
ARM® RMHost
User Guide
Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved.
ARM DUI 0137A

ARM RMHost
User Guide

Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change history

Date Issue Change

December 2000 A First release
ii Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Contents
User Guide

Preface
About this book .. -vi
Feedback ... -ix

Chapter 1 Overview of RMHost
1.1 About RMHost .. 1--2
1.2 RMHost requirements .. 1--4

Chapter 2 Connecting to RMHost
2.1 Procedure for connecting to RMHost using AXD 2--2
2.2 AXD connection messages .. 2--11

Chapter 3 Debugging with RMHost
3.1 Debugging with RMHost .. 3--2
3.2 Error messages .. 3--7
3.3 Using RMHost with Trace Debug Tools ... 3--13
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. iii

Contents
iv Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Preface

This preface introduces the User Guide for ARM® RMHost. It contains the following
sections:

• About this book on page vi

• Feedback on page ix.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. v

Preface
About this book

This book describes how to configure the RealMonitor host controller, RealMonitor.dll,
and how to debug RealMonitor-enabled applications using RMHost. This book
documents only the host-side functionality of RealMonitor. For complete details on the
target-side functionality, and how to prepare an RealMonitor-enabled application, see
the ARM RMTarget Integration Guide.

Intended audience

This book is written for programmers who want to debug a time-critical application or
RTOS using RMHost. It assumes that you are familiar with the process of debugging,
and that you understand how RMTarget has been integrated into your application.

Using this book

This book is organized into the following chapters:

Chapter 1 Overview of RMHost

Read this chapter for an introduction to RMHost, and for a description of
the host-side functionality of RealMonitor, which is distinct from
RMTarget. This chapter also describes the system requirements for using
RMHost.

Chapter 2 Connecting to RMHost

Read this chapter to see the procedure for connecting to the debug target
using the ARM eXtended Debugger (AXD), and for details on selecting
and configuring the RMHost controller. It also describes the connection
messages you receive in AXD when you connect to RMHost.

Chapter 3 Debugging with RMHost

Read this chapter for a description of the debugging features you can use,
and the debugging restrictions you must be aware of, when connected to
RMHost. It also describes all RMHost-related error messages you can see
from within the debugger. It also describes the use of RMHost with Trace
Debug Tools (TDT).

Typographical conventions

The following typographical conventions are used in this book:

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate.
vi Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Preface
italic Highlights special terminology, denotes internal cross-references,
and citations.

typewriter Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

typewriter italic

Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

typewriter bold

Denotes language keywords when used outside example code.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for RMHost.

ARM periodically provides updates and corrections to its documentation. See
www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at the ARM website.

ARM® publications

This book contains information that is specific to RMHost. Refer to the following books
for related information:

• Trace Debug Tools User Guide (ARM DUI 0118)

• ARM Firmware Suite Reference Guide (ARM DUI 0102)

• ARM Firmware Suite User Guide (ARM DUI 0136)

• Multi-ICE User Guide (ARM DUI 0048)

• ARM RMTarget Integration Guide (ARM DUI 0142)

• CodeWarrior IDE Guide (ARM DUI 0065)

• AXD and armsd Debuggers Guide (ARM DUI 0066)

• ARM Architecture Reference Manual (ARM DDI 0100) .
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. vii

Preface
Other publications

Please refer to the following publications for additional information:

• E5903-97000, Trace Port Analysis for ARM ETM User’s Guide, Agilent, 1999.

• E3459-97002, Emulation for the ARM7/ARM9 User’s Guide, Agilent, 1999.

To access these documents, see the website www.agilent.com.
viii Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Preface
Feedback

ARM Limited welcomes feedback on both RMHost, and its documentation.

Feedback on RMHost

If you have any problems with RMHost, please contact your supplier. To help them
provide a rapid and useful response, please give:

• details of the release you are using

• details of the host and target you are running on

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the JTAG unit, including the version number and date.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ix

Preface
x Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Chapter 1
Overview of RMHost

This chapter introduces RMHost. It describes the host-side functionality of ARM
RealMonitor, and how it is distinct from RMTarget. It also describes the system
requirements for using RMHost.

This chapter contains the following sections:

• About RMHost on page 12

• RMHost requirements on page 14.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 11

Overview of RMHost
1.1 About RMHost

RMHost is the host component of RealMonitor. It allows you to perform nonstop
debugging on a RealMonitor-enabled application in a real-time environment. That is,
when using RMHost, you can perform certain debugging operations on a foreground
application while the processor continues to run (and service interrupts) in the
background.

The functionality of RMHost is contained in the RMHost controller, RealMonitor.dll,
which provides a standard Remote Debug Interface (RDI) to the debugger. The
debugger communicates with the debug target using the RMHost controller, and
communication between RMHost and RMTarget is governed by the RealMonitor
protocol. These component parts of RealMonitor, and the connection between them, are
shown in Figure 1-1.

