <http://www.newark.com/
jsp/search/productdetail.jsp?SKU=43W5302’I&’CMP=KNC-GPLA’

I&’mckv=|pcrid|20115736341|plid|>.

[10] SailBot. [Online]. Available: <http://sailbot.org/>.

[11] ”UBC SailBot,” [Online]. Available: <http://ubcsailbot.org/>.

[12] Vex Robotics. [Online]. Available: <http://www.vexrobotics.com/>.

[13] Wyolum Arduino. [Online]. Available: <http://wyolum.com/

projects/alamode/>.

27

<http://learn.adafruit.com/pi-video-output-using-pygame/overview, http://learn.adafruit.com/adafruit-ultimate-gps/direct-computer-wiring>
<http://learn.adafruit.com/pi-video-output-using-pygame/overview, http://learn.adafruit.com/adafruit-ultimate-gps/direct-computer-wiring>
<http://learn.adafruit.com/pi-video-output-using-pygame/overview, http://learn.adafruit.com/adafruit-ultimate-gps/direct-computer-wiring>
<http://www.makershed.com/AlaMode_for_Raspberry_Pi_p/mkwy1.htm>
<http://www.makershed.com/AlaMode_for_Raspberry_Pi_p/mkwy1.htm>
<www.corestandards.org>
<www.corestandards.org>
<www.usfirst.org>
<http://www.tldp.org/>
<http://www.tldp.org/>
<http://www.rchelicopterfun.com/rc-lipo-batteries.html>
<http://www.rchelicopterfun.com/rc-lipo-batteries.html>
<http://www.nsf.gov/statistics/seind12/pdf/c02.pdf>
<http://www.ros.org/wiki/>
<http://www.newark.com/jsp/search/productdetail.jsp?SKU=43W5302'I&'CMP=KNC-GPLA'I&'mckv=|pcrid|20115736341|plid|>
<http://www.newark.com/jsp/search/productdetail.jsp?SKU=43W5302'I&'CMP=KNC-GPLA'I&'mckv=|pcrid|20115736341|plid|>
<http://www.newark.com/jsp/search/productdetail.jsp?SKU=43W5302'I&'CMP=KNC-GPLA'I&'mckv=|pcrid|20115736341|plid|>
<http://sailbot.org/>
<http://ubcsailbot.org/>
<http://www.vexrobotics.com/>
<http://wyolum.com/projects/alamode/>
<http://wyolum.com/projects/alamode/>

A Appendix A: Recommended Hardware

The components in Table 1 on page 29 are recommended for a basic, func-
tioning, competitive sailboat.

NOTE: We recommend the Aquacraft Vela as an RC boat because we
have used and tested it – as Mr. Robateau’s body. There are a number of
other RC craft that will work for this copmpetition. Several things come
with the Vela that you need to make sure you have if you get another RC
boat:

• RC transmitter and RC reciever, found at hobby stores or online

• Servos that control the sails and rudder

• Space for placing (relatively waterproof) electronics

SOURCE A CONNECTOR FOR THE ENCODER AND INCLUDE IN
THE TABLE

Additional untested or unsourced things: superbright LEDs, nice wiring
pack that can be worked with minimal tools, recommended tupperware, wa-
terproof connectors (maybe cable clam, maybe pneumatic connectors), con-
formal

28

Name Rough
Price
(Dollars)

Link

Aquacraft Vela
Sailboat

350.00 <http://www.amazon.com/

Vela-One-Meter-Sailboat-2-4GHz/dp/B004QJPSX0>

Raspberry Pi 35.00 <http://www.element14.com/community/groups/

raspberry-pi>

AlaMode
Shield

50.00 <http://www.makershed.com/AlaMode_for_

Raspberry_Pi_p/mkwy1.htm>

Edimax
EW-7711USn
Wifi Reciever

20.00 Compare Amazon, Newegg, and/or Walmart for online
prices

Adafruit GPS
3339

40.00 <http://www.adafruit.com/products/746>

Compass
LSM303DLH

6.00 <https://www.sparkfun.com/products/9757>

LSM303
Breakout
Board

24.00 <https://www.sparkfun.com/products/10703>

MA3 Encoder
(wind sensor)

30.00 <http://www.usdigital.com/products/ma3>

Water Leak
Sensor

5.00 <http://www.parts-express.com/pe/showdetl.

cfm?partnumber=320-122>

Total 560.00

Table 1: Recommended set of base hardware

29

<http://www.amazon.com/Vela-One-Meter-Sailboat-2-4GHz/dp/B004QJPSX0>
<http://www.amazon.com/Vela-One-Meter-Sailboat-2-4GHz/dp/B004QJPSX0>
<http://www.element14.com/community/groups/raspberry-pi>
<http://www.element14.com/community/groups/raspberry-pi>
<http://www.makershed.com/AlaMode_for_Raspberry_Pi_p/mkwy1.htm>
<http://www.makershed.com/AlaMode_for_Raspberry_Pi_p/mkwy1.htm>
<http://www.adafruit.com/products/746>
<https://www.sparkfun.com/products/9757>
<https://www.sparkfun.com/products/10703>
<http://www.usdigital.com/products/ma3>
<http://www.parts-express.com/pe/showdetl.cfm?partnumber=320-122>
<http://www.parts-express.com/pe/showdetl.cfm?partnumber=320-122>

B Appendix B: Recommended Tools and Ma-

terials

A number of basic tools and other materials will aid in the set-up of the boat.

• Dremel and sanding wheels

• Phillips head screwdriver

• flat head screwdriver

• precision blade (i.e. Xacto knife) and spare blades

• utility knife and spare blades

• metal straightedge or ruler

• epoxy (with disposable cups, spoons, and brushes)

• Super glue

• aquarium sealant

• Vaseline

• safety glasses

• gloves (what kind?)

• dust masks

• power drill

• hot glue gun with glue

• soldering iron with flux, thin solder, et cetera

• heatshrink

• wire stripper

• wire cutters (unless the stripper has cutters on it)

C Appendix C: Quick Start Guide

30

	
 Lets	
 get	
 you	
 up	
 and	
 going!	

	

	

This	
 tutorial	
 will	
 help	
 you	
 setup	
 and	
 test	
 the	
 included	
 hardware	
 and	
 software.	
 It	
 will	
 also	

give	
 a	
 quick	
 introduction	
 to	
 the	
 organization	
 of	
 the	
 software	
 so	
 you	
 can	
 start	
 writing	

your	
 own	
 code!	

	

	

Things	
 you’ll	
 need:	

	

1.	
 SD	
 card	
 with	
 the	
 included	
 ROSbian	
 image	
 installed	
 on	
 it.	
 This	
 should	
 have	
 been	
 included	
 in	

your	
 kit.	
 However,	
 if	
 you	
 did	
 not	
 receive	
 one	
 (or	
 have	
 lost	
 it)	
 check	
 out	
 the	
 guide	
 “Installing	

ROSbian”	
 before	
 continuing.	
 	

	

	

	

2.	
 Raspberry	
 Pi.	
 This	
 will	
 be	
 the	
 “brain”	
 of	
 your	
 Sailbot.	
 It	
 will	
 process	
 the	
 sail	
 position,	
 GPS	

position	
 of	
 the	
 boat,	
 wind	
 speed	
 and	
 heading	
 and	
 then	
 decide	
 how	
 to	
 move	
 the	
 rudder	
 and	

sails.	
 	
