Application Note: Embedded Processing

® Reference System: OPB IIC Using the
X X"—INX ML403 Evaluation Platform

XAPP979 (v1.0) February 26, 2007 Author: Paul Glover, Ed Meinelt, Lester Sanders

Summary

This application note describes how to build a reference system for the On-Chip Peripheral Bus
Inter IC (OPB IIC) core using the IBM PowerPC™ 405 Processor (PPC405) based embedded
system in the ML403 Embedded Development Platform. The reference system is Base System
Builder (BSB) based.

An IIC primer is given and an OPB IIC register reference is provided. The Xilinx Microprocessor
Debugger (XMD) commands are used for verifying that the OPB IIC core operates correctly.
Several software projects illustrate how to configure the OPB IIC core, set up interrupts, and do
read and write operations. Some of the software projects interface the OPB IIC to the
MicroChip 24LC04B serial EEPROM with an IIC interface, while others interface to the
TotalPhase Aardvark Adapter, which provides IIC master and slave functionality. The procedure
for using ChipScope™ to analyze OPB IIC functionality is provided. The steps used to build a
Linux kernel using MontaVista are listed. Simulation output files for analyzing basic [IC
transactions are provided.

Included
Systems

Required
Hardware/Tools

This application note includes one reference system:

www.xilinx.com/bvdocs/appnotes/xapp979.zip

The project name used in xapp979.zip is ml403_ppc_opb_iic.

Users must have the following tools, cables, peripherals, and licenses available and installed:
e Xilinx EDK 8.2.02i

e Xilinx ISE 8.2.03

e Xilinx Download Cable (Platform Cable USB or Parallel Cable V)

e Monta Vista Linux v2.4 Development Kit

e Modeltech ModelSim v6.1d

e ChipScope v8.2

© 2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC is
a trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 1

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Introduction 2:X||_|NX®

Introduction This application note accompanies a reference system built on the ML403 development board.
Figure 1 is a block diagram of the reference system.
OPB OPB UART OPB
INTC 16550 Ic
OPB
PowerPC™
405 Processor PLB
PLB PLB
DDR BRAM
X979_01_022307

Figure 1: OPB IIC Reference System Block Diagram

The system uses the embedded PowerPC (PPC) as the microprocessor and the OPB IIC core.

IIC Primer

Figure 2 shows components on an IIC bus.Two IIC masters and three IIC slaves are shown.
The master is responsible for setting up transactions. This includes generating the clock on
SCL and defining which slave is involved in the communication, with an address field, and
which component is transmitting and which component is receiving. Some components are
slave only, while others can transition between master and slave operation.

M1 M2

¢ ¢

S1 S2 S3

X979_02_022307

Figure 2: IIC Bus

Figure 3 shows the START and STOP conditions. A START condition is a falling edge on SDA
when SCL is high. A STOP condition is a rising edge on SDA when SCL is high. During data

transfer, the data line is stable on SDA when SCL is high. Data transitions on SDA when SCL
is low. Note that the START and STOP conditions are special conditions, violating the rule that
data cannot transition while SCL is high.

SbA T | I
scL— | I

Start Stop

X979_08_022307

Figure 3: Start and Stop Conditions

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 2

http://www.xilinx.com

Introduction 2:X||_|NX®

Figure 4 shows the format of the data transfer of two bytes on the 1IC bus, beginning with the
START (S) condition and ending with the STOP (P) condition, bounded by an idle 1IC (F) bus.
After a START condition, an eight bit field is transmitted containing a 7 bit address and a single
Read/Write (R/W) bit. This 8 bit address/direction field is followed by an Acknowledge bit. After
the address/data field, an eight bit data field is followed by an acknowledge bit (A). The last 8-
bit data field is followed by a not acknowledge bit (A). This is followed by the STOP condition
(P).

A single message can contain multiple start conditions, or a repeated start, without intervening
STOP conditions.

In this data transfer, there are two acknowledge bits and one Not Acknowledge on the IIC bus.
The distinction between a Not Acknowledge and a No Acknowledge is that Not Acknowledge

occurs after a master has read a byte from a slave and a No Acknowledge occurs after a master
has written a byte to a slave.

A synchronized SCL is generated with its LOW period determined by the device with the
longest low period and its HIGH period determined by the device with the shortest HIGH
period.

Slave —
F S Address R/W| A Data A Data Al|P F

SDA |
SCL |
X979_04_012907

Figure 4: Data Transfer on the IIC Bus

Figure 5 shows the data transfer on the IIC bus, beginning with the START condition and
ending with the STOP condition.

. P
SDA ! D D O T
MSB Acknowlédgment Ackngwledgiment Sr
signal frgm slave signal from receiver

Byte complete;
interrupt within slave

Clock lines held low while
/ interrupts are serviced

seuts LS\ S\ e\ o\l ¢ [a\ So\ Jae Lo\ fTsrt

yor ! ACK ACK i
1SR | P
START or STOP or
repeated START repeated START
condition condition

X979_05_022307

Figure 5. Generic Data Transer on the |lIC Bus

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 3

http://www.xilinx.com

Reference System Specifics 2:X||_|NX®

Reference
System
Specifics

Figure 6 shows the acknowledge bit on the IIC bus.

Data output
by transmitter

LA G S

1
i Not acknowledge
Data output | \
by receiver ! \ T
1
1
I
SCL from ! Acknowledge
master T T\ [\ _[2_____Je\ [o_
1S,
START Clock pulse for j
condition acknowledgment

X979_06_012907

Figure 6: Acknowledge on the IIC Bus

Figure 7 shows bus arbitration of two masters. The IIC bus is a multi-master bus. Masters
monitor the 1IC bus to determine if the bus is active. The bus is inactive when SCL and SDA are
high for a bus free period tBUF of 1.3 us (FAST) or 4.7 us (STD). If two or more masters
monitoring the 1IC bus determine that the bus is free and begin a bus transaction
simultaneously, the 1IC bus is arbitrated to determine which master owns the bus. The IIC is a
wired AND bus. This means that the bus is HIGH unless any component is driving it LOW.

Masters monitor the bus even after they have started a transaction as the master. If a master is
not driving the 1IC bus low and the bus is low, the master knows that another master is driving
the 1IC bus. If a master cannot get the SDA or SCL to go high it loses arbitration. When a master
loses arbitration, it stops transmission. The master driving the bus with the last low when the
other master(s) drives high becomes the master of the bus.

Master 1

Master 2 _// \ /__
SDA /—_
sc. _/ _/ _/ _/J _/J \

S X979_07_012907

Figure 7: Arbitration of two Masters

In addition to the PowerPC405 processor and OPB IIC, this system includes DDR and BRAM
memory on the PLB, and a UART and interrupt controller on the OPB. Figure 1 provides the
block diagram. Table 1 provides the address map of the ML403 XC4VFX12. This is in the
system.mhs.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 4

http://www.xilinx.com

Reference System Specifics 2:X||_|NX®

ML403 XC4VFX12 Address Map
Table 1: ML403 XC4VSX12 System Address Map

Peripheral Instance Base Address High Address
PLB_DDR DDR_SDRAM_32Mx64 0x00000000 0x03FFFFFF
OPB UART16550 RS232_Uart_1 0x40400000 0x4040FFFF
OPB INTC opb_intc_0 0x41200000 0x4120FFFF
PLB BRAM plb_bram_if cntlr_0 OxFFFF8000 OXFFFFFFFF
OPB IIC IIC_EEPROM 0x40800000 0x4080FFFF

OPB IIC Registers

Table 2 provides the register map for the OPB IIC core.
Table 2: OPB IIC Registers

Register Address
Device Global Interrupt Enable C_BASEADDR + 0x01C
Interrupt Status Register C_BASEADDR + 0x020
Interrupt Enable Register C_BASEADDR + 0x028
Software Reset Register C_BASEADDR + 0x040
Control Register C_BASEADDR + 0x100
Status Register C_BASEADDR + 0x104
Transmit FIFO C_BASEADDR + 0x108
Receive FIFO C_BASEADDR + 0x10C
Slave Address Register C_BASEADDR + 0x110
Transmit FIFO Occupancy C_BASEADDR + 0x114
Receive FIFO Occupancy C_BASEADDR + 0x118
Ten Bit Slave Address Register C_BASEADDR + 0x11C
Receive FIFO Programmable Depth Interrupt Register C_BASEADDR + 0x120
General Purpose Output C_BASEADDR + 0x124

Table 3 provides a description of the OPB IIC control register.

