
�������
��	
��
��
�����	
 ���������
���� ���� �����������

�� 	�� �
	�� ������

December 2002

User’s Guide

SBAU077

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third−party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

 Contents

i Contents

��������

1 Introduction to the MSC1210 1-1.
1.1 MSC1210 Description 1-2.
1.2 MSC1210 Pin-Out 1-3.

1.2.1 I/O Ports (P0, P1, P2, and P3) 1-6.
1.2.2 Oscillator Inputs (XTAL1 and XTAL2) 1-9.
1.2.3 Reset Line (RST) 1-10.
1.2.4 Address Latch Enable (ALE) 1-10.
1.2.5 Program Store Enable (PSEN) 1-10.
1.2.6 External Access (EA) 1-11.

1.3 Enhanced 8051 Core 1-12.
1.4 Family Device Compatibility 1-13.
1.5 Flash Memory 1-13.
1.6 High Performance Analog Functions 1-13.
1.7 High-Performance Peripherals 1-14.

2 MSC1210 Memory Organization 2-1.
2.1 Description 2-2.
2.2 Program Memory 2-2.
2.3 Data Memory 2-4.

2.3.1 On-Chip Extended Static RAM (SRAM) 2-4.
2.3.2 On-Chip Flash Data Memory 2-5.
2.3.3 External Data Memory 2-5.

2.4 Internal RAM 2-6.
2.4.1 The Stack 2-7.
2.4.2 Register Banks 2-7.
2.4.3 Bit Memory 2-8.
2.4.4 Special Function Register (SFR) Memory 2-10.

3 Special Function Registers (SFRs) 3-1.
3.1 Description 3-2.
3.2 Referencing SFRs 3-3.

3.2.1 Referencing Bits of SFRs 3-3.
3.3 Bit−Addressable SFRs 3-4.
3.4 SFR Types 3-4.
3.5 SFR Definitions 3-5.

4 Basic Registers 4-1.
4.1 Description 4-2.
4.2 Accumulator 4-2.
4.3 R Registers 4-2.
4.4 B Register 4-3.
4.5 Program Counter (PC) 4-3.
4.6 Data Pointer (DPTR0/DPTR1) 4-4.
4.7 Stack Pointer (SP) 4-4.

Contents

ii

5 Addressing Modes 5-1.
5.1 Description 5-2.
5.2 Immediate Addressing 5-2.
5.3 Direct Addressing 5-3.
5.4 Indirect Addressing 5-4.
5.5 External Direct Addressing 5-5.
5.6 External Indirect Addressing 5-6.
5.7 Code Indirect Adressing 5-6.

6 Program Flow 6-1.
6.1 Description 6-2.
6.2 Conditional Branching 6-2.
6.3 Direct Jumps 6-2.
6.4 Direct Calls 6-4.
6.5 Returns From Routines 6-4.
6.6 Interrupts 6-4.

7 System Timing 7-1.
7.1 Description 7-2.
7.2 System Timers 7-4.

7.2.1 Microseconds Timer 7-6.
7.2.2 Milliseconds Timer 7-6.

7.3 Startup Timing 7-9.
7.3.1 Normal-Mode Power-On Reset Timing 7-9.
7.3.2 Flash Programming Mode Power-On Reset Timing 7-9.

8 Timers 8-1.
8.1 Description 8-2.
8.2 How Does a Timer Count? 8-2.
8.3 Using Timers to Measure Time 8-2.

8.3.1 How Long Does a Timer Take to Count? 8-2.
8.3.2 Timer SFRs 8-4.
8.3.3 TMOD SFR 8-5.
8.3.4 TCON SFR 8-8.
8.3.5 Initializing a Timer 8-9.
8.3.6 Reading the Timer 8-9.
8.3.7 Timing the Length of Events 8-11.

8.4 Using Timers as Event Counters 8-12.
8.5 Using Timer 2 8-13.

8.5.1 T2CON SFR 8-13.
8.5.2 Timer 2 in Auto-Reload Mode 8-14.
8.5.3 Timer 2 in Capture Mode 8-15.
8.5.4 Timer 2 as a Baud Rate Generator 8-16.

9 Serial Communication 9-1.
9.1 Description 9-2.
9.2 Setting the Serial Port Mode 9-3.

9.2.1 Serial Mode 0: Synchronous Half-Duplex 9-5.
9.2.2 Serial Mode 1: Asynchronous Full-Duplex 9-6.
9.2.3 Serial Mode 2: Asynchronous Full-Duplex 9-9.
9.2.4 Serial Mode 3: Asynchronous Full-Duplex 9-11.

9.3 Setting the Serial Port Baud Rate 9-13.
9.4 Writing to the Serial Port 9-15.
9.5 Reading the Serial Port 9-16.

 Contents

iii Contents

10 Interrupts 10-1.
10.1 Description 10-2.
10.2 Events That Can Trigger Interrupts 10-3.
10.3 Enabling Interrupts 10-5.
10.4 Polling Sequence 10-6.
10.5 Interrupt Priorities 10-7.
10.6 Interrupt Triggering 10-8.
10.7 Exiting Interrupts 10-8.
10.8 Types of Interrupts 10-9.

10.8.1 Serial Interrupts 10-9.
10.8.2 External Interrupts 10-9.
10.8.3 Timer Interrupts 10-11.
10.8.4 Watchdog Interrupt 10-11.
10.8.5 Auxiliary Interrupts 10-11.

10.9 Waking Up from Idle Mode 10-15.
10.10 Register Protection 10-16.
10.11 Common Problems with Interrupts 10-18.

11 Pulse Width Modulator/Tone Generator 11-1.
11.1 Description 11-2.
11.2 Tone Generator 11-3.

11.2.1 Tone Generator Waveforms 11-4.
11.3 PWM Generator 11-5.

11.3.1 Example of PWM Tone Generation 11-8.
11.3.2 Example of PWM Tone Generation Idling 11-9.
11.3.3 Example of Updating PWM 11-11.

12 Analog-to-Digital Converter 12-1.
12.1 Description 12-2.
12.2 Input Multiplexer 12-3.
12.3 Temperature Sensor 12-5.
12.4 Burnout Current Sources 12-7.
12.5 Input Buffer 12-8.
12.6 Analog Input 12-8.
12.7 Programmable Gain Amplifier (PGA) 12-9.
12.8 Offset DAC 12-10.
12.9 Modulator 12-10.
12.10 Calibration 12-11.
12.11 Digital Filter 12-12.

12.11.1 Multiplexing Channels 12-14.
12.12 Voltage Reference 12-15.
12.13 Summation/Shifter Register 12-16.

12.13.1 Manual Summation Mode 12-18.
12.13.2 ADC Summation Mode 12-18.
12.13.3 Manual Shift (Divide) Mode 12-19.
12.13.4 ADC Summation with Shift (Divide) Mode 12-19.

12.14 Interrupt-Driven ADC Sampling 12-20.
12.15 Syncronizing Multiple MSC1210 Devices 12-22.
12.16 Ratiometric Measurements 12-24.

12.16.1 Differential Vref 12-25.

Contents

iv

13 Serial Peripheral Interface (SPI) 13-1.
13.1 Description 13-2.
13.2 Functional Description 13-2.
13.3 Clock Phase and Polarity Controls 13-4.
13.4 SPI Signals 13-5.

13.4.1 Master In Slave Out 13-5.
13.4.2 Master Out Slave In 13-5.
13.4.3 Serial Clock 13-5.
13.4.4 Slave Select 13-5.

13.5 SPI System Errors 13-6.
13.6 Data Transfers 13-7.
13.7 FIFO Operation 13-9.
13.8 Code Examples 13-10.

13.8.1 SPI Master Transfer in Double-Buffer Mode using Interrupt Polling 13-10.
13.8.2 SPI Master Transfer in FIFO Mode using Interrupts 13-11.

14 Additional MSC1210 Hardware 14-1.
14.1 Description 14-2.
14.2 Low-Voltage Detect 14-2.

14.2.1 Power Supply 14-3.
14.3 Watchdog Timer 14-4.

14.3.1 Watchdog Timer Hardware Configuration 14-4.
14.3.2 Enabling Watchdog Timer 14-5.
14.3.3 Resetting the Watchdog Timer 14-7.
14.3.4 Disabling Watchdog Timer 14-8.
14.3.5 Watchdog Timeout/Activation 14-8.

15 Advanced Topics 15-1.
15.1 Hardware Configuration 15-2.

15.1.1 Hardware Configuration Registers 15-2.
15.1.2 Hardware Configuration Memory 15-5.
15.1.3 Accessing Configuration Memory in a User Program 15-5.

15.2 Advanced Flash Memory 15-6.
15.2.1 Write Protecting Flash Program Memory 15-6.
15.2.2 Updating Interrupts with Reset Sector Lock 15-6.

15.3 Breakpoint Generator 15-7.
15.3.1 Configuring Breakpoints 15-7.
15.3.2 Breakpoint Auxiliary Interrupt 15-8.
15.3.3 Disabling a Breakpoint 15-8.

15.4 Power Optimization 15-9.
15.5 Flash Memory as Data Memory 15-10.
15.6 Advanced Topics and Other Information 15-12.

15.6.1 Serial and Parallel Programming of the MSC1210 15-12.
15.6.2 Debugging Using the MSC1210 Boot ROM Routines 15-12.
15.6.3 Using MSC1210 with Raisonance Development Tools 15-12.
15.6.4 Using the MSC1210 Evaluation Module (EVM) 15-12.

 Contents

v Contents

16 8052 Assembly Language 16-1.
16.1 Description 16-2.
16.2 Syntax 16-2.
16.3 Number Bases 16-4.
16.4 Expressions 16-4.
16.5 Operator Precedence 16-5.
16.6 Characters and Character Strings 16-5.
16.7 Changing Program Flow (LJMP, SJMP, AJMP) 16-6.
16.8 Subroutines (LCALL, ACALL, RET) 16-7.
16.9 Register Assignment (MOV) 16-8.
16.10 Incrementing and Decrementing Registers (INC, DEC) 16-11.
16.11 Program Loops (DJNZ) 16-12.
16.12 Setting, Clearing, and Moving Bits (SETB, CLR, CPL, MOV) 16-13.
16.13 Bit-Based Decisions and Branching (JB, JBC, JNB, JC, JNC) 16-15.
16.14 Value Comparison (CJNE) 16-16.
16.15 Less Than and Greater Than Comparison (CJNE) 16-17.
16.16 Zero and Non-Zero Decisions (JZ/JNZ) 16-18.
16.17 Performing Additions (ADD, ADDC) 16-18.
16.18 Performing Subtractions (SUBB) 16-20.
16.19 Performing Multiplication (MUL) 16-21.
16.20 Performing Division (DIV) 16-22.
16.21 Shifting Bits (RR, RRC, RL, RLC) 16-23.
16.22 Bit-Wise Logical Instructions (ANL, ORL, XRL) 16-24.
16.23 Exchanging Register Values (XCH) 16-26.
16.24 Swapping Accumulator Nibbles (SWAP) 16-26.
16.25 Exchanging Nibbles Between Accumulator and Internal RAM (XCHD) 16-26.
16.26 Adjusting Accumulator for BCD Addition (DA) 16-27.
16.27 Using the Stack (PUSH/POP) 16-28.
16.28 Setting the Data Pointer DPTR (MOV DPTR) 16-30.
16.29 Reading and Writing External RAM/Data Memory (MOVX) 16-31.
16.30 Reading Code Memory/Tables (MOVC) 16-32.
16.31 Using Jump Tables (JMP @A+DPTR) 16-34.

17 Keil Simulator 17-1.
17.1 Description 17-2.
17.2 Timers 17-4.

17.2.1 Timer 0 & 1 Example 17-5.
17.3 Timer 2 17-11.
17.4 Watchdog Timer 17-12.

17.4.1 Watchdog Reset Facility Example 17-13.
17.5 System Timer 17-16.
17.6 Clock Control 17-16.
17.7 Analog-to-Digital Converter 17-17.
17.8 Summation/Shifter 17-20.

17.8.1 ADC/Summation/Shifter Example 17-21.
17.9 Interrupts 17-30.
17.10 Ports 17-31.
17.11 Serial Peripheral Interface (SPI) 17-32.

17.11.1 SPI Sample Code 17-34.
17.12 mVision 2 Debug Program Example 17-38.
17.13 Serial Port I/O 17-40.

17.13.1 Serial Port 0 Operation Mode 1 Example 17-42.
17.13.2 Transmit Block Baud Rate Computation 17-43.
17.13.3 Receive Block Baud Rate Computation 17-44.

17.14 Additional Resource 17-46.

Contents

vi

A Additional Features in the MSC1210 Compared to the 8052 A-1.
A.1 Additional Features in the MSC1210 Compared to 8052 A-2.

B Clock Timing Diagram B-1.
B.1 MSC1210 Timing Chain and Clock Control Diagram B-2.

C Boot ROM Routines C-1.
C.1 Description C-2.

C.1.1 Note Regarding the put_string Function C-3.

D 8052 Instruction-Set Quick-Reference Guide D-1.
D.1 8052 Instruction-Set Quick-Reference Guide D-2.

E 8052 Instruction Set E-1.
E.1 Description E-2.
E.2 8052 Instruction Set E-3.

F Bit-Addressable SFRs (alphabetical) F-1.
F.1 Bit Addressable SFRs (alphabetical) F-2.

G SFRs/Address Cross-Reference Guide (alphabetical) G-1.
G.1 SFR/Address Cross-Reference G-2.

 Contents

vii Contents

��	
���

1−1. MSC1210 Block Diagram 1-2.
1−2. Pin Configuration of the MSC1210 1-3.
1−3. MSC1210 Timing Compared to Standard 8051 Timing 1-12.
2−1. MSC1210 Memory Map 2-2.
2−2. MSC1210 Memory Map Register Bank. 2-6.
7−1. Standard 8051 Timing. 7-2.
7−2. MSC1210 Timing Chain and Clock Control 7-5.
7−3. SPI/PWM/Flash Write Timing 7-5.
7−4. System Timing Interrupt Control 7-7.
7−5. Reset Timing 7-9.
7−6. Parallel Flash Programming Power-On Timing (EA is ignored) 7-9.
7−7. Serial Flash Programming Power-On Timing (EA is ignored) 7-10.
8−1. Timer 0/1 Block Diagram for Modes 0 and 1 8-6.
9−1. Serial Port 0 Mode 0 Transmit Timing—High Speed Operation. 9-6.
9−2. Serial Port Mode 0 Receive Timing—High Speed Operation. 9-6.
9−3. Serial Port Mode 1 Transmit Timing. 9-7.
9−4. Serial Port 0 Mode 1 Receive Timing. 9-7.
9−5. Serial Port 0 Mode 2 Transmit Timing. 9-9.
9−6. Serial Port 0 Mode 2 Receive Timing. 9-10.
9−7. Serial Port 0 Mode 3 Transmit Timing. 9-11.
9−8. Serial Port 0 Mode 3 Receive Timing. 9-11.
11−1. Block Diagram 11-2.
11−2. Tone Generator Circuit 11-3.
11−3. Timing Diagram of Tone Generator in Staircase Mode 11-4.
11−4. Timing Diagram of Tone Generator in Square Wave Mode 11-4.
11−5. Timing Diagram of a PWM Waveform 11-6.
11−6. PWM Timing 11-11.
12−1. MSC1210 Architecture 12-2.
12−2. Input Multiplexer Configuration 12-3.
12−3. Basic Input Structure of the MSC1210 12-8.
12−4. Filter Step Responses 12-12.
12−5. Filter Frequency Responses 12-13.
12−6. Circuit Drawing 12-24.
13−1. SPI block diagram 13-2.
13−2. SPI Clock/Data Timing 13-3.
13−3. SPI Reset State 13-7.
13−4. SPI FIFO Operation 13-9.
14−1. Brownout Reset and Low-Voltage Detection 14-2.
14−2. System Timing Interrupt Control 14-4.

Contents

viii

16−1. Rotate Operations 16-23.
17−1. Timer/Counter 0 − Mode 2 17-4.
17−2. Timer/Counter 0 17-5.
17−3. Parallel Port 3 Peripheral 17-5.
17−4. Timer/Counter 1 Mode 1 17-6.
17−5. Interrupt System 17-6.
17−6. Timer/Counter 2 17-11.
17−7. Status of Watchdog Peripheral 17-12.
17−8. Analog−to−Digital Converter Peripheral 17-18.
17−9. Error Message 17-19.
17−10. Accumulator/Shifter Peripheral 17-20.
17−11. summation/Shifter Peripheral 17-28.
17−12. The ADC Peripheral Mid-Stride a Typical 8-Sample Averaging Block 17-28.
17−13. List Box for the Interrupt Peripheral 17-30.
17−14. Parallel Port 0 Contents Display Window 17-31.
17−15. Error Message 17-31.
17−16. SPI Peripheral Window 17-32.
17−17. Keil Debugger 17-39.
17−18. Serial Channel 0 Communication Peripheral 17-41.
17−19. Clock Control Peripheral 17-45.
17−20. USART0 Preipheral 17-45.
B−1. MSC1210 Timing Chain and Clock Control B-2.

 Contents

ix Contents

�
����

1−1. Pin Descriptions of the MSC1210 1-4.
2−1. Program and Data Memory Size. 2-3.
2−2. Program and Data Memory Addresses. 2-4.
3−1. SFR Names and Addresses. 3-2.
5−1. MSC1210 Addressing Modes. 5-2.
7−1. Signal Definitions for Reset Timing Diagrams 7-10.
8−1. Timer Conrol SFRs. 8-4.
8−2. Timer Modes and Usage 8-6.
8−3. Example of 8-Bit Auto-Reload 8-7.
8−4. TCON (88h) SFR 8-8.
9−1. SM0 and SM1 Function Definitions. 9-4.
9−2. Common Baud Rates Using Timer 1 9-8.
9−3. Common Baud Rates Using Timer 2 9-9.
9−4. Mode 0 Commonly Used Baud Rates. 9-13.
9−5. Baud Rate Settings for Timer 1. 9-14.
9−6. Baud Rate Settings for Timer 2. 9-15.
10−1. Interrupt Sources 10-3.
10−2. IE (A8h) SFR 10-5.
10−3. EICON (D8h) SFR 10-5.
10−4. EIE (E8h) SFR 10-5.
10−5. IP (B8h) SFR 10-7.
10−6. EIP (F8h) SFR 10-7.
10−7. EXIF (91h) SFR 10-10.
10−8. Clearing Auxiliary Interrupts 10-12.
10−9. AIE (A6h) SFR 10-12.
10−10. AISTAT (A7h) SFR 10-13.
10−11. PAI (A5h) SFR 10-13.
10−12. PPI Bits of PAI SFR 10-14.
10−13. EWU (C6h) SFR 10-15.
11−1. PWM Polarity Conditions 11-5.
11−2. Configuring the PWM for Tone Generation 11-8.
11−3. Statement Explanations 11-8.
11−4. Configuring the PWM for Tone Generation with PWM Idling 11-10.
11−5. Statement Explanations 11-10.
12−1. PGA Settings 12-9.
12−2. Calibration Mode Control Bits 12-11.
12−3. Filter Settling 12-14.
12−4. Output Data Rate and Channel Rate 12-14.
12−5. Output Data Rate and Channel Rate (10x faster) 12-15.

Contents

x

14−1. Typical Sub-Circuit Current Consumption 14-3.
14−2. Comparator Specification 14-3.
14−3. Band Gap Parameters 14-3.
16−1. Order of Precedence for Mathematical Operators 16-5.
16−2. Results of ANL 16-24.
16−3. Results of ORL 16-24.
16−4. Results of XRL 16-24.
17−1. Timer/Counter 2 Control Bits 17-11.
C−1. Boot ROM Routines C-2.

1-1Introduction to the MSC1210

������
����� �� ��� �������

This chapter describes the basic function of the MSC1210 analog-to-digital
converter (ADC).

Topic Page

1.1 MSC1210 Description 1-2.

1.2 MSC1210 Pin-Out 1-3.

1.3 Enhanced 8051 Core 1-12.

1.4 Family Device Compatibility 1-13.

1.5 Flash Memory 1-13.

1.6 High-Performance Analog 1-13.

1.7 High-Performance Peripherals 1-14.

Chapter 1

MSC1210 Description

1-2

1.1 MSC1210 Description

The MicroSystem family of devices is designed for high-resolution measure-
ment applications in smart transmitters, industrial process control, weigh
scales, chromatography, and portable instrumentation. They provide high-
performance mixed signal solutions. The MicroSystem family not only in-
cludes high-end analog features and digital processing capability, but also in-
tegrates high-performance peripherals to offer a unique system solution.

The main components of a MicroSystem product include:

� Enhanced 8051 microcontroller core

� FLASH memory

� High-performance analog functions

� High-performance peripherals

The enhanced 8052 microcontroller core includes dual data pointers and exe-
cutes instructions three times faster than the standard 8052 core. This MIPS
capability allows you to optimize speed, power, and noise tradeoffs based on
specific requirements.

A block diagram of the MSC1210 ADC is shown in Figure 1−1.

Figure 1−1. MSC1210 Block Diagram

MSC1210 Pin-Out

1-3Introduction to the MSC1210

The on-chip FLASH memory is programmable in a variety of modes over a
wide temperature and operating voltage range. This greatly simplifies pro-
gramming at both the manufacturing level and in the field.

The on-chip high-performance analog features are state-of-the-art. The perfor-
mance and features of the analog functions rival the best of the industry. The low-
noise ADC and the precision voltage reference along with the integration of other
analog features greatly simplify achieving high-end analog performance.

The on-chip high-performance peripherals not only reduce the cost, design
time, and board space required for external circuitry, but also blend analog and
digital functions that simplify the system design. The high-performance periph-
erals are designed from a system perspective, thereby decreasing the proc-
essing requirements on the CPU and providing greater system throughput.

1.2 MSC1210 Pin-Out

The names and functions of these pins are similar to those found on a
traditional 8052 core, but the MSC1210 includes additional pin assignments
to support the additional functions specific to the part.

Figure 1−2. Pin Configuration of the MSC1210

MSC1210 Pin-Out

1-4

Table 1−1.Pin Descriptions of the MSC1210

Pin # Name Description

1 XOUT The crystal oscillator pin XOUT supports parallel resonant AT cut crys-
tals and ceramic resonators. XOUT serves as the output of the crystal
amplifier.

2 XIN The crystal oscillator pin XIN supports parallel resonant AT cut crystals
and ceramic resonators. XIN can also be an input if there is an external
clock source instead of a crystal.

3-10 P3.0-P3.7 Port 3 is a bidirectional I/O port. The alternate functions for Port3 are
listed below.
Port 3—Alternate Functions:

PORT ALTERNATE MODE

P3.0 RxD0 Serial Port 0 Input

P3.1 TxD0 Serial Port 0 Output

P3.2 INT0 External Interrupt 0

P3.3 INT1/TONE/
PWM

External Interrupt 1/TONE/PWM Out-
put

P3.4 T0 Timer 0 External Input

P3.5 T1 Timer 1 External Input

P3.6 WR External Data Memory Write Strobe

P3.7 RD External Data Memory Read Strobe

11, 14, 15,
42, 58

DVDD Digital Power Supply

12, 41, 57 DGND Digital Ground

13 RST A HIGH on the reset input for two instruction clock cycles will reset the
device.

16, 32, 33 NC No Connection

17, 27 AGND Analog Ground

28 AVDD Analog Power Supply

18 AIN0 Analog Input Channel 0

19 AIN1 Analog Input Channel 1

20 AIN2 Analog Input Channel 2

21 AIN3 Analog Input Channel 3

22 AIN4 Analog Input Channel 4

23 AIN5 Analog Input Channel 5

24 AIN6, EXTD Analog Input Channel 6, Digital Low Voltage Detect Input

25 AIN7, EXTA Analog Input Channel 7, Analog Low Voltage Detect Input

26 AINCOM Analog Common for Single−Ended Inputs

29 REF IN– Voltage Reference Negative Input

30 REF IN+ Voltage Reference Positive Input

31 REF OUT Voltage Reference Output

MSC1210 Pin-Out

1-5Introduction to the MSC1210

Table 1−1 Pin Descriptions of the MSC1210 (Continued)

Pin # Name Description

34-40, 43 P2.0-P2.7 Port 2 is a bidirectional I/O port. The alternate functions for Port 2 are
listed below.
Port 2—Alternate Functions:

34-40, 43 P2.0-P2.7 PORT ALTERNATE MODE

P2.0 A8 Address Bit 8

P2.1 A9 Address Bit 9

P2.2 A10 Address Bit 10

P2.3 A11 Address Bit 11

P2.4 A12 Address Bit 12

P2.5 A13 Address Bit 13

P2.6 A14 Address Bit 14

P2.7 A15 Address Bit 15

44 PSEN, OSCCLK,
MODCLK

Program Store Enable: Connected to optional external memory as a
chip enable. PSEN will provide an active low pulse. In programming
mode, PSEN is used as an input along with ALE to define serial or par-
allel programming mode. PSEN is held HIGH for parallel programming
and tied LOW for serial programming. This pin can also be selected
(when not using external program memory) to output the Oscillator
clock, Modulator clock, HIGH, or LOW.

ALE PSEN Program Mode Selection

NC NC Normal Operation

0 1 Parallel Programming

1 0 Serial Programming

0 0 Reserved

45 ALE Address Latch Enable: Used for latching the low byte of the address
during an access to external memory. ALE is emitted at a constant rate
of 1/2 the oscillator frequency, and can be used for external timing or
clocking. One ALE pulse is skipped during each access to external
data memory. In programming mode, ALE is used as an input along
with PSEN to define serial or parallel programming mode. ALE is held
HIGH for serial programming and tied LOW for parallel programming.

48 EA External Access Enable: EA must be externally held LOW to enable
the device to fetch code from external program memory locations start-
ing with 0000H.

46, 47,
49-54

P0.0−P0.7 Port 0 is a bidirectional I/O port. The alternate functions for Port 0 are
listed below.
Port 0—Alternate Functions:

PORT ALTERNATE MODE

P0.0 AD0 Address/Data Bit 0

P0.1 AD1 Address/Data Bit 1

P0.2 AD2 Address/Data Bit 2

P0.3 AD3 Address/Data Bit 3

P0.4 AD4 Address/Data Bit 4

MSC1210 Pin-Out

1-6

Table 1−1 Pin Descriptions of the MSC1210 (Continued)

Pin # Name Description

46, 47,
49-54

P0.0−P0.7 P0.5 AD5 Address/Data Bit 5
49-54

P0.6 AD6 Address/Data Bit 6

P0.7 AD7 Address/Data Bit 7

55, 56,
59−64

P1.0−P1.7 Port 1 is a bidirectional I/O port. The alternate functions for Port 1 are
listed below.
Port 1—Alternate Functions:

PORT ALTERNATE MODE

P1.0 T2 T2 Input

P1.1 T2EX T2 External Input

P1.2 RxD1 Serial Port Input

P1.3 TxD1 Serial Port Output

P1.4 INT2/SS External Interrupt/Slave Select

P1.5 INT3/MOSI External Interrupt/Master Out−Slave In

P1.6 INT4/MISO External Interrupt/Master In−Slave Out

P1.7 INT5/SCK External Interrupt/Serial Clock

1.2.1 I/O Ports (P0, P1, P2, and P3)

Of the 64 pins on the MSC1210, 32 of them are dedicated to I/O lines that have
a one-to-one relation with SFRs P0, P1, P2, and P3. The developer may raise
and lower these lines by writing 1s or 0s to the corresponding bits in the SFRs.
Likewise, the current state of these lines may be found by reading the corre-
sponding bits of the SFRs.

All of the ports have optional pull-up resistors that are enabled when the port
is in 8051 mode, as configured by the PxDDRL/H SFRs. The pull-up resistors
are disabled when the port is configured in any other mode, or when accessing
external memory.

1.2.1.1 Port 0

Port 0 is dual-function: in some designs port 0 I/O lines are available to the de-
veloper to access external devices, while in other designs it is used to access
external memory. If the circuit requires external RAM, the microcontroller will
use port 0 to latch in/out the 8-bit data word, as well as the low eight bits of the
address in response to a MOVX instruction, as long as the hardware configu-
ration registers are set up correctly. Port 0 I/O lines may be used for other func-
tions as long as external data memory is not being accessed at the same time
and the hardware configuration registers are set up correctly. If the circuit re-
quires external code memory, the microcontroller will use port 0 I/O lines to ac-
cess each instruction to be executed. In this case, port 0 cannot be used for
other purposes, because the state of the I/O lines are constantly being modi-
fied to access external code memory.

MSC1210 Pin-Out

1-7Introduction to the MSC1210

1.2.1.2 Port 1

Port 1 consists of eight I/O lines that may be used to interface to external parts.
Port 1 is commonly used to interface to external hardware such as LCDs, key-
pads, and other devices. As opposed to a standard 8052 core, all I/O lines of
the MSC1210 serve optional alternate functions, as described below. These
lines can still be used for the developing purposes, if the functions described
below are not needed.

P1.0 (T2): If T2CON.1 is set (C/T2), then timer 2 is incremented whenever
there is a 1-0 transition on this line. With C/T2 set, P1.0 is the clock source for
timer 2.

P1.1 (T2EX): If timer 2 is in auto-reload mode and T2CON.3 (EXEN2) is set,
a 1-0 transition on this line causes timer 2 to be reloaded with the auto-reload
value. This also causes the T2CON.6 (EXF2) external flag to be set, which
may cause an interrupt, if so enabled.

P1.2 (RxD1): If the secondary USART is being used, P1.2 (RxD1) is the pin that
receives serial data. Data received via this pin is read using the SBUF1 SFR.

P1.3 (TxD1): If the secondary USART is being used, P1.3 (TxD1) is the pin that
transmits serial data. Data written to the SBUF1 SFR is sent via this pin.

P1.4 (INT2/SS): This pin has two dual functions. It may be used to trigger an
external 2 interrupt when a 0-1 transition is detected on this line. It is also used
as slave select in SPI applications.

P1.5 (INT3/MOSI): This pin may be used to trigger an external 3 interrupt when
a 1-0 transition is detected. It is also used as Master Out/Slave In in SPI ap-
plications.

P1.6 (INT4/MISO): This pin may be used to trigger an external 4 interrupt when
a 0-1 transition is detected. It is also used as Master In/Slave Out in SPI ap-
plications.

P1.7 (INT5/SCK): This pin may be used to trigger an external 5 interrupt when
a 1-0 transition is detected. It is also used as serial clock in SPI applications.

MSC1210 Pin-Out

1-8

1.2.1.3 Port 2

Like port 0, port 2 is dual-function. In some circuit designs, it is available for access-
ing external devices, while in others it is used to address external RAM or external
code memory. When more than 256 bytes of external RAM are used, port 2 is used
to output the high byte of the address that is to be accessed in a MOVX operation.
Whether port 2 is used to address external memory or as general I/O lines is de-
fined by the EGP23 bit in hardware configuration Register 1.

Note:

When the EGP23 bit of hardware configuration Register 1 is set, Port 2 as-
sumes the value of the high byte of DPTR when using the MOVX @DPTR
instruction. When using the MOVX @Rx instructions, port 2 assumes the val-
ue of the MPAGE SFR.

If the circuit requires external code memory, the microcontroller automatically uses
port 2 I/O lines to access each instruction to be executed, but only if bit EGP23
of HCR1 equals one. In this case, port 2 cannot be used for other purposes be-
cause the state of the I/O lines are constantly being modified to access external
code memory.

1.2.1.4 Port 3

Port 3 consists entirely of dual-function I/O lines. While you can access all
these lines from the software by reading/writing to the P3 SFR, each pin has
a predefined function that the microcontroller handles automatically when con-
figured to do so and/or when necessary.

P3.0 (RxD0): The primary USART/serial port uses P3.0 as the receive line. For
in-circuit designs that are using the microcontroller internal serial port, this is
the line into which the serial data is clocked.

Note:

When interfacing an 8052 to an RS-232 port, you cannot connect this line
directly to the RS-232 pin; you must pass it through a part such as the
MAX233 to obtain the correct voltage levels.

You can assign any function to this pin as long as the circuit has no need to
receive data via the integrated serial port.

P3.1 (TxD0): The primary USART/serial port uses P3.1 as the transmit line. For
in-circuit designs that is using the microcontroller internal serial port, this is the line
used by the microcontroller to clock out all data written to the SBUF SFR.

Note:

When interfacing an 8052 to an RS-232 port, you cannot connect this line
directly to the RS-232 pin; you must pass it through a part such as the
MAX233 to obtain the correct voltage levels.

You can assign any function to this pin as long as the circuit has no need to
transmit data via the integrated serial port.

MSC1210 Pin-Out

1-9Introduction to the MSC1210

P3.2 (INT0): When so configured, this line is used to trigger an external 0 Inter-
rupt. This may either be low-level triggered or may be triggered on a 1-0 transi-
tion (see Chapter 10, Interrupts, for details). You can assign any function to this
pin as long as the circuit has no need to trigger an external 0 interrupt.

P3.3 (INT1/TONE/PWM): When so configured, this line is used to trigger an
external 1 Interrupt. This may either be low-level triggered or may be triggered
on a 1-0 transition (see Chapter 10, Interrupts, for details). This pin is also used
for outputting PWM, if so configured.

P3.4 (T0): When so configured, this line is used as the clock source for timer 0.
Timer 0 is incremented either every instruction cycle that T0 is high, or every time
there is a 1-0 transition on this line, depending on how the timer is configured (see
Chapter 8, Timers, for details). You can assign any function to this pin as long as
the circuit has no need to control timer 0 externally.

P3.5 (T1): When so configured, this line is used as the clock source for timer 1.
Timer 1 is incremented either every instruction cycle that T1 is high, or every time
there is a 1-0 transition on this line, depending on how the timer is configured (see
Chapter 8, Timers, for details). You can assign any function to this pin as long as
the circuit has no need to control timer 1 externally.

P3.6 (WR): This is the external memory write strobe line when bit EGP23 is
set in hardware configuration Register 1. This line is asserted low by the micro-
controller whenever a MOVX instruction writes to external RAM. This line
should be connected to the RAM write (W) line. You can assign any function
to this pin as long as the circuit does not write to external RAM using MOVX.

P3.7 (RD): This is the external memory read strobe line when bit EGP23 is set
in hardware configuration Register 1. This line is asserted low by the microcon-
troller whenever a MOVX instruction is read from external RAM. This line must
be connected to the RAM read (R) line. You can assign any function to this pin
as long as the circuit does not read from external RAM using MOVX.

1.2.2 Oscillator Inputs (XTAL1 and XTAL2)

The MSC1210 is typically driven by a crystal connected to pins 1 (XOUT) and
2 (XIN). Common crystal frequencies are 11.0592MHz as well as 12MHz, al-
though the MSC1210 is capable of accepting frequencies as high as 33MHz.

While a crystal is the normal clock source, this is not always the case. A digital
clock source may also be attached to XIN and XOUT to provide the clock for
the microcontroller.

MSC1210 Pin-Out

1-10

1.2.3 Reset Line (RST)

Pin 13 is the master reset line for the microcontroller. When this pin is brought
high for two instruction cycles, the microcontroller is effectively reset. SFRs,
including the I/O ports, are restored to their default conditions and the program
counter is reset to 0000H. Keep in mind that Internal RAM is not affected by
a reset. The microcontroller begins executing code at 0000H when pin 13 re-
turns to a low state.

The reset line is often connected to a reset button/switch that you can press
to reset the circuit. It is also common to connect the reset line to a watchdog
IC or a supervisor IC (such as MAX707). Traditional resistor-capacitor net-
works attached to the reset line also work well because the RST input is a
Schmitt trigger input.

1.2.4 Address Latch Enable (ALE)

The ALE at pin 45 is an output-only pin that is controlled entirely by the micro-
controller and allows the microcontroller to multiplex the low-byte of a memory
address and the 8-bit data itself on port 0. This is because, while the high byte
of the memory address is sent on port 2, port 0 is used both to send the low
byte of the memory address and the data itself. This is accomplished by plac-
ing the low byte of the address on port 0, exerting an ALE high-to-low transition
to latch the low byte of the address into a latch IC (such as the 74HC573), and
then placing the 8 data bits on port 0. In this way, the MSC1210 is able to output
a 16-bit address and an 8-bit data word with 16 I/O lines instead of 24.

The ALE line is used in this fashion both to access external RAM with MOVX
@DPTR, as well as to accessi instructions in external code memory. When the pro-
gram is executed from external code memory, ALE pulses at a rate that is � that
of the oscillator frequency. Thus, if the oscillator operates at 11.0592MHz, ALE
pulses at a rate of 2 764 800 times per second. When the MOVX instruction is exe-
cuted, one PSEN pulse is missed in lieu of a pulse on WR or RD.

This pin is also used when programming the part, along with PSEN, as an input
during reset to indicate whether programming will occur in serial or parallel
mode. If this line is held high when in programming mode, programming will
occur in serial mode.

1.2.5 Program Store Enable (PSEN)

The program store enable (PSEN) line at pin 44 is exerted low automatically
by the microcontroller whenever it accesses external code memory. This line
should be attached to the output enable (OE) pin of the device that contains
your code memory. The PSEN signal is applied for both internal and external
memory access.

This pin is also used when programming the part, along with ALE, as an input to
indicate whether programming will occur in serial or parallel mode. If this line is
held high when in programming mode, programming will occur in parallel mode.

MSC1210 Pin-Out

1-11Introduction to the MSC1210

1.2.6 External Access (EA)

The external access (EA) line at pin 48 is used to determine whether the
MSC1210 will execute your program from external code memory or from inter-
nal code memory. If EA is tied high (connected to supply), the microcontroller
will execute the program it finds in internal/on-chip code memory. If EA is tied
low (to ground), it will attempt to execute the program that it finds in the at-
tached external program memory. Of course, the external program memory
must be properly connected for the microcontroller to be able to access the
program in external program memory.

The EA pin is ignored during serial or parallel flash programming modes.

Note:

Even when EA is tied high (indicating that the microcontroller should execute
from internal code memory), the microcontroller will attempt to execute from
external code memory if the program counter references an address not
available for the chip you are using, or if you are accessing program memory
in excess of the amount of flash memory that you have partitioned for pro-
gram memory. For example, if you have partitioned 4k of flash memory to be
program memory and you tie EA high, the derivative starts executing the pro-
gram it finds on-chip. However, if your on-chip program attempts to execute
code above 0FFFH (that is, exceeding 4k), then the MSC1210 will attempt
to execute that code at that address from external code memory. Thus, it is
possible to have a split design, in which some of the code is found on-chip
and the rest is found off-chip.

Enhanced 8051 Core

1-12

1.3 Enhanced 8051 Core

The MSC1210 is an 8052-based family of high-performance, mixed-signal
controllers. All instructions in the MSC1210 family perform exactly the same
function as they would in a standard 8052 core. Although the effect on bits,
flags, and registers is the same, the timing is different.

The MSC1210 family uses an efficient 8052 core that results in an improved
instruction execution speed of three times faster than the original core for the
same external clock speed (4 clock cycles per instruction versus 12 clock
cycles per instruction, as shown in Figure 1−3). This allows you to run the de-
vice at slower external clock speeds, which reduces system noise and power
consumption, but provides greater throughput.

Figure 1−3. MSC1210 Timing Compared to Standard 8051 Timing

The timing of software loops is faster with the MSC1210 than with the standard
8052. However, the timer/counter operation of the MSC1210 may be maintained
at 12 clocks per increment or optionally run at 4 clocks per increment.

You can develop software for the MSC1210 with the existing 8052 develop-
ment tools because the MSC1210 is fully compatible with the standard 8052
instruction set. Additionally, a complete integrated development environment
is provided with each demonstration board.

Family Device Compatibility

1-13Introduction to the MSC1210

1.4 Family Device Compatibility

The hardware functionality and pin outs across the MSC1210 family are fully
compatible. The only difference between family members is the memory con-
figuration and this enables simple migration between family members. Code
written for the 4K bytes program memory version of the MSC1210 can be exe-
cuted directly on the 8K, 16K, or 32K versions. This allows you to add or delete
software functions and to freely migrate between family members.

The MSC1210 can become a standard device used across several application
platforms.

1.5 Flash Memory

The MSC1210 features flexible flash memory that allows you to uniquely con-
figure the program and non-volatile data memory maps to meet the needs of
the application. The flash memory is programmable over the entire operating
voltage range and temperature range using both serial and parallel program-
ming methods.

1.6 High Performance Analog Functions

The analog functionality is state-of-the-art. The ADC is extremely low noise,
which enables you to meet even the most stringent analog requirements. The
integrated programmable gain amplifier (PGA) further improves the perfor-
mance of the ADC. This effectively provides for resolution into the nanovolt
range.

The on-chip voltage reference provides for low drift and high accuracy, thus
eliminating the need for an external voltage reference.

These features are integrated with other analog functions, such as a program-
mable filter, multiplexer, temperature sensor, burnout current sources, analog
input buffer, and an offset correction digital-to-analog converter (DAC).

High-Performance Peripherals

1-14

1.7 High-Performance Peripherals

High-performance peripherals are included on-chip, which offload CPU proc-
essing and control functions from the core to further improve the overall device
efficiency and throughput. On-chip peripherals include additional SRAM, a
32-bit accumulator, an SPI-compatible serial port with a FIFO buffer, dual
USARTs, on-chip power-on reset, brownout reset, low-voltage detect, multiple
digital ports with configurable I/O, a 16-bit pulse width modulator (PWM), a
watchdog timer, and three timer/counters.

For instance, the SPI interface uses a FIFO buffer, which allows for the serial
transmission and reception of data with virtually no CPU overhead. The FIFO
buffer function allows for the transfer of large amounts of data at faster transfer
rates than more conventional methods.

Additionally, the 32-bit accumulator significantly reduces the processing over-
head for the multiple byte data from the ADC or other sources. This allows for
24-bit addition, subtraction, and shifting to be accomplished without using
CPU resources. This can reduce both the code size and code execution time.

2-1MSC1210 Memory Organization

������� ������ ��	
���
����

This chapter defines the Memory Organization of MSC1210 ADC.

Topic Page

2.1 Description 2-2.

2.2 Program Memory 2-2.

2.3 Data Memory 2-4.

2.4 Internal RAM 2-6.

Chapter 2

Description

2-2

2.1 Description

The MCS1210 has three very general types of memory. To program the
MCS1210 effectively, it is necessary to have a basic understanding of these
memory types:

� Special Funct ion Registers refer to 128 bytes that control the operation
of the MSC1210.

� Program Memory is used to store the actual program that may reside on-
chip, off-chip, or both.

� Data Memory is static random access memory (SRAM) that can reside
on-chip, off-chip, or both. The MSC1210 has four types of data memory:

� On-chip extended SRAM

� Off-chip external SRAM

� On-chip Flash Data memory

� Internal RAM

2.2 Program Memory

Program memory holds the actual program that is to be run. This memory in-
cludes the on-chip flash memory designated as program memory and/or ex-
ternal memory.

The MSC1210 family offers a maximum of 32k of on-chip flash program
memory. The exact amount of on-chip program memory depends on the spe-
cific MSC1210 version selected and how the flash memory of that chip has
been partitioned between program and data memory. Figure 2−1 illustrates
how the flash memory may be distributed between these two types of memory.

Figure 2−1. MSC1210 Memory Map

Program Memory

2-3MSC1210 Memory Organization

For example, in the Y5 model there is 32k flash memory available. This 32k
may be configured as either program memory, data memory, or both. This con-
figuration is set at the moment the firmware is loaded onto the MSC1210 by
setting hardware configuration register HCR0 as per Table 2−1. This table in-
dicates the total amount of program and data memory available for each part
revision given a specific HCR0 setting.

Table 2−1.Program and Data Memory Size.

HCR0 MSC1210Y2 MSC1210Y3 MSC1210Y4 MSC1210Y5

DFSEL PM DM PM DM PM DM PM DM

000 0kB 4kB 0kB 8kB 0kB 16kB 0kB 32kB

001 0kB 4kB 0kB 8kB 0kB 16kB 0kB 32kB

010 0kB 4kB 0kB 8kB 0kB 16kB 16kB 16kB

011 0kB 4kB 0kB 8kB 8kB 8kB 24kB 8kB

100 0kB 4kB 4kB 4kB 12kB 4kB 28kB 4kB

101 2kB 2kB 6kB 2kB 14kB 2kB 30kB 2kB

110 3kB 1kB 7kB 1kB 15kB 1kB 31kB 1kB

111 (default) 4kB 0kB 8kB 0kB 16kB 0kB 32kB 0kB

Note: When a 0kB program memory configuration is selected, program execution is external

For example, setting the DFSEL bits to 110 with a MSC1210Y5 would cause
31kb of on-chip flash memory to be partitioned as program memory and 1kb
of flash memory to be partitioned as data memory.

Table 2−2 indicates where the assigned memory will be located in address
space. This table provides essentially the same information as Table 2−1, but
also indicates where the memory will be located. For example, the DFSEL =
110 example in the previous paragraph (31kb of on-chip flash program
memory, 1k of on-chip flash data memory) appears in Table 2−2 as flash pro-
gram memory from 0000H to 7BFFH (which is 31k) and flash data memory from
0400H to 07FFH (which is 1k).

Note that the Data memory address starts at 0400H because the first 1k
(0000H-03FFH) is, by default, used to address the on-chip extended SRAM.
The location of on-chip extended SRAM may be changed by using the Memory
Control (MCON) SFR. By setting bit 0 of MCON, the on-chip extended SRAM
may be moved from 0000H-03FFH to 8400H-87FFH. However, on-chip ex-
tended flash data memory always begins at 0400H regardless of whether or
not SRAM is located at 0000H or 8400H.

Data Memory

2-4

Table 2−2.Program and Data Memory Addresses.

HCR0 MSC1210Y2 MSC1210Y3 MSC1210Y4 MSC1210Y5

DFSEL PM DM PM DM PM DM PM DM

000 (reserved) — — — — — — — —

001 — — — — — — 0000 0400-83FF

010 — — — — 0000 0400-43FF 0000-3FFF 0400-43FF

011 — — 0000 0400-23FF 0000-1FFF 0400-23FF 0000-5FFF 0400-23FF

100 0000 0400-13FF 0000-0FFF 0400-13FF 0000-2FFF 0400-13FF 0000-6FFF 0400-13FF

101 0000-07FF 0400-00BF 0000-17FF 0400-0BFF 0000-37FF 0400-0BFF 0000-77FF 0400-0BFF

110 0000-00BF 0400-07FF 0000-1BFF 0400-07FF 0000-3BFF 0400-07FF 0000-7BFF 0400-07FF

111 (default) 0000-0FFF 0000 0000-1FFF 0000 0000-3FFF 0000 0000-7FFF 0000

Note: Program accesses above the highest listed address will access external Program memory.

Program memory addressing beyond the on-chip address range is accessed
externally via ports 0 and 2. The total amount of code memory, on-chip and off,
is limited to 64k due to limitations of the 8052 architecture.

Note:

MSC1210 programs are limited to 64k because code memory is restricted to
64k. Some compilers offer ways to get around this limit when used with specially
wired hardware. However, without such special compilers and hardware, pro-
grams are limited to 64k.

The MSC1210 includes 2k of boot ROM code that controls operation during
serial or parallel programming. In program mode, the boot ROM is located in
the first 2kB of program memory.

The boot ROM is available to your program as long as EBR (hardware configu-
ration register 0, bit 4) is set, which is the default. When enabled, the boot ROM
routines will be located at program memory addresses F800H-FFFFH. The
boot ROM includes a number of functions such as flash memory access, and
serial routines including data transmission, reception, and auto-baud.

2.3 Data Memory

Data memory is divided into four types of memory, depending on its location
and volatility: internal RAM, on-chip extended SRAM, off-chip external SRAM,
and on-chip flash data memory. However, data memory (regardless of its loca-
tion or volatility) is accessed using the MOVX instruction, except for internal
RAM, which is accessed using the MOV instruction.

2.3.1 On-Chip Extended Static RAM (SRAM)

The MSC1210 includes 1024 bytes of on-chip extended static RAM (SRAM).
Even though this memory resides on-chip, it is accessed using the MOVX instruc-
tion as if it were external data memory. Whenever a program accesses data
memory addresses 0000H through 03FFH, the on-chip external SRAM is used.

Data Memory

2-5MSC1210 Memory Organization

On-chip extended static RAM provides 1k of data memory that requires no ex-
ternal circuitry and is available regardless of how the MSC1210’s flash
memory is designated. This makes it a convenient memory area for purposes
such as temporary buffers, calculation scratchpads, or any other purpose that
requires 1k or less of memory, but does not require it to survive a power failure.

2.3.2 On-Chip Flash Data Memory

In addition to the on-chip extended SRAM described in the previous section,
the MSC1210 also has the capability of offering on-chip flash data memory.
Flash memory is slower than SRAM, but has the advantage of being nonvola-
tile: its contents will not be lost when the power source is removed.

All of the parts in the MSC1210 family come with some amount of on-chip flash
memory, ranging from 4k for the MSC1210Y2 all the way up to 32k for the
MSC1210Y5. This flash memory may be configured such that it can be used
as either program memory, data memory, or both.

When configured as data memory, on-chip flash data memory is accessed
starting at address 0400H—immediately after on-chip SRAM.

For example, if the MSC1210Y5 is configured to use 2k as on-chip flash data
memory, addresses 0000H through 03FFH will access on-chip extended SRAM
while addresses 0400H through 0BFFH will access on-chip flash data memory.
Any attempts to read data memory with addresses 0C00H and higher will result
in the part attempting to fetch that data off-chip from external data memory (see
the next section), except when the internal 1kB SRAM is configured as Von Neu-
mann type, which occupies from 8400H∼87FFH.

2.3.3 External Data Memory

The MSC1210 is capable of addressing up to 64k of data memory, however,
a maximum of 33k of that may be on-chip: 1k of SRAM and up to 32k of flash
data memory. If additional data memory is necessary, it must be added to the
circuit as external data memory.

External data memory is any off-chip data memory that is connected to the
MSC1210 via ports 0 and 2 and uses control pins ALE, RD, and WR. These
two ports combined with these three control lines allow the MSC1210 to ad-
dress external RAM.

External data memory can also be used to access “memory mapped devices,”
which are devices that appear to the MSC1210 to be external data memory
but in reality are external components such as LCDs, buttons, keypads, etc.

Note:

The MSC1210 must only address 64kB of RAM. To expand RAM beyond this
limit requires programming and hardware tricks. It may be necessary to do this
“by hand” because many compilers and assemblers, while providing support for
programmers in excess of 64kB, do not support more than 64kB of RAM. If more
than 64kB of RAM is necessary, the compiler must be checked to verify that the
excess RAM is supported. If not, it will be necessary to do it “by hand.”

Internal RAM

2-6

Figure 2−2. MSC1210 Memory Map Register Bank.

2.4 Internal RAM

As shown in Figure 2−2, the MSC1210 has a bank of 256 bytes of internal
RAM. This internal RAM is found on-chip within the IC, so it is the fastest RAM
available and is also the most flexible in terms of reading, writing, and modify-
ing its contents. internal RAM is volatile, so when the MSC1210 is powered up,
the contents of this memory bank is random.

The 256 bytes of internal RAM are subdivided as shown in the memory map
of Figure 2−2. The first eight bytes (00H−07H) are register bank 0. By manipu-
lating certain SFRs, a program may choose to use register banks 0, 1, 2, or
3. These alternative register banks are located in internal RAM at addresses
08H through 1FH. Register banks are described in greater detail in chapters
3 and 4. For now it is sufficient to know that they reside in and are part of inter-
nal RAM.

Bit memory also resides in and is part of internal RAM. Bit memory will be de-
scribed more in section 2.4.3, but for now just keep in mind that bit memory
actually resides in internal RAM at addresses 20H through 2FH.

The 208 bytes remaining of internal RAM, from addresses 30H through FFH,
may be used by user variables that need to be accessed frequently or at
high-speed. This area is also used by the microcontroller as a storage area for
the operating stack. This fact limits the MSC1210 stack because, as illustrated
in the memory map of Figure 2−2, the area reserved for the stack is only 208
bytes—and usually it is less because these 208 bytes have to be shared
between the stack and user variables.

Note:

Internal RAM addresses 00H through 7FH may be accessed either via direct
addressing or indirect addressing, whereas internal RAM addresses 80H
through FFH may only be accessed via indirect addressing. This will be dis-
cussed completely in Chapter 5, Addressing Modes.

Internal RAM

2-7MSC1210 Memory Organization

2.4.1 The Stack

The stack is a “last in, first out” (LIFO) storage area that exists in internal RAM.
It is used by the MSC1210 to store values that the user program manually
pushes onto the stack, as well as to store the return addresses for CALLs and
interrupt service routines (ISRs)—more on these topics later.

The stack is defined and controlled by an SFR called SP. As a standard 8−bit
SFR, SP holds a value between 0 and 255 that represents the internal RAM
address of the end of the current stack. If a value is removed from the stack,
it is taken from the internal RAM address pointed to by SP, and SP will subse-
quently be decremented by 1. If a value is pushed onto the stack, SP is first
incremented and then the value is inserted in internal RAM at the address now
pointed to by SP.

SP is initialized to 07H when the MSC1210 is first powered up. This means the
first value to be pushed onto the stack is placed at internal RAM address 08H
(07H + 1), the second is placed at 09H, etc.

Note:

By default, the MSC1210 initializes the stack pointer (SP) to 07H when the
microcontroller is reset. This means that the stack will start at address 08H
and expand upwards. If using the alternate register banks (banks 1, 2, or 3)
the stack pointer must be initialized to an address above the highest register
bank being used. Otherwise, the stack will overwrite the alternate register
banks. Similarly, if using bit variables, it is usually a good idea to initialize the
stack pointer to some value greater than 2FH to ensure that the bit variables
are protected from the stack. Following is more information about the register
banks and bit memory.

2.4.2 Register Banks

The MSC1210 uses eight R registers, which are used in many of its instructions.
These R registers are numbered from 0 through 7 (R0, R1, R2, R3, R4, R5, R6,
and R7) and are generally used to assist in manipulating values and moving data
from one memory location to another. For example, to add the value of R4 to the
accumulator, the following assembly language instruction would be executed:

ADD A,R4

Thus, if the accumulator (A) contains the value 6, and R4 contains the value 3,
the accumulator will contain the value 9 after this instruction is executed.

However, as the memory map of Figure 2−2 illustrates, R Register R4 is really
part of internal RAM. Specifically, R4 is address 04H of internal RAM. This can
be seen in the bright green section of the memory map. The above instruction,
therefore, accomplishes the same thing as the following operation:

ADD A,04h

This instruction adds the value found in internal RAM address 04H to the value
of the accumulator, leaving the result in the accumulator. The above instruction
effectively accomplishes the same thing as the previous ADD instruction be-
cause R4 is really internal RAM address 04H.

Internal RAM

2-8

But watch out! As the memory map shows, the MSC1210 has four distinct register
banks. When the MSC1210 is first reset, register bank 0 (addresses 00H through
07H) is used by default. However, the MSC1210 may be instructed to use one
of the alternate register banks (i.e., register banks 1, 2, or 3). In this case, R4 will
no longer be the same as internal RAM address 04H. For example, if the program
instructs the 8052 to use register bank 1, register R4 is now synonymous with
internal RAM address 0CH. If register bank 2 is selected, R4 is synonymous with
14H, and if register bank 3 is selected, it is synonymous with address 1CH.

The concept of register banks adds a great level of flexibility to the 8052, espe-
cially when dealing with interrupts (see chapter 10, Interrupts, for details).
However, always remember that the register banks really reside in the first 32
bytes of internal RAM.

Note:

If only the first register bank (i.e. bank 0) is used, internal RAM locations 08H
through 1FH can be used by the program for its own use. If register banks
1, 2, or 3 are to be used, be very careful about using addresses below 20H
to avoid overwriting the value of “R” registers from other register banks.

2.4.3 Bit Memory

The MSC1210, being a communications and control-oriented microcontroller
that often has to deal with on and off situations, gives you the ability to access
a number of bit variables directly with simple instructions to set, clear, and
compare these bits. These variables may be either 1 or 0.

There are 128 bit variables available to the user, numbered 00H through 7FH.
The user may make use of these variables with commands such as SETB and
CLR. For example, to set bit number 24H (hex) to 1, the user would execute
the instruction:

SETB 24h

It is important to note that Bit memory, like the register banks in section 2.4.2,
is really a part of internal RAM. In fact, the 128-bit variables occupy the 16 by-
tes of internal RAM from 20H through 2FH. Thus, if the value FFH is written to
internal RAM address 20H, bits 00H through 07H have been effectively set.
That is to say that the instruction:

MOV 20h,#0FFh

is equivalent to the instructions:

SETB 00h

SETB 01h

SETB 02h

SETB 03h

SETB 04h

SETB 05h

SETB 06h

SETB 07h

Internal RAM

2-9MSC1210 Memory Organization

As shown, bit memory is not really a new type of memory, it is just a subset of
internal RAM. However, because the MSC1210 provides special instructions
to access these 16 bytes of memory on a bit-by-bit basis, it is useful to think
of it as a separate type of memory. Always keep in mind that it is just a subset
of internal RAM, and that operations performed on internal RAM can change
the values of the bit variables.

Note:

If your program does not use bit variables, you may use internal RAM locations
20H through 2FH for your own use. When using bit variables, be very careful
about using addresses from 20H through 2FH, as you may end up overwriting
the value of your bits.

Note:

By default, the MSC1210 initializes SP to 07H when the microcontroller is
booted. This means that the stack will start at address 08H and expand up-
wards. If using the alternate register banks (banks 1, 2 or 3), SP must be initial-
ized to an address above the highest register bank being used. Otherwise the
stack will overwrite the alternate register banks. Similarly, if using bit variables,
it is usually a good idea to initialize SP to some value greater than 2FH to ensure
that the bit variables are protected from the stack.

Bit memory 00H through 7FH is for user-defined functions in their programs.
Bit memory 80H and above are used to access certain SFRs (see section
2.4.4) on a bit-by-bit basis. For example, if output lines P0.0 through P0.7 are
all clear (0), to turn on the P0.0 output line, either execute:

MOV P0,#01h

or execute:

SETB 80h

Both these instructions accomplish the same thing. However, using the SETB
command will turn on the P0.0 line without affecting the status of any of the
other P0 output lines. The MOV command effectively turns off all the other out-
put lines that, in some cases, may not be acceptable.

When dealing with bit addresses of 80H and above, remember that the bits re-
fer to the bits of corresponding SFRs that are divisible by eight. This is a com-
plicated way of saying that bits 80H through 87H refer to bits 0 through 7 of SFR
80H, bits 88H through 8FH refer to bits 0 through 7 of SFR 88H, bits 90H through
97H refer to bits 0 through 7 of 90H, etc.

Internal RAM

2-10

2.4.4 Special Function Register (SFR) Memory

SFRs are areas of memory that control specific functionality of the MSC1210.
For example, four SFRs permit access to the 32 input/output lines (eight lines
per SFR) of the MSC1210. Another SFR allows a program to read or write to
the MSC1210 serial port. Other SFRs allow the user to set the serial baud rate,
control and access timers, and configure the MSC1210 interrupt system.

When programming, SFRs have the illusion of being internal memory. For ex-
ample, if writing the value 1 to internal RAM location 50H, execute the instruc-
tion:

MOV 50h,#01h

Similarly, if writing the value 1 to the MSC1210 serial port, write this value to
the SBUF SFR, which has an SFR address of 99H. Thus, to write the value 1
to the serial port, execute the instruction:

MOV 99h,#01h

As shown, it appears as if the SFR is part of internal memory. This is not the
case. When using this method of memory access (it is called direct address-
ing—more on that soon), any instruction that has an address of 00H through
7FH refers to an internal RAM memory address; any instruction with an ad-
dress of 80H through FFH refers to an SFR control register.

Note:

SFRs are used to control the way the MSC1210 functions. Each SFR has a
specific purpose and format that will be discussed later. Not all addresses
above 80H are assigned to SFRs. However, this area may not be used as
additional RAM memory, even if a given address has not been assigned to
an SFR.

Note:

Direct access addressing cannot be used to access internal RAM addresses
80H through FFH because direct access to addresses 80H through FFH re-
fers to SFRs. The upper 128 bytes of internal RAM must be accessed using
indirect addressing, which is explained in Chapter 5, Addressing Modes.

3-1Special Function Registers (SFRs)

�����
� �
������ ��	������ �����!

Chapter 3 defines the MSC1210 SFRs.

Topic Page

3.1 Description 3-2.

3.2 Referencing SFRs 3-3.

3.3 Bit-Addressable SFRs 3-4.

3.4 SFR Types 3-4.

3.5 SFR Definitions 3-5.

Chapter 3

Description

3-2

3.1 Description

The MSC1210 is a flexible microcontroller with a relatively large number of
modes of operation. Your program may inspect and/or change the operating
mode of the MSC1210 by manipulating the values of its SFRs.

SFRs are accessed as if they were normal internal RAM. The only difference
is that internal RAM is addressed in direct mode with addresses 00H through
7FH, whereas SFR registers are accessed in the range of 80H through FFH.

Each SFR has an address (80H−FFH) and a name. Table 3−1 provides a
graphical presentation of the 8052’s SFRs, their names, and their address.

Although the address range of 80H through FFH offers 128 possible address-
es, there are 24 addresses that are not assigned to an SFR, as shown in
Table 3−1.

Note:

Reading an unassigned SFR will get 00H, and writing to an unassigned SFR
is ignored.

Table 3−1.SFR Names and Addresses.

80 P0 SP DPL0 DPH0 DPL1 DPH1 DPS PCON 87

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON MWS 8F

90 P1 EXIF MPAGE CADDR CDATA MCON 97

98 SCON0 SBUF0 SPICON SPIDATA SPIRCON SPITCON SPISTART SPIEND 9F

A0 P2 PWMCON PWMLOW PWMHI PAI AIE AISTAT A7

A8 IE BPCON BPL BPH P0DDRL P0DDRH P1DDRL P1DDRH AF

B0 P3 P2DDRL P2DDRH P3DDRL P3DDRH B7

B8 IP BF

C0 SCON1 SBUF1 EWU C7

C8 T2CON RCAP2L RCAP2H TL2 TH2 CF

D0 PSW OCL OCM OCH GCL GCM GCH ADMUX D7

D8 EICON ADRESL ADRESM ADRESH ADCON0 ADCON1 ADCON2 ADCON3 DF

E0 ACC SSCON SUMR0 SUMR1 SUMR2 SUMR3 ODAC LVDCON E7

E8 EIE HWPC0 HWPC1 HDWVER Reserved Reserved FMCON FTCON EF

F0 B PDCON PASEL ACLK SRST F7

F8 EIP SECINT MSINT USEC MSECL MSECH HMSEC WDTCON FF

Referencing SFRs

3-3Special Function Registers (SFRs)

3.2 Referencing SFRs

When writing code in assembly language, SFRs may be referenced either by
their name or their address.

For example, the SBUF0 SFR is at address 99H (see Table 3−1). In order to
write the value 24H to the SBUF SFR in assembly language, it would be written
in code as:

MOV 99h,#24h

This instruction moves the value 24H into address 99H. The value 99H is in the
range of 80H to FFH, and, therefore, refers to an SFR. Furthermore, because
99H refers to the SBUF0 SFR, this instruction will accomplish the goal of writing
the value 24H to the SBUF0 SFR.

Although the above instruction certainly works, it is not necessarily easy to re-
member the address of each SFR when writing software. Thus, all 8052 as-
semblers allow the name of the SFR to be used in code rather than its numeric
address. The above instruction would more commonly be written as:

MOV SBUF0,#24h

The instruction is much easier to read because it is obvious the SBUF0 SFR
is being accessed. The assembler will automatically convert this to its numeric
address at assemble time.

Note:

Many of the SFRs that the MSC1210 uses are MSC1210-specific; only 26
are recognized by the original 8052. It is usually necessary to include a head-
er file or an include file in your program to define the additional SFRs sup-
ported by the MSC1210. Failing to do so may result in the assembler or com-
piler reporting compile errors. Please refer to the documentation for the com-
piler or assembler to discover how new SFRs of the MSC1210 must be de-
fined in the development platform to be used.

3.2.1 Referencing Bits of SFRs

Individual bits of SFRs are referenced in one of two ways. The general conven-
tion is to name the SFR followed by a period and the bit number. For example,
SCON0.0 refers to bit 0 (the least significant bit) of the SCON0 SFR. SCON0.7
refers to bit 7 (the most significant bit) of SCON0.

