Copeland Scroll® Compressor Module

Installation, Operation & Maintenance Manual

Model Family SZV32 SZV44 SZO44 SZO56

TABLE OF CONTENTS

Сомр	RESSOR MODULE NOMENCLATURE IV							
Impor	tant Safety Information1							
1.0								
1.1	The Compressor Module							
1.2	The Compressor							
1.3	The Compressor Package							
2.0	INSTALLATION							
2.1	Installation Guidelines. 5 2.1.1 Required Component—Inlet Gas Scrubber. 5 2.1.2 General Installation Guidelines. 5							
2.2	Inlet and Discharge Pressures5							
2.3	Ambient Temperature Range 6							
2.4	Installation Clearance and Dimensions7							
2.5	Process and Instrumentation Diagrams (P&IDs)8							
2.6	Electrical Controls92.6.1General Considerations92.6.2Oil Cooler Fan Control102.6.3Compressor Module Motor Protection122.6.4Electrical Requirements132.6.5Wiring142.6.6Variable Frequency Drive (VFD) Terminations15							
3.0	OPERATION							
3.1	Initial Startup - Compressor Module173.1.1 Pre-Startup Checklist173.1.2 Post-Startup Checklist17							
3.2	Initial Startup - Compressor Package 18							
3.3	Normal Operation Checklist							
4.0	Maintenance							
4.1	Routine Maintenance							

Dual-Compressor Module

TABLE OF CONTENTS

4.2	Maintenance Tools	. 20
4.3	Checking the Oil Level	. 21
	4.3.1 Oil Level Guidelines - Minimum Speed	
	4.3.2 Oil Level Guidelines - Maximum Speed	
4.4	Oil Capacity and Type	. 21
4.5	Adding and Removing Oil	
	4.5.1 Topping Off the Oil Level4.5.2 Changing the Oil	
4.6	Cleaning the Inlet Screen	
4.7	Servicing the Scavenge Line Orifice	. 25
4.8	Changing the Second-Stage Separator Element	. 26
4.9	Changing the Oil Filter Element	. 26
5.0	TROUBLESHOOTING	.27
5.1	Troubleshooting Guide	. 27
5.2	Motor Winding Resistance	. 27
5.3	Platform Symptoms Diagnosis	. 28
5.3 6.0	Platform Symptoms Diagnosis	
6.0		.29
6.0	SPECIFICATIONS	.29 .32
6.0 Appen	Specifications	.29 .32 . 32
6.0 Аррем А.1	SPECIFICATIONS	.29 .32 . 32 . 32
6.0 Аррем А.1 А.2	SPECIFICATIONS	.29 .32 .32 .32 .32
6.0 Аррем А.1 А.2 А.3	SPECIFICATIONS	.29 .32 .32 .32 .32 .32
6.0 Appen A.1 A.2 A.3 A.4	SPECIFICATIONS DIX A MATERIAL DATA SAFETY SHEET Supplier Product Name and Information Components and Hazard Statement Safe Handling and Storage	.29 .32 .32 .32 .32 .32 .32
6.0 Appen A.1 A.2 A.3 A.4 A.5	SPECIFICATIONS	.29 .32 .32 .32 .32 .32 .32 .32 .32
6.0 Appen A.1 A.2 A.3 A.4 A.5 A.6	SPECIFICATIONS DIX A MATERIAL DATA SAFETY SHEET. Supplier. Product Name and Information Components and Hazard Statement Safe Handling and Storage. Physical Data Fire and Explosion Hazards	.29 .32 .32 .32 .32 .32 .32 .32 .33 .33
6.0 APPEN A.1 A.2 A.3 A.4 A.5 A.6 A.7	SPECIFICATIONS DIX A MATERIAL DATA SAFETY SHEET. Supplier. Product Name and Information. Components and Hazard Statement Safe Handling and Storage. Physical Data. Fire and Explosion Hazards. Reactivity Data.	.29 .32 .32 .32 .32 .32 .32 .32 .33 .33 .33
6.0 APPEN A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8	SPECIFICATIONS DIX A MATERIAL DATA SAFETY SHEET	.29 .32 .32 .32 .32 .32 .32 .33 .33 .33 .33

FIGURES

Figure 1	Compressor Module Components
Figure 2	Copeland Scroll [®] Compressor Cross Section
Figure 3	Typical Compressor Package4
Figure 4	Compressor Module Dimensions, in. (mm)7
Figure 5	Compressor Module Gas and Oil Flow Diagram and Safety Shutdowns
Figure 6	Brushless DC Fan
Figure 7	Basic Fan Control System10
Figure 8	Optional Customer-Installed High Temperature Fan Control System
Figure 9	Oil Cooling and Thermal Valve
Figure 10	Motor Control
Figure 11	Typical Compressor Module Electrical Requirements
Figure 12	Control Circuit Terminations
Figure 13	Power Terminations14
Figure 14	Maintenance Tools
Figure 15	Adding or Draining Oil
Figure 16	Gas Inlet Block and Screen
Figure 17	Scavenge Line Orifice
Figure 18	Oil Filter Bowl and Element

TABLES

Table 1	Inlet and discharge pressure limits	5
Table 2	Typical Compressor Module power supply requirements	13
Table 3	Maintenance summary	17
Table 4	Troubleshooting	25
Table 5	Motor winding resistance	25
Table 6	Platform troubleshooting guidelines	26
Table 7	Compressor Module specifications	27
Table 8	Compressor Module flow, pressure and horsepower data (see Notes 1 - 3*)	29

COMPRESSOR MODULE NOMENCLATURE

Model	Max Delivery Pressure (PSIG)	Max Flow (MCFD)	Drive HP	High Press Switch Setting (PSIG)	Low Press Switch Setting Scroll Units	High Temp Setting °F (°C)	Oil Thermal Bypass Valve Setpoint °F (°C)	Gas Bypass Valve	Module Weight (Lbs.)
				Duar	SCIOILOTIILS				
SZO56C1A-EDE-110	150	260	30	215	0.75 PSIG (52 mbarg)	240 (116)	200	NO	625
SZO44C1A-EDE-140	190	200	30	215	0.75 PSIG (52 mbarg)	240 (116)	200	NO	625
SZO44C1A-EDE-244	190	200	30	215	0.75 PSIG (52 mbarg)	240 (116)	200	YES	625
SZV44C1A-EDE-140	190	200	30	215	0.75 PSIG (52 mbarg)	280 (138)	250	NO	625
SZV32C1A-EDE-150	275	150	30	290	0.75 PSIG (52 mbarg)	280 (138)	250	NO	625

IMPORTANT SAFETY INFORMATION

This manual contains important instructions for installation, operation and maintenance of your Copeland Scroll[®] Compressor Module.

