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1.0 Introduction

Intel develops example software to demonstrate the capabilities of the IXP1200 Network Processor 
Family. This document describes the implementation of example software demonstrating the 
IXP1200, IXP1240, and IXP1250 in an ATM environment. In particular, this example design uses 
the IXP12xx to route IP packets between ATM and Ethernet networks. 

From the point of view of this example software, the IXP1240 and IXP1250 are synonymous - the 
project utilizes their common hardware CRC feature; but is not aware of the IXP1250’s additional 
ECC capability. The IXP1200, on the other hand, does not have hardware CRC support, and thus 
supports only a software-CRC configuration.

This document serves as a companion to the comments in the source code, and is intended to 
clarify the structure and general workings of the design. The following material is covered: purpose 
and scope of the design; software partitioning and data flow, StrongARM® Core and microengine 
initialization; microengine functional block description; subsystems and data structures; inter-
thread signaling; project configuration; testing environments; simulation support; limitations, and 
example design extension. The end of this document contains lists of document conventions, 
acronyms and definitions, and related documents.

1.1 Purpose of ATM Example Design

This example design demonstrates just one software architecture in which the IXP12xx can be used 
in ATM-related designs. It is not intended to be ’production ready’. Rather, it is intended to serve as 
a starting point for customers designing similar applications. It is also intended for customers to 
understand the IXP12xx Network Processor’s capabilities and expected performance. 

Users may modify the code, adding additional modules that are proprietary or more specific to their 
needs, and estimate performance, although performance numbers gained from this design are 
applicable only to the example as presented. Customer changes to the design can result in either 
increases or decreases in performance.

1.2 Scope of Example Design

This document describes the implementation in sufficient detail that a programmer should be able 
to successfully modify the source code. The README.txt file that accompanies the software 
should be consulted for instructions on running the project, building the code, and the actual layout 
of the source files. 
Application Note 7
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1.2.1 Supported / Not Implemented Functions

The following identifies the ATM, Ethernet, and StrongARM supported functions, as well as those 
functions that are not supported.

The majority of RFC1812 router validations are performed in the layer 3 forwarding code running 
on the microengines, while rare case exception packets are sent to the StrongARM core control 
plane for validation and processing. No processing code on the StrongARM core is currently 
implemented. Refer to the document "IXP1200 Network Processor RFC 1812 Compliant Layer 3 
Forwarding Example Design Implementation Details" for further information.

This example design can be configured to run in three different hardware/software configurations 
(see the README.TXT file for further information):

1.3 Background

1.3.1 Ethernet, IP and AAL5 Protocol Processing

Figure 1 identifies how this design processes Ethernet, IP, and AAL5 protocols., Reading from top 
to bottom, Ethernet packets go through the LLC/SNAP Encapsulation, followed by segmentation 
into ATM AAL5 cells. Reading from bottom to top, it also shows the reverse process, in which 
AAL5 cells are reassembled into Ethernet packets.

ATM Support Ethernet Support StrongARM Core 
Processing Hooks NOT Implemented

1xOC-12 port or up to 
4xOC-3 ports (full-duplex).

Segmentation and Re-
assembly (SAR).

ATM Adaptation Layer 5 
(AAL5 with CRC-32).

IP over ATM LLC/SNAP 
Encapsulation.

Routing from ATM to 
Ethernet ports based on IP.

Unspecified Bit Rate 
(UBR).

Full ATM VC name space.

16K Virtual Circuits (VC) 
simultaneously in use.

Up to 8 100Mbps 
Ethernet ports (full 
duplex).

Routing from 
Ethernet to ATM 
ports based on IP.

RFC1812 compliance.

AAL5 Protocol data units 
(PDUs) for signaling, 

(ILMI, LECS, PNNI, CIP) 
forwarded to the 
StrongARM core.

Control Plane processing.

ATM Traffic shaping.

ATM ARP support.

Configuration Description

One ATM OC-12 port and eight 
100Mbps Ethernet ports For use with the IXP1240/1250, which uses hardware CRC capability.

Four ATM OC-3 ports and eight 
100Mbps Ethernet ports 

Similar to the above configuration (requires the IXP1240/50), except that 
it uses four OC-3 ports.

Two ATM OC-3 ports and four 
100Mbps Ethernet ports

For use with the IXP1200 (which does not have hardware CRC 
capability). Instead, CRC computation is performed by two microengines 
(thus the reduced data rates).
8 Application Note
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1.3.2 Frame and PDU Length vs. IP Packet Length

Figure 2 shows the relationship between IP Packet Length (X axis), Ethernet Frame Length, and 
AAL5 PDU length (Y axis). Packet lengths 20 - 128 bytes are shown to illustrate 1-, 2-, and 3-cell 
PDUs. The same pattern continues through the maximum Ethernet MTU size - the 1500 byte 
packet, which requires 32 cells. There are a few important items to notice on this graph:

• 1.The smallest possible Ethernet frame is 64-bytes, which includes the IP packet in addition to 
a 14-byte Ethernet header and 4-byte FCS. Adding an 8-byte preamble and 12-byte interframe 
gap (960ns) to this frame increases it’s wire-occupancy time to 84 bytes. After IP packet length 
exceeds 46 bytes, Ethernet frame length is a linear function of IP packet length. 

• AAL5 PDU length is a step-wise function of IP packet length, due to rounding up to ATM cell 
boundaries. At 53 bytes per cell, the 4-byte ATM header and 1 byte HEC are included here, but 
the physical layer SONET overhead is not shown.

• The smallest possible IP packet, 20 bytes, corresponds to an IP header that does not contain an 
IP payload. This packet fits into a single cell PDU, as do packets up to size 32 bytes (20 byte 
IP header plus 12 payload bytes).

• Minimized TCP/IP packets are 40 bytes - 20 byte IP header, 20 byte TCP header, and 0 TCP 
payload bytes. These "40 byte packets" require 2 cell PDUs - they do not fit into single cell 

Figure 1. IP over ATM Encapsulation Format
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2 bytes IP Packet

AAL5
CS

Padding
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PDUs because 8-bytes of LLC/SNAP plus 8 bytes of AAL5 trailer push them over the 48 byte 
payload capacity of a single ATM cell.

• Fully populated 64-byte minimum-sized Ethernet frames carry 46-byte IP packets, and also fit 
into 2 cell PDUs, as do IP packets up through 80 bytes.

1.3.3 Expected Ethernet Transmit Bandwidth

This example design has more Ethernet transmit wire capacity than most full-bandwidth ATM 
input workloads is able to consume. All configurations of this example design include more 
Ethernet bandwidth than ATM bandwidth. This assures that Ethernet reception is fast enough to 
supply ATM transmit at full wire rate, and that Ethernet can transmit fast enough to consume ATM 
receive at full wire rate.

When Ethernet receive bandwidth exceeds ATM transmit wire-rate, the design discards the excess 
Ethernet input. In the reverse direction, ATM receive wire-rate is less than Ethernet transmit wire-
rate, and so Ethernet transmit will never be fully consumed.

Given that the design receives cells at OC-3 or OC-12 wire-rate, Figure 3 shows the expected 
Ethernet Transmit bandwidth. This pattern is a direct result of the minimum Ethernet frame size 
and cell granularity of AAL5 shown in the previous figure. For example, a 32-byte IP packet would 
completely fill one cell, and when forwarded to Ethernet, Ethernet it expands to consume the entire 
84-bytes of wire-time associated with a 64-byte minimum size Ethernet frame. In this scenario 
ATM is more Mbps efficient than Ethernet, 949 Mbps Ethernet output would be expected. 
However, as only 800Mbps of Ethernet bandwidth is available, the one-cell PDU workload will 
drive the Ethernet wires to their 800Mbps capacity and discard the last 149Mbps. 

Figure 2. Frame and PDU Length vs. IP Packet Length
10 Application Note
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A 33-byte IP packet overflows into 2 cells, requiring 53 more bytes on the input wire. This 
effectively slows down the input rate, and the theoretical best-case Ethernet Transmit bandwidth 
for this input drops to 475Mbps, well within the capacity of the 8 100Mbps Ethernet ports. Indeed, 
only in the one-cell/PDU case does the Ethernet transmit bandwidth requirement exceed the 
800Mbps available.

As packets grow larger, the net effect of overflowing to the next cell is smaller. However, the peaks 
in maximum bandwidth are also lower, reflecting the additional ATM header that is needed for 
each additional cell in the PDU.

The following figure identifies the expected aggregate Ethernet transmit bandwidth for ATM OC-3 
and OC-12 wire-rate input:

1.4 Execution Environment

1.4.1 Software

The software execution environment supported by the Developer’s Workbench is described in the 
README.txt file that accompanies the source code files for the project. This includes descriptions 
of the directory and file structure, and project reconfiguration instructions. See Section 5.0 for 
additional information on configuring the project.

The software simulation of the example design consumes test data streams from the Data Stream 
feature of the Developer’s Workbench or through a network simulator Dynamic Linked Library 
(DLL). Sample Ethernet and ATM data streams are provided.

Figure 3. Expected Ethernet Transmit Bandwidth
Application Note 11
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Figure 4 shows how data stream PDUs can be created in the Workbench for ATM, Ethernet, IP, and 
other protocol data streams. These data streams can then be assigned to feed different ports. To test 
how the example design performs IP routing, different destination IP addresses can be chosen in 
the PDU.

Figure 5 shows the IX Bus Device Status window. This window gives a continually updated 
snapshot of IX Bus activity. It can be used to gain an overall picture of what data is being 
transferred over the IX Bus "on-the-fly", and the data or wire transmission rate. The Data 
Streaming feature and the IX Bus Device Status window are both documented in the IXP1200 
Development Tools User’s Guide.

In the simulation environment, the IP and ATM VC table management software that normally run 
on the StrongARM core are emulated with a combination of Transactor (simulator) foreign models 
and interpreted Transactor scripts.

Figure 4. Developer’s Workbench - ATM Data Stream Dialog Box
12 Application Note
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.

1.4.2 Hardware

The README.txt file contained in the vxworks subdirectory of the project source code describes 
how to build and run the project on hardware using VxWorks®. While the project runs in 
simulation mode by default, some simple changes to the project configuration must be made before 
it will run on hardware. To run on hardware, Tornado 2.1® as well as the IXP1200 Developer’s 
Workbench 2.01 need to be installed on the host system. Further details may be found in the 
README.txt file in the vxworks subdirectory.

2.0 System Overview

2.1 System Programming Model

Figure 6 shows the system hardware, as seen by the software. Data flows from the receive ports on 
the left, through the IXP12xx’s RFIFO and its various hardware resources, and then to the TFIFO 
and out the transmit ports on the right. (While logically independent, receive and transmit ports for 
each interface are implemented in the same physical hardware package. The figure uses a single 
block arrow to illustrate 1-4 ATM ports, and 1-8 Ethernet ports, depending on the configuration.) 

Figure 5. Developer’s Workbench - IX Bus Device Status Window
Application Note 13
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The StrongARM core shares access to SRAM and DRAM with the microengines, and thus can 
manage the VC and IP tables. The StrongARM core runs a Developer’s Workbench debug library 
to connect to Developer’s Workbench running on a remote host to debug and download microcode.

2.2 StrongARM Core Software

In this example implementation, the StrongARM core runs VxWorks, and initializes the hardware; 
controls the baseboard 82559 PCI Ethernet NIC; runs the IXP1200 Developer's Workbench debug 
library, and connects it to a remote system host via the PCI Ethernet NIC; runs various startup 
utilities (including atm_init() to initialize the IP route and VC Lookup tables) and provides those 
utilities for run-time; and runs an agent to consume exception packets which are not handled by the 
microengines in the data plane.

