

SHARP

OPERATION MANUAL

PRINTED IN CHINA / IMPRIMÉ EN CHINE / IMPRESO EN CHINA 07BGK (TINSE1278EHZZ)

INTRODUCTION

Thank you for purchasing the SHARP Scientific Calculator Model EL-W531/W531G/W531H/W531HA/W535. About the calculation examples (including some formulas and tables), refer to the reverse side of this English manual.

Refer to the number on the right of each title in the manual for use. After reading this manual, store it in a convenient location for

future reference. Notes:

- Some of the models described in this manual may not be available in some countries.
- This product uses a period as a decimal point.

Operational Notes

- Do not carry the calculator around in your back pocket, as it may break when you sit down. The display is made of glass and is particularly fragile.
- Keep the calculator away from extreme heat such as on a car dashboard or near a heater, and avoid exposing it to excessively humid or dusty environments.
- Since this product is not waterproof, do not use it or store it where fluids, for example water, can splash onto it. Raindrops, water spray, juice, coffee, steam, perspiration, etc. will also cause malfunction.
- Clean with a soft, dry cloth. Do not use solvents or a wet cloth.
- Do not drop it or apply excessive force. Never dispose of batteries in a fire.
- Keep batteries out of the reach of children.
- This product, including accessories, may change due to upgrading without prior notice.

- NOTICE ·

- SHARP strongly recommends that separate permanent written records be kept of all important data. Data may be lost or altered in virtually any electronic memory product under certain circumstances. Therefore, SHARP assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use, repairs, defects, battery replacement, use after the specified
- battery life has expired, or any other cause. SHARP will not be liable nor responsible for any incidental or consequential economic or property damage caused by misuse and/or malfunctions of this product and its peripherals, unless such liability is acknowledged by law
- Press the RESET switch (on the back), with the tip of a ball-point pen or similar object, only in the following cases. <u>Do not use an object with a breakable or sharp tip</u>. Note that pressing the RESET switch erases all data stored in memory. • When using for the first time
- After replacing the battery To clear all memory contents
- · When an abnormal condition occurs and all keys are inoperative

If service should be required on this calculator, use only a SHARP servicing dealer, SHARP approved service facility, or SHARP repair service where available.

Hard Case

Remove the hard case, holding it with your fingers in the positions shown below.

- · During actual use, not all symbols are displayed at the same
- time. · Only the symbols required for the usage under instruction are shown in the display and calculation examples of this manual.
- Indicates that some contents are hidden in the **←/**→ **↑**/+ directions shown.
- 2ndF:
- Appears when 2ndF) is pressed, indicating that the functions shown in orange are enabled.
- HYP Indicates that hyp has been pressed and the hyperbolic functions are enabled. If [2ndF] [arc hyp] is pressed, the symbols "2ndF HYP" appear, indicating that inverse hyperbolic functions are enabled.
- ALPHA: Indicates that (ALPHA), (STO) or (RCL) has been pressed, and entry (recall) of memory contents and recall of statistics can be performed.
- DEG/RAD/GRAD: Indicates angular units.
- BUSY: Appears during the execution of a calculation.
- W-VIEW: Indicates that the WriteView editor is selected.
- Indicates that a numerical value is stored in the M: independent memory (M).
- ENG/SCI/FIX/N2/N1: Indicates the notation used to display a value and changes by SET UP menu. N1 is displayed on-screen as "NORM1", and N2 as "NORM2".

BEFORE USING THE CALCULATOR

When using for the first time, press the RESET switch (on the back), with the tip of a ball-point pen or similar object.

Adjusting the Display Contrast

Press (SET UP) 3, then + or - to adjust the contrast. Press ON/C to exit.

Power On and Off

Press (ON/C) to turn the calculator on. The data that was onscreen when the power was turned off will appear on the display. Press 2ndF OFF to turn it off.

Key Notations Used in this Manual

In this manual, key operations are described as follows:

ех е	To specify e^x : 2ndF e^x
ln)	To specify In: In
	To specify E: (ALPHA) E

- · Functions that are printed in orange above the key require (2ndF) to be pressed first before the key. When you specify the memory, press ALPHA first. Numbers for input values are not shown as keys, but as ordinary numbers
- Functions that are printed in gray adjacent to the keys are effective in specific modes.

The WriteView and Line Editors

This calculator has the following two editors in NORMAL mode: WriteView and Line. You can select between them in the SET UP menu.

	W-VIEW
12-2 -	
<u></u> ×9=	
2 -	
	o.C
1	2

.	(J(8-3)),2×9=
5	10.0623059
ilt)	The Line editor

The WriteView editor (default)

Note: In certain calculation examples, where you see the LINE symbol, the key operations and calculation results are shown as they would appear in the Line editor.

Clearing the Entry and Memories

Operation	Entry (Display)		D1D4*2	ANS	STAT*3
ON/C	0	×	×	х	×
2ndF CA	\bigcirc	×	×	\bigcirc	\bigcirc
Mode selection (MODE)	\bigcirc	×	×	×	×*5
(2ndF)(M-CLR) 0 *4	\bigcirc	×	×	×	×
2ndF M-CLR 1 0 *4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2ndF)(M-CLR) 2 0 *4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
RESET switch	0	\bigcirc	\bigcirc	\bigcirc	0

O: Clear X: Retain

- *1 Press (ON/C) (STO) and then choose a memory to clear one variable memory.
- *2 Definable memory. See "Memory Calculations".

Statistical data (entered data) *3 *4 See "Memory clear key"

*5 Cleared when changing between sub-modes in STAT mode.

Memory clear key

- Press (2ndF) (M-CLR) to display the menu. To initialize the display settings, press 0. The parameters set as follows:
- Angular unit: DEG
- Display notation: NORM1
- N-base: DEC To clear all variables and memories (A–F, M, X, Y, D1–D4, ANS,
- and STAT) at once, press 1 0. To RESET the calculator, press 2 0. The RESET
- operation will erase all data stored in memory and restore the calculator's default settings.

ENTERING, DISPLAYING, AND EDITING THE EQUATION **()**

The WriteView Editor

Entry and display

In the WriteView editor, you can <u> </u>+읕= enter and display fractions or certain functions as you would write them. Notes:

M-CLR> P 1:MEMORY

- The WriteView editor can only be used in NORMAL mode.
- If the equation grows too large, it may extend off the edge of the display after you obtain the result. If you want to see the entire equation, press \blacksquare or \blacktriangleright to return to the editing screen.

Displaying calculation results

When possible, calculation results will be displayed using fractions, $\sqrt{}$, and $\pi.$ When you press (HAME), the display will cycle through the following display styles: • Mixed fractions (with or without π) \rightarrow improper fractions (with

- or without π) \rightarrow decimal numbers
- Proper fractions (with or without π) \rightarrow decimal numbers
- Irrational numbers (square roots, fractions made using square roots) → decimal numbers Notes:
- · In the following cases, calculation results may be displayed using $\sqrt{}$:
 - · Arithmetic operations and memory calculations
- Trigonometric calculations

•	n trigonometric calculations, when		Entry value
	entering values such as those in the table to the right, results may be	DEG	multiples of 15
	shown using $\sqrt{.}$	RAD	multiples of $\frac{1}{12}\pi$
•	Calculation results may extend off the edges of the screen. You can	GRAD	multiples of $\frac{50}{3}$
	and these nexts by pressing (1)		· · · · · ·

- see those parts by pressing <a>> or <>> (depending on whether the left or right portion is hidden).
- Improper/proper fractions will be converted to and displayed as decimal numbers if the number of digits used in their expression is greater than nine. In the case of mixed fractions, the maximum number of displayable digits (including integers) is eight.
- If the number of digits in the denominator of a fractional result that uses π is greater than three, the result is converted to and displayed as a decimal number.

The Line Editor

Entry and display

Entry and display	
In the Line editor, you can enter and display equations line by line.	J2×J3=
Notes:	
Up to three lines of text may be	2.449489743
viewed on the screen at one time.	

- · If the length of the equation exceeds three lines, parts of it may be hidden from view after calculation. If you want to see the rest of the equation, press \frown or \frown to return to the editing screen
- · In the Line editor, calculation results are displayed in decimal

the end of the equation and pressing \frown brings you to beginning. Press \frown , \blacktriangleright , \frown , \bullet , \circ , \circ \lor to move the cursor. Press $(2ndF) \frown$ or $(2ndF) \frown$ to jump the cursor to the beginning or the end of the equation.

In the WriteView editor, you can use A and T to move the

cursor up and down-between the numerator and denominator,

To delete a number or function, move the cursor to the right of it, then press BS. You can also delete a number or function that

This calculator is equipped with a function to recall previous equations and answers in NORMAL mode. A maximum of 340

characters can be stored in memory. When the memory is full,

Pressing will display the previous equation. Further

stored equations will be deleted to make room, starting with the

pressing a will display preceding equations (after returning to the previous equation, press v to view equations in order). In

addition, 2ndF () can be used to jump to the oldest equation,

To edit an equation after recalling it, press <a> or The multi-line memory will be cleared by the following operations: 2ndF CA, mode change, RESET, N-base conversion, angular unit conversion, editor change (SETUP 2 0 or (SET UP) 2 1), and memory clear (2ndF M-CLR 1 0).

the cursor is directly over by pressing 2ndF) DEL.