These bits also have names: SCON0.0 is RI and SCON0.7 is SM0_0. It is also
acceptable to refer to the bits by their name, although in this document they
will usually be referred to in the SCON0.0 format, because that defines which
bit is in which SFR.

Bit−Addressable SFRs

3-4

3.3 Bit−Addressable SFRs

All SFRs that have addresses divisible by eight (i.e., 80H, 88H, 90H, 98H, etc.)
are bit-addressable. This means that individual bits of these SFRs can be set
or cleared using the SETB and CLR instruction.

Note:

The SFRs whose names appear BOLD in Table 3−1 are SFRs that may be
accessed via bit operations; these also happen to be the first column of SFRs
on the left side of the chart. The other SFRs cannot be accessed using bit
operations such as SETB or CLR.

3.4 SFR Types

Four of the SFRs are related to the I/O ports. The MSC1210 has four I/O ports
of eight bits, for a total of 32 I/O lines. Whether a given I/O line is high or low,
and the value read from the line, is controlled by these SFRs. Refer to Section
15.1 for the detailed control of the port usages.

SFRs control the operation or the configuration of the MSC1210. For example,
TCON controls the timers and SCON controls the serial port.

The remaining SFRs can be thought of as auxiliary SFRs, in the sense that
they do not directly configure the MSC1210, but obviously the MSC1210 can-
not operate without them. For example, once the serial port has been config-
ured using SCON0, the program can read or write to the serial port using the
SBUF0 register.

SFR Definitions

3-5Special Function Registers (SFRs)

3.5 SFR Definitions

This section will endeavor to quickly overview each of the SFRs found in the
SFR chart map of Table 3−1. It is not the intention of this section to fully explain
the functionality of each SFR—this information will be covered in separate
chapters. This section is to just give a general idea of what each SFR does.

P0 (Port 0, Address 80 H, Bit-Addressable): This is input/output port 0. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 0 is pin P0.0, bit 7 is pin P0.7. Writing a value of 1 to a bit of
this SFR sets a high level on the corresponding I/O pin, whereas a value of 0
brings it to a low level.

Note:

Even though the MSC1210 has four I/O ports (P0, P1, P2, and P3), if the
hardware uses external RAM or external code memory (i.e., if the program
is stored in an external ROM or EPROM chip, or if external RAM chips are
being used), P0 or P2 may not be used. This is because the MSC1210 uses
ports P0 and P2 to address the external memory (refer to Section 15.1 for
the detailed control of the port usages). Thus, if external RAM or code
memory is being used, only ports P1 and P3 (except P3.6 and P3.7) may be
used by the application.

SP (Stack Pointer, Address 81 H): This is the stack pointer of the
microcontroller. This SFR indicates where the next value to be taken from the
stack will be read from Internal RAM. If a value is pushed onto the stack, the
value will be written to the address of SP + 1. That is to say, if SP holds the value
07H, a PUSH instruction will push the value onto the stack at address 08H. This
SFR is modified by all instructions that modify the stack, such as PUSH, POP,
LCALL, RET, RETI, and whenever interrupts are triggered by the
microcontroller.

Note:

The SP SFR, on startup, is initialized to 07H. This means the stack will start at
08H and will grow to larger addresses of internal RAM. It is necessary to initialize
SP in the program to some other value if alternate register banks and/or bit me-
morywill be used because alternate register banks 1, 2, and 3, as well as the
user bit variables, occupy internal RAM from addresses 08H through 2FH. It is
not a bad idea to initialize SP to 2FH as the first instruction of every one of the
programs, unless there is complete confidence that the program will not be us-
ing register banks and bit variables.

SFR Definitions

3-6

DPL0/DPH0 (Data Pointer 0 Low/High, Addresses 82 H/83H): The SFRs
DPL0 and DPH0 work together to represent a 16-bit value called Data Pointer
0. The data pointer is used in operations regarding external RAM and some
instructions involving code memory. It can represent values from 0000H to
FFFFH (0 through 65,535 decimal) because it is an unsigned 2-byte integer
value,

Note:

DPTR is really DPH0 and DPL0 taken together as a 16-bit value. In reality,
DPTR must almost always be dealt with one byte at a time. For example, to
push DPTR onto the stack, first push DPL0 and then DPH0. It is not possible
to simply push DPTR onto the stack as a single value. Additionally, there is
an instruction to increment DPTR. When this instruction is executed, the two
bytes are operated upon as a 16-bit value. However, there is no instruction
which decrements DPTR. If it is necessary to decrement the value of DPTR,
special code must be written to do so. DPTR is a useful storage location for
occasional 16-bit values that are being manipulated by your
program—especially if those values need to be incremented frequently.

DPL1/DPH1 (Data Pointer 1 Low/High, Addresses 84 H/85H): These two SFRs
work together to form a 16-bit value called Data Pointer 1. Its purpose and function
is the same as DPL0/DPH0 just described. The existence of two distinct data point-
ers allows a program to quickly copy data from one area of memory to another.

DPS (Data Pointer Select, Address 86 H): Bit 0 of this SFR determines whether
instructions that refer to DPTR will use Data Pointer 0 or Data Pointer 1.
If bit 0 is clear, Data Pointer 0 will be used (DPH0/DPL0). If bit 1 is set, Data Pointer
1 will be used (DPH1/DPL1).

PCON (Power Control, Address 87 H): This SFR is used to control the MSC1210
CPU power control modes. Certain operation modes allow the MSC1210 to go into
a type of sleep mode that requires much less power. These modes of operation
are controlled through PCON. Additionally, one of the bits in PCON is used to
double the effective baud rate of the MSC1210 primary serial port. Do not confuse
it with PDCON, which controls peripheral power-down.

TCON (Timer Control, Address 88 H, Bit-Addressable): This SFR is used
to configure and modify the way in which the two timers of the 8052 operate.
This SFR controls whether each of the two timers is running or stopped, and
contains a flag to indicate whether each timer has overflowed. Additionally,
some non-timer related bits are located in the TCON SFR. These bits are used
to configure the way in which the external interrupts are activated and also con-
tain the external interrupt flags that are set when an external interrupt has oc-
curred.

T2CON (Timer Control 2, Address C8 H, Bit-Addressable): This SFR is
used to configure and control the way in which timer 2 operates. This SFR is
only available on 8052s, and not on 8051s.

SFR Definitions

3-7Special Function Registers (SFRs)

TMOD (Timer Mode, Address 89 H): This SFR is used to configure the mode
of operation of each of the two timers. Using this SFR, the program may config-
ure each timer to be a 16-bit timer, an 8-bit auto-reload timer, a 13-bit timer,
or two separate timers. Additionally, the timers may be configured to only count
when an external pin is activated or to count events that are indicated on an
external pin.

TL0/TH0 (Timer 0 Low/High, Addresses 8A H/8BH): These two SFRs, taken
together, represent timer 0. Their exact behavior depends on how the timer is
configured in the TMOD SFR, however, these timers always count up. How
and when they increment in value is configurable.

TL1/TH1 (Timer 1 Low/High, Addresses 8C H/8DH): These two SFRs, taken
together, represent timer 1. Their exact behavior depends on how the timer is
configured in the TMOD SFR, however, these timers always count up. How
and when they increment in value is configurable.

CKCON (Clock Control, Address 8E H): This SFR is used by the MSC1210
to provide you with a number of timing controls that allow the MSC1210 to mim-
ic standard 8052 timing, or to fully exploit the high-speed nature of the
MSC1210. This SFR allows timers 0, 1, and 2 to be clocked at a rate of 1/12th
the crystal frequency (just like an 8052), or to be clocked at the rate of 1/4th
the crystal frequency such that the clocks will be incremented once every in-
struction cycle. Additionally, the CKCON SFR allows you to modify how long
the MSC1210 takes to access external data memory.

MWS (Memory Write Select, Address 8F H): This SFR contains a single bit
(bit 0) that enables writing to program flash memory. If this bit is clear, MOVX
@DPTR or MOVX @Ri write to data flash memory or data SRAM memory. If
this bit is set, MOVX @DPTR or MOVX @Ri write to program flash memory.

TL2/TH2 (Timer 2 Low/High, Addresses CC H/CDH): These two SFRs, taken
together, represent timer 2. Their exact behavior depends on how the timer is
configured in the T2CON SFR.

RCAP2L/RCAP2H (Timer 2 Capture Low/High, Addresses CA H/CBH):
These two SFRs, taken together, represent the timer 2 capture register. It may
be used as a reload value for timer 2, or to capture the value of timer 2 under
certain circumstances. The exact purpose and function of these two SFRs de-
pends on the configuration of T2CON.

P1 (Port 1, Address 90 H, Bit−Addressable): This is input/output port 1. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 1 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of
this SFR will set a high level on the corresponding I/O pin, whereas a value of
0 will bring it to a low level.

EXIF (External Interrupt Flag, Address 91 H): This SFR contains the inter-
rupt trigger flags for external interrupts 2 through 5. When these bits are set,
the corresponding interrupt will be triggered, as long as that interrupt is en-
abled.

SFR Definitions

3-8

MPAGE (Memory Page, Address 92 H): This SFR contains the high byte of
the address to access when using the MOVX @Ri instructions. A normal 8052
requires the high byte of the address be written to P2; the MSC1210, however,
requires that the byte be written to the MPAGE SFR.

CADDR (Configuration Address Register, Address 93 H): This SFR is used
to read the 128 bytes of Flash hardware configuration data. The contents of
the Flash configuration data at the address pointed to by this SFR will be
loaded into CDATA (see the following SFR definition).

CDATA (Configuration Data Register, Address 94 H): The contents of the
Flash hardware configuration data pointed to by CADDR will be readable in
this SFR. This SFR is read-only. Also note that attempting to read the Flash
configuration data while executing the program from flash memory will return
invalid data. Internal Boot ROM routines or external program memory user
routines may access this memory correctly.

MCON (Memory Configuration, Address 95 H): This SFR is used to control
the memory configuration. It determines breakpoints, as well as where the in-
ternal static RAM will be mapped to in memory.

SCON0 (Serial Control 0, Address 98 H, Bit-Addressable): This SFR is
used to configure the behavior of the MSC1210 primary onboard serial port.
This SFR controls the baud rate of the serial port, whether the serial port is acti-
vated to receive data, and also contains flags that are set when a byte is suc-
cessfully sent or received.

Note:

To use the MSC1210 onboard serial port, it is generally necessary to initialize
the following SFRs: SCON0, TCON, and TMOD. This is because SCON0
controls the serial port, but in most cases the program must use one of the
timers to establish the serial port baud rate. In this case, it is necessary to
configure timer 1 or timer 2 by initializing TCON and TMOD, or T2CON.

SBUF0 (Serial Buffer 0, Address 99 H): This SFR is used to send and receive
data via the primary serial port. Any value written to SBUF0 will be sent out the
serial port TXD pin. Likewise, any value which the MSC1210 receives via the
serial port RXD pin will be delivered to your program via SBUF0. In other
words, SBUF0 serves as the output port when written to and as an input port
when read from.

SPICON (SPI Control, Address 9A H): This SFR controls the basic configura-
tion of the SPI interface, including clocking rate, master/slave, and polarity.
Note that writing to or updating this SFR will reset the SPI interface.

SPIDATA (SPI Data, Address 9B H): This SFR acts in a fashion similar to
SBUF0 in that data written to this SFR will be sent out the SPI port and incom-
ing data received by the SPI port will be readable at this SFR address.

SFR Definitions

3-9Special Function Registers (SFRs)

SPIRCON (SPI Receive Control, Address 9C H): This SFR is dual-purpose:
when read, it will return the number of bytes currently in the SPI receive buffer;
when written, it can be used to clear the receive buffer and/or indicate how
many characters should accumulate in the receive buffer before triggering an
SPI interrupt.

SPITCON (SPI Transmit Control, Address 9D H): This SFR, like SPIRCON,
is dual-purpose: when read, it will return the number of bytes currently in the
SPI transmit buffer; when written, it can be used to clear the transmit buffer
and/or configure whether the SCLK driver is enabled (when in master mode).

SPISTART (SPI Buffer Start Address, Address 9E H): This SFR indicates where
the SPI buffer begins. A value of between 128 and 255 must be written to this SFR,
and the buffer is situated in internal RAM in the upper 128 bytes.

SPIEND (SPI Buffer End Address, Address 9F H): This SFR indicates where
the SPI buffer ends. It must be a value between 128 and 255, and must be larg-
er than SPISTART.

P2 (Port 2, Address A0 H, Bit-Addressable): This is input/output port 2. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 2 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of
this SFR will set a high level on the corresponding I/O pin, whereas a value of
0 will bring it to a low level.

Note:

Even though the MSC1210 has four I/O ports (P0, P1, P2, and P3), if the
hardware uses external RAM or external code memory (i.e., the program is
stored in an external ROM or EPROM chip, or if external RAM chips are
being used), P0, P2, P3.6, or P3.7 may not used. This is because the
MSC1210 uses ports P0 and P2 to address the external memory. Thus, if
external RAM or code memory is being used, only P1 and P3 (except P3.6
and P3.7) are available to the application for I/O.

PWMCON (PWM Control, Address A1 H): This SFR controls the PWM that
can be generated automatically by the MSC1210.

PWMLOW/PWMHIGH (PWM Low/High-Byte, Addresses A2 H/A3H): This
SFR works together with the PWMCON SFR to determine the length and
shape of the PWM. This SFR contains the low byte.

PAI (Pending Auxiliary Interrupt, Address A5 H): This SFR contains infor-
mation regarding which of the various possible conditions triggered an auxilia-
ry interrupt. This SFR is normally used by the ISR to determine the highest
priority pending auxiliary interrupt.

AIE (Auxiliary Interrupt Enable, Address A6 H): This SFR enables and
disables the various interrupts that were described in the previous paragraph
regarding PAI. The interrupts mentioned in PAI will only be triggered if they are
enabled in this SFR and if EAI (in EICON) is enabled. When read, the AIE SFR
provides the status of the interrupt, regardless of the state of the EAI bit.

SFR Definitions

3-10

AISTAT (Auxiliary Interrupt Status, Address A7 H): This is a read-only SFR
that will provide you with the current status of all the enabled (not masked by
AIE) auxiliary interrupts. Those interrupts that have been disabled (masked)
by AIE will not be available in AISTAT.

IE (Interrupt Enable, Address A8 H): This SFR is used to enable and disable
specific interrupts. The low seven bits of the SFR are used to enable or disable
the specific interrupts, whereas the highest bit is used to enable or disable ALL
interrupts. Therefore, if the high bit of IE is 0, all interrupts are disabled regardless
of whether an individual interrupt is enabled by setting a lower bit.

BPCON (Breakpoint Control, Address A9 H): This SFR controls whether or
not breakpoints are enabled and, if they are, what the source of the breakpoint
is.

BPL/BPH (Breakpoint Address Low/High Byte, Addresses AA H/ABH):
These two SFRs hold a 16-bit address at which a breakpoint will be triggered.
Which breakpoint (0 or 1) the SFRs reference depends on the configuration
of the MCON SFR.

P0DDRL/P0DDRH (Port 0 Data Direction Low/High Byte, Addresses
ACH/ADH): These two SFRs, together, configure the state of each port 0 pin:
standard 8051 (pull-up), CMOS output, ppen-drain output, or input.

P1DDRL/P1DDRH (Port 1 Data Direction Low/High Byte, Addresses
AEH/AFH): These two SFRs, together, configure the state of each port 1 pin:
standard 8051 (pull-up), CMOS output, open-drain output, or input.

P3 (Port 3, Address B0 H, Bit-Addressable): This is input/output port 3. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 3 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of
this SFR will set a high level on the corresponding I/O pin, whereas a value of
0 will bring it to a low level.

P2DDRL/P2DDRH (Port 2 Data Direction Low/High Byte, Addresses
B1H/B2H): These two SFRs, together, configure the state of each port 2 pin:
standard 8051 (pull-up), CMOS output, open-drain output, or input.

P3DDRL/P3DDRH (Port 3 Data Direction Low/High Byte, Addresses
B3H/B4H): These two SFRs, together, configure the state of each port 3 pin:
standard 8051 (pull-up), CMOS output, open-drain output, or input.

IP (Interrupt Priority, Addresses B8 H, Bit-Addressable): This SFR is used
to specify the relative priority of each interrupt. An interrupt may either be of
low (0) priority or high (1) priority. An interrupt may only interrupt interrupts of
lower priority. For example, if we configure the MSC1210 so that all interrupts
are of low priority except the serial interrupt, the serial interrupt will always be
able to interrupt the system, even if another interrupt is currently executing.
However, if a serial interrupt is executing, no other interrupt will be able to inter-
rupt the serial interrupt routine, because the serial interrupt routine has the
highest priority.

SFR Definitions

3-11Special Function Registers (SFRs)

SCON1 (Serial Control 1, Address C0 H, Bit-Addressable): This SFR is
used to configure the behavior of the MSC1210 secondary onboard serial port.
SCON1 controls the baud rate of the serial port, whether the serial port is acti-
vated to receive data, and also contains flags that are set when a byte is suc-
cessfully sent or received.

SBUF1 (Serial Buffer 1, Address C1 H): This SFR is used to send and receive
data via the secondary onboard serial port. Any value written to SBUF1 will be
sent out the serial port TXD1 pin. Likewise, any value that the MSC1210
receives via the serial port RXD1 pin will be delivered to the user program via
SBUF1. In other words, SBUF1 serves as the output port when written to, and
as an input port when read from.

EWU (Enable Wake−up, Address C6 H): The EWU SFR controls under what
conditions the MSC1210 will wake up from idle mode: external 1 interrupt, ex-
ternal 0 interrupt, and watchdog interrupt. Idle wakeup from Auxint is con-
trolled via EAI bit of EICON SFR.

PSW (Program Status Word, Address D0 H, Bit-Addressable): This SFR is
used to store a number of important bits that are set and cleared by instruc-
tions. The PSW SFR contains the carry flag, the auxiliary carry flag, the over-
flow flag, and the parity flag. Additionally, the PSW SFR contains the register
bank select flags that are used to select which of the R register banks are cur-
rently selected.

Note:

When writing an interrupt handler routine, it is a very good idea to always
save the PSW SFR on the stack and restore it when the interrupt is complete.
Many instructions modify the bits of the PSW. If the interrupt routine does not
ensure that the PSW is the same upon exit as it was upon entry, the program
is bound to behave rather erratically and unpredictably, and it will be tricky
to debug because the behavior may not make any sense.

OCL/OCM/OCH (Offset Calibration Low/Middle/High Byte, Addresses
D1H/D2H/D3H): These three SFRs make up a 24-bit value that sets the ADC
offset calibration.

GCL/GCM/GCH (Gain Low/Middle/High Byte, Addresses D4 H/D5H/D6H):
These three SFRs make up a 24-bit value that sets ADC gain calibration.

ADMUX (ADC Multiplexer Register, Address D7 H): This SFR selects the
positive input for the ADC and/or selects the temperature sensor option.

EICON (Enable Interrupt Control, Address D8 H, Bit-Addressable): This
SFR controls whether or not the additional interrupts provided by the MSC1210
will cause an interrupt to occur when their corresponding conditions are en-
abled.

ADRESL/ADRESM/ADRESH (ADC C onversion Results, Addresses
D9H/DAH/DBH): These three SFRs make up a 24−bit value which holds the re-
sults of an ADC conversion.

SFR Definitions

3-12

ADCON0/ADCON1 (ADC Control 0 and 1, Addresses DC H/DDH): These
two SFRs allow the user program to configure various aspects of the ADC.

ADCON2/ADCON3 (ADC Controls 2 and 3, Addresses DE H/DFH): These
two SFRs control the decimation rate of the ADC; in other words, they control
the frequency at which sampled data will be provided to the user program via
the ADRES SFRs.

ACC (Accumulator, Addresses E0 H, Bit−Addressable): The accumulator is
one of the most-used SFRs, because it is involved in so many instructions. The
accumulator resides as an SFR at E0H, which means the instruction MOV A,#20h
is the same as MOV E0h,#20h. However, it is a good idea to use the first method
because it only requires two bytes, whereas the second option requires three
bytes.

SSCON (Summation/Shift Control, Address E1 H): This SFR controls
what action is taken in regards to summation registers
SUMR0/SUMR1/SUMR2/SUMR3.

SUMR0/SUMR1/SUMR2/SUMR3 (Summation Registers 0/1/2/3, Address-
es E2H/E3H/E4H/E5H): These four registers, together, make up a 32-bit
summation value for the ADC. Writing a value to the least significant byte
(SUMR0) will cause the values in the other three summation registers to be
added to the summation result.

ODAC (Offset DAC Register, Address E6 H): This SFR allows the MSC1210
to shift the input by up to half of the ADC input range.

LVDCON (Low-Voltage Detection Control, Address E7 H): The LVDCON
SFR configures the low-voltage detection on both the analog and digital sup-
plies. In both cases, the LVDCON allows the user program to specify the trip
voltage below which the low-voltage detection will be triggered.

EIE (Extended Interrupt Enable, Address E8 H, Bit-Addressable): This
SFR configures whether or not the extended interrupts are enabled, including
the watchdog and external interrupts 2 through 5.

HWPC0/HWPC1 (Hardware Product Code, Addresses E9 H/EAH): These
two SFRs are read-only and can provide the user program with information
regarding the part number version and how much flash memory is available
on the part.

FMCON (Flash Memory Control, Address EE H): This SFR controls certain
aspects of the flash memory, including page erase and byte write operation.
FRCM controls power saving for flash memory read operations when the
MSC1210 is running at a low clock frequency. It also includes a bit that indi-
cates whether or not flash memory is currently idle or busy with a prior memory
access operation.

SFR Definitions

3-13Special Function Registers (SFRs)

FTCON (Flash Memory Timing Control, Address EF H): This SFR controls
the timing and period of flash memory, specifically for writing and erasing flash
memory. The period of writing to flash memeory is determined by USEC and
the low four bits of FTCON, and should produce a write period of 30µs to 40µs.
Meanwhile, the period of erasing flash memory is determined by
MSECH/MSECL and the high four bits of FTCON, and should produce an
erase period of 4ms to 11ms.

B (B Register , Address F0 H, Bit-Addressable): The B register is used in two
instructions: multiply and divide. The B register is also commonly used by pro-
grammers as an auxiliary register to store temporary values.

PDCON (Power-Down Control, Address F1 H): This SFR allows the user
program to power down specific on-chip peripherals that the program may not
need at a given moment, thus contributing to a more energy-efficient design.
This SFR allows the user to power down (or power up) the PWM generator,
ADC, watchdog, SPI system, and the system timer.

PASEL (PSEN/ALE select, Address F2 H): This SFR allows for a user pro-
gram that runs entirely in internal flash memory to control the ALE and PSEN
lines. The PASEL allows you to configure both ALE and PSEN such that they
either behave normally or may be forced high or low. In this manner, PSEN and
ALE may be used as two additional output lines if they are not needed for their
normal functions.

Note:

When these two lines are used as output lines, they should only drive light
capacitive loads to avoid triggering serial or parallel flash programming
modes.

ACLK (Analog Clock, Address F6 H): This SFR is used to determine the ana-
log clock for the ADC. The value of ACLK, plus 1, multiplied by 64 represents
the number of instruction cycles between each analog sample. For example,
if an instruction cycle lasts 100ns and ACLK is 9, then ACLK + 1 = 10, so
10 � 100ns = 1µs, multiplied by 64 would result in a sample being made every
64µs. A sample every 64µs is equivalent to 1 000 000 / 64 = 15 625 samples
per second.

SRST (System Reset Register , Address F7 H): Setting this SFR to 1 and then
0 will cause a system reset to occur. This provides an easy way to reset the
system via software without the need for external circuitry.

EIP (Extended Interrupt Priority, Address F8 H): This is the pnterrupt priority
register for the extended interrupts that are enabled/disabled using the EIE
SFR (E8H).

SECINT (Seconds Timer Interrupt, Address F9 H): This SFR can be set to
cause an interrupt to occur after the specified number of fractions of a second.
Specifically, this SFR can cause an interrupt every 100 milliseconds to every
12.8 seconds, assuming the HMSEC is set to a value that represents 100ms.
The precise frequency at which SECINT will cause an interrupt depends on
the system clock and the values of the MSECH, MSECL, HMSEC, and
SECINT SFRs.

SFR Definitions

3-14

MSINT (Milliseconds Interrupt, Address FA H): This SFR can be set to
cause an interrupt to occur after the specified number of milliseconds. This as-
sumes that the millisecond registers FCH and FDH are set to generate a cycle
every millisecond. The precise frequency at which MSINT will cause an inter-
rupt depends on the system clock and the value of the MSECH, MSECL, and
MSINT SFRs.

USEC (Microsecond Register, Address FB H): This SFR is divided into the
clock speed to determine the timing of 1ms. This value is used for program-
ming flash memory. The value in USEC, taken together with the low four bits
of FTCON, should produce a timing of 30µs to 40µs, which is used for flash
write operations.

MSECL/MSECH (Millisecond Low/High Registers, Addresses FC H/FDH):
These two SFRs, together, are used by the system to determine how long a
millisecond is. This value is used for erasing flash memory, millisecond interrupt,
second interrupt, and watchdog time. Although it is named Millisecond Low/High,
the clock speed and the value placed in these registers will determine the exact
length of time measured.

HMSEC (Hundred Millisecond Clock, Address FE H): This SFR is used to
create a 100ms clock based on the MSECL/MSECH SFRs. However, the ex-
act frequency generated by this SFR will depend on the system clock, the val-
ue of MSECL/MSECH, and the value placed in this register.

WDTCON (Watchdog Control, Address FF H): The WDTCON SFR is used
to enable, disable, and reset the watchdog timer. Once enabled, this SFR must
be periodically reset in order to prevent the system from resetting.

4-1Basic Registers

"
��� ��	������

Chapter 4 describes the basic register functions of the MSC1210 ADC.

Topic Page

4.1 Description 4-2.

4.2 Accumulator 4-2.

4.3 R Registers 4-2.

4.4 B Register 4-3.

4.5 Program Counter (PC) 4-3.

4.6 Data Pointer (DPTR0/DPTR1) 4-4.

4.7 Stack Pointer (SP) 4-4.

Chapter 4

Description

4-2

4.1 Description

A number of MSC1210 registers can be considered basic. Very little can be
done without them and a detailed explanation of each one is warranted to
make sure the reader understands these registers before getting into more
complicated areas of development.

4.2 Accumulator

The accumulator is a familiar concept when working with any assembly lan-
guage.

The accumulator, as its name suggests, is used as a general register to accu-
mulate the results of a large number of instructions. It can hold an 8-bit (1-byte)
value and is the most versatile register of the MSC1210, due to the shear num-
ber of instructions that make use of the accumulator. More than half of the 255
opcodes of the MSC1210 manipulate or use the accumulator in some way.

For example, if adding the numbers 10 and 20, the resulting 30 will be stored
in the accumulator. Once a value is in the accumulator, it may continue to be
processed, or may be stored in another register or in memory.

4.3 R Registers

The R registers are sets of eight registers that are named R0 through R7.

These registers are used as auxiliary registers in many operations. To contin-
ue with the previous example of adding 10 and 20, the original number 10 may
be stored in the accumulator, whereas the value 20 may be stored in, say, reg-
ister R4. To process the addition, the following command would be executed:

ADD A,R4

After executing this instruction, the accumulator will contain the value 30.

The R registers are considered as very important auxiliary, or helper, registers.
The accumulator alone would not be very useful if it were not for these R regis-
ters.

The R registers are also used to store values temporarily. For example, add
the values in R1 and R2 together and then subtract the values of R3 and R4.
One way to do this would be:

MOV A,R3 ;Move the value of R3 into the accumulator

ADD A,R4 ;Add the value of R4

MOV R5,A ;Store the resulting value temporarily in R5

MOV A,R1 ;Move the value of R1 into the accumulator

ADD A,R2 ;Add the value of R2

SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)

As shown, R5 was used to temporarily hold the sum of R3 and R4. Of course,
this is not the most efficient way to calculate (R1 + R2) − (R3 + R4), but it does
illustrate the use of the R registers as a way to store values temporarily.

B Register

4-3Basic Registers

As mentioned previously, there are four sets of R registers: register bank 0, 1,
2, and 3. When the MSC1210 is first powered up, register bank 0 (addresses
00H through 07H) is used by default. In this case, for example, R4 is the same
as internal RAM address 04H. However, yours program may instruct the
MSC1210 to use one of the alternate register banks (i.e., register banks 1, 2,
or 3). In this case, R4 will no longer be the same as internal RAM address 04H.
For example, if your program instructs the MSC1210 to use register bank 1,
register R4 will now be synonymous with internal RAM address 0CH. If select-
ing register bank 2, R4 is synonymous with 14H, and if selecting register bank
3, it is synonymous with address 1CH.

The concept of register banks adds a great level of flexibility to the MSC1210, es-
pecially when dealing with interrupts (see Chapter 10, Interrupts, for details).
However, always remember that the register banks really reside in the first 32 by-
tes of internal RAM.

4.4 B Register

The B register is very similar to the accumulator in the sense that it may hold
an 8-bit (1-byte) value.

The B register is only used by two MSC1210 instructions: MUL AB and DIV AB.
Therefore, to quickly and easily multiply or divide A by another number, the oth-
er number may be stored in B.

Aside from the MUL and DIV instructions, the B register is often used as anoth-
er temporary storage register much like a 9th R register.

4.5 Program Counter (PC)

The program counter (PC) is a 2-byte address that tells the MSC1210 where
the next instruction to execute is found in memory. When the MSC1210 is ini-
tialized, the PC always starts at 0000H and is incremented each time an in-
struction is executed. It is important to note that the PC is not always increm-
ented by one. The PC will be incremented by two or three in these cases be-
cause some instructions require two or three bytes.

The PC is special in that there is no way to directly modify its value. That is to
say, something like PC = 2430H cannot be done. On the other hand, by execut-
ing LJMP 2430H, the same thing is effectively accomplished.

It is also interesting to note that although the value of the PC may be changed
(by executing a jump instruction, etc.), there is no way to read the value of the
PC. That is to say, there is no way to ask the 8052 “what address are you about
to execute?”

Data Pointer (DPTR0/DPTR1)

4-4

4.6 Data Pointer (DPTR0/DPTR1)

The data pointer (DPTR0/DPTR1) is the user-accessible 16-bit (2-byte) regis-
ter of the MSC1210. The accumulator, R registers, and B register are all 1-byte
values. The PC just described is a 16-bit value, but is not directly user-accessi-
ble as a working register.

DPTR0/DPTR1, as the name suggests, are used to point to data. They are
used by a number of commands that allow the MSC1210 to access data and
code memory. When the MSC1210 accesses external memory, it accesses
the memory at the address indicated by DPTR0/DPTR1.

Although DPTR0/DPTR1 is most often used to point to data in external
memory or code memory, many developers take advantage of the fact that it
is the only true 16-bit register available. It is often used to store 2-byte values
that have nothing to do with memory locations. DPTR0 or DPTR1 is selected
by SFR DPS.

4.7 Stack Pointer (SP)

The stack pointer (SP), like all registers except DPTR and PC, may hold an
8-bit (1-byte) value. The SP is used to indicate where the next value to be re-
moved from the stack should be taken from.

When a value is pushed onto the stack, the MSC1210 first increments the val-
ue of the SP and then stores the value at the resulting memory location.

When a value is popped off the stack, the MSC1210 returns the value from the
memory location indicated by the SP, and then decrements the value of the SP.

This order of operation is important. When the MSC1210 is initialized, SP will
be initialized to 07H. If a value is immediately pushed onto the stack, the value
will be stored in internal RAM address 08H. This makes sense, taking into ac-
count what was mentioned two paragraphs above. First the MSC1210 will in-
crement the value of the SP (from 07H to 08H) and then will store the pushed
value at that memory address (08H).

The SP is modified directly by the MSC1210 by six instructions: PUSH, POP,
ACALL, LCALL, RET, and RETI. It is also used intrinsically whenever an inter-
rupt is triggered (more on interrupts in Chapter 10—do not worry about them
for now).

5-1Addressing Modes

#��������	 �����

Chapter 5 describes the various addressing modes of the MSC1210.

Topic Page

5.1 Description 5-2.

5.2 Immediate Addressing 5-2.

5.3 Direct Addressing 5-3.

5.4 Indirect Addressing 5-4.

5.5 External Direct 5-5.

5.6 External Indirect 5-6.

5.7 Code Indirect 5-6.

Chapter 5

Description

5-2

5.1 Description

As is the case with all microcomputers from the PDP-8 onwards, the MSC1210
uses several memory addressing modes. An addressing mode refers to how
you are accessing (addressing) a given memory location or data value. In
summary, the addressing modes are listed in Table 5−1 with an example of
each.

Table 5−1.MSC1210 Addressing Modes.

Mode Example

Immediate Addressing MOV A,#20h

Direct Addressing MOV A,30h

Indirect Addressing MOV A,@R0

External Direct MOVX A,@DPTR

External Indirect MOVX A,@R0

Code Indirect MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility to the programmer.

5.2 Immediate Addressing

Immediate addressing is so named because the value to be stored in memory
immediately follows the opcode in memory. That is to say, the instruction itself
dictates what value will be stored in memory. For example:

MOV A,#20h

This instruction uses immediate addressing because the accumulator (A) will
be loaded with the value that immediately follows; in this case 20H (hex).

Immediate addressing is very fast because the value to be loaded is included
in the instruction. However, because the value to be loaded is fixed at compile
time, it is not very flexible. It is used to load the same, known value every time
the instruction executes.

Direct Addressing

5-3Addressing Modes

5.3 Direct Addressing

Direct addressing is so named because the value to be stored in memory is
obtained by directly retrieving it from another memory location. For example:

MOV A,30h

This instruction will read the data out of internal RAM address 30H (hex) and
store it in the accumulator (A).

Direct addressing is generally fast because, although the value to be loaded
is not included in the instruction, it is quickly accessible due to it being stored
in the MSC1210 internal RAM. It is also much more flexible than immediate
addressing because the value to be loaded is whatever is found at the given
address, which may change.

Additionally, it is important to note that when using direct addressing, any in-
struction that refers to an address between 00H and 7FH is referring to internal
RAM. Any instruction that refers to an address between 80H and FFH is refer-
ring to the SFR control registers that control the MSC1210 itself.

The obvious question that may arise is “if direct addressing an address from
80H through FFH refers to SFRs, how can I acess the upper 128 bytes of inter-
nal RAM that are available with the MSC1210?” The answer is: it cannot be
accessed using direct addressing. As stated, if an address of 80H through FFH
is directly referred to, it refers to an SFR.

However, the upper 128 bytes of RAM of the MSC1210 can be accessed by
using the next addressing mode, indirect addressing.

Indirect Addressing

5-4

5.4 Indirect Addressing

Indirect addressing is a very powerful addressing mode that in many cases
provides an exceptional level of flexibility. Indirect addressing is also the only
way to access the upper 128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A,@R0

This instruction causes the MSC1210 to analyze the value of the R0 register.
The MSC1210 then loads the accumulator (A) with the value from Internal
RAM that is found at the address indicated by R0.

For example, suppose R0 holds the value 40H and internal RAM address 40H
holds the value 67H. When the above instruction is executed, the 8052 checks
the value of R0. The MSC1210 gets the value out of internal RAM address 40H
(which holds 67H) and stores it in the accumulator because R0 holds 40H.
Thus, the accumulator ends up holding 67H.

Indirect addressing always refers to internal RAM; it never refers to an SFR.
In a prior example, it was mentioned that SFR 99H can be used to write a value
to the serial port. Therefore, one can think that the following code would be a
valid solution to write the value of 1 to the serial port:

MOV R0,#99h ;Load the address of the serial port

MOV @R0,#01h ;Send 01 to the serial port −− WRONG!!

This is not valid. These two instructions write the value 01H to internal RAM
address 99H on the MSC1210 because indirect addressing always refers to
internal RAM.

External Direct Addressing

5-5Addressing Modes

5.5 External Direct Addressing

External memory is accessed using a suite of instructions that use external
direct addressing. It is referred to as external direct because it appears to be
direct addressing, but it is used to access external memory rather than internal
memory.

There are only two commands that use external direct addressing mode:

MOVX A,@DPTR

MOVX @DPTR,A

As you can see, both commands use DPTR. In these instructions, DPTR must
first be loaded with the address of external memory that you wish to read or
write. Once DPTR holds the correct external memory address, the first com-
mand moves the contents of that external memory address into the accumula-
tor. For example, if you want to read the contents of external RAM address
1516H, execute the instructions:

MOV DPTR,#1516h ;Select the external address to read

MOVX A,@DPTR ;Move the contents of external RAM into
;accumulator

The second command does the opposite: it allows you to write the value of the
accumulator to the external memory address pointed to by DPTR. For exam-
ple, if you want to write the contents of the accumulator to external RAM ad-
dress 1516H, execute the instructions:

MOV DPTR,#1516h ;Select the external address to read

MOVX @DPTR,A ;Move the contents of external RAM into
;accumulator

MOVX to data flash memory writes to the data flash memory location. To clear
the flash content, page erase is needed.

External Indirect Addressing

5-6

5.6 External Indirect Addressing

External memory can also be accessed using a form of indirect addressing
called external indirect. This form of addressing is usually only used in relative-
ly small projects that have a very small amount of external RAM. An example
of this addressing mode is:

MOVX @R0,A

Once again, the value of R0 is first read and the value of the accumulator is
written to that address in external RAM, internal extended SRAM, and internal
flash data memory. High address A8∼A15 is provided by the MPAGE SFR be-
cause the value of @R0 can only be 00H through FFH—that is A0∼A7 of the
previous memories.

5.7 Code Indirect Adressing

The last addressing mode is called code indirect and offers two additional 8052
instructions that allow you to access the program code itself. This is useful for
accessing data tables, strings, etc. The two instructions are:

MOVC A,@A+DPTR

MOVC A,@A+PC

For example, if you want to access the data stored in code memory at address
2021H, execute the instructions:

MOV DPTR,#2021h ;Set DPTR to 2021h

CLRA ;Clear the accumulator (set to 00h)

MOVC A,@A+DPTR ;Read code memory address 2021h into
;the accumulator

The MOVC A,@A+DPTR instruction moves the value contained in the code
memory address that is pointed to by adding DPTR to the accumulator.

To write to flash code memory, set the MXWS bit and MOVX will write to flash
code memory (if the memory is not write protected by harware configuration
bits). The same operation can be used to perform flash page erase. See sec-
tion 1.5, Flash Memory, for more details.

6-1Program Flow

$��	�
� ���%

Chapter 6 describes the program flow of the MSC1210 ADC.

Topic Page

6.1 Description 6-2.

6.2 Conditional Branching 6-2.

6.3 Direct Jumps 6-2.

6.4 Direct Calls 6-4.

6.5 Returns From Routines 6-4.

6.6 Interrupts 6-4.

Chapter 6

Description

6-2

6.1 Description

When the MSC1210 is first initialized the PC SFR is cleared to 0000H. The part
then begins to execute instructions sequentially in memory unless a program
instruction causes the PC to be otherwise altered. There are various instruc-
tions that can modify the value of the PC; specifically, conditional branching
instructions, direct jumps and calls, and returns from subroutines. Additionally,
interrupts (when enabled) can cause the program flow to deviate from its
otherwise sequential scheme.

6.2 Conditional Branching

The MSC1210 contains a suite of instructions that, as a group, are referred to
as “conditional branching” instructions. These instructions cause the program
execution to follow a non-sequential path if a certain condition is true.

Let us use the JB instruction as an example. This instruction means jump if bit
set. An example of the JB instruction might be:

JB 45h,HELLO

NOP

HELLO:....

In this case, the MSC1210 will analyze the contents of bit 45H. If the bit is set,
program execution will jump immediately to label HELLO, skipping the NOP
instruction. If the bit is not set, the conditional branch fails and program execu-
tion continues as usual with the NOP instruction that follows.

Conditional branching is really the fundamental building block of program logic
because all decisions are accomplished by using conditional branching. Con-
ditional branching can be thought of as the “IF ... THEN” structure of assembly
language.

Note:

Your program may only branch to instructions located within 128 bytes prior
to, or 127 bytes after the address that follows the conditional branch
instruction. This means that in the above example, the label HELLO must be
within −128 bytes to +127 bytes of the memory address that contains the
conditional branching instruction.

6.3 Direct Jumps

While conditional branching is extremely important, it is often necessary to
make a direct branch to a given memory location without basing it on a given
logical decision. This is equivalent to saying GOTO in Basic. In this case, the
program flow will continue at a given memory address without considering any
conditions.

This is accomplished with the MSC1210 using direct jump and call
instructions. As illustrated in the last paragraph, this suite of instructions
causes program flow to change unconditionally.

Direct Jumps

6-3Program Flow

Consider the example:

LJMP NEW_ADDRESS

.

.

.

NEW_ADDRESS:

The LJMP instruction in this example means “Long Jump.” When the
MSC1210 executes this instruction, the PC is loaded with the address of
NEW_ADDRESS and program execution continues sequentially from there.

The obvious difference between the Direct Jump and Call instructions and
conditional branching is that with Direct Jumps and Calls, program flow always
changes; with conditional branching, program flow only changes if a certain
condition is true.

It is worth mentioning that, aside from LJMP, there are two other instructions
that cause a direct jump to occur: the SJMP and AJMP commands.
Functionally, these two commands perform the exact same function as the
LJMP command—that is to say, they always cause program flow to continue
at the address indicated by the command. However, these instructions differ
from LJMP in that they are not capable of jumping to any address. They both
have limitations as to the range of the jumps.

The SJMP command, like the conditional branching instructions, can only
jump to an address within −128/+127 bytes of the address following the SJMP
command.

The AJMP command can only jump to an address that is in the same 2k block
of memory as the byte following the AJMP command. That is to say, if the
AJMP command is at code memory location 650H, it can only do a jump to ad-
dresses 0000H through 07FFH (0 through 2047, decimal).

You may ask “why use the SJMP or AJMP commands, which have restrictions
as to how far they can jump, if they do the same thing as the LJMP command
that can jump anywhere in memory?” The answer is simple: the LJMP com-
mand requires three bytes of code memory, whereas both the SJMP and
AJMP commands require only two. When developing applications that have
memory restrictions, quite a bit of memory can be saved using the 2-byte
AJMP/SJMP instructions instead of the 3-byte instruction.

Note:

Some assemblers will do the above conversion automatically. That is, they
will automatically change LJMPs to SJMPs whenever possible. This is a nifty
and very powerful capability that may be a necessity in an assembler, if
planning to develop many projects that have relatively tight memory
restrictions.

Direct Calls

6-4

6.4 Direct Calls

Another operation that will be familiar to seasoned programmers is the LCALL
instruction. This is similar to a “GOSUB” command in Basic.

When the MSC1210 executes an LCALL instruction, it immediately pushes the
current PC onto the stack and then continues executing code at the address
indicated by the LCALL instruction.

6.5 Returns From Routines

Another structure that can cause program flow to change is the “Return from
Subroutine” instruction, known as RET in Assembly language. The RET in-
struction, when executed, returns to the address following the instruction that
called the given subroutine. More accurately, it returns to the address that is
stored on the stack.

The RET command is direct in the sense that it always changes program flow
without basing it on a condition, but is variable in the sense that where program
flow continues can be different each time the RET instruction is executed, de-
pending on where the subroutine was originally called from.

6.6 Interrupts

An interrupt is a special feature that allows the MSC1210 to break from its nor-
mal program flow to execute an immediate task, providing the illusion of multi-
tasking. The word interrupt can often be substituted with the word event.

An interrupt is triggered whenever a corresponding event occurs. When the
event occurs, the MSC1210 temporarily puts the normal execution of the pro-
gram on hold and executes a special section of code referred to as an interrupt
handler. The interrupt handler performs whatever special functions are re-
quired to handle the event and then returns control to the MSC1210, at which
point program execution continues as if it had never been interrupted.

The topic of interrupts is somewhat tricky and very important. For that reason,
Chapter 10 is dedicated to the topic.

7-1System Timing

������ �����	

Chapter 7 describes the system timing of the MSC1210 ADC.

Topic Page

7.1 Description 7-2.

7.2 System Timers 7-4.

7.3 Startup Timing 7-9.

Chapter 7

Description

7-2

7.1 Description

In order to understand—and better make use of—the MSC1210, it is neces-
sary to understand some underlying information concerning timing.

The MSC1210 operates with timing derived from an external crystal or a clock
signal generated by some other system. A crystal is a mechanical oscillator
that allows an electronic oscillator to run at a very precisely known frequency.
One can find crystals of virtually any frequency depending on the application
requirements. When using an MSC1210, a common crystal frequency is
11.0592MHz due to baud rate accuracy considerations.

Microcontrollers (and many other electrical systems) use their oscillators to
synchronize operations. The MSC1210 uses its crystal or clock for precisely
that—to synchronize its internal operation. The MSC1210 operates using
what are called instruction cycles. A single instruction cycle is the minimum
amount of time in which a single MSC1210 instruction can be executed, al-
though many instructions take multiple cycles.

Note:

A standard 8052 executes an instruction in 12 clock cycles rather than 4, as
shown in Figure 7−1. This means that, with no program changes, an
MSC1210 will execute code approximately three times faster than the same
program run under a traditional 8052. It also means that programs written for
a standard 8052 may have to be modified if they depend on certain
instructions executing in a certain amount of time. The fact that the MSC1210
executes an instruction in four cycles is not configurable.

Figure 7−1. Standard 8051 Timing.
S in g le−B y t e

S in g le−C y c le

In s t r u c t i o n

S in g le−B y t e S in g le−C y c le
I n s t r u c t i o n

4 C y c le s

1 2 C y c le s

A L E

P S E N

A D 0 −A D 7

P O R T 2

X T A L 1

A L E

P S E N

A D 0 −A D 7

P O R T 2

Description

7-3System Timing

An instruction cycle is, in reality, four clock cycles. That is to say, if an instruc-
tion takes one instruction cycle to execute, it will take four clocks from a crystal
or oscillator to execute. Using the maximum crystal frequency of 33MHz, the
crystal oscillates 33 000 000 times per second. Due to one instruction cycle
being four clock cycles, the MSC1210 can execute the following number of in-
struction cycles per second:

33 000 000 / 4 = 8 250 000

This means that the MSC1210 can execute 8 250 000 single-cycle instructions
per second.

It is important to emphasize that not all instructions execute in the same amount
of time. The fastest instructions require one instruction cycle (four clock cycles),
many others require two instruction cycles (eight clock cycles), and the two slow
math operations require four instruction cycles (16 clock cycles).

Due to all the instructions requiring different amounts of time to execute, a very
obvious question comes to mind: how can one keep track of time in a time-criti-
cal application if we have no reference to time in the outside world?

Luckily, the MSC1210 includes timers that allow us to time events with high
precision, which is the topic of the next chapter.

System Timers

7-4

7.2 System Timers

In addition to the standard 8052 timers to be described in Chapter 8, the
MSC1210 includes the following system timers, both of which are capable of
triggering an auxiliary interrupt (for more on interrupts, see chapter 10):

� Microseconds Timer: set via the USEC (FBH) SFR, and is used to configure
the flash writing timing and also used by the PWM module.

� Milliseconds Timer: set via the MSECH (FDH) and MSECL (FCH) SFRs, and
is used as a base to configure the flash erase timing, as well as the millisec-
onds interrupt, and also as a base for the seconds interrupt and the watchdog
timer.

The MSC1210 timers are illustrated in Figure 7−2. The SYS Clock is the signal
that comes from the oscillator or other timing input. This signal is used as the
input for all of the part’s timing logic, including the following timing circuits:

� SPI I/O (chapter 13)

� PWM/Tone generation (chapter 11).

� Flash erase/write (chapter 15).

� Milliseconds/Seconds/Watchdog interrupts (chapter 7, 14).

� A/D conversion timing (chapter 12)

� Standard 8052 timers 0, 1, and 2 (chapter 8).

System Timers

7-5System Timing

Figure 7−2. MSC1210 Timing Chain and Clock Control

Figure 7−3. SPI/PWM/Flash Write Timing

System Timers

7-6

7.2.1 Microseconds Timer

The microseconds timer is used by the MSC1210 in order to establish a 1µs
clock. This clock, in turn, is used by flash memory to establish timing for flash
writes, as well as by the PWM module.

The USEC (FBH) SFR should be set to a value such that the system clock divid-
ed by the value of this SFR, plus one, generates a 1µs clock. For example, given
a system clock of 12.000MHz, USEC should be set to:

12 000 000/1 000 000 = 12 – 1 = 11.

Therefore, for a 12.000MHz system clock, USEC should be set to 11 to generate
a 1µs clock.

In reality, the USEC SFR may be set to a value that produces a clock that is
something other than 1µs. This works fine as long as the other two timers that
depend on the USEC SFR are adjusted accordingly.

7.2.1.1 PWM Clock

The PWM module may use the microseconds timer as its input clock. By clear-
ing SPDSEL (PWMCON.3), the input clock for the PWM module will be the mi-
crosecond timer. This creates a 1MHz input clock for the PWM module, as-
suming the microseconds timer is correctly configured to produce a 1µs clock.
In this case, the microseconds clock is further divided by the value contained
in the PWMHI/PWMLOW SFRs.

7.2.1.2 Flash Write Timing

The microseconds clock is further used to establish the flash memory write timing.
The flash write timing uses the microsecond clock as an input clock and then fur-
ther divides it by the value of FTCON[3:0] to generate a flash write clock. The flash
write clock must be between 30µs and 40µs for flash writing to operate properly.

Specifically, FTCON[3:0] + 1, multiplied by five, multiplied by the frequency of the
microsecond clock, should produce an appropriate flash write timer (30µs to 40µs).

Assuming USEC is set to generate a correct 1µs clock, FTCON[3:0] should be
set to 5, 6, or 7. If FTCON[3:0] is 6, then (6 + 1) � 5 = 35µs, which is right in the
middle of the expected range.

7.2.2 Milliseconds Timer

The milliseconds timer is used by the MSC1210 in order to establish a millisec-
ond clock. This clock, in turn, is used as a base for establishing flash erase tim-
ing, the milliseconds interrupt, the seconds interrupt, and to establish timing
for the watchdog timer.

System Timers

7-7System Timing

Figure 7−4. System Timing Interrupt Control

The MSECH (FDH) and MSECL (FCH) SFRs should be set to a value such that
the system clock divided by the value of these SFRs, plus one, generates a 1ms
clock. For example, given a system clock of 12.000MHz, MSECH/MSECL should
be set to 12 000 000 / 1000 = 12 000 – 1 = 11 999. Thus, for a 12.000MHz system
clock, MSECH/MSECL should be set to 11 999 to generate a 1ms clock.

In reality, the MSECH/MSECL SFRs may be set to a value that produces a
clock that is something other than 1ms. This works fine, as long as the other
timers that depend on the MSECH/MSECL SFR are adjusted accordingly.

7.2.2.1 Milliseconds Auxiliary Interrupt

The milliseconds interrupt is one of the auxiliary interrupts that may be used
by the user program. The milliseconds auxiliary interrupt is enabled by setting
EMSEC (AIE.4) and enabling auxiliary interrupts via the EAI (EICON.5) bit.
The frequency at which the milliseconds interrupt will be triggered is controlled
by the value written to the MSINT (FAH) SFR.

When enabled, a millisecond auxiliary interrupt will be triggered after MSINT + 1ms,
assuming that MSECH/MSECL have been configured to produce a correct
milliseconds clock. The value written to the MSINT SFR is a value between 0 and
127, meaning that the milliseconds interrupt may be triggered every 1ms to 128ms
(assuming a correct milliseconds clock).

For example, given an accurate milliseconds clock, setting MSINT to 5 would
produce a milliseconds auxiliary interrupt every 6ms.

Bit 7 of MSINT, when written, indicates whether the MSINT value being written
should be written immediately, or if it should be written after the current MSINT
count has expired. If bit 7 is set, MSINT will immediately be updated with the
new value; if it is clear, MSINT will be updated with the new value as soon as
the current milliseconds count has expired.

System Timers

7-8

7.2.2.2 One Hundred Millisecond Clock

The one hundred millisecond clock is used by the MSC1210 in order to estab-
lish a 10Hz clock. This clock is not directly outputted by the MSC1210; it is used
as the input into the seconds auxiliary interrupt and also is used by the watch-
dog timer. The 100ms clock uses the output of the millisecond clock (MSECH/
MSECL) as an input, so its correct operation assumes that the millisecond
clock has been set to a value that in fact generates a millisecond clock.

The HMSEC (FEH) SFR is used to indicate how many millisecond clocks
amount to 100ms (1/10th of a second), less 1. Therefore, assuming the milli-
second clock is correctly configured to generate a 1kHz clock, HMSEC would
be set to 99 (decimal) in order to generate an accurate, 100ms clock.

7.2.2.3 Seconds Auxiliary Interrupt

The seconds auxiliary interrupt is one of the auxiliary interrupts that may be
used by the user program. The seconds auxiliary interrupt is enabled by set-
ting ESEC (AIE.7) and enabling auxiliary interrupts via the EAI (EICON.5) bit.
The frequency at which the seconds interrupt will be triggered is controlled by
the value written to the SECINT (F9H) SFR.

When enabled, a seconds auxiliary interrupt will be triggered after
SECINT + 100ms, assuming the MSECH/MSECL and HMSEC SFRs have
been configured to produce a correct 100ms clock. The value written to the
SECINT SFR is between 0 and 127, meaning that the milliseconds interrupt
may be triggered every 100ms to 12.8 seconds (assuming a correct 100ms
clock).

For example, given an accurate 100ms clock, setting SECINT to 15 would
produce a seconds auxiliary interrupt every 1.6 seconds.

Bit 7 of SECINT, when written, indicates whether the SECINT value being
written should be written immediately, or if it should be written after the current
SECINT count has expired. If bit 7 is set, SECINT will immediately be updated
with the new value; if it is clear, SECINT will be updated with the new value as
soon as the current seconds count has expired.

7.2.2.4 Watchdog Timer

The functioning of the watchdog timer is fully described in section 14.3. How-
ever, it is important to keep in mind that the watchdog timer is dependent on
the 100ms timer. The length of the watchdog timer is directly dependent on the
100ms timer being configured to a reasonable value because the watchdog
timer frequency is configured in WDTCON (FFH) using units of HMSEC.

Startup Timing

7-9System Timing

7.3 Startup Timing

When power is turned on, or a reset is initiated, a power-on delay circuit is im-
plemented with a 17-bit counter to guarantee that the power supply has
reached a certain level, and the oscillator is stable. The delay introduced by
this counter is:

24MHz System clock: (217 − 1) � (1/24) � 10−6 = 0.005461s

1MHz System clock: (217 − 1) � 10−6 = 0.131071s

7.3.1 Normal-Mode Power-On Reset Timing

EA is sampled during power-on reset for code security purposes. PSEN and
ALE are internally pulled up during reset for serial and parallel flash program-
ming mode detection.

After the reset sequence, PSEN and ALE signals are driven by the CPU, and
the internal pull up resistors are removed for saving power.

7.3.2 Flash Programming Mode Power-On Reset Timing

EA is ignored for serial and parallel flash programming operations.

Figure 7−5. Reset Timing

Figure 7−6. Parallel Flash Programming Power-On Timing (EA is ignored)

Startup Timing

7-10

Figure 7−7. Serial Flash Programming Power-On Timing (EA is ignored)

Table 7−1.Signal Definitions for Reset Timing Diagrams

Symbol Parameter Min Max Unit

trw RST Width 10 tCLK
(1) — ns

trrd RST rise to PSEN ALE internal pull high — 5 µs

trfd RST falling to PSEN and ALE start — (217+512) tCLK
(1) ns

trs Input signal to RST falling setup time tCLK
(1) — ns

trh RST falling to input signal hold time (217+512) tCLK
(1) — ns

Notes: 1) tCLK is the Xtal clock period.

8-1Timers

������

Chapter 8 describes the timers of the MSC1210 ADC.

Topic Page

8.1 Description 8-2.

8.2 How Does a Timer Count? 8-2.

8.3 Using Timers to Measure Time 8-2.

8.4 Using Timers as Event Counters 8-12.

8.5 Using Timer 2 8-13.

Chapter 8

Description

8-2

8.1 Description

The MSC1210 comes equipped with three standard timer/counters, all of
which may be controlled, set, read, and configured individually. The
timer/counters have three general functions:

1) Keeping time and/or calculating the amount of time between events

2) Counting the events themselves

3) Generating baud rates for the serial port

The uses of the three timer/counters are distinct, so we will talk about each of
them separately. The first two uses will be discussed in this chapter, whereas
the use of timers for baud rate generation will be discussed in the Chapter 9,
Serial Communication.

8.2 How Does a Timer Count?

The answer to this question is very simple: a timer always counts up. It does
not matter whether the timer is being used as a timer, a counter, or a baud rate
generator. A timer is always incremented by the microcontroller.

8.3 Using Timers to Measure Time

Obviously, one of the primary uses of timers is to measure time. We will discuss
this use of timers first and will subsequently discuss the use of timers to count
events. When a timer is used to measure time, it is also called an interval timer,
because it is measuring the time of the interval between two events.

8.3.1 How Long Does a Timer Take to Count?

Before continuing, it is worth mentioning that when a timer is in interval timer
mode (as opposed to event counter mode) and correctly configured, the timer
will increment by one on each instruction cycle. Therefore, a running timer in
the MSC1210 will be incremented:

33 000 000 / 4 = 8 250 000 times per second

However, to maintain compatibility with existing 8052 code, the default mode
for the MSC1210 timers is to increment by one every three instruction cycles
(i.e., operate as if the timer increments every 12 clocks). Thus, a running timer
can be configured to be incremented:

33 000 000 / 12 = 2 750 000 times per second

Using the first option, which increments the timer every four clocks, allows the
user program to obtain three times higher precision than would be available
by the default mode just explained. Whether the timers are incremented every
four or 12 clocks is controlled by the CKCON SFR.

Using Timers to Measure Time

8-3Timers

The individual bits of TMOD have the following functions:

7 6 5 4 3 2 1 0 Reset Value

SFR 8EH 0 0 T2M T1M T0M MD2 MD1 MD0 01H

T2M (bit 5)—Timer 2 Clock Select . This bit controls the division of the system
clock that drives Timer 2. This bit has no effect when the timer is in baud rate
generator or clock output modes. Clearing this bit to 0 maintains 80C32 com-
patibility. This bit has no effect on instruction cycle timing.

0: Timer 2 uses a divide by 12 of the crystal frequency.

1: Timer 2 uses a divide by 4 of the crystal frequency.

T1M (bit 4)—Timer 1 Clock Select . This bit controls the division of the system
clock that drives Timer 1. Clearing this bit to 0 maintains 8051 compatibility.
This bit has no effect on instruction cycle timing.

0: Timer 1 uses a divide by 12 of the crystal frequency.

1: Timer 1 uses a divide by 4 of the crystal frequency.

T0M (bit 3)—Timer 0 Clock Select . This bit controls the division of the system
clock that drives Timer 0. Clearing this bit to 0 maintains 8051 compatibility.
This bit has no effect on instruction cycle timing.

0: Timer 0 uses a divide by 12 of the crystal frequency.

1: Timer 0 uses a divide by 4 of the crystal frequency.

MD2, MD1, MD0 (bits 2-0)—Stretch MOVX Select 2−0 . These bits select the
time by which external MOVX cycles are to be stretched. This allows slower
memory or peripherals to be accessed without using ports or manual software
intervention. The RD or WR strobe will be stretched by the specified interval,
which will be transparent to the software except for the increased time to exe-
cute the MOVX instruction. All internal MOVX instructions on devices contain-
ing MOVX SRAM are performed at the 2 instruction cycle rate.

MD2 MD1 MD0
Stretch
Value MOVX Duration

RD or WR
Strobe
Width

(SYS CLKs)

RD or WR
Strobe

Width (µs)
at 12MHz

0 0 0 0 2 Instruction Cycles 2 0.167

0 0 1 1 3 Instruction Cycles
(default)

4 0.333

0 1 0 2 4 Instruction Cycles 8 0.667

0 1 1 3 5 Instruction Cycles 12 1.000

1 0 0 4 6 Instruction Cycles 16 1.333

1 0 1 5 7 Instruction Cycles 20 1.667

1 1 0 6 8 Instruction Cycles 24 2.000

1 1 1 7 9 Instruction Cycles 28 2.333

Using Timers to Measure Time

8-4

Unlike instructions—some of which require one instruction cycle, others 2, and
others 4—the timers are consistent. They will always be incremented once ev-
ery 12 (or four) clocks. Therefore, if a timer has counted from 0 to 55 000 you
may calculate:

55 000 / 2 750 000 = 0.020 seconds (fosc/12) or

55 000 / 8 250 000 = 0.007 seconds (fosc/4)

The trade off in using fosc/12 or fosc/4 as the clock source is (1) code compatibility
and (2) resolution. With a 33MHz external clock, the resolution of fosc/12 = 364ns
per increment, and the resolution of fosc/4 is 121ns per increment.

Thus, we now have a system that measures time. All we need to review is how
to control the timers and initialize them to provide us with the information needed.

8.3.2 Timer SFRs

As mentioned before, the MSC1210 has three standard timers. Two of these
timers work in essentially the same way. One timer is Timer 0 and the other
is Timer 1. The two timers share two SFRs (TMOD and TCON) which control
the timers, and each timer also has two SFRs dedicated solely to maintaining
the value of the timer itself (TH0/TL0 and TH1/TL1). The third timer (Timer 2)
functions somewhat differently and will be explained separately.

The SFRs used to control and manipulate the first two timers are presented
in the Table 8−1.

Table 8−1.Timer Conrol SFRs.

SFR Name Description SFR Address Bit Addressable?

TH0 Timer 0 high byte 8CH No

TL0 Timer 0 low byte 8AH No

TH1 Timer 1 high byte 8DH No

TL1 Timer 1 low byte 8BH No

TCON Timer control 88H Yes

TMOD Timer mode 89H No

Timer 0 has two SFRs dedicated exclusively to itself: TH0 and TL0. TL0 is the
low byte of the value of the timer, while TH0 is the high byte of the value of the
timer. That is to say, when Timer 0 has a value of 0, both TH0 and TL0 will con-
tain 0. When Timer 0 has the value 1000, TH0 will hold the high byte of the val-
ue (3 decimal) and TL0 will contain the low byte of the value (232 decimal).
Reviewing low/high byte notation, recall that you must multiply the high byte
by 256 and add the low byte to calculate the final value. In this case:

(TH0 � 256) + TL0 = 1000

(3 � 256) + 232 = 1000

Timer 1 works the exact same way, but its SFRs are TH1 and TL1.

Using Timers to Measure Time

8-5Timers

It is apparent that the maximum value a timer may have is 65,535 because there
are only two bytes devoted to the value of each timer. If a timer contains the value
65,535 and is subsequently incremented, it will reset—or overflow—back to 0.

8.3.3 TMOD SFR

The TMOD SFR is used to control the mode of operation of both timers. Each bit
of the SFR gives the microcontroller specific information concerning how to run
a timer. The high four bits (bits 4 through 7) relate to Timer 1, whereas the low
four bits (bits 0 through 3) perform the exact same functions, but for Timer 0.

The individual bits of TMOD have the following functions:

7 6 5 4 3 2 1 0

TIMER 1 TIMER 0 Reset Value

SFR 89H GATE C/T M1 M0 GATE C/T M1 M0 00H

GATE (bit 7)—Timer 1 Gate Control. This bit enables/disables the ability of
Timer 1 to increment.

0: Timer 1 will clock when TR1 = 1, regardless of the state of pin INT1.

1: Timer 1 will clock only when TR1 = 1 and pin INT1 = 1.

C/T (bit 6)—Timer 1 Counter/Timer Select.

0: Timer is incremented by internal clocks.

1: Timer is incremented by pulses on pin T1 when TR1 (TCON.6, SFR 88H) is 1.

M1, M0 (bits 5-4)—Timer 1 Mode Select. These bits select the operating
mode of Timer 1.

M1 M0 Mode

0 0 Mode 0: 8-bit counter with 5-bit prescale.

0 1 Mode 1: 16 bits.

1 0 Mode 2: 8-bit counter with auto-reload.

1 1 Mode 3: Timer 1 is halted, but holds its count.