Figure 1-1 RealMonitor components

�������	
�����

����������

����	��
	�������

�������	

�����

���� ��

���������

����� �

�!!�
����"	��	�����#��

$��������	�%

���
	&�!'
���� 	���

'"���
	��
(����

�)����

$	�&���
*
��� ��

���

��� �
�����
������
���������

��� �

�������	
���
12 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Overview of RMHost
The RMHost controller converts RDI function calls into RealMonitor protocol packets,
and uses the chosen JTAG unit to send these over the Debug Communications Channel
(DCC) of the ARM processor. Additionally, RMHost uses the signals generated by the
JTAG unit to control operation of RMTarget. For these reasons, the software that drives
the JTAG unit must comply with RDI 1.5.1rt.

You must configure the RMHost controller when you first request connection to the
target, which must already be running. You must then choose the supported JTAG unit
to be used to communicate with, and control, the target. For complete details on the
procedure for selecting and configuring the RMHost controller, see Procedure for
connecting to RMHost using AXD on page 22.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 13

Overview of RMHost
1.2 RMHost requirements

This section describes the requirements necessary to use RMHost. RMHost works with
any application that has been integrated with RMTarget. For details on building
RMTarget, and integrating it with an application or Real-Time Operating System
(RTOS), see the ARM RMTarget Integration Guide.

To run RMHost, your system must contain the following:

RMHost package

This is contained on the ARM RealMonitor CD-ROM. It must be
installed on your system as described in the installation guide that
accompanies the RealMonitor 1.0 CD-ROM.

Debugger You can use the following with RMHost:

• ARM eXtended Debugger (AXD), as provided with ADS version
1.1 or later.

Note
 RMHost is not supported when using ADW.

• Any other debugger that conforms to RDI 1.5.1rt, and supports the
Real-Time (RT) features used by RMHost. See the documentation
that accompanies your debugger for details on the features it
supports.

Platform The RMHost controller supports the following platforms:

• Windows 95

• Windows 98

• Windows 2000

• Windows NT 4.0

• HP-UX 10.20

• Solaris 2.6

• Solaris 7.0.

For details on the target hardware supported by RealMonitor, see the section on
RealMonitor system requirements in the ARM RMTarget Integration Guide.
14 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Chapter 2
Connecting to RMHost

This chapter describes the procedure for connecting to the debug target using AXD,
including details on selecting and configuring the RMHost controller. It also describes
the connection messages you receive in AXD when you connect to RMHost.

This chapter contains the following sections:

• Procedure for connecting to RMHost using AXD on page 22

• AXD connection messages on page 211.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 21

Connecting to RMHost
2.1 Procedure for connecting to RMHost using AXD

This section describes the steps you must follow to connect to RMHost using AXD 1.1.
If you are using another debugger, see its accompanying documentation for details on
how to perform these steps using the method that is specific to your debugger.

To debug a RealMonitor-enabled image, you must connect with RMHost while your
program is executing. It is therefore important that you follow the steps of this
procedure in the order presented.

Caution
 If you are using the Multi-ICE® sever with RMHost, you must ensure that it is not
autoconfigured because this causes the target board to be reset, and disrupts any running
program.

When the Multi-ICE server is not preloaded and preconfigured, you might be given the
option to restart the Multi-ICE server when you attempt to connect to the Multi-ICE
DLL. In this case, you must click No because this would cause an autoconfiguration.
Similarly, you must not configure the Multi-ICE server using the Auto-configure
option.

To configure the Multi-ICE server for use with RMHost, you must create a
configuration file that can be loaded into the Multi-ICE server, as follows:

1. Start the Multi-ICE server, and select Auto-Configure from the File menu. The
file Autoconf.cfg is created (or updated) in the root directory of your Multi-ICE
installation.

2. Make a copy of the file Autoconf.cfg, and give the copy an arbitrary name.
Renaming this file ensures that it is not overwritten in a future Multi-ICE session.

After you have created and renamed your configuration file, you must load it into your
Multi-ICE server using the Load Configuration... option from the File menu. You must
do this every time you load the Multi-ICE server for use with RMHost.

Note
 Steps 1 and 2 of the following procedure describe how to connect to RMHost if your
image is not preloaded into ROM or Flash memory. If your image is preloaded, you
must start at step 3.

For details on loading an image into Flash memory, see the chapter on using the ARM
Flash Utility (AFU) in the ARM Firmware Suite Reference Guide.
22 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Connecting to RMHost
To use RMHost with a RealMonitor-enabled image:

1. Start AXD, and configure the target as follows:

a. Select Configure Target from the Options menu. The Choose Target
dialog box is displayed.

b. Select a supported JTAG unit DLL, such as Multi-ICE.dll version 2.0, in
the Choose Target window, as shown in Figure 2-1. If this is not present in
the list, click Add, and find the required DLL. (If DLL files do not appear,
use Windows Explorer to ensure that files of extension .dll are not hidden
from view.) The Multi-ICE DLL is found in the root directory of the
Multi-ICE installation. If you have Multi-ICE 2.0 hardware, and you have
not used Multi-ICE as a target in the past, click Configure. Otherwise, click
OK. If you are using another JTAG unit, see its accompanying
documentation for details on configuration.

Note
 For details on configuring the Multi-ICE target, see the Using Multi-ICE with

Debuggers chapter of the Multi-ICE User Guide.