 	

	

	

	

3.	
 A	
 La	
 Mode	
 Board.	
 This	
 board	
 plugs	
 in	
 to	
 the	
 top	
 of	
 the	
 raspberry	
 pi	
 (we’ll	
 show	
 you	
 how)	
 and	

allows	
 the	
 pi	
 to	
 communicate	
 with	
 all	
 the	
 sensors	
 and	
 servos	
 aboard	
 the	
 boat.	

	

	

	

4.	
 Pre-­‐wired	
 GPS	
 module.	
 This	
 board	
 detects	
 the	
 GPS	
 position	
 of	
 the	
 boat,	
 with	
 an	
 accuracy	
 of	

10m.	
 So	
 if	
 you	
 were	
 to	
 take	
 the	
 boat	
 to	
 your	
 house	
 this	
 module	
 would	
 tell	
 the	
 boat	
 which	
 room	

it	
 was	
 in,	
 although	
 it	
 would	
 not	
 be	
 accurate	
 enough	
 to	
 know	
 where	
 in	
 the	
 room	
 it	
 was.	
 Using	
 this	

your	
 boat	
 can	
 navigate	
 to	
 waypoints	
 you	
 define,	
 and	
 avoid	
 obstacles	
 you	
 tell	
 it	
 avoid.	
 We	

recommend	
 the	
 Adafruit	
 ultimate	
 GPS	
 breakout	
 board,	
 and	
 the	
 pictures	
 and	
 descriptions	
 in	
 this	

guide	
 will	
 refer	
 to	
 that	
 device.	
 	
 This	
 board	
 comes	
 pretty	
 much	
 set	
 up,	
 but	
 you	
 will	
 still	
 need	
 to	

solder	
 wires	
 to	
 4	
 of	
 the	
 leads	
 on	
 the	
 board	
 before	
 using	
 it.	
 If	
 you	
 have	
 not	
 done	
 this	
 already	

check	
 out	
 the	
 “Assembling	
 the	
 Sensors”	
 guide	
 before	
 continuing.	
 	

	

	
 	

	

5.	
 Pre-­‐wired	
 compass	
 module.	
 Although	
 this	
 may	
 not	
 look	
 like	
 any	
 compass	
 you’ve	
 seen	
 before,	

it	
 still	
 works	
 pretty	
 much	
 the	
 same	
 way.	
 This	
 sensor	
 will	
 tell	
 your	
 boat	
 which	
 way	
 it	
 is	
 facing,	

North,	
 South,	
 East,	
 West,	
 and	
 anywhere	
 in	
 between.	
 It	
 will	
 let	
 your	
 boat	
 adjust	
 heading	
 into	
 or	

out	
 of	
 the	
 wind.	
 We	
 recommend	
 the	
 Sparkfun	
 LSM303	
 compass	
 module,	
 and	
 the	
 images	
 and	

descriptions	
 in	
 this	
 guide	
 will	
 assume	
 that	
 you	
 are	
 using	
 this	
 device.	
 It	
 comes	
 pretty	
 much	

assembled,	
 but	
 you	
 will	
 need	
 to	
 solder	
 wires	
 to	
 4	
 of	
 the	
 leads	
 on	
 the	
 board	
 before	
 using	
 it.	
 If	
 you	

have	
 not	
 done	
 this	
 already	
 check	
 out	
 the	
 “Assembling	
 the	
 Sensors”	
 guide	
 before	
 continuing.	

	

	

	

6.	
 Encoder.	
 This	
 what	
 you	
 will	
 be	
 using	
 as	
 a	
 wind	
 direction	
 sensor.	
 You’ll	
 attach	
 a	
 wind	
 vane	
 to	

the	
 brass	
 rod	
 sticking	
 up	
 out	
 of	
 the	
 encoder,	
 which	
 will	
 turn	
 to	
 face	
 the	
 direction	
 of	
 the	
 wind.	

The	
 encoder	
 returns	
 the	
 angular	
 position	
 of	
 the	
 rod,	
 from	
 0	
 to	
 360	
 degrees.	
 Now,	
 you	
 might	
 be	

wondering,	
 “where	
 is	
 0	
 degrees?	
 Where	
 is	
 360	
 degrees?	
 The	
 rod	
 just	
 keeps	
 turning	
 forever.”	

Good	
 point!	
 Before	
 using	
 the	
 rod	
 on	
 the	
 boat	
 you	
 will	
 need	
 to	
 calibrate	
 it	
 so	
 that	
 the	
 position	
 it	

thinks	
 is	
 0	
 degrees	
 is	
 the	
 wind	
 vane	
 pointed	
 towards	
 the	
 bow	
 of	
 the	
 boat,	
 and	
 180	
 degrees	

points	
 towards	
 the	
 stern.	
 We’ll	
 you	
 through	
 that	
 in	
 a	
 bit	
 though.	

	

	

	

7.	
 5v	
 Servo.	
 The	
 two	
 servos	
 on	
 your	
 boat	
 allow	
 the	
 brain	
 to	
 move	
 the	
 rudder	
 and	
 sails	
 to	
 the	

angles	
 it	
 wants.	
 For	
 this	
 guide	
 however,	
 you	
 will	
 need	
 a	
 spare	
 5V	
 servo.	
 if	
 you	
 did	
 not	
 receive	
 an	

extra	
 servo	
 in	
 your	
 kit	
 (if	
 you	
 only	
 have	
 the	
 two	
 in	
 the	
 boat)	
 then	
 any	
 5v	
 servo	
 should	
 work.	
 If	

you	
 do	
 not	
 have	
 one	
 lying	
 around	
 you	
 can	
 purchase	
 one	
 online	
 at	
 a	
 website	
 like	
 sparkfun.com,	

or	
 at	
 your	
 local	
 radioshack.	
 	

	

	
 	

	

8.	
 2	
 Power	
 Blocks.	
 There	
 will	
 be	
 3	
 sensors	
 and	
 2	
 servos	
 aboard	
 your	
 boat,	
 all	
 which	
 need	
 to	
 be	

powered	
 from	
 one	
 battery.	
 These	
 little	
 gizmos	
 let	
 you	
 plug	
 many	
 wires	
 into	
 one	
 power	
 port.	

We’ll	
 show	
 you	
 how	
 they	
 work	
 in	
 a	
 bit.	
 Two	
 should	
 have	
 been	
 included	
 in	
 your	
 kit.	

	

	

	

9.	
 A	
 working	
 linux	
 operating	
 system.	
 If	
 you	
 already	
 have	
 some	
 flavor	
 of	
 linux	
 installed	
 on	
 your	

computer,	
 and	
 would	
 like	
 to	
 use	
 that	
 then	
 just	
 follow	
 the	
 “Setting	
 up	
 Linux	
 for	
 Rosbian	

Development”	
 guide.	
 However,	
 you	
 can	
 also	
 get	
 a	
 pre-­‐configured	
 VM	
 which	
 has	
 all	
 the	
 software	

and	
 settings	
 you	
 need	
 pre-­‐loaded,	
 from	
 [site	
 with	
 our	
 vm].	
 If	
 you	
 wish	
 to	
 use	
 the	
 VM	
 on	
 a	

Windows	
 computer	
 follow	
 the	
 brief	
 instructions	
 in	
 the	
 “Setting	
 up	
 Windows	
 to	
 use	
 the	
 linux	

VM”.	