Multi-line Playback Function

and 2ndF v to jump to the newest one.

Just after obtaining an answer, pressing <a>> brings you to

Editing the Equation

Back space and delete key

for example.

oldest.

- Equations that have one result require an additional eleven
- characters' worth of memory to store in order to hold the result. In addition to the amount of memory needed to store an equation, the WriteView editor will require a certain amount for
- the sake of display. Equations also include calculation ending instructions, such as

Priority Levels in Calculation

This calculator performs operations according to the following priority:

() Fractions (1 r 4, etc.) (2) Functions preceded by their argument ($x^{-1}, x^2, n!, etc.$) (3) $y^x, x\sqrt{(4)}$ Implied multiplication of a memory value (2Y, etc.) (5) Functions followed by their argument (sin, cos, etc.) (6) Implied multiplication of a function (2sin 30, A $\frac{1}{4}$, etc.) (7) nCr, nPr (8) ×, ÷ (9) +, - (9) AND (1) OR, XOR, XNOR (19) =, $M+, M-, \Rightarrow M, \blacktriangleright DEG, \blacktriangleright RAD, \triangleright GRAD, DATA, CD, \rightarrow r\theta, \rightarrow xy,$ and other calculation ending instructions

· If parentheses are used, parenthesized calculations have precedence over any other calculations.

INITIAL SET UP

Mode Selection

NORMAL mode: MODE 0 (default)

Used to perform arithmetic operations and function calculations.

STAT mode: MODE 1

Used to perform statistical operations.

DRILL mode: MODE 2

Used to practice math and multiplication table drills.

SET UP Menu

Press (SET UP) to display the SET UP menu

Determination of the anyular unit	C
Determination of the angular unit	4:
$\label{eq:press_ON/C} \text{Press} \ \overline{\text{ON/C}} \ \text{to exit the SET UP menu.}$	ŽEDITOR ŠCTRST
menu.	0:DPG 1:FSF
Press (SET UP) to display the SET UP	(SETUP)

The following three angular units (degrees, radians, and grads) can be specified.

DEG (°):	(SET UP)	0	(default)
RAD (rad):	(SET UP)	0	1
GRAD (g):	(SET UP)	0	2

Selecting the display notation and decimal places

- When server 1 0 (FIX) or server 1 2 (ENG) is pressed, "TAB(0–9)?" will be displayed and the number of decimal places (TAB) can be set to any value between 0 and 9.
- When $\mathbb{SET UP}$ 1 1 (SCI) is pressed, "SIG(0–9)?" will be displayed and the number of significant digits can be set to any value between 0 and 9. Entering 0 will set a 10-digit display.

Setting the floating point number system in scientific notation

Two settings are used to display a floating-point number: NORM1 (the default) and NORM2. A number is automatically displayed in

- scientific notation outside a preset range: NORM1 ((SETUP) 1 3): 0.000000001 ≤ | x | ≤ 9,999,999,999 NORM2 ((SETUP) 1 4): 0.01 ≤ | x | ≤ 9,999,999,999

Selecting the editor

Two editors are available in NORMAL mode:

The WriteView editor (W-VIEW): [SET UP] 2) (default)

The Line editor (LINE): SET UP 2

Adjusting the display contrast

Press (SETUP 3, then + or - to adjust the contrast. Press (NVC) to exit.

Insert and overwrite entry methods

When using the Line editor, you can change the entry method from "INSERT" (the default) to "OVERWRITE".

After you switch to the overwrite method (by pressing SET UP) 4 1), the triangular cursor will change to a rectangular one, and the number or function underneath it will be overwritten as you make entries.

SCIENTIFIC CALCULATIONS

- Press MODE 0 to select NORMAL mode.
- In each example, press ON/C to clear the display first. Unless otherwise specified, calculation examples are performed in the WriteView editor with the default display settings (2ndF) M-CLR 0).

Arithmetic Operations

The closing parenthesis) just before = or M+ may be omitted.

Constant Calculations

- In constant calculations, the addend becomes a constant. Subtraction and division are performed in the same manner. For multiplication, the multiplicand becomes a constant.
- In constant calculations, constants will be displayed as K.

Functions

- Refer to the calculation examples for each function.
- In the Line editor, the following symbols are used:
- : to indicate an expression's power. (y^x), (2ndF) e^x), (2ndF) (10^{χ})

6

Ø

0

Ø

0

- T: to separate integers, numerators, and denominators.
- values are entered in the following way:
- logn (base, value) abs value

Random Function

The random function has four settings. (This function cannot be selected while using the N-base function.) To generate further random numbers in succession, press ENTER. Press ON/C) to exit.

Random numbers

A pseudo-random number, with three significant digits from 0 up to 0.999, can be generated by pressing 2ndF RANDOM 0 ENTER)

Note: In the WriteView editor, the result will be a fraction or 0. Random dice

To simulate a die-rolling, a random integer between 1 and 6 can be generated by pressing 2ndF RANDOM 1 ENTER

Random coin

To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly generated by pressing (2ndE) (RMECM) 2 (ENTER).

Random integer

An integer between 0 and 99 can be generated randomly by pressing (2ndF) (RANDOM) (3) (ENTER).

Angular Unit Conversions

Each time 2ndF) DRG is pressed, the angular unit changes in sequence.

Memory Calculations

Memory calculations can be performed in NORMAL and STAT modes.

Temporary memories (A-F, X and Y)

Press STO and a variable key to store a value in memory. Press RCL and a variable key to recall the value from that memory. To place a variable in an equation, press ALPHA and a variable key.

Independent memory (M)

In addition to all the features of temporary memories, a value can be added to or subtracted from an existing memory value. Press ON/C STO M to clear the independent memory (M).

Last answer memory (ANS)

The calculation result obtained by pressing ___ or any other calculation ending instruction is automatically stored in the last answer memory.

Notes:

З

- Calculation results from the functions indicated below are automatically stored in the X or Y memories replacing any existing values.
 - $\rightarrow r\theta, \rightarrow xy: X$ memory (*r* or *x*), Y memory (θ or *y*) Two *x'* values from a quadratic regression calculation in •
- STAT mode: X memory (1:), Y memory (2:) Use of RCL or ALPHA will recall the value stored in memory

using up to 14 digits. Definable memories (D1-D4)

You can store functions or operations in definable memories (D1–D4).

- To store a function or operation, press $(\overline{\text{sto}})$, followed by a definable memory key $((\underline{\text{D1}}), (\underline{\text{D2}}), (\underline{\text{D3}})$, or $(\underline{\text{D4}})$, followed by the operation you want to store. Menu-related operations, such as $(\underline{\text{strup}})$, cannot be stored. Press $(\underline{\text{ONC}})$ to return to the previous display.
- To call a stored function or operation, press the corresponding memory key. Calling a stored function will do nothing if the function that is called would be unusable in the current context.
- Any functions or operations that are stored in a definable memory will be replaced when you save a new one into that memory.
- When displaying and correcting a data set in STAT mode, you cannot store functions or operations in definable memories.

Chain Calculations

Ø

The previous calculation result can be used in the subsequent calculation. However, it cannot be recalled after entering multiple instructions.

Fraction Calculations

Arithmetic operations and memory calculations can be performed using fractions. In NORMAL mode, conversion between a decimal number and a fraction can be performed by pressing (CHANGE). Notes:

- · Improper/proper fractions will be converted to and displayed as decimal numbers if the number of digits used in their expression is greater than nine. In the case of mixed fractions, the maximum number of displayable digits (including integers) is eight.
- To convert a sexagesimal value to a fraction, first convert it by pressing (2ndF) + DEG.

Binary, Pental, Octal, Decimal, and Hexadecimal **Operations (N-base)**

Conversions can be performed between N-base numbers in NORMAL mode. The four basic arithmetic operations, calculations with parentheses, and memory calculations can also be performed, along with the logical operations AND, OR, NOT, NEG, XOR, and XNOR on binary, pental, octal, and hexadecimal numbers.

Conversion to each system is performed with the following keys: (2ndF) (*BIN" appears), (2ndF) (*PEN" (*PEN" appears) [2ndF] (*OCT" appears), [2ndF] (*HEX" appears), ►DEC ("BIN", "PEN", "OCT", and "HEX" disappear) 2ndF Note: The hexadecimal numbers A-F are entered by pressing

$$y^x$$
, $\sqrt{}$, χ^2 , \log , \ln , and (x,y) .

In the binary, pental, octal, and hexadecimal systems, fractional parts cannot be entered. When a decimal number having a fractional part is converted into a binary, pental, octal, or hexadecimal number, the fractional part will be truncated. Likewise, when the result of a binary, pental, octal, or hexadecimal calculation includes a fractional part, the fractional part will be truncated. In the binary, pental, octal, and hexadecimal systems, negative numbers are displayed as a complement.