Figure 2-1 Selecting the Multi-ICE target

2. Load the RealMonitor-enabled image into your target board by selecting Load
Image from the File menu, and execute it by selecting Go from the Execute
menu.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 23

Connecting to RMHost
Note
 If Load Image is disabled, you must stop the currently running application by

selecting Stop from the Execute menu.

The image might stop at main() if the program contains this function. In this case,
select Go from the Execute menu to continue from the breakpoint.

3. While your program is running, configure the interface as follows:

a. Select Configure Interface from the Options menu.

b. Select the General tab.

c. In the Target connection drop-down menu, select the option ATTACH:
Connect according to target properties, as shown in Figure 2-2. Click
OK.

Figure 2-2 Configure interface dialog box

4. Select the RealMonitor target as follows:

a. Select Configure Target from the Options menu. The Choose Target
dialog box is displayed.

b. Select RealMonitor.dll as the target DLL, as shown in Figure 2-3 on
page 25.
24 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Connecting to RMHost
If not present in the list, click Add and select RealMonitor.dll from the Bin
directory of the ADS installation. (If DLL files do not appear, use Windows
Explorer to ensure that files of extension .dll are not hidden from view.)
The Choose Target dialog box is redisplayed.

When you select RealMonitor.dll, AXD displays the following message:

Connect the ARM Debugger to a target board using a unit such as Multi-ICE.
Boards require RMTarget software.

Step 5 describes how to do this.

Figure 2-3 Choose Target dialog box

5. Click Configure. The RealMonitor Configuration dialog box is displayed, an
example of which is shown in Figure 2-4 on page 26.

Note
 If you have previously configured RMHost using the RealMonitor Configuration

dialog box, you need to repeat the configuration process only if the configuration
details have changed. If no details have changed, you can proceed to step 10.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 25

Connecting to RMHost
Figure 2-4 RealMonitor Configuration dialog box

Select an RDI 1.5.1rt-compliant JTAG controller DLL (see RMHost
requirements on page 14), using one of the following methods:

• If present in either the Bin directory of the ADS installation, or in one of the
PATH environment variable directories, type in the name of the DLL in the
JTAG Controller field (with or without the .dll extension), such as
Multi-ICE, as shown in Figure 2-4.

• If not present in these directories, browse by clicking …. A search dialog
box is displayed, as shown in Figure 2-5 on page 27, where you must find
and select the desired DLL. (If DLL files do not appear, use Windows
Explorer to ensure that files of extension .dll are not hidden from view.)
The Multi-ICE DLL is found in the root directory of the Multi-ICE
installation.

Note
 If the DLL you select is not supported by RealMonitor, an error message is

displayed indicating that the chosen JTAG unit does not support RT
extensions (see Error messages on page 37).
26 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Connecting to RMHost
Figure 2-5 JTAG controller search dialog box

6. Click Configure... to configure the JTAG controller you have selected. For details
on configuring Multi-ICE 2.0, see the Using Multi-ICE with Debuggers chapter
of the Multi-ICE User Guide. If you are using another JTAG controller, see its
accompanying documentation for details on configuration.

Note
 Optionally, you can enable tracing if you have ARM Trace Debug Tools (TDT)

installed. For details on enabling tracing, see the appendix on setting up the trace
software in the Trace Debug Tools User Guide.

When you have successfully configured the JTAG controller, the RealMonitor
Configuration dialog box is redisplayed.

7. Optionally, you can enable use of the RDI module server. The RDI module server
implements the host-side of the Self-Describing Module (SDM) extension to the
RDI (see the build option RM_OPT_SDM_INFO in the building chapter of the ARM
RMTarget Integration Guide).

If you do not want to enable this feature, deselect Use RDI Module Server, and
proceed to step 9.

Enabling the RDI module server allows you, when connected to the RMHost
controller, to view the entries in the registers view (of AXD) for any additional
devices you have installed in your target system, such as coprocessors and
interrupt controllers. You can view these entries by selecting Registers from the
Processor Views menu.

To enable use of the module server, select Use RDI Module Server. The option
Fetch module information from target is no longer grayed out.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 27

Connecting to RMHost
Caution
 The module server does not work with the RMHost controller if you disabled

support for the ExecuteCode packet when you built RMTarget. See the
description of the RM_OPT_EXECUTECODE build option in the building the RMTarget
chapter of the ARM RMTarget Integration Guide.

8. Provide the module server with information about the target system.

If RMTarget was built with this information embedded, select Fetch module
information from target and click OK to obtain this information (see the build
option RM_OPT_SDM_INFO in the building chapter of the ARM RMTarget Integration
Guide). If you select this option, the fields Processor and Board are grayed out,
as shown in Figure 2-4 on page 26.

If no information is returned when you select the option Fetch module
information from target and click OK, you must provide information as
follows:

a. Deselect the the option Fetch module information from target.

b. From the drop-down list in the Processor field, select the processor core
being debugged, such as ARM966E-S. The list consists of processors
supported by the RDI module server, including a blank entry that you must
select if the system being debugged is not included in the list. See RMHost
requirements on page 14 for details on hardware supported by the
RealMonitor host controller.

c. From the drop-down list in the Board field, select the board you are using,
such as CM966E-S + Integrator/AP. The list consists of boards supported by
the RDI module server, including a blank entry that you must select if the
system being debugged is not included in the list. See RMHost
requirements on page 14 for details on hardware supported by the
RealMonitor host controller.