In the simulation environment, the IP and VC table management software are emulated with 
Transactor foreign models - DLLs which are linked into the Transactor. The same source code is 
compiled into the Transactor foreign models for SIMULATION, and the VxWorks utilities to run 
on HARDWARE.

Figure 6. System Programming Model
14 Application Note
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2.3 Software Partitioning

The following figures show how the microcode functional blocks are partitioned on IXP12xx 
hardware for the three system configurations.

All three figures show the ATM ports on the left, and the Ethernet ports on the right. All ports are 
bi-directional, but are shown as uni-directional for clarity. The IX bus is configured in dual 32 bit 
unidirectional mode.

The ATM Receive microengine uses the SRAM VC Lookup Table to assemble ATM cells into 
AAL5 PDUs in DRAM. It forwards the descriptor to the fully-assembled PDUs to the IP Route 
microengine via a single message queue (MSGQ) in scratchpad RAM.

The IP Route microengine reads the IP header from DRAM, performs additional checks per 
RFC1812, performs an IP lookup to make a routing decision, then enqueues the Ethernet frame to 
the appropriate Ethernet Transmit packet queue. In the Software CRC configuration, the packet is 
processed by a CRC-32 checking microengine before being enqueued to an Ethernet transmit 
packet.

In the reverse direction, Ethernet frames are received on the Ethernet ports by the Ethernet receive 
microengine(s), which perform IP lookup and RFC1812 checks. The packets are then enqueued on 
the appropriate queues to be consumed by the ATM transmit microengine. In the software CRC 
configuration Figure 9, the PDUs are first processed by a CRC generation microengine before 
going to the ATM Transmit microengine.

Figure 7. IXP1240 1xATM OC-12 and 8xEthernet 100Mbps Microengine Partitioning
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In the OC-12 configuration, there are two message queues (MSGQs) in scratchpad RAM, one for 
PDUs from each Ethernet Receive microengine. The pool of threads in the ATM transmit 
microengine alternately poll the two MSGQs.

In the OC-3 configurations, there is a buffer descriptor queue (BDQ) in SRAM associated with 
each ATM transmit port. BDQs are similar to packetqs, but they are slightly more efficient in 
configurations, where for example the transmitter dedicates a thread to each BDQ.

Figure 8. IXP1240 OC-3 4xATM and 8xEthernet 100Mbps Microengine Partitioning
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• IP Lookup Table - resides partially in SRAM and partially in DRAM, and is used by the IP 
Route microengine and the Ethernet Receive microengine.

• MAC Address Hash Table - resides in SRAM and is used for RFC 1812 Port address 
verification. 

• Software CRC configurations use a table of pre-computed CRC-32 syndromes in SRAM.
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2.4 Data Flow

2.4.1 ATM to Ethernet Data Flow

Figure 10 outlines the processing to receive ATM cells and forward them to Ethernet ports. For a 
given VC, three different types of cells of the PDU can arrive: the first cell, middle cells, and last 
cell:

1. The first cell of the IP over ATM PDU contains three types of headers: ATM header, LLC/
SNAP header, and IP Header. This is sufficient information to make a forwarding decision. 
The payload portion of this cell is moved directly from the RFIFO to DRAM. 

2. Subsequent middle cells are moved directly from the RFIFO to DRAM without any additional 
processing. 

3. When the last cell of the PDU (which contains the AAL5 trailer) is received, the payload of the 
cell is moved directly from the RFIFO to DRAM, and the completed PDU is then enqueued 
for Ethernet transmission.

2.4.1.1 VC Lookup

A VC lookup is performed on each cell received over an ATM port. The appropriate VC Table 
Entry is located using the VPI/VCI value in the ATM header plus the port number. The lookup 
provides an DRAM packet buffer base address, plus the CRC-32 syndrome for the PDU. As each 
additional payload is added to the DRAM buffer, the offset value is incremented and the CRC 

Figure 9. IXP1200 2xATM OC-3 Software-CRC and 4xEthernet 100Mbps Microengine 
Partitioning 
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syndrome is updated appropriately. The VC Table Entry also contains an AAL type field. 
Currently, this example design supports only classical IP over ATM, where the AAL type can be 
either 0 or 5. A value of 0 indicates that the VC is not open, so any cell received on that VC is 
immediately discarded.

The LLC/SNAP field specifies the protocol type. Currently, the only valid value is 0x AA AA 03 
00 00 00 08 00 (classical IP over ATM). While this implementation consumes and produces just 
one valid LLC/SNAP pattern, this pattern is not hard-coded. The LLC/SNAP bits are included in 
the IP route table entry, as well as the VC lookup table. This is to make it easy to modify the design, 
not only support a different LLC/SNAP pattern, but also to be able to support different valid 
patterns for each VC.

2.4.1.2 IP Lookup Table

Each PDU contains an IP header in its first cell. Therefore, a single IP lookup is performed for each 
PDU, regardless of the number of cells in the PDU.

Figure 10. ATM to Ethernet Processing Steps
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2.4.2 Ethernet to ATM Data Flow

Figure 11 outlines the sequence of events that takes place when processing incoming Ethernet 
packets. Incoming Ethernet packets can either fit within a single MPKT ("m-packet", 64 byte 
packet "fragment"), or span multiple MPKTs. The SOP (start of packet) and EOP (end of packet) 
bits indicate the starting and ending MPKTs. As MPKTs are received, they are stored in an DRAM 
data buffer. 

When the first MPKT is received (SOP asserted), the IP header is read from the RFIFO, the header 
checksum is checked, the appropriate IP fields are updated (i.e. TTL), and an IP lookup is 
performed. The IP Lookup Table Entry tells the receiver which port to route to, and which LLC/
SNAP pattern to prepend to the PDU. The LLC/SNAP and modified IP headers are then written to 
DRAM.

When the final MPKT is received (EOP asserted), the AAL5 trailer is written out to DRAM and the 
fully assembled PDU is enqueued for ATM transmission.

Figure 11. Ethernet to ATM Processing Steps
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3. Run the IXP1200 Developer’s Workbench debug library, and connects it to a remote system 
host via the PCI Ethernet NIC to download and debug IXP1240 microcode.

Then, atm_init() is invoked to initialize data structures in memory:

• Buffer Descriptor Free-list.

• CRC-32 Lookup Table.

• IP Lookup Table.

• VC Lookup Table and hash miss free-list.

• IP directed broadcast address hash table.

• Ethernet receive port MAC address hash table.

On hardware, atm_init() resides in the atm_utils.o VxWorks-loadable module running on the 
StrongARM core. In the simulation environment, atm_init() resides in the atm_util.dll foreign 
model and is invoked from the Transactor startup script atm_ether_init.ind.

2.6 Microengine Initialization

One microengine includes system_init.uc and invokes system_init() at its beginning. system_init() 
is the central microcode initialization macro. It handles initialization not handled by the 
StrongARM core, and then sends a signal to thread0 of every microengine, including itself. 
(system_init() can be invoked from any microengine. ether_tx_threads.uc is used simply because 
of available microstore space.) 

Reset causes every microengine to execute thread0 first, so every microengine begins with thread0 
waiting for the inter-thread signal from system_init(). Upon receipt, thread0 is responsible for 
starting up the microengine in an orderly fashion, e.g. initializing absolute registers and signaling 
the other threads to start.

3.0 Microengine Functional Blocks

3.1 ATM Receive Microengine

The ATM Receive microengine is a single microengine dedicated to receive cells from the ATM 
ports, check CRC-32 while re-assembling them into PDUs, and then forward them to the IP Router 
microengine. (In the software CRC configuration, an additional microengine is used to handle 
CRC checking.)

3.1.1 Structure

The following identifies the ATM Receive microengine structure for OC-12 and OC-3 ports:

OC-12 Port OC-3 Ports

Four threads working in parallel on one port. One thread/port.
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3.1.2 High Level Algorithm

In all configurations, each Receive thread gets its own RFIFO element, as assigned by 
port_rx_init().

"Fast-port" speculative receive requests. "Slow-port" status check before receive requests.

VC Cache enabled. VC Cache disabled.

NUMBER_OF_ATM_PORTS must be 1. NUMBER_OF_ATM_PORTS may be 1, 2, or 4.

OC-12 Port OC-3 Ports

Figure 12. ATM Receive High Level Algorithm
 while(1)
    #if (ATM_OC3_PORTS)
        poll RCV_RDY_LO until port is ready
    #endif
    wait until < 3 receive requests in flight from this engine
    receive cell from PHY to RFIFO
    if (no Buffer Descriptor available "on deck")
        pop buffer descriptor from free list.
    read ATM header from RFIFO
    #if (ATM_OC12_PORT)
        if (RX_CANCEL)
            handle & continue
    #endif
    if (RXFAIL)
        handle & continue
    if(not user cell)
        handle & continue
    #if (ATM_OC12_PORT)
        if(ATM header hits in VC cache)
            get VC info from VC cache
        else // cache miss
           allocate unused cache entry
    #endif // ATM_OC12_PORT
           look-up VC in hashed VC table
    if (VC not open)
        handle & continue
    if (no Buffer Descriptor associated with VC)
        assign "on deck" descriptor to this VC.
    if (VC not open for AAL5)
        drop cell & continue
    if (first cell of PDU)
        if (cell LLC/SNAP != VC table LLC/SNAP)
            drop cell
        move first cell to DRAM from RFIFO, calculate CRC-32
    else
        move nth cell to DRAM from RFIFO, calculate CRC-32
    if (last cell of PDU)
        if (bad CRC-32)
            drop PDU, continue
        if (AAL5 length == 0)
            drop PDU, continue
        update buffer descriptor
        msgq_send() buffer descriptor to IP Route engine
    else // not last cell
        #if (ATM_OC12_PORT)
            update and exit VC cache entry
        #endif
        update VC table entry
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3.2 ATM Transmit Microengine

The ATM Transmit microengine is an AAL5 Unspecified Bit Rate (UBR) Transmitter that uses a 
single microengine to move cells at wire-rate in either single OC-12 or up to four OC-3 port 
configurations. No attempt is made to mix, schedule, or otherwise ’shape’ the order of the cells on 
the wire. 

The transmitter consumes PDUs one at a time from beginning to end, resulting in an output stream 
in which cells from the same PDU are transmitted "back-to-back" from first through the last cell of 
the PDU.

The transmitter is implemented with 3 identical fill threads. Unlike the Ethernet transmitter, the 
ATM transmitter does not have a thread dedicated to scheduling the work of the fill threads. Rather, 
the fill threads use shared absolute registers to act as a "distributed scheduler". The fourth thread 
could also be enabled as a fill thread, but is not needed at the wire rates in this design.

In IXP1240/1250 hardware CRC configurations, the ATM Transmitter generates CRC-32 upon 
transferring cells from DRAM to the TFIFO. In the IXP1200 software CRC configurations, CRC-
32 is computed by a dedicated CRC-32 generation microengine.