Time, Decimal, and Sexagesimal Calculations

Conversion between decimal and sexagesimal numbers can be performed. In addition, the four basic arithmetic operations and memory calculations can be performed using the sexagesimal system. Notation for sexagesimal is as follows:

Coordinate Conversions

- · Before performing a calculation, select the angular unit.
- The calculation result is automatically stored in the X and Y
- memories (r or x in X memory, and θ or y in Y memory).
- · The results of coordinate conversions will be displayed as decimal numbers even in the WriteView editor.

Modify Function

Decimal calculation results are internally obtained in scientific notation, with up to 14 digits in the mantissa. However, since calculation results are displayed in the form designated by the display notation and the number of decimal places indicated, the internal calculation result may differ from that shown in the display. By using the modify function ((2ndF) (MDF)), the internal value is converted to match that of the display, so that the displayed value can be used without change in subsequent operations

. When using the WriteView editor, if the calculation result is displayed using fractions or irrational numbers, press CHINE to convert it to decimal form first.

STATISTICAL CALCULATIONS

Statistical calculations can be performed in STAT mode. There are eight sub-modes within STAT mode. Press MODE 1, then press the number key that corresponds to your

- choice: • (Stat 0 [SD]): Single-variable statistics
- 1 (Stat 1 [LINE]): Linear regression
- (Stat 2 [QUAD]): Quadratic regression 2
- (Stat 3 [E_EXP]): Euler exponential regression
- (Stat 4 [L0G]): Logarithmic regression
- (Stat 5 [POWER]): Power regression
- (Stat 6 [INV]): Inverse regression (Stat 7 [G_EXP]): General exponential regression

Statistical Calculations and Variables

Ð The following statistics can be obtained for each statistical calculation (refer to the table below):

Single-variable statistical calculation Statistics of 1.

Linear regression calculation

Statistics of 1 and 2. In addition, the estimate of y for a given x (estimate y') and the estimate of x for a given y (estimate x')

Quadratic regression calculation

Statistics of (1) and (2), and coefficients a, b, c in the guadratic regression formula ($y = a + bx + cx^2$). (For quadratic regression calculations, no correlation coefficient (r) can be obtained.) When there are two x' values, each value will be displayed with "1:" or "2:", and stored separately in the X and Y memories

Euler exponential regression, logarithmic regression, power regression, inverse regression, and general exponential regression calculations

Statistics of ① and ②. In addition, the estimate of y for a given x and the estimate of x for a given y. (Since the calculator converts each formula into a linear regression formula before actual calculation takes place, it obtains all statistics, except coefficients a and b, from converted data rather than entered data.)

1	\overline{x}	Mean of samples (x data)
	sx	Sample standard deviation (x data)
	σx	Population standard deviation (x data)
	n	Number of samples
	Σx	Sum of samples (x data)
	Σx^2	Sum of squares of samples (x data)
	\overline{y}	Mean of samples (y data)
	sy	Sample standard deviation (y data)
	σy	Population standard deviation (y data)
	Σy	Sum of samples (y data)
2	Σy^2	Sum of squares of samples (y data)
	Σxy	Sum of products of samples (x, y)
	r	Correlation coefficient
	а	Coefficient of regression equation
	b	Coefficient of regression equation
	с	Coefficient of quadratic regression equation

- Use ALPHA and RCL to perform a variable calculation in STAT mode
- (CHANGE) does not function in STAT mode.

Data Entry and Correction

Before entering new data, clear the memory contents.

Data entry

B

A

- Single-variable data
- Data DATA
 - $Data (\overline{(x,y)})$ frequency (DATA) (To enter multiples of the same data)
- Two-variable data
- Data x () data y DATA Data x () data y () frequency (DATA) (To enter multiples of the same data x and y)
- Note: Up to 100 data items can be entered. With the singlevariable data. a data item without frequency assignment is counted as one data item, while an item assigned with frequency is stored as a set of two data items. With the two-variable data, a set of data items without frequency assignment is counted as two data items, while a set of items assigned with frequency is stored as a set of three data items.

Data correction

Correction before pressing DATA immediately after a data entry: Delete incorrect data with ON/C), then enter the correct data. Correction after pressing DATA:

Use a and v to display the previously entered data set. Press v to display the data set in ascending (oldest first) order. To reverse the display order to descending (datest first), press the key. Press (2ndF) or (2ndF) v to jump the cursor to the beginning or end of the data set. Each data set is displayed with "X:", "Y:", or "F:".

Display and move the cursor to the data item to be modified by using (\blacktriangle) and (\triangledown) , input the correct value, then press (DATA) OF (ENTER

- To delete a data set, display and move the cursor to an item of the data set to delete by using \blacksquare and \bigtriangledown , then press [2ndF] CD. The data set will be deleted.
- To add a new data set, press ON/C to exit the display of previously entered data and input the values, then press (DATA).

Statistical Calculation Formulas

Туре	Regression formula
Linear	y = a + bx
Quadratic	$y = a + bx + cx^2$
Euler exponential	$y = a \cdot e^{bx}$
Logarithmic	$y = a + b \cdot \ln x$
Power	$y = a \cdot x^b$
Inverse	$y = a + b \frac{1}{x}$
General exponential	$y = a \cdot b^x$
	,

An error will occur when:

- The absolute value of the intermediate result or calculation result is equal to or greater than 1×10^{100}
- The denominator is zero.
- · An attempt is made to take the square root of a negative number.
- · No solution exists in the quadratic regression calculation.

C

Ð

Ð

DRILL MODE		
Math Drill: MODE 2 0 Math operation questions with positive integers and 0 are displayed randomly. It is possible to select the number of questions and operator type.		
Multiplication Table (X Table): M Questions from each row of the displayed serially or randomly.		
To exit DRILL mode, press MODE	and select another mode.	
Using Math Drill and X Tab 1. Press MODE 2 0 for Ma		
 X Table. 2. Math Drill: Use and 		
questions (25, 50, or 100).		
★ Table : Use ▲ and ▼ multiplication table (1 to 12).		
3. Math Drill: Use and and and and and and and and and and and and a	÷).	
or "Random").	to select the order type ("Serial"	
 Press ENTER to start. When using Math Drill or X Ta questions are randomly selec 		
 by chance. 5. Enter your answer. Press ON/ number and then enter the co 		
 6. Press ENTER. If the answer is correct, "" 	appears and the next question	
is displayed.	ppears and the same question	
 is displayed. This will be rega If you press ENTER without en answer is displayed and ther 	arded as an incorrect answer. tering an answer, the correct the next question is displayed.	
This will be regarded as an in 7. Continue answering the series		
answer and pressing ENTER. 8. After you finish, press ENTER a	nd the number and percentage	
9. Press ENTER to return to the in		
Math Drill sample	·	
Q 1/25	Current question/ Total questions	
♦ 13+ 9=_	— Question	
:		
Q 8∕25 ✔ 40÷ 5=8 7		
× 7×11=7 → 7×11=	— See step 6 above.	
:		
Math Drill Question:25		
Type:+-X÷ ✓: <u>20</u> (<u>80%</u>)	— Operator type	
	 Percentage correct Correct answers 	
× Table sample		
× Table 12	Total remaining questions	
	Question	
:		
× Table 8 ✓ 7× 4=28	See step 6 above.	
× 7× 5=36		

÷ Table Multie Serial 8(<u>67%</u>) Multiplicand Order type Туре: / : Percentage correct Correct answers

Ranges of Math Drill Questions

The range of questions for each operator type is as follows.

- Addition operator: "0 + 0" to "20 + 20"
- Subtraction operator: "0 0" to "20 20"; answers are positive integers and 0.
- Multiplication operator: " 1×0 " or " 0×1 " to " 12×12 "
- **Division operator**: " $0 \div 1$ " to " $144 \div 12$ "; answers are ÷ positive integers from 1 to 12 and 0, dividends of up to 144, and divisors of up to 12.
- + × ÷ Mixed operators: Questions within all the above ranges are displayed.

ERRORS AND CALCULATION RANGES

Errors

An error will occur if an operation exceeds the calculation ranges, or if a mathematically illegal operation is attempted. When an error occurs, pressing or automatically moves the cursor back to the place in the equation where the error occurred. Edit the equation or press (ON/C) to clear the equation.

Error codes and error types

ERROR 01: Syntax error

- An attempt was made to perform an invalid operation. Ex. 2 (+) (-5
- ERROR 02: Calculation error
- The absolute value of an intermediate or final calculation result equals or exceeds 10100
- An attempt was made to divide by zero (or an intermediate calculation resulted in zero)
- The calculation ranges were exceeded while performing calculations.

ERROR 03: Nesting error

- The available number of buffers was exceeded. (There are 10 buffers for numeric values and 64 buffers for calculation instructions)
- ERROR 04: Data over
- · Data items exceeded 100 in STAT mode

Alert Messages

Cannot delete

- The selected item cannot be deleted by pressing BS or 2ndF DEL in the WriteView editor.
- $5 \rightarrow x^2 \rightarrow BS$ Ex. √

In this example, delete the exponent before attempting to delete the parentheses

Cannot call!

- The function or operation stored in definable memory (D1 to D4) cannot be called.
- Ex. An attempt was made to recall a statistical variable from within NORMAL mode.

Buffer full!

