HP-UX Linker and Libraries User's Guide

HP 9000 Computers

[Frcinre

B2355-90655
November 1997

© Copyright 1997 Hewlett-Packard Company. All rights reserved.

Legal Notices

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright © 1997 Hewlett-Packard Company.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the
copyright laws.

Corporate Offices:

Hewlett-Packard Co.

3000 Hanover St.

Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of
Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s), compact disc(s), or tape
cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs may be made for security and back-up
purposes only. Resale of the programs in their present form or with
alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

© Copyright 1980, 1984, 1986 AT&T Technologies, Inc. UNIX and
System V are registered trademarks of AT&T in the USA and other
countries.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

© Copyright 1979, 1980, 1983, 1985-1990 Regents of the University of
California. This software is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University
of California.

Copyright © The Regents of the University of Colorado, a body corporate
1979

This document has been reproduced and modified with the permission of
the Regents of the University of Colorado, a body corporate.

PostScript is a trademark of Adobe Systems, Inc.

Intel is a registered trademark and Intel 80386 is a trademark of Intel
Corporation.

Ethernet is a trademark of Xerox Corporation.

© Copyright 1985-1986, 1988 Massachussetts Institute of Technology. X
Window System is a trademark of the Massachussetts Institute of
Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries. Certification for conformance with OSF/Motif
user environment pending.

Contents

Preface. 15
Printing History. 15

. What's New in Recent Releases

PA-RISC Changes in Hardware Compatibility 21
PA-RISC 2.0 Compatibility 21
PA-RISC Architectures and Their System Models. 22

64-bit Mode Linker Toolset Compatibility with De Facto Industry

Standards. 23

64-bit Mode ELF Object File Format 24

New Features for 64-bit Mode Linking. 25
64-bit Mode Linker Options. i 25
64-bit Mode Linker-defined Symbols. 26

64-bit Mode Link-time Differences. 28

64-bit Mode Run Time Differences. 30

Changesin FutureReleases. 32

Online Help for Linker and Libraries. 33
Accessing HelpwithId +help. 33
Accessing Help with the HP CDE Front Panel. 33
Accessing Help with the dthelpview Command 33
Accessing Help with the charhelp Command 33

. What Happens When You Compile and Link a Program
Compiling Programs on HP-UX:

An Example 36
Looking “inside” a Compiler 38
Whatisan Object File? i 40

Local Definitions. 40

Contents

Global Definitions 40
External References 40
Compiler-Linker Interaction 41
Linking Programson HP-UXo ... 42
ThecrtO.oStartupFile 43
TheaoutFile 44
File Permissions 45
Linkingwith Libraries. 46
Library Naming Conventions. oo, 46
Default Libraries. 46
The Default Library SearchPath. 47
Link Order. a7
Running the Program 48
Loading Programs: €XEC . . . v oottt e et 48
Binding Routinestoa Program 48
Deferred Bindingisthe Default. 49
Linker Thread-Safe Features 50

. Linker Tasks

Using the CompilertoLink 53
Changing the Default Library Search Path with -WI, -L 53
Getting Verbose Outputwith-v.............................. 54
Passing Linker Options from the Compiler Command with -WI 54
Renaming the Output Filewith-o............................ 55
Specifying Librarieswith -l 55
Suppressing the Link-Edit Phasewith-c 55

Using Linkercommands i 57
Linking with the 32-bitcrt0.o Startup File..................... 57

Changing the Default Library Search Path with -L and LPATH. ... 57

Contents

Changing the Default Shared Library Bindingwith-B............ 58
Improving Shared Library Performance with -B symbolic 60
Choosing Archive or Shared Librarieswith-a................... 63
Dynamic Linkingwith-Aand-R. 65
Exporting Symbolswith+e 79
Exporting Symbolswith+ee 81
Exporting Symbols frommainwith-E 81
Hiding Symbolswith-h 81
Moving Libraries after Linkingwith+b 84
Moving Libraries After Linking with +s and SHLIB_PATH........ 86
Passing Linker Optionsinafilewith-c 86
Passing Linker Options with LDOPTS......................... 87
Specifying Librarieswith-land I:. 87
Stripping Symbol Table Information from the Output File with -s and
S 89
Using 64-bit Mode Linker Options. 90
Using the 64-bit Mode Linker with +compator +std.............. 90
Linking Shared Libraries with -dynamic 93
Linking Archived Libraries with -noshared 93
Controlling Archive Library Loading with +[no]forceload.......... 93
Flagging Unsatisfied Symbols with +[no]allowunsats............. 94
Hiding Symbols from export with +hideallsymbols 95
Changing Mapfiles with -k and +nodefaultmap.................. 95
Ignoring Dynamic Path Environment Variables with +noenvvar96
Linking in 64-bit Mode with +std 96
Linking in 32-bit Mode Style with+compat..................... 96
Controlling Output from the Unwind Table with +stripwind 96
Selecting Verbose Output with +vtype 97
Linking with the 64-bitcrtO.0o Startup File 98
Linker Compatibility Warnings 99
Linking to Archive Libraries with Unsatisfied Symbols 100

Contents

. Linker Tools

Changing a Program's Attributes with chatr(1).................. 104
Using chatr for 32-bit Program Attributes 104
Using chatr for 64-bit Program Attributes 105

Viewing Symbols in an Object filewithnm(1) 107

Viewing the Contents of an Object File with elfdump(1)........... 111

Viewing library dependencies with Idd(1). 113

Viewing the Size of Object File Elements with size(1)............. 115

Reducing Storage Space with strip(1). 116

Improving Program Start-up with fastbind(1) 118

Finding Object Library Ordering Relationships with lorder(1). 120

. Creating and Using Libraries

Overview of Shared and Archive Libraries. 122
What are Archive Libraries? 125
Example. 125
What are Shared Libraries? 126
The Dynamic Loaderdld.sl. 126
Default Behavior When Searching for Libraries at Run Time. 127
Caution on Using Dynamic Library Searching................. 127
Example Program Comparing Shared and Archive Libraries. 128

Shared Libraries with Debuggers, Profilers, and Static Analysis. ... 130

Creating Archive Libraries 131
Overview of Creating an Archive Library 131
Contents of an Archive File 132
Example of Creating an Archive Library. 133
Replacing, Adding, and Deleting an Object Module 134

Contents

Summary of Keys tothear(l) Command 135
CrE0.0 . . o o 136
Archive Library Location................ 136
Creating Shared Libraries i ... 138
Creating Position-Independent Code (PIC). 138
Creating the Shared Library withId. 139
Shared Library Dependencies 140
Updatinga Shared Library 144
Shared Library Location 144
Improving Shared Library Performance. 145
Version Control with Shared Libraries 149
When to Use Shared Library Versioning 149
Maintaining Old Versions of Library Modules 150
Library-Level Versioning 150
Intra-Library Versioning 154
Switching from Archive to Shared Libraries 158
Library Path Names. i i 158
Relying on Undocumented Linker Behavior. 158
Absolute Virtual Addresses 159
Stack Usaget e e 160
Version Control. 160
Debugger Limitations i 161
Using the chroot Command with Shared Libraries.............. 161
Profiling Limitations i 161
Summary of HP-UX Libraries 162
Caution When Mixing Shared and Archive Libraries.............. 164
Example 1: Unsatisfied Symbols. 164
Example 2: Using shl_load(3X) i, 167
Example 3: Hidden Definitions 171
Summary of Mixing Shared and Archive Libraries 175

Contents

Using Shared Libraries in 64-bitmode. 176
Internal Name Processingo ... 176
Dynamic Path Searching for Shared Libraries................. 177
Shared Library Symbol Binding Semantics 178
Mixed Mode Shared Libraries 184
64-bit Mode Library Examples. 186

. Shared Library Management Routines

Shared Library Management Routine Summaries 196
The shl_load Routine Summary.......... ..., 196
The dlopen Routines Summary, 197
Related Filesand Commands. 198

Shared Library Header Files. 199

Using Shared Libraries withccand Id Options 200

Initializers for Shared Libraries 201
Styles of Initializers 201
32-bit Mode Initializers 203
64-bit Mode Initializers 210

The shl_load Shared Library Management Routines 215
The shl_load and cxxshl_load Routines. 215
The shl_findsymRoutine 222
The shl_getandshl get rRoutines. 226
The shl_gethandle and shl_gethandle_r Routines 230
The shl_definesym Routine 231
The shl_getsymbols Routine. 232
The shl_unload and cxxshl_unload Routines 238

The dlopen Shared Library Management Routines. 240
Thedlopen Routine. e i 240
Thedlerror Routine. 244

10

Contents

ThedlsymRoutine i 245
Thedlget Routine. e 248
The dlmodinfo Routine. i 249
Thedlgetname Routine, 252
Thediclose Routine i 253
Dynamic Loader Compatibility Warnings 256
Unsupported Shared Library Management Routines 256
Unsupported Shared Library ManagementFlags 256

7. Position-Independent Code

What Is Relocatable Object Code?, 260
What is Absolute Object Code?. 261
What Is Position-Independent Code? 262
Generating Position-IndependentCode 263
For More Information: 264
PI1C Requirements for Compilers and Assembly Code. 264
Long Calls. 265
Long Branches and Switch Tables. 265
Assigned GOTO Statements, 266
Literal References i 266
Global and Static Variable References 267
Procedure Labels 267

8. Ways to Improve Performance

Linker Optimizations e 270
Invoking Linker Optimizations from the Compile Line. 270
Incompatibilities with other Options 271
Unused Procedure Elimination with +Oprocelim. 271

Optionsto Improve TLBHitRates. 273

11

Contents

Profile-Based Optimization oo, 274
General Information about PBO 274
UsiNg PBO. o 274
WhentoUse PBO 275
How to Use PBO 275
Instrumenting (+1/-1). 277
Profiling. 279
Optimizing Based on Profile Data (+P/-P). 283
Selecting an Optimization Level withPBO.................... 285
Using PBO to Optimize Shared Libraries..................... 286
UsingPBOwithId-r 287
Restrictions and Limitationsof PBO......................... 288
Compatibility with9.0PBO 291

Improving Shared Library Start-Up Time with fastbind 293
Usingfastbind. 293
Invoking the fastbind Tool 293
Invoking fastbind from the Linker. 294
How to Tell if fastbind InformationisCurrent................. 294
Removing fastbind Information fromakFile 294
Turning off fastbindat Run Time 294
For More Information: 294

A. Using Mapfiles

Controlling Mapfiles with the -k Option. 296
Mapfile Example: Using -k filename (without +nodefaultmap Option)
... 296
Changing Mapfiles with -k filename and +nodefaultmap 298
Mapfile Example: Using -k mapfile and +nodefaultmap ... 298
Simple Mapfile 300
Default HP-UX Release 11.0 Mapfile 301

12

Contents

Defining Syntax for Mapfile Directives 303
Defining Mapfile Segment Declarations. 304
Segment Flags 304
Mapfile Segment Declaration Examples. 306
Defining Mapfile Section Mapping Directives 307
Internal Map Structure. 309
Placement of Segments inan Executable. 309
Mapping Input SectionstoSegments 309
Interaction between User-defined and Default Mapfile Directives. .312
Mapfile Option Error Messages, 313
Fatal Errors 313
WarninNgS. . ..o e 313
GlOSSaANY i 315
INAEX . . 325

13

Contents

14

Preface

This Guide covers the following topics:

Chapter 1, “What's New in Recent Releases,” lists new features added
in recent releases.

Chapter 2, “What Happens When You Compile and Link a Program,”
provides details on compiling and linking programs.

Chapter 3, “Linker Tasks,” lists many ways you can specify how you
want your program linked.

Chapter 4, “Linker Tools,” list the tools available in the linker toolset.

Chapter 5, “Creating and Using Libraries,” discusses all aspects of
both archive and shared libraries.

Chapter 6, “Shared Library Management Routines,” explains how to
explicitly load libraries at run time using shared library management
routines.

Chapter 7, “Position-Independent Code,” describes how to write
position-independent assembly code.

Chapter 8, “Ways to Improve Performance,” discusses several ways to
optimize your program.

Appendix A, “Using Mapfiles,” describes mapfiles.

Glossary contains definitions of important terms in this manual.

Printing History

New editions of this manual will incorporate all material updated since
the previous edition. The manual printing date and part number indicate
its current edition. The printing date changes when a new edition is
printed. The manual part number changes when extensive technical
changes are incorporated.

November 1997, Edition 1, part number B2355-90655. This manual
supersedes HP-UX Linker and Libraries User's Guide part number
B2355-90655. The main reason for this new edition is to document

new functionality for the HP-UX 11.00 release:

15

Add the +ee linker option to export symbols.
Add 64-bit linker toolset support for linker options.

Add 64-bit mode linker tools and describe the enhancements to the
32-bit mode toolset.

Describe 32-bit and 64-bit mode behavior differences.
Add 64-bit mode dynamic path searching mechanisms.
Add 64-bit mode symbol binding semantics.

Add the dI* shared library management routines for 64-bit mode
support and describe enhancement to the shl_load routines for
shared libraries.

Add init/fini style initializers for 64-bit mode support for shared
libraries.

Add the BIND_BREADTH_FIRSTflag to the shl_load routine to
control search path behavior.

Add description of support for ELF object file format.

April 1997, Edition 1, part number B2355-90654. This manual
supersedes Programming on HP-UX part number B2355-90652. The
main reason for this new edition is to document new functionality for
the HP-UX 10.30 release:

Announce linker thread-safe features for Id , dld.sl , crt0.0
and libdld.sl

Add the +pd size linker option to set the virtual memory page size
for program data.

Add the +pi size linker option to set the virtual memory page size
for program instructions.

Add the +k linker option (see 1d(1)) to only create an executable if
no errors are found at link time.

Add the chatr +k option to enable or disable kernel-assisted
branch prediction.

Add the chatr+pd size and +pi size virtual memory page setting
options.

16

July 1996, Edition 1, part number B2355-90653. This manual
supersedes Programming on HP-UX part number B2355-90652. The
main reason for this new edition is to document new functionality for
the HP-UX 10.20 release and to describe what's ahead in a future
release of the linker toolset:

Add a -B symbolic option to help improve shared library
performance.

Introduce the fastbind tool to improve the start up time of
programs that use shared libraries.

Introduce the Linker and Libraries Online User Guide.

Announce changes in PA-RISC hardware compatibility—PA-RISC
1.1 systems, by default, generate PA-RISC 1.1 code; PA-RISC 2.0
systems generate 2.0 code.

Describe compatibility warnings generated by the linker and
dynamic loader for HP 9000 architecture issues and linker toolset
features that may change in a future release.

Describe what's changing in a future release of the linker toolset.

Add the +Ostaticprediction option to use with profile-based
optimization.

January 1995, Edition 1, part number B2355-90652. This manual
supersedes Programming on HP-UX part number B2355-90026. The
main reason for this new edition is to document new functionality for
the HP-UX 10.0 release:

Update path names to reflect the new System V Release 4 file
system. Some of the changes are:

e Most filesin/lib are now in /usr/lib

= Most optional products are in /opt . For example, HP C isin
/opt/ansic , HP Cis in/opt/CC , HP FORTRAN/9000 is in
/opt/fortran , and HP/DDE is in /opt/langtools/dde

Caution against mixing shared and archive libraries.

Describe a new library-level versioning scheme for shared
libraries.

Update the chapter on profile-based optimization.

Describe changes in optimization levels 3 and 4.

17

Describe thread-safe interfaces shl_get r and
shl_gethandle_r

Add a new BIND_TOGETHERIag to the shl_load routine.
Add a new chapter "Porting Applications to HP-UX."

18

What's New in Recent Releases

What's New in Recent Releases

This section contains information about recent releases of the HP-UX
linker toolset:

For This Release
The HP-UX 11.00 linker toolset contains new features:

If you use the 32-bit mode linker toolset, see the following items:

= “PA-RISC Changes in Hardware Compatibility” updated in this
chapter.

= “Exporting Symbols with +ee” on page 81.
= “Changes in Future Releases” updated in this chapter.

If you use the 64-bit mode linker toolset, see the following items:

= “PA-RISC Changes in Hardware Compatibility” updated in this
chapter.

= “64-bit Mode Linker Toolset Compatibility with De Facto Industry
Standards” described in this chapter.

« “64-bit Mode ELF Object File Format” described in this chapter.

= “Dynamic Path Searching for Shared Libraries” on page 177
describes differences in the run time searching of shared libraries.

= “Shared Library Symbol Binding Semantics” on page 178 describes
differences in shared library binding semantics.

< New 64-bit mode linker options, symbols, and features, described
in“New Features for 64-bit Mode Linking” in this chapter.

= Unsupported 32-bit mode features, behavior, and linker options,
described in “64-bit Mode Link-time Differences” and“64-bit Mode
Run Time Differences” in this chapter.

= “64-bit Mode Initializers” on page 210 describes the init/fini support
for 64-bit mode shared libraries.

Chapter 1 19

What's New in Recent Releases

“The dlopen Shared Library Management Routines” on page 240
describes the dI* family of shared library management routines for
64-bit mode.

“BIND_BREADTH_FIRST Modifier” on page 222 describes the flag
added to the shl_load routine to modify search behavior.

“Changes in Future Releases” updated in this chapter.

For Previous Releases

The following items were added in the HP-UX 10.30 release:

“Linker Thread-Safe Features” on page 50.
“Options to Improve TLB Hit Rates” on page 273.

The +k linker option (see 1d(1)) to remove an executable if the link
fails.

The +k chatr option (see chatr(1)) to improve branch prediction on
PA-RISC 2.0.

The following items were added in the HP-UX 10.20 release:

“Improving Shared Library Performance with -B symbolic” on page
60.

“Improving Shared Library Start-Up Time with fastbind” on page
293.

“Online Help for Linker and Libraries” described in this chapter.

“PA-RISC Changes in Hardware Compatibility” described in this
chapter.

“Linker Compatibility Warnings” on page 99.
“Dynamic Loader Compatibility Warnings” on page 256.

The +Ostaticprediction linker option described in the Id(1) man
page to use with profile-based optimization

20

Chapter1

What's New in Recent Releases
PA-RISC Changes in Hardware Compatibility

NOTE

PA-RISC Changes in Hardware
Compatibility

The HP-UX 10.20 release introduced HP 9000 systems based on the
PA-RISC 2.0 architecture. Also, beginning with that release, HP
compilers by default generate executable code for the PA-RISC
architecture of the machine on which you are compiling.

In previous releases, the compilers generated PA-RISC 1.0 code on all
HP 9000 Series 800 servers and PA-RISC 1.1 code on Series 700
workstations. HP compilers now by default generate PA-RISC 1.1 code
on 1.1 systems and 2.0 code on 2.0 systems.

Using the +DAportable compiler option provides compatibility of code
between PA-RISC 1.1 and 2.0 systems. Note that the HP-UX 10.10
release is the last supported release for PA-RISC 1.0 systems, so code
generated by the HP-UX 10.20 release of HP compilers is not supported
on PA-RISC 1.0 systems.

The +DA1.0 option will be obsolete in a future release. You can achieve
better performance on PA-RISC 1.1 and 2.0 systems by not using this
option.

PA-RISC 2.0 Compatibility

The instruction set on PA-RISC 2.0 is a superset of the instruction set on
PA-RISC 1.1. As a result, code generated for PA-RISC 1.1 systems will
run on PA-RISC 2.0 systems. However, code generated for PA-RISC 2.0
systems will not run on PA-RISC 1.1 or 1.0. The linker issues a hardware
compatibility warning whenever it links in any PA-RISC 2.0 object files:
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file

(sum.o) was detected. The linked output may not run on PA 1.x
system.

If you try to run a PA-RISC 2.0 program on a 1.1 system, you'll see a
message like:

$ a.out
ksh: ./a.out: Executable file incompatible with hardware

Chapter 1 21

What's New in Recent Releases
PA-RISC Changes in Hardware Compatibility

In this example, the +DAportable compiler option can be used to create
code compatible for PA-RISC 1.1 and 2.0 systems.

PA-RISC Architectures and Their System
Models

The HP 9000 PA-RISC (Precision Architecture Reduced Instruction Set
Computing) Series 700/800 family of workstations and servers has
evolved from three versions of PA-RISC:

PA-RISC 1.0 The original version of PA-RISC first introduced on
Series 800 servers. The following Series are included:
840, 825, 835/SE, 845/SE, 850, 855, 860, 865, 870/x00,
822, 832, 842, 852, 890, 808, 815, 635, 645.

PA-RISC 1.1 The second version of PA-RISC first introduced on
Series 700 workstations. Newer Series 800 systems
also use this version of the architecture. The following
Series are included: 700, 705, 710, 715, 720, 725, 730,
735, 750, 755, B132L, B160L, B132L+, B180L, C100,
C110, J200, J210, J210XC, 742i, 742rt, 743i, 743rt,
745i, 747i, 748i, 8x7, D (except Dx70, Dx80), E, F, G, H,
I, K (except Kx50, Kx60, Kx70), T500, T520.

PA-RISC 2.0 The newest version of PA-RISC. The following Series
are included: C160, C180, C180XP, C200, C240, J280,
J282, 32240, Dx70, Dx80, Kx50, Kx60, Kx70, T600,
V2200.

For More Information

= See your compiler online help or documentation for details on the +DA
option.

= See the file /opt/langtools/lib/sched.models for a complete
list of model numbers and their architectures. Use the command
model to determine the model number of your system.

22 Chapter1

What's New in Recent Releases
64-bit Mode Linker Toolset Compatibility with De Facto Industry Standards

64-bit Mode Linker Toolset
Compatibility with De Facto Industry
Standards

The 64-bit mode linker and dynamic loader provide linking and loading
behaviors found widely across the Unix industry, considered, with the
SVR4 standards, to define the de facto industry standards. The following
64-bit linker behavior is compliant with de facto industry standard:

= ELF object file format and libelf(3x) routines
= Dynamic path searching

= Library-level versioning

= dI* family of dynamic loading routines

= Breadth-first symbol searching

The HP-UX 11.00 release maintains certain behaviors to make
transition from 32-bit to 64-bit mode easier:

= Creation of default run-time path environment variable (RPATH if no
Id +b is seen on the link line, to improve transition from the 32-bit
mode linker.

< |d+compat option for compatibility with 32-bit linking and loading
behavior.

Chapter 1 23

What's New in Recent Releases
64-bit Mode ELF Object File Format

64-bit Mode ELF Object File Format

Starting with HP-UX release 11.00, the 64-bit linker toolset supports the
ELF (executable and linking format) object file format. The 64-bit linker
toolset provides new tools to display and manipulate ELF files. The
libelf(3x) library routines provide access to ELF files. The command
elfdump(1) displays contents of an ELF file.

The following options instruct the compiler to generate 64-bit ELF object
code.

Option Compiler
+DA2.0W C and aC++
+DD64 C

See the HP-UX Software Transition Toolkit (STK) at
http://www.software.hp.com/STK/ for more information on the
structure of ELF object files.

24 Chapter1

What's New in Recent Releases
New Features for 64-bit Mode Linking

New Features for 64-bit Mode Linking

This section introduces new features of the 64-bit linker for HP-UX

release 11.00.

64-bit Mode Linker Options

The 1d(1) command supports the following new options in 64-bit mode:

Option Action

-dynamic Forces the linker to create a shared
executable. The linker looks for shared
libraries first and then archived libraries.
This option is on by default when you
compile in 64-bit mode.

-noshared Forces the linker to create a fully bound
archive program.

-k filename Allows you to control the mapping of input

section in the object file to segments in the
output file.

+[noJallowunsats

Instructs the linker how to report errors for
output files with unsatisfied symbols.

+compat

Instruct the linker to use 32-bit mode
linking and dynamic loading behaviors.

+[no]forceload

Enables/disables forced loading of all the
object files from archive libraries.?

+hideallsymbols

Hides all symbols from being exported.?

+nodefaultmap

Instructs the linker not to load the default
mapfile. See the -k option.?

Chapter 1

25

What's New in Recent Releases

New Features for 64-bit Mode Linking

Option

Action

+noenvvar

Instructs the dynamic loader not to look at
the LD_LIBRARY_PATHand SHLIB_PATH

environment variables at runtime.2

+std

Instructs the linker to use SVR4 compatible
linking and loading behaviors. Default for

64-bit mode.?

+stripunwind

Instructs the linker not to output the
unwind table.

+vtype type

Produces verbose output about selected link
operations.?

a. The linker accepts but ignores this option in 32-bit mode. It
creates an executable (a.out).

64-bit Mode Linker-defined Symbols

The 64-bit linker reserves the following symbol names:

Symbol Definition
__SYSTEM_ID Largest architecture revision level used by
any compilation unit
_FPU_STATUS Initial value of FPU status register
_end Address of first byte following the end of the
main program’s data segment; identifies the
beginning of the heap segment
__TLS SIZE Size of the Thread Local Storage segment
required by the program
__text_start Beginning of the text segment
_etext End of the text segment
__data_start Beginning of the data segment
26 Chapter1

What's New in Recent Releases
New Features for 64-bit Mode Linking

Symbol Definition
_edata End of initialized data
_ap Global pointer value
__init_start Beginning of the .init section
__init_end End of the .init section
__fini_start Beginning of the .fini section
__fini_end End of the .fini section
__unwind_start Beginning of the unwind table
__unwind_end End of the unwind table

NOTE The linker generates an error if a user application also defines these
symbols.

Chapter 1 27

What's New in Recent Releases
64-bit Mode Link-time Differences

64-bit Mode Link-time Differences

The 64-bit mode linker toolset does not support the following 32-bit mode

features.

Option or
Behavior

Description

-A name

Specifies incremental loading. 64-bit applications
must use shared libraries instead.

-Cn

Does parameter type checking. This option is
unsupported.

Generates an initial program loader header file.
This option is unsupported.

Save data and relocation information in temporary
files to reduce virtual memory requirements during
linking. This option is unsupported.

_q ' 'Ql -n

Generates an executable with file type
DEMAND_MAGIEXEC_MAGICand SHARE_MAGIC
respectively. These options have no effect and are
ignored in 64-bit mode.

Causes the data segment to be placed immediately
after the text segment. This option is accepted but
ignored in 64-bit mode. If this option is used
because your application data segment is large,
then the option is no longer needed in 64-bit mode.
If this option is used because your program is used
in an embedded system or other specialized
application, consider using mapfile support with
the -k option.

+cg pathname

Specifies pathname for compiling I-SOMs to SOMs.
This option is unsupported.

28

Chapter1

What's New in Recent Releases
64-bit Mode Link-time Differences

Option or o
Behavior Description
+dpv Displays verbose messages regarding procedures
which have been removed due to dead procedure
elimination. Use the -v linker option instead.
Intra-library Specified by using the HP_SHLIB_VERSIONpragma
versioning (C and aC++) or SHLIB_VERSIONdirective

(Fortran90).

In 32-bit mode, the linker lets you version your
library by object files. 64-bit applications must use
SVR4 library-level versioning instead.

Duplicate code

Code and data cannot share the same namespace in

linker options

and data 64-bit mode. You should rename the conflicting
symbols symbols.

All internal These options are unsupported.

and

undocumented

For more information, see the HP-UX Linker and Libraries Online User

Guide (Id +help

Chapter 1

29

What's New in Recent Releases
64-bit Mode Run Time Differences

64-bit Mode Run Time Differences

Applications compiled and linked in 64-bit mode use a run-time dynamic
loading model similar to other SVR4 systems. There are two main areas
where program startup changes in 64-bit mode:

= Dynamic path searching for shared libraries.
= Symbol searching in dependent libraries.

It is recommended that you use the standard SVR4 linking option
(+std), which is on by default when linking 64-bit applications. There
may be circumstances while you transition, that you need 32-bit
compatible linking behavior. The 64-bit linker provides the +compat
option to force the linker to use 32-bit linking and dynamic loading
behavior.

The following table summarizes the dynamic loader differences between
32-bit and 64-bit mode:

Linker and Loader
Functions

32-bit Mode Behavior

64-bit Mode Behavior

+s and +b path_list
ordering

Ordering is significant.

Ordering is insignificant by default.

Use +compat to enforce ordering.

30

Chapter1

What's New in Recent Releases
64-bit Mode Run Time Differences

Linker and Loader
Functions

32-bit Mode Behavior

64-bit Mode Behavior

Symbol searching in
dependent libraries

Depth-first search order.

Breadth-first search order.

Use +compat to enforce depth first
ordering.

Run time path
environment variables

No run time
environment variables
by default.

If +s is specified, then
SHLIB_PATHi s
available.

LD_LIBRARY_PATHand
SHLIB_PATH are available.

Use +noenv or +compat to turn off
run-time path environment
variables.

+b path_list and -L
directories interaction

-L directories recorded
as absolute pathsin
executables.

-L directories are not recorded in
executables.

Add all directories specified in -L to
+b path_list.

For more information on transition issues, see HP-UX 64-bit Porting and
Transition Guide.

Chapter 1

31

What's New in Recent Releases
Changes in Future Releases

Changes in Future Releases

The following changes are planned in future releases.

= Support of ELF 32 object file format
A future release will support the ELF 32 object file format.
= Future of Id +compat option

The +compat linker option and support of compatibility mode may
be discontinued in a future release.

= Support of shl_load shared library management routines

A future release may discontinue support of the shl_load family of
shared library management routines.

32 Chapter1

NOTE

What's New in Recent Releases
Online Help for Linker and Libraries

Online Help for Linker and Libraries

The Linker and Libraries Online User Guide is available for HP 9000
Series 700 and 800 systems. The online help comes with HP C, HP C++,
HP aC++, HP Fortran, HP Pascal, and HP Micro Focus COBOL/UX.
Online help can be accessed from any X Window display device, or from
the charhelp(1) character-mode help browser.

Accessing Help with Id +help

To access the Linker and Libraries Online User Guide from the Id
command line:

Id +help

Accessing Help with the HP CDE Front Panel

To access the Linker and Libraries Online User Guide if your HP
compiler is installed on your system:

1. Click on the? icon on the HP CDE front panel.

2. The "Welcome to Help Manager" menu appears. Click on the HP
Linker icon.

Accessing Help with the dthelpview
Command

If your HP compiler is installed on another system or you are not
running HP CDE, enter the following command from the system where
your compiler is installed:

Jusr/dt/bin/dthelpview -h linker

To make it easier to access, add the path /usr/dt/bin to your
.profile or login file.

Accessing Help with the charhelp Command

To access the Linker and Libraries Online User Guide from a
character-mode terminal or terminal emulator:

Chapter 1 33

What's New in Recent Releases
Online Help for Linker and Libraries

/opt/langtools/bin/charhelp Id
See charhelp(1) for details.

34

Chapter1

What Happens When You Compile and Link a Program

What Happens When You
Compile and Link a Program

This chapter describes the process of compiling and linking a program.

= “Compiling Programs on HP-UX: An Example” provides an overview
of compiling on HP-UX.

= “Looking “inside” a Compiler” describes the process of creating an
executable file in more detail.

= “Linking Programs on HP-UX" describes how Id creates an
executable file from one or more object files.

= “Linking with Libraries” describes conventions for using libraries
withId .

= “Running the Program” describes the process of loading and binding
programs at run time.

e “Linker Thread-Safe Features”describes the thread-safe features.

Chapter 2 35

What Happens When You Compile and Link a Program
Compiling Programs on HP-UX: An Example

Compiling Programs on HP-UX:
An Example

To create an executable program, you compile a source file containing a
main program. For example, to compile an ANSI C program named
sumnum.c, shown below, use this command (-Aa says to compile in ANSI
mode):

$ cc-Aa sumnum.c

The compiler displays status, warning, and error messages to standard
error output (stderr). If no errors occur, the compiler creates an
executable file named a.out in the current working directory. If your
PATHenvironment variable includes the current working directory, you
can run a.out as follows:

$ a.out

Enter a number: 4
Sum 1 to 4: 10

The process is essentially the same for all HP-UX compilers. For
instance, to compile and run a similar FORTRAN program named
sumnum.f :

$ 77 sumnum.f Compile and link sumnum.f.
The compiler displays any messages here.
$ a.out Run the program.

Output from the program is displayed here.

Program source can also be divided among separate files. For example,
sumnum.c could be divided into two files: main.c , containing the main
program, and func.c , containing the function sum_n. The command for
compiling the two together is:

$ cc -Aa main.c func.c

main.c:
func.c:

Notice that cc displays the name of each source file it compiles. This way,
if errors occur, you know where they occur.

#include <stdio.h> /* contains standard 1/O defs */

int sum_n(intn) /* sum numbers fromnto1l */
int sum = 0; /* running total; initially 0 */
for(; n>=1;n--) /*sum fromnto 1 */

36 Chapter2

Figure 2-1

What Happens When You Compile and Link a Program
Compiling Programs on HP-UX: An Example

sum +=n; /* add n to sum */

return sum; /* return the value of sum */
main() /* begin main program */

int n; /* number to input from user */

printf("Enter a number: "); /* prompt for number */

scanf("%d", &n); /* read the number inton */

printf("Sum 1 to %d: %d\n", n, sum_n(n)); /* display the sum */

Generally speaking, the compiler reads one or more source files, one of
which contains a main program, and outputs an executable a.out file,
as shown in “High-Level View of the Compiler”.

High-Level View of the Compiler

main I [
source
|_ | compiler _@
subprogram

| source T

—

E (optional)

Chapter 2 37

Figure 2-2

[

(optional) E

What Happens When You Compile and Link a Program
Looking “inside” a Compiler

Looking “inside” a Compiler

On the surface, it appears as though an HP-UX compiler generates an
a.out file by itself. Actually, an HP-UX compiler is a driver that calls
other commands to create the a.out file. The driver performs different
tasks (or phases) for different languages, but two phases are common to
all languages:

1. For each source file, the driver calls the language compiler to create
an object file. (See Also “What is an Object File?”.)

2. Then, the driver calls the HP-UX linker (Id) which builds an a.out
file from the object files. This is known as the link-edit phase of
compilation. (See Also “Compiler-Linker Interaction”.)

“Looking “inside” a Compiler” summarizes how a compiler driver works.

Looking “inside” a Compiler

compiler driver

main object
source (.0)

subprogrc:r'n_I object

linker (1d)

I_ Sou rce_ J (.O) |

\. S

The C, C++, FORTRAN, and Pascal compilers provide the -v (verbose)
option to display the phases a compiler is performing. Compiling main.c
and func.c with the -v option produced this output on a Series 700
workstation (\ at the end of a line indicates the line is continued to the
next line):

$ cc -Aa -v main.c func.c -Im

cc: CCOPTS is not set.

main.c:

/opt/langtools/Ibin/cpp.ansi main.c /var/tmp/ctmAAAa10102 \\
-D__hp9000s700 -D__hp9000s800 -D__hppa -D__hpux \\
-D__unix-D_PA RISC1 1

cc: Entering Preprocessor.

/opt/ansic/lbin/ccom /var/tmp/ctmAAAa10102 main.o -00 -Aa \\
func.c:

/opt/langtools/Ibin/cpp.ansi func.c /var/tmp/ctmAAAa10102 \\
-D__hp9000s700 -D__hp9000s800 -D__hppa -D__hpux \\

38 Chapter2

What Happens When You Compile and Link a Program
Looking “inside” a Compiler

-D__unix -D_PA_RISC1_1
cc: Entering Preprocessor.
/opt/ansic/Ibin/ccom /vartmp/ctmAAAa10102 func.o -O0 -Aa
cc: LPATH is /usr/lib/pal.1:/ust/lib:/opt/langtools/lib:
/ulsr/c<|:s/binlld /opt/langtools/lib/crt0.0 -u main main.o func.o \\
-lm -lc
cc: Entering Link editor.

This example shows that the cc driver calls the C preprocessor
(/opt/langtools/Ibin/cpp.ansi) for each source file, then calls the
actual C compiler (/opt/ansic/lbin/ccom) to create the object files.
Finally, the driver calls the linker (/usr/ccs/bin/ld) on the object files
created by the compiler (main.o and func.o).

Chapter 2 39

What Happens When You Compile and Link a Program
What is an Object File?

What is an Object File?

An object file is basically a file containing machine language
instructions and data in a form that the linker can use to create an
executable program. Each routine or data item defined in an object file
has a corresponding symbol name by which it is referenced. A symbol
generated for a routine or data definition can be either a local
definition or global definition. Any reference to a symbol outside the
object file is known as an external reference.

To keep track of where all the symbols and external references occur, an
object file has a symbol table. The linker uses the symbol tables of all
input object files to match up external references to global definitions.

Local Definitions

A local definition is a definition of a routine or data that is accessible only
within the object file in which it is defined. Such a definition cannot be
accessed from another object file. Local definitions are used primarily by
debuggers, such as adb. More important for this discussion are global
definitions and external references.

Global Definitions

A global definition is a definition of a procedure, function, or data item
that can be accessed by code in another object file. For example, the C
compiler generates global definitions for all variable and function
definitions that are not static . The FORTRAN compiler generates
global definitions for subroutines and common blocks. In Pascal, global
definitions are generated for external procedures, external variables, and
global data areas for each module.

External References

An external reference is an attempt by code in one object file to access a
global definition in another object file. A compiler cannot resolve external
references because it works on only one source file at a time. Therefore,
the compiler simply places external references in an object file's symbol
table; the matching of external references to global definitions is left to
the linker or loader.

40 Chapter2

NOTE

What Happens When You Compile and Link a Program
Compiler-Linker Interaction

Compiler-Linker Interaction

As described in “Looking “inside” a Compiler”, the compilers
automatically call Id to create an executable file. To see how the
compilers call Id , run the compiler with the -v (verbose) option. For
example, compiling a C program in 32-bit mode produces the output
below:

$ cc -Aa -v main.c func.c -Im

cc: CCOPTS is not set.

main.c:

/opt/langtools/Ibin/cpp.ansi main.c /var/tmp/ctmAAAa10102 \\
-D__hp9000s700 -D__hp9000s800 -D__hppa -D__hpux \\
-D__unix -D_PA_RISC1_1

cc: Entering Preprocessor.

/opt/ansic/lbin/ccom /varitmp/ctmAAAal10102 main.o -00 -Aa

func.c:

/opt/langtools/Ibin/cpp.ansi func.c /var/tmp/ctmAAAa10102 \\
-D__hp9000s700 -D__hp9000s800 -D__hppa -D__hpux \\
-D__unix-D_PA RISC1 1

cc: Entering Preprocessor.

/opt/ansic/lbin/ccom /var/tmp/ctmAAAal10102 func.o -O0 -Aa

cc: LPATH is /usr/lib/pal.1:/ust/lib:/opt/langtools/lib:

/usr/ccs/bin/ld /opt/langtools/lib/crt0.0 -u main main.o

func.o -Im -lc

cc: Entering Link editor.

The next-to-last line in the above example is the command line the
compiler used to invoke the 32-bit mode linker, /usr/ccs/bin/ld .In
this command, Id combines a startup file (crt0.0) and the two object
files created by the compiler (main.o and func.o). Also, Id searches the
libm and libc libraries.

In 64-bit mode, the startup functions are handled by the dynamic loader,
dld.sl . In most cases, the |d command line does not include crt0.o

If you are linking any C++ object files to create an executable or a shared
library, you must use the CCcommand to link. This ensures that
c++patch executes and chains together your nonlocal static constructors
and destructors. If you use Id , the library or executable may not work
correctly and you may not get any error messages. For more information
see the HP C++ Programmer's Guide.

Chapter 2 41

What Happens When You Compile and Link a Program
Linking Programs on HP-UX

Linking Programs on HP-UX

The HP-UX linker, Id , produces a single executable file from one or more
input object files and libraries. In doing so, it matches external
references to global definitions contained in other object files or libraries.
It revises code and data to reflect new addresses, a process known as
relocation. If the input files contain debugger information, Id updates
this information appropriately. The linker places the resulting
executable code in a file named, by default, a.out

In the C program example (see “Compiling Programs on HP-UX: An
Example”) main.o contains an external reference to sum_n, which has a
global definition in func.o .ld matches the external reference to the
global definition, allowing the main program code in a.out to access
sum_n (see Figure 2-3).

Figure 2-3 Matching the External Reference to sum_n
main.o a.out
external linker (Id)
reference —» call to sum_n call to sum_n
to "sum_n" combine .o files
and match
func.o external references
to global defines
global
definition —¥»{sum_n defined sum_n defined
for 'sum.n"

address of ''sum_n"
is now known
If Id cannot match an external reference to a global definition, it
displays a message to standard error output. If, for instance, you compile
main.c without func.c ,Id cannot match the external reference to
sum_n and displays this output:
$ cc-Aa main.c

lusr/ccs/bin/ld: Unsatisfied symbols:
sum_n (code)

42 Chapter2

What Happens When You Compile and Link a Program
Linking Programs on HP-UX

The crt0.o Startup File

Notice in the example in “Compiler-Linker Interaction” that the first
object file on the linker command line is

/opt/langtools/lib/crt0.0 , even though this file was not specified
on the compiler command line. This file, known as a startup file,
contains the program's entry point that is, the location at which the
program starts running after HP-UX loads it into memory to begin
execution. The startup code does such things as retrieving command line
arguments into the program at run time, and activating the dynamic
loader (dld.sl(5)) to load any required shared libraries. In the C
language, it also calls the routine _start inlibc which, in turn, calls
the main program as a function.

The 64-bit linker uses the startup file,
/opt/langtools/lib/pa_64/crt0.0 , when:

= The linker is in compatibility mode (+compat).

< The linker is in default standard mode (+std) with the -noshared
option.

If the -p profiling option is specified on the 32-bit mode compile line, the
compilers link with mcrt0.o instead of crt0.o0. If the -G profiling option is
specified, the compilers link with gcrt0.0. In 64-bit mode with the -p
option, the linker adds -lprof before the -lc option. With the -G
option, the linker adds -lgprof

If the linker option -l is specified to create an executable file with
profile-based optimization, in 32-bit mode icrt0.0 is used, and in 64-bit
mode the linker inserts /usr/ccs/lib/pa20_64/fdp_init.o . If the
linker options - and -b are specified to create a shared library with
profile-based optimization, in 32-bit mode scrt0.0 is used, and in 64-bit
mode, the linker inserts /usr/ccs/lib/pa20_64/fdp_init_sl.o .In
64-bit mode, the linker uses the single 64-bit crt0.0 to support these
option.

For details on startup files, see crt0(3).

The Program's Entry Point

In 32-bit mode and in 64-bit statically-bound (-noshared) executables,
the entry point is the location at which execution begins in the a.out
file. The entry point is defined by the symbol $STARTS$in crt0.0

Chapter 2 43

What Happens When You Compile and Link a Program
Linking Programs on HP-UX

In 64-bit mode for dynamically bound executables, the entry point,
defined by the symbol $STARTS$in the dynamic loader (did.sl).

The a.out File

The information contained in the resulting a.out file depends on which
architecture the file was created on and what options were used to link
the program. In any case, an executable a.out file contains information
that HP-UX needs when loading and running the file, for example: Isita
shared executable? Does it reference shared libraries? Is it
demand-loadable? Where do the code (text), data, and bss (uninitialized
data) segments reside in the file? For details on the format of this file, see
a.out(4).

Magic Numbers

In 32-bit mode, the linker records a magic number with each
executable program that determines how the program should be loaded.
There are three possible values for an executable file's magic number:

SHARE_MAGIC The program's text (code) can be shared by processes;
its data cannot be shared. The first process to run the
program loads the entire program into virtual memory.
If the program is already loaded by another process,
then a process shares the program text with the other
process.

DEMAND_MAGICAs with SHARE_MAGIGhe program's text is shareable
but its data is not. However, the program's text is
loaded only as needed — that is, only as the pages are
accessed. This can improve process startup time since
the entire program does not need to be loaded; however,
it can degrade performance throughout execution.

EXEC_MAGIC Neither the program's text nor data is shareable. In
other words, the program is an unshared executable.
Usually, it is not desirable to create such unshared
executables because they place greater demands on
Memory resources.

By default, the linker creates executables whose magic number is
SHARE_MAGICThe following shows which linker option to use to
specifically set the magic number.

44 Chapter2

What Happens When You Compile and Link a Program
Linking Programs on HP-UX

Table 2-1 32-bit Mode Magic Number Linker Options
To set the magic Use this
number to: option:
SHARE_MAGIC -n
DEMAND_MAGIC -q
EXEC_MAGIC -N

An executable file's magic number can also be changed using the chatr
command (see “Changing a Program's Attributes with chatr(1)” on page
104). However, chatr can only toggle between SHARE_MAGI@nd
DEMAND_MAGIGt cannot be used to change from or to EXEC_MAGIC
This is because the file format of SHARE_MAGIGnd DEMAND_MAGIG
exactly the same, while EXEC_MAGIiles have a different format. For
details on magic numbers, refer to magic(4).

In 64-bit mode, the linker sets the magic number to the predefined type
for ELF object files \177ELF). The value of the E_TYPEin the ELF
object file specifies how the file should be loaded.

File Permissions

If no linker errors occur, the linker gives the a.out file
read/write/execute permissions to all users (owner, group, and other). If
errors occurred, the linker gives read/write permissions to all users.
Permissions are further modified if the umask is set (see umask(1)). For
example, on a system with umask set to 022, a successful link produces
an a.out file with read/write/execute permissions for the owner, and
read/execute permissions for group and other:

$ umask

022

$ Is-la.out

-PWXI-Xr-X 1 michael users 74440 Apr 4 14:38 a.out

Chapter 2 45

What Happens When You Compile and Link a Program
Linking with Libraries

Linking with Libraries

In addition to matching external references to global definitions in object
files, Id matches external references to global definitions in libraries. A
library is a file containing object code for subroutines and data that can
be used by other programs. For example, the standard C library, libc
contains object code for functions that can be used by C, C++, FORTRAN,
and Pascal programs to do input, output, and other standard operations.

Library Naming Conventions
By convention, library names have the form:

lib name. suffix

name is a string of one or more characters that identifies the
library.
suffix is .a if the library is an archive library or .sl if the

library is a shared library. suffix is a number, for
example .0 , .1, and so forth, if library-level versioning
is being used.

Typically, library names are referred to without the suffix. For instance,
the standard C library is referred to as libc

Default Libraries

A compiler driver automatically specifies certain default libraries when
it invokes Id . For example, cc automatically links in the standard
library libc , as shown by the -lc option to Id in this example:

$ cc -Aa -v main.c func.c

Jusr/ccs/bin/ld /opt/langtools/lib/crt0.0 -u main main.o \
func.o -lc
cc: Entering Link editor.

Similarly, the Series 700/800 FORTRAN compiler automatically links
with the libcl (C interface), libisamstub (ISAM file 1/0), and libc
libraries:

46 Chapter2

NOTE

What Happens When You Compile and Link a Program
Linking with Libraries

$ 77 -v sumnum.f

Just/ces/bin/ld -x /opt/langtools/lib/crt0.0 \
sumnum.o -lcl -lisamstub -lc

The Default Library Search Path

By default, Id searches for libraries in the directory /usr/lib . (If the
-p or -G compiler profiling option is specified on the command line, the
compiler directs the linker to also search /usr/lib/libp .) The default
order can be overridden with the LPATHenvironment variable or the -L
linker option. LPATHand -L are described in “Changing the Default
Library Search Path with -L and LPATH” on page 57.

Link Order

The linker searches libraries in the order in which they are specified on
the command line — the link order. Link order is important in that a
library containing an external reference to another library must precede
the library containing the definition. This is why libc is typically the
last library specified on the linker command line: because the other
libraries preceding it in the link order often contain references to libc
routines and so must precede it.

If multiple definitions of a symbol occur in the specified libraries, Id does
not necessarily choose the first definition. It depends on whether the
program is linked with archive libraries, shared libraries, or a
combination of both. Depending on link order to resolve such library
definition conflicts is risky because it relies on undocumented linker
behavior that may change in future releases. (See Also “Caution When
Mixing Shared and Archive Libraries” on page 164.)

Chapter 2 a7

What Happens When You Compile and Link a Program
Running the Program

Running the Program

An executable file is created after the program has been compiled and
linked. The next step is to run or load the program.

Loading Programs: exec

When you run an executable file created by Id , the program is loaded
into memory by the HP-UX program loader, exec . This routine is
actually a system call and can be called by other programs to load a new
program into the current process space. The exec function performs
many tasks; some of the more important ones are:

< Determine how to load the executable file by looking at its magic
number. (See Also “The a.out File”.)

< Determine where to begin execution of the program — that is, the
entry point — usually in crt0.0 . (See Also “The crt0.0 Startup
File".)

< When the program uses shared libraries, the crt0.0 startup code
invokes the dynamic loader (did.sl), which in turn attaches any
required shared libraries. If immediate binding was specified at link
time, then the libraries are bound immediately. If deferred binding
was specified, then libraries are bound as they are referenced. (See
Also “What are Shared Libraries?” on page 126.)For details on exec ,
see the exec(2) page in the HP-UX Reference.

Binding Routines to a Program

Since shared library routines and data are not actually contained in the
a.out file, the dynamic loader must attach the routines and data to the
program at run time. Attaching a shared library entails mapping the
shared library code and data into the process's address space, relocating
any pointers in the shared library data that depend on actual virtual
addresses, allocating the bss segment, and binding routines and data
in the shared library to the program.

The dynamic loader binds only those symbols that are reachable during
the execution of the program. This is similar to how archive libraries are
treated by the linker; namely, Id pulls in an object file from an archive
library only if the object file is needed for program execution.

48 Chapter2

What Happens When You Compile and Link a Program
Running the Program

Deferred Binding is the Default

To accelerate program startup time, routines in a shared library are not
bound until referenced. (Data items are always bound at program
startup.) This deferred binding of shared library routines distributes
the overhead of binding across the execution time of the program and is
especially expedient for programs that contain many references that are
not likely to be executed. In essence, deferred binding is similar to
demand-loading.

Chapter 2 49

NOTE

NOTE

What Happens When You Compile and Link a Program
Linker Thread-Safe Features

Linker Thread-Safe Features

Beginning with the HP-UX 10.30 release, the dynamic loader (did.sl)
and its application interface library (libdld.sl) are thread-safe.

Also, beginning with the HP-UX 10.30 release, the linker toolset provides
thread local storage support in:

e |d — the link editor
e dld.sl — the shared library dynamic loader
e crt0.0 — the program startup file

Thread local storage (also called thread-specific data) is data specific to a
thread. Each thread has its own copy of the data item.

A program with thread local storage is only supported on systems
running HP-UX 10.30 or later versions of the operating system.

Use of the __thread keyword in a shared library prevents that shared
library from being dynamically loaded, that is, loaded by an explicit call
to shl_load()

For More Information:

= See your HP compiler documentation to learn how to create thread
local storage data items with the _thread compiler directive.

= See Programming with Threads on HP-UX for information on
threads.

50 Chapter2

Linker Tasks

Linker Tasks

You have a great deal of control over how the linker links your program
or library by using Id command-line options.

= Using the Compiler Command

“Changing the Default Library Search Path with -WI, -L”
“Getting Verbose Output with -v”

“Passing Linker Options from the Compiler Command with -WI”
“Renaming the Output File with -0”

“Specifying Libraries with -I”

“Suppressing the Link-Edit Phase with -c”

= Using the Linker Command

“Linking with the 32-bit crt0.0 Startup File”

“Changing the Default Library Search Path with -L and LPATH”
“Changing the Default Shared Library Binding with -B”
“Choosing Archive or Shared Libraries with -a”

“Dynamic Linking with -A and -R”

“Exporting Symbols with +e”

“Exporting Symbols from main with -E”

“Getting Verbose Output with -v”

“Hiding Symbols with -h”

“Improving Shared Library Performance with -B symbolic”
“Moving Libraries after Linking with +b”

“Moving Libraries After Linking with +s and SHLIB_PATH”
“Passing Linker Options from the Compiler Command with -WI”
“Passing Linker Options in a file with -¢”

“Passing Linker Options with LDOPTS”

Chapter 3 51

Linker Tasks

= “Specifying Libraries with -l and I.”

= “Stripping Symbol Table Information from the Output File with -s
and -x”

= Using the 64-bit mode linker command
= *“Using the 64-bit Mode Linker with +compat or +std”
= “Linking Shared Libraries with -dynamic”
= “Linking Archived Libraries with -noshared”
= “Controlling Archive Library Loading with +[no]forceload”
= *“Flagging Unsatisfied Symbols with +[no]allowunsats”
= “Hiding Symbols from export with +hideallsymbols”
= “Changing Mapfiles with -k and +nodefaultmap”
= “Changing Mapfiles with -k and +nodefaultmap”
= *“Ignoring Dynamic Path Environment Variables with +noenvvar”
= “Linking in 64-bit Mode with +std”
= “Linking in 32-bit Mode Style with +compat”
= “Controlling Output from the Unwind Table with +stripwind”
= *“Selecting Verbose Output with +vtype”
= “Linking with the 64-bit crt0.0 Startup File”

= Linker Compatibility Warnings

52 Chapter3

Linker Tasks
Using the Compiler to Link

Using the Compiler to Link

In many cases, you use your compiler command to compile and link
programs. Your compiler uses options that directly affect the linker.

Changing the Default Library Search Path
with -WI, -L

By default, the linker searches the directory /usr/lib and

lusr/ccsllib for libraries specified with the -I compiler option. (If the
-p or -G compiler option is specified, then the linker also searches the
profiling library directory /ust/lib/libp J)

The -L libpath option to Ild augments the default search path; that is, it
causes Id to search the specified libpath before the default places. The C
compiler (cc), the C++ compiler (CQ, the POSIX FORTRAN compiler
(fort77), and the HP Fortran 90 compiler (f90) recognize the -L option
and pass it directly to Id . However, the HP FORTRAN compiler (f77)
and Pascal compiler (pc) do not recognize -L ; it must be passed to Id
with the -WI option.

Example Using -WI, -L

For example, to make the f77 compiler search /usr/local/lib to find
a locally developed library named liblocal , use this command line:

$f77 prog.f -WI,-L,/usr/local/lib -llocal

(The f77 compiler searches /opt/fortran/lib and /usr/lib as
default directories.)

To make the f90 compiler search /usr/local/lib to find a locally
developed library named liblocal ,» use this command line:

$f90 prog.fo0 -L/usr/localllib -llocal

(The f90 compiler searches /opt/fortran90/lib and /usr/lib as
default directories.)

For the C compiler, use this command line:

$ cc -Aa prog.c -L /ust/local/lib -llocal

Chapter 3 53

Linker Tasks
Using the Compiler to Link

The LPATHenvironment variable provides another way to override the
default search path. For details, see “Changing the Default Library
Search Path with -L and LPATH”.

Getting Verbose Output with -v

The -v option makes a compiler display verbose information. This is
useful for seeing how the compiler calls Id . For example, using the -v
option with the Pascal compiler shows that it automatically links with
libcl ,libm , and libc

$ pc -v prog.p

/opt/pascal/lbin/pascomp prog.p prog.o -O0

LPATH = /usr/lib/pal.1:/usr/lib:/opt/langtools/lib

Jusr/ccs/bin/ld /opt/langtools/lib/crt0.0 -z prog.o -lcl -Im -lc
unlink prog.o

Passing Linker Options from the Compiler
Command with -WI

The -WI option passes options and arguments to Id directly, without the
compiler interpreting the options. Its syntax is:

-WI, argl|[,arg2]...

where each argn is an option or argument passed to the linker. For
example, to make Id use the archive version of a library instead of the
shared, you must specify -a archive on the Id command line before
the library.

Example Using -WI

The command for telling the linker to use an archive version of libm
from the C command line is:

$ cc -Aa mathprog.c -Wl,-a,archive,-Im,-a,default
The command for telling the linker to use an archive version of libm is:

$ Id /opt/langtools/lib/crt0.0 mathprog.o -a archive -Im \
-a default -lc

54 Chapter3

Linker Tasks
Using the Compiler to Link

Renaming the Output File with -0

The -0 name option causes Id to name the output file name instead of
a.out . For example, to compile a C program prog.c and name the
resulting file sum_num

$ cc-Aa -0 sum_num prog.c Compile using -o option.
$ sum_num Run the program.
Enter a number to sum: 5

The sum of 1 to 5: 15

Specifying Libraries with -I

Sometimes programs call routines not contained in the default libraries.
In such cases you must explicitly specify the necessary libraries on the
compile line with the -I option. The compilers pass -| options directly to
the linker before the default libraries.

For example, if a C program calls library routines in the curses library
(libcurses), you must specify -lcurses on the cc command line:

$ cc -Aa -v cursesprog.c -lcurses

Just/ccs/bin/ld fopt/langtools/lib/crt0.o -u main \
cursesprog.o -lcurses -lc
cc: Entering Link editor.

Linking with the crt0.o Startup File in 32-bit mode

Notice also, in the above example, that the compiler linked

cursesprog.o with the file /opt/langtools/lib/crt0.o0 . This file
contains object code that performs tasks which must be executed when a
program starts running — for example, retrieving any arguments
specified on the command line when the program is invoked. For details
on this file, see crt0(3) and “The crt0.0 Startup File” on page 43.

Suppressing the Link-Edit Phase with -c

The -c compiler option suppresses the link-edit phase. That is, the
compiler generates only the .o files and not the a.out file. This is useful
when compiling source files that contain only subprograms and data.
These may be linked later with other object files, or placed in an archive
or shared library. The resulting object files can then be specified on the
compiler command line, just like source files. For example:

Chapter 3 55

Linker Tasks
Using the Compiler to Link

$ 77 -c func.f

$ Is func.o

func.o

$ 77 main.f func.o
$ a.out

Produce .o for func.f.

Verify that func.o was created.

Compile main.f with func.o
Run it to verify it worked.

56

Chapter3

Linker Tasks
Using Linker commands

NOTE

Using Linker commands

This section describes linker commands for the 32-bit and 64-bit linker.

Unless otherwise noted, all examples show 32-bit behavior.

Linking with the 32-bit crt0.0 Startup File

In 32-bit mode, you must always include crt0.0 on the link line.

In 64-bit mode, you must include crt0.0 on the link line for all fully
archive links (Id -noshared) and in compatibility mode (+compat). You
do not need to include the crt0.0 startup file on the Id command line
for shared bound links. In 64-bit mode, the dynamic loader, dld.sl , does
some of the startup duties previously done by crt0.o0

See “The crt0.o Startup File” on page 43, and the crt0(3) man page for
more information.

Changing the Default Library Search Path
with -L and LPATH

You can change or override the default linker search path by using the
LPATHenvironment variable or the -L linker option.

Overriding the Default Linker Search Path with
LPATH

The LPATHenvironment variable allows you to specify which directories
Id should search. If LPATHis not set, Id searches the default directory
Jusr/lib . If LPATHis set, Id searches only the directories specified in
LPATH the default directories are not searched unless they are specified
in LPATH

If set, LPATHshould contain a list of colon-separated directory path
names Id should search. For example, to include /usr/local/lib in
the search path after the default directories, set LPATHas follows:

$ LPATH=/usr/lib:/usr/localllib Korn and Bourne shell syntax.
$ export LPATH

Chapter 3 57

Linker Tasks
Using Linker commands

Augmenting the Default Linker Search Path with -L

The -L option to Id also allows you to add additional directories to the
search path. If -L libpath is specified, Id searches the libpath directory
before the default places.

For example, suppose you have a locally developed version of libc
which resides in the directory /usr/local/lib . Tomake Id find this
version of libc before the default libc , use the -L option as follows:

$ Id /opt/langtools/lib/crt0.0 prog.o -L /usr/local/lib -lc

Multiple -L options can be specified. For example, to search
{usr/contrib/lib and /usr/local/lib before the default places:
$ Id /opt/langtools/lib/crt0.0 prog.o -L /usr/contrib/lib \

-L /usr/local/lib -Ic

If LPATHis set, then the -L option specifies the directories to search
before the directories specified in LPATH

Changing the Default Shared Library Binding
with -B

You might want to force immediate binding — that is, force all
routines and data to be bound at startup time. With immediate binding,
the overhead of binding occurs only at program startup, rather than
across the program's execution. One possibly useful characteristic of
immediate binding is that it causes any possible unresolved symbols to
be detected at startup time, rather than during program execution.
Another use of immediate binding is to get better interactive
performance, if you don't mind program startup taking a little longer.

Example Using -B immediate

To force immediate binding, link an application with the -B immediate
linker option. For example, to force immediate binding of all symbols in
the main program and in all shared libraries linked with it, you could
use this |d command:

$ Id -B immediate /opt/langtools/lib/crt0.0 prog.o -Ic -lm

58 Chapter3

Linker Tasks
Using Linker commands

Nonfatal Shared Library Binding with -B nonfatal

The linker also supports nonfatal binding, which is useful with the -B
immediate option. Like immediate binding, nonfatal immediate binding
causes all required symbols to be bound at program startup. The main
difference from immediate binding is that program execution continues
even if the dynamic loader cannot resolve symbols. Compare this with
immediate binding, where unresolved symbols cause the program to
abort.

To use nonfatal binding, specify the -B nonfatal option along with the
-B immediate option on the linker command line. The order of the
options is not important, nor is the placement of the options on the line.
For example, the following I[d command uses nonfatal immediate
binding:
$ Id /opt/langtools/lib/crt0.0 prog.o -B nonfatal \

-B immediate -Im -Ic
Note that the -B nonfatal modifier does not work with deferred
binding because a symbol must have been bound by the time a program
actually references or calls it. A program attempting to call or access a
nonexistent symbol is a fatal error.

Restricted Shared Library Binding with -B restricted

The linker also supports restricted binding, which is useful with the
-B deferred and -B nonfatal options. The -B restricted option
causes the dynamic loader to restrict the search for symbols to those that
were visible when the library was loaded. If the dynamic loader cannot
find a symbol within the restricted set, a run-time symbol binding error
occurs and the program aborts.

The -B nonfatal modifier alters this behavior slightly: If the dynamic
loader cannot find a symbol in the restricted set, it looks in the global
symbol set (the symbols defined in all libraries) to resolve the symbol. If
it still cannot find the symbol, then a run-time symbol-binding error
occurs and the program aborts.

When is -B restricted most useful? Consider a program that creates
duplicate symbol definitions by either of these methods:

= The program uses shl_load with the BIND_FIRST flag to load a
library that contains symbol definitions that are already defined in a
library that was loaded at program startup.

Chapter 3 59

NOTE

Linker Tasks
Using Linker commands

= The program calls shl_definesym to define a symbol that is already
defined in a library that was loaded at program startup.

If such a program is linked with -B immediate , references to symbols
will be bound at program startup, regardless of whether duplicate
symbols are created later by shl_load or shl_definesym

But what happens when, to take advantage of the performance benefits
of deferred binding, the same program is linked with -B deferred ? Ifa
duplicate, more visible symbol definition is created prior to referencing
the symbol, it binds to the more visible definition, and the program
might run incorrectly. In such cases, -B restricted is useful, because
symbols bind the same way as they do with -B immediate , but actual
binding is still deferred.

Improving Shared Library Performance with
-B symbolic

The linker supports the -B symbolic option which optimizes call paths
between procedures when building shared libraries. It does this by
building direct internal call paths inside a shared library. In linker
terms, import and export stubs are bypassed for calls within the
library.

A benefit of -B symbolic is that it can help improve application
performance and the resulting shared library will be slightly smaller.
The -B symbolic option is useful for applications that make a lot of
calls between procedures inside a shared library and when these same
procedures are called by programs outside of the shared library.

The -B symbolic option applies only to function, but not variable,
references in a shared library.

Example Using -B symbolic

For example, to optimize the call path between procedures when building
a shared library called libl.sl , use -B symbolic as follows:

$ Id -B symbolic -b funcl.o func2.0 -o libl.sl

60 Chapter3

NOTE

Linker Tasks
Using Linker commands

The +e option overrides the -B symbolic option. For example, you use
+e symbol, only symbol is exported and all other symbols are hidden.
Similarly, if you use +ee symbol, only symbol is exported, but other
symbols exported by default remain visible.

Since all internal calls inside the shared library are resolved inside the
shared library, user-supplied modules with the same name are not seen
by routines inside the library. For example, you could not replace
internal libc.sl malloc() calls with your own version of malloc() if
libc.sl was linked with -B symbolic

Comparing -B symbolic with -h and +e

Similar to the -h (hide symbol) and +e (export symbol) linker options, -B
symbolic optimizes call paths in a shared library. However, unlike -h and
+e, all functions in a shared library linked with -B symbolic are also
visible outside of the shared library.

Case 1: Building a Shared Library with -B symbolic.
Suppose you have two functions to place in a shared library. The
convert_rtn() calls gal_to_liter().

1. Build the shared library with -b. Optimize the call path inside the
shared library with -B symbolic.

$ Id -B symbolic -b convert.o volume.o -o libunits.sl
2. Two main programs link to the shared library. mainl calls
convert_rtn() and main2 calls gal_to_liter().

$ cc -Aa mainl.c libunits.sl -o mainl
$ cc -Aa mainl.c libunits.sl -o main2

Figure 3-1 shows that a direct call path is established between
convert_rtn() and gal_to_liter() inside the shared library. Both symbols
are visible to outside callers.

Chapter 3 61

Linker Tasks
Using Linker commands

Figure 3-1 Symbols inside a Shared Library Visible with -B symbolic
mainl libunits.sl
main () {
convert_rtn(); convert_rtn() {
gal_to_liter();
main2 Direct call path
main () { Bolth colnvert_rtrt\J alnd
.) . al_to_liter symbols
al to liter(); al to liter ga'_to_
}g - - () gal_to_ () {} are visible.

Case 2: Building a Shared Library with -h or +e. The -h (hide
symbol) and +e (export symbol) options can also optimize the call path in
a shared library for symbols that are explicitly hidden. However, only the
exported symbols are visible outside of the shared library.

For example, you could hide the gal_to_liter symbol as shown:
$ Id -b convert.o -h gal_to_liter volume.o -o libunits.sl
or export the convert_rtn symbol:

$ Id -b +e convert_rtn convert.o volume.o -o libunits.sl

62 Chapter3

Linker Tasks
Using Linker commands

In both cases, main2 will not be able to resolve its reference to
gal_to_liter() because only the convert_rtn() symbol is exported as
shown below:

mainl libunits.sl
main () {
convert_rtn (); convert_rtn() {
gal_to_liter(); | only convert_rtn
main2 symbol is
main (){ ' visible.
gal_to_liter(); gal_to_liter() { }
Unsatisfied symbol: gal_to_liter (at link-time)

Choosing Archive or Shared Libraries with -a

If both an archive and shared version of a particular library reside in the
same directory, Id links with the shared version. Occasionally, you might
want to override this behavior.

As an example, suppose you write an application that will run on a
system on which shared libraries may not be present. Since the program
could not run without the shared library, it would be best to link with the
archive library, resulting in executable code that contains the required
library routines. See also “Caution When Mixing Shared and Archive
Libraries” on page 164.

Option Settings to -a

The -a option tells the linker what kind of library to link with. It applies
to all libraries (-1 options) until the end of the command line or until the
next -a option. Its syntax is:

-a {archive | shared | default | archive_shared | shared_archive}

The different option settings are:

Chapter 3 63

CAUTION

Linker Tasks
Using Linker commands

-a archive Select archive libraries. If the archive
library does not exist, I[d generates
an error message and does not
generate the output file.

-a shared Select shared libraries. If the shared
library does not exist, I[d generates
an error message and does not
generate the output file.

-a default This is the same as -a
shared_archive

-a archive_shared Select the archive library if it exists;
otherwise, select the shared library. If
the library cannot be found in either
version, Id generates an error
message and does not generate the
output file.

-a shared_archive Select the shared library if it exists;
otherwise, select the archive library.
If the library cannot be found in
either version, I[d generates an error
message and does not generate the
output file.

The -ashared and -a archive options specify only one type of library
to use. An error results if that type is not found. The other three options
specify a preferred type of library and an alternate type of library if the

preferred type is not found.

You should avoid mixing shared libraries and archive libraries in the
same application. For more information see “Caution When Mixing
Shared and Archive Libraries” on page 164.

Example Using -a

The following command links with the archive versions of libcurses
libm and libc

$ Id /opt/langtools/lib/crt0.0 prog.o -a archive -lcurses -Im -Ic

64 Chapter3

NOTE

Linker Tasks
Using Linker commands

Dynamic Linking with -A and -R

This section describes how to do dynamic linking — that is, how to add
an object module to a running program. Conceptually, it is very similar to
loading a shared library and accessing its symbols (routines and data).
In fact, if you require such functionality, you should probably use shared
library management routines (see Chapter 6, “Shared Library
Management Routines,” on page 195).

However, be aware that dynamic linking is incompatible with shared
libraries. That is, a running program cannot be linked to shared libraries
and also use Id -A to dynamically load object modules.

Another reason to use shared library management routines instead of
dynamic linking is that dynamic linking may not be supported in a
future release. See “Linker Compatibility Warnings” and “Changes in
Future Releases” on page 32for additional future changes.

Topics in this section include:

= “Overview of Dynamic Linking” describes steps to load an object file
into a running program.

= “An Example Program” provides an example dynamic linking
scenario.

Overview of Dynamic Linking

The implementation details of dynamic linking vary across platforms. To
load an object module into the address space of a running program, and
to be able to access its procedures and data, follow these steps on all
HP9000 computers:

1. Determine how much space is required to load the module.

2. Allocate the required memory and obtain its starting address.
3. Link the module from the running application.
4

. Get information about the module's text, data, and bss segments from
the module's header.

o

Read the text and data into the allocated space.
6. Clear (fill with zeros) the bss segment.

7. Flush the text from the data cache before executing code from the
loaded module.

Chapter 3 65

Linker Tasks
Using Linker commands

8. Get the addresses of routines and data that are referenced in the
module.

Step 1: Determine how much space is required to load the
module. There must be enough contiguous memory to hold the
module's text, data, and bss segments. You can make a liberal guess as to
how much memory is needed, and hope that you've guessed correctly. Or
you can be more precise by pre-linking the module and getting size
information from its header.

Step 2: Allocate the required memory and obtain its
starting address. Typically, you use malloc(3C) to allocate the
required memory. You must modify the starting address returned by
malloc to ensure that it starts on a memory page boundary (address
MOD 4096 == 0).

Step 3: Link the module from the running application. Use
the following options when invoking the linker from the program:

-0 mod_name Name of the output module that will be loaded by the
running program.

-A base_prog Tells the linker to prepare the output file for
incremental loading. Also causes the linker to include
symbol table information from base_prog in the output
file.

-R hex_addr Specifies the hexadecimal address at which the module
will be loaded. This is the address calculated in Step 2.

-N Causes the data segment to be placed immediately
after the text segment.

-e entry_pt If specified (it is optional), causes the symbol named
entry_pt to be the entry point into the module. The
location of the entry point is stored in the module's
header.

Step 4: Get information about the module's text, data, and
bss segments from the module's header. There are two header
structures stored at the start of the file: struct header (defined in
<filehdr.h>) and struct som_exec_auxhdr (defined in
<aouthdr.h>). The required information is stored in the second header,
so to get it, a program must seek past the first header before reading the
second one.

66 Chapter3

Linker Tasks
Using Linker commands

The useful members of the som_exec_auxhdr structure are:

.exec_tsize Size of text (code) segment.

.exec_tmem Address at which to load the text (already adjusted for
offset specified by the -R linker option).

.exec_tfile Offset into file (location) where text segment starts.

.exec_dsize Size of data segment.

.exec_dmem Address at which to load the data (already adjusted).

.exec_dfile Offset into file (location) where data segment starts.

.exec_bsize Size of bss segment. It is assumed to start immediately

after the data segment.

.exec_entry Address of entry point (if one was specified by the -e
linker option).

Step 5: Read the text and data into the allocated space.
Once you know the location of the required segments in the file, you can
read them into the area allocated in Step 2.

The location of the text and data segments in the file is defined by the
.exec_ftfile and .exec_dfile members of the som_exec_auxhdr
structure. The address at which to place the segments in the allocated
memory is defined by the .exec_tmem and .exec_dmem members. The
size of the segments to read in is defined by the .exec_tsize and
.exec_dsize members.

Step 6: Clear (zero out) the bss segment. The bss segment
starts immediately after the data segment. To zero out the bss, find the
end of the data segment and use memset (see memory(3C)) to zero out
the size of the bss.

The end of the data segment can be determined by adding the
.exec_dmem and .exec_dsize = members of the som_exec_auxhdr
structure. The bss's size is defined by the .exec_bsize member.

Step 7: Flush the text from the data cache before executing
code from the loaded module. Before executing code in the
allocated space, a program should flush the instruction and data caches.
Although this is really only necessary on systems that have instruction
and data caches, it is easiest just to do it on all systems for ease of
portability.

Chapter 3 67

Linker Tasks
Using Linker commands

Use an assembly language routine named flush_cache (see “The
flush_cache Function” in this chapter). You must assemble this routine
separately (with the as command) and link it with the main program.

Step 8: Get the addresses of routines and data that are
referenced in the module. If the -e linker option was used, the
module's header will contain the address of the entry point. The entry
point's address is stored in the .exec_entry member of the
som_exec_auxhdr structure.

If the module contains multiple routines and data that must be accessed
from the main program, the main program can use the nlist(3C) function
to get their addresses.

Another approach that can be used is to have the entry point routine
return the addresses of required routines and data.

An Example Program

To illustrate dynamic linking concepts, this section presents an example
program, dynprog . This program loads an object module named
dynobj.o , which is created by dynamically linking two object files
filel.o and file2.0 (see “filel.o and file2.0”).

The program allocates space for dynobj.o by calling a function named
alloc_load_space (see “The alloc_load_space Function” later in this
chapter). The program then calls a function named dyn_load to
dynamically link and load dynobj.o (see “The dyn_load Function” later
in this chapter). Both functions are defined in a file called dynload.c

(see “dynload.c”).

As a return value, dyn_load provides the address of the entry point in
dynobj.o — in this case, the function foo . To get the addresses of the
function bar and the variable counter , the program uses the nlist(3C)
function.

“The Build Environment” shows the example makefile used to create
the dynprog program.

= “Source for dynprog” shows the C source code for the dynprog
program.

* “QOutput of dynprog” shows the run time output of the dynprog
program.

= “The flush_cache Function” provides example source code in assembly
language to flush text from the data cache.

68 Chapter3

Linker Tasks
Using Linker commands

The Build Environment. Before seeing the program's source code,
it may help to see how the program and the various object files were
built. The following shows the makefile used to generate the various
files.

Makefile Used to Create Dynamic Link Files

CFLAGS = -Aa -D_POSIX_SOURCE
dynprog: dynprog.o dynload.o flush_cache.o
Compile line:
cc -0 dynprog dynprog.o dynload.o flush_cache.o -Wl,-a,archive

filel.o: filel.c dynprog.c
file2.0: file2.c

Create flush_cache.o:
flush_cache.o:
as flush_cache.s

This makefile assumes that the following files are found in the current
directory:

dynload.c The file containing the alloc_load_space and
dyn_load functions.

dynprog.c The main program that calls functions from
dynload.c and dynamically links and loads filel.o0
and file2.o . Also contains the function glorp , which
is called by foo and bar .

filel.c Contains the functions foo and bar .

file2.c Contains the variable counter , which is incremented
by foo , bar , and main .

flush_cache.s
Assembly language source for function flush_cache
which is called by the dyn_load function.

To create the executable program dynprog from this makefile, you would
simply run:

$ make dynprog filel.o file2.0
cc -Aa -D_POSIX_SOURCE -c dynprog.c
cc -Aa -D_POSIX_SOURCE -c dynload.c
cc -0 dynprog dynprog.o dynload.o -WIl,-a,archive
cc -Aa -D_POSIX_SOURCE -c filel.c
cc -Aa -D_POSIX_SOURCE -c file2.c
as -0 flush_cache flush_cache.s

Chapter 3 69

Linker Tasks
Using Linker commands

Note that the line CFLAGS =..causes any C files to be compiled in ANSI
mode (-Aa) and causes the compiler to search for routines that are

defined in the Posix standard (-D_POSIX_SOURCE

For details on using make refer to make(1).

Source for dynprog. Here is the source file for the dynprog

program.

dynprog.c — Example Dynamic Link and Load Program

#include <stdio.h>
#include <nlist.h>

extern void * alloc_load_space(const char * base_prog,
const char * obj_files,
const char * dest_file);

extern void * dyn_load(const char * base_prog,
unsigned int addr,
const char * obj_files,
const char * dest_file,
const char * entry_pt);

const char *base_prog =“dynprog”; /*this executable’s name
*

constchar *obj_files =“filel.ofile2.0”; /* .o files to combine
*/

const char * dest_file = “dynobj.0”; /*.ofile to load
*
/
const char * entry_pt =*“foo”; /* define entry pt name
*
/

void glorp (const char *); /* prototype for local
function */

void (*foo_ptr) (); /* pointer to entry point foo
*/

void (* bar_ptr) (); /* pointer to function bar

*/

int* counter_ptr; * pointer to variable counter [file2.c]
*/

main()

unsigned int addr; /* address at which to load dynobj.o */
struct nlist nI[3]; /* nlist struct to retrieve addresse */

/*

STEP 1: Allocate space for module:

*/

addr = (unsigned int) alloc_load_space(base_prog,
obj_files, dest_file);

/*

STEP 2: Load the file at the address, and get address of entry
point:

*

70

Chapter3

Linker Tasks
Using Linker commands

foo_ptr = (void (*)()) dyn_load(base_prog, addr, obj_files,
dest_file, entry_pt);

/*

STEP 3: Get the addresses of all desired routines using
nlist(3C):

*/

nl[0].n_name = “bar”;
ni[1].n_name = “counter”;
nl[2].n_name = NULL;
if (nlist(dest_file, nl)) {
fprintf(stderr, “error obtaining namelist for %s\n”,
dest_file);
exit(1);

S,

* Assign the addresses to meaningful variable names:
*/

bar_ptr = (void (*)()) nl[0].n_value;

counter_ptr = (int *) nl[1].n_value;

/*

* Now you can call the routines and modify the variables:
*/

glorp(“main”);

(*foo_ptr) ();

(*bar_ptr) ();

(*counter_ptr) ++;
printf(“counter = %d\n”, *counter_ptr);

void glorp(const char * from)

printf(“glorp called from %s\n”, from);

filel.o and file2.0 . “Source for filel.c and file2.c” shows the source for
filel.o and file2.0 . Notice that foo and bar call glorp in
dynprog.c . Also, both functions update the variable counter in

file2.0 ; however, foo updates counter through the pointer
(counter_ptr) defined in dynprog.c

Source for filel.c and file2.c

/ x "
*filel.c - Contains routines foo() and bar().

/
extern int * counter_ptr; /* defined in dynprog.c */
extern int counter; [* defined in file2.c */
extern void glorp(const char * from); /* defined in dynprog.c */
void foo()

Chapter 3 71

Linker Tasks
Using Linker commands

glorp(“foo”);
(*counter_ptr) ++; /* update counter indirectly with global
pointer */

void bar()

glorp(“bar”);
counter ++; /* update counter directly */

/
* file2.c - Global counter variable referenced by dynprog.c
*and filel.c.

int counter = 0;

Output of dynprog . Now that you see how the main program and
the module it loads are organized, here is the output produced when
dynprog runs:

glorp called from main

glorp called from foo

glorp called from bar
counter = 3

dynload.c . The dynload.c file contains the definitions of the
functions alloc_load_space and dyn_load . “Include Directives for
dynload.c” shows the #include directives must appear at the start of
this file.

Include Directives for dynload.c

#include <stdio.h>

#include <stdlib.h>

#include <nlist.h>

include <filehdr.h>

include <aouthdr.h>

define PAGE_SIZE 4096 /* memory page size */

The alloc_load_space Function . The alloc_load_space
function returns a pointer to space (allocated by malloc) into which
dynprog will load the object module dynobj.o . It syntax is:
void * alloc_load_space(const char * base_prog,
const char * obj_files,
const char * dest_file)
base_prog The name of the program that is calling the routine. In
other words, the name of the program that will
dynamically link and load dest_file.

72 Chapter3

Linker Tasks
Using Linker commands

obj_files The name of the object file or files that will be linked
together to create dest file.

dest _file The name of the resulting object module that will by
dynamically linked and loaded by base_prog.

As described in Step 1 in “Overview of Dynamic Linking” at the start of
this section, you can either guess at how much space will be required to
load a module, or you can try to be more accurate. The advantage of the
former approach is that it is much easier and probably adequate in most
cases; the advantage of the latter is that it results in less memory
fragmentation and could be a better approach if you have multiple
modules to load throughout the course of program execution.

The alloc_load_space function allocates only the required amount of
space. To determine how much memory is required, alloc_load_space
performs these steps:

1. Pre-link the specified obj_files to create base_prog.

2. Get text, data, and bss segment location and size information to
determine how much space to allocate.

3. Return a pointer to the space. (The address of the space is adjusted to
begin on a memory page boundary — that is, a 4096-byte boundary.)

“C Source for alloc_load_space Function” shows the source for this
function.

C Source for alloc_load_space Function

void * alloc_load_space(const char * base_prog,
const char * obj_files,
const char * dest_file)

char cmd_buf[256]; /* linker command line */

int ret_val; [* value returned by various lib calls */

size_t space; [* size of space to allocate for module */

size_t addr; /* address of allocated space */

size_t bss_size; /* size of bss (uninitialized data) */

FILE * destfp; [* file pointer for dest_file */

struct som_exec_auxhdr aux_hdr; [* file header */

unsigned int tdb_size; /* size of text, data, and bss combined */
/*

* STEP 1: Pre-link the destination module so we can get its size:
*/

sprintf(cmd_buf, “/bin/ld -a archive -R80000 -A %s -N %s -0 %s -Ic”,
base_prog, obj_files, dest_file);
if (ret_val = system(cmd_buf)) {

Chapter 3 73

Linker Tasks
Using Linker commands

fprintf(stderr, “link failed: %s\n”, cmd_buf);
exit(ret_val);

/*}
* STEP 2: Get the size of the module’s text, data, and bss segments
* from the auxiliary header for dest_file; add them together to
* determine size:
*/
if ((destfp = fopen(dest_file, “r")) == NULL) {
fprintf(stderr, “error opening %s\n”, dest_file);
exit(1);

/*

* Must seek past SOM “header” to get to the desired

* “som_exec_auxhdr”:

*/

if (fseek(destfp, sizeof(struct header), 0)) {
fprintf(stderr, “error seeking past header in %s\n”, dest_file);
exit(1);

}

if (fread(&aux_hdr, sizeof(aux_hdr), 1, destfp) <=0) {
fprintf(stderr, “error reading som aux header from %s\n”, dest_file);
exit(1);

/* allow for page-alignment of data segment */

space = aux_hdr.exec_tsize + aux_hdr.exec_dsize
+ aux_hdr.exec_bsize + 2 * PAGE_SIZE;

fclose(destfp); /* done reading from module file */
/*

* STEP 3: Call malloc(3C) to allocate the required memory and get
* its address; then return a pointer to the space:
*/

addr = (size_t) malloc(space);

/*

* Make sure allocated area is on page-aligned address:
*

if (addr % PAGE_SIZE != 0) addr += PAGE_SIZE - (addr % PAGE_SIZE);

return((void *) addr);

The dyn_load Function . Thedyn_load function dynamically links
and loads an object module into the space allocated by the
alloc_load_space function. In addition, it returns the address of the
entry point in the loaded module. Its syntax is:

void * dyn_load(const char * base_prog,
unsigned int addr,
const char * obj_files,
const char * dest_file,
const char * entry_pt)

74 Chapter3

Linker Tasks
Using Linker commands

The base_prog, obj_files, and dest_file parameters are the same
parameters supplied to alloc_load_space . The addr parameter is the
address returned by alloc_load_space , and the entry_pt parameter
specifies a symbol name that you want to act as the entry point in the
module.

To dynamically link and load dest_file into base_prog, the dyn_load
function performs these steps:

1. Dynamically link base_prog with obj_files, producing dest_file. The
address at which dest_file will be loaded into memory is specified with
the -R addr option. The name of the entry point for the file is
specified with -e entry_pt.

2. Open dest_file and get its header information on the text, data, and
bss segments. Read this information into a som_exec_auxhdr
structure, which starts immediately after a header structure.

3. Read the text and data segments into the area allocated by
alloc_load_space . (The text and data segments are read
separately.)

4. Initialize (fill with zeros) the bss, which starts immediately after the
data segment.

5. Flush text from the data cache before execution, using the
flush_cache routine. (See “The flush_cache Function” later in this
chapter.)

6. Return a pointer to the entry point, specified by the -e option in Step
1.

C Source for dyn_load Function

void * dyn_load(const char * base_prog,
unsigned int addr,

const char * obj_files,
const char * dest_file,
const char * entry_pt)
{
char cmd_buf[256]; /* buffer holding linker command
*
int ret_val, /* holds return value of library calls
*
FILE * destfp; /* file pointer for destination file
*
unsigned int bss_start; /* start address of bss in VM
*

unsigned int bss_size; /* size of bss */
unsigned int entry_pt_addr; /* address of entry point

Chapter 3 75

Linker Tasks
Using Linker commands

*/
struct som_exec_auxhdr aux_hdr; /* som file auxiliary header
*

unsigned int tdb_size; /* size of text, data, and bss
combined*/

/*

* STEP 1: Dynamically link the module to be loaded:

*

sprintf(cmd_buf,
“/bin/ld -a archive -A %s -R %X -N %s -0 %s -Ic -e %s”,
base_prog, addr, obj_files, dest_file, entry_pt);

if (ret_val = system(cmd_buf))

fprintf(stderr, “link command failed: %s\n”, cmd_buf);
exit(ret_val);

/*

* STEP 2: Open dest_file. Read its auxiliary header for text,
data,

* and bss info:

*/

if ((destfp = fopen(dest_file, “r")) == NULL)

fprintf(stderr, “error opening %s for loading\n”, dest_file);
exit(1);

/*

* Get auxiliary header information from “som_exec_auxhdr
struct,

* which is after SOM header.

*/

if (fseek(destfp, sizeof(struct header), 0))
fprintf(stderr, “error seeking past header in %s\n”,
dest_file);
exit(1);
if (fread(&aux_hdr, sizeof(aux_hdr), 1, destfp) <= 0)
fprintf(stderr, “error reading som aux header from %s\n”,
dest _file);
exit(1);

}
/*

* STEP 3: Read the text and data segments into the buffer area:
*
/*

* Read text and data separately. Firstload the text:
*/

76 Chapter3

Linker Tasks
Using Linker commands

if (fseek(destfp, aux_hdr.exec_ftfile, 0))

fprintf(stderr, “error seeking start of text in %s\n”,
dest_file);
exit(1);

if ((fread(aux_hdr.exec_tmem, aux_hdr.exec_tsize, 1, destfp)) <=
0)

fprintf(stderr, “error reading text from %s\n”, dest_file);
exit(1);

/*

* Now load the data, if any:

*/

if (aux_hdr.exec_dsize) {
if (fseek(destfp, aux_hdr.exec_dfile, 0))

fprintf(stderr, “error seeking start of data in %s\n”,

dest_file);
exit(1);

if ((fread(aux_hdr.exec_dmem, aux_hdr.exec_dsize, 1,
destfp))<=0)

fprintf(stderr, “error reading data from %s\n”, dest_file);
exit(1);

}
}

fclose(destfp); /* done reading from module file */
/*

* STEP 4: Zero out the bss (uninitialized data segment):
*/

bss_start = aux_hdr.exec_dmem + aux_hdr.exec_dsize;
bss_size =aux_hdr.exec_bsize;

memset(bss_start, 0, bss_size);

/*

* STEP 5: Flush the text from the data cache before execution:
*/
/*
* The flush_cache routine must know the exact size of the
* text, data, and bss, computed as follows:
* Size = (Data Addr - Text Addr) + Data Size + BSS Size
* where (Data Addr - Text Addr) = Text Size + alignment between
* Text and Data.
*/
tdb_size = (aux_hdr.exec_dmem - aux_hdr.exec_tmem) +
aux_hdr.exec_dsize + aux_hdr.exec_bsize;
flush_cache(addr, tdb_size);

Chapter 3 77

Linker Tasks
Using Linker commands

/*

* STEP 6: Return a pointer to the entry point specified by -e:
*/

entry_pt_addr = (unsigned int) aux_hdr.exec_entry;
return ((void *) entry_pt_addr);

The flush_cache Function . Since there is no existing routine to
flush text from the data cache before execution, you must create one.
Below is the assembly language source for such a function.

Assembly Language Source for flush_cache Function

; flush_cache.s

Routine to flush and synchronize data and instruction caches
; for dynamic loading

Copyright Hewlett-Packard Co. 1985,1991, 1995

All HP VARs and HP customers have a non-exclusive royalty-free
; license to copy and use this flush_cashe() routine in source
; code and/or object code.

.code

; flush_cache(addr, len) - executes FDC and FIC instructions for

; every cache line in the text region given by starting addr and

; len. When done, it executes a SYNC instruction and then enough
; NOPs to assure the cache has been flushed.

; Assumption: Cache line size is at least 16 bytes. Seven NOPs
; is enough to assure cache has been flushed. This routine is

; called to flush the cache for just-loaded dynamically linked

; code which will be executed from SR5 (data) space.

; %0arg0=GR26, %argl=GR25, %arg2=GR24, %arg3=GR23, %sr0=SR0.
; loop1 flushes data cache. argO holds address. argl holds

offset.

; SR=0 means that SID of data area is used for fdc.

; loop2 flushes inst cache. arg2 holds address. arg3 holds

offset.

; SR=sr0 means that SID of data area is used for fic.

; fdc x(0,y) -> 0 means use SID of data area.

; fic x(%sr0,y) -> SR0O means use SRO SID (which is set to data

area).

.proc
.callinfo
.export flush_cache,entry
flush_cache
.enter
ldsid (0,%arg0),%r1 ; Extract SID (SR5) from address
mtsp %r1,%sr0 ; SID -> SRO
ldo -1(%argl),%argl ; offset = length -1
copy %arg0,%arg2 ; Copy address from GR26 to GR24

78 Chapter3

Linker Tasks
Using Linker commands

copy %argl,%arg3 ; Copy offset from GR25 to GR23

fdc %argl1(0,%arg0) ; Flush data cache
@SID.address+offset
loopl

addib,>,n -16,%argl,loopl ; Decrement offset by cache line
size

fdc %argl1(0,%arg0) ; Flush data cache

@SID.address+offset

; flush first word at addr, to handle arbitrary cache line
boundary

fdc 0(0,%arg0)

sync

fic %arg3(%sr0,%arg2) ; Flush inst cache
@SID.address+offset
loop2

addib,>,n -16,%arg3,loop2 ; Decrement offset by cache line
size

fic %arg3(%sr0,%arg2) ; Flush inst cache
@SID.address+offset

; flush first word at addr, to handle arbitrary cache line
boundary

fic 0(%sr0,%arg2)

sync
nop

nop

nop

nop

nop

nop

nop
leave
.procend
.end

Exporting Symbols with +e

The +e option allow you to hide and export symbols. Exporting a
symbol makes the symbol a global definition, which can be accessed by
any other object modules or libraries. The +e option exports symbol and
hides from export all other global symbols not specified with +e. In
essence, -h and +e provide two different ways to do the same thing.

The syntax of the +e option is:

+e symbol

Example Using +e

Suppose you want to build a shared library from an object file that
contains the following symbol definitions as displayed by the nm
command:

Chapter 3 79

Linker Tasks
Using Linker commands

$ nm -p sem.o
0000000000 U $global$

1073741824 d $THIS_DATA$
1073741864 b $THIS_BSS$
0000000004 cS sem_val
0000000000 T check_sem_val
0000000036 T foo
0000000000 U printf
0000000088 T bar
0000000140 T sem

In this example, check_sem_val , foo , bar , and sem are all global
definitions. To create a shared library where check_sem val isa
hidden, local definition, you could use either of the following commands:

$ Id -b -h check_sem_val sem.o One -h option.
$ Id -b +e foo +e bar +e sem sem.o Three +e options.

In contrast, suppose you want to export only the check_sem_val
symbol. Either of the following commands would work:

$ Id -b -h foo -h bar -h sem sem.o Three -h options.
$ Id -b +e check_sem_val sem.o One +e option.

When to use -h versus +e

How do you decide whether to use -h or +e? In general, use -h if you
simply want to hide a few symbols. And use +e if you want to export a
few symbols and hide a large number of symbols.

You should not combine -h and +e options on the same command line.
For instance, suppose you specify +e sem . This would export the symbol
sem and hide all other symbols. Any additional -h options would be
unnecessary. If both -h and +e are used on the same symbol, the -h
overrides the +e option.

The linker command line could get quite lengthy and difficult to read if
several such options were specified. And in fact, you could exceed the
maximum HP-UX command line length if you specify too many options.
To get around this, use Id linker option files, described under “Passing
Linker Options in a file with -¢”. You can specify any number of -h or +e
options in this file.

You can use -h or +e options when building a shared library (with -b)
and when linking to create an a.out file. When combining .o files with
-r , you can still use only the -h option.

80 Chapter3

Linker Tasks
Using Linker commands

Exporting Symbols with +ee

Like the +e option, the +ee option allows you to export symbols. Unlike
the +e option, the option does not alter the visibility of any other symbols
in the file. It exports the specified symbol, and does not hide any of the
symbols exported by default.

Exporting Symbols from main with -E

By default, the linker exports from a program only those symbols that
were imported by a shared library. For example, if a shared executable's
libraries do not reference the program's main routine, the linker does not
include the main symbol in the a.out file's export list. Normally, this is
a problem only when a program calls shared library management
routines (described inChapter 6, “Shared Library Management
Routines,” on page 195). To make the linker export all symbols from a
program, invoke Id with the -E option.

The +e option allows you to be more selective about which symbols are
exported, resulting in better performance. For details on +e, see
“Exporting Symbols with +e”.

Hiding Symbols with -h

The -h option allows you to hide symbols. Hiding a symbol makes the
symbol a local definition, accessible only from the object module or
library in which it is defined. Use -h if you simply want to hide a few
symbols.

You can use -h option when building a shared library (with -b) and
when linking to create an a.out file. When combining .0 files with -r ,
you can use the -h option.

The syntax of the -h option is:

-h symbol

The -h option hides symbol. Any other global symbols remain exported
unless hidden with -h .

Example Using -h

Suppose you want to build a shared library from an object file that
contains the following symbol definitions as displayed by the nm
command:

Chapter 3 81

Linker Tasks
Using Linker commands

$ nm -p sem.o
0000000000 U $global$

1073741824 d $THIS_DATA$
1073741864 b $THIS_BSS$
0000000004 cS sem_val
0000000000 T check_sem_val
0000000036 T foo
0000000000 U printf
0000000088 T bar
0000000140 T sem

In this example, check_sem_val , foo , bar , and sem are all global
definitions. To create a shared library where check_sem val isa
hidden, local definition, you could do the following:

$ Id -b -h check_sem_val sem.o

Tips on Using -h

You should not combine -h and +e options on the same command line.
For instance, suppose you specify +e sem . This would export the symbol
sem and hide all other symbols. Any additional -h options would be
unnecessary. If both -h and +e are used on the same symbol, the -h
overrides the +e option.

The linker command line could get quite lengthy and difficult to read if
several such options were specified. And in fact, you could exceed the
maximum HP-UX command line length if you specify too many options.
To get around this, use Id linker option files, described under “Passing
Linker Options in a file with -c”. You can specify any number of -h or +e
options in this file.

Hiding and Exporting Symbols When Building a
Shared Library

When building a shared library, you might want to hide a symbol in the
library for several reasons:

< It can improve performance because the dynamic loader does not have
to bind hidden symbols. Since most symbols need not be exported
from a shared library, hiding selected symbols can have a significant
impact on performance.

= It ensures that the definition can only be accessed by other routines
in the same library. When linking with other object modules or
libraries, the definition will be hidden from them.

82 Chapter3

Linker Tasks
Using Linker commands

< When