3.2.1 High Level Algorithm

Figure 13. ATM Transmit High Level Algorithm
    while(1)
        critsect_enter(@poll_for_new_work_mutex)
        if (engine not active sending a PDU)
            dequeue a PDU
        if (Rosetta not ready to transmit)
            goto skip#
        critsect_exit(@poll_for_new_work_mutex)
        get transmit (cell) assignment from active PDU
        sequence_enter(SEQ_TFIFO) - remember TIFO element allocation order
        _atm_tfifo_element() to claim the next TIFO element
        write payload from DRAM to TFIFO
        _build_atm_tx_assignment() set-up TFIFO control word
        _my_tfifo_status_write() write control to TFIFO
        atm_tx_tfifo_write_cell_header_and_data0() – ATM header into TFIFO
        sequence_wait(SEQ_TFIFO) - wait for my element to be next
          tfifo_ptr_wait() - don't validate too far ahead of xmit_ptr
          tfifo_validate_write()
        sequence_exit(SEQ_TFIFO)
        continue
    skip#: // skip a TIFO element
        critsect_exit(@poll_for_new_work_mutex)
        sequence_enter(SEQ_TFIFO) - remember TIFO element allocation order
        _atm_tfifo_element() - to claim the next TIFO element
        _my_tfifo_skipstatus_write() - write control to TFIFO
        sequence_wait(SEQ_TFIFO) - wait for my element to be next
          tfifo_ptr_wait() - don't validate too far ahead of xmit_ptr
          tfifo_validate_write()
        sequence_exit(SEQ_TFIFO)
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3.3 IP-Router Microengine

The IP Router microengine consumes packets from the ATM receive microengine via a message 
queue, and routes them to the appropriate Ethernet transmit packetq. In the IXP1200 software-CRC 
configuration, this function is carried out by two threads residing on the ATM Receive microengine 
rather than on a dedicated IP router microengine.

3.3.1 Structure

All threads are identical. In hardware-CRC configurations, four IP Router threads reside on the 
dedicated IP-router microengine. In the software-CRC configuration, two IP Router threads reside 
on the ATM Receive microengine.

3.3.2 High Level Algorithm

3.4 Ethernet Receive Microengine

The Ethernet Receive microengine is based on rx_ether100m.uc, an extended version of the 
Ethernet receive threads from the Software Development Kit’s (SDK's) 16-port Ethernet example 
design1. While the code looks quite different from that on the SDK, most of the changes required a 
simple move to a more efficient structure, without changing the logical function of the 
microengine. For example, the threads take advantage of updated APIs for the RFC1812 macros to 
lower the overhead of RFC1812 support.

Semantically, there are only a few differences from the SDK Ethernet design.

• IP lookup can return an ATM destination port, or an Ethernet destination port.

• For ATM destinations, prepend the LLC/SNAP to the payload.

• For ATM destinations, append the AAL5 trailer.

Figure 14. IP Router High Level Algorithm
 while(1)
    msgq_receive() packet from ATM RX engine
    ip_filter() out SNMP, IGMP
    ip_addr_validation() to discard packets from reserved addresses
    ip_dbcast_check() to filter out packets from directed broadcast addresses
    ip_proc()
        ip_verify() check TTL and checksum
        ip_modify() update TTL
    ip_route_lookup()
    port_enabled_check() to discard packets from disabled port
    update Ethernet MAC Source Address with our own
    #ifdef ATM_LOOPBACK //Allow hardware configurations with ATM outputs 

//connected directly to ATM inputs
        if(output port == ATM port)
            over-ride ATM destination port with round-robin Ethernet port
    #endif
    packetq_send() packet to destination Ethernet port

1. The SDK (Software Development Kit) 2.01 CD contains a number of earlier IXP1200 Ethernet example designs that have remained 
relatively unchanged from previous releases of the SDK. The Ethernet receive and transmit code in this example design reuses that code with 
few modifications
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• For ATM destinations, enqueue to the ATM Transmit microengine, or for software CRC, to the 
appropriate AAL5 CRC-32 generation queues.

The ETHERNET_LOOPBACK build option enables routing packets from Ethernet Receive ports 
to Ethernet Transmit ports. This is useful for equipment checkout in the lab. If this option is not 
defined, packets received from ethernet ports which route to ethernet output ports are discarded 
with IP_NO_ROUTE exception. If this option is defined, the packets are forwarded as requested.

3.4.1 Ethernet Receive Structure

There are four identical threads on each Ethernet receive microengine. Each thread services a 
specific port and uses a specific RFIFO element.

3.4.2 Ethernet Receive High Level Algorithm

3.5 Ethernet Transmit Microengine

The Ethernet Transmit microengine is rooted in ether_tx_threads.uc, which simply includes 
system_init.uc, invokes system_init(), sets some definitions, and includes tx_ether100m.uc from 
the 16-port Ethernet example design on the 2.01 SDK.

Other than that change, there is only one other difference between this Ethernet transmitter and the 
implementation used by SDK example designs like L3fwd8_1f. With RFC1812 enabled, the SDK 
example designs place the Ports-With-Packets (PWP) vector in SRAM and polls it to find packets 
to send. This design uses a more efficient implementation that polls an scratchpad resident PWP 
vector for the data plane, and checks for a signal before polling an SRAM resident PWP vector to 
consume packets from the StrongARM core.

Figure 15. Ethernet Receive High Level Algorithm
while(1)
    if(no receive buffer in hand)
        allocate a receive buffer
    receive MPKT from MAC to RFIFO
    if(SOP)
        read link layer header from RFIFO
        if (not Ethernet)
            record output queue to be to StrongARM core
        else
            transfer end of MPKT from RFIFO to DRAM
            read IP header from RFIFO
            if (IP header checksum error)
                remember to discard this packet
            endif
            update IP header TTL and checksum
            ip_lookup()
            write LLC/SNAP and modified IP header to DRAM
        endif
    else // !SOP
        extract byte count from receive state
        transfer MPKT from RFIFO to DRAM data buffer
    endif
    if(EOP)
        write AAL5 trailer
        enqueue PDU to ATM transmitter
    endif
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3.5.1 Ethernet Transmit Structure

The Ethernet Transmit microengine contains three fill threads and one transmit scheduler thread. 
The Ethernet transmitter uses the eight even TIFO elements, allowing the ATM transmitter to use 
the eight odd Transmit FIFO elements. This is the same TFIFO sharing mechanism that is used by 
the L3fwd8_1f SDK example, except here the peer transmitter is ATM instead of Ethernet.

3.5.2 High Level Algorithm

As mentioned in “project_config.h”, defining ETHERNET_LOOPBACK allows the project to 
forward packets from Ethernet source ports to Ethernet destination ports. Enabling this option adds 
a small cost in the Ethernet transmitter because it needs to be able to handle transmit data starting 
on variable buffer offsets.

This implementation uses thread0 as a scheduler, and the others are used as fill threads:

Thread0:
    while(1)
        tx_100m_assign()

tx_100m_assign() makes work assignments to the three fill threads of this microengine. Slow ports 
are mapped directly to TFIFO elements. Therefore, if the target port has no packets, the fill thread 
is given a ‘skip’ assignment. When the fill thread executes a skip assignment, it forces the 
hardware to skip a TFIFO element without transmitting any data from the TFIFO element onto the 
IX bus.

Threads1,2,3:
    while(1)
        read assignment from scheduler
        restore portinfo state from absolute registers
        if (assigned to transmit a packet)
            transfer MPKT to TFIFO and validate
            update portinfo state
        else
            skip TFIFO element
        endif

3.6 CRC-32 Calculations using IXP1240/1250 Hardware

The IXP1240 adds sdram_crc[] instructions to the IXP1200 instruction set for efficient CRC 
calculation. This design takes advantage of that hardware support in the ATM receiver and the 
ATM transmitter. On receive (reassembly), CRC is checked when ATM cells are transferred from 
RFIFO to DRAM. On transmit (segmentation), CRC is generated when ATM cells are transferred 
from DRAM to the TFIFO.

3.6.1 CRC-32 Hardware Checking on Receive

Quadword 0 is copied with an sdram_crc[r_fifo_rd], mask_right instruction. This applies the CRC 
to the four bytes labeled "LLC0" in Figure 16, but not to the ATM header. The ATM header is not 
actually needed in the DRAM data buffer, but it is transferred, because this is more efficient than 
performing a read/modify/write to preserve insignificant bits in the buffer.
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Quadwords 1-5 are transferred by an sdram_crc[r_fifo_rd, 5] instruction. Quadword 6 contains 
"Data 11" -- the eleventh 32-bit longword of the cell. Data 11 is stored in the VC table entry to be 
consumed when the next cell in this PDU arrives. When the first cell is also the last cell (for 
example, for a single-cell-PDU), Data11 contains the CRC-32 of the AAL5 trailer, and it is 
compared to the one’s complement of the computed CRC syndrome.

This design can actually skip the first RFIFO->DRAM transfer because LLC0 is constant on the 
first cell and it is explicitly compared with the LLC0 value in the microengine. After a successful 
compare, it is stripped from the packet. With the following optimization enabling definition,, the 
CRC computation begins with LLC1 using the syndrome that would result from CRC over LLC0 
(with the initial configuration, it is enabled by default):

#define CRC32_RX_LLC0

The algorithm for transferring the nth cell of a PDU is slightly different than that for moving the 
first cell - as illustrated in Figure 17.

Looking at the quadword on the row labeled 6:

• The four bytes labeled ’11’ make up the longword ’data11’ from the first cell. The four bytes 
labeled ’0’ make up the longword ’data0’ from the second cell.

Figure 16. First Cell of a PDU in RFIFO and in DRAM
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Figure 17. Two-Cell PDU in DRAM
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• Upon reception of the first cell, data11 is saved in the VC cache/table entry. Upon reception of 
the 2nd cell, data11 is retrieved from the VC cache/table entry, combined with data0 of the 
second cell, and written in a single burst to DRAM.

Moving the nth cell (not cell0) in a PDU from the RFIFO to DRAM is similar to using the macro 
atm_move_cell0_rfifo_to_sdram(), except that:

• The nth cell must start with a run-time crc_residue resulting from CRC on the previous cell in 
the PDU.

• The nth cell must combine data11 of the previous cell with data0, as shown in Figure 17.

3.6.2 CRC-32 Hardware Generation on Transmit

Figure 18 and Figure 19 show the layout of the cell source as it appears in DRAM, and the desired 
format in the TIFO, respectively. Aspects of the first, nth, and last cell are all overlaid on the same 
diagram, as the positions are the same. In each diagram, rows are 64-bit “quadwords”.

3.6.2.1 Transmit Alignment

The alignment of this cell in DRAM is dependent on how the data was received. In this example 
design, the data was received on Ethernet, with a 14 byte Ethernet header. Therefore, the first byte 
of the IP header starts on the 15th byte of the buffer.

The sdram_crc[t_fifo_wr] commands account for this alignment by using the IXP12xx byte 
alignment hardware. These diagrams show bytes in big-endian order, while the instruction 
encoding asks for byte alignment assuming little endian order. Therefore the 6-byte offset shown 
here, becomes a 2-byte offset as encoded in the indirect_ref.

Figure 18. Transmit cell as seen in DRAM
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Figure 19. Transmit cell seen in TFIFO

0 1 2 3 4 5 6 7 Bytes -> (Big Endian Diagram)

0 ATM Header LLC

1 LLC1 IP

2 IP

3 IP

4

5 AAL5

6 CRC32 - - - -
Application Note 27
Modified on: 3/20/02, 



IXP1200 Network Processor Family ATM OC-3/12/Ethernet IP Router Example Design
The hardware byte aligner operates on the data before the CRC computation hardware. This can be 
seen in the transfer to quadword 0 of the TFIFO element with sdram_crc[t_fifo_wr], mask_right 
with a byte alignment of 2 and a CRC mask value of 4.

Quadwords 1-5 are transferred with sdram_crc[t_fifo_wr, 5] with the same alignment. For 
quadword 6, the processing depends upon whether or not it is the last cell of a PDU:

• If quadword 6 is not the last cell, it is transferred via sdram[t_fifo_wr], mask_left, then the 
syndrome is extracted for use when the next cell is sent on this VC.

• If quadword 6 is the last cell, the syndrome is read after quadword 5 is finished, it is inverted 
and transferred viat_fifo_wr[] to quadword 6 from the microengine.

