
BASIC-SO
REFERENCE MANUAL

Manual Order No. 9800758-02

Copyright © 1978, 1979 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 r

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose.. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i
ICE
iCS
Insite
Intel
Intelevision
Intellec

iSBC
Library Manager
MCS
Megachassis
Micromap
Multibus

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

Multirnodule
PROMPT
Prornware
RMX
UPI
~Scope

A108/0979/7500 FL

PREFACE

This manual describes and explains the features and conventions of Intel Disk Ex­
tended BASIC-80, as implemented on Intel Intellec microcomp~ter development
systems using the Intel Systems Implementation Supervisor (ISIS-II), and on Intel
Single Board Computer Systems using the Intel Real-Time Multitasking Executive
(RMX-80).

This manual is written for users who require concise, complete information about
Intel BASIC-80 characteristics, and organizes this information into seven chapters
and five appendices;

"Introduction" describes the general capabilities of BASIC-80, and its operating en­
vironment.

"Language Elements" describes the ways BASIC-80 represents its instructions, con­
stants, variables, arrays, operators, and expressions.

"Entering and Editing Programs" shows how you enter text and edit it, at time of
entry or after storage.

"Error Handling" shows how errors are identified, trapped, and used to initiate
error-resolving routines.

"Disk File Input/Output" describes and sh0ws how random and sequential data
files are created and used.

"Commands and Statements" describes each command and statem~nt in alphabetic
order.

"Functions" describes each function in alphabetic order.

"Appendix A: BASIC-80 Error Codes" lists all BASIC-80 error messages, descrip­
tions, and codes in tabular format.

"Appendix B: BASIC-80 Reserved Words" lists words that cannot be used in
variable names.

"Appendix C: BASIC-80 Command Characters" lists BASIC-80 one-character
editing and control characters and their meanings.

"Appendix D: ASCII Codes" lists ASCII codes and their meanings.

"Appendix E: Calling Non-BASIC-80 Subroutines" shows how to prepare and call
PL/M-80, FORTRAN-80, and 8080/S085 assembly language subroutines.

"Appendix F: Configuring RMX-80 BASIC-80" shows how to configure BASIC-80
with various hardware systems using RMX-SO.

Other Relevant Intel Publications:

The following manuals are required to use BASIC-80 with ISIS-Il or RMX-80:

• ISIS-II User's Guide, 9800306, which describes how to operate the Intel
Systems Implementation Supervisor" operating system (ISIS-II).

iii

iv

• RMX-80 User's Guide, 9S00522, which describes how to operate the Intel
Real-Time Mulitasking Executive (RMX-SO).

• RMX-80 Installation Guide, 9803087-01, which describes installation and
operation of the Intel Real-Time Multitasking Executive.

The following manuals may be required if you intend to call subroutines written in
other Intel-supported languages:

• 8080/8085 Assembly Language Programming Manual, 9800301, which
describes the instructions and directives of the 8080/8085 assembler.

• 8080/8085 Macro Assembler Operator's Manual, 9800292, which describes how
to assemble (using ISIS-II) a program written in S080/S085 assembly language.

• PL/M-80 Programming Manual, 9S00268, which describes the instructions,
conventions, and usage of PL/M-SO, and how to create PL/M-80 programs.

• ISIS-II PL/M-80 Compiler Operator's Manual, 9800300, which describes how
to use the ISIS-II based PL/M compiler to generate executable machine code.

• FORTRAN-80 Programming Manual, 9800481, which describes the
instructions, conventions, and usage of FORTRAN-80, and how to create
FORTRAN-SO programs.

• ISIS-II FOR TRAN-80 Compiler Operator's Manual, 9800480, which describes
how to use the ISIS-II based FORTRAN-SO compiler to generate executable
machine code.

The following manuals are required to implement the RMX-80 sample configuration
of BASIC-80 described in Appendix F:

• iSBC 80/30 Single Board Computer Hardware Reference Manual, 9S00611,
which describes how to configure the iSBC 80/30 under RMX-80.

• iSBC 016 Random Access Memory Board Hardware Reference
Manual, 9800279, which describes how to map memory to fit the sample
RMX-80 configuration.

• iSBC 204 Flexible Diskette Controller Hardware Reference Manual, 9S00568,
which describes how to configure the iSBC 204 for the sample RMX-80
configuration.

• iSBC 80/10 Hardware Reference Manual, 9S00230.

• iSBCBO/10A Hardware Reference Manual, 9S00230.

• iSBC 80/20 Hardware Reference Manual, 9S00317.

• iSBC 80/20-4 Hardware Reference Manual, 9S00317.

CHAPTER! PAGE
INTRODUCTION TO BASIC-SO
Operating System Interface .. 1-1

Invoking BASIC-80 1-1
Manipulating Files from BASIC-80 1-2

Listing the Directory of a Disk. 1-3
Renaming a File. .. 1-3
Changing File Attributes 1-3
Deleting a File .. 1-3

Loading a Program. .. 1-4
Saving a Program .. 1-4

CHAPTER 2
LANGUAGE ELEMENTS
Instructions .. 2-1

Commands. .. 2-1
Statements. .. 2-1
Functions 2-5

Representing Data 2-5
Syntax ... 2-5
Numeric Data 2-5

Constants. .. 2-6
Integer Constants 2-6
Decimal Integer Constants. 2-6
Hexadecimal Integer Constants. 2-6
Octal Integer Constants .. 2-7
Single-Precision Floating-Point Constants 2-7
Double-Precision Floating-Point Constants 2-7

Variables 2-7
String Data 2-8

String Constants .. 2-8
String Variables 2-8

Converting Data .. 2-9
Array Variables 2-9

String Arrays 2-10
Operators and Precedence of Evaluation. 2-11

Arithmetic Operators .. 2-11
Relational Operators. .. 2-11
Logical Operators .. 2-12
String Operator 2-12

Expressions 2-12
Numeric Expressions 2-12
String Expressions. .. 2-12

CHAPTER 3
ENTERING AND EDITING PROGRAMS
Entering Instruction Lines. .. 3-1
Correcting Entry Errors. .. 3-1
Editing Program Text. .. 3-2

D Subcommand 3-3
L Subcommand 3-4
I Subcommand 3-4
H Subcommand. .. 3-4
X Subcommand. .. 3-4
S Subcommand 3-5
K Subcommand. .. 3-5
C Subcommand. .. 3-6
Q Subcommand 3-6

CONTENTS

PAGE

A Subcommand. .. 3-6
E Subcommand. .. 3-6
Carriage Return. .. 3-6

CHAPTER 4
ERROR HANDLING
BASIC-80 Error Messages. .. 4-1

Syntax Error Messages. .. 4-1
Overflow, Underflow, and Divide-by-Zero 4-1

Overflow 4-1
Underflow 4-2
Divide-by-Zero .. 4-2

Integer Operations 4-2
Error Trapping 4-2

Trace Facility. .. 4-3
Error Simulation. .. 4-4
Restarting Program Execution 4-4

CHAPTER 5
DISK FILE INPUT IOUTPUT
Sequential File I/O .. 5-1

Opening a Sequential File. .. 5-1
Writing to a Sequential File. 5-2
Reading from a Sequential File. 5-2
Closing a Sequential File 5-3

Random File I/O 5-4
I/O Buffers .. 5-4
Defining a Random I/O Field-FIELD 5-4
Opening and Closing a Random Disk File. 5-6
Reading from a Random I/O File 5-6
Writing to a Random I/O File 5-7

CHAPTER 6
COMMANDS AND STATEMENTS

CHAPTER 7
FUNCTIONS

APPENDIX A
BASIC-SO ERROR CODES

APPENDIXB
BASIC-SO RESERVED WORDS

APPENDIXC
BASIC-SO COMMAND CHARACTERS

APPENDIXD
ASCII CODES

APPENDIXE
CALLING NON-BASIC-SO SUBROUTINES

APPENDIXF
RMX/80 BASIC-80

v

FIGURE TITLE PAGE

5-1 Random 1/0 Characteristics ' 5-5
E-l Intel Numeric Representation E-3
E-2 8080/8085 Assembly Language Program E-5
E-3 PL/M-80 Program. .. E-6
E-4 FORT~AN-80 Program E-6
F-l Sample Configuration BQOPS.ASM Module F-6
F-2 Sample Configuration GBOOT.CSD Module F-7
F-3 Sample Configuration GBASIC.CSD Module ... F-8

TABLE TITLE PAGE

2-1 BASIC-80 Commands 2-1
2-2 BASIC-80 Statements. .. 2-2
2-3 BASIC-80 Functions 2-3
2-4 BASIC-80 Metalanguage Elements. 2-5
2-5 Numeric Data Types 2-6
2-6 BASIC-80 Operators in Order of Precedence ... 2-10

vi

ILLUSTRATIONS

FIGURE TITLE PAGE

F-4 Sample BQOPS.ASM Module for PROM-Based
BASIC-80 F-9

F-5 Sample GBASIC.CSD Module for PROM-Based
RMX/80 BASIC-80 F-IO

F-6 Sample BQOPS.ASM Module for PROM-Based
iSBC 80/10 BASIC-80 F-IO

F-7 GBASIC.CSD Module for PROM-Based
iSBC 80/10 BASIC-80 ' F-ll

F-8 Sample User-Written 110 Driver Routine F-15

TABLES

TABLE TITLE PAGE

3-1 BASIC-80 Editing Subcommands 3-2
A-I BASIC-80 Error Codes A-I
D-l ASCII Code List. .. D-l
D-2 ASCII Code Definition. .. D-2
F-l Sample Configuration Jumper Wiring F-3
F-2 Sample Configuration Memory Requirements .. F-16

CHAPTER 1
INTRODUCTION TO BASIC-80

BASIC-SO is Intel's implementation of disk extended BASIC for Intellec and Intellec
Series II Microcomputer Development Systems, which use the Intel Systems Im­
plementation Supervisor (ISIS-II), and for Intel Single Board Computers, which use
Intel's Real-Time Multitasking Executive (RMX/SO). It offers a quick method of
applying the computational and input! output capabilities of the microcomputer
development system to a wide range of business, information handling, numeric
analysis, and data processing applications.

BASIC-SO can be used with either the ISIS-II or RMX/SO operating systems. Re­
quirements for ISIS-II BASIC-80 include an Intellec Microcomputer Development
System with at least 4SK of memory space, and one disk drive. RMX/SO BASIC-SO
requirements, both hardware and software, are described in Appendix F of this
manual.

BASIC-SO includes 21 commands, 39 statements, 4S functions, a line-editing
capability, and full disk I/O (both sequential and random access). In addition, user­
written functions can be defined, and up to 25 subroutines can be written in other
Intel-supported languages (FORTRAN-SO, PL/M-SO, and SOSO/SOS5 assembly
language) and called from BASIC-SO.

Intel integer, single-precision floating-point, and double-precision floating-point
arithmetic standards are all supported, offering flexible combinations of processing
speed and accuracy (up to 16 digits in the range ± 2.2 x -308 to ± 1.S x 10308

). Arrays
can have virtually as many dimensions as needed; the only limit on the number of
dimensions that can be specified is the 255-character program statement length.

Hexadecimal and octal integer representation, combined with bitwise Boolean
logical operators, make sophisticated mask operations easy. A full range of string
functions is available to provide flexibility in manipulating character data.

The disk I/O features include not only the ability to read from and write to disk
files, but also the ability to create, rename, change the attributes of, delete, and list
the directory of disk files without returning to the operating system.

BASIC-SO requires an Intellec or Intellec Series II microcomputer development
system with at least 4SK RAM and ISIS-II operating system (version 3.4 or later).

Operating System Interface

You can invoke BASIC-SO from ISIS-II, or configure RMX-SO BASIC-SO in PROM
for boot loading upon restart. Once BASIC is running, you have access to many of
the disk file-handling functions as well as the ability to load and save programs.

Invoking BASIC-80

Once you configure RMX/SO BASIC-SO, you will always enter BASIC-SO upon
restart.

1-1

Introduction to BASIC-80

1-2

To invoke BASIC-80 from ISIS-II, enter the name of the file that contains the
BASIC interpreter. Options also allow you to specify the name of a file that contains
a program to be loaded after BASIC-80 is running, and upper memory limit for
BASIC-80's work area. The format of the command is:

-BASIC [filename] [MEMTOP(address)]

is the ISIS-II command prompt. It is displayed automatically before you
enter the command.

BASIC

specifies the name of the file that contains the BASIC-SO interpreter.

filename

is an optional parameter that specifies the name of a file that is to be
loaded and run after BASIC-SO is running.

MEMTOP(address)

is an optional parameter that specifies the upper bound of the memory
that BASIC-80 can use. Address can be either a decimal or hexadecimal
number. It must be greater than 3800H plus the number of bytes in the
interpreter, and less than OBEBFH in a 48K system or OF6BFH in a 64K
system.

Examples

1. If the interpreter is in a file named BASIC on a disk in drive 0 enter:

-BASIC

2. If the situation is the same as 1, but you want to run a file named ANLYZE on
a disk in drive 1:

-BASIC :F1 :ANL YZE

3. If the situation is the same as 2, but you also want to prevent BASIC-80 from
using memory beyond address 54400:

-BASIC :F1 :ANLYZE MEMTOP(54400)

If a fatal ISIS-II error occurs while BASIC-80 is running, ISIS-II is re­
initialized and the contents of the BASIC-80 work area is lost, including any
program editing you have done since you last entered a save command.

Manipulating Files from BASIC-SO

BASIC-80 lets you list a disk directory, rename a file, change the attributes of a file,
and delete a file. These functions can also be performed using ISIS-II or RMX-80,
of course.

BAS IC-80

BASIC-SO Introduction to BASIC-SO

Listing the Directory of a Disk

To list the directory of a disk, enter DIR followed by the drive number. BASIC-80
assumes drive 0 if you don't specify:

DIR

NAME.EXT RECS LENGTH ATTR
ALPHA 31 3728
ATTRIB 38 4677
BASIC 178 22571
COpy 64 7967
DCOPY 32 3961
DELETE 37 4501
DIR 46 5728
DSORT 11 1264
EDIT .MAC 5 469
INDEX .I 46 5669
NED 79 469
RENAME 21 2438

Renaming a File

The RENAME command lets you change the name of any file from an old filename
to a new filename. The directory listing also changes to the new filename. In the ex­
ample below, file :FI:PROG changes to :FI:MYPROG:

RENAME ":F1 :PROG" to ":F1 :MYPROG"

Changing File Attributes

With the BASIC-80 A TTRIB command, you can protect a file from overwriting,
deletion, or being renamed by setting the write-protect attribute "W" . If you set the
invisibility attribute, "I", the file will not appear when the directory is listed. If you
set the format attribute, "F", the file will copy to a disk formatted with the IDISK
or FORMAT commands. The system attribute, "S", makes the specified file copy
to a disk when the disk is formatted by the FORMAT command or copied with the
COPY command.

For each attribute, the format is "XO" if the attribute is disabled, "Xl" if it is
enabled, where X is either W, I, S, or F. The format of A TTRIB is:

ATTRIB "filename", "XO"I"X1"

Deleting a File

If you want to get rid of a file or program, you can use the KILL command to delete
it and remove its listing from the directory. Once a file or program has been killed, it
cannot be recovered. The format of the KILL command is KILL followed by the
filename in quotation marks. For example, to delete a file named ANL YZ on the
disk in drive 1, enter:

KILL ":F1 :ANLYZ"

1-3

Introduction to BASIC-80

1-4

Loading a Program

The LOAD command loads a BASIC-SO program from disk. The program can be
stored in either ASCII or internal format. To load a program named ANL YZE from
a disk in drive 1:

LOAD ":F1 :ANLYZE"
OK

You can now run, list, or edit the program.

Saving a Program

The SAVE command copies your program from Intellec memory to disk. You must
specify a filename, enclosed in quotation marks:

SAVE ":F1 :ANLYZ"

The SAVE command can also be used to list the contents of the current file on a line
printer or other output device. For example, to list the current file on a line printer,
you would enter:

SAVE ":LP:" ,A

4"4;0"1"
You can only write data to one disk in any disk drive each time you invoke
BASIC. If you write to a disk in a given drive, remove that disk and insert
another, and try to write to the new disk, you lose all data on the new disk.
The exception to this is on systems with more than one drive. It is permissi­
ble to change a disk on a drive if that drive has not been written to since
another drive has been written to. As an example, if your BASIC-SO pro­
gram writes on a file in drive 0, and you then remove that disk, insert
another and write on it, the contents of that second disk will be lost. If,
however, your program wrote on a disk in drive 1 between writing on the
different disks in drive 0, there would be no problem.

There are no restrictions on reading from disks.

BASIC-80

CHAPTER 2
LANGUAGE ELEMENTS

A BASIC-80 program consists of instructions, which tell BASIC-80 what to do, and
data, which gives BASIC-80 the inform.ation necessary to do it. This chapter
describes the different types of instructions and data, and shows how to represent
them.

Instructions

BASIC-80 performs work by interpreting user-provided instructions. These instruc­
tions are divided into three categories: commands, statements, and functions. These
instruction types are described in the following topics; the individual instructions are
described in detail in Chapters 6 and 7.

Commands

Commands are executed as soon as you enter them; they alter or direct entire pro­
grams or files. Most commands can be used in program statements, but many of
them halt program execution and force variables to zero or null.

Table 2-1 lists the BASIC-80 commands.

Statements

Statements are executed when they are encountered during program execution. They
make up most of the instructions of a program. Most statements can be entered as
commands.

Table 2-2 lists the BASIC-80 statements.

Table 2-1. BASIC-SO Commands

Command Description Example

ATTRIB Changes the attributes of a file. ATTRIB "~F1 :STAT", "W1"

AUTO Automatically numbers program AUTO 25,500
statements.

CLEAR Sets aside memory for strings. CLEAR 2000

CONT Continues execution after BREAK. CONT

DELETE Deletes a line or lines from a DELETE 700~875
program.

DIR Displays a list of all non-invisible DIR1
files on a disk.

EDIT Specifies a program statement to EDIT 170
be changed.

EXIT Retu rns to operating system . EXIT

KILL Deletes a file from disk. KILL ":F1 :STAT"

LIST Displays a line or lines of a LIST 300-400
program.

LOAD Retrieves a file from disk. LOAD ":F1 :DATES"

Language Elements BASIC-80

Table 2-1. BASIC-80 Commands (Cont'd.)

Command Description Example

MERGE Combines file program with current MERGE ":F1:TIME"
program.

NEW Deletes current program, clears NEW
variables.

NULL Specifies nulls added to a line. NULL 20

PRUN Executes program in ROM. PRUN 4EOOH

RENAME Changes file name. RENAME ":F1 :SOUP" TO ":F1 :NUTS"

RENUM Changes program line numbers. RENUM

RUN Executes program. RUN

SAVE Stores program or file on disk. SAVE ":F1:INVEN"

TRON Turns on trace facility. TRON

TROFF Turns off trace facility. TROFF

WIDTH Changes width of display line. WIDTH 80

Table 2-2. BASIC-80 Statements

Statement Description Example

CLOSE Closes one or more files. CLOSE 3

DATA Identifies values that can be assigned DATA 9,0, "JUNE", .33
with a READ statement.

DEF Defines a user-written function. DEF FNRT (R1, R2)
= R1 *R2/(R1 + R2)

DEFDBL Defines variable names starting with DEFDBL R-Z
the given letter as double-precision
floating-point.

DEFINT Defines variable names starting with DEFINT I-N
the given letter as integer.

DEFSNG Defines variable names starting with DEFSNG B-H, X, Y
the given letter as single-precision
floating point.

DEFSTR Defines variable names starting with DEFSTR K-O
the given letter as string variable
names.

DEFUSR Defines non-BASIC subroutine. DEFUSR 0 = 4EOOH

DIM Allocates space for array variables. DIM char (25,10,25)

END Concludes program. END

ERROR Simulates errors with given error ERROR 12
number.

FIELD Allocates space in random file buffer. FIELD #3,20 AS A$

FOR-NEXT-STEP Creates a loop. FOR 1=1 TO 5 STEP.5
NEXTI

GET Retrieves data from disk file. GET#2,4

GOSUB Transfers execution to subroutine. GOSUB 550

GOTO Transfers execution to line number. GOT0400

IF-TH EN-ELSE When the expression specified is true, IF A>B THEN 2~0
the statement executes; if false, a ELSE PRINT ">"
second statement executes.

INPUT 1. Prompts for terminal input in INPUT A, B, C
program

2. Reads data from sequential file. INPUT #1, A$, B$, C$

LET Assigns value to variables. LET A=52

2-2

BASIC-SO

Statement

LINE INPUT

lSET

ON ERROR

ON-GOTO

ON-GOSUB

OPEN

OPTION BASE

OUT

POKE

PRINT

PRINT USING

PUT

RANDOMIZE

READ

REM

RESTORE

RESUME

RETURN

RSET

STOP

SWAP

WAIT

Functions

ABS

ASC

ATN

COSl

CHR$

CINT

COS

CSNG

CVD

CVI

CVS

Language Elements

Table 2-2. BASIC-80 Statements (Cont'd.)

Description

Enters entire line from a disk file.

left justifies text in random file buffer.

Traps errors by branching to
error-resolving routines.

Transfers execution to Xth line number
for expression X.

Transfers execution to Xth subroutine
for expression X.

Creates sequential or random disk files.

Starts arrays at 0 or 1.

Writes values to I/O ports.

Writes byte to memory location.

1. Displays text on terminal.
2. Stores data in sequential

disk file.

Displays text according to given format.

Stores data in random disk file.

Initializes random number generator.

Assigns values from DATA statements
to program variables.

Comments in program text

Resets pOinter for reading DATA
statements.

Restarts execution after errors.

Transfers control back to statement
following last GOSUB.

Right justifies text in random file buffer.

Halts program execution.

Exchanges values of two variables of
similar type.

Halts execution until port changes.

Example

LINE INPUT A$

LSET A$ = B$

ON ERROR GOTO 900

ON X GOTO 460, 480

ON X GOSUB 220, 240, 260

OPEN "R", 1, ":F1:TRACE"

OPTION BASEO

OUTOOFO,12

POKE OA077, 72

PRINT A, B, C
PRINT #4, A$, B$, C$

PRINT USING "$$##,##;
125.38,21.14.6.10

PUT #3, A$, B$ C$

RANDOMIZE

READ A, K1, l%, Z

10 REM THIS IS
20 REM A REMARK

RESTORE

RESUME

RETURN

RSET l$ = MK$

STOP

SWAP A1#, B2#

WAIT 1, 04H, OAH

Table 2-3. BASIC-80 Functions

Returns

Absolute value.

ASCII code of the first character of the
specified string.

Arctangent, in radians.

Double-precision floating-point value.

Character corresponding to the specified ASCII
code.

Integer value

Cosine, in radians

Single-precision floating-point value.

Double-precision floating-point value equal to
8-byte string A$

Integer value equal to 2-byte string A$

Single-precision floating-point value equal to
4-byte string A$

Example

ABS(X)

ASC(A$)

ATN(X)

CDSl (X)

CHR$ (X)

CINT(X)

COS (X)

CSNG (X)

CVD(X#)

CVI (X%)

CVS(X!)

2-3

Language Elements

2-4

Functions

DSKF

EOF

ERL

ERR

EXP

FIX

FRE

HEX$

INP

INPUT$

INSTR$

INT

LEFT$

LEN

LOC

LOF

LOG

MID$

MKD$

MKI$

MKS$

OCT$

PEEK

POS

RIGHT$

RND

SGN

SIN

SPACES

SPC

SQR

STR$

STRING$

TAB

TAN

USR

VAL

VARPTR

Table 2-3. BASIC-80 Functions (Cont'd.)

Returns

Number of 128-byte sectors free on disk or
drive (X)

-1 if end-of-file; 0 if not (for file X).

Line number of last error.

Error code of last error.

e to the (X)th power.

Integer value of (X).

Number of bytes in memory (X) or number of
bytes in string space (X$)

String equal to hex value of (X%)

Reads a byte from port (X)

Inputs (X) characters from file (Y)

Position of (X$) within (Y$)

Integer value of (X)

Leftmost (X) characters of (A$)

Character length of (X$)

Current record number in random file X.
Sectors read or written since last OPEN in se­
quential file X.

Number of records in random file X. Number of
data sectors in sequential file X.

Natural log of (X)

J characters, starting at I, of string A$

B-byte string equal to double-precision
floating-point variable (X!)

2-byte string equal to integer variable (X%)

4-byte string equal to single-precision
floating-point variable (X!)

Octal equivalent of decimal argument

Single byte from memory location (X)

Position of cursor after last PRINT.

Rightmost (1%) characters of X$

Single-precision random number between 0
and 1.

Sign of (X)

Sine of (X)

String of (1%) spaces

String of (X%) spaces

Square root of (X)

String equal to (X)

Character X, Y% times-or the first character
of A$, Y% times.

Spaces to (X) position on terminal

Tangent value of (X)

References user subroutine 0 to 24

Numerical value of (X$)

Memory address of (X)

Example

DSKF(X)

A = EOF(X)

ERL

ERR

EXP (X)

FIX (X)

FRE (X)

HEX$(X%)

INP(X)

INPUT$ (X, Y)

INSTR$ (X$, Y$)

INT(X)

LEFT$ (A$, X)

LEN (X$)

LOC (X)

LOF (X)

LOG (X)

MID$ (A$, I, J)

MKD$ (A$)

MKI$ (A$)

MKS$(A$)

OCT$(X)

PEEK (X)

POS (dummy argument)

RIGHT$ (X$, 1%)

RND

SGN (X)

SIN (X)

SPACE$(I%)

SPC(X%)

SQR (X)

STR$ (X)

STRING$ (Y%, X)
STRING$ (Y%, A$)

TAB (X)

TAN (X)

AX = USR 12 (A1, A2)

VAL (X$)

VARPTR(X)

BASIC-80

BASIC-SO Language Elements

Functions

Functions are built-in routines that return a value based on the argument or
arguments supplied. They can be used to form expressions with either commands or
statements. BASIC-SO includes both numeric and string functions.

Table 2-3 lists the BASIC-SO functions. In addition to these, up to 10 user-written
functions can be defined with the DEFFN statement.

Representing Data

The instructions described in the previous topics tell BASIC-80 what to do; to carry
out these instructions, you must also provide data in a specific fashion. Intel
BASIC-80 includes constant and variable values, in either numeric or string format;
allows these values to be grouped into arrays; provides for conversion from one data
type to another; and allows these values to be combined into expressions using
arithmetic, relational, and logical operators.

Syntax

BASIC-SO accepts instructions and data in a specific format. This format, called
syntax, must be followed to obtain useful, predictable results. BASIC-SO syntax is a
superset of ANSI Minimal BASIC syntax. The table below describes the meta­
language elements used to illustrate BASIC-80 syntax.

Table 2-4. BASIC-80 Metalanguage Elements

Condition Example

An instruction that requires no argument is RESTORE
shown by itself in uppercase letters.

If an argument must be provided, the descrip- GOTOline
tion of the argument, in lowercase letters, POKE address, value
follows the instruction.

If an argument is optional, the description of RESUME [line number]
the argument is enclosed in brackets. SAVE "filename" [,A]

If more than one type of argument can be PRINT expressionlvariable
specified, the choices are separated by ver-
tical lines.

If an argument can be repeated, three dots READ data [,data] ...
signify repetition. ON variable GOSUB line [,line] ...