The equation (including any calculation ending instructions) exceeded its maximum input buffer (159 characters in the WriteView editor or 161 characters in the Line editor). An equation may not exceed its maximum input buffer

Calculation Ranges

Within the ranges specified, this calculator is accurate to \pm 1 of the 10th digit of the mantissa. However, a calculation error increases in continuous calculations due to accumulation of each calculation error. (This is the same for y^x , $x\sqrt{}$, n!, e^x, In, etc., where continuous calculations are performed internally.) Additionally, a calculation error will accumulate and

become larger in the vicinity of inflection points and singular points of functions.

- Calculation ranges
 - $\pm 10^{-99}$ to $\pm 9.999999999 \times 10^{99}$ and 0. If the absolute value of an entry or a final or intermediate result of a calculation is less than 10^{-99} . the value is considered to be 0 in calculations and in the display.

Display of results using $\sqrt{}$

- Calculation results may be displayed using $\sqrt{}$ when all of the following conditions are met:
- When intermediate and final calculation results are displayed in the following form:

 $\pm \frac{a\sqrt{b}}{e} \pm \frac{c\sqrt{d}}{f}$

- When each coefficient falls into the following ranges: $\begin{array}{l} 1 \leq a < 100; \ 1 < b < 1,000; \ 0 \leq c < 100; \\ 1 \leq d < 1,000; \ 1 \leq e < 100; \ 1 \leq f < 100 \end{array}$
- When the number of terms in the intermediate and final
- calculation results is one or two Note: The result of two fractional terms that include $\sqrt{}$ will be reduced to a common denominator.

BATTERY REPLACEMENT

Notes on Battery Replacement

Improper handling of batteries can cause electrolyte leakage or explosion. Be sure to observe the following handling rules:

- Make sure the new battery is the correct type.
- When installing, orient the battery properly as indicated in the calculator.
- The battery is factory-installed before shipment, and may be exhausted before it reaches the service life stated in the specifications

Notes on erasure of memory contents

When the battery is replaced, the memory contents are erased. Erasure can also occur if the calculator is defective or when it is repaired. Make a note of all important memory contents in case accidental erasure occurs.

When to Replace the Battery

EL-W531/W531H/W531HA/W535: If the display has poor contrast even after adjusting the display contrast, the battery requires replacement.

EL-W531G: If the display has poor contrast or nothing appears on the display when ONC is pressed in dim lighting, even after adjusting the display contrast, it is time to replace the battery.

Cautions

- · Fluid from a leaking battery accidentally entering an eye could result in serious injury. Should this occur, wash with clean water and immediately consult a doctor. Should fluid from a leaking battery come in contact with your
- skin or clothes, immediately wash with clean water.

- · If the product is not to be used for some time, to avoid damage to the unit from a leaking battery, remove it and store in a safe place.
- Do not leave an exhausted battery inside the product.
- Keep batteries out of the reach of children. An exhausted battery left in the calculator may leak and damage the calculator.
- Explosion risk may be caused by incorrect handling Do not throw batteries into a fire as they may explode.

Replacement Procedure

- 1. Turn the power off by pressing (2ndF) (OFF).
- 2. Remove the two screws. (Fig. 1)

- 3. Slide the battery cover slightly and lift it to remove.
- 4.EL-W531/W531G/W535: Remove the used battery by prying it out with a ball-point pen or other similar pointed device. (Fig. 2) EL-W531H/W531HA: Remove the used battery.
- 5. EL-W531/W531G/W535: Install one new battery. Make sure the "+" side is facing up. EL-W531H/W531HA: Install one new battery. First insert the
- side toward the spring. (Fig. 3) 6.Replace the cover and screws.
- 7. Press the RESET switch (on the back) with the tip of a ball-point pen or similar object.
- 8. Adjust the display contrast. See "Adjusting the Display Contrast"
- Make sure that the display appears as shown below. If the display does not appear as shown, remove the battery, reinstall it, and check the display once again.

Automatic Power Off Function

This calculator will turn itself off to save battery power if no key is pressed for approximately 10 minutes.

SPECIFICATIONS

SPECIFICATIONS	
Calculation features:	Scientific calculations, statistical calculations, etc.
Drill features: Display: Display of calculation	Math Drill and Multiplication Table 96×32 dot matrix liquid crystal display
Internal calculations: Pending operations: Power source:	$\begin{array}{l} \mbox{Mantissas of up to 14 digits} \\ \mbox{64 calculations 10 numeric values} \\ \mbox{EL-W531/W535} \\ \mbox{1.5 V} \dots (DC): \mbox{Alkaline battery (LR44 or equivalent) \times 1} \\ \mbox{EL-W531G} \\ \mbox{Built-in solar cells} \\ \mbox{1.5 V} \dots (DC): \mbox{Backup battery} \\ \mbox{(Alkaline battery (LR44 or equivalent) \times 1)} \\ \mbox{EL-W531H/W531HA} \\ \mbox{1.5 V} \dots (DC): \mbox{Heavy duty manganese} \\ \mbox{battery (size AAA or R03) \times 1} \end{array}$
Power consumption:	EL-W531/W531H/W531HA/W535 0.00011 W
Operating time: (varies according to use and other factors)	EL-W531/W535 Approx. 3,000 hours when continuously displaying 55555. at 25°C (77°F) EL-W531G Approx. 3,000 hours when continuously displaying 55555. at 25°C (77°F), using the alkaline battery only EL-W531H/W531HA Approx. 17,000 hours when continuously displaying 55555. at 25°C (77°F)
Operating temperature: External dimensions:	0°C–40°C (32°F–104°F) 79.6 mm (W) \times 161.5 mm (D) \times 15.5 mm (H) 3-1/8" (W) \times 6-11/32" (D) \times 5/8" (H)
Weight:	EL-W531/W535 Approx. 100 g (0.22 lb) (including battery) EL-W531G Approx. 102 g (0.23 lb) (including battery) EL-W531H/W531HA Approx. 107 g (0.24 lb) (including battery)
Accessories:	Battery \times 1 (installed), operation manual, and hard case

FOR MORE INFORMATION ABOUT SCIENTIFIC CALCULATORS

Visit our Web site.

http://sharp-world.com/calculator/

CALCULATION EXAMPLES
ANWENDUNGSBEISPIELE
EXEMPLES DE CALCUL
EJEMPLOS DE CÁLCULO
EXEMPLOS DE CÁLCULO
ESEMPI DI CALCOLO
REKENVOORBEELDEN
PÉLDASZÁMÍTÁSOK
PŘÍKLADY VÝPOČTŮ
RÄKNEEXEMPEL
LASKENTAESIMERKKEJÄ
UDREGNINGSEKSEMPLER
ตัวอย่างการดำนวณ نماذج للحسابات

CONTOH-CONTOH PERHITUNGAN

1 CHẠNGE		
$\frac{2}{5} + \frac{3}{4} =$	ON/C 2 a/b 5 ► + a/b 3 ► 4 =	1 <u>3</u> 20
	CHANGE	<u>23</u> 20
	CHANGE	1.15
	CHANGE	1 <u>3</u> 20
$\sqrt{3} \times \sqrt{5} =$	√ 3 ► × √	〕5 √15
	CHANGE	3.872983346
$\sqrt{2} \div 3 + \sqrt{5} \div 5 =$		$\frac{+}{=}$ $\frac{3\sqrt{5}+5\sqrt{2}}{15}$
	CHANGE	0.918618116
sin 45 =	sin 45 =	$\frac{\sqrt{2}}{2}$
	CHANGE	0.707106781
2cos ⁻¹ 0.5 [rad] =	SET UP 0 1 2 2ndF Cos ⁻¹ 0.5 =	<u>-2</u> <u>-3</u> π
	CHANGE	2.094395102

	(2ndF) CA	0.
 3(5 + 2) = 	3 (5 + 2) =	21.
(2) 3 × 5 + 2 =	3 🗙 5 + 2 =	17.
③ (5 + 3) × 2 =	= (5 + 3) × 2 =	16.
→ (Ì)	(2ndF)	21.
→ (2)		17.
→ (3)		16.
→ (2)		17.

3 (SET UP)

100000 ÷ 3 =		
[NORM1]	ON/C 100000 ÷ 3	33'333.33333
\rightarrow [FIX: TAB 2]	SET UP 1 0 2	33'333.33
\rightarrow [SCI: SIG 2]	SET UP 1 1 2	3.3∎04
\rightarrow [ENG: TAB 2]	SET UP 1 2 2	33.33E03
\rightarrow [NORM1]	SET UP 1 3	33'333.33333

LINE 3 ÷ 1000 =		
[NORM1]	ON/C 3 ÷ 1000 =	0.003
→ [NORM2]	(SET UP) 1 4	3 . ∎-03
→ [NORM1]	(SET UP) 1 3	0.003
4 + -) × ÷ () (-)	Exp
45 + 285 ÷ 3 =	ON/C 45 + 285 ÷)3 140.
$\frac{18+6}{15-8} =$	() 18 + 6 () () 15 - 8 =	\div $3\frac{3}{7}$
42 × -5 + 120 =	= 42 × (→) 5 + 1	20 -90
$(5 \times 10^3) \div (4 \times$	$10^{-3}) = \underbrace{5 (Exp) 3 \div 4}_{(Exp) (-) 3 (=)}$	1'250'000.
9		
34 <u>+ 57</u> =	34 + 57 =	91.
45 <u>+ 57</u> =	45 =	102.