WARNING

The Compressor Module must be installed ONLY in systems that have been designed by qualified engineering personnel. The system must conform to all applicable local and national regulations and safety standards.

These instructions are intended to assist in the installation and operation of the Compressor Module and MUST be kept with the Compressor.

Service and maintenance of the Compressor Module must be performed by qualified technicians only. Service and maintenance must conform to all applicable local and national regulations and safety standards.

Thoroughly review this manual, all instructions and hazard warnings before performing any work on the Compressor Module.

Maintain all Compressor Module operation and hazard warning labels.

WARNING

Flammable gas can form explosive mixtures with air. Explosive gases can cause property damage, serious personal injury or death.

WARNING

Failure to disconnect and lockout electrical power from the Compressor Module before attempting maintenance can cause shock, burns, severe personal injury or death.

WARNING

Loosening or removing pressure-containing components from the Compressor Module when it is in operation can cause major property damage, serious personal injury or death.

Failure to relieve system pressure prior to performing service or maintenance on the Compressor Module can cause property damage or serious personal injury.

CAUTION

Extreme heat can cause personal injury or property damage.

CAUTION

Always use a lifting device capable of supporting the full weight of the Compressor Module or component being lifted.

Handling or lifting heavy assemblies can cause personal injury or property damage.

SAFETY SYMBOLS USED IN THIS MANUAL

SAFETY ALERT SYMBOL

When you see this symbol on the Compressor Module or in this manual, look for one of the following words and be aware of the potential for personal injury or property damage.

WARNING

A Warning describes hazards that CAN or WILL cause serious personal injury, death or major property damage.

CAUTION

A Caution describes hazards that CAN cause personal injury or property damage.

NOTE

A Note indicates special instructions that are very important and must be followed.

1.0 INTRODUCTION

The Copeland Scroll[®] SZO44 Compressor Module comes equipped with two Copeland Scroll[®] Compressors designed for Class I, Division II applications. The Compressor Module is designed for assembly into a Compressor Package ready for service in the field; the completed housing is done by equipment Packagers. This section provides an overview of these components.

These terms are used throughout this manual:

- Compressor Module the SZO44 Compressor Module shown in Section 1.1
- **Compressor** a Copeland Scroll[®] Compressor (two per Compressor Module)
- Compressor Package the entire assembly, including the Compressor Module, ready for service in the field
- Packagers the company that prepares the Compressor Module for service
- VFD Variable Frequency Drive used to power a variable speed Compressor Module

1.1 The Compressor Module

The **Compressor Module** consists of two Compressors and the other components shown in **Figure 1**.

Figure 1 Compressor Module Components

1.2 The Compressor

The **Compressor** refers to the Copeland Scroll[®] Compressor. Each Compressor Module has two Compressors. **Figure 2** shows a cross-section of a Compressor and its key components.

Figure 2 Copeland Scroll® Compressor Cross Section

1.3 The Compressor Package

The **Compressor Package** consists of the Compressor Module housed in an assembly ready for service in the field. Equipment **Packagers** customize the assembly and complete the fabrication for Compressor Modules for each application. **Figure 3** shows a simplified example of a Compressor Package.

Figure 3 Typical Compressor Package

2.0 INSTALLATION

2.1 Installation Guidelines

2.1.1 Required Component—Inlet Gas Scrubber

An appropriate inlet gas scrubber is **REQUIRED** to remove liquids from the gas prior to compression. If there is potential for liquid slugging, a suitable trap must be installed to prevent liquid from flooding and damaging the Compressor.

Failing to use an appropriate inlet gas scrubber to remove liquids from the gas prior to compression can cause flooding and damage the Compressor.

2.1.2 General Installation Guidelines

Follow these general guidelines for installation:

- The Compressor Module must be installed and operated in compliance with all applicable codes and regulations.
- The system must be installed on a level surface.
- Install pipe unions or flanges to connect the system to the inlet and discharge piping for ease of service.
- · Install isolation valves on the inlet and discharge piping.
- A common ground must be connected between the Compressor Module and the Compressor Package chassis. This ground must comply with the National Electric Code (NEC) and any other applicable codes.
- Solid debris also must be removed from the gas prior to compression. When required, use a 5 to 10micron inlet filter to remove debris from the gas stream. The degree of filtration required depends on the specific application.

2.2 Inlet and Discharge Pressures

Refer to **Table 1** for acceptable inlet and discharge pressure levels.

Туре	Level	Operating Guidelines
Minimum Inlet Pressure	0.75 psig	Consult the factory for operations below 0.75 psig.
Maximum Inlet Pressure	25 psig	Operation at pressures above 25 psig will result in: • Excessive oil carryover • Loss of oil from the Compressor Module
Discharge Pressure Range	70 psig to 190 psig (depends on model)	 When the discharge pressure of the Compressor Module reaches the maximum, which ranges from 70 to 190 psig, depending on the model (see Compressor Module Nomenclature on page iv): The Compressor Module goes into high discharge pressure recycle if equipped. The Compressor Module's bypass regulator diverts gas from the high-pressure side to the low-pressure side of the module. All Compressor Modules must be equipped with pressure-limiting or relief devices. A minimum pressure differential of 70 psi between inlet and discharge pressure is required for proper operation.

Table 1 Inlet and discharge pressure limits

NOTE: Required Component – High Pressure Discharge Gas Bypass Valve

In response to customer requests to eliminate redundancy, the high pressure discharge gas bypass (recycle) valve was removed from some of the scroll modules (see table below).

Model	Max Delivery Pressure PSIG (barg)	Max Flow MCFD (MCMD)	Drive HP	High Press Switch Setting PSIG (barg)	Low Press Switch Setting Scroll Units	High Temp Setting °F (°C)	Oil Thermal Bypass Valve Setpoint °F (°C)	Gas Bypass Valve	Module Weight Lbs. (kg)
SZO56C1A-EDE-110	150 (10.3)	260 (7.36)	30	215 (14.8)	0.75 PSIG (52 mbarg)	240 (116)	200 (93)	NO	600 (272)
SZO44C1A-EDE-140	190 (13.1)	200 (5.7)	30	215 (14.8)	0.75 PSIG (52 mbarg)	240 (116)	200 (93)	NO	600 (272)
SZO44C1A-EDE-244	190 (13.1)	200 (5.7)	30	215 (14.8)	0.75 PSIG (52 mbarg)	240 (116)	200 (93)	YES	625 (283)
SZV44C1A-EDE-140	190 (13.1)	200 (5.7)	30	215 (14.8)	0.75 PSIG (52 mbarg)	280 (138)	250 (121)	NO	625 (283)
SZV32C1A-EDE-150	275 (19.0)	150 (4.2)	30	290 (20.0)	0.75 PSIG (52 mbarg)	280 (138)	250 (121)	NO	600 (272)