In all cases, after the cell is transferred and CRC is done, the first quadword is overwritten by the 
microengine to insert the ATM header on the front of the cell. As the TFIFO is addressable only as 
quadwords, the write will also update the first four bytes of cell payload (labeled LLC0 in the 
example diagram). To preserve these first four payload bytes, the microengine first reads them 
from DRAM and combines them with the ATM header before overwriting quadword0.

As with LLC0 in the ATM receiver, this design can be optimized to take advantage of that the 
constant LLC0 constitutes the first four bytes of payload on the first cell of a PDU (with the initial 
configuration, it is enabled by default):

#define CRC32_TX_LLC0

3.7 CRC-32 Checker and Generator Microengines (Soft-CRC)

The CRC-32 microengine code, "Software CRC", is needed only for IXP1200 configurations. 
IXP1240 or IXP1250 designs employ sdram_crc[] hardware instructions to perform the same 
calculation more efficiently.

In IXP1200 configurations, there are two microengines dedicated to AAL5 CRC-32 calculations:

• One consumes the ATM Receive data stream and checks the CRC-32 before routing to 
Ethernet Transmit packet-queues. 

• One consumes the Ethernet Receive data stream and generates CRC-32 before forwarding to 
the appropriate ATM Transmit queues.

3.7.1 Functional Differences between Checker and Generator

There are four functional differences between the Checker and Generator:

• DRAM data buffer payload alignment: depends on if it was received from ATM or Ethernet.

• Queues to be consumed.

• Queues to be supplied.

• CRC-32 answer - the checker compares it to the received CRC, while the Generator writes it 
into the AAL5 trailer.

The source code is assembled into binaries optimal for Checking or Generating based on the 
microengine number assignments from system_config.h.

#define CRC_CHECKER (UENGINE_ID == CRC32_CHECKER_UENGINE)
#define CRC_GENERATOR(UENGINE_ID == CRC32_GENERATOR_UENGINE)
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3.7.2 CRC-32 Checker and Generator High Level Algorithm

The PDUs within each VC on each port are enqueued on the output in the same order that they 
were dequeued from the input.

3.7.3 CRC-32 Computation

CRC-32 computation is performed by the calculate_crc32() macro in atm_aal5_crc32lib.uc.

The data stream is used to index tables of pre-computed CRC-32 results. The results are combined 
serially to produce the CRC-32 for the entire AAL5 PDU.

The lookup tables are generated by code in atm_aal5_crc32_table.c. In simulation, the code 
produces files that contain the tables and are downloaded into SRAM by startup scripts.

For hardware, the tables are generated by the same code running on the StrongARM core, but 
rather than creating files, the tables are written directly to memory.

4.0 Software Subsystems & Data Structures

4.1 Virtual Circuit Lookup Table - atm_vc_table.uc

4.1.1 VC Table Function

The ATM receive microengine uses a VC Lookup Table to manage reassembly of cells into PDUs. 
The virtual circuit address bits in each cell header, plus the receive port number, uniquely specify a 
VC table entry for that VC. ATM Receive performs a VC Lookup to qualify every cell received. 
The lookup returns the VC Lookup Table Entry structure with the format shown in Figure 23 and 
Figure 24.

Figure 20. CRC-32 High Level Algorithm
// CRC Checker

while(1)
 dequeue PDU from CRC CHK BDQ
 calculate_crc() over entire PDU
 if (AAL5 trailer CRC == calculated CRC)

enqueue PDU onto Ethernet Transmit packet queue
 else

drop PDU
 endif

//CRC Generator

while(1)
 dequeue PDU from CRC GEN BDQ
 calculate_crc() over entire PDU
 write calculated CRC into AAL5 trailer in DRAM data buffer
 enqueue PDU onto ATM TX UBR BDQ
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The OC-12 configuration uses a VC Table Cache in conjunction with the VC table, however the 
description of the backing VC table in this section applies with or without the presence of a VC 
Cache.

The VC table entry answers the following questions for the ATM Receive thread:

• Is the VC open? (If no, discard the cell)

• Which LLC/SNAP patterns are expected at the start of each PDU? (If no match, discard cell.)

• Which AAL is the VC open for? (ATM Receive currently processes only AAL5.)

• Where should ATM Receive put the payload in DRAM (buffer and offset)?

• For hardware CRC: what is the current syndrome for this PDU?

4.1.2 VC_TABLE_HASHED Structure

VC_TABLE_HASHED supports the entire ATM VC name-space by employing the IXP12xx 
hashing hardware as follows:

• At initialization, microcode loads the hash48 multiplier CSRs with the largest prime number 
that fits into 48 bits: 0xffffffffffc5.

• At run-time, ATM Receive locates entries like so:

key = (atm_header & 0xFFFFFFF0) | port#)
hash_output = hash1_48[key]
Index = ((hash_output) ^ (hash_output >> 16) ^ (hash_output >> 32)) & 0xFFFF

The index is used to read an entry from a 64K entry "primary" hashed VC Table in SRAM. If the 
key in the entry matches the starting key, the hash table has successfully delivered the right VC 
table entry with just one SRAM read. If the key does not match the key in the entry read from the 
primary table, it follows a linked "collision" list threaded with the entry "Next" field (see figure 
Figure 23)
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When atm_vc_table_entry_create() attempts to add an entry to the table and determines that the 
entry in the primary table is already occupied, it needs to come up with an available entry to thread 
onto the Next pointer. Although other implementations (which have less available RAM) take 
entries from the primary table to perform this task, this implementation has a dedicated pool of 16K 
collision entries that are available in a buf.uc style freelist threaded on hardware stack 1. The 
motivation is that VC lookup is on the critical performance path. Therefore, this design needs to 
maximize the chances that entries will be found in the primary table rather than on the collision 
lists. However, the optimal primary table and collision free-list sizes will depend on the target 
workload (an implementation issue).

4.1.3 VC_TABLE_LINEAR Structure

VC_TABLE_LINEAR implements a simple linear array of VC table entry structures in SRAM. 
The size of the table depends on the number of VCs being supported, which correspondingly 
depends on the number of ports and the number of significant VCI and VPI bits in the ATM header. 
The defaults for these parameters are set in system_config.h, and can be overridden in 
project_config.h.

Figure 21. Hashed VC Table Structure
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The project defaults to support a 64K-entry VC table - independent of the number of ports. It does 
this with eight significant VCI bits, and eight more bits split between VPI and ports. This means 
that the design can distinguish the difference between 64K different VCs. However, it does not 
mean that the design can simultaneously reassemble PDUs on all 64K entries. The system supports 
only 16K packet buffers, and would run out of buffers were it to attempt to assemble PDUs on 
more than 16K VCs.

4.1.4 VC Table Management API - atm_utils.c

atm_utils.c implements C-language utilities to manage the VC Lookup Table. These utilities are 
available both in simulation at the Transactor command prompt, as well as VxWorks kernel entry 
points.

The current implementation assumes Permanent Virtual Circuits (PVCs), i.e. it does not support the 
StrongARM core updating the VC table while the microcode is using the table. Switched Virtual 
Circuit (SVC) support could be added by employing SRAM locks or atomic operations to avoid 
conflicts between simultaneous StrongARM core and microengine access to the same VC entry.

4.1.5 VC Table Entry

The format of the VC Table entry for VC_TABLE_HASHED is the same as for 
VC_TABLE_LINEAR, with the addition of 2 32-bit words to hold the Next address and the hash 
Key for the entry.

This format is only partially hidden from ATM Receive, the consumer of the VC table API, though 
macros could be implemented to make it appear to opaque.

Figure 22. VC Table Index

bit positions: Z Y X

- Port VPI VCI

Bit Position Description

X VCI_SIGNIFICANT_BITS - 1

Y VCI_SIGNIFICANT_BITS + VPI_SIGNIFICANT_BITS - 1

Z VCI_SIGNIFICANT_BITS + VPI_SIGNIFICANT_BITS + PORT_SIGNIFICANT_BITS - 1

Figure 23. VC Lookup Entry Table (VC_TABLE_HASHED)
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Entry Description

Next Address of the next entry in the chain of entries that hash to the same row. 0 indicates no 
next entry. (21 bit SRAM address) 

Key Hash key used to find this entry, also used to confirm arrival at the desired entry. Key = 
(atm_header & 0xFFFFFFF0) | port#

Buffer Offset Indicates which 64-bit DRAM word in the buffer should receive the next payload. On 
completion of PDU assembly, this field is copied to the buffer descriptor.

Buffer Index Buffer descriptor (and data buffer) to be used by ATM Receive to deposit payloads on this 
VC.

LLC/SNAP
1: LLC0_IP, LLC1_IP

else: available for other patterns

Q

Queue To StrongARM core "Q" flag

1: queue all traffic to core

0: do not queue to core

AAL
5: ATM Adaptation Layer 5

0: VC is not open

CRC The CRC-32 syndrome associated with the PDU. It is saved in the VC table entry after a cell 
is moved, and then retrieved and used when the next cell in the PDU is received.

Cell Data11
The last four bytes of the previous cell in this PDU. Used during re-assembly of PDUs to 
allow 8-byte quadword burst writes to DRAM without using DRAM Read/Modify/Write 
instructions.

Figure 24. VC Lookup Table Entry (VC_TABLE_LINEAR)
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Entry Description

Buffer Offset Indicates which 64-bit DRAM word in the buffer should receive the next payload. On 
completion of PDU assembly, this field is copied to the buffer descriptor.

Buffer Index Buffer descriptor (and data buffer) to be used by ATM Receive to deposit payloads on this VC.

LLC/SNAP
1: LLC0_IP, LLC1_IP

else: available for other patterns

Q

Queue To StrongARM core "Q" flag

1: queue all traffic to core

0: do not queue to core
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4.2 Virtual Circuit Lookup Table Cache

4.2.1 VC Cache Function

4.2.1.1 OC-12 Configuration

The intent of the VC cache is not to reduce average latency but to account for back to back cells 
from the same VC. It is not possible to reduce average latency because the design has to account 
for worst case cache miss on every VC lookup anyway.

The OC-12 configuration caches the results of VC Table lookup operations in absolute registers. 
The intent of the VC cache is not to reduce average latency, but rather to account for back-to-back 
cells from the same VC. It is not possible to reduce average latency, because the design has to 
account for worst-case cache miss on every VC lookup. In this scenario, processing of the 
subsequent cell can only commence once processing of the previous cell has been completed and 
recorded in the VC Table Entry. In particular, the subsequent cell can access the VC Table Entry 
only after the previous cell has updated the buffer offset telling the cell where to go, and updated 
the CRC syndrome. The CRC syndrome is known only after the previous cell is done transferring 
from RFIFO to DRAM, and it must be known before the subsequent cell starts transferring from 
RFIFO to DRAM.

4.2.1.2 OC-3 Configuration

The OC-3 configuration does not require, and thus does not enable, the VC Cache. In the OC-3 
receiver, there is a single thread dedicated to each port. Therefore, by definition the cells coming in 
on each port are on different VCs and threads will thus never have to wait for access to the same 
VC Table Entry.

4.2.2 VC Cache Structure

There are four VC Cache entries, enough to guarantee that every thread in the ATM Receive 
microengine will always be able to find one to use. Each VC Cache entry occupies 6 absolute 
registers.

AAL
5: ATM Adaptation Layer 5

0: VC is not open

CRC The CRC-32 syndrome associated with the PDU. It is saved in the VC table entry after a cell 
is moved, and then retrieved and used when the next cell in the PDU is received.

Cell Data11 The last four bytes of the previous cell in this PDU. Used during re-assembly of PDUs to allow 
8-byte quadword burst writes to DRAM without using DRAM Read/Modify/Write instructions.