GATE (bit 3)—Timer 0 Gate Control. This bit enables/disables the ability of
Timer 0 to increment.

0: Timer 0 will clock when TR0 = 1, regardless of the state of pin INT0 (software
control).

1: Timer 0 will clock only when TR0 = 1 and pin INT0 = 1 (hardware control).

C/T (bit 2)—Timer 0 Counter/Timer Select.

0: Timer is incremented by internal clocks.

1: Timer is incremented by pulses on pin T0 when TR0 (TCON.4, SFR 88H) is 1.

M1, M0 (bits 1-0) Timer 0 Mode Select. These bits select the operating mode
of Timer 0.

M1 M0 Mode

0 0 Mode 0: 8-bit counter with 5-bit prescale.

0 1 Mode 1: 16 bits.

1 0 Mode 2: 8-bit counter with auto-reload.

1 1 Mode 3: Timer 1 is halted, but holds its count.

Using Timers to Measure Time

8-6

As is shown in the previous chart, four bits (two for each timer) are used to
specify a mode of operation. The modes of operation are shown in Table 8−2.

Table 8−2.Timer Modes and Usage

TxM1 TxM0 Timer
Mode

Description of Timer Mode Timer 1 Timer 0

0 0 0 13-bit timer/counter Y Y

0 1 1 16-bit timer/counter Y Y

1 0 2 8-bit timer/counter with auto-reload Y Y

1 1 3 Two 8-bit counters (split timer mode) N Y

The TMOD.GATE bit controls gating of the timer/counter. If TMOD.GATE is
cleared, the timer/counter increments only if TCON.TRx is set. If TMOD.GATE
is set, the timer/counter increments only if TCON.TRx is set and the corre-
sponding INTx pin is held high. This feature can be used for pulse width mea-
surements.

The TMOD.CT bit selects counter or timer operation. If TMOD.CT is cleared,
the timer/counter register is incremented on either fosc/4 or fosc/12 (based on
the state of CKCON.TxM). If TMOD.CT is set, the timer/counter register is in-
cremented by the Tx pin.

8.3.3.1 13-Bit Time Mode (mode 0)

Timer mode 0 is a 13-bit timer. This is a relic that was kept around in the 8052
(and subsequently MSC1210) to maintain compatibility with its predecessor,
the 8048. The 13-bit timer mode is not normally used in new development.

In this mode, the timer/counter uses five bits of the TLx register and all eight
bits of the THx register for the 13-bit register. Therefore, the upper three bits
of TLx must be masked if they are used by software. When the timer/counter
rolls over on a transition from 01FFFH, the timer/counter interrupt flag is set
(TCON.TFx).

Figure 8−1. Timer 0/1 Block Diagram for Modes 0 and 1

Using Timers to Measure Time

8-7Timers

When the timer is in 13-bit mode, TLx will count from 0 to 31. When TLx is in-
cremented from 31, it will roll over to 0 and overflow into THx, thus increment-
ing it. Therfore, only 13 bits of the two timer bytes are being used: bits 0 to 4
of TLx, and bits 0 to 7 of THx. This also means the timer can only contain 8192
values. If you set a 13-bit timer to 0, it overflows back to zero 8192 instruction
cycles later.

There is very little reason to use this mode and it is only mentioned so there
will be no surprise if ever analyzing archaic code that has been passed down
through the generations.

8.3.3.2 16-Bit Time Mode (mode 1)

Mode 1 operates in the same manner as mode 0, except Timer 0 or Timer 1
is configured as a 16-bit timer/counter. The timer/counter uses all 8 bits of both
the TLx register and THx register for the 16-bit register.

When the timer/counter rolls over on a transition from 0FFFFH, the timer/counter
interrupt flag is set (TCON.TFx).

Timer mode 1 is a 16-bit timer. This is a very commonly used mode. It functions
just like 13-bit mode, except that all 16 bits are used.

TLx is incremented from 0 to 255. When TLx is incremented from 255, it resets
to 0 and causes THx to be incremented by 1. The timer may contain up to
65 536 distinct values because this is a full 16-bit timer. If a 16-bit timer is set
to 0, it will overflow back to 0 after 65 536 machine cycles.

8.3.3.3 8-Bit Auto-Reload Time Mode (mode 2)

Timer mode 2 is an 8-bit auto-reload mode. When a timer is in mode 2, THx
holds the reload value and TLx is the timer itself.

TLx starts counting up. When TLx reaches 255 and is subsequently increm-
ented instead of resetting to 0 (as in the case of modes 0 and 1), it will be reset
to the value stored in THx.

For example, TH0 holds the value FDH and TL0 holds the value FEH.
Table 8−3 shows what would occur if the values of TH0 and TL0 are viewed
for a few machine cycles.

Table 8−3.Example of 8-Bit Auto-Reload

Instruction
Cycle

TH0
Value

TL0
Value

1 FDH FEH

2 FDH FFH

3 FDH FDH

4 FDH FEH

5 FDH FFH

6 FDH FDH

7 FDH FEH

Using Timers to Measure Time

8-8

As shown, the value of TH0 never changed. In fact, when mode 2 is used, THx
is almost always set to a known value and TLx is the SFR that is constantly
incremented. THx is initialized once, and then left unchanged.

The benefit of auto-reload mode is that, perhaps, the timer may need to always
have a value from 200 to 255. When using mode 0 or 1, the code would have to
be checked to see if the timer had overflowed and, if so, the timer reset to 200. This
takes precious amounts of execution time to check the value and/or reload it.

When mode 2 is used, the microcontroller takes care of this. Once a timer has
been configured in mode 2, it does not have to be checked to see if the timer
has overflowed, nor does the value need to be reset—the microcontroller
hardware will do it all.

The auto-reload mode is very commonly used for establishing a baud rate,
which will be discussed further in Chapter 9, Serial Communications.

8.3.3.4 Split-Timer Mode (mode 3)

Timer mode 3 is a split-timer mode. When Timer 0 is placed in mode 3, it essen-
tially becomes two separate 8-bit timers. That is to say, Timer 0 is TL0 and Tim-
er 1 is TH0. Both timers count from 0 to 255 and overflow back to 0. All the bits
that are related to Timer 1 will now be tied to TH0, and all the bits related to
Timer 0 will be tied to TL0.

While Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be put
into modes 0, 1, or 2 normally. However, the real Timer 1 may not be started
or stopped, because the bits that do that are now linked to TH0. The real Timer
1, in this case, will be incremented every machine cycle no matter what. The
real Timer 1 may be stopped by setting it to mode 3.

The only real use of note in using split-timer mode is if two separate timers are
needed along with a baud rate generator. In such a case, use the real Timer
1 as a baud rate generator, and use TH0/TL0 as two separate timers.

8.3.4 TCON SFR

Finally, there is one more SFR that controls the two timers and provides valu-
able information about them. The TCON SFR has the structure described in
Table 8−4.

Table 8−4.TCON (88H) SFR

Bit Name Bit Address Explanation of Function Timer

7 TF1 8FH

Timer 1 overflow. This bit is set by the microcontroller
when Timer 1 overflows. 1

6 TR1 8EH

Timer 1 run. When this bit is set, Timer 1 is turned on.
When this bit is clear, Timer 1 is off. 1

5 TF0 8DH

Timer 0 overflow. This bit is set by the microcontroller
when Timer 0 overflows. 0

4 TR0 8CH

Timer 0 run. When this bit is set, Timer 0 is turned on.
When this bit is clear, Timer 0 is off. 0

Using Timers to Measure Time

8-9Timers

So far, only four of the eight bits have been defined. That is because the other
four bits of the SFR do not have anything to do with timers—they have to do
with interrupts and they will be discussed in Chapter 10, Interrupts.

Table 8−4 contains the bit address column because this SFR is bit-address-
able. That means in order to set bit TF1, which is the highest bit of TCON, you
execute the command:

MOV TCON, #80h

However, because this SFR is bit-addressable, you can execute the command:

SETB TF1

This has the benefit of setting the high bit of TCON without changing the value
of any of the other bits of the SFR. Usually, when starting or stopping a timer,
the other values in TCON should not be modified, so take advantage of the fact
that the SFR is bit-addressable.

8.3.5 Initializing a Timer

After discussing the timer-related SFRs, it is time to write code that initializes
the timer and starts it running. As shown previously, the timer mode should be
decided upon. In this case, a 16-bit timer that runs continuously will be used;
that is to say, it is not dependent on any external pins.

We must first initialize the TMOD SFR. When working with Timer 0, the low four
bits of TMOD will be used. The first two bits, GATE0 and CT0 are both 0, be-
cause the timer needs to be independent of the external pins. 16-bit mode is
timer mode 1, so T0M1 must be cleared and T0M0 must be set. Effectively, bit
0 of TMOD is the only bit that should be turned on. Therefore, to initialize the
timer, execute the instruction:

MOV TMOD,#01h

Timer 0 is now in 16-bit timer mode, however, the timer is not running. To start
the timer running, set the TR0 bit by executing the instruction:

SETB TR0

Upon executing these two instructions, Timer 0 will immediately begin count-
ing, being incremented once every instruction cycle (every 12 crystal pulses).

8.3.6 Reading the Timer

There are two common ways of reading the value of a 16-bit timer; which one
is used depends on the specific application. The actual value of the timer may
be read as a 16−bit number, or the timer may be detected when overflowed.

8.3.6.1 Reading the Value of a Timer

If the timer is in 8-bit mode—that is, either 8-bit auto-reload mode, or in split-
timer mode—reading the value of the timer is simple. Just read the 1-byte val-
ue of the timer and that is it.

Using Timers to Measure Time

8-10

However, when dealing with a 13-bit or 16-bit timer, the chore is a little more
complicated. Consider what happens when the low byte of the timer is read
as 255, then the high byte of the timer is read as 15. In this case, what actually
happens is that the timer value is 14/255 (high byte 14, low byte 255) but the
readout is 15/255. The reason for this is because the low byte was read as 255.
However, when the next instruction is executed, enough time passes for the
timer to increment again, which rolls the value over from 14/255 to 15/0. In the
process, the timer is read as being 15/255 instead of 14/255. Obviously, this
is a problem.

The solution is not complicated. Read the high byte of the timer, then read the
low byte, then read the high byte again. If the high byte read the second time
is not the same as the high byte read the first time you repeat the cycle. In code,
this would appear as:

REPEAT:

MOV A,TH0

MOV R0,TL0

CJNE A,TH0,REPEAT

...

In this case, the accumulator is loaded with the high byte of Timer 0. Then R0
is loaded with the low byte of Timer 0. Finally, the high byte we read out of Timer
0—which is now stored in the accumulator—is checked to see if it is the same
as the current Timer 0 high byte. If it is not, that means it just rolled over and
the timer value must be reread, which is done by going back to REPEAT. When
the loop exits, the low byte of the timer is in R0 and the high byte is in the accu-
mulator.

Another much simpler alternative is to simply turn off the timer run bit (i.e. CLR
TR0), read the timer value, and then turn on the timer run bit (i.e. SETB TR0).
In this case, the timer is not running, so no special tricks are necessary. Of
course, this implies that the timer will be stopped for a few instruction cycles.
Whether or not this is tolerable depends on the specific application.

8.3.6.2 Detecting Timer Overflow

Often it is only necessary to know that the timer has reset to 0. That is to say,
there is no particular interest in the value of the timer, but rather an interest in
knowing when the timer has overflowed back to 0.

Whenever a timer overflows from its highest value back to 0, the
microcontroller automatically sets the TFx bit in the TCON register. This is
useful because, rather than checking the exact value of the timer, you can just
check if the TFx bit is set. If the TF0 bit is set, it means that Timer 0 has
overflowed; if TF1 is set, it means that Timer 1 has overflowed.

Using Timers to Measure Time

8-11Timers

This approach can be used to cause the program to execute a fixed delay. As
shown earlier, we calculated that it takes the 8051 1/20th of a second to count
from 0 to 46 080. However, the TFx flag is set when the timer overflows back
to 0.

Therefore, to use the TFx flag to indicate when 1/20th of a second has passed,
the timer must be set initially to 65 536 less 46 080, or 19 456. If the timer is
set to 19 456, 1/20th of a second later the timer will overflow. Thus, the follow-
ing code will execute a pause of 1/20th of a second:

MOV TH0,#76 ;High byte of 19,456 (76 * 256 = 19,456)

MOV TL0,#00 ;Low byte of 19,456 (19,456 + 0 = 19,456)

MOV TMOD,#01 ;Put Timer 0 in 16−bit mode

CLR TF0 ;Make sure TF0 bit is clear initially

SETB TR0 ;Make Timer 0 start counting

JNB TF0,$;If TF0 is not set, jump back to this same
;instruction

In the above code, the first two lines initialize the Timer 0 starting value to
19 456. The next two instructions configure Timer 0 and turn it on. Finally, the
last instruction (JNB TF0,$) reads: jump back to the same instruction if TF0 is
not set. The $ operand means, in most assemblers, the address of the current
instruction.

As long as the timer has not overflowed and the TF0 bit has not been set, the
program will keep executing this same instruction. After 1/20th of a second,
Timer 0 overflows, sets the TF0 bit, and program execution then breaks out
of the loop.

8.3.7 Timing the Length of Events

The MSC1210 provides another useful method to time the length of events.

For example, in order to save electricity in the office, a light switch is measured
to see how long it is turned on each day. When the light is turned on, time must
be measured; when the light is turned off, time is not measured. One option
is to connect the light switch to one of the pins, constantly read the pin, and
turn the timer on or off based on the state of that pin. Although this method
works well, the MSC1210 provides an easier way of accomplishing this.

Looking again at the TMOD SFR, there is a bit called GATE0. So far, this bit
has always been cleared because the timer is run regardless of the state of
the external pins. However, now it would be nice if an external pin could control
whether the timer was running or not. It can.

Simply connect the light switch to pin INT0 (P3.2) on the MSC1210 and set the
bit GATE0. When GATE0 is set, Timer 0 will only run if P3.2 is high. When P3.2
is low (i.e., the light switch is off) the timer will automatically be stopped.

Thus, with no control code whatsoever, the external pin P3.2 can control
whether or not the timer is running.

Using Timers as Event Counters

8-12

8.4 Using Timers as Event Counters

We have discussed how a timer can be used for the obvious purpose of keep-
ing track of time. However, the MSC1210 also allows the use of timers to count
events.

This can be useful in many applications. For example, a sensor is placed
across a road that would send a pulse every time a car passes over it. This
could be used to determine the volume of traffic on the road. The sensor is at-
tached to one of the MSC1210 I/O lines and constantly monitored, detecting
when it pulses high, and the counter incremented when it goes back to a low
state. This is not terribly difficult, but requires some code. If the sensor is
hooked to P1.0, the code to count passing cars would look something like this:

JNB P1.0,$;If a car hasn’t raised the signal,
;keep waiting

JB P1.0,$;The line is high, car is on the sensor
;right now

INC COUNTER ;The car has passed completely, so we count it

As shown, it is only three lines of code. However, what if other processing
needs to be done at the same time? The program cannot be stuck in the JNB
P1.0,$ loop waiting for a car to pass if it needs to be doing other things. What
if the program is doing other things when a car passes over? It is possible that
the car will raise the signal and the signal will fall low again before the program
checks the line status; this would result in the car not being counted. Of course,
there are ways to get around even this limitation, but the code quickly becomes
big, complex, and ugly.

Luckily, the MSC1210 provides a way to use the timers to count events. It is
painfully easy. Only one additional bit has to be configured.

Timer 0 can be used to count the number of cars that pass. In the bit table for
the TCON SFR, there is a bit called C/T0—it is bit 2 (TCON.2). Reviewing the
explanation of the bit, we see that if the bit is clear, Timer 0 will be incremented
every instruction cycle. This is what has already been used to measure time.

If C/T0 is set, however, Timer 0 will monitor the P3.4 line. Instead of being in-
cremented every machine cycle, Timer 0 will count events on the P3.4 line. So
in this case, simply connect the sensor to P3.4 and let the 8052 do the work.
Then, when the number of how many cars have passed is desired, just read
the value of Timer 0—the value of Timer 0 will be the number of cars that have
passed.

So what exactly is an event? What does Timer 0 actually count? Speaking at
the electrical level, the MSC1210 counts 1−0 transitions on the P3.4 line. This
means that when a car first runs over the sensor, it raises the input to a high
(1) condition. At that point, the MSC1210 does not count anything because this
is a 0−1 transition. However, when the car has passed, the sensor falls back
to a low (“0”) state. This is a 1−0 transition and at that instant the counter is
incremented by 1.

Using Timer 2

8-13Timers

It is important to note that the MSC1210 checks the P3.4 line each instruction
cycle (4 clock cycles). This means that if P3.4 is low, goes high, and goes back
low in 3 clock cycles, it will probably not be detected by the MSC1210. This also
means the MSC1210 event counter is only capable of counting events that occur
at a maximum of 1/8th the rate of the crystal frequency. That is to say, if the crystal
frequency is 12.000MHz, it can count a maximum of 1 500 000 events per second
(12.000MHz � 1/8 = 1 500 000). If the event being counted occurs more than
1 500 000 times per second, the MSC1210 will not be able to accurately count
the event without using additional external circuitry or a faster crystal.

8.5 Using Timer 2
The MSC1210 has a third timer, Timer 2, which functions slightly differently
than Timers 0 and 1 and, for that reason, we are addressing this third timer sep-
arately from the first two.

8.5.1 T2CON SFR
The operation of Timer 2 (T2) is controlled almost entirely by the T2CON SFR,
at address C8H. This SFR is bit-addressable because this SFR is evenly divis-
ible by eight.

The individual bits of T2CON have the following functions:

7 6 5 4 3 2 1 0 Reset Value

SFR C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T CP/RL2 00H

TF2 (bit 7)—Timer 2 Overflow Flag. This flag will be set when Timer 2 overflows
from FFFFH. It must be cleared by software. TF2 will only be set if RCLK and TCLK
are both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.

EXF2 (bit 6) Timer 2 External Flag. A negative transition on the T2EX pin
(P1.1) will cause this flag to be set based on the EXEN2 (T2CON.3) bit. If set
by a negative transition, this flag must be cleared to 0 by software. Setting this
bit in software will force a timer interrupt, if enabled.

RCLK (bit 5)—Receive Clock Flag. This bit determines the serial Port 0 time-
base when receiving data in serial modes 1 or 3.

0 = Timer 1 overflow is used to determine receiver baud rate for serial Port 0.

1 = Timer 2 overflow is used to determine receiver baud rate for serial Port 0.

Setting this bit will force Timer 2 into baud rate generation mode. The timer will
operate from a divide by 2 of the external clock.

TCLK (bit 4)—Transmit Clock Flag. This bit determines the serial Port 0 timer
base when transmitting data in serial modes 1 or 3.

0 = Timer 1 overflow is used to determine transmitter baud rate for serial Port 0.

1 = Timer 2 overflow is used to determine transmitter baud rate for serial Port 0.

Setting this bit will force Timer 2 into baud rate generation mode. The timer will
operate from a divide by 2 of the external clock.

EXEN2 (bit 3)—Timer 2 External Enable . This bit enables the capture/reload
function on the T2EX pin if Timer 2 is not generating baud rates for the serial port.

0 = Timer 2 will ignore all external events at T2EX.

1 = Timer 2 will capture or reload a value if a negative transition is detected on
the T2EX pin.

Using Timer 2

8-14

TR2 (bit 2)—Timer 1 Run Control. This bit enables/disables the operation of
Timer 2. Halting this timer will preserve the current count in TH2, TL2.

0 = Timer 2 is halted.

1 = Timer 2 is enabled.

C/T (bit 1)—Counter/Timer Select. This bit determines whether Timer 2 will
function as a timer or counter. Independent of this bit, Timer 2 runs at 2 clocks
per tick when used in baud rate generator mode.

0 = Timer 2 functions as a timer. The speed of Timer 2 is determined by the
T2M bit (CKCON.5).

1 = Timer 2 will count negative transitions on the T2 pin (P1.0).

CP/RL2 (bit 0)—Capture/Reload Select. This bit determines whether the
capture or reload function will be used for Timer 2. If either RCLK or TCLK is
set, this bit will not function and the timer will function in an auto-reload mode
following each overflow.

0 = Auto-reloads will occur when Timer 2 overflows or a falling edge is detected
on T2EX if EXEN2 = 1.

1 = Timer 2 captures will occur when a falling edge is detected on T2EX if
EXEN2 = 1.

8.5.2 Timer 2 in Auto-Reload Mode

The first mode in which Timer 2 may be used is auto-reload. The auto-reload
mode functions just like Timer 0 and Timer 1 in auto-reload mode, except that
the Timer 2 auto-reload mode performs a full 16-bit reload (recall that Timer
0 and Timer 1 only have 8-bit reload values). When a reload occurs, the value
of TH2 is reloaded with the value contained in RCAP2H, and the value of TL2
is reloaded with the value contained in RCAP2L.

To operate Timer 2 in auto-reload mode, the CP/RL2 bit (T2CON.0) must be
clear. In this mode, Timer 2 (TH2/TL2) is reloaded with the reload value
(RCAP2H/RCAP2L) whenever Timer 2 overflows; that is to say, whenever
Timer 2 overflows from FFFFH back to 0000H. An overflow of Timer 2 causes
the TF2 bit to be set, which causes an interrupt to be triggered (if Timer 2 inter-
rupt is enabled). Note that TF2 will not be set on an overflow condition if either
RCLK or TCLK (T2CON.5 or T2CON.4) are set.

Additionally, by also setting EXEN2 (T2CON.3), a reload will also occur when-
ever a 1−0 transition is detected on T2EX (P1.1). A reload that occurs as a re-
sult of such a transition causes the EXF2 (T2CON.6) flag to be set, triggering
a Timer 2 interrupt, if enabled.

Using Timer 2

8-15Timers

8.5.3 Timer 2 in Capture Mode

A new mode, specific to Timer 2, is called capture mode. As the name implies,
this mode captures the value of Timer 2 (TH2 and TL2) into the capture SFRs
(RCAP2H and RCAP2L). To put Timer 2 in capture mode, CP/RL2 (T2CON.0)
and EXEN2 (T2CON.3) must be set.

When configured as mentioned above, a capture occurs whenever a 1-0 tran-
sition is detected on T2EX (P1.1). At the moment the transition is detected, the
current values of TH2 and TL2 is copied into RCAP2H and RCAP2L, respec-
tively. At the same time, the EXF2 (T2CON.6) bit is set, which triggers an inter-
rupt, if Timer 2 interrupt is enabled.

Note:

Even in capture mode, an overflow of Timer 2 results in TF2 being set and
an interrupt being triggered.

Note:

Capture mode is an efficient way to measure the time between events. At the
moment that an event occurs, the current value of Timer 2 is copied into
RCAP2H/L. However, Timer 2 will not stop and an interrupt will be triggered.
Thus the interrupt routine must copy the value of RCAP2H/L to a temporary
holding variable without stopping Timer 2. When another capture occurs, the
interrupt can take the difference of the two values to determine the time tran-
spired. Again, the main advantage is that Timer 2 does not need to be
stopped to have its value read, as is the case with Timer 0 and Timer 1.

Using Timer 2

8-16

8.5.4 Timer 2 as a Baud Rate Generator

Timer 2 can be used as a baud rate generator. This is accomplished by setting
either RCLK (T2CON.5) or TCLK (T2CON.4).

With Timer 1, the receive and transmit baud rate must be the same. With Timer
2, however, the user can configure the serial port to receive at one baud rate
and transmit at another. For example, if RCLK is set and TCLK is cleared, seri-
al data is received at the baud rate determined by Timer 2, whereas the baud
rate of transmitted data is determined by Timer 1.

Determining the auto-reload values for a specific baud rate is discussed in
Chapter 9, Serial Communication. The only difference is that in the case of
Timer 2, the auto-reload value is placed in RCAP2H and RCAP2L, and the val-
ue is 16-bit rather than 8-bit.

Note:

When Timer 2 is used as a baud rate generator (either TCLK or RCLK are
set), the Timer 2 overflow flag (TF2) is not set.

9-1Serial Communication

����
� ����
���
����

Chapter 9 describes serial communication using the MSC1210 ADC.

Topic Page

9.1 Description 9-2.

9.2 Setting the Serial Port Mode 9-3.

9.3 Setting the Serial Port Baud Rate 9-13.

9.4 Writing to the Serial Port 9-15.

9.5 Reading the Serial Port 9-16.

Chapter 9

Description

9-2

9.1 Description

The MSC1210 family has three serial port interfaces: two UARTs and one SPI.
This chapter will cover the UARTs, while the SPI will be covered Chapter 13, Seri-
al Peripheral Interface (SPI).

One of the many powerful features of the MSC1210 is its integrated UARTs,
otherwise known as universal synchronous/asynchronous receiver/transmit-
ters. Just as the name implies, the UART can be configured for either synchro-
nous, half-duplex operation or asynchronous full-duplex (transmit and receive
data simultaneously) operation.

The fact that the MSC1210 has integrated UARTs means that values may be
very easily read from and written to the serial port. If it were not for the inte-
grated UARTs, writing a byte to a serial line would be a rather tedious process
requiring turning on and off one of the I/O lines in rapid succession to properly
shift out each individual bit, including start bits, stop bits, and parity bits.

However, this does not have to be done. Instead, simply configure the serial
ports operating modes and baud rates. Once configured, write to an SFR to
write a value to the serial port or read the same SFR to read a value from the
serial port. The MSC1210 automatically lets you know when it has finished
sending the written character and also lets you know whenever it has received
a byte, so that it can be processed. There is no need to worry about transmis-
sion at the bit level, which saves quite a bit of coding and processing time.

The UART serial port is asynchronous full−duplex (transmit and receive simul-
taneously) or synchronous half-duplex (transmit or receive). It also has a re-
ceiver buffer, to enable the UART to continue to receive a second byte before
the first byte has been read in software. If the first byte has not been read when
the second byte has been completely transmitted, the second byte will be lost.
The serial port receive and transmit registers are both accessed through
SBUF. Writing to SBUF loads the transmit buffer, and reading SBUF reads the
receive register.

Note:

Although a standard 8052 has only one UART, the MSC1210 has two. This
provides additional flexibility when integrating the part in a device that must
communicate with more than one external serial devices. This chapter ex-
plains how to use the primary UART (Serial Port 0); using the secondary
UART (Serial Port 1) is identical. Just use the SFRs that refer to port 1 instead
of port 0 (i.e., SCON1 instead of SCON0, etc.). Also note that the secondary
UART cannot use Timer 2 as a baud rate clock, while the primary UART can.

Setting the Serial Port Mode

9-3Serial Communication

9.2 Setting the Serial Port Mode

The first thing to be done when using the MSC1210 integrated serial port is, ob-
viously, to configure it. This lets you tell the MSC1210 how many data bits are
needed, the baud rate to be used, and how the baud rate will be determined.

First, the Serial Control 0 (SCON0) SFR is presented and what each bit of the
SFR represents is defined. Remember, SCON1 has the exact same function
but relates to the secondary UART.

The individual bits of SCON0 have the following functions:

7 6 5 4 3 2 1 0 Reset Value

SFR 98H SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00H

SM0−2 (bits 7−5)—Serial Port 0 Mode. These bits control the mode of Serial
Port 0. Modes 1, 2, and 3 have one start and one stop bit in addition to the eight
or nine data bits.

Mode SM0 SM1 SM2 Function Length Period

0 0 0 0 Synchronous 8 bits 12 pCLK
(1)

0 0 0 1 Synchronous 8 bits 4 pCLK
(1)

1 0 1 x Asynchronous 10 bits Timer 1 or 2 baud rate
equation

2 1 0 0 Asynchronous 11 bits 64 pCLK
(1) (SMOD = 0)

32 pCLK
(1) (SMOD = 1)

2 1 0 1 Asynchronous
with

multiprocessor
communication

11 bits 64 pCLK
(1) (SMOD = 0)

32 pCLK
(1) (SMOD = 1)

3 1 1 0 Asynchronous 11 bits Timer 1 or 2 baud rate
equation

3 1 1 1 Asynchronous
with

multiprocessor
communication

11 bits Timer 1 or 2 baud rate
equation

Notes: 1) pCLK will be equal to tCLK, except that pCLK will stop for IDLE.

REN_0 (bit 4)—Receive Enable. This bit enables/disables the Serial Port 0
received shift register.

0: Serial Port 0 reception disabled.

1: Serial Port 0 received enabled (modes 1, 2, and 3). Initiate synchronous re-
ception (mode 0).

TB8_0 (bit 3)—Ninth Transmission Bit State. This bit defines the state of the
ninth transmission bit in Serial Port 0 modes 2 and 3.

RB8_0 (bit 2)—Ninth Received Bit State. This bit identifies the state of the
ninth reception bit of received data in Serial Port 0 modes 2 and 3. In serial port
mode 1, when SM2_0 = 0, RB8_0 is the state of the stop bit. RB8_0 is not used
in mode 0.

Setting the Serial Port Mode

9-4

TI_0 (bit 1)—Transmitter Interrupt Flag. This bit indicates that data in the Se-
rial Port 0 buffer has been completely shifted out. In serial port mode 0, TI_0
is set at the end of the eighth data bit. In all other modes, this bit is set at the
end of the last data bit. This bit must be manually cleared by software.

RI_0 (bit 0)—Receiver Interrupt Flag. This bit indicates that a byte of data has
been received in the Serial Port 0 buffer. In serial port mode 0, RI_0 is set at the
end of the eighth bit. In serial port mode 1, RI_0 is set after the last sample of the
incoming stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set
after the last sample of RB8_0. This bit must be manually cleared by software.

Additionally, it is necessary to define the function of SM0 and SM1, as shown
in Table 9−1.

The SCON0 SFR allows us to configure the primary serial port. Go through
each bit and review its function.

The low four bits (bits 0 through 3) are operational bits. They are used when actu-
ally sending and receiving data; they are not used to configure the serial port.

The TB8 bit is used in modes 2 and 3, which transmit a total of nine data bits.
The first eight data bits are the eight bits of the main value, and the ninth bit
is taken from TB8. If TB8 is set and a value is written to the serial port, the bits
of the data will be written to the serial line followed by a set ninth bit. If TB8 is
clear, the ninth bit will be clear.

The RB8 bit also operates in modes 2 and 3 and functions essentially the same
way as TB8, but on the reception side. When a byte is received in modes 2 or
3, a total of nine bits are received. In this case, the first eight bits received are
the data of the serial byte received, and the value of the ninth bit received will
be placed in RB8.

TI means transmit interrupt. When a program writes a value to the serial port,
a certain amount of time passes before the individual bits of the byte are shifted
out of the serial port. If the program writes another byte to the serial port before
the first byte is completely output, the data being sent is intertwined. Therefore,
the MSC1210 lets the program know that it has shifted out the last byte by set-
ting the TI bit. When the TI bit is set, the program assumes that the serial port
is free and ready to send the next byte.

Finally, the RI bit means receive interrupt. It functions similarly to the TI bit, but
it indicates that a byte has been received. That is to say, whenever the
MSC1210 receives a complete byte, it triggers the RI bit to let the program
know that it needs to read the value quickly, before another byte is read.

Table 9−1.SM0 and SM1 Function Definitions.

MODE Sync/Async Baud Clock Data Bits Start/Stop Ninth-Bit Function

0 Sync clk/4 or clk/12 8 None None

1 Async Timer 1 or Timer 2(1) 8 1 Start, 1 Stop None

2 Async clk/32 or clk/64 9 1 Start, 1 Stop 0, 1, Parity

3 Async Timer 1 or Timer 2(1) 9 1 Start, 1 Stop 0, 1, Parity

Notes: 1) Timer 2 available for Serial Port 0 only.

Setting the Serial Port Mode

9-5Serial Communication

The high four bits (bits 4 through 7) are configuration bits.

The bit REN means receiver enable. This bit is very straightforward; if data need
to be received via the serial port, set this bit. This bit will almost always need to be
set because leaving it cleared will prevent the MSC1210 from receiving serial data.

The function of the SM2 bit depends on the serial mode. In mode 0, the SM2
bit is used to set the baud rate. When SM2 is cleared in this mode, the baud
rate is fOS/12. When SM2 is set in this mode, the baud rate is fOSC/4. In mode
3, the SM2 bit is a flag for multiprocessor communication. Generally, whenever
a byte has been received, the MSC1210 will set the RI flag. This lets the
program know that a byte has been received and that it needs to be processed.
However, when SM2 is set, the RI flag will only be triggered if the ninth bit
received is a 1. That is to say, if SM2 is set and a byte is received whose ninth
bit is clear, the RI flag will never be set. This can be useful in certain advanced
serial applications that allow multiple MSC1210s (or other hardware) to
communicate amongst themselves. For now, it is safe to say that this bit should
almost always be clear so that the flag is set upon reception of any character.

Bits SM0 and SM1 let the serial mode be set to a value between 0 and 3,
inclusive. The four modes are defined in Table 9−1. As shown, selecting the
serial mode selects the mode of operation (8-bit/9-bit, UART, or shift register)
and also determines how the baud rate will be calculated.

9.2.1 Serial Mode 0: Synchronous Half-Duplex

In mode 0, serial data transfers are eight bits long, half-duplex, and synchro-
nous. The serial data are transmitted and received through the RXD pin. The
shift clock is generated on the TXD pin. Eight bits are transmitted or received
on each data transfer, LSB first. The data transmission begins when data are
written to SBUF.

Data reception begins when the REN_0/REN_1 bit is set and the RI_0/RI_1
bit is cleared in the corresponding SCON SFR. The shift clock is activated and
the UART shifts data in on each rising edge of the shift clock until eight bits
have been received. One instruction cycle after the eighth bit is shifted in, the
RI_0/RI_1 bit is set, and reception stops until the software clears the RI bit. The
baud rate is either fOSC/12 (if SCONx.5 is clear) or fOSC/4 (if SCONx.5 is set).

RXD is used for serial TX and RX of data, LSB first. TXD is used as the baud
clock. Transmission is initiated by any instruction that writes to SBUF.

Setting the Serial Port Mode

9-6

Figure 9−1. Serial Port 0 Mode 0 Transmit Timing—High Speed Operation.

Figure 9−2. Serial Port Mode 0 Receive Timing—High Speed Operation.

9.2.2 Serial Mode 1: Asynchronous Full-Duplex

In mode 1, serial data transfers are 10 bits long, full-duplex, and asynchronous.
The transfer begins with a start bit, followed by eight bits of data (LSB first), then
a stop bit. On receive, the stop bit is shifted into the RB8 bit in the SCON register.
The baud rate is set by Timer 1 (UART 0 or 1) or Timer 2 (UART 0).

RXD is used for receiving data and TXD is used for transmitting data, LSB first.
On reception, the stop bit goes into RB8 in the SCON register. Transmission
is initiated by any instruction that writes to SBUF. The transmission begins after
the first rollover of the divide-by-16 counter after the write. The SCONx.TIx
interrupt flag is set two fOSC cycles after the stop bit has been transmitted.

Setting the Serial Port Mode

9-7Serial Communication

Figure 9−3. Serial Port Mode 1 Transmit Timing.

Figure 9−4. Serial Port 0 Mode 1 Receive Timing.

Reception is enabled by configuring SCON0.RBN = 1. Reception of the data
begins at the falling edge of start-bit detection. The RXDx pin is sampled 16
times-per-bit for any baud rate setting. When the falling edge of the start bit is
detected, the divide-by-16 counter used to generate the receive clock is reset
to align the counter rollover with the bit boundaries. The state of each bit is de-
termined by a majority detect decision on three consecutive samples in the
middle of the bit; this provides an amount of noise rejection. At the middle of
the stop-bit time, the serial port verifies that the status of SCONx.RI_x = 0 and
SCON0.SM2_x = 1 (if SCON0.SM2_x = 0, the stop bit is a don’t care). If these
conditions are true, then the serial port writes the received byte to the SBUFx
register, loads the stop bit into SCONx.RB8_x, and sets the SCONx.RI_x flag.
If the conditions are not met, the data are ignored. After the middle of the stop
bit, the serial port waits for another start-bit detection.

Setting the Serial Port Mode

9-8

The baud rate is adjustable and is based on either Timer 1 or Timer 2. Serial Port
0 can use either Timer 1 or Timer 2, while Serial Port 1 can use only Timer 1.
On an overflow from the timer, a clock is sent to the baud clock. The clock is
divided by 16 to generate the baud clock. The PCON.SMOD0 and
EICON.SMOD1 bits determine whether or not to divide Timer 1 by the rollover
rate of 2. The equation for baud rate is given below:

BaudRate �

2SMOD

32
� Timer1Overflow

It is recommended to use Timer 1 in mode 2 (8-bit counter with auto-reload).
This changes the equation to:

BaudRate �

2SMOD

32
�

fOSC

12 � (256 � TH1)

The divide-by-12 can be changed to 4 by setting CKCON.T1M.

To determine the reload value from a given baud rate, use the equation below:

TH1 � 256 �

2SMOD
� fOSC

384 � BaudRate

You can also achieve very low baud rates from Timer 1 by enabling
T1CON.TF1, configuring the timer for mode 1, and using the timer interrupt to
initiate a 16-bit software reload, as shown in Table 9−2.

Table 9−2.Common Baud Rates Using Timer 1

Baud Rate SMODx C/T Timer 1 Mode
TH1 Value for an
11.0592MHz fOSC

57.6k 1 0 2 0FFH

19.2k 1 0 2 0FDH

9.6k 1 0 2 0FAH

4.8k 1 0 2 0F4H

2.4k 1 0 2 0E8H

1.2k 1 0 2 0D0H

When using Timer 2 for the baud rate clock, the equation is:

BaudRate �

Timer2Overflow
16

To use Timer 2 as the baud rate generator, configure Timer 2 in auto-reload
mode and set T2CON.TCLK and T2CON.RCLK (to select Timer 2 as the baud-
rate generator for the transmitter and receiver, respectively). Setting
T2CON.TCLK and T2CON.RCLK will disable the setting of T2CON.TF2 and
the reload on 1-to-0 on T2. The 16-bit reload value is stored in RCAP2L and
RCAP2H, which gives the following equation:

BaudRate �

fOSC

32 � (65536 � (RCAP2H : RCAP2L))

Setting the Serial Port Mode

9-9Serial Communication

The divide-by-32 is a result of the fOSC being divided by 2 (by setting
T2CON.TCLK and T2CON.RCLK) and the Timer 2 overflow being divided by
16.

To determine the RCAP2H:RCAP2L value from a given baud rate use the
equation below:

RCAP2H : RCAP2L � (65536 �

fOSC

32 � BaudRate
)

Table 9−3.Common Baud Rates Using Timer 2

Baud Rate C/T2 RCAP2H:RCAP2L (@ 11.0592MHz f OSC)

57.6k 0 0FFFAH

19.2k 0 0FFEEH

9.6k 0 0FFDCH

4.8k 0 0FFB8H

2.4k 0 0FF70H

1.2k 0 0FEE0H

9.2.3 Serial Mode 2: Asynchronous Full-Duplex

In mode 2, serial data transfers are 11 bits long, full-duplex, and asynchronous.
The transfer begins with a start bit, followed by eight bits of data (LSB first),
an additional bit of data (ninth bit), then a stop bit. On transmit, the ninth data
bit is set by TB8. On receive, the ninth bit is shifted into the RB8 bit in the SCON
register and the stop bit is ignored. The baud rate is either fOSC/64 or fOSC/12.

RXD is used for receiving data, TXD is used for transmitting data, LSB first.
On transmission, SCON.TB8 is used for the ninth bit. On reception the ninth
bit goes into RB8 in the SCON register. The baud rate is selectable at fOSC/32
or fOSC/64.

Figure 9−5. Serial Port 0 Mode 2 Transmit Timing.

Setting the Serial Port Mode

9-10

Figure 9−6. Serial Port 0 Mode 2 Receive Timing.

Transmission is initiated by any instruction that writes to SBUF. The transmis-
sion begins after the first rollover of the divide-by-16 counter after the write.
The SCONx.Ti_x interrupt flag is set when the stop bit has been placed on the
TXDx pin.

Reception is enabled by configuring SCON0.RBN = 1. Reception of the data
begins at the falling edge of start-bit detection. The RXDx pin is sampled 16
times per bit for any baud rate setting. When the falling edge of the start bit is
detected, the divide-by-16 counter used to generate the receive clock is reset
to align the counter rollover with the bit boundaries. The state of each bit is de-
termined by a majority detect decision on three consecutive samples in the
middle of the bit, providing an amount of noise rejection. At the middle of the
stop-bit time, the serial port verifies that the status of SCONx.RI_x = 0 and
SCON0.SM2_x = 1 (if SCON0.SM2_x = 0, the stop bit is a “don’t care”). If these
conditions are true, then the serial port writes the received byte to the SBUFx
register, loads the stop bit into SCONx.RB8_x, and sets the SCONx.RI_x flag.
If the conditions are not met, the data are ignored. After the middle of the stop
bit, the serial waits for another start-bit detection.

The state of SCON0.SMODx determines the baud rate clock. The equation is:

BaudRate �

2SMOD
� fOSC

64

Mode 2 has a special provision for multiprocessor communications. This mode
is typically used when a master wants to address a specific slave device on
the bus. The address of the target slave device is transmitted in the first eight
data bits. The ninth bit is used to indicate to the slaves that the data was an
address. If the data matches the slave address, the device can then resume
normal reception. In this mode, nine data bits are received (the ninth bit is
latched into SCON0.RB8). The port can be configured such that when the stop
bit is received, the serial port interrupt will be generated if RB8 = 1. This feature
is enabled by setting bit SCON0.SM2.

Setting the Serial Port Mode

9-11Serial Communication

9.2.4 Serial Mode 3: Asynchronous Full-Duplex

In mode 3, serial data transfers are 11 bits, full-duplex, and asynchronous. Mode
3 is identical to mode 2, with the exception of the baud rate. The transfer begins
with a start bit, followed by eight bits of data (LSB first), an additional bit of data
(ninth bit), and then a stop bit. On transmit, the ninth data bit is set by TB8. On
receive, the ninth bit is shifted into the RB8 bit in the SCON register and the stop
bit ignored. The baud rate is set by Timer 1 (USART0 or 1) or Timer 2 (USART0).

RXD is used for receiving data, TXD is used for transmitting data, LSB first.
On transmission, SCON.TB8 is used for the ninth bit. On reception, the ninth
bit goes into RB8 in the SCON register. The baud rate is adjustable and is
based on either Timer 1 or Timer 2.

Transmission is initiated by any instruction that writes to SBUF. The transmis-
sion begins after the first rollover of the divide-by-16 counter after the write.
The SCONx.Ti_x interrupt flag is set when the stop bit has been placed on the
TXDx pin.

Figure 9−7. Serial Port 0 Mode 3 Transmit Timing.

Figure 9−8. Serial Port 0 Mode 3 Receive Timing.

Setting the Serial Port Mode

9-12

Reception is enabled by configuring SCON0.RBN = 1. Reception of the data
begins at the falling edge of start-bit detection. The RXDx pin is sampled 16
times per bit for any baud rate setting. When the falling edge of the start bit is
detected, the divide-by-16 counter used to generate the receive clock is reset
to align the counter rollover with the bit boundaries. The state of each bit is de-
termined by a majority detect decision on three consecutive samples in the
middle of the bit, providing an amount of noise rejection. At the middle of the
stop bit time, the serial port verifies that the status of SCONx.RI_x = 0 and
SCON0.SM2_x = 1 (if SCON0.SM2_x = 0, the stop bit is a “don’t care”). If these
conditions are true, then the serial port writes the received byte to the SBUFx
register, loads the stop bit into SCONx.RB8_x, and sets the SCONx.RI_x flag.
If the conditions are not met, the data are ignored. After the middle of the stop
bit, the serial waits for another start-bit detection.

Baud rate calculation for mode 3 is identical to that of mode 1, which is fully
explained in section 9.2.2.

Mode 3 has a special provision for multiprocessor communications. This mode
is typically used when a master wants to address a specific slave device on
the bus. The address of the target slave device is transmitted in the first eight
data bits. The ninth bit is used to indicate to the slaves that the data was an
address. If the data matches the slave address, the device can then resume
normal reception. In this mode, nine data bits are received (the ninth bit is
latched into SCON0.RB8). The port can be configured such that when the stop
bit is received, the serial port interrupt will be generated if RB8 = 1. This feature
is enabled by setting bit SCON0.SM2.

Setting the Serial Port Baud Rate

9-13Serial Communication

9.3 Setting the Serial Port Baud Rate

Once the serial port mode has been configured, as explained above, the pro-
gram must configure the serial port baud rate. In mode 0, the baud rate is either
the clock frequency divided by 12 or the clock frequency divided by 4, depend-
ing on the SM2 bit in the SCONx register.

Table 9−4 shows some commonly used baud rates for Mode 0.

Table 9−4.Mode 0 Commonly Used Baud Rates.

SM2
fOSC
(MHz)

Baud Rate
(kBaud)

0 33 2750

1 33 8250

0 12 1000

1 12 3000

The mode 1 baud rate is a function of timer overflow. Serial Port 0 can use ei-
ther Timer 1 or Timer 2 to generate baud rates. Serial Port 1 can only use Timer
1. The two serial ports can run at the same baud rate if they both use Timer
1, or different baud rates if Serial Port 0 uses Timer 2 and Serial Port 1 uses
Timer 1.

Each time the timer increments from its maximum count (FFH for Timer 1 or
FFFFH for Timer 2), a clock is sent to the baud-rate circuit. The clock is then
divided by 16 to generate the baud rate. When using Timer 1, the SMOD0 (or
SMOD1) bit selects whether or not to divide the Timer 1 rollover rate by two.

In modes 1 and 3, the baud rate is determined by how frequently Timer 1 or
Timer 2 overflows. The more frequently Timer 1 overflows, the higher the baud
rate. There are many ways you can cause Timer 1 to overflow at a rate that
determines a baud rate, but the most common method is to put Timer 1 in 8-bit
auto-reload mode (Timer mode 2) and set a reload value (TH1) that causes
Timer 1 to overflow at a frequency appropriate to generate a baud rate.

To determine the value that must be placed in TH1 to generate a given baud
rate, the following equation can be used (assuming PCON.7 is clear):

TH1 = 256 − ((Crystal / 384) / Baud)

If PCON.7 is set, the baud rate is effectively doubled, thus, the equation be-
comes:

TH1 = 256 − ((Crystal / 192) / Baud)

Setting the Serial Port Baud Rate

9-14

For example, with an 11.059MHz crystal, to configure the serial port to 19 200
baud, try plugging it in the first equation:

TH1 = 256 − ((Crystal / 384) / Baud)

TH1 = 256 − ((11 059 000 / 384) / 19 200)

TH1 = 256 − ((28 799) / 19 200)

TH1 = 256 − 1.5 = 254.5

As shown, to obtain 19 200 baud with an 11.059MHz crystal, TH1 would have
to be set to 254.5. If it is set to 254, 14 400 baud is achieved and if it is set to
255, 28 800 baud is achieved. This may seem to be an impasse.

However, there is a solution. To achieve 19 200 baud, simply set PCON.7
(SMOD). When this is done, the baud rate is doubled and the second equation
mentioned above is used:

TH1 = 256 − ((Crystal / 192) / Baud)

TH1 = 256 − ((11 059 000 / 192) / 19 200)

TH1 = 256 − ((57 699) / 19 200)

TH1 = 256 − 3 = 253

Here, a nice, even TH1 value is calculated. Therefore, to obtain 19 200 baud
with an 11.059MHz crystal:

1) Configure Serial Port mode 1 or 3 (for 8-bit or 9-bit serial mode).

2) Configure Timer 1 to timer mode 2 (8-bit auto-reload).

3) Set TH1 to 253 to reflect the correct frequency for 19 200 baud.

4) Set PCON.7 (SMOD) to double the baud rate.

Table 9−5 shows common settings when using Timer 1 to generate the baud
rate clock.

Likewise, common settings when using Timer 2 to generate a baud rate clock
are indicated in Table 9−6.

Table 9−5.Baud Rate Settings for Timer 1.

Desired Baud
Rate (kb/s)

SMOD
x C/T

Timer
1 Mode

TH1 Value for
33MHz clk

TH1 Value for
25MHz clk

TH1 Value for
11.0592MHz clk

57.6 1 0 2 FDH FEH FFH

19.2 1 0 2 F7H F9H FDH

9.6 1 0 2 EEH F2H FAH

4.8 1 0 2 DCH E5H F4H

2.4 1 0 2 B8H CAH E8H

1.2 1 0 2 71H 93H D0H

Writing to the Serial Port

9-15Serial Communication

Table 9−6.Baud Rate Settings for Timer 2.

Baud Rate
33MHz clk 25MHz clk 11.0592MHz clk

Baud Rate
(kb/s) C/T2 RCAP2H RCAP2L RCAP2H RCAP2L RCAP2H RCAP2L

19.2 0 FFH EEH FFH F2H FFH FAH

9.6 0 FFH CAH FFH D7H FFH EEH

4.8 0 FFH 95H FFH AFH FFH DCH

2.4 0 FFH 29H FFH 5DH FFH B8H

1.2 0 FEH 52H FEH BBH FFH 70H

1.2 0 FCH A5H FDH 75H FEH E0H

9.4 Writing to the Serial Port

Once the serial port has been properly configured as explained previously, the
serial port is ready to be used to send and receive data. If you think configuring
the serial port was easy, using the serial port will be even easier.

To write a byte to the serial port, simply write the value to the SBUF0 (99H)
SFR. For example, sending the letter A to the serial port is accomplished as
easily as:

MOV SBUF0,#’A’

Upon execution of the above instruction, the MSC1210 will begin transmitting
the character via the serial port. Obviously, transmission is not instanta-
neous—it takes a measurable amount of time to transmit the eight data bits
that make up the byte, along with its start and stop bits—and because the
MSC1210 does not have a serial output buffer, you need to be sure that a char-
acter is completely transmitted before trying to transmit the next character.

The MSC1210 lets you know when it is done transmitting a character by setting
the TI bit in SCON. When this bit is set, the last character has been transmitted and
the next character, if any, may be sent. Consider the following code segment:

CLR TI ;Be sure the bit is initially clear

MOV SBUF,#’A’ ;Send the letter ‘A’ to the serial port

JNB TI,$;Pause until the RI bit is set.

The above three instructions transmit a character and wait for the TI bit to be
set before continuing. The last instruction says jump if the TI bit is not set to
$. The $ character (in most assemblers), means the same address of the cur-
rent instruction. Therefore, the MSC1210 will pause on the JNB instruction un-
til the TI bit is set (upon successful transmission of the character).

Reading the Serial Port

9-16

9.5 Reading the Serial Port

Reading data received by the serial port is equally easy. To read a byte from
the serial port, just read the value stored in the SBUF0 (99H) SFR after the
MSC1210 has automatically set the RI flag in SCON.

For example, if you want the program to wait for a character to be received and
subsequently read it into the accumulator, the following code segment can be
used:

JNB RI,$;Wait for the MSC1210 to set the RI flag

MOV A,SBUF ;Read the character from the serial port

The first line of the above code segment waits for the MSC1210 to set the RI
flag; again, the MSC1210 sets the RI flag automatically when it receives a
character via the serial port. So as long as the bit is not set, the program re-
peats the JNB instruction continuously.

Once a character is received, the RI bit will be set automatically, the previous
condition automatically fails, and program flow falls through to the MOV
instruction that reads the character into the accumulator.

10-1Interrupts

������
���

Chapter 10 describes the interrupts of the MSC1210 ADC.

Topic Page

10.1 Description 10-2.

10.2 Events That Can Trigger Interrupts 10-3.

10.3 Enabling Interrupts 10-5.

10.4 Polling Sequence 10-6.

10.5 Interrupt Priorities 10-7.

10.6 Interrupt Triggering 10-8.

10.7 Exiting Interrupts 10-8.

10.8 Types of Interrupts 10-9.

10.9 Waking Up from Idle Mode 10-15.

10.10 Register Protection 10-16.

10.11 Common Problems with Interrupts 10-18.

Chapter 10

Description

10-2

10.1 Description
As the name implies, an interrupt is some event that interrupts normal program
execution. As stated previously, program flow is always sequential, being al-
tered only by those instructions that expressly cause program flow to deviate
in some way. However, interrupts give us a mechanism to put on hold the nor-
mal program flow, execute a subroutine, and then resume normal program
flow as if we had never left it. This subroutine, called an interrupt handler or
interrupt service routine (ISR), is only executed when a certain event (inter-
rupt) occurs. The event may be one of 21 interrupt sources such as the timers
overflowing, receiving a character via the serial port, transmitting a character
via the serial port, or external events. The MSC1210 may be configured so that
when any of these events occur, the main program is temporarily suspended
and control passed to a special section of code, which presumably would exe-
cute some function related to the event that occurred. Once complete, control
would be returned to the original program. The main program never even
knows it was interrupted.

The ability to interrupt normal program execution when certain events occur makes
it much easier and more efficient to handle certain conditions. If it were not for inter-
rupts, the program would have to be manually checked as to whether the timers
have overflowed, whether the serial port has received another character, or if some
external event has occurred. Besides making the main program ugly and hard to
read, such a situation makes the program inefficient because precious instruction
cycles are wasted checking for events that happen infrequently.

For example, say a large 16k program is executing many subroutines and per-
forming many tasks. Additionaly, suppose that the program is to automatically
toggle the P3.0 port every time Timer 0 overflows. The code to do this is not
very difficult:

JNB TF0,SKIP_TOGGLE

CPL P3.0

CLR TF0

SKIP_TOGGLE: ...

The above code toggles P3.0 every time Timer 0 overflows because the TF0
flag is set whenever Timer 0 overflows. This accomplishes what is needed, but
is inefficient.

Luckily, this is not necessary. Interrupts allow you to forget about checking for the
condition. The microcontroller itself will check for the condition automatically, and
when the condition is met, will jump to a subroutine (the interrupt handler), execute
the code, and then return. In this case, the subroutine would be nothing more than:

CPL P3.0 ;Toggle P3.0

RETI ;Return from the interrupt

First, notice that the CLR TF0 command has disappeared. That is because
when the MSC1210 executes the Timer 0 interrupt routine, it automatically
clears the TF0 flag. Also notice that instead of a normal RET instruction, there
is a RETI instruction. The RETI instruction does the same thing as a RET in-
struction, but tells the 8051 that an interrupt routine has finished. Interrupt han-
dlers must always end with RETI.

Events That Can Trigger Interrupts

10-3Interrupts

Thus, every 65 536 instruction cycles, Timer 0 overflows and the CPL and
RETI instructions are executed. Those two instructions together require three
instruction cycles, and accomplish the same goal as the first example. As far
as the toggling of P3.0 goes, the code is 437 times more efficient! Not to men-
tion it is much easier to read and understand because the timer 0 flag does not
have to be checked in the main program. Just setup the interrupt and forget
about it, secure in the knowledge that the MSC1210 will execute the code
whenever it is necessary.

10.2 Events That Can Trigger Interrupts

The MSC1210 can be configured so that any of the events in Table 10−1 will
cause an interrupt.

Table 10−1.Interrupt Sources

Interrupt/Event Addr Priority Flag Enable Priority Control

DVDD Low-Voltage
HW Breakpoint

33H HIGH

0

EDLVB (AIE.0)(1)

EBP (BPCON.0)(1)

EDLVV (AIE.0)(1)

EBP (BPCON.0)(1)

N/A

AvDD Low Voltage 33H 0 EALV (AIE.1)(1) EALV (AIE.1)(1) N/A

SPI Receive 33H 0 ESPIR (AIE.2)(1) ESPIR (AIE.2)(1) N/A

SPI Transmit 33H 0 ESPIT (AIE.3)(1) ESPIT (AIE.3)(1) N/A

Milliseconds Timer 33H 0 EMSEC (AIE.4)(1) EMSEC (AIE.4)(1) N/A

ADC 33H 0 EADC (AIE.5)(1) EADC (AIE.5)(1) N/A

Summation Register 33H 0 ESUM (AIE.6)(1) ESUM (AIE.6)(1) N/A

Seconds timer 33H 0 ESEC (AIE.7)(1) ESEC (AIE.7)(1) N/A

External Interrupt 0 03H 1 IE0 (TCON.1)(2) EX0 (IE.0)(4) PX0 (IP.0)

Timer 0 Overflow 0BH 2 TF0 (TCON.5)(3) ET0 (IE.1)(4) PT0 (IP.1)

External Interrupt 1 13H 3 IE1 (TCON.3)(2) EX1 (IE.2)(4) PX1 (IP.2)

Timer 1 Overflow 1BH 4 TF1 (TCON.7)(3) ET1 (IE.3)(4) PT1 (IP.3)

Serial Port 0 23H 5 RI_0 (SCON0.0)

TI_0 (SCON0.1)

ES0 (IE.4)(4) PS0 (IP.4)

Timer 2 Overflow 2BH 6 TF2 (T2CON.7) ET2 (IE.5)(4) PT2 (IP.5)

Serial Port 1 3BH 7 RI_1 (SCON1.0)

TI_1 (SCON1.1)

ES1 (IE.6)(4) PS1 (IP.6)

External Interrupt 2 43H 8 IE2 (EXIF.4) EX2 (EIE.0)(4) PX2 (EIP.0)

External Interrupt 3 4BH 9 IE3 (EXIF.5) EX3 (EIE.1)(4) PX3 (EIP.1)

External Interrupt 4 53H 10 IE4 (EXIF.6) EX4 (EIE.2)(4) PX4 (EIP.2)

External Interrupt 5 5BH 11 IE5 (EXIF.7) EX5 (EIE.3)(4) PX5 (EIP.3)

Watchdog 63H 12

LOW

WDTI (EICON.3) EWDI (EIE.4)(4) PWDI (EIP.4)

Notes: 1) These interrupts set the AI flag (EICON.4) and are enabled by EAI (EICON.5).

2) If edge triggered, cleared automatically by hardware when the service routine is vectored to. If level triggered, the
flag follows the state of the pin.

3) Cleared automatically by hardware when interrupt vector occurs.

4) Globally enabled by EA (IE.7).

Events That Can Trigger Interrupts

10-4

In other words, the MSC1210 can be configured so that any of the events in
Table 10−1, ranging from a simple Timer 0 overflow to a watchdog or ADC conver-
sion event, will trigger an interrupt calling the appropriate interrupt handler routines.

Interrupt/Event —The first column of Table 10−1 indicates the name of the
event, or interrupt, in question.

Addr —The second column indicates the address that to which the MSC1210
will jump, to service the interrupt when it occurs, assuming it has been enabled.
This is where the interrupt code must be placed in code memory. It is common
practice to place an LJMP at the address specified for the interrupt, which
jumps to the actual code somewhere else in code memory, because there are
only eight bytes of memory for each routine.

Priority —The third column indicates the natural priority of the interrupt. This
is the order in which interrupts will be checked. If two or more interrupts occur
simultaneously, the interrupt with a higher interrupt priority (i.e., that appears
first in the list) will be serviced first.

Flag—The fourth column indicates the flag that, when set, will trigger the spe-
cified interrupt. These flags are normally set by the MSC1210 automatically
to indicate an interrupt condition. You can, however, set these bits manually
to trigger the corresponding interrupt, except in the case of the auxiliary inter-
rupts, which are serviced at 33H.

Enable —The fifth column indicates the bit that must be set in order to enable
the given interrupt. If this bit is not set, the interrupt flag will not provoke an in-
terrupt.

Priority Control —The final column indicates the bit that controls that interrupt
priority as either high or low priority.

Note:

The interrupts that are serviced at 0033H are always of the highest priority
and that priority may not be modified.

Enabling Interrupts

10-5Interrupts

10.3 Enabling Interrupts

By default, at power-up all interrupts are disabled. This means that even if, for
example, the TF0 bit is set, the MSC1210 will not execute the Timer 0 interrupt.
You must specify in code which interrupts you want the MSC1210 to enable.
You may enable and disable interrupts by modifying the IE (A8H), EICON
(D8H), and EIE (E8H) SFRs, as shown in Table 10−2, Table 10−3, and
Table 10−4.

Table 10−2.IE (A8H) SFR

Bit Name Bit Address Explanation of Function

7 EA AFH Global interrupt enable/disable

6 ES1 AEH Enable Serial Port 1 interrupt

5 ET2 ADH Enable Timer 2 interrupt

4 ES ACH Enable Serial Port 0 interrupt

3 ET1 ABH Enable Timer 1 interrupt

2 EX1 AAH Enable external interrupt 1

1 ET0 A9H Enable Timer 0 interrupt

0 EX0 A8H Enable external interrupt 0

Table 10−3.EICON (D8H) SFR

Bit Name Bit Address Explanation of Function

7 SMOD1 DFH Serial Port 1 double baud rate

6 − DEH Undefined (set to 1)

5 EAI DDH Enable auxiliary interrupt

4 AI DCH Auxiliary interrupt flag

3 WDTI DBH Watchdog interrupt flag

2 − DAH Undefined (cleared to 0)

1 − D9H Undefined (cleared to 0)

0 − D8H Undefined (cleared to 0)

Table 10−4.EIE (E8H) SFR

Bit Name Bit Address Explanation of Function

7 − EFH Undefined (set to 1)

6 − EEH Undefined (set to 1)

5 − EDH Undefined (set to 1)

4 EWDI ECH Enable Watchdog interrupt

3 EX5 EBH Enable external interrupt 5

2 EX4 EAH Enable external interrupt 4

1 EX3 E9H Enable external interrupt 3

0 EX2 E8H Enable external interrupt 2

Polling Sequence

10-6

Each of the MSC1210 interrupts has its own enable bit in one of these three
SFRs. Enable a given interrupt by setting the corresponding bit. For example,
to enable the Timer 1 Interrupt, execute either:

MOV IE,#08h

or

SETB ET1

Both of the previous instructions set bit 3 of IE, thus enabling the Timer 1 Inter-
rupt. Once the Timer 1 Interrupt is enabled, whenever the TF1 bit is set, the
MSC1210 will automatically put on hold the main program and execute the
Timer 1 interrupt handler at address 001BH.

However, before the Timer 1 interrupt (or any other interrupt) is truly enabled, bit
7 of IE must also be set. Bit 7, the global interrupt enable/disable, enables or dis-
ables all interrupts simultaneously (except the auxiliary interrupts). That is to say,
if bit 7 is cleared, no interrupts will occur, even if all the other bits of IE are set.
Setting bit 7 will enable all the interrupts that have been selected by setting one
of the other enable bits in one of the three SFRs. This is useful in program execu-
tion if there is time-critical code that needs to be executed. In this case, the code
may need to be executed from start to finish without any interrupts getting in the
way. To accomplish this, simply clear bit 7 of IE and (CLR EA) bit 5 of EICON (CLR
EAI), and then set them after the time-critical code is done.

To sum up what has been stated in this section, to enable the Timer 1 Interrupt,
the most common approach is to execute the following two instructions:

SETB ET1 ;Enable Timer 1 Interrupt

SETB EA ;Enable Global Interrupt flag

Thereafter, the Timer 1 interrupt handler at 01BH will automatically be called
whenever the TF1 bit is set (upon Timer 1 overflow).

10.4 Polling Sequence

The MSC1210 automatically evaluates whether an interrupt should occur after
every instruction. When checking for interrupt conditions, under default condi-
tions, it checks them in the order as they appear in Table 10−1.

This means that if a serial interrupt occurs at the exact same instant that an exter-
nal 0 interrupt occurs, the external 0 interrupt will be executed first, and the serial
interrupt will be executed once the external 0 interrupt has completed.

Interrupt Priorities

10-7Interrupts

10.5 Interrupt Priorities

The MSC1210 offers three levels of interrupt priority: highest, high, and low.
By using interrupt priorities, higher priority may be assigned to certain interrupt
conditions. The highest priority is reserved for the auxiliary interrupt that vec-
tors through address 0033H—the auxiliary interrupt is always of highest prior-
ity and no other interrupt may be assigned that priority.

All other interrupts may be assigned either high or low priority. For example,
assume the Timer 1 interrupt has been enabled to be automatically called ev-
ery instance Timer 1 overflows. Additionally, the serial interrupt has been en-
abled to be called every time a character is received via the serial port. Howev-
er, in this case, receiving a character is much more important than the timer
interrupt. Therefore, if the Timer 1 interrupt is already executing, the serial in-
terrupt must interrupt the Timer 1 interrupt. When the serial interrupt is com-
plete, control passes back to the Timer 1 interrupt and finally back to the main
program. This may be accomplished by assigning a high priority to the serial
interrupt and a low priority to the Timer 1 interrupt.