Numeric Data

BASIC-SO accepts numeric values as either constants or variables. Within these two
categories, there are three types of representation: integer, single-precision floating­
point, and double-precision floating-point.

Using the DEFINT, DEFSNG, or DEFDBL statements, you can define a range of
letters to signify integer, single-precision floating-point, or double-precision
floating-point numeric variables. If you don't define numeric type, you can specify
it with a one-character suffix when you use the variable or constant letter name. If
you don't specify numeric type, the default is single-precision floating-point, as if a
DEFSNG A-Z instruction had been given.

Table 2-5 summarizes the characteristics and methods of specifying numeric data
types.

2-5

Language Elements

2-6

Constants

Constants are numeric values that do not change during program execution. A con­
stant can be a decimal integer, hexadecimal integer, octal integer, single-precision
floating-point number, or double-precision floating-point number.

Table 2-5. Numeric Data Types

Numeric Type Range Storage Definition Suffix Examples Required

Integer (decimal) -32768 to 2 bytes DEFINT % X%
+32767 9463%

Integer (hexadecimal) Oto 2 bytes - H OFF4H
FFFFH

Integer (octal) Oto 2 bytes - 0 7720
1777770

Single-precision floating-point ±1.2 x 10-38 to 4 bytes DEFSNG ! X!
(7 digits precision) ± 3.4 x 1038 9436.5!

9.4365E03

Double-precision floating-point ± 2.2 x 10-308 to 8 bytes DEFDBL # X#
(16 digits precision) ± 1.8 x 10308 9436.5#

9.4365D03

Integer Constants

Integer constants are whole numbers in the range -32768 to 32767. Each integer
constant requires two bytes of memory. Because the storage requirements are lowest
for integers and integer arithmetic is much faster than floating-point arithmetic, it's
a good idea to use integer representation wherever possible.

Decimal Integer Constants

To identify a constant as a decimal integer constant, add the suffix 070 to the decimal
integer value.

Some decimal integer constants are:

Hexadecimal Integer Constants

Hexadecimal integer constants are identified by the suffix H following the numeric
value. The characters 0-9 and A-F (representing the decimal values 10-15) are used as
hexadecimal digits. Each character represents 4 bits of data. The first character must
be a decimal digit, so it may be necessary to add a leading o. Some hexadecimal in­
teger constants are:

Hexadecimal

1FH
OC76H
7H

Decimal
Equivalent

31
3190

7

BASIC-80

BASIC-80 Language Elements

Octal Integer Constants

Octal integer constants are identified by the suffix Q following the numeric value.
The numerals 0-7 are used as octal digits. Each digit represents 3 bits of data. Some
octal iQteger constants are:

Octal Decimal
Equivalent

7720 506
44440 2340
7Q 7

Single-Precision Floating-Point Constants

Single-precision floating-point constants are identified by the suffix ! following the
numeric value, by the letter E identifying the exponent in scientific notation, or by
the presence of a decimal point in a number having seven or fewer digits. Floating­
point numbers in the range ± 1.2 x 10-38 to ± 3.4 x 1038 are represented with seven
digits of accuracy.

Each single-precision floating-point constant requires four bytes of memory.
Because this is half the storage required by double-precision floating-point con­
stants, and because single-precision arithmetic is quicker than double-precision
arithmetic, it's a good idea to use single-precision wherever possible for floating­
point operators.

Some single-precision floating-point constants are:

142!
-1.414
6.259371 E-09

Double-Precision Floating-Point Constants

Double-precision floating-point constants are identified by the suffix # following the
numeric value, by the letter D identifying the exponent in scientific notation, or by
having more than seven digits. Floating-point numbers in the range ± 2.2 x 10-308 to
± 1.8 x 10308 are represented with 16 digits of accuracy.

Each double-precision floating-point constant requires eight bytes of memory. Some
double-precision floating-point constants are:

-2.001317921012
11235813213455
24.2#

Variables

Numeric variables represent numeric values that can change during program execu­
tion. These can be of three types, like numeric constants: integer, single-precision
floating-point, or double-precision floating-point. Numeric variables are repre­
sented by one or two characters followed by an optional type identifier suffix. The
first character must be a letter; the second, which is optional, may be any
alphanumeric character. If the variable name contains more than two characters
besides a type identifier suffix, the rest of the variable name characters are ignored.
No words used as BASIC-80 instruction words may be used within variable names.

2-7

Language Elements

2-8

If a variable is referenced before it has been assigned a value, its value is zero. The
NEW, RUN, CLEAR, LOAD, and MERGE instructions set all variables to zero.

Individual variables can be specified by individual type identifier suffixes, which
override group type identifiers used to specify blocks of variables. Table 2-5 shows
these suffixes.

Blocks of variables beginning with specific characters can be specified as integer,
single-precision, or double-precision with the DEFINT, DEFSNG, and DEFDBL
statements. The general form of these statements is: DEFxxx m[-n], where n is any
letter A through Z, and m is any letter A through Z that precedes n in the alphabet,
(Le., the block L-Q is legal, but Q-L is not). In this way, all variables beginning with
a certain letter or letters may be defined as one type.

The variable default type is single precision, as if a DEFSNG A-Z had been executed
at the start of a given program. If certain variables should be of another type, you
should define them at the start of the program to prevent errors. In all cases, the
type identifiers (% for integer,! for single-precision, and I for double-precision)
override any variable block type assignment.

Note that A$, AOJo, A!, and AI are four different variables. If the default variable
type for variables beginning with the letter A is single precision, then A and A! are
the same variable.

To economize on memory space and execution time, you should use integer
representation rather than single-precision representation, and single-precision
rather than double-precision, when this is possible.

String Data

BASIC-80 accepts strings of characters as data. Like numeric values, strings can be
either constants or variables.

String Constants

A string constant is a group of characters, enclosed in quotation marks. Quotation
marks cannot be used within string constants. String constants can be up to 255
characters long. Some string constants are:

"This is a string constant."
"48, 23H, 373799"

String Variables

String variables are string values which can change during program execution. A
string variable name is one or more characters, the first of which must be a letter,
followed by $. If more than two characters are entered as a variable name, onlv the
first two are read.

String variables can contain strings of from 0-255 characters. When you first invoke
BASIC-80, however, there is only storage space for 100 characters. The CLEAR
command must be used to increase the amount of available string space. Here are
some examples of assignments to strip.g variables:

A$ = "Enter next data string"
B$ = "40 * 1. 7234E + 3"
NAMES$ = "Warren, Mark, Evan"

BASIC-80

BASIC-SO Language Elements

Converting Data

It is sometimes useful to convert one type of data into another. BASIC-SO suppo. I...,
these conversions with the HEX$, OCT$, CHR$, STR$, VAL, CVD, CVI, CVS,
CDBL, CSNG, CINT, MKS$, MKD$, and MKI$ functions.

The HEX$ and OCT$ functions return a string of hexadecimal and octal digits,
respectively, that represent the numeric argument. The STR$ function returns a
string of decimal digits that represent the decimal value of the argument. The VAL
function returns the numeric value of the string argument, if the string is a number.

CHR$ returns the ASCII equivalent of an integer argument, between 0 and 255.

The CVI, CVS, and CVD functions convert a given string into integer, single- preci­
sion floating-point, or double-precision floating-point numeric values, respectively.
These functions are used to retrieve numeric values from the input/ output buffer
when doing random disk 110.

The MKI$, MKS$, and MKD$ functions convert integer, single-precision floating­
point, and double-precision floating-point numeric values, respectively, into a
string. These functions are used to store humeric values in the input/output buffer
when doing random disk 110.

You can convert a numeric variable (integer, single-precision floating-point, or
double-precision floating-point) to any of these types by using the variable in an ex­
pression with the CINT, CDBL, or CSNG functions:

A# = CDSl (A%)
l4! = CSNG (l4)
VAR5 = CINT (VAR5)

Array Variables

An array is a group of variables identified by the same name, specified by subscripts
that define their position in the array. An array variable can have as many dimen­
sions as will fit on a single line. An array variable is specified by following a variable
name with as many subscripts as there are dimensions. A subscript must be an in­
teger value, and enclosed within parentheses or square brackets. If there is more
than one subscript, separate them with a comma. Expressions can be used to specify
subscripts; they are rounded to integer form. Here are some array variables:

X (10)
R1 (5,4)
Y(I,1)
SA(I + 3,X(10))

BASIC-SO normally indexes arrays from zero; that is; the first element in an array is
defined as O. To start arrays at one in BASIC-SO, enter the instruction OPTION
BASE 1 in your program before you dimension or reference any arrays.

The DIM statement allocates array space and specifies the maximum allowable
subscript for a given dimension. If an array variable is referenced before it has been
formally dimensioned, BASIC-SO allocates an index of 10 for each dimension. Some
examples of the DIM statement:

DIM X(15)
DIM R1(12,8)
DIM K(17,24)

An attempt to specify an array variable whose subscripts are larger than the dimen­
sioned value, or which exceed 10 in the default mode, causes a SUBSCRIPT OUT
OF RANGE error message~

2-9

Language Elements

2-10

String Arrays

Like numeric arrays, string arrays can be dimensioned with the DIM statement. The
format for dimensioning a string array is the same as for numeric arrays:

DIM A$(5,25,40)

If you don't execute a DIM statement, a default of 10 for each subscript is assumed.
If this value is then exceeded, an error message will result.

Order

1.

2·.

3.

4.

5.

6.

7.

8.

Table 2-6. BASIC-80 Operators in Order of Precedence

Operator

Expressions in parentheses.

Exponentiation, as shown in the example,
where A is raised to the B power.

Negation, represented by the minus sign.

Multiplication and Division, represented by
an asterisk (*) and a slash (I) respectively.

Integer division, represented by a
backslash (). Both arguments are con­
verted to integer values and the result is
truncated to an integer.

Integer Modulus, represented by MOD.
Both arguments are converted into in­
tegers. The result is the remainder when
the first is divided by the second.

Addition and Subtraction, represented by
(+) and minus (-) signs.

Relational Operators. These are listed
without precedence. For all relational
operators, the result is -1 if true, and 0 if
false. The arguments A and B must be both
strings or both numeric variables.

Equals sign: Used to test for equality.

Greater Than: Used to test magnitude be­
tween two arguments. The large end of the
sign faces the posited greater value.

Less Than: Used to test magnitude between
two arguments. The small end of the
sign faces the posited less.er value.

Not Equal: Used to test for inequality be­
tween two arguments.

Greater Than or Equal To: Used to test
magnitude down to the level of the second
argument.

Less Than or Equal To: Used to test
magnitude up to the value of the second
argument.

Example

(A+B)

AtB

-A

A*B
AlB

A\B

AMODB

A+B
A-B

A=B

A>B

A<B

A><B
A<>B

A=>B
A>=B

A=<B
A<=B

In the Logical Operators below, the arguments are converted to 16-bit, signed two's
complement integers in the range -32768 to +32767. The result of the operation is
converted to the same format. The operations are performed one bit at a time, com­
paring the nth bit of X with the nth bit of Y.

BASIC-80

BASIC-80 Language Elements

Table 2-6. BASIC-SO Operators in Order of Precedence (Cont'd.)

Order

9.

10.

11.

12.

13.

14.

Operator

Logical NOT, used to invert a given
argument.

Logical AND, used to test if the nth bit of X
and the nth bit of Yare both on.

Logical OR, used to test if the nth bit of X or
Y equals 1.

Logical exclusive OR, used to test if either
the nth bit of X or the nth bit of Y = 1, but not
both.

Logical implication, used to test if the nth bit
of X is on, then the nth bit of Y is on.

Logical equivalence, used to test if the nth
bit of X equals the nth bit of Y.

Example

NOT-1 =0

1ANDO=O

150RO=15

15XOR7= 8

OFOFOH IMP OOFFH=OFFFOH

OFOFH EQV.OOFFH=OFOOFH

Operators and Precedence of Evaluation

Complex expressions may be formed by combining constants and variables with
arithmetic, logical, relational, and string operators. BASIC-SO follows an order of
precedence to insure orderly and predictable evaluation when analyzing complex ex­
pressions. This order of precedence may be overridden by parentheses; any elements
within the parentheses are evaluated first. The numeric operators (arithmetic,
logical, and relational) are listed in order of precedence in Table 2-6.

Arithmetic Operators

There are seven arithmetic operators in BASIC-SO, each performing a familiar
arithmetic operation on two numeric expressions. They are evaluated before the
relational or logical operators, and if two operators of equal precedence are found
by BASIC-SO, they are evaluated from left to right. Table 2-6 lists the arithmetic
operators in order of precedence. Some examples of arithmetic operators are:

A = 8*(C*2.49)
K1=(L+M) S
RS = (83* Et .S)

Relational Operators

There are six relational operators in BASIC-SO, which test relationships between two
expressions and return a -1 if the premise is true, a 0 if it is false. You can write in­
structions to direct program execution according to either result. The relational
operators are evaluated after the arithmetic operators, and if two operators with the
same order of precedence are given in an expression, they are evaluated left to right.
Table 2-6 lists the relational operators, and some examples are given below:

IF (A*2.2)<>8*81 THEN 220
IF INT(A1) = INT(81) THEN A=B
IF A> B THEN IF 8>(C* VA#)THEN 340

2-11

Language Elements

2-12

Logical Operators

The logical operators NOT, AND, OR, XOR, IMP, and EQV are operators that
compare the nth bit of argument X with the nth bit of argument Y. They are
evaluated after the arithmetic and relational operators; therefore, arithmetic expres­
sions resolve to a number which is compared with another number. A relational
operator test can be used with logical operations. If there are two logical operators
of the same precedence in a single expression, they are evaluated left to right. Table
2-6 lists the logical operators in order of precedence'. Some examples of the logical
operators, used in complex expressions, are shown below.

IF A>=3.5X OR X > 3 THEN 01=0
IF B=1 OR B=2 OR B=3 THEN 2750 ELSE 280u
IF (A-B) AND (B+3) THEN STOP ELSE IF (A AND B) THEN CLOSE 2

String Operator

The relational operators may be used with strings to compare them according to
ASCII order. If strings of unequal length are compared, and the shorter is identical
to the first part of the longer, then the longer is greater. There is one operator only
used with strings: the concatenation operator (+). This operator defines a string as
two or more strings joined together.

A$ = B$+C$

Expressions

Except for the command and stateqlent instructions, all of the language elements
previously discussed can be combined to form expressions. Depending on the type of
constants, variables, and operators used, expressions can be classed as numeric or
string.

Numeric Expressions

In BASIC-80, numeric expressions are created with numeric variables, constants,
functions, and operators. Variables are initialized with 0, and may be assigned other
values with assignment statements, or with INPUT statements during program
execution.

Any function which returns a numeric value can be used in a numeric expression.
Strings can only be used if they are converted to a number. Numeric expressions can
use arithmetic, logical, or relational operators. Some numeric expressions:

K(I) = B*SOR(X)
IF A>12.1 THEN C = C + 1
IF PEEK (2FFFH) AND OCH THEN PRINT "ON"

String Expressions

String expressions can be specified in BASIC-80 using string constants, string
variables, relational operators, and the concatenation operator (+). The concatena­
tion operator combines two strings into one. If the resulting string is longer than 255
characters, execution halts and an error message is displayed. Some string expres­
sions are:

A$ = "NAME:" + NAME$
IF B1$>R$ THEN 81$ = ""
R$(I)=R$(I) + S$(I) + "DONE"

BASIC-SO

CHAPTER 3
ENTERING AND EDITING PROGRAMS

With BASIC-80, you can create new programs by entering statements line by line, or
you can access saved programs from disk storage. If you're using ISIS-II BASIC-80,
you can use the ISIS-II BASIC-80 Text Editor to alter new or saved instruction lines.
RMX/80 BASIC-80 does not have a Text Editor.

The following topics show how to use BASIC-80 programming features and the
ISIS-II BASIC-80 Text Editor to aid program development.

Entering Instruction Lines

When you invoke BASIC without specifying a file name, there is no program to run.
The system is ready to accept commands or program statements. A statement con­
sists of a line number from 0 to 65529 followed by the language elements (program
statement, constants, variables, operators, functions, etc.). If you type a line
number alone after a line with that number has been entered with text, that line is
deleted.

You can enter statements in any order. To review the statements in a program, use
the LIST command. It displays the statement in numeric order.

You can have BASIC-80 provide line numbers, starting at a given number, with a
given increment, by using the AUTO command. After you enter the AUTO com­
mand, BASIC displays the line number and waits for you to enter the statement.
When you end the statement with a carriage return (CR), it prints the next line
number and again waits. To stop the automatic line numbers, enter a Control-C.

If AUTO generates a line number that already exists in the program, it prints an
asterisk (*) after the line number. If you enter a statement, what you enter replaces
the existing statement. If you enter a Control-C, the existing line is unchanged.

You can use Control-I as a tab key if you want to format your statements. The width
of each line is divided into 8-character-wide columns. Each time you press
Control-I, the cursor or print head moves to the beginning of the next column.

BASIC assumes a width of 72 characters. You can change the width with the
WIDTH command.

To enter more than one statement per line, separate each statement with a colon (:).
If you want to format the program so that additional statements appear on separate
lines (but are still part of the same numbered program statement), use the Line Feed
(LF) key to move to the beginning of the next display line. You can do this any
number of times, up to the 255-character line-length limit; the program statement
doesn't end until you enter CR.

To put a comment in a BASIC-80 'program, enter REM after the line number.
BASIC-80 doesn't try to execute such lines, but they become part of the program.

Correcting Entry Errors

If you make an error while entering a line, you can correct it by using the RUBOUT
key to erase characters (as long as you haven't entered the line into memory by
pressing CR).

3-1

Entering and Editing

3-2

In the Command Mode, the RUBOUT key deletes the last entered character each
time you press it, and backspaces the cursor on a CRT. On a teletype, or with
RMX/SO BASIC-SO, RUBOUT echoes the last-entered character. If you then press
CR, the program statement is entered without the rubbed-out characters. If you
enter new characters and then press CR, the new characters appear in the line.

Suppose you enter 52 instead of 55.To erase the 2, press RUBOUT:

30 A=8*52 •
30 A=8*5 •

If you press RUBOUT again, the 5 is deleted:
30 A=8* •

To change 52 to 37, press RUBOUT twice, then 3, 7:
30 A=8*52 •
30 A=8* •
30 A=8*37 •

When using the Edit Mode, RUBOUT works somewhat differently. Refer to the
Editing Program Text Section for details.

Control-R displays the line as corrected, still waiting for more input:

30 A--=8xx*522537 (Control-R)
A = 8*37

To cancel a line, simply press Control-X.

Editing Program Text

Intel ISIS-II BASIC-SO has an Editing Mode used to change individual characters,
or entire lines. The Editing Mode has its own set of subcommands and syntax. Table
3-1 briefly describes each of the subcommands. If an illegal character is entered, the
terminal beeps and the character is ignored.

Table 3-1. BASIC-80Editing Subcommands

Function Syntax

To delete text: [integer] 0

To insert text: I character [character. ..]

To delete all characters to the right of the cursor H character [character ...]
and insert text:

To insert characters at the end of the line: X character [character ...]

To search for a character: [integer] S character

To delete all characters until specified character: [integer] K character

To change next n characters to y characters: [integer] C character [character ...]

To restore original line and leave Edit Mode: Q

To restore original line and restart Edit Mode: A

To print balance of line and restart Edit Mode: L

To leave Edit Mode and keep changes: E

To leave Edit Mode, keep changes, and print the Carriage return
edited line:
To delete unwanted characters: Rubout
To place one logical statement line on two or more Line Feed
physical lines:

To leave next n characters unchanged: [integ.er] space

BASIC-SO

BASIC-SO Entering and Editing

Complete editing of a line replaces the old line with the edited line. This resets all
variables to zero or null. To end editing without losing prior variable values, exit the
editing mode with the Q subcommand after the line number has been printed.
BASIC-80 returns to command level, variable values are unchanged and any editing
changes are lost.

There are three ways to enter the Editing Mode:

1) Type EDIT line number, and BASIC-80 returns the line number requested. If
you press the space bar, the cursor moves to the desired location in the instruc­
tion line.

2) When entering text, type a Control A instead of a carriage return. This causes a
carriage return, a space, and the computer prints an exclamation point. The cur­
sor points at the first character of the sequence, and can be advanced by press­
ing the space bar. If you use CONTROL-A after listing a program, it edits the
last line, and you can't change line numbers.

3) If BASIC-80 encounters an instruction line with a syntax error during program
execution, it will halt and print an error message of the format: SYNTAX ER­
ROR IN (line number). Below the error message, the computer returns the line
number, and the line may be edited.

In the Edit Mode, pressing RUBOUT will echo characters, but they are not
deleted. Use the D subcommand to delete characters ,in the Edit Mode.

In the explanatory sections b~low, a typical line of program text is edited and re­
edited by each subcommand. The "." indicates the position of the cursor or print
head, and all characters are shown as they appear on the terminal. Such editing sub­
commands as D, L, Carriage Return, Escape, and so on are represented in paren­
theses: (CR), (ESC), (D), (4SE) to avoid confusion. You should tryout these or
other examples to gain facility with the editor.

In the following sequence of edit subcommands, we will be editing line 40 of a
hypothetical program. Line 40 returns a syntax error message, since it needs a
PRINT instruction following ELSE, and should not contain OR:

40 IF A>B THEN 120 OR ELSE "NULL SET"

D Subcommand
The D subcommand is used to delete characters to the right of the cursor. Spaces are
counted as characters. If there are less than n characters to the right of the cursor,
just the remaining characters are deleted. The argument n is an integer in the range 1
to 255, and the default value is 1. The deleted characters are printed enclosed by
backslashes, i.e., \characters\ .

The syntax of the D subcommand is:

[integer] D

In the example below, line 40 returned a SYNTAX ERROR message when the pro­
gram ran. BASIC-SO displays the error message and enters the Edit Mode. By press­
ing the space bar, the text of line 40 is displayed character by character until the
incorrect character is encountered.

40 IF A>B THEN 120 OR ELSE "NULL SET"
40 IF A>B THEN 120.

The command(3D) (press 3, then D) results in:

40 IF A>B THEN 120 \OR\ •

3-3

Entering and Editing

3-4

L Subcommand

The L subcommand prints the rest of the original line, and waits for further editing
subcommands. The cursor is to the left of the first character. You can use the L sub­
command to display previously edited text and restart editing at the beginning of the
line:

40 IF A>B THEN 120 ELSE "NULL SET"
40.

I Subcommand

The I subcommand inserts characters after the last character typed. Each character
typed after typing I is inserted at the current cursor position. To end insertion, press
the ESCAPE key. To end insertion and leave the Editing Mode, press the Carriage
Return key. Characters may be deleted when using the I subcommand by pressing
the RUBOUT key.

The syntax of the I subcommand is:

I character [character] ...

Suppose you want to insert the word "PRINT" into the previous example. Press the
space bar until you reach the proper point:

40 IF A>B THEN 120 ELSE.
and then enter:
(I) PRINT (ESC) (L)
And you will see:
40 IF A>B THEN 120 ELSE PRINT "NULL SET"

H Subcommand

The H Subcommand deletes all characters to the right of the cursor, and then enters
the insertion mode, like the I Subcommand. When through inserting characters,
enter (ESC) to end insertion or (CR) to end editing.

The syntax of the H subcommand is:

H Character[Character] ...

If you want to change the message "NULL SET" in the previous example to
"UNDEFINED SET", you can use the H Subcommand to do it. Move the cursor to
the proper point with the space bar:

40 IF A>B THEN 120 ELSE PRINT

Enter (H) "UNDEFINED SET" (ESC) (L):

40 IF A>B THEN 120 ELSE PRINT "UNDEFINED SET"

X Subcommand

The X subcommand prints the rest of the line to be edited, moves the cursor to the
end of the line, and enters the insertion mode; as for the I subcommand. This sub­
command is used to add new text at the end of instruction lines. Execution is as in
the insertion mode.

BASIC-80

BASIC-SO Entering and Editing

The syntax of the X subcommand is:

X character [character] ...

Returning to the previous example, if you wish to add text at the end of the given in­
struction line, use the X subcommand:

40 •
Enter (X)

40 IF A>B THEN 120 ELSE PRINT "UNDEFINED SET" •

Enter new text at the cursor-;A; B (ESC) (L):

40 IF A >B THEN 120 ELSE PRINT "UNDEFINED SET";A; B

S Subcommand

The S subcommand examines characters to the right of the cursor., to find the nth
occurrence of the specified character, where n is an integer in the range 1 to 255; the
default is 1. This subcommand skips the first character to the right of the cursor and
searches, printing all characters encountered. When the nth occurrence of the speci­
fied character is found, the cursor stops at the character. If the nth occurrence of the
specified character is not found, the cursor stops at the end of the line.

The syntax of the S subcommand is:

[integer] S character

The S subcommand can be used with an example to find the nth occurrence of the
specified character. Suppose we want to move the cursor to the space occupied by
the 3rd letter "E" in line 40:

40 •
Enter (3SE):

40 IF A>B THEN 120 ELSE •

At this point, the other editing subcommands may be used.

K Subcommand

The K subcommand functions like the S subcommand except that it deletes all
characters passed over until the nth occurrence of the specified character. The
deleted characters are enclosed in backslashes.

The syntax of the K subcommand is:

[integer] K character

The K subcommand may be used on our example. It will eliminate all text up to the
1st occurrence of P, and print backslashes:

40 •
Enter (1 KP)

\40\ IF A>B THEN 120 ELSE.
Enter (L)

40 PRINT "UNDEFINED SET";A; B

3-5

Entering and Editing

3-6

C Subcommand
The C subcommand changes the next n characters to the specified character(s). If no
integer is specified, the character immediately to the right of the cursor is changed.

The syntax of the C subcommand is:

[integer] C character [character ...]

In our previous example, line 40 was reduced to:

40 PRINT "UNDEFINED SET";A; 8

This can be changed to print "REDEFINED SET" with C:

Move the cursor to:
40 PRINT.

Enter (2C) RE (L)

40 PRINT "REDEFINED SET"; A;8

40 •

Q Subcommand

The Q subcommand restores the original line, as it was prior to editing, and leaves
the editing mode. Note that if an instruction is edited with Q, the changes are lost.
This subcommand returns the user to the command mode without executing an
edited command. This subcommand only works when editing program lines.

A Subcommand
The A subcommand restores the original line and prints the original line number
below. Editing is restarted. This subcommand only works when editing program
lines.

When the A subcommand is used with the previous example, the result is:

40 PRINT "UNDEFINED SET".
Enter (A) (L)
40 IF A>B THEN 120 ELSE "NULL SET"
40.

E Subcommand
The E subcommand exits the editing mode. The edited line replaces the original line.

When the E subcommand is used with the previous example, the result is:

40 PRINT "UNDEFINED SET"
(The E subcommand is entered)

Carriage Return

A Carriage Return exits the editing mode, and prints the rest of the line being edited.
The edited line replaces the original line.

BASIC-SO

CHAPTER 4
ERROR HANDLING

If you enter improper instructions, syntax, or formats, BASIC-80 issues an error
message. This chapter explains what these errors mean, how they may be trapped
with the ON ERROR statement and pinpointed with the TRON, TROFF, ERR, and
ERL instructions, and how errors may be simulated with the ERROR statement.

BASIC-80 Error Messages

When BASIC-80 encounters an error in a program, it displays an error message.
Appendix A lists the error messages and error codes, and describes their meaning.
These errors stop program execution. You can use the BASIC-80 editor at this point
to correct obvious errors, add error-trapping instructions, or use the trace facility.