Note
 It is possible to specify only a processor without specifying a board. In this

case, only the processor state (coprocessor 15) is displayed by AXD when
the module server is enabled. If you specify only a board, and no processor,
only the state of the board peripherals is displayed by AXD when the
module server is enabled.

9. Click OK.
28 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Connecting to RMHost
Note
 If RMHost detects an error in the configuration you have selected, an error

message is displayed. If this happens, you can click one of the following:

OK Stores the configuration, although the error can prevent you from using
RMHost.

Cancel Does not store the configuration, and you are returned to the
RealMonitor Configuration dialog box.

See Error messages on page 37 for a description of RMHost-related errors.

If configuration is successful, the selected configuration is stored, and the Choose
Target dialog box is displayed.

10. Click OK. You are ready to begin debugging your application (see Chapter 3
Debugging with RMHost).

Note
 A dialog box indicating that the processor is still executing might be displayed. If

this happens, click No to indicate that you do not want execution to stop.

Caution
 When switching targets using AXD, a dialog box is displayed that requests

whether you want to reload the last image. In this case, you must click No because
reloading the last image corrupts the currently running image.

If you have disabled write access to the program counter (pc) in the register
descriptor block, the message shown in Figure 2-6 is displayed (see CPU register
access on page 34).

Figure 2-6 No pc write access message

If you have disabled read access to the pc in the register descriptor block, the
message shown in Figure 2-7 on page 210 is displayed (see CPU register access
on page 34).
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 29

Connecting to RMHost
Figure 2-7 No pc read access message
210 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Connecting to RMHost
2.2 AXD connection messages

When you connect the debugger to RMHost, messages are displayed in the RDI Log
window of AXD, as shown in Example 2-1.

If you are using a debugger other than AXD, see the documentation that accompanies
your debugger for details on where information is displayed when you connect to a new
target.

Example 2-1 Example of RMHost connection messages

ARM RMHost 1.0 (ARM Ltd. RM1.0) [XXX]
ARM Multi-ICE Release 2.0. Copyright (c) ARM Limited 1998-2000.
Connected to TAP 0, ARM966E-S on Server "localhost", Little-Endian target.

ARM RMTarget A2.0 (ARM Ltd)
ARM RDI 1.5.1 -> ASYNC RDI Protocol Converter v1.1.Copyright (c) ARM Limited 2000.

The five lines of information shown in Example 2-1 indicate the following:

Line 1 The product name and version of RMHost, where XXX is the three-digit
build number. You must quote this number when reporting any problems
with RMHost.

Lines 2 and 3

Information that is specific to the JTAG unit, in this case Multi-ICE.

Line 4 The product name of RMTarget and version number of the RealMonitor
protocol. The supplier for the target is also shown, which is decoded from
the character at the start of the version number. Currently, the only
supported supplier is ARM Ltd., as indicated by A.

Line 5 Generated by AXD. If you have enabled the RDI module server, some
additional module-specific information might be displayed.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 211

Connecting to RMHost
212 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Chapter 3
Debugging with RMHost

This chapter describes all the debugging features you can use in the real-time debugging
environment available when you are connected to RMHost. It also describes the
restrictions to debugging a RealMonitor-enabled application, and includes descriptions
of RMHost-related error messages.

It also describes the use of RMHost with Trace Debug Tools (TDT). It contains the
following sections:

• Debugging with RMHost on page 32

• Error messages on page 37

• Using RMHost with Trace Debug Tools on page 313.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 31

Debugging with RMHost
3.1 Debugging with RMHost

When connected to RMHost, the AXD user interface is identical to that when connected
to other debug targets such as Multi-ICE. (For details on connecting to RMHost, see
Chapter 2 Connecting to RMHost.) You can display, for example, memory windows,
register contents, and variables.

This section describes the standard debugging features you can use when connected to
RMHost, and how to use these features when connected to RMHost as the debug target:

• Nonstop debug

• Background memory access on page 33

• CPU register access on page 34

• Nonstop startup on page 34

• Background setting and clearing of breakpoints and watchpoints on page 35

• Profiling on page 35

• Data messaging on page 35

• Semihosting on page 35.

Note
 The debugging features supported by RMHost are supported by any debugger that is
RDI 1.5.1-compliant (see RMHost requirements on page 14).

3.1.1 Nonstop debug

When you are debugging with Multi-ICE, for example, and you stop the target using
breakpoints, the processor is halted, and no application can run in the foreground or
background.

Nonstop debug, which is available when connected to RMHost, refers to when the
foreground application stops when a breakpoint is hit, and the processor continues to
run. This allows system-critical tasks, such as IRQ and FIQ handlers, to continue to run
as you debug your foreground application.
32 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Debugging with RMHost
3.1.2 Background memory access

In addition to being able to access memory when your application is stopped (as with
Multi-ICE, for example), memory can also be read or written to while your application
is running.