Entry Description

Register(s) Description

@vc_key0...@vc_key3 VC and port associated with the entry

@seq_enter0...@seq_enter3

@seq_exit0... @seq_exit3
Implement a sequence number for each entry to maintain the order that 
multiple threads attempt to access the entry.

@vc_flags0...@vc_flags3 Local working copy of the flags in the VC Table Entry.
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4.2.3 VC Cache API

There is no interaction between the StrongARM core and the VC Cache. In particular, there is no 
method for the StrongARM core to force the ATM Receive microengine to invalidate cache entries 
to synchronize with StrongARM core initiated updates to the VC Table. If the design is enhanced 
to support SVCs in addition to PVCs, then the Core will need such an interface to guarantee that 
the ATM Receive microengine does not operate with stale cache entries. (As the ATM Receive 
microengine does not consume any inter-thread signals after initialization, they are available for 
interaction with the StrongARM core.)

The macros that implement the microcode API to the VC Cache are implemented and described in 
atm_rx.uc.

4.3 IP Lookup Table

The IP lookup table used in the ATM/Ethernet router is an extension of the implementation used in 
the homogeneous Ethernet example designs. The same table is used to store both ATM and 
Ethernet port destinations. The two IP Lookup Table Entry formats are shown in Figure 25 and 
Figure 26.

4.3.1 IP Table Function

The route table provides routing information for a given IP destination address. The type of 
information provided by the table differs slightly depending on which technology (ATM or 
Ethernet) will be used to transmit the packet. 

• If the output port is Ethernet, the route table will provide the output port number and the MAC 
address information. 

• If the output port is ATM, the route table will provide the output queue (In the current 
implementation this is a physical port identifier, future designs may use this queue designation 
to represent a "virtual" port), the VCI/VPI for the connection, and the LLC/SNAP header to 
use when encapsulating the IP packet.

4.3.2 IP Table Structure

The ATM project uses the Trie5 Longest Prefix Match algorithm implemented in ip.uc. The lookup 
portion of the table is maintained in SRAM with the actual route table entries in DRAM.

@vc_crc0...@vc_crc3 Local working copy of the CRC syndrome in the VC Table Entry.

@data11_0...@data11_3
Holds the last four bytes of the previous cell in the VC table, so the 
microengine can combine it with the first four bytes of the subsequent cell 
and perform a single 8-byte DRAM write including them both.

@vc_address...@vc_address3
Records the address in SRAM where the backing VC Table Entry came 
from, so that it is not necessary to re-compute it when it is time to write the 
updated entry back to SRAM.

Register(s) Description
Application Note 35
Modified on: 3/20/02, 



IXP1200 Network Processor Family ATM OC-3/12/Ethernet IP Router Example Design
4.3.3 IP Table Management API

The route table is managed by the Route Table Manager (RTM), which may be used from both 
Transactor Scripts and VxWorks. It may be compiled and loaded as a local foreign model, thus 
allowing its C functions to be called from a Transactor Script. Or, it can be compiled as a VxWorks 
loadable object. 

The API may be printed out by entering rt_help() at the command line of either VxWorks, or the 
Transactor simulator.

4.3.3.1 route_table_init()

Initializes route table memory and data structures.

route_table_init(int sram_base_addr, int dram_base_addr)

4.3.3.2 mtu_change()

Sets the MTU for subsequent route table additions.

mtu_change(int new_mtu)

4.3.3.3 atm_route_add()

Adds a route for ATM destination to the route table.

atm_route_add(char *dest, char *netmask,char *gateway, int port_type,int 
queue_index,int atm_hdr,int llc_snap_hi, int llc_snap_lo)

Parameter Description

sram_base_addr The starting address of the SRAM memory allocated for route lookup entries.

dram_base_addr The starting address of the DRAM memory allocated for the route table entries.

Parameter Description

int new_mtu New default MTU.

Parameter Description

 char *dest String IP destination, e.g. "1.1.1.1"

char *netmask String netmask, e.g., "255.255.0.0"

char *gateway String next hop gateway, e.g., "255.255.0.0"

int port_type Type of port.

 int queue_index Index of the output queue.

int atm_hdr vpi/vci for the connection.

int llc_snap_hi hi 32 bits of llc/snap header.

 int llc_snap_lo lo 32 bits of llc/snap header.
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4.3.3.4 enet_route_add()

Adds a route with Ethernet destination to the route table.

enet_route_add(char *dest, char *netmask, char *gateway, int itf, int 
gateway_da_hi32, int gateway_da_lo16,int gateway_sa_hi16, int gateway_sa_lo32)

4.3.3.5 rt_ent_info()

Displays the available route table information for a given destination address.

rt_ent_info(char *destination)

4.3.3.6 route_delete()

Deletes a route from the route table.

route_delete(char *dest, char *netmask)

4.3.3.7 rt_help ()

Outputs a list of command line RTM functions.

4.3.4 IP Route Table Entry

The IP lookup table entries reside in DRAM. The same table is used for both ATM and Ethernet 
destinations. The ATM and Ethernet Receive threads call the macro route_lookup() to obtain an 
index in the route table to the table entry. If the ITF field contains the ATM port type bit 
(0x80000000), then the entry is interpreted as an ATM destination, otherwise it is an Ethernet 
destination.

Parameter Description

char *dest String IP destination, e.g. "1.1.1.1"

char *netmask String netmask, e.g., "255.255.0.0"

char *gateway String next hop gateway, e.g., "255.255.0.0"

int itf Physical interface id (outputport number).

int gateway_da_hi32 High 32 bits of the MAC destination address.

int gateway_da_lo16 Low 16 bits of the MAC destination address.

int gateway_sa_hi16 High 32 bits of the MAC source address.

int gateway_sa_lo32 Low 16 bits of the MAC source address.

Parameter Description

destination The destination address, in dotted decimal form, of the route entry to display.

Parameter Description

dest String IP destination, e.g. "1.1.1.1"

netmask String netmask, e.g., "255.255.0.0"
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4.4 SRAM Buffer Descriptors and DRAM Data Buffers

SRAM Buffer Descriptors and DRAM Data Buffers are a fundamental component of this design. 
Each descriptor occupies 16 bytes of SRAM, and is used as a handle to describe and manage the 
buffer. Each data buffer occupies 2K bytes of DRAM and holds the PDU payloads.

Figure 25. IP Route Table Entry - ATM Destination
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Entry Description

ATM bit + MTU 0x80000000 | MTU

Queue Index queue index (16 bits)

ATM Header ATM header for this VC, sans PTI bits

IP Dest IP destination address (32 bits)

IP mask IP subnet mask (32 bits)

IP Gateway IP next hop gateway (32 bits)

LLC High upper 32 bits of LLC/SNAP header

LLC Low lower 32 bits of LLC/SNAP header

Figure 26. IP Route Table Entry - Ethernet Destination

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1 Bytes ->

ITF MAC DA 
(0-3) 0

M
A

C
 D

A
 (

4,
5)

IP Dest IP Mask IP 
Gateway

MAC SA 
(0-3)

M
A

C
 S

A
 (

4,
5)

M
T

U

Entry Description

ITF Output interface (32 bits).

MAC DA 0-3 Upper 32 bits of the destination MAC address.

MAC DA 4-5 Lower 16 bits of the destination MAC address.

IP Dest IP destination address (32 bits).

IP Mask IP subnet mask (32 bits)

IP Gateway IP next hop gateway (32 bits).

MAC SA 0-3 Upper 16 bits of this gateway’s source MAC address.

MAC SA (4,5) Lower 32 bits of this gateway’s source MAC address.

MTU Maximum packet size.
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Both descriptors and buffers are stored in arrays. The array index is used to associate a unique 
DRAM Data Buffer with each SRAM Descriptor:

4.4.1 SRAM Buffer Descriptor Format

This buffer descriptor format is used throughout the design, except when a descriptor is enqueued 
onto a packet_queue for Ethernet transmit.

Figure 27. SRAM Descriptor to DRAM Buffer Mapping
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Figure 28. Buffer Descriptor Format for ATM Transmit Destination Port

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 Z Next BD

1 Last Quad X

2 Queue Index Start Byte Offset Y

3 ATM Header

Entry Description

Z Unused - will be overwritten upon enqueue/dequeue address updates

Next BD 32-bit SRAM address of the next buffer descriptor in the same queue

Last Quad Offset of the last quadword in the buffer that contains data

X Unused - will be erased every time LAST_QUAD is updated, Rx any cell

Queue Index Index of the queue where this descriptor came from

Start Byte Offset Offset of the first byte of data to be transmitted

Y Unused - will be erased every time Start byte offset is updated, Rx first cell -- Tx any cell

ATM Header ATM Header (w/o HEC) to be attached to each cell of the PDU in the buffer
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4.4.2 DRAM Data Buffer Format

Packet payloads are stored in DRAM data buffers. Depending on if the data was received on an 
ATM or Ethernet port, the payload will land in a different place within the data buffer..

Figure 29. Buffer Descriptor Format for Ethernet Transmit Destination Port
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Entry Description

RCV_PORT Receive Port

FL_ID Free list ID

START_BYTE Frame start location in the buffer (zero-based)

END_BYTE
Number of bytes in the last MPKT - minus 1 (e.g. 0 means 1 byte)

ELE_COUNT Number of 64-byte MPKTs in packet

Figure 30. DRAM Data Buffer Format - 12 Byte Offset (Received by ATM)
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Figure 31. DRAM Data Buffer Format - 6 Byte Offset (Received by ATM, Transmitted by 
Ethernet)
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Figure 32. DRAM Data Buffer Format - 6 Byte Offset (Received by Ethernet, Transmitted by 
ATM)
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Figure 33. DRAM Data Buffer Received by Ethernet
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4.4.3 System Limit on Packet Buffers

Several factors are involved in the number of packet buffers the system can support:

• The Ethernet transmitter uses packetqs (packetq.uc), and the implementation of packetqs can 
address only 16,000 different buffers.

• DRAM capacity used = 2KB/buffer * number of buffers. Therefore, for 16,000 buffers, 32MB 
of DRAM is consumed, which is half the memory capacity of most baseboards. (DRAM 
capacity used by packet buffers can be crunched by reducing the buffer size to just fit a 1500 
byte MTU. (2KB is overkill for this, but a handy power of 2), as well as enhancing the design 
to also supporting small data buffers to hold small packets).

• SRAM capacity used = 16B * number of buffers. Therefore, for 16,000 buffers only 256KB of 
SRAM is used, vs. an 8MB SRAM capacity.

4.5 Sequence Numbers - sequence.uc

Intra-microengine register-based sequence numbers are supplied by sequence.uc, and are used 
extensively throughout the ATM portion of this design. This example employs a single-
microengine fast port receiver and so unlike other designs, it has no use for the global hardware 
enqueue sequence number registers. ATM Receive has intersecting sequence numbers to de-couple 
RFIFO receive order, VC cache/table lookup, and msgq_send(). ATM Transmit has sequence 
numbers to decouple cell within a PDU order from TFIFO validate order. On the IXP1200 software 
CRC microengine, sequence numbers are used to maintain PDU order within a VC.

sequence.uc contains the following API calls:

4.5.1 SEQUENCE_HANDLE Usage

All sequence.uc calls use the same parameters. For convenience, a handle is typically defined and 
used for all of the calls, as shown in the example below.

API Call Description

sequence_init(SEQUENCE_HANDLE) Initialize global state for the sequence number.

sequence_enter(SEQUENCE_HANDLE) Increment absolute enter sequence number, and return that 
number in a relative GPR.

sequence_wait(SEQUENCE_HANDLE) Wait until exit sequence number is equal to mine.

sequence_exit(SEQUENCE_HANDLE) Increment exit sequence number and continue.