There are several reasons for making this change:

- Locating the valve at the module level becomes redundant when two or more of our modules are packaged together.
- The original intent of the valve was to provide a means for the module to operate in cases where the discharge was 100% blocked due to a downstream event; however, packagers are ultimately responsible for high pressure relief.
- When in use, the valve can act as an expansion valve when gas is passing through it, possibly condensing water and or hydrocarbons which could be detrimental to our modules.
- The valve is a back pressure regulator which can maintain a steady discharge pressure, however the majority of packages with our modules are controlled through suction gas recycle. Also, most packages have a back pressure regulator on the discharge of our modules to control the actual discharge pressure to a minimum of 70 PSIG.
- The presence of the valve was thought to protect the end user in case the discharge of our module is isolated from the skid-level pressure relief valve and the other safeties on our module (high pressure switch, drive current limit) are disabled or modified. However, inspectors do not consider our gas bypass valve to be a high pressure safety device. It is the packager's responsibility to provide adequate high pressure safety relief/shutdown.

Packagers will need to install downstream pressure relief of our module.

2.3 Ambient Temperature Range

The Compressor Module operating ambient temperature is 20°F to +122°F (-29° to +50°C). For details on ambient temperatures for VFD startup and Compressor Module operation, see **Table 7** on page **27**.

2.4 Installation Clearance and Dimensions

Allow sufficient clearance on all sides for service access, especially for gas and electrical connections at the rear of the Compressor Module. Check applicable national and local electrical codes.

Cooling air flow is back to front—from the gas connection end to the oil cooler end. Do not block or restrict the cooler fans or oil cooler.

Refer to Figure 4 for the dimensions of the Compressor Module.

Figure 4 Compressor Module Dimensions, in. (mm)

TOP VIEW

FRONT VIEW

2.5 **Process and Instrumentation Diagrams (P&IDs)**

Figure 5 Compressor Module Gas and Oil Flow Diagram and Safety Shutdowns

Code	Description
BPV-01	Gas bypass valve (optional)
C-01 / C-02	Compressor and motor
EX-04	Oil cooler, fan controlled by thermistor
FL-05	Oil filter
PI002	Pressure gauge on first-stage oil separator
PI003	Pressure gauge on second-stage oil separator
PS002 / PSHH002	High discharge gas pressure switch
PS001 / PSLL001	Inlet low pressure switch
SEP-01	First-stage oil separator, 6" O.D.
SEP-02	Second-stage oil separator/coalescing element
TCV-03	Thermal bypass valve, 3-way, set @ 200°F (93°C)
TE002	Fan speed thermistor
TS002 / TSHH002	High discharge gas temp switch

2.6 Electrical Controls

2.6.1 General Considerations

All shutdown devices are dry contact switches rated Class I, Division II that are wired to a terminal box for connection to the packager supplied control circuit. The common wires on all switches are connected together. All switches are closed unless a fault condition is detected.

All safety and protective devices must be installed and used in accordance with applicable codes and regulations.

Switches

All switch connections are wired to terminal strips in a junction box on the Compressor Module.

	Switch	Status
•	Low Inlet Gas Pressure	Normally Open, closes on pressure rise

• High Discharge Gas Pressure Normally Closed, opens on pressure rise

Ctat....

High Temperature Normally Closed, opens on temperature rise

Electrical Considerations - Variable Speed Compressor Module

- The Compressor power for a variable speed Compressor Module is the Variable Frequency Drive (VFD).
- Compressor speed control can be either a 4-20 mA or 0-10V signal (transducer supplied by customer) applied to the VFD. Speed can also be manually controlled with a potentiometer or the VFD can be set for a fixed speed.
- Each Compressor on a module must be protected by an individual manual reset overload between the VFD and the Compressor.
 - The overloads should be able to be set at a maximum of 26A.
 - If either overload opens, the VFD must be disabled.
 - The overloads must be configured for manual reset.
- Normal full load run current for each Compressor on the module at 4800 rpm (80 Hz) is approximately 23A.
- The customer control circuit must supply an **Enable** signal to the VFD before the drive will accept a **Run Fwd** signal.
- The VFD will start when the **Enable** signal is on and a **Run Fwd** signal is applied.
- The VFD will stop if the **Run Fwd** signal is off or the **Enable** signal is removed.

NOTE

The drive provides 24V for the **Enable** and **Run Fwd** signals.

The installer must connect the **Enable** and **Run Forward** terminals to the drive's 24V terminal.

2.6.2 Oil Cooler Fan Control

The Compressor Module temperature is controlled by managing module oil flow and temperature. The module's precise temperature control is critical to system performance and equipment life. Maintaining proper temperature control also reduces the possibility of gas condensing into liquids during operation.

- Cooling fans require 24VDC, 4.5A (105 Watts) x 2 (9A 210W total) for the Compressor Module. Fan speed is controlled by a 0-10VDC control signal that is applied to the yellow lead on the fan terminal strip. Standard Compressor Modules use a nonlinear PTC thermistor to monitor oil temperature and provide a speed signal.
- High temperature Compressor Modules use a linear NTC thermistor to monitor oil temperature. This signal is available to support a customer-provided fan speed control circuit.
- All power connections are wired to terminal strips in a junction box on the Compressor Module.

Figure 6 Brushless DC Fan

Figure 7 Basic Fan Control System

The PTC Thermistor is nonlinear and switches to high resistance in the 170-190°F (77-88°C) range.

Figure 8 Optional Customer-Installed High Temperature Fan Control System

- · Compressor requirements: 1.2 to 2 GPM (4.5-755 LPM) flow rate
- Operating temperature range, standard: 190° to 210°F (88°- 99°C)
- Thermal oil bypass valve, standard setting: 200°F (93°C)
- Thermal bypass valve operation (valve's purpose is to provide discharge temperature control)
- Oil flow on valve is A to B when the unit is cold and A to C when the heat rises (see Figure 9).

Figure 9 Oil Cooling and Thermal Valve

2.6.3 Compressor Module Motor Protection

Variable Speed Compressor Module Protection

- The two Compressors in the variable speed Compressor Module should be treated as a single Compressor. Both Compressors must be run at the same time to prevent oil from accumulating in one Compressor. Module capacity can be changed by varying the typical Compressor speed, ranging from 2400 to 4800 rpm.
- If two or more Compressor Modules are used together, each module can be considered as one Compressor and individual modules can be turned off.
- Each Compressor on a variable speed Compressor Module requires independent overload protection between the VFD and Compressor. See 2.6.1 on page 10.

Figure 10 Motor Control

2.6.4 Electrical Requirements

Figure 11 Typical Compressor Module Electrical Requirements

Code	Description
1	Control Techniques VFD,* 30 HP
2	24VDC power supply **
3	PLC or other control for inputs from Compressor Module
4	480V 3-phase input ***
5	Overload protection device, 2 required
Notes	· · · · · ·

* VFD on Variable Speed Drive models.