Therefore, the memory and disassembly windows in the debugger you are using can be
opened and refreshed while your application is running. You can also view the contents
of non-automatic variables, that is, variables such as global variables and statics that are
not allocated to registers or the stack. However, this ability can be restricted while
debugging.

Memory can also be written to at any time. However you must be aware that read/write
operations might not be atomic to the application. Therefore, if a large structure is
viewed, for example, it might not be a consistent snapshot because data at the end of the
structure is likely to have been read later than data at the start of the structure. The same
problem exists with writes, so you must take care when updating such a structure when
consistency between the elements is required.

If RMTarget has not been built with support for word accesses, for example, RMHost
uses the supported access size (see RM_OPT_WRITEWORDS and RM_OPT_READWORDS in the
building chapter of the ARM RMTarget Integration Guide). For byte and halfword
accesses, RMTarget executes multiple memory-access instructions per word of data.

Note
 This use of multiple memory-access instructions might cause unexpected results when
accessing certain peripherals, so be sure to enable those build options in RMTarget that
represent the access types supported by your peripherals.

While executing these instructions, your application is not running, but interrupts might
still be serviced. It is therefore essential that you take care when writing to variables
used by interrupt service routines.

RealMonitor also uses writes to memory to set software breakpoints. It is therefore
possible that when setting a breakpoint on an interrupt service routine, the routine might
execute before the breakpoint is fully set, causing the routine to malfunction (without
causing an undefined instruction or breakpoint). If this happens, an error message is not
necessarily displayed.

To work around this situation, RMHost always uses the ExecuteCode command to
ensure that writes of a single word (or halfword, if using Thumb), such as a breakpoint
instruction, are always atomic. That is, they use a single STR instruction (or STRH, if
using Thumb). This is not done for larger structures.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 33

Debugging with RMHost
Note
 This workaround is performed only if you have built RMTarget to support the
ExecuteCode packet (see RM_OPT_EXECUTECODE in the building chapter of the ARM
RMTarget Integration Guide).

It is recommended that you build RMTarget with support for either or both of the
following:

• word and/or halfword writes (see RM_OPT_WRITEWORDS and RM_OPT_WRITEHALFWORD in
the building chapter of the ARM RMTarget Integration Guide)

• the ExecuteCode packet (see RM_OPT_EXECUTECODE in the building chapter of the
ARM RMTarget Integration Guide).

3.1.3 CPU register access

CPU registers can be read while your application is stopped. It is not possible to
read/write CPU registers while your application is running.

Access to specific registers can be restricted using the register accessibility block built
into RMTarget (see the RM_RegisterAccess section of the API chapter in the ARM
RMTarget Integration Guide). If this is done, certain registers can become unreadable
or unwritable. If marked as unreadable, AXD does not return an error, but it displays
register values as zero.

Read and write access must not be removed from the program counter (pc) if start-stop
debugging (such as the ability to set breakpoints and stop the application) is to be
supported. Similarly, access to the unbanked registers must not be removed if
semihosting is to be supported.

3.1.4 Nonstop startup

When your application is running, and you establish connection to RMHost, your target
application is typically stopped. With RMHost, you can select a mode that allows your
application to continue to run when you establish connection to RMHost. If you connect
using this method, you can then check the state of your application without having to
stop it. You can do this using background memory accesses, which are supported by
RMHost (see Background memory access on page 33).

This feature is enabled when you select the option ATTACH: Connect according to target
properties. For more details, see the step on configuring the interface in Procedure for
connecting to RMHost using AXD on page 22.
34 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Debugging with RMHost
3.1.5 Background setting and clearing of breakpoints and watchpoints

When connected to RMHost, you can set and clear breakpoints and watchpoints without
stopping your application. You can also set and clear breakpoints and watchpoints when
your application is in a stopped state.

3.1.6 Profiling

RMHost supports a low-intrusion code profiling mechanism. This mechanism works
only if you enabled profiling when you built RMTarget (see the build option
RM_OPT_GETPC in the building chapter of the ARM RMTarget Integration Guide). For
details on how sample-based profiling is performed by the GetPC command, see the
description of GetPC in the RealMonitor protocol chapter of the ARM RMTarget
Integration Guide.

For details on code profiling using AXD, see the AXD facilities chapter of the AXD and
armsd Debuggers Guide.

Note
 The profiling interval specified by the debugger is ignored by RMHost. In AXD, the
interval is specified in the Load Image dialog box.

3.1.7 Data messaging

Your application can use RealMonitor to buffer and send messages to the debugger.
RMHost passes these messages to the Debug Comms Channel processor view in AXD.
This feature works only if you have enabled data messaging when you built RMTarget
(see the build option RM_OPT_DATALOGGING in the building chapter of the ARM RMTarget
Integration Guide).

For details on the Debug Comms Channel processor view, see the AXD facilities
chapter of the AXD and armsd Debuggers Guide.

3.1.8 Semihosting

RMHost supports the use of the ARM semihosting interface. This support works only
if you have enabled the SWI handler when you built RMTarget (see the build option
RM_OPT_SEMIHOSTING in the building chapter of the ARM RMTarget Integration Guide).

