Guitar Digital Servo Drive Installation Guide

July 2008 (Ver. 1.1)

www.elmomc.com

Notice

This guide is delivered subject to the following conditions and restrictions:

- This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such information is supplied solely for the purpose of assisting users of the Guitar servo drive in its installation.
- The text and graphics included in this manual are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- Elmo Motion Control and the Elmo Motion Control logo are trademarks of Elmo Motion Control Ltd.
- Information in this document is subject to change without notice.

Document. no. MAN-GUIIG (Ver. 1.1) Copyright © 2008 Elmo Motion Control Ltd. All rights reserved.

Related Products:

Evaluation Board Catalog Number	To be assigned
Evaluation Board User Manual	In development

Revision History:

Ver. 1.0 April 2008

Ver. 1.1 July 2008. Heat dissipation data added in Chapter 3.

Elmo Motion Control Ltd.	Elmo Motion Control Inc.	Elmo Motion Control GmbH	
64 Gisin St., P.O. Box 463	1 Park Drive, Suite 12	Steinkirchring 1	Elmo
Petach Tikva 49103	Westford, MA 01886	D-78056, Villingen-Schwenningen	
Israel	USA	Germany	
Tel: +972 (3) 929-2300	Tel: +1 (978) 399-0034	Tel: +49 (0) 7720-85 77 60	Motion Control
Fax: +972 (3) 929-2322	Fax: +1 (978) 399-0035	Fax: +49 (0) 7720-85 77 70	
info-il@elmomc.com	info-us@elmomc.com	info-de@elmomc.com	www.elmomc.com

Contents

Cha	pter	1: Safety Information1-1
	1.1	Warnings 1-2
	1.2	Cautions
	1.3	Directives and Standards1-3
	1.4	CE Mark Conformance
	1.5	Warranty Information
Cha	npter	2: Introduction
	2.1	Drive Description
	2.2	Product Features
	2.2	2.2.1 Current Control
		2.2.2 Velocity Control
		2.2.3 Position Control
		2.2.4 Advanced Position Control
		2.2.5 Communication Options2-2
		2.2.6 Feedback Options
		2.2.7 Fault Protection2-3
	2.3	System Architecture
	2.4	How to Use this Guide
Cha	apter	3: Installation
	3.1	Site Requirements
	3.2	Unpacking the Drive Components
	3.3	Pinouts
	0.0	3.3.1 Connector Types
		3.3.2 Connector J1
		3.3.3 Connector J2
	3.4	Mounting the Guitar
	3.5	Integrating the Guitar on a PCB
	0.0	3.5.1 Traces
		3.5.2 Grounds and Returns
	3.6	The Guitar Connection Diagram
	3.7	Main Power and Motor Power
		3.7.1 Connecting Motor Power
		3.7.2 Connecting Main Power
	3.8	Auxiliary Supply (for drive logic)
		3.8.1 Single Supply
		3.8.2 Separate Auxiliary Supply
		3.8.3 Shared Supply
	3.9	Main Feedback
	3.10	Auxiliary Feedback
		3.10.1 Main and Auxiliary Feedback Combinations
		3.10.2 Auxiliary Feedback: Emulated Encoder Output Option (YA[4]=4)3-23
		3.10.3 Auxiliary Feedback: Single-Ended Encoder Input Option (YA[4]=2)3-25
		3.10.4 Auxiliary Feedback: Pulse-and-Direction Input Option (YA[4]=0) 3-27

Cor	itei	nts	

	3.11 I/Os	3	3-29
	3.11.1	Digital Input	3-30
	3.11.2	Digital Output	3-32
	3.11.3	Analog Input	3-34
	3.12 Com	munications	3-35
	3.12.1	RS-232 Communication	3-35
	3.12.2	CANopen Communication	3-36
		ering Up	
		alizing the System	
		Dissipation	
		Guitar Thermal Data	
		Heat Dissipation Data	
		How to Use the Charts	
		uation Board and Cable Kit	
۸n		uitar Technical Specifications	
Ap	L	-	
		ures	
	A.1.1		
	A.1.2	8	
	A.1.3	0	
	A.1.4	5 8	
	A.1.5 A.1.6	1	
	A.1.0 A.1.7	1 1	
	A.1.7 A.1.8	Accessories	
	A.1.9		
	1 11 11 0	0 Automatic Procedures	
		ar Dimensions	
		er Ratings	
		6	
		ronmental Conditions	
		Auxiliary Supply	
	A.5 Cont	rol Specifications	
	A.5.1		
		Velocity Loop	
	A.5.3	Position Loop	A-6
		backs	
	A.6.1	Feedback Supply Voltage	A-7
	A.6.2	Main Feedback Options	
		A.6.2.1 Incremental Encoder Input	
		A.6.2.2 Digital Halls	A-8
		A.6.2.3 Interpolated Analog Encoder (Sine/Cosine) A.6.2.4 Resolver	
		A.6.2.5 Tachometer*	
		A.6.2.6 Potentiometer	
	A.6.3	Auxiliary Feedback Port (output mode YA[4]= 4)	
	A.6.4		
	A.7 I/Os		
		Digital Input Interfaces	
	A.7.2	• •	

ii

A.7.3 Analog InputA-13
A.8 CommunicationsA-14
A.9 Pulse Width Modulation (PWM) A-14
A.10 Standards Compliance A-14
A.10.1 Quality AssuranceA-14
A.10.2 Design
A.10.3 SafetyA-15
A.10.4 EMC
A.10.5 WorkmanshipA-15
A.10.6 PCB
A.10.7 PackingA-15
A.10.8 WEEE*
A.10.9 RoHSA-15
ndexI-1

Chapter 1: Safety Information

In order to operate the Guitar servo drive safely, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Guitar and accompanying equipment.

Please read this chapter carefully before you begin the installation process.

Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.

Only qualified personnel may install, adjust, maintain and repair the servo drive. A "qualified person" has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.

The Guitar servo drive contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.

To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.

The following safety symbols are used in this manual:

4	Warning: This information is needed to avoid a safety hazard, which might cause bodily injury.
	Caution: This information is necessary for preventing damage to the product or to other equipment.
E.	Note: This is auxiliary information that ensures the correct operation of the equipment.

1.1 Warnings

4	Cleaning after soldering To avoid damage to the product's acrylic coating, the Bassoon must not be cleaned after soldering with soluble solvents or water-based cleaners. For further details see: www.elmomc.com/applications/article/Soldering-and-Cleaning_Application- Note.pdf
4	To avoid electric arcing and hazards to personnel and electrical contacts, never connect/disconnect the servo drive while the power source is on.
4	Power cables can carry a high voltage, even when the motor is not in motion. Disconnect the Guitar from all voltage sources before it is opened for servicing.
4	The Guitar servo drive contains grounding conduits for electric current protection. Any disruption to these conduits may cause the instrument to become hot (live) and dangerous.
4	After shutting off the power and removing the power source from your equipment, wait at least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

1.2 Cautions

The Guitar servo drive contains hot surfaces and electrically-charged components during operation.
The maximum DC power supply connected to the instrument must comply with the parameters outlined in this guide.
When connecting the Guitar to an approved 12~195 VDC auxiliary power supply, connect it through a line that is separated from hazardous live voltages using reinforced or double insulation in accordance with approved safety standards.
Before switching on the Guitar, verify that all safety precautions have been observed and that the installation procedures in this manual have been followed.

1.3 Directives and Standards

The Guitar conforms to the following industry safety standards:

Safety Standard	Item
In compliance with UL508c	Power Conversion Equipment
In compliance with UL840	Insulation Coordination, Including Clearance and Creepage Distances of Electrical Equipment
In compliance with UL60950-1 (formerly UL1950)	Safety of Information Technology Equipment, Including Electrical Business Equipment
In compliance with EN60204-1	Low Voltage Directive, 73/23/EEC

The Guitar servo drive has been developed, produced, tested and documented in accordance with the relevant standards. Elmo Motion Control is not responsible for any deviation from the configuration and installation described in this documentation. Furthermore, Elmo is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.

1.4 CE Mark Conformance

The Guitar servo drive is intended for incorporation in a machine or end product. The actual end product must comply with all safety aspects of the relevant requirements of the European Safety of Machinery Directive 98/37/EC as amended, and with those of the most recent versions of standards EN60204-1 and EN292-2 at the least.