Syntax Error Messages

If BASIC-80 detects a syntax error, it stops program execution, displays an error
message, and enters the Edit Mode:

10 LET A=
20 PRINT A
RUN
SYNTAX ERROR IN 10
10 •

You can now change line 10, as described in Chapter 3. To leave the Edit Mode
without making any changes, and to preserve the variable values in the program,
type Q. If you enter any other editing subcommands (including Carriage Return)
variable values are lost.

Overflow, Underflow, and Divide-by-Zero

In BASIC-80, the single- and double-precision floating-point overflow, underflow,
and divide-by-zero errors do not halt program execution.

Overflow. Single-precision floating-point overflow occurs when the magnitude of a
single-precision numeric value exceeds (±) 3.4 x 1038 (3.4E38). Double-precision
floating-point overflow occurs when the magnitude of a double-precision numeric
value exceeds (±) 1.79 x 10308 (1.79D308). When a value of this magnitude is
generated, the message OVERFLOW is displayed, a value equal to the largest possi­
ble magnitude for the given representation with the appropriate sign is assigned, and
ex~cution proceeds.

The following examples show single- and double-precision overflow:

10 A = 1 E20*1 E20
20 D# = 1 D200*1 D200
30 PRINT A;D#
RUN
OVERFLOW
OVERFLOW
3.402824E + 38 1.79769313486231 D + 308

4-1

Error Handling

4-2

Underflow. Single-precision floating-point underflow occurs when the magnitude
of a single-precision numeric value is less than (±) 1.2 x 10-38 (1.2E-38). Double­
precision floating-point underflow occurs when the magnitude of a double­
precision numeric value is less than (±) 2.2 x 10-308 (2.2D-308). When a value of this
magnitude is generated, no message is printed, the result is defined as zero, and pro­
gram execution continues.

Divide-By-Zero. Divide-by-zero is handled identically to single- and double­
precision overflow protocol, except that the message printed is DIVIDE-BY -ZERO.

Integer Operations

Integer overflow and division by zero are treated as normal errors. Program execu­
tion halts. Integer overflow occurs when a value greater than 32767.49 or less than
-32768.49 is converted to integer representation. Integer underflow cannot occur.

Error Trapping

Error trapping allows you to trap and correct errors. Errors normally halt program
execution and return error messages. When given before an error is encountered, the
ON ERROR GOTO statement transfers program execution to a specified line
number when an error occurs, and suppresses any error messages other than those
you specify and write yourself. You can write an error-service routine at the
specified location to identify and correct errors. In the following example, when -3
is entered in response to the INPUT statement, an error occurs and the user-written
error message displays:

10 ON ERROR GOTO 100
20 INPUT A
30 PRINT SQR{A)
40 GOTO 20
100 PRINT "ARGUMENT CANNOT BE NEGATIVE."
110 PRINT "ENTER NEW VALUE."
120 RESUME NEXT
RUN
? 3
1.732051
? -3
ARGUMENT CANNOT BE NEGATIVE
ENTER NEW VALUE
?

Suppose there is no error routine (made up of lines 10, 100, 110, and 120) in the
above example, and you wish to identify this particular error. The ERR and ERL
functions return the error code number (see Appendix A) and the line number the
error occurs in, respectively. In this way, you can identify the kind of error and the
line it occurs in and write individual error handling routines for individual errors.
The program below uses ERL and ERR to identify the location and nature of any
error.

In the following example, the ON ERROR statement enables the error-service
routine at line 100, which identifies one specific error (division by zero) and the line
number in which it occurs:

BASIC-SO

BASIC-80 Error Handling

10 ON ERROR GOTO 100
20 INPUT A
30 PRINT 521 A
40 GOTO 20
100 PRINT "Error";ERR;"at line";ERL
110 IF 11=ERR THEN PRINT "Division by zero"
120 RESUME NEXT
RUN
? 13

4
? 0
Error 11 at line 30
Division by zero
?

Trace Facility

The TRON and TROFF (trace on and trace off) commands are used to examine the
execution of each line. The line number of each program statement executed is
displayed in brackets. The preceding example would run like this after entering
TRON and then RUN:

[10] [20]? • 5 (CR)
[30] 10.4
[40] [20]? • 7 (CR)
[30] 7.428571
[40] [20]? • 0 (CR)
[30] [100] Error 11 at line 30
[110] Division by zero
[120] [40] [20]? •

The ON ERROR OOTO 0 statement has a special meaning. When entered outside of
error handling routines it disables any prior ON ERROR OOTO so that errors are
handled normally-error messages are displayed and execution is lialted. When
entered inside an error handling routine, it allows normal handling of a given error
or errors, as shown in the example below.

10 ON ERROR GOTO 100
20 INPUT A,B
30 PRINT AlB
40 PRINT SQR(8-A}
50 STOP
100 IF ERR<>11 THEN 130
110 8=1
120 RESUME
130 ON ERROR GOTO 0
RUN
? 2,0

2
Illegal function call in 40
Ok

The error routine (lines 100-130) sets B to 1 when the divide-by-zero error occurs,
but allows other errors to interrupt operation in a conventional way.

The non-fatal floating-point overflow and divide-by-zero errors are trapped like
other errors. No messages are displayed in this case, and the results of the calcula­
tions are undefined.

4-3

Error Handling

4-4

Error Simulation

BASIC-SO provides a statement that can simulate any errors which produce an error
code. When the ERROR statement is encountered during program execution,
BASIC-SO acts as if the specified error had occurred. The example below
demonstrates how ERROR can be used to test an error handling routine.

10 ON ERROR GOTO 70
20 INPUT A
30 B = A * .3842
40 PRINT B
50 GOTO 20
70 IF 11 = ERR THEN PRINT "Division by zero"
80 RESUME NEXT

If line 40 is replaced with:

40 ERROR 11

Program control transfers to line 70 regardless of the result of the operation in line
30.

Restarting Program Execution

You can restart program execution after it has halted with the RUN or CONT
instruction, and after an error in an ON ERROR routine with the RESUME
instruction. Remember that RUN sets all variables to zero.

RUN restarts program execution at the lowest-numbered line of a program if no line
number is specified, or at the specified line number. It can be used at any time.

CONT restarts execution at the line after a STOP, END, or CONTROL-C is en­
countered. CONT will also restart program execution after an error, but it will try to
execute the erroneous line.

RESUME can only be used when the halt occurs in an ON ERROR routine. It is
given following the error-resolving routine pointed to by the ON ERROR instruc­
tion. It can be used three ways: RESUME to begin execution at the erroneous line;
RESUME NEXT to begin execution at the line following the erroneous line;
RESUME followed by a line number to begin execution at any other line.

BASIC-SO

CHAPTER 5
DISK FILE INPUT/OUTPUT

BASIC-SO includes two types of disk file Input/Output operations: sequential and
random. Sequential I/O lets you read or write a file from the beginning to the end;
random I/O lets you specify where in the file you read or write.

Because BASIC-SO runs under ISIS-II and RMX/SO, filenames correspond to the
ISIS-II and RMX/80-DFS format (:Fn:name.ext, where n is the drive number).
BASIC-SO also gives you access to disk file-handling commands:

• DIR, which lists the files on a disk

• RENAME, which changes the name of a disk file

• A TTRIB, which changes the attributes of a disk file

• KILL, which deletes a disk file (it is actually the system DELETE command, but
the name must be different because BASIC-SO includes a DELETE command to
delete lines from a program).

For more information about ISIS-II filenames or operations, see the ISIS-II User's
Guide.

Although both sequential and random I/O allow you to create, read, and write files
on disk, sequential I/O is somewhat simpler in concepts and operation. If you
haven't worked with disk files before, it would probably be better to start with se­
quential 110 to learn the principles.

Sequential File 1/0

BASIC-SO Sequential I/O allows you to build sequential data files containing
numbers and strings of up to 255 characters. In general, to use sequential 110 you
must open the file, execute a series of INPUT (to read) or PRINT (to write)
statements, then close the file.

A sequential file is open either for input or output. To switch from one to the other,
you must close the file and open it again with the opposite attribute. Any 110 opera­
tion that immediately follows an OPEN statement starts at the beginning of the file.

Opening a Sequential File

You open a sequential file with the OPEN statement. It specifies whether the file is
to be opened for input or output, assigns it a file number, and specifies the filename.
Up to six files can be open at one time. If the file named in an OPEN statement that
specifies output does not exist, it is created. Once a file is open, it cannot be opened
again without closing it first. If you attempt to do so, an error message results.

To open an input file named :Fl:DATES and assign it file number 1:

OPEN "1",#1,":F1:DATES"

5-1

Disk File Input/Output

5-2

String and numeric expressions can replace any of the parameters:

OPEN M$,FN, DN$+ "OUTPUT"

This statement opens a file for either input or output, depending on the value of M$
(it must be either "I" or "0") and assigns the file number represented by FN (it
must be from 1 to 6). The name of the file is the value of the string variable DN$ (it
should be ":FO:" through ":F9:", depending on how many drives you have, or null)
followed by the six characters OUTPUT.

NOTE

Remember that opening a file for output destroys an existing file of the
same name.

Writing to a Sequential File

After you open a sequential file for output, you can write data to it with the PRINT
statement. If you open an existing file for output, its contents are deleted. To specify
that a PRINT statement is being used to write to a sequential disk file, the file
number (preceded by #, followed by a comma) follows the word PRINT.

To print a series of constants and variables to file 3:

PRINT #3, "Today's date is ";MO$;OA;",";YR

You can also use the full formatting capabilities of the PRINT USING statement:

PRINT #3 USING, "###,##;"234.41 ;81.20;4.68

Refer to Chapter 6 for further details of PRINT USING.

Reading from a Sequential File

After you open a sequential file for input, you can read data from it with the INPUT
and LINE INPUT statements. To specify that these statements are being used to
read from a sequential disk file, the file number (preceded by # and followed by a
comma) follows the word INPUT or LINE INPUT.

The INPUT statement reads the specified number of values (numeric or string) from
the disk file. Numeric values (in the disk file) can be separated by a blank, comma,
carriage return, or line feed.

String values can be enclosed in quotation marks, or given as unquoted strings.
Quoted strings terminate on the quote marks, while unquoted strings terminate on
commas, carriage returns, line feeds, or if they exceed 255 characters in length.

Assume, for example, that disk file #2 contains the following data (a new line
represents a carriage return-line feed pair in the disk file):

"R1" ,200, "R2" ,2200, "R3" ,10000
"R4" ,.47

After the file is opened for input, the following INPUT statement would assign a
string value to R$ and the subsequent numeric value to R:

INPUT #2,R$,R

If executed four times, it would read all eight values.

BASIC-SO

BASIC-80 Disk File Input/Output

LINE INPUT, on the other hand, ignores blanks, commas, and quotation marks,
and reads everything between the current file position and the next carriage return­
line feed, or up to 255 characters. If the last INPUT did not read to the end of a
logical line, LINE INPUT will read to the end of that line before reading the next
line. The string is assigned to the single string variable specified. In the preceding ex­
ample, assume that instead of the INPUT statement shown, the following statement
was executed:

LINE INPUT #2,R$

The value of R$ would be:

"R1" ,200, "R2" ,2200, "R3" ,10000

This statement is useful for reading from a file that consists of lines, not individual
data values, such as lines from an ASCII-saved BASIC-80 program file, or a docu­
ment created with the ISIS-II text editor.

The INPUT$ function reads the specified number of characters from a sequential
file:

10 OPEN "1",#1,":F1:MONTHS"
20 PRINT INPUT$ (3,1)
30 CLOSE #1
40 END

This program reads the first 3 characters from the file :Fl :MONTHS and prints
them. If you execute line 20 again, INPUT$ will read the next 3 characters.

When you read the last value from a file, an end-of-file flag is set to -1. This flag
can be tested with the EOF function. If you try to read data from a disk file after the
end-of-file flag is set, BASIC-80 issues an INPUT PAST END message and execu­
tion halts. To prevent surprises, you can test for an end-of-file with the EOF func­
tion and then branch to an appropriate routine:

250 IF EOF (1) THEN 300

300 CLOSE 1
310 PRINT "END OF INPUT DATA"

Closing a Sequential File

Once you read or write the desired data from or to a sequential file, you must close
the file. This can be done in several ways.

The CLOSE command closes one or more files:

CLOSE 1,2,5

If you enter CLOSE with no file number, all open files are closed. The END state­
ment and the NEW and EXIT commands close all disk files. After closing a file, you
can open it again for input or output, with the same or a different file number.

5-3

Disk File Input/Output

5-4

Random File I/O

Random I/O requires a bit more care and coding than sequential I/O, but is more
flexible because you can move back and forth within a disk file. These are the key
differences:

• To get data from random disk files to BASIC-80 variables and vice-versa, you
must understand how BASIC-80 uses 110 buffer space.

• Random 110 operations (GET and PUT) always read or write all 128 bytes of a
floppy disk sector. You must specify how this 128-byte string is divided into
fields and assigned to string variables.

• Because all data in random files is treated as string data, you must convert
strings that represent numbers into numeric values if you want to do any
calculations with them.· Likewise, if you want to write a numeric value to a ran­
dom file, you must first convert it to a string. Special functions are provided to
do this.

• You must use special assignment statements to put a string variable into an 110
buffer. This is due to the fact that the fields you define in an I/O buffer are of
fixed-length; the special assignment statements accommodate variables that are
longer or shorter than the specified field.

• Unless you simply want to read or write records in sequence, you .must specify
which record you want to read or write.

1/0 Buffers

BASIC-80 reserves space for six I/O buffers, each 128 bytes long. One buffer is
assigned to each open file (when an OPEN statement is executed). When you read a
record from a random file using GET, the 128-byte string is not assigned directly to
a variable. It is placed in the 110 buffer assigned to that file, and it is up to you to
define what portions of the string are to be assigned to what variable or variables.

To emphasize: the usual variable and line delimiters (", CR) have no special mean­
ing. All 128 bytes from the specified sector are placed in the 110 buffer. If fewer
than 128 bytes were written to the sector, the remaining character positions in the
buffer are set to ASCII blanks (hexadecimal 20) .

Defining a Random 1/0 Field-FIELD

When a sector has been read into the 110 buffer, it exists as a 128-byte string. You
must define how the string is to be assigned to a variable or variables. The FIELD
statement specifies to BASIC-80 what character positions in the buffer correspond
to string variables (initially they must be string variables, because the sector is
treated as a 128-byte string).

The FIELD statement tells BASIC-80, for a given file, what character positions,
starting with the first, are to be associated with a variable. For example, assume you
have opened a random file, assigned it the file number 3 (the OPEN command
works just like in sequential 110), and read the first sector from the file. You know
that the first 20 characters of each sector contain a name. To assign these 20 bytes to
the string variable N$, enter the following FIELD statement:

FIELD #3, 20 AS N$

BASIC-SO

BASIC-SO Disk File Input/Output

The FIELD statement can precede or follow the GET statement, but N$ doesn't
contain those first 20 bytes until the FIELD statement. (A similar definition of fields
must be done when writing to a random file with the PUT statement; the FIELD
statement, obviously, must precede the PUT statement so that BASIC-80 will know
which variable or variables to write to the disk.)

Any number of fields can be defined with one FIELD statement. In the preceding
example, for example, let's assume that character positions 21-29 (the 9 bytes
following the name field) contain a social security number. To define the first 20
bytes as N$ and the next 9 bytes as SS$, enter the following FIELD statement:

FIELD #3, 20 AS N$, 9 AS SS$

Not only can you define all 128 bytes this way, you can enter more than one FIELD
statement for the same buffer. If more than one FIELD statement associates a string
variable with character positions in the buffer, the last-executed one applies. If
several FIELD statements are executed that specify different string variables,
however, all the field definitions are effective.

Figure 5-1 summarizes this relationship of disk record, 110 buffer, and string
variables, and shows the sequence of BASIC-80 statements necessary to read a
record, assign the first 20 bytes to N$, and the next 9 bytes to SS$ (the remaining 99
bytes are ASCII blanks). The program shown opens the file, reads the field record,
and prints both N$ and SS$.

10 OPEN "R", 3, "F1:PERSON"
20 GET'3, 1
30 FIELD 1#3.1 20 AS N$, 9 AS 55$
40 PRINT N~, 55$
RUN

JONES, JOHN J. 517317010
OK

RECORD 1 OF
:F1:PERSON

GET STATEMENT
TRANSFERS CONTENTS

OFRECORDTO
1/0 BUFFER 1/0 BUFFER FOR

FILE "rMBER 3

IJ,o,N,E,s,,J IJIOIHINI IJI·I 11511171311171011101 I I I I I Iltl I I
DEFINI~~~~ """1·1f-------N$------· ... I..--ss$------�~BLANKS---+-1

(20 BYTES) (9 BYTES) (REMAIN ING
99 BYTES)

Figure 5-1. Random I/O Characteristics

5-5

Disk File Input/Output

5-6

Opening and Closing a Random Disk File

As with sequential disk files, you must open random disk files before you can write
to them or read from them, and close them when you're through. A random file
isn't opened for either input or output, however; once it's open for random I/O,
you can read from it or write to it interchangeably.

To open the file ":FI :PERSON" for random 110 and assign it file number 3:

OPEN "R", #3, ":F1 :PERSON"

Any of the parameters can be variables:

OPEN "R", F, FN$

This opens the file whose name is represented by the string variable FN$ for random
I/O and assigns it the file number represented by the numeric variable F.

As with sequential I/O, the CLOSE statement can specify a file number (or
numbers); CLOSE by itself closes all open files. The END statement and the NEW
and EXIT commands close all open files; STOP does not.

Reading from a Random 1/0 File

You can retrieve data formatted and stored on disk with the GET statement. When
entering the GET statement, you must specify the file you want to read. You can
also specify the record you wish to read by entering the record number after the file
number. If you don't specify the record number, BASIC-80 either reads the first
record, if there has been no read operation since the file was opened, or reads the
record that follows the last record read. To read the first record from file I:

GET #3,1

To read the next record:

GET #3

As described earlier (in "110 Buffers" and "Defining Random 110 Fields­
FIELD), the GET statement reads 128 bytes into the I/O buffer assigned to the ran­
dom file by the OPEN statement. The FIELD statement specifies which portions of
the buffer are to be assigned to string variables (all data in random I/O files is stored
as string data).

Assume, for example, you have a file written as a random liD file named :FI :PER­
SON. The first 20 characters of each sector contains a name, and the next 9
characters contain a social security number. The following statements open the file,
define which parts of the buffer correspond to variables, and read the first sector:

10 OPEN "R", #3, ":F1 :PERSON"
20 FIELD #3, 20 AS N$, 9 AS SS$
30 GET #3,1

To print the name:

40 PRINT N$

BASIC-SO

BASIC-SO Disk File Input/Output

It's not quite so simple to print or do calculations with numeric values from random
I/O files, however, because they are represented as strings. You must convert each
string that represents a number to its corresponding numeric value, either integer,
single-precision floating-point, or double-precision floating point. The CVI, CVS,
and CVD functions, respectively, perform this conversion.

Assume that there is an additional 2-character field following the 9-character social
security number that represents the number of hours worked in the previous week.
The following statements open the file, define the fields, read the first (or next)
record, and increment the variable HW by the number of hours worked:

10 OPEN "R", #3, ":F1 :PERSON"
20 FIELD #3, 20 AS N$, 9 AS SS$, 2 AS H$
30 GET #3
40 PRINT N$; SS$; "HOURS ="; CVI (H$)
50 HW = HW + CVI (H$)
60 PRINT "TOTAL HOURS ="; HW

The two characters defined as H$ are converted to an integer. To convert a string to
a numeric variable, the number of string characters must equal the number of bytes
required to store the corresponding numeric data type:

Integer
Single-precision value
Double-precision value

CVI
CVS
CVD

2 bytes
4 bytes
8 bytes

If the number of string characters represented by the argument of the function is
fewer than required, an ILLEGAL FUNCTION CALL error message is printed and
execution halts. If the string variable is longer than required, the extra characters are
ignored.

Writing to a Random 1/0 File

To store data in a random disk file, you follow the same sequence of OPEN and
FIELD statements as when reading from a random disk file. The PUT statement
writes the 128 bytes of the I/O buffer to the disk file.

The FIELD statement, however, defines fixed-length fields in the I/O buffer. To get
the data to be written to disk into the I/O buffer, there are two special assignment
statements: LSET and RSET. LSET left-aligns a variable in the buffer field, and
RSET right-aligns it. In both cases, if the variable is shorter than the field, it is pad­
ded with ASCII blanks (20H); if the variable is longer than the field, it is truncated.

For example, assume you have opened a file for random I/O, assigned it file number
3, and defined the first 20 characters as N$. You must use LSET or RSET to place
values in the buffer:

10 OPEN "R", #3, ":F1 :PERSON"
20 FIELD #3, 20 AS N$
30 LSET N$ = A$
40 PUT #3,1

This technique may be used for storing variables for use in another program, linked
to the first program with the RUN statement (see description of RUN, chapter 6).

Whatever the length of A$, its leftmost 20 characters are now identified as N$. If A$
is less than 20 characters long, the remaining characters of N are set to ASCII blanks
(20H). Statement 40 writes all 128 bytes of the I/O buffer to disk file number #3.

5-7

Disk File Input/Output

5~8

Remember that random disk files are stored as strings. Just as you must convert
fields that represent numeric values when you read them (using eVI, CVS, or CVD),
so must you convert numeric values to their corresponding strings when writing to a
random file, using the MKI$, MKS$, and MKD$ functions. Again, you must be sure
to allow for the number of bytes required to store the three numeric data types.

Integer
Single-precision value
Double-precision value

MKI$
MKS$
MKD$

2 bytes
4 bytes
8 bytes

For example, assume that you open a random file and define two fields: the first 2
characters as P$ and the next 4 characters as C$; the first field represents a part
number and the second its cost. The following statements open the file, set P$ equal
to a variable P A and C$ equal to a variable CO, then write the two values to file
number 5:

10 OPEN "R", #5, ":F1 :PARTS"
20 FIELD #5, 2 AS P$, 4 AS C$
30 LSET P$ = MKI$ (PA)
40 RSET C$ = MKS$ (CO)
50 PUT#5, 1

The part number, of course, must be between -32768 and 32767, and the cost will be
accurate to 7 digits.

Two other functions are related to random disk 110: LOC and LOF. LOF returns
the number of the last sector in the file; LOC returns the number of the sector that
was last read or written.

BASIC-SO

ATTRIB

CHAPTER 6
COMMANDS AND STATEMENTS

The A TTRIB command changes certain specified attributes of BASIC-80 disk files.
You can protect any file from writing or deleting or renaming by enabling the 'write
protect' attribute, and you can later disable this attribute to alter or delete the
specified file. The formats for these two operations are given below.

You can also enable or disable other file attributes with the A TTRIB command.
Refer to the ISIS-II User's Guide, File Control Commands, for information on
using ATTRIB with system, format, and invisible attributes.

To protect a file from writing, deletion, and renaming:

ATTRIB ":Fdrive number:filename", "W1"

To write to, delete, or rename a previously protected file:

ATTRIB ":Fdrive number:filename", "WO"

AUTO
The AUTO command automatically generates a line number at the beginning of
each line when you are entering a program. The first operand specifies the number
of the first line entered after the AUTO command; the second, which is optional,
specifies the increment. Both operands default to 10.

AUTO [first line J[, increment]

To number lines starting with 10 in increments of 10:

AUTO

To number lines with an increment of 50 starting with line 300:

AUTO 300,50

If AUTO generates a line number that already exists in the program, the generated
number is followed by an asterisk. To erase the existing line, enter CR; to leave that
line in the program, enter Control-C to stop the AUTO process.

CLEAR
The CLEAR command sets all variables, arrays, and function definitions to zero,
and closes files. If variables are referenced after a CLEAR, numeric variables will be
zero and string variables will be null. The first expression is specified as an argu­
ment, and the value of this expression becomes the string space, in bytes.

CLEAR [expression[,address]]

6-1

Commands and Statements

6-2

If a second expression is specified, it indicates the highest memory location available
to BASIC. This number is similar to the MEMTOP option. If not specified, the
highest memory location used is unchanged. At sign-on only 100 bytes of string
storage space are available.

CLEAR 2000, ODOOOH

will reserve 2000 (decimal) bytes for string space, and will not allow BASIC to use
any memory address above ODOOOH.

CLOSE
The CLOSE statement concludes I/O activities for one or more disk files. A CLOSE
statement for an open file disassociates the file name and the file number used to
open the file, but the file may be opened again under the same or another file
number. Close without options closes all files.

The END, NEW, MERGE, LOAD, RUN (without F) and CLOSE (without
arguments) statements close all disk files automatically, but STOP does not.

CLOSE [[I] file number [,[1] file number] ...]

10 OPEN "R" ,13, "F1 :PERSON"
20 GETI3,1
30 FIELD #3,20,AS N$, 9 AS SS$
40 PRINT 'N$,SS$
50 CLOSEI3
RUN

JONES, JOHN J. 517317010
Ok

CONT
The CONT command continues program execution after a Control-C, a STOP, an
ERROR interruption, or an END statement has been executed. If execution halts
because of an error, BASIC-80 will try to re-execute the same line again. Execution
resumes at the statement after the break occurred unless input from the terminal was
interrupted; in this case, the prompt (1) is reprinted. Execution cannot be continued
if the program was modified during the break, but variable values may be changed.

CONT

In the example below, the program expects a numeric input and is interrupted with a
Control-C.

ENTER NEXT INTEGER STRING
?41 tC
BREAK IN 240
OK
CONT
? 37

BASIC-SO

BASIC-SO Commands and Statements

DATA
The DATA statement prefaces lines of data that are read sequentially by the READ
command and assigned as values to variables. The data is separated by commas and
may be numeric, strings, or quoted strings. If strings are not surrounded by quotes
(" ") they may not contain commas (,) or semicolons (;) and leading or trailing
blanks are ignored. DATA instruction lines may be located anywhere in program
text. BASIC maintains a pointer which keeps track of the next DATA element to be
read. This pointer is set to the first data element of the first DATA statement when a
program is RUN. It increments to subsequent DATA elements when its elements are
read. It can be moved with the RESTORE command.

DATA numbeq string literal I quoted string
[, number I string literal I quoted string] ...

10 DATA 10, IS LESS THAN, 77
20 DATA 44, IS GREATER THAN, -32
30 DATA 1.7, "IS EQUAL TO ", 1.7EO
40 FOR 1=1 TO 3
50 READ X, A$, Y
60 PRINT X; A$; Y
70 NEXT
RUN
10 IS LESS THAN 77
44 IS GREATER THAN -32
1.71S EQUAL TO 1.7
Ok

DEF FN(X)

The DEF FN(X) statement defines arithmetic or string functions for later use in pro­
gram text. The name given to the function must be FN followed by a valid variable
name. The variable(s) given are the arguments used within the function. Any one­
line expression can be used. User-defined functions can be of any type, arithmetic or
string, and any number of arguments are allowed. The correct number of
parameters must be specified when the function is referenced within a program.
Functions may not be redefined.

DEF function name [(variable [, variable ...])]= expression

The rules for function name are the same as for variable name.