** All other components supplied by Packagers.

*** Contact factory for information about single-phase applications.

Table 2 Typical Compressor Module power supply requirements

<u></u>	51110
Compressor Power (data based on 480VAC)	Variable Speed
Module horsepower	30 HP
VFD voltage supply range	342-528VAC
Phase	3-phase*
Frequency	50/60 Hz
Maximum VFD input current	37A
Low Voltage DC Specifications - Oil Cooler Fan Voltage and Power	
Fan motor voltage	24VDC
Total fan motor current	9A

Additional power may be required to support customer logic and control circuits.

* Contact factory for information about single-phase applications.

** Reduced capacity at 50 Hz.

2.6.5 Wiring

Figure 12 Control Circuit Terminations

Figure 13 Power Terminations

3.0 OPERATION

3.1 Initial Startup - Compressor Module

The following inspections should be made on initial startup—typically, by the Packager—and after long periods of storage.

- Verify acceptable pre-startup conditions using the checklist in 3.1.1 Pre-Startup Checklist.
- Start the Compressor Module, then perform the checks in 3.1.2 Post-Startup Checklist.

3.1.1 Pre-Startup Checklist

Perform these checks BEFORE starting the Compressor Module:

MAIN POWER

Check for the following conditions:

- 1. Motor type is correct for the application, either Variable Speed (275V) or Fixed Speed motor (480V).
- 2. Power phasing to the terminal strip and Compressors is correct.
- 3. Supply voltage to the Variable Frequency Drive (VFD) or Fixed Speed Compressor motors is correct.
- 4. Each Compressor motor is equipped with current overload protection.
- 5. Compressor motor overloads are configured to inhibit the VFD or either fixed speed Compressor if either motor overload opens.
- 6. Compressor motor overloads are configured for manual reset.
- 7. Compressor motor overloads are set for proper current.
- 8. All chassis, earth grounds are connected.
- 9. A load reactor or other approved filter is installed for systems with power lead lengths in excess of 200 ft. (61m) between the VFD and Compressor Module terminal box.

LOW VOLTAGE DEVICES

Verify these conditions for low voltage devices:

- ____1. DC polarity is correct.
- 2. Temperature control device—if other than standard thermistor control—is working properly.

SAFETY AND CONTROL DEVICES

Make sure that all safety and control switches and devices are configured to inhibit Compressor operation if a fault condition is detected, including:

- _____1. Low inlet pressure switch
- _____ 2. High discharge pressure switch
- ____ 3. High temperature switch
- 4. Variable Frequency Drive (VFD) fault
- 5. Motor overload trip
- 6. Other safety and control switches and devices

MECHANICAL SYSTEMS

Inspect for these conditions:

- ____1. (**Required**) Compressor inlet is protected from water slugging.
- 2. (Recommended) Gas filtration and treatment is appropriate for the application.
- ____3. Packager configuration applies back pressure to the Compressors.
- 4. Inlet and discharge valves allow the module to be isolated.
- ____ 5. All guards and protective covers are installed.
- 6. Protection from freezing is provided if needed for the application and location.
- 7. A suitable enclosure providing protection from the elements is appropriate for the application and location.

3.1.2 Post-Startup Checklist

Perform these checks AFTER starting the Compressor Module:

DURING INITIAL OPERATION, PERFORM THESE CHECKS:

- 1. Compressor Module builds pressure on initial startup; no unusual mechanical noise.
- _____ 2. Oil level is correct at minimum and maximum speeds.
- ____ 3. No gas leaks are present.
- ____ 4. No oil leaks are present.
- 5. Oil cooler fans turn on and run at the appropriate temperature.
- ____ 6. Oil cooler fan speed varies with temperature.
- 7. Compressor motor speed varies appropriately for the Packager configuration.
 - _ 8. Compressor continues to operate in bypass when the Compressor Module discharge is blocked.
- 9. Compressor Module is leak tight (maintains approximately 30 psig or more when the Compressors are initially turned off).

3.2 Initial Startup - Compressor Package

Refer to your Packager's user manual for information on procedures to start up the Compressor Package, which includes equipment added to the Compressor Module by the Packager.

3.3 Normal Operation Checklist

Observe the following conditions after startup—when power is applied to the VFD and the VFD receives the signal from the Compressor Package control system to run:

CHECI	CHECK FOR THESE CONDITIONS UNDER NORMAL OPERATION:				
1.	Compressor speed should range from 2400 to 4800 rpm during normal operation.				
2.	Suction pressure should range from 0.75 psig to 25 psig.				
3.	Discharge pressure should range from 70 psig to 190 psig, depending on the model (see Compressor Module Nomenclature on page iv).				
4.	Pressure differential between suction and discharge is at least 70 psi.				
5.	First-stage separator temperature should be between 170°F and 220°F (77-104°C).				
6.	Oil cooler fans should either run continuously or cycle periodically under normal conditions.				

If any of these conditions are not met during normal operation, shut down the unit and refer to **5.0** - **Troubleshooting** on page **25**.

4.0 MAINTENANCE

4.1 Routine Maintenance

Perform the maintenance procedures in **Table 3** at least once per year or more often if needed.

Oil consumption varies by application and during initial operation. Monitor the oil level routinely to determine a consistent pattern of actual consumption.

Components	Maintenance	Reason	For details, see:	
	Monitor and check the oil level.	A low oil level or loss	4.3 - Checking the Oil Level (page 18)	
	Add oil as needed.	of oil in the system will result in overheating or mechanical failure.	4.5.1 - Topping Off the Oil Level (page 19)	
Lubrication & Cooling System	 Change oil annually. Note: Some applications may require more frequent service. 	A high oil level may result in excessive oil carryover and oil discharge from	4.5.2 - Changing the Oil (page 20)	
	 Check the condition of the lubricant periodically. Normal color is clear or light gray. 	the Compressor Module when the Compressors are turned off.	_	
	 Change the oil filter (if equipped) annually or as required. 		_	
Gas Inlet System	 Inspect and clean the inlet screen annually or more often as needed. 	A restricted inlet screen will result in reduced flow.	4.6 - Cleaning the Inlet Screen (page 22)	
Second-	 Inspect and clean the scavenge line orifice annually or more often as needed. 	A restricted scavenge line orifice will result in excessive oil carryover.	4.7 - Servicing the Scavenge Line Orifice (page 22)	
Stage Separator System	 Change the second-stage oil separator element annually or more often if contaminated. Note: Some applications may require more frequent service. 	A dirty or plugged separator element will result in excessive oil carryover.	4.8 - Changing the Second- Stage Separator Element (page 23)	
Oil Heat Exchanger	 Ensure heat exchanger cooling fins are clear of dust and debris. Verify that the fans run freely. 	_	_	

 Table 3
 Maintenance summary

See 5.0 - Troubleshooting on page 25 for additional details.