Parameter Description

in_my_seq Relative GPR to hold sequence number for this thread.

in_enter Absolute GPR to hold ENTER sequence for all threads.

in_enter_inc A register containing the value 1, or the constant 1. Register gives highest 
performance.

io_exit Absolute GPR to hold the EXIT sequence for all threads.

in_exit_inc A register containing the value 1, or the constant 1 Register gives highest 
performance.

NUM_BITS Number of bits in the sequence number. Must be a power of 2, from 1 to 32 
inclusive. 32 is highest performance.
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4.5.2 Usage Model

The following model is described by an analogy to waiting in line at a bakery:.

4.5.2.1 Example

#define MY_SEQUENCE_HANDLE my_seq_number, @enter, @one, @exit, @one, 32
sequence_init(MY_SEQUENCE_HANDLE) // initilize global state
while()
<...> // get work in order
sequence_enter(MY_SEQUENCE_HANDLE)  // record the order
<...> // process non-critical section
sequence_wait(MY_SEQUENCE_HANDLE) // wait my turn
msgq_send() // process critical section
sequence_exit(MY_SEQUENCE_HANDLE) // let the next guy go

4.6 Message Queues - msgq.uc

The Message Queue subsystem supports 31-bit messages between microengines. The queues are 
implemented with circular buffers, typically in scratchpad RAM. The queues are point-to-point, 
there can be only one sender microengine, and one receiver microengine because the queue indexes 
are stored privately in microengine registers rather than shared in RAM.

If the sender sends to a full queue, it will return an error so that the sender is able to determine what 
to do with the unsent message.

The threads within the sender must cooperate and not simultaneously access the same queue. This 
is typically done by putting the msgq_send() or msgq_receive() inside a critical section.

The message queue handle can specify that receives be either asynchronous or synchronous:

• Asynchronous receives (MSGQ_ASYNC) will return after reading what was in the queue, no 
matter if it was valid or invalid. The invoking thread must look at the invalid bit to decide what 
to do with the message. 

• Synchronous receives can either loop internally on receipt of invalid messages 
(MSGQ_SYNC_POLL), or go to sleep after receiving an invalid message 
(MSGQ_SYNC_SLEEP). The sender must know to (always) wake up the receiver if 
MSGQ_SYNC_SLEEP is used.

Step Sequence Operation Bakery Line Analogy

1

sequence_enter() returns a sequence number to a thread 
and updates the absolute.enter so that the next time 
sequence_enter() is invoked, the following sequence 
number will be returned

Enter bakery and take a ticket.

2 sequence_wait() compares its sequence number with the 
absolute.exit, and context swaps until they are the same.

Wait in line for the "Now Serving" sign to 
match your ticket.

3 Having gotten past sequence_wait(), the thread 
processes the critical region.

Get served, keep others in line away from 
counter.

4 sequence_exit() increments absolute.exit to let the next 
sequence number past sequence_wait().

Exit bakery, "Now Serving..." sign gets 
incremented to let next customer to 
counter.
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4.6.1 MSGQ_HANDLE Parameters

The following parameters make up MSGQ_HANDLE and are common to all macros in msgq.uc: 

4.6.2 msgq_init_queue()

Initializes the global queue in RAM_TYPE. Called by central initialization code before queues are 
accessed.

msgq_init_queue(MSGQ_HANDLE)

4.6.3 msgq_init_regs()

Initializes the registers used to access the queue. Called by both producer and consumer.

msgq_init_regs(MSGQ_HANDLE)

4.6.4 msgq_send()

Sends a message to the queue.

Parameter Description

io_index
GPR storing the current index into the queue. An absolute register is used to share the 
index between threads. However, if the threads don’t share access to the queue, a relative 
GPR can be used.

in_base_addr GPR storing the base address of the queue in RAM_TYPE (scratchpad or SRAM). An 
absolute GPR is used when the queue is shared between threads.

in_const_one The value one in a GPR, typically absolute, or the constant 1. The register is generally 
used to save cycles.

BASE_ADDR Base address of the queue in RAM_TYPE -- loaded into in_base_addr by msgq_init().

SYNC_TYPE

Synchronization type, as follows:

#define MSGQ_ASYNC 0 - return immediately, with or without data

 #define MSGQ_SYNC_POLL 1 - wait for data -- poll while waiting

#define MSGQ_SYNC_SLEEP 2 - wait for data -- sleep while waiting, sender must know 
to wake up receiver

RAM_TYPE  RAM type. Typically scratchpad, can also be SRAM.

MSGQ_SIZE Number of longwords in the message queue. Must be a power of 2. 16 is typically used for 
scratchpad queues because it saves instructions.

Parameter Description

MSGQ_HANDLE Parameters described in “MSGQ_HANDLE Parameters”.

Parameter Description

MSGQ_HANDLE Parameters described in “MSGQ_HANDLE Parameters”.
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msgq_send(io_message, MSGQ_HANDLE, RAM_OPTION)

4.6.5 msgq_receive()

Receives a message from the queue.

msgq_receive(io_xfer, MSGQ_HANDLE)

4.6.6 Example

In the following example, a single microengine uses four threads to receive from INPUT_MSGQ, 
perform some processing, then send to OUTPUT_MSGQ in the order received. The example shows 
how critical sections are used to control multiple threads accessing the same queue, and how 
sequence numbers can be used to maintain queue order.

Parameter Description

io_message The message to be sent. Valid messages must have bit 31 clear, and must not 
be 0. 0 is returned on success, the message is untouched on failure.

MSGQ_HANDLE Parameters described in “MSGQ_HANDLE Parameters”.

RAM_OPTION ctx_swap, sig_done, no_option -- depending on the behavior desired for the 
write at the end of msgq_send().

Parameter Description

io_xfer A read/write SRAM transfer register for use by msgq_receive(). The write 
transfer is terminated and the read transfer returns the message.

MSGQ_HANDLE Parameters described in “MSGQ_HANDLE Parameters”.

#define INPUT_MSGQ @msgq_in_index, @msgq_in_base, MSGQ_IN_BASE_ADDR, MSGQ_SYNC, 
scratch, LWCOUNT16

 #define OUTPUT_MSGQ @msgq_out_index, @msgq_out_base, MSGQ_OUT_BASE_ADDR, 
MSGQ_SYNC, scratch, LWCOUNT16

 #define MY_SEQUENCE_HANDLE my_seq_number, @enter, @one, @exit, @one, 32

 msgq_init_queue(INPUT_MSGQ) ; must complete before any threads access queue

 msgq_init_queue(OUTPUT_MSGQ) ; must complete before any threads access queue

 ...

 msgq_init_regs(INPUT_MSGQ)

 msgq_init_regs(OUTPUT_MSGQ)

 sequence_init(MY_SEQUENCE)

 critsect_init(@mutex)

 ...

 critsect_enter(@mutex) ; allow only 1 thread to access queue at a time

  sequence_enter(MY_SEQUENCE) ; remember the order messages were received

  msgq_receive($xfer, INPUT_MSGQ) ; receive a message

 critsect_exit(@mutex) ; allow next thread to receive
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4.7 Buffer Descriptor Queues - bdq.uc

This design uses a generic buffer descriptor queuing subsystem to pass data between microengines. 
This section describes the facility so that it will be clear when it is applied throughout the design.

Buffer Descriptor Queues (BDQs) are analogous to packet queues, as defined in packetq.uc and 
tx.uc. BDQs support cached dequeues, and are therefore more efficient when a microengine 
dequeues from a small number of queues.

4.7.1 BDQ Management Macros

Buffer descriptor queue management macros are used for queueing SRAM buffer descriptors 
between microengines.

4.7.1.1 Features

4.7.1.2 Limitations

For the dequeue front of queue to be cached by the dequeuing microengine, a single microengine 
must be assigned to dequeue from each queue, and must have three available absolute registers.

 ... ; process the message, threads may get out of order.

 move(message, $xfer)

 sequence_wait(MY_SEQUENCE) ; wait until it is my turn to send

  msgq_send(message, $xfer, MY_MSGQ, ctx_swap)

  .if (message != 0)

      counter_inc(OUTPUT_MSGQ_IS_FULL) ; record failure

      buf_push(message, ...) 

 ; if message is descriptor, return it...

  .endif

 sequence_exit(MY_SEQUENCE) 

; allow next thread through sequence_wait()

Feature Description

Arbitrary queue capacity
Queues are implemented via a linked list of buffer descriptors in SRAM. 
These lists can grow to any size up to a configurable water mark, or the 
enqueuing microengine exhausts its supply of available buffers.

High water marks (HWMs) 
and low water marks (LWMs)

The queue handle has settings for LWMs and HWMs to manage queue 
length. bdq_enqueue() will reject all enqueues when the queue size is above 
the HWM. bdq_enqueue() will reject a handle-specified ratio of the enqueues 
when queue length is between LWM and HWM.

Non-blocking simultaneous 
enqueue and dequeue

If the queue has more than 1 entry, then the dequeuing thread can perform a 
"cached deqeueue" where it not only doesn’t contend for the lock on the 
queue header, it doesn’t read the queue header at all

Empty queue notification The dequeuing threads have the option of sleeping on an inter-thread signal if 
the queue is empty.
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For the synchronous empty->non-empty queue notification feature to be used, only one 
microengine can be assigned to dequeue from each queue. Further, it is optimal when threads on 
that microengine dequeue from a single queue rather than from multiple queues.

If the dequeuing thread services multiple queues, it can use packetq_send queues and associated 
dequeue code, or the polled scratchpad bit-vector notification mechanism can be added to these 
macros. Queue headers must be in SRAM, as these macros do not currently support scratchpad 
RAM headers

4.8 Counters

This design uses a counter subsystem wrapper around incrementing scratchpad RAM locations. 
The subsystem manages counter names, enabling and disabling counters at compile time, and 
pretty printing. Part of the counter subsystem runs on the microengines, and part on the 
StrongARM core

counters.uc provides the following microcode API:

• counter_reset()

• counter_inc()

• port_counter_inc()

counters.c provides the following API to the Transactor command prompt as well as VxWorks 
console (neither macro requires parameters):

• counters_init()

• counters_print()

The counter names are allocated in system_config.h.

• In simulation, counters.c is compiled into the atm_utils.dll Transactor foreign model.

Figure 34. Buffer Descriptor Queue API

bdq_init() Initialize queue structure.

bdq_enqueue() Enqueue on Back.

bdq_dequeue() Dequeue from Front.

Figure 35. Buffer Descriptor Queue Descriptor Structure (Resides in SRAM)
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Figure 36. Buffer Descriptor Queue Structure (Only Relevant Part Shown)
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• On hardware, counters.c is compiled into the atm_utils.o VxWorks-loadable module to 
provide counters at the VxWorks console.

4.8.1 Global Parameters

4.8.2 Use of the Counter Subsystem

In this design, system_config.h controls the counter subsystem and defines a handle for each 
counter. This handle provides the parameters to counter_inc() in the microcode. For example, 
counter_inc(ATM_RX_CELL_DROP_VC_CLOSED) is invoked in ATM Receive threads every 
time a cell is discarded because it arrived on a VC that is not open.

#define ATM_RX_CELL_DROP_VC_CLOSED COUNTERS_BASE, 5, COUNT_CELL_DROP

The counter handle has three members:

• The base address of the counter array.

• The index of the counter in the array.

• The flags to determine at compile-time if the counter should be invoked.

4.8.2.1 Counter Base Address

The base address of the counter array is defined so that it starts immediately after the per-port 
exception counters defined in mem_map.h, and it is used as the first member of every counter 
handle. (This is why the counter example in “counters_print()”starts at (decimal) scratchpad 
location 195.)