10 DEF FNAC (X) = (1/(2*3.14159))*X
20 FOR X = 1 TO 10
30 PRINT FNAC (X),
40 NEXT X
50 END
RUN
.159155 .31831 .477465 .63662
.954931 1.11409 1.27324 1.4324

.795776
1.59155

6-3

Commands and Statements

6-4

DEFSNG
DEFDBL
DEFSTR
DEFINT
The DEFSNO, DEFDBL, DEFSTR, and DEFINT statements are used to specify
that a given block of letters will designate a specific data type when used as the first
letter of variable names. The DEFSNO, DEFDBL, DEFSTR, and DEFINT
statements specify single precision floating point, double precision floating point,
string, and integer representation, respectively. Blocks of letters are specified
according to the syntactic format given below:

DEFXXX m [-n][,m[-n]] ...

in which m represents any letter, A through Z, and n represents any letter B through
Z. These two letters represent the boundaries of a block of letters between m and n.
If n is not used, only variables beginning with letter m are specified. The n argument
must follow m in alphabetic sequence; in other words, blocks may be defined as D to
L, or A to 0, but not as P to A or Z to M.

10 DEFSTR S
20 DEFDBL D
30 DEFINT I-N

DEFUSRn
The DEFUSRn statement is used to specify the starting address of an SOSO/SOS5
assembly-language, PL/M-SO, or Fortran-SO subroutine so they may be called by the
USR function. The argument n may be an integer from 0 to 24; if no argument is
given, 0 is assumed. Two examples of DEFUSRn statements are given below:

DEFUSR = OFOOOH
DEFUSR7 = 1%

Because of the way BASIC-SO represents numbers internally, 32767 is the largest
value for an integer expression. The following code can be used to specify higher
decimal values in a DEFUSRn statement.

10 INPUT "ENTER ENTRY ADDRESS IN DECIMAL"; A
20 IF A> 32767 THEN A = A-65536
30 DEFUSR11 = A

The program below shows how DEFUSR defines a subroutine. Refer to Appendix E
for further details of using DEFUSR.

10 REM This program asks for three
20 REM Integers, passes them to USR1, and
30 REM Returns the result.
40 DEFINT A-Z
50 DEFUSR 1 = OEOOOH
60 PRINT "Enter three numbers:"
70 INPUT A, B, C
80 P R IN T "A = "; A; "B = "; B; "C = " ; C
90 RESULT = USRo/01 (A, B, C)

100 PRINT "A+ B+C+ =" RESULT
110 END

BASIC-SO

BASIC-SO Commands and Statements

DELETE'

The DELETE command removes specified instruction lines from program tex,t. A
single line or block of lines may be deleted, as shown in the syntactic format and
example below. Instruction lines prior to and including the specified line may be
deleted by adding a dash (-) before a line number. When deleting a range of lines, the
line numbers specified as end points must exist. If not, an error results.

DELETE line numberlline number-line numberl-line number

10 PRINT CHR$(12)
20 PRINT:PRINT:PRINT
30 REM THIS PROGRAM FINDS THE AVERAGE
40 REM OFTHREE NUMBERS
50 INPUT A,B,C
60 PRINT (A+ B+C)/3
70 END
DELETE-40
OK
LIST
50 INPUT A,B,C
60 PRINT (A + B + C)l3
70 END
OK
DELETE 70
OK
LIST
50 INPUT A,B,C
60 PRINT (A+ B+ C)/3
Ok

DIM

The DIM statement defines the number of elements in an array variable. If an array
variable is not dimensioned before it is referenced, a default value of 10 is assumed
as the maximum possible subscript range for each dimension in the reference. If
given, DIM statements must allocate space before you refer to the arrays they
dimension, since once an array is dimensioned, these dimensions cannot be changed.
If an OPTION BASE n statement is used in the program to specify starting points
for arrays, it should precede the first DIM statement, or array reference.

DIM variable (integer [,integer] ...) [,variable (integer [,integer] ...) ...]

In the example below, A is a single precision array with 21 elements, indexed with a
value of from 0 to 20. I is an integer array with 13 times 14 (= 182) elements. S$ is a
three dimensional string array with 125 elements. DD# is a singly dimensioned
double precision array with 22 elements.

10 DEFINT I-N
20 DIM A (20), 1(12,13), S$ (4,4,4), DD# (21)

6-5

Commands and Statements

6-6

DIR

The DIR command displays the names, number of blocks, and length (in bytes) of
the files saved on the specified disk. If no drive number is specified, the default is
drive O. DIR may be used as a command or as a statement.

DIR [drive number]

EDIT

The EDIT command is used to modify single program lines. In this mode, you have
a selection of editing subcommands that facilitate character insertion, deletion and
changing. These subcommands and their uses are explained in Chapter 3: Entering
and Editing BASIC-80.

The EDIT mode is entered automatically when a syntax error prevents program
execution. It can also be entered when.entering text by typing Control A, or it may
be entered by typing EDIT line number. Refer to Chapter 3: Entering and Editing
BASIC-80.

EDIT line numbeq .

The period (.) is used to represent the last line changed, listed or that contained an
error.

END

The END statement halts program execution and returns to BASIC-80 command
level. Files are closed, but variables can be examined. END may be used at any
logical conclusion point within program text. STOP acts like END, but also prints a
"BREAK IN line number" message, and does not close files. An END command is
optional as the last line of a program.

END

The program below contains an END statement in line 40.

10 INPUT A,B,C
20 D=(A + B + C)/3
30 PRINT "THE AVERAGE OF";A;" + ";8;" + ";C;"EQUALS";D;"."
40 END

ERROR

The ERROR statement simulates the occurrence. of an error in program execution.
The user-supplied integer expression will generate an error message appropriate to
its value, as shown in the example listed below. The integer expression supplied must
be greater than 0 and less than or equal to 255. If ERROR is executed with a number
that does not correspond to a BASIC error message, "UNPRINTABLE ERROR"
will print. All errors can be trapped by the ON ERROR statement. For further in­
formation, refer to Chapter 4: Error Handling.

BASIC-SO

BASIC-SO Commands and Statements

ERROR expression

10 INPUT A,B,C
12 IF B=O THEN ERROR 11
14 PRINT AlB
20 END
RUN
? 40,0,17
DIVISION BY ZERO IN 12
Ok

EXIT

The EXIT command terminates operation of the BASIC-80 interpreter and returns
control to ISIS-II. EXIT closes all open files, but does not automatically save pro­
grams. If you EXIT without saving the current program, it will be lost.

EXIT

FIELD

The FIELD statement is used to allocate space within one of six 128-byte BASIC-80
random file buffers. When a random 110 transaction occurs, data move to or from
the specified random file buffer to or from disk sectors. The FIELD statement
associates the data with its position in the 110 buffer so that future references to the
specified variable will access the proper string characters or numbers within the
record stored in the random file buffer. The example below shows how FIELD is
used. For further information, refer to the BASIC-80 Disk Input/Output section.

FIELD # file number,
number of characters AS string variable

[,number of characters AS string variable] ...

The program below opens random file :F1 :FILE.1 and asks for five 30-character
strings to insert into :Fl :FILE.1.

10 OPEN "R" ,#1, ":F1 :FILE.1"
20 FIELD #1,30 AS A$
30 FOR 1=1 to 5
40 INPUT Z$
50 LSET A$ = Z$
60 PUT#1,1
70 NEXT I
80 CLOSE#1
90 END

FOR-NEXT-STEP

The FOR-NEXT statement allows the execution of a given group of lines a given
number of times. As shown in the example below, on each iteration of the routine,
value A is incremented by the value given in the STEP instruction. If no value for
STEP is specified, the increment is 1. The instruction lines following the line con­
taining the FOR instruction are executed until the NEXT instruction is encountered.
Program control returns to the FOR instruction line, STEP is added to the value of
A, and the routine is reentered. When variable A exceeds the TO expression, control
passes to the instruction line following the NEXT instruction line.

6-7

Commands and Statements

6-8

If the TO expression is larger than the starting expression and the step expression is
negative then the loop will not execute. Similarly, if the TO expression is less than
the starting expression and the STEP expression is positive, then the loop will not
execute. After the conclusion of the loop, variable A contains the first value not us­
ed in the loop.

Control cannot be passed to a statement within a FOR ... NEXT loop with GO TO,
GO SUB etc, but a GO TO can be used to jump out of a FOR ... NEXT loop.
FOR ... NEXT loops may be nested so long as each inner loop is completely
contained in all outer loop~, and they employ different index variables.

If possible, integer index variables should be used to speed execution. Double preci­
sion index variables are not allowed.

FOR variable=expression TO expression [STEP expression]

10 FOR A = 1 TO 5
20 PRINT A * A,
30 NEXT A
40 END
RUN
1 4 9 16 25

GET

The GET statement reads the specified sector from the specified file into 128- byte
random buffer. The file must be open for random access. If the sector number is not
specIfied, the sector number of the previous GET or PUT is incremented and this
sector is read. A GET without a sector number immediately after a file is opened will
return the first sector. The largest possible sector number is 2046. If the GET com­
mand is issued for a sector that has not yet been written, buffer contents are
undefined, and there is no error message. However, if no greater record has ever
been PUT or GET, the file will be extended.

GET [I] file number [,record number]

10 OPEN "R" ,#3, "F1 :PERSON"
20GET#3,1
30 FIELD #3, 20 AS N$, 9 AS SS$
40 PRINT N$,SS$
RUN

JONES, JOHN J. 517317010
Ok

GOSUB

The GOSUB statement transfers program control to the line number specified as an
argument. This line number is typically the first line number of a subroutine that is
used several times during a program. The RETURN statement transfers control
back to the first instruction that follows the last GOSUB statement executed.

GOSUB line number

10 lNPUT A
20 IF A>O THEN GOSUB 100 ELSE PRINT "A MUST BE >0"
30 GOTO 10

100 PRINT SQR(AO);SIN(A);TAN(A)
110 RETURN

BASIC-SO

BASIC-SO Commands and Statements

GOTO

The GOTO (line number) statement transfers execution of instruction lines from the
current line to the line number specified. There is no provision for a return to the
branching point.

GOTO line numberl GO TO line number

The GO TO in line 270 causes a jump to line 100.

250 IF EOF(6) THEN 300
260 PRINT "FILE STILL CONTAINS DATA"
270 GOTO 100
300 PRINT "FILE ";F$;"IS OUTOF DATA."
310 END

IF-THEN-ELSE

The IF-THEN-ELSE statement evaluates the given logical expression and executes
the THEN instruction if true, the ELSE instruction if it is false. The ELSE instruc­
tion is optional; if it is left out, and the logical expression is false, the next line is
executed. Line numbers can be used in place of instructions and have the same effect
as GO TOs. An IF statement must always be on one line. IF statements may also be
nested, as shown in the example below. In this example, an ELSE clause matches the
last unmatched THEN.

IF expression THEN instruction [ELSE instruction]

5 IF S$ =" "THEN 40
10 IF S$ = "+" THEN A = A+B ELSE IF S$ = "-" THEN A=A-B ELSE 30
20 GOT040
30 PRINT"lnvalid S$"
40 END

INPUT

The INPUT statement returns a prompt (question mark) and waits for the user to
enter data. String literals or numeric values may be expected, according to the type
of variable specified as an argument.

INPUT [quoted string;] variable [,variable] ...

If a string expression follows INPUT and is followed by a ";" it is used in place of
the question mark as the prompt. If the number or type of data items in the response
do not agree with the number or type of variables requested, BASIC-80 returns a
prompt to re-enter the line. Strings which are input need not be surrounded by
quotes as long as they do not contain commas (,). Leading and trailing blanks are
ignored in this mode.

10 INPUT A,B,C
20 PRINT(A+B+C)/5
30 END
RUN
? 40,2,18
12
Ok

6-9

Commands and Statements

6-10

KILL

The KILL command deletes files from disk storage, and removes all references to
the deleted file from the directory. Once a file has been killed, it cannot be reopened.

KILL filename

LET

The LET statement is used to give a value to a variable. If a variable appears to the
left of an equal sign not preceded by the word LET, BASIC-SO assumes that a LET
statement is implied. When assigning a literal value to a string variable, the value
must be enclosed in quotation marks.

[LET] variable = expression

10 LET A=5
20 PRINT A
RUN
5
Ok

LINE INPUT

The LINE INPUT statement reads an entire line of data and assigns it as the value of
the specified string variable. LINE INPUT does this in two ways: first, data may be
read from the terminal and assigned; second, data may be read from a disk file and
assigned.

When entering data from a terminal, the syntactic format is:

LINE INPUT [string expression;] string variable

This statement will print the string expression as a prompt and will haIt until the
string is entered and a carriage return has been entered. Entering a Control-C will
abort LINE INPUT and return BASIC-SO to the Command Mode. A CONT com­
mand may then be used to re-enter the LINE INPUT statement.

When entering data from a disk file, the syntactic format used is:

LINE INPUT .file number,string variable

This statement reads data from the specified disk file until a carriage return is en­
countered. The data is assigned as a value for the specified string variable, and LINE
INPUT skips over the encountered carriage return-line feed to point to the begin­
ning of the next string. If no carriage return is encountered, the statement returns
the next 255 characters of data. See Chapter 5 for further information about disk
file I10~

LIST

The LIST command prints the current program's text to the console. Instruction
lines are listed in sequential order. As shown below, the LIST command may be used
to display the entire program, all instruction lines up to or after a given line, or a
block of instruction lines within the program. The period may be used as an
abbreviation for the last line which was changed, contained an error, or was listed.

LIST [line numberl-line numbeq line number-I line number-line number}

BASIC-SO

BASIC-SO Commands and Statements

In the example below, LIST 30 prints line 30 only; LIST -30 prints all lines up to and
including 30; list 30- prints all lines after 30, including 30; LIST 30-50 prints lines 30,
40, and 50; LIST prints the entire program text.

10 PRINT CHR$(12)
20 INPUT A,B,C
30 PRINT (A + B + C)/3
40 PRINT
50 END
LIST 30
30 PRINT(A+B+C)/3
LlST-30
10 PRINT CHR$(12)
20 INPUT A,B,C
30 PRINT(A+B+C)/3
LIST 30-
30 PRINT (A+ B+C)/3
40 PRINT
50 END
LIST 30-50
30 PRINT (A + B + C)/3
40 PRINT
50 END
LIST
10 PRINT CHR$(12)
20 INPUT A,B,C
30 PRINT (A + B + C)/3
40 PRINT
50 END

To obtain a listing of a file on a line printer or other device, use the SAVE com­
mand, which is described on page 6-22.

LOAD

The LOAD command reads a file from disk and stores it in memory, making it the
current file. The string expression must be an ISIS-II filename.

LOAD filename

LOAD" :F1: PLOT"
OK
RUN

THIS PROGRAM PLOTS ANY USER-DEFINED
FUNCTION ON AN X-Y GRAPH.

LSET, RSET
The LSET and RSET statements store the specified string expression into string
space that has been allocated in a random file buffer by a FIELD statement. When
string variables are assigned to a random file buffer with the FIELD statement, they

6-11

Commands and Statements

6-12

cannot later be assigned values with the LET statement. This is because strings are
assigned new storage locations when given new values and this destroys the effect of
the FIELD statement. Accordingly, the LSET and RSET statements must be used to
assign new values. These commands may also be used with normal string statements.
If the assigned string value is shorter than the space reserved for the string variable
in the FIELD statement, LSET left justifies the string, adding blanks (ASCII 20H)
as needed. RSf:T right justifies the string in the same way. If the string is longer than
the space reserved, the extra characters are ignored. LSET and RSET may be used
with string variables that have not been fielded. Unlike normal string assignment,
the length of the receiving string is not changed by an LSET or RSET assignment.

LSET string variable = string expression
RSET string variable = string expression

10 A$ = "1 23456"
20 RSET A$ = "A B"
30 PRINT A$; "X"
40 LSET A$ = "C 0"
50 PRINT A$; "X"
RUN

ABX
CO X
Ok

MERGE

The MERGE command reads a program from disk and combines it with the current
program without changing line numbers of either program. If the new program and
the current program have instruction lines with the same line numbers, the new in­
struction lines replace the current ones. The new program must have been saved in
ASCII format. MERGE sets all variables and arrays to zero. If used within a pro­
gram, the program will end. A given string expression must resolve to an ISIS-II
filename.

MERGE string expression

MERGE ":F4: EVAL.BAS"
Ok

NEW

The NEW command deletes the current program and clears all variables and arrays.
If a program has not been saved and the NEW command is given, the program is
lost.

NEW

In the sample program below, the program has been deleted by the NEW command.
The LIST command will not list it, or any program, until another is read from a
peripheral device or entered line-by-line.

240 PRINT "end of program"
250 PRINT
260 PRINT
270 END
NEW
Ok
LIST
Ok

BASIC-80

BASIC-80 Commands and Statements

NEXT

The NEXT statement is used with a previous FOR statement to end an iteration of a
FOR-NEXT loop; when BASIC-SO encounters a NEXT statement, control passes
back to the statement line containing the last FOR statement. If no index variable is
specified, BASIC-SO increments the variable specified in the last FOR statement.
Each NEXT can end more than one loop if the index variables used in each loop are
given separated by commas.

The syntax of NEXT is:

NEXT [Variable] [, Variable] ...

10 FOR A=1 TO 5
20 PRINT A * A;
30 NEXT A
40 END
RUN
1 4 9 16 25
Ok

NULL

The NULL command specifies the number of null characters printed at the end of a
printed line, following the carriage return. This feature is used with hard copy ter­
minals that require a certain number of null characters that set carriage return
timing.

NULL number of null characters to be transmitted

ON ERROR GOTO

The ON ERROR OOTO statement transfers program control to the specified line
number when error conditions occur or an ERROR instruction simulates an error
within a program. The ERR function is set to the applicable error code and the ERL
function is set to the applicable line number.

The instruction line ON ERROR OOTO 0 removes the effect of any previous ON
ERROR OOTO, so that errors cause messages to print and halt execution. If ON
ERROR OOTO 0 is executed within an error-handling routine (after an error but
before a RESUME) the proper error message prints and execution halts
immediately.

If an error occurs in an error routine, after an ON ERROR OOTO branch and
before a RESUME, the ON ERROR OOTO has no effect. This means that if an ON
ERROR OOTO is in effect, and two errors (or ERROR commands) occur without
an intervening RESUME, the second error prints an error message and halt
execution.

ON ERROR GOTO line number

10 ON ERROR GOTO 200
20 ERROR 11

200 PRINT "ERROR" ERR "AT LINE" ERL
210 RESUME NEXT

6-13

Commands and Statements

6-14

ON ... GOSUB

The ON ... GOSUB statement transfers program control to one or one of a set of
subroutines.The line numbers of the first lines of these subroutines follow sequen­
tially, separated by commas. If the expression evaluates to 3, control transfers to the
third line number following GOSUB.

ON expression GOSUB line number [,Iine number] ...

10 INPUT A
20 ON A GOSUB 200,300

ON ... GOTO

The ON ... GOTO statement transfers program control to one or one of a set of line
numbers. The expression X is evaluated and control is transferred to the "nth" line
number following the line containing the ON ... GOTO instruction. If the expression
evaluates to 3, control transfers to the third line number following GOSUB.

ON expression GOTO line number [,Iine number] ...

10 INPUT A
20 ON A GOTO 500,510,520

OPEN

The OPEN statement makes an ISIS-II file available to BASIC. It also
associates a file number from 1 to 6 with the file. File type can be I, 0, or R.
Random 110 files are specified by an R, sequential input files are specified by
an I, and sequential output files are specified by an 0, as shown in the syn­
tactic format below. The file number is an integer expression greater than 0
and less than or equal to 6, is preceded by a "#" sign, and is used to reference
the file in 110 transactions.

Only six files may be open at one time. Note that SAVE, LOAD, DSKF; DIR
and MERGE all require a file, so a maximum of five files may be open before
they are executed.

BASIC-SO buffers files, so if :CI: is opened for input, BASIC-SO will wait for
the first line of console input.

OPEN type, [I] file number, filename

where type is a string expression equal to "0", "I" or "R". In the example below,
the file SYSLIB is opened as a random I/O file, with number 4.

OPEN "R" ,#4, "SYSLlB"

BASIC-SO

BASIC-SO Commands and Statements

The example below shows a typical use of OPEN in an 110 program.See Chapter 5
for further details of disk random 110.

10 OPEN "R" ,#3, "F1 :PERSON"
20 GET #3,1
30 FIELD #3,20 AS N$, 9 AS SS$
40 PRINT N$,SS$
RUN

JONES, JOHN J. 517317010
Ok

OPTION BASE

The OPTION BASE command is used to begin indexing of arrays at 1 or O. By
specifying an argument of 0 or 1, you can begin all arrays at 0 or 1. If present,
OPTION BASE should precede all DIM statements and array references. If OP­
TION BASE 1 is not specified, 0 is the default value.

OPTION BASE 011

OUT

The OUT statement writes the specified value to the specified 110 port. The value is
an integer expression in the range 0 to 255.

OUT port number, expression

This example rings the bell on Intellec development systems using the RS-232 port.

OUTOF6H, 7

POKE

The POKE statement places the specified value into the memory location specified.
The specified value is an expression that must round to an integer in the range 0-255.
POKE can also accept hexadecimal and octal arguments, even though octal and hex
constants over 32767 (decimal) are interpreted by BASIC-80 as negative numbers. It
does this by adding 65536 to such arguments.

POKE location, expression

POKE OFFFFH, 0
POKE 65535,0
POKE 1777770,0
POKE -1,0

The instructions above set the top byte of memory to 0 in an Intellec development
system having 64K of memory. Before using POKE, you should use the CLEAR
command to reserve free memory. A POKE into BASIC or system code may cause
BASIC or other software to fail.

6-15

Commands and Statements

6-16

PRINT

The PRINT statement returns the value of expressions or the text of strings to the
console, or to any ISIS-II file. Literal strings must be enclosed in quotation marks
("); variables and expressions need no quotation marks.

You can print data to any ISIS-II file by specifying a file number. If a comma (,) is
inserted following an expression to be printed, the next printing starts at the begin­
ning of the next 14-column zone. If a semicolon (;) is inserted, the next printing
starts at the next column. If no punctuation is used at the end of the PRINT state­
ment, the next printing starts at the beginning of the next line. PRINT by itself
prints one blank line. A "?" entered after a line number means PRINT.

PRINT [II filenumber,][[expression], I;] ...

10 INPUT "A string"; X$
20 PRINT "YOUR STRING IS ";X$
30 END
RUN
? A string
YOUR STRING IS A string
Ok

PRINT USING

The PRINT USING statement specifies particular formats to print strings or
numbers. The format string may include more than one field, and may also include
any literal character that is not a PRINT USING formatting character. The syntactic
format of PRINT USING is:

PRINT [# file number,] USING format string; expression [, expression] ...

in which the format string specifies spacing and additional characters (such as
asterisks and dollar signs) when used with numeric fields, and which specify portions
of the given string when used with string fields. Each expression is printed with the
same format. The optional file number specifies the number of an open file. See
Chapter 5 for details of sequential disk file 110.

String Fields

There are two formatting choices when using PRINT USING with string fields:

"!" specifies that the first character of each specified string is printed.

"\ n spaces \" specifies that the first 2+N characters are printed. If the backslashes
are used without spaces, two characters are printed.

If the string field has more characters than the format string, the balance are
ignored; if there are fewer characters than specified, spaces are printed to fill out the
field. Here are examples of the string field formats:

10 X$="ONE"
20 Y$="TWO"
30 PRINT USING "!"; X$; Y$
40 PRINT USING" \ \"; X$; Y$
RUN
OT
ONE TWO
Ok

BASIC-SO

BASIC-80 Commands and Statements

As can be seen, PRINT USING "!" prints a string consisting of the first letters of
each string. PRINT USING \ 2 spaces \ prints a string consisting of four
characters from X$ (3 plus a space) and four from Y$ (also 3 plus a space). If
Y$="SEVEN", the result printed when line 40 is executed would be:

ONE SEVE

and if X$="SEVEN" and Y$="EIGHT", the results of line 40 would be:

SEVEEIGH

Numeric fields

The PRINT USING formatting characters specify right justification, leading dollar
signs, plus or minus signs, exponentiation, asterisk fills, or insertion of commas.
Each of the BASIC-80 format characters is explained in the following section.

I The number or sharp sign (H) indicates the position of digits. If the number to
be printed is too small to fill all of the digit positions specified to the left of
the decimal point, leading spaces print to fill the entire field. An integer can
print as up to five digits, single precision floating-point up to seven digits,
and double precision floating-point up to fifteen digits.

• The decimal point can be inserted in any position in the field. If the format
specifies that a digit follows the decimal point, the digit always prints,
whether it is a 0 or another number. Numbers are rounded as necessary.

PRINT USING "IH.II"; 41.287
41.29

PRINT USING "IH.HI"; 71/100
0.71

+ The plus sign (+) is used at the beginning or end of the field of format
characters. Insertion of this character prints a plus or minus sign, depending
on the sign of the number, at the beginning or end of the number,
respectively.

**

The minus sign (-) is used at the right of the format character field to force
printing of a trailing minus sign if the number is negative. If it is positive, a
space is printed. If neither (+) or (-) is included in the format, a negative
number is printed with a leading (-).

PRINT USING" +H.IH"; 4.89; -2.6689
+4.89 -2.67

PRINT USING "IH.H-"; -5.8; 96.2
5.8- 96.2

The double asterisk (**) fills any leading blank spaces in the number format
with asterisks. This symbol also specifies positions for two more digits.

PRINT USING "**HH.H"; 4.8; 243.3
***4.8 *243.3

6-17

Commands and Statements

6-18

$$ The double dollar sign ($$) adds a single dollar sign to the immediate left of
the number being formatted.

PRINT USING "$$###.##"; -48.28; 364.90
-$48.28 $364.90

($$) specifies space for two additional characters, but the $ added takes up one posi­
tion. The exponential format cannot be used with ($$).

$ The double asterisk-dollar sign ($) returns the results of both the (**) and
($$) format characters. Exponential format cannot be used; "**$" allows for
three additional digit positions, one of which is the dollar sign.

The comma (,) is placed to the left of a decimal point to print a comma to the
left of every third digit on the left of the decimal point. The comma also
specifies another digit position. A comma to the right of the decimal point
prints in that position. The comma cannot be used with exponentiation.

PRINT USING "11###11,.##"; 92114.84
92,114.84

tttt Four carat signs (or vertical arrows) specifying exponentation. The carats or
or arrdws are placed after the numeric format characters. Any decimal point
AM format may be used. The significant digits are left justified, and the exponent

is adjusted. The comma and floating ($) cannot be used when exponentiation
is specified.

070 The percent (070) character indicates that a number larger than the given
format has been encountered. BASIC-80 returns the number itself preceded
by a (070) sign; or, if rounding the number causes it to exceed the specified
field, the rounded number is printed, preceded by a (070) sign. If the number
of specified digits exceeds 24, an ILLEGAL FUNCTION CALL error
results.

PRUN

PRINT USING "11#.1111"; 40.48; 766784; 99997
40.48% 766784.00% 99997.00

The PRUN command starts execution of a program stored in PROM. The
address of the program is an integer argument. The program must be saved in
ASCII, and followed by a (Control-Z).

PRUN address

PUT

The PUT statement transfers data from the previously formatted random file buffer
to the specified disk 'sector. The PUT statement requires the file number assigned
when the random file was opened and the sector the data goes to. If no sector
number is specified, and no data have been written to the disk, the first disk sector is
written to. If data have been written to the disk, the number of the last sector
written increments, and the next sector is written to. The sector number may not
exceed 2048.