Table 3: OPB IIC Control Register

Bit(s) Name Description

0-24 Reserved | Reserved.

General Call Enable. Setting this bit High allows the OPB IIC to respond to a

25 GC_EN general call address.

Repeated Start. Writing a “1” to this bit generates a repeated START condition
on the bus if the OPB IIC Bus Interface is the current bus Master. Attempting a
26 RSTA repeated START at the wrong time, if the bus is owned by another Master, results
in a loss of arbitration. This bit is reset when the repeated start occurs. This bit
must be set prior to writing the new address to the Tx FIFO or DTR.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 5

http://www.xilinx.com

Reference System Specifics

SXILINX®

Table 3:

OPB IIC Control Register (Contd)

Bit(s)

Name

Description

27

TXAK

Transmit Acknowledge Enable. This bit specifies the value driven onto the SDA
line during acknowledge cycles for both Master and Slave receivers.

Because Master receivers indicate the end of data reception by not
acknowledging the last byte of the transfer, this bit is used to end a Master
receiver transfer. As a slave, this bit must be set prior to receiving the byte to no
acknowledge.

28

X

Transmit/Receive Mode Select. This bit selects the direction of Master/Slave
transfers. This bit does not control the Read/Write bit that is sent on the bus with
the address. The Read/Write bit that is sent with an address must be the LSB of
the address written into the transmit FIFO.

29

MSMS

Master/Slave Mode Select. When this bit is changed from 0 to 1, the OPB IIC
Bus Interface generates a START condition in Master mode. When this bit is
cleared, a STOP condition is generated and the OPB IIC Bus Interface switches
to Slave mode. When this bit is cleared by the hardware, because arbitration for
the bus has been lost, a STOP condition is not generated.

30

Tx FIFO
Reset

Transmit FIFO Reset_ Thjs hijt must be set if arbitration is lost or if a transmit error
occurs to flush the FIFO.

31

EN

OPB IIC Enable. This bit must be set before any other CR bits have any effect.

Status Register (SR)

This register contains the status of the OPB IIC Bus Interface. All bits are cleared upon reset.
Table 4 provides a definition of the status register.

Table 4: Status Register Bit Definitions

Bit(s) Name Description
0-23 N/A Reserved.
24 Tx_FIFO_ | Transmit FIFO empty. This bit is set High when the transmit FIFO is
Empty empty.
25 Rc_FIFO_ | Receive FIFO empty. This is set High when the receive FIFO is empty.
Empty
26 Rc_FIFO_ | Receive FIFO full. This bit is set High when the receive FIFO is full.
Full This bit is set only when all sixteen locations in the FIFO are full,
regardless of the value written into Rc_FIFO_PIRQ.
27 | Tx_FIFO_F | Transmit FIFO full. This bit is set High when the transmit FIFO is full.
ull
28 SRW Slave Read/Write. When the 1IC Bus Interface has been addressed as
a Slave (AAS is set), this bit indicates the value of the read/write bit
sent by the Master. This bit is only valid when a complete transfer has
occurred and no other transfers have been initiated. A “1” indicates
Master reading from Slave. A “0” indicates Master writing to Slave.
29 BB Bus Busy. This bit indicates the status of the IIC bus. This bit is set
when a START condition is detected and cleared when a STOP
condition is detected.

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

http://www.xilinx.com

Reference System Specifics

SXILINX®

Table 4: Status Register Bit Definitions (Contd)

Bit(s) Name Description

30 AAS Addressed as Slave. When the address on the 1IC bus matches the
Slave address in the Address Register (ADR), the IIC Bus Interface is
being addressed as a Slave and switches to Slave mode. If 10-bit
addressing is selected this device will only respond to a 10-bit address
or general call if enabled. This bit is cleared when a stop condition is
detected or a repeated start occurs.

31 ABGC Addressed By a General Call. This bit is set high when another
master has issued a general call and the general call enable bit is set
high, CR(1) ="1".

Table 5 provides a register description of the Interrupt Status register.
Table 5: Interrupt Status Register

Bit Name Description
24 TFHE Transmit FIFO Half Empty
25 NAAS Not Addressed as Slave
26 AAS Addressed as Slave
27 BNB Bus is not Busy
28 RFF Receive FiFO Full
29 TFE Transmit FIFO Empty
30 TE/STC Transmit Error/Slave Transmit Complete
31 AL Arbitration Lost
XAPP979 (v1.0) February 26, 2007 www.xilinx.com 7

http://www.xilinx.com

Reference System Specifics

SXILINX®

Configuring the OPB IIC Core

Figure 8 shows how to specify the values of IIC generics in EDK. To access the dialog box in

the figure, double click on the OPB IIC core in the EDK System Assembly View..

| User | System .

HoL A= &2
Toggle Mames | | Datashest | | Restors

Al

OFE Clock Fregquency

Output Frequency of SCL Signal

Llse 10-bit Address
“idth of GRIO

Device Block 1D

Enable Module |dentification Register

|100000000

|1l]l]l]llll

| T-bit addresses

[1
|o

[ok][Caticel]

Microchip 24LC04

The Microchip Technology 24LC04B-I/ST with 4-KB EEPROM is provided on the ML403 board
to store non-volatile data. The EEPROM write protect is tied off on the board to disable its

hardware write protect. The IIC bus is extended to the expansion connector to allow additional
devices to be added to the IIC bus.

Figure 9 shows IIC Bus Devices on the ML403.

FPGA

XC4VvSx12 [— SCL

— SDA

Microchip
24L.C04B

I/0
Expansion
Header

X979_09_022307

Figure 9: ML403 IIC Bus

X979_08_012907

Figure 8: Specifying the Values of OPB IIC Generics in EDK

The 24LCO04 is organized as two blocks of 256 bytes. It has a page write buffer of up to 16
bytes. The 24LCO04 operates as an IIC slave. The 24LC04 accepts a control byte which
contains control code, block select, and Read/Write fields shown in Figure 10. The control code

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

http://www.xilinx.com

ML403 Board Information SIX"JNX®

is ‘1010 for read and write operations. The A2, Al bits are dont cares. The AO bit is used by the
master device to select which of the two 256-word blocks of memory are accessed. The
241.C04 write transactions are either a byte write or a page write. The page write begins the
same as the byte write but instead of generating a stop condition the master transmits up to 16
data bytes to the 24L.C04B. The 24LC04 supports current address, random, and sequential
read operations.

Slave
Address

110]1]0]A2|AL|AO

X979_10_012907

Figure 10: 24LCO04 Control Byte Allocation

ML403 Board According to the MicroChip 24L024B data sheet, the ML403 board has a low-level output

Information current (IOL) of 3.0 mA at a VCC of 2.5v. The ML403 boards are shipped in the configuration
shown in Figure 11. The board must be modified for this design to work correctly. Replace the
10K Ohm R70 and R71resistors with 833 or 1K Ohm resistors. See Answer Record 24049 for
additional information.

C280 VCC2V5
TOoLw

2| 2
. 24L.C04B -1/ST . ng §R71
> A0 vcC 7 10k 10k
3 Al we 6 L 1 IIC_SCL
4 A2 SCL 5 IIC_SDA -
A3 SDA = |
1 U9 TSSopPs |

— e X979_11_022307

Figure 11: ML40x Schematic for IIC Connections

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 9

http://www.xilinx.com

ML403 Board Information

SXILINX®

The resistors are located on the board as shown in Figure 12.