#define COUNTERS_BASE 0xc3 

4.8.2.2 Counter Index

The index of the counter is simply entered directly into the list of counter handle definitions. Be 
careful not to duplicate any counter indexes, because it would cause multiple handles to increment 
the same location.

Parameter Description

COUNTERS_BASE Base address of the scratchpad counter array (mandatory)

COUNTER_LOCATIONS Size of the counter array (optional). Default is 64

COUNTER_STRINGn String to print for counter n, where n is from 0 until 
COUNTER_LOCATIONS -1 (optional). Default is "Counter n"
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4.8.2.3 Global Counter Enable and Flags

Global Counter Enable and Flags

COUNTERS_ENABLE_MASK is the global counter enable and is set via a #define statement in 
system_config.h:

To enable a counter for a command:

1. Ensure that the COUNTERS_ENABLE_MASK is set to enable.

2. Set the individual command’s IN_ENABLE_FLAGS parameter to match the 
COUNTERS_ENABLE_MASK definition.

Counter Flags

The counters are enabled by membership in the “counter groups” enumerated in the table; the 
counter groups are enabled by having their corresponding bit set in the 
COUNTERS_ENABLE_MASK. 

The default COUNTERS_ENABLE_MASK enables all the error counters and disables all the 
normal counters in an effort to record abnormal events without a measurable performance impact. 

For example, the following definition enables just the cell and packet drop related counters.

#define COUNTERS_ENABLE_MASK (COUNT_CELL_DROP | COUNT_PACKET_DROP)

For the benefit of counters_print(), system_config.h also defines a string for each counter. For 
example:

#define COUNTER_STRING2 "ATM_RX_CELL_DROP_VC_CLOSED"

While this could be any string, in the interest of brevity, generally just the name of the associated 
counter handle is used.

The counters are partitioned into 10 groups - each group with a unique flag:

#define Statement Description

COUNTERS_ENABLE_MASK 0xFFFFFFFF Enable all counters (default).

COUNTERS_ENABLE_MASK 0 Disable all counters.

Counter Group Description

COUNT_CELL (1 << 1) normal per-cell activity

COUNT_CELL_DROP (1 << 2) dropped cells

COUNT_PACKET (1 << 3) normal per-packet activity

COUNT_PACKET_DROP (1 << 4) dropped packets

COUNT_BUFFER (1 << 5) normal buffer (push/pop) activity

 COUNT_BUFFER_FAIL (1 << 6) buffer subsystem failures

COUNT_QUEUE (1 << 7) normal enqueue/dequeue events
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4.8.3 counters.uc

4.8.3.1 counter_reset()

Resets the specified counter to zero.

counter_reset(in_counter_base, in_counter_offset, IN_ENABLE_FLAGS)

4.8.3.2 counter_inc()

Increments the specified counter.

counter_inc(in_counter_base, in_counter_offset, IN_ENABLE_FLAGS)

4.8.3.3 port_counter_inc()

Increments the per-port counter, and optionally, the global discard counter.

port_counter_inc(in_port_index, IN_PORT_BASE, IN_EXCEPTION_INDEX, 
IN_PORT_COUNTERS_BASE, IN_TOTAL_DISCARDS, IN_MAX_PORT_NUMBER, IN_ENABLE_FLAGS)

COUNT_QUEUE_FAIL (1 << 8)  enqueue/dequeue error events

COUNT_CRC32 (1 << 9) normal CRC-32 activity

COUNT_CRC32_FAIL (1 << 10) CRC-32 error

Counter Group Description

Parameter Description

in_counter_base Base counter number.

in_counter_offset Counter offset.

IN_ENABLE_FLAGS Counter increment flag. Must match the COUNTERS_ENABLE_MASK bit. 

Parameter Description

in_counter_base Base counter number.

in_counter_offset Counter offset.

IN_ENABLE_FLAGS Counter increment flag. Must match the COUNTERS_ENABLE_MASK bit. 

Parameter Description

in_port_index Port index.

IN_PORT_BASE Base port number.

IN_EXCEPTION_INDEX The per-port counter to be incremented.

IN_PORT_COUNTERS_BASE Address of 0th counter for port 0.
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port_counter_inc() Algorithm

#if (IN_ENABLE_FLAGS & COUNTERS_ENABLE_MASK)
     addr = IN_PORT_COUNTERS_BASE + 16 * (IN_PORT_BASE + in_port_index) +
            IN_EXCEPTION_INDEX
     *addr += 1
   #endif
   #if (IN_ENABLE_FLAGS & COUNT_PORT_EXCEPTIONS)
     IN_TOTAL_DISCARDS += 1
   #endif

Example

#define  COUNT_PORT_EVENTS (1 << 11) // normal port activity
#define  COUNT_PORT_EXCEPTIONS (1 << 12) // per-port exceptions

The 16 per-port counters are named by various include files, as summarized by the string table that 
counters_print() uses to print the per-port counters:

char *port_counter_strings [] = {
"PORT_FULLQ",//0x00 port.uc
"PORT_RXERROR", //0x01 port.uc
"PORT_RXFAIL",//0x02 port.uc
"port counter 3", 
"PORT_RXCANCEL",//0x04 port.uc
"PORT_SHDBE_SOP",//0x05 port.uc
"PORT_SHDBE_NOT_SOP", //0x06 port.uc
"port counter 7", 
"IP_BAD_TOTAL_LENGTH", //0x08 ip.uc
"IP_BAD_TTL", //0x09 ip.uc
"IP_BAD_CHECKSUM", //0x0a ip.uc
"IP_NO_ROUTE", //0x0b ip.uc
"IP_INVALID_ADDRESS", //0x0c ip.uc
"MAC_INVALID_ADDRESS", //0x0d ether.uc
"IP_DBCAST_ADDRESS", //0x0e ip.uc
"PORT_DISABLED", //0x0f ip.uc

#define PORT_EXCEPTION EXCEPTION_COUNTERS, TOTAL_DISCARDS, ATM_PORT3, 
COUNT_PORT_EXCEPTIONS

port_counter_inc(port_idx, ATM_PORT0, PORT_FULLQ, PORT_EXCEPTION)

IN_TOTAL_DISCARDS Address of global discard counter.

IN_MAX_PORT_NUMBER

Highest valid port number -- from a per-port counters point of view.

If the sum of IN_PORT_BASE and in_port_index exceeds 
IN_MAX_PORT_NUMBER, then the port number is truncated to 
IN_MAX_PORT_NUMBER. This allows limiting the scratchpad 
RAM dedicated to counters while still allowing event counting on 
very high numbered ports (e.g., logical ports used by the 
StrongARM core)

IN_ENABLE_FLAGS

Counter increment flag. Must match the 
COUNTERS_ENABLE_MASK bit. If set to 
COUNT_PORT_EXCEPTIONS, the global counter at 
IN_TOTAL_DISCARDS will be incremented in addition to the per-
port counter.

Parameter Description
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4.8.4 counters.c

4.8.4.1 counters_init()

Initializes all counters.

4.8.4.2 counters_print()

Prints the names and values of all counters.

Example

In this example of output from counters_print(), the system ran the dual-OC-3 software-CRC 
configuration overnight with an ATM loop-back cable. All counters were enabled. The first column 
is the word’s location in scratchpad RAM, the second column, the number in [] brackets, is the 
counter index, the third column is the counter value, and after that starts a string identifying the 
counter. At the end we see a few of the per-port counters have incremented as well.

-> counters_print
195:[ 0]:         32 ATM_RX_CELL_IDLE
196:[ 1]: 1688083162 ATM_RX_FIRST_CELLS
197:[ 2]: 3376166321 ATM_RX_CELLS_MOVED
198:[ 3]: 1688083167 ATM_RX_LAST_CELLS
199:[ 4]:          0 ATM_RX_CELL_DROP_NOT_USER
200:[ 5]:          0 ATM_RX_CELL_DROP_VC_CLOSED
201:[ 6]:          9 ATM_RX_CELL_DROP_LLC_SNAP
202:[ 7]:          0 ATM_RX_PDU_DROP_AAL5_LENGTH
203:[ 8]:          0 ATM_RX_CELL_DROP_NO_BUFFERS_ON_RX
204:[ 9]:          0 ATM_RX_IP_OPTIONS_OR_FRAG_Q2CORE
205:[10]:          4 ATM_RX_CRC_BAD
206:[11]:          0 ATM_RX_SNMP
207:[12]:          0 ATM_RX_ICMP
208:[13]:          0 ATM_RX_IGMP
209:[14]:          0 ATM_RX_PORT_RXCANCEL
210:[15]:          0 ATM_RX_VC_LOOKUP_ERROR
211:[16]: 3316353954 ETHER_RX_SOPS
212:[17]: 3316353962 ETHER_RX_EOPS
213:[18]:          0 ETHER_RX_MPACKETS_MOVED
214:[19]:          0 ETHER_RX_DROP_NOT_IPV4
215:[20]:          0 ETHER_RX_DROP_MULTICAST
216:[21]:          0 ETHER_RX_DROP_BROADCAST
217:[22]:          0 ETHER_RX_IP_OPTIONS_OR_FRAG_Q2CORE
218:[23]:          0 ETHER_RX_SNMP
219:[24]:          0 ETHER_RX_ICMP
220:[25]:          0 ETHER_RX_IGMP
221:[26]:          0 Counter 26
222:[27]:          0 Counter 27
223:[28]:          0 Counter 28
224:[29]:          0 Counter 29
225:[30]: 1688085155 ATM_RX_ALLOC_BUFFER
226:[31]:          0 ATM_RX_ALLOC_BUFFER_FAIL
227:[32]: 3316355686 ETHER_RX_ALLOC_BUFFER
228:[33]:          0 ETHER_RX_ALLOC_BUFFER_FAIL
229:[34]: 1688087130 ATM_TX_BUF_PUSH
230:[35]: 1688085175 ETHER_TX_BUF_PUSH
231:[36]:          0 BUF_POP_BAD_BDA
232:[37]:          0 BUF_PUSH_BAD_BDA
233:[38]:          0 Counter 38
234:[39]:          0 Counter 39
235:[40]:          0 ATM_RX_PKT_ENQUEUE_ETHER
236:[41]: 1805817709 ETHER_RX_PDU_ENQUEUE_ATM
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237:[42]:          0 ETHER_RX_PACKET_ENQUEUE_ETHER
238:[43]: 1805817712 ATM_TX_CRC_PDU_DQ
239:[44]: 1688091717 ATM_TX_CRC_PDU_ENQ
240:[45]: 1688086138 ATM_RX_CRC_PDU_DQ
241:[46]: 1688086138 ATM_RX_CRC_PDU_ENQ
242:[47]:          0 ATM_RX_IPR_FULLQ
243:[48]:          0 ATM_RX_CRC_CHK_FULLQ
244:[49]: 1510539591 ATM_TX_CRC_GEN_FULLQ
245:[50]:          0 PACKETQ_SEND_BAD_BDA
246:[51]:          0 PACKETQ_SEND_BAD_INDEX
247:[52]:          0 BDQ_ENQUEUE_BAD_INDEX
248:[53]:          0 QUEUE_BAD_BDA
249:[54]:          0 ATM_RX_CRC_BAD_BD
250:[55]:          0 ATM_TX_CRC_BAD_BD
251:[56]: 1688087098 ATM_LOOPBACK forwarded packet with ATM dest to Ethernet
252:[57]:          0 Counter 57
253:[58]:          0 Counter 58
254:[59]:          0 Counter 59
192:            117726288 Total Packets Discarded
128:[port 8]:   68882072 PORT_FULLQ
138:[port 8]:      1 IP_BAD_CHECKSUM
144:[port 9]:   48844381 PORT_FULLQ

4.9 Global $transfer Register Name Manager - xfer.uc

SRAM transfer registers are easily allocated and deallocated by using .local/.endlocal, or by using 
the xbuf.uc subsystem, which is based on .local. This works well for read transfer registers, because 
the programmer always knows when the read is done, and thus when the read transfer register can 
be freed.