BASIC-80

BASIC-SO Commands and Statements

PUT file number, [sector number]

10 OPEN "R", 1, ":F1:FILE.1"
20 FIELD 10 AS A$
30 INPUT A$
40 PUT 1,1
50 CLOSE 1
60 STOP
RUN
? "A STRING"
Ok

RANDOMIZE

The RANDOMIZE statement prompts the user for a new random number seed for
the random number function RND. If the RANDOMIZE command is not given
within a program, the same sequence of random numbers will repeat each time any
program is run.

RANDOMIZE [(expression)]

If the optional expression is included, its value becomes the new seed and no prompt
is issued.

10 RANDOMIZE
20 A= RND
30 IF A < .5 THEN PRINT "HEADS"
40 IF A >= .5 THEN PRINT "TAILS"
RUN
Random number seed (0-65529)? 123
TAILS
Ok

READ

The READ statement sequentially assigns values found in the accompanying DATA
statements to the variables specified. If more DATA fields are read than are
available, an OUT OF DATA error message will be printed. If there is still data
available to be read, the next READ statement will assign the next datum to the
specified variable. The READ pointer may be reset to the first item of any DATA
statement with the RESTORE command. Any type of variable may be read as long
as the type of the DATA is appropriate for the type of variable.

READ variable [,variable] ...

10 DATA 2,4,6,8,10,12,14,16,18,20
20 READ A, B,C,
30 PRINT A; B;C
40 READ D,E,F
50 PRINT D;E;F
RUN
246
81012
Ok

6-19

Commands and Statements

6-20

REM
The REM statement is used to insert commentary remarks into program text. Any
instruction line that begins with REM following its line number is passed over, and
program control passes to the next line. Within a remark, : (colon) is simply another
character, not a statement separator.

REM

10 REM THIS PROGRAM FINDS THE AVERAGE
20 REM OF THREE NUMBERS
30 INPUT A,B,C
40 PRINT (A+ B+C)/3
50 END

RENAME
The RENAME command changes the name of the specified file to the new filename.
Only the directory reference (accessed with the DIR command) is altered; if pro­
grams reference the old filename, a FILE NOT FOUND error message will result.

RENAME "old filename" TO "new filename"

RENUM
The RENUM command resequences line numbers in a program, whether they ap­
pear at the beginning of a line or as the object of a OOTO statement. You can
specify up to three optional arguments: the first is the new number of the first line to
be renumbered, the second is the old number of the first line to be renumbered, and
the third is the increment between lines. If you specify no arguments, the new
number of the first line to be renumbered is assumed to be 10, all lines are
renumbered, and the increment is assumed to be 10.

REN UM [new number][,[old number][,increment]]

20 INPUT A
40 PRINT "NEW:"; A
15 RANDOMIZE

5 PRINT CHR$(12)
52 A1 = A*RND
58 A2 = INT(A1)
RENUM
LIST
10 PRINT CHR$(12)
20 RANDOMIZE
30 INPUT A
40 PRINT "NEW:"; A
50 A1 = A*RND
60A2= INT(A1)

RESTORE
The RESTORE statement resets the READ pointer to the first DATA statement
within program text. The DATA statements can then be reread. A line number can
be specified following RESTORE; if included, data on the specified line will be read
next.

BASIC-SO

BASIC-SO Commands and Statements

RESTORE [line number]

10 DATA 48,49,51,53,58
20 DATA 104,108,116,132,164,5000,5000
30 READA,B

560 IF B<5000 THEN 30
570 RESTORE
580 READA,B

RESUME

The RESUME statement restarts program execution after an error has been detected
and handled. Program execution begins at the line specified; or if no line number is
specified, execution resumes at the statement where the error occurred. The state­
ment RESUME NEXT causes execution at the statement following the erroneous
statement.

RESUME [line numberlNEXT]

140 ON ERROR GOTO 200

200 PRINT "ERROR";ERR;"AT LlNE";ERL;"."
210 PRINT
220 RESUME NEXT

RETURN

The RETURN statement is placed at the end of a subroutine, and transfers program
control back to the instruction line immediately following the last GOSUB or ON ...
GOSUB statement executed.

RETURN

50 GOSUB 200
60 PRINT "TYPE NEXT NUMBER"

200 IF A>100 THEN PRINT "OUT OF RANGE"
210 IF A<=O THEN PRINT "A MUST BE >0"
220 A=11 (B* B1)
230 PRINT
240 PRINT "YOUR NEW FIGURE IS ";A;

6-21

Commands and Statements

6-22

RUN
The RUN command starts the execution of a program or a set of programs. If you
enter RUN alone, it executes the current program starting at the lowest line number.
If you enter RUN followed by a line number, it executes the current program start­
ing at the specified line number. If you enter RUN followed by a string variable
representing a file name, it looks for a file with that name on disk, loads its contents
into memory, and executes the program starting at the lowest line number. With the
latter form, an "F" may be added to leave files open. Otherwise, they are closed.
Files can be left open only if the program was saved in non-ASCII format. The RUN
command erases all variables before executing the program.

RUN [line numberlstring expression [,F]]

The RUN command may also be used as a program statement to chain programs
together. The form of the RUN command that performs this function is:

line number RUN "filename"

This feature is especially useful for the execution of programs that are larger than
can fit into memory as one large program. The RUN command initializes all
variables to zero, however, so if you want to pass some variables to the next pro­
gram, print them out to a buffer file (see the section on "Random Disk 110" for
details) during execution of the first program. Then read them, when needed, into
subsequent programs.

In the example below, the (tC) character halts program execution.

LIST
10 INPUT A,B,C
20 PRINT (A+B+C+)/3
30 PRINT"NEXT SERIES"
40 PRINT: PRINT: PRINT
50 GOTO 10
60 END
RUN
?41,12,6
19.6
NEXT SERIES

? tC (This control character interrupts execution)
BREAK IN 10
OK
RUN 30
NEXT SERIES

?

SAVE

The SAVE command stores the current program on disk with the specified filename.
The addition of a comma and an A saves the file in ASCII format. Note that if a file
with the specified name exists, it will be replaced by the new file. Any valid ISIS-II
file name may be used. You can use a string expression that resolves to an ISIS-II
filename. For example, SAVE ":LP:", A will list the current program on the line
printer. Refer to the ISIS-II User's Guide for more information on ISIS- II device
filenames.

BASIC-SO

BASIC-80 Commands and Statements

SAVE string expression [,A]

10 INPUT A,B,C
20 PRINT (A + B + C)/3
30 END
SAVE "AVER"
OK
RUN "AVER"
? 5,8,2
5
Ok

STOP

The STOP statement halts program execution and prints a BREAK IN (line number)
message. Following this, BASIC-80 is in the command mode. After execution of a
STOP, program variables may be changed or printed, and, if the program is not
changed, execution may be resumed with the CONT command. The END statement
also halts execution, but does not print a BREAK IN (line number) message, and
closes any open file.

STOP

320 PRINT "END OF PROGRAM"
330 STOP
RUN
END OF PROGRAM
BREAK IN 330
Ok

SWAP

The SWAP statement exchanges the values assigned to any two variables or string
variables, provided that they are of the same type.

SWAP variable1, variable2

110 IF X>Y THEN SWAP X,Y
120 PRINT "NEW VALUE OF X IS";X;""AND Y IS NOW";Y

TRON, TROFF

The two program tracing commands, TRON and TROFF, respectively enable and
disable the trace function in program execution. When enabled, the number of each
line is printed as it is executed, enclosed in square brackets. These commands can
also be used within programs to selectively enable and disable tracing.

6-23

Commands and Statements

6-24

TRON
TROFF

10 INPUT A,B,C
20 PRINT(A+B+C)/3
30 END
TRON
OK
RUN
[10]42, 48, 45
[20]45
[30]
OK
TROFF
OK
RUN
30, 18,12
20
Ok

WAIT

The WAIT statement instructs BASIC-80 to monitor incoming bytes from a
specified port. These bytes are tested with a mask byte, which is an integer expres­
sion in the range 0 to 255. The resulting bits are compared with the corresponding
bits of the comparison byte, also an integer expression in the range or 0 to 255. If the

I comparison byte is not specified, the default value is O. Execution of program text is
halted until the two sets of bits differ. When the WAIT command is given, the port
status is exclusive ORed with the comparison byte and the result is ANDed with the
mask byte. Execution halts until a non-zero value is obtained.

WAIT port number, mask byte,[comparison byte]

WIDTH

The WIDTH command adjusts the width of the lines printed at the console to the
specified value, which is an expression in the range 15 to 255. The default value for
WIDTH is 72.

WIDTH expression

10 A$ = "ACTION, OHIO; WEAVERTON, VERMONT; HOLLOWAY,
CALIFORNIA"
20 PRINT A$
30 WIDTH 15
40 PRINT A$
50 WIDTH 72
60 END
RUN
ACTION, OHIO; WEAVERTON, VERMONT; HOLLOWAY, CALIFORNIA
ACTION, OHIO; WE
AVERTON, VERMON
T; HOLLOWAY,CA
LlFORNIA
Ok

BASIC-80

ABS

CHAPTER 7
FUNCTIONS

The ABS function returns the absolute value of the specified expression. The
absolute value of an expression is its numeric value with a positive sign.

ABS(expression)

10 INPUT A
20 A = ABS(A *2)
30 PRINT A
40 END
RUN
?5
10
Ok
RUN
? -5
10
Ok

Ase
The ASC function returns the ASCII code of the first character of the specified
string.

ASC(string expression)

PRINT ASC ("0"), ASC("AB")
48 65

ATN

The ATN function returns the arctangent value of the specified expression. The
result, given in radians, is between -PI/2 and PI/2. The calculation is performed in
single precision, but the argument may be any numeric type.

ATN(expression)

10 INPUT A
20 B = ATN(A)
30 PRINT B
40 END
RUN
?5
1.373401
Ok

7-1

Functions

7-2

COBl
The CDBL(X) function changes the type of expression (X) into double precision
floating-point representation. In this format, calculations are accurate to 16 decimal
places, compared to an accuracy of 7 decimal places in single precision floating­
point representation.

Many fractions (such as 1/3 and .1) cannot be precisely represented with either
single or double precision floating point, due to BASIC-80's internal numeric
representation.

CDBL(expression)

10 A#=1/3
208#=CDBL(1)/3
30 PRINT A#,B#
40 END
RUN
.333333343267441
Ok

CHR$

.333333333333333

The CHR$ function evaluates the expression to an integer and returns the equivalent
ASCII character. The expression must evaluate to an integer between 0 and 255.

CHR$ (expression)

In the program below, the CHR$(12) command generates a form feed in line 110.

110 PRINT CHR$(12)
120 PRINT
130 PRINT "TABLE 2-5: COMMONLY USED CONSTANTS"
140 PRINT
150 PRINT A;8;C;D;E

CINT

The CINT(X) function rounds the expression into an integer value and returns that
value. If the expression is less than -32768 or greater than + 32767 then overflow will
result. NOTE: The FIX and INT functions also convert to integer Formats. FIX
truncates; INT truncates to an integer argument.

CINT(expression)

This program averages three numeric values and returns an integer result:

10 INPUT A,B,C
20 PRINT (CINT((A+ 8+C)/3))
30 END
RUN
? 45, 24,77
49

BASIC-80

BASIC-80

cos
The COS function returns the cosine value of the specified expression. The input is
given in radians. The calculation is performed in single precision.

COS(expression)

10 INPUT A
20 B = COS (A)
30 PRINT B
40 END
RUN
?5
.2836621
Ok

CSNG

The CSNG(X) function changes the type of expression into single-precision floating­
point representation. In this format, calculations are accurate to seven decimal
places, compared to an accuracy of sixteen decimal places in double precision
floating-point representation.

Performing calculations in single precision is faster than in double precision but may
not be as accurate.

CSNG(expression)

10 A# = 1.00/3.00
20 PRINT CSNG (A#) 12, A#/2
RUN
.1666667 .1666666666666667

CVI
CVS
eve
The CVI, CVS, and CVD functions convert strings into numbers. CVI converts a
two character string into an integer by simply moving the two characters into the in­
ternal integer representation. CVS converts a four character string to single preci­
sion, and CVD converts an eight character string into double precision in a similar
fashion.

These functions are used to retrieve numeric values from a random file buffer field,
and are the reverse of MKI$, MKS$, and MKD$.

CVx(string expression)

AO/o = 1
B!=2
C#=3
0$ = MKI$(AO/o) + MKS$(B!) + MKD$(C#)
A % = CVI (0$)
B! = CVS (MIO$(O$, 3))
C# = CVO (MIO$(O$, 7))
PRINT A, B!, C#

1 2 3

Functions

7-3

Functions

7-4

DSKF

The DSKF function returns the number of 128-byte sectors that are free on the
specified disk. The examples below signify that there are 50* 128, or 6.4 kilobytes of
free space on disk 1.

DSKF (drive number)

PRINT DSKF (1)
50
OK

EOF

The EOF function detects when the end of the file is reached when reading a sequen­
tial data file. If there are no more data in the file, EOF returns a -1, indicating
TRUE. At any other time, EOF will return 0, indicating FALSE. If the file is not
open, an error results.

EOF (file number)

10 OPEN "1",1, "[F1: PROGRAM]
20 IF EOF(1) THEN 60
30 LINE INPUT #1, A$
40 PRINT A$
50 GOT020
60 END

ERL
The ERL function returns the number of the line in which the last error took place.
It is normally used after an ON ERROR GOTO ... error trapping routine.

ERL

The program below uses the error-trapping instruction in line 10 to print the error
description in line 40. This line also contains the function ERR, which displays the
code number of the error. In this example the error is division by 0, which has the
error code 11:

10 ON ERROR GOTO 40
20 A = 1/0
30 END
40 PRINT "PROGRAM ENDS IN LlNE"ERL"WITH ERROR"ERR
50 RESUME NEXT
RUN
PROGRAM ENDS IN LINE 20 WITH ERROR 11
Ok

ERR
The ERR function returns the code number of the last error encountered during pro­
gram execution.

ERR

BASIC-SO

BASIC-SO

The following program asks for a divisor and a dividend, and uses the error­
trapping routine in lines 60-90 to prevent division by zero (which has code 11) from
stopping the execution:

10 ON ERROR GOTO 60
20 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
30 Z = X/Y
40 PRINT "QUOTIENT IS";Z
50 GOTO 20
60 IF ERR <> 11 OR ERL <> 30 THEN 90
70 PRINT "YOU CAN'T HAVE A DIVISOR OF ZERO!"
80 RESUME 20
90 ON ERROR GOTO 0
100 END
RUN
WHAT ARE THE NUMBERS TO DIVIDE?
?045,9
QUOTIENT IS 5
WHAT ARE THE NUMBERS TO DIVIDE? 11,0
? 11,0
YOU CAN'T HAVE A DIVISOR OF ZERO!
WHAT ARE THE NUMBERS TO DIVIDE?
?

EXP
The function EXP returns the result of raising e (2.71828) to the specified power.
The specified value must be less than 88.7, or overflow occurs. The calculation is
performed in single precision.

FIX

EXP(expression)

10 INPUT A
20 B = EXP(A)
30 PRINT B
40 END
RUN
?5
148.4131
OK
?

The FIX function truncates numbers with decimal fractions to their integer value.
FIX (number)

PRINT FIX (41.99999)
41
Ok·

FRE
The FRE function returns the number of bytes of memory left when the dummy
argument (X) is given. If you give a string variable as a dummy argument (X$), FRE
returns the number of free bytes in string storage space.

FRE (X)I(X$)

PRINT FRE(X)
22490
Ok

Functions

7-5

Functions

7-6

HEXS

The HEX$(X) function returns a string of hexadecimal digits which represents the
hexadecimal value of the integer argument. In BASIC-SO, integers are from -3276S
to 32767, but SOSO/SOS5 memory addresses go from 0 to 65535 decimal. HEX$ will
handle arguments in both ranges correctly.

HEX$ (expression)

PRINT HEX$ (-1), HEX$ (65535)

Returns:

INP

FFFF FFFF

HEX$ (expression)

10 PRINT "TYPE THE NUMBER OF BYTES OF SPACE"
20 PRINT "NEEDED FOR YOUR PROGRAM, IN DECIMAL:"
30 PRINT
40 INPUT A
50 A$ = H EX$(A)
60 PRINT "YOU'LL NEED "; A$; "BYTES"

The INP function returns the value of a byte from the input port specified by the
expression. The expression must be an integer expression in the range 0-255.

INP (expression)

50 IF INP(A) = 12 THEN PRINT "FORM FEED"
60 IF INP(A) = 7 THEN PRINT "BELL"

INPUTS

The INPUT$ function reads to a specified number of characters from a specified se­
quential file. In the example below you can type in any ten or more characters from
the console into sequential file #2. The :CI: specifies console input. Line 20 prints
the first 10 characters of file #2, and CLOSE concludes the reading of the data.
INPUT$ treats Carriage Return like any other character.

INPUT$ (characters, filenumber)

10 OPEN "1", #2, ":CI:"
20 PRINT IN PUT$ (10,2)
30 CLOSE#2
40 END
RUN
1234567890 (CR)
1234567890

BASIC-80

BASIC-80

INSTR

The INSTR function searches for the first occurrence of the second given string
within the first given string, and returns the first position of the second string as an
ordinal number. The optional argument, an expression I greater than 0 and less than
255, starts the search at I characters. The INSTR function returns a 0 under three
conditions: if I is greater than the length of the first string, if the second string can­
not be found in the first string, or if the first string contains no characters.

INSTR ([I,] string expression, string expression)

10 A$ = "RANDOM NUMBER SUBROUTINE"
20 B$ = "R"
30 PRINT INSTR(A$, B$)
40 PRINT INSTR(3,A$, B$)
50 END
RUN
1
13
Ok

INT

The INT function returns the largest integer value less than or equal to the specified
expression. The sign of the returned value is the same as the sign of the specified
expression.

INT(expression)

10 INPUT A
20 B = INT(A)
30 PRINT A
40 END
RUN
? 18.0427
18
OK
RUN
? -234.98
-235

LEFT$

The string function .LEFT$(X$,I) evaluates the string X$ and returns the leftmost I
characters. I is an integer in the range 0-255.

LEFT$ (string expression, expression)

10 X$ = "WHITE, SMITH, JONES, BLACK, GREEN"
20 Y$ = LEFT$(X$,11)
30 PRINTX$
40 PRINTY$
RUN
WHITE, SMITH, JONES, BLACK, GREEN
WHITE, SMITH
Ok

Functions

7-7

Functions

7-8

LEN

The string function LEN(X$) returns the length, in number of characters, of string
X$. All characters are counted, including non-printing characters and blanks.

LEN (string expression)

10 X$ = "JOHN J. JONES"
20 PRINT LEN(X$)
30 END
RUN
13
Ok

LOC

The LOC function has two uses. When used with a random file, LOC returns the
current sector number. The current sector is defined as the last sector that was read
or written. If no sectors have been read or written, LOC returns to O. When used
with a sequential file, LOC returns the number of sectors read or written to since the
last OPEN statement was executed on that file.

LOC (file number)

10 OPEN "R", #3, :F1 :RANDOM
20 GET #3,44
30 PRINT LOC (3)
40 END
RUN
44
Ok

LOF

The LOF function returns the number of sectors in a random file. When LOF is used
with a sequential file, it returns the number of data sectors (128 bytes per sector) in
the file.

LOF (file number)

PRINT LOF(4)
33

LOG

The LOG function returns the natural logarithm of the argument. The calculation is
performed in single precision.

LOG(expression)

10 INPUT A
20 B = LOG (A)
30 PRINT A
40 END
RUN
? 2488
7.81924
Ok

BASIC-80

BASIC-SO

MID$

The MID$(X$,1. [,J]) function examines string X$ and returns the rightmost
characters starting at pointer 1. I and J are integers in the range 1-255. If argument J
is specified, J characters are returned, starting at position 1. If I is greater than
LEN(X$), the MID$ function returns the null string. If argument J is greater than
the number of characters in X$ to the right of I or is not specified, MID$ returns the
rest of the string.

MID$(string expression, expression [,expression])

10 X$ = "JOHN J. JONES"
20 PRINT MID$(X$,10,3)
30 PRINT MID$(X$,9)
40 END
RUN
ONE
JONES
Ok

The MID$ (X$, 1. [,J]) function may also appear on the left side of an assignment
statement. Employed in this context, it will replace the characters of string X$ begin­
ning at position I with the string given on the right. If J is specified, J characters of
X$ are replaced. If I is greater then LEN(X$) , an illegal function call error is
displayed. The length of X$ is never changed.

10 A$ = "ABCDEF"
20 B$ = "XXYYZZ"
30 MID$(A$,2,4) = B$
40 PRINT A$
50 END
RUN
AXXYYF
Ok

MKI$
MKS$
MKD$

The three functions MKI$, MKS$, and MKD$ convert data represented as
numerical values into two-, four-, or eight-byte strings, respectively. MKI$ is used to
convert an integer value; MKS$ is used to convert a single-precision floating-poinf
value; and MKD$ is used to convert a double-precision floating-point value.

MKI$ (integer)
MKS$ (single-precision value)
MKD$ (double-precision value)

These functions are used to place numeric values into fields of random file buffers.
See Chapter 5 for discussion of MKI$, MKD$, and MKS$

OCT$

The aCTS function returns a string of octal digits which represent the value of the
integer argument. The expression is rounded to an integer before conversion.

OCT$ (expression)

10 PRINT "TYPE DECIMAL INTEGER TO BE CONVERTED."
20 INPUT A
30 A$ = OCT$(A)
40 PRINT A,"EQUALS,"A$," IN OCTAL."

Functions

7-9

Functions

7-10

PEEK
The PEEK function reads a single byte from memory at the location specified. The
corresponding POKE statement writes a byte into a specified memory location.

PEEK (expression)

PRINT PEEK(OFABH)
200

P~S

The POS function returns the position of the cursor after the last PRINT statement.
The argument I is a dummy argument. The leftmost position is 1.

POS (integer)

10 INPUT A$
20 PRINT A$;
30 IF POS(1) > 10 THEN PRINT
40 PRINT "HAS JUST BEEN INPUT"
RUN
?AAAAA
AAAAA HAS JUST BEEN INPUT
OK
RUN
?AAAAAAAAAAA
AAAAAAAAAAA
HAS JUST BEEN INPUT
Ok

RIGHTS

The RIGHT$ function returns the rightmost I characters of string X$. If I equals or
exceeds the length of X$, the entire string is the result. If I is 0, a null string results.

RIGHT$ (string,integer)

10 A$ = "JOHN J. JONES"
20 X$ = RIGHT$(A$,8)
30 PRINT X$
RUN
J. JONES
Ok

RND
The RND function returns a single precision random number between 0 and 1. The
sequence produced is identical every time a program is run. If this is undesirable
(such as in games) use RANDOMIZE to prompt the user for a seed.

RND

BASIC-80

BASIC-SO

SGN

The SON function returns the sign of the specified expression. If the expression is
greater than 0, SON returns 1. If the expression is 0, SON returns a 0. If the expres­
sion is less than 0, SON returns -1.

SGN(expression)

10 INPUT A
20 LET B = 3.14159*SGN(A)
30 PRINT B
40 END
RUN
? 44
3.14159
OK
RUN
? -12
-3.14159
OK
RUN
?O
o
Ok

SIN

The SIN function returns the sine value of the argument. The input is given in
radians. The calculation is performed in single precision.

SIN (expression)

10 INPUT A
20 PRINT SIN(A)
30 END
RUN
?8
.989358
Ok

SPACES

The SP ACE$ function returns a string of spaces equal to the value of the integer
expression.

NOTE
SPACE$ returns an actual string.

SPACE$ (integer expression)

10 A =1
20 PRINT "QUESTION";A;SPACE$(10);"THEORY"
30 PRINT
40 PRINT SPACE$(21);"TEXT"
50 END
RUN
QUESTION 1 THEORY

TEXT

Functions

7-11

Functions

7-12

SPC

The SPC function returns a string of spaces n characters long when used with a
PRINT statement, as in the example below. SPC, unlike the SP ACE$ function, does
not return an actual string, only a series of spaces. It may only be used with a
PRINT statement.

SPC (integer)

10 PRINT
20 PRINT SPC (10); "Question 1 ":PRINT:PRINT
30 PRINT SPC (15);"How many states are there in binary

logic?":PRINT
40 INPUT A$:PRINT:PRINT
50 IF A$ = "2" THEN PRINT "Correct" ELSE GOTO 750

saR
The SQR function returns the square root of the specified expression. The expres­
sion must evaluate to be greater than or equal to zero, or an error message is
returned. SQR is calculated in single precision.

SQR(expression)

The program below finds the square root of input A, which is entered by the user,
then displays it:

10 INPUT A
20 PRINT SQR(A)
30 END
RUN
? 45
6.70821
RUN
? -1
ILLEGAL FUNCTION CALL IN 20

STRINGS

The STRING$ function returns a string of the same character repeated the specified
number of times. If an integer argument is used, the ASCII character having that
numeric code is returned the specified number of times. If a string argument is sup­
plied, the first character of the string is returned the specified number of times.

STRING$ (expression, expressionlstring expression)

10 A$ = STRING$(10,97)
20 PRINT A$
RUN
aaaaaaaaaa
OK

10 A$=STRING$(10,"A")
20 PRINT A$
RUN
AAAAAAAAAA
Ok

BASIC·SO

BASIC-SO

STR$

The STR$ function returns a string of decimal digits that represent the value of the
integer expression.

STR$ (expression)

10 FOR 1=0 TO 9
20 A$ = A$ + MID$ (STR$ (I), 2)
30 NEXT 1
40 PRINT A$
RUN
0123456789
Ok

TAB
The TAB function spaces to the specified column position at the terminal. The left­
most column is 1 and the rightmost is the WIDTH value. If the current print posi­
tion is beyond the specified column, TAB will force a carriage return, line feed
before spacing to the specified column. This function may only be used with the
PRINT statement. If the expression rounds to a value less than 1, TAB(1) results. If
the expression rounds to over WIDTH value, TAB (expression MOD width) results.

TAB (expression)

10 FOR 1= 1TO 4
20 PRINT T AS (I); I
30 NEXT I
RUN
1

2
3

Ok

TAN

4

The TAN function returns the tangent value of the argument. The input is given in
radians. The calculation is performed in single precision.

T AN (expression)

10 INPUT A
20 PRINT TAN (A)
30 END
RUN
? 41
.160656
Ok

USRn
The USRn function is used to reference a user-defined assembly-language, PL/M-80
or Fortran-80 subroutine. The DEFUSRn statement specifies the starting address
for the corresponding USRn subroutine. The argument n may be any integer from 0
to 24; if no argument is given, 0 is assumed. The type character indicates the type of
the result. If none is indicated, the result must be returned as an integer in registers
Hand L.

Functions

7-13

Functions

7-14

Only integers can be used as arguments; other variables must be passed by reference.
This is done with the V ARPTR function, which returns the address of the specified
variable.

USR[$I#l% I!][n] [(parameter ...)]

Here is an example of how the USRn statement is used:

10 CLEAR 1000, ODFFFH
20 DEFUSR4 = OEOOOH
30 A$ = "A STRING"
40 A = 1E4
50 A# = 14D-3
60 AO/o = 12
70 B = USR ! 4 (VARPTR(A!),VARPTR(K1),VARPTR(R#),VARPTR(LA%»

Arguments are returned in a similar fashion, unless the type character is omitted, in
which case registers Hand L are used.