0egA W vaque L J
E 2ESH
£D @852 -3933 EEE:I
B

FeEasxios 2SaRR =Tieio_ Wi = A
DEAICE PIEE a_T_ETﬂ_'I::ITaﬂ EHI‘]-_-,-
1 [] &0
JE% [:|r:1LJL LJHJ @
M + Bl 0K ':‘m oS
., S T
=R ve.s 1 TTIN B =
il VEE I | J_J& ‘an ean
g LH-'ruil:fIH 53]*:'3%’]
f3ey anjlu*-éul::l':'“:' W L gen [Tem
=1 .
=00 S R
22323225 M0A933 Il -
=4
IOOoOoODeRE s & &
(EiNN .. Ft:“l_lﬁ-l_l Y 'E,:
LEl) &l L =

Figure 12: ML40x Resistors

X979_12_022307

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

10

http://www.xilinx.com

ML403 Board Information XX"JNX@

If additional IIC devices are connected to the bus via the expansion header as shown in
Figure 13, insert additional pull-up resistors on the external signals connected at pins 31 and
32. The resistor values are dependent on the voltage.

HDR 1 X 32
1
2
3
4
5 NC
6 |
=
8
9
10 NC -
11 FPGA_PROM_CPLD_TMS
12 FPGA_PROM_CPLD_TCK =
13 EXPANSION_TDO -
14 CPLD_TDO -
15 GPIO _LED N -
16 GPIO_SW_N -
17 GPIO_LED _C
18 GPIO_SW _C -
19 GPIO_LED W =
20 GPIO_SW W -
21 GPIO_LED_S
22 GPIO_SW_S -
23 GPIO_LED E -
24 GPIO_SW_E -
25 GPIO_LED 0 -
26 GPIO_LED_1 : VCC2V5
27 GPIO_LED 2
28 GPIO_LED_3 = Level
29 NC . Translation
30 NG B VOSFETs
= IIC_SCL

31 |
32 /

13 / L IC_SDA

External pullups |

connect here AV X979_13_01:
Internal pullups

connect here

Figure 13: Expansion Header

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 11

http://www.xilinx.com

ML403 Board Information

SXILINX®

Figure 14 shows the FPGA pins driving the IIC Bus.

ot scic o |Sf SOy
I0_L8P_GC_LC_3 C13 [-oo—— e —=——— .
I0_L7N_GC_LC_3_A17 |oo— === L
I0_L7P_GC_LC_3 B17 [oo L
IO_L6N_GC_LC_3 B10 — |
I0_L6P_GC_LC 3 A10 |20 DDR CLK1 P |
IO_L5N_GC_LC_3_A15 ﬁS BBE—QJ‘& |
IO_L5P_GC_LC_3 Al6 Blg SDR BAG |
I0_LAN_GC_VREF_LC_3 B2 | ==o—=m=cr — |
IO_L4P_GC_LC 3 B13 = |
I0_L3N_GC_LC_3 C14 21‘5‘ MOUSE—CDATA -
IO_L3P_GC_LC_3 C15 PHY_TXCLK L
IO_L2N_GC_VRP_LC_3_All 22 gz:g—ig—g
IO_L2P_GC_VRN_LC 3 Al2 ———
I0_L1P_GC_CC_LC_3 B14 | B4 MOUSE CLK |
I0_L1P_GC_CC_LC_3 p15 B> PHY_RXC _RXCLK |
FPGA BANK3
2.5VCCO X979_14_012007

Figure 14: FPGA IIC Pins

TotalPhase Aardvark Adapter

In the reference design, the OPB IIC in the XC4VFX12 on the ML403 board interfaces to the IIC
in the Aardvark Adapter. The Aardvark IIC/SPI Embedded Systems interface is a multi-
functional host adapter. The Aardvark Control Center software interacts with the Aardvark
Adapter. The Control Center controls the functionality of the Aardvark Adapter. It uses the
Aardvark [IC/SPI Software API. the Aardvark Adapter has six functional modes. The IIC-related
modes are the IIC + SPI and IIC Bus Monitoring modes.

The Aardvark must be configured for use before the Aardvark Control Center software can be
used to send and receive messages. Configuring the Aardvark Adapter binds the instance of
the application with the available unit until the adapter is disconnected or the application is
terminated.

The Configure Aardvark Adapter window is organized into two major sections: list of available
adapters connected to the computer and list of the six operational modes. The main application
window is divided into two sections. The top section contains the modules used with the
Aardvark Adapter. The bottom section contains the transaction log which tracks all transactions
that the Aardvark sends or receives. The transaction log contains the time, read or write
transaction, master or slave, bit rate, address, number of bytes, and data.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 12

http://www.xilinx.com

ML403 Board Information XX"JNX@

Figure 15 shows the Aardvark Control Center GUI.

Configure Aardvark Adapter I

Configure Aardvark Adapter
Select an Aardvark port Select a Mode
P | Fw [Hw [12c] SPI | GPIO | Serisl Num... ; Egg;lm
0330 300 Y Y Y 223P085307 |~ S linA
" GFIO Dnly
" Batch Mode
rahsaction Lo € [2C Monitor
Time | Mad_ ||
Rlefresh List
oK Cancel

Part Géi‘tmg‘ fist af Aardvarks

X979_15_012907

Figure 15: Aardvark Control Center

Interfacing to the OPB IIC on the ML403 Board to the Aardvark
Adapter

Figure 16 shows the principle interface blocks when transferring data between the OPB IIC in
the XC4VFX12 on the ML403 board and the IIC in the Aardvark Adapter.

ML403 - XCVFX12

DDR

A PC

Y

PPC <«— OPBIIC

A | Aardvark USB
v | Adaptor

BRAM

X979_16_012907

Figure 16: Interfacing ML403 Board OPB IIC with the Aardvark Adapter

Executing the Reference System using the Pre-Built Bitstream and the
Compiled Software Applications

To execute the system using files inside the m1403_ppc_opb_IIC/ready_for_download
directory, follow these steps:

1. Change tothe m1403_ppc_opb_IIC/ready_for_download directory.

2. Use iIMPACT to download the bitstream by using the following:
impact -batch xapp.cmd

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 13

http://www.xilinx.com

ML403 Board Information 2:X||_|NX®

3. Invoke XMD and connect to the MicroBlaze processor by the following command:
xmd -opt xapp.opt

4. Download the executable by the following command
dow <path>/executable.elf

Executing the Reference System from EDK

To execute the system using EDK, follow these steps:

1. Open system.xmp inside EDK.
2. Use Hardware — Generate Bitstream to generate a bitstream

3. Download the bitstream to the board using Device Configuration — Download
Bitstream.

Invoke XMD with Debug Launch XMD.

5. Download the executable by the following command.
dow <path>/executable.elf

Verifying the Reference Design with Xilinx Microprocessor Debugger

After downloading the bitstream file, issue the following XMD commands to verify that the
ML403 reference design is set up correctly.

mrd 0x42600100 8

The expected value of the control register after a reset, located at 0x42600100 is 0x00000000.
The expected value of the status register, located at 0x42600104, is 0x000000CO0. The reset

values of the Transmit and Receive FIFO registers are indeterminate. The reset values of the
Transmit and Receive FIFO Occupancy and the Address registers is 0.

Except for the Status, , Receive FIFO, and Transmit and Receive Occupancy registers, all
registers are writeable.

mwr 0x42600100 OxXFFFFFFFF
mrd 0x42600100 1

Using XMD commands, verify that the OPB IIC registers can be written and read as defined in
Tables 2-5.

Software Projects

The reference system contains the following software projects. In each software project
directory, there is a src sub-directory for the source code. The connections in Figure 9 are
used for the eeprom, low_level_eeprom, dynamic_eeprom, and low_level_dynamic_eeprom
projects. These projects interface to the 24LC04. The connections in Figure 3 are used for the
mult_master and repeated_start project. These projects interface to the [IC Bus via the
Aardvark Adapter.