However, write transfer registers are a different problem. While it is possible to use the same 
mechanism as for read transfer registers, this requires waiting for writes to complete before re-
using the write transfer registers, and this wait may impact performance.

An alternative is to not wait for the write to complete, but to infer the completion of writes by their 
order before subsequent reads in the ordered SRAM queue. The .local mechanism and xbuf.uc 
require strict block structure, and are thus not well suited to write transfer registers becoming 
available based on seemingly unrelated events. The question becomes then how to manage the 
name space for write transfer registers.

The answer, at least for some implementations such as the ATM receive microengine, is to allocate 
transfer registers globally, and to use the new xfer.uc subsystem to help manage the name space.

// Macros to aid in manually allocating transfer registers.
// Essentially wrappers for .xfer_order, .operand_synonym
// that use the pre-processor to do as much assembly-time
// sanity checking as possible.

// API
// xfer_init(NUM_READ_WRITE)
// xfer_reserve(NAME, POSITION, FLAGS)
// xfer_free(NAME, POSITION, FLAGS)

// Example:
// xfer_init(1) ;; use 1 of 8 $transfers
// xfer_reserve($foo, 0, XFER_RESERVE_READ | XFER_RESERVE_WRITE) 
// sram[write, $foo], ordered
// sram[read, $foo], ordered, ctx_swap
// xfer_free($foo, 0, XFER_RESERVE_WRITE)
// xfer_reserve($bar, 0, XFER_RESERVE_WRITE)
// sram[write, $bar], ordered
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// sram[read, $foo], ordered, ctx_swap

4.10 Mutex Vectors

Mutex vectors are an extension to critical sections that allows multiple critical sections to be 
contained within a single absolute register. (critsect.uc implements critical sections, critsect macros 
are documented in the IXP1200 Macro Library Reference Manual.) Critsect macros are used to 
allow only 1 of the 4 threads of a microengine to execute a critical code section at one time. The 
critsect macros allow the four threads within a microengine to use a semaphore implemented in an 
absolute register. The semaphore is used to restrict use of a resource shared by the threads in a 
microengine. The OC-3 Ethernet receiver uses them to prevent multiple threads from enqueuing on 
the same transmit queue, while allowing them to concurrently enqueue on different transmit 
queues. The mutex vector subsystem is implemented in mutex_vector.uc.

The following critical section macros are for use within a microengine. Up to 32 critical sections 
can be implemented with each absolute register. These macros are used where run-time selection 
between multiple mutexes is necessary. If only one mutex is needed, the macros in critsect.uc are 
slightly smaller and faster.

4.10.1 mutex_vector_init()

Initializes critical sections to enable subsequent mutex_vector_enter() to succeed. 

mutex_vector_init(out_abs_reg)

4.10.2 mutex_vector_enter()

Enters the specified microengine critical section. 

mutex_vector_enter(io_abs_reg, in_bit_number)

4.10.3 mutex_vector_exit()

Exits the specified microengine critical section. 

mutex_vector_exit(io_abs_reg, in_bit_number)

Parameter Description

out_abs_reg Absolute register containing the semaphores.

Parameter Description

out_abs_reg Absolute register containing the semaphores.

in_bit_number

bit number of the semaphore

0 bits: critical section available

1 bits: critical section occupied

init: clears all bits
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4.11 Inter-Thread Signalling

Inter-thread signals are used in four ways:

• Initialization, as detailed in the “Microengine Initialization” section.

• Notification to a BDQ (Buffer Descriptor Queue) dequeue thread that data is available, as 
detailed in the BDQ section.

• Within the Ethernet Transmit microengine.

• The StrongARM core signals the Ethernet Transmit microengine to notify it that it has 
enqueued packets to send.

5.0 Project Configuration / Modifying the Example 
Design

The design can be assembled with a variety of options, all of which are configurable in the header 
files: project_config.h and system_config.h.

5.1 project_config.h

As detailed in the project’s README.txt, shared project source code can be simultaneously 
complied and run in a number of different configurations. project_config.h is a small top-level 
header file that is copied and modified into those different configurations. 

// ATM Wire Rate
#define ATM_OC3_PORTS

// Number of ATM Ports -- OC3 defaults to 4.
// To run on IXD4521 "Rainsford" WAN Card Daughter Card, limit to 2 ports.
#define NUMBER_OF_ATM_PORTS 2

// Define NUMBER_OF_ETHERNET_PORTS to 4 for IXP1200.
// Default is 8, as supported by the IXP1240 version of this project.
#define NUMBER_OF_ETHERNET_PORTS 4

// Define SW_CRC_RX to enable CRC-32 checking via microcode table lookup.
// Project build must also load the appropriate threads.
#define SW_CRC_RX

// Define SW_CRC_TX to enable CRC-32 checking via microcode table lookup.
// Project build must also load the appropriate threads.
#define SW_CRC_TX

Parameter Description

out_abs_reg Absolute register containing the semaphores.

in_bit_number

bit number of the semaphore.

0 bits: critical section available.

1 bits: critical section occupied.

mutex_vector_exit clears specified bit.
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// Define DEBUG to enable all the counters and run-time checking.
// Disable for maximum performance.
// #define DEBUG

// Define COUNTERS_ENABLE_MASK to all 1’s to enable every system counter.
// Otherwise its default is set in system_config.h
// #define COUNTERS_ENABLE_MASK0xFFFFFFFF
// Define ATM_LOOPBACK to allow hardware configurations with ATM outputs
// connected directly to ATM inputs -- either via board loopback jumper
// or external loopback cable. Normally the design would discard
// an IP packet received on ATM with an IP destination on an ATM port.
// ATM_LOOPBACK simply forwards it to the next ethernet port.
#define ATM_LOOPBACK

// Define ETHERNET_LOOPBACK to allow routing packets from Ethernet
// Receive to Ethernet Transmit. Otherwise packets received on
// Ethernet ports with Ethernet destinations will be discarded.
// Useful for equipment check-out in the lab.
// #define ETHERNET_LOOPBACK

// Define RFC1812 to enable all the required router tests under spec RFC1812
// on ethernet to ethernet and ATM to ethernet traffic.
#define RFC1812

5.2 system_config.h

The system_config.h header file is used to define ATM headers, counters, and other settings. The 
project’s README.txt file should be consulted for more detail.

5.3 Switching Between Hardware Configurations

As detailed in the README.txt file, the project source code comes with three sub-projects, one for 
each of the configurations shown above. All of the project source code is shared by the three 
projects, except for the three files that are necessary to distinguish the hardware configurations - 
atm_ether.dwp, atm_ether.dwo, and project_config.h. Additional projects can be built from the 
same source tree by simply copying and modifying the closest sub-project and its three unique 
files.

The software-CRC configuration can run on any version of the IXP12xx hardware. However, the 
hardware-CRC configurations depend on the IXP1240 or greater (CHIP_ID >= 6). OC-3 and OC-
12 configurations require different versions of the WAN daughter card (the OC-12 requires a 
modified OC-3 daughter card).

6.0 Testing Environments

In simulation, this project was tested with IXA SDK V2.01 Development Environment on 
Windows 2000. On hardware, it has been tested with VxWorks Tornado 2.1, on the IXDP1240 
Advanced Development Platform.
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7.0 Simulation Support (Scripts, etc.)

Simulation support for this example design is provided by using a combination of the Foreign 
Model DLLs (libraries linked to the Transactor simulator), with interpreted Transactor scripts (.ind 
files).

The IP Route Table Manager and associated RFC1812 utilities are implemented in the rtm_dll.dll 
foreign model. The ATM VC table manager and associated utilities are implemented in the 
atm_utils.dll foreign model. Entry points in these DLLs, such as route_populate() and atm_init() 
are called from the atm_ether_init.ind Transactor script upon initialization. DLL entry points are 
also available from the Transactor command line interface. The same utilities are compiled into the 
atm_utils.o VxWorks kernel module, and are thus available at the VxWorks command prompt.

Some simple C programs are also provided to check the Developer’s Workbench output files for 
correct output data (i.e. CRC verification for PDUs; and integrity of output stream). See the 
README.txt file for more details.

8.0 Limitations

This design supports the entire ATM VC name space. However, the implementation has 16K 
buffers, and thus can support simultaneous reassembly of no more than 16K PDUs. The buffer 
limitation comes from two sources. 

• The fixed-length 2KB DRAM buffers must fit in physical memory. 16K 2KB buffers consume 
32MB of DRAM. 

• The Ethernet Transmit Packetq implementation can address only 16K buffer descriptors. 

9.0 Extending the Example Design

This example design shows how microcode handles "fast-path" data-plane processing. It queues 
exception packets to the StrongARM core where they are simply discarded. Customers can supply 
their own software running on the StrongARM core to process these packets.

• This design supports only AAL5. The ATM receiver with its VC table, and the ATM 
Transmitter could be modified to support other AALs.

• This design does not support ATM traffic shaping. However, this code could be applied to 
other configurations where threads are dedicated to traffic shaping.

• This design does not support ATM receive policing, but the ATM receiver could be enhanced 
to do so.

• Switched Virtual Circuits (SVCs) are not implemented, only Permanent Virtual Circuits 
(PVCs) are currently implemented.
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10.0 Document Conventions

In illustrations of 32-bit registers, or data structures in memory; smaller addresses appear toward 
the top of the figure, - as they would appear in a memory dump on the screen. Bit positions are 
numbered from the right to the left.  

Bytes are numbered from left to right as shown in the array in Figure 37, as well as in the example 
byte sequence inFigure 38. Bytes of a word are numbered starting at the most significant byte. 

11.0 Acronyms & Definitions

Figure 37. Illustration of Array of 32-bit Words
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Figure 38. Illustration of Byte Sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... Bytes

Ethernet Dest. Address Ethernet Source Address Type IP... .. IP

Figure 39. Definitions

Term Definition

AAL ATM Adaptation Layer

AAL5 ATM Adaption Layer 5 (data)

API Application Programming Interface

ARP (or ATM ARP) Address Resolution Protocol

ATM Asynchronous Transfer Mode

BDQ Buffer Descriptor Queue

CRC Cyclic Redundancy Check

CS (or AAL5-CS) Convergence Sub-Layer

DLL Dynamic Link Library

DWBF Developer’s Workbench - Integrated Development 
environment for the IXP1240 Network Processor

Fast Port A port that has its own dedicated status lines

GPR

IP Internet Protocol

MAC Media Access Controller
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12.0 Related Documents

PDU Protocol Data Unit

Rosetta Intel IXB8055 IX Bus to Utopia Bridge

RTM Route Table Manager

Slow Port A port that does not have dedicated status lines, and 
must poll for status

Transactor IXP1240 Software Simulator

UBR Unspecified Bit Rate

VC Virtual Circuit

Title Description

RFC1577 Classical IP over ATM.

README.txt

Release notes bundled with source code.

There are two README.txt files. One is in the atm_ether project source 
directory, and is a "Quick Start and Source Code Guide." The second 
README.txt file can be found in the vxworks subdirectory, and describes 
how to run the project on hardware.

IXP1200 Network Processor 
RFC 1812 Compliant Layer 3 
Forwarding Example Design 
Implementation Details

IXP1240 Software Reference 
Manual

IXP1240 Development Tools 
User’s Guide

RFC 1812 Requirements of IP 
Version 4 Routers

Figure 39. Definitions (Continued)

Term Definition
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