Interrupt priorities are controlled by the IP (B8H) or EIP (F8H) SFRs. These
SFRs have the following formats, as shown in Table 10−5 and Table 10−6.

Table 10−5.IP (B8H) SFR

Bit Name Bit Address Explanation of Function

7 − BFH Undefined

6 − BEH Undefined

5 − BDH Undefined

4 PS BCH Serial Interrupt Priority

3 PT1 BBH Timer 1 Interrupt Priority

2 PX1 BAH External 1 Interrupt Priority

1 PT0 B9H Timer 0 Interrupt Priority

0 PX0 B8H External 0 Interrupt Priority

Table 10−6.EIP (F8H) SFR

Bit Name Bit Address Explanation of Function

7 − FFH Undefined (set to 1)

6 − FEH Undefined (set to 1)

5 − FDH Undefined (set to 1)

4 PWDI FCH Watchdog Interrupt Priority

3 PX5 FBH External Interrupt 5 Priority

2 PX4 FAH External Interrupt 4 Priority

1 PX3 F9H External Interrupt 3 Priority

0 PX2 F8H External Interrupt 2 Priority

Interrupt Triggering

10-8

When considering interrupt priorities, the following rules apply:

1) Nothing can interrupt the highest-priority auxiliary interrupt, not even
another auxiliary interrupt.

2) Only an auxiliary interrupt (highest priority) can interrupt a high-priority in-
terrupt.

3) A high-priority interrupt may interrupt a low-priority interrupt.

4) A low-priority interrupt may only occur if no other interrupt is currently execut-
ing.

5) If two interrupts occur at the same time, the interrupt with higher priority
will execute first. If both interrupts are of the same priority, the interrupt that
is serviced first by the polling sequence will be executed first.

10.6 Interrupt Triggering

When an interrupt is triggered, the following actions are taken automatically
by the microcontroller:

1) The current program counter is saved on the stack, low byte first and high
byte second.

2) Interrupts of the same and lower priority are blocked.

3) In the case of timer and external interrupts, the corresponding interrupt
flag is cleared.

4) Program execution transfers to the corresponding interrupt handler vector
address.

5) The interrupt handler routine, written by the developer, is executed.

Take special note of the third step. If the interrupt being handled is a timer or
external interrupt, the microcontroller automatically clears the interrupt flag be-
fore passing control to the interrupt handler routine. This means it is not neces-
sary that the bit be cleared in code.

10.7 Exiting Interrupts

An interrupt ends when your program executes the RETI (return from interrupt)
instruction. When the RETI instruction is executed, the following actions are
taken by the microcontroller:

1) Two bytes are popped off the stack into the program counter to restore nor-
mal program execution, high byte first and low byte second.

2) Interrupt status is restored to its pre-interrupt status. This means interrupts
of the same and higher level may once again be executed.

Types of Interrupts

10-9Interrupts

10.8 Types of Interrupts

Each interrupt can be categorized as one these types: serial, external, timer,
watchdog, or auxiliary.

10.8.1 Serial Interrupts

There are two interrupt flags that provoke a serial interrupt: receive interrupt (RI)
and transmit interrupt (TI). If either flag is set, a serial interrupt is triggered. As dis-
cussed in section 9.2, the RI bit is set when a byte is received by the serial port
and the TI bit is set when a byte has been sent.

This means that when the serial interrupt is executed, it may have been trig-
gered because the RI flag was set, the TI flag was set, or both flags were set.
Thus, your routine must check the status of these flags to determine what ac-
tion is appropriate. Additionally, because the MSC1210 does not automatically
clear the RI and TI flags, you must clear these bits in the interrupt handler.

A brief code example is in order:

INT_SERIAL:

JNB RI,CHECK_TI ;If RI flag is not set, we jump to check TI

MOV A,SBUF ;If we got here, the RI bit *was* set

CLR RI ;Clear the RI bit after we’ve processed it

CHECK_TI:

JNB TI,EXIT_INT ;If TI flag not set, we jump to exit point

CLR TI ;Clear TI bit before we send next character

MOV SBUF,#’A’ ;Send another character to the serial port

EXIT_INT:

RETI ;Exit interrupt handler

As shown, the code checks the status of both interrupts flags. If both flags were
set, both sections of code will be executed. Also note that each section of code
clears its corresponding interrupt flag. If the interrupt bits are not cleared, the
serial interrupt will be executed over and over until the bit is cleared. For this
reason, it is very important that the interrupt flags in a serial interrupt always
be cleared.

10.8.2 External Interrupts

The MSC1210 microcontroller has six external interrupt sources. These in-
clude the standard two interrupts of the 8052 architecture and four new
sources. The standard 8052 interrupts are INT0 and INT1. These are active
low, but can be configured to be edge- or level-triggered by modifying the value
of IT0 and IT1 (TCON, 88H). If ITx is assigned a logic 0, the interrupt is level-
triggered. The interrupt condition remains in force as long as the pin is low. If
ITx is assigned a logic 1, the interrupt is pseudo edge-triggered.

The pin driver of an edge-triggered interrupt must hold both the high, then the
low condition for at least one machine cycle (each) to ensure detection be-
cause the external interrupts are sampled. This means maximum sampling
frequency on any interrupt pin is 1/8th of the main oscillator frequency.

Types of Interrupts

10-10

Note:

Level-sensitive interrupts are not latched. If the interrupt is level-sensitive,
the condition must be present until the processor can respond to it. This is
most important if other interrupts are being used with a higher or equal prior-
ity. If the device is currently processing another interrupt of higher priority, the
condition must be present until the current interrupt is complete. This is be-
cause the level-sensitive interrupt is not sampled until the RETI instruction
is executed. Upon returning, if the level-triggered interrupting signal is not
there, it is as though the interrupt request was never issued.

The remaining four external interrupts are similar in nature, with one differ-
ence: INT2 and INT4 are positive edge detect only, while INT3 and INT5 are
negative edge detect only. These interrupts do not have level-detect modes.
All associated bits and flags operate the same and have the same polarity as
the first two interrupts. A logic 1 on an interrupt flag indicates the presence of
an interrupt condition, not the logic state of the input pin.

The flags that trigger external interrupts 2 through 5 are found in the EXIF (91H)
SFR, as shown in Table 10−7. When the appropriate condition (falling-edge
or rising-edge) is detected, the corresponding flag is set and the interrupt is
triggered, if enabled.

Note:

The bits in EXIF are set to 1 to indicate that the condition is true—the bits do
not represent the current level of the pin. That is, IE5 will be set to 1 when
a falling edge is detected on INT5, even though INT5 is at a logic 0 level at
that point.

Table 10−7.EXIF (91H) SFR

Bit Name Explanation of Function

7 IE5 External interrupt 5 flag – falling edge detected on INT5

6 IE4 External interrupt 4 flag – rising edge detected on INT4

5 IE3 External interrupt 3 flag – falling edge detected on INT3

4 IE2 External interrupt 2 flag – rising edge detected on INT2

3 − Reserved (cleared to 1)

2 − Undefined (cleared to 0)

1 − Undefined (cleared to 0)

0 − Undefined (cleared to 0)

There are three interrupts that can wake up the processor if it is in the
low-power IDLE mode: the external interrupts (INT0 and INT1), and the
Watchdog (when used as an interrupt). In order to be used to wake up the
processor, they must be enabled in the Wake Up Enable register, WUEN
(C6H).

Types of Interrupts

10-11Interrupts

10.8.3 Timer Interrupts

The MSC1210 microcontroller incorporates three 16-bit programmable tim-
ers, each of which can generate an interrupt. In addition, there are three other
sources for timer interrupts: the milliseconds timer, seconds timer, and watch-
dog timer. Each timer has an independent interrupt enable, flag, vector, and
priority.

Timers 0, 1, and 2 set their respective flags when their individual timer over-
flows. These flags will be set regardless of the interrupt enable status. If the
interrupt is enabled, this event will also cause the processor to vector into the
corresponding ISR routine, provided it has the highest priority. For Timers 0
and 1, the flags are cleared when the processor jumps to the interrupt vector.
Thus, these flags are not available for use by the ISR, but are available outside
of the ISR and in applications that do not acknowledge the interrupt (i.e., jump
to the vector). If the interrupt is not acknowledged, then software must manual-
ly clear the flag bit. In Timer 2, jumping to the interrupt vector does not clear
the flag, therefore, software must always clear it manually. Timer 0 and 1 flag
bits reside in the TCON register. The Timer 2 flag bit resides in the T2CON reg-
ister. The interrupt enables and priorities for Timers 0, 1, and 2 reside in the
IE and IP registers, respectively.

10.8.4 Watchdog Interrupt

The watchdog interrupt usually has a different connotation than the timer inter-
rupts. Unless the watchdog is being used as a very long timer, the completion
of the watchdog count means the software has failed to reset the counter and
may be lost. Like other sources, the watchdog timer has a flag bit, an enable,
and a priority. It also has its own vector. These are summarized in Table 10−1.
For the watchdog timer to perform the processor reset function, it must be en-
abled in the flash configuration register during serial or parallel programming.

10.8.5 Auxiliary Interrupts

The auxiliary interrupt allows the MSC1210 to offer additional interrupts without
requiring additional ISR vectors. A number of distinct interrupts, when enabled,
all provoke the auxiliary interrupt. The ISR then examines the flags to determine
which auxiliary interrupt was the source of the interrupt.

The auxiliary interrupt has the highest priority, which means all of the interrupts
that are handled by the auxiliary interrupt will always have precedence over
non-auxiliary interrupts. Although the interrupt may be disabled if required, the
priority level (highest) cannot be altered by the user.

Before returning from the ISR for an auxiliary interrupt, the interrupt source
must be cleared and then EICON.4 (AI) must be cleared. The interrupt sources
are cleared as shown in Table 10−8.

Types of Interrupts

10-12

Table 10−8.Clearing Auxiliary Interrupts

Aux Interrupt Type Method to Clear Interrupt

Seconds interrupt Read SECINT SFR

Summation interrupt Read SUMR0 SFR

ADC conversion interrupt Read ADRESL SFR

Millisecond interrupt Read MSINT SFR

SPI transmit interrupt Write SPIDATA SFR

SPI receive interrupt Read SPIDATA SFR

Analog low-voltage interrupt Remove low-voltage condition

Digital low-voltage interrupt Remove low-voltage condition

Breakpoint interrupt Set BP = 1, bit 7 of BPCON SFR

To enable Auxiliary interrupts, the EICON.5 (EAI) bit must be set, which en-
ables auxiliary interrupts. When so configured, the MSC1210 will be config-
ured to respond to those auxiliary interrupts that are enabled in the AIE (A6H)
SFR.

The Auxiliary Interrupt Enable (AIE) SFR controls which of the auxiliary inter-
rupts are enabled and which are disabled (masked). If auxiliary interrupts are
enabled, as described in the previous paragraph, and the specific auxiliary in-
terrupt is enabled in AIE, that condition will set the EICON.4 (AI) flag to indicate
an auxiliary interrupt and vector through 0033H. The ISR must clear the AI flag
before returning, or the auxiliary interrupt will be triggered again.

Table 10−9.AIE (A6H) SFR

Bit Name Explanation of Function

7 ESEC Enable Seconds Auxiliary Interrupt

6 ESUM Enable Summation Auxiliary Interrupt

5 EADC Enable ADC Conversion Auxiliary Interrupt

4 EMSEC Enable Millisecond Auxiliary Interrupt

3 ESPIT Enable SPI Transmit Auxiliary Interrupt

2 ESPIR Enable SPI Receive Auxiliary Interrupt

1 EALV Enable Analog Low-Voltage Auxiliary Interrupt

0 EDLVB Enable Digital Low-Voltage or Breakpoint Auxiliary Interrupt

Note:

Reading from the AIE SFR will return the current state of the corresponding
condition, regardless of whether or not an interrupt is enabled. For example,
if an ADC conversion has been completed and an interrupt would be trig-
gered if it were enabled, reading the EADC bit will return a 1, regardless of
whether or not the interrupt was actually enabled.

Types of Interrupts

10-13Interrupts

The AISTAT (A7H) is a read-only SFR that returns the current state of interrupt
conditions that are enabled. Any condition that is configured to provoke an in-
terrupt and is currently true will return a 1. Any condition that is not currently
true or was not configured to provoke an interrupt will return a 0.

Table 10−10. AISTAT (A7H) SFR

Bit Name Explanation of Function Clear Interrupt

7 SEC Detect seconds auxiliary interrupt Read SECINT

6 SUM Detect summation auxiliary interrupt Read SUMR0

5 ADC Detect ADC conversion auxiliary interrupt Read ADRESL

4 MSEC Detect millisecond auxiliary interrupt Read MSINT

3 SPIT Detect SPI transmit auxiliary interrupt Write SPIDATA

2 SPIR Detect SPI receive auxiliary interrupt Read SPIDATA

1 ALVD Detect analog low-voltage auxiliary interrupt Voltage above
threshold

0 DLVD Detect digital low-voltage or breakpoint auxil-
iary interrupt

Write BP = 1

Note:

AISTAT is read-only. A value may not be written to this SFR with the expecta-
tion of triggering the specific auxiliary interrupt. An auxiliary interrupt may be
triggered by setting the EICON.4 (AI) flag, but which auxiliary interrupt will
be triggered in software cannot be specified.

When an Auxiliary interrupt occurs, the MSC1210 will vector to the ISR at
0033H. The code of the ISR may use the Pending Auxiliary Interrupt (PAI, A5H)
SFR to determine which of the auxiliary interrupts provoked the actual inter-
rupt.

Table 10−11. PAI (A5H) SFR

Bit Name Explanation of Function

7 − Undefined

6 − Undefined

5 − Undefined

4 − Undefined

3 PAI3 Bit 3 of Auxiliary Interrupt Index

2 PAI2 Bit 2 of Auxiliary Interrupt Index

1 PAI1 Bit 1 of Auxiliary Interrupt Index

0 PAI0 Bit 0 of Auxiliary Interrupt Index

Types of Interrupts

10-14

The four bits, PAI0 through PAI3, make up a 4-bit value that indicates the auxil-
iary interrupt that triggered the actual interrupt. Because the value returned by
PAI is between 0 and 8, it can be used as an index or offset to determine what
ISR to execute. There is no priority to the aquxiliary interrupts, but there is a
priority to how they are displayed in the PAI register.

Table 10−12. PPI Bits of PAI SFR

PAIx BITS Explanation of Interrupt/Event

3 2 1 0

0 0 0 0 No pending peripheral IRQ

0 0 0 1 Digital low-voltage/breakpoint IRQ or lower priority IRQ pending

0 0 1 0 Analog low-voltage IRQ or lower priority IRQ pending

0 0 1 1 SPI receive IRQ or lower priority IRQ pending

0 1 0 0 SPI transmit IRQ or lower priority IRQ pending

0 1 0 1 One millisecond system timer IRQ or lower priority IRQ pending

0 1 1 0 ADC conversion IRQ or lower priority IRQ pending

0 1 1 1 Accumulator IRQ or lower priority IRQ pending

1 0 0 0 One second system timer IRQ pending

10.8.5.1 Low-Voltage Detect Interrupts

There are two low-voltage detect interrupts: one for AVDD and one for DVDD. In
addition to these, a voltage level can be selected during programming that will
cause a reset. The voltage level used for the interrupts is selected by the Low
Voltage Detect control register LVDCON (E7H). If VDD drops below the level se-
lected, an interrupt will result (if enabled).

The breakpoint and these two interrupts have priority for encoding in the PAI
SFR for the AI interrupt. The detection level can be adjusted from 2.7V to 4.7V
or an external analog signal.

Note:

The EAI bit enables the AI Interrupt. This bit is not subject to the global inter-
rupt enable (EA). The low-voltage detect interrupts are a level-sensitive in-
terrupt and remains set as long as VDD remains below the select voltage.

10.8.5.2 SPI Receive/Transmit Interrupts

The SPI receive or transmit interrupt will be triggered when the number of
bytes indicated by SPIRCON have been received, or the number of bytes
indicated by SPITCON have been transmitted.

10.8.5.3 Milliseconds/Seconds Interrupts

The MSC1210 includes two additional timer interrupts that may trigger an in-
terrupt at regular intervals.

The milliseconds interrupt is triggered every n milliseconds, where n is the
number of stored in the MSINT (FAH) SFR. For example, if MSINT is set to 20,

Waking Up from Idle Mode

10-15Interrupts

a millisecond interrupt will be provoked every 20ms. This assumes and re-
quires that MSECH (FDH) and MSECL (FCH) are set to values that represent
a millisecond. If MSECH and MSECL are set to other values, the frequency
at which the millisecond interrupt occurs will vary proportionally.

The seconds interrupt functions in a manner similar to the millisecond inter-
rupt, but can be used to provoke an interrupt at reduced frequencies, on the
order of seconds. For the seconds interrupt to be provoked once per second,
MSECH and MSECL must be set to values that represent a millisecond, and
HMSEC (FEH) must be set to a value that represents 1/100th of a second. If
any of these three SFRs are assigned different values, the frequency of the
seconds interrupt will vary proportionally.

10.8.5.4 ADC Conversion Interrupt

The ADC conversion interrupt is triggered whenever an ADC conversion pro-
duces a new result in the ADRESH/M/L SFRs. When an ADC conversion inter-
rupt is triggered or signaled, the user program can read the new result from
these SFRs. The interrupt is cleared by reading the LSB of the sample data
(ADRESL).

10.8.5.5 Summation Register Interrupt

When the summation mode is set to modes 1 (sum values from the ADC) or
3 (sum for SCNT times, then shift SHFT times), an interrupt will occur at the
end of the process. Note that an interrupt will not occur in modes 0 and 2. The
interrupt is cleared by reading the LSB of the summation registers (SUMR0).

10.9 Waking Up from Idle Mode

When the MSC1210 is placed in idle mode, three events and the auxiliary inter-
rupts can optionally wake up the microcontroller. The three events are: a
watchdog interrupt, external interrupt 1, or external interrupt 0. Which inter-
rupt(s) wakes up the MSC1210 is determined by the Enable Wake Up (EWU,
E8H) SFR.

Table 10−13. EWU (C6H) SFR

Bit Name Explanation of Function

7 − Undefined

6 − Undefined

5 − Undefined

4 − Undefined

3 − Undefined

2 EWUWDT Wake Up on Watchdog Timer

1 EWUEX1 Wake Up on External Interrupt 1

0 EWUEX0 Wake Up on External Interrupt 0

Setting each of the bits in this SFR will allow the MSC1210 to wake up from
idle mode when the corresponding interrupt occurs. If the corresponding bit is
clear, the specified interrupt will not cause the MSC1210 to wake up from idle
mode.

Register Protection

10-16

10.10 Register Protection

One very important rule applies to all interrupt handlers: interrupts must leave
the processor in the same state as it was in when the interrupt initiated. Re-
member, the idea behind interrupts is that the main program is not aware that
they are executing in the background. However, consider the following code:

CLR C ;Clear carry

MOV A,#25h ;Load the accumulator with 25h

ADDC A,#10h ;Add 10h, with carry

After the above three instructions are executed, the accumulator will contain
a value of 35H.

However, what would happen if an interrupt occurred right after the MOV in-
struction? During this interrupt, the carry bit was set and the value of the accu-
mulator changed to 40H. When the interrupt finished and control was passed
back to the main program, the ADDC would add 10H to 40H, and also add an
additional 01H because the carry bit is set. The accumulator will contain the
value 51H at the end of execution.

In this case, the main program has seemingly calculated the wrong answer. How
can 25H + 10H yield 51H as a result? It does not make sense. A developer that
was unfamiliar with interrupts would be convinced that the microcontroller was
damaged in some way, provoking problems with mathematical calculations.

What has happened, in reality, is the interrupt did not protect the registers it
used. Restated: an interrupt must leave the processor in the same state as it
was in when the interrupt initiated.

This means if an interrupt uses the accumulator, it must insure that the value
of the accumulator is the same at the end of the interrupt as it was at the begin-
ning. This is generally accomplished with a PUSH and POP sequence at the
beginning and end of each interrupt handler. For example:

INTERRUPT_HANDLER:

PUSH ACC ;Push the initial value of accumulator
;onto stack

PUSH PSW ;Push the initial value of PSW SFR onto stack

MOV A,#0FFh ;Use accumulator & PSW for whatever you want

ADD A,#02h ;Use accumulator & PSW for whatever you want

POP PSW ;Restore the initial value of the PSW from
;the stack

POP ACC ;Restore initial value of the accumulator
;from stack

Register Protection

10-17Interrupts

The guts of the interrupt are the MOV instruction and the ADD instruction.
However, these two instructions modify the accumulator (the MOV instruction)
and also modify the value of the carry bit (the ADD instruction will cause the
carry bit to be set). The routine pushes the original values onto the stack using
the PUSH instruction because an interrupt routine must ensure that the regis-
ters remain unchanged by the routine. It is then free to use the registers it pro-
tected as needed. Once the interrupt has finished its task, it POPs the original
values back into the registers. When the interrupt exits, the main program will
never know the difference because the registers are exactly the same as they
were before the interrupt executed.

In general, the ISR must protect the following registers:

1) Program Status Word SFR (PSW)

2) Data Pointer SFRs (DPH/DPL)

3) Accumulator (ACC)

4) B Register (B)

5) R Registers (R0−R7)

Remember that the PSW consists of many individual bits that are set by vari-
ous instructions. Unless you are absolutely sure and have a complete under-
standing of what instructions set what bits, it is generally a good idea to always
protect the PSW by PUSHing and POPing it off the stack at the beginning and
end of the interrupts.

Also note that most assemblers will not allow the execution of the instruction:

PUSH R0 ;Error − Invalid instruction!

This is due to the fact that, depending on which register bank is selected, R0
may refer to either internal RAM address 00H, 08H, 10H, or 18H. R0, in and of
itself, is not a valid memory address that the PUSH and POP instructions can
use.

Thus, if using any R register in the interrupt routine, push the absolute address
of that register onto the stack instead of just saying PUSH R0. For example,
instead of PUSH R0, execute:

PUSH Reg0 ;Requires use of definition file MSC1210.INC

If the MSC1210.INC definition file has not been included in the project, the reg-
ister must be protected with:

PUSH 00h ;Pushes R0 onto stack, if using register bank 0

Of course, this only works if the default register bank (bank 0) has been se-
lected. If using an alternate register set, PUSH the address that corresponds
to the register in the bank being used.

Common Problems with Interrupts

10-18

10.11 Common Problems with Interrupts

Interrupts are a very powerful tool available to you, but when used incorrectly,
can be a source of a huge number of debugging hours. Errors in interrupt rou-
tines are often very difficult to diagnose and correct.

If you use interrupts and your program is crashing or does not seem to be
performing as expected, always review the following interrupt-related issues:

Register protection : Make sure all registers are protected, as explained
previously. Forgetting to protect a register that the main program is using can
produce very strange results. In the example above, failure to protect registers
caused the main program to apparently calculate that 25H + 10H = 51H.
If registers start changing values unexpectedly or operations produce
incorrect values, it is very likely that the registers have not been protected.
Always protect the registers!

Forgetting to restore protected values : Another common error is to push
registers onto the stack to protect them, and then forget to pop them off the
stack before exiting the interrupt. For example, if you push ACC, B, and PSW
onto the stack in order to protect them, and subsequently pop ACC and PSW
off the stack before exiting, but forget to restore the value of B. you leave an
extra value on the stack. When executing the RETI instruction, the 8051 will
use that value as the return address instead of the correct value. In this case,
the program will almost certainly crash. Always make sure to pop the same
number of values off the stack as were pushed onto it.

Using RET instead of RETI : Remember that interrupts are always terminated
with the RETI instruction. It is easy to inadvertently use the RET instruction
instead. However, the RET instruction will not end the interrupt. Usually, using
a RET instead of a RETI will cause the illusion of the main program running
normally, but the interrupt will only be executed once. If it appears that the inter-
rupt mysteriously stops executing, verify that the routine is exiting with RETI.

Make interrupt routines small : Interrupt routines should be designed to do
as little as possible, as quickly as possible, and leave longer processing to the
main program. For example, a receive serial interrupt should read a byte from
SBUF and copy it to a temporary buffer defined by the user and exit as quickly
as possible. The main program must then handle the process of interpreting
the data that was stored in the temporary buffer. By minimizing the amount of
time spent in an interrupt, the MSC1210 spends more time in the main
program, which means additional interrupts can be handled faster when they
occur.

11-1Pulse Width Modulator/Tone Generator

$
��� &���� ���
�
���'���� (����
���

Chapter 11 describes the pulse width modulator/tone generator of the
MSC1210 ADC.

Topic Page

11.1 Description 11-2.

11.2 Tone Generator 11-3.

11.3 PWM Generator 11-5.

Chapter 11

Description

11-2

11.1 Description
The pulse width modulator (PWM) has two modes: one mode functions as a
tone generator and the the other mode functions as a pulse width modulator.

Figure 11−1. Block Diagram

The PWM/tone generator is controlled and configured by a number of SFRs,
the primary being the PWM Configuration (PWMCON, A1H) SFR.

The individual bits of PWMCON have the following functions:

7 6 5 4 3 2 1 0 Reset Value

SFR A1H — — PPOL PWMSEL SPDSEL TPCNTL.2 TPCNTL.1 TPCNTL.0 00H

PPOL (bit 5)—Period Polarity . Specifies the level of the PWM pulse.

0: ON period. PWM Duty register programs the ON period.

1: OFF period. PWM Duty register programs the OFF period.

PWMSEL(bit 4)—PWM Register Select . Select which 16-bit register is ac-
cessed by PWMLOW/PWMHIGH.

0: Period.

1: Duty.

SPDSEL(bit 3)—Speed Select .

0: 1MHz (ONEUSEC Clock).

1: SYSCLK.

TPCNTL(bits 2-0)—Tone Generator/Pulse Width Modulator Control .

TPCNTL.2 TPCNTL.1 TPCNTL.0 Mode

0 0 0 Disable (default)

0 0 1 PWM

0 1 1 Tone—square

1 1 1 Tone—staircase

Tone Generator

11-3Pulse Width Modulator/Tone Generator

The three bits that together make up TPCNTL, control the function of the PWM/
tone generator. The function of the generator is determined according to the
table above.

TPCNTL.0 enables or disables the PWM/tone generator. If set to ‘1’, the block
will act as either a PWM or tone generator depending on the setting of
TPCNTL.1. When TPCNTL.0 is ‘0’, the function block is completely disabled.
This state of the block is the default state.

When TPCNTL.1 is 0, the block acts as a pulse width modulator in which a
modulated pulse is generated whose duty cycle is determined by the PWM
Duty and PWM Period registers. The range of frequencies that can be
generated is 4kHz to 500kHz with a 1MHz clock, or up to 16MHz with sysclock.

When TPCNTL.1 is 1, the block acts as a tone generator which may generate
either a staircase or square waveform, depending on further configuration. In
either case, the frequency range is 60Hz to 16MHz.

11.2 Tone Generator

When TPCNTL [1:0] = 11, the block functions as a tone generator with either a
square or staircase waveform that has two or three levels of 0V, high impedance,
and VDD volts, respectively. The widths of each step in the staircase waveform
are chosen so that the error between the staircase waveform and a sinusoidal
waveform of the same frequency is minimized; in staircase mode, the output is
high impedance for the last 1/4 of each half period.

ToneFrequency �

1
2 � PWMPeriod[15 : 0] � TBASE

Where:

TBASE = TCLK when SPDSEL = 1

TBASE = TUSEC when SPDSEL = 0.

The TONE/PWM output pin is fed to a circuit depending upon the application.
In the Figure 11−2, the circuit of a tone generator is shown. When the output
is high-impedance, the voltage value that is buffered and fed to the speaker
is VDD/2.

Figure 11−2. Tone Generator Circuit

Tone Generator

11-4

11.2.1 Tone Generator Waveforms

When TPCNTL[1:0] = 11, the output of the tone generator may be either a stair-
case waveform or a square waveform depending on the configuration of
TPCNTL.2.

When TPCNTL.2 is 1, a staircase waveform is generated that will have three
levels: DGND, tristate, and VDD volts.

When the TPCNTL.2 is 0, a square waveform of 50% duty cycle is generated
that will have two levels: DGND and VDD volts.

11.2.1.1 Staircase Mode

When TPCNTL.2 is 1 (i.e., TPCNTL[2:0] = 111), a staircase waveform is gener-
ated, as shown in Figure 11−3. In this figure, the value of PWM Period = 18FH,
which is equal to 399. Therefore, the total time period is equal to 800 TBASE.

11.2.1.2 Square Mode

When TPCNTL.2 is ‘0’ (i.e., TPCNTL[2:0] = ‘011’), a square waveform is gen-
erated. An example with PWM Period = 2 is shown in Figure 11−4. We get a
50 % duty cycle square wave with a period of (2 � PWM Period).

Figure 11−3. Timing Diagram of Tone Generator in Staircase Mode

Figure 11−4. Timing Diagram of Tone Generator in Square Wave Mode

PWM Generator

11-5Pulse Width Modulator/Tone Generator

11.3 PWM Generator

The PWM generator is activated when TPCNTL[1:0] = 01. This setting allows
a PWM waveform to be generated automatically by the MSC1210 with charac-
teristics defined by the user program. The PWM is configured based on the
PWMCON SFR, the PWM Period and PWM Duty settings, and the USEC SFR
setting. The USEC SFR or SYS clock (defined by Speed Select) generates a
tick that defines the unit period that is used by PWM Period and PWM Duty in
defining the waveform.

As its name indicates, the PWM Period register gives us the period of the PWM
wave, whereas the PWM Duty register defines the length of time which sets
the duty cycle. We can program either the ON duty or the OFF duty depending
on the bit PPOL (PWMCOM.5). If PPOL is set, then OFF duty period is pro-
grammed, and if it cleared, then ON duty period is programmed. The duty cycle
is periodic with respect to the period of PWM, irrespective of the duty register.
The duty cycle of the PWM wave for different configurations is shown in the
following equations and in Table 11−1.

WhenPPOL (PWMCON.5) = 0:

PWM Frequency = 1/TBASE � (PWM Period[15:0] + 1)

PWM ON Period = TBASE � PWM Duty[15:0]

Duty Cycle = PWM Duty/(PWM Period[15:0] +1)

Where:

TBASE = TCLK when SPDSEL = 1,

TBASE = TUSEC when SPDSEL = 0.

WhenPPOL (PWMCON.5) = 1, PWM Duty is controlling the OFF period, there-
fore:

Duty Cycle = PWM Period +1 − PWM Duty/PWM Period +1.

Table 11−1.PWM Polarity Conditions

PPOL Condition Duty Cycle

0 Period = X, Duty = 0 0% (always outputs low)

0 0 < Duty ≤ Period Intermediate Value

0 Duty > Period 100% (always outputs high)

1 Period = X, Duty = 0 100% (logic ‘1’)

1 0 < Duty ≤ Period Intermediate Value

1 Duty > Period 0% (logic ‘0’)

PWM Generator

11-6

Figure 11−5. Timing Diagram of a PWM Waveform

In the timing diagram of a PWM waveform in Figure 11−5, the waveform is low
for 2 ticks and high for 4 ticks. Thus, the value of PWM Period = 5 (6 ticks minus
1) and PWM Duty = 1 (2 ticks minus 1). Assuming the PPOL (PWMCON.5) bit
is set, the actual length of a tick is defined by the value of USEC, or equal to
the period of CLK.

Configuring the PWM generator requires that the PWM Period and PWM Duty
registers be set. Both of these registers are set using the PWMLOW and
PWMHI SFRs; whether the program writes to PWM Period or PWM Duty is
configured by first clearing or setting PWMCON.4. When PWMSEL is clear
any subsequent write to PWMLOW/HI will write to the PWM Duty register.
When PWMCON.4 is set, any subsequent write to PWMLOW/HI will write to
the PWM Period register. PWMLOW and PWMHI can be treated as one 16-bit
register because they are adjacent SFRs.

Thus, the general process for configuring the PWM generator is as follows:

1) Configure PWMCON so that PWM mode is selected, PWMCON[2:0] = 001.

2) Set PWMCON.4 to select the PWM Duty register.

3) Write the PWM Duty − 1 value to PWMLOW and PWMHI. In the above
example, PWMLOW/HI is written with the value 1 because the off period
is 2 ticks long, and the value written to PWM Period is the period less 1.

4) Clear PWMCON.4 to indicate that the program will now write to PWM Peri-
od.

5) PWMCON.5 must be set to either 0 or 1. If clear, the PWM Duty value (set
in step 3) is the time the signal will be high. If it is set, the PWM Duty value
is the time the signal will be low. PWM Duty must be less than PWM Period
or the output will stay in the state defined by PWMCON.5

6) Write the PWM Period − 1 value to PWMLOW and PWMHI. The value is
the total number of USEC ticks of the period of the PWM. In the above ex-
ample, PWMLOW/HI is written with the value 5, because the total period
is 6 ticks long, and the value written to PWM Period is the period – 1.

PWM Generator

11-7Pulse Width Modulator/Tone Generator

This can be expressed in code as:

PWMCON = 0x10; // Sel PWM Duty Register

PWM = 128−1; // PWM toggle at a count of 128

PWMCON = 0x09; // Sel PWM Period access, SysClk rate, PWM mode

PWM = 512−1; // 11.0592MHz/512=21.6KHz PWM Freq, Period=512 counts

Note:

The port pin used for PWM (P3.3) must be configured as either standard
8051 or CMOS output for the tone generator/PWM to function.

PWM Generator

11-8

11.3.1 Example of PWM Tone Generation

Table 11−2 illustrates configuring the PWM for tone generation, and
Table 11−3 explains selected statements.

Table 11−2.Configuring the PWM for Tone Generation

Stmt ‘C’ Source Code Assembly Source Code
1 // PWM PUBLIC main

RSEG ???main?PWM

2 #include <reg1210.h>

3 #define OneUsConst (2−1)

4 sbit p33=p3^3;

5 void main(void) Main:

6 {

7 PDCON &= 0xED; // turn on tone gen & sys timer ANL PDCON,#0Edh

8 USEC = OneUsConst; MOV USEC,#01h

9 P33 = 1; // turn on P3.3 SETB p33

10 PWMCON = 0; // select PWMPeriod MOV PWMCON,#00h

11 PWM = 5; // Set PWMPeriod MOV PWMHI,#00h

MOV PWMLOW,#05h

12 PWMCON = 0x10; // select PWMDuty MOV PWMCON,#10h

13 PWM = 4; // Set PWMDuty MOV PWMHI,#00h

MOV PWMLOW,#04h

14 PWMCON = 0x09; // Enable PWM MOV PWMCON,#09h

15 While(1) {} SJMP $

16 }

Table 11−3.Statement Explanations

Statement # Explanation

7 ANDing PDCON with EDH effectively turns off bits 1 (PDST) and 4 (PDPWM). Clearing the
PDST (Power Down System Timer) bit turns the system timer on, while clearing the
PDPWM (Power Down PWM module) bit turns the PWM module on.

8 Sets the USEC SFR to define 1µs, which will be used for determining the PWM timing.

9 P3.3 must be set to 1 prior to using PWM or tone generator. If P3.3 is clear, the PWM or
tone generator will not produce any output.

10 Clearing bit 4 by setting PWMCON to 0 selects the PWM Period register, which will be
written to in the next statement.

11 Having selected PWM Period in statement 10, this statement sets the PWM Period to 5.

12 Setting bit 4 by setting PWMCON to 10H select the PWM Duty register will be written to in
the next statement.

13 Having selected PWM Duty in statement 12, this statement sets the PWM Duty to 4.

14 This statements enables the PWM.

PWM Generator

11-9Pulse Width Modulator/Tone Generator

11.3.2 Example of PWM Tone Generation Idling

When PWM is idling, system requirements for the PWM output varies (idle at
low or high voltage). The output of P3.3 (Tone/PWM) is internal pull-high upon
power-on reset—idle high. If idle low is needed, many methods can be used
to initialize P3.3 to low.

Note:

If idle low on Tone/PWM is achieved by writing 0 to P3.3 (which will suppress
PWM output), subsequently, writing a 1 to P3.3 will enable PWM output at
any position of the PWM cycle.

The following program, shown in Table 11−4, is very similar to the one provided
in the previous section. PWM Duty is initially set to zero, which idles the PWM.
It is then reset to 4, at which point the function of the program continues as the
program above. Table 11−5 explains selected statements.

PWM Generator

11-10

Table 11−4.Configuring the PWM for Tone Generation with PWM Idling

Stmt ‘C’ Source Code Assembly Source Code
1 // PWM PUBLIC main

RSEG ???main?PWM

2 #include <reg1210.h>

3 #define OneUsConst (2−1)

4 sbit p33=p3^3;

5 void main(void) Main:

6 {

7 PDCON &= 0xED; // turn on tone gen & sys timer ANL PDCON,#0Edh

8 USEC = OneUsConst; MOV USEC,#01h

9 P33 = 1; // turn on P3.3 SETB p33

10 PWMCON = 0; // select PWMPeriod MOV PWMCON,#00h

11 PWM = 5; // Set PWMPeriod MOV PWMHI,#00h

MOV PWMLOW,#05h

12 PWMCON = 0x10; // select PWMDuty MOV PWMCON,#10h

13 PWM = 0; // Set PWMDuty MOV PWMHI,#00h

MOV PWMLOW,#04h

14 PWMCON = 0x09; // Enable PWM MOV PWMCON,#09h

15 for(i=0; i < 10; i++); MOV R7,#00h

Loop:

INC R7

CJNE R7,#0Ah,Loop

16 PWMCON = 0x10; // select PWMDuty MOV PWMCON,#10h

17 PWM = 4; // Set PWMDuty MOV PWMHI,#00h

MOV PWMLOW,#04h

18 PWMCON = 0x09; // Enable PWM MOV PWMCON,#09h

19 while(1) {} SJMP $

20 }

Table 11−5.Statement Explanations

Statement # Explanation

1−12 Same as previous program in section 11.3.1.

13 Sets PWM Duty to 0, thereby configuring the PWM tone generator for idle mode.

14 Enables PWM. The PWM is enabled, but is in idle mode due to the fact that PWM Duty is 0.

15 This loops for an arbitrary number of instructions.

16−20 Same as statements 12 to 16 in previous program in section 11.3.2.

PWM Generator

11-11Pulse Width Modulator/Tone Generator

11.3.3 Example of Updating PWM

Both PWM Period and PWM Duty, set via the PWMHI and PWMLOW SFRs,
are double-buffered. Their values are loaded to the 16-bit down counter and
16-bit PWMTemp register, respectively, when the counter expires.

PWM Period and PWM Duty may be renewed anytime during a PWM cycle.
The newly updated values are effective on the next PWM cycle. Double−buff-
ered operation is depicted in Figure 11−6.

PWM Period is accessed via the two 8-bit SFRs, PWMHI and PWMLOW. It is
possible that while you are updating one of these two SFRs at the transition
of two PWM cycles, PWM Period and PWM Duty are loaded to the counter
PWMTemp. As a result, only a partial PWM Period or PWM Duty is updated.
For those applications that need to avoid incomplete updates, the microcon-
troller could busy poll the P3.3 line to detect the transition of two PWM cycles
and update the PWM SFRs after the transition is finished. However, busy poll-
ing will use up a high percentage of CPU time.

The INT1 ISR can be used to detect the PWM cycle transition and update the
PWM SFRs at the appropriate time because P3.3 is fed back to the CPU as
INT1. This is illustrated in the following program example:

Figure 11−6. PWM Timing

PWM Generator

11-12

// PWM

#include <REG1210.H>

#define OneUsConst (2−1)

#define CLEAR 0

#define SET 1

sbit p33=P3^3;

sbit p14=P1^4;

unsigned char p,d;

void pwm_isr(void) interrupt 2 //External Interrupt 1

{ p14=!p14; // debug

PWMCON &= 0xef; // select PWMPeriod

PWM=p; // Set PWMPeriod

PWMCON |=0x10; // select PWMDuty

PWM=d;

IE1=CLEAR; // Clear pending interrupt

EX1=CLEAR;

}

void setpwm(period, duty)

{ p14=!p14; // debug

p=period; d=duty;

IE1=CLEAR; // Clear any pending interrupt

 EX1=SET; // Enable *INT1 pin interrupt

}

void main(void)

{ char i;

// Setup External INT1

 IT1=SET; // Config *INT1 pin for falling edge trigger

 EA=SET; // Global Int Enable

PDCON &= 0x0ed; //turn on tone gen & sys timer

USEC = OneUsConst;

p33=1; // turn on P3.3

PWMCON=0; // select PWMPeriod

PWM=500; // Set PWMPeriod

PWMCON=0x10; // select PWMDuty

PWM=200;

PWMCON=0x19; // Enable PWM

for (i=0;i<5;i++) {;}

setpwm(200,100); // set period/duty after current PWM cycle

while(1) {}

}

12-1Analog-to-Digital Converter

#�
��)��)*�	��
� ���+�����

Chapter 12 describes the ADC of the MSC1210.

Topic Page

12.1 Description 12-2.

12.2 Input Multiplexer 12-3.

12.3 Temperature Sensor 12-5.

12.4 Burnout Current Sources 12-7.

12.5 Input Buffer 12-8.

12.6 Analog Input 12-8.

12.7 Programmable Gain Amplifier (PGA) 12-9.

12.8 PGA DAC 12-10.

12.9 Modulator 12-10.

12.10 Calibration 12-11.

12.11 Digital Filter 12-12.

12.12 Voltage References 12-15.

12.13 Summation/Shifter Register 12-16.

12.14 Interrupt-Driven ADC Sampling 12-20.

12.15 Synchronizing Multiple MSC1210 Devices 12-22.

12.16 Ratiometric Measurements 12-24.

Chapter 12

Description

12-2

12.1 Description

The MSC1210 includes an ADC with 24-bit resolution. The ADC consists of
an input multiplexer (MUX), an optional buffer, a programmable gain amplifier
(PGA), and a digital filter. The architecture is described diagram in
Figure 12−1.

Figure 12−1. MSC1210 Architecture

Input Multiplexer

12-3Analog-to-Digital Converter

12.2 Input Multiplexer

The MSC1210 multiplexer is more flexible than a typical ADC in that each input
pin can be configured as either a positive or negative input for a given mea-
surement. While other ADC parts often define input pairs, the MSC1210 defi-
nes one pin as the negative input and the other as the positive input, thus pro-
viding complete design freedom in this respect. Any given input pin may serve
as the negative input in one measurement and serve as the positive input in
the next. Further, any combination of pins can be used—there are no prede-
fined input pairs that restrict.

The input multiplexer provides for any combination of differential inputs to be
selected on any of the input channels, as shown in Figure 12−2. For example,
if channel 1 is selected as the positive differential input channel, any other
channel can be selected as the negative differential input channel. With this
method, it is possible to have up to eight fully differential input channels.

Figure 12−2. Input Multiplexer Configuration

Input Multiplexer

12-4

The positive input channel and the negative input channel are selected in the
ADC Multiplexer register (ADMUX, SFR D7h). The high four bits of ADMUX
(bits 4 through 7) select the positive channel, while the low four bits (bits 0
through 3) select the negative channel. The ADMUX SFR has the following
definition:

7 6 5 4 3 2 1 0 Reset Value

SFR D7H INP3 INP2 INP1 INP0 INN3 INN2 INN1 INN0 01H

INP3-0 (bits 7-4)—Input Multiplexer Positive Channel . This bit selects the
positive signal input.

INP3 INP2 INP1 INP0 Positive Input
0 0 0 0 AIN0 (default)
0 0 0 1 AIN1
0 0 1 0 AIN2
0 0 1 1 AIN3
0 1 0 0 AIN4
0 1 0 1 AIN5
0 1 1 0 AIN6
0 1 1 1 AIN7
1 0 0 0 AINCOM
1 1 1 1 Temperature Sensor (requires ADMUX = FFH)

INN3-0 (bits 3-0)—Input Multiplexer Negative Channel . This bit selects the
negative signal input.

INN3 INN2 INN1 INN0 Negative Input
0 0 0 0 AIN0
0 0 0 1 AIN1 (default)
0 0 1 0 AIN2
0 0 1 1 AIN3
0 1 0 0 AIN4
0 1 0 1 AIN5
0 1 1 0 AIN6
0 1 1 1 AIN7
1 0 0 0 AINCOM
1 1 1 1 Temperature Sensor (requires ADMUX = FFH)

Therefore, to select AIN1 as the positive channel and AIN6 as the negative
channel, the following assignment would be made to the ADMUX register:

ADMUX = 0x16h; // 0001=AIN1, 0110=AIN6

By default, ADMUX defaults to 01H at power up, so AIN0 is the default positive
input and AIN1 is the default negative input.

Temperature Sensor

12-5Analog-to-Digital Converter

12.3 Temperature Sensor

As shown in the chart above describing the ADMUX SFR, when all bits are set
to 1 (i.e. ADMUX = FFh), all the MUX inputs (AIN0-7, AINCOM) are discon-
nected from the ADC, and the ADC inputs are connected to measure two diode
junctions with different currents. This differential voltage will change linearly
with temperature, thus providing an integrated linear temperature sensor.

When using the temperature sensor, the voltage returned by the ADC is used
to determine the temperature in the following formula:

Float temp = α * volts – 282.14;

This converts the voltage into a temperature in degrees centigrade. The above
temperature can, of course, be converted to Fahrenheit or Kelvin using stan-
dard conversion formulas. One value of α that gives good results is 2664.7.
The value of α can vary from part to part and is determined from experimental
data.

The following program is a simple example that returns the current tempera-
ture as detected by the MSC1210:

#include <REG1210.H>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define LSB 298.0232e−9 /* LSB=5.0/2^24 */

#define ALPHA 2664.7 /* derived for some devices */

extern void autobaud(void);

extern long bipolar(void);

void main(void)

{

float volts, temp, resistance, ratio, lr, ave;

int i, k, decimation = 1728, samples;

CKCON = 0; // 0 MOVX cycle stretch

autobaud();

printf(”2MSC1210 ADC Temperature Test\n”);

//Timer Setup

USEC= 10; // 11MHz Clock

ACLK = 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz

// modclock = 1,105,920/64 = 17,280 Hz

// Setup ADC

PDCON &= 0x0f7; //turn on adc

ADMUX = 0x0FF; //Select Temperature Diodes

ADCON0 = 0x30; //Vref On, Vref Hi, Buff off, BOD off, PGA=1

ADCON2 = decimation & 0xFF; // LSB of decimation

Temperature Sensor

12-6

ADCON3 =(decimation>>8) & 0x07; // MSB of decimation

ADCON1 = 0x01; // bipolar, auto, self calibration, offset, gain

printf (”Calibrating. . .\n”);

for (k=0; k<4; k++)

{

// Wait for Four conversions for filter to settle

// after calibration

while(!(AIE & 0x20)); // Wait for data ready

lr = bipolar(); // Dummy read to clear ADCIRQ

}

samples = 10; // The number of voltage samples we will average

while(1)

{

ave = 0;

for (i = 0; i < samples; i++)

{

while (!(AIE & 0x20)); // Wait for new next result

ave += bipolar() * LSB; // This read clears ADCIRQ

}

volts = ave/samples;

temp = ALPHA * volts − 282.14;

printf (”V=%f, resistance=%f, Temp=%f degrees C\n”,

volts, resistance, temp);

}// while

} //main

This program first configures the ADC, allows the ADC to self-calibrate, and
then enters a loop where the temperature is sampled and reported to the user
via the serial interface.

Burnout Current Sources

12-7Analog-to-Digital Converter

12.4 Burnout Current Sources
When the Burnout bit (BOD) is set in the ADC control register (ADCON0.6),
two current sources are enabled that source approximately 2µA.

This allows for the detection of an open circuit (full-scale reading) or short-cir-
cuit (0V differential reading) on the selected input differential pair.

The following program illustrates a simple open-circuit and short-circuit detec-
tion routine.

#include <REG1210.H>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define LSB 298.0232e−9

extern void autobaud(void);

extern long bipolar(void);

void main(void)

{

float sample, decimation = 1728;

CKCON = 0; // 0 MOVX cycle stretch

autobaud();

printf(”Brown−Out Detection\n”);

//Timer Setup

USEC= 10; // 11MHz Clock

ACLK = 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz

// modclock = 1,105,920/64 = 17,280 Hz

// Setup ADC

PDCON &= 0x0f7; //turn on adc

ADMUX = 0x01;

ADCON0 = 0x70; // Vref On, Vref Hi, Buff off, BOD on, PGA=1

ADCON2 = decimation & 0xFF; // LSB of decimation

ADCON3 =(decimation>>8) & 0x07; // MSB of decimation

ADCON1 = 0x01; // bipolar, auto, self calibration, offset, gain

while(1)

{

while (!(AIE & 0x20));

sample = bipolar() * LSB; // This read clears ADCIRQ

printf (”Sample=%f”, sample);

if(sample < 0.01)

printf(” Short Circuit\n”);

else if(sample > 2.4)

printf(” Open Circuit\n”);

else

printf(“Normal Sensor Range\n”);

while(!RI);

RI = 0;

}// while

} //main

Input Buffer

12-8

The previous code detects either an open- or short-circuit situation based on
the ADC sample. Also note that the comparison is less than 0.01, due to the
fact that the ADC generally will not return exactly 0.

12.5 Input Buffer

The input buffer reduces the likelihood of an offset in the measurements taken
by the ADC. It should be used whenever the characteristics of the input signal
allow. Essentially, the only time the input buffer should not be used is if the max-
imum voltage on either analog input is more than 1.5V below the positive rail
voltage.

The input impedance of the MSC1210 without the buffer is 5MΩ/PGA. With the
buffer enabled, the impedance is typically 10GΩ, the input voltage range is re-
duced, and the analog power-supply current is higher. The buffer is controlled
by the BUF bit in the ADC control register (ADCON0.3); setting BUF enables
the input buffer, while clearing it disables the input buffer.

12.6 Analog Input

When the buffer is not selected, the input impedance of the analog input
changes with clock frequency (ACLK F6H) and gain (PGA). The relationship
is:

AIN Impedance(�) � � 1 � 106

ACLKFrequency
� � �

5 � 106

PGA
�

Figure 12−3 shows the basic input structure of the MSC1210.

Figure 12−3. Basic Input Structure of the MSC1210

Programmable Gain Amplifier (PGA)

12-9Analog-to-Digital Converter

12.7 Programmable Gain Amplifier (PGA)

The Programmable Gain Amplifier (PGA) can be set to gains of 1, 2, 4, 8, 16,
32, 64, or 128. Using the PGA can actually improve the effective resolution of
the ADC.

For example, with a PGA of 1 on a 5V full-scale range, the ADC can resolve
to 1µV. With a PGA of 128 on a 40mV full-scale range, the ADC can resolve
to 75nV. With a PGA of 1 on a 5V full-scale range, it would require a 26-bit ADC
to resolve 76nV.

Another way of obtaining gain is by reducing the reference voltage. However,
this approach quickly runs into noise limitations (at about 1V), whereby the
noise itself becomes a larger component of the sample, thus reducing the
benefit of the improved resolution from the lower reference voltage.

The PGA setting is set by modifying the three LSBs of the ADCON0 SFR.
These three bits allow the software to set the PGA to any of the eight possible
PGA settings listed in Table 12−1.

Table 12−1.PGA Settings

PGA2 PGA1 PGA0 GAIN

0 0 0 1 (default)

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

For example, the following instructions would have the following effects:

ADCON0 = 0x03; // Set PGA to 8

ADCON0 = 0x05; // Set PGA to 32

Notice that in both of these examples, the instruction will also clear all of the
other bits of ADCON0, which may or not be desirable. To set the PGA as in the
two previous examples without altering the other ADCON0 bits, the following
instructions may be substituted:

ADCON0 = (ADCON0 & ~0x07) | 0x03; // Set PGA to 8

ADCON0 = (ADCON0 & ~0x07) | 0x05; // Set PGA to 32

Offset DAC

12-10

12.8 Offset DAC

The input to the PGA can be shifted by half the full-scale input range of the PGA
by using the Offset DAC (ODAC) register (SFR address: 0xE6). The ODAC
register is an 8-bit value; the MSB is the sign and the seven LSBs provide the
magnitude of the offset. Using the ODAC does not reduce the noise perfor-
mance and increases the dynamic range of the ADC. The ODAC must be ap-
plied after any calibration is performed because the calibration will remove any
offset induced by the ODAC.

Offset �
VREF

2 � PGA
� �

Code
127

�

Note:

The input may only be shifted by half the full-scale input range. This means
that if the input voltage range is 5V, it can be shifted ±2.5V. The range is divid-
ed by 256 and the LSB of the ODAC indicates an offset of that amount. Thus,
given an input voltage range of 5V and an ODAC of 10H (16), the input would
be shifted by 313mV (i.e., 5.000V / 256 = 19.53mV � 16 = 312.5mV).

12.9 Modulator

The modulator is a single-loop second-order delta-sigma system. The modu-
lator clock speed is derived from the oscillator frequency divided by the ACLK
register (plus one) divided by 64. This can be summarized by the formula:

Analog Sample Rate �

Oscillator Frequency�(ACLK � 1)
64

Thus, (given an oscillator frequency of 11.0592MHz), if ACLK = 8, the analog sig-
nal sample rate will be 11.0592MHz / (8 + 1) = 1.2288MHz / 64 = 19 200Hz.

The rate at which samples are made available to the user program running on
the MSC1210 is less than that of the analog sample rate. The data output rate
is determined by dividing the analog sample rate by the decimation value in
the ADCON2 (low byte, SFR address: 0xDE) and ADCON3 (high byte, SFR
address: 0xDF) registers. Therefore, in the above example that resulted in a
19 200Hz sample rate, if ADCON2 and ADCON3 together hold the value 1920,
your program would be provided sample data at a rate of 10Hz
(19 200Hz/1920 = 10Hz). The best noise performance is achieved with higher
decimation values.

Calibration

12-11Analog-to-Digital Converter

12.10 Calibration

The offset and gain errors in the MSC1210 ADC, or a complete measurement
system, can be reduced with calibration. The calibration mode control bits in
the ADCON1 register (SFR address: 0xDD) can select 5 different calibration
processes. These include: internal (self) calibration of offset, gain, or both, and
system calibration of offset or gain. Each calibration process takes seven tDATA
periods to complete. Therefore, it takes 14 tDATA periods to complete self cal-
ibration of both offset and gain, which is represented by one mode control bit
selection.

For system calibration, the appropriate signal must be applied to the inputs.
The system calibration offset mode requires a zero differential input signal. It
then computes an offset that will nullify the offset in the system. The system
calibration gain mode requires a positive full-scale differential input signal. It
then computes a value to nullify gain errors in the system. For example, in a
weigh-scale application, the use of the system offset calibration could be used
to null the system for a tare weight. Then the measurements that follow would
only have the new weight in the output of the ADC.

Calibration should be performed after power on, a change in temperature, or
a change of the PGA. For operation with a reference voltage greater than
(AVDD − 1.5V), the buffer must also be turned off during calibration. Calibration
will remove the effects of the ODAC, therefore, changes to the ODAC register
must be done after calibration, otherwise the calibration will remove the effects
of the offset.

Table 12−2.Calibration Mode Control Bits

CAL2 CAL1 CAL0 Calibration Mode

0 0 0 No calibration (default)

0 0 1 Self calibration, offset and gain

0 1 0 Self calibration, offset only

0 1 1 Self calibration, gain only

1 0 0 System calibration, offset only

1 0 1 System calibration, gain only

1 1 0 Reserved

1 1 1 Reserved

The calibration is started by setting the CALx bits in the ADCON1 register. The
ADC conversion interrupt will occur when the calibration is finished. If it is not
masked, it will generate an interrupt or the bit can be monitored in the Peripher-
al Interrupt register (AISTAT.5, SFR address: 0xA7).

Thus, a full self-calibration, calibrating both offset and gain, may be executed
in the following fashion:

ADCON1 = 0x01; // Initiate self−calibration, offset and gain

while(!(AISTAT & 0x20)); // Wait for interrupt to be triggered

Digital Filter

12-12

12.11 Digital Filter

The digital filter can use either the fast settling, sinc2, or sinc3 filter, as shown
in Figure 12−4. In addition, the auto mode changes the sinc filter to the best
available option after the input channel or PGA is changed. When switching
to a new channel, it will use the fast settling filter for the next two conversions,
the first of which should be discarded. It will then use the sinc2 followed by the
sinc3 filter to improve noise performance. This combines the low-noise advan-
tage of the sinc3 filter with the quick response of the fast settling time filter. The
frequency response of each filter is shown in Figure 12−5.

Figure 12−4. Filter Step Responses

Digital Filter

12-13Analog-to-Digital Converter

Figure 12−5. Filter Frequency Responses

Digital Filter

12-14

12.11.1 Multiplexing Channels

When the input changes suddenly, it will take a certain amount of time for the
output to correctly represent that new input. The amount of time required to
correctly represent the new input depends on the type of filter being used. The
filters are designed to settle in 1, 2 or 3 data output intervals. Up to an additional
full period is required for an accurate sample because a change usually does
not take place synchronous with the data output interval. Due to this
uncertainty, as a matter of practice, one more cycle is used before the full
resolution is obtained. Refer to Table 12−3 for the number of cycles that must
be discarded when the input makes a significant shift.

Table 12−3.Filter Settling

Samples to Discard Filter

1 Fast settling

2 Sinc2

3 Sinc3

Changing the input multiplexer usually creates the same type of step change
on the input. The one significant difference is that the timing for the change is
more precisely known.

Auto mode can reduce the amount of data that must be discarded, but it also
reduces the resolution. Auto mode selects each of the different filter outputs
after the input channel has changed. This means that the output uses the fast
settling filter for 2 cycles, then sinc2 for the next cycle and finally sinc3 for all
remaining cycles, until the channel is changed again.

When switching channels, the settling time must be factored in to determine
the total throughput. For example, if the data rate is 20Hz and the filter is sinc3,
then with five channels it will give a resulting data rate on each channel of
20Hz / (4 samples per channel) / 5 channels = 1Hz data rate on each channel.

There are many trade-offs, however, that can be evaluated to determine the
optimum setup. One of the first criteria is to determine the desired effective
number of bits (ENOB). If 18 bits are needed, the same result could be
achieved with all three types of filters. Using sinc3, the decimation would be
about 200, using sinc2 it would be about 500, and with the fast-settling filter it
would be about 1800. With a modulation clock (or sample rate) of 15 625,
Table 12−4 shows the output data and channel rates.

Table 12−4.Output Data Rate and Channel Rate

Filter
Data Rate

(Hz)
Channel Rate

(Hz)
Synchronized

(Hz)

Sinc3 (dec = 200) 78.125 /4 = 19.53 /3 = 26.04

Sinc2 (dec = 500) 31.25 /3 = 10.41 /2 = 15.625

Fast Settling (dec = 1800) 8.68 /2 = 4.34 /1 = 8.68

Voltage Reference

12-15Analog-to-Digital Converter

Notice that the speed difference for the synchronized channel changes are
only different by a factor of 3, whereas the non-synchronized channel has a
factor difference of 4.5.

These rates are all based on a reasonable speed for the modulation clock. In
many applications, the mod clock can run as much as 10 times faster. That
would make all of the times for throughput also 10 times faster, as shown in
Table 12−5.

Table 12−5.Output Data Rate and Channel Rate (10x faster)

Filter
Data Rate

(Hz)
Channel Rate

(Hz)
Synchronized

(Hz)

Sinc3 (dec = 200) 780.125 /4 = 190.53 /3 = 260.04

Sinc2 (dec = 500) 310.25 /3 = 100.41 /2 = 150.625

Fast Settling (dec = 1800) 80.68 /2 = 40.34 /1 = 80.68

12.12 Voltage Reference

The voltage reference used for the MSC1210 can either be internal or external.
The power-up configuration for the voltage reference is 2.5V internal. The
selection for the voltage reference is made through the ADCON0 register, bits
5 (internal/external selection) and 4 (1.25V/2.5V internal reference voltage).

Internal voltage reference is enabled by setting ADCON0.5 (EVREF, SFR ad-
dress:0xDC), which is the default condition. When internal voltage reference is
enabled, it may be selected as either 1.25V or 2.5V depending on the setting of
ADCON0.4 (VREFH). Setting this bit sets the internal reference voltage to 2.5V,
while clearing it sets the internal reference voltage to 1.25V (AVDD = 5V only).

When external voltage is selected, the external voltage reference is differential
and is represented by the voltage difference between pins +VREF and −VREF.
The absolute voltage on either pin (+VREF and −VREF) can range from AGND
to AVDD, however, the differential voltage must not exceed 5V. The differential
voltage reference provides an easy means of performing ratiometric measure-
ment.

The REFOUT pin should have a 0.1µF capacitor to AGND.

Note:

Enabling the internal VREF does not eliminate the need for an external con-
nection. The REFOUT pin must still be connected to VREF+, and VREF−
must still be connected to AGND for normal operation with internal VREF. The
only thing that enabling internal VREF does is enable the REFOUT pin.

Summation/Shifter Register

12-16

12.13 Summation/Shifter Register

The MSC1210 includes a summation/shifter register that facilitates and in-
creases the efficiency of certain common summation and shifting/division func-
tions, especially those related to ADC conversions. The summation register is
only active when the ADC is powered up. It is a 32-bit value that is broken into
four 8-bit SFRs named SUMR0 (LSB), SUMR1, SUMR2, and SUMR3 (MSB).

The summation registers may function in one of four distinct modes:

Manual Summation —values written manually to the summation registers will
be summed to the current sum (mode 0).

ADC Summation —a specified number of values returned by the ADC will au-
tomatically be summed to the current sum (mode 1).

Manual Shift/Divide —the current 32-bit value in the summation register is divid-
ed by a specified number. This division takes only four system cycles (mode 2).

ADC Summation with Shift/Divide —a specified number of values returned
by the ADC will automatically be summed to the current sum, then divided by
a specified number (mode 3).

The operation of the summation registers is controlled and configured with the
SSCON (E1H) SFR. In addition to controlling the four modes of operation,
SSCON also is used to control how many samples will be taken from the ADC
and by what value the final sum should be divided by, if any.

The individual bits of SSCON have the following functions:

7 6 5 4 3 2 1 0 Reset Value

SFR E1H SSCON1 SSCON0 SCNT2 SCNT1 SCNT0 SHF2 SHF1 SHF0 00H

The summation register is powered down when the ADC is powered down. If
all zeroes are written to this register, the 32-bit SUMR3-0 registers will be
cleared. The summation registers will do sign extend if bipolar is selected in
ADCON1.

SSCON1-0 (bits 7-6)—Summation Shift Control .

Source SSCON1 SSCON0 Mode

ADC 0 0
Values written to the SUM registers are accumu-
lated when the SUMR0 value is written.

CPU 0 1
Summation register enabled. Source is ADC,
summation count is working.

ADC 1 0
Shift enabled. Summation register is shifted by
SHF Count bits. It takes four system clocks to
execute.

CPU 1 1
Accumulate and shift enabled. Values are accu-
mulated for SUM count times and then shifted by
SHF count.

Summation/Shifter Register

12-17Analog-to-Digital Converter

SSCON1 and SSCON0 (SSCON.7 and SSCON.6, respectively) control which
of the four modes the summation register will operate in.

SCNT0, SCNT1, and SCNT2 (SSCON.3 through SSCON.5) are used to indi-
cate how many ADC samples should be obtained and summed to the summa-
tion register. The number of samples that will be obtained and added are:

SCNT2 SCNT1 SCNT0 Summation Count

0 0 0 2

0 0 1 4

0 1 0 8

0 1 1 16

1 0 0 32

1 0 1 64

1 1 0 128

1 1 1 256

When the requested number of samples have been obtained and summed, a
summation auxiliary interrupt will be triggered, if enabled.

SHF2, SHF1, and SHF0 (SSCON.0 through SSCON.2) are used to indicate
by what value the final summation value should be divided. Specifically, the
value indicates how many bits to the right the final summation value will be
shifted, less one. Thus, a shift count of 0 reflects a final right shift by 1, which
equates to a divide by 2. A shift count of 4 reflects a final right shift by 5, which
equates to a divide by 32.