Projects interfacing to Microchip 24LC04

eeprom: This project transmits and receives data using the high level (L1) software driver. The
OPB IIC is the master and the 24LC04 is configured as the slave. The OPB IIC master writes
data into the 24L.C04 and reads it back.

low_level _eeprom: This project transmits and receives data using the low level (LO) software
driver. The OPB IIC is the master and the 24LC04 is configured as the slave. The OPB IIC
master writes data into the 24LC04 and reads it back. This is a polled mode example.

dynamic_eeprom: This project transmits and receives data using the high level (L1) software
driver. The OPB IIC is the master and the 24LC04 is configured as the slave. The OPB IIC
master writes data into the 24LC04 and reads it back.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 14

http://www.xilinx.com

ML403 Board Information

SXILINX®

low_level_dynamic_eeprom: This project transmits and receives data using the low level (LO)
software driver. The OPB IIC is the master and the 24LC04 is configured as the slave. The OPB
IIC master writes data into the 24L.C04 and reads it back. This is a polled mode example.c

Projects interfacing to Aardvark Adapter

multi_master: This project transmits and receives data using the high level (L1) software
driver. The OPB IIC is an IIC master and the IIC in the Aardvark is a master. The Microchip
241.C04B is configured as a lIC slave. The WP pin of the 24LCO4 is hardwired to ground on the
ML403. The interrupt mode is used. The IIC master in the Aardvark Adapter writes the data to
the MicroChip 24LC04B with the No Stop option enabled. Any attempts to write data from the
OPB IIC master results in a Bus Busy status. The Aardvark Adapter releases the bus by
executing the FREE BUS command. When the bus is free, the OPB IIC master initiates a bus
transaction.

repeated_start: This project transmits and receives the data using the high level (L1) driver.
The IIC devices on the ML300/ML310/ML410 boards do not support the repeated start option.
The ML403 OPB IIC is configured as a master and the Aardvark Adapter IIC is configured as a
IIC slave. The OPB IIC writes the data to the Aardvark IIC in multiple transactions with the
repeated start option enabled. The external IIC device slave address is a 7 bit address defined
by SLAVE_ADDRESS. The number of bytes sent and received is defined by SEND_COUNT
and RECEIVE_COUNT.

Figure 17 shows the repeated start example.

Specify 0x70 as the Address. The SPI Control is not used. The transaction log shows 16 write
and 16 read transactions at address 70.

Aardvark 12C/5P1 Control Center BEH

File Aardvark Help

12C Control girate St 100 | kHz [SP] Control Bitate Set 4000 = | kH:

Master Slave | Polaiity: Phase; Bit Order:

Current Status: [m ' Rising/Falling (¢ Sample/Setup o MSE
"1 ¢ Faling/Rising Setup/Sample " LSB

. Disable

Slave Addr | (For Hex: enter "x....")
ax Tx Bytes: Max A= Bytes:

{0 indicates an unlimited number of bites)
Meszage

taster ISIave }
S5 Polarity. 1+ 55 Active Low 55 Active High
MOSI Message

Send

Set Resp,

Clear losd | save | Cear | Load Save

Transaction Log
Time

‘ Len. | Data

[Mod [RAw [M/S [Feat [BR. | Add
12C

2006-11-10 0951:04.632 5 50 12C Slave Enabled - Max i O Ma Fix: 0
2006-11-10 09.55:05.948 12C 5 12C Slave Disabled
2006-11-10 095512 463 [5 70 120 Slave Enabled - Max T D Mas R 0
2006-11-10 10:00-48 2013 [5 i} 16 000702 03 04 05 05 07 06 09
2006-11-10 10:00:48.250 2C R g 070 16 0001020204050607 0809 ..
2006-11-10 10:00:48. 250 2w s 070 16 000000000000 00000000,
2006-11-10 10:00:48. 331 2w s 070 16 000000000000 00000000,
Clear Log Save toFile
Port 2237085307

X979_17_012907

Figure 17: Repeated Start Example

slave: This project transmits and receives the data using the high level (L1) driver. The ML403
OPB IIC is configured as a slave and the Aardvark Adapter IIC is configured as a IIC master.
The Aardvark Adapter IIC writes the data in test_data to the OPB IIC and reads it back.

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com 15

http://www.xilinx.com

Running the Applications

SXILINX®

Running the
Applications

Figure 18 shows the slave example. The message is in transmit.txt, and is the sentence "Lester
was here.". The transaction log matches the message. The address is 0x70. Click Master
Write to generate the transaction.

Aardvark 12C/5PI Control Center 2EE

File Aardvark Help

12C Control

Master] Citve]

Featues: [~ 10Bitaddr [T Cor
Master Write

Message

SlaveAddr:liﬂJ {For H% enter "0x..")

7 MoStop

Bitrate Set HWU ~| kHz
Free Bus

SPI Control

Polarity
™+ Rising/Faling
" Falling/Rising

Master |S|ava]

54 EBE 72069 FIZ061 20 FAEE 7374

73 B1 67 BA 20 66 72 BF 6D 20 4C 65 73 74 E5 72 2F 04

EDEETA MOSI Meszage

Master Wit

55 Polarity: % 55 Active Low ¢ 55 Active High

Birate: Set [4000 | kHz

Fhase: Bit Order:
* Sample/Setup & M5B
© Setup/Sample - LsB

Send

Clear I Load I Save

Master Read

Number of Bytes: [25 Waster Bead | Cear | Loa Save

Transaction Log

Time [Mod [Rw [M/S [Feat [BR. [Addr [Llen | Data

2006-11-1010:43:13 470 2C W M - 400 D70 27 546B6I7I206973206120...

2006-11-1010:43 37 563 2 R M 400 070 25 0001020304 05 06 07 08 03

Clearlog | SavelaFie
Port 0 2257-085307 p
X979 18 012907
Figure 18: Slave Example

In XPS, select the Applications tab under the Project Information Area to view the Software

Project.

Figure 19 shows the structure of the dynamic_eeprom project. Make the dynamic_eeprom
software projects inactive.

project active and the remaining

s Kilinx Platform Studio - H:Adesigns\ml403_ppc_opb_iichsystem.xmp - [System Assembly View!]

EEE

File Edit “iew Froject Hardware Softwars Device Corfiguration Debug Simulation ‘window Help =5 XK
B IO :DAELERR 0 DENRUBEE AR Bl e
: iEXIBRIZE
| Project Infoima x @ Fiters
|P Catdlog | Froject Il Applications | ' o =) () Buslnterface () Porte (O Addiesses |'Eye Connection Filters
Software Projects - - E Hamie Bus Connection | IP Type 1P Wersion ~

[£]4dd Software App\icati\lkprmect... | -

5
I?NDefau\l: ppcd05_0_baootloop I= & <aph apb_vzll 170
'Pmie[:l' dynamic_eepom ﬁ & <Pplboph plbZoph brdge 1.00 2
. - H il 0 1t t 200
i# Processor: pped0s 0 :fw q::;asgggzc] Jar ﬁpiﬁéésu 1 UU;
Executable: H:\designs\ml403_ppe_ |'_+'I' >l EEIEHEI 5 hinc 1024

1# Compiler Options ;" Pl i P i

i# Sources ;1 > : ; |
j Headers @ <*opb_intc_0 opbinte 1.00c
- @P[U‘ECL RERR [# =srezet_block proc_sys reget 1,008

& Processor: pped05_0 # «#plb_bram if_cntlr 1_bram bram_block 1.00.a =

Executable: H:\designsiml403_ppe_ » L= ==
< | > | [Flatform Studia] | [T Spstem Assembly View!
5|
{ Dutput | Warings | Erars |

Figure 19

X979_19_012907

. Selecting the eeprom Software Project

XAPP979 (v1.0) February 26, 2007

www.Xil

inx.com

16

http://www.xilinx.com

Running the Applications

SXILINX®

Select dynamic_eeprom and right click to build the project. If more than one software project
is used, make the unused software projects inactive.