34 + 57 =	34 + 57 =	91.
45 <u>+ 57</u> =	45 =	102.
<u>68 ×</u> 25 =	68 × 25 =	1'700.
<u>68 ×</u> 40 =	40 =	2'720.
6 sin cos	(\tan) (\sin^{-1}) (\cos^{-1}) (\tan^{-1}) (π)	hvp (arc.hvp)

6 sin cos tan sin⁻¹ cos⁻¹ tan⁻¹ π hyp archyp in log log_xX e^{x} e 10^x X⁻¹ X² X³ $\sqrt{}$ y^x $\sqrt{}$ $\sqrt{}$ n! nPr nCr % abs (\vec{x}, \vec{y})

	2ndF M-CLR 0	0.
sin 60 [°] =	ON/C sin 60 =	<u>√3</u> 2
	CHANGE	0.866025403
$\cos\frac{\pi}{4}$ [rad] =	$\begin{array}{c c} \text{SET UP} & 0 & 1 \\ \hline \text{cos} & \pi & \text{a/b} & 4 \end{array}$	$\frac{\sqrt{2}}{2}$
	CHẠNGE	0.707106781
tan ⁻¹ 1 [g] =	SET UP 0 2 (2ndF) (tan ⁻¹) 1 =	50.
$(\cosh 1.5 + \sinh 1.5)^2 =$	$\begin{array}{c c} ONC & (& hyp & cos \\ 1.5 & + & hyp & sin \\ 1.5 &) & \mathcal{X}^2 & = \end{array}$	20.08553692
$\tanh^{-1}\frac{5}{7} =$	2ndF) arc hyp) tan) (5 ÷ 7) =	0.895879734
ln 20 =	In 20 =	2.995732274
log 50 =	log 50 =	1.698970004
$log_2 16384 =$	2ndF) log _a X) 2 > 163	384 = 14.
LINE	$ (2ndF) \log_a \mathcal{X} 2 (\dot{x}, y) 163 $	384)) 14.
e ³ =	$(2ndF) e^{x} 3 =$	20.08553692
1 ÷ e =	1 ÷ (ALPHA) ℓ =	0.367879441
10 ^{1.7} =	(2ndF) (10 ^x) 1.7 (=	50.11872336
$\frac{1}{6} + \frac{1}{7} =$	6 2ndF X ⁻¹ + 7 2ndF X ⁻¹ =	<u>13</u> 42
	CHANGE	0.309523809
$8^{-2} - 3^4 \times 5^2 =$	8 y^{x} (-) 2 - 3 y^{x} 4 × 5 x^{2} =	-2024 <u>63</u>
	CHANGE	- <u>129599</u> 64
	CHANGE -	2'024.984375
LINE	$ \begin{array}{c} 8 y^{x} (-) 2 - \\ 3 y^{x} 4 \times 5 \\ \hline x^{2} = \\ \end{array} $	2'024.984375
	(CHANGE)	-2024r63r64
	CHANGE	-129599r64

$(12 y^{x} 3)$ $(y^{x} y^{x})$ $1 a/b 4 =$	6.447419591
$(12 y^{x} 3)$ (y^{x} 1 a/b 4 =	6.447419591
8 (2ndF) X ³ =	512.
√ 49 ► - 4 2ndF × 81 =	4.
√ 49 - 4 2ndF ×√ 81 =	4.
2ndF) 3 27 =	3.
4 (2ndF) n! =	24.
10 (2ndF) (nPr) 3 (=)	720.
5 (2ndF) (<i>n</i> C <i>r</i>) 2 =	10.
500 × 25 2ndF %	125.
120 ÷ 400 (2ndF)	% 30.
500 + 25 (2ndF) %	625.
400 — 30 (2ndF) %	280.
2ndF abs 5 - 9	- 4.
2ndF abs (5 -	9 4.
	$\begin{array}{c} & 12 \\ & y^{x} \\ 1 \\ ab 4 \\ = \\ \hline \\ 1 \\ ab 4 \\ = \\ \hline \\ 1 \\ ab 4 \\ = \\ \hline \\ 1 \\ y^{x} \\ 1 \\ ab 4 \\ = \\ \hline \\ 8 \\ 2ndF \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ = \\ \hline \\ 2ndF \\ x^{3} \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ x^{3} \\ = \\ \hline \\ 4 \\ 2ndF \\ x^{3} \\ x$

• The range of the results of inverse trigonometric functions

• Der Ergebnisbereich für inverse trigonemetrische Funktionen

• Plage des résultats des fonctions trigonométriques inverses

• El rango de los resultados de funciones trigonométricas inversas

Gama dos resultados das trigonométricas inversas

• La gamma dei risultati di funzioni trigonometriche inverse

• Het bereik van de resultaten van inverse trigonometrie

• Az inverz trigonometriai funkciók eredmény-tartománya

Rozsah výsledků inverzních trigonometrických funkcí

Omfång för resultaten av omvända trigonometriska funktioner

Käänteisten trigonometristen funktioiden tulosten alue

• Område for resultater af omvendte trigonometriske funktioner

พิสัยของผลลัพทของพึงก์ชั่นครีโกนเมตริกผกผัน
 • نطاق نتائج الدول المثلثية المعكوسة

• Kisaran hasil fungsi trigonometri inversi

	$\theta = \sin^{-1}x, \ \theta = \tan^{-1}x$	$\theta = \cos^{-1}x$
DEG	$-90 \le \theta \le 90$	$0 \le \theta \le 180$
RAD	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$0 \le \theta \le \pi$
GRAD	$-100 \le \theta \le 100$	$0 \le \theta \le 200$

7 DRG

-		
$90^{\circ} \rightarrow [rad]$	ON/C 90 (2ndF) DRG>	$\frac{1}{2}\pi$
\rightarrow [g]	(2ndF) (DRG►)	100.
\rightarrow [°]	(2ndF) (DRG)	90.
$\sin^{-1} 0.8 = [^{\circ}]$	(2ndF) (sin ⁻¹) 0.8 =	53.13010235
\rightarrow [rad]	(2ndF) (DRG►)	0.927295218
\rightarrow [g]	(2ndF) DRG►	59.03344706
\rightarrow [°]	(2ndF) DRG•	53.13010235

ALPHA RCL S	STO) M+ M- ANS D1 D2	D3
$8 \times 2 \Rightarrow M$	ON/C 8 × 2 STO M	16.
24 ÷ (<u>8 × 2</u>) =	24 ÷ (ALPHA) M =	$1\frac{1}{2}$
(<u>8 × 2</u>) × 5 =	(ALPHA) M × 5 =	80.

$0 \Rightarrow M$	ON/C) STO M	0.
$150 \times 3 \Rightarrow M_1$	150 × 3 M+	450.
+) \$250: M_1 + 250 ⇒ M_2	250 M+	250.
-) $M_2 \times 5\%$	M S 2ndF % 2ndF M- %	35.
M =	RCL M	665.
\$1 = ¥110 (110 ⇒ Y)	110 (STO) Y	110.
¥26,510 = \$?	26510 ÷ RCL Y =	241.
\$2,750 = ¥?	2750 × RCL Y = 302	2'500.
$r = 3 \text{ cm} (r \Rightarrow Y)$	3 (STO) Y	3.
$\pi r^2 = ?$	$\begin{array}{c} \hline \pi & \text{(ALPHA)} & Y \\ \hline \chi^2 & = & \text{(HARGE)} \end{array} $ 28.2743	3388
$\frac{24}{4+6} = 2\frac{2}{5}\dots(A)$	24 ÷ (4 + 6) =	$2\frac{2}{5}$
$3 \times (A) + 60 \div (A) =$	$3 \times \text{(alpha)} \text{(ans)} + 60$ $\div \text{(alpha)} \text{(ans)} =$	$32\frac{1}{5}$
$sinh^{-1} \Rightarrow D1$	STO D1 2ndF arc hyp sin	
sinh ⁻¹ 0.5 =	D1 0.5 = 0.48121	1825

9		
6 + 4 = ANS	ON/C 6 + 4 =	10.
ANS + 5 =	+ 5 =	15.
$8 \times 2 = ANS$	8 × 2 =	16.
$ANS^2 =$	<u>X²</u> =	256.
44 + 37 = ANS	44 + 37 =	81.
$\sqrt{ANS} =$		9.