According to Annex III of Article 13 of Council Directive 93/68/EEC, amending Council Directive 73/23/EEC concerning electrical equipment designed for use within certain voltage limits, the Guitar meets the provisions outlined in Council Directive 73/23/EEC. The party responsible for ensuring that the equipment meet the limits required by EMC regulations is the manufacturer of the end product.

1.5 Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the time of installation, or 18 months from time of shipment, whichever comes first. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.

Chapter 2: Introduction

This installation guide describes the Guitar servo drive and the steps for its wiring, installation and power-up. Following these guidelines ensures maximum functionality of the drive and the system to which it is connected.

2.1 Drive Description

The Guitar series of digital servo drives is designed to deliver "the highest density of power and intelligence". The Guitar delivers up to **4.8 kW of continuous power** or **5.4 kW of peak power** in a 119. 6 cc (6.95 in³) package (80 x 24.5 x 61 mm or 3.15" x 0.965" x 2.4").

The Guitar is designed for OEMs. It operates from a DC power source in current, velocity, position and advanced position modes, in conjunction with a permanent-magnet synchronous brushless motor, DC brush motor, linear motor or voice coil. It is designed for use with any type of sinusoidal and trapezoidal commutation, with vector control. The Guitar can operate as a stand-alone device or as part of a multi-axis system in a distributed configuration on a real-time network.

The Guitar drive is easily set up and tuned using Elmo's *Composer* software tools. This Windows-based application enables users to quickly and simply configure the servo drive for optimal use with their motor. The Guitar, as part of the *Simpl1Q* product line, is fully programmable with the Elmo *Metronome* motion control language.

Power to the Guitar is provided by a $12 \sim 195$ VDC isolated DC power source (not included with the Guitar). A "smart" control-supply algorithm enables the Guitar to operate with only one power supply with no need for an auxiliary power supply for the logic.

If backup functionality is required for storing control parameters in case of power-loss, an external 12 ~ 195 VDC isolated supply should be connected (via the +VL terminal on the Guitar) providing maximum flexibility and backup functionality when needed.

Note: This backup power supply can operate from any voltage source within the $12 \sim 195$ VDC range. This is much more flexible than a standard 24 VDC power supply requirement.

If back-up power is not needed, two terminals (VP and VL) are shorted so that the main power supply will also power the control/logic supply. In this way there is no need for a separate control/logic supply.

The Guitar is a PCB mounted device which enables efficient and economic implementation.

The Guitar is available in two models:

 The Standard Guitar is a basic servo drive which operates in current, velocity and position modes including Follower and PT & PVT. It operates simultaneously via RS-232 and CANopen DS 301, DS 305, DS 402 communications and features a thirdgeneration programming environment. • The Advanced Guitar includes all the motion capabilities and communication options included in the Standard model, as well as advanced positioning capabilities: ECAM, Dual Loop and increased program size.

Both versions operate with RS-232 and CANopen communication.

2.2 Product Features

2.2.1 Current Control

- Fully digital
- Sinusoidal commutation with vector control or trapezoidal commutation with encoder and/or digital Hall sensors.
- 12-bit current loop resolution.
- Automatic gain scheduling, to compensate for variations in the DC bus power supply.

2.2.2 Velocity Control

- Fully digital.
- Programmable PI and FFW (feed forward) control filters.
- Sample rate two times current loop sample time.
- "On-the-fly" gain scheduling.
- Automatic, manual and advanced manual tuning and determination of optimal gain and phase margins.

2.2.3 Position Control

- Programmable PIP control filter.
- Programmable notch and low-pass filters.
- Position follower mode for monitoring the motion of the slave axis relative to a master axis, via an auxiliary encoder input.
- Pulse-and-direction inputs.
- Sample time: four times that of the current loop.
- Fast event capturing inputs.
- PT and PVT motion modes.
- Fast output compare (OC).

2.2.4 Advanced Position Control

This relates to the Advanced model only.

- Position-based and time-based ECAM mode that supports a non-linear follower mode, in which the motor tracks the master motion using an ECAM table stored in flash memory.
- Dual (position/velocity) loop.

2.2.5 Communication Options

Depending on the application, Guitar users can select from two communication options:

- RS-232 serial communication.
- CANopen for fast communication in a multi-axis distributed environment.

2.2.6 Feedback Options

- Incremental Encoder up to 20 Mega-Counts (5 Mega-Pulse) per second
- Digital Halls up to 2 kHz
- Incremental Encoder with Digital Halls for commutation up to 20 Mega-Counts per second for encoder
- Interpolated Analog Sine/Cosine Encoder up to 250 kHz (analog signal)
 - Internal interpolation up to x4096
 - Automatic correction of amplitude mismatch, phase mismatch, signals offset
 - Auxiliary emulated, unbuffered, single-ended, encoder output
- Resolver
 - Programmable 10~15 bit resolution
 - Up to 512 revolutions per second (RPS)
 - Auxiliary emulated, unbuffered, single-ended, encoder output
- Tachometer, Potentiometer
- Elmo drives provide supply voltage for all the feedback options

2.2.7 Fault Protection

The Guitar includes built-in protection against possible fault conditions, including:

- Software error handling
- Status reporting for a large number of possible fault conditions
- Protection against conditions such as excessive temperature, under/over voltage, loss of commutation signal, short circuits between the motor power outputs and between each output and power input/return
- Recovery from loss of commutation signals and from communication errors

2.3 System Architecture

Figure 2-1: Guitar System Block Diagram

2.4 How to Use this Guide

In order to install and operate your Elmo Guitar servo drive, you will use this manual in conjunction with a set of Elmo documentation. Installation is your first step; after carefully reading the safety instructions in the first chapter, the following chapters provide you with installation instructions as follows:

Chapter 3, *Installation*, provides step-by-step instructions for unpacking, mounting, connecting and powering up the Guitar.

The Appendix, *Technical Specifications*, lists all the drive ratings and specifications.

Upon completing the instructions in this guide, your Guitar servo drive should be successfully mounted and installed. From this stage, you need to consult higher-level Elmo documentation in order to set up and fine-tune the system for optimal operation. The following figure describes the accompanying documentation that you will require.

Figure 2-2: Elmo Digital Servo Drive Documentation Hierarchy

As depicted in the previous figure, this installation guide is an integral part of the Guitar documentation set, comprising:

- The *Simpl1Q Software Manual*, which describes the comprehensive software used with the Guitar.
- The *Simpl1Q Command Reference Manual,* which describes, in detail, each software command used to manipulate the Guitar motion controller.
- The Composer *Software Manual,* which includes explanations of all the software tools that are part of Elmo's Composer software environment.
- The Guitar Evaluation Board User Guide contains information about how to use the Guitar Evaluation Board and Cable Kit. (This user guide is currently being developed.)

Chapter 3: Installation

3.1 Site Requirements

You can guarantee the safe operation of the Guitar by ensuring that it is installed in an appropriate environment.

Feature	Value	
Ambient operating temperature	0 °C to 40 °C (32 °F to 104 °F)	
Maximum relative humidity	90% non-condensing	
Operating area atmosphere	No flammable gases or vapors permitted in area	
Models for extended environmental conditions are available.		

The Guitar dissipates its heat by convection. The maximum operating ambient temperature of 0 °C to 40 °C (32 °F to 104 °F) must not be exceeded.

3.2 Unpacking the Drive Components

Before you begin working with the Guitar, verify that you have all of its components, as follows:

- The Guitar servo drive
- The Composer software and software manual

The Guitar is shipped in a cardboard box with styrofoam protection.

To unpack the Guitar:

- 1. Carefully remove the servo drive from the box and the Styrofoam.
- 2. Check the drive to ensure that there is no visible damage to the instrument. If any damage has occurred, report it immediately to the carrier that delivered your drive.
- 3. To ensure that the Guitar you have unpacked is the appropriate type for your requirements, locate the part number sticker on the side of the Guitar. It looks like this:

Verify that the Guitar type is the one that you ordered, and ensure that the voltage meets your specific requirements.