SHF2 SHF1 SHF0 Shift Summation Count

0 0 0 1 2

0 0 1 2 4

0 1 0 3 8

0 1 1 4 16

1 0 0 5 32

1 0 1 6 64

1 1 0 7 128

1 1 1 8 256

Summation/Shifter Register

12-18

12.13.1 Manual Summation Mode

The first mode of operation, manual summation, allows you to quickly add
32-bit values. In this mode, your program simply write the values to be added
to the SUMR0, SUMR1, SUMR2, and SUMR3 SFRs. When a value is written
to SUMR0, the current value of SUMR0-3 will be added to the summation
register. For example, the following code will add 0x00123456 to
0x0051AB04:

SSCON = 0x00; // Clear summation register, manual summation

SUMR3 = 0x00; // High byte of 0x00123456

SUMR2 = 0x12; // Next byte of 0x00123456

SUMR1 = 0x034; // Next byte of 0x00123456

SUMR0 = 0x56; // Next byte of 0x0012345 – Perform addition

SUMR3 = 0x00; // High byte of 0x0051AB04

SUMR2 = 0x51; // Next byte of 0x0051AB04

SUMR1 = 0xAB; // Next byte of 0x0051AB04

SUMR0 = 0x04; // Next byte of 0x0051AB04 – Performs addition

ANSWER = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1 << 8) + SUMR0;

The previous code, although certainly more verbose than a simple
ANSWER = 0x00123456 + 0x0051AB04 instruction in ‘C’, is much, much
faster when analyzed in assembly language. In assembly language, the above
solution requires just four MOV instructions for each summation, whereas the
simple addition approach (which does not take advantage of the MSC1210
summation register) takes at least 8 MOV instructions and 4 ADD instructions.

12.13.2 ADC Summation Mode

The ADC summation mode functions very similarly to the manual summation
mode, but instead of your program writing values to the SUMRx registers, the
ADC writes values to the SUMRx registers.

In this mode, the CNT bits of SSCON are set to indicate how many ADC
conversions should be summed in the summation register. The ADC will then
deliver the requested number of results to the summation register and trigger
a summation auxiliary interrupt, if enabled (see Chapter 10, Interrupts).

SSCON = 0x00; // Clear summation register, manual summation

SSCON = 0x50; // ADC summation, 8 samples from ADC

while(! (AISTAT & 0x40)); // Wait for 8 samples to be added

SUM = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1 << 8) + SUMR0;

The previous code first clears the summation registers by setting SSCON to
0, and then sets SSCON to ADC summation and requests that eight samples
from the ADC be summed. The while() loop then waits for the summation auxil-
iary interrupt flag to be set, which indicates the requested operation was com-
plete. The final line then takes the four individual SFRs and calculates the total
summation value.

Summation/Shifter Register

12-19Analog-to-Digital Converter

12.13.3 Manual Shift (Divide) Mode

The manual shift/divide mode provides a quick method of dividing the 32-bit
number in the summation register by the value indicated by the SHF bits in
SSCON. In assembly language terminology, this performs a 32-bit rotate right,
dropping any bits shifted out of the least significant bit position.

For example, assuming the summation register currently holds the value
0x01516612, the following code will divide it by 8:

SSCON = 0x82; // Manual shift mode, divide by 8 (shift by 3)

SUM = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1 << 8) + SUMR0;

12.13.4 ADC Summation with Shift (Divide) Mode

The ADC summation with shift (divide) mode is a combination of ADC summa-
tion mode and manual shift mode. This mode will sum the number of ADC sam-
ples indicated by the CNT bits of SSCON, and then shift the final result to the
right (divide) by the number of bits indicated by the SHF bits. This mode is use-
ful when calculating the average of a number of ADC samples.

For example, to calculate the average of 16 ADC samples, the following code
could be used (assuming the ADC had previously been correctly configured):

SSCON = 0x00; // Clear summation register, manual summation

SSCON = 0xDB; // ADC sum/shift, 16 ADC samples, divide by 16

while(! (AISTAT & 0x40)); // Wait for 16 samples to be added

SUM = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1 << 8) + SUMR0;

The previous code will clear the summation register, obtain 16 samples from
the ADC, and then divide by 16, effectively calculating the average of the 16
samples.

Interrupt-Driven ADC Sampling

12-20

12.14 Interrupt-Driven ADC Sampling

A useful, power-saving technique for obtaining ADC samples includes using
the power-down mode of the MSC1210 between the time that a sample is re-
quested and the time that a sample is made available to the MCU. During this
time, the MSC1210 may be put into power-down mode by setting PCON.1
(PD). This will reduce power consumption significantly while the ADC sample
is acquired.

The power−down mode is exited when the ADC unit triggers an interrupt. This
interrupt will take the MCU out of power-down mode, execute the appropriate
interrupt, and then continue with program execution.

#include <REG1210.H>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define LSB 298.0232e−9 /* LSB=5.0/2^24 */

extern void autobaud(void);

extern long bipolar(void);

long sample; // Hold the samples retrieved from A/D converter

void auxiliary_isr(void) interrupt 6 //AuxInt

{

sample = bipolar() * LSB; // Read sample & clear ADCIRQ

AI=CLEAR; // Clear Aux Int right before Aux ISR exit

}

void main(void)

{

float volts, temp, resistance, ratio, lr, ave;

int i, k, decimation = 1728, samples;

CKCON = 0; // 0 MOVX cycle stretch

autobaud();

printf(”MSC1210 Interrupt−Driven ADC Conversion Test\n”);

//Timer Setup

USEC= 10; // 11MHz Clock

ACLK = 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz

// modclock = 1,105,920/64 = 17,280 Hz

// Setup interrupts

EAI = 1; // Enable auxiliary interrupts

AIE = 0x20; // Enable A/D aux. interrupt

// Setup ADC

PDCON &= 0x0f7; //turn on adc

ADMUX = 0x01; //Select AIN0/AIN1

ADCON0 = 0x30; // Vref On, Vref Hi, Buff off, BOD off, PGA=1

Interrupt-Driven ADC Sampling

12-21Analog-to-Digital Converter

ADCON2 = decimation & 0xFF; // LSB of decimation

ADCON3 =(decimation>>8) & 0x07; // MSB of decimation

ADCON1 = 0x01; // bipolar, auto, self calibration, offset, gain

printf (”Calibrating. . .\n”);

for (k=0; k<4; k++)

{

// Wait for Four conversions for filter to settle

// after calibration. We go to sleep. When we wake

// up, the interrupt will have read the sample.

PCON |= 0x02; // Go to power−down until sample ready

}

samples = 10; // The number of voltage samples we will average

while(1)

{

ave = 0;

for (i = 0; i < samples; i++)

{

PCON |= 0x02; // Go to power−down until sample ready

ave += bipolar() * LSB; // This read clears ADCIRQ

}

printf(“Average sample=%f\n”, ave / samples);

}// while

} //main

Syncronizing Multiple MSC1210 Devices

12-22

12.15 Syncronizing Multiple MSC1210 Devices

In some circumstances, it may be desirable to have data conversion synchro-
nized between several devices. In order to synchronize the MSC1210, each
of the devices will need to power down their ADCs (stop the clock), and then
all devices restart their ADCs at the same time.

For this explanation, we assume that one of the input port pins is defined to
be the sync pin. A master device will raise the signal high when the MSC1210
should prepare for synchronization. When the MSC1210 senses the high sig-
nal on the sync input, it waits for the next ADC conversion to be completed.
The ADC interrupt can be used as described in the previous section. After the
ADC interrupt, the PDAD bit in the PDCON (F1H) register is set to 1 to power
down the ADC. The MSC1210 continues to monitor the sync input and when
it goes low, the PDAD bit is set back to zero, thereby activating the ADC.

In summary, synchronizing the MSC1210 can be achieved with the following
steps:

1) Start ADC operation (PDAD = 0).

2) Monitor sync input.

3) When sync = 1, wait for the ADC IRQ, then set PDAD = 1 (power down the
ADC = stop clocks).

4) Wait for sync = 0, then set PDAD = 0, which restarts the ADC.

5) The ADC is now synchronized with the sync input and, therefore, with oth-
er MSC1210 devices that followed the same sync signal. They are also
synchronized to within a few CPU clock cycles.

The following example program illustrates this method of syncronization:

Syncronizing Multiple MSC1210 Devices

12-23Analog-to-Digital Converter

#include <REG1210.H>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define LSB 298.0232e−9 /* LSB=5.0/2^24 */

extern void autobaud(void);

extern long bipolar(void);

void main(void)

{

float volts, temp, resistance, ratio, lr, ave;

int i, k, decimation = 1728, samples;

autobaud();

printf(”MSC1210 Sync Example \n”);

//Timer Setup

USEC = 10; // 11MHz Clock

ACLK = 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz

// modclock = 1,105,920/64 = 17,280 Hz

// Setup ADC

PDCON &= 0x0f7; // turn on adc

ADMUX = 0x01; // Select AIN0/AIN1

ADCON0 = 0x30; // Vref On, Vref Hi, Buff off, BOD off, PGA=1

ADCON2 = decimation & 0xFF; // LSB of decimation

ADCON3 =(decimation>>8) & 0x07; // MSB of decimation

ADCON1 = 0x01; // bipolar, auto, self calibration, offset, gain

while(sync == 0); // As long as sync is low, wait

// Now that sync is low, shut down ADC.

PDCON |= 0x08;

while(sync == 1); // As long as Sync is high, wait.

// When sync goes low, turn on ADC and continue

PDCON = ~0x08;

// At this point ADC is on and multiple MSC1210’s using the

// same Sync signal will be in syncronization.

} //main

Ratiometric Measurements

12-24

12.16 Ratiometric Measurements

Ratiometric measurements may be used to eliminate potential inaccuracy
from the ADC process. Ratiometric measurements are obtained in a circuit
similar to the one shown in Figure 12−6, where the same source used to drive
the reference voltage (VREF) is used to drive the ADC (−IN). This allows
measurements to be taken without the accuracy of the voltage of VREF being
a factor in the measurement or in potential errors because the ratio between
the –IN and –VREF will be constant, regardless of the accuracy of the voltage
of +IN.

Figure 12−6. Circuit Drawing

The voltage measured is a ratio of the resistances RREF and PT100 because the
same current flows through the sense element (PT100) and the reference resistor
(RREF). Any errors in IOUT1 do not enter into the accuracy of the measurment be-
cause, as shown in the following equations, IOUT is effectively cancelled out:

VIN � PT100 � IOUT

VREF � RREF � IOUT

ADC Result �
VIN

VREF

ADC Result �
�PT100 � IOUT

�

�RREF � IOUT
�

�

PT100
RREF

This eliminates both the reference voltage and the current source as sources
of accuracy error and is only limited by the accuracy of the reference resistor
and performance of the PT100. A high-precision reference resistor is readily
obtainable. This is much easier than trying to get the same precision and accu-
racy from a voltage reference.

Ratiometric Measurements

12-25Analog-to-Digital Converter

12.16.1 Differential V REF

One application would be a system where the measurement and the ADC are
on different grounds. Normally, you might have a voltage source that connects
to a sensor, and the bottom of the sensor connects to the reference resistor.
However, with two grounds, that can be different by more than 0.3V—that does
not work. In such a case, you will need to connect the reference resistor from
the power supply to the sensor, and then connect the sensor to GND2. Now
you can still use the reference resistor to set the reference voltage, even
though the voltages are between 2.5V to 4.5V.

The differential reference inputs, however, can be used for both grounded and
non-grounded applications. For example, you might have a sensor that must
be grounded (because of mechanical mounting). In that case the excitation
could go through the reference resistor before the sensor.

12-26

13-1Serial Peripheral Interface (SPI)

����
� $�������
� �����,
�� ��$�!

Chapter 13 describes the serial peripheral interface (SPI) of the MSC1210
ADC.

Topic Page

13.1 Description 13-2.

13.2 Functional Description 13-2.

13.3 Clock Phase and Polarity Controls 13-4.

13.4 SPI Signals 13-5.

13.5 SPI System Errors 13-6.

13.6 Data Transfers 13-7.

13.7 FIFO Operation 13-9.

13.8 Code Examples 13-10.

Chapter 13

Description

13-2

13.1 Description

The MSC1210 includes a serial peripheral interface (SPI) module that allows
simple and efficient access to SPI-compatible devices via a number of SFRs
provided for that purpose. The SPI is an independent serial communications
subsystem that allows the MSC1210 to communicate synchronously with SPI
peripheral devices and other microprocessors. The SPI is also capable of
interprocessor communication in a multiple master system. The SPI system
can be configured as either a master or a slave device.

The maximum data transfer rates can be as high as 1/2 the fOSC clock rate
(12Mbits per second for a 24MHz fOSC frequency).

13.2 Functional Description

The central element in the SPI system is the block containing the shift register and
the read data buffer. SPI data is transmitted and received simultaneously. For
every byte that is sent, a byte is also received. The system is double-buffered in
the transmit direction and double-buffered in the receive direction. This means
that new data for transmission can be written to the SPIDATA register before the
previous transfer is complete. Additionally, received data is transferred into a
parallel read data buffer, so the shifter is free to accept a second serial character.
As long as the first character is read out of the SPIDATA register before the next
serial character is ready to be transferred, no overrun condition occurs.

For FIFO operation, the reading of the received data can be delayed up to the
length of time it takes to fill the FIFO. The SPIDATA register is used for reading
data received, and for writing data to be sent, as shown in Figure 13−1.

Figure 13−1. SPI block diagram

Functional Description

13-3Serial Peripheral Interface (SPI)

Figure 13−2. SPI Clock/Data Timing

During an SPI transfer, data is simultaneously transmitted and received. A
serial clock line synchronizes shifting and sampling of the information on the
two serial data lines.

A slave-select line allows individual selection of a slave SPI device; slave de-
vices that are not selected do not interfere with SPI bus activities. On a master
SPI device, the select line can optionally be used to indicate a multiple master
bus contention (refer to Figure 13−2).

A section of internal RAM from 80H to FFH can be used as a FIFO to extend
the buffering for receive and transmit. The size of the FIFO can range in size
from 2 to 128 bytes.

Clock Phase and Polarity Controls

13-4

13.3 Clock Phase and Polarity Controls

Software can select one of four combinations of serial clock phase and polarity
using two bits in the SPI control register (SPICON 9AH). The clock polarity is
specified by the CPOL control bit, which selects an active high or active low
clock, and has no significant effect on the transfer format.

The clock phase (CPHA) control bit selects one of two different transfer for-
mats. The clock phase and polarity should be identical for the master SPI de-
vice and the communicating slave device. In some cases, the phase and polar-
ity are changed between transfers to allow a master device to communicate
with peripheral slaves having different requirements.

When CPHA = 0, the SPI standard defines that the SS line must be negated
and reasserted between each successive serial byte. This is more difficult
when using the FIFO to transmit the bytes and cannot be done at higher clock
speeds.

When CPHA = 1, the SS line can remain low between successive transfers.

SPI Signals

13-5Serial Peripheral Interface (SPI)

13.4 SPI Signals
The following paragraphs contain descriptions of the four SPI signals: master
in slave out (MISO), master out slave in (MOSI), serial clock (SCK), and slave
select (SS).

The port register for P1.4, P1.5, P1.6 and P1.7 must be set (P1 = FxH) to use
the SPI functions. Additionally, the pins must be setup as inputs or outputs us-
ing the Port 1 Data Direction register (P1DDRH, AFH). For master operation,
P1DDRH = 75H (drive SS pin), and slave P1DDRH = DFH.

13.4.1 Master In Slave Out

MISO is one of two unidirectional serial data signals. It is an input to a master
device and an output from a slave device. The MISO line of a slave device is
placed in the high-impedance state if the slave device is not selected.

13.4.2 Master Out Slave In

The MOSI line is the second of the two unidirectional serial data signals. It is
an output from a master device and an input to a slave device. The master de-
vice places data on the MOSI line a half-cycle before the clock edge that the
slave device uses to latch the data.

13.4.3 Serial Clock

SCK, an input to a slave device, is generated by the master device and syn-
chronizes data movement in and out of the device through the MOSI and MISO
lines. Master and slave devices are capable of exchanging a byte of informa-
tion during a sequence of eight clock cycles.

There are four possible timing relationships that can be chosen by using con-
trol bits CPOL and CPHA in the SPI control register (SPICON). Both master
and slave devices must operate with the same timing. The SPI clock rate select
bits, CLK[2:0], in the SPICON of the master device select the clock rate. In a
slave device, CLK [2:0] have no effect on the operation of the SPI.

13.4.4 Slave Select

The SS input of a slave device must be externally asserted before a master
device can exchange data with the slave device. SS must be low before data
transactions and must stay low for the duration of the transaction.

There is no hardware support for mode fault error detection. For the master
to monitor the SS line, it either needs to poll the status of the SS signal or con-
nect it to INT0 or INT1, which can generate an interrupt when the line goes low.
Due to this, it is reasonable for the master to drive P1.4 as the SS signal for
control of the slave devices.

The state of the master and slave CPHA bits affects the operation of SS. CPHA
settings should be identical for master and slave. When CPHA = 0, the shift clock
is the OR of SS with SCK. In this clock phase mode, SS must go high between
successive characters in an SPI message. When CPHA = 1, SS can be left low
between successive SPI characters. In cases where there is only one SPI slave
MCU, its SS line can be tied to DGND as long as only CPHA = 1 clock mode is
used.

SPI System Errors

13-6

13.5 SPI System Errors

Some SPI systems define two types of system errors: write collision and mode
fault. Write collision is defined to occur when a byte is written to the transmit
register before the previous byte was sent. Mode fault is an error that occurs
in multiple master systems when two masters try to write at the same time.

There is no need to worry about write collision errors because the SPI transmit
path is double-buffered. However, care should be taken to assure that more
bytes are not written to the SPIDATA register before the previous bytes have
been transferred. With the FIFO operation, when the FIFO is filled, the next
writes to the SPIDATA register are ignored.

When the SPI system is configured as a master and the SS input line goes to active
low, a mode fault error has occurred—usually because two devices have at-
tempted to act as master at the same time. In cases where more than one device
is concurrently configured as a master, there is a chance of contention between
two pin drivers. For push-pull CMOS drivers, this contention can cause permanent
damage. Care should be observed to protect against excessive currents in a multi-
master system because the MSC1210 does not detect a mode fault.

Data Transfers

13-7Serial Peripheral Interface (SPI)

13.6 Data Transfers

The transmitted and received data for SPI transfers are both double-buffered.
This means that a second byte can be written for transmit before the first byte
has been sent. Data that is received does not have to be read from the SPIDAT
register until just before the next byte is received. The size of this buffer can
essentially be extended with the FIFO mode. This adds from 2 to 128 bytes
of FIFO memory.

The FIFO mode uses a portion of the internal indirect RAM from 80H to FFH.
The start and end of the FIFO portion of memory is set with the SPISTRT (9EH)
and SPIEND (9FH) registers. The only restriction on those addresses is that
the value of SPIEND must be larger than SPISTRT. The most significant bit is
forced to a one.

There is no signal that switches the SPI interface on or off. It can be powered
down using the PDCON (F1H) register. However, if it is powered up, then it is
operational. For the master, all that is necessary to transmit a byte is to write
the value to SPIDATA (9BH). The SS pin is not used in master mode. It can be
used to drive an SS signal. For slave operation, the bytes will not transfer until
SS is asserted and the clock signals are received.

For slave mode, if the SS signal goes high while a byte is being received, that
byte is immediately flagged as completed and the interface is prepared for a
new byte.

The SPICON (9AH) register controls the SCLK frequency for master operation,
and has bits to enable the FIFO, master mode, set bit order, clock polarity and
phase. Any change to the SPICON register resets the SPI interface, and clears
the counters and pointers, as shown in Figure 13−3.

Figure 13−3. SPI Reset State

Data Transfers

13-8

The SPI Receive control register, SPIRCON (9CH), controls the data receive
operation. The receive buffer can be flushed with the write only RXFLUSH bit.
A flush operation changes the SPI receive pointer so that it points to the same
address as the FIFO IN pointer, and clears the receive counter. The receive
counter indicates the number of bytes that have been received. An interrupt
can be generated when the receive count equals or exceeds a chosen num-
ber. If the interrupt is not masked in the AISTAT register, the SPI received inter-
rupt will cause a AI interrupt. The PPIRQ register is used in the AI interrupt rou-
tine to determine the source of the interrupt. The SPI receive interrupt can be
monitored in the AISTAT register.

The SPI Transmit control register, SPITCON (9DH), controls the data transmit
operation. The transmit buffer can be flushed with the write only TXFLUSH bit.
A flush operation changes the SPI transmit pointer so that it points to the same
address as the FIFO OUT pointer, and clears the transmit counter. The trans-
mit counter indicates the number of bytes in the transmit buffer (FIFO and buff-
er). An interrupt can be generated when the transmit count is less than or equal
to a chosen number. If the interrupt is not masked in the AISTAT register, the
SPI transmit interrupt with cause a auxiliary interrupt. The SPI transmit inter-
rupt can be monitored in the AISTAT register.

FIFO Operation

13-9Serial Peripheral Interface (SPI)

13.7 FIFO Operation

Data transmitted by the SPI interface is written to the SPIDATA register. If the
FIFO is enabled, it is stored in the FIFO memory. The first two bytes are
immediately written to the transmit buffer, and the SPI transmit pointer is
incremented. For each byte transmitted using the SCLK signal, a byte is also
received. The received bytes are immediately transferred to the FIFO. The
FIFO IN pointer increments for each byte received until one less than the SPI
received pointer. If the received bytes are not read or flushed, then additional
SCLKs will continue to send until the last byte is sent. Therefore, if the SPI is
used to only transmit bytes, the SPI receive interrupt can be used to flush the
received bytes so that transmission of data is not blocked.

The SPI interrupts can be used to achieve maximum throughput. The size of
the FIFO can be adjusted from 2 to 128 bytes depending on the allowable inter-
rupt latency. For example, assume that the application has time critical opera-
tions that cannot be interrupted for 10µs. Using an 11.0592MHz crystal and if
SPI clock is fOSC/2, one byte can be shifted out in 1.46µs, or 69 bytes in 100µs.
By setting the transmit IRQ level for 8, it would require that the FIFO be at least
77 bytes. If not receiving bytes, but simply flushing the receive buffer, the IRQ
level for the receive interrupt has to be taken into account. For example, to al-
low the receive buffer to grow to 32 before generating an interrupt, add 32 to
the 69 transfers. That gives a minimum buffer size of 101. A FIFO of 100 bytes
would be adequate because two bytes are stored in the buffer register and shift
register.

When using the FIFO, there is no mechanism to remove and reassert the SS
line between each byte transferred, which is required for CPHA = 0. For slower
transfer rates, it is possible for the program to monitor the SCLK using INT5
and control the SS signal as needed.

Figure 13−4. SPI FIFO Operation

Code Examples

13-10

13.8 Code Examples

13.8.1 SPI Master Transfer in D ouble-Buffer Mode using Interrupt Polling

Example 13−1. SPI Master Transfer in Double-Buffer Mode using Interrupt Polling
1 #include ”MSC1210.H”

2 #include <Stdlib.h>

3 char spi_tx_rx (char tx_data) {

4 while((AIE&0x08)!=0x08){ } SPIDATA=tx_data; // Wait until SPItx is set.

5 while((AIE&0x04)!=0x04){ } return(SPIDATA); // Wait until SPIrx is set.

6 }

7 void main(void)

8 {

9 char j;

10 P1DDRH = 0x75; // P1.7,P1.5,P1.4 = Outputs P1.6 = Input

11 // P1DDRH = 0xDA; // P1.7,P1.5,P1.4 = Inputs P1.6 = Output

12 PDCON &= 0xFE; // Turn on SPI power

13 SPICON=0xF6; // ClkDiv=111(clk/256), DMA=0, Order=0, M/S=1, CPHA=1, CPOL=0

14 // SPICON=0x02; // ClkDiv=Doesnt matter, DMA=0, Order=0, M/S=0, CPHA=1, CPOL=0

15 j=spi_tx_rx(0x78); // Transmit data value=0x78H, Return value is the received data

16 }

Example 13−1 is for a simple SPI master in double-buffer mode using interrupt
polling. By changing two lines the code can also be used as a slave.

In line 10, the port direction for the pins that are used by the SPI. P1.7(SCLK
pin), P1.5 (MOSI) and P1.4 (SS) is configured as output, whereas pin P1.6
(MISO) is configured as input, because we are going to use the device as mas-
ter. When configured as a slave, line 10 is commented out and line 11 is un-
commented (line 11 is commented out in Example 13−1).

In line 12, the SPI is powered up by writing to PDCON.

In line 13, the SPICON register is set to put the SPI in master mode, double-
buffer mode, with order = 0, CPHA = 1 and CPOL = 1, and the transfer clock
rate at clk/256. Line 13 must be commented out and line 14 must be uncom-
mented if the device is to be configured for slave-mode operation.

Line 15 calls the subroutine spi_tx_rx. The input to the subroutine is the data
that is to be transmitted and the output is the data that is received.

Line 4 polls AIE[3] (ESPIT) to check if the interrupt is on, which indicates that
the transmit buffer is empty. Once the buffer is empty, the next byte can be writ-
ten for transmission.

Line 5 polls AIE[2] (ESPIR) to check if the interrupt is ON, which indicates that
the receive buffer is full. Once this buffer is full, the received byte can be read.

Note:

Some applications require receive-only or transmit-only operation. In these
cases, the subroutine needs to be modified accordingly.

SPI Master Transfer in FIFO Mode using Interrupts

13-11Serial Peripheral Interface (SPI)

13.8.2 SPI Master Transfer in FIFO Mode using Interrupts

Example 13−2. SPI Master Transfer in FIFO Mode using Interrupts

1 #include ”MSC1210.H”

2 void main(void)

3 {

4 P1DDRH = 0x75; // P1.7,P1.5,P1.4=output P1.6=input

5 PDCON &= 0xFE; // Turn on SPI power

6 SPIRCON=0x83; // Flush RxBuf, RXlevel=4 or more

7 SPITCON=0xAA; // Flush TxBuf, DrvEnb=1, SCLK Enable=1 Txlevel=4 or less

8 SPISTRT=0x00; // Star address = 0

9 SPIEND= 0x08; // End address = 8

10 SPICON=0x36; // ClkDiv=001 (clk/4), dma=1, Order=0,M/S=1,CPHA=1,CPOL=0

11 AIE = 0x0C; // SPI Transmit IRQ and SPI Receive IRQ Enabled

12 AI=0; // Clear the external interrupt flag

13 EAI=1; // Enable the external interrupts.

14 while(1) { }

15 }

16 void monitor_isr() interrupt 6

17 {

18 if(AISTAT==0x04) {read_4_bytes();} // Checking for SPIRX IRQ

19 if(AISTAT==0x08) {send_4_bytes();} // Checking for SPITX IRQ

20 AI=0;

21 }

Example 13−2 is for a simple SPI master in FIFO mode using interrupts.

In line 4, the the port direction is set for the pins that are used by the SPI. Pins
P1.7 (SCLK pin), P1.5 (MOSI) and P1.4(SS) are configured as outputs and pin
P1.6 (MISO) is configured as input because the device will be used in master
mode.

In line 5, the SPI module is powered up by writing to the PDCON.

In line 6 the Rxlevel is set to 4 and the RXBuffer content is flushed, if any exists.
Thus, SPIRXIRQ goes high whenever more than 4 bytes of data are received.

In line 7, the Txlevel is set to 4 and the TXBuffer content is also flushed, if any
exists. The data and clock lines are also enabled by setting bit 3 and bit 5, re-
spectively, of register SPITCON. The SPITXIRQ goes high if there are 4 or
fewer bytes to transmit.

In line 8, the SPISTRT SFR is cleared, i.e., the start address of the buffer is
at 0.

In line 9, the end address SPIEND is set to to 8, creating a buffer size of 8 bytes.

Line 10 sets the SPICON register. The clock is configured to run at clk/4 speed.
The other configuration settings are master mode, FIFO mode,
order = 0, CPHA = 1 and CPOL = 0.

SPI Master Transfer in FIFO Mode using Interrupts

13-12

Line 11 enables the SPIRX and SPITX interrupts, after which the AI flag is
cleared and the EAI flag is enabled. There is no data to transmit, so SPITXIRQ
goes up and we go to the monitor_isr() routine. The SPITX IRQ went up, so
the subroutine send_4_bytes is called, where the program writes to the
SPIDATA register 4 times.

In line 20, the AI flag is cleared. The interrupt SPITX goes on again immediate-
ly because the interrupt is configured to be triggered when the number of bytes
to transmit is 4 or fewer. The number to bytes to transmit are 4, so the interrupt
is triggered and 4 additional bytes are subsequently written to the buffer.

Thus, the buffer is completely filled with bytes to be transmitted. As one byte
is transmitted, an additional byte is written. Once 4 bytes are transmitted, 4 by-
tes will be received, at which point both transmit and receive interrupts go high.
At that point the interrupt routine is executed, first reading the 4 received bytes
and then writing 4 more bytes to be transmitted. In this manner, the buffer is
always used to its fullest extent without overflowing in either direction.

14-1Additional MSC1210 Hardware

#�������
� ������� -
��%
��

Chapter 14 describes addtional hardware on the MSC1210 ADC.

Topic Page

14.1 Description 14-2.

14.2 Low-Voltage Detect 14-2.

14.3 Watchdog Timer 14-4.

Chapter 14

Description

14-2

14.1 Description

The MSC1210 includes a number of special hardware features above and
beyond those of a typical MCS−51 part.

14.2 Low-Voltage Detect

The MSC1210 includes low voltage and brownout detection circuits for both
the analog and digital supply voltages. The voltage levels at which these cir-
cuits are tripped is programmable.

Figure 14−1. Brownout Reset and Low-Voltage Detection

Low-Voltage Detect

14-3Additional MSC1210 Hardware

The detect circuit must activate whenever the supply voltage drops below the
programmed level. In order to account for temperature and process variations,
the trip levels are typically higher than the specified value, to provide some
margin. For example, when 4.5V is selected, the detect output will typically ac-
tivate when the supply drops below 4.7V.

14.2.1 Power Supply

VSPD powers the digital section resistor string and the comparators. VSPA
powers the analog section resistor string and the bandgap voltage. Level
shifters, where needed, are included inside the block.

Table 14−1.Typical Sub-Circuit Current Consumption

Sub−Ckt Current Consumption

Band Gap 20µA

Compartors 2µA

Resistor String 6µA

Total 40µA

Table 14−2.Comparator Specification

Comparator Parameters

50mV ± 2mV Hysteresis at 2.5V

100mV ± 8mV Hysteresis at 4.7V

26mV Hysteresis at Each Terminal

400nS Response Time for Slow Input

Table 14−3.Band Gap Parameters

Band Gap Parameters

Bandgap Voltage Reference (min) 1.00V

Bandgap Voltage Reference (typ) 1.22V

Bandgap Voltage Reference (max) 1.50V

Minimum Supply Voltage (VSPA) 1.50V

Bandgap Startup Time (typ) < 16µS

Watchdog Timer

14-4

14.3 Watchdog Timer

The watchdog timer is used to ensure that the CPU is executing the user
program and not some random sequence of instructions provoked by a
malfunction. When the watchdog timer is enabled, the user program must
periodically notify the watchdog that the program is still running correctly. If the
watchdog detects that the user program has not made this notification after a
certain amount of time, the watchdog automatically resets the MCS1210 or
executes an interrupt. This ensures that the part does not hang in an infinite loop
or execute non-program code due to some malfunction or programming error.

Figure 14−2. System Timing Interrupt Control

14.3.1 Watchdog Timer Hardware Configuration

The watchdog is first configured when code is downloaded to the MSC1210.
Bit 3 of hardware configuration register 0 (HCR0) is the Enable Watchdog
Reset (EWDR) bit. If this bit is set, the watchdog will trigger a reset (if the
watchdog is enabled by software and not reset at appropriate intervals),
whereas if this bit is clear, the watchdog will trigger an interrupt (if the watchdog
is enabled by software not reset at appropriate intervals). The point to
remember is that the EWDR bit in the HCR0 register indicates what the
watchdog will do when it is triggered: reset the MSC1210 or cause an interrupt.
It does not, by itself, enable or disable the watchdog; that is done in software
at execution time.

Watchdog Timer

14-5Additional MSC1210 Hardware

Note:

The HCR0 and HCR1 registers may be set by the TI downloader application
at download time. It may also be set manually from within the source code
by including the following assembly language code:

CSEG AT 0807EH

DB 0FCH ; Value for HCR0

DB 0FFH ; Value for HCR1

When the MSC1210 is in programming/download mode, code address
807EH refers to the HCR0 register and 807FH refers to the HCR1 register.
This allows the values that are needed for HCR0/HCR1 to be hardcoded in
the source code rather than having to set the registers manually via the
downloader program.

14.3.2 Enabling Watchdog Timer

The watchdog timer is enabled by writing a 1 and then a 0 to the EWDT bit
(WDTCON.7). This may be accomplished, for example, with the following code:

WDTCON = 0x80; // Set EWDT

WDTCON = 0x00; // Clear EWDT – Watchdog enabled

The watchdog timer then begins a countdown that, unless reset by your pro-
gram, will trigger a watchdog reset or interrupt (depending on the configuration
of HCR0, described previously). The time after which the watchdog will be trig-
gered is also configured by the low five bits of the WDTCON SFR. These bits,
which may represent a value from 1 to 32 (0 to 31, plus 1), multiplied by the time
represented by HMSEC, defines the countdown time for the watchdog.

For example, if HMSEC is assigned a value that represents 100ms and
WDTCON is assigned a value of 7, the watchdog will automatically trigger after
800ms ([7 + 1] � 100), unless the reset sequence is issued by the user program.
Therefore, a better approach to enabling the watchdog timer is:

WDTCON = 0x80; // Set EWDT

WDTCON = 0x07; // Clear EWDT, set timeout = 7, 800ms

Note:

There is an uncertainty of one count in the watchdog counter. That is to say,
the watchdog counter may occur a full HMSEC after the programmed time
interval. In the previous example, where the watchdog is set to trigger after
800ms, the watchdog may in fact trigger as late as 900ms.

Watchdog Timer

14-6

Although the watchdog timeout value (0x07 in the previous example) may be
set at the same time as the EWDT bit is cleared, it may be changed after the
fact. If the timeout value is changed after the watchdog has been enabled, the
new timeout will take effect the next time the watchdog times out, or the next
time the watchdog is reset (see next section). For example:

WDTCON = 0x80; // Set EWDT

WDTCON = 0x07; // Clear EWDT, set timeout = 7, 800ms

WDTCON = 0x06; // Set timeout = 6, 700ms

In this example, the watchdog will initially be enabled with a timeout of 800ms.
The very next instruction sets the timeout to 700ms. In this case, the watchdog
will time out after 800ms, unless it is reset as described in the following section.
Once the watchdog has been reset, the new timeout of 700ms will take effect.

Watchdog Timer

14-7Additional MSC1210 Hardware

14.3.3 Resetting the Watchdog Timer

Your program, when operating properly, must reset the watchdog periodically.
You can reset the watchdog as frequently or infrequently as desired, as long
as it is reset more frequently than the watchdog countdown time described
previously.

Your program must reset the watchdog by writing a 1 and then a 0 to the RWDT
bit (WDTCON.5). This notifies the watchdog that your program is still operating
correctly and that the watchdog timer should be reset.

The following code will reset the watchdog timer and notify the MSC1210 that
your program is still executing correctly:

WDTCON |= 0x20; // Set RWDT, other bits unaffected

WDTCON &= ~0x20; // Clear RWDT—watchdog reset

Note:

It is generally a good idea to place the watchdog reset code in the main sec-
tion of your program that is within a rapidly-executing control loop. It is not
advisable to place the code within an interrupt, because the main program
might be stuck in an infinite loop, although the interrupts can still trigger prop-
erly. Placing the watchdog reset code in an interrupt, in these cases, would
tell the MSC1210 that the program is still executing correctly when, in fact,
it is stuck in an infinite loop.

Watchdog Timer

14-8

14.3.4 Disabling Watchdog Timer

Once the watchdog timer is activated, it operates continuously and your pro-
gram must reset the watchdog timer regularly, as described in the previous
section.

If, for some reason, you need to disable the watchdog timer (e.g., before enter-
ing idle mode), write a 1 and then a 0 to the DWDT (WDTCON.6) bit. In code,
this can be accomplished with:

WDTCON |= 0x40; // Set DWDT, other bits unaffected

WDTCON &= ~0x40; // Clear RWDT—watchdog disabled

The watchdog is then disabled until it is subsequently re−enabled using the
process in section 14.3.2.

14.3.5 Watchdog Timeout/Activation

If the watchdog is not reset by sending the reset sequence described
previously before the watchdog counter expires, the watchdog will be
activated. The watchdog will either reset the MSC1210 or trigger a watchdog
interrupt, depending on the setting of the HCR0 hardware configuration
register.

14.3.5.1 Watchdog Reset

In the case of a watchdog reset, the MSC1210 is reset. SFRs will assume their
default values, the stack is reset, and the program starts executing again at
address 0000H. The contents of RAM is not affected.

14.3.5.2 Watchdog Interrupt

If the HCR0 register is configured to cause a watchdog interrupt, a watchdog
auxiliary interrupt is flagged in the watchdog timer interrupt, WDTI (EICON.3).
If the watchdog interrupt is enabled in EWDI (EIE.4) and interrupts are enabled
via EA (IE.7), a watchdog interrupt is triggered and vectors to 0063H. Your
program must clear the WDTI flag before exiting the interrupt or the watchdog
interrupt will be triggered again.

Note:

If the MSC1210 is in Idle mode when the watchdog interrupt is triggered, the
processor will only wake up from idle mode if EWUWDT (EWU.2) is set. See
section 10.9, Waking Up from Idle Mode, for additional details.

15-1Advanced Topics

#�+
���� ������

Chapter 15 describes advanced topics associated with the MSC1210 ADC.

Topic Page

15.1 Hardware Configuration 15-2.

15.2 Advanced Flash Memory 15-6.

15.3 Breakpoint Generator 15-7.

15.4 Power Optimization 15-9.

15.5 Flash Memory as Data Memory 15-10.

15.6 Advanced Topics and Other Information 15-12.

Chapter 15

Hardware Configuration

15-2

15.1 Hardware Configuration

In addition to whatever amount of flash memory the specific MSC1210 part
contains (which may be partitioned between flash data memory and flash
program memory), the MSC1210 also includes 128 bytes of hardware
configuration memory. This memory is used to store two hardware
configuration registers and, optionally, up to 110 bytes of configuration data
that you may set at program time, and that may be used to store information
such as serial numbers, product codes, etc.

Note:

Hardware configuration memory, including the hardware configuration regis-
ters and the 110 bytes of configuration data, can only be set at program time.
They cannot be modified by your program at run time, once the firmware has
been downloaded to the MSC1210.

15.1.1 Hardware Configuration Registers

The MSC1210 has two hardware configuration registers, HCR0 and HCR1.
These registers are set at the moment the MSC1210 is programmed—be it in
parallel or serial mode—and are used to set various operating parameters of
the MSC1210.

When loading a program on the MSC1210, the HCR0 register is at code ad-
dress 807EH, whereas HCR1 is found at code address 807FH. In a typical as-
sembly language program, the HCR0 and HCR1 registers could be set by add-
ing the following code to the program:

CSEG AT 0807EH ;Address of HCR0

DB 0FCH ;HCR0:76:DBLSEL 54:ABLSEL 3:DAB 2:DDB 1:EGP0
;0:EGP23

DB 0FFH ;HCR1: 7:EPMA 6:PML 5:RSL 4:EBR 3:EWDR 210:DFSEL

Hardware Configuration

15-3Advanced Topics

15.1.1.1 Hardware Configuration Register 0 (HCR0)

Hardware configuration register 0 (HCR0) is used to configure the amount of
flash memory partitioned as data flash memory, configure the watchdog, and
set a number of security bits that restrict write access to flash memory.

The HCR0 has the following structure:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

CADDR 7FH EPMA PML RSL EBR EWDR DFSEL2 DFSEL1 DSEL0

EPMA (bit 7)—Enable Program Memory Access (Security Bit). When this bit
is clear, flash memory cannot be read or written after the part is programmed. This
will prevent future updates to the firmware code. When the bit is set, which is the
default condition, flash memory will remain fully accessible for reprogramming.

PML (bit 6)—Program Memory Lock. When clear, your program may write
to flash program memory. When set, flash program memory is locked and can-
not be changed by your program. This may be set to ensure that the user pro-
gram does not overwrite the program itself by writing to flashmemory.

RSL (bit 5)—Reset Sector Lock. When clear, your program may write to the
reset sector (the first 4k of flash program memory). When it is set (default), your
program may not write to this area of flash memory. This bit functions the same
as the PML bit, but applies to only the first 4k of flash program memory. If the
MSC1210 is configured such that only 4k is assigned to flash program
memory, this bit has the same effect as setting PML.

EBR (bit 4)—Enable Boot ROM.

EWDR (bit 3)—Enable Watchdog Reset. When this bit is clear, a watchdog
situation provokes a watchdog auxiliary interrupt that your program needs to
intercept and handle. If this bit is set, a watchdog situation provokes a reset
of the MSC1210.

DFSEL2/DFSEL1/DFSEL0 (bits 2-0)—Flash Data Memory Size. These
three bits, together, select how much of the available flash memory will be as-
signed to data memory; the rest will be assigned to flash program memory.

DFSEL2/1/0 Amount of Flash Data Memory

001 32k

010 16k

011 8k

100 4k

101 2k

110 1k

111 No flash memory (default)

Note:

If more flash data memory is selected than flash memory exists on the actual
part, all of the flash memory available will be partitioned as flash data
memory, leaving nothing for flash program memory.

Hardware Configuration

15-4

15.1.1.2 Hardware Configuration Register 1 (HCR1)

Hardware configuration register 1 (HCR1) is used primarily to configure the
brownout detection for both the digital and analog power supplies. It is also
used to configure whether ports 0, 2, and 3 are used as general I/O ports, or
take part in external memory access.

The HCR1 has the following structure:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

CADDR 7EH DBLSEL1 DBLSEL0 ABLSEL1 ABLSEL0 DAB DDB EGP0 EGP23

DBLSEL1/0 (bits 7-6)—Digital Brownout Level Select. These two bits,
together, select the voltage level that triggers a digital brownout situation.

00: 4.5V

01: 4.2V

10: 2.7V

11: 2.5V (default)

ABLSEL1/0 (bits 5-4)—Analog Brownout Level Select. These two bits,
together, select the voltage level that triggers an analog brownout situation.

00: 4.5V

01: 4.2V

10: 2.7V

11: 2.5V (default)

DAB (bit 3)—Disable Analog Power−Supply Brownout Detection. When
this bit is set, brownout detection on the analog power supply is disabled.
When clear, brownout detection operates normally.

DDB (bit 2)—Disable Digital Power−Supply Brownout Detection. When
this bit is set, brownout detection on the digital power supply is disabled. When
clear, brownout detection operates normally.

EGP0 (bit 1)—Enable General-Purpose I/O for Port 0. When this bit is set
(default), port 0 is used as a general I/O port. When clear, P0 is used to access
external memory—in this mode, P3.6 and P3.7 are used to control the WR and
RD lines.

EGP23 (bit 0)—Enable General-Purpose I/O for Port 2 and 3. When this bit
is set (default), ports 2 and 3 sre used as general I/O ports. When clear, P2 and
P3 are used to access external memory—in this mode, P3.6 and P3.7 are used
to control the WR and RD lines.

Hardware Configuration

15-5Advanced Topics

15.1.2 Hardware Configuration Memory

In addition to the hardware configuration registers, 116 bytes of configuration
memory are available to you for your own use. This configuration memory, also
set during device programming, can hold information such as unique serial
numbers, parameters, or any other information that you want to record. The
configuration information is available to the program when the part is operating
for read operations, but cannot be changed.

Setting the configuration memory is accomplished in the same way as setting
the hardware configuration registers as described above—the only difference
is that the configuration memory available is located from 8002H through
806FH. Thus, the first five bytes of your configuration memory could be set with
assembly code such as the following:

CSEG AT 8002H ;Address of user configuration memory

DB 10h,20h,30h,40h,50h ;User configuration data, up to 116 bytes

Be careful that the configuration data is located at 8002H and includes no more
than 116 bytes of data. Including more than 116 bytes of configuration data
causes the data to spill over into the area of configuration memory that is used
to configure the actual MSC1210 hardware.

15.1.3 Accessing Configuration Memory in a User Program

The 128 bytes of flash configuration memory, which include the 116 bytes of
user-defined configuration data and two bytes of hardware configuration regis-
ters, can be read by your program in normal operation. However, the configu-
ration data is not obtained by reading the code address to which they were pro-
grammed. That is to say, although flash configuration memory is set at pro-
gram time by placing it at code memory addresses 8002H through 806FH (user
configuration memory) and 807EH and 807FH (hardware configuration), the
data cannot be read by reading the data from that program memory address.
Rather, two SFRs are used to read the configuration memory.

In code, your program may set the configuration address register SFR,
CADDR (93H), to the address of the byte of configuration memory that should
be read. The address must be a value between 00H and 7FH reflecting the 128
bytes of configuration flash memory. Once the address is set in CADDR, the
value of that address can then be read by reading the CDATA (94H) SFR.

Note:

You may not write to the CADDR SFR if the code is executing from flash
memory. This is because that would imply that the MSC1210 fetch the flash
configuration memory at the same time as it is fetching instructions from flash
memory.

To read flash configuration memory, a call must be made to the 2k Boot ROM
that is included on the MSC1210. A call to the faddr_data_read function, pass-
ing it the address as a parameter, will return the value of the configuration
memory address.

Advanced Flash Memory

15-6

15.2 Advanced Flash Memory

Flash memory may be configured as data memory, program memory, or both.

15.2.1 Write Protecting Flash Program Memory

Flash program memory may be protected against your program overwriting it by
writing to flash memory during program execution. This provides a safeguard to the
integrity of the code against intentional or accidental manipulation by your program.

By setting the Program Memory Lock (PML) bit in HCR0, all of flash program
memory is write-protected inasmuch as your program modifying flash program
memory is concerned. When this bit is set, your program is not able to write to
any area of flash memory that has been partitioned as flash program memory.

Likewise, by setting the Reset Sector Lock (RSL) bit in HCR, the first 4k of flash
program memory will be write-protected inasmuch as your program modifying that
area of flash program memory is concerned. This is functionality identical to the
PML bit, but the RSL bit only applies to the first 4k of flash program memory,
whereas the PML bit applies to all of flash program memory. By clearing PML and
setting RSL, the first 4k of flash program memory is locked against all writes by your
program, but the rest of flash program memory is accessible to memory writes.

If writing to flash program memory is permitted by the PML and RSL bits, your
program must first set the MXWS bit of MWS (8FH) prior to writing to flash program
memory. If this bit is not set, writes to flash program memory are not effective.

15.2.2 Updating Interrupts with Reset Sector Lock

If the Reset Sector Lock (RSL) bit in HCR0 has been set, the user program will
not be able to modify the contents of the first 4k of flash program memory. Set-
ting RSL makes it impossible to change where the ISRs will branch to when
triggered because the interrupt service routine vectors are all located in the
first bytes of flash program memory.

If RSL needs to be set, but the interrupt service routines also need to be able
to change , it is recommended that the ISRs in the reset sector simply branch
to the same address, plus 4k. At the resulting branch address, the the user will
be able to jump to wherever the ISR is actually located, and will also be able
to modify that jump because it is not contained in the reset sector.

For example, given an external 0 interrupt that branches to 0003H when trig-
gered, the following code could be implemented:

CSEG AT 0003h ;Address of External 0 Interrupt

LJMP Ext0ISR ;Jump to the interrupt vector at 0003h + 4k

CSEG AT 1003h ;Ext0 jump vector, outside of reset sector

LJMP Ext0Code ;Jump to wherever the real Ext. 0 interrupt
;code is

Thus, If the external 0 interrupt code needs to be changed later, simply change
the instruction at 1003H to jump to the new code. Both the code and the jump at
1003H can be updated as desired because both are outside of the reset sector.

Breakpoint Generator

15-7Advanced Topics

15.3 Breakpoint Generator

The purpose of the breakpoint block is to generate an interrupt whenever the
desired program or data memory address is accessed. There are two kinds
of memory accesses it can detect:

� Accesses to program memory (read or write)

� Accesses to data memory (read or write)

The interrupt is handled by the interrupt controller (for details, see Chapter 10,
Interrupts). Breakpoints are useful in debugging code. You can set a break-
point at the start of a suspect piece of code. Once the program reaches the
breakpoint address, program flow can be suspended/interrupted so you can
force a memory dump or a register dump. You can specify up to two 16-bit ad-
dresses for which the interrupt may be generated.

15.3.1 Configuring Breakpoints

Breakpoints are controlled by the BPCON (A9H), BPL (AAh), BPH (ABH) and
MCON (95H) SFRs. The Breakpoint Control SFR (BPCON) controls the con-
figuration of the breakpoint. BPL and BPH together form a 16-bit breakpoint
address. BPSEL (MCON.7) selects which of the two breakpoints is to be con-
figured.

The BPCON SFR has the following structure:

7 6 5 4 3 2 1 0 Reset Value

SFR A9H BP 0 0 0 0 0 PMSEL EBP 00H

BP (bit 7)—Breakpoint Interrupt. This bit indicates that a break condition has
been recognized by a hardware breakpoint register(s).

READ: Status of breakpoint interrupt. Indicates a breakpoint match for any of
the breakpoint registers.

WRITE: 0—No effect.

1—Clear Breakpoint 1 for breakpoint register selected by MCON (SFR 95H).

PMSEL (bit 1)—Program Memory Select. Write this bit to select memory for
the address breakpoints of the register selected in MCON (SFR 95H).
0: Break on address in data memory.

1: Break on address in program memory.

EBP (bit 1)—Enable Breakpoint. This bit enables this breakpoint register. Ad-
dress of breakpoint register selected by MCON (SFR 95H).
0: Breakpoint disabled.
1: Breakpoint enabled.

Breakpoint Generator

15-8

To configure a breakpoint, the following steps should be taken:

1) The BPSEL (MCON.7) bit must be set to either 0 (for Breakpoint 0) or 1
(for Breakpoint 1).

2) The Program Memory Select bit, PMSEL (BPCON.1), must be either
cleared if the breakpoint is to detect an access to data memory, or set if
the breakpoint is to detect an access to program memory.

3) BPL and BPH should be loaded with the low and high byte, respectively,
of the address at which the breakpoint should be triggered.

4) The Enable Breakpoint bit, EBP (BPCON.0), must then be set to activate
the interrupt.

15.3.2 Breakpoint Auxiliary Interrupt

Once a breakpoint interrupt has been configured, the BP (BPCON.7) interrupt
flag will be set and, if enabled and not masked, a breakpoint auxiliary interrupt
will be triggered whenever the specified memory address is accessed. The
program must write a 1 back to BPCON.7 in order to clear the interrupt after
processing it.

When a breakpoint interrupt occurs, the program may read the BPSEL
(MCON.7) bit to determine which breakpoint was triggered. If BPSEL is clear,
Breakpoint 0 triggered the interrupt. If BPSEL is set, Breakpoint 1 triggered the
interrupt.

When using breakpoints, notice that the actual breakpoint occurs after the se-
lected address. That is because of interrupt latency on the MSC1210. It takes
a few cycles for the interrupt to be recognized and serviced. During that time
the processor continues for two or three more instructions, which means that
the program counter will be offset from the address in the breakpoint.

Additionally, when placing a breakpoint after a jump or return instruction, the
breakpoint may be triggered even though the instruction was never executed.
This is because the processor pre-fetches the instructions. The breakpoint
hardware cannot distinguish between pre-fetched operations or those being
executed. This usually means that breakpoints should not be placed on the
first instruction of a routine, because just before that instruction is the jump or
return instruction from a previous routine. A workaround is to place two NOPs
at the beginning of the routine and then break after those NOPs.

15.3.3 Disabling a Breakpoint

To clear a previously set breakpoint, the following steps should be taken:

1) The BPSEL (MCON.7) bit must be set to either 0 (for breakpoint 0) or 1
(for breakpoint 1).

2) The Enable Breakpoint bit, EBP (BPCON.0), must be cleared to
deactivate the interrupt.

Power Optimization

15-9Advanced Topics

15.4 Power Optimization

The MSC1210, like a standard 8052, has the ability to operate in a
power-saving mode, known as idle mode. As the name implies, idle mode
shuts down most of the energy-consuming functions of the microcontroller and
idles. Code execution stops in idle mode, and the only way to exit idle mode
is a system reset or an enabled interrupt being triggered.

Idle mode is useful in causing the microcontroller to go to sleep until an inter-
rupt awakens it. Instead of cycling repeatedly waiting for an interrupt condition
to occur, the part may be made to go to sleep until the condition is triggered—
during that time, power consumption is minimized. External interrupts, the
watchdog interrupt, or the auxiliary interrupts can be made to wake up an idling
MSC1210.

To enter idle mode, bit 0 of PCON must be set. This can be accomplished with
the instruction:

PCON |= 0x01;

When this instruction is executed, the MSC1210 immediately drops into idle
mode and remains there until an enabled interrupt occurs. When an interrupt
occurs, the ISR executes and finishes, and program execution continues with
the instruction following the instruction that put the MSC1210 in idle mode—in
this case, the instruction mentioned previously.

Flash Memory as Data Memory

15-10

15.5 Flash Memory as Data Memory

If so configured in HCR0, some portion of flash memory can be accessed by
your application program as flash data memory. The amount of flash memory
that is partitioned as flash data memory is controlled by the low 3 bits of HCR0.
Please see Section 15.1.1.1, Hardware Configuration Register 0, for details.

When some amount of flash memory is partitioned as flash data memory, the
program may read, update, and store information in nonvolatile memory that
will survive power-off situations. That makes the flash data memory a useful
area to store configuration or data logging information.

The following program illustrates how flash data memory may be read and up-
dated.

Note:

The MSEC and USEC SFRs must be correctly set prior to erasing or writing
to flash memory.

Within the infinite while() loop, the program first reads flash data memory.
This is accomplished directly by reading XRAM memory. This is accomplished
in this C program by using the pFlashPage pointer—it is accomplished in
assembly language using the MOVX instruction.

After reading flash memory, it increments the value of the first byte of the
memory block read by one. The call to page_erase()is a call to the routine in
boot ROM that erases the requested block of memory. Thereafter, it makes re-
peated calls to write_flash_chk to write the buffer back to the block of flash data
memory one byte at a time.

The infinite loop continues by displaying the result of the writes to flash data
memory (0 = Success) and the updated value contained in the buffer as read
from flash data memory via the pFlashPage pointer. It then prompts the user
to hit any key, after which the loop will repeat itself and the first byte of the buffer
will again be incremented.

#include <stdio.h>

#include <reg1210.h>

#include ”rom1210.h”

// define the page we want to modify

#define PAGE_START 0x0400

#define PAGE_SIZE 0x80

// define a pointer to this page

char xdata * pFlashPage;

// define a RAM area as a buffer to hold one page

char xdata Buffer[PAGE_SIZE];

int main()

{

char Result;

Flash Memory as Data Memory

15-11Advanced Topics

unsigned char i;

// synchronize baud rate

autobaud();

// Set the pointer to the beginning of the page to modify

pFlashPage = (char xdata *) PAGE_START;

// before writing the flash, we have to initialize

// the usec and msec SFRs because the flash programming

// routines rely on these SFRs

USEC = 12−1; // assume a 12 MHz clock

MSEC = 12000−1;

while(1)

{

// copy the page from FLASH to RAM

for(i=0;i<PAGE_SIZE;i++)

Buffer[i] = *pFlashPage++;

// increment the counter

Buffer[0] += 1;

// now erase the page

page_erase(PAGE_START, 0xff, DATA_FLASH);

Result = 0;

// and write the modified contents back into flash

for(i=0;i<PAGE_SIZE;i++)

Result |= write_flash_chk (PAGE_START+i, Buffer[i],

DATA_FLASH);

// re−read the counter

pFlashPage = (char xdata *) PAGE_START;

printf(”flash write returned %d, Reset counter is now %d,

press any key\n”, (int) Result, (int)(*pFlashPage));

while(RI==0);

RI = 0;

}

}

Note:

Your program must use the boot ROM routines, such as write_flash_chk, in
order to modify flash data memory, if your program is itself executing from
flash memory. That is because the instructions are being fetched from flash
memory, and writing to flash memory simultaneously causes a conflict that
results in undesired program execution. The boot ROM routines must be
used to modify flash memory whenever your program itself resides on-chip
in flash memory.

Advanced Topics and Other Information

15-12

15.6 Advanced Topics and Other Information

15.6.1 Serial and Parallel Programming of the MSC1210

The MSC1210 flash program memory may be updated either in a serial or parallel
fashion. In these cases, the process is controlled by protocol that allows the PC
(or other external device) and the MSC1210 to communicate. This protocol is de-
scribed in http://www−s.ti.com/sc/psheets/sbaa076a/sbaa076a.pdf.

15.6.2 Debugging Using the MSC1210 Boot ROM Routines

The MSC1210 boot ROM, in addition to facilitating the update of flash memory,
can also be used to control a debugging session. This is described in
http://www−s.ti.com/sc/psheets/sbaa079/sbaa079.pdf.

15.6.3 Using MSC1210 with Raisonance Development Tools

In addition to the Keil toolset, which is included with he MSC1210 EVM kit, Raiso-
nance provides a development toolset that may be used to develop software for
the MSC1210. Further details on using the Raisonance tools with the MSC1210
are provided at http://www−s.ti.com/sc/psheets/sbaa080/sbaa080.pdf.

15.6.4 Using the MSC1210 Evaluation Module (EVM)

The MSC1210 EVM is a complete evaluation module that provides significant
flexibility in testing and using the features of the MSC1210. Details of using the
EVM may be found at http://www−s.ti.com/sc/psheets/sbau073/sbau073.pdf.

16-18052 Assembly Language

.�/�0#�������01
�	

	�

Chapter 16 describes the 8052 Assembly Language.

Topic Page

Chapter 16

16.1 Description 16-2.

16.2 Syntax 16-2.

16.3 Number Bases 16-4.

16.4 Expressions 16-4.

16.5 Operator Precedence 16-5.

16.6 Characters and Character Strings 16-5.

16.7 Changing Program Flow (LJMP, SJMP, AJMP) 16-6.

16.8 Subroutines (LCALL, ACALL, RET) 16-7.

16.9 Register Assignment (MOV) 16-8.

16.10 Incrementingand Decrementing Registers (INC, DEC) 16-11.

16.11 Program Loops (DJNZ) 16-12.

16.12 Setting, Clearing and Moving bits (SETB, CLR, CPL, MOV) 16-13.

16.13 Bit-Based Decisions and Branching (JB, JBC, JNB, JC, JNC) 16-15.

16.14 Value Comparison (CJNE) 16-16.

16.15 Less Than and Greater Than Comparison (CJNE) 16-17.

16.16 Zero and Nonzero Decisions (JZ, JNZ) 16-18.

16.17 Performing Additions (ADD, ADDC) 16-18.

16.18 Performing Subtractions (SUBB) 16-20.

16.19 Performing Multiplication (MUL) 16-21.

16.20 Performing Division (DIV) 16-22.

16.21 Shifting Bits (RR, RRC, RL, RLC) 16-23.

16.22 Bit-Wise Logical Intructions (ANL, ORL, XRL) 16-24.

16.23 Exchanging Register Values (XCH) 16-26.

16.24 Swapping Accumulator Nibbles (SWAP) 16-26.

16.25 Exchanging Nibbles between Accumulator and Internal RAM (XCHD) 16-26.

16.26 Adjusting Accumulator for BCD Addition (DA) 16-27.

16.27 Using the Stack (PUSH, POP) 16-28.

16.28 Setting the Data Pointer, DPTR (MOV DPTR) 16-30.

16.29 Reading and Writing External RAM/Data Memory (MOVX) 16-31.

16.30 Reading Code Memory/Tables (MOVC) 16-32.

16.31 Using Jump Tables (JMP @A+DPTR) 16-34.

Description

16-2

16.1 Description

Assembly language is a low-level, pseudo-English representation of the mi-
crocontroller’s machine language. Each assembly language instruction has a
one-to-one relation to one of the microcontroller machine-level instructions.

High-level languages, such as C, Basic, Visual Basic, etc. are one or more
steps above assembly language, in that no significant knowledge of the under-
lying architecture is necessary. It is possible (and common) for a developer to
program a Visual Basic application in Windows without knowing much of any-
thing about the Windows API, much less the underlying architecture of the Intel
Pentium. Furthermore, a developer who has written code in C for Unix will not
have significant problems adapting to writing code in C for Windows, or a mi-
crocontroller such as an 8052; although there are some variations, the C com-
piler itself takes care of most of the processor-specific issues.

Assembly language, on the other hand, is very processor specific. While a
prior knowledge of assembly language with any given processor will be helpful
when attempting to begin coding in the assembly language of another proces-
sor, the two assembly languages may be extremely different. Different archi-
tectures have different instruction sets, different forms of addressing. In fact,
only general concepts may work from one processor to another.

The low-level nature of assembly language programming requires an under-
standing of the underlying architecture of the processor for which one is devel-
oping. This is why we explained the 8052 architecture fully before attempting
to introduce the reader to assembly language programming in this document.
Many aspects of assembly language may be completely confusing without a
prior knowledge of the architecture.

This section of the document will introduce the reader to 8052 assembly lan-
guage, concepts, and programming style.

16.2 Syntax

Each line of an assembly language program consists of the following syntax,
each field of which is optional. However, when used, the elements of the line
must appear in the following order:

1) Label —a user-assigned symbol that defines the address of this instruc-
tion in memory. The label, if present, must be terminated with a colon.

2) Instruction —an assembly language instruction that, when assembled,
will perform some specific function when executed by the microcontroller.
The instruction is a psuedo-English mnemonic which relates directly to
one machine language instruction.

3) Comment —the developer may include a comment on each line for inline
documentation. These comments are ignored by the assembler but may
make it easier to subsequently understand the code. A comment, if used,
must be preceded with a semicolon.

Syntax

16-38052 Assembly Language

In summary, a typical 8052 assembly language line might appear as:

MYLABEL: MOV A,#25h ;This is just a sample comment

In this line, the label is MYLABEL. This means that if subsequent instructions
in the program need to make reference to this instruction, they may do so by
referring to MYLABEL, rather than the memory address of the instruction.

The 8052 assembly language instruction in this line is MOV A,#25h. This is the
actual instruction that the assembler will analyze and assemble into the two
bytes 74H 25H. The first number, 74H, is the 8052 machine language instruc-
tion (opcode) “MOV A,#dataValue”, which means “move the value dataValue
into the accumulator.” In this case, the value of dataValue will be the value of
the byte that immediately follows the opcode. We want to load the accumulator
with the value 25H and the byte following the opcode is 25H. As you can see,
there is a one-to-one relationship between the assembly language instruction
and the machine language code that is generated by the assembler.

Finally, the instruction above includes the optional comment “;This is just a
sample comment”. The comment must always start with a semicolon. The
semicolon tells the assembler that the rest of the line is a comment that should
be ignored by the assembler.

All fields are optional and the following are also alternatives to the above syntax:

Label only: LABEL:

Label and instruction: LABEL: MOV A,#25h

Instruction and comment: MOV A,#25h ;This is just a comment

Label and comment: LABEL: ;This is just a comment

Comment only: ;This is just a sample comment

All of the above permutations are completely valid. It is up to you as to which
components of the assembly language syntax are used. However, when used,
they must follow the above syntax and be in the correct order.

Note:

It does not matter what column each field begins in. That is, a label can start
at the beginning of the line or after any number of blank spaces. Likewise,
an instruction may start in any column of the line, as long as it follows any
label that is also on that line.

Number Bases

16-4

16.3 Number Bases

Most assemblers are capable of accepting numeric data in a variety of number
bases. Commonly supported are decimal, hexadecimal, binary, and octal.

Decimal : To express a decimal number in assembly language, simply enter
the number normally.

Hexadecimal : To express a hexadecimal number, enter the number as a hex-
adecimal value, and terminate the number with the suffix “h”. For example, the
hexadecimal number 45 is expressed as 45h. Furthermore, if the hexadecimal
number begins with an alphabetic character (A, B, C, D, E, or F), the number
must be preceded with a leading zero. For example, the hex number E4 is writ-
ten as 0E4h. The leading zero allows the assembler to differentiate the hex
number from a symbol because a symbol never starts with a number.