If you are using semihosting, and you stop your application, you might receive the
following message:

Semihosting write call interrupted (data will be lost)
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 35

Debugging with RMHost
This message is displayed when the application is writing to the console, and you stop
your application at the same time RMHost is performing a write. In this case, the data
that has not been written is lost, and is not displayed.

For complete details on semihosting with an ARM target, see the semihosting chapter
of the ADS Debug Target Guide.
36 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Debugging with RMHost
3.2 Error messages

This section describes all error messages you might receive when connecting to, or
using, RMHost.

Note
 Error messages can be generated by both the debugger and the JTAG unit you are using.
Errors that come from the JTAG unit (such as Multi-ICE) are prefixed in the debugger
by the string (JTAG). For a description of these errors, see the documentation that
accompanies the JTAG unit you are using.

Errors from the RDI Module Server are prefixed with the string (MSVR) if you have
enabled the module server when configuring RMHost (see Procedure for connecting to
RMHost using AXD on page 22).

The error messages are as follows:

Cannot use RMHost as JTAG controller

This is displayed if you attempt to select RealMonitor.dll as the JTAG
controller.

Configured JTAG controller DLL not compatible with RMHost

The configured JTAG controller DLL loaded successfully, and
implements RDI, but it does not support a sufficient level of RDI to be
used by RMHost. In this case, you must upgrade your JTAG controller
software to be RDI 1.5.1rt-compliant.

Configured JTAG controller does not support RT extensions

JTAG controllers used by RMHost must support the real-time (rt)
extensions to RDI. In this case, you must upgrade your JTAG controller
software to be RDI 1.5.1rt-compliant.

Configured JTAG controller is not a valid RDI target

The DLL you have chosen for the JTAG controller does not implement
RDI.

Data link timeout error

A link timeout typically occurs when the target is either not responding,
or is responding very slowly. If the target is not responding at all, there is
an error in the target. In this case, it is recommended that you either stop
the target and examine its state directly using JTAG debugging, or reset
the target.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 37

Debugging with RMHost
This error might also be displayed when any of the following occurs:

• You connect to a remote target, that is, one that is not connected to
the local machine. In this case, a timeout typically results from a
network error.

• The target is built for polled mode, and the application is not calling
RM_PollDCC(). See the description of this function in the API
chapter of the ARM RMTarget Integration Guide.

• The communications channel interrupts on the target have a very
low priority.

DBE Warning 00030 on object 'Oscillator': Could not write the item requested

(possibly read-only)

An error of this type indicates that a given register (Oscillator, in this
case) could not be written to for a variety of reasons.

DBE Warning 00031 on object 'Id': Could not read from the processor register

requested

An error of this type indicates that a given register (Id, in this case) could
not be read for a variety of reasons.

Note
 The register value is displayed as zero when it cannot be read. This error

is displayed only in the Debug Log Window.

Failed to read or write target memory

The RMHost controller was attempting to perform an operation that
involved reading or writing memory, and this failed. (For example, there
might have been a Data Abort while attempting to set a software
breakpoint.)

JTAG controller is not reporting a comms channel

The processor being debugged does not support a debug communications
channel, and therefore, RMHost cannot connect to it.

JTAG controller is not reporting an 'ARM' module

The target does not include an ARM processor.

JTAG controller is not reporting non-stop debug capability

The JTAG controller would have to put the processor into debug state to
allow connection to RMHost, and therefore, connection must be aborted.
Check that your JTAG controller software is RDI 1.5.1rt-compliant.
38 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Debugging with RMHost
Memory map forbids reading from location

Either you or the debugger attempted to read a location, but the memory
map on the target forbids the reading of locations in that region.

Memory map forbids setting of breakpoint/watchpoint

Either you or the debugger attempted to set a breakpoint or watchpoint,
but the memory map on the target forbids the setting of watchpoints or
breakpoints on that region. (The debugger might attempt to set a
breakpoint when single-stepping.) For more details, see rm_MemoryMap in
the API chapter of the ARM RMTarget Integration Guide.

Note
 For details on memory maps, see the ARM RMTarget Integration Guide

for a description of rm_Memory in the API chapter, and the pointer to
memory descriptor block in the RealMonitor protocol chapter.

Memory map forbids writing to location

Either you or the debugger attempted to write a location, but the memory
map on the target forbids the writing of locations in that region.

Message received from target was not handled by RMHost

The RealMonitor protocol includes messages sent from the target to the
controller, such as RM_Msg_HardBreak (RealMonitor has stopped at a
breakpoint). This error message indicates that the target sent a message,
but the controller did not understand it, and usually indicates an error in
RMTarget (see the section on target-to-host controller messages in the
RealMonitor protocol chapter of the ARM RMTarget Integration Guide).

RealMonitor not compatible with RDI target

The RDI target (usually Multi-ICE) does not support the features
necessary to run RMHost. Either an invalid target has been chosen, or the
RDI target must be upgraded.

Remote target is not executing

The target processor is in debug state, and therefore, it cannot be
debugged by RMHost.

RMHost buffer overflow

An internal buffer inside the RMHost controller has overflowed. As with
an internal error, this error must be reported to your supplier.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 39

Debugging with RMHost
RMHost could not load the specified JTAG controller

This is displayed when the JTAG controller DLL could not be loaded.