3.3 Pinouts

3.3.1 Connector Types

No. Pins	Туре	Port	Function	Connector Location
2x16		J1	I/O, COMM, Auxiliary Feedback	
15		J2	Main Feedback, Analog Input, LED	VL 000 VP+
6		VL	Auxiliary power input	17.16 15 VL@00 VP+ 00 00 00 <tr< td=""></tr<>
6	2 mm Pitch	VP+	Positive power input	0600 / 00 PE 0600 / 00 PE 0600 / 000
6	0.51 mm SQ	PR	Power input return	0000 0000 0000 0000 0000 0000 0000 0000 0000
4		PE	Protective earth	000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
6		M1	Motor power output 1	
6		M2	Motor power output 2	
2		M3	Motor power output 3	GUI002A

3.3.2 Connector J1

Connector J1: Main Feedback and Analog Input functions

Pin	Signal	Function		
J1/1	RS232_RX	RS232 receive		
J1/2	RS232_TX	RS232 Transmit		
J1/3	RS232_COMRET	Communication return		
J1/4	AUX PORT CHA	Auxiliary port CHA (bidirectional)		
J1/5	AUX PORT CHB	Auxiliary port CHB (bidirectional)		
J1/6	SUPRET	Supply return		
J1/7	OUT1	Programmable digital output 1		
J1/8	OUT2	Programmable digital output 2		
J1/9	OUT3	Programmable digital output 3		
J1/10	OUT4	Programmable digital output 4		
J1/11	IN1	Programmable digital input 1		
J1/12	IN2	Programmable digital input 2		
J1/13	IN3	Programmable digital input 3		
J1/14	IN4	Programmable digital input 4		
J1/15	IN5	Programmable digital input 5		
J1/16	IN6	Programmable digital input 6		
J1/17	INRET6	Programmable digital input 6 return		
J1/18	INRET5	Programmable digital input 5 return		
J1/19	INRET4	Programmable digital input 4 return		
J1/20	INRET3	Programmable digital input 3 return		
J1/21	INRET2	Programmable digital input 2 return		
J1/22	INRET1	Programmable digital input 1 return		
J1/23	OUTRET4	Programmable digital output 4 return		
J1/24	OUTRET3	Programmable digital output 3 return		
J1/25	OUTRET2	Programmable digital output 2 return		
J1/26	OUTRET1	Programmable digital output 1 return		
J1/27	+5 V	Encoder +5 V supply voltage. Maximum output current: 200 mA.		
J1/28	COMRET	Common return		

Pin	Signal	Function	
J1/29	AUX PORT INDEX	Auxiliary port index (bidirectional)	
J1/30	CAN_COMRET	CAN communication return	
J1/31	CAN_L	CAN_L busline (dominant low)	
J1/32	CAN_H	CAN_H busline (dominant high)	

3.3.3 Connector J2

Connector J2: Communications, Auxiliary Feedback and I/O functions

Pin	Signal	Function	
J2/1	+5V	Encoder/Hall +5V supply voltage. Maximum output current: 200 mA.	
J2/2	SUPRET	Supply return	
J2/3	ANALIN1+	Analog input 1+	
J2/4	ANALIN1-	Analog input 1-	
J2/5	СНА	Channel A input	
J2/6	CHA-	Channel A input complement	
J2/7	CHB	Channel B input	
J2/8	CHB-	Channel B input complement	
J2/9	INDEX+	Index input	
J2/10	INDEX-	Index input complement	
J2/11	НА	Hall sensor A input	
J2/12	HB	Hall sensor B input	
J2/13	HC	Hall sensor C input	
J2/14	LED_2_OUT	Bi-color indication output 2 (Cathode)	
J2/15	LED_1_OUT	Bi-color indication output 1 (Anode)	

3.4 Mounting the Guitar

The Guitar was designed for mounting on a printed circuit board (PCB). It is connected by 2 mm pitch 0.51 mm square pins. When designing the Guitar into a device, be sure to leave about 1 cm (0.4") outward from the heatsink to enable free air convection around the Guitar. We recommend that the Guitar be soldered directly to the board. Alternatively, though this is not recommended, the Guitar can be attached to socket connectors mounted on the PCB. If the PCB is enclosed in a metal chassis, we recommend that the Guitar be screw-mounted to it as well to help with heat dissipation. The Guitar has screw-mount holes on each corner of the heatsink for this purpose.

GUI0017A GUI007A.SLDDRW

Figure 3-1: Guitar Footprint

3.5 Integrating the Guitar on a PCB

The Guitar is designed to be mounted on a PCB, either by soldering its pins directly to the PCB or by using suitable socket connectors. In both cases the following rules apply:

3.5.1 Traces

- 1. The **size of the traces** on the PCB (thickness and width) is determined by the current carrying capacity required by the application.
 - The rated continuous current limit (Ic)of the Guitar is the current used for sizing the motor traces (M1, M2, M3 and PE) and power traces (VP+, PR and PE).
 - For control, feedbacks and Inputs/ outputs conductors the actual current is very small but "generous" thickness and width of the conductors will contribute to a better performance and lower interferences.
- 2. The **traces should be as short as possible** to minimize EMI and to minimize the heat generated by the conductors.
- 3. The **spacing** between the high voltage conductors (VP+, PR, M1, M2, M3, VL) must be at least:
 - Surface layer: 1.5 mm
 - Internal layer: 0.5 mm

Complying with the rules above will help satisfy UL safety standards, MIL-STD-275 and the IPC-D-275 standard for non-coated conductors, operating at voltages lower than 200 VDC and at "unlimited altitudes" (above 10,000 meters – 30,000 feet).

3.5.2 Grounds and Returns

The "Returns" of the Guitar are structured internally in a star configuration. The returns in each functional block are listed below:

Functional Block	Return Pin
Power	PR (Power Return)
Internal Switch Mode P.S.	PR (Power Return)
RS232 Communications	RS232_COMRET (J1/3)
CAN Communications	CAN_COMRET (J1/30)
Control section	COMRET (J1/28)
Main Feedback	SUPRET (J2/2)
Aux. Feedback	SUPRET (J1/6)
Analog input	ANLRET (J2/2)

The returns above are all shorted within the Guitar in a topology that results in optimum performance.

 When wiring the traces of the above functions, on the Integration Board, the **Returns** of each function must be **wired separately** to its designated terminal on the Guitar. **DO NOT USE A COMMON GROUND PLANE**. Shorting the commons on the Integration Board may cause performance degradation (ground loops, etc).

- 2. **Inputs**: The 6 inputs are optically isolated from the other parts of the Guitar. Each input has a separate floating return (INRET1 for input 1 and INRET2 for input 2, etc.). To retain isolation, the Input Return pins, as well as other conductors on the input circuit, must be laid out separately.
- 3. **Outputs**: The 4 outputs are optically isolated from the other parts of the Guitar. Each output has a separate floating return (OUTRET1 for output 1 and OUTRET2 for output 2, etc.) To retain isolation, the Output Return pins, as well as other conductors on the output circuit, must be laid out separately.
- 4. **Return Traces:** The return traces should be as large as possible, but without shorting each other, and with minimal cross-overs.
- 5. **Main Power Supply and Motor Traces:** The power traces must be kept as far away as possible from the feedback, control and communication traces.
- 6. **PE Terminal**: The PE terminal is connected directly to the Guitar's heat-sink. The heatsink serves as an EMI common plane. The PE terminal should be connected to the system's Protective Earth. Any other metallic parts (such as the chassis) of the assembly should be connected to the Protective Earth as well.
- 7. Under normal operating conditions, the PE trace carries no current. The only time these traces carry current is under abnormal conditions (such as when the device has become a potential shock or fire hazard while conducting external EMI interferences directly to ground). When connected properly the PE trace prevents these hazards from affecting the drive.

Follow these instructions to ensure safe and proper implementation. Failure to meet any of the above-mentioned requirements can result in drive/controller/host failure.

The Guitar Connection Diagram 3.6

Figure 3-2: The Guitar Connection Diagram

ANALIN1 +

ANALIN1 -

Circuit Common

LED_1_OUT

LED_2_OUT

ΡE

Ī

J2/3

J2/4

J2/2 -

J2/15

J2/14

-

XXX

 $\sqrt{2}$

BI-COLOR LED

GUI0019A

ANALIN1 +

ANALIN1 -

Circuit Common

Pin	Function	Cable		Pin Positions				
VP+	Pos. Power input	Power		\backslash				
PR	Power return	Power Power						
PE	Protective earth							
		AC Motor	DC Motor					
PE	Protective earth	Motor	Motor	96 PR 96 PE 96 M1 96 M1 96 M2 96 M2 96 M3				
M1	Motor phase	Motor	N/C					
M2	Motor phase	Motor	Motor					
M3	Motor phase	Motor	Motor	GUI0018A				
C	When connecting several drives to several motors, all should be wired in an identical manner. This will enable the same SimplIQ program to run on all drives.							