	ab/c	
$3\frac{1}{2} + \frac{4}{3} =$	ON/C 3 2ndF) ab/c 1 ▼ 2 + a/b 4 ▼ 3 =	$\blacktriangleright \qquad 4\frac{5}{6}$
	CHANGE	<u>29</u> 6
	CHANGE	4.8333333333
LINE	3 (a/b) 1 (a/b) 2 (+) 4 (a/b)	〕3 ── 4r5r6 [*]
	CHANGE	29-6
	CHANGE	4.8333333333
$10^{\frac{2}{3}} =$	(2ndF) (10 ^x) 2 (a/b) 3 (=)	4.641588834
$\left(\frac{7}{5}\right)^5 =$	7 (a/b) 5 () (yx) 5 (=)	<u>16807</u> 3125
LINE	7 (a/b) 5 y^{x} 5 =	16807-3125
$3\sqrt{\frac{1}{8}} =$	2ndF 3 1 a/b 8 =	<u>1</u> 2
$\sqrt{\frac{64}{225}} =$	√ 64 a/b 225 =	<u>8</u> 15
$\frac{2^3}{3^4} =$	2 (2ndF) (X ³) (a/b) 3 (y ^x) 4 (= $\frac{8}{81}$
LINE	2 (2ndF) (<i>X</i> ³) (<i>a/b</i>) (<i>J</i> (<i>y</i> ¹)	_4_) 8r81
$\frac{1.2}{2.3} =$	1.2 (a/b) 2.3 (=)	<u>12</u> 23
$\frac{1^{\circ}2'3''}{2} =$	1 (DM/S) 2 (DM/S) 3 (a/b) 2 (=) 0°31'1.5"
$\frac{1\times10^3}{2\times10^3} =$	1 (Exp) 3 (a/b) 2 (Exp) 3 (=	$\frac{1}{2}$
$7 \Rightarrow A$		7.
4 A	4 (a/b) (ALPHA) A (=)	<u>4</u> 7

$1.25 + \frac{2}{5} =$	= 1.25 + 2 a/b 5 =	1 <u>13</u> 20
	CHANGE	<u>33</u> 20
	CHANGE	1.65
LINE	1.25 + 2 a/b 5 =	1.65
	CHANGE	1-13-20
	CHANGE	33-20

 $*4r5r6 = 4\frac{5}{6}$

DEC (25) → BIN	ON/C 2ndF DEC 2 5 2ndF BIN	BIN	11001		
HEX (1AC)	2ndF) HEX 1 A C				
→ BIN	(2ndF) (+BIN)	BIN	110101100		
→ PEN	2ndF PEN	PEN	3203		
→ OCT	(2ndF) ►OCT	ОСТ	654		
→ DEC	(2ndF) DEC		428.		
(1010 – 100) × 11 = [BIN]	2ndF ← BIN (1010 — 100) × 11 =	BIN	10010		
BIN (111) → NEG	NEG 111 =	BIN	1111111001		
HEX (1FF) + OCT (512) =	2ndF ●HEX 1 F F 2ndF ●OCT + 512 =	ост	1511		
HEX (?)	2ndF HEX	HEX	349		
$2FEC - 2C9E \Rightarrow M_1$	ON/C STO M 2ndF HEX 2 F E C - 2 C 9 E M+	HEX	34 E		
+) 2000 – 1901 ⇒ M ₂	2000 — 1901 M+	HEX	6FF		
M =	RCL M ON/C STO M	HEX	A4D		
1011 AND 101 = [BIN]	2ndF →BIN 1011 AND 101 =	BIN	1		
5A OR C3 = [HEX]	2ndF ←HEX 5 A OR C 3 =	HEX	DB		
NOT 10110 = [BIN]	2ndF +BIN NOT 10110 =	BIN	1111101001		
24 XOR 4 = [OCT]	2ndF ←0CT 2 4 XOR 4 =	ОСТ	20		
B3 XNOR 2D = [HEX]	2ndF HEX B 3	HEX	FFFFFFF61		
→ DEC	(2ndF) DEC		-159.		

ON/C 7 (D°M'S) 31 (D°M'S) 49.44 (2ndF) ↔ DEG 7°31'49.44" → [10] 7<u>663</u> 1250 123.678 → [60] 123.678 (2ndF) 123°40'40.8" ► DEG 3 (DMS) 3 (0 (DMS) 45 (+) 6 (DMS) 45 (DMS) 36 (=) 3h 30m 45s + 6h 45m 36s = [60] 10°16'21." 1234°56'12" + 0°0'34.567" = [60] 1234 (DMS) 56 (DMS) 12 + 0 (DMS) 0 (DMS) 34.567 = 1234°56'47." 3h 45m – 1.69h = [60] 2°3'36." sin 62°12'24" = [10] (sin 62 (D'M'S) 12 (D'M'S) 24 (=) 0.884635235 $\textcircled{3} \rightarrow r_{\theta} \rightarrow xy (\dot{x}, y)$ x = 6 r = 1ON/C 6 (\vec{x}, \vec{y}) 4 r: 7.211102551

$\begin{pmatrix} x = 0 \\ y = 4 \end{pmatrix} \rightarrow \begin{pmatrix} y = 1 \\ \theta = [^{\circ}] \end{pmatrix}$	$2ndF \rightarrow r\theta$	θ:	33.69006753
$\begin{pmatrix} r = 14 \\ \theta = 36 \ [^{\circ}] \\ \end{pmatrix} \begin{pmatrix} x = \\ y = \\ \end{pmatrix}$	$\begin{array}{c} 14 (x,y) 36 \\ (2ndF) \rightarrow xy \end{array}$	X: Y:	11.32623792 8.228993532

(MDF) (SET UP)

$5 \div 9 = ANS$ $5 \div 9 = \frac{5}{5}$ $ANS \times 9 = \times 9 = *1$ $5 \div 9 = \frac{5}{5}$ $5 \div 9 = \frac{5}{5}$ $5 \div 9 = \frac{5}{5}$ $6.$ $ANS \times 9 = \times 9 = *2$ $ANS \times 9 = \times 9 = *2$ $5 \div 9 = 5 = \frac{5}{5}$ $6.$ $ANS \times 9 = \times 9 = *2$ $5 \div 5 = 5 = \frac{5}{5}$ $6.$ $6.$ $7 = 5 \div 9 = 5$ $7 = 5 = \frac{5}{5}$ $6.$ $6.$ $7 = 5 \div 9 = 5$ $7 = 5 = \frac{5}{5}$ $6.$ $7 = 5 \div 9 = 5$ $7 = 5 = \frac{5}{5}$ $6.$ $7 = 5 \div 9 = 5$ $7 = 5 = \frac{5}{5}$ $6.$			
ANS \times 9 = \times 9 = $^{\times 1}$ 5. 5 \div 9 = $\frac{5}{5}$ (MDF] ANS \times 9 = \times 9 = $^{\times 2}$ 5. (MDF] ANS \times 9 = \times 9 = $^{\times 2}$ 5. (MDF) \times 9 = $^{\times 2}$ 5. (MDF) \times 9 = $^{\times 2}$ 5.	\rightarrow [FIX, TAB = 1		0.0
ANS \times 9 = \times 9 = *1 5. 5 \div 9 = $\frac{5}{5}$ (MDF] 2ndF MDF $\frac{3}{5}$ ANS \times 9 = \times 9 = *2 5. (MDE) 5.	$5 \div 9 = ANS$	5 ÷ 9 =	<u>5</u> 9
$\Rightarrow [MDF] \qquad \boxed{2ndF MDF} \qquad \boxed{\frac{2}{5}}$ $ANS \times 9 = \times 9 = *^{2} \qquad 5 = \frac{5}{5}$ $\boxed{(MDF)} \qquad \boxed{(MDF)} \qquad \boxed{\frac{3}{5}}$ $\boxed{(MDF)} \qquad \boxed{(MDF)} $		CHANGE	0.6
$\rightarrow [MDF] \qquad (MDF) \qquad (M$	$ANS \times 9 =$	× 9 = *1	5.0
→ [MDF] $(2ndF) MDF$ $-\frac{3}{5}$ ANS × 9 = × 9 = *2 5 $\frac{2}{5}$		5 ÷ 9 =	<u>5</u> 9
ANS \times 9 = \times 9 = $*^2$ 5 $\frac{2}{5}$		CHANGE	0.6
(CHÂGE) CHÂRE 5.	→ [MDF]	2ndF) (MDF)	<u>3</u> 5
(CHÂGE) CHÂRE 5.	$ANS \times 9 =$	× 9 = *2	$5\frac{2}{5}$
→ [NORM1] SETUP 1 3 5.		CHANGE CHANGE	5.4
	→ [NORM1]	SET UP 1 3	5.4

$1 \frac{5}{9} \times 9 = 5.55555555555555 \times 10^{-1} \times 9$

 $\frac{2}{5} \times 9 = 0.6 \times 9$

	$ \begin{array}{c} \text{DATA} & (x,y) \\ \hline sy & \nabla y \\ \hline x' & y' \end{array} $	\overline{x}	$\begin{array}{c} SX \\ \nabla \\ \nabla \\ \Sigma \\ \Sigma$	n $\Sigma \lambda$ r a	$\sum \sum \chi^2 $ b	y c
	DATA		MODE 1 0 2ndF CA	Stat	0 [SD]	0.
	— DATA — 95		95 (DATA)	DATA	SET=	1.
	80		80 (DATA)	DATA	SET=	2.
	80		DATA	DATA	SET=	3.
	75 75 75		75 (x,y) 3 (DATA	DATA	SET=	4.
	50		50 (DATA)	DATA	SET=	5.
\overline{x}	=		\boxed{RCL} $\boxed{\overline{x}}$	$\overline{x} = 7$	5.71428	571
σ	x =		RCL Ox	σ <i>x</i> = 12	2.37179	148
n	=		RCL	n=		7.
Σ	x =		$\boxed{RCL} \underbrace{\Sigma X}$	$\Sigma x =$:	530.
Σ	$x^2 =$		$\boxed{RCL} \underbrace{\Sigma \mathcal{X}^2}$	$\Sigma x^2 =$	41'	200.
S.	x =		RCL SX	sx= ´	13.3630	621
S.	$x^2 =$		<u>X²</u> =	$sx^2 = 17$	78.5714	286
95 – sx	$\frac{\overline{x}}{\overline{x}}$ × 10 +	- 50 =	$(95 - $ $ALPHA \overline{x})$ $\div ALPHA SX$ $\times 10 +$			- 0 <i>i</i>