RMHost internal error

Indicates some consistency failure inside the RMHost controller. You
must report this error to your supplier, along with a description of the
events leading up to the error.

RMHost protocol error (internal error)

The RMHost controller detected that it was about to violate the
RealMonitor protocol, and aborted the operation. This must be treated in
the same way as an internal error, and must be reported to your supplier.

RMTarget does not support an expected feature

The RMHost controller sent a command to the monitor that was not
understood. This typically indicates an error in the RMTarget build,
because the controller checks that a command is supported before using
it.

RMTarget entered panic state (debug event while stopped)

The monitor detected a debug event (such as a breakpoint) while it was
already stopped, and has gone into panic state. This should not occur
during normal operation, and usually indicates a user error. For example,
this might occur if you have set a breakpoint on some code that is used by
an interrupt routine. The target must be reset.

RMTarget protocol error

The controller has detected a violation of the RealMonitor protocol by the
target. This usually indicates a target fault, which can typically be
resolved by resetting it.

RMTarget version does not match RMHost version

As part of initialization, the controller checks that the version number of
the target matches its own version number. If they do not match, the
controller cannot connect to the target. The version number is used in this
way to protect against changes in the RealMonitor protocol between
versions.

Unknown RMTarget error

RMTarget is reporting an error that is not understood by RMHost. See the
description of the pointer to the error block in the ARM RMTarget
Integration Guide.
310 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Debugging with RMHost
3.2.1 Other messages from RMHost

In addition to the messages described in Error messages on page 37, you can also
receive a message similar to that shown in Figure 3-1 when either of the following
occurs:

• you write to the CPSR

• the debugger writes to the CPSR after an image load.

Figure 3-1 IRQ message

In this case, RealMonitor has detected that either you or the debugger are attempting to
disable either IRQs or FIQs. Because RMTarget is IRQ-driven, and because one of the
purposes of RealMonitor is to allow debugging without disabling FIQs, RMHost
produces this warning before allowing the write to occur.

Caution
 Failure to choose the correct response to this prompt can cause the target to crash, or the
debug session to lock up.

If you receive this message, you must click one of the following:

Yes Write the value and disable IRQs. The specified interrupts are disabled.
If there is no code in your application to re-enable IRQs, RMTarget
cannot respond to some debug requests.

You must click Yes if your application code relies on IRQs being disabled
during initialization, such as when it needs to install its own IRQ handler.
In this case, the application enables IRQs after initialization.

No Write the value specified, with the exception of the IRQ/FIQ disable bits.
These interrupts remain enabled.

Note
 The values shown in AXD will be incorrect in this case.

You must click No if your target application does not enable IRQs itself.
This allows RMTarget to service interrupts.
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 311

Debugging with RMHost
Cancel Abort. RMHost returns an error to the debugger.

Note
 In general, if your application enables interrupts itself, you must start it with interrupts
disabled. Otherwise, it is typically safe to start it with interrupts enabled.
312 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Debugging with RMHost
3.3 Using RMHost with Trace Debug Tools

RMHost can work with the ARM Trace Debug Tools (TDT) version 1.1 or later. The
system configuration is illustrated in Figure 3-2.

Figure 3-2 Using RMHost with TDT

Note
 The ARM CPU core shown in Figure 3-2 can be any of the RealMonitor-supported
target processors (see the section on system requirements in the Introduction chapter of
the ARM RMTarget Integration Guide). For details on porting RMTarget to a new board
or processor, see the section on porting RMTarget in the Introduction to RMTarget
chapter of the ARM RMTarget Integration Guide.

When you are using AXD with both TDT and RMHost, you can perform tracing on
your application, and then actively debug your foreground application using RMHost,
based on the results returned to the Trace window. If you are using TDT without
RMHost, you can debug your application based on the trace results, but this causes the
processor to stop. Therefore, using the two products together provides you with a more
robust debugging environment than using each product separately.

The system requirements are the same, except additional hardware is required to use
TDT. These requirements are described in the section on setting up the TDT hardware
in the Getting Started chapter of the Trace Debug Tools User Guide.

This section describes the following:

• Configuring AXD to enable tracing with RMHost on page 314

• Performance of RMHost with TDT on page 314.

���!

������(��
�����*+��

�������	

�&,	��
����

'"���
�����

���������

�����
���

�����������	�
���
$��$��

�)��,	
$������

����
���

����!(-�����
����	� ������ �

ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. 313

Debugging with RMHost
3.3.1 Configuring AXD to enable tracing with RMHost

The process of connecting to a target system using both RMHost and TDT is similar to
connecting to a target system using only RMHost. The only difference is that you must
enable tracing when you configure your JTAG controller to be used with
RealMonitor.dll, as described in step 6 of Procedure for connecting to RMHost using
AXD on page 22. For details on enabling tracing, see the appendix on setting up the
trace software in the Trace Debug Tools User Guide.

3.3.2 Performance of RMHost with TDT

When using TDT with Multi-ICE only, and not RMHost, TDT cannot read the target
memory without halting the processor. However, it must be able to view the instructions
that were executed by the processor to decode the trace data. It therefore implements an
image cache in the host, and fetches the instructions from this cache, rather than from
the target.