	

Setting	
 up	
 the	
 hardware:	

	

1.	
 	
 Connect	
 everything	
 to	
 the	
 power	
 blocks.	
 Plug	
 power	
 and	
 ground	
 from	
 each	
 sensor	
 into	
 the	

power	
 blocks.	
 One	
 power	
 block	
 should	
 have	
 all	
 the	
 ground	
 wires	
 plugged	
 into	
 it,	
 and	
 the	
 other	

should	
 have	
 all	
 the	
 power	
 wires.	

	

	

	

	

	

	

	

	

	

The	
 GPS	
 module:	

	

	

	

	

	

The	
 compass:	

	

	

	

	

The	
 servo:	
 	

	

	

	

	

	

The	
 encoder:	

pwr	
 gnd	

	

pwr	

gnd	

	

pwr	

gnd	

	

gnd	

	

	

Plug	
 all	
 the	
 wires	
 into	
 their	
 respective	
 power	
 block	
 (it	
 doesn’t	
 matter	
 which	
 one	
 as	
 long	
 as	
 all	

the	
 gnds	
 are	
 in	
 one	
 block	
 and	
 all	
 the	
 powers	
 are	
 in	
 another).	
 	
 Also	
 plug	
 a	
 loose	
 wire	
 stripped	
 at	

both	
 ends,	
 about	
 as	
 long	
 as	
 your	
 hand,	
 into	
 both	
 power	
 blocks.	

	

	

	

	

	

	

	

	

	

	

	

	

	

2.	
 Connect	
 the	
 alamode	
 to	
 the	
 raspberry	
 pi.	
 The	
 alamode	
 fits	
 snug	
 on	
 the	
 top	
 the	
 raspberry	
 pi	

as	
 shown	
 below.	

	

pwr	
 wires	
 gnd	
 wires	

	

pwr	
 wire	
 which	

goes	
 to	
 battery	

pwr	

gnd	
 wire	
 which	

goes	
 to	
 the	
 battery	

gnd	

Signal	

Power	

	

	

	

3.	
 Make	
 sure	
 the	
 power	
 jumper	
 on	
 the	
 alamode	
 is	
 in	
 the	
 off	
 position.	
 The	
 alamode	
 can	
 be	

powered	
 either	
 by	
 the	
 raspberry	
 pi,	
 or	
 through	
 it’s	
 own	
 power	
 source.	
 When	
 the	
 jumper	
 is	
 in	

the	
 “on”	
 position	
 (first	
 picture)	
 power	
 comes	
 from	
 the	
 pi.	
 When	
 it	
 is	
 in	
 the	
 “off”	
 position	
 (second	

picture)	
 it	
 takes	
 power	
 from	
 the	
 microusb	
 power	
 port	
 (shown	
 below),	
 or	
 a	
 battery	
 (explained	

later).	
 You	
 will	
 always	
 want	
 to	
 power	
 the	
 alamode	
 with	
 it’s	
 own	
 power	
 source,	
 so	
 the	
 jumper	

should	
 always	
 in	
 the	
 off	
 position.	
 If	
 you	
 don’t	
 do	
 this	
 then	
 the	
 sensors	
 will	
 not	
 get	
 enough	
 power	

to	
 run	
 properly.	

	

	

	

	

	

	

	

	

	

	

The	
 jumper	
 in	
 the	
 “on”	
 position.	
 This	
 is	
 the	
 position	

you	
 do	
 not	
 want.	
 	

The	
 jumper	
 in	
 the	
 “off”	
 position.	
 This	
 is	
 the	
 position	

you	
 do	
 want.	
 	

	

	

	

The	
 microsusb	
 power	
 port	
 through	
 which	
 you	
 will	
 be	
 powering	
 the	
 alamode.	
 There	
 is	
 also	
 one	

on	
 the	
 raspberry	
 pi	
 which	
 will	
 also	
 be	
 used	
 to	
 power	
 the	
 pi.	

	

	

	

	

	

	

	

	

4.	
 Plug	
 in	
 the	
 sensors	
 and	
 the	
 servo.	
 Now	
 we	
 need	
 to	
 plug	
 in	
 our	
 sensors	
 and	
 our	
 servo	
 into	
 the	

alamode,	
 through	
 which	
 they	
 will	
 communicate	
 with	
 the	
 raspberry	
 pi.	

	

First,	
 the	
 GPS.	
 Plug	
 the	
 wire	
 from	
 the	
 TX	
 pin	
 on	
 the	
 GPS	
 into	
 the	
 D3	
 port	
 on	
 the	
 A	
 La	
 Mode,	
 and	

the	
 wire	
 from	
 the	
 RX	
 port	
 into	
 D2.	

	

	

	

	

	

	

	

	

	

RX	
 pin	
 TX	
 pin	

	

	

	

	

	

Next,	
 the	
 compass.	
 Plug	
 a	
 wire	
 from	
 the	
 SCL	
 pin	
 on	
 the	
 compass	
 into	
 port	
 A5	
 on	
 the	
 A	
 La	
 Mode.	

Then	
 plug	
 a	
 wire	
 from	
 the	
 SDA	
 pin	
 on	
 the	
 compass	
 into	
 port	
 A4	
 on	
 the	
 aLaMode.	

	

	

	

	

	

	

	

D3	
 D2	

SDA	
 Pin	
 SCL	
 Pin	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Now,	
 for	
 the	
 servo.	
 Plug	
 the	
 signal	
 wire	
 from	
 the	
 servo	
 cable	
 into	
 D9.	
 The	
 servo	
 has	
 only	
 three	

wires	
 running	
 from	
 it,	
 pwr,	
 gnd	
 and	
 signal.	

	

	

	

	

	

	

Port	
 A4	
 Port	
 A5	

Signal	
 wire	

	

	

Now	
 let’s	
 plug	
 in	
 the	
 encoder:	

	

	
 	

	

	

	

And	
 finally,	
 plug	
 the	
 power	
 blocks	
 in.	
 Take	
 the	
 loose	
 wire	
 you	
 plugged	
 into	
 the	
 gnd	
 block	
 and	

plug	
 the	
 other	
 end	
 into	
 one	
 of	
 the	
 two	
 gnd	
 ports	
 shown	
 below.	
 Do	
 the	
 same	
 with	
 the	
 wire	
 from	

the	
 pwr	
 block,	
 but	
 plug	
 it	
 into	
 the	
 5V	
 port.	

	

	

	

	

Gnd	
 power	

block	

pwr	
 power	

block	

	

Signal	
 wire	

	
 	

5.	
 Plug	
 the	
 SD	
 card	
 into	
 the	
 Raspberry	
 Pi.	
 Just	
 slide	
 the	
 SD	
 card	
 into	
 the	
 port	
 on	
 the	
 bottom	
 of	

the	
 Raspberry	
 pi,	
 as	
 shown	
 below.	
 	