Binary : To express a binary number, enter the binary number followed by a
trailing B, to indicate binary. For example, the binary number 100010 is ex-
pressed as 100010B.

Octal : To express an octal number, enter the octal number itself followed by
a trailing Q, to indicate octal. For example, the octal number 177 is expressed
as 177Q.

As an example, all of the following instructions load the accumulator with 30
(decimal):

MOV A,#30

MOV A,#11110B

MOV A,#1EH

MOV A,#36Q

16.4 Expressions

You may use mathematical expressions in your assembly language instruc-
tions anywhere a numeric value may be used. For example, both of the follow-
ing are valid assembly language instructions:

MOV A,#20h + 34h ;Equivalent to #54h

MOV 35h + 2h,#10101B ;Equivalent to MOV 37h,#10101B

Operator Precedence

16-58052 Assembly Language

16.5 Operator Precedence

Mathematical operators within an expression are subject to the following order
of precedence. Operators at the same “level” are evaluated left to right.

Table 16−1.Order of Precedence for Mathematical Operators

Order Operator

1 (Highest) ()

2 HIGH LOW

3 * / MOD SHL SHR

4 EQ NE LT LE GT GE = <> < <= > >=

5 NOT

6 AND

7 (Lowest) OR XOR

Note:

If you have any doubts about operator precedence, it is useful to use paren-
theses to force the order of evaluation that you have contemplated. It is often
easier to read mathematical expressions when parentheses have been add-
ed, although the parentheses are not technically necessary.

16.6 Characters and Character Strings

Characters and character strings are enclosed in single quotes and are con-
verted to their numeric equivalent at assemble time. For example, the follow-
ing two instructions are the same:

MOV A,#’C’

MOV A,#43H

The two instructions are the same because the assembler will see the ‘C’ se-
quence, convert the character contained in quotes to its ASCII equivalent
(43H), and use that value. Thus, the second instruction is the same as the first.

Strings of characters are sometimes enclosed in single quotes and sometimes
enclosed in double quotes. For example, Pinnacle 52 uses double quotes to
indicate a string of characters and a single quote to indicate a single character.
Thus:

MOV A,#’C’ ;Single character – ok

MOV A,#”STRING” ;String – ERROR! Can’t load a string into the
;accumulator

Strings are invalid in the above context, although there are other special as-
sembler directives that do allow strings. Be sure to check the manual for your
assembler to determine whether character strings should be placed within
single quotes or double quotes.

Changing Program Flow (LJMP, SJMP, AJMP)

16-6

16.7 Changing Program Flow (LJMP, SJMP, AJMP)

LJMP, SJMP and AJMP are used as a go to in assembly language. They cause
program execution to continue at the address or label they specify. For exam-
ple:

LJMP LABEL3 ;Program execution is transferred to LABEL3

LJMP 2400h ;Program execution is transferred to address 2400h

SJMP LABEL4 ;Program execution is transferred to LABEL4

AJMP LABEL7 ;Program execution is transferred to LABEL7

The differences between LJMP, SJMP, and AJMP are:

� LJMP requires 3 bytes of program memory and can jump to any address
in the program.

� SJMP requires 2 bytes of program memory, but can only jump to an ad-
dress within 128 bytes of itself.

� AJMP requires 2 bytes of program memory, but can only jump to an ad-
dress in the same 2k block of memory.

These instructions perform the same task, but differ in what addresses they
can jump to, and how many bytes of program memory they require.

LJMP always works. You can always use LJMP to jump to any address in your
program.

SJMP requires two bytes of memory, but has the restriction that it can only
jump to an instruction or label within 128 bytes before or 127 bytes after the
instruction. This is useful if you are branching to an address that is very close
to the jump itself. You save 1 byte of memory by using SJMP instead of AJMP.

AJMP also requires two bytes of memory, but has the restriction that it can only
jump to an instruction or label that is in the same 2k block of program memory.
For example, if the AJMP instruction is at address 0200H, it can only jump to
addresses between 0000H and 07FFH—It can not jump to 800H.

Note:

Some optimizing assemblers allow you to use JMP in your code. While there
is no JMP instruction in the 8052 instruction set, the optimizing assembler
will automatically replace your JMP with the most memory-efficient instruc-
tion. That is, it will try to use SJMP or AJMP if it is possible, but will resort to
LJMP if necessary. This allows you to simply use the JMP instruction and let
the assembler worry about saving program memory, whenever possible.

Subroutines (LCALL, ACALL, RET)

16-78052 Assembly Language

16.8 Subroutines (LCALL, ACALL, RET)

As in other languages, 8052 assembly language permits the use of subrou-
tines. A subroutine is a section of code that is called by a program, does a task,
and then returns to the instruction immediately following that of the instruction
that made the call.

LCALL and ACALL are both used to call a subroutine. LCALL requires three
bytes of program memory and can call any subroutine anywhere in memory.
ACALL requires two bytes of program memory and can only call a subroutine
within the same 2k block of program memory.

Both call instructions will save the current address on the stack and jump to
the specified address or label. The subroutine at that address will perform
whatever task it needs to and then return to the original instruction by execut-
ing the RET instruction.

For example, consider the following code:

LCALL SUBROUTINE1 ;Call the SUBROUTINE1 subroutine

LCALL SUBROUTINE2 ;Call the SUBROUTINE2 subroutine

.

.

.

SUBROUTINE1: {subroutine code} ;Insert subroutine code here

RET ;Return from subroutine

SUBROUTINE2: {subroutine code} ;Insert subroutine code here

RET ;Return from subroutine

The code starts by calling SUBROUTINE1. Execution transfers to
SUBROUTINE1 and executes whatever code is found there. When the MCU
hits the RET instruction, it automatically returns to the next instruction, which
is LCALL SUBROUTINE2. SUBROUTINE2 is then called, executes its code,
and returns to the main program when it reaches the RET instruction.

Note:

It is very important that all subroutines end with the RET instruction, and that
all subroutines exit themselves by executing the RET instruction. Unpredict-
able results will occur if a subroutine is called with LCALL or ACALL and a
corresponding RET is not executed.

Note:

Subroutines may call other subroutines. For example, in the code above
SUBROUTINE1 could include an instruction that calls SUBROUTINE2.
SUBROUTINE2 would then execute and return to SUBROUTINE1, which
would then return to the instruction that called it. However, keep in mind that
every LCALL or ACALL executed expands the stack by two bytes. If the stack
starts at internal RAM address 30H and 10 successive calls to subroutines
are made from within subroutines, the stack will expand by 20 bytes to 44H.

Register Assignment (MOV)

16-8

Note:

Recursive subroutines (subroutines that call themselves) are a very popular
method of solving some common programming problems. However, unless
you know for certain that the subroutine will call itself a certain number of
times, it is generally not possible to use subroutine recursion in 8052 assem-
bly language. Due to the small amount of Internal RAM a recursive subrou-
tine could quickly cause the stack to fill all of internal RAM.

16.9 Register Assignment (MOV)

One of the most commonly used 8052 assembly language instructions, and
the first to be introduced here, is the MOV instruction. 57 of the 254 opcodes
are MOV instructions because there are many ways data can be moved be-
tween various registers using various addressing modes.

The MOV instruction is used to move data from one register to another—or to
simply assign a value to a register—and has the following general syntax:

MOV DestinationRegister,SourceValue

DestinationRegister always indicates the register or address in which Source-
Value will be stored, whereas SourceValue indicates the register the value will
be taken from, or the value itself if it is preceded by a pound sign (#).

For example:

MOV A,25h ;Moves contents of Internal RAM address 25h
;to accumulator

MOV 25h,A ;Move contents of accumulator into Internal
;RAM address 25h

MOV 80h,A ;Move the contents of the accumulator to P0
;SFR (80h)

MOV A,#25h ;Moves the value 25h into the accumulator

As shown, the first parameter is the register, internal RAM address, or SFR ad-
dress that a value is being moved to. Another way of looking at it is that the first
parameter is the register that is going to be assigned a new value.

Likewise, the second parameter tells the 8052 where to get the new value.
Normally, the value of the second parameter indicates the Internal RAM or
SFR address from which the value should be obtained. However, if the second
parameter is preceded by a pound sign, the register will be assigned the value
of the number that follows the pound sign (as is demonstrated in the previous
example).

Register Assignment (MOV)

16-98052 Assembly Language

As already mentioned, the MOV instruction is one of the most common and
vital instructions that an 8052 assembly language programmer uses. The pro-
spective assembly language programmer must fully master the MOV instruc-
tion. This may seem simple, but it requires knowing all of the permutations of
the MOV instruction and knowing when to use them. This knowledge comes
with time and experience, and by reviewing Appendix A, 8052 Instruction Set
Overview.

It is important that all types of MOV instructions be understood so that the pro-
grammer knows what types of MOV instructions are available, as well as what
kinds of MOV instructions are not available.

Careful inspection of the MOV commands in the instruction set reference will
reveal that there is no MOV from R register to R register instruction. That is to
say, the following instruction is invalid:

MOV R2,R1 ;INVALID!!

This is a logical type of operation for a programmer to implement, but the in-
struction is invalid. Instead, it must be programmed as:

MOV A,R1 ;Move R1 to accumulator

MOV R2,A ;Move accumulator to R2

Another combination that is not supported is MOV indirectly from Internal RAM
to another Indirect RAM address. Again, the following instruction is invalid:

MOV @R0,@R1 ;INVALID!!

This is not a valid MOV combination. Instead, it could be programmed as:

MOV A,@R1 ;Move contents of IRAM pointed to by R1 to accumulator

MOV @R0,A ;Move accumulator to Internal RAM address pointed to by R0

Also note that only R0 and R1 can be used for Indirect Addressing.

Note:

When you need to execute a type of MOV instruction that does not exist, it is
generally helpful to use the accumulator. If a given MOV instruction does not
exist, it can usually be accomplished by using two MOV instructions that both
use the accumulator as a transfer or temporary register

Register Assignment (MOV)

16-10

With this knowledge of the MOV instruction, some simple memory assignment
tasks can be performed:

1) Clear the contents of Internal RAM address FFH:

MOV A,#00h ;Move the value 00h to the accumulator
;(accumulator=00h)

MOV R0,#0FFh ;Move the value FFh to R0 (R0=0FFh)

MOV @R0,A ;Move accumulator to @R0, thus clearing
;contents of FFh

2) Clear the contents of Internal RAM address FFH (more efficient):

MOV R0,#0FFh ;Move the value FFh to R0 (R0=0FFh)

MOV @R0,#00h ;Move 00h to @R0 (FFh), clearing contents of FFh

3) Clear the contents of all bit memory, internal RAM addresses 20H through
2FH (this example will later be improved upon to require less code):

MOV 20h,#00h ;Clear Internal RAM address 20h

MOV 21h,#00h ;Clear Internal RAM address 20h

MOV 22h,#00h ;Clear Internal RAM address 20h

MOV 23h,#00h ;Clear Internal RAM address 20h

MOV 24h,#00h ;Clear Internal RAM address 20h

MOV 25h,#00h ;Clear Internal RAM address 20h

MOV 26h,#00h ;Clear Internal RAM address 20h

MOV 27h,#00h ;Clear Internal RAM address 20h

MOV 28h,#00h ;Clear Internal RAM address 20h

MOV 29h,#00h ;Clear Internal RAM address 20h

MOV 2Ah,#00h ;Clear Internal RAM address 20h

MOV 2Bh,#00h ;Clear Internal RAM address 20h

MOV 2Ch,#00h ;Clear Internal RAM address 20h

MOV 2Dh,#00h ;Clear Internal RAM address 20h

MOV 2Eh,#00h ;Clear Internal RAM address 20h

MOV 2Fh,#00h ;Clear Internal RAM address 20h

Incrementing and Decrementing Registers (INC, DEC)

16-118052 Assembly Language

16.10 Incrementing and Decrementing Registers (INC, DEC)

Two instructions, INC and DEC, can be used to increment or decrement the
value of a register, internal RAM, or SFR by 1. These instructions are rather
self-explanatory.

The INC instruction will add 1 to the current value of the specified register. If
the current value is 255, it will overflow back to 0. For example, if the accumula-
tor holds the value 240 and the INC A instruction is executed, the accumulator
is incremented to 241.

INC A ;Increment the accumulator by 1

INC R1 ;Increment R1 by 1

INC 40h ;Increment Internal RAM address 40h by 1

The DEC instruction will subtract 1 from the current value of the specified regis-
ter. If the current value is 0, it will underflow back to 255. For example, if the
accumulator holds the value 240 and the DEC A instruction is executed, the
accumulator will be decremented to 239.

DEC A ;Decrement the accumulator by 1

DEC R1 ;Decrement R1 by 1

DEC 40h ;Decrement Internal RAM address 40h by 1

Note:

Under some assembly language architectures, the INC and DEC instruc-
tions set an overflow or underflow flag when the register overflows from 255
to 0 or underflows from 0 back to 255, respectively. This is not the case with
the INC and DEC instructions in 8052 assembly language. Neither of these
instructions affects any flags whatsoever.

Program Loops (DJNZ)

16-12

16.11 Program Loops (DJNZ)

Many operations are conducted within finite loops. That is, a given code seg-
ment is executed repeatedly until a given condition is met.

A common type of loop is a simple counter loop. This is a code segment that
is executed a certain number of times and then finishes. This is accomplished
easily in 8052 assembly language with the DJNZ instruction. DJNZ means
decrement, jump if not zero. Consider the following code:

MOV R0,#08h ;Set number of loop cycles to 8

LOOP: INC A ;Increment accumulator (or do whatever
;the loop does)

DJNZ R0,LOOP ;Decrement R0, loop back to LOOP if R0
;is not 0

DEC A ;Decrement accumulator (or whatever you
;want to do)

This is a very simple counter loop. The first line initializes R0 to 8, which is the
number of times the loop will be executed.

The second line labeled LOOP, is the actual body of the loop. This could con-
tain any instruction or instructions you wishe to execute repeatedly. In this
case, the accumulator is incremented with the INC A instruction.

The interesting part is the third line with the DJNZ instruction. This instruction
says to decrement the R0 Register, and if it is not now zero, jump back to
LOOP. This instruction decrements the R0 register, then checks to see if the
new value is zero and, if not, will go back to LOOP. The first time this loop exe-
cutes, R0 is decremented from 08 to 07, then from 07 to 06, and so on until
it decrements from 01 to 00. At that point, the DJNZ instruction fails because
the accumulator is zero. That causes the program to not go back to LOOP, and
thus, it continues executing with the DEC instruction—or whatever you want
the program to do after the loop is complete.

DJNZ is one of the most common ways to perform programming loops that ex-
ecute a specific number of times. The number of times the loop is executed
depends on the initial value of the R register that is used by the DJNZ instruc-
tion.

Setting, Clearing, and Moving Bits (SETB, CLR, CPL, MOV)

16-138052 Assembly Language

16.12 Setting, Clearing, and Moving Bits (SETB, CLR, CPL, MOV)

One very powerful feature of the 8052 architecture is its ability to manipulate in-
dividual bits on a bit-by-bit basis. As mentioned earlier in this document, there
are 128 numbered bits (00H through 7FH) that may be used by the user’s pro-
gram as bit variables. Additionally, bits 80H through FFH allow access to SFRs
that are divisible by 8 on a bit-by-bit basis. The two basic instructions to manipu-
late bits are SETB and CLR while a third instruction, CPL, is also often used.

The SETB instruction will set the specified bit, which means the bit will then
have a value of “1”, or “on”. For example:

SETB 20h ;Sets user bit 20h (sets bit 0 of IRAM address
;24h to 1)

SETB 80h ;Sets bit 0 of SFR 80h (P0) to 1

SETB P0.0 ;Exactly the same as the previous instruction

SETB C ;Sets the carry bit to 1

SETB TR1 ;Sets the TR1 bit to 1 (turns on timer 1)

As illustrated by these instructions, SETB can be used in a variety of circum-
stances.

The first example, SETB 20h, sets user bit 20H. This corresponds to a user-de-
fined bit because all bits between 00H and 7FH are user bits. It is clear that bit 20H
is the 32nd user-defined bit because these 128 user bits reside in internal RAM
at the addresses of 20H through 2FH. Each byte of Internal RAM by definition
holds 8 individual bits, so bit 20H would be the lowest bit of Internal RAM 24H.

Note:

It is very important to understand that bit memory is a part of internal RAM. In the
case of SETB 20h, we concluded that bit 20H is actually the low bit of internal
RAM address 24H. That is because bits 00H-07H are internal RAM address 20H,
bits 08H-0FH are internal RAM address 21H, bits 10H-17H are internal RAM ad-
dress 22H, bits 18H-1FH are internal RAM address 23H, and bits 20H-27H are
internal RAM address 24H.

The second example, SETB 80h, is similar to SETB 20h. Of course, SETB 80h
sets bit 80H. However, remember that bits 80H-FFH correspond to individual
bits of SFRs, not Internal RAM. Thus, SETB 80h actually sets bit 0 of SFR 80H,
which is the P0 SFR.

The next instruction, SETB P0.0, is identical to SETB 80h. The only difference
is that the bit is now being referenced by name rather than number. This makes
the assembly language code more readable. The assembler will automatically
convert P0.0 to 80H when the program is assembled.

The next example, SETB C, is a special case. This instruction sets the carry bit,
which is a very important bit used for many purposes. It is also special in that there
is an opcode that means SETB C. Although other SETB instructions require two
bytes of program memory, the SETB C instruction only requires one.

Setting, Clearing, and Moving Bits (SETB, CLR, CPL, MOV)

16-14

Finally, the SETB TR1 example shows a typical use of SETB to set an individu-
al bit of an SFR. In this case, TR1 is TCON.6 (bit 6 of TCON SFR, SFR address
88H). Due to TCON’s SFR address being 88H, it is divisible by 8 and, thus, ad-
dressable on a bit-by-bit basis.

The CLR instruction functions in the same manner, but clears the specified bit.
For example:

CLR 20h ;Clears user bit 20h to 0

CLR P0.0 ;Sets bit 0 of P0 to 0

CLR TR1 ;Clears TR1 bit to 0 (stops timer 1)

These two instructions, CLR and SETB, are the two fundamental instructions
used to manipulate individual bits in 8052 assembly language.

A third bit instruction, CPL, complements the value of the given bit. The instruc-
tion syntax is exactly the same as SETB and CLR, but CPL flips (comple-
ments) the bit. If the bit is cleared, CPL sets it; likewise, if the bit is set, CPL
clears it.

Note:

An additional instruction, CLR A, exists that is used to clear the contents of
the accumulator. This is the only CLR instruction that clears an entire SFR,
rather than just a single bit. The CLR A instruction is the equivalent of MOV
A,#00h. The advantage of using CLR A is that it requires only one byte of pro-
gram memory, whereas the MOV A,#00h solution requires two bytes. An
additional instruction, CPL A, also exists. This instruction flips each bit in the
accumulator. Therefore, if the accumulator holds 255 (11111111 binary), it
will hold 0 (00000000 binary) after the CPL A instruction is executed.

Finally, the MOV instruction can be used to move bit values between any given
bit—user or SFR bits—and the carry bit. The instructions MOV C,bit and
MOV bit,C allow these bit movements to occur. They function like the MOV in-
struction described earlier, moving the value of the second bit to the value of
the first bit.

Consider the following examples:

MOV C,P0.0 ;Move the value of the P0.0 line to the carry bit

MOV C,30h :Move the value of user bit 30h to the carry bit

MOV 25h,C ;Move the carry bit to user bit 25h

These combination of MOV instructions that allow bits to be moved through
the carry flag allow for more advanced bit operations, without the need for
workarounds that would be required to move bit values if it were not for these
MOV instructions.

Note:

The MOV instruction, when used with bits, can only move bit values to and
from the carry bit. There is no instruction that allows you to copy directly from
one bit to the other bit with neither bit being the carry bit. Thus, it is often nec-
essary to use the carry bit as a temporary bit register to move a bit value from
one user bit to another user bit.

Bit-Based Decisions and Branching (JB, JBC, JNB, JC, JNC)

16-158052 Assembly Language

16.13 Bit-Based Decisions and Branching (JB, JBC, JNB, JC, JNC)

It is often useful, especially in microcontroller applications, to execute different
code based on whether or not a given bit is set or cleared. The 8052 instruction
set offers five instructions that do precisely that.

JB means jump if bit set. The MCU checks the specified bit and, if it is set,
jumps to the specified address or label.

JBC means jump if bit set, and clear bit. This instruction is identical to JB ex-
cept that the bit is cleared if it was set. That is to say, if the specified bit is set,
the MCU jumps to the specified address or label, and also clears the bit. In
some cases, this can save you the use of an extra CLR instruction.

JNB means jump if bit not set. This instruction is the opposite of JB. It tests the
specified bit and jumps to the specified label or address if the bit is not set.

JC means jump if carry set. This is the same as the JB instruction, but it only
tests the carry bit. An additional instruction was included in the instruction set
to test for this common condition because many operations and decisions are
based on whether or not the carry flag is set. Thus, instead of using the instruc-
tion JB C,label, which takes 3 bytes of program memory, the programmer may
use JC label, which only takes 2.

JNC means jump if carry bit not set. This is the opposite of JC. This instruction
tests the carry bit and jumps to the specified label or address if the carry bit is
clear.

Some examples of these instructions are:

JB 40h,LABEL1 ;Jumps to LABEL1 if user bit 40h is set

JBC 45h,LABEL2 ;Jumps to LABEL2 if user bit 45h set, then clears it

JNB 50h,LABEL3 ;Jumps to LABEL3 if user bit 50h is clear

JC LABEL4 ;Jumps to LABEL4 if the carry bit is set

JNC LABEL5 ;Jumps to LABEL5 if the carry bit is clear

These instructions are very common, and very useful. Virtually all 8052
assembly language programs of any complexity will use them—especially the
JC and JNC instructions.

Value Comparison (CJNE)

16-16

16.14 Value Comparison (CJNE)

CJNE (compare, jump if not equal) is a very important instruction. It is used to
compare the value of a register to another value and branch to a label based
on whether or not the values are the same. This is a very common way of
building a switch…case decision structure or an IF…THEN…ELSE structure
in assembly language.

The CJNE instruction compares the values of the first two parameters of the
instruction and jumps to the address contained in the third parameter, if the first
two parameters are not equal.

CJNE A,#24h,NOT24 ;Jumps to the label NOT24 if accumulator isn’t 24h

CJNE A,40h,NOT40 ;Jumps to the label NOT40 if accumulator is

;different than the value contained in Internal

;RAM address 40h

CJNE R2,#36h,NOT36 ;Jumps to the label NOT36 if R2 isn’t 36h

CJNE @R1,#25h,NOT25 ;Jumps to the label NOT25 if the Internal RAM

;address pointed to by R1 does not contain 25h

As shown, the MCU compares the first parameter to the second parameter.
If they are different, it jumps to the label provided; if the two values are the
same then execution continues with the next instruction. This allows for the
programming of extensive condition evaluations.

For example, to call the PROC_A subroutine if the accumulator is equal to 30H,
call the CHECK_LCD subroutine if the accumulator equals 42H, and call the
DEBOUNCE_KEY subroutine if the accumulator equals 50H. This could be im-
plemented using CJNE as follows:

CJNE A,#30h,CHECK2 ;If A is not 30h, jump to CHECK2 label

LCALL PROC_A ;If A is 30h, call the PROC_A subroutine

SJMP CONTINUE ;When we get back, we jump to CONTINUE label

CHECK2: CJNE A,#42h,CHECK3 ;If A is not 42h, jump to CHECK3 label

LCALL CHECK_LCD ;If A is 42h, call the CHECK_LCD subroutine

SJMP CONTINUE ;When we get back, we jump to CONTINUE label

CHECK3: CJNE A,#50h,CONTINUE ;If A is not 50h, we jump to CONTINUE label

LCALL DEBOUNCE_KEY ;If A is 50h, call the DEBOUNCE_KEY subroutine

CONTINUE: {Code continues here} ;The rest of the program continues here

As shown, the first line compares the accumulator with 30H. If the accumulator
is not 30H, it jumps to CHECK2, where the next comparison is made. If the ac-
cumulator is 30H, however, program execution continues with the next instruc-
tion, which calls the PROC_A subroutine. When the subroutine returns, the
SJMP instruction causes the program to jump ahead to the CONTINUE label,
thus bypassing the rest of the checks.

The code at label CHECK2 is the same as the first check. It first compares the
accumulator with 42H and then either branches to CHECK3, or calls the
CHECK_LCD subroutine and jumps to CONTINUE. Finally, the code at
CHECK3 does a final check for the value of 50H. This time there is no SJMP
instruction following the call to DEBOUNCE_KEY because the next instruction
is CONTINUE.

Less Than and Greater Than Comparison (CJNE)

16-178052 Assembly Language

Code structures similar to the one shown previously are very common in 8052
assembly language programs to execute certain code or subroutines based
on the value of some register, in this case the accumulator.

16.15 Less Than and Greater Than Comparison (CJNE)

Often it is necessary not to check whether a register is or is not certain value,
but rather to determine whether a register is greater than or less than another
register or value. As it turns out, the CJNE instruction—in combination with the
carry flag—allows us to accomplish this.

When the CJNE instruction is executed, not only does it compare parameter1
to parameter2 and branch if they are not equal, but it also sets or clears the
carry bit based on which parameter is greater or less than the other.

� If parameter1 < parameter2, the carry bit will be set to 1.

� If parameter1 ≥ parameter2, the carry bit will be cleared to 0.

This is the way an assembly language program can do a greater than/less than
comparisons. For example, if the accumulator holds some number and we
want to know if it is less than or greater than 40H, the following code could be
used:

CJNE A,#40h,CHECK_LESS ;If A is not 40h, check if < or > 40h

LJMP A_IS_EQUAL ;If A is 40h, jump to A_IS_EQUAL code

CHECK_LESS: JC A_IS_LESS ;If carry is set, A is less than 40h

A_IS_GREATER:{Code} ;Otherwise, it means A is greater than 40h

The code above first compares the accumulator to 40H. If they are the same,
the program falls through to the next line and jumps to A_IS_EQUAL because
we already know they are equal. If they are not the same, execution will contin-
ue at CHECK_LESS. If the carry bit is set, it means that the accumulator was
less than the second parameter (40H), so we jump to A_IS_LESS, which will
handle the less than condition. If the carry bit was not set, execution falls
through to A_IS_GREATER, at which point the code for the greater than condi-
tion would be inserted.

Note:

Keep in mind that CJNE will clear the carry bit if parameter1 is greater than
or equal to parameter2. That means it is very important that the values are
checked to be equal before using the carry bit to determine less than/greater
than. Otherwise, the code might branch to the greater than condition when,
in fact, the two parameters are equal.

Zero and Non-Zero Decisions (JZ/JNZ)

16-18

16.16 Zero and Non-Zero Decisions (JZ/JNZ)

Sometimes, it is useful to be able to simply determine if the accumulator holds
a zero or not. This could be done with a CJNE instruction, but because these
types of tests are so common in software, the 8052 instruction set provides two
instructions for this purpose: JZ and JNZ.

JZ will jump to the given address or label if the accumulator is zero. The instruc-
tion means jump if zero.

JNZ will jump to the given address or label if the accumulator is not zero. The
instruction means jump if not zero.

For example:

JZ ACCUM_ZERO ;Jump to ACCUM_ZERO if the accumulator = 0

JNZ NOT_ZERO ;Jump to NOT_ZERO if the accumulator is not 0

Using JZ and/or JNZ is much easier and faster than using CJNE, if all that is
needed is to test for a zero/non-zero value in the accumulator.

Note:

Other non-8052 architectures have a zero flag that is set by instructions, and
the zero-test instruction tests that flag, not the accumulator. The 8052, how-
ever, has no zero flag, and JZ and JNZ both test the value of the accumulator,
not the status of any flag.

16.17 Performing Additions (ADD, ADDC)

The ADD and ADDC instructions provide a way to perform 8-bit addition. All
addition involves adding some number or register to the accumulator and leav-
ing the result in the accumulator. The original value in the accumulator is al-
ways overwritten with the result of the addition.

ADD A,#25h ;Add 25h to whatever value is in the accumulator

ADD A,40h ;Add contents of Internal RAM address 40h to
;accumulator

ADD A,R4 ;Add the contents of R4 to the accumulator

ADDC A,#22h ;Add 22h to the accumulator, plus carry bit

The ADD and ADDC instructions are identical except that ADD will only add
the accumulator and the specified value or register, whereas ADDC will also
add the carry bit. The difference between the two, and the use of both, can be
seen in the following code.

Performing Additions (ADD, ADDC)

16-198052 Assembly Language

This code assumes that a 16-bit number is in Internal RAM address 30H (high
byte) and address 31H (low byte). The code will add 1045H to the number, leav-
ing the result in addresses 32H (high byte) and 33H (low byte).

MOV A,31h ;Move value from IRAM address 31h (low byte) to
;accumulator

ADD A,#45h ;Add 45h to the accumulator (45h is low
;byte of 1045h)

MOV 33h,A ;Move the result from accumulator to
;IRAM address 33h

MOV A,30h ;Move value from IRAM address 30h (hi byte) to
;accumulator

ADDC A,#10h ;Add 10h to the accumulator (10h is the high
;byte of 1045h)

MOV 32h,A ;Move result from accumulator to
;IRAM address 32h

This code first loads the accumulator with the low byte of the original number
from internal RAM address 31H. It then adds 45H to it. It does not matter what
the carry bit holds because the ADD instruction is used. The result is moved
to 33H and the high byte of the original address is moved to the accumulator
from address 30H. The ADDC instruction then adds 10H to it, plus any carry
that might have occurred in the first ADD step.

Both ADD and ADDC set the carry flag if an addition of unsigned integers re-
sults in an overflow that cannot be held in the accumulator. For example, if the
accumulator holds the value F0H and the value 20H is added to it, the accumu-
lator holds the result of 10H and the carry bit is set. The fact that the carry bit
is set can subsequently be used with the ADDC to add the carry bit into the next
addition instruction.

The auxiliary carry (AC) bit is set if there is a carry from bit 3, and cleared other-
wise. For example, if the accumulator holds the value 2EH and the value 05H
is added to it, the accumulator then equals 33H as expected, but the AC bit is
set because the low nibble overflowed from EH to 3H.

The overflow (OV) bit is set if there is a carry out of bit 7 but not out of bit 6,
or out of bit 6 but not out of bit 7. This is used in the addition of signed numbers
to indicate that a negative number was produced as a result of the addition of
two positive numbers, or that a positive number was produced by the addition
of two negative numbers. For example, adding 20H to 70H (two positive num-
bers) would produce the value 90H. However, if the accumulator is being
treated as a signed number the value 90H would represent the number –10H.
The fact that the OV bit was set means that the value in the accumulator should
not really be interpreted as a negative number.

Note:

Many other (non-8052) architectures only have a single type of ADD instruction—
one that always includes the carry bit in the addition. The reason 8052 assembly
language has two different types of ADD instructions is to avoid the need to start
every addition calculation with a CLR C instruction. Using the ADD instruction is
the same as using the CLR C instruction followed by the ADDC instruction.

Performing Subtractions (SUBB)

16-20

16.18 Performing Subtractions (SUBB)

The SUBB instruction provides a way to perform 8-bit subtraction. All subtrac-
tion involves subtracting some number or register from the accumulator and
leaving the result in the accumulator. The original value in the accumulator is
always overwritten with the result of the subtraction.

SUBB A,#25h ;Subtract 25h from whatever value is in
;the accumulator

SUBB A,40h ;Subtract contents of IRAM address 40h from
;the accumulator

SUBB A,R4 ;Subtract the contents of R4 from the
;accumulator

The SUBB instruction always includes the carry bit in the subtract operation.
That means if the accumulator holds the value 38H and the carry bit is set, sub-
tracting 6H will result in 31H (38H – 6H – carry bit).

Note:

Due to SUBB always including the carry bit in its operation, it is necessary
to always clear the carry bit (CLR C) before executing the first SUBB in a sub-
traction operation, so that the prior status of the carry flag does not affect the
instruction.

SUBB sets and clears the carry, auxiliary carry, and overflow bits in much the
same way as the ADD and ADDC instructions.

SUBB sets the carry bit if the number being subtracted from the accumulator
is larger than the value in the accumulator. In other words, the carry bit is set
if a borrow is needed for bit 7. Otherwise, the carry bit is cleared.

The auxiliary carry (AC) bit is set if a borrow is needed for bit 3; otherwise, it
is cleared.

The overflow (OV) bit is set if a borrow into bit 7 but not into bit 6, or into bit 6
but not into bit 7. This is used when subtracting signed integers. If subtracting
a negative value from a positive value produces a negative number, OV is set.
Likewise, if subtracting a positive number from a negative number produces
a positive number, the OV flag is also set.

Performing Multiplication (MUL)

16-218052 Assembly Language

16.19 Performing Multiplication (MUL)

In addition to addition and subtraction, the 8052 also offers the MUL AB in-
struction to multiply two 8-bit values. Unlike addition and subtraction, the MUL
AB instruction always multiplies the contents of the accumulator by the con-
tents of the B register (SFR F0H). The result overwrites both the accumulator
and B, placing the low byte of the result in the accumulator and the high byte
of the result in B.

For example, to multiply 20H by 75H, the following code could be used:

MOV A,#20h ;Load accumulator with 20h

MOV B,#75h ;Load B with 75h

MUL AB ;Multiply A by B

The result of 20H � 75H is 0EA0H. Therefore, after the above MUL instruction,
the accumulator holds the low byte of the answer (A0H) and B holds the high
byte of the answer (0EH). The original values of the accumulator and B are
overwritten.

If the result is greater than 255, OV is set; otherwise, it is cleared. The carry
bit is always cleared and AC is unaffected.

Note:

Any two 8-bit values may be multiplied using MUL AB and a result will be ob-
tained that fits in the 16 bits available for the result in A and B. This is because
the largest possible multiplication would be (FFH � FFH), which would result
in FE01H, which comfortably fits into the 16-bit space. It is not possible to
overflow a 16-bit result space with two 8-bit multipliers.

Performing Division (DIV)

16-22

16.20 Performing Division (DIV)

The last of the basic mathematics functions offered by the 8052 is the DIV AB
instruction. This instruction, as the name implies, divides the accumulator by
the value held in the B register. Like the MUL instruction, this instruction always
uses the accumulator and B registers. The integer (whole-number) portion of
the answer is placed in the accumulator and any remainder is placed in the B
register. The original values of the accumulator and B are overwritten.

For example, to multiply F3H by 13H, the following code could be used:

MOV A,#0F3h ;Load accumulator with F3h

MOV B,#13h ;Load B with 13h

DIV AB ;Divide A by B

The result of F3H/13H is 0CH with remainder 0FH. Thus, after this DIV instruc-
tion, the accumulator holds the value 0CH, and B holds the value 0FH.

The carry bit and the overflow bit are both cleared by DIV, unless a division by
zero is attempted, in which case the overflow bit is set. In the case of division by
zero, the results in the accumulator and B after the instruction are undefined.

Note:

The MUL instruction takes two 8-bit values and multiplies them into a 16-bit
value, whereas the DIV instruction takes two 8-bit values and divides it into
an 8-bit value and a remainder. The 8052 does not provide an instruction that
divideds a 16-bit number.

Note:

You can find source code that includes 16-bit and 32-bit division in the Code
Library at http://www.8052.com/codelib.phtml.

Shifting Bits (RR, RRC, RL, RLC)

16-238052 Assembly Language

16.21 Shifting Bits (RR, RRC, RL, RLC)

The 8052 offers four instructions that are used to shift the bits in the accumulator
to the left or right by one bit: RR A, RRC A, RL A, RLC A. There are two instruc-
tions that shift bits to the right, RR A and RRC A, and two that shift bits to the
left, RL A and RLC A. The RRC and RLC instructions are different in that they
rotate bits through the carry bit, whereas RR and RL do not involve the carry bit.

RR A ;Rotate accumulator one bit to right, bit 0 is rotated into
;bit 7

RRC A ;Rotate accumulator to right, bit 0 is rotated into
;carry, carry into bit 7

RL A ;Rotate accumulator one bit to left, bit 7 is rotated into
;bit 0

RLC A ;Rotate the accumulator to the left, bit 7 is
;rotated into carry, carry into bit 0

Figure 16−1 shows how each of the instructions manipulates the eight bits of
the accumulator and the carry bit.

Using the shift instructions is, obviously, useful for bit manipulations. However,
they can also be used to quickly multiply or divide by multiples of two.

For example, there are two ways to multiply the accumulator by two:

MOV B,#02h ;Load B with 2

MUL AB ;Multiply accumulator by B (2), leaving low
;byte in accumulator

Or you could simply use the RLC instruction:

CLR C ;Make sure carry bit is initially clear

RLC A ;Rotate left, multiplying by two

This may look like the same amount of work, but to the MCU it is not. The first
approach requires four bytes of program memory and takes six instruction
cycles, whereas the second approach requires only two bytes of program
memory and two instruction cycles. Therefore, the RLC approach requires half
as much memory and is three times as fast.

Figure 16−1. Rotate Operations

Bit-Wise Logical Instructions (ANL, ORL, XRL)

16-24

16.22 Bit-Wise Logical Instructions (ANL, ORL, XRL)

The 8052 instruction set offers three instructions to perform the three most
common types of bit-level logic: logical AND (ANL), logical OR (ORL), and log-
ical exclusive OR (XRL). These instructions are capable of operating on the
accumulator or an internal RAM address.

Some examples of these instructions are:

ANL A,#35h ;Performs logical AND between accumulator
;and 35h, result in accumulator

ORL 20h,A ;Performs logical OR between IRAM 20h and
;accumulator, result in IRAM 20h

XRL 25h,#15h ;Performs logical exclusive OR between
;IRAM 25h and 15h

ANL (logical AND) looks at each bit of parameter1 and compares it to the same
bit in parameter2. If the bit is set in both parameters, the bit remains set; other-
wise, the bit is cleared. The result is left in parameter1.

ORL (logical OR) looks at each bit of parameter1 and compares it to the same
bit in parameter2. If the bit is set in either parameter, the bit remains set; other-
wise, the bit is cleared. The result is left in parameter1.

XRL (logical exclusive OR) looks at each bit of parameter1 and compares it to
the same bit in parameter2. If the bit is set in one of the two parameters, the bit
is set; otherwise, the bit is cleared. That means if the bit is set in both parameters,
it is cleared. If it is set in one of the two parameters, it remains set. If it is clear
in both parameters it remains clear. The result is left in parameter1.

Table 16−2, Table 16−3, and Table 16−4 show the results of each of these log-
ical instructions when applied to each possible bit combination.

Table 16−2.Results of ANL

ANL 0 1

1 0 0

0 0 1

Table 16−3.Results of ORL

ORL 0 1

0 0 1

1 1 1

Table 16−4.Results of XRL

XRL 0 1

0 0 1

1 1 0

Bit-Wise Logical Instructions (ANL, ORL, XRL)

16-258052 Assembly Language

Most of the logical bit-wise instructions affect entire 8-bit memory registers.
However, the following instructions are available to perform logical operations
on the carry bit. The result of these instructions is always left in the carry bit
and the other bit is left unchanged.

ANL C,bit—this instruction will perform a logical AND between the carry bit
and the specified bit. If both bits are set, the carry bit remains set. Otherwise,
the carry bit is cleared.

ANL C,bit—this instruction performs a logical AND between the carry bit and
the complement of the specified bit. That means if the specified bit is set, the
carry bit is ANDed as if it were clear. If the specified bit is clear, it is ANDed with
the carry bit as if it were set.

ORL C,bit—This instruction will perform a logical OR between the carry bit and
the specified bit. If either the carry bit or the specified bit is set, the carry bit is
set. If neither bit is set, the carry bit is cleared.

ORL C,bit—This instruction performs a logical OR between the carry bit and
the complement of the specified bit. That means if the specified bit is set, the
carry bit is ORed as if it were clear. If the specified bit is clear, it is ORed with
the carry bit as if it were set.

Note:

There is no XRL that operates on the carry bit and another bit. Only the ANL
and ORL logical instructions are supported with the carry bit.

Exchanging Register Values (XCH)

16-26

16.23 Exchanging Register Values (XCH)

Very often, the value of the accumulator will need to be swapped with the value
of another SFR or internal RAM address. The XCH instruction allows this to
be done quickly and without using additional temporary holding variables.

XCH will take the value of the accumulator and write it to the specified SFR or
internal RAM address, while at the same time writing the original value of that
SFR or internal RAM address to the accumulator.

For example:

MOV A,#25h ;accumulator now holds 25h

MOV 60h,#45h ;internal RAM 60h now holds 45h

XCH A,60h ;accumulator now holds 45, IRAM 60h now holds 25h

16.24 Swapping Accumulator Nibbles (SWAP)

In some cases, it can be useful to swap the nibbles of the accumulator. A nibble
is 4 bits, therefore, there are two nibbles in the accumulator. The high nibble
consists of bits 4 through 7, whereas the low nibble consists of bits 0 through
3.

The SWAP A instruction will swap the two nibbles of the accumulator. For ex-
ample, if the accumulator holds the value 56H, the SWAP instruction converts
it to 65H. Likewise, F7H is converted into 7FH.

Note:

The SWAP A instruction is identical to executing four RL A instructions.

16.25 Exchanging Nibbles Between Accumulator and Internal RAM (XCHD)

The XCHD instruction swaps the low nibble of the accumulator with the low
nibble of the register or internal RAM address specified in the instruction.

For example, if R0 holds 87H and the accumulator holds 24H, then the XCHD
R0 instruction results in the accumulator holding 27H and R0 holding 84H. The
low nibbles of the two are simply exchanged.

I personally have never used this instruction, but presumably it is useful in some
situations because 11 opcodes of the 8052 instruction set are devoted to it.

Adjusting Accumulator for BCD Addition (DA)

16-278052 Assembly Language

16.26 Adjusting Accumulator for BCD Addition (DA)

DA A is a very useful instruction if you are doing BCD-encoded addition.

BCD stands for binary coded decimal, and is a form of expressing two decimal
digits in a single 8-bit byte. When any 8-bit value is expressed in hexadecimal,
it can be expressed as a number between 00 and FF. Obviously, it is possible
to express all normal decimal numbers between 0 and 99 in hexadecimal for-
mat so that, printed as hexadecimal, they appear to be decimal numbers.

For example, the decimal digits 00 are represented in BCD as, not surprisingly,
00H. The decimal digits 09 are represented in BCD as 09H. The decimal digits
10, however, are represented in BCD as 10H—but note that 10H is actually 16
(decimal). That is because in BCD, the hex values A, B, C, D, E, and F are not
used. Thus, 09H jumps to 10H.

This is all fine and good, but what happens when adding two BCD numbers
together? For example, what happens when adding 38 to 25? Obviously, in
normal decimal math, 38 + 25 = 63. Ideally, doing the same addition on BCD
encoded values would have the same result.

However, 38 encoded as BCD is 38h and 25 encoded as BCD is 25H.
38H + 25H = 5DH. Obviously the result no longer looks like a decimal value—and
that is not surprising because BCD does not use the values A, B, C, D, E, and
F.

What DA A does is automatically adjusts the accumulator after the addition of
two BCD values. In the previous example, executing DA A when the accumula-
tor holds 5DH will result in the accumulator being adjusted to 63H, thereby fix-
ing our rather strange addition.

The details of how DA A works and why are not extremely important to this tuto-
rial and would tend to confuse things rather than explain them. If planning on
doing BCD addition, please investigate this instruction further. For the majority
that will not be doing BCD addition, you can safely ignore this instruction.

Using the Stack (PUSH/POP)

16-28

16.27 Using the Stack (PUSH/POP)

The stack, as with any processor, is an area of memory that can be used to store
information temporarily, including the return address for returning from subroutines
that are called by ACALL or LCALL. The 8052 automatically handles the stack
when making an ACALL or LCALL, as well as when returning with the RET instruc-
tion. The stack is also handled automatically when an ISR is triggered by an inter-
rupt, and when returning from the ISR with the RETI instruction.

Additionally, the stack can be used for your purposes and for temporary stor-
age by using the PUSH and POP instructions. The PUSH instruction puts a
value onto the stack, and the POP instruction takes off the last value put on
the stack. A value can be saved temporarily by PUSHing it onto the stack, and
that value may be restored by POPing it.

Note:

The stack operates on a last in first out (LIFO) basis. When PUSHing the val-
ues 4, 5, and 6 (in that order), POPing them one at a time will return 6, 5, and
then 4. The value most recently added to the stack is the first value that will
come off when executing a POP instruction.

An example using the PUSH and POP instructions is:

MOV A,#35h ;Load the accumulator with the value 35h

PUSH ACC ;Push accumulator onto stack, accumulator still holds 35h

ADD A,#40h ;Add 40h to the accumulator, accumulator now holds 75h

POP ACC ;Pop the accumulator from stack, accumulator holds

;35h again

The above code is functionally useless. However, it does illustrate how to use
PUSH and POP.

The code starts by assigning 35H to the accumulator. It then PUSHes it onto
the stack. Then it adds 40H to the accumulator, just to change the accumulator
to something else. At this point the accumulator holds 75H. Finally, it POPs
from the stack into the accumulator. The POP restores the value of the accu-
mulator to 35H because the last value pushed onto the stack was 35H.

Note:

When PUSHing or POPing the accumulator, it must be referred to as ACC
because that is the memory location of the SFR. The instructions PUSH A
and POP A cannot be assembled—both of these will result in an assemble-
time error in most, if not all, 8052 assemblers.

When using PUSH, the SFR or internal RAM address that follows the PUSH
instruction is the value that is PUSHed onto the stack. For example, PUSH
ACC pushes the value of the accumulator onto the stack. PUSH 60h pushes
the value of internal RAM address 60H onto the stack.

Likewise, the internal RAM address or SFR that follows a POP instruction indi-
cates where the value should be stored when it is POPed from the stack. For ex-
ample, POP ACC pops the next value off the stack and into the accumulator. POP
40h pops the next value off the stack and into internal RAM address 40H.

Using the Stack (PUSH/POP)

16-298052 Assembly Language

The stack itself resides in internal RAM and is managed by the SP (stack point-
er) SFR. SP will always point to the internal RAM address from which the next
POP instruction should obtain the data.

� POP will return the value of the internal RAM address pointed to by SP,
then decrement SP by 1.

� PUSH will increment SP by 1, then store the value at the IRAM address
then pointed to by SP.

SP is initialized to 07H when an 8052 is first powered up. That means the stack
begins at 08H and grows from there. If PUSHing 16 values onto the stack, for
example, the stack occupies addresses 08H through 17H.

Using the stack can be both useful and powerful, but it can also be dangerous
when incorrectly used. Remember that the stack is also used by the 8052 to
remember the return addresses of subroutines and interrupts. If the stack is
modified incorrectly, it is very easy to cause the program to crash or to behave
in very unexpected ways.

When using the stack, all but advanced stack users should observe the follow-
ing recommendations:

1) When using the stack from within a subroutine or ISR, be sure there is one
POP instruction for every PUSH instruction. If the number of POPs and
PUSHes are not the same, the program will probably end up crashing.

2) When using PUSH, be sure to always POP that value off the stack—even
if not in a subroutine.

3) Be sure to not jump over the section of code that POPs a value off the
stack. A common error is to PUSH a value onto the stack and then execute
a conditional instruction that jumps over the instruction that POPs that val-
ue off. This results in an unbalanced stack and will probably end up crash-
ing the program. Remember, not only must there be a POP instruction for
every PUSH, but a POP instruction must be executed for every PUSH that
is executed. Make sure the program does not jump over the POP instruc-
tions.

4) Always make sure to use the RET instruction to return from subroutines
and RETI instruction to return from ISRs.

5) As a practice, only modify SP at the very beginning of the program in order
to initialize it. Once the stack is being used or subroutine calls are being
made, do not modify SP.

6) Make sure the stack has enough room. For example, the stack starts by
default at address 08H. If there is a variable at internal RAM address 20H,
then the stack has only 24 bytes available to it, from 08H through 1FH. If
the stack is 24 bytes long and another value is pushed onto the stack or
another subroutine is called, the variable at 20H will be overwritten.

Keep in mind, too, that the 8052 can only use internal RAM for its stack. Even
if there is 64k of external RAM, the 8052 can only use its 256 bytes of internal
RAM for the stack. That means the stack should be used very sparingly.

Setting the Data Pointer DPTR (MOV DPTR)

16-30

16.28 Setting the Data Pointer DPTR (MOV DPTR)

The next few instructions use the data pointer (DPTR), the only 16-bit register
in the 8052. DPTR is used to point to a RAM or ROM address when used with
the following instructions that are explained.

As described earlier, DPTR is really made up of two SFRs: DPH and DPL
which hold the high and low bytes, respectively, of the 16-bit data pointer. How-
ever, when DPTR is used to access memory, the 8052 will treat DPTR as a
single address.

To set the DPTR to a specific address, the MOV DPTR instruction is used. This
instruction sets both DPH and DPL in a single instruction. However, DPTR can
still be modified by accessing DPH and DPL directly, as illustrated in the follow-
ing examples:

MOV DPTR,#1234h ;Sets DPTR to 1234h

MOV DPTR,#0F123h ;Sets DPTR to F123h

MOV DPH,#40h ;Sets DPTR high−byte to 40h (DPTR now 4023h)

MOV DPL,#56h ;Sets DPTR low−byte to 56h (DPTR now 4056h)

As shown, the first two instructions set DPTR first to 1234H and then to F123H.
The next example sets DPH to 40H, leaving the DPTR low byte unchanged.
Changing DPH to 40H will result in DPTR being equal to 4023H because the low
byte is still 23H from the previous example. Finally, we change the low byte to 56H,
leaving the high byte unchanged. Setting the low byte to 56H will leave the DPTR
with a value of 4056H because the high byte was set to 40H in the previous exam-
ple.

In other words, MOV DPTR,#1567h is the same as MOV DPH,#15h and MOV
DPL,#67h. The advantage to using MOV DPTR is that it uses only three bytes
of memory and two instruction cycles, whereas the other method requires six
bytes of memory and four instruction cycles.

Reading and Writing External RAM/Data Memory (MOVX)

16-318052 Assembly Language

16.29 Reading and Writing External RAM/Data Memory (MOVX)

The 8052 generally has 128 or 256 bytes of internal RAM that is accessed with
the MOV instruction, as described previously. However, many projects will re-
quire more than 256 bytes of RAM. The 8052 has the ability of addressing up
to 64k of external RAM in the form of additional, off-chip ICs.

The MOVX instruction is used to read from and write to external RAM. The
MOVX instruction has four forms:

1) MOVX A,@DPTR—reads external RAM address DPTR into the
accumulator.

2) MOVX A,@R#—reads external RAM address pointed to by R0 or R1 into
the accumulator.

3) MOVX @DPTR,A—sets external RAM address DPTR to the value of the
accumulator.

4) MOVX @R#,A—sets external RAM address held in R0 or R1 to the value
of the accumulator.

The first two forms move data from external RAM into the accumulator, wheras
the last two forms move data from the accumulator into external RAM.

MOVX with DPTR —when using the forms of MOVX that use DPTR, DPTR is
used as a 16-bit memory address. The 8052 automatically communicates with
the off-chip RAM, obtains the value of that memory address, and stores it in
the accumulator (MOVX A,@DPTR), or writes the accumulator to the off-chip
RAM (MOVX @DPTR,A).

For example, to add 5 to the value contained in external RAM address 2356H,
use the following code:

MOV DPTR,#2356h ;Set DPTR to 2356h

MOVX A,@DPTR ;Read external RAM address 2356h into
;accumulator

ADD A,#05h ;Add 5 to the accumulator

MOVX @DPTR,A ;Write new value of accumulator back to
;external RAM 2356h

MOVX with @R0 or @R1 —when using the forms of MOVX that use @R0 or
@R1, R0 or R1 will be used to determine the address of external RAM to ac-
cess. These forms of MOVX can only be used to access external RAM ad-
dresses 0000H through 00FFH, unless actions are taken to control the high
byte of the address, because both R0 and R1 are 8-bit registers.

Reading Code Memory/Tables (MOVC)

16-32

16.30 Reading Code Memory/Tables (MOVC)

It is often useful to be able to read code memory itself from within a program.
This allows for the placement of data or tables in code memory to be read at
run time by the program itself. This is accomplished by the MOVC instruction.

The MOVC instruction comes in two forms: MOVC A,@A+DPTR and
MOV A,@A+PC. Both instructions move a byte of code memory into the
accumulator. The code memory address from which the byte is read depends
on which of the two forms is used.

MOV C A,@A+DPTR reads the byte from the code memory address calcu-
lated by adding the current value of the accumulator to that of DPTR. For ex-
ample, if DPTR holds the value 1234H and the accumulator holds the value
10H, the instruction copies the value of code memory address 1244H into the
accumulator. This can be thought of as an absolute read because the byte is
always read from the address contained in the two registers, accumulator and
DPTR. DPTR is initialized to point to the first byte of the table, and the accumu-
lator is used as an offset into the table.

For example, perhaps there is a table of values that resides at 2000H in code
memory. A subroutine needs to be written that obtains one of those six values
based on the value of the accumulator. This could be coded as:

MOV A,#04h ;Set accumulator to offset into the
;table we want to read

LCALL SUB ;Call subroutine to read 4th byte of
;the table

…

SUB: MOV DPTR,#2000h ;Set DPTR to the beginning of the
;value table

MOVC A,@A+DPTR ;Read the 5th byte from the table

RET ;Return from the subroutine

MOVC A,@A+PC will read the byte from the code memory address calculated
by adding the current value of the accumulator to that of the Program Counter;
that is, the address of the currently executing instruction. This can be thought
of as a relative read because the address of code memory from which the byte
will be read depends on where the MOVC instruction is found in memory. This
form of MOVC is used when the data read immediately follows the code that
read it.

Reading Code Memory/Tables (MOVC)

16-338052 Assembly Language

For example, if the data in the previous example are located right after the rou-
tine that read it, instead of being located at code memory 2000H, the subrou-
tine could be changed to:

SUB: INC A ;Increment accumulator to account for
;RET instruction

MOVC A,@A+PC ;Get the data from the table

RET ;Return from subroutine

DB 01h,02h,03h,04h,05h ;The actual data table

Note:

In the above example, we first increment the accumulator by 1. This is
because the value of PC will be that of the instruction immediately following
the MOVC instruction—in this case, the RET instruction. The RET opcode
is not needed, but the data that follows RET is. The accumulator needs to
be INCremented by 1 byte to skip over the RET instruction because the RET
instruction requires one byte of code memory.

Note:

The value that the accumulator must be incremented by is the number of
bytes between the MOVC instruction and the first data of the table being
read. For example, if the RET instruction above is replaced with an LJMP
instruction that is 3 bytes long, the INC A instruction would be replaced with
ADD A,#03h to increment the accumulator by 3.

Using Jump Tables (JMP @A+DPTR)

16-34

16.31 Using Jump Tables (JMP @A+DPTR)

A frequent method for quickly branching to many different areas in a program
is by using jump tables. For example, branching to different subroutines based
on the value of the accumulator could be accomplished with the CJNE instruc-
tion (which has already been covered):

CJNE A,#00h,CHECK1 ;If it’s not zero, jump to CHECK1

AJMP SUB0 ;Go to SUB0 subroutine

CHECK1: CJNE A,#01h,CHECK2 ;If it’s not 1, jump to CHECK2

AJMP SUB1 ;Go to SUB1 subroutine

CHECK2:

This code will work, but each additional possible value increases the size of
the program by 5 bytes—3 bytes for the CJNE instruction and 2 bytes for the
AJMP instruction.

A more efficient way is to create a jump table by using the JMP @A+DPTR
instruction. Like the MOVC @A+DPTR, this instruction calculates an address
by summing the accumulator and DPTR, and then jumps to that address.
Therefore, if DPTR holds 2000H and the accumulator holds 14H, the JMP
instruction jumps to 2014H.

Consider the following code:

RL A ;Rotate accumulator left, multiply by 2

MOV DPTR,#JUMP_TABLE ;Load DPTR with address of jump table

JMP @A+DPTR ;Jump to the corresponding address

JUMP_TABLE: AJMP SUB0 ;Jump table entry to SUB0

AJMP SUB1

This code first takes the value of the accumulator and multiplies it by two by shift-
ing the accumulator to the left by one bit. The accumulator must first be multiplied
by two because each AJMP entry in JUMP_TABLE is two bytes long,

The code then loads the DPTR with the address of the JUMP_TABLE and pro-
ceeds to JMP to the address of the accumulator plus DPTR. No additional
checks are necessary because we already know that we want to jump to the
offset indicated by the accumulator. We jump directly into the table that jumps
to our subroutine. Each additional entry in the jump table will require only two
additional bytes (two bytes for each AJMP instruction).

Note:

It is almost always a good idea to use a jump table if there are two or more
choices based on a zero-based index. A jump table with just two entries, like
the previous example, saves one byte of memory over using the CJNE ap-
proach, and saves three bytes of memory for each additional entry.

17-1Keil Simulator

2��� ���
�
���

Chapter 17 describes the Keil simulator and its functions.

Topic Page

17.1 Description 17-2.

17.2 Timers 17-4.

17.3 Timer 2 17-11.

17.4 Watchdog Timer 17-12.

17.5 System Timer 17-16.

17.6 Control Clock 17-16.

17.7 Analog-to-Digital Converter 17-17.

17.8 Summation/Shifter 17-20.

17.9 Interrupts 17-30.

17.10 Ports 17-31.

17.11 Serial Peripheral Interface (SPI) 17-32.

17.12 �Vision 2Debug Program Example 17-38.

17.13 Serial Port I/O 17-40.

17.14 Additional Resource 17-46.

Chapter 17

Description

17-2

17.1 Description

The µVision2 is an integrated software development platform that combines a ro-
bust screen editor, and project manager with make facilities. In addition, the Keil
package has an integrated source-level debugger that contains a high-speed
simulator that gives you the ability to simulate the entire 8051 system. This in-
cludes the full complement of the 8051 resources, and the MSC1210 specific on-
chip peripherals and external hardware peripherals. You can configure the µVi-
sion2 platform for the attributes and peripherals specific to the particular member
of the TI MSC1210 family that is being targeted. The process for accomplishing
this is outlined in the Keil Software Getting Started manual.

When the target system is properly selected, in the debug mode, one has ac-
cess to the full complement of special MSC1210 peripherals. Some of the pe-
ripherals available on the simulator are common to the standard 8051 device,
whereas the others are specific to the MSC1210. Following is a list of the
MSC1210 simulated peripherals:

1) Interrupts
2) Port I/O: Port 0, Port1, Port2, Port3
3) Serial Ports: Serial 0, Serial 1
4) Timers: Timer 0, Timer 1, Timer 2, System Timer, Watchdog
5) SPI
6) Analog-to-Digital Converter
7) Summation/Shifter
8) Clock Control

The use and the applications of these peripherals are discussed in this section.

The graphical user interface (GUI) core of the Keil Simulator consists of a
collection of individual dialog windows that represent the respective MSC1210
peripheral module that is being simulated. These dialogs facilitate interaction
between the user/developer and the simulator. Facilities are provided for data
to be written to, or read from, the various SFRs that control or reflect the status
of the individual peripheral modules being simulated by the Keil development
platform. These interactive fields include the following:

1) Various editable and noneditable text windows. The contents of these win-
dows represent the current value that is programmed into the respective
SFR or the present value of the pertinent register.

2) There are also special selection list windows that display a list of choices
from which you are allowed to choose. The default settings for these list
items are selected and displayed upon the activation of the peripheral
module. Any selection made through this medium directly affects the set-
ting of the pertinent SFR, on the basis of the location of the affected bit(s)
within the bit pattern of the register. If the SFR is represented in the periph-
eral module, its value is immediately updated and displayed in the proper
text display window.

Description

17-3Keil Simulator

3) There are also some labeled check boxes whose statuses, checked or
cleared, directly affect the associated bit within the respective bit pattern
of the SFR. A checked status on a check box item represents a logic 1,
while a cleared status on a check box item represents a logic 0. Converse-
ly, the current status of the corresponding bit within the associated bit pat-
tern of the SFR is reflected in the pertinent check box.

4) In addition, there are some non-editable text field windows whose values or
statuses neither represent the value of any SFR nor the status of any particu-
lar bit field within an SFR. Instead, the contents of these text fields represent
the information inferred or deducted from a combination of statuses and con-
ditions of the pertinent peripheral module(s). For instance, in the snap shot
of the peripheral module depicted in Figure 17−1, Timer/Counter 0, is set for
the timer option and in mode 2. Referring to Chapter 8, Timers, when the
GATE is in an active state, and INT0 is active, if the TR0 bit of the TCON SFR
is also set, the timer continues running, hence, the Run status displayed in
the non-editable text window labeled Status. If the TR0 bit of TCON repre-
sented by the check box is activated once, clearing the state of the TR0 check
box, the state of the non-editable text window labeled Status reverts to Stop,
implying that Timer 0 has stopped running.

Note:

Parameter specification through the various dialog boxes is just an alterna-
tive data entry facility for modifying the content of the corresponding SFR on
the fly, during the debugging process or during the software development
process. This can just as easily be accomplished by modifying the program
so that the software reprograms the pertinent SFR, or by directly accessing
and modifying the internal data address of the corresponding SFR. For
instance, to change the mode selection of the timer/counter 0 module to
mode 3, you could:

1) Assign 0x1B to the variable TMOD in the software program, recompile
the program and re-execute, or

2) Perform a direct memory access to the RAM memory at address location
D:0x89, and overwrite its contents with a value of 0x1B, or

3) Place the cursor on the editable text window labeled TMOD, and replace
its contents with a value of 0x1B.

4) Activate the Mode selection box, and choose the item marked “3: Two
8 Bit Timer/Cnt”.

Timers

17-4

17.2 Timers

The simulator peripheral timer has three timer/counter modules: Timers 0, 1,
and 2; a system timer module; and a watchdog module. The Timer/Counter 0
module is identical to the Timer/Counter 1, so we shall only describe the opera-
tions of Timer/Counter 0.

Figure 17−1. Timer/Counter 0 − Mode 2

The first of the two selection boxes provides a list of four timer-operating modes
upon activation, from which you are allowed to choose. The various timing modes
are discussed in the Chapter 8, Timers. The default mode is mode 0, the 13-bit
timer/counter mode. This selection properly updates the content of the TMOD on
the basis of the logic statuses of the M1 and M0 bits of the Timer Mode control
register (TMOD). The second selection box allows you to select between the tim-
er and the counter modes of operation. The result of the selection is also properly
reflected in the value displayed in the TMOD window, according to the status of
the C/T0 bit in the TMOD register. In the same vein, the TL0 and TH0 registers
are properly associated with the contents of the TL0 and TH0 windows within the
dialog. The logical states of the T0 pin (P3.4), TF0 (Timer/Counter 0 interrupt
flag), the TR0, INT0 and GATE bits of the TCON SFR for instance, are reflected
in the checked/cleared statuses of the T0 pin, TF0, TR0, GATE and INT0 check
box displays, respectively.

The interrupt trigger type is determined by the state of the IT0 bit within the TCON
register. Clearing this bit implies level triggering, and setting it implies falling edge
triggering. If the level triggering option is selected, care must be taken to make
sure that the state of the INT0 pin returns to a high state (non−active) before re-
turning from an ISR, otherwise the interrupt request will be reasserted. For most
intents and purposes, it is unrealistic that you would be able to switch the check
box INT0 on and off fast enough to avoid causing an unintended interrupt request.
For this reason, an edge triggered interrupt option is recommended for simula-
tion. Whatever the case may be, both trigger types are accommodated and imple-
mented in this simulation package.

Timers

17-5Keil Simulator

Due to the MSC1210 peripherals being modular and relatively independent, even
if they share registers, each peripheral has it own unique set of bits that are associ-
ated and affiliated with it. For instance, referring to the Chapter 8, Timers, the status
and setup bits for both Timer/Counter 0 and Timer/Counter 1 occupy separate bit
positions within the same TCON SFR. The same holds for the TMOD register.

17.2.1 Timer 0 & 1 Example

Due to this sample program setting the interrupt trigger edge type for edge trig-
ger, a transition from cleared to checked on the INT0 line will induce an inter-
rupt request.

The contents of the registers TH0, TL0, TH1 and TL1 in Figure 17−2 reflect the
snapshot values of the Timer 0 MSB, Timer 0 LSB, Timer 1 MSB and Timer
1 LSB registers respectively. As explained earlier, altering the contents of any
of these register displays is equivalent to altering the contents of the associat-
ed device register outside the operational confines of the program being exe-
cuted.