50 = 64.432					321	0706		
_	_ DA		(MODE) 1 1	Sta	t	1	[LI	NE]
	x	y						0.
	2	5	2 (x,y) 5 (DATA)	D A T	A	SE	ET=	1.
	2	5	DATA	D A T	A	SE	E T =	2.
	12	24	12 (<i>i</i> , <i>y</i>) 24 (DATA)	D A T	A	SE	E T =	3.
	21 21 21	40 40 40	21 (x,y) 40 (x,y) 3 DATA	D A T	A	SE	ET=	4.
	15	25	15 (x,y) 25 (DATA)	DAT	A	SE	ET=	5.
	<i>a</i> =		RCLa	a=	1.	05	026	1097
	<i>b</i> =		RCL b	<i>b</i> =	1.	82	604	4386
	<i>r</i> =		RCL	r=	0.	99	517	6343
	sx =	=	RCL SX	sx=	8.	54	121	6597
	sy =	=	RCL Sy	sy=	1	5.6	722	3812
х	= 3 -	• y´=?	3 (2ndF) (y')	3 y´	6.	52	839	4256
y	= 46 -	$\rightarrow x' = 7$	2 46 (2ndF) (X')	46 <i>x´</i>	2	4.6	159	0706

_	— DA	TA —		Stat	2 [QUAD]	
	x	у				0.
	12	41	12 (x,y) 41 (DATA)	DATA	SET=	1.
	8	13	8 (<i>i</i> , <i>y</i>) 13 DATA	DATA	SET=	2.
	5	2	5 (<i>i</i> , <i>y</i>) 2 (DATA)	DATA	SET=	3.
	23	200	23 (<i>x,y</i>) 200 DATA	DATA	SET=	4.
	15	71	15 (<i>x</i> , <i>y</i>) 71 (DATA)	DATA	SET=	5.
	<i>a</i> =		RCLa	a=	5.3575067	61
	b =		RCL b	<i>b</i> =	-3.1202896	63
	<i>c</i> =		RCLC	c=	0.5033340	57
x	= 10 -	→ y´=?	10 (2ndF) (y')	10y´	24.48801	59
у	= 22 -	→ x´=?	2 2 (2ndF) X'		9.632014 -3.4327720	

		Stat	0 [SD]	0.
- DATA -				υ.
20	20 (DATA)		SET=	1.
30	30 (DATA)		SET=	2.
40			SET=	3.
40				
50	50 (DATA)	DATA	SET=	
Ļ				
-DATA -				
			с г т_	-
30		DATA	SEI=	3.
45	• • • • • • • • • •	Х:		45.
45	3 (DATA)	F:∎		3.
45				
60	• 60 DATA	Х:		60.

$$\overline{x} = \frac{\Sigma x}{n}$$

$$sx = \sqrt{\frac{\Sigma x^2 - n\overline{x}^2}{n - 1}}$$

$$\overline{y} = \frac{\Sigma y}{n}$$

$$sy = \sqrt{\frac{\Sigma y^2 - n\overline{y}^2}{n - 1}}$$

$$\sigma x = \sqrt{\frac{\Sigma x^2 - n\overline{x}^2}{n}}$$

$$\sum_{i=1}^{\infty} x = x_1 + x_2 + \dots + x_n$$

$$\sum_{i=1}^{\infty} x^2 = x_1^2 + x_2^2 + \dots + x_n^2$$

$$\sigma y = \sqrt{\frac{\Sigma y^2 - n\overline{y}^2}{n}}$$

$$\begin{split} & \Sigma xy = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \\ & \Sigma y = y_1 + y_2 + \dots + y_n \\ & \Sigma y^2 = y_1^2 + y_2^2 + \dots + y_n^2 \end{split}$$

B		
Function keys Funktionstasten Touches de fonction Teclas de función Teclas de função Tasti di funzione Functietoetsen Függvénybillentyűk Tlačítka funkcí Funktionstangenter Funktionstangenter Funktionstaster ປຸກສັງຄັ້ນ ລະເມັນ Tombol fungsi	Display Anzeige Affichage Visualizador Exibição Display Display Kijelző Zobrazení Visning Näyttö Display חזגעמסאשמ آلشاشا Tampilan	Buffer space* Pufferplatz* Espace tampon* Espacio de memoria intermediaira* Espaço na memória intermediária* Memoria tampone* Bufferruimte* Pufferterület* Vyrovnávací pamět* Buffertutrymme* Puskuritila* Bufferplads* ຈຳມວນນັ້ຟເฟອร໌* ຂຸ້ມເມ່ວຍູ້ຍື=* Ruang buffer*
$2ndF$ x^{-1}		1
	□ □2	1
2ndF) X ³	□ □	1
		· · · · · · · · · · · · · · · · · · ·
<u>(yx</u>)		5
$(2ndF) (log_a X)$	$\log_{\Box}(\Box)$	7
$(2ndF) e^x$	e□	5
$(2ndF)$ (10^{x})	10	5
$\overline{\checkmark}$	$\sqrt{\Box}$	5
[2ndF] [3√]	3√□	5
2ndF) [x]		7
a/b / $(2ndF)$ $a_{b/c}$		7
2ndF abs		5
	()	4

* The amount of memory used for the sake of display in the WriteView editor, measured in characters (excluding entered values, denoted in the chart by "
⁽¹⁾).
* Der für die Anzeige in WriteView Editor verwendete

- * Der für die Anzeige in WriteView Editor verwendete Speicherplatz, gemessen in Zeichen (ohne die eingegebenen Werte, die in der Tabelle mit "□" markiert sind).
- * Espace mémoire utilisé pour préserver l'affichage dans l'éditeur WriteView, mesuré en caractère (à l'exception des valeurs
- d'entrée, indiquées dans le tableau par "[]"). * La cantidad de memoria usada para visualizar en el editor Write View, medida en caracteres (excluyendo los valores introducidos, indicados en el grafico mediante "[]").
- * A quantidade de memória que é usada para a exibição no editor WriteView, medida em caracteres (excluindo os valores introduzidos, indicados no quadro por "
 ⁽¹⁾).
 * La quantità di memoria utilizzata per la visualizzazione nell'editor
- * La quantità di memoria utilizzata per la visualizzazione nell'edito WriteView, misurata in caratteri (escludendo i valori inseriti, indicati nella tabella con il simbolo "
]".
- * De hoeveelheid geheugen dat wordt gebruikt om de WriteView editor weer te geven, gemeten in symbolen (met uitzondering van ingevoerde waarden aangeduid in de grafiek met "[]")
- van ingevoerde waarden aangeduid in de grafiek met "
]"). * A WriteView szerkesztő megjelenítési műveleteire használatos memóriaterület, karakterben kifejezve (az ábrán "
]" karakterrel jelölt beviteli értékeket nem számítva).
- * Množství paměti využívané pro účely zobrazení v editoru WriteView, vyjádřené počtem znaků (vyjma zadaných hodnot, označených v grafu znakem "□").
 * Den mängd minne som används för visning med WriteView-
- * Den mängd minne som används för visning med WriteViewredigeraren, mätt i antalet tecken (exklusive inmatade värden, vilka anges som "
]" i tabellen).
- * Näytön WriteView-editorissa käyttämä muisti merkkeinä
- laskettuna (pois lukien syötetyt arvot, taulukossa merkitty "
]").
 * Den mængde hukommelse, der bruges til visning i WriteVieweditoren, målt i tegn (med undtagelse af indtastede værdier, der angives med ...]" i tabellen).
- * จำนวนหนวยความจำ,หนวยเป็นตัวอักษร,ที่ถูกใช้สำหรับการแสดงผล ในWriteView(ไมนับคาที่ป้อนซึ่งแสดงโดย"⊟"ในตาราง)

* كمية الذاكرة المستعملة لغرض العرض في برنامج محرر WriteView، مقاسة بالاحرف

والرموز (باستثناء القيم التي تم ادخالها، ألشار أليها في الجدول بالعلامة "]"). * Jumlah memori yang digunakan untuk kepentingan tampilan dalam editor WriteView, diukur dalam jumlah karakter (tidak termasuk nilai yang dimasukkan, ditunjukkan dalam diagram dengan "]")