	

	

	

6.	
 Plug	
 the	
 Raspberry	
 Pi	
 into	
 the	
 router,	
 then	
 plug	
 in	
 first	
 the	
 aLaMode	
 power,	
 followed	
 by	
 the	

Raspberry	
 Pi	
 Power.	
 Find	
 a	
 nice	
 level,	
 non-­‐metallic	
 surface	
 near	
 three	
 outlets.	
 Plug	
 the	
 two	

microusb	
 adapters	
 included	
 in	
 the	
 kit	
 into	
 two	
 of	
 the	
 outlets.	
 Plug	
 the	
 included	
 router	
 into	
 the	

third.	
 If	
 for	
 some	
 reason	
 you	
 don’t	
 have	
 the	
 adapters	
 (you	
 lost	
 them,	
 or	
 never	
 received	
 them)	

most	
 Android	
 phone	
 chargers	
 will	
 also	
 work.	
 Now	
 plug	
 the	
 pi	
 into	
 the	
 router.	
 Any	
 standard	

cat5E	
 Ethernet	
 cable	
 will	
 work;	
 one	
 should	
 have	
 been	
 included	
 in	
 your	
 kit.	
 However,	
 if	
 you	
 do	

not	
 have	
 one	
 you	
 can	
 purchase	
 one	
 online	
 on	
 amazon.com,	
 or	
 any	
 local	
 electronics	
 store	
 (Best	

Buy,	
 Radio	
 Shack).	

	

	

	

	

	

There	
 should	
 now	
 be	
 lights	
 blinking	
 on	
 the	
 raspberry	
 pi,	
 the	
 aLaMode	
 and	
 the	
 GPS.	
 If	
 you	
 do	
 not	

see	
 any	
 lights	
 make	
 sure	
 that	
 the	
 micro	
 usb	
 cables	
 are	
 plugged	
 in	
 securely,	
 both	
 to	
 the	
 wall	

outlet	
 and	
 the	
 boards.	
 Also	
 make	
 sure	
 the	
 outlet	
 you	
 are	
 using	
 works,	
 by	
 plugging	
 something	

else	
 in	
 and	
 verifying	
 it	
 works.	

	

Getting	
 started	
 with	
 the	
 software:	

	

Once	
 you	
 get	
 the	
 lights	
 blinking	
 on	
 the	
 raspberry	
 pi,	
 GPS	
 and	
 aLaMode	
 you	
 are	
 ready	
 to	
 get	

started	
 with	
 the	
 sailboat	
 software.	
 If	
 the	
 steps	
 below	
 I	
 will	
 include	
 screenshots	
 from	
 the	
 pre-­‐
configured	
 VM	
 from	
 [website].	
 If	
 you	
 are	
 not	
 using	
 that	
 VM,	
 but	
 still	
 followed	
 the	
 “Setting	
 up	

Linux	
 for	
 Rosbian	
 Development”,	
 things	
 might	
 look	
 a	
 bit	
 different,	
 but	
 all	
 the	
 commands	
 should	

work	
 the	
 same.	
 	

	

1. Boot	
 up	
 your	
 Linux	
 machine	
 (if	
 you	
 don’t	
 have	
 this	
 consult	
 Things	
 you	
 need	
 number	
 8).	

	

2. Open	
 a	
 terminal	
 window.	
 You	
 will	
 be	
 using	
 the	
 terminal	
 often	
 while	
 developing	
 for	
 code	
 for	

the	
 Sailbot.	
 You	
 will	
 use	
 it	
 to	
 run	
 ROS	
 locally	
 on	
 your	
 linux	
 machine,	
 for	
 testing,	
 and	
 also	
 to	

communicate	
 with	
 the	
 Raspberry	
 Pi,	
 and	
 run	
 ROS	
 there.	
 ROS	
 is	
 the	
 software	
 at	
 the	
 core	
 of	

your	
 Sailbot’s	
 brain.	
 You	
 don’t	
 need	
 to	
 worry	
 about	
 how	
 it	
 works,	
 unless	
 you’re	
 interested.	

Most	
 of	
 the	
 time	
 you	
 will	
 be	
 editing	
 code	
 which	
 communicates	
 with	
 ROS	
 (we	
 will	
 explain	

this	
 later),	
 but	
 you	
 will	
 never	
 have	
 to	
 do	
 anything	
 too	
 complicated	
 with	
 it.	

	

	

	
 	

	

3. Type	
 in	
 the	
 command	
 ssh pi@rosbian,	
 and	
 press	
 enter.	
 You	
 may	
 see	
 a	
 warning	
 like:

The authenticity of host 'rosbian1.olin.edu (10.33.26.32)' can't
be established. ECDSA key fingerprint is
b1:56:1e:e5:87:fa:9d:0d:2f:57:46:eb:53:41:1c:7e.
Are you sure you want to continue connecting (yes/no)?

In	
 which	
 case	
 just	
 type	
 yes	
 and	
 hit	
 enter.	
 You	
 will	
 now	
 be	
 asked	
 for	
 a	
 password.	
 The	
 password	
 is	

raspberry.	
 Type	
 that	
 in	
 and	
 hit	
 enter.	

	

4. You	
 will	
 now	
 see	
 these	
 lines	
 in	
 your	
 console:	

	

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue Apr 23 11:10:58 2013 from 10.41.24.174
pi@rosbian1 ~ $
	
 	

The	
 raspberry	
 pi	
 also	
 runs	
 a	
 version	
 of	
 linux,	
 whose	
 console	
 operates	
 the	
 same	
 way	
 that	
 the	

console	
 on	
 your	
 version	
 of	
 linux	
 operates.	
 When	
 you	
 run	
 the	
 command	
 	
 ssh pi@rosbian	

you	
 are	
 telling	
 your	
 computer	
 to	
 send	
 everything	
 you	
 type	
 into	
 your	
 console,	
 to	
 the	
 console	
 on	

the	
 pi,	
 and	
 then	
 display	
 everything	
 the	
 console	
 on	
 the	
 pi	
 sends	
 back,	
 in	
 your	
 console.	
 The	
 pi@
part	
 of	
 the	
 command	
 indicates	
 that	
 you	
 want	
 to	
 login	
 into	
 the	
 raspberry	
 pi	
 as	
 the	
 user	
 named	
 pi	

(a	
 user	
 which	
 we	
 have	
 created	
 and	
 pre-­‐configured	
 for	
 you).	
 So	
 at	
 this	
 point	
 you	
 can	
 consider	
 the	

console	
 you	
 have	
 open,	
 actually	
 a	
 console	
 for	
 the	
 raspberry	
 pi,	
 and	
 every	
 command	
 you	
 type	
 as	

a	
 command	
 you	
 are	
 sending	
 to	
 the	
 device,	
 as	
 the	
 user	
 pi.	
 	

	

5. Now	
 run	
 the	
 command	
 roscd	
 sailboat.	
 Your	
 terminal	
 should	
 now	
 look	
 like	
 this:	

	

pi@rosbian1 ~/catkin_ws/src/sailbot $
	

Before	
 you	
 go	
 any	
 further	
 run	
 the	
 command	
 git	
 pull	
 origin	
 master.	
 This	
 updates	
 the	
 sailboat	

code,	
 to	
 make	
 sure	
 it	
 will	
 work	
 for	
 the	
 next	
 few	
 steps.	