Connect a serial cable to the RS232C port on the ML403 board. Start up a HyperTerminal. Set
Bits per second to 9600, Data bits to 8, Parity to None, and Flow Control to None, as shown in

Figure 20.

COM1 Properties

Bits per second: | 3600 |
Databits: |8 v
Party: | Mone v/

Stop bits: |1 v

Flow control, | Hone |

Bestore Defaults

[QK. H Cancel][Apply]

X979_20_012907

Figure 20: HyperTerminal Parameters

From XPS, start XMD and enter rst. Invoke GDB and select Run to start the application as
shown in Figure 21. The eeprom. ¢ code written for the ML403 shown in the figure runs without
any modifications on this reference system.

=4 yiic_dynamic_eeprom_example.c - Source Window

Filz Fum “iew Control Preferences Help
FHOOF0 G £ 880 M-FE Find: =2 = &
|xiic_dynamic_eeprom_ﬂ]main j SOURCE -
166, int main{uoid) _‘J
]
162 XStatus Status;
163
- 164 XUartHs558 SetBaud{UART_BASEADDR, UART_CLOCK, UART_BAUDRATE);
- 165 XUartNsS50_nmSetLineControlRegq(UART_BASEADDR, XUN_LCR_S_DATA_BITS); —
166
- 147 xil_printf{"Starting IIC Test ... “rin");
168
169
178 /=
171 * Run the High Level EEPROM example.
172 *f
- 173 Status = IicDynEepromExample (EEPROM_TEST_START_ADDRESS);
- 174 if (Status ?= XST_SUCCESS)
175 {
- 176 return XST_FAILURE;
177 ®il_printf{"IIC Test Failed.\rin");
178 H |
| Program stopped at line 167 [[122291| 161

X979_21_012907

Figure 21: Running dynamic_eeprom in GDB

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

17

http://www.xilinx.com

Using ChipScope with OPB IIC

SXILINX®

Usin g To facilitate the use of ChipScope to analyze OPB IIC hardware, the i ic.cdc file is included in

Chi pSCOpe with the' ml403_ppc_opk')_iic/chip§cope directory. The iic.cdcis used t(? insert a
OPB IIC ChipScope ILA core into the opb_iic core. The following steps are used to insert a core and

analyze OPB IIC problems with ChipScope.

1. Invoke XPS. Run Hardware — Generate Netlist.

2.Inthe iic.cdc file, change the path <design_directory> name to the directory in which
the design files are installed. Three paths need to be changed.

3. Run Start — Programs — ChipScope Pro — ChipScope Inserter

4. From ChipScope Inserter, run File — Open Project ii.cdc. Figure 22 shows the ChipScope

Inserter setup GUI.

&, ChipScope Pro Core Inserter

File Edit Insert Help

LUT Count: a7

FF Count: 28

BRAM Count: 0

O d <« = & ?
P
= DEVICE ¥ pewice Select Device Options |
ICON
Design Files
Core Utilization |

Input Design Netlist:

Output Design Netlist:

ﬁUS_ppc_upb_i\c\\mp\emematiun\\\c_eeprum_wrapper.ngci‘ Browse |

!lD3_ppc_nph_iic\implemematmn\iin_eeprnm_wrapper mgn‘ ‘ Browse

< Previous | Next > |

Output Directony: IH'\de5\gns\mMEIE7ppcfnphfl\c\\mmementatmn ‘ ‘ Browse
Device Settings
Device Family: |Virtexd |~

¥ |

X979_22_012907

Figure 22: ChipScope Inserter Setup

XAPP979 (v1.0) February 26, 2007 www.xilinx.com

18

http://www.xilinx.com

Using ChipScope with OPB IIC SIX"JNX®

5. Figure 23 shows the GUI for making net connections. Click Next to move to the Modi fy
Connections window. If there are any red data or trigger signals, correct them. The Filter
Pattern can be used to find net(s). As an example of using the Filter Pattern, enter intr in the
dialog box to locate interrupt signals. In the Net Selections area, select either Clock, Trigger,
or Data Signals. Select the net and click Make Connections.

@ Select Net

Structure / Nets Net Selections
{liic_eepram_wrapper] k =1 | [Trigger Signals | Data Signals
Clock Signals |
o NTROL_lige...
“(:H:Z ic_eepromiic_INC_CONTROL _lige...
“t:H::i iSda_T
‘FHM iScl_T
‘FH:S ISin_xferfAck
“(:H:ﬁ ic_eepromiiic_I'/REG_INTERFACE Ii...
-l “(:H:?' ic_eepromiiic_I'/REG_INTERFACE _li...
= |lcHs ic_eepromiic_I/REG_INTERFACE _I1...
1 L} }cw_ﬂi_c=egmgmzii_c__mg_c__nﬂ@f_n_cg__lr-:
| T o T - ‘CH:1I] ic_eepromiic_I'/REG_INTERFACE _Li...
I|NE‘ Hame = Pater; fintr 4T CH:AT_fic_eepromiic_VREG_INTERFACE .
CH:12 ic_eepromiic_I/REG_INTERFACE _Ii...
Methame Soure... | Sourc... | Base ... | ‘CH:13 it eopromiic_IREG INTERFACE 1
I||c_aepmm.ﬂ!c_UREG_INTER.FACE_I.'IPEEEU_S_MrEVe_msD> liz_sep .. [FOR FBR - ‘CH'M ic_eepromiiic IREG INTERFACE I
Vic_sepromiic_IREG_INTERFACE_WPZEus_IrirEvent=1= liz_eep.. [FOR FDR ‘CH:15 icieeprumﬁicillREcilNTERFnCEilrm
ic_sepromiic_IREG_INTERFACE_WPZEUS IntrEvent=2s lic_sep . [FDR FDR “CH:1E icieeprumfiicilJ‘REﬁilNTERFnCEilrm
ic_sepromiic_IRES_INTERFACE WP2Bus IntrEvent=3= lic_eep.. [FDR FOR ‘CH:17 ic_eeprumriic_IJREG_lNTERFn(:E "'"
iic_meprom/ic LRES INTERFACE_IP2Eus InfrEvert=4= li:_eep . [FDR FOR ’ ‘CH:1B ;ﬁic_eeprumriic_IJREG_lNTERFACE_Irm
ic_zepromiic LREG INTERFACE_LIP2EUS IirEvent=6= li_eep... [FOR FOR P ‘ECTI':TQ'_'ET&B?Eiﬁﬁi::ijﬁﬁfi:iﬁéﬁﬁ_cf__liﬂ
iic_zepromiic LRES INTERFAGE IP2EUS IirEvent=7= liz_eep... [FOR FOR },:H:z“ ic—eepmmmc-”REG-lmERmCE-""'
iic_eepromiic_IIOPE_IPIF_SSP1_LIOPE_IFIF_LOPE_BAM_Iintr2bus .. ic_eep... LUT4 LUT4 [GHaT e Fepioriie RES INTERFAGE..
fic_eepramiic_LIOPE_IPIF_SSP1_LIOPB_IFIF_UOPS_BAM_INTR_CT... ie_e2p. FDRE FDRE | | |lpos e eepromiiic IREG INTERFACE Ii..
lic_s=promiic_LIOPE_IPIF_SSP1_LIOPE_PIF_VOPE_BAM_IINTR_CT... iic_tep... FDRS [FDRS ‘CH:ZS ic_eopromiic IREG INTERFACE Ii..
Vic_eepromiic_LOPE_IFIF_SEP1_LIOPE_IPIF_IWOPE_BAM_IINTR_CT... ic_eep... FDRS |[FDRS I i i |
ic_eepromfic_I1OPE_IPIF_SSP1_LIOPB_PIF_LIOPE_BAM_IINTR_CT... ic_sep.. FDRS [FDRS
ic_eepromiic_I/OPB_IPIF_SSP1_IOPE_IPIF_LIOPE_BAM_INTR_CT... ic_sep... FDRS FDRS ﬂ.‘ |
lic_eepromilic_IIOPE_IPIF_SSP1_LIOPE_IPIF_LIOPE_BAM_IINTR_CT... ic_eep.. FDRS [FDRS
lic_eepromilic_IIOPE_IPIF_SSP1_LIOPE_PIF_UIOPE_BAM_IINTR_CT... ic_eep... FDRS [FDRS ‘ T ‘ | A Mo Nets U ‘
ic_eepromilic_IIOPE_IPIF_SSP1_LIOPE_PIF_UOPE_BAM_IINTR_CT... jic_eep.. FDRS [FORS | |
iiﬁ‘iEEmmMLLDPEJBLE,SSEJIOPE,JE‘IEJJD}E,,B M TR CT... lic_een... FORS FDR: " d ‘Ramva et ‘ [Move Nets Down \
| Ok H Cancel

X979_23_012907

Figure 23: Making Net Connections in ChipScope Inserter

7. Click Insert Core to insert the core into iic_eeprom_wrapper .ngo. In the

ml1403_ppc_opb_IIC/implementation directory, copy iic_eeprom_wrapper.ngo to
iic_eeprom_wrapper.ngc.