Figure 17−2. Timer/Counter 0

Figure 17−3. Parallel Port 3 Peripheral

Timers

17-6

Figure 17−4. Timer/Counter 1 Mode 1

Figure 17−5. Interrupt System

Timers

17-7Keil Simulator

The following is a listing of the C code used to demonstrate the timing and inter-
rupting features of Timer/Counters 0 and 1.

The included statements on the first three lines are the conventional ANSI C
include statements for adding the contents of different header files to a C pro-
gram. There are four routines including the main () program that are needed
to run this program. They are described in the following paragraphs.

#include ”MSC1210.h”

#include <math.h>

#include <stdio.h>

long int timer_0_overflow_count;

int count_start;

char end_test;

void interrupt_timer0 ();// interrupt 1;// using 1

*********************************setport ()*************************************

void setport (void)

{

P3DDRL &= 0xf0;

P3DDRL |= 0x07; //P30 input, P31 output

TF2 = CLEAR; T2 = CLEAR;

CKCON |= 0x20; // Set timer 2 to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

//Initialize TH2:TL2 so that next clock generates first Baud Rate pulse

THL2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baudgen

 //SCON: Async mode 1, 8−bit UART, enable rcvr; TI=CLEAR, RI = CLEAR

 SCON = 0x50;

PCON |= 0x80; // Set SMOD0 for 16X baud rate clock

}

***************************interrupt_timer 0 ()*********************************

This is a type 1 interrupt, which implies that the vector address for this routine
is 0x0B. If an interrupt request is issued, and there is no other interrupt request
of higher priority pending, and neither is an ISR from an interrupt source of
higher priority being processed, the processor makes a subroutine call to the
vector address location 0x0B, from where it executes a long jump to the in-
tended ISR routine.

There is a counter variable of type LONG within this ISR that allows the system
to monitor the number of overflow interrupts serviced during the course of the
test. In addition, because Timer 0 is operating in mode 1, 16 bit timer with inter-
rupt on overflow, the original value of the TH0:TL0 register pair must be replen-
ished at the end of each overflow cycle. The system is globally interrupt dis-
abled at the beginning of the routine, and then globally interrupt enabled at the
end of the routine.

Timers

17-8

void interrupt_timer0 () interrupt 1 using 1

{ /*This ISR is called when a type 1 interrupt causes the processor to vector

into the code segment address 0x0006.

Register Bank 1 is used, as opposed to the default Register Bank 0.*/

IE &= 0x7f; //disable global interrupt

timer_0_overflow_count++; //Track number of times this ISR is called

//Reinitialize Timer 0 counters

TH0 = count_start / 256; //set THO for timer0

TL0 = count_start % 256; //set TLO for timer0

IE |= 0x80; //enable global interrupt

}

**************************interrupt_external 0 ()********************************

Timer 0 is set up as a gated timer. This implies that while GATE is high and if
the INT0 is low, there should not be any time count, regardless of the fact that
the TR0 line is asserted. Hence, the Timer 0 status window displays stop.
While the GATE is high and TR0 is to logic 1, if the INT0 line is raised, the timer
starts running, changing the status display to run. It continues running until the
INT0 line is dropped. This is essentially a pulse-width measurement program.

If the number of calls is odd, the TR0 bit for timer 0 is reset, which effectively
stops the timer, regardless of the state of GATE and INT0. The status window
now displays stop. The global variable end_test is set to a value of 1. This al-
lows the process to terminate the idle loop in the main program.

void interrupt_external0 (void) interrupt 2 using 1

{ /*This ISR is called when a type 2 interrupt causes the processor to vector

into the code segment address 0x0013.

Register Bank 1 is used, as opposed to the default Register Bank 0.*/

static i; //declare static variable i, in order to track odd and even

//number of calls to this ISR

if (!(i++ % 2))

{//even number of calls including 0

//turn on timer0

TCON |= 0x10; //Start timer0 by setting TR0 = 1

}

else

{//odd number of calls

TCON &= 0xef; //Stop timer0 by setting TR0 = 0

end_test = 1;

}

}

*********************************main ()**

Timers

17-9Keil Simulator

Every time the idle loop is interrupted, the MSC1210 vectors to the ISR of the
interrupting signal. If the interrupt source is the Timer 0 overflow, the processor
vectors to the interrupt_timer 0 () ISR, where the timer_0_overflow_count vari-
able is updated, and the TH0:TL0 register pair is replenished with a value of
0x0200. If the external Interrupt 0 signal is the interrupt source, the inter-
rupt_external 0 () is vectored to. This ISR keeps track of even and odd ISR
calls. For odd number of ISR calls, Timer 0’s TR0 bit is set, preparing the timer
to start running as soon as the INT0 line is raised. For even number of calls,
the ISR resets the TR0 bit for Timer 0. This will stop Timer 0 from timing, wheth-
er the INT0 line is asserted or not. In addition, the value of end_test is changed
to 1, so that upon re-entering the idle loop, the value of end_test is no longer
0, which forces the processor out of the loop.

Upon terminating the idle loop, the MSC1210 starts to compute the time lapse
within the period when the INT0 line was asserted and the Timer 0 TR0 bit was
high, or the time between the period when TR0 and INT0 were high, and TR0
went low. This is purely arithmetic. It is important to state that TH0 and TL0 nev-
er start at zero, hence the 0x0200 correction.

time_lapse � �timer_0_overflow �

current_count � 0x0200
(0x10000 � 0x0200)

� �
12 � (0x10000 � 0x0200)

24 � 106

The result of the pulse width computation is displayed on the Serial #1 display
window.

Subsequently, the MSC1210 enters an infinite loop.

void main ()

{

float time_lapse, time_lapse_residual, current_count;

SP = 0x50; //Initialize Stack Pointer

setport (); //Set up UART Comm. b/w Simulator and Serial #1Window

//Issue operation instructions

printf (”\nMSC1210 Ver:”);

printf (”\nTimer 0 & 1 Test\n”);

printf (”\nActivate the Timers 0 & 1 peripherals.”);

printf (”\nClear the Check Box for INT0. This is a Gated timer.”);

printf (”\nTo arm the Timer 0, Clear the Check on INT1.”);

printf (”\nTiming begins when a Check is placed on INT0.”);

printf (”\nTiming ends either by clearing INT0 or Interrupting on INT1.”);

//Make INT1 edge triggered

TCON |= 0x04;

//this global variable track the number of times the Timer 0 timed out

timer_0_overflow_count = 0;

//track even or odd number of calls to ISR interrupt_external0

Timers

17-10

end_test = 0;

//Timer 0 TH0:TL0 will always count up from 0x0200 until overflow,

//and will be replenished with 0x0200 indefinitely

count_start = 0x200;

/*Timer 0 and Timer 1 in Mode 1, timer mode, Gate 0 is closed and Gate

 1 is opened. System will clock if TR0 set, only when INT0 is asserted*/

TMOD = 0x19;

CKCON = 0; //Select Divide by 12

//Enable global interrupt, timer0 overflow and external_int1 interrupts

IE = 0x86;

TH0 = count_start / 256; //set THO for timer0

TL0 = count_start % 256; //set TLO for timer0

/*Indefinite Idle loop.

It breaks when interrupt_external0 () ISR is called an even number of times.

In that instance,end_test is set to ”1”,

otherwise, it is ”0”*/

while (!end_test);

/*compute time elapsed, including the residual time in the 16−bit counter,

with correction for the 0x0200 counter offset.*/

current_count = TH0 * 256 + TL0; //current residual timer0 count

time_lapse_residual = (float)(current_count − count_start) /

(0x10000 − count_start);

time_lapse = time_lapse_residual + timer_0_overflow_count;

time_lapse *= (12 / 24000000.) * (0x10000 − count_start);

printf (”\nThe Pulse Width for INT0 was: %f Sec.”, time_lapse);

//enter infinite loop

while (1);

}

Timer 2

17-11Keil Simulator

17.3 Timer 2

Timer/Counter 2 is quite different from the two other timers. The operation
mode is determined by the status of one or more of the register bits displayed
in Table 17−1.

Table 17−1.Timer/Counter 2 Control Bits

Register Bit Toggle Box Name

T2CON.TR2 TR2

T2CON.C/T2 TC/T

T2CON.CP/RL2 CP/RL2

T2CON.EXEN2 EXEN2

T2CON.TCLK TCLK

T2CON.RCLK RCLK

Figure 17−6. Timer/Counter 2

The hexadecimal equivalent of the bit pattern created by toggling the individual
bits is displayed in the editable text display, T2CON. Writing a number into this
window will correctly program the states of the respective bit; the same way
it would program the individual bits of the device’s T2CON register.

By the same token, the checked or cleared state of the T2EX, T2 Pin, TF2 and
EXF2 boxes have the same effects on, or are affected the same way by the
P1.T2EX, T2CON.T2, T2CON.TF2 and T2CON.EXF2 pins respectively, as
discussed earlier.

The values and the implications of the contents of the editable text windows
T2 and RCAP2 are consistent with those of the actual device registers in the
MSC1210 system.

Watchdog Timer

17-12

17.4 Watchdog Timer

The process of setting, and the operation of the watchdog timer peripheral fa-
cility are similar to those of the other peripherals we have considered so far.
However, this module has an additional feature: the special access setting or
resetting of the status conditions of the EWDT, DWDT, RWDT check boxes.
These boxes directly or indirectly affect, or are affected by, the status and con-
ditions of the EWDT, DWDT, RWDT bits of the WDTCON SFR respectively.
Just as these bits, for security, require special access of an application of a se-
quence of a logic 1, followed by a logic 0 for their respective setting and reset-
ting in the actual MSC1210 device, so do the check boxes in this simulator pe-
ripheral. Please see section 14.3, Watchdog Timer, of this manual for the de-
scription of the special access programming.

To enable the watchdog timer system, the watchdog timer must be turned on
either by placing a check mark on the PDWDT check box, or writing a logic 1
into the PDWDT bit of the PDCON SFR from within the software. The appropri-
ate value must also be written into the watchdog timer register through the
WDTIMER editable text window. This would properly set the WDCNT counter
bits (lower five bits) of WDTIMER, through which watchdog expiration time is
defined. Then the special accessed procedure is performed for the EWDT
check box, involving the sequential process of activating the box marked 1 fol-
lowed by the box marked 0 that are associated with the EWDT check box.
While the watchdog timer is running, performing repeating the special access
process for the DWDT will disable the watchdog timer. This will automatically
clear the check mark in the EWDT check box. On the other hand, you could
also perform the special access procedure on the RWDT check box. This
places a check on the associated check box. Figure 17−7 shows the status of
the watchdog peripheral mid-stride of a watchdog countdown.

Figure 17−7. Status of Watchdog Peripheral

Watchdog Timer

17-13Keil Simulator

The non-editable Expire in: display window indicates the amount of time left (in
milliseconds) before you must perform either a timed access watchdog reset or
a watchdog disable, in order to avoid the watchdog timer initiating a system reset
(if watchdog reset is enabled). Note that PDWDT does not enable the watchdog
timer reset; it is enabled and disabled by the WDRESET bit in hardware configu-
ration register 0 (HCR0). This register is located within the flash memory, there-
fore, it is not available for read or write in the execution mode. Refer to the section
on flash programming for information on programming HCR0. This SFR is ac-
cessed using CADDR and CDATA. The WDRESET bit, when set, would enable
the watchdog reset. This implies that upon watchdog timeout, the system auto-
matically initiates a processor reset procedure. This also implies that even if the
watchdog timer interrupt is enabled, the associated ISR will never be called. In
order to be able to access the ISR, the watchdog reset must be disabled. This
is achieved by clearing the watchdog reset enable bit. The default state for this
bit is logic 1, i.e., watchdog reset enabled. The complete watchdog facility cannot
be simulated because the configuration address and data access to the HCR0
is not implemented in this simulator version. However, an example is provided
here to show how the watchdog system, with an interrupt facility, would be imple-
mented were it possible to modify the WDRESET bit of HCR0.

17.4.1 Watchdog Reset Facility Example
#include ”MSC1210.H”

//unsigned char data irqen_init _at_ 0x7f ; // image of PAI

#define FWVer 0x04

#define CONVERT 0

char watchdog_loop;

void init_watchdog ();

void watchdog_interrupt ();// interrupt 6;

void setport (void)

{

P3DDRL &= 0xf0;

P3DDRL |= 0x07; //P30 input, P31 output

TF2 = CLEAR; T2 = CLEAR;

CKCON |= 0x20; // Set timer 2 to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

//Initialize TH2:TL2 so that next clock generates first Baud Rate pulse

THL2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baudgen

//SCON: Async mode 1, 8−bit UART, enable rcvr; TI=CLEAR, RI = CLEAR

SCON = 0x50;

PCON |= 0x80; // Set SMOD0 for 16X baud rate clock

}

void init_watchdog ()

{

Watchdog Timer

17-14

/*

//For the actual device, the a logical AND of the content of the FRC0 SFR

register with 0xF7 must be performed to Disable the Watchdog Reset

so that the watchdog system can be controlled through the watchdog interrupt

facility.

CADDR = 0x7F;

CDATA &= ~0x08;

This must be done in the Parallel Programming mode, before the processor

starts up

*/

/*Turn Watchdog Timer On*/

PDCON |= 0x04;

/*Enable Watchdog Interrupt*/

EIE |= 0x10;

/*Set Watchdog Timer for 200 ms*/

WDTIMER = 0x0E;

/*Enable Watchdog Timer*/

WDTIMER |= 0x80;

WDTIMER &= ~0x80;

}

void watchdog_interrupt () interrupt 12 using 1

{

/*This routine cannot be tested because we cannot get around the

watchdog reset on the simulator. The watchdog reset cannot be disabled.

The watchdog interrupt is never activated, hence, 0x0063 is never vectored
into.*/

static int j;

/*Reset Watchdog. This is the sequential process of applying

Logic 1 followed by Logic 0*/

WDTIMER |= 0x20;

WDTIMER &= ~0x20;

/*Count Number of Resets*/

j++;

printf (”\nWatchdog Reset %d Times”, j);

/*Terminate watchdog Loop*/

watchdog_loop = 0;

}

void main(void)

{

int i, j;

setport ();

init_watchdog ();

Watchdog Timer

17-15Keil Simulator

/*start short loop to test DWDT*/

for (i = 0; i < 4000; i ++)

{//idle delay

j = (i *13) % 4000;

}

//Disable watchdog timer before timer expires

WDTIMER |= 0x40;

WDTIMER &= ~0x40;

//Reinitialize watchdog, sinice it has just been disabled

init_watchdog ();

/*start short loop to test RWDT*/

for (i = 0; i < 400; i ++)

{//idle delay

j = (i *13) % 4000;

}

/*Reset Watchdog Timer before Watchdog Timer Expires*/

WDTIMER |= 0x20;

WDTIMER &= ~0x20;

/*Infinite loop to test Watchdog Timer Time out with interrupt.

In the case in which the Watchdog Reset cannot be disabled,

there will not be any interrupts. The watchdog time would

eventually run out, and a reset procedure will be activated*/

while (1)

{

watchdog_loop = 1;

while (watchdog_loop);

}

}

System Timer

17-16

17.5 System Timer

The MSC1210 device has many time ticks and an additional clock generator
(1MHz) that are derived, and, therefore, synchronized to the system clock. Each
time tick and clock generator has a set of registers that specify the value of system
clock divisions required to generate it. Some of these registers are accessible
through the system timer peripheral windows. The editable XTAL Freq.: window
allows you to set the crystal clock frequency. Setting it is just a matter of entering
the appropriate value. The ONEUSEC editable text window sets the value of the
One Microsecond register. Referring to the Chapter 8, Timers, it is apparent that
bit patterns in the fifth, sixth and seventh bit positions are ignored; they have no
effect. This is also enforced in this peripheral. The One Millisecond Low and One
Millisecond High registers are programmed through or displayed in the editable
text windows ONEMSL and ONEMSH, respectively. The One Hundred Millisec-
onds register, the Millisecond Timer register and the Seconds Timer register are
accessed through the HUNDMS, STIMER and MSTIMER editable text windows.
The statuses of the second system timer interrupt status flag and the millisecond
system timer interrupt status flag are reflected in the checked or cleared statuses
of the SEC and MSEC check boxes, respectively. You can also force a second
system timer iterrupt or the millisecond system timer interrupt by toggling either
of these check boxes. The SYSTEM clock is turned on or turned off by toggling
the SYSTON check box. Please refer to Chapter 8, Timers, for a more compre-
hensive discussion of the system timer.

The corresponding time interval for the one microsecond timer, the one millisec-
ond timer, and the one hundred milliseconds timer, on the bases of the registered
system clock frequency and the values of the pertinent timer registers, are dis-
played in the non-editable text windows 1µs, 1ms and 100ms, respectively.

17.6 Clock Control

The clock frequencies affecting the operations of the device timers, watchdog
timers, UARTs and SPI systems depend on the states of the bit pattern of the
value written into the Clock Control register (CKCON). The stretch time for the
external memory access is also determined by this value. The value of the
CKCON register can either be written directly into the associated editable text
window, or modified or programmed by toggling the T2M, T1M and T0M check
boxes, which program and set the crystal frequency divide-by-12 or
divide-by-4 modes for Timers 2, 1 and 0, respectively. This allows the
MSC1210 to maintain backward compatibility with the standard 8051
processor. The default setting is the divide-by-12 option. The MOVX stretch
can be modified by activating the MOVX Duration (Cycles) window. This
causes a display of selectable instruction cycle durations, from which, one
must be chosen. Please refer to the section for Timer Control for more detailed
information on the Clock Control register bit pattern.

Analog-to-Digital Converter

17-17Keil Simulator

17.7 Analog-to-Digital Converter

Data entry and bit pattern setting facilities for the ADC peripheral are similar
to those of the other peripherals. Some of the text entry boxes are editable,
while others are just read-only, and the check boxes respond to mouse clicks
with checked and cleared status. The editable text entry windows marked
ADCON0, ADCON1, ADCON2 and ADCON3 provide direct access to the
ADC Control registers 0, 1, 2 and 3, respectively.

Writing to the editable text entry box marked ADCON0 sets the bit pattern for
the Burnout Detect bit, the Enable Internal Voltage Reference bit, the Voltage
Reference High Select bit, the Buffer Enable bit, and the bits that select the
PGA. All these bits could also be set or modified by performing a check/clear
activation on check boxes marked BOD, VREF, BUF and VREFH, respective-
ly, and selecting the desired programmable gain from the gain selection list
that pops up when the box marked PGA is activated.

The bit patterns for analog input data polarity, filter mode option selection, and
the device’s calibration mode control option selection can be programmed or
updated by entering appropriate byte data values into the editable text box
marked ADCON1. Similarly, the polarity setting and the filter settling mode
selection option can also be programmed, alternatively, through the check box
marked POL and the selection box marked Filter. There is no data entry alter-
native for selecting the calibration mode control bits.

Writing data values into the ADCON2 and ADCON3 registers respectively sets
the ADC decimation filter ratio values. The lower three bits of ADCON3 corre-
spond to the most significant three bits of the converter decimation ratio, and
the whole ADCON2 byte represents the LSB for the decimation ratio. It should
be stressed that if the contents of either ADCON2 or ADCON3 are modified,
the converter must be recalibrated.

The current ADC data conversion rate is automatically computed on the basis
of the system clock setting. Its result is displayed in the non-editable text
display window marked Data Rate. The data conversion completed status, is
indicated by the logic state of the ADC bit of the AISTAT SFR. The 24-bit result
of the most recent analog-to-digital conversion, which is a concatenation of the
three result registers ADRESH, ADRESM and ADRESL, respectively, is
displayed in the text display window marked ADRESH/M/L.

The MSC1210 device has an input multiplexer which facilitates the selection
of any combination of any pair of differential inputs. If you select any of the input
channels for the positive input of the differential input pair, any other input could
be selected for the negative input. Even, the same input could be selected for
both differential input pairs, if you wishe to perform the ADC conversion cal-
ibration or quantify the noise measurements of the conversion system.

There are 10 possible analog input sources, including an on-chip temperature
sensor. Activating the analog input selection box associated with the pertinent
differential pair input, INP or INN, and clicking on the desired source could se-
lect any of these channels. The default selection for AIN0 for INP, and AIN1
for INN.

Analog-to-Digital Converter

17-18

Figure 17−8. Analog−to−Digital Converter Peripheral

For each analog input source whose editable text windows are displayed un-
der the Analog Input Channels title, one could specify the desired analog volt-
ages to be converted. The µVision2 simulator also provides an alternate way
for entering analog voltage values by writing a script program that runs in paral-
lel with the program being executed. A sample code is appended. Please refer
to the µVision2 Debug Functions chapter in the Keil’s Getting Started and Cre-
ative Programming document for more information on writing scripts.

Analog-to-Digital Converter

17-19Keil Simulator

SIGNAL void a_to_d_sim (void)

{

inti;

/*Data written into the variable ain0 is automatically
entered into the editable text window labeled AIN0 in
the ADC peripheral dialog.*/

ain0 = 0.5; //specify start value for ain0

//debug program idles for 196000 clock cycles, while
simulation continues running in parallel*/

twatch (196000);

/*the following loop sends out 64 consecutive samples
of ain0,each incremented by 0.01. Each transmittal is
spaced 131000 clock cycles from the previous one.*/

for (i = 0; i < 0x40; i++)

{

twatch (900);

ain0 += 0.01;

twatch (130100);

}

}

The reference voltages are also specified through the VREFP and VREFN
editable text windows. Checks to evaluate the validity of the values placed in
these windows are also implemented. Should the difference between the val-
ue in VREFP and VREFN exceed 2.5V, the error message in Figure 17−9 is
displayed.

Figure 17−9. Error Message

The value of internal reference voltage, which is based on the status of the
VREFH bit of the ACDON0 SFR, is displayed on the non-editable VREF window.

Please refer to Chapter 12, Analog-to-Digital Converter, for more in-depth dis-
cussions on the pertinent registers.

Summation/Shifter

17-20

17.8 Summation/Shifter

The summation/shifter module implemented in this simulator package allows
the developer to experience how the automatic data averaging works. It also
allows the program to be tested while it is being developed.

Figure 17−10 shows a snapshot of the summation/shifter peripheral in the
middle of a data acquisition cycle. The SSCON editable text field displays the
programmed value of the SSCON register, which sets the bits for the summa-
tion/shifter control, the summation count, and the shift count. Please refer to
the section on summation/shifter for more in depth discussions on the features
of these bit pattern settings. The contents of this text field can also be updated.
Like the other peripheral modules in this simulator, the items and features that
this register sets are also configurable through the alternate data entry win-
dows. The summation/shifter control setting can be alternatively made by acti-
vating the control selection window marked Control. This brings up a list of four
different summation/shifter options: no source, aAccumulate, shift, and accu-
mulate & shift. One of these options must be selected. The default is the no
source option. In the accompanying example, as indicated in Figure 17−10,
the accumulate & shift option was selected. Activating the Acc Count window
permits the developer to determine the number of 24-bit data samples to be
automatically accumulated. The count choice options are 2, 4, 8, 16, 32, 64,
128 and 256. Of these choices, one selection must be made. Figure 17−10
shows that an accumulate count of 8 was selected. In the same manner, the
choice of shift count is made by activating the Shift Count selection window,
and picking one of eight possible shift counts: 2, 4, 8, 16, 32, 64, 128 and 256.
Updating the content or the selection choice of any of these selection window
items will appropriately update the content of the SSCON editable text window.

Figure 17−10. Accumulator/Shifter Peripheral

The intermediate result of the successive accumulations and the eventual
computation of the shifting process is displayed in the Accumulate Registers
editable text window sets marked ACCR3, ACCR2 ACCR1, and ACCR0.
These display windows reflect the values of the contents of the ACCR3,
ACCR2, ACCR1, and ACCR0 registers in the MSC1210 device.

Summation/Shifter

17-21Keil Simulator

The non-editable text window across from the acc count shows the current
number of data samples accumulated into the summation registers for the cur-
rent accumulate & shift cycle. The summation/shifter module depicted in
Figure 17−10 shows that five samples had been accumulated, and the con-
catenated result of the summation registers for the freeze−framed accumulate
& shift cycle, up to that point, was 0x00AE1479.

For this summation/shifter peripheral module, there is no possibility of an
overflow—even in the accumulate mode or cycle—because the worst-case
sample data value is 0x00FFFFFF (a 24-bit value), and the worst-case
accumulate or multiply count is 256. This makes the worst-case accumulate
result 0xFFFFFFFF. This worst-case scenario is comfortably accommodated
because the summation register is 32 bits wide.

Please refer to Section 12.13, Summation/Shifter Register, for more detailed
information.

17.8.1 ADC/Summation/Shifter Example

An example program has been provided to give you an insight into how to use
the ADC peripheral. In order to show how the 32-bit accumulator will work with
this module, a software implementation of the combination of the ADC fea-
tures and the summation/shifter features have been provided. The C code is
grafted into this section. In addition, a script file that runs in parallel with this
C code is also provided. This script file is also written in C.

The ADC peripheral is set up with the following features: VREF = 2.5V, Buff is
turned on and BOD (Burn Out Detect) is turned off by assigning a value of 0x20
to ADCON0. This register setting also selects an unity gain amplification for
the PGA. The bipolar option and the auto-filter options are selected through
ADCON1. Setting the value of register byte also makes the calibration selec-
tion. In this case, the reserved calibration option was selected. The decimation
ratio value of 0x00FF was assigned to the ACDON3:ADCON2 register pair.
Please refer to Chapter 12, Analog−to−Digital Converter, for more information
on the decimation ratio.

An ADC Conversion calibration is performed at the beginning of each data
conversion session. Calibration is initiated, and the processor enters an idle
state and stays there indefinitely, until the calibration process is completed.
When the converter calibration is completed, the ACC flag in the AISTAT SFR
is set. It is customary to discard the first 20 conversions after calibration.

The initialization of the summation/shifter is straightforward. A value of zero
must be written into the SSCON register. This action clears the contents of the
ACCR3, ACCR2, ACCR1 and ACCR0 SFRs. Then the proper SSCON value,
in this case 0xD2, is assigned. This assignment value sets the accumulate−
count, Acc_count, to eight, and the shift count value to eight. The accumulate
& shift option is also selected. This process of clearing and setting the value
of SSCON must be done at the beginning of every acc_count data accumula-
tion cycle, otherwise the previous accumulate & shift result is combined with
the next accumulate & shift data collection.

Summation/Shifter

17-22

This setting essentially causes the 32-bit accumulator to collect eight consecu-
tive data samples from the ADC. Upon completion, it divides the result by eight,
by implementing a 3-bit position arithmetic right shift. In other words, it com-
putes the average value of eight consecutive samples.

The following is the C code for the sample exercise described above:

#include ”MSC1210.H”

//unsigned char data irqen_init _at_ 0x7f ; // image of PAI

#define CONVERT 0

char converting, averaging;

void setport (void);

void init_accumulator ();

char init_a_to_d ();

long read_a_to_d_result ();

long read_accumulator_result ();

void init_accumulator ()

{

/*Clearing the SSCON register will always reset the concatenated string

of ACCR3:ACCR2:ACCR1:ACCR0 registers. This must be performed prior to

initiating a fresh set of A/D Conversion result accumulation*/

SSCON = 0x00;

/*Set Summation/Shifter for 8 A/D result accumulation and averaging*/

SSCON = 0xD2;

}

void setport (void)

{

P3DDRL &= 0xf0;

P3DDRL |= 0x07; //P30 input, P31 output

TF2 = CLEAR; T2 = CLEAR;

CKCON |= 0x20; // Set timer 2 to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

//Initialize TH2:TL2 so that next clock generates first Baud Rate pulse

THL2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baud generation

 //SCON: Async mode 1, 8−bit UART, enable rcvr; TI=CLEAR, RI = CLEAR

 SCON = 0x50;

PCON |= 0x80; // Set SMOD0 for 16X baud rate clock

}

long read_accumulator_result ()

{

/*Convert the concatenated Accumulate Result string ACCR3:ACCR2:ACCR1:ACCR0

Summation/Shifter

17-23Keil Simulator

to a LONG integer*/

long j;

j = ACR3;

j <<= 8;

j += ACR2;

j <<= 8;

j += ACR1;

j <<= 8;

j += ACR0;

return (j);

}

long read_a_to_d_result ()

{

long j;

/*Convert A/D Conversion results from the ADRESH:ADRESM:ADRESL

register string to a LONG integer ith sign extension*/

j = ADRESH;

j <<= 8;

j += ADRESM;

j <<= 8;

j += ADRESL;

j &= 0x00ffffff; //eleminate upper nibble

if (j & 0x00800000)

{//is result negative?

j |= 0x0ff000000;

}

return (j);

}

char init_a_to_d ()

{

char i, j;

/* Setup ADC */

// ADCON0 = 0x30; // Vref on 2.5V, Buff on, BOD off

ADCON0 = 0x20; // Vref on 1.25V, Buff on, BOD off

ADCON1 = 0X00;

ADCON2 = 0xFF; // decimation ratio

ADCON3 = 0x00;

ADCON1 = 0x05; // bipolar, Filter = auto, self calibration, offset, gain

//wait for the calibration to take place

printf (”\n\nCalibrating....\n”);

Summation/Shifter

17-24

while(!(AISTAT & 0x20));

j = ADRESL;

for (i = 0; i < 20; i++)

{ // dump 20 conversions

/*wait for DRBY bit*/

while(!(AISTAT & 0x20));

}

/*set up Summation / Shifter*/

/*Select Summation / Shifter option,

Acc Count = 8, Shift Count = 8

*/

init_accumulator ();

//extract Accumulate−Count from SSCON SFR Register.

j = SSCON & 0x38;

j /= 8;

j = 1 << (j + 1);

return (j);

}

void a_to_d_accumulate (void) interrupt 6 using 1

{

/*interrupt type 6 vectored to 0x33.

Any AI type interrupt would come to this ISR.

Evaluating the SUM and ADC bits of AISTAT will determine

whether the ISR call was due to the A/D Converter interrupt or

the Summation/Shifter interrupt*/

if (AISTAT & 0x20)

{//A/D conversion interrupt

converting = 0;

AISTAT &= ~0x20; /*clear ADC bit*/

}

if (AISTAT & 0x40)

{//Accululator/Shifter interrupt

averaging = 0;

AISTAT &= ~0x40; /*clear SUM bit*/

}

return;

}

void main(void)

{

int i;

Summation/Shifter

17-25Keil Simulator

char accum_count;

long l;

float voltage_value, vref, max_range;

char convert_accumulate;

convert_accumulate = 1; //Select data averaging option.

CKCON &= 0xf8; // 0 MOVX cycle stretch

//set Serial # 1 indow up for output display

setport ();

printf (”\nMSC1210 Ver:”);

printf (”\nA/D Res H/M/L\t”);

printf (”Acc Reg 3/2/1/0\n”);

//Enable global interrupt and enable Power Fail Interrupt

IE = 0x80;

EPFI = 1;

//initialize A/D converter and extract Accumulation−Count

accum_count = init_a_to_d ();

//Wait for conversion to be completed

while (!(AISTAT & 0x20));

//Conversion completed, then read result of the A/D converter

l = read_a_to_d_result ();

//set conversion constants max_range and vref

if (ADCON1 & 0x40) //is polarity unipolar or bipolar?

{//unipolar

max_range = 0xFFFFFF;

}

else

{//bipolar

max_range = 0x7FFFFF;

}

if (ADCON0 & 0x10) //is Vref = Vrefh or Vref = Vrefl?

{//Vrefh

vref = 2.5;

}

else

{//Vrefl

vref = 1.25;

Summation/Shifter

17-26

}

switch (convert_accumulate)

{

case CONVERT: //straight A/D conversion results, no averaging

PAI = 0x20;

for (i = 0; i < 0x40; i++)

{

converting = 1;

/*straight conversion idle loop.

Value of ”converting” is changed in the a_to_d_accumulate ()

ISR which is called at the end of each conversion.*/

while (converting);

/*Get LONG integer result and convert to a floating point

voltage value using the proper values for vref and max_value*/

l = read_a_to_d_result ();

voltage_value = (float)l * vref / max_range;

printf (”\nInstantaneous Value: %ld, i.e. %f volts”,

l, voltage_value);

}

break;

default: //Averaged A/D conversion results

PAI = 0x60;

for (i = 0; i < 0x40; i++)

{

averaging = 1;

/*averaged conversion idle loop.

Value of ”averaging” is changed in the a_to_d_accumulate ()

ISR which is called at the end of each completed

averaging sequence.*/

while (averaging);

/*Get LONG integer result and convert to a floating point

voltage value using the proper values for vref and max_value*/

l = read_accumulator_result ();

voltage_value = (float)l * vref / max_range;

init_accumulator ();

printf (”\nInstantaneous voltage Values ”);

printf (”Averaged Over %d Samples: %ld,\n i.e. %f volts”,

(int)accum_count, l, voltage_value);

}

break;

}

while (1);

}

Summation/Shifter

17-27Keil Simulator

In order to demonstrate how the summation/shifter handles the incremental
accumulation of sampled data, we have opted to enable both the ADC
conversion interrupt enable, EADC, and the summation interrupt enable,
ESUM, by assigning a value of 0x60 to the PIREG SFR. This implies that the
power fail interrupt, AI, is pulsed each time the ADC completes a sample
conversion on ADC, and each time the number of accumulation matches the
acc_count value on SUM. This means if a breakpoint were inserted in the
a_to_d_interrupt ISR routine for each data averaging cycle, eight samples in
this case, the value displayed in the non-editable text window associated with
acc_Count of the summation/shifter peripheral increase from 0 to 7 each time
the ADC interrupt is pulsed. The data values in the summation registers vary
as well, with the accumulation of conversion data results. On the eighth sample
of the cycle, when the SUM interrupt has been pulsed, the value content of the
non-editable display window rolls over from 7 to 0, and the contents of the
summation registers will be properly adjusted for the result of the eight data
sample averaging. Right after the averaged data has been successfully read,
the summation registers must be reset to all zeroes so it can start the next
batch of eight sample averaging with a clean slate. This can be most
conveniently achieved by assigning a 0x00 value to the SSCON SFR.
However, in this case, the contents of this register must be replenished with
the previous value of 0xD2, in order to properly set the operating parameters
for the summation/shifter module. This is equivalent to calling the
init_accumulator subroutine. These processes are repeated 64 times, after
which the simulator jumps into an infinite loop.

Note:

if we are not particularly interested in studying the individual data
accumulation step, we can assign a value of 0x40 to the PIREG SFR. In this
case, the AI interrupt ISR is called only when the SUM interrupt is triggered.

Snapshots of the summation/shifter peripheral and the ADC peripheral mid-
stride a typical 8-sample averaging block are shown in Figure 17−11 and
Figure 17−12. In the ADC Conversion peripheral, the AIN0 window shows that
the input voltage value of the most recent ADC conversion is 1.399994V. This
is a result of the 1.4V value set from the debugging script program. The 24-bit
conversion of this AIN0 value is displayed in the editable window labeled
ADRESH/M/L. The digital value of this conversion is 0x74B166. The non-edit-
able text window associated with acc count shows that four out of eight sam-
ples have been accumulated in the summation registers, and thus far, the sum
of all four accumulated 24-bit conversion values is 0x01D2F198.

Summation/Shifter

17-28

Figure 17−11.summation/Shifter Peripheral

Figure 17−12. The ADC Peripheral Mid-Stride a Typical 8-Sample Averaging Block

Summation/Shifter

17-29Keil Simulator

In addition to the previous sample code, a sample driving code for the debugging
is included below. This is a special feature of the µVision2 Simulator system that
allows you to send input voltage values to the editable analog text fields in the
ADC peripheral module. In the case of this example, the AIN0 input channel is
selected. These input values are automatically written to the text window within
a preprogrammed time interval, which is determined by the argument of the pre-
defined function twatch (ulong states, where states is the unsigned long value of
the number of CPU clock states that must elapse before the next statement in
the program is executed). While this function is being executed, the debug sys-
tem is placed in an idle state, and the target program continues executing. Upon
expiration of this timer period (number of CPU clock states), the debugging pro-
cess continues at the next statement. For all intents and purposes, the target pro-
cess is oblivious to the execution or the state of the debugging program.

The debugging program is declared as one with a return value of type SIGNAL.
The debugging variable AIN0 is assigned an initial value of 0.5V. This will be
subsequently incremented by an incremental value of 0.01V. After the AIN0
value has been initialized, a delay of 196 000 CPU clock samples is imposed,
while the main program, which started at the same time as this debug program,
is performing its parameter initialization and book keeping until it is ready for
the next data to be sampled. Within the For Loop, another 900 CPU clock delay
is imposed, then the value of AIN0 is incremented by 0.01. It then processes
another 130 100 CPU clock delay. This is repeated until the For Loop count
expires. In the meantime, the AIN0 text window in the ADC peripheral is incre-
mentally updated, and its value is periodically sampled, converted, averaged
and displayed from within the main program.

Please refer to the µVision2 Debug Functions chapter in the Keil’s Getting
Started and Creative Programming document for more information on writing,
compiling and running script files.

SIGNAL void a_to_d_sim (void)

{

int i;

/*Data written into the variable ain0 is automatically entered into the

editable text window labeled AIN0 in the A/D Converter peripheral dialog.*/

ain0 = 0.5; //specify start value for ain0

//debug program idles for 196000 clock cycles, while simulation continues

running in parallel*/

twatch (196000);

/*the following loop sends out 64 consecutive samples of ain0,

each incremented by 0.01. Each transmittal is spaced 131000 clock cycles

from the previous one.*/

for (i = 0; i < 0x40; i++)

{

twatch (900);

ain0 += 0.01;

twatch (130100);

}

}

Interrupts

17-30

17.9 Interrupts

The list box for the interrupt peripheral is shown in Figure 17−13. The figure
shows a list of interrupt sources along with their associated vector addresses
that the processor automatically vectors to in the event that an enabled inter-
rupt is triggered, there are no pending interrupt requests of higher priority, and
there is no ISR being executed pertaining to an interrupt source of higher prior-
ity. As shown in Figure 17−13, the columns with headings Int Source, Vector,
Mode, Req, Ena and Pri pertain, respectively, to the interrupt source name, the
interrupt vector address, the interrupt edge type, (0 for level triggered and 1
for edge triggered), the interrupt request status, the interrupt enabled status
and its priority level. There are some interrupt sources listed without any prior-
ity listing. All such sources have the same vector address as that of the AI inter-
rupt. The priority levels of all interrupts affiliated with it are also unalterable and
have the highest priority level setting because the AI has the highest, and an
unalterable, priority.

Figure 17−13. List Box for the Interrupt Peripheral

Selecting any of the itemized interrupt sources will force its pertinent associated
settings and status value to be transferred to the set of check boxes in the lower
part of the Interrupt display. Clicking on its corresponding check box could alter
the status of each piece of information. On the Interrupt display shown in
Figure 17−13, the set of check boxes in the lower section of the display indicate
that the Global Enable flag EA is high (EA has a check). This implies that any in-
terrupt source that is enabled has the potential to generate an interrupt request.
If the EA button is clicked, clearing the selection, the processor’s interrupts are
globally disabled. Just for clarification, it should be restated that the status of EA
has no bearing on the ability of a AI interrupt condition, or those of any of the pe-
ripheral interrupts tied to it, to initiate an interrupt request. Setting the EFPI bit of
EICON enables the AI. One could induce an interrupt by placing a check on the
corresponding Req slot of the desired interrupt source. This is equivalent to acti-
vating the interrupt through the software or the hardware.

Sample routines of the interrupt peripheral module have been incorporated
into sample programs for other peripheral modules that have been discussed
previously. Please study those programs for more information.

Ports

17-31Keil Simulator

17.10 Ports

There are four parallel I/O ports on this device, Port 0, Port 1, Port 2 and Port
3, and as such, there are four separate parallel port displays. We shall discuss
the operation of just one I/O port display because all four of them are similar.

The Parallel Port 0 shown in Figure 17−14 depicts the value and the bit pattern
of the contents on the Port 0 register (P0), the Port 0 Data Direction High register
P0DDRH, and the Port 0 Data Direction Low register P0DDRL. In addition, the
byte value and the bit pattern of the logic levels of the signals on the Port 0 I/O
pins are also depicted. The value of any of these registers or I/O pin settings can
be changed by changing either the corresponding byte value or bit pattern.

Figure 17−14. Parallel Port 0 Contents Display Window

For example, the bit pattern for P0DDRH could have been set either by writing
a value of 0x55 into the editable text input window for P0DDRH, or clicking
once on checked bit pattern toggle switches for bits 7, 5, 3, and 1, in any se-
quence. This, by the way, sets the Port 0 pins as inputs for port pins 0, 1, 2 and
3, and strong driver outputs for pins 4, 5, 6 and 7. Byte values of 0x55 and 0xFF
could just as well have been written into the P0DDRH and P0DDRL registers
respectively, through the software program, for the same effect.

Until a port read is performed, the value in the port register (P0 for instance) does
not necessarily reflect the status of the port pins.

The Keil Simulator also has facilities for error detection and warning. If, for instance,
we configure the upper nibble of Port 0 for inputs and the lower nibble for outputs,
trying to toggle the INT1 pin (P3.3) in order to simulate an interrupt trigger results
in an error message, as shown in Figure 17−15). This is because pin #3 of the Port
0 is configured for output, and we are trying to drive it as an input.

Figure 17−15. Error Message

Sample routines of the I/O Port Peripheral module have been incorporated into
sample programs for other peripheral modules that have been discussed earli-
er. Please study those programs for more information.

Serial Peripheral Interface (SPI)

17-32

17.11 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) implemented in this simulator package
mimics the behavior and characteristics of a data memory access (DMA) SPI
module, integrated into the MSC1210. The MSC1210 SPI module is an en-
hanced version of the popular SPI modules implemented by other manufactur-
ers. Its enhancement involves substituting the single buffering on the transmit
and receive ends with an adjustable depth First in first out (FIFO) circular buffer
system which has all the signaling characteristics and observes all the data
collection protocols of a typical DMA system. With this DMA enhancement, un-
der normal operating conditions, if the SPI circular buffer is deep enough, the
likelihood of a data overflow is virtually eliminated.

The snapshot in Figure 17−16 shows the freeze-framed picture of the SPI
peripheral window in the middle of a typical data communication
transmit/receive session.

Figure 17−16. SPI Peripheral Window

Like the other peripheral modules, pertinent SFRs could be programmed or
updated by writing the appropriate data into the associated editable text win-
dow, or by placing or removing check marks from corresponding check boxes.
SFR names and individual bit names are also preserved between the actual
MSC1210 SPI module and the simulator SPI peripheral module.

Entries made into the editable SPICON text window will set or clear the check
marks of the SPI enable (SPIEN), master (MSMODE), clock polarity (CPOL),
clock phase (CPHA), bit order (ORDER) check boxes, and the corresponding
divide by selection from the Clock Rate selection window. Conversely, clearing
or setting the check mark on any of the check boxes, will change the value of

Serial Peripheral Interface (SPI)

17-33Keil Simulator

data displayed in the SPICON window, on the basis of the bit position of the
corresponding configuration bit within the SFR bit pattern. Likewise, changing
the clock rate divide by value changes the SPICON entry accordingly. The re-
sult of the oscillator frequency divided by the selected divide by factor is dis-
played in the non-editable master clock window.

The trigger level for the transmit IRQ and receive IRQ are selectable through
the selection windows marked IRQ Level within the transmit buffer and receive
buffer blocks, respectively. The number of data bytes currently in the circular
FIFO buffer (waiting to be transmitted or already received and waiting to be
read) are displayed in the SPITCON and SPIRCON windows, respectively.

Clicking on the transmit flush buffer box, TXFLUSH, destroys the bytes of data
within the circular buffer that are waiting to be transmitted. It changes the SPI trans-
mit pointer so that it points to the same address as the FIFO OUT pointer, and
clears the transmit counter value within the SPITCON SFR. The transmit counter
indicates the number of bytes within the circular buffer that are waiting to be trans-
mitted. Similarly, clicking on the receive flush buffer RXFLUSH box, destroys the
bytes of data, within the circular buffer, that have already been received, but still
waiting to be read by the processor. It forces the receive pointer to point to the same
address location as the FIFO IN pointer, and it resets the receive counter value
within the SPIRCON SFR. The receive counter indicates the number of bytes with-
in the circular buffer that are waiting to be read by the processor.

It is worth stressing that all this window text editing and check box marking are
just alternative methods of programming the various SFRs in software.

The circular buffer can be set or redefined, by writing the desired value into the
editable transmit pointer window (SPISTART) and the editable receive buffer
window (SPIEND). You will observe that whatever entry is made into the SPIS-
TART text window also appears in the non-editable text window labeled Buffer
Start, and the editable text window labeled SPIEND. The content of the non-
editable text window labeled Buffer End remains unchanged. Writing the de-
sired value for the other end of the circular buffer causes the entered value to
appear in the Buffer End display window, but the data displayed in the SPIEND
window automatically reverts to the value written into the SPISTART window.
So, before data communication begins, SPISTART and SPIEND must contain
the same value, implying that the buffer is empty, whereas the Buffer Start and
Buffer End display the boundaries for the DMA circular buffer.
Although the contents of the SPISTART and SPIEND windows will change as
data is written into and transmitted out of the transmit buffer, and data is received
into and read from the receive buffer, the contents of the non-editable text win-
dows Buffer Start and Buffer End will not change. Notice that flushing the trans-
mit buffer will not affect the contents of the SPISTART window; it seems as
though the transmit data was never written into the buffer. Flushing the receive
buffer will neither affect the contents of the SPISTART window nor those of the
SPIEND window.

Data written into the editable text window SPIDATA will be handled as a piece
of data to be transmitted. The SPITCON and SPISTART windows will be prop-
erly updated, the circular buffer entry will be made into the appropriate buffer
address pointed to by the transmit pointer. The values in the SPITCON window

Serial Peripheral Interface (SPI)

17-34

and the TXIRQ window determine the check/clear status of the SPIT check
box. As data is being received from the external device, the value of the re-
ceived data will be momentarily displayed in the SPIDATA window, and the
content of SPIRCON window is properly updated. In addition, as data is read
from the circular buffer, the value displayed in the SPIEND windows is properly
updated. The status of the SPIR bit is also updated on the basis of the values
displayed in the SPIRCON and RXIRQ windows.

A simple code example for a typical SPI communication exercise is appended.

17.11.1 SPI Sample Code

The following program simulates the data communication interaction between
two devices with SPI capabilities, where one operates in the master mode and
the other in the slave mode. Like the other example covered so far, a C style
program script was written using the µVision 2’s debug functions protocol. This
program runs in parallel to the main program. The main program is set up as
the master, and the µVision 2’s debug functions package is set up as a slave.

The various SFRs that are pertinent to the SPI module are enabled and initialized.
The SPI peripheral is asserted as the master, and the communication speed is
specified. The receive and transmit buffers are flushed, and IRQ levels of four and
two are specified for the transmit and receive sections, respectively. The limits of
the circular buffer are defined as 0x0A and 0x0B. Finally, the SPI transmit and
receive interrupts are enabled, and the processor is globally interrupt enabled.

After having properly set up the I/O system for the Serial #1 window, and initial-
izing the interrupt enables and the SPI Communication system, this program
sends out a dummy data byte to start up the communication. The processor
then enters an infinite loop that is interrupted anytime there is an SPI transmit
or receive interrupt.

The SPIT flag is asserted whenever the transmitter IRQ level limit is not attained,
and the SPIR flag is asserted when the receive IRQ level is exceeded. Either con-
dition will generate a AI type interrupt. The transmit_receive () ISR is called when-
ever this interrupt is acknowledged. As discussed earlier, the processor vectors
to address, 0x33, from which a long jump instruction is executed. The processor
branches to the appropriate section of the ISR routine on the basis of the value
contained in the AISTAT SFR. If the interrupt was caused by triggering the trans-
mit flag, SPIT, the processor branches into the transmit block of the ISR. If the
interrupt was caused by the receive flag, SPIR, the receive block will be selected.
Please refer to the chapter on SPI communication in this manual.

Within the receive block of the ISR, the processor reads the contents of the re-
ceive section of the circular buffer by reading the SPIDATA buffer continuously
until the SPIRCON count expired. The ISR resets the SPIR interrupt flag.

Within the transmit block of the ISR, the processor increments the value of the
static integer variable j and transmits its new value by writing it into the SPIDA-
TA SFR. The ISR resets the SPIT interrupt flag.

Upon completion of the associated ISR routine block, the process returns to
the infinite loop.

Serial Peripheral Interface (SPI)

17-35Keil Simulator

#include ”MSC1210.H”

//unsigned char data irqen_init _at_ 0x7f ; // image of PAI

#define FWVer 0x04

#define CONVERT 0

char received_data[50];

void init_spi ();

void transmit_receive ();// interrupt 6;

void test_spi ();

void test_spi ()

{

SPIDATA = 55;

while (1);

}

void setport (void)

{

P3DDRL &= 0xf0;

P3DDRL |= 0x07; //P30 input, P31 output

TF2 = CLEAR; T2 = CLEAR;

CKCON |= 0x20; // Set timer 2 to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

//Initialize TH2:TL2 so that next clock generates first Baud Rate pulse

THL2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baud generation

 //SCON: Async mode 1, 8−bit UART, enable rcvr; TI=CLEAR, RI = CLEAR

 SCON = 0x50;

PCON |= 0x80; // Set SMOD0 for 16X baud rate clock

}

void init_spi ()

{

/*enable SPI, specify Master SPI and specify clock rate, (Fosc / 32)

and CPHA = 1*/

SPICON = 0x96;

/*Flush receive buffer, and set IRQ level to 2*/

SPIRCON = 0x81;

/*Flush transmit buffer, and set IRQ level to 4*/

SPITCON = 0x82;

/*buffer start address = 0x0ao, and end address = 0x0b0*/

SPISTRT = 0x0a0;

Serial Peripheral Interface (SPI)

17-36

SPIEND = 0x0b0;

/*Master mode: set MISO for input, and MOSI, SS & SCK for strong outputs*/

P1DDRH = 0x75;

P1 |= 0xF0;

/*enable SPI interrupt*/

PIREG |= 0x0c;

IE |= 0x80;

EPFI = 1;

}

void transmit_receive () interrupt 6 using 1

{

/*This is a type 6 interrupt (AI). Processor vectors to 0x33,

from which it is redirected to this ISR. Because both SPI transmit

and SPI receive interrupts are enabled, additional steps must be

taken to differentiate between transmit and receive interrupt requests.

Hence, the ”if (AISTAT ...)” statements.*/

int i, k;//, p;

static int j, l;

Each time the transmit block is selected; the value of the static integer j is increm-
ented by two, and written into the SPIDATA SFR. This automatically advances
the transmit pointer value, and places the value of j into the circular buffer. The
count in the SPITCON SFR is incremented. Note that the SPITCON count will
decrement automatically as soon as a byte has been successfully transmitted.
Finally, the SPIT bit in the AISTAT SFR is cleared before exiting out of this block.

if (AISTAT & 0x08)

{/*Transmitter*/

j += 2; //set up value of j to be transmitted

SPIDATA = j; //transmit j. This actually goes to the circular buffer

AISTAT &= ~0x08; //clear SPI transmit interrupt flag

}

The static integer variable i is checked to make sure that the array limits for the
received_data array of characters is not exceeded. If the limit has been
reached, the processor would print out the contents of the array to the Serial
#1 window, and then reset the value for l to 0.

You must mask out the MSB of this SFR in order to extract the number of bytes
because the SPIRCON SFR contains both the number of data bytes available
in the circular buffer for retrieval and the RXFLUSH bit. When the processor reads
a byte from the SPIDATA SFR, the oldest item in the current batch of received
data bytes is read, and the SPIDATA will point to the next item in the batch. This
implies that in order to read the batch of received data bytes that triggered the
current interrupt, you could just read the SPIDATA SFR SPIRCON & 0x7F times
with a FOR loop, and wait for the next time the interrupt is triggered.

Serial Peripheral Interface (SPI)

17-37Keil Simulator

if (AISTAT & 0x04)

{/*Receiver*/

i = SPIRCON & 0x7F; //extract the count for the number of

AISTAT &= ~0x04; //deactivate SPI receive flag

if (l >= 50)

{

/*do not exceed the 50 received_data[] array limit*/

for (l = 0; l < 5; l++)

{

printf (”\n”);

for (k = 0; k < 10; k++)

{

printf (” %c”, received_data[k + l * 10]);

}

}

printf (”\n”);

l=0; //reset the received_data[] array index.

}

for (k = 0; k < i; k++)

{

if (l >= 50)

break;

/*data received through the SPI channel is read at the SPIDATA SFR*/

received_data[l++] = SPIDATA; //keep track of received data

}

}

}

void main(void)

{

setport ();

init_spi ();

test_spi ();

}

In addition to the main simulation program, a µVision 2 debugging program
was also written to supply the received data to the test simulation program.
This µVision program transmits and receives data at periodic intervals from the
main program. The SPI communication protocol is used for this data transfer.
The µVersion 2 debug program behaves as the slave, while the main program
is the master. The debug program is presented and explained in the following
section.

mVision 2 Debug Program Example

17-38

17.12 µVision 2 Debug Program Example
SIGNAL void spi_sim (void)

{

/*This program runs in parallel with the main program.

It sends out a character byte whose value is post incremented at the end of
each associated time lapse.

SPI_IN is the portal through which the byte data is sent to the main program.
In addition, the data transmitted from the main program is received at the
portal, SPI_OUT*/

int j;

j = 0x21; //initialize byte data value to be transmitted

spi_in = j; //send byte data

twatch (100); //idle 100 clock cycles

while (1) //start infinite loop

{

twatch (50);

j++; //increment value of byte data to be transmitted

spi_in = j; //transmit another byte of data

twatch (97); //wait 97 clock cycles

/*data transmitted from main program has been receive in portal SPI_OUT

automatically. Its value is displayed in the Command Line display area*/

printf (”\nSPI_OUT = %d”, spi_out);

j++;

/*send another incremented data byte, and receive and display a new data

byte transmitted from main.*/

spi_in = j;

twatch (116);

printf (”\nSPI_OUT = %d”, spi_out);

}

}

The data received from the µVersion 2 debug program, by the main SPI pro-
gram is written to the Serial #1 window. A snapshot of this window is included
in Figure 17−17.

mVision 2 Debug Program Example

17-39Keil Simulator

Figure 17−17. Keil Debugger

The window labeled Serial #1 shows the printed ASCII character representation
of the data bytes received by the main SPI program from the debugging pro-
gram. Note that the first character printer is an ! mark which has a numerical val-
ue of 0x21. This was the first value of j to be transmitted from the debugger
through the SPI_IN portal. The subsequent characters are supposed to corre-
spond to ASCII characters whose numerical values are a value of one off from
the previous character. However, once in a while, there is a skip in characters.
This can be explained by the fact that once in a while, the two programs become
unsynchronized. Better twatch delay timing would have resolved this issue, but
that is not the essence of this example. The Serial #1 window shows the results
of two 50-byte transfers from the µVersion 2 debug program.

Note:

Even though the µVersion 2 debug program and the main SPI program are
separate and independent programs, they run in parallel, and they are syn-
chronized. This way, the incoming data from the debugger is always ready
when the main SPI program is ready to receive data. The delay timing com-
putation is very delicate. If it is too short, data to be transmitted from the de-
bugging program will be overwritten before it is transmitted. If it is too long,
the data transmitted from the main SPI program will be overwritten before the
debugging program reads it.

Serial Port I/O

17-40

17.13 Serial Port I/O

In addition to the SPI communication protocol that was presented earlier in this
manual, the more basic serial port I/O was also implemented in this simulator.
Serial Ports 0 and 1 are simulated in this package. An example of this commu-
nication protocol has been used a couple of times in this section of the manual.
The show_baud_gen () subroutine is used to set up the output display of pro-
gramming example results on the Serial #1 window. The show_baud_gen ()
subroutine is described following.

Parallel port P3 is set so that P3.0 is an input pin, and P3.1 is an output pin.
Referring to the chapter on Parallel ports will reveal that port pins 0 and 1 are
also alternate pins for Serial Port 0 receive and Serial Port 0 transmit, respec-
tively, for Serial Port 0 in either modes 1, 2, or 3. In Serial Port Mode 0, P3.0
is the bidirectional data transfer pin for Serial Port 0, and P3.1 emits the syn-
chronizing clock for serial port 0 communication.

The Timer 2 timer overflow flag is cleared, in order to remove any preexisting
Timer 2 interrupt request. The Timer 2 external input is also set to 0. Timer 2 in
baud rate generation mode generates the data communication baud rate. On the
basis of the fOSC divide-by-4 selection made by setting the Timer 2 Clock Select
bit (bit T2M of the CKCON SFR) and the oscillator clock frequency, the
auto-reload value for the Timer 2 Capture pair, RCAP2H:RCAP2L (RCAP2),
required to produce a baud rate of 37 500bps was computed to be 0xFFC4.
Presetting the Timer 2 register pair TH2:TL2 (THL2) to 0xFFFF ensures that
Timer 2 generates an overflow on the first fOSC divide-by-4 clock. This
automatically generates an overflow pulse, which is further divided by 16 to drive
the Rx and/or Tx clocks. In addition, upon overflow, the contents of the RCAP2
register pair are automatically transferred into the THL2 register pair, which would
have just rolled over to 0x0000. Note that in this mode, Timer 2 does not generate
an overflow interrupt signal. Please refer to Section 8.5, Timer 2, for more
information.

The timer overflow pulse for Timer 2 is used to generate baud rate clock for
the transmit block, and Timer 1 overflow is used for the receive block. Setting
the Timer 2 run control bit through T2CON also enables the Timer 2 clock. For
this operation, the following options were selected for Timer 2: auto-reload,
timer option, specify timer overflow pulse as baud rate clock for the transmit
block and not for the receive block, and specify the option to ignore all external
events on the T2EX (P1.1) pin.

The bit pattern for the previous specifications requires that TCON2 be as-
signed a value of 0x14.

For the serial communication, Serial Port 0 was set for an asynchronous 10-bit
(1 start bit, 8 data bits and one stop bit) mode 1, serial data communication
operation. The serial port 0 is also receive enabled. These were accomplished
by setting the SCON0 SFR to 0x50.

The baud rate doubling option 16X was selected by setting the SMOD0 bit of
the PCON SFR.

Serial Port I/O

17-41Keil Simulator

A snapshot of the Serial Channel 0 communication peripheral after at typical
show_baud_gen () subroutines execution is shown in Figure 17−18.

Figure 17−18. Serial Channel 0 Communication Peripheral

The statuses of the transmit and/or receive flags are also reflected in the
conditions of the TI_0 and RI_0 check boxes. The computed transmit and receive
baudrates are displayed in the transmit baud rate and the receive baud rate
non-editable windows respectively.

Note:

The transmit baudrate and the receive baudrate do not necessarily have to
come from the same timer overflow source. You have a choice of two indepen-
dent sources of the divide-by-16 transmit/receive counters. Setting or clearing
the bit fields for RCLK and TCLK of the T2CON SFR, respectively, determine
independently, whether the timer overflow source for the divide-by-16 transmit/
receive counters is the Timer 1 overflow or the Timer 2 overflow.

The following section is a graft of the show_baud_gen () subroutine used in
earlier examples.

Serial Port I/O

17-42

17.13.1 Serial Port 0 Operation Mode 1 Example

void show_baud_gen (void)

{

 P3DDRL &= 0xf0;

 P3DDRL |= 0x07; //P30 input, P31 output

 TF2 = CLEAR; T2 = CLEAR;

 CKCON |= 0x30; // Set timer 2 to clk/4

 RCAP2 = 0xFF16; //37500 bps

 THL2=0xFFFF;

/* Set T2 for Serial0 Tx baudgen.

Timer 2 is designated the clock source for the ”divide by 16” clock

for the Transmit block, while Timer 1 is the implied source for the

”divide by 16” clock for the Receive block.

TR2 is activated*/

 T2CON = 0x14;

 //SCON: Async mode 1, 8−bit UART, enable rcvr; TI=CLEAR, RI = CLEAR

 SCON = 0x50;

 PCON |= 0x80; // Set SMOD0 for 16X baud rate clock

//set Timer 1 up for Rx Baud Rate Generation @ 37500 bps

TH1 = 0xF6;

/*Make the Timer 1 clocking Gated. This implies that for the Timer 1 to

run, both TR1 and INT1# must be set.*/

TMOD = 0xA0;

TCON = 0x48;

// TI=SET;

}

Serial Port I/O

17-43Keil Simulator

17.13.2 Transmit Block Baud Rate Computation

In this example, two different baud rate sources have been used, one for re-
ceive, Timer 1 overflow, and the other for transmit, Timer 2 overflow. Of course,
there is no good reason for this, except to show that it could be done, and to
show how to use different timer modes for baud rate generation. The analyses
for operational parameters for the individual timer overflow sources are de-
scribed in the following paragraphs.

For the transmit baud rate generation, based on the SFR settings for the Timer
2 simulator peripheral, and the Timer 2 baud rate generator formulas outlined
in the timer section of this manual, the communication baud rate computes as
follows:

If the TM2 bit of CKCON is 0, then clock divide is fOSC/12.

BaudRate �

fOSC

2 � 16 � (0x10000 � RCAP2)

RCAP2 is a concatenation of the SFR pair RCAP2H:RCAP2L. In this example,
it carries a value of 0xFFC4. Hence, the generated baud rate works out to be
12 500bps.

If the faster clocking option of fOSC/4 was selected, then this equation must be
modified to accommodate this faster operation.

If the TM2 bit of CKCON is 0, then clock divide is fOSC/4.

BaudRate �

fOSC � 3
2 � 16 � (0x10000 � RCAP2)

In this case, the generated baud rate computes to be 37 500bps. The factor
of three is a result of the fact that the divide-by-4 factor option was selected,
as opposed to the divide-by-12 option.

Of course, these baud rate values scale proportionally with the selected value
for fOSC.

Serial Port I/O

17-44

17.13.3 Receive Block Baud Rate Computation

Timer 1 is set for a mode 2 timer operation in an 8-bit auto-reload capacity. This
is achieved by assigning a 0x20 value to the TMOD SFR. Recall that the
SMOD0 bit of PCON has been set in an earlier section of this program. This
effectively doubles the communication baud rate. Based on the baud rate com-
putation formulas, it was determined that the desired 12 500 or 37 500 baud
rate settings could be attained by assigning a value of 0xFB to the TH1 SFR.

If the TM2 bit of CKCON is 0, then clock divide is fOSC/12.

BaudRate �

2SMOD
� fOSC

32 � 12 � (256 � TH1)

And if the TM2 bit of CKCON is 1, then clock divide is fOSC/4

BaudRate �

2SMOD
� fOSC

32 � 4 � (256 � TH1)

This forces a factor of two in the numerator in either case because SMOD car-
ries a value of one. For the case in which the T1M bit of CKCON is cleared,
the value of 12 in the denominator is a consequence of the fOSC/12 option se-
lected, whereas the factor of 4 in the denominator of the second expression
is a consequence of choosing the fOSC/4 option. With the value for TH1 set at
0xFB, the first expression results in a baud rate of 12 500bps, while the second
expression results in a baud rate value of 37 500bps. Whatever the case may
be, the correct value of the transmit and/or receive baud rates are properly re-
flected in the non-editable transmit baud rate and receive baud rate windows,
respectively.

A value of 0x48 is assigned to the TCON SFR. This sets its TR1 (Timer 1 run)
bit and its INT1 bit. Actually, in this example, because we are not gating Timer
1, the status of INT1 is irrelevant.

If the TR1 check box is cleared—setting the TR1 bit of TCON to 0—Timer 1
stops running, and the receive baud rate value becomes 0.

Serial Port I/O

17-45Keil Simulator

Figure 17−19. Clock Control Peripheral

Figure 17−20. USART0 Preipheral

Additional Resource

17-46

17.14 Additional Resource

It is highly recommended that you review the Keil Compiler tutorial integrated
into this package for an animated demonstration of some useful IDE facilities.

A-1Additional Features in the MSC1210 Compared to the 8052

#�������
�0��
�
���0��0���0�������

����
���0��0���0.�/�

Appendix A deals with additional features found in the MSC1210 as compared
to the 8052.

Topic Page

A.1 Addtional Features in the MSC1210 Compared to the 8052 A-2.