Appendix E gives details of loading and running ASM-80, PL/M-80, and
FORTRAN-80 subroutines that may be called with USRn.

VAL
The VAL function returns the numerical value of string X$. If the string does not
represent a valid number, V AL(X$) equals O.

VAL (string expression)

10 INPUT A$
20 IF VAL(A$) = 0 THEN 60
30 A1 = VAL(A$) * 52
40 PRINT A1, A$
50 END
60 PRINT "ENTER NUMERIC DATA ONLY."
70 GOT010
RUN
?4
208 4

VARPTR
The V ARPTR function returns the address in memory of a variable or the in­
put/ output buffer associated with a file number. If the variable has not yet been
assigned a value, an ILLEGAL FUNCTION CALL error results. The main use of
V ARPTR is to pass variable or array addresses to assembly-language subroutines.
Arrays are passed by specifying V ARPTR (A (0» (or V ARPTR (A(l» if OPTION
BASE 1 is in effect) so that the lowest addressed element of the array is returned. All
simple variables should be assigned values in a program before calling V ARPTR for
any array; otherwise, allocation of a new simple variable will cause the addresses of
all arrays to change. See Appendix E for further information about using V ARPTR.

VARPTR (variablel#file number)

BASIC-80

APPENDIX A
BASIC-SO ERROR CODES

Table A-I. BASIC-80 Error Codes

Error

NEXT without FOR

SYNTAX ERROR

RETURN without GOSUB_

Outof DATA

Illegal function call

Overflow

Out of memory

Undefined line number

Subscript out of range

Duplicate Definition

Division by zero

Illegal direct

Type mismatch

Out of string space

String too long

String formula too complex

Can't continue

Undefined user function

No RESUME

RESUME without error

Unprintable error

Description

Program contains no corresponding FOR for
NEXT
Illegal usage of delimiters, characters, etc.

No GOSUB statement found to RETURN to.

All DATA statements in the program have been
read, or BASIC-80 tried to read too much, or too lit­
tle data was included in the program.

Parameter passed to a function was out of range.
Possible reasons:

1. A negative array subscript
2. An array subscript> 32767
3. LOG with a zero or negative argument
4. SQR with a negative argument
5. AtB with A negative and B not an integer
6. A call to USR before a corresponding

DEFUSR
7. Calls to MID$, LEFT$, RIGHT$, INP, OUT,

WAIT, PEEK, POKE, TAB, SPC, STRING$,
SPACES$, INSTR, or ON ... GOTO with im­
proper arguments

Variable with magnitude greater than 3.4E38
(single-precision floating-point) or 1.7D308
(double-precision floating-point)

Program too large, contains too many loops,
subroutines, variables, or complicated expres­
sions.

A referenced line does not exist.

You referenced an array variable outside the
dimensions of the array, or referenced the wrong
number of dimensions.

You redimensioned an array previously
dimensioned.

A 'division by zero' operation was attempted.

An instruction was used illegally in the Command
Mode.

A function which expects a string or variable was
given the wrong data type; any improper mix of
data types.

String variables are larger than the allocated
space. You can increas~ space with CLEAR.

String exceeds 255 characters.

String was too long or complex; break into two.

An attempt was made to continue a program
where an error occurred, or after modifications, or
with no program.

Reference to a non-defined USR function.

An error trapping routine has no RESUME.

RESUME statement without error-trapping
routine.

No error message exists for the given error.
Check ERROR statements for undefined errors.

Number

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A-I

BASIC.80 Error Codes

Table A-I. BASIC-SO Error Codes (Cont'd.)

A-2

Error

Missing operand

line buffer overflow

FOR without NEXT

FIELD overflow

Internal error

Bad file number

File not found

Bad file mode

File already open

Disk 1/0 error

File already exists

Disk full

Input past end

Bad record number

Bad file name

Direct statement in file

Too many files

Description Number

An operator was given without an operand. 22

A program or data line has too many characters 23
for the line buffer. Divide into two or more parts.

A FOR statement was found without a
corresponding NEXT 24

More than 128 characters were allocated in a 50
FIELD statement.

An error occurred in BASIC-80 internal execution. 51
If this error cannot be accounted for, contact your
Intel representative.

An unopened file was referenced. 52

A LOAD, KILL, or OPEN statement referenced a 53
file not found on the specified disk.

One of the following conditions apply: 54

1. The file mode is other than I, 0, or R.
2. PUT or GET to a sequential file.
3. Opening a random file for sequential output,

or vice versa.
4. Performing a PRINT to a random file.

An attempt to open an already opened file was 55
made.

A disk 1/0 error has occurred on disk (x); this 57
means a sector read check failed 18 times.

File already exists. 58

All disk space is full. Delete old files or try new 61
disk.

An INPUT statement has been given after the 62
end-of-file; check INPUT operations with the EOF
function.

The record number in a PUT or GET is > 2048 or < O. 63

An invalid ISIS-II filename was given. 64

A direct statement was found while loading a 66
program into BASIC-80. The LOAD is terminated.

An attempt to open a new file after 6 files were 67
opened.

BASIC-80

APPENDIX B
BASIC-SO RESERVED WORDS

The following list shows 126 words that cannot be used as names of variables. If you
attempt to do so, errors, error messages, or both will result. A valid variable name is
one or more alphanumeric characters, the first of which must be a letter. If more
than two characters are given, the rest are ignored.

ABS
AND
ASC
ATN
ATTRIB
AUTO
BASE
CDBL
CHR$
CINT
CLEAR
CLOSE
CO NT
COS
CSNG
CVD
CVI
CVS
DATA
DEF
DEFDBL
DEFFN
DEFINT
DEFSNG
DEFSTR
DEFUSR
DELETE
DIM
DIR
DSKF
EDIT
ELSE
END
EOF
EQV
ERASE
ERL
ERR
ERROR
EXIT
EXP
FIELD
FIX

FN
FOR
FRE
GET
GOSUB
GOTO
HEX$
IF
IMP
INP
INPUT
INPUT$
INSTR
INT
KILL
LEFT
LEN
LET
LINE
LIST
LOAD
LOC
LOF
LOG
LSET
MERGE
MID$
MKD$
MKI$
MKS$
MOD
NEW
NEXT
NOT
NULL
OCT$
ON
OPEN
OPTION
OR
OUT
PEEK
POKE

POS
PRINT
PRUN
PUT
RANDOMIZE
READ
REM
RENAME
RENUM
RESUME
RESTORE
RETURN
RIGHT$
RND
RSET
RUN
SAVE
SON
SIN
SPACES$
SPC
SQR
STEP
STOP
STR$
STRINOS$
SWAP
TAB
TAN
THEN
TO
TROFF
TRON
USING
USR
VAL
VARPTR
WAIT
WIDTH
XOR

B-1

APPENDIX C
BASIC-80 COMMAND CHARACTERS

BASIC-80 has certain single control characters (characters produced by pressing the
letter and the CONTROL key simultaneously) that cause something to happen
immediately. These characters are listed below.

To edit the last line entered:

To halt program execution and return to command
level:

To tab across the line:

To resume program execution after it is stopped by
Control-S:

To halt program execution until Control-Q is
entered:

To erase the current line:

To retype the current line:

To disable display to the terminal (until
CONTROL-O is given again or the program runs to
completion):

CONTROL-A

CONTROL-C

CONTROL-I

CONTROL-Q

CONTROL-S

CONTROL-X

CONTROL-R

CONTROL-O

C-l

Table D-l. ASCII Code List

Decimal Octal Hexadecimal Character Decimal

0 000 00 NUL 64
1 001 01 SOH 65
2 002 02 STX 66
3 003 03 ETX 67
4 004 04 EOT 68
5 005 05 ENQ 69
6 006 06 ACK 70
7 007 07 BEL 71
8 010 08 BS 72
9 011 09 HT 73

10 012 OA IF 74
11 013 08 VT 75
12 014 OC FF 76
13 015 00 CR n
14 016 OE SO 78
15 017 OF SI 79
16 020 10 OLE 80
17 021 11 DC1 81
18 022 12 OC2 82
19 023 13 OC3 83
20 024 14 DC4 84
21 025 15 NAK 85
22 026 16 SYN 86
23 027 17 ETB 87
24 030 18 CAN 88
25 031 19 EM 89
26 032 1A SUB 90
27 033 18 ESC 91
28 034 1C FS 92
29 035 10 GS 93
30 036 1E RS 94
31 037 1F US 95
32 040 20 SP 96
33 041 21 ! 97
34 042 22 " 98
35 043 23 * 99
36 044 24 $ 100
37 045 25 % 101
38 046 26 & 102
39 047 27 , 103
40 050 28 (104
41 051 29) 105
42 052 2A * 106
43 053 28 + 107
44 054 2C , 108
45 055 20 - 109
46 056 2E 110
47 057 2F I 111
48 060 30 0 112
49 061 31 1 113
50 062 32 2 114
51 063 33 3 115
52 064 34 4 116
53 065 35 5 117
54 066 36 6 118
55 067 37 7 119
56 070 38 8 120
57 071 39 9 121
58 072 3A 122
59 073 3B , 123
60 074 3C < 124
61 075 3D = 125
62 076 3E > 126
63 077 3F ? 127

Octal

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

APPENDIX D
ASCII CODES

Hexadecimal Character

40 @
41 A
42 8
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
48 K
4C L
40 M
4E N
4F 0
50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
58 [
5C) 50
5E A
5F -
60 ,
61 a
62 b
63 c
64 d
65 e
66 f
67 9
68 h
69 i
6A j
68 k
6C I
60 m
6E n
6F 0
70 P
71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 Y
7A z
7B {
7C I

70 }
7E -
7F DEL

D-l

ASCII Codes BASIC-SO

Table D-2. ASCII Code Definition

Abbreviation Meaning
Decimal

Code

NUL NULL Character 0
SOH Start of Heading 1
STX Start of Text 2
ETX End of Text 3
EaT End of Transmission 4
ENQ Enquiry 5
ACK Acknowledge 6
BEL Bell 7
BS Backspace 8
HT Horizontal Tabulation 9
LF Line Feed 10
VT Vertical Tabulation 11
FF Form Feed 12
CR Carriage Return 13
SO Shift Out 14
SI Shift In 15

OLE Data Link Escape 16
DC1 Device Control 1 17
DC2 Device Control 2 18
DC3 Device Control 3 19
DC4 Device Control 4 20
NAK Negative Acknowledge 21
SYN Synchronous Idle 22
ETB End of Transmission Block 23
CAN Cancel 24
EM End of Medium 25

SUB Substitute 26
ESC Escape 27
FS File Separator 28
GS Group Separator 29
RS Record Separator 30
US Unit Separator 31
SP Space 32

DEL Delete 127

D-2

APPENDIXE
CALLING NON-BAStC-SO

SUBROUTINES

You can write a subroutine in FORTRAN-SO, PL/M':SO, or SOSO/SOS5 assembly
language, convert it into relocatable code, load it into free memory, and access it
directly from BASIC-SO. Any number of variables can be referenced, following
PL/M conventions for passing parameters to subroutines.

You will need the ISIS-II User's Guide and the publication relevant to the language
you use for the subroutine. The preface lists the Programming and Operator's
manuals for FORTRAN-SO, PL/M-SO, and SOSO/SOS5 assembly language.

Preparing Subroutines

Once you have written the desired subroutine, follow the instructions in the
appropriate compiler or Assembler Operator's Manual to generate object code from
your source language.

The compiler or assembler output is a relocatable object code. This code is given a
starting address in Intellec system memory. To do this, you must know the highest
starting address you can use, as well as the total free memory space.

A 4SK Intellec system has the highest usable address of OBEBFH. A 64K system has
a highest usable address of OF6BFH. Higher-addressed memory in both systems is
taken by the monitor and/or monitor RAM.

When you invoke BASIC-SO, it immediately returns the free memory space in bytes.
The size of your main program and subroutine(s) must be less than the free space.

Suppose you have a 64K system,and a 2K byte (SOOH) subroutine. The highest
usable memory address is OF6BFH. If you place your program next to the monitor,
it must start at OEECOH. You must besure that there is 2K of space available at
OEECOH, and you ~ust forbid BASIC-SO to use this space with the MEMTOP
option when you invoke BASIC-SO. MEMTOP specifies the highest RAlVI address
BASIC-SO may use. In the example below, MEMTOP specifies a boundary at
OEECOH, leaving the space fromOEECOH-OF6COH for your subroutine.

-:F1 :BASIC MEMTOP (OEECOH)
ISIS-II BASIC-80
22620 BYTES FREE

If you invoke BASIC-SO on a 64K Intellec System without specifying MEMTOP, it
looks like this:

-:F1: BASIC
ISIS-II BASIC-80
24668 BYTES FREE

If you locate your program as high as possible in free memory, BASIC-SO can make
the most economical use of its remaining workspaces for string constants, variables,
and strings.

E-I

Calling Non-BASIC-80 Subroutines

E-2

When you have determined the optimum starting address for your subroutine, you
can LOCATE it there with this command. LOCATE converts the relocatable object
code to absolute object code, according to the starting address given. An example of
giving the starting address for your subroutine code is shown below.

LOCATE :F1 :PLMSUB.OBJ TO :F1 :PLMSUB.LD CODE (OEECOH)

This example converts the relocatable object code in :Fl :PLMSUB.OBJ to absolute
object code in the output file :Fl :PLMSUB.LD, and makes all addresses in the
subroutine relative to OEECOH. Refer to the ISIS-II User's Guide for further details
of using LOCATE.

After LOCATE has converted your relocatable code to absolute object code, you
can load it into memory with the ISIS-II Monitor DEBUG command. When you
enter DEBUG followed by the filename of the load module, the subroutine is loaded
into memory at the address specified in the load module. The starting address
displays on your terminal. You then enter GS, which returns you to ISIS-II with the
subroutine loaded at the specified address. From here.you can invoke BASIC-SO and
call the subroutine.

NOTE

You must give the MEMTOP option to reserve memory each time
BASIC-SO is invoked.

Calling Subroutines

After a subroutine is loaded into memory, you can call it from BASIC-80. First,
invoke BASIC-SO as you normally do, and give the MEMTOP option as previously
specified.

The first step in calling a subroutine is defining its address with the DEFUSR func­
tion. Up to 25 subroutines can be addressed in this way, with an integer in the range
0-24. The starting address of the subroutine is given in hexadecimal:

DEFUSR5=OEECOH

Once BASIC-SO knows where USR5 is located, you can call it. When you call it, you
must supply any needed variables. Since the protocol for passing parameters follows
PL/M conventions, you can only directly pass 2-byte integer variables or 2-byte
addresses. If you specify a floating-point variable or a string variable you must use
the V ARPTR function to pass the address of the desired variable. For example, to
pass the addresses of two floating-point numbers (Kl and K2):

120 A = USR5 (VARPTR(K1), (VARPTR(K2»

BASIC-SO goes to the address where Kl is stored (VARPTR(Kl) and the address
where K2 is stored (VARPTR(K2». Once it has found these two values, it passes
them to the subroutine.

If BASIC-SO encounters new variables after executing line 120 above, the memory
locations of Kl and K2 can change, causing errors. Be sure that all variables are
defined before using the VARPTR instruction.

In the example shown, once the parameters are passed, the subroutine executes.
Because of PL/M-80 calling conventions BASIC-80 expects the returned result to be
a two-byte integer in the HL register-pair, and assigns this 16-bit value to A.

BASIC-80

BASIC-80 Calling Non-BASIC-80 Subroutines

To return a single-precision floating-point, double-precision floating-point,
or string result, you must use the appropriate data type character (see table
2-5 for a list of these characters) before the subroutine number in the USR
function. For example, to tell BASIC-SO that a user-written subroutine
returns a double-precision floating- point value:

240 A# = USR #15 (VARPTR(L#), A1)

In this example, the sharp sign (#) following USR tells BASIC-SO to reserve an
S- byte space for the double-precision result of USR #15. A# is also defined as
double- precision, but the parameters passed may be of any numeric type.

Your subroutine must interpret the first parameter passed to it as the storage
address of A#, and it must also place the result of USR #15 there.

References to string parameters are handled in a similar manner. V ARPTR of a
string is the address of the string descriptor, not the string data. Thus if a user
subroutine returns a string then the user should code USR$[n]. BASIC allocates a
255-character string and pass the address of the string descriptor to the subroutine.
Your routine may change the string length in the string descriptor to return a shorter
string, but may not change the string's address. Neither parameter strings nor
parameter string descriptors should be changed.

Array variables are passed as parameters by referencing the first element of the
array. BASIC-SO follows row-major order.

To code in 8080/S0S5 assembly language, you must know the Intel format for
representing integer, single-precision floating-point, and double-precision floating
point numbers. Figure E-l shows these representations.

~~D~ESS ILS_f_I~~I ________________ 1_5_B_IT_S_O_F_DA_T_A ________________ ~
INTEGER REPRESENTATION: 2 BYTES, 16 BITS, LOW ORDER BYTE FIRST

8 EXPONENT BITS 23 MANTISSA BITS

SINGLE-PRECISION FLOATING·POINT REPRESENTATION:
4 BYTES, 32 BITS, LOW ORDER BYTE FIRST

11 EXPONENT BITS 52 MANTISSA BITS

DOUBLE-PRECISION FLOATING-POINT REPRESENTATION:
8 BYTES, 84 BITS, LOW ORDER BYTE FIRST

LENGTH ADDRESS

STRING DESCRIPTOR REPRESENTATION: 8 BITS, STRING LENGTH:
16 BITS, STRING ADDRESS.

DATA DATA DATA DATA

STRING DATA REPRESENTATION: 8 BIT BYTES.

Figure B-1. Internal Representation of Numbers and Strings

LOW
ADDRESS

E-3

Calling Non-BASIC-SO Subroutines

E-4

Some Real Examples

The three sample programs provided in Figures E-2, E-3, and E-4 show how the
same subroutine- adding three integer arguments-can be coded in FORTRAN-SO,
PL/M-SO, and SOSO/SOS5 assembly language. Notice that each program requires
three parameters.

Once you have processed your subroutine through the PL/M-SO or FORTRAN-SO
compilers, or through the SOSO/SOS5 assembler, you can convert it to absolute
object code and place it in memory with the LOCATE command. You must give the
filename of your relocatable code file and the proper starting address for the
subroutine code. In the example below , LOCATE returns absolute object code
whose first byte is at address OEOOOH:

-LOCATE :F1 :PLMSUB.OBJ CODE (OEOOOH)

This command returns the absolute object file :Fl:PLMSUB. You can now load this
located code into Intellec memory at its proper address with the monitor DEBUG
command. When you enter the DEBUG command with your filename, you invoke
the Monitor, as shown in the example below. The Monitor responds with a period
(.), expecting further commands:

-DEBUG:F1 :PLMSUB
#0000

You can now return to ISIS-II and test your subroutine. Leave the Monitor and
return to ISIS-II by entering GS and a carriage return after the period:

.G8 (CR)
ISIS-II Vm.n

Invoke BASIC-SO, and specify the highest memory address BASIC-SO can use with
the MEMTOP option:

-:F1 :BASIC MEMTOP(ODFFFH)

This prevents BASIC-SO from writing over your subroutine. BASIC-SO will appear
and tell you how much free memory you have left:

ISIS-II BASIC-80 V1.0
18157 BYTES FREE

Once in BASIC-SO you can write programs that use your subroutine. The following
BASIC-SO program defines your subroutine as USRl, asks for three integers, passes
these three integer values to the subroutine, defines the result of the subroutine as
the variable RESULT, and finally prints RESULT:

10 REM THIS PROGRAM ASKS FOR THREE
20 REM INTEGERS, PASSES THEM TO USR1, AND
30 REM RETURNS THE RESULT.
40 DEFINT A-Z
50 DEFUSR 1=OEOOOH
60 PRINT"ENTER THREE NUMBERS:"
70 INPUT A,B,C
80 PRINT" A=" ,A, "B=" ,B, "C=" ,C
90 RESULT=USR%1(VARPTR(A), VARPTR(B), VARPTR(C»)

100 PRINT"A+B+C="; RESULT
110 END

BASIC-80

BASIC-SO Calling Non-BASIC-SO Subroutines

ASN8B.OY3 :Fl:USRASH.ASH

ISIS-II 8181/8185 "ACRO ASSEHBLER. Y2.1 USRAS" PACE

Lce 09J

BBIS El
BBBI 229BBB
BSB4 21BBBB
BSB? COICBB
BIBA 5B
IBBB 59
BBBC COICBI
BBBF 01
BBl8 CDICBB
B813 EB
BB14 El
BUS 73
B81' 23
BB17 72
BU8 2AIBBB
BBlB E9

BIIC E5
BII0 EB
BIlE 5E
BI IF 23
B82B 5'
8121 El
B822 19
B823 C9

BBBB 88BB
BBBB

PUBLIC SYMBOLS
USRASH C BBBB

EXTERNAL SY"BCLS

USER S'/HBOLS
AODDE C BBIC

D

C

C

C

o

C

SEQ

1
2
3
4
S
6
7
8

SOURCE STATE"ENT

ASSE"BLER ROUTINE TO TEST BASIC USR

RESULT=ARGA+ARCB+ARCC
IGNORE OVERFLOW

9 USRAS .. :

NAHE
PUBLIC
CSEC
POP
SHLO

H
RETADR
H.8
AODDE
D.B
E.C
ADDDE
o
AODOE

;RETURN AOOR
;5ET ASIDE IB

11
12
13
14
15
16
17
18
19
2B
21
22
23
24
25
26
27
28
29
38
31
32
33
34
3S
36
37
38
39

ADD

ROODE:

DATA

RETAOR:

RETAOR 0 BIBB

LX I
CALL
"CY
"Cy
CALL
PCP
CALL
XCHG
PCP
"CY
INX
"CY
LHLD
PCHL

2 BVTES
CHANCES

PUSH
XCHG
"o.Y
IN X
HOV
PCP
DAD
RET
AREA
OSEG
OW
END

H
PI. E
H
H,D
RE"TADR
; RETURN

; SET TCTAL TO 8
iAOD ARCC TO. TOTAL
i"OVE AOOR o.F ARCB TO DE

iAOD ARCB TO. To.TAL
; ADDRESS OF ARG.A
iADD AReA TO. To.TAL
;TOTAL IN DE
JADDR o.F RESULT
;LOW BYTE OF RESULT

;HI BYTE OF RESULT
; RETURN ADDRESS

ADDRESSED BY DE TO HL
A.D,E.H,L

H ;SAVE TOTAL
;AODR IN L

E.H
H
0,"
H
o

B
USRASH

;LOW BYTE TO BE ADDED

;HI BVTE TO. BE ADDED
;OLO TOTAL
; ADD TO TOTAL

;SAVED RETURN ADDRESS

USRAS" C BBBS

ASSE"BLY CO .. PLETE. NO ERRORS

Figure E-2. 8080/8085 Assembly Language Program

E-5

Calling Non-BASIC-SO Subroutines

E-6

ISIS-II PL/H-8B Vl.l COMPILATION OF MODULE PLHHODULE
OBJECT ",oDULE PLACED IN :Fl:USRPLM.OBJ
COMPILER INVOKED BY: PLH8B :Fl:USRPLH.PLH

2
3
4

5
6

1
2
2

2
2
1

PLM:$HODULE:
DO;

USRPLH: PROCEDURE(PRESULT,PARGA;PARGB,PARGC);
DECLARE (PRESULT,PARGA,PARGB,PARGC) ADDRESS;
DECLARE (RESULT BASED PRESULT~

ARCA BASED PARCA.
ARCS BASED PARCB.
ARCC BAseD PARCe) ADDRESS;

RESULT=ARGA+ARG8+ARGC;
END USRPL";

END PLIUHOOULE;

CODE AREA SIZE
VARIABLE AREA SIZE
~AXI"U" STACK SIZE

BB32H
BlUSH
BBB4H

SBD
SO
40

11 LINES READ
a PROGRAM ERROR(S)

Figure E-3. PL/M-80 Program

FORTRAN COMPILER

1
2
3
4

FUNCTION IRTN(IARCA,IARGB,IARCC)
IRTH=IARGA+IARG8+IARGC
RETURN
END

CODE AREA SIZE
VARIABLE AREA SIZE
HAXI"UH STACK SIZE
4 LI NES READ

BB20H
OBB8H
BBB4H

450
SO
40

B PROGRAM ERROR(S) IN PROGRAM UNIT IRTN

B TOTAL PROGRAM ERROR(S)
END OF FORTRAN COMPILATION

Figure E-4. FORTRAN-80 Program

BASIC-SO

APPENDIX F
RMX/SO BASIC-SO

This appendix describes the differences between the RMX/SO version of BASIC-SO
and the ISIS-II version, and tells you the requirements and procedures for
generating disk-based or ROM-based versions of RMX/SO BASIC-SO. It is recom­
mended that you refer to the RMX/SO User's Guide and RMX/SO Installation
Guide for supplementary information.

What is RMX/80 BASIC·80?

The RMX/SO BASIC-SO Interpreter (iSBC S02) runs under the RMX/SO Real-Time
Multi-Tasking Executive. With RMX/SO BASIC-SO, you can easily use the powerful
computational and input! output capabilities of the iSBC/SO Microcomputer
System, and apply them to solving a wide range of application problems.

The iSBC S02 software package gives you RMX/SO BASIC-SO in two forms. First,
BASIC-SO modules, coded to run as tasks under RMX/SO, are supplied on both
single- and double-density diskettes. You can edit these modules with the ISIS-II
Text Editor or CREDIT, and combine them with RMX/SO and user application
tasks. You use the Intellec Development System to create a version of RMX/SO
BASIC-SO tailor-made for your iSBC-based microcomputer system.

This first ("configure your own") option requires you to have a copy of the
RMX/SO software and be familiar with its use. The portions of this appendix that
describe how to configure your own RMX/SO BASIC-SO system will therefore make
frequent references to the following publications:

RMX/SO User's Guide, manual order no. 9S00522
RMX/SO Installation Guide, manual order no. 9S030S7-01

Second, if you want an "instant-on" BASIC-SO system, and have no need for addi­
tional software routines, you can use the predefined RMX/SO BASIC-SO configura­
tion. This configuration includes three parts:

• The executable object module RMXSYS, supplied on both the single and double
density diskettes.

• Two boot strap PROMs that load RMXSYS into the iSBC memory.

• A cable that connects the iSBC 204 disk controller to the bulkhead connector on
any Intellec disk drive chassis.

With this predefined version, you have a version of RMX/SO that appears on
RESTART on your iSBC hardware configuration. You need only make the
necessary hardware connections, and BASIC-SO is ready to run.

You should be aware of the major differences between RMX/SO based BASIC-SO
and ISIS-II based BASIC-SO. These are:

• Configuring the RMX/SO modules determines how much memory will be
available to the BASIC-SO interpreter and the program source. The sample con­
figuration provides S.4K bytes of memory space.

• You must also specify the number of files available to BASIC-SO when you
configure the RMX/SO modules. The sample configuration supports 6 open
files at once.

F-l

RMX/SO BASIC-SO

F-2

• With RMX/SO BASIC-SO, you can create BASIC programs and program them
into PROMs for permanent reference.

• You can configure RMX/SO to execute a PROM-resident BASIC-SO program
immediately on restart.

• If you wish to interrupt program execution when BASIC-SO expects input from
the console, you must enter CONTROL-C followed by a carriage return. If you
wish to interrupt a program that has been stopped by a CONTROL-S, type
CONTROL-C followed by CONTROL-Q.