Function function f	
$\begin{array}{c} (\tan x: x \neq 90(2n-1))^* \\ \text{RAD:} x < \frac{\pi}{180} \times 10^{10} \\ (\tan x: x \neq \frac{\pi}{2}(2n-1))^* \\ \text{GRAD:} x < \frac{10}{9} \times 10^{10} \\ (\tan x: x \neq 100(2n-1))^* \\ \hline \\ \sin^{-1}x, \cos^{-1}x \qquad x \leq 1 \\ \hline \\ \tan^{-1}x, \sqrt[3]{x} \qquad x < 10^{100} \\ \ln x, \log_x, \log_a x \qquad 10^{-99} \leq x < 10^{100}, 10^{-99} \leq a < 10^{100} (a = \frac{1}{2})^* \\ y > 0: -10^{100} < x \log y < 100 \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ y = 0: 0 < x < 10^{100} \\ x \sqrt{y} \\ \begin{array}{c} x \sqrt{y} \\ x \sqrt{y} \\$	ıy
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c} & \begin{array}{c} \cdot y > 0: \ -10^{100} < x \log y < 100 \\ \cdot y = 0: \ 0 < x < 10^{100} \\ \cdot y < 0: \ x = n \\ & (0 < x < 1: \frac{1}{x} = 2n - 1, x \neq \\ -10^{100} < x \log y < 100 \end{array}$	$7 \neq 1$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 0)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c} \cosh^{-1}x & 1 \leq x < 10^{50} \\ \hline \tanh^{-1}x & x < 1 \\ \hline x^2 & x < 10^{50} \\ \hline x^3 & x < 2.15443469 \times 10^{33} \\ \hline \sqrt{x} & 0 \leq x < 10^{100} \\ \hline x^{-1} & x < 10^{100} (x \neq 0) \\ n! & 0 \leq n \leq 69^* \\ \hline nPr & \begin{matrix} 0 \leq r \leq n \leq 9999999999^* \\ nPr & \begin{matrix} 0 \leq r \leq n \leq 9999999999^* \\ n(n-r)! < 10^{100} \\ \hline 0 \leq r \leq 69 \\ \hline n! \\ (n-r)! < 10^{100} \\ \hline \end{array}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
nPr $0 \le r \le n \le 99999999999^*$ $n! (n-r)! < 10^{100}$ nCr $0 \le r \le n \le 99999999999^*$ $0 \le r \le 69$ $n! (n-r)! < 10^{100}$ $\leftrightarrow DEG, D^{\circ}M'S$ $0^{\circ}0'0.00001'' \le x < 10000^{\circ}$ $x, y \to r, \theta$ $\sqrt{x^2 + y^2} < 10^{100}$ $r, \theta \to x, y$ $0 \le r < 10^{100}$ DEG: $ \theta < 10^{10}$ DEG: $ \theta < 10^{10}$ GRAD: $ \theta < \frac{\pi}{180} \times 10^{10}$ DRG DEG \to RAD, GRAD \to DEG: $ x < 10^{10}$	
$ \frac{n^{P}r}{(n-r)!} < 10^{100} $ $ \frac{n^{Q}r}{(n-r)!} < 10^{100} $ $ \frac{0 \le r \le n \le 99999999999}{0 \le r \le 69} $ $ \frac{n!}{(n-r)!} < 10^{100} $ $ ↔ DEG, D^{\circ}M'S $ $ \frac{0^{\circ}0'0.00001'' \le x < 10000^{\circ}}{x, y \to r, \theta} $ $ \frac{\sqrt{x^{2} + y^{2}} < 10^{100}}{DEG: \theta < 10^{10}} $ $ \frac{0 \le r < 10^{100}}{DEG: \theta < 10^{10}} $ $ \frac{RAD: \theta < \frac{10}{9} \times 10^{10}}{GRAD: \theta < \frac{10}{9} \times 10^{10}} $ $ \frac{DEG \to RAD, GRAD \to DEG: x < 10^{10}}{RAD \to GRAD: x < \frac{\pi}{2} \times 10^{98} } $	
nCr $ \frac{0 \le r \le 69}{\frac{n!}{(n-r)!} < 10^{100}} $ →DEG, D°M'S $x, y \to r, \theta$ $\sqrt{x^2 + y^2} < 10^{100}$ $x, y \to r, \theta$ $\sqrt{x^2 + y^2} < 10^{100}$ DEG: $ \theta < 10^{10}$ $perform RAD: \theta < \frac{\pi}{180} × 10^{10}$ GRAD: $ \theta < \frac{10}{9} × 10^{10}$ DRG DEG → RAD, GRAD → DEG: $ x < 10$ RAD → GRAD: $ x < \frac{\pi}{2} × 10^{98}$	
x, y \rightarrow r, \theta $\sqrt{x^2 + y^2} < 10^{100}$ $0 \le r < 10^{100}$ $0 \le r < 10^{100}$ DEG: $ \theta < 10^{10}$ $ \theta < \frac{\pi}{180} \times 10^{10}$ GRAD: $ \theta < \frac{10}{9} \times 10^{10}$ $ \theta < \frac{10}{9} \times 10^{10}$ DRG \triangleright DEG \rightarrow RAD, GRAD \rightarrow DEG: $ x < 10^{10}$	
$r, \theta \rightarrow x, y$ $0 \le r < 10^{100}$ $DEG: \theta < 10^{10}$ $RAD: \theta < \frac{\pi}{180} \times 10^{10}$ $GRAD: \theta < \frac{10}{9} \times 10^{10}$ $DEG \rightarrow RAD, GRAD \rightarrow DEG: x < 10$ $RAD \rightarrow GRAD: x < \frac{\pi}{2} \times 10^{98}$	
$r, \theta \rightarrow x, y$ $DEG: \theta < 10^{10}$ $RAD: \theta < \frac{\pi}{180} \times 10^{10}$ $GRAD: \theta < \frac{10}{9} \times 10^{10}$ $DEG \rightarrow RAD, GRAD \rightarrow DEG: x < 10$ $RAD \rightarrow GRAD: x < \frac{\pi}{2} \times 10^{98}$	
$DRG \blacktriangleright RAD \to GRAD: x < \frac{\pi}{2} \times 10^{98}$	
→ DEC $DEC: x \le 99999999999$	10 ¹⁰⁰
→ BIN BIN: 100000000 ≤ x ≤ 1111111111 → PEN $0 ≤ x ≤ 1111111111$ → OCT PEN: 222222223 ≤ x ≤ 4444444444 → HEX $0 ≤ x ≤ 2222222222$ AND OCT: 400000000 ≤ x ≤ 777777777 OR $0 ≤ x ≤ 3777777777$ XOR HEX: FDABF41C01 ≤ x ≤ FFFFFFFF XNOR $0 ≤ x ≤ 2540BE3FF$	14 77

NOT	BIN: $100000000 \le x \le 1111111111$ $0 \le x \le 111111111$ PEN: $222222223 \le x \le 444444444$ $0 \le x \le 222222221$ OCT: $400000000 \le x \le 7777777777$ O $\le x \le 3777777777777777777777777777777777$
NEG	BIN: 100000001 $\le x \le 1111111111$ $0 \le x \le 111111111$ PEN: 222222233 $\le x \le 444444444$ $0 \le x \le 222222222$ OCT: 4000000001 $\le x \le 77777777777777777777777777777777$

* n, r: integer / ganze Zahlen / entier / entero / intero / intero / geheel getal / egész számok / celé číslo / heltal / kokonaisluku / heltal / _{ຈຳນວນເຫີນ} / ^ຈຳນວນເຫີນ / bilangan bulat

Nur für Deutschland/For Germany only:

Umweltschutz

Das Gerät wird durch eine Batterie mit Strom versorgt. Um die Batterie sicher und umweltschonend zu entsorgen, beachten Sie bitte folgende Punkte:

- Bringen Sie die leere Batterie zu Ihrer örtlichen Mülldeponie, zum Händler oder zum Kundenservice-Zentrum zur Wiederverwertung.
- Werfen Sie die leere Batterie niemals ins Feuer, ins Wasser oder in den Hausmüll.

Seulement pour la France/For France only:

Protection de l'environnement L'appareil est alimenté par pile. Afin de protéger l'environnement, nous vous recommandons:

- d'apporter la pile usagée ou à votre revendeur ou au service après-vente, pour recyclage.
- de ne pas jeter la pile usagée dans une source de chaleur, dans l'eau ou dans un vide-ordures.

Endast svensk version/For Sweden only:

Miljöskydd

Denna produkt drivs av batteri.

- Vid batteribyte skall följande iakttagas: • Det förbrukade batteriet skall inlämnas till batteriinsamling
- eller till kommunal miljöstation för återinssamling.
- Kasta ej batteriet i vattnet eller i hushållssoporna. Batteriet får ej heller utsättas för öppen eld.

For Europe only:

SHARP ELECTRONICS (Europe) GmbH Sonninstraße 3, D-20097 Hamburg

SHARP CORPORATION

OPMERKING: ALLEEN VOOR NEDERLAND/ NOTE: FOR NETHERLANDS ONLY

For Australia/New Zealand only: For warranty information please see <u>www.sharp.net.au</u>.