Note
 If your image is already loaded onto the target, you can select Load Debug Symbols
from the File menu to place the image into the image cache (even while your application
is currently running).

Caution
 If you are using self-modifying code, you must disable the image cache in the debugger
because when the image cache is in use, the debugger cannot detect any modifications
the code makes to itself. To disable the image cache in AXD:

1. Select Debugger Internals from the System Views menu.

2. Change the value of the variable image_cache_enable from 0x01 to 0x00.

With RMHost, it is possible to read memory without halting the target, and TDT can
decode the trace data by reading memory on the target. Therefore, a trace stream can be
displayed without having to use the image cache.

However, because the link between the host and the target is limited by the JTAG
connection, and the performance of the debug communications channel when using
RMHost, decoding trace in this way is slow compared to using the image cache.
314 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
ARM Developer Suite (ADS) 2--5
ARM eXtended Debugger. See AXD.
ARM Flash Utility (AFU) 2--2
Autoconf.cfg 2--2
AXD 1--4, 2--2, 2--5, 2--8, 3--2, 3--5,

3--11, 3--13, 3--14
AXD connection messages 2--11

B
Background memory access 3--3
Background setting/clearing of

breakpoints/watchpoints 3--5
Breakpoints 3--3, 3--5
Build options

RM_OPT_DATALOGGING 3--5
RM_OPT_GETPC 3--5
RM_OPT_SDM_INFO 2--7, 2--8
RM_OPT_SEMIHOSTING 3--5

C
Clearing breakpoints and watchpoints

3--5
Code profiling 3--5
Configuring AXD to use TDT and

RMHost 3--14
Configuring the interface 2--4
Configuring the target 2--3, 2--4
Connecting to RMHost 2--2
Connection messages 2--11
CPU register access 3--4

D
Data messaging 3--5
Debug Communications Channel

(DCC) 1--3
Debugging 3--2
Debugging features

backgournd setting/clearing of
breakpoints/watchpoints 3--5

background memory access 3--3
CPU register access 3--4
data messaging 3--5
nonstop debug 3--2
nonstop startup 3--4
profiling 3--5
semihosting 3--5

E
Error messages 3--7

other 3--11
ExecuteCode packet 2--8, 3--3

F
FIQ 3--11
Flash 2--2
ARM DUI 0137A Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. Index-1

Index
G
GetPC packet 3--5

H
Host requirements 1--4

I
Image cache 3--14
IRQ 3--11

J
JTAG errors 3--7

M
main() 2--4
Memory access 3--3
Module server 2--7
Multi-ICE 2--3, 2--6, 3--2, 3--7

N
Nonstop debug 3--2
Nonstop startup 3--4

P
PATH 2--6
pc (program counter) 3--4
Performance of RMHost with TDT

3--14
Procedure for connecting to RMHost

2--2
Profiling 3--5

R
RDI 1--2

RDI module server 2--7
RealMonitor protocol 1--2
RealMonitor.dll 1--2, 2--4, 3--14
Real-Time Operating System. See

RTOS.
Register access 3--4
Remote Debug Interface. See RDI.
RMHost

connection messages 2--11
debugging with 3--2
error messages 3--7
functionality 1--2
overview 1--2
procedure for connecting with target

2--2
requirements 1--4
with TDT 3--13

RMHost controller 1--2, 2--4, 3--14
RMTarget 1--2, 1--3, 1--4, 2--7, 2--8,

3--3, 3--4, 3--5
configuration 2--3, 2--4

RM_OPT_DATALOGGING 3--5
RM_OPT_GETPC 3--5
RM_OPT_SDM_INFO 2--7, 2--8
RM_OPT_SEMIHOSTING 3--5
RM_PollDCC() 3--8
ROM 2--2
RTOS 1--4

S
Self-Describing Module (SDM) 2--7,

2--8
Semihosting 3--5
Setting breakpoints and watchpoints

3--5
SWI handler 3--5
System requirements 1--4

T
Trace Debug Tools (TDT)

with RMHost 3--13

U
Using RMHost with TDT 3--13

configuring 3--14
performance 3--14

W
Watchpoints 3--5
Index-2 Copyright © 2000 ARM Limited. All rights reserved.. All rights reserved. ARM DUI 0137A

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on RMHost
	Feedback on this book

	Overview of RMHost
	1.1 About RMHost
	1.2 RMHost requirements

	Connecting to RMHost
	2.1 Procedure for connecting to RMHost using AXD
	2.2 AXD connection messages

	Debugging with RMHost
	3.1 Debugging with RMHost
	3.1.1 Nonstop debug
	3.1.2 Background memory access
	3.1.3 CPU register access
	3.1.4 Nonstop startup
	3.1.5 Background setting and clearing of breakpoints and watchpoints
	3.1.6 Profiling
	3.1.7 Data messaging
	3.1.8 Semihosting

	3.2 Error messages
	3.2.1 Other messages from RMHost

	3.3 Using RMHost with Trace Debug Tools
	3.3.1 Configuring AXD to enable tracing with RMHost
	3.3.2 Performance of RMHost with TDT

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	P
	R
	S
	T
	U
	W