	

Now,	
 the	
 main	
 use	
 of	
 a	
 console	
 is	
 to	
 navigate	
 around	
 a	
 computer.	
 The	
 beginning	
 of	
 the	
 line,	
 next	

to	
 the	
 blinking	
 cursor	
 indicates	
 where	
 in	
 the	
 computer	
 you	
 are.	
 So	
 when	
 you	
 see	
 the	
 line	
 	

	

pi@rosbian1 ~/catkin_ws/src/sailbot $
	

The	
 part	
 that	
 is	
 highlighted	
 blue	
 and	
 green,	
 pi@rosbian1,	
 is	
 the	
 computer	
 and	
 username.	
 So	

you	
 know	
 that	
 you	
 are	
 logged	
 on	
 as	
 the	
 user	
 pi,	
 on	
 the	
 computer	
 rosbian1	
 (every	
 computer	

running	
 Linux	
 has	
 a	
 name,	
 so	
 other	
 computers	
 can	
 talk	
 to	
 it).	
 The	
 part	
 that	
 is	
 highlighted	
 pink	

~/catkin_ws/src/sailbot,	
 is	
 the	
 directory	
 you	
 are	
 currently	
 in.	
 If	
 you	
 normally	
 use	

Windows	
 as	
 your	
 operating	
 system	
 you	
 may	
 have	
 used	
 Windows	
 explorer	
 before,	
 to	
 find	
 or	

open	
 a	
 file.	
 You	
 use	
 explorer	
 by	
 clicking	
 on	
 pictures	
 of	
 folders	
 to	
 open	
 them,	
 which	
 reveals	
 the	

files	
 and	
 other	
 folders	
 they	
 contain.	
 With	
 the	
 console	
 you	
 are	
 doing	
 the	
 same	
 thing,	
 but	
 there’s	

no	
 mouse.	
 You	
 enter	
 a	
 new	
 directory	
 using	
 the	
 command	
 cd	
 (which	
 stands	
 for	
 change	

directory).	
 However,	
 when	
 you	
 use	
 cd	
 you	
 need	
 to	
 specify	
 which	
 folder	
 you	
 want	
 to	
 change	
 to.	

So	
 you	
 either	
 memorize	
 the	
 name	
 of	
 every	
 folder	
 on	
 your	
 system	
 (take	
 it	
 from	
 me,	
 don’t	
 try	

this),	
 or	
 you	
 use	
 another	
 popular	
 command,	
 ls.	
 ls	
 lists	
 all	
 the	
 folders	
 and	
 files	
 in	
 the	
 current	

directory.	
 So	
 go	
 ahead	
 and	
 try	
 this	
 command	
 now.	
 Just	
 type	
 ls	
 into	
 the	
 terminal	
 and	
 hit	
 enter.	

You	
 should	
 get	
 something	
 that	
 looks	
 kind	
 of	
 like	
 this:	

	

	

	

So	
 now	
 you	
 can	
 see	
 all	
 the	
 files	
 and	
 directories	
 contained	
 within	
 the	
 folder	

~/catkin/src/sailbot.	
 All	
 the	
 purple	
 words	
 are	
 names	
 of	
 other	
 folders,	
 and	
 the	
 white	

words	
 are	
 files.	
 Now	
 that	
 we	
 know	
 the	
 names	
 of	
 all	
 the	
 folders	
 we	
 can	
 explore,	
 let’s	
 try	
 changing	

directory	
 (usually	
 called	
 cding,	
 pronounced	
 ceedeeing).	
 Go	
 ahead	
 and	
 type:	

	

cd	
 launch	

	

and	
 hit	
 enter.	
 Now	
 the	
 name	
 of	
 your	
 current	
 directory	
 should	
 have	
 gone	
 from	

~/catkin_ws/src/sailboat	
 to	
 ~/catkin_ws/src/sailboat/launch.	
 What	
 this	

means	
 is	
 that	
 you	
 are	
 now	
 inside	
 the	
 folder	
 launch,	
 which	
 is	
 inside	
 folder	
 sailboat,	
 which	
 is	

inside	
 the	
 folder	
 src	
 which	
 is	
 inside	
 the	
 folder	
 catkin_ws	
 which	
 is	
 inside	
 the	
 folder	
 ~.	
 	
 cding	
 into	
 a	

folder,	
 like	
 we	
 just	
 did,	
 is	
 just	
 the	
 same	
 as	
 double	
 clicking	
 the	
 picture	
 of	
 a	
 folder	
 in	
 windows	

explorer.	

	

So	
 now	
 type	
 the	
 command	
 ls	
 again,	
 and	
 you	
 should	
 see	
 this	
 (or	
 something	
 like	
 it):	

	

	

	

So	
 there	
 are	
 no	
 folders	
 in	
 this	
 directory	
 (no	
 purple	
 words).	
 So	
 all	
 these	
 names	
 must	
 be	
 names	
 of	

files.	
 To	
 get	
 you	
 started	
 we’re	
 gonna	
 run	
 one	
 of	
 these	
 files,	
 we’ll	
 do	
 this	
 by	
 running	
 the	

command	
 roslaunch	
 calibrate.launch.	

	

You	
 might	
 have	
 to	
 wait	
 for	
 a	
 minute,	
 but	
 then	
 you	
 should	
 see	
 some	
 text	
 print	
 out	
 on	
 the	

console.	
 Now	
 go	
 ahead	
 and	
 follow	
 the	
 “Calibration	
 Guide“.	

D Appendix D: CommunicationS Testing with

Arduino

45

In these slides you can follow high-level steps to walk through and
check each step of the code. This will (hopefully) let you

1. Test your system and confirm that it works OR
2. Narrow in on the points in your system that are not working

While this guide will try to give suggestions for what might be going
wrong in your system, we can’t cover the entire range of problems that
might be raising issues here. Hopefully this will help you identify
problem areas, at the very least.

Best of luck!
 -- The Olin Robo II Team

The point of this Guide

The alaMode receives data
from the sensors

The Raspberry Pi receives sensor
data from the alaMode

The Real World Sail servo moves sail Rudder servo moves rudder

‘maintain_fast_sail_angle’
chooses a sail angle based

on the
apparent wind

‘point_boat_at_target’
tries to use the rudder

to point the boat where
think.py requests

‘go fast’ outputs where
not to go (into irons,
directly downwind)

‘go short’ outputs
where to go (at

waypoint)

‘think’ tries to choose a heading that
goes towards the waypoint without

going into irons or directly downwind

Rough upper level
Code diagram

We will need to check whether the code on the Raspberry Pi will work with
the alaMode eventually, but making sure that code on ‘any Arduino’ to ‘any
Computer’ will work is very valuable.

The goal is to make sure the code works on you computer, where you can see
the information very easily. Then you can do testing on the RasPi/alaMode to
make sure it still runs, and you’re doing less testing with the RasPi/alaMode
trying to check whether it’s doing the right thing.

Example: If the boat is supposed to take the apparent wind and use that
to set the sail to an angle that you want, it can be hard to test that with
everything plugged into the Raspberry Pi. If you run the code and the sail
doesn’t do what you expect, there are a number of places problems can
be happening (in a sensor, in the code, or in the servo wiring, etc.)
 If instead you plug the wind sensor into your computer, you can
easily check that 1) the sensor data is reaching the computer, 2) the code
is choosing to do the right thing with the sensor data, and finally 3) that
the sail servo is moving to the right place.

Why doing testing with Arduino <-> Computer is useful, when
you’ll be using Raspberry Pi <-> alaMode in the end

The suggestions we make in these slides and commands we suggest
running may be unfamiliar to you (like ‘Rostopic echo the topics you
care about’) so we have tried to tried to create an index at the end
explaining various steps. If a topic is in the index, we will mark it like so.

Topic of interest [A1]
Another topic of interest [A2]

The index will either try to explain the topic or point you to other
resources in our documentation.

If a confusing suggestion is not marked as a topic, it was probably
marked in an earlier slide (if it came up before) and you will likely be
able to find it in the Index.