• RMX/SO BASIC-SO does not have the EDIT Mode features supported by
ISIS-II BASIC-80.

• RMX/SO BASIC-SO supports only the console and disk files.

You should also be aware of two similarities between RMX/SO BASIC-SO and
ISIS-II BASIC-SO:

• The data formats and protocols of the ISIS-II and RMX·/SO disk file systems
(DFS) are identical. You can create data or program files on one system and use
them on the other.

• If you use a random file or open a file for output on one disk, and then remove
that disk and insert another, you may destroy files on the new disk. You can
open files for input without problems.

Initializing the Predefined RMX/SO BASIC-SO Configuration

RMX/SO allows many different configurations of its modules. Intel supplies two
PROMs that you can use to load BASIC-SO from disk and to execute it. If you have
the required hardware, as listed below, you can quickly run the predefined RMX/SO
BAS I C-SO configuration.

• An iSBC 80/30 Single Board Computer

• An additional32K bytes of RAM on two iSBC 016s, or one iSBC 032 board.

• An iSBC 204 Disk Controller.

• An MDS-2DS Disk Drive attached through the cable supplied with the
BASIC-SO package.

• An RS-232C compatible terminal.

• An iSBC chassis and power supply

If you have the required hardware, it must be configured as shown below. Refer to
the RMX/SO Installation Guide if you must alter your present configuration. Table
F-l shows the jumper configurations described in the following paragraphs.

1. The iSBC SO/30 board must be wired to conform to the RMX/SO terminal
handler interrupt structure. This requires the wiring changes listed in Table F-l.
Check your iSBC SO/30 board to verify that these changes have been made. For
further information, refer to the RMX/SO User's Guide.

2. The iSBC on-board PROMs must be addressed at locations OOOO-OFFF. This is
the factory-wired default configuration. These default jumper settings are
shown in Table F-l. For further information, refer to the iSBC SO/30 Single
Board Computer Hardware Reference Manual, chapter 2.

3. The iSBC SO/30 on-board RAM must be addressed at locations 4000H-7FFFH.
This is the factory-wired default configuration. These default jumper settings
are shown in Table F-l. Jumper IS0-171 is a factory-wired default configuration
that disables off-board access of on-board RAM. For further information, refer
to the iSBC 80/30 Single Board Computer Hardware Reference Manual,
chapter 2.

BASIC-SO

BASIC-SO RMX/SO BASIC-SO

Table F-l. Sample Configuration Jumper Wiring

Board Connect Jumper Remove Jumpers

iSBC 80/30 Interrupt 131-152 (INTERRUPT 2)
Handling 141-132 (EVENT ClK-IR1) 123-138 (COUNT OUT-INTR 7.5)

47-51 (ClK 0-A12-11) 46-47 (ClK 1-ClK 0)
143-127 (RXR INTR-IR 6) 47-52 (ClK O-ClK 2)
142-126 (TXR INTR-IR 7)
145-140 (Ground INTR 5.5)
145-139 (Ground INTR 6.5)

iSBC 80/30 PROM 112-113
Addressing 157-158

100-101
OOOOH-OFFFH 104-103

155-156
86-85

iSBC 80/30 RAM 98-92
Addressing 180-171
4000H-7FFFH W1 at position A-B

iSBC016 RAM Board 1 -7-6
Addressing Board 2 -7-5
8000H-OFFFFH

iSBC 204 Base S2 Settings·
AddreSSing 7 ON

6 OFF
5 OFF
4 OFF

*These numbers refer to the silk-screened numbers on the PC board, not to the numbers on
the switch bank.

4. If you are using two iSBC 016 Random Access Memory boards, you must
jumper one to supply RAM memory from locations 8000H -OBFFFH and the
other to supply RAM from locations OCOOOH to OFFFFH. Table F-llists these
jumpers. On one board, jumper 7-6 must be connected, which enables memory
at locations 8000H-OBFFFH. On the other board jumper 7-5 must be con­
nected, enabling memory at addresses OCOOOH-OFFFFH. Refer to the iSBC 016
16K RAM Board Hardware Reference Manual for further information.

5. The iSBC 204 Disk Controller must be set to base address 80H and set at
interrupt level 2. The base address is set by switch S2. The four switch settings of
S2 are shown in Table F-l. Interrupt level 2 is the factory-wired default con­
figuration. To verify interrupt level 2 operation, check for a wire jumper con­
necting terminal posts 63 and 67. Table F-l lists these connections. For further
information, refer to the iSBC 204 Flexible Diskette Controller Hardware
Reference Manual, chapter 2.

6. The iSBC 204 Disk Controller must be the highest priority bus master. You can
place the iSBC 204 in the top chassis slot with the iSBC 80/30 directly under it,
or you can rewire the chassis backplane appropriately (see the iSBC 80/30 Hard­
ware Reference Manual for details). The supplied cable attaches from 11 of the
iSBC 204 controller to the plug on the rear of the MDS-2DS disk drive.

F-3

RMX/SO BASIC-SO

F-4

When you have configured your system, follow these steps to initiate BASIC-80:

1. Insert the supplied PROMl in socket 0 and PROM2 in socket 1 of the iSBC
80/30.

2. Turn on power to the disk drives and iSBC system.

3. Insert your single density BASIC-80 disk into drive O.

4. Type an upper case U at the terminal keyboard until the sign-on notice prints:

RMX/80 BASIC-80 Vm.n

Generating Boot-Loaded and PROM-Based Versions of
RMX/SO BASIC-SO

Intel supplies two diskettes with the following modules. One diskette is single den­
sity; the other double density. You can modify and configure these modules to suit
many possible combinations of hardware and software.

BASIC-80 Source Files

BOOPS.ASM This module contains options used by other assembler modules.
Figure F-I shows a sample listing of this module.

BOOTCM.ASM This module configures the BASIC Boot Loader.

BOBMEM.ASM This module allocates memory for the BASIC Boot Loader.

BASCM.ASM This module configures BASIC.

BOMEM.ASM This module allocates memory for BASIC.

BASIC-80 Object Files

BASIC.LlB This library contains all modules used by BASIC except for the
following, which are generated by assembling the corresponding
.ASM modules:

CLOCK.OBJ

BOOTCM.OBJ
BOBMEM.OBJ
BASCM.OBJ
BOMEM.OBJ

This module is a dummy clock module used with the iSBC 80/10.

BASIC-80 Executable Files

BOBOOT This module is the Boot Loaded system, which is also provided on
PROM.

RMXSYS This module is the version of RMX/SO BASIC-80 which is loaded
by the Boot Loader.

Software Requirements for Generating RMX/80 BASIC-80

You must have the following software tools and modules available in the ap­
propriate drives to generate versions of BASIC-80.

Drive 0: In drive 0, you must have a disk with these modules:

ISIS-II V3.4 (or later version)
All of the modules described above.
Link, Locate, and the ASMSO Macro Assembler

BASIC-SO

BASIC-80 RMX/80 BASIC-80

Drive 1: In drive I, you must have a disk with these modules:

The RMX/SO nucleus, factory-configured for an iSBC
SO/IO, SO/20,orSO/30.

The RMX/SO extension files, including the Disk File System,
and the RMX/SO Boot Loader files for the appropriate CPU
board.

Once these two disks are present in the proper drives, you can begin configuring
your RMX/SO BASIC-SO version. We'll look at procedures and examples of two
kinds of BASIC-SOs-a boot-loaded version and a PROM-based version.

Generating a Boot-Loaded RMX/80 BASIC-80

The software requirements for generating a boot loader and a compatible version of
BASIC-SO are listed above. You must have the two disks in their proper drives with
the given modules on each disk.

The hardware requirements for the boot loader and its accompanying version of
BASIC-SO are:

An iSBC 201, iSBC 202, iSBC 204, or iSBC 206 Disk Controller, with its
necessary cables, and the disk drives it controls.

An iSBC SO/IO, iSBC SO/IOA, iSBC SO/20, iSBC SO/20-4, or iSBC SO/30.

At least 4SK bytes of RAM if DFS is used, or 32K bytes of RAM if it is not used.
If you use an iSBC SO/30, the 16K bytes of RAM on-board count toward the
total. You can use any combination of iSBC RAM boards.

An RS-232C compatible terminal, and accompanying cables.

There are three steps to generating a boot loader for RMX/SO BASIC-SO:

1. You must examine and, if necessary, modify the BQOPS.ASM module.

2. You must also examine the BOOTCM and BQBMEM modules and modify
them as needed.

3. After you have verified that the various assembly modules accurately reflect
your hardware and software configurations, you SUBMIT the GBOOT.CSD
module, shown in figure F-2, which assembles BOOTCM.ASM and
BQBMEM.ASM and LINKs and LOCATEs the boot loader.

Modifying the BQOPS.ASM Module. The BQOPS.ASM module contains data
used by the BOOTCM.ASM, BQBMEM.ASM, BASCM.ASM, and BQMEM.
ASM modules. In most cases, this will be the only module you will modify before
assembling modules for a new configuration. The boot loader configuration re­
quirements are dependent upon the CPU model, the disk controller model, the
number of disk drives available, and the highest memory location; if these do not
change from configuration to configuration, then the boot loader need not be
regenerated.

With the ISIS-II Text Editor or CREDIT, you can edit the BQOPS.ASM module
listed in figure F-I to support your exact configuration. Refer to the ISIS-II User's
Guide for an explanation of the Editor's features and capabilities.

F-5

· RMX/SO BASIC-SO

F-6

CPU SET 30 ; MODEL OF CPU
BOOTED SET 1 ; 1 IF BOOT VERSION, ELSE 0
TERMH SET 1 ; 1 FOR FULL TH,O FOR MINI
RATE SET 0 ; BAUD RATE FACTOR
CONTR SET 204 ; CONTROLLER NUMBER
DFS SET 6 ; NUMBER OF DFS FILES USED
UIO SET 0 ; 1 IF USER 110 DRIVERS ELSE 0
NFILES SET 6 ; TOTAL FILES
HIRAM SET OFFFFH ; HIGHEST RAM LOCATION
BOTMEM SET OFD40H ; BOnOM OF BOOT L9ADER RAM

Figure F-l. Sample Configuration BQOPS.ASM Module

Each of the options in the sample configuration BQOPS.ASM module listed above
is explained in the following paragraphs.

CPU

BOOTED

TERMH

RATE

CONTR

DFS

UIO

NFILES

HIRAM

BOTMEM

This option specifies the type of CPU used: 10 for iSBC 80/10
or 80/10A, 20 for iSBC 80/20 or 80/20-4, or 30 for iSBC
80/30. It is only referenced by the BQMEM.ASM module to
initiate interrupt polling for iSBC 80/10 based DFS systems
that are not boot loaded.

This option is used to allocate memory. It is 1 if the boot
loader is used, or 0 if a PROM-based BASIC-80 is generated.

With this option, a 1 specifies the Full Terminal Handler, and
a 0 specifies the Mini Terminal Handler. The Mini Terminal
Handler requires less RAM and PROM space.

This option generates an RQRATE to specify a baud rate if
any non-zero value is given. For further information about
setting baud rates, refer to the RMX/SO User's Guide.

This option specifies the type of disk controller used. 201
indicates an iSBC 201; 202 indicates an iSBC 202; 204 in­
dicates an iSBC 204; 206 indicates an iSBC 206.

This option specifies the number of DFS files you wish to
have open at the same time. Specifying 0 means that DFS is
not used.

This option enables your user-written I/O drivers if you
specify 1. See "Adding User-Written I/O Drivers" in this
Appendix for further details.

This option specifies the combined number of DFS and user
files that may be open at once. The number must be greater
than or equal to the number specified in the DFS option.

This option specifies the highest RAM location available in
the hardware configuration.

This option places boot loader RAM at the highest possible
location. This address should be 2BFH less than the address
given in HIRAM.

BASIC-SO

BASIC-SO RMX/SO BASIC-SO

After you modify BQOPS.ASM and verify the contents of the BOOTCM.ASM and
BQBMEM.ASM modules, you are ready to generate your boot loader. To do this,
you must assemble BOOTCM.ASM and BQBMEM.ASM, and LINK and LOCATE
the resultant object code. The GBOOT.CSD module will do this with the SUBMIT
command. Figure F-2 is a listing of the GBOOT .CSD module used with the
BQOPS.ASM module in figure F-l.

The DATA location and the BOTMEM address must be the same. If your hardware
configuration uses an iSBC SO/20 or iSBC S0/10, each occurrence of S30 should be
changed to S20 or SID. After you have generated the boot loader, it should be
burned into PROM and inserted into your CPU board. (See the Universal PROM
Programming Manual for details)

The iSBC SO/10 does not have an onboard clock. If your configuration includes a
clock, add the appropriate routines when linking GBOOT.CSD. (Refer to Appendix
G of the RMX/80 User's Guide for further information.) If you don't have a clock
in your configuration, include the dummy clockroutine CLOCK.OBJ.

ASM80
ASM80
LINK

LOCATE

:FO:BOOTCM.ASM MACROFILE(:FO:) NOSYMBOLS
:FO:BQBMEM.ASM MACROFILE(:FO:) NOSYMBOLS
:F1 : BOT830.LlB(VECRST)
:F1 :RMX830.LlB(START)
:FO:BOOTCM.OBJ, &
:FO:BQBMEM.OBJ, &
:F1 : BOT830. LIB, &
:F1 :DI0830.LlB, &
:F1 :DFSUNR.LlB, &
:F1 :RMX830.LlB, &
:F1 :BOTUNR.LlB, &
:FO:PLM80.LlB TO :F1:BQBOOT.LNK MAP PRINT(:F1:LNK.LST)
:F1 :BQ800T.LNK TO :FO:BQBOOT MAP PUBLICS PRINT(:F1 :LOC.LST)&
CODE(40H) DATA(OFD40H) ST ACKSIZE(O)

Figure F-2. Sample Configuration OBOOT .CSD Module

Generating a Boot-Loadable BASIC-80. Once you have determined how to
generate the boot loader that fits your particular RMX/SO implementation, the bulk
of your work is over. Generating BASIC-SO is relatively simple.

There are four steps to generating a boot loadable RMX/80 BASIC-80: assembling
the BASCM.ASM and BQMEM.ASM modules, and linking and locating the
resulting BASIC-SO into RMXSYS. The GBASIC.CSD module is a SUBMIT file
that performs these steps. Figure F-3 shows a listing of the GBASIC.CSD module
used with the sample configuration. If you are using an iSBC 80/10 or iSBC SO/20
based system, you need to modify the "S30" references in the module to "SI0" or
"S20" with the ISIS-II Text Editor. For further information about using the Text
Editor, refer to the ISIS-II User's Guide.

The CODE and START addresses should reflect the addresses at the start of system
RAM. The following list shows typical starting addresses:

iSBC80/10or80/10-A 3COOH
iSBC 80/20 3800H
iSBC 80/20-4 3000H
iSBC 80/30 4000H

F-7

RMX/80 BASIC-80

F-8

NOTE

The RMX/80 Nucleus declares all interrupt exchanges except RQLIEX (us­
ed for the system clock) as EXTERNAL. This is because user interrupt
tasks must define the exchanges as needed. Any of these interrupt exchanges
not used in a system, and therefore not declared in user code, is treated as
an unresolved external reference by the linker, the locater, ICE-80, and
ICE-85. Messages issued by these products that refer to unused interrupt ex­
changes can be considered as warnings and ignored. The messages issued by
the various products are:

Linker: UNRESOLVED EXTERNAL NAMES
xxxxx
xxxxx
etc.

Locater: UNRESOLVED EXTERNAL REFERENCE AT xxxxH
(two messages for each exchange)

ICE-80 ERR=069

ICE-85 *WARNING UNSATISFIED EXTERNALS

You should check the messages to be certain that none of them refers to
anything other than an unused interrupt exchange. Appendix J of the
RMX/80 Reference Manual shows one way to "tie off" references to unus­
ed interrupt exchanges in a configuration module.

ASM80 :FO:BASCM.ASM MACROFILE(:FO:) NOSYMBOLS
ASM80 :FO:BOMEM.ASM MACROFILE(:FO:) NOSYMBOLS
LINK &

:F1 :LOD830.LlB(LODINI),&
:FO:BASCM.OBJ,&
:FO:RMXBAS.LlB,&
PUBLlCS(:FO:BOBOOT),&
:F1 :LOD830.LlB,&
:F1 :DFSDIR.LlB(SEEK,DIRECTORY ,ATTRIB,DELETE,RENAM E),&
:F1 :DI0830.LlB,&
:F1 :DFSUNR.LlB,&
:F1 :THI830.LlB,&
:F1 :TH0830.LlB,&
:F1 :RMX830.LlB,&
:F1 :UNRSLV.LlB,&
:F1 :PLM80.LlB,&
:FO:BOMEM.OBJ TO :F1:BOBAS.LNK MAP PRINT (:F1:LNK.LST)

LOCATE :F1:BOBAS.LNK TO :FO:RMXSYS MAP PUBLICS PRINT(:F1:LOC.LST)&
CODE(4000H) STACKSIZE(O) START(4000H) PURGE

Figure F-3. Sample Configuration GBASIC.CSD Module

Generating a PROM-Based RMX/80 BASIC-80

You can also configure RMX/80 BASIC-80 to reside in PROM. This requires 33K
bytes of PROM, 2.8K bytes of RAM, and 400 bytes of RAM for each DFS file
BASIC-80 will use. You should also set aside as much RAM as possible as
workspace for BASIC-80.

BASIC-80

BASIC-SO RMX/SO BASIC-SO

The configuration explained below does not use DFS. Accordingly, the CONTR,
DFS, and NFILES options shown in the BQOPS.ASM module are set to 0, and
there are no references to the DFS libraries in the GBASIC.CSD module shown.

With this configuration, memory must be organized as follows (see the iSBC 80/20
Hardware Reference Manual):

PROM: 0-25K
iSBC 80/20 onboard RAM: 30K - 32K
iSBC 016 RAM: 32K - 48K

This configuration uses an iSBC 80/20. It's more difficult to configure an iSBC
80/10 for a PROM-based BASIC-80, because of memory allocation, and we'll look
at how to do this after explaining the iSBC 80/20 configuration.

There are three steps to generating a PROM-based BASIC-80:

1. You must modify or create a version of BQOPS.ASM that supports the options
you need for your configuration. Figure 4 shows the contents of a BQOPS.ASM
PROM configuration using an iSBC 80/20. Examine each option available; if
any need to be changed, this file (as well as any other ISIS-II file) can be edited
with the ISIS-II Text Editor or CREDIT. Refer to the ISIS-II User's Guide for
further information about using the Text Editor.

CPU SET
BOOTED SET
TERMH SET
RATE SET
CONTR SET
DFS SET
UIO SET
NFILES SET
HIRAM SET
BOTMEM SET

20
o
o

28
o
o
o
o

OBFFFH
OH

;MODEL OF CPU
;ONE IF BOOT VERSION, ELSE 0
;1 FOR FULL TH, 0 FOR MINI
;BAUD RATE FACTOR
;CONTROLLER NUMBER
;NUMBER OF DFS FILES OPEN AT ONCE
;11F USER I/O DRIVERS ELSE 0
;TOTAL FILES
;HIGHEST RAM LOCATION
; BOTTOM OF BOOT LOADER RAM

Figure F-4. BOQOPS.ASM Module for PROM .. Based BASIC-SO

2. You must also assemble BASCM.ASM, the BASIC-80 configuration module,
and BQMEM.ASM, the memory allocation module. If these modules need to be
changed to fit your configuration, you can edit them with the ISIS-II Text
Editor.

3. You must then use the appropriate GBASIC.CSD file with SUBMIT, which will
LINK and LOCATE the proper modules and their library references. Figure F-5
lists a GBASIC.CSD module that you could use with the PROM-based con­
figuration specfied in figure F-4.

F-9

RMX/SO BASIC-SO

F-IO

ASM80 :FO:BASCM.ASM MACROFILE (:FO:) NOLIST NOSYMBOLS
ASM80 :FO:BOMEM.ASM MACROFILE(:FO:) NOLIST NOSYM BOLS
LINK &

:F1 :RMX820.L1B(START), &
:FO:BASCM.OBJ,&
:FO:RMXBAS.LlB,&
:F1 :MTI820.LlB,&
:F1 :MT0820.L1B,&
:F1 :RMX820.L1B,&
:F1 :DFSUNR.LlB,&
:F1 :UNRSLV.L1B,&
:F1 :PLM80.LlB,&
:FO:BQMEM.OBJ TO :F1 :BQBAS.LNK MAP PRINT(:F1 :LNK.LST)

LOCATE :F1:BOBAS.LNK TO :FO:RMXSYS MAP PUBLICS PRINT(:F1:LOC.LST)
CODE(OH) STACKSIZE(O) START(OH) PURGE DATA(7800H)

Figure F-S. Sample GBASIC.CSD Module for
PROM-Based RMX/SO BASIC-SO

Configuring PROM-Based RMX/80 BASIC-80 With or Without DFS. If you
do not need DFS facilities, PROM requirements are reduced by 7K bytes and RAM
requirements are reduced by 1.6K bytes. You can configure without DFS by:

I. Setting DFS to 0 in BQOPS.ASM before assembling BASCM.ASM and
BQMEM.ASM.

2. Excluding the DFS libraries from GBASIC.CSD, as in figure F-S. The DFS
modules RQRNMX, RQDELX, RQOPNX, and RQATRX will be unresolved
externals, but they present no difficulties.

Configuring a PROM-Based BASIC-SO For An iSBC 80/10-A Based System. In
a typical iSBC SO/IO-A configuration, the memory allocation would look like this
(refer to the iSBC 80/10 and iSBC 80/10A Hardware Reference Manual.

On board PROM: OK to 8K
On board RAM: 15K to 16K
iSBC 016 RAM: 16K to 32K
iSBC 464: 32K to 57K

System PROM is discontiguous, making linking and locating the configuration
module more difficult. Follow these steps:

I. Edit the BQOPS .ASM module to specify the desired options. A sample iSBC
SO/IO module is listed below.

CPU SET
BOOTED SET
TERMH SET
RATE SET
CONTR SET
DFS SET
UIO SET
NFILES SET
HIRAM SET
BOTMEM SET

10
o
o
7

204
6
o
6

07FFFH
OH

;MODEL OF CPU
;1 IF BOOT VERSION, ELSE 0
;1 FOR FULL TH, 0 FOR MINI
;BAUD RATE FACTOR
;CONTROLLER NUMBER
;NUMBER OF DFS FILES OPEN AT ONCE
;1 IF USER I/O DRIVERS ELSE 0
;TOTAL FILES
;HIGHEST RAM LOCATION
; BOTTOM OF BOOT LOADER RAM

Figure F-6. BQOPS.ASM Module for PROM-Based iSBC SO/10 BASIC-SO

BASIC-SO

BASIC-SO RMX/SO BASIC-SO

2. LiNK RMX810.LIB (START), BASCM.OBJ, and as many DFS and terminal
handler system modules as will fit on on-board PROM into one module. Don't
worry about unresolved external references-these will be resolved in step 6.

3. LOCATE the module LINKed in step 2 with CODE (0) and DATA (3COOH).
This specifies that the program starts in PROM at address 0, and that the data
location will be at 3COOH, or 15K. This is the location of iSBC 80/10 on-board
RAM. Record the STOP address of DATA. This will be used as the entry
DAT A address for the second module. This creates the first module.

4. Link all other modules together with PUBLICS.

5 . LOCATE module at CODE (location of iSBC 464 PROM) and DATA (STOP
address +1). This creates the second module.

6. LINK first executable module with PUBLICS (second module). This resolves
external references.

7. Re-LOCATE your first module with the same command as in step 3.

Figure F-7 is a SUBMIT file that carries out all of the above steps.

ASM80 :FO:BASCM.ASM MACROFILE(:FO) NOLIST SYMBOLS
ASM80 :FO:BQMEM.ASM MACROFILE(:FO:) NOLIST NOSYMBOLS
LINK &

:F1 :RMX810.L1B(START),&
:FO:BASCM.OBJ,&
:F1: DFSDIR. L1B(DIRECTORY , RENAM E),&
:F1 :MTI810.L1B,&
:F1:MT0810.L1B,&
:F1 :RMX810.L1B,&
:FO:CLOCK.OBJ,&
:F1:UNRSLV.L1B,&
:F1 :PLM80.L1B &
TO :F1:BOBAS.LNK MAP PRINT(:F1:LNK.LST)

LOCATE :F1:BQBAS.LNK TO :FO:B010P.ONE MAP PUBLICS PRINT(:F1 :LOC.LST) &
CODE(OH) STACKSIZE(O) START(OH) DATA(3COOH)

LINK :FO:RMXBAS.L1B(BQBAS,BQCONC),&
PUBLlCS(:FO:BQ10P.ONE),&
:FO:RMXBAS.LlB,&
:F1 :DFSDIR.L1B(SEEK,A nRIB, DELETE),&
:F1 :DI0810.LlB(DISKIO, HAN204, VIOHD4),&
:FO:CLOCK.OBJ,&
:F1 :DFSUNR. LlB,&
:F1:RMX810.L1B,&
:F1:UNRSLV.LlB,&
:F1 :PLM80.L1B,&
:FO:BOMEM.OBJ TO :F1 :BQBAS.LNK MAP PRINT(:F1 :LNK.LST)

LOCATE :F1:BQ8AS.LNK TO (:FO:B010P.TWO MAP PUBLICS PRINT(:F1 :LOCA.LST) &
CODE(8000H) STACKSIZE(O) DATA(426AH)

LINK :FO:B010P.ONE,PUBLlCS(:FO:BQ10P.TWO) TO :F1:BQBAS.LNK &
MAP PRINT(:F1:LNK.LST)

LOCATE:F1:BQBAS.LNK TO :FO:B010P.ONE MAP PRINT(:F1:LOCB.LST) PUBLICS &
CODE(O) STACKSIZE(O) START(O) DATA(3COOH)

Figure F-7. GBASIC.CSD SUBMIT Module for
iSBC 80/10 PROM-Based BASIC-80

F-ll

RMX/80 BASIC-SO

F-12

Configuring DFS on an iSBC 80/10

If you're using DFS with a PROM-Based BASIC-80 on the iSBC 80/10, you must
add a line of code to the GBASIC.CSD module distributed on diskette. This code
specifies use of the iSBC 201,202,204, or 206 disk controller.

For the iSBC 201,202 or 206, add : :Fl :DIOSI0.LIB(VI0HDI),&
For the iSBC 204, add : :FI :DI0810.LIB(VIOHD4),&
just before the line : :FI :DFSUNR.LIB,&
in the GBASIC.CSD module.

The BQMEM.ASM module contains code that polls the interrupt lines to find the
interrupt from the disk drives. Be sure this polling is initiated (refer to the RMX/SO
User's Guide).

iSBC SO/10 System Clock

The iSBC 80/10 does not have an on-board clock. You should include the dummy
clock routine CLOCK.OBJ when configuring an iSBC 80/10 BASIC-80. This
routine has two side effects:

I. With the full terminal handler, you may have to type a character before the
RMX/SO BASIC-80 sign-on message prints.

2. There is no disk drive time out. If you reference a drive that doesn't have a disk
in it, BASIC-80 will wait until one is inserted.

Your clock routines, or :FO:CLOCK.OBJ, should be added in the LINK command
of GBOOT .CSD (if your BASIC is boot loaded), or in GBASIC.CSD.

Adding BASIC-SO to an Existing RMX/SO Configuration

This section assumes that a user has an existing RMX/80 configuration and wants to
add BASIC-80 to it. the supplied assemblies configuration source and submit files
may be used for reference.