4.2 Maintenance Tools

Figure 14 shows the tools needed for maintenance of the Compressor Module. Contact the Packager to obtain a maintenance tool kit. These are typical air conditioning and refrigeration service tools.

Figure 14 Maintenance Tools

Back-seating control valve

Oil pump, piston type, high pressure Designed to operate up to 250 psig

Filter wrench Alternate product: Strap filter wrench

Charging hose 60" (1524mm)

Extension hose with valve 6" (152mm)

CAUTION

When pressure is applied to the oil pump, the handle may extend rapidly. Verify the Compressor Module pressure is 0 psig before removing the second-stage oil separator.

NOTE

One full stroke oil pump of the handle dispenses 1.6 oz. (47ml) of oil. Move the pump handle slowly using long, slow, full strokes.

NOTE

The hose fittings contain a core depressor that opens the Schrader valve when the fittings are attached. A backseating control valve can be used to open the Schrader valves on the Compressor Module.

When the knob is turned fully counterclockwise, the core depressor is retracted and the backseating control valve can be installed on a Schrader valve without loss of oil.

When the knob is turned clockwise, the core retractor is extended, opening the Schrader valve.

4.3 Checking the Oil Level

The proper oil level varies according to the Compressor Module's operating speed. To check the oil level on the first-stage oil separator level gauge, use the following guidelines based on operating speed.

NOTE

The oil level indicated on the first-stage oil separator sight tube varies with inlet and discharge pressures as well as operating speed. Check the oil level when the compressor is running.

4.3.1 Oil Level Guidelines - Minimum Speed

When operating the Compressor Module at minimum speed—2400 rpm, 40 Hz check the oil level in the oil level sight tube, shown at right, then refer to the following suggested maintenance actions.

If the oil level is:	Take this action:
 1"– 3" from the <u>bottom</u> of the oil level gauge 	No action is required.
 Lower than 1" from the bottom 	Add factory-supplied PAO oil to this level (see 4.5.1 - Topping Off the Oil Level on page 20).
 Higher than 3" from the bottom 	Remove excess oil (see 4.5.2 - Changing the Oil on page 21).

4.3.2 Oil Level Guidelines - Maximum Speed

When operating the Compressor Module at maximum speed—4800 rpm, 80 Hz check the oil level in the oil level sight tube, shown at right, then refer to the following suggested maintenance actions.

If the oil level is:	Take this action:
 1"– 3" from the <u>top</u> of the oil level gauge 	No action is required.
Lower than 3" from the top	Add factory-supplied PAO oil to this level (see 4.5.1 - Topping Off the Oil Level on page 20).
 Higher than 1" from the top 	Remove excess oil (see 4.5.2 - Changing the Oil on page 21).

4.4 Oil Capacity and Type

The factory oil charge of the SZO Compressor Module is 380 fluid ounces (11.25 liters).

Use the special Poly-Alpha-Olefin (PAO) blend available from the Packager. Refer to **Appendix A** - **Material Data Safety Sheet** on page **30** for details.

The Compressor Module REQUIRES a special PAO blend available from your Packager. Do NOT substitute other types of oil. Using other types of oil will damage the equipment and void the warranty.

4.5 Adding and Removing Oil

Oil is drained from the system through the Schrader valves on the Compressor suction fittings, first-stage oil separator and oil cooler (see **Figure 15** on page **21**).

4.5.1 Topping Off the Oil Level

See **4.4** - **Oil Capacity and Type** on page **19** before adding oil. Also refer to **4.2** - **Maintenance Tools** on page **18** for information about the tools used in this procedure.

NOTE

Adding oil through the Schrader valve on either compressor suction fitting permits adding the oil with the compressor running.

Adding Oil

- 1. Turn the knob on the backseating control valve fully counterclockwise.
- 2. Remove the protective cap from the Schrader valve on either compressor suction fitting and connect the backseating control valve.
- 3. Connect one end of the oil transfer hose to the backseating control valve.
- 4. Connect the opposite end of the hose to the oil transfer pump.
- 5. Pour PAO oil into a clean container and attach the extension hose to the threaded neck of the container.

6. Turn the knob on the backseating control valve clockwise to open the Schrader valve and slowly open the oil transfer hose ball valve.

When pressure is applied to the oil pump, the handle may extend rapidly.

- Move the pump handle slowly using long, slow, full strokes on the pump handle to transfer oil into the Compressor until the desired oil level is reached. One full pump stroke dispenses 1.6 oz. (47ml) of oil (see 4.3 - Checking the Oil Level on page 19).
- 8. Turn the knob on the backseating control valve counterclockwise to close the Schrader valve and remove the control valve.
- 9. Replace the protective cap on the Schrader valve.
- 10. Return the Compressor Package to service.
- 11. Check for leaks at all fittings that have been disturbed.

4.5.2 Changing the Oil

These procedures describe how to drain oil from the system and to replace the oil after draining.

Figure 15 Adding or Draining Oil

LEFT SIDE VIEW

RIGHT SIDE VIEWS

Draining Oil

Under normal operation, the Compressor and oil circuit remain under pressure when the Compressor is turned off. This pressure can be used to drain most of the oil. It is also possible to use the gas supply pressure to force oil out of the Compressor Module. In some cases it may necessary to pressurize the module with an inert gas to remove the oil.

- 1. Turn the knob on the backseating control valve fully counterclockwise.
- 2. Connect the backseating control valve to the Schrader valve near the bottom of the first-stage oil separator, shown in **Figure 15**.
- 3. Connect one end of the oil transfer hose to the backseating control valve.
- 4. Place the free end of the hose into a suitable container and turn the knob on the backseating control valve clockwise to open the Schrader valve and open the oil transfer hose ball valve.
- 5. Leave the valves open until the oil stops flowing and gas comes out of the hose; close the valves.
- 6. Relocate the hose to the Schrader valve on the inlet of one Compressor and repeat **Steps 5** and **6**. Repeat for the other Compressor on the Compressor Module.
- 7. Move the hose to the Schrader valve on the oil cooler and repeat Steps 5 and 6.
- 8. Close the valves, remove the service hose and replace the protective caps on all Schrader valves.
- 9. Note the volume of oil that has been drained from the Compressor Module; replace the oil as described in the next section, **Replacing Oil** on page **22**.