8. In XPS, run Hardware — Generate Bitstream and Device Configuration — Download
Bitstream. Do not rerun Hardware — Generate Netlist, as this overwrites the
implementation/iic_eeprom_wrapper .ngc produced by the step above. Verify that the

file size of the opb_1iic_wrapper .ngc with the inserted core is significantly larger than the
original version.

9. Invoke ChipScope Pro Core Analyzer by selecting
Start — Programs — ChipScope Pro — ChipScope Pro Analyzer

Click on the JTAG chain icon located at the top left of Analyzer GUI. Verify that the message in
the transcript window indicates that an ChipScope ICON is found.

10. The ChipScope Analyzer waveform viewer displays signals named DATA*. To replace the
DATA* signal names with the signal names specified in ChipScope Inserter, select File —
Import and enter iic.cdc in the dialog box.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 19

http://www.xilinx.com

Using ChipScope with OPB IIC SIX"JNX®

The waveform viewer is more readable when buses rather than discrete signals are displayed.
The Reverse Bus Order operation below Add to Bus in the figure can be useful in analyzing
ChipScope results.

i ChipScope Pio Analyzer [new pioject]

File Miew JTAG Chain Device Trigger Setup Waverorm Window Help

® > =T G|
New Project _iffl@ Trigger Setup - DEV:] MyDevice2 (XCAVFX12) UNIT:0 MyLAO (LA) -
ook GEen g @ T —T—
o DEV:2 MyDevice2 (C4vric] | || 8 M0 TriggerPortd — reggeut]
o UNITOMLAD 0Ly | [fiic_eepromiiic_IIREG_INTERFACE_INP2Bus_IntrEvent=3= ¥
_|| [fiic_eeprormiiic_I/REG_INTERFACE_IIP2Bus_IntrEvent=2= ¥
ks Wa"emrml - [iic_eepromiiic_IREG_INTERFACE_INP2Bus_IntrEvent=1= ¥
e [fiic_eeptomfiic VREG INTERFACE IF2Bus IntrEvent=i= #
%QS::::F["DE:: ZULLEL [} fiic_eepromiiic_WIC_CONTROL _liarh_lnst %
o Trigger Ports 3 fiic_eepromiiic_MNC_CONTROL_fhus_busy "
3 fiic_eepromiiic_MIC_COMTROL fgen_stop *
3 fiic_eepromific_INC_CONTROL_gen_start 1

_:'[Add Active | TriggerCor]_dition Name | Trigger Condition Equation
= [® | Trigoerconditono | -

;? Type: Window - Windows, | 1i Depth: |512 - Position:

= — =
B

@ | Storage Qualification: All Data

&

IMFC - Device 2 Unit 0: Waiting for core to he armed

Upload

X979_24_022307

Figure 24: Setting Up the Chipscope Trigger

11. Set the trigger in the Trigger Setup window. The trigger used depends on the problem being
debugged. Change the Windows to N samples to a setting of 100. Arm the trigger by selecting
Trigger Setup — Arm, or clicking on the Arm icon.

As shown in Figure 24, the trigger setup is to trigger when gen_start is High.

12. Run XMD and/or GDB to activate the trigger patterns which cause ChipScope to display
meaningful output.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 20

http://www.xilinx.com

Linux Kernel

SXILINX®

Linux Kernel

13. ChipScope results are analyzed in the waveform window as shown in Figure 25. The
waveforms may be easier to read if the discrete signals are removed after they are renamed. To
share the results with remote colleagues, save the results in the waveform window as a Value
Change Dump (vcd) file. The vcd files can be translated and viewed in most simulators. The
ved2wlf translator in Modeltech reads a vcd file and generates a wif file for viewing in the
Modeltech waveform viewer. The vcd file can be opened in the Cadence Design System, Inc.
Simvision design tool by selecting File — Open Database.

File View JTAG Chain Device Trigger Setup ‘Waveform Window Help
@782 F|2LR

New Project 11 & waverorm - pevi2 ice2 (XCAVFN12) UNIT:0 MyILAD (LA} > o
TDEVU MyDevicel (Syster, ,' @ om Jeree2 s) AL AGLR) £
DEV-T MyDevice] QCF32 BusiSignal <|ol0 60 20 20 &0 100 130 180 220 260 300 30 3
¢ DEV.2 MyDevice? (XC4vF; | L I L I I 1 | 1 | |
¢ UNITO MylLAD gLy | /iic_eepron/ii
Trigger Setup . _
fiic espron/ii

WaveTarm E
e e— =——lat! #iic_eeprom/iii
Signals: DEV: 2 UNIT: 0
o= Data Port
o Trigges Poits /Adc_eepron/ii

/1 eeprom/ii

/iic_eepron/ii

#iic_eepron/ii

siic eepron/ii

/it _eeprom/ii

/iic esprom/it

fiic_eepron/ii

/i eeprom/ii

fiic_eepron/ii

/iic eepron/ii

#iic epron/ii

0
[
]
1]
1
f
¥
0
fiic esprow/ii 0
o
o
0
]
0
0
[
pr

/iic_eepron/ii

ﬂi\m\)14 »]a p]]

[2 platfarms., = o0 2

X979_25_012907

Figure 25: ChipScope Analyzer Results

New users of MontaVista Linux should read XAPP 765 Getting Started with EDK and Monta
Vista Linux. The steps to build and boot a Linux kernel are given below. Steps 1-3, 7, 8 are run
on a Linux machine with MontaVista Professional Edition®© installed.

1. Add /opt/montavista/pro/host/bin and
/opt/montavista/pro/devkit/ppc/405/bin

to $PATH.

2. Change totheml1403_IIC/1linux directory.

3. Run

tar cf - -C /opt/montavista/pro/devkit/lsp/xilinx-ml300-

ppc_405/1linux-2.4.20_mvl3l/ . tar xf -

4. To generate the Linux LSP in XPS, enter Software — Software Platform Settings.
Select Kernel and Operating Systems, then select linux_mvl31 v1.00.c.

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com 21

http://www.xilinx.com

Linux Kernel

SXILINX®

5. Under OS and Libraries, set the entries as shown in Figure 26.

Verify that the target directory is the same as the directory containing the Linux source.