3.7 Main Power and Motor Power

Table 3-1: Connector for Main Power and Motor

3.7.1 Connecting Motor Power

Connect the M1, M2, M3 and PE pins on the Guitar in the manner described in section 3.5 (Integrating the Guitar on a PCB). The phase connection is arbitrary as the Composer will establish the proper commutation automatically during setup. However, if you plan to copy the setup to other drives, then the phase order on all copy drives must be the same.

Figure 3-3: AC Motor Power Connection Diagram

3.7.2 Connecting Main Power

Connect the VP+, PR and PE pins on the Guitar in the manner described in section 3.5 (Integrating the Guitar on a PCB).

The source of the 12 ~ 195 VDC Main Power Supply must be isolated.

Figure 3-4: Main Power Supply Connection Diagram (no Auxiliary Supply)

3.8 Auxiliary Supply (for drive logic)

Notes for 12 ~ 195 VDC auxiliary supply connections: *The source of the 12 ~ 195 VDC Auxiliary Supply must be isolated.*

Connect the VL and PR pins on the Guitar in the manner described in section 3.5 (Integrating the Guitar on a PCB).

Pin	Function	Pin Positions
VL	Auxiliary Supply Input	
PR	Supply Input Return	
	Caution: Power from the Guitar to the motor must come from the Main Supply and NOT from the Auxiliary Supply.	

Table 3-2: Auxiliary Supply Pins

3.8.1 Single Supply

A single isolated DC power supply can provide power for both the main power and the Auxiliary (Drive Logic) Supply. The drawing below shows how a single supply is connected.

Figure 3-5: Single Supply for both the Main Power Supply and the Auxiliary Supply

3.8.2 Separate Auxiliary Supply

Power to the Auxiliary Supply can be provided by a separate Auxiliary Supply.

Figure 3-6: Separate Auxiliary Supply Connection Diagram

3.8.3 Shared Supply

A "Main" DC Power Supply can be designed to supply power to the drive's Logic as well as to the Main Power (see Figure 3-5 and the upper portion of Figure 3-7). If backup functionality is required (for storing control parameters in case of power-outs) a backup supply can be connected (see the Aux. Backup Supply in Figure 3-7).

Figure 3-7: Shared Supply Connection Diagram

3.9 Main Feedback

The Main Feedback port is used to transfer feedback data from the motor to the drive.

The Guitar can accept any one the following devices as a main feedback mechanism:

- Incremental encoder only
- Incremental encoder with digital Hall sensors
- Digital Hall sensors only
- Incremental Analog (Sine/Cosine) encoder (option)
- Resolver (option)
- Tachometer (option)
- Potentiometer (option)
- Absolute Encoder (optional on the solo board)

	Incremental Encoder		Interpolated Analog Encoder		Resolver		Tachometer and Potentiometer	
	GUI	XX/YYY_	GUI	XX/YYYI	GUI XX/YYYR		GUI XX/YYYT	
Pin	Signal	Function	Signal	Function	Signal	Function	Signal	Function
J2/1	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply
J2/2	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return
J2/3				ANALIN+ is us	ed for Ana	log Input		•
J2/4				ANALIN- is us	ed for Anal	og Input		
J2/5	CHA	Channel A	A+	Sine A	S1	Sine A	Tac 1+	Tacho Input 1 Pos. (20V max)
J2/6	CHA-	Channel A complement	А-	Sine A complement	S3	Sine A complement	Tac 1-	Tacho Input 1 Neg. (20V max)
J2/7	СНВ	Channel B	В+	Cosine B	S2	Cosine B	Tac 2+	Tacho Input 2 Pos. (50V max)
J2/8	CHB-	Channel B complement	В-	Cosine B complement	S4	Cosine B complement	Tac 2-	Tacho Input 2 Neg. (50V max)
J2/9	INDEX	Index	R+	Reference	R1	Vref f=1/TS, 50mA Max.	РОТ	Potentiometer Input (5V Max)
J2/10	INDEX-	Index complement	R-	Reference complement	R2	Vref complement f= 1/TS, 50mA Maximum	NC	-
J2/11	HA	Hall sensor A input	НА	-	NC	-	НА	Hall sensor A input
J2/12	HB	Hall sensor B input	HB	-	NC	-	HB	Hall sensor B input
J2/13	HC	Hall sensor C input	HC	-	NC	-	HC	Hall sensor C input
J2/14	LED_2_OUT (AOKLED cathode) is used for LED indication							
J2/15	LED_1_OUT (AOKLED anode) is used for LED indication							

Figure 3-8: Main Feedback- Incremental Encoder with Digital Hall Sensors Connection Diagram

Figure 3-9: Main Feedback – Interpolated Analog Encoder Connection Diagram

Figure 3-10: Main Feedback – Interpolated Analog Encoder with Digital Hall Sensors Connection Diagram

Integration Board

S1

Guitar J2 Main Feedback

1

Figure 3-11: Main Feedback – Resolver Connection Diagram

MAN-GUIIG (Ver. 1.1)

Figure 3-12: Main Feedback – Resolver and Digital Hall Sensors Connection Diagram

Figure 3-13: Main Feedback – Tachometer Feedback with Digital Hall Sensors Connection Diagram for Brushless Motors

Figure 3-14: Main Feedback – Tachometer Feedback Connection Diagram for Brush Motors

Figure 3-15: Main Feedback – Potentiometer Feedback with Digital Hall Sensors Connection Diagram for Brushless Motors

Figure 3-16: Main Feedback – Potentiometer Feedback Connection Diagram for Brush Motors and Voice Coils

3.10 Auxiliary Feedback

For auxiliary feedback, select one of the following options:

a. **Single-ended emulated encoder outputs**, used to provide emulated encoder signals to another controller or drive. The Emulated Encoder Output Option is only available when using a Resolver, Analog Encoder, Tachometer, Potentiometer or Absolute Encoder as the main feedback device. The absolute model provides differential emulated encoder output.

This option can be used when:

- The Guitar is used as a current amplifier to provide position data to the position controller.
- The Guitar is used in velocity mode, to provide position data to the position controller.
- The Guitar is used as a master in follower or ECAM mode.
- b. **Single-ended auxiliary encoder input**, for the input of position data of the master encoder in follower or ECAM mode.
- c. **Pulse-and-direction input**, for single-ended input of pulse-and-direction position commands.

When using one of the auxiliary feedback options, the relevant functionality is software selected for that option. Refer to the *SimplIQ Command Reference Manual* for detailed setup information.

3.10.1 Main and Auxiliary Feedback Combinations

The Main Feedback is always used in motion control devices whereas Auxiliary Feedback is often, but not always used. The Auxiliary Feedback connector on the Guitar has three bidirectional pins (CHA, CHB and INDEX). When used in combination with Main Feedback, the Auxiliary Feedback can be set, by software, as follows:

SH Still Main	Auxiliary Feedback							
Main Feedback	YA[4] = 4 (Aux. Feedback: output)	YA[4] = 2 (Aux. Feedback: input)	YA[4] = 0 (Aux. Feedback: input)					
Incremental Encoder Input	Main Feedback: Incremental Encoder Incremental Encoder Incremental Encoder is the main feedback device		Main Feedback:					
Interpolated Analog (Sin/Cos) Encoder Input	Main Feedback: Analog Encoder Feedback: Analog Encoder position data emulated in single-ended, unbuffered Incremental Encoder format	Main Feedback: Incremental Encoder or Analog Encoder or Resolver or Tachometer or Potentiometer Input	Incremental Encoder or Analog Encoder or Tachometer or Potentiometer Input Aux. Feedback: Single-ended Pulse & Direction Commands					
Resolver Input	* Aux. Feedback: Feedback: Resolver Position data emulated in single-ended, unbuffered Incremental Encoder format	Aux. Feedback: Single-ended Incremental Encoder Input						
Potentiometer or Tachometer Input	 Main Feedback: Potentiometer or Tachometer Aux. Feedback: Tachometer or Potentiometer position data emulated in single-ended unbuffered incremental encoder format 							
Typical Applications	 Analog Encoder applications where position data is required in the Encoder's quadrature format. Resolver applications where position data is required in the Encoder's quadrature format. Tachometer or potentiometer applications where position data is required in the Encoder's quadrature format. 	Any application where two feedbacks are used by the drive. The Auxiliary Feedback port serves as an input for the auxiliary incremental encoder. For applications such as Follower, ECAM, or Dual Loop.	Any application where two feedbacks are used by the drive. The Auxiliary Feedback port serves as an input for Pulse & Direction Commands.					
3.10.2 Auxiliary Feedback: Emulated Encoder Output Option (YA[4]=4)