Replacing Oil

- 1. Turn the knob on the backseating control valve fully counterclockwise.
- 2. Remove the protective cap from the Schrader valve on the first-stage oil separator (shown at right) and connect the backseating control valve.
- 3. Connect one end of the oil transfer hose to the backseating control valve.
- 4. Connect the opposite end of the hose to the oil transfer pump.
- 5. Connect the 6" (152mm) extension hose to the oil transfer pump.
- 6. Pour PAO oil into a clean container and install the oil transfer pump.
- 7. Turn the knob on the backseating control valve clockwise to open the Schrader valve.

When pressure is applied to the oil pump, the handle may extend rapidly.

- Move the pump handle slowly using long, slow, full strokes on the pump handle to transfer oil into the Compressor until the desired oil level is reached. One full pump stroke dispenses 1.6 oz. (47ml) of oil (see 4.3 - Checking the Oil Level on page 19).
- After adding the same amount of oil that was drained from the Compressor Module, start the Compressors and verify that the operating oil level is correct (see 4.3 - Checking the Oil Level on page 2). If necessary, adjust the oil level (see 4.5.1 - Topping the Oil Level on page 20).
- 10. Turn the knob on the backseating control valve counterclockwise to close the Schrader valve.
- 11. Replace the protective cap on the Schrader valve.
- 12. Return the Compressor Package to service.
- 13. Check for leaks at all fittings that have been disturbed.

4.6 Cleaning the Inlet Screen

The 30-mesh screen in the inlet block must remain unobstructed for optimal flow rate. If the flow rate is lower than expected even when the Compressor is running properly, this screen may be obstructed.

Figure 16 Gas Inlet Block and Screen

To inspect and clean the inlet screen:

- 1. Turn off and isolate the Compressor from all power sources.
- 2. Turn off the gas supply.
- 3. Vent the system to 0 psig.
- 4. Remove the SAE plug on the side of the inlet block.
- 5. Remove the screen.
- 6. Inspect the screen and inside of the block. Clean or replace if necessary.
- 7. Replace SAE nut.
- 8. Return the Compressor Package to service.
- 9. Check for leaks at all fittings that have been disturbed.

4.7 Servicing the Scavenge Line Orifice

The scavenge line orifice in the oil separator block must remain clear of obstruction. If this orifice is restricted, the secondstage oil separator can become saturated, increasing oil consumption.

Figure 17 Scavenge Line Orifice

To inspect and clean the orifice:

- 1. Turn off and isolate the Compressor from all power sources.
- 2. Turn off the gas supply.
- 3. Vent the system to 0 psig.
- 4. Disconnect the tube and remove the fitting.
- 5. Inspect the screen. Clean or replace the fitting assembly if necessary.
- 6. Replace the fitting and reconnect the tube. Tighten the swage nut hand tight plus 1/4 turn.
- 7. Return the Compressor Package to service.
- 8. Check for leaks at all fittings that have been disturbed.

4.8 Changing the Second-Stage Separator Element

To replace the second-stage separator element:

- 1. Turn off and isolate the Compressor from all power sources.
- 2. Turn off the gas supply.
- 3. Vent the system to 0 psig. Follow applicable safety procedures and codes.
- 4. Loosen the separator element by turning it counterclockwise with a strap wrench.
- 5. Remove the separator element. Verify the gasket is removed with the separator.
- 6. Inspect the separator block for contaminants and remove any debris.
- 7. Apply a small amount of oil to the gasket and internal "O" ring on the new separator element.
- 8. Install the element on the separator block; turn clockwise to tighten.
- 9. Return the Compressor Package to service.
- 10. Check for leaks at all fittings that have been disturbed.

4.9 Changing the Oil Filter Element

To replace the oil filter element:

- 1. Turn off and isolate the Compressor from all power sources.
- 2. Turn off the gas supply.
- 3. Vent the system to 0 psig. Follow applicable safety procedures and codes.
- 4. Remove the oil filter bowl by turning it counterclockwise. **Note:** The bowl will be filled with oil.
- 5. Remove the oil filter element from the filter block by pulling the element down.
- 6. Clean the oil filter bowl.
- 7. Install a new oil filter element in the filter block.
- 8. Apply a small amount of oil to the O-rings.
- 9. Replace the oil filter bowl by turning it clockwise.
- 10. Return the Compressor Package to service.
- 11. Check for leaks at the oil filter bowl and at all fittings that have been disturbed.
- 12. Check the oil level (see **4.3 Checking the Oil Level** on page **19**). If necessary, adjust the oil level (see **4.5.1 Topping the Oil Level** on page **20**).

Figure 18 Oil Filter Bowl and Element

5.0 TROUBLESHOOTING

This section offers tips for troubleshooting.

5.1 Troubleshooting Guide

Refer to **Table 4** for recommended solutions to typical problems.

Table 4	Troubleshooting
	nousioonooting

Problem	Recommended Actions
Low Inlet	Closed gas inlet valve.
Gas Pressure	Restricted or insufficient gas supply.
Fault	Blocked inlet filter/screen (located internally on the Compressor Module inlet block).
	Blocked air flow across oil cooler.
High Oil Temperature	 Ensure cooling fans are operating when the unit is running and up to temperature; at approximately 180°F (82°C), fans should start to run at minimum speed.
Fault	 Ensure adequate oil level in first-stage separator (see 4.3 - Checking the Oil Level on page 19).
High Discharge Pressure Fault	Restricted discharge and bypass valve fault.
VFD Fault	The drive LED will display the specific fault

5.2 Motor Winding Resistance

Table 5Motor winding resistance

Compressor Model	Motor Winding Resistance
C1A and C3A	Phase-to-phase = 1.2 to 1.4 ohms
C2A	Phase-to-phase = 0.7 ohms
All Compressor Modules	Phase-to-ground = Infinity

5.3 Platform Symptoms Diagnosis

Use the following guidelines to troubleshoot operating problems.

Problem	Recommended Actions
	Low inlet pressure
	Insufficient gas supply
Low Gas	High temperature
Flow	Bypass valve open
	Low Compressor speed
	Restricted inlet screen
	Saturated or dirty secondstage oil separator
	High oil level
High Oil Carryover	Restricted scavenge orifice
	Insufficient back pressure
	Oil dilution
	Determine drive status.
Compressors	Is inhibit circuit closed?
Won't Run	Is run signal present?
	Does the VFD indicate a fault code?
	Low inlet pressure
Incorrect Compressor	High discharge pressure
Speed	High temperature, fan, low oil, oil cooler
	Problem with speed control sensor and related components
	Low oil level
Lligh	Restricted oil filter
High Temperature	Blocked oil cooler air flow
	Oil cooler fan not operating
	Operation conditions outside of Compressor Module specifications