How to use the Index

How to use the Results Slides

After each test slide, you’ll find a results slide that will try to explain
what information you should be seeing.

These slides will also try to give you some ideas for solutions if you’re
not seeing the correct thing.

• Run the check_arduino launch file [A4]
• Will start Arduino <-> computer communication

• Rostopic echo the topics coming directly out of the Arduino [A5]
• /heading, /gps_lat, /gps_lon, /pwm_duration

Making sure that an Arduino is
getting sensor readings

Setup
• Plug all sensors into the Arduino [A1]
• Power the Arduino with an adequate

power source [A2]
• ‘ino build’ and ‘ino upload’ PubSub.ino

onto Arduino, if it’s not there [A3]

Making sure that an Arduino is getting sensor readings

/heading should be a number from 0-360, and should change when you spin the
compass. If you are seeing non-linearity (for example, if the actual compass changes
10° and the reading jumps 180°) then you need to run the compass calibration
explained in the Calibration documentation.

/gps_lat and /gps_lon should be 0 inside and something like 42.288802, -71.308823
outside. You can check a site like http://itouchmap.com/latlong.html to check your
actual latitude and longitude. Use the tutorials mentioned in Index A11 to
troubleshoot GPS issues.

/pwm_duration should be a number from 0 to 1027 that increases as you spin the
encoder, then jumps back to 0 when you cross 1027.

In general, if any sensors aren’t working it is a good idea to

1. Double check the wiring making sure everything is connected properly and
there are no shorts or other problems in the system

2. Use a multimeter to measure the voltage being supplied to the sensors and
make sure it is correct

Making sure the sensor values are
being reported accurately to the
computer from the Arduino

• Run the check_sensor_data launch file
• Will start Arduino <-> computer communication
• Will start publishing the visible sensor data [A6]

• Rostopic echo the topics holding the processed sensor data [A7]
• /compass_heading, /y_position_UTM, /x_position_UTM, /wind_angle

Setup
• Plug all sensors into the Arduino
• Power the Arduino with an adequate

power source
• ‘ino build’ and ‘ino upload’ PubSub.ino

onto Arduino, if it’s not there

Making sure the sensor values are being reported accurately
to the computer from the Arduino

The comments here will assume that the last test worked, and that the sensor values
are accurately coming off of the Arduino onto the computer.

/compass_heading should be from 0-360, the exact same as /heading

/y_position_UTM and /x_position_UTM should be the longitude (x) and latitude (y)
from the GPS, converted into UTM. Wikipedia ‘UTM’ for a good description. You can
use a site like this:
 http://tagis.dep.wv.gov/convert/
To check whether your latitude and longitude is correctly showing up as UTM. The
actual conversion from lat/lon to UTM occurs in latlon_tools.py.

/wind_angle should be from 0-360, and change when you spin the encoder. The
computer has taken the 0-1027 scale of the raw data and converted it to a 0-360 scale.
If the wind vane is mounted on the boat and the ‘0’ position of the encoder is not
dead ahead, you can run the encoder calibration mentioned in the Calibration
documentation.

Make sure the sensor values are
correctly being turned into a
suggested sail angle

Setup
• Plug the encoder into the Arduino
• Power the Arduino with an adequate

power source
• ‘ino build’ and ‘ino upload’

EncoderRead_RosPub.ino onto the
Arduino

• Run the check_sail_control launch file
• Will start Arduino <-> computer communication
• Will run maintain_fast_sail_angle.py, which looks at wind encoder data and

commands the sail servo
• Spin encoder by hand to an angle you know the correct sail position for [A8] and

check with Log messages [A9] that program is trying to set the correct sail angle
• Look for Log messages from maintain_fast_sail_angle.py, which look like so:

• fast_sail_angle.py: sail angle should be: 60
• This means the code wants to set the sails 60 degrees out – is that correct for

the current encoder angle

Make sure the sensor values are correctly being turned into
a suggested sail angle

Index A8 (How you know what the sail position should be) tells you what to expect
from the commanded sail setpoint. Because the sail position is set by the apparent
wind, you can spin the encoder to different positions by hand and make sure that the
angle the code wants to set the sail to are correct (correct according to A8).

The log messages in maintain_fast_sail_angle.py should let you see what the apparent
wind angle is. This could be useful for debugging, if the sail angle that
maintain_fast_sail_angle.py wants to create is not what you expect.

Make sure the suggested sail angle
is correctly being turned into sail
position

Setup
• Plug the encoder and sail servo into

the Arduino [A10]
• Power the Arduino with an adequate

power source
• ‘ino build’ and ‘ino upload’

EncoderRead_RosPub.ino onto the
Arduino

• Run the check_sail_control launch file
• Will start Arduino <-> computer communication
• Will run maintain_fast_sail_angle.py, which looks at wind encoder data and

commands the sail servo
• Run sail calibration code explained in the Calibration documentation
• Turn the encoder by hand and view the ROS log messages coming from

maintain_fast_sail_angle.py as before, but this time make sure the sail is going
to that angle

Make sure the suggested sail angle is correctly being turned
into sail position

This assumes you have checked the tests previously – you know that the encoder is
reading information, that that information is being passed to the computer, and that
the computer is trying to set the sail to the correct angle.

If the entire above statement is true, you should be able to just plug the servo in and
make sure that it is going to the correct angles. You can see what the wind angle is at
any point, along with what the computer thinks the correct sail angle is, in the Log
messages.

If the servo is moving, but not to the right places, you probably need to run the Sail
calibration described in the Calibration documentation.

Make sure the sensor values are
correctly being turned into
suggested directions to go

Setup
• Plug all the sensors into the Arduino
• Power the Arduino with an adequate

power source
• ‘ino build’ and ‘ino upload’ PubSub.ino

onto the Arduino, if it’s not there
• Go outside to get GPS data [A11]

• Run the check_think_code launch file
• Will start Arduino <-> computer communication
• Will run go_fast.py and go_short.py, which suggest headings to go [A12]
• Will run think.py, which chooses a direction to go [A13]
• Will run _____.py to graph the output of the think code

• Look at the graphical output, and see if it is correct. In How Robateau Thinks, you
can find information on how these graphs work

• Rostopic echo the topic coming directly out of think.py to get the final heading
being suggested to the boat, and see if that is correct

• /desired_heading

Make sure the sensor values are correctly being turned
into suggested directions to go

This assumes you have done tests 1 and 2 – the computer can see all the correct
sensor data.

Inside of How Robateau Thinks documentation, you can see pictures of what
go_fast.py, go_short.py, and think.py should all look like. In general (this will make
more sense when you look at the pictures) go_short.py will create an oblong oval with
a maximum pointing at the next waypoint, go_fast.py will have a thick wedge pointing
upwind, and a thin wedge pointing downwind. think.py will be the combination of
those two graphs.

When you ‘rostopic echo /desired_heading’, you should see a value from 0-360, and it
should correspond with the highest point on think.py.

Make sure the sensor values are correctly being turned
into suggested directions to go (cont.)

If go_short is all zeros (the polar graph is all white) it could be because you don’t have
any GPS data. You can plug in the GPS to get real data, or create simulated data with:
 rostopic pub -1 /gps_lat std_msgs/Float64 0.0
 rostopic pub -1 /gps_lon std_msgs/Float64 0.0
This will make your boat think it is at 0 latitude and 0 longitude. If you set up a mission
in mission_file.csv (Index A14) the code should then have data for go_short.

If go_fast is all ones (there is a blue ring on the polar graph) it’s most likely because
you don’t have wind data. Either plug in the encoder (or test it if it’s in) or create
simulated data with:
 rostopic pub -1 /pwm_duration std_msgs/UInt16 128
This is on a 0-1023 scale, where 256 is 90°, 512 is 180°, etc. This should make your
boat ‘see’ an apparent wind, which should give go_fast enough data to work with.

Make sure the suggested direction
to go is turned into the correct
suggested rudder angle

• Run the check_rudder_control launch file
• Will start Arduino <-> computer communication
• Will run the think code (go_fast, go_short, think)
• Will run point_boat_at_target.py, which tries to point the boat at the desired

heading using the rudder
• Rostopic echo /desired_heading (from think.py) to see where the boat is going
• View the ROS log messages from point_boat_at_target.py, which look like

• point_boat_at_target.py: rudder angle is being set to: -30
• This means the code wants to turn the rudder to -30 degrees (30 deg. CW)

• Make sure the rudder angles that are being set will turn the boat towards the
desired heading, turn the compass and check that it changes correctly [A15]

Setup
• Plug all the sensors into the Arduino
• Power the Arduino with an adequate

power source
• ‘ino build’ and ‘ino upload’ PubSub.ino

onto the Arduino, if it’s not there
• Go outside to get GPS data

Make sure the suggested direction to go is turned into
the correct suggested rudder angle

Index A15 (How you know what the rudder position should be) tells you what to
expect from the commanded rudder setpoint. Because the rudder depends on the
output of think.py, you can ‘rostopic echo /desired_heading’ to check where think
wants the boat to go, then spin the boat by hand and make sure that the rudder is
resetting as the compass direction changes. You can check the correctness of the
rudder setting using A15.

If this is not doing what you expect you may need to dig back into what think.py is
doing, then go_short and go_fast, then all the way back into the GPS and compass
values. As you get errors farther and farther out in the code, you need to work your
way back through every intermediate step to double check everything.

Make sure the suggested rudder
angle is correctly turned into rudder
movement

• Run the check_rudder_control launch file
• Will start Arduino <-> computer communication
• Will run the think code (go_fast, go_short, think)
• Will run point_boat_at_target.py, which tries to point the boat at the desired

heading using the rudder
• Run sail calibration code explained in the Calibration documentation
• View the ROS Log messages from point_boat_at_target.py, as before, but this

time make sure the sail servo is going to that angle. You can turn the boat (or just
the compass) by hand and check whether the rudder reacts in the right way.

Setup
• Plug all the sensors into the Arduino,

and the rudder servo
• Power the Arduino with an adequate

power source
• ‘ino build’ and ‘ino upload’ PubSub.ino

onto the Arduino, if it’s not there
• Go outside to get GPS data

Make sure the suggested rudder angle is correctly
turned into rudder movement

This assumes you have checked the tests previously – you know that the sensors are
reading information, that that information is being passed to the computer, that the
think code is choosing reasonable headings, and that the computer is trying to set the
rudder to the correct angle.

If the entire above statement is true, you should be able to just plug the rudder servo
in and make sure that it is going to the correct angles. You can see what the desired
heading is at any point, along with what the computer thinks the correct rudder angle
is, in the Log messages.

If the servo is moving, but not to the right places, you probably need to run the
Rudder calibration described in the Calibration documentation.

INDEX
A1: Plugging sensors into the Arduino
A2: Powering the Arduino
A3: Using ino to put code on the Arduino
A4: Running a launch file
A5: Using ‘rostopic echo’ to query your code for information
A6: What it means to publish data to a topic
A7: What are ‘topics’
A8: How you know what the sail position should be
A9: Looking for Log messages
A10: Plugging servos into the Arduino
A11: Getting and checking GPS data
A12: What go_fast.py and go_short.py are doing
A13: What think.py does
A14: How are missions set with mission_file.csv
A15: How you know what the rudder position should be

A1: Plugging sensors into the Arduino
You can see details about setting up and plugging in the Sensors section of the main
Olinoboat documentation, and also in the Quick Start guide.

Be careful with which wires are plugged where, because if a wire is plugged into
Digital Port 7 on the alaMode, and the computer thinks it is plugged into Digital Pin 6,
then whatever sensor is plugged into the wrong pin will not be seen at all by the
computer.

A2: Powering the Arduino
Powering an Arduino can be done a couple of ways:

• From your computer, via a USB cable
• Using 9V batteries with a barrel plug
• Using a DC adapter with a barrel plug

This tutorial is rather old, but it has lots of good pictures. If you’re interested in how
to power the Arduino, skip down to the ‘Power Up!’ section. Ignore all instructions
regarding jumper-settings, modern Arduinos, like the very common Uno, have no
need for this.
 http://www.ladyada.net/learn/arduino/lesson0.html

A3: Using ino to put code on the Arduino
From the command line in Linux (look through the Quick Start guide if that phrase is
new to you) you can build and upload code onto the Arduino using a set of tools
called ino. This is very useful in Linux, and it is necessary when you start working with
the Raspberry Pi, which usually only has a command line interface.

You can download the ino toolkit for your computer here:
 http://inotool.org/
The ‘pip install ino’ command is easiest.

To upload code on the Arduino you navigate into the folder of the code you want to
run (for example into the PubSub folder) and run
 ino build
 ino upload
You can find a good tutorial here:
 http://inotool.org/quickstart

Eventually, to upload Arduino code onto the alaMode, you will have to run
 ino build –m alamode
 ino upload –m alamode –p /dev/S0

A4: Running a launch file
Launch files are a good way of running multiple ROS programs at once. If you’ve
done/been doing the tutorials for ROS (www.ros.org/wiki/ROS/Tutorials) you will run
into this introduction to roslaunch:
 http://www.ros.org/wiki/ROS/Tutorials/UsingRqtconsoleRoslaunch
Scroll down to the ‘1.2.2 Using roslaunch’ section, specifically

To work with the code you should really go through the introductory ROS tutorials,
they are relatively simple and there is a large community (with FAQs!) that can help
you over hurdles.

Simply put, to run a launch file you type this command in the command line terminal
 roslaunch PackageName LaunchFile
 For example, roslaunch Olinoboat check_arduino

A5: Using ‘rostopic echo’ to query your
code for information

Topics are the main way of passing data around in ROS, and ‘rostopic echo‘ is a way
that the programmer (you!) can view what is currently on a topic. If you’ve
done/been doing the tutorials for ROS (www.ros.org/wiki/ROS/Tutorials) you will run
into this introduction to rostopic:
 www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics

To work with the code you should really go through the introductory ROS tutorials,
they are relatively simple and there is a large community (with FAQs!) that can help
you over hurdles.

A6: What it means to publish data to
a topic

Topics are the main way of passing data around in ROS. If you’ve done/been doing
the tutorials for ROS (www.ros.org/wiki/ROS/Tutorials) you will run into this
introduction to topics:
 www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics

To work with the code you should really go through the introductory ROS tutorials,
they are relatively simple and there is a large community (with FAQs!) that can help
you over hurdles.

That said, publishing to a topic means a piece of code will take information that it has
(like the GPS position of the boat) and ‘post’ that information for other code to see.
You can see more details of the ‘posting’ process in the next slide, talking about
topics.