Appendix A

Additional Features in the MSC1210 Compared to 8052

A-2

A.1 Additional Features in the MSC1210 Compared to 8052

The MSC1210 includes the following features in addition to those that are in-
cluded in a standard 8052 microcontroller.

� Flash memory, up to 32k partitionable as program and/or data memory.

� Low-voltage/brownout detection.

� High-speed core: 4 clocks per instruction cycle.

� Dual data pointers (DPTR).

� 1280 bytes on-chip SRAM (256 bytes internal RAM, 1024 bytes address-
able as external RAM)

� 2k boot ROM

� 32-bit accumulator

� Watchdog timer

� Master/Slave SPI with DMA

� 16-bit PWM

� 24-bit ADC

B-1Clock Timing Diagram

����30�����	0*�
	�
�

Appendix B diagrams the MSC1210 ADC timing chain and clock control.

Topic Page

B.1 MSC1210 Timing Chain and Clock Control Diagram B-2.

Appendix B

MSC1210 Timing Chain and Clock Control Diagram

B-2

B.1 MSC1210 Timing Chain and Clock Control Diagram

Figure B−1.MSC1210 Timing Chain and Clock Control

C-1Boot ROM Routines

"���0���0��
�����

Appendix C defines the MSC1210 ADC boot ROM routines.

Topic Page

C.1 Description C-2.

Appendix C

Description

C-2

C.1 Description

The MSC1210 has a 2K ROM. This code provides the interaction for serial and
parallel programming. There are also several routines that are useful and nec-
essary for use with user applications. For example, when writing to flash
memory, the code cannot execute out of flash memory. By calling the flash
write routine in ROM, this condition is satisfied. Convenient access to those
routines is supplied through a jump table summarized in Table C−1.

Table C−1. Boot ROM Routines

Address Routine C Declarations Description

FFD5 put_string void put_string(char code *string);
Output string (see Section
C.1.1)

FFD7 page_erase char page_erase (int fadd, char fdat, char fdm); Erase flash page

FFD9 write_flash Assembly only; DPTR = address, R5 = data Fast flash write

FFDB write_flash_chk char write_flash_chk (int fadd, char fdat, char fdm); Write flash byte, verify

FFDD write_flash_byte char write_flash_byte (int fadd, char fdat, char fdm); Write flash byte

FFDF faddr_data_read char faddr_data_read(char faddr);
Read HW config byte from
address

FFE1 data_x_c_read char data_x_c_read(int faddr, char fdm); Read xdata or code byte

FFE3 tx_byte void tx_byte(char); Send byte to UART0

FFE5 tx_hex void tx_hex(char); Send hex value to UART0

FFE7 putok void putok(void); Send OK to UART0

FFE9 rx_byte char rx_byte(void); Read byte from UART0

FFEB rx_byte_echo char rx_byte_echo(void);
Read and echo byte on
UART0

FFED rx_hex_echo char rx_hex_echo(void);
Read and echo hex on
UART0

FFEF rx_hex_int_echo Int rx_hex_int_echo(void);
Read int as hex and echo:
UART0

FFF1 rx_hex_rev_echo Int rx_hex_rev_echo(void);
Read int reversed as hex and
echo: UART0

FFF3 autobaud void autobaud(void); Set baud with received CR

FFF5 putspace4 void putspace4(void); Output 4 spaces to UART0

FFF7 putspace3 void putspace3(void); Output 3 spaces to UART0

FFF9 putspace2 void putspace2(void); Output 2 spaces to UART0

FFFB putspace1 void putspace1(void); Output 1 space to UART0

FFFD putcr void putcr(void); Output CR, LF to UART0

F97D(1) cmd_parse void cmd_parser(void) See SBAA076B.pdf

FD3B(1) monitor_isr void monitor_isr() interrupt 6
Push registers and call
cmd_parser

Note: 1) These addresses only relate to version 1.0 of the MSC1210 Boot ROM.

Description

C-3Boot ROM Routines

C parameters are passed to the subroutine code such that the first parameter
is passed in R7, whereas additional parameters use lower R registers (R7 first,
then R6, R5, etc.). In the case of multibyte parameters, the low byte uses the
next available R register while the high byte uses the lower R register. Thus,
the put_string routine uses R7 to receive the low byte of the address of the
string while R6 is used to receive the high byte of the address of the string.

The result or error code is returned in R7 and/or R6, with the low byte in R7
and the high byte, if any, in R6.

C.1.1 Note Regarding the put_string Function

The put_string routine was designed to print strings that are referenced when
the boot ROM is located at 0x0000 and also at 0xF800. This means that it
forces the location of the string to match the same 2K segment the program
is located in. This will lead to strange behavior if the string address is located
in a different 2K segment. For this reason it is suggested that you use the fol-
lowing code instead:

void putstring(char code * data msg)

{

while (*msg != 0)

{

tx_byte((unsigned char) *msg);

if (*msg==\n)

tx_byte(‘\r’);

msg++

}

}

C-4

D-18052 Instruction-Set Quick-Reference Guide

.�/�0�����
�����)���04
��3)��,������0(
���

Appendix D gives a list of the 8052 instruction set.

Topic Page

D.1 8052 Instruction-Set Quick-Reference Guide D-2.

Appendix D

8052 Instruction-Set Quick-Reference Guide

D-2

D.1 8052 Instruction-Set Quick-Reference Guide

00 NOP 40 JC relAddr 80 SJMP relAddr C0 PUSH direct
01 AJMP pg0Addr 41 AJMP pg2Addr 81 AJMP pg4Addr C1 AJMP pg6Addr
02 LJMP addr16 42 ORL direct,A 82 ANL C,bitAddr C2 CLR bitAddr
03 RR A 43 ORL direct,#data8 83 MOVC A,@A+PC C3 CLR C
04 INC A 44 ORL A,#data8 84 DIV AB C4 SWAP A
05 INC direct 45 ORL A,direct 85 MOV direct,direct C5 XCH A,direct
06 INC @R0 46 ORL A,@R0 86 MOV direct,@R0 C6 XCH A,@R0
07 INC @R1 47 ORL A,@R1 87 MOV direct,@R1 C7 XCH A,@R1
08 INC R0 48 ORL A,R0 88 MOV direct,R0 C8 XCH A,R0
09 INC R1 49 ORL A,R1 89 MOV direct,R1 C9 XCH A,R1
0A INC R2 4A ORL A,R2 8A MOV direct,R2 CA XCH A,R2
0B INC R3 4B ORL A,R3 8B MOV direct,R3 CB XCH A,R3
0C INC R4 4C ORL A,R4 8C MOV direct,R4 CC XCH A,R4
0D INC R5 4D ORL A,R5 8D MOV direct,R5 CD XCH A,R5
0E INC R6 4E ORL A,R6 8E MOV direct,R6 CE XCH A,R6
0F INC R7 4F ORL A,R7 8F MOV direct,R7 CF XCH A,R7
10 JBC bitAddr,relAddr 50 JNC relAddr 90 MOV DPTR,#data16 D0 POP direct
11 ACALL pg0Addr 51 ACALL pg2Addr 91 ACALL pg4Addr D1 ACALL pg5Addr
12 LCALL address16 52 ANL direct,A 92 MOV bitAddr,C D2 SETB bitAddr
13 RRC A 53 ORL direct,#data8 93 MOVC A,@DPTR D3 SETB C
14 DEC A 54 ANL A,#data8 94 SUBB A,#data8 D4 DA A
15 DEC direct 55 ANL A,direct 95 SUBB A,direct D5 DJNZ direct,relAddr
16 DEC @R0 56 ANL A,@R0 96 SUBB A,@R0 D6 XCHD A,@R0
17 DEC @R1 57 ANL A,@R1 97 SUBB A,@R1 D7 XCHD A,@R1
18 DEC R0 58 ANL A,R0 98 SUBB A,R0 D8 XCHD A,R0
19 DEC R1 59 ANL A,R1 99 SUBB A,R1 D9 XCHD A,R1
1A DEC R2 5A ANL A,R2 9A SUBB A,R2 DA XCHD A,R2
1B DEC R3 5B ANL A,R3 9B SUBB A,R3 DB XCHD A,R3
1C DEC R4 5C ANL A,R4 9C SUBB A,R4 DC XCHD A,R4
1D DEC R5 5D ANL A,R5 9D SUBB A,R5 DD XCHD A,R5
1E DEC R6 5E ANL A,R6 9E SUBB A,R6 DE XCHD A,R6
1F DEC R7 5F ANL A,R7 9F SUBB A,R7 DF XCHD A,R7
20 JB bitAddr,relAddr 60 JZ relAddr A0 ORL C,/bitAddr E0 MOVX A,@DPTR
21 AJMP pg1Addr 61 AJMP pg3Addr A1 AJMP pg5Addr E1 AJMP pg7Addr
22 RET 62 XRL direct,A A2 MOV C,bitAddr E2 MOVX A,@R0
23 RL A 63 XRL direct,#data8 A3 INC DPTR E3 MOVX A,@R1
24 ADD A,#data8 64 XRL A,#data8 A4 MUL AB E4 CLR A
25 ADD A,direct 65 XRL A,direct A5 E5 MOV A,direct
26 ADD A,@R0 66 XRL A,@R0 A6 MOV @R0,direct E6 MOV A,@R0
27 ADD A,@R1 67 XRL A,@R1 A7 MOV @R1,direct E7 MOV A,@R1
28 ADD A,R0 68 XRL A,R0 A8 MOV R0,direct E8 MOV A,R0
29 ADD A,R1 69 XRL A,R1 A9 MOV R1,direct E9 MOV A,R1
2A ADD A,R2 6A XRL A,R2 AA MOV R2,direct EA MOV A,R2
2B ADD A,R3 6B XRL A,R3 AB MOV R3,direct EB MOV A,R3
2C ADD A,R4 6C XRL A,R4 AC MOV R4,direct EC MOV A,R4
2D ADD A,R5 6D XRL A,R5 AD MOV R5,direct ED MOV A,R5
2E ADD A,R6 6E XRL A,R6 AE MOV R6,direct EE MOV A,R6
2F ADD A,R7 6F XRL A,R7 AF MOV R7,direct EF MOV A,R7
30 JNB bitAddr,relAddr 70 JNZ relAddr B0 ANL C,/bitAddr F0 MOVX @DPTR,A
31 ACALL pg1Addr 71 ACALL pg3Addr B1 ACALL pg5Addr F1 ACALL pg7Addr
32 RETI 72 ORL C,bitAddr B2 CPL bitAddr F2 MOVX @R0,A
33 RLC A 73 JMP @A+DPTR B3 CPL C F3 MOVX @R1,A
34 ADDC A,#data 74 MOV A,#data8 B4 CJNE A,#data8,relAddr F4 CPL A
35 ADDC A,direct 75 MOV direct,#data8 B5 CJNE A,direct,relAddr F5 MOV direct,A
36 ADDC A,@R0 76 MOV @R0,#data8 B6 CJNE @R0,#data8,relAddr F6 MOV @R0,A
37 ADDC A,@R1 77 MOV @R1,#data8 B7 CJNE @R1,#data8,relAddr F7 MOV @R1,A
38 ADDC A,R0 78 MOV R0,#data8 B8 CJNE R0,#data8,relAddr F8 MOV R0,A
39 ADDC A,R1 79 MOV R1,#data8 B9 CJNE R1,#data8,relAddr F9 MOV R1,A
3A ADDC A,R2 7A MOV R2,#data8 BA CJNE R2,#data8,relAddr FA MOV R2,A
3B ADDC A,R3 7B MOV R3,#data8 BB CJNE R3,#data8,relAddr FB MOV R3,A
3C ADDC A,R4 7C MOV R4,#data8 BC CJNE R4,#data8,relAddr FC MOV R4,A
3D ADDC A,R5 7D MOV R5,#data8 BD CJNE R5,#data8,relAddr FD MOV R5,A

E-18052 Instruction Set

.�/�0�����
�����0���

Appendix E lists the 8052 instruction set.

Topic Page

E.1 Description E-2.

E.2 8052 Instruction Set E-3.

Appendix E

Description

E-2

E.1 Description

This appendix is a reference for all instructions in the 8052 instruction set. For
each instruction, the following information is provided:

� Instruction —indicates the correct syntax for the given opcode.

� OpCode —the operation code, in the range of 0x00 through 0xFF, that rep-
resents the given instruction in machine code.

� Bytes —the total number of bytes (including the opcode byte) that make
up the instruction.

� Cycles —the number of machine cycles required to execute the instruc-
tion.

� Flags —the flags that are modified by the instruction, if any.

When listing instruction syntax, the following terms will be used:

� bitAddr—Bit address value (00−FF)

� pgXAddr—Absolute 2k (13-bit) Address

� data8—Immediate 8-bit data value

� data16—Immedate 16-bit data value

� address16—16-bit code address

� direct—Direct address (IRAM 00−7F, SFR 80−FF)

� relAddr—Relative address (−127 to +128 bytes)

8052 Instruction Set

E-38052 Instruction Set

E.2 8052 Instruction Set

ACALL Absolute Call within 2k Block
Syntax ACALL codeAddress

Instructions OpCode Bytes Cycles Flags

ACALL pg0Addr 0x11 2 2 None

ACALL pg1Addr 0x31 2 2 None

ACALL pg2Addr 0x51 2 2 None

ACALL pg3Addr 0x71 2 2 None

ACALL pg4Addr 0x91 2 2 None

ACALL pg5Addr 0xB1 2 2 None

ACALL pg6Addr 0xD1 2 2 None

ACALL pg7Addr 0xF1 2 2 None

ACALL unconditionally calls a subroutine at the indicated code address.
ACALL pushes the address of the instruction that follows ACALL onto the
stack, least significant byte first, and most significant byte second. The
program counter is then updated so that program execution continues at the
indicated address.

The new value for the program counter is calculated by replacing the
least-significant-byte of the program counter with the second byte of the
ACALL instruction, and replacing bits 0−2 of the most-significant-byte of the
program counter with bits 5−7 of the opcode value. Bits 3−7 of the
most-significant-byte of the program counter remain unchaged.

Calls must only be made to routines located within the same 2k block as the
first byte that follows ACALL because only 11 bits of the program counter are
affected by ACALL.

See also: LCALL, RET

8052 Instruction Set

E-4

ADD, ADDC Add Value, Add Value with Carry
Syntax ADD A,operand

ADDC A,operand

Instructions OpCode Bytes Cycles Flags

ADD A,#data8 0x24 2 1 C, AC, OV

ADD A,direct 0x25 2 1 C, AC, OV

ADD A,@R0 0x26 1 1 C, AC, OV

ADD A,@R1 0x27 1 1 C, AC, OV

ADD A,R0 0x28 1 1 C, AC, OV

ADD A,R1 0x29 1 1 C, AC, OV

ADD A,R2 0x2A 1 1 C, AC, OV

ADD A,R3 0x2B 1 1 C, AC, OV

ADD A,R4 0x2C 1 1 C, AC, OV

ADD A,R5 0x2D 1 1 C, AC, OV

ADD A,R6 0x2E 1 1 C, AC, OV

ADD A,R7 0x2F 1 1 C, AC, OV

ADDC A,#data8 0x34 2 1 C, AC, OV

ADDC A,direct 0x35 2 1 C, AC, OV

ADDC A,@R0 0x36 1 1 C, AC, OV

ADDC A,@R1 0x37 1 1 C, AC, OV

ADDC A,R0 0x38 1 1 C, AC, OV

ADDC A,R1 0x39 1 1 C, AC, OV

ADDC A,R2 0x3A 1 1 C, AC, OV

ADDC A,R3 0x3B 1 1 C, AC, OV

ADDC A,R4 0x3C 1 1 C, AC, OV

ADDC A,R5 0x3D 1 1 C, AC, OV

ADDC A,R6 0x3E 1 1 C, AC, OV

ADDC A,R7 0x3F 1 1 C, AC, OV

ADD and ADDC both add the value operand to the value of the accumulator,
leaving the resulting value in the accumulator. The value operand is not af-
fected. ADD and ADDC function identically except that ADDC adds the value
of operand as well as the value of the carry flag, whereas ADD does not add
the carry flag to the result.

The carry (C) bit is set if there is a carry-out of bit 7. In other words, if the un-
signed summed value of the accumulator, operand, and (in the case of ADDC)
the carry flag exceeds 255, the carry bit is set. Otherwise, the carry bit is cleared.

8052 Instruction Set

E-58052 Instruction Set

The auxillary carry (AC) bit is set if there is a carry-out of bit 3. In other words,
if the unsigned summed value of the low nibble of the accumulator, operand,
and (in the case of ADDC) the carry flag exceeds 15, the auxillary carry flag
is set. Otherwise, the auxillary carry flag is cleared.

The overflow (OV) bit is set if there is a carry-out of bit 6 or out of bit 7, but not
both. In other words, if the addition of the accumulator, operand, and (in the
case of ADDC) the carry flag treated as signed values results in a value that
is out of the range of a signed byte (−128 through +127), the Overflow flag is
set. Otherwise, the Overflow flag is cleared.

See also: SUBB, DA, INC, DEC

AJMP Absolute Jump within 2k Block
Syntax AJMP codeAddress

Instructions OpCode Bytes Cycles Flags

AJMP pg0Addr 0x01 2 2 None

AJMP pg1Addr 0x21 2 2 None

AJMP pg2Addr 0x41 2 2 None

AJMP pg3Addr 0x61 2 2 None

AJMP pg4Addr 0x81 2 2 None

AJMP pg5Addr 0xA1 2 2 None

AJMP pg6Addr 0xC1 2 2 None

AJMP pg7Addr 0xE1 2 2 None

AJMP unconditionally jumps to the indicated codeAddress. The new value for
the program counter is calculated by replacing the least-significant-byte of the
program counter with the second byte of the AJMP instruction, and replacing
bits 0−2 of the most-significant-byte of the program counter with bits 5−7 of the
opcode value. Bits 3−7 of the most-significant-byte of the program counter re-
main unchanged.

Jumps must only be made to code located within the same 2k block as the first
byte that follows AJMP because only 11 bits of the program counter are af-
fected by AJMP.

See also: LJMP, SJMP

8052 Instruction Set

E-6

ANL Bitwise AND
Syntax ANL operand1,operand2

Instructions OpCode Bytes Cycles Flags

ANL direct,A 0x52 2 1 None

ANL direct,#data8 0x53 3 2 None

ANL A,#data8 0x54 2 1 None

ANL A,direct 0x55 2 1 None

ANL A,@R0 0x56 1 1 None

ANL A,@R1 0x57 1 1 None

ANL A,R0 0x58 1 1 None

ANL A,R1 0x59 1 1 None

ANL A,R2 0x5A 1 1 None

ANL A,R3 0x5B 1 1 None

ANL A,R4 0x5C 1 1 None

ANL A,R5 0x5D 1 1 None

ANL A,R6 0x5E 1 1 None

ANL A,R7 0x5F 1 1 None

ANL C,bitAddr 0x82 2 1 C

ANL C,/bitAddr 0xB0 2 1 C

ANL does a bitwise AND operation between operand1 and operand2, leaving
the resulting value in operand1. The value of operand2 is not affected. A logical
AND compares the bits of each operand and sets the corresponding bit in the
resulting byte only if the bit was set in both of the original operands. Otherwise,
the resulting bit is cleared.

See also: ORL, XRL

8052 Instruction Set

E-78052 Instruction Set

CJNE Compare and Jump if Not Equal
Syntax CJNE operand1,operand2,reladdr

Instructions OpCode Bytes Cycles Flags

CJNE A,#data8,reladdr 0xB4 3 2 C

CJNE A,direct,reladdr 0xB5 3 2 C

CJNE @R0,#data8,reladdr 0xB6 3 2 C

CJNE @R1,#data8,reladdr 0xB7 3 2 C

CJNE R0,#data8,reladdr 0xB8 3 2 C

CJNE R1,#data8,reladdr 0xB9 3 2 C

CJNE R2,#data8,reladdr 0xBA 3 2 C

CJNE R3,#data8,reladdr 0xBB 3 2 C

CJNE R4,#data8,reladdr 0xBC 3 2 C

CJNE R5,#data8,reladdr 0xBD 3 2 C

CJNE R6,#data8,reladdr 0xBE 3 2 C

CJNE R7,#data8,reladdr 0xBF 3 2 C

CJNE compares the value of operand1 and operand2 and branches to the
indicated relative address if the two operands are not equal. If the two operands
are equal, program flow continues with the instruction following the CJNE
instruction.

The carry (C) bit is set if operand1 is less than operand2, otherwise it is cleared.

See also: DJNZ

CLR Clear Register
Syntax CLR register

Instructions OpCode Bytes Cycles Flags

CLR bitAddr 0xC2 2 1 None

CLR C 0xC3 1 1 C

CLR A 0xE4 1 1 None

CLR clears (sets to 0) the bit(s) of the indicated register. If the register is a bit
(including the carry bit), only the specified bit is affected. Clearing the accumu-
lator sets the accumulator value to 0.

See also: SETB

8052 Instruction Set

E-8

CPL Complement Register
Syntax CPL operand

Instructions OpCode Bytes Cycles Flags

CPL A 0xF4 1 1 None

CPL C 0xB3 1 1 C

CPL bitAddr 0xB2 2 1 None

CPL complements operand, leaving the result in operand. If operand is a
single bit, the state of the bit is reversed. If operand is the accumulator, all the
bits in the accumulator are reversed. This can be thought of as accumulator
logical exclusive OR 255, or as 255-accumulator. If operand refers to a bit of
an output port, the value complemented is based on the last value written to
that bit, not the last value read from it.

See also: CLR, SETB

DA Decimal Adjust Accumulator
Syntax DA A

Instructions OpCode Bytes Cycles Flags

DA A 0xD4 1 1 C

DA adjusts the contents of the accumulator to correspond to a BCD (binary
coded decimal) number after two BCD numbers have been added by the ADD
or ADDC instruction.

If the carry bit is set or if the value of bits 0−3 exceed 9, 0x06 is added to the
accumulator. If the carry bit was set when the instruction began, or if 0x06 was
added to the accumulator in the first step, 0x60 is added to the accumulator.

The carry (C) bit is set if the resulting value is greater than 0x99. Otherwise,
it is cleared.

See also: ADD, ADDC

8052 Instruction Set

E-98052 Instruction Set

DEC Decrement Register
Syntax DEC register

Instructions OpCode Bytes Cycles Flags

DEC A 0x14 1 1 None

DEC direct 0x15 2 1 None

DEC @R0 0x16 1 1 None

DEC @R1 0x17 1 1 None

DEC R0 0x18 1 1 None

DEC R1 0x19 1 1 None

DEC R2 0x1A 1 1 None

DEC R3 0x1B 1 1 None

DEC R4 0x1C 1 1 None

DEC R5 0x1D 1 1 None

DEC R6 0x1E 1 1 None

DEC R7 0x1F 1 1 None

DEC decrements the value of register by 1. If the initial value of register is 0,
decrementing the value causes it to reset to 255 (0xFFH).

Note:

The carry flag is not set when the value rolls over from 0 to 255.

See also: INC, SUBB

DIV Divide Accumulator by B
Syntax DIV AB

Instructions OpCode Bytes Cycles Flags

DIV AB 0x84 1 1 C, OV

Divides the unsigned value of the accumulator by the unsigned value of the
B register. The resulting quotient is placed in the accumulator and the
remainder is placed in the B register.

The carry (C) flag is always cleared.

The overflow (OV) flag is set if division by 0 was attempted. Otherwise, it is
cleared.

See also: MUL AB

8052 Instruction Set

E-10

DJNZ Decrement and Jump if Not Zero
Syntax DJNZ register,relAddr

Instructions OpCode Bytes Cycles Flags

DJNZ direct,relAddr 0xD5 3 2 None

DJNZ R0,relAddr 0xD8 2 2 None

DJNZ R1,relAddr 0xD9 2 2 None

DJNZ R2,relAddr 0xDA 2 2 None

DJNZ R3,relAddr 0xDB 2 2 None

DJNZ R4,relAddr 0xDC 2 2 None

DJNZ R5,relAddr 0xDD 2 2 None

DJNZ R6,relAddr 0xDE 2 2 None

DJNZ R7,relAddr 0xDF 2 2 None

DJNZ decrements the value of register by 1. If the initial value of register is 0,
decrementing the value causes it to reset to 255 (0xFFH). If the new value of
register is not 0, the program branchs to the address indicated by relAddr. If
the new value of register is 0, program flow continues with the instruction fol-
lowing the DJNZ instruction.

See also: DEC, JZ, JNZ

8052 Instruction Set

E-118052 Instruction Set

INC Increment Reister
Syntax INC register

Instructions OpCode Bytes Cycles Flags

INC A 0x04 1 1 None

INC direct 0x05 2 1 None

INC @R0 0x06 1 1 None

INC @R1 0x07 1 1 None

INC R0 0x08 1 1 None

INC R1 0x09 1 1 None

INC R2 0x0A 1 1 None

INC R3 0x0B 1 1 None

INC R4 0x0C 1 1 None

INC R5 0x0D 1 1 None

INC R6 0x0E 1 1 None

INC R7 0x0F 1 1 None

INC DPTR 0xA3 1 2 None

INC increments the value of register by 1. If the initial value of register is 255
(0xFFH), incrementing the value causes it to reset to 0.

Note:

The carry flag is not set when the value rolls over from 255 to 0.

In the case of INC DPTR, the two-byte value of DPTR is incremented as an
unsigned integer. If the initial value of DPTR is 65 535 (0xFFFFH), increment-
ing the value causes it to reset to 0. Again, the carry flag is not set when the
value of DPTR rolls over from 65 535 to 0.

See also: ADD, ADDC, DEC

8052 Instruction Set

E-12

JB Jump if Bit Set
Syntax JB bitAddr,relAddr

Instructions OpCode Bytes Cycles Flags

JB bitAddr,relAddr 0x20 3 2 None

JB branches to the address indicated by relAddr if the bit indicated by bitAddr
is set. If the bit is not set, program execution continues with the instruction fol-
lowing the JB instruction.

See also: JBC, JNB

JBC Jump if Bit Set and Clear Bit
Syntax JBC bitAddr,relAddr

Instructions OpCode Bytes Cycles Flags

JBC bitAddr,reladdr 0x10 3 2 None

JBC branches to the address indicated by relAddr if the bit indicated by bitAddr
is set. Before branching to relAddr, the instruction clears the indicated bit. If the
bit is not set, program execution continues with the instruction following the
JBC instruction and the value of the bit is not changed.

See also: JB, JNB

JC Jump if Carry Set
Syntax JC relAddr

Instructions OpCode Bytes Cycles Flags

JC relAddr 0x40 2 2 None

JC branches to the address indicated by relAddr if the carry bit is set. If the
carry bit is not set, program execution continues with the instruction following
the JC instruction.

See also: JNC

8052 Instruction Set

E-138052 Instruction Set

JMP Jump to Data Pointer + Accumulator
Syntax JMP @A+DPTR

Instructions OpCode Bytes Cycles Flags

JMP @A+DPTR 0x73 1 2 None

JMP jumps unconditionally to the address represented by the sum of the value
of DPTR and the value of the accumulator.

See also: LJMP, AJMP, SJMP

JNB Jump if Bit Not Set
Syntax JNB bitAddr,reladdr

Instructions OpCode Bytes Cycles Flags

JNB bitAddr,relAddr 0x30 3 2 None

JNB branches to the address indicated by relAddr if the indicated bit is not set.
If the bit is set, program execution continues with the instruction following the
JNB instruction.

See also: JB, JBC

JNC Jump if Carry Not Set
Syntax JNC reladdr

Instructions OpCode Bytes Cycles Flags

JNC relAddr 0x50 2 2 None

JNC branches to the address indicated by relAddr if the carry bit is not set. If
the carry bit is set, program execution continues with the instruction following
the JNB instruction.

See also: JC

8052 Instruction Set

E-14

JNZ Jump if Accumulator Not Zero
Syntax JNZ reladdr

Instructions OpCode Bytes Cycles Flags

JNZ relAddr 0x70 2 2 None

JNZ branches to the address indicated by relAddr if the accumulator contains
any value except 0. If the value of the accumulator is zero, program execution
continues with the instruction following the JNZ instruction.

See also: JZ

JZ Jump if Accumulator Zero
Syntax JZ reladdr

Instructions OpCode Bytes Cycles Flags

JZ relAddr 0x60 2 2 None

JZ branches to the address indicated by relAddr if the accumulator contains
the value 0. If the value of the accumulator is not zero, program execution con-
tinues with the instruction following the JNZ instruction.

See also: JNZ

LCALL Long Call
Syntax LCALL address16

Instructions OpCode Bytes Cycles Flags
LCALL address16 0x12 3 2 None

LCALL calls a program subroutine. LCALL increments the program counter by
3 (to point to the instruction following LCALL) and pushes that value onto the
stack , low byte first, high byte second. The program counter is then set to the
16-bit value address16, causing program execution to continue at that address.

See also: ACALL, RET

LJMP Long Jump
Syntax LJMP address16

Instructions OpCode Bytes Cycles Flags

LJMP address16 0x02 3 2 None

LJMP jumps unconditionally to the specified address16.

See also: AJMP, SJMP, JMP

8052 Instruction Set

E-158052 Instruction Set

MOV Move Memory Into/Out of Accumulator
Syntax MOV operand1, operand2

Instructions OpCode Bytes Cycles Flags

MOV A,#data8 0x74 2 1 None

MOV A,@R0 0xE6 1 1 None

MOV A,@R1 0xE7 1 1 None

MOV @R0,A 0xF6 1 1 None

MOV @R1,A 0xF7 1 1 None

MOV A,R0 0xE8 1 1 None

MOV A,R1 0xE9 1 1 None

MOV A,R2 0xEA 1 1 None

MOV A,R3 0xEB 1 1 None

MOV A,R4 0xEC 1 1 None

MOV A,R5 0xED 1 1 None

MOV A,R6 0xEE 1 1 None

MOV A,R7 0xEF 1 1 None

MOV A,direct 0xE5 2 1 None

MOV R0,A 0xF8 1 1 None

MOV R1,A 0xF9 1 1 None

MOV R2,A 0xFA 1 1 None

MOV R3,A 0xFB 1 1 None

MOV R4,A 0xFC 1 1 None

MOV R5,A 0xFD 1 1 None

MOV R6,A 0xFE 1 1 None

MOV R7,A 0xFF 1 1 None

MOV direct,A 0xF5 2 1 None

MOV copies the value of operand2 into operand1. The value of operand2 is
not affected.

See also: MOVC, MOVX, XCH, XCHD, PUSH, POP

MOV Move Into/Out of Carry Bit

Syntax MOV bit1,bit2

Instructions OpCode Bytes Cycles Flags

MOV C,bitAddr 0xA2 2 1 C

MOV bitAddr,C 0x92 2 2 None

MOV copies the value of bit2 into bit1. The value of bit2 is not affected. Either
bit1 or bit2 must refer to the carry bit.

8052 Instruction Set

E-16

MOV Move into/out of Internal RAM
Syntax MOV operand1,operand2

Instructions OpCode Bytes Cycles Flags
MOV @R0,#data8 0x76 2 1 None

MOV @R1,#data8 0x77 2 1 None

MOV @R0,direct 0xA6 2 2 None

MOV @R1,direct 0xA7 2 2 None

MOV R0,#data8 0x78 2 1 None

MOV R1,#data8 0x79 2 1 None

MOV R2,#data8 0x7A 2 1 None

MOV R3,#data8 0x7B 2 1 None

MOV R4,#data8 0x7C 2 1 None

MOV R5,#data8 0x7D 2 1 None

MOV R6,#data8 0x7E 2 1 None

MOV R7,#data8 0x7F 2 1 None

MOV R0,direct 0xA8 2 2 None

MOV R1,direct 0xA9 2 2 None

MOV R2,direct 0xAA 2 2 None

MOV R3,direct 0xAB 2 2 None

MOV R4,direct 0xAC 2 2 None

MOV R5,direct 0xAD 2 2 None

MOV R6,direct 0xAE 2 2 None

MOV R7,direct 0xAF 2 2 None

MOV direct,#data8 0x75 3 2 None

MOV direct,@R0 0x86 2 2 None

MOV direct,@R1 0x87 2 2 None

MOV direct,R0 0x88 2 2 None

MOV direct,R1 0x89 2 2 None

MOV direct,R2 0x8A 2 2 None

MOV direct,R3 0x8B 2 2 None

MOV direct,R4 0x8C 2 2 None

MOV direct,R5 0x8D 2 2 None

MOV direct,R6 0x8E 2 2 None

MOV direct,R7 0x8F 2 2 None

MOV direct1,direct2 0x85 3 2 None

MOV copies the value of operand2 into operand1. The value of operand2 is
not affected.

Note:

In the case of MOV direct1,direct2, the operand bytes of the instruction are
stored in reverse order. That is, the instruction consisting of the bytes 85H, 20H,
50H means move the contents of internal RAM location 0x20 to internal RAM
location 0x50, although the opposite would be generally presumed.

See also: MOVC, MOVX, XCH, XCHD, PUSH, POP

8052 Instruction Set

E-178052 Instruction Set

MOV DPTR Move value into DPTR

Syntax MOV DPTR,#data16

Instructions OpCode Bytes Cycles Flags

MOV DPTR,#data16 0x90 3 2 None

Sets the value of the data pointer (DPTR) to the value data16.

See also: MOVX, MOVC

MOVC Move Code Byte to Accumulator

Syntax MOVC A,@A+register

Instructions OpCode Bytes Cycles Flags

MOVC A,@A+DPTR 0x93 1 2 None

MOVC A,@A+PC 0x83 1 1 None

MOVC moves a byte from code memory into the accumulator. The code
memory address that the byte is moved from is calculated by summing the val-
ue of the accumulator with either DPTR or the PC. In the case of the program
counter, PC is first incremented by 1 before being summed with the accumula-
tor.

See also: MOV, MOVX

MOVX Move Data to/from External RAM

Syntax MOVX operand1,operand2

Instructions OpCode Bytes Cycles Flags

MOVX @DPTR,A 0xF0 1 2 None

MOVX @R0,A 0xF2 1 2 None

MOVX @R1,A 0xF3 1 2 None

MOVX A,@DPTR 0xE0 1 2 None

MOVX A,@R0 0xE2 1 2 None

MOVX A,@R1 0xE3 1 2 None

MOVX moves a byte to or from external memory into or from the accumulator.

If operand1 is @DPTR, the accumulator is moved to the 16-bit external
memory address indicated by DPTR. This instruction uses both P0 (port 0) and
P2 (port 2) to output the 16-bit address and data. If operand2 is DPTR then the
byte is moved from external memory into the accumulator.

If operand1 is @R0 or @R1, the accumulator is moved to the 8-bit external
memory address indicated by the specified register. This instruction uses only P0
(port 0) to output the 8-bit address and data. P2 (port 2) is not affected. If operand2
is @R0 or @R1, the byte is moved from external memory into the accumulator.

See also: MOV, MOVC

8052 Instruction Set

E-18

MUL Multiply Accumulator by B
Syntax MUL AB

Instructions OpCode Bytes Cycles Flags

MUL AB 0xA4 1 4 C, OV

MUL multiplies the unsigned value in the accumulator by the unsigned value
in the B register. The least-significant byte of the result is placed in the accumu-
lator and the most-significant byte is placed in the B register.

The carry (C) flag is always cleared.

The overflow (OV) flag is set if the result is greater than 255 (if the
most-significant byte is not zero). Otherwise, it is cleared.

See also: DIV

NOP No Operation
Syntax NOP

Instructions OpCode Bytes Cycles Flags

NOP 0x00 1 1 None

NOP, as its name suggests, causes no operation to take place for one machine
cycle. NOP is generally used only for timing purposes. Absolutely no flags or
registers are affected.

8052 Instruction Set

E-198052 Instruction Set

ORL Bitwise OR
Syntax Syntax: ORL operand1,operand2

Instructions OpCode Bytes Cycles Flags

ORL direct,A 0x42 2 1 None

ORL direct,#data8 0x43 3 2 None

ORL A,#data8 0x44 2 1 None

ORL A,direct 0x45 2 1 None

ORL A,@R0 0x46 1 1 None

ORL A,@R1 0x47 1 1 None

ORL A,R0 0x48 1 1 None

ORL A,R1 0x49 1 1 None

ORL A,R2 0x4A 1 1 None

ORL A,R3 0x4B 1 1 None

ORL A,R4 0x4C 1 1 None

ORL A,R5 0x4D 1 1 None

ORL A,R6 0x4E 1 1 None

ORL A,R7 0x4F 1 1 None

ORL C,bitAddr 0x72 2 2 C

ORL C,/bitAddr 0xA0 2 1 C

ORL does a bitwise OR operation between operand1 and operand2, leaving
the resulting value in operand1. The value of operand2 is not affected. A logical
OR compares the bits of each operand and sets the corresponding bit in the
resulting byte if the bit was set in either of the original operands. Otherwise,
the resulting bit is cleared.

See also: ANL, XRL

8052 Instruction Set

E-20

POP Pop Value from Stack

Syntax POP register

Instructions OpCode Bytes Cycles Flags

POP direct 0xD0 2 2 None

POP pops the last value placed on the stack into the direct address specified. In
other words, POP will load direct with the value of the internal RAM address pointed
to by the current stack pointer. The stack pointer is then decremented by 1.

Note:

The address of direct must be an internal RAM or SFR address. You cannot
POP directly into R registers such as R0, R1, etc.. For example, to POP a
value off the stack into R0, POP the value into the accumulator and then
move the value of the accumulator into R0.

Note:

When POPping a value off the stack into the accumulator, code the instruc-
tion as POP ACC, not POP A. The latter is invalid and will result in an error
at assemble time.

See also: PUSH

PUSH Push Value onto Stack

Syntax PUSH register

Instructions OpCode Bytes Cycles Flags

PUSH direct 0xC0 2 2 None

PUSH pushes the value of the specified direct address onto the stack. PUSH
first increments the value of the stack pointer by 1, then takes the value stored
in direct and stores it in internal RAM at the location pointed to by the increm-
ented stack pointer.

Note:

The address of direct must be an internal RAM or SFR address. You cannot
PUSH directly from R registers such as R0, R1, etc. For example, to push
a value onto the stack from R0, move R0 into the accumulator, and then
PUSH the value of the accumulator onto the stack.

Note:

When PUSHing a value from the accumulator onto the stack into the, code
the instruction as PUSH ACC, not PUSH A. The latter is invalid and will result
in an error at assemble time.

See also: POP

8052 Instruction Set

E-218052 Instruction Set

RET Return from Subroutine

Syntax RET

Instructions OpCode Bytes Cycles Flags

RET 0x22 1 2 None

RET is used to return from a subroutine previously called by LCALL or ACALL.
Program execution continues at the address that is calculated by POPping the
top-most two bytes off the stack. The most-significant byte is POPped off the
stack first, followed by the least-significant byte.

See also: LCALL, ACALL, RETI

RETI Return from Interrupt

Syntax RETI

Instructions OpCode Bytes Cycles Flags

RETI 0x32 1 2 None

RETI is used to return from an interrupt service routine. RETI first enables in-
terrupts of equal and lower priorities to the interrupt that is terminating. Pro-
gram execution continues at the address that is calculated by POPping the
top−most 2 bytes off the stack. The most-significant byte is POPped off the
stack first, followed by the least-significant byte.

RETI functions identically to RET if it is executed outside of an interrupt service
routine.

See also: RET

RL Rotate Accumulator Left

Syntax RL A

Instructions OpCode Bytes Cycles Flags

RL A 0x23 1 1 C

RL shifts the bits of the accumulator to the left. The left-most bit (bit 7) of the
accumulator is loaded into bit 0.

See also: RLC, RR, RRC

8052 Instruction Set

E-22

RLC – Rotate Accumulator Left Through Carry

Syntax RLC A

Instructions OpCode Bytes Cycles Flags

RLC A 0x33 1 1 C

RLC shifts the bits of the accumulator to the left. The left-most bit (bit 7) of the
accumulator is loaded into the carry flag, and the original carry flag is loaded
into bit 0 of the accumulator.

See also: RL, RR, RRC

RR Rotate Accumulator Right

Syntax RR A

Instructions OpCode Bytes Cycles Flags

RR A 0x03 1 1 None

RR shifts the bits of the accumulator to the right. The right-most bit (bit 0) of
the accumulator is loaded into bit 7.

See also: RL, RLC, RRC

RRC Rotate Accumulator Right Through Carry

Syntax RRC A

Instructions OpCode Bytes Cycles Flags

RRC A 0x13 1 1 C

RRC shifts the bits of the accumulator to the right. The right-most bit (bit 0) of
the accumulator is loaded into the carry flag, and the original carry flag is
loaded into bit 7.

See also: RL, RLC, RR

SETB Set Bit

Syntax SETB bitAddr

Instructions OpCode Bytes Cycles Flags

SETB C 0xD3 1 1 C

SETB bitAddr 0xD2 2 1 None

SETB sets the specified bit.

If the instruction requires the carry bit to be set, the assembler will automatical-
ly use the 0xD3 opcode. If any other bit is set, the assembler will automatically
use the 0xD2 opcode.

See also: CLR

8052 Instruction Set

E-238052 Instruction Set

SJMP Short Jump

Syntax SJMP relAddr

Instructions OpCode Bytes Cycles Flags

SJMP relAddr 0x80 2 2 None

SJMP jumps unconditionally to the address specified relAddr. RelAddr must
be within −128 or +127 bytes of the instruction that follows the SJMP instruc-
tion.

See also: LJMP, AJMP

SUBB Subtract from Accumulator with Borrow

Syntax SUBB A,operand

Instructions OpCode Bytes Cycles Flags

SUBB A,#data8 0x94 2 1 C, AC, OV

SUBB A,direct 0x95 2 1 C, AC, OV

SUBB A,@R0 0x96 1 1 C, AC, OV

SUBB A,@R1 0x97 1 1 C, AC, OV

SUBB A,R0 0x98 1 1 C, AC, OV

SUBB A,R1 0x99 1 1 C, AC, OV

SUBB A,R2 0x9A 1 1 C, AC, OV

SUBB A,R3 0x9B 1 1 C, AC, OV

SUBB A,R4 0x9C 1 1 C, AC, OV

SUBB A,R5 0x9D 1 1 C, AC, OV

SUBB A,R6 0x9E 1 1 C, AC, OV

SUBB A,R7 0x9F 1 1 C, AC, OV

SUBB subtracts the value of operand from the value of the accumulator, leav-
ing the resulting value in the accumulator. The value operand is not affected.

The carry (C) bit is set if a borrow was required for bit 7. Otherwise, it is cleared.
In other words, if the unsigned value being subtracted is greater than the accu-
mulator, the carry flag is set.

The auxillary carry (AC) bit is set if a borrow was required for bit 3. Otherwise,
it is cleared. In other words, the bit is set if the low nibble of the value being
subtracted was greater than the low nibble of the accumulator.

The overflow (OV) bit is set if a borrow was required for bit 6 or for bit 7, but
not both. In other words, the subtraction of two signed bytes resulted in a value
outside the range of a signed byte (−128 to 127). Otherwise, it is cleared.

See also: ADD, ADDC, DEC

8052 Instruction Set

E-24

SWAP Subtract Accumulator Nibbles

Syntax SWAP A

Instructions OpCode Bytes Cycles Flags

SWAP A 0xC4 1 1 None

SWAP swaps bits 0−3 of the accumulator with bits 4−7 of the accumulator. This
instruction is identical to executing RR A or RL A four times.

See also: RL, RLC, RR, RRC

XCH Exchange Bytes
Syntax XCH A,register

Instructions OpCode Bytes Cycles Flags

XCH A,@R0 0xC6 1 1 None

XCH A,@R1 0xC7 1 1 None

XCH A,R0 0xC8 1 1 None

XCH A,R1 0xC9 1 1 None

XCH A,R2 0xCA 1 1 None

XCH A,R3 0xCB 1 1 None

XCH A,R4 0xCC 1 1 None

XCH A,R5 0xCD 1 1 None

XCH A,R6 0xCE 1 1 None

XCH A,R7 0xCF 1 1 None

XCH A,direct 0xC5 2 1 None

XCH exchanges the value of the accumulator with the value contained in register.

See also: MOV

XCHD Exchange Digit
Syntax XCHD A,register

Instructions OpCode Bytes Cycles Flags

XCHD A,@R0 0xD6 1 1 None

XCHD A,@R1 0xD7 1 1 None

XCHD exchanges bits 0−3 of the accumulator with bits 0−3 of the internal RAM
address pointed to indirectly by R0 or R1. Bits 4−7 of each register are unaffected.

See also: DA

8052 Instruction Set

E-258052 Instruction Set

XRL Bitwise Exclusive OR
Syntax XRL operand1,operand2

Instructions OpCode Bytes Cycles Flags

XRL direct,A 0x62 2 1 None

XRL direct,#data8 0x63 3 2 None

XRL A,#data8 0x64 2 1 None

XRL A,direct 0x65 2 1 None

XRL A,@R0 0x66 1 1 None

XRL A,@R1 0x67 1 1 None

XRL A,R0 0x68 1 1 None

XRL A,R1 0x69 1 1 None

XRL A,R2 0x6A 1 1 None

XRL A,R3 0x6B 1 1 None

XRL A,R4 0x6C 1 1 None

XRL A,R5 0x6D 1 1 None

XRL A,R6 0x6E 1 1 None

XRL A,R7 0x6F 1 1 None

XRL does a bitwise exclusive OR operation between operand1 and operand2,
leaving the resulting value in operand1. The value of operand2 is not affected.
A logical exclusive OR compares the bits of each operand and sets the corre-
sponding bit in the resulting byte if the bit was set in either (but not both) of the
original operands. Otherwise, the bit is cleared.

See also: ANL, ORL

8052 Instruction Set

E-26

UNDEFINED Undefined Instruction

Syntax ???

Instructions OpCode Bytes Cycles Flags

??? 0xA5 1 1 C

The undefined instruction is, as the name suggests, not a documented instruc-
tion. The 8052 supports 255 instructions and OpCode 0xA5 is the single op-
code that is not used by any documented function. It is not recommended that
it be executed because it is not documented nor defined.

However, based on my research, executing this undefined instruction takes
one machine cycle and appears to have no effect on the system except that
the carry bit always seems to be set.

Note:

We received input from an 8052.com user that the undefined instruction real-
ly has a format of Undefined bit1,bit2 and effectively copies the value of bit2
to bit1. In this case, it would be a three-byte instruction. We have not had an
opportunity to verify or disprove this report, so we present it to the world as
additional information.

See also: NOP

F-1Bit-Addressable SFRs (alphabetical)

"��)#������
���0����0�
���
�����
�!

Appendix F defines the MSC1210 bit-addressable special function registers
(SFRs) in alphabetical order.

Topic Page

F.1 Bit-Addressable SFRs (alphabetical) F-2.

Appendix F

Bit Addressable SFRs (alphabetical)

F-2

F.1 Bit Addressable SFRs (alphabetical)

Enable Interrupt Control (EICON)

SFR Name: EICON

SFR Address: D8H

Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name SMOD1 — EAI AI WDTI — — —

Bit Address DFH DEH DDH DCH DBH DAH D9H D8H

SMOD1—Serial Port 1 Mode. 0 = Normal baud rate for serial port 1, 1 = Serial
port 1 baud rate doubled.

EAI—Enable Auxiliary Interrupt. 1 = Interrupt enabled.

AI—Auxiliary Interrupt Flag. 1 = Auxiliary interrupt pending, will trigger inter-
rupt if EAI bit set.

WDTI—Watchdog Interrupt Flag. 1 = Watchdog interrupt pending, will trig-
ger interrupt if Watchdog interrupt enabled.

Extended Interrupt Enable (EIE)

SFR Name: EIE

SFR Address: E8H

Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name — — — EWDI EX5 EX4 EX3 EX2

Bit Address EFH EEH EDH ECH EBH EAH E9H E8H

EWDI—Watchdog Interrupt Enable. 1 = Watchdog interrupt enabled.

EX5—External 5 Interrupt Enable. 1 = External 5 interrupt enabled.

EX4—External 4 Interrupt Enable. 1 = External 4 interrupt enabled.

EX3—External 3 Interrupt Enable. 1 = External 3 interrupt enabled.

EX2—External 2 Interrupt Enable. 1 = External 2 interrupt enabled.

Bit Addressable SFRs (alphabetical)

F-3Bit-Addressable SFRs (alphabetical)

Extended Interrupt Priority (EIP)

SFR Name: EIE

SFR Address: F8H

Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name — — — PWDI PX5 PX4 PX3 PX2

Bit Address FFH FEH FDH FCH FBH FAH F9H F8H

PWDI—Watchdog Interrupt Priority. 1 = Watchdog interrupt high-level priority,
0 = low-level priority.

PX5—External 5 Interrupt Priority. 1 = External 5 interrupt high-level priority,
0 = low-level priority.

PX4—External 4 Interrupt Priority. 1 = External 4 interrupt high-level priority,
0 = low-level priority.

PX3—External 3 Interrupt Priority. 1 = External 3 interrupt high-level priority,
0 = low-level priority.

PX2—External 2 Interrupt Priority. 1 = External 2 interrupt high-level priority,
0 = low-level priority.

Interrupt Enable (IE)

SFR Name: IE

SFR Address: A8H

Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name EA — ET2 ES ET1 EX1 ET0 EX0

Bit Address AFH AEH ADH ACH ABH AAH A9H A8H

EA—Enable/Disable All Interrupts. 1 = interrupts enabled.

ET2—Enable Timer 2 Interupt. 1 = interrupt enabled.

ES—Enable Serial Interupt. 1 = interrupt enabled.

ET1—Enable Timer 1 Interupt. 1 = interrupt enabled.

EX1—Enable External 1 Interupt. 1 = interrupt enabled.

ET0—Enable Timer 0 Interupt. 1 = interrupt enabled.

EX0—Enable External 0 Interupt. 1 = interrupt enabled.

Bit Addressable SFRs (alphabetical)

F-4

INTERRUPT PRIORITY (IP)

SFR Name: IP

SFR Address: B8H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name — — PT2 PS PT1 PX1 PT0 PX0

Bit Address BFH BEH BDH BCH BBH BAH B9H B8H

PT2—Priority Timer 2 Interupt. 1 = high-priority interrupt, 0 = low-priority
interrupt.

PS—Priority Serial Interupt. 1 = high-priority interrupt, 0 = low-priority
interrupt.

PT1—Priority Timer 1 Interupt. 1 = high priority interrupt, 0 = low-priority
interrupt.

PX1—Priority External 1 Interupt. 1 = high priority interrupt, 0 = low-priority
interrupt.

PT0—Priority Timer 0 Interupt. 1 = high priority interrupt, 0 = low-priority
interrupt.

PX0—Priority External 0 Interupt. 1 = High priority interrupt, 0 = low-priority
interrupt.

Port 0 (P0)

SFR Name: P0

SFR Address: 80H

Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Bit Address 87H 86H 85H 84H 83H 82H 81H 80H

Note:

These bit names indicate the function of that I/O line on the P0 bus when
used with external memory (code/RAM). A standard 8052 assembler will not
recognize these bits by the given names; they will only be recognized as
P0.7, P0.6, etc.

Note:

Port 0 is only available for general input/output if the project does not use ex-
ternal code memory or external RAM. When such external memory is used,
Port 0 is used automatically by the microcontroller to address the memory
and read/write data from/to said memory.

Bit Addressable SFRs (alphabetical)

F-5Bit-Addressable SFRs (alphabetical)

Port 1 (P1)

SFR Name: P1

SFR Address: 90H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 T2EX T2

Bit Address 97H 96H 95H 94H 93H 92H 91H 90H

T2EX—Timer 2 Capture/Reload. Optional external capturing or reloading of
timer 2.

T2—Timer 2 External Input. Optionally used to control timer/counter 2 via
external source.

Port 2 (P2)

SFR Name: P2

SFR Address: A0H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name A15 A14 A13 A12 A11 A10 A9 A8

Bit Address A7H A6H A5H A4H A3H A2H A1H A0H

Note:

These bit names indicate the function of that I/O line on the P2 bus when
used with external memory (code/RAM). A standard 8052 assembler will not
recognize these bits by the given names; they will only be recognized as
P2.7, P2.6, etc.

Note:

Port 2 is only available for general input/output if the project does not use ex-
ternal code memory or external RAM. When such external memory is used,
Port 2 is used automatically by the microcontroller to address the memory
and read/write data from/to said memory.

Bit Addressable SFRs (alphabetical)

F-6

Port 3 (P3)

SFR Name: P3

SFR Address: B0H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name RD WR T1 T0 INT1 INT0 TXD RXD

Bit Address B7H B6H B5H B4H B3H B2H B1H B0H

RD—Read Strobe. 0 = external memory read strobe.

WR—Write Strobe. 0 = external memory write strobe.

T1—Timer/Counter 1 External Input. Optionally used to control timer/counter
1 via external source.

T0—Timer/Counter 0 External Input. Optionally used to control timer/counter
0 via external source.

INT1—External Interrupt 1. Used to trigger external interrupt 1.

INT0—External Interrupt 0. Used to trigger external interrupt 0.

TXD—Serial Transmit Data. 8052 serial transmit line (from 8052 to external
device).

RXD—Serial Transmit Data. 8052 serial receive line (to 8052 from external
device).

Note:

These bit names indicate the function of that I/O line on the P3 bus. A stan-
dard 8052 assembler will not recognize these bits by the given names; they
will only be recognized as P3.7, P3.6, etc.

Bit Addressable SFRs (alphabetical)

F-7Bit-Addressable SFRs (alphabetical)

Program Status Word (PSW)

SFR Name: PSW

SFR Address: D0H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name CY AC F0 RS1 RS0 OV — P

Bit Address D7H D6H D5H D4H D3H D2H D1H D0H

CY—Carry Flag. Set or cleared by instructions ADD, ADDC, SUBB, MUL, and
DIV.

AC—Auxiliary Carry. Set or cleared by instructions ADD, ADDC.

F0—Flag 0. General flag available to developer for user-defined purposes.

RS1/RS0—Register Select Bits. These two bits, taken together, select the
register bank used when using R registers R0 through R7, according to the fol-
lowing table:

RS1 RS0 Register Bank Register Bank Addresses

0 0 0 00H−07H

0 1 1 08H−0FH

1 0 2 10H−17H

1 1 3 18H−1FH

OV—Overflow Flag. Set or cleared by instructions ADD, ADDC, SUBB, and
DIV.

P—Parity Flag. Set or cleared automatically by core to establish even parity
with the accumulator, so that the number of bits set in the accumulator plus the
value of the parity bit will always equal an even number.

Bit Addressable SFRs (alphabetical)

F-8

Serial Control (SCON)

SFR Name: SCON

SFR Address: 98H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit Address 9FH 9EH 9DH 9CH 9BH 9AH 99H 98H

SM0/SM1– Serial Mode. These two bits, taken together, select the serial
mode in which the serial port will operate.

SM0 SM1 Serial Mode Description Baud

0 0 0 Shift Register Oscillator/12

0 1 1 8-Bit UART Variable (T1 or T2)

1 0 2 9-Bit UART Oscillator/64 or /32

1 1 3 9-Bit UART Variable (T1 or T2)

SM2—Serial Mode 2 (Multiprocessor Communication). When this bit is set,
multiprocessor communication is enabled in modes 2 and 3 causing the RI bit
to only be set when the ninth bit of a byte received is set. In mode 1, RI is only
set if a valid stop bit is received. SM2 must be cleared in mode 0.

REN—Received Enable. This bit must be set to enable data reception via the
serial port. No data will be received by the serial port if this bit is clear.

TB8—Transmit Bit 8. When in modes 2 and 3, this is the ninth bit sent when
a byte is written to SBUF.

RB8—Receive Bit 8. When in modes 2 and 3, this is the ninth bit that was re-
ceived. In mode 1, and if SM2 is set, RB8 holds the value of the stop bit that
was received. RB8 is not used in mode 0.

TI—Transmit Interrupt. Set by hardware when the byte previously written to
SBUF has been completely clocked out the serial port.

RI—Receive Interrupt. Set by hardware when a byte has been received by
the serial port and is available to be read in SBUF.

Bit Addressable SFRs (alphabetical)

F-9Bit-Addressable SFRs (alphabetical)

Timer Control (TCON)

SFR Name: TCON

SFR Address: 88H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit Address 8FH 8EH 8DH 8CH 8BH 8AH 89H 88H

TF1—Timer 1 Overflow Flag. This bit is set by the MCU when Timer 1
overflows from FFFFH back to 0000H. Cleared by software, or cleared
automatically by hardware if a Timer 1 interrupt is triggered.

TR1—Timer 1 Run Control. When this bit is set, Timer 1 counts depending
on its configuration in TMOD. When this bit is clear, Timer 1 is stopped.

TF0—Timer 0 Overflow Flag . This bit is set by the MCU when Timer 0
overflows from FFFFH back to 0000H. Cleared by software, or cleared
automatically by hardware if a Timer 0 interrupt is triggered.

TR0—Timer 1 Run Control. When this bit is set, Timer 0 counts depending
on its configuration in TMOD. When this bit is clear, Timer 0 is stopped.

IE1—External 1 Interrupt Flag. This bit is set by the MCU when an external
1 interrupt is detected on the INT1 line. Cleared by software, or cleared auto-
matically by hardware if an external 1 interrupt is triggered.

IT1—External 1 Interrupt T ype Flag. This bit controls whether or not external
1 interrupt is edge-triggered or low-level-triggered. If this bit is set, external 1
interrupt is triggered when a 1-0 transition is detected on the INT1 line. If this
bit is clear, external 1 interrupt is triggered continuously when INT1 is at a low
state.

IE0—External 0 Interrupt Flag. This bit is set by the MCU when an external
0 interrupt is detected on the INT0 line. Cleared by software, or cleared auto-
matically by hardware if an external 1 interrupt is triggered.

IT0—External 0 Interrupt T ype Flag. This bit controls whether or not external
0 interrupt is edge-triggered or low-level-triggered. If this bit is set, external 1
interrupt is triggered when a 1-0 transition is detected on the INT0 line. If this
bit is clear, external 0 interrupt is triggered continuously when INT0 is at a low
state.

Bit Addressable SFRs (alphabetical)

F-10

Timer 2 Control (T2CON)

SFR Name: T2CON

SFR Address: C8H

Bit−Addressable: Yes

Bit−Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2C

Bit Address CFH CEH CDH CCH CBH CAH C9H C8H

TF2—Timer 2 Overflow Flag. This bit is set by the MCU when Timer 2 over-
flows from FFFFH back to 0000H. When enabled, this bit causes a Timer 2 in-
terrupt. Cleared by software. This bit is not set when TCLK or RCLK is set.

EXF—Timer 2 External Flag. This bit is set by the MCU when a timer capture
or reload is triggered by a 1-0 transition on T2EX. When enabled, this bit
causes a Timer 2 interrupt. Cleared by software.

RCLK—Timer 2 Receive Clock. When this bit is set, Timer 2 provides the se-
rial port receive baud rate clock.

TCLK—Timer 2 Transmit Clock. When this bit is set, Timer 2 provides the
serial port transmit baud rate clock.

EXEN2—Timer 2 External Enable. When this bit is set, a capture or reload
is triggered on a 1-0 transition on the T2EX line.

TR2—Timer 2 Run Control. When this bit is set, Timer 2 is activated/run.
When this bit is clear, Timer 2 is stopped.

C/T2—Counter/Interval Timer. When this bit is set, Timer 2 acts as an event
counter based on external stimulus on the T2EX line. When this bit is clear,
Timer 2 acts as an interval timer.

CP/RL2C—Capture/Reload. When set, a capture occurs on a 1-0 transition
of T2EX. When clear, a reload occurs on timer overflow or on a 1-0 transition
of T2EX. This bit is only relevant if EXEN2 is set, and does not apply if RCLK
or TCLK are set.

G-1SFRs/Address Cross-Reference Guide (alphabetical)

����'#������0�����)��,������0(
���

�
���
�����
�!

Appendix G lists an alphabetical cross-reference of the MSC1210 special
function registers (SFRs) and their addresses.

Topic Page

G.1 SFR/Address Cross-Reference G-2.

Appendix G

SFR/Address Cross-Reference

G-2

G.1 SFR/Address Cross-Reference

SFR Name Description SFR Address (Hex)

ACLK Analog Clock F6H

ADCON0 ADC Control 0 DCH

ADCON1 ADC Control 1 DDH

ADCON2 ADC Control 2 DEH

ADCON3 ADC Control 3 DFH

ADMUX ADC Multiplexer D7H

ADRESH ADC Result High DBH

ADRESL ADC Result Low D9H

ADRESM ADC Result Middle DAH

AIE Auxiliary Interrupt Enable A6H

AISTAT Auxiliary Interrupt Status A7H

BPCON Breakpoint Control A9H

BPH Breakpoint High ABH

BPL Breakpoint Low AAH

CADDR Configuration Address 93H

CDATA Configuration Data 94H

CKCON Clock Control 8EH

DPL0 Data Pointer 0 Low 82H

DPH0 Data Pointer 0 High 83H

DPL1 Data Pointer 1 Low 84H

DPH1 Data Pointer 1 High 85H

DPS Data Pointer Select 86H

EIE Extended Interrupt Enable E8H

EIP Extended Interrupt Priority F8H

EWU Enable Wake Up from Idle C6H

EXIF External Interrupt Flag 91H

FMCON Flash Memory Control EEH

FTCON Flash Memory Timing Control EFH

GCH Gain Calibration High D6H

GCL Gain Calibration Low D4H

GCM Gain Calibration Middle D5H

HMSEC Hundred Millisecond Counter FEH

HWPC0 Hardware Product Code 0 E9H

HWPC1 Hardware Product Code 1 EAH

LVDCON Low Voltage Detection Control E7H

MCON Memory Control 95H

SFR/Address Cross-Reference

G-3SFRs/Address Cross-Reference Guide (alphabetical)

MPAGE Memory Page 92H

MSECH Millisecond Counter High FDH

MSECL Millisecond Counter Low FCH

MSINT Microseconds Interrupt FaH

MWS Memory Write Select 8FH

OCH ADC Offset Calibration High D3H

OCL ADC Offset Calibration Low D1H

OCM ADC Offset Calibration Middle D2H

ODAC Offset DAC E6H

P0 Port 0 80H

P0DDRH Port 0 Data Direction High ADH

P0DDRL Port 0 Data Direction Low ACH

P1 Port 1 90H

P1DDRH Port 1 Data Direction High AFH

P1DDRL Port 1 Data Direction Low AEH

P2 Port 2 A0H

P2DDRH Port 2 Data Direction High B2H

P2DDRL Port 2 Data Direction Low B1H

P3 Port 3 B0H

P3DDRH Port 3 Data Direction High B4H

P3DDRL Port 3 Data Direction Low B3H

PAI Pending Auxiliary Interrupt A5H

PASEL PSEN/ALE Select F2H

PCON Power Control 87H

PDCON Power-Down Control F1H

PWMCON PWM Control A1H

PWMHI PWM High A3H

PWMLOW PWM Low A2H

RCAP2H Reload/Capture Timer 2 High CBH

RCAP2L Reload/Capture Timer 2 Low CAH

SBUF0 Serial Buffer 0 99H

SBUF1 Serial Buffer 1 C1H

SCON0 Serial Control 0 98H

SCON1 Serial Control 1 C0H

SECINT Seconds Interrupt F9H

SP Stack Pointer 81H

SPICON SPI Control 9AH

SPIDATA SPI Data 9BH

SPIEND SPI Buffer End Address 9FH

SFR/Address Cross-Reference

G-4

SPIRCON SPI Receive Control 9CH

SPISTART SPI Buffer Start Address 9EH

SPITCON SPI Transmit Control 9DH

SRST System Reset F7H

SSCON Summation/Shifter Control E1H

SSUMR0 Summation Register 0 E2H

SSUMR1 Summation Register 1 E3H

SSUMR2 Summation Register 2 E4H

SSUMR3 Summation Register 3 E5H

T2CON Timer 2 Control C8H

TCON Timer Control 88H

TH0 Timer 0 High 8CH

TH1 Timer 1 High 8DH

TH2 Timer 2 High CDH

TL0 Timer 0 Low 8AH

TL1 Timer 1 Low 8BH

TL2 Timer 2 Low 8CH

TMOD Timer Mode 89H

USEC Microseconds FBH

WDTCON Watchdog Timer Control FFH