 Table 6
 Platform troubleshooting guidelines

6.0 SPECIFICATIONS

Table 7 Compressor Module Specifications

General Information							
Inlet pressure range	Approximately75 to 25 psig						
Outlet pressure range	70 to 275 psig (depends on model—see page iv)						
Mechanical Description							
Module weight	Approximately 660 lb. (300kg)						
Suction connection	1.5" NPT						
Discharge connection	1.0" NPT						
Sound level	Approximately 75 dBA @ 1 m, 60 dBA @ 10 m						
Vibration	3 mil at 60 Hz						
Minimum cold start ambient temperature ^{1,4}	Compressor -20°F (-29°C) VFD power 14°F (-10°C)						
Ambient operating temperature range ^{1,4}	0 to 122°F (-18 to 50°C)						
Module dimensions	See Figure 4 on page 6						
Materials of Construction							
Compressor - general	Cold rolled steel, aluminum, cast iron as required						
Compressor bearings Self-lubricated, sleeve type, steel backed							
Oil heat exchanger	Aluminum						
Oil/gas separator tank	Cold rolled steel						
Tubes/fittings/skid structure	Stainless/carbon steel						
Lubrication							
Oil type	Synthetic, 15 weight, PAO (special factory-supplied blend)						
System oil capacity, oz. (ml)	380 fluid ounces (11.25 liters)						
Projected oil consumption ²	Approximately 40 oz. (0.9 I) / 8,000 hours at 0.25 psig suction (<5 ppm)						
System Electrical (Standard)							
Minimum VFD ambient startup temperature ^{3,4}	+14°F (-10°C)						
Power supply to inverter • Voltage range • Input frequency range	380 to 480VAC (50/60 Hz)						
Overpressure detection (outlet)	215 psig open (290 psig for SZV32)						
Underpressure detection (inlet)	0.75 psig open (low pressure system)						
Oil overtemperature detection	240°F (110°C) open (280°F for SZV)						
Fault output to customer	Packager to establish						
Run input from customer	Dry contact						
Gas Medium	· · · · · · · · · · · · · · · · · · ·						
Natural gas							
H₂S maximum content ⁵	450 ppm						
Moisture content ⁵	100% saturated, no free liquids						
Inlet temperature ⁵	-20 to 115°F (-28 to 46°C); protection from freezing if water is present						
· ·							

1. If the Compressors are started at temperatures above the listed minimums and continue to run, the minimum operating temperature is 20°F (-29°C).

2. Based on sweet gas wellhead gas. Results may vary due to gas quality and site conditions.

3. Do not apply power to the VFD if ambient temperature is below this level.

4. If power is continuously supplied to the VFD when the Compressor is off, the minimum starting temperature is -4°F (-20°C).

5. Consult factory for more details and applications guidelines.

Compressor Module Horsepower Selection Chart

Module Model Number: SZV32C1A-EDE-150

Configuration	Suction Press	Press pressure at maximum flow ra								
	(PSIG)		150	175	200	225	250	275		
One Module Package	0	MCFD	50	49						
		HP	18	19						
	10	MCFD	87	86	85	84	83	81		
		HP	19	21	23	25	27	30		
	25	MCFD	144	142	141	139	139	137		
		HP	21	23	25	27	29	31		
	50		241	238	236	233	232			
			23	25	27	30	32			
	65		304	297	295	291	291			
			24	26	28	31	33			
Two Module Package	0		100	98						
			37	39						
	10		174	172	170	168	166	162		
			38	42	46	50	54	60		
	25		288	284	282	278	278	274		
			42	46	50	54	58	62		
	50			482	476	472	466	464		
			46	50	54	60	64			
	65			608	594	590	582	582		
			48	52	56	62	66			
NOTES: 1. Max flow using varibable speed drive, compresso	rs operating at 80	Hz. max speed.								

Max flow using varibable speed drive, compressors operating at 80 Hz. max speed.
 Standard test conditions: 60° F suction gas, 60° F ambient, 0.6 SG gas, 14.7 psia = 0 psig
 Performance data to be used as an estimation guide only and is subject to change without notice

Compressor Module Horsepower Selection Chart

Module Model Number: SZO56C1A-EDE-240

Configuration Suction Max Flow/HP as a function of discharge pressure at maximum fl Press rate (Note 1)										flow	
	(PSIG)	MCFD)	70	80	90	100	110	120	130	140	150
One Module Package	-7.5	MCFD	43	42							
		HP	19	20							
	0	MCFD	97	96	96	95	94	94	94	93	93
		HP	19	21	23	25	26	27	29	30	32
	5	MCFD	131	130	130	129	128	128	127	127	126
		HP	21	23	24	26	27	29	30	31	33
	10	MCFD	165	164	164	163	163	162	161	160	
		HP	23	24	26	27	28	30	31	33	
	15	MCFD		198	198	197	197	196	195		
		HP		25	27	28	30	31	32		
	20	MCFD		232	232	232	231	230	229		
┟╴╴╴╴╴╴╹╚╌╸┹╶╌╴╜╏		HP		27	28	30	31	31	32		
	25	MCFD				265	264	264	264		
		HP				31	31	32	33		
Two Module Package	-7.5	MCFD	86	84							
		HP	37	40							
	0	MCFD	194	193	191	190	188	188	188	187	185
		HP	39	43	46	49	52	55	58	60	63
	5	MCFD	262	261	259	258	257	256	255	253	252
		HP	42	45	49	52	54	57	60	63	66
	10	MCFD	329	329	328	327	325	323	321	320	
		HP	45	48	51	54	57	60	63	65	
	15	MCFD		396	396	395	394	392	390		
		HP		51	54	57	59	61	63		
	20	MCFD		464	465	463	463	460	458		
		HP		54	56	59	62	63	64		
	25	MCFD				530	529	528	527		
		HP				62	63	64	65		

NOTES: 1. Max flow using varibable speed drive, compressors operating at 80 Hz. max speed. 2. Standard test conditions: 60° F suction gas, 60° F ambient, 0.6 SG gas, 14.7 psia = 0 psig