' Software Platform Settings

Processar Infarmation

Pincessar Instarce: |

Software Platform
0% and Libraries
Drivers

Interupt Hardlers

Configuration for Libraries

%
ppodlE 0 |
Corfiguratiorliy 05, Wbmldt w16
Nae Curent Valus Default Value Typs Desciption ~
= i3 : N
+ connected_periphs (R523.. airsy Peipherals connected to Linu
MEM_SIZE 0404000000 int Main Meriary size in bytes
PLB_CLOCK_FREQ_HZ 100000000 nt PLB clock frequency
- TARGET_DIR o sting Diestination direetary for Linux BSP
IIC_PERSISTENT_BASEADDR 1024 1024 int Statt of persistent storage back in the EEPROM address
IC_PERSISTENT_HIGHADDR, 2047 2047 int End of persistent storags black in the EEPROM addess
+ IIC_PERSISTENT_EEFROMADDR 0240 b0 int Address of the EEPROM an the IIC bus
POWERDOWN_BASEADDR int Start address of the powerdown featurs
POWERDOWHN_HIGHADDR int End addiess of powsrdovin featurs
- POWERDOWN_VALUE int Value to pawer the board dowin —
PCI BOARD stina Mame of PC confiaured board fmi310 o1 w4101 &

X979_26_012907

Figure 26: BSP Settings

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

22

http://www.xilinx.com

Linux Kernel SIX"JNX®

6. Click Connect_Periphs and add the OPB_INTC, OPB_SYSACE, OPB_IIC, OPB_SPI,
OPB_IIC, and OPB 16550 peripherals, using the instance names shown in Figure 27.

- Add/Delete List of Parameter-Yalues

FParameter Mame; connected_periphs
%cted ta Lirs

Farameter Diescnphion; Penpherals con

penph_name
R5232_Uart |
IIC_EEPROM
.Dpl:u_intc_El

To add an element to the parameter list, click “add"

To delete an element; select the row and click "Delete”

addal || Add || Delets || DK || Cancel

X979_27_012907

Figure 27: Connected Peripherals

Click OK.

7. Select Software — Generate Libraries and BSPs to generate the LSP in
ml403_ppc_opb_iic/linux.

8. Fromml403_ppc_opb_iic/linux, run
patch_nobspgen.

9. Theml403_ppc_opb_iic/linux/.config is used to define the contents of the Linux
kernel. Run

make oldconfig

An alternative is to enter make menuconfig and generate a new . config using the following
options.

e Select General Setup
e Enable IIC. Disable PS/2 keyboard. Change to /dev/ram for booting from ramdisk.
e Select Input Core Support. Disable all.

e Select Character Devices. Disable Virtual. Leave Serial enabled. Disable Xilinx GPIO and
Touchscreen.

10. Runmake clean dep zImage.initrd. Verify thatthe zImage.initrd.elf fileisin
the m1403_ppc_opb_iic/linux/arch/ppc/boot/images directory.

11. Invoke Impact and download implementation/download.bit to XC4VFX12. Either
select Device Configuration — Download Bitstream from XPS or run the following

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 23

http://www.xilinx.com

Simulation 2:X||_|NX®
command from the command prompt:
impact -batch etc/download.cmd
12. Invoke XMD. From the m1403_ppc_opb_iic/linux directory, enter the following
commands in the XMD window.
rst
dow arch/ppc/boot/images/zImage.initrd.elf
con
13. View the output in the HyperTerminal window. Login as root. Entered / and1ls -1to
view the contents of the mounted Linux partition.
14. An alternative to downloading the Linux kernel executable is to load it into CompactFlash.
The file used uses an ace file extension. To generate an ace file, run the command below
from the m1403_ppc_opb_iic directory.
xmd -tcl /genace.tcl -jprog -hw ./implementation/system.bit -ace
./implementation/ace_system hw.ace -board ML403
Copy the ace file to a 64-512 MB CompactFlash (CF) card in a CompactFlash reader/writer.
Remove the CF card from the CF reader/writer and insert it into the CompactFlash slot (J22) on
the ML403 board. Power up the board.
Simulation Theml403_ppc_opb_iic/simulation directory contains waveform log file, opb_iic.wilf, for

IIC transactions discussed in this section.

The opb_iic.wlif files are easily loaded into the Modeltech simulator using the File — Open
command, specifying the *.wif file type.

The OPB IIC core has two Finite State Machine (FSM). The clock FSM has IDLE, START,
SCL_LOW_EDGE, SCL_LOW, SCL_HIGH_EDGE, SCL_HIGH, STOP_WAIT states. The main
FSM has IDLE, HEADER, ACK_HEADER, RCV_DATA, XMIT_DATA, ACK_DATA, and
WAIT_ACK states.

Figure 28 shows the two OPB IIC cores in the simulation. The simulation is a Bus Functional
Model simulatation of two OPB IIC cores. The IIC cores with addresses 20 and AA are
designated iic_20 and iic_AA, with C_BASEADDR of 0xE0000000 and 0xE1000000,
respectively. Both cores connect to SCL and SDA. The stimuli is provided by writing the OPB
lIC registers.

As an example
write cr 41

enables the OPB IIC and sets the General Call enable. The address determines which OPB IIC
is the target of the write, with 0xE0000100 for iic_20 and 0xE1000100 for iic_AA. It may be
useful to consult the register map in Table 2 and the control (Table 3), status (Table 4), and
interrupt status register (Table 5) definitions.

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 24

http://www.xilinx.com

Simulation

SXILINX®

BFM

IIC_20

SCL

SDA

IIC_AA

Base Address
0xE0000000

Base Address
0xE1000000

X979_28_012907

Internal signal names used in the OPB IIC core are provided in Table 6.

Figure 28: OPB IIC Simulation

Table 6: Internal Signals in OPB IIC

Signal Name

Functionality

Txak

Transmit acknowledge

Gc_en General call address enbale
Ro_prev Receive overrun prevent
Dtre Data transmit register empty
Msms Master/Slave select
Dtr(7:0) Data Transmit Register
Adr(7:0) IIC Slave Address Register
Ten_adr(7:5) 10-bit Slave Address Register
Bb Bus Busy

Aas Addressed as slave

Al Arbitration lost

Srw Slave read/write

Abgc Addressed by general call
Data_iic(7:0) [IC data for microprocessor

New_rcv_data

New data received on IIC bus

Tx_under_prev

Transmit FIFO Empty IRQs

slave_sda SDA value when slave
master_sda SDA value when master
sm_stop Stop condition needs to be generated

rsta_tx_under_prev

Repeated start Tx underflow prevent

In most cases, after data is transmitted, the test waits for an interrupt from the OPB IIC.

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

25

http://www.xilinx.com

Simulation 2:X||_|NX®

The simulation runs for 2000 ns as shown in Figure 29. There are 3 sections in the simulation,
shown in the following figures.

Fle Edit Uiew nsert Fomat Tools Window

RCEERCEY Y 0

| ops to 1a71as8581 ps | how- 1,353,170 05 Delfer2
o=

X979_29_022307

Figure 29: Complete Simulation

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 26

http://www.xilinx.com

Simulation

SXILINX®

In the first test, which is shown in Figure 30, the OPB IIC registers are read to verify the correct
reset values. The interrupt registers are written and read. This occurs from 0 - 10 s Following
this, an arbitration test is run. IIC_AA is initially the bus master, with the write CR_AA 0x0d.