		-	
Pin	Signal	Function	Pin Position
J1/28	COMRET	Common return	
J1/29	INDEX	Auxiliary index output	
J1/5	СНВО	Auxiliary Channel B output	
J1/4	СНАО	Auxiliary Channel A output	17 ¹⁶ 15 ©© © ©© © ©© ©
		I	

Note: The Emulated Encoder Output Option is only available when using a Resolver, Analog Encoder, Tachometer or Potentiometer as the main feedback device.

Ċ

A.

Note: The Guitar's Auxiliary Feedback is single-ended. When mounted on an integration board, circuitry can be added to make it differential.

Table 3-4: Emulated Single-Ended Encoder Output Pin Assignments

Figure 3-17: Emulated Encoder Direct Output – Acceptable Connection Diagram

Figure 3-18: Emulated Encoder Buffered Output – Recommended Connection Diagram

Figure 3-19: Emulated Encoder Differential Output – Highly Recommended Connection Diagram

3.10.3 Auxiliary Feedback: Single-Ended Encoder Input Option (YA[4]=2)

Pin	Signal	Function	Pin Position
J1/27	+5 V	Encoder supply voltage	
J1/6	SUPRET	Supply return	
J1/29	INDEX	Auxiliary index input	
J1/5	СНВ	Auxiliary channel B input	17 ¹⁶ 00 0 00 0
J1/4	СНА	Auxiliary channel A input	

Note: The Guitar's Auxiliary Feedback is single-ended. When mounted on an integration board, circuitry can be added to make it differential.

Table 3-5: Single-Ended Auxiliary Encoder Pin Assignment

Figure 3-20: Single-ended Auxiliary Encoder Input - Acceptable Connection Diagram

Figure 3-21: Single-ended Auxiliary Encoder Input - Recommended Connection Diagram

Figure 3-22: Differential Auxiliary Encoder Input – Highly Recommended Connection Diagram

3.10.4 Auxiliary Feedback: Pulse-and-Direction Input Option (YA[4]=0)

Pin	Signal	Function	Pin Position
J1/28	COMRET	Common return	
J1/5	DIR/CHB	Direction input (push/pull 5 V or open collector)	
J1/4	PULS/CHA	Pulse input (push/pull 5 V or open collector)	17, 16, 15 00, 0 00, 0 00, 0 00, 0 0, 0 0, 0 0, 0

Note: The Guitar's Auxiliary Feedback is single-ended. When mounted on an integration board, circuitry can be added to make it differential.

Table 3-6: Pulse-and-Direction Pin Assignments

Figure 3-23: Pulse-and-Direction Auxiliary Encoder Input – Direct Connection Diagram

Figure 3-24: Pulse-and-Direction Auxiliary Encoder Input – Buffered Connection Diagram

Figure 3-25: Pulse-and-Direction Auxiliary Encoder Input – Differential Connection Diagram, Highly Recommended

3.11 I/Os

The Guitar has 6 Digital Inputs, 4 Digital Outputs and 1 Analog Input.

I/O	J1	J2	Total
Digital Input	6	-	6
Digital Output	4	-	2
Analog Input	-	1	1

3.11.1 Digital Input

Pin	Signal	Function	Pin Position
J1/11	IN1	Programmable input 1 (general purpose, RLS, FLS, INH)	
J1/12	IN2	Programmable input 2 (general purpose, RLS, FLS, INH)	
J1/13	IN3	Programmable input 3 (general purpose, RLS, FLS, INH)	17 ¹⁶ 15 00 0 00 0
J1/14	IN4	Programmable input 4 (general purpose, RLS, FLS, INH)	
J1/15	IN5	Hi-Speed Programmable input 5 (event capture, Main Home, general purpose, RLS, FLS, INH)	
J1/16	IN6	Hi-Speed Programmable input 6 (event capture, Auxiliary Home, general purpose, RLS, FLS, INH)	$ \begin{array}{c} $
J1/17	INRET6	Programmable input 6 return	
J1/18	INRET5	Programmable input 5 return	GUI0044A
J1/19	INRET4	Programmable input 4 return	
J1/20	INRET3	Programmable input 3 return	
J1/21	INRET2	Programmable input 2 return	
J1/22	INRET1	Programmable input 1 return	

Each of the pins below can function as an independent input.

Table 3-7: Digital Input Pin Assignments

Figure 3-26: Digital Input Connection Diagram

GUI0044A

3	-	3	2

3.11.2 Digital Output

Pin	Signal	Function	Pin Position
J1/7	OUT1	High-Speed Programmable digital output 1	
J1/8	OUT2	Programmable digital output 2	
J1/9	OUT3	Programmable digital output 3	¹⁷ ¹⁶ ¹⁵
J1/10	OUT4	Programmable digital output 4	$ \begin{array}{c} 17,16\\ 0 & 0 \\$
J1/26	OUTRET1	Programmable digital output 1 return	
J1/25	OUTRET2	Programmable digital output 2 return	
J1/24	OUTRET3	Programmable digital output 3 return	
J1/23	OUTRET4	Programmable digital output 4 return	

Table 3-8: Digital Output Pin Assignment

Figure 3-27: Digital Output Connection Diagram

3.11.3 Analog Input

Pin	Signal	Function	Pin Position
J2/3	ANLIN1+	Analog input 1+	
J2/4	ANLIN1-	Analog input 1-	
J2/2	ANLRET	Analog ground	
			17, 16, 15 000 000 000 000 000 000 000 0

Table 3-9: Analog Input Pin Assignments

Figure 3-28: Analog Input with Single-ended Source

3.12 Communications

The communication interface may differ according to the user's hardware. The Guitar can communicate using the following options:

- a. RS-232, full duplex
- b. CANopen

RS-232 communication requires a standard, commercial 3-core null-modem cable connected from the Guitar to a serial interface on the PC. The interface is selected and set up in the Composer software.

In order to benefit from **CANopen** communication, the user must have an understanding of the basic programming and timing issues of a CANopen network.

For ease of setup and diagnostics of CAN communication, RS-232 and CANopen can be used simultaneously.

3.12.1 RS-232 Communication

Notes for connecting the RS-232 communication cable:

- Connect the shield to the ground of the host (PC). Usually, this connection is soldered internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
- The RS-232 communication port is **non-isolated**.
- Ensure that the shield of the cable is connected to the shield of the connector used for RS-232 communications. The drain wire can be used to facilitate the connection.

Pin	Signal	Function	Pin Location
J1/1	RS232_Rx	RS-232 receive	
J1/2	RS232_Tx	RS-232 transmit	
J1/3	RS232_COMRET	Communication return	
			17 16 15 99 0 99 0 90

Table 3-10: RS-232 Pin Assignments

Figure 3-29: RS-232 Connection Diagram

3.12.2 CANopen Communication

Notes for connecting the CANopen communication cable:

- Connect the shield to the ground of the host (PC). Usually, this connection is soldered internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
- Ensure that the shield of the cable is connected to the shield of the connector used for communications. The drain wire can be used to facilitate the connection.
- Make sure to have a 120-ohm resistor termination at each of the two ends of the network cable.
- The Guitar's CAN port is **non-isolated**.

()

GUI0044A

Pin	Signal	Function	Pin Position
J1/30	CAN_GND	CAN ground	
J1/31	CAN_L	CAN_L busline (dominant low)	
J1/32	CAN_H	CAN_H busline (dominant high)	
			$\begin{array}{c} 17 & 16 & 15 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$

Table 3-11: CANopen - Pin Assignments

3-37

Caution:

When installing CANopen communication, ensure that each servo drive is allocated a unique ID. Otherwise, the CANopen network may hang.