3. Performance data to be used as an estimation guide only and is subject to change without notice

Compressor Module Horsepower Selection Chart

Module Model Number: SZO44C1A-EDE-244

Configuration	Suction Press	Max Flo	w/HP a	as a fu			charge Note 1		ure at	maxir	num				
	(PSIG)	MCFD)	70	80	90	100	110	120	130	140	150	160	170	180	190
One Module Package	-7.5	MCFD	33	32											
		HP	14	15											
	0	MCFD	75	74	74	73	72	72	72	72	71	71	70	70	70
		HP	15	16	18	19	20	21	22	23	24	25	26	27	28
	5	MCFD	101	100	100	99	99	98	98	97	97	97	96	96	95
		HP	16	17	19	20	21	22	23	24	25	26	27	28	29
	10	MCFD	127	126	126	126	125	124	124	123	123	122	122	121	121
		HP	17	18	19	20	22	23	24	25	26	27	28	29	30
	15	MCFD		152	152	152	152	151	150	150	149	148	148	147	147
		HP		19	20	21	23	23	24	25	27	28	29	30	31
╽╴┊╔╙╌┹╌╝╚╌┹╌╝╠╢	20	MCFD		179	179	178	178	177	176	176	175	175	174	173	173
		HP		20	21	22	24	24	24	26	28	29	30	31	32
	25	MCFD				204	203	203	203	202	202	201	200	199	199
		HP				23	24	24	25	27	28	30	31	32	33
Two Module Package	-7.5	MCFD	66	64											
		HP	28	31											
	0	MCFD	150	148	147	146	145	145	144	144	143	142	141	140	139
		HP	29	32	35	37	39	41	44	46	48	50	52	54	57
	5	MCFD	201	201	200	199	197	197	196	195	194	193	192	191	191
		HP	32	34	37	39	41	43	46	48	50	52	54	56	58
ilaita laita	10	MCFD	253	253	252	251	250	249	247	246	246	245	244	243	242
		HP	34	37	39	41	43	45	47	49	51	53	55	58	60
	15	MCFD		305	305	304	303	301	300	299	298	297	296	295	294
		HP		39	41	43	45	46	48	51	53	55	57	60	62
	20	MCFD		357	357	356	356	354	353	352	351	349	348	347	345
		HP		41	43	45	47	47	49	52	55	57	59	61	64
	25	MCFD				407	407	406	405	404	403	402	400	399	397
NOTES		HP				47	48	49	49	53	57	59	61	63	65

NOTES:

Nax flow using varibable speed drive, compressors operating at 80 Hz. max speed.
 Standard test conditions: 60° F suction gas, 60° F ambient, 0.6 SG gas, 14.7 psia = 0 psig
 Performance data to be used as an estimation guide only and is subject to change without notice

APPENDIX A - MATERIAL DATA SAFETY SHEET

The information in this material safety data sheet should be provided to all who use, handle, store, transport or are otherwise exposed to this product. CPI believes the information in this document to be reliable and up to date as of the date of publication, but makes no guarantee that it is.

CAUTION

This oil is intended for use only in the Copeland Scroll[®] Compressor used in natural gas applications.

Use of any other oil may result in failure and is not covered by warranty.

DISPOSE WASTE OIL PROPERLY:

- If the oil has not been contaminated, it can be disposed the same as a synthetic motor oil.
- If the oil is contaminated, the end user must comply with all applicable regulations for disposal of hazardous materials.

A.1 SUPPLIER

CPI Engineering Services Inc. 2300 James Savage Rd. Midland, MI 48642 Emergency Number: (989) 496-3780

A.2 PRODUCT NAME AND INFORMATION

Product (Trade name and synonyms)	CP-6006 Series
Chemical Name	Poly-Alpha-Olefin (PAO)
Chemical Family	Synthetic Hydrocarbon
Formula	C _{10n} H _{20n} +2
CAS#	Proprietary

A.3 COMPONENTS AND HAZARD STATEMENT

This product is non-hazardous. The product contains no known carcinogens. No special warning labels are required under OSHA 29 CFR 1910.1200.

FDA Statement. This product complies with FDA 21 CFR 178.3570 regarding lubricants for incidental food contact.

A.4 SAFE HANDLING AND STORAGE

Handling. Do not take internally. Avoid contact with skin, eyes, and clothing. Upon contact with skin, wash with soap and water. Flush eyes with water for 15 minutes and consult physician. Wash contaminated clothing before reuse.

Storage. Keep container tightly sealed when not in use.

A.5 PHYSICAL DATA

Appearance	Clear, water-white liquid
Boiling Point	>300°F (149°C)
Vapor Pressure	<0.01mm Hg @ 20°C (0.00039 in.Hg @ 68°F)
Specific Gravity (water=1)	0.79-0.85
Volatiles, Percent by Volume	0%
Odor	None
Solubility in Water	Insoluble
Evaporation Rate (butyl acetate=1)	Nil

A.6 FIRE AND EXPLOSION HAZARDS

Flash Point (by Cle Cup)	veland Open	320-530°F (160-276°C)
Flammable Limits		Not established
Auto-Ignition Temp	erature	No data
HMIS Ratings	Health	0
	Flammability	1
	Reactivity	0
NFPA Ratings		Not established
Extinguishing Med	ia	Dry chemical; CO, foam; water spray (fog)
Unusual Fire and E	xplosion Hazards	None
Special Fire Fighting Techniques		Burning fluid may evolve irritating/noxious fumes. Firefighters should use NIOSH/MNSA-approved self-contained breathing apparatus. Use water to cool fire-exposed containers. Use water carefully near exposed liquid to avoid frothing and splashing of hot liquid.

A.7 REACTIVITY DATA

Stability	Stable
Hazardous Polymerization	Will not occur
Incompatible Materials	Strong oxidizers
Conditions to Avoid	Excessive heat
Hazardous	Analogous compounds evolve carbon monoxide, carbon dioxide,
Decomposition	and other unidentified fragments when burned. See A.6 - Fire and
Products	Explosion Hazards.

A.8 HEALTH HAZARD DATA

Threshold Limit Valu	е	5mg/m ³ ACGIH
Situations to Avoid		Avoid breathing oil mists.
First Aid	Ingestion	Consult physician at once. DO NOT INDUCE VOMITING. May cause nausea and diarrhea.
Procedures	Inhalation	Product is not toxic by inhalation. If oil mist is inhaled, remove to fresh air and consult physician.

To the best of our knowledge the toxicity of this product has not been fully investigated. Analogous compounds are considered to be essentially non-toxic.

A.9 Personal Protection Information

Respiratory Protection	Use in well ventilated area.
Ventilation	Local exhaust
Protective Gloves	Not required, but recommended, especially for prolonged exposure
Eye/Face Protection	Goggles

A.10 Spill or Leak Procedures

In case of spill:

- Wear suitable protective equipment, especially goggles.
- Stop source of spill.
- Dike spill area.
- Use absorbent materials to soak up fluid (e.g., sand, sawdust, commercially available materials).
- Wash spill area with large amounts of water.
- Properly dispose of all materials.

A.11 WASTE DISPOSAL METHODS

Incinerate this product and all associated wastes in a licensed facility in accordance with federal, state, and local regulations.

EmersonClimate.com

Vilter Manufacturing LLC P.O. Box 8904 Cudahy, WI 53110-8904 P 414 744 0111 F 414744 1769 www.vilter.com

> Copeland Scroll and Emerson are trademarks of Emerson Electric Co. or one of its affiliated companies. ©2011 Emerson Climate Technoligies, Inc. All rights reserved. Printed in the USA.

EMERSON Climate Technologies

2006SSD-75 R4