Lvrave - default

Fle Edit View nsert Fomat Jooks Mindow

BB I ME S| ‘
N B R Q@B | B3|

|
| 0ps to bza37a62 B ow: 1,353,170 s Dt 2

§ L4
| S | m

X979_30_022307

Figure 30: Arbitrartion Lost Test Simulation

XAPP979 (v1.0) February 26, 2007 www.xilinx.com

27

http://www.xilinx.com

Simulation SIX"JNX®

Figure 31 provides the Arbitration Lost test code. This pseudo-code can be tracked in the
simulation.

write ADR_20 0x20

write CR_20 40

write CR_AA 0x01

write ADR_AA AA

write IER_AA 0x04

writt RC_FIFO_PIRQ_20 0x0

write DTR_AA 0x0

write CR_AA 0x0D -- Enables AA as master (5.9us)
write IPIER_20 0x01

write DTR_20 AA

write CR_20 0xOD -- Enables 20 as master
wait_for_intr(30)

read IPISR 0xD3 -- Arbitration lost (260 us)
write CR_20 0x01 -- Clears interrupt

X979_31_012907

Figure 31: Arbitration Lost Test Code

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 28

http://www.xilinx.com

Simulation

SXILINX®

The second test, shown in Figure 32, runs from 575 sto 790 s Ths master, AA, receives 3C
and 55 from 20. The following stimuli / results is seen in the opb_iic.wif file.

hd vrave - default

Fle Edit view nset Fomat ook window

A B0 i |ew@m | 4 B[metEEBIH® XD ™
LY SO 1 B

| 454408559 ps fo 794441015 ps | Mow: 1,853,170 05 Delfec2

X979_82_022307

Figure 32: Simulation with iic_AA as Master

XAPP979 (v1.0) February 26, 2007 www.xilinx.com

29

http://www.xilinx.com

Simulation

SXILINX®

Figure 33 provides the test code used in the simulation with the OPB IIC with the AA address

as the master.

write CR_20 0x40 -- GC, En

write ADR_20 0x20 - Sets address as 0x20
write CR_AA 0x01 - Enable

write ADR_AA O0xAA

writt RC_FIFO_PIRQ_AA 0x0

write IER_AA 0x04 -- Enable DTRE interrupt
write RC_FIFO_PIRQ 0x01 (473 us)

write DTR_20 0x3C

write DTR_20 0x55

write DTR_AA 0x0 -- General Call

write CR_AA 0x0D -- RSTA, TxAK, TX, MSMS, Enable
wait_for_intr

read SR_AA 0xC4 -- TFE, RFE, BB

read ISR_AA 0xD4 -- TFHE, DTRE

write CR_AA 0x35 RSTA, MS, EN (547 us)
write DTR_AA 0x21

write DTR_AA OxFF

write IER_AA 0x08

wait_for_intr -- waiting for DRR_AA full
read SR_AA 0x0C -- SRW, BB (678 us)
write CR_AA 0x37 -- Clear FIFO

write CR_AA 0x35

read DRR_AA 0x3C

write ISR_AA 0xC*

write DTR_AA 0x21

wait_for_intr

read SR_AA 0x8C

read ISR_AA OXCA -- TXER, DFF Full
write CR_AA 0x41

read DRR_AA 0x55 (787 us)

write ISR_AA 0xC8

write IRE_AA 0x10 -- Enable Bus is not Busy

wait_for_intr

X979_33_012907

Figure 33: Test code with iic_AA as Master

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

30

http://www.xilinx.com

Simulation SIX"JNX®

Figure 34 shows the third test shown in opb_iic.wlf, run from 800 - 2000 us. IIC_20 is the
master writing to 11IC_AA, which is a 10-bit slave.

_v -0 X
M 3 e puwl Rl Jock Wndew

JeE&| RO AT S| SEEW|| 4+ |0 Wi | PR o
LR - b M

‘i:tslrgrr'tis
&

o
™

R
et

! -
L
i
rhie
T
u

X979_34_012907

Figure 34: Simulation with iic_AA as Master

XAPP979 (v1.0) February 26, 2007 www.xilinx.com 31

http://www.xilinx.com

Simulation

SXILINX®

Figure 35 provides the test code for simulation with IC_AA as master.

write DTR_20 OxF2

write DTR_20 0xD5

read TX_FIFO_OCY 0x01

write CR_20 0x0D -- Tx, MS, En

write RC_FIFO_PIRQ 0x01

write [IER_AA 0x20 -- Enable AAS
wait_for_intr

read SR_AA C6 -- TFE, RFE, BB, AAS (893 us)
write DTR_AA 0x11

write DTR_AA 0x22

write IER_AA 0x47

read ISR_AA 0xAO -- TFE, FFF

read SR_20 C4 -- TFE, RFE, BB

write IER_20 0x3F -- Enable DTRE
wait_for_intr -- DTRE occurs, D5 sent, and
throttle for 1500 ns

write DTR_20 0xC3 (928 us)

write DTR_AA AA

wait_for_intr -- DTRE occurs, C3, AA sent, and
throttle for 1500 ns

write CR 0x25 -- RSTA, Master Receive, MS, Enable
write DTR_20 OxF3

read DRR_20 0xC3

wait_for_intr -- DRR full occurred, repeated start,
F3 sent on bus

read ISR-20 0xCC -- RFF (1130 us)

read DRR_20 0x11 -- No Ack Master Receive
write CR_20 0x15

write ISR_20 0xCC

write IER_20 0x3B

wait_for_intr -- DRR full, 0x22 received, throttle
for 1500 ns

write DTR_20 OxF2 -- Most significant address
write DTR_20 0xD5 -- Least significant address
write DTR_20 E1

read TX_FIFO_OCY 0x02read SR_AA 0x8E
read DRR_AA 0xAA

read SR_AA 0xCE

write DTR_20 0xD2

write DTR_20 0xC3

write DTR_20 0xB4

read TX_FIFO_OCY_20 0x05

read SR_20 0x0C -- SRW, BB

— write DTR_20 0xA5

write DTR_20 0x96
write DTR_20 0x87
write DTR_20 0x78
write DTR_20 0x60
write DTR_20 Ox5A
write DTR_20 0x4B
write DTR_20 0x3C
write DTR_20 0x2D
wrote DTR_20 Ox1E

read TX_FIFO_OCY_20 OxOF -- 1207 us

write DTR_20 OxOF

read TX_FIFO_OCY_20 OxOF
read SR_20 0x1C -- TFF, SRW, BB
write DTR_20 0x00

read TX_FIFO_OCY_20 OxOF
read SR_20 0x1C

write DTR_20 OxFF

write RC_FIFO_PIRQ_AA 0x0D
write CR_20 0x2D -- RSTA, TXAK,
MS, EN Starts transmission
read DRR_20 0x22

read ISR_AA OxEE

write IER_AA 0x08
wait_for_intr -- DRR_55 Full
read DRR_AA OxE1 -- 1948 us
read DRR_AA 0xD2

read DRR_AA 0xC3

read DRR_AA 0xB4

read DRR_AA 0xA5

read DRR_AA 0x96

read DRR_AA 0x87

read DRR_AA 0x78

read DRR_AA 0x69

read DRR_AA 0x5A

read DRR_AA 0x4B

read DRR_AA 0x3C

read DRR_AA 0x2D

read DRR_AA Ox1E

write CR_20 0x09 -- TXAK, EN
write DTR_20 0x55

X979_35_012907

Figure 35: Test Code for Simulation with iic_20 as Master

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

32

http://www.xilinx.com

SXILINX®

References
References DS434 OPB IIC Bus Interface (v1.02a)
XAPP765 Getting Started with EDK and MontaVista Linux
ML40x Embedded Development Platform User Guide UG080 (v2.5) May 24, 2006
ChipScope ILA Tools Tutorial
The IIC Bus Specification Version 2.1 January 2000 Philips Semiconductors
Revision The following table shows the revision history for this document.
HIStOI’y Date Version Revision
2/26/07 1.0 Initial Xilinx release.

XAPP979 (v1.0) February 26, 2007

www.Xxilinx.com

33

www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_pci.pdf
http://www.xilinx.com/products/software/chipscope/chipscope_ila_tut.pdf
http://www.xilinx.com

	Reference System: OPB IIC Using the ML403 Evaluation Platform
	Summary
	Included Systems
	Required Hardware/Tools
	Introduction
	IIC Primer

	Reference System Specifics
	ML403 XC4VFX12 Address Map
	OPB IIC Registers
	Configuring the OPB IIC Core
	Microchip 24LC04

	ML403 Board Information
	TotalPhase Aardvark Adapter
	Interfacing to the OPB IIC on the ML403 Board to the Aardvark Adapter
	Executing the Reference System using the Pre-Built Bitstream and the Compiled Software Applications
	Executing the Reference System from EDK
	Verifying the Reference Design with Xilinx Microprocessor Debugger
	Software Projects
	Projects interfacing to Microchip 24LC04
	Projects interfacing to Aardvark Adapter

	Running the Applications
	Using ChipScope with OPB IIC
	Linux Kernel
	Simulation
	References
	Revision History