A7: What are ‘topics’
Topics are the main way of passing data around in ROS. If you’ve done/been doing
the tutorials for ROS (www.ros.org/wiki/ROS/Tutorials) you will run into this
introduction to topics:
 www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics

To work with the code you should really go through the introductory ROS tutorials,
they are relatively simple and there is a large community (with FAQs!) that can help
you over hurdles.

That said, topics are like whiteboards with one thing written on them. Whenever
anybody writes a new thing on the whiteboard, they erase the old thing. Lots of
people can be looking at the whiteboard at the same time, without causing any
problems. That means when a piece of code is subscribed to a topic, it knows when
the topic changes (when new information comes in) and can then see what that new
information is.
 For example, when the wind sensor gets new data, it publishes to a topic
called /pwm_duration. Code that uses the wind sensor data notices that change, and
does stuff with that information, like setting the sails.

A8: How you know what the sail position
should be

As of 04/25/13, the sails were set according to the apparent wind angle. That means
if the wind appears on the wind sensor to be 45° off the bow, the sails will be set to
what we thought was an appropriate angle (0° = full in, and 90° = full out).

In the program maintain_fast_sail_angle.py, you can find a lookup table that contains

1. A list of points of sail (points_of_sail = [0, 45, 60, 90, 135, 180])
2. The angle of the sail that we thought was appropriate for that point of sail

(sail_points = [0, 0, 15, 40, 60, 80])

This is explained more in the How Robateau Thinks documentation, but essentially
when the wind is 60° off the bow in either direction (the 3rd element in the
points_of_sail variable) then the boat will try to set the sail to 15° out (the 3rd
element of sail_points).

A9: Looking for Log messages
In many places in the Olinoboat code, we use the command
 rospy.loginfo(stuff_we_want_to_user_to_see)

When you run roslaunch files from the command line to test various pieces of the
system, as we’ve outlined in this guide, you should see error messages like this:
 go_short.py: GPS sent (x, y) = 31352, 12341
Which came from this command in the code
 rospy.loginfo("go_short.py: GPS sent (x, y) = (%f, %f)" %(boat_x, boat_y))

We’ve tried to label all log functions with the code file that creates them, which will
hopefully make tracking down where a message comes from quite easy.

The point of log messages is that they tell you what each piece of the code is
thinking. As an example, if the rudder isn’t going where you want you need to check
what the piece of code trying to move the rudder thinks it should be set to.

If there are too many log messages to read clearly (they pile up fast) you can go
through the code and comment out the log messages you aren’t using.

A10: Plugging servos into the Arduino
In general, this is how servos are wired:
 http://www.fatlion.com/sailplanes/images/futabaconnector.png
Black or Brown = Goes to ground
Red (in the center) = Goes to power (usually 5V)
White or Orange = The signal line

The alaMode is currently set up so that the Rudder signal line is on Digital Pin 9, and
the Sail signal line plugs into Digital Pin 10. You can see more about setting up the
servos in the Quick Start guide.

A11: Getting and checking GPS data
This is the type of GPS recommended by the Olinoboat team:
 http://www.adafruit.com/products/746#Description

This is the beginning of the tutorial for the GPS:
 http://learn.adafruit.com/adafruit-ultimate-gps
The ‘Direct Computer Wiring’ link at the bottom of the page will take you to the
next part of the tutorial, that can be somewhat unclear. This tutorial can be done
with an Arduino and the GPS.

In general, GPS connection problems can be caused be being indoors (it probably
just won’t work there), but also by trees or tall buildings around you blocking the
GPS from viewing the satellites that are strewn around the sky.

Look at the Adafruit GPS website for more details, that will always be your best
resource.

A12: What go_fast.py and go_short.py
are doing

The programs go_fast and go_short try and do simple tasks, but the way that simple
task is done can be a bit hard to grasp.

go_fast looks at the apparent wind angle, then tells the boat it should not into irons
or directly downwind. As of 04/25/13, that means it doesn’t want to go within 50° on
either side of the wind angle, or within 10° of directly downwind. These numbers can
be changed by other teams.

go_short looks at the GPS position of the boat and the GPS position of the next
waypoint, and tells the boat it should be pointing at the next waypoint.

How this is done, and how to interpret the graphical output of go_short and go_fast
correctly, can be seen in the How Robateau Thinks documentation.

A13: What think.py does
This the documentation at the top of think.py

think.py creates a loop that calls other code

Dependent on : go_fast.py, go_short.py
think.py takes the outputs of go_fast and go_short, multiplies them together,
and then chooses the strongest element as the heading to go to
See code explanation documentation for a more in-depth explanation of the
arbiter

As stated, you can see the Code Explanation documentation for a more in-depth
look at think.py, but at it’s heart think.py takes the suggestions of go_fast and
go_short and from those suggestions chooses a way to go. Understanding go_fast
and go_short well is necessary to predict what think.py will do.

For example if the next waypoint is N, but there is wind coming from the NE,
go_fast will say “don’t go into irons” and go_short will say “go straight to the
waypoint”. think.py will try to mix both suggestions, and should choose NNW, which
will later turn into a SSE tack.

A14: How are missions set with
mission_file.csv

Inside of the upper level Olinoboat folder, there should be both mission_file.csv and
mission_file_csv_howto.txt. The txt file explains how to set waypoints for the boat
using mission_file.csv. Here is the overview:

Inside of mission_file.csv you should see something like

1, 0, 42, -71
1, 0, 42.00001, -71.00001

This corresponds to
'type of mission', 'information passing parameter', 'goal_latitude', 'goal_longitude‘

The boat will try to sail to the (latitude, longitude) point (42, -71), then the point
(42.00001, -71.00001)

A15: How you know what the rudder
position should be

As of 04/25/13, the rudder is set to try and point the boat at the desired compass
heading. That means if the boat is pointing South, and the heading is West, the boat
needs to turn -90° (assuming that North = 0° and degrees increase clockwise, as all of
the Olinoboat code assumes). The rudder is stopped in code from going more than
45° to either side, assuming that the rudder calibration described in the Calibration
documentation has been run, which means the rudder should try to go to -45° (full
CW, which should turn the boat to port).

If the next waypoint is 30° off the starboard bow, the rudder should try to go to the
30° point. That means the rudder will spin 30° CCW, turning the boat to starboard so
it will point at the waypoint.

The code that determines this response is in point_boat_at_target.py, which has a fair
amount of documentation in the code itself trying to explain how this is done.

	Introduction
	Executive Summary
	Problem Space and Mission

	Computing
	Raspberry Pi
	Arduino

	Beginning Steps for Students
	Installing Linux
	Installing ROS
	Installing Arduino on Linux
	AlaMode Setup
	Installing Arduino and Proper Settings
	Running Arduino on Raspberry Pi
	Arduino from Command Line
	Working from Windows or Mac

	Setting Up Sensors
	Sensor Testing
	GPS
	Compass
	Wind Vane

	Wireless Communication
	Radio Controller
	Installing Hardware on the Boat
	Waterproofing

	Before Turning On The System Checklist
	Calibration Guide
	Testing Your Code
	Pre-sail Checklist
	Competition
	Things to Expect
	Wireless Connectivity
	Computers
	Prepare Cupcakes
	Maintenance and Repair

	Appendix A: Recommended Hardware
	Appendix B: Recommended Tools and Materials
	Appendix C: Quick Start Guide
	Appendix D: CommunicationS Testing with Arduino