Configuration Requirements

Tasks. BASIC-80 is called BQBAS, and the task that waits for control C is called
BQCONC. BQBAS should be given a stack length of 64, a low priority such as 240,
and a default exchange of BQEXCH. BQCONC should be given a stack length of
48, a priority higher than BQBAS (such as 200), and an initial exchange of
RQWAKE. RQWAKE is the terminal handler exchange that receives a message
when control C is typed at the console.

If a user-written 1/0 driver is to be used, it should be given an initial exchange of
BQOPNX. The name, stack size, and priority may have whatever values are
appropriate for the task.

Initial Exchanges

BQEXCH should be declared as a public exchange.

If a user-written 110 driver is to be included, BQOPNX should be declared as a
public exchange.

BASIC-SO

BASIC-SO RMX/SO BASIC-SO

Public Variables

An area of RAM as large as possible should be allocated for BASIC-80 work space.
The user must supply two routines, BQSMEM and BQEMEM which return the ad­
dress of the first byte of BASIC-80 work space in registers Hand L and the last byte
of BASIC-80 work space, respectively. The HL register requirement is consistent
with PL/M-80 Address procedures.

Example:

PUBLIC BOSMEKM,BOEMEM
CSEG

BOSMEM: LXI H,SMEM
RET

BOEMEM: LXI H,EMEM
RET
DSEG

SMEM: DS 5000
EMEM: DS 1

END

A public word variable called BQPRUN must be defined. If the value is non-zero,
BASIC-80 will attempt to load and run the BASIC-80 source program at the address
specified when BASIC is initiated.

Examples:

PUBLIC BOPRUN
BOPRUN: DW 0 ; no automatic PRUN

or

BOPRUN:
PRUNIT:

PUBLIC
DW
DB

DB

BOPRUN
PRUNIT
"1 PRINT 'THIS WILL PRINT WHEN BASIC
IS STARTED' "
13,10,26 ; CR, LF, Control Z

Three byte public variables define the files available to BASIC. BQUIO should be
zero if user-written 110 drivers are included, otherwise it should be one, BQDFS
should be equal to zero if DFS is not included in the configuration. If DFS is includ­
ed, BQDFS should be equal to the number of DFS files that may be open at once.
BQNFIL should be the maximum number of DFS and user files that may be open at
one time.

Example:

PUBLIC BOUIO,BODFS,BQNFIL
BOUIO: DB 0
BODFS: DB 6
BONFIL: DB 6

Linking and Locating

RMXBAS.LIB must be added to the list of files given to the LINK program. If a
user-written 110 routine is to be used, its object module must also be included.

No special information is needed to locate object code for a system that includes
BASIC-80.

F-13

RMX/80 BASIC-80

F-14

Adding User-Written I/O Drivers to RMX/SO BASIC-SO

You can add your own 1/0 drivers to any configuration of RMX/80 BASIC-80, so
that BASIC-80 input and output statements employ user-defined 110 drivers.
BASIC-80 treats these drivers as files with the device label :Ll:. This is the proper
syntax, as shown in opening a sequential disk file for output to the 110 driver file
:Ll:List:

10 OPEN "0",#1, ":L1:LlST"

The remainder of the file name may be anything conforming to the ISIS-II filename
conventions. BASIC-80 will use the user I/O drjver whenever an OPEN command is
issued for a filename with a device type of :Ll:. The open request message is sent to
the BQOPNX exchange instead of to the DFS RQOPNX exchange. The messages
sent to BQOPNX are exactly the same as messages sent to the DFS exchange
RQOPNX. Consult the RMX/SO User's Guide for details. Therefore, a user­
supplied task called BQUSER must wait at the BQOPNX exchange and must supply
an exchange address when OPEN messages are received. This task or another task
waits at this exchange and handles READ (for input files) or WRITE (for output
files) and CLOSE requests. Figure F-8 is an example of a user-written liD driver.

Adding BASIC-SO USR Routines to a Configuration

You can call 8080/8085 assembly language, FORTRAN-80, or PL/M-SO routines
from BASIC-SO with the USR function (see Appendix E).

These routines can also reside in PROM. For ease of use, dedicate one or more
PROMs and their sockets to this purpose. In this way, you can burn different
subroutines as different needs arise without altering the addresses of the routines.
Changing routines becomes as simple as changing PROMs.

Adding PROM-Based BASIC-SO Programs to a Configuration

You can also burn BASIC-SO programs into PROM with the ISIS-II BAPROM util­
ity program. BAPROM converts BASIC-SO programs saved in ASCII format (with
the SAVE "filename", A option) into relocatable object module format. You can
save these modules from either ISIS-II or RMX/80 BASIC-80. They can then be
linked, if needed, located, burned into PROM, and then run with the PRUN
command.

If you wish to add USR routines or source files created by BAPROM to a given con­
figuration, you can add the object modules to the LINK command; there is no
automatic way, however, to communicate the starting addresses to BASIC-SO. You
must use the PUBLICS option of LOCATE and check the LOCATE PRINT file to
find starting addresses.

You can also execute a BASIC-80 program immediately upon restart. To do this,
you must change the constant BQPRUN in BASCM.ASM to the address of the
BASIC-80 program stored in PROM. Here's an example:
1. Convert START.BAS into START.OBJ with the BAPROM program.

2. Add START.OBJ to the LINK command in the GBASIC.CSD module.

3. Change: BQPRUN: DW 0
to EXTRN START

BQPRUN: DW START

in BASCM.ASM

BASIC-80

BASIC-80

USER TERMINAL HANDLER TO OUTPUT FOR FILE :L1:

NAME
PUBLIC
EXTRN
CSEG

BQUSER
BQUSER

BQOPNX,RQSEND,RQWAIT,RQOUTX

; WAIT FOR MESSAGE AT BQOPNX
; OPEN AND CLOSE ARE IGNORED
BQUSER: LXI B,BQOPNX :EXCHANGE FOR USER OPEN

LXI 0,0 ;WAIT FOREVER
CALL RQWAIT
PUSH H ;MESSAGEADOR
LXI 0,4 ;OFFSET OF TYPE
DAD 0
MOV A,M
LXI D,S
DAD 0

;MESSAGE TYPE
;STATUS IS AT OFFSET 9

CPI 14 ;CLOSE TYPE
JZ ZSTAT ;ZEROSTATUSANOQUIT
CPI 15 ;OPEN STAT
JNZ NOTOPN ;NOT AN OPEN REQUEST
PUSH H ;SAVE STATUS ADOR
LXI 0,6 ADD 6 TO GET LOCATION
DAD 0 ;OFAFREXCHANGE

RMX/80 BASIC-SO

LXI O,BQOPNX ;OPEN EXCHANGE ALSO USED FOR WRITE MESSAGES
MOV M,E ;LOW BYTE AFR
INX H ,
MOV M,O ;HI BYTE AFR
POP H ;RESTORE STATUS POINTER
JMP ZSTAT ;AND ZERO STATUS

NOTOPN:
CPI 12 ;WRITETYPE
JZ WRITE

; BAD MESSAGE TYPE - RETURN ERROR STATUS
MVI M,18 ;STATUS-UNRECOGNIZEDTYPE
JMP ERRRET ;RETURN MESSAGE AND QUIT

; PASS MESSAGE ON TO TH
WRITE: LXI B,RQOUTX ;TH OUTPUT EXCH

POP 0 ;MESSAGE AOOR
CALL RQSEN~SENOMESSAGE
JMP BQUSER ;WAIT FOR MORE

,
; ZERO STATUS AND RETURN MESSAGE
ZSTAT: XRA A

MOV M,A ; LOW BYTE OF STATUS
ERRRET: INX H

MOV M,A ;HI BYTE OF STATUS
; RETURN MESSAGE

DCX H
OCX H
MOV B,M
DCX H

;BACKUPTO
RESPONSE EXCH
;HI BYTE OF RESP EXCH

MOV C,M ;LOW BYTE
POP 0 ;MESSAGEAODR
CALL RQSENO RETURN MESSAGE
JMP BQUSER ;WAIT FOR MORE
END

Figure F-S. Sample User-Written 1/0 Driver Routine

F-15

RMX/SO BASIC-SO

F-16

Altering BASIC-80 Workspace

The BASIC-80 work.space stores the current BASIC-80 program, variables, con­
stants, file buffers, strings. It should be as large as is practical.

Table F -2. Sample Configuration Memory Requirements

Module PROM (bytes) RAM (bytes)

RMXBAS.LlB 22287 1415
BOOTCM.OBJ 87 197
BASCM.OBJ 151 538
BOMEM.OBJ 18 Note 1
BOBMEM.OBJ

Note 1: BQMEM.ASM allocates DFS memory areas and the BASIC-80
workspace. DFS requires 700 bytes, plus 400 bytes per DFS file. An additional
80 bytes are required for the controller stack on a non-boot loaded DFS
system. On a boot loaded system, BQBMEM.ASM allocates controller stack
area.

The BQMEM.ASM module contains two labels: BQSMEM and BQEMEM. These
labels correspond to the starting and ending addresses of the BASIC-80 workspace.
The distributed code is written to make the greatest possible area of memory
available as workspace:

• BQMEM.OBJ is the last module linked, so the starting address of the
workspace is at the top of all data areas. BQSMEM uses this address.

• ASEG and ORO force the controller addressable areas (if DFS is specified) and
boot loader code (in a boot loaded system) to the top of memory. A variable
FREE addresses the last free byte below these. FREE is used by BQMEM. Note:
the boot loader work area RQPOOL is re-used by BASIC-80.

If you wish to fix the BASIC-80 work area to a specific length or location,
BQSMEM and BQEMEM must be modified accordingly. If you want to reserve free
memory for BASIC-80 to POKE data into, you need to know the address loaded by
BQMEM. This can be determined by examining the code of BQMEM in
BQMEM.ASM. In the distributed version, this address is OFI23H. Accordingly, to
reserve 1500 bytes of string space and lK bytes to POKE into, the command

CLEAR 1500,OF123H 1024

should be given. If you give this command, the memory between OED24H and
OF123H will be unused and available to BASIC-80.

Burning a BASIC-80 Program Into PROM

To burn a BASIC-80 program into a programmable read-only memory (PROM),
you must first convert the BASIC-80 program to Intel relocatable object file for­
mat. Included with BASIC-80 is a program that does this conversion.

These are the steps required to burn a BASIC-80 program into PROM:

1. Save the program on disk in ASCII format (the A option of the SAVE
command). This can be done with either RMX/80 or ISIS-II BASIC-80.

2. Convert the ASCII program file to a relocatable object file with BAPROM.

3. Convert the file to absolute object file format with LOCATE.

4. Read the converted object file into PROM using the UPM READ command
with the OBJECT option.

5. Burn the file into PROM with the PROGRAM command.

BASIC-SO

BASIC-SO RMX/SO BASIC-SO

BAPROM is a program (and the name of the file that contains it) that runs under
ISIS-II. It converts an ASCII file to Intel SOSO/SOS5 relocatable object file format.
It is not a compiler; it transforms ASCII data to a form that can be LOCATEd. It
requires an Intellec or Intellec Series II microcomputer development system, at least
32K of RAM, at least one disk drive, and a terminal. To actually burn the PROM,
you also need a Universal PROM Programmer (UPP) and the Universal PROM
Mapper (UPM) program.

The format of the BAPROM command:
:Fn:BAPROM input file TO output file

BAPROM is the name of the file that contains the BAPROM program. If it isn't
on the disk in drive 0, include the drive number in the filename.

input file is the name of the file that contains the ASCII form of the BASIC-SO
program to be burned into PROM.

output file is the name of the converted absolute object file. If you don't specify an
output filename, it is given the same name as the input file with an
extension of OBJ.

BAPROM does not modify the source in any way except to add a control Z at the
end.

For example, assume you have written and tested a thermostat control program in
BASIC-SO and saved it in ASCII format with the name HEATER.BAS. You wish to
burn the program into PROM. If BAPROM and LOCATE are on drive 0, your pro­
gram is on drive 1, and you wish to locate it at OEOOOH then the session would go as
follows:

-BAPROM :F1:HEATER.BAS

Because no output filename is specified, it is :Fl :HEATER.OBJ. BAPROM
displays its message, then displays the size of the input file:

ISIS-II BAPROM, Vm.n
SIZE = nnnnH BYTES

The size (nnnnH) is in hexadecimal.

-LOCATE :F1 :HEATER.OBJ CODE(OEOOOH)
ISIS-II LOCATER Vm.n

To actually burn the resulting file (:Fl :HEATER) into PROM, you need the Univer­
sal PROM Mapper program (UPM) and a Universal Prom Programmer (UPP).
Supposing your program is approximately 2K and you wish to burn it into one 2716
PROM you must install the 2716 Personality Card into UPP, place a 2716 PROM
into Socket 2 and then enter the following commands at the console:

-UPM
*TYPE 2716
*SOCKET = 2
*OFFSET
7500
* OFFSET = 9500H
READ into 0 object file :F1 :HEATER
PROGRAM from OEOOOH to OE7FFH Start 0

From a more detailed description of UPM and UPP see: Universal PROM Program­
mer Reference Manual, 9800133F.

A discussion of how to select the proper offset can be found on pp. 36-37 of the
Universal PROM Mapper Operator's Manual, 9S00236A.

F-17

ABS, 7-1
arithmetic functions,

ABS, 7-1
ATN,7-1
COS, 7-3
EXP, 7-5
INT,7-7
LOG,7-8
RND,7-10
SGN,7-11
SIN,7-11
SQR,7-12
TAN,7-13

arrays, 2-9
DIM,6-5
OPTION BASE, 6-15
strings, 2-10
variables, 2-9

ASC, 7-1
ASCII codes, D-l
assembly language subroutines, E-l
ATN,7-1
ATTRIB,6-1
AUTO, 6-1

boolean operators (see logical operators)
built-in functions, 2-3 .

CDBL,7-2
CHR$,7-2
CINT, 2-9, 7-2
CLEAR,6-1
CLOSE,6-2
command characters,

CONTROL-A, 3-3, C-l
CONTROL-C, 3-1, C-l
CONTROL-I, 3-1, C-l
CONTROL-O, C-l
CONTROL-Q, C-l
CONTROL-R, C-l
CONTROL-S, C-l
CONTROL-X, 3-2, C-l

commands, 2-1
ATTRIB, 1-3,6-1
AUTO, 6-1
CLEAR,6-1
CONT,6-2
DELETE,6-5
DIR, 1-3,6-6
EDIT, 3-2, 6-6
EXIT,6-7
KILL, 1-3,6-10
LIST, 6-10
LOAD, 1-4,6-11 .
MERGE,6-12
NEW, 6-12
NULL,6-13
PRUN,6-18
RENAME, 1-3, 6-20

INDEX

RUN,6-21
SAVE, 1-3,6-22
TROFF, 4-3,6-23
TRON, 4-3, 6-23
WAIT,6-24
WIDTH,6-24

constants, 2-6
double-precision floating-point, 2-7
hexadecimal, 2-6
integer, 2-6
octal,2-7
single-precision floating-point, 2-7

CONT,6-2
CONTROL-A, 3-3, C-l
CONTROL-C, 3-1, C-l
CONTROL-I, 3-1, C-l
CONTROL-O, C-l
CONTROL-Q, C-l
CONTROL-R, C-l
CONTROL-S, C-l
CONTROL-X, 3-2, C-l
converting data (see data

conversion [unctions),
COS, 7-3
CR, 3-1,3-2
CSNG, 2-9, 7-3
CVD, 5-7, 7-3
CVI, 5-7, 7-3
CVS, 5-7, 7-3

DATA,6-3
data,

numeric, 2-5
arrays, 2-9
constants, 2-6

double-precision floating-point, 2-7
hexadecimal, 2-6
integer, 2-6
octal, 2~7
single-precision floating-point, 2-7

variables,2-7
string, 2-8

arrays, 2-10
constants, 2-8
variables, 2-8

data conversion functions, 2-9
CDBL, 2-9, 7-2
CHR$, 2-9, 7-2
CINT, 2-9, 7-2
CSNG, 2-9, 7-3
CVD, 5-7, 7-3
CVI, 5-7, 7-3
CVS, 5-7, 7-3
HEX$, 2-9, 7-6
MKD$, 5-8, 7-9
MKI$, 5-8, 7-9
MKS$, 5-8, 7-9
OCT$, 2-9, 7-9
STR$, 2-9, 7-13
VAL,2-9,7-14

Index-l

Index

Index-2

DEFDBL, 2-5, 6-4
DEFFN,6-3
DEFINT, 2-5, 6-4
DEFSNG, 2-5, 6-4
DEFSTR,6-4
DEFUSR, E-2, 6-4
DELETE,6-5
DIM, 2-9, 6-5
dimensioning, 2-9

numeric arrays, 2-9
string arrays, 2-10

DIR, 1-3,6-6
disk file 110,5-1

CLOSE, 5-3, 6-2
OPEN, 5-1, 6-14
random, 5~4

FIELD, 5-4, 6-7
GET, 5-6, 6-8
I/O buffers, 5-4
LSET, 5-7, 6-11
PUT, 5-7, 6-18
reading, 5-6
RSET, 5-7, 6-11
writing, 5-7

sequential, 5-1
INPUT, 5-2, 6-9
INPUT$,7-6
LINE INPUT, 5-2,6-10
PRINT, 5-2, 6-16
reading, 5-2
writing, 5-2

divide-by-zero error message, 4-1, A-I
double-precision floating-point, 2-7
DSKF, 7-4

EDIT, 3-2, 6-6
editing program text, 3-2
editing subcommands, 3-2

A,3-6
C,3-6
D,3-3
E,3-6
H,3-4
1,3-4
K,3-5
L,3-4
Q,3-6
S,3-5
X,3-4

ELSE,6-9
END, 6-6
entering and editing, 3-1

AUTO, 3-1
CONTROL-A, 3-3, C-l
EDIT, 3-2, 6-6
RENUM,6-20
WIDTH,6-24

entering instruction lines, 3-1
EOF, 5-3, 7-4
ERL, 4-2,7-4
ERR, 4-2,7-4
error,

codes, 4-1, A-I
handling, 4-1

CO NT ,4-4, 6-2
ERL, 4-2, 7-4

ERR, 4-2,7-4
ERROR, 4-4, 6-6
NEXT, 6-13
ON ERROR GOTO, 4-2, 6-13
RESUME, 4-4, 6-21
TROFF, 4-3, 6-23
TRON, 4-3, 6-23

messages, 4-1, A-I
simulation, 4-4
tracing, 4-3
trapping, 4-2

EXP, 7-5
expre~sions, 2-12

numeric, 2-12
string, 2-12

EXIT,6-7

FIELD, 5-4, 6-7
file-handling commands,

system commands, 1-2
ATTRIB, 1-3,6-1
DIR, 1-3,6-6
KILL, 1-3,6-10
LOAD, 1-4,6-11
MERGE,6-12
RENAME, 1-3,6-20
SAVE, 1-3,6-22

disk-file I/O commands,
CLOSE, 5-3, 6-2
OPEN, 5-1, 6-14
random,

FIELD, 5-4,6-7
GET, 5-6, 6-8
LSET, 5-7, 6-11
PUT, 5-7,6-18
RSET, 5-7, 6-11

sequential,
INPUT, 5-2, 6-9
INPUT$,7-6
LINE INPUT, 5-2,6-10
PRINT, 5-2, 6-16

FIX, 7-5
FOR-NEXT-STEP, 6-7
FORTRAN-80 subroutines, E-l
FRE,7-5
functions, 2-3

ABS, 7-1
Ase, 7-1
ATN,7-1
CDBL, 2-9, 7-2
CHR$, 2-9, 7-2
CINT, 2-9, 7-2
COS, 7-3
CSNG, 2-9, 7-3
CVD, 5-7, 7-3
CVI, 5-7, 7-3
CVS, 5-7, 7-3
DSKF,7-4
EOF, 5-3, 7-4
ERL, 4-2, 7-4
ERR, 4-2, 7-4
EXP, 7-5
FIX, 7-5
FRE,7-5
HEX$, 2-9, 7-6
INP, 7-6

BASIC-SO

BASIC-80 Index

INPUT$,7-6 LIST,6-10
INSTR~ 7-7 LOAD, 1-4,6-11
INT,7-7 LOC, 5-8, 7-8
LEFT$,7-7 LOF, 5-8, 7-8
LEN,7-S LOG,7-8
LOC,7-S logical operators, 2-10
LOF,7-S AND, 2-11
LOG,7-S EQV, 2-11
MID$,7-9 IMP, 2-11
MKD$, 5-8,7-9 NOT,2-11
MKI$, 5-S, 7-9 OR,2-11
MKS$, 5-S, 7-9 XOR,2-11
OCT$, 2-9, 7-9 LSET, 5-7, 6-11
PEEK,7-1O
POS, 7-10 MERGE, 6-12
RIGHT$,7-1O MID$,7-9
RND,7-1O MKD$, 5-S, 7-9
SGN,7-11 MKI$, 5-S, 7-9
SIN,7-11 MKS$, 5-S, 7-9
SPACE$,7-11
SPC, 7-12 NEW, 6-12
SQR,7-12 NEXT,6-13
STRING$,7-12 NULL,6-13
STR$, 2-9, 7-13 numbering lines, 3-1
TAB,7-13 numeric to string conversion, 5-6, 5-7
TAN,7-13 MKD$, 5-8, 7-9
USR, E-3, 7-13 MKI$, 5-8,7-9
VAL, 2-9, 7-14 MKS$, 5-S, 7-9
VARPTR, E-2, 7-14

octal constants, 2-6
GET, 5-6, 6-S ON ERROR, 4-2,6-13
GOSUB,6-S ON ... GOSUB,6-14
GOTO, 6-9 ON ... GOTO, 6-14

OPEN, 5-1, 6-14
hexadecimal constants, 2-6 operators, 2-11
HEX$, 2-9, 7-6 arithmetic, 2-10, 2-11

logical, 2-10,2-12
110 functions, relational, 2-10,2-11

CVD, 5-7, 7-3 string, 2-12
CVI, 5-7, 7-3 OPTION BASE, 6-15
CVS, 5-7, 7-3 OUT,6-15
EOF, 5-3, 7-4 overflow error message, 4-1, A-I
LOC, 5-8, 7-S
LOF, 5-S, 7-S PEEK, 7-10
MKD$, 5-S, 7-9 PL/M-80 subroutines, E-l
MKI$, 5-8, 7-9 POKE,6-15
MKS$, 5-S, 7-9 POS, 7-10

IF-THEN-ELSE,6-9 precedence of evaluation, 2-10
INP, 7-6 PRINT,6-16
INPUT, 5-2, 6-9 PRINT USING, 6-16
INPUT$,7-6 PRUN,6-18
integer, PUT, 5-7, 6-1S

constants, 2-6
variables, 2-7 RANDOMIZE, 6-19, 7-10

INSTR,7-7 READ,6-19
instructions, 2-1 REM,6-20
intrinsic functions, 2-3 RENAME, 1-3,6-20
INT,7-7 representing data, 2-5

RESTORE, 6-20
KILL, 1-3,6-10 RESUME, 4-4, 6-21

RETURN, 6-21
language elements, 2-1 RIGHT$,7-1O
LEFT$,7-7 RMX/SO BASIC-SO, F-l
LEN,7-S RND,7-10
LET,6-1O RSET, 5-7,6-11
LINE INPUT, 5-2, 6-10 RUN,6-22

Index-3

Index

Index-4

SAVE, 1-4,6-22
SGN,7-11
SIN,7-11
single-precision floating-point

constants, 2-7
SPACE$,7-11
SPC, 7-12
SQR,7-12
statements,

CLOSE, 5-3, 6-2
DATA,6-3
DEFDBL, 2-5,6-4
DEFFN,6-3
DEFINT, 2-5, 6-4
DEFSNG, 2-5,6-4
DEFSTR,6-4
DEFUSR, E-2, 6-4
DIM, 2-9, 6-5
ELSE,6-9
END,6-6
FIELD, 5-4, 6-7
FOR-NEXT -STEP, 6-7
GET, 5-6, 6-8
GOSUB,6-8
GOTO, 6-9
IF-THEN-ELSE,6-9
INPUT, 5-2, 6-9
LET,6-1O
LINE INPUT, 5-2,6-10
LSET, 5-7, 6-11
NEXT, 6-13
ON ERROR, 4-2, 6-13
ON ... GOSUB, 6-14
ON ... GOTO, 6-14
OPEN, 5-1, 6-14
OPTION BASE, 6-15
OUT,6-15
POKE,6-15
PRINT, 5-2, 6-16
PRINT USING, 6-16
PUT, 5-7, 6-1S
READ,6-19
REM,6-20
RESTORE, 6-20
RESUME, 4-4, 6-21
RETURN, 6-21
RSET, 5-7,6-11
STEP, 6-7
STOP, 6-22
SWAP, 6-23
WAIT,6-24

STEP, 6-7
STOP, 6-22
string, 2-8

arrays, 2-10
constants, 2-8
data, 2-8
functions,

ASC,7-1
CHR$, 2-9, 7-2
FRE,7-5
HEX$, 2-9, 7-6
INSTR,7-7
LEFT$,7-7
LEN,7-8
MID$,7-9

OCT$, 2-9, 7-9
RIGHT$,7-1O
SP ACE$, 7-11
STRING$,7-12
STR$,7-13
VAL, 7-14

operators, 2-12
variables, 2-S

STRING$,7-12
string to numeric conversion, 5...fi

CVD, 5-7, 7-3
CVI, 5-7, 7-3
CVS, 5-7, 7-3

subroutines,
BASIC,

GOSUB,6-8
ON ... GOSUB,6-14
RETURN, 6-21

non-BASIC,
calling, E-l
DEFUSR, E-2, 6-4
preparing, E-l
USR, E-3, 7-13
VARPTR, E-2, 7-14

SWAP, 6-23

TAB,7-13
TAN,7-13
THEN,6-9
trace facility, 4-3
TROFF, 4-3, 6-23
TRON, 4-3, 6-23

underflow error message, 4-1, A-I
user-defined,

functions,
DEFFN,6-3

subroutines,
DEFUSR, E-2, 6-4
USR, E-3, 7-13
V ARPTR, E-2, 7-14

USR, E-3, 7-13

VAL, 2-9, 7-14
variables, 2-7

block assignment statements, 2-8
DEFDBL, 2-5, 6-4
DEFINT, 2-5, 6-4
DEFSNG, 2-5, 6-4
DEFSTR,6-4

numeric, 2-7
string, 2-8
type conversion functions, 2-8

CDBL, 2-9, 7-2
CINT,2-9,7-2
CSNG, 2-9, 7-3

type suffixes, 2-6
double-precision floating-point, 2-6
070 integer, 2-6
! single-precision floating-point, 2-6
$ string, 2-8

VARPTR, E-2, 7-14

WAIT,6-24
WIDTH,6-24

BASIC-SO

REQUEST FOR READER'S COMMENTS

BASIC-80 Reference Manual
9800758-02

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found tn this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME _______________________ DATE _________ _
TITLE ___ __

COMPANYNAME/DEPARTMENT ____________________________________ __
ADDRESS __ _

CITY _______________ _ STATE _____ _ ZIP CODE _________ _

Please check here If you require a written reply. 0

tlE'D LIKE YOUR COMMENTS •••

rhis document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
::omments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

111111 NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987·8080

Printed in U.S.A.