3.13 Powering Up

After the Guitar is connected to its device, it is ready to be powered up.

Caution:

Before applying power, ensure that the DC supply is within the specified range and that the proper plus-minus connections are in order.

3.14 Initializing the System

After the Guitar has been connected and mounted, the system must be set up and initialized. This is accomplished using the *Composer*, Elmo's Windows-based software application. Install the application and then perform setup and initialization according to the directions in the *Composer Software Manual*.

3.15 Heat Dissipation

The best way to dissipate heat from the Guitar is to mount it so that its heatsink faces up. For best results leave approximately 10 mm of space between the Guitar's heatsink and any other assembly.

3.15.1 Guitar Thermal Data

- Heat dissipation capability (θ): Approximately 8 °C/W.
- Thermal time constant: Approximately 360 seconds (thermal time constant means that the Guitar will reach 2/3 of its final temperature after 6 minutes).
- Shut-off temperature: 86 °C 88 °C (measured on the heatsink)

3.15.2 Heat Dissipation Data

Heat Dissipation is shown in graphically below:

3.15.3 How to Use the Charts

The charts above are based upon theoretical worst-case conditions. Actual test results show 30% - 50% better power dissipation.

To determine if your application needs a heatsink:

- 1. Allow maximum heatsink temperature to be 80 °C or less.
- 2. Determine the ambient operating temperature of the Guitar.
- 3. Calculate the allowable temperature increase as follows:
 - for an ambient temperature of 40 °C , Δ T = 80 °C 40 °C = 40 °C
- 4. Use the chart to find the actual dissipation power of the drive. Follow the voltage curve to the desired output current and then find the dissipated power.
- 5. If the dissipated power is below 5 W the Guitar will need no additional cooling.
- Note: The chart above shows that no heatsink is needed when the heatsink temperature is 80 °C, ambient temperature is 40 °C and heat dissipated is 5 Watts:

3.16 Evaluation Board and Cable Kit

The evaluation board will be available soon.

Appendix: Guitar Technical Specifications

A.1 Features

A.1.1 Motion Control Modes

- Current/Torque up to 14 kHz sampling rate
- Velocity up to 7 kHz sampling rate
- Position up to 3.5 kHz sampling rate

A.1.2 Advanced Positioning Control Modes

- PTP, PT, PVT, ECAM, Follower, Dual Loop, Current Follower
- Fast event capturing inputs
- Fast output compare (OC)
- Motion Commands: Analog current and velocity, PWM current and velocity, digital (SW) and Pulse and Direction

A.1.3 Advanced Filters and Gain Scheduling

- "On-the-Fly" gain scheduling of current and velocity
- Velocity and position with "1-2-4" PIP controllers
- Automatic commutation alignment
- Automatic motor phase sequencing

A.1.4 Fully Programmable

- Third generation programming structure with motion commands "Metronome"
- Event capturing interrupts
- Event triggered programming

A.1.5 Feedback Options

- Incremental Encoder up to 20 Mega-Counts (5 Mega-Pulse) per second
- Digital Halls up to 2 kHz
- Incremental Encoder with Digital Halls for commutation up to 20 Mega-Counts per second for encoder
- Interpolated Analog Sine/Cosine Encoder up to 250 kHz (analog signal)
 - Internal Interpolation up to x4096
 - Automatic Correction of amplitude mismatch, phase mismatch, signal offset
 - Emulated encoder outputs, single-ended, unbuffered of the Analog encoder
- Analog Hall Sensor
- Resolver
 - Programmable 10~15 bit resolution
 - Up to 512 revolutions per second (RPS)
 - Emulated encoder outputs, single-ended, unbuffered of the Resolver.
- Auxiliary Encoder inputs (ECAM, follower, etc.) single-ended, unbuffered.
- Tachometer & Potentiometer
- The Guitar can provide power (5 V, 2x200 mA max) for Encoders, Resolver or Halls.

A-2

A.1.6 Input/Output

- One Analog Input up to 14-bit resolution
- Six separate programmable **Digital Inputs**, optically isolated (two of which are fast event capture inputs).
 - Inhibit/Enable motion
 - Software and analog reference stop
 - Motion limit switches
 - Begin on input
 - Abort motion
 - Homing
 - General-purpose
- Four separate programmable **Digital Outputs**, optically isolated (open collector) one with fast output compare (OC):
 - Brake Control
 - Amplifier fault indication
 - General-purpose
 - Servo enable indication
- Pulse and Direction inputs (single-ended)
- PWM current command output for torque and velocity

A.1.7 Built-In Protection

- Software error handling
- Abort (hard stops and soft stops)
- Status reporting
- Protection against:
 - Shorts between motor power outputs
 - Shorts between motor power outputs and power input/return
 - Failure of internal power supplies
 - Over-heating
 - Continuous temperature measurement. Temperature can be read on the fly; a warning can be initiated x degrees before temperature disable is activated.
 - Over/Under voltage
 - Loss of feedback
 - Following error
 - Current limits

A-3

A.1.8 Accessories

- Heat sinks (TBD)
- Evaluation Board/Cable Kit

A.1.9 Status Indication

• Output for a bi-color LED

A.1.10 Automatic Procedures

- Commutation alignment
- Phase sequencing
- Current loop offset adjustment
- Current loop gain tuning
- Current gain scheduling
- Velocity loop offset adjustment
- Velocity gain tuning
- Velocity gain scheduling
- Position gain tuning

A.2 Guitar Dimensions

Ø3.50x4

A.3 Power Ratings

						•				0	0	œ	0	00	00
Feature	Units	35/48	20/60	25/60	35/60	20/100	25/100	3/200	6/200	10/200	17/200	R45/48	R45/60	R35/100	R30/200
Minimum supply voltage	VDC	11		14		2	3			46		11	14	23	46
Nominal supply voltage	VDC	42		50		8	5		1	70		42	50	85	170
Maximum supply voltage	VDC	48		59		9	5		1	.95		48	59	95	195
Maximum continuous power output	W	1300	960	1200	1700	1600	2000	480	960	1600	2700	1700	2200	2800	4800
Efficiency at rated power (at nominal conditions)	%	> 97													
Maximum output voltage			97% of DC bus voltage at f=22 kHz												
Amplitude sinusoidal/DC continuous current	А	35	20	25	35	20	25	3	6	10	17	45	45	35	30
Sinusoidal continuous RMS current limit (Ic)	А	25	14.1	17.7	25	14.1	17.7	2.12	4.2	7	12	32	31.8	24.8	21.2
Peak current limit	А					2 >	c Ic	•					No	peak	
Weight	g (oz)	165 g (5.8 oz)													
Dimensions	mm (in)			80 x 61 x 24.5 (3.15" x 2.4" x 0.965")											
Digital in/Digital out/Analog in			6/4/1			4/1									
Mounting method								PCB	mour	nt					

• **Current rating:** The current ratings of the Guitar are given in units of DC amperes (ratings that are used for trapezoidal commutation or DC motors). The RMS (sinusoidal commutation) value is the DC value divided by 1.41.

A.4 Environmental Conditions

Feature	Details
Operating ambient temperature	$0^{\circ} \sim 40^{\circ} \text{ C} (32^{\circ} \sim 104^{\circ} \text{ F})$
Storage temperature	-20° ~ +85° C (-4° ~ +185° F)
Humidity	90% maximum non-condensing
Maximum Operating Altitude	"Unlimited" (above 10,000 m - 30,000 feet)
Protection level	N/A

A.4.1 Auxiliary Supply

Feature	Details
Auxiliary power supply	Isolated DC source only
Auxiliary supply input voltage	12 VDC ~ 195 VDC
Auxiliary supply input power	< 7.5 VA (this includes the 5 V/2x200 mA load for the main and auxiliary encoders)

A.5 Control Specifications

A.5.1 Current Loop

Feature	Details		
Controller type	Vector, digital		
Compensation for bus voltage variations	"On-the-fly" automatic gain scheduling		
Motor types	 AC brushless (sinusoidal) DC brushless (trapezoidal) DC brush Linear motors "Voice" coils 		
Current control	 Fully digital Sinusoidal with vector control Programmable PI control filter based on a pair of PI controls of AC current signals and constant power at high speed 		
Current loop bandwidth	< 2.5 kHz		

Feature	Details	
Current sampling time	Programmable 70 - 100 μsec	
Current sampling rate	Up to 16 kHz; default 11 kHz	

A.5.2 Velocity Loop

Feature	Details		
Controller type	PI		
Velocity control	 Fully digital Programmable PI and FFW control filters "On-the-fly" gain scheduling Automatic, manual and advanced manual tuning 		
Velocity and position feedback options	 Incremental Encoder Digital Halls Interpolated Analog (sin/cos) Encoder (optional) Resolver (optional) Tachometer and Potentiometer (optional) Note: With all feedback options, 1/T with automatic mode switching is activated (gap, frequency and derivative). 		
Velocity loop bandwidth	< 350 Hz		
Velocity sampling time	140 - 200 μsec (2x current loop sample time)		
Velocity sampling rate	Up to 8 kHz; default 5.5 kHz		
Velocity command options	 Analog Internally calculated by either jogging or step Note: All software-calculated profiles support on-the-fly changes. 		

A.5.3 Position Loop

Feature	Details
Controller type	"1-2-4" PIP
Position command options	SoftwarePulse and DirectionAnalog Potentiometer
Position loop bandwidth	< 80 Hz

Feature	Details	
Position sampling time	280 - 400 μsec (4x current loop sample time)	
Position sampling rate	Up to 4 kHz; default 2.75 kHz	

A.6 Feedbacks

A.6.1 Feedback Supply Voltage

The Guitar has two feedback ports (Main and Auxiliary). The Guitar supplies voltage only to the main feedback device and to the auxiliary feedback device if needed.

Feature	Details
Main encoder supply voltage	5 V <u>+</u> 5% @ 200 mA maximum
Auxiliary encoder supply voltage	5 V <u>+</u> 5% @ 200 mA maximum

A.6.2 Main Feedback Options

A.6.2.1 Incremental Encoder Input

Feature	Details
Encoder format	A, B and IndexDifferentialQuadrature
Interface	RS-422
Input resistance	Differential: 120 Ω (TBD)
Maximum incremental encoder frequency	Maximum absolute: 5 MHz pulses
Minimum quadrature input period (PIN)	112 nsec
Minimum quadrature input high/low period (PHL)	56 nsec
Minimum quadrature phase period (PPH)	28 nsec
Maximum encoder input voltage range	Common mode: ±7 V Differential mode: ±7 V

Figure A-1: Main Feedback - Encoder Phase Diagram

Feature	Details
Halls inputs	 H_A, H_B, H_C. Single ended inputs Built in hysteresis of 1V for noise immunity
Input voltage	Nominal operating range: 0 V < V _{In_Hall} < 5 V Maximum absolute: -1 V < V _{In_Hall} < 15 V High level input voltage: V _{InHigh} > 2.5 V Low level input voltage: V _{InLow} < 1 V
Input current	Sink current (when input pulled to the common): 5 mA
Maximum frequency	f _{MAX} : 2 kHz

Δ	6	2	2	Dio	iital	Hal	lc
А.	Ο	. ∠ .	~	Dig	Jitai	i iai	13

A.6.2.3 Interpolated Analog Encoder (Sine/Cosine)

Feature	Details
Analog encoder format	Sine and Cosine signals
Analog input signal level	 Offset voltage: 2.2 V - 2.8 V Differential, 1 V peak to peak
Input resistance	Differential 120 Ω
Maximum analog signal frequency	f _{MAX} : 250 kHz
Interpolation multipliers	Programmable: x4 to x4096
Maximum "counts" frequency	80 mega-counts/sec "internally"
Automatic errors correction	Signal amplitudes mismatch Signal phase shift
	Signal offsets

Feature	Details
Encoder outputs	See Auxiliary Encoder Outputs specifications (A.6.3)

A.6.2.4 Resolver

Feature	Details
Resolver format	Sine/CosineDifferential
Input resistance	Differential 2.49 k Ω
Resolution	Programmable: 10 ~ 15 bits
Maximum electrical frequency (RPS)	512 revolutions/sec
Resolver transfer ratio	0.5
Reference frequency	1/Ts (Ts = sample time in seconds)
Reference voltage	Supplied by the Guitar
Reference current	up to ±50 mA
Encoder outputs	See Auxiliary Encoder Output specifications (A.6.3)

A.6.2.5 Tachometer*

Feature	Details
Tachometer format	Differential
Maximum operating differential voltage for TAC1+, TAC1-	±20 V
Maximum absolute differential input voltage for TAC1+, TAC1-	±25 V
Maximum operating differential voltage for TAC2+, TAC2-	±50 V
Maximum absolute differential input voltage for TAC2+, TAC2-	±60 V
Input resistance for TAC1+, TAC1-	46 kΩ
Input resistance for TAC2+, TAC2-	100 kΩ
Resolution	14 bit

* Only one Tachometer port can be used at a time (either TAC1+/TAC1- or TAC2+/TAC2-). TAC1+/TAC1- is used in applications with having a Tachometer of less than 20 V. TAC2+/TAC2- is used in applications with having a Tachometer of between 20 V and 50 V.

A.6.2.6 Potentiometer

Feature	Details
Potentiometer Format	Single-ended
Operating Voltage Range	$0 \sim 5$ V supplied by the Guitar
Potentiometer Resistance	$100 \Omega \sim 1 k\Omega \dots$ above this range, linearity is affected detrimentally
Input Resistance	100 kΩ
Resolution	14 bit

A.6.3 Auxiliary Feedback Port (output mode YA[4] = 4)

Feature	Details
Emulated output	A, B, IndexSingle ended
Output current capability	Maximum output current: I_{OH} (max) = 2 mA
	High level output voltage: $V_{OH} > 3.0 V$
	Minimum output current: I _{OL} = 2 mA
	Low level output voltage: V_{OL} < 0.4 V
Available as options	 Emulated encoder outputs of analog encoder
	 Emulated encoder outputs of the resolver
	 Emulated encoder outputs of the tachometer
	Emulated encoder outputs of the potentiometer
Maximum frequency	f _{MAX} : 5 MHz pulses/output
Edge separation between A & B	Programmable number of clocks to allow adequate noise filtering at remote receiver of emulated encoder signals
Index (marker):	Length of pulse is one quadrature (one quarter of an encoder cycle) and synchronized to A&B

Figure A-2: Auxiliary Feedback - Encoder Phase Diagram

j	
Feature	Details
Encoder input, pulse and direction input	A, B, IndexSingle ended
Input voltage	$\label{eq:VIn} \begin{array}{l} V_{In} \mbox{ Low: } 0 \mbox{ V} < V_{IL} < 0.8 \mbox{ V} \\ V_{In} \mbox{ High: } 2 \mbox{ V} < V_{IH} < 5 \mbox{ V} \\ Maximum \mbox{ absolute voltage: } 0 < V_{In} < 5.5 \mbox{ V} \\ Input \mbox{ current: } \pm 1 \mu A \end{array}$
Available as options	Single-ended Encoder inputsPulse and Direction inputs
Edge separation between A & B	Programmable number of clocks to allow adequate noise filtering at remote receiver of emulated encoder signals
Index (marker):	Length of pulse is one quadrature (one quarter of an encoder cycle) and synchronized to A&B

A.6.4 Auxiliary Feedback Port (input mode YA[4]= 2, 0)

Figure A-3: Auxiliary Feedback - Encoder Phase Diagram

A.7 I/Os

The Guitar has:

6 Digital Inputs

4 Digital Outputs

1 Analog Input

A.7.1 Digital Input Interfaces

Feature	Details	Schematic Diagram
Type of input	Optically isolatedEach input has its own return	A A
Input current for all inputs	Iin = 2.4 mA @ Vin = 5 V	GUID0447A
High-level input voltage	2.5 V < Vin < 10 V, 5 V typical	
Low-level input voltage	0 V < Vin < 1 V	
Minimum pulse width	> 4 x TS, where TS is sampling time	
Execution time (all inputs): the time from application of voltage on input until execution is complete	If input is set to one of the built-in functions – Home, Inhibit, Hard Stop, Soft Stop, Hard and Soft Stop, Forward Limit, Reverse Limit or Begin – execution is immediate upon detection: $0 < T < 4xTS$ If input is set to General input, execution depends on program. Typical execution time: $\cong 0.5$ msec.	Rin = 1.43K
High-speed inputs – 5 & 6 minimum pulse width, in high- speed mode	 T < 5 μsec Notes: Home mode is high-speed mode and can be used for fast capture and precise homing. High speed input has a digital filter set to same value as digital filter (EF) of main encoder. Highest speed is achieved when turning on optocouplers. 	 o Input (i) o Input (i) return Digital Input Schematic

Feature	Details	Connector Location
Type of output	 Optically isolated Open collector and open emitter 	
Maximum supply output (Vcc)	30 V	
Max. output current Iout (max) (Vout = Low)	Iout (max) ≤ 15 mA	$\checkmark \checkmark$
VOL at maximum output voltage (low level)	Vout (on) $\leq 0.3 \text{ V}$	
RL	External resistor RL must be selected to limit output current to no more than 15 mA. $R_L = \frac{Vcc - VOL}{Io(max)}$	
Executable time	If output is set to one of the built- in functions – Home flag, Brake or AOK – execution is immediate upon detection: $0 < T < 4 \times TS$	OUTput (i)
	If output is set to General output and is executed from a program, the typical time is approximately 0.5 msec.	Ö Digital Output Schematic

A.7.2 Digital Output Interface

A.7.3 Analog Input

Feature	Details
Maximum operating differential voltage	± 10 V
Maximum absolute differential input voltage	± 16 V
Differential input resistance	3.74 kΩ
Analog input command resolution	14-bit

A.8 Communications

Specification	Details	
RS-232	Signals:	
	 RxD , TxD , Gnd 	
	 Full duplex, serial communication for setup and control. 	
	 Baud Rate of 9,600 ~ 57,600 bit/sec. 	
CANopen	 CANbus Signals: CAN_H, CAN_L, CAN_GND Maximum Baud Rate of 1 Mbit/sec. 	
	Version: • DS 301 V4.01	
	 Layer Setting Service and Protocol Support: DS 305 	
	Device Profile (drive and motion control):DS 402	

A.9 Pulse Width Modulation (PWM)

Feature	Details
PWM resolution	12-bit
PWM switching frequency on the load	2/Ts (factory default 22 kHz on the motor)

A.10 Standards Compliance

A.10.1 Quality Assurance

Specification	Description
ISO 9001:2000	Quality Management

A.10.2 Design

Specification	Description
MIL-HDBK- 217F	Reliability prediction of electronic equipment (rating, de-rating, stress, etc.)
 IPC-D-275 IPC-SM-782 IPC-CM-770 UL508c UL840 	Reliability prediction of electronic equipment (rating, de-rating, stress, etc.) Printed wiring for electronic equipment (clearance, creepage, spacing, conductors sizing, etc.)
In compliance with VDE0160-7 (IEC68)	Type testing

A-14

A.10.3 Safety

Specification	Description
In compliance with UL508c	Power conversion equipment
In compliance with UL840	Insulation coordination, including clearance and creepage distances of electrical equipment
In compliance with UL60950	Safety of information technology equipment, including electrical business equipment
In compliance with EN60204-1	Low voltage directive, 72/23/EEC

A.10.4 EMC

Specification	Description
In compliance with EN55011 and EN61000	Limits and methods of measurement of radio disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment. Electromagnetic compatibility (EMC)

A.10.5 Workmanship

Specification	Description
In compliance with IPC-A-610 , level 3	Acceptability of electronic assemblies

A.10.6 PCB

Specification	Description
In compliance with IPC-A-600 , level 2	Acceptability of printed circuit boards

A.10.7 Packing

Specification	Description
In compliance with EN100015	Protection of electrostatic sensitive devices

A.10.8 WEEE*

Specification	Description
In compliance with 2002/96/EC	Waste Electrical and Electronic Equipment regulations

* Please send out-of-service Elmo drives to the nearest Elmo sales office.

A.10.9 RoHS

Specification	Description
In compliance with 2002/95/EC	Restrictions on Application of Hazardous
(effective July 2006)	Substances in Electric and Electronic Equipment

Index

A

Advanced position control · 2-2 Ambient operating temperature · 3-1 Analog input Cable · 3-34 Specifications · A-13 Auxiliary Feedback cable · 3-21, 3-22 Power supply · A-5

С

Cables Auxiliary feedback \cdot 3-21, 3-22 Main Power \cdot 3-9, 3-10 CANopen \cdot 3-35, 3-36 Communication \cdot 2-2 Compliance standards \cdot 1-3, A-14 Composer \cdot 2-1, 3-39 Conformance \cdot 1-3, A-14 Connecting Main power cable \cdot 3-9, 3-10 Power cables \cdot 3-9 Control specifications \cdot A-5, A-6 Current control \cdot 2-2

D

Design · A-14 Differential auxiliary input · 3-25 Digital output Cable · 3-32 Digital output interface · A-13

E

 $EMC \cdot A\text{-}15 \\ Environmental \ conditions \cdot A\text{-}5 \\$

F

Fault protection · 2-3

Feedback Options · 2-3, A-6 Supply voltage · A-7 Feedback options · A-7, A-8, A-12

G

 $\begin{array}{c} Grounding \cdot 1\text{-}1 \\ Auxiliary power cable \cdot 3\text{-}10 \\ CANopen cables \cdot 3\text{-}36 \\ RS\text{-}232 cable \cdot 3\text{-}35 \\ \end{array} \\ \begin{array}{c} Guitar \\ Initializing \cdot 3\text{-}39 \\ Powering up \cdot 3\text{-}39 \\ Technical specifications \cdot A\text{-}1 \\ Type designation number \cdot 3\text{-}1 \\ \end{array} \\ \begin{array}{c} Unpacking \cdot 3\text{-}1 \end{array}$

I

Incremental Encoder · 3-13 Initializing the Guitar · 3-39 Interpolated Analog Encoder · 3-13

Μ

 $\begin{array}{l} \mbox{Main encoder buffered outputs} \cdot 3\mbox{-}21, \\ 3\mbox{-}23 \\ \mbox{Main feedback cable} \cdot 3\mbox{-}13 \\ \mbox{Main power cable} \cdot 3\mbox{-}9, 3\mbox{-}10 \\ \mbox{Maximum} \\ \mbox{Relative humidity} \cdot 3\mbox{-}1 \\ \mbox{Mounting the Mini-Saxophone} \cdot 3\mbox{-}5 \end{array}$

Р

Packing \cdot A-15 PCB \cdot A-15 Position control \cdot 2-2 Potentiometer \cdot 3-13, 3-20 Power cables \cdot 3-9 Powering up the Guitar \cdot 3-39 Pulse-and-direction input \cdot 3-27

Q

Quality Assurance · A-14

R

Relative humidity \cdot 3-1 Resolver \cdot 3-13 RoHS \cdot A-15 RS-232 \cdot 3-35

S

Safety · 1-1, A-15 Cautions · 1-2 Standards · 1-3 Warnings · 1-2 Single-ended auxiliary input · 3-21 Site requirements · 3-1 Specifications Analog input · A-13 Auxiliary power supply · A-5 Control · A-5, A-6 Digital output interface · A-13 Environment · A-5 Feedback options · A-6, A-7, A-8, A-12 Feedback supply voltage · A-7 Standards · 1-3 Standards Compliance Design · A-14 EMC · A-15

Packing · A-15 PCB · A-15 Quality Assurance · A-14 RoHS · A-15 Safety · A-15 WEEE · A-15 Workmanship · A-15 System architecture · 2-4

Т

 $\begin{array}{l} Tachometer \, \cdot \, 3\text{-}13 \\ Tachometer \ Feedback \, \cdot \, 3\text{-}19 \\ Technical \ specifications \, \cdot \, A\text{-}1 \\ Temperature \, \cdot \, 3\text{-}1 \\ Type \ designation \ number \, \cdot \, 3\text{-}1 \end{array}$

U

 $Unpacking \cdot 3\text{-}1$

V

Velocity control · 2-2

W

Warranty · 1-3 WEEE · A-15 Workmanship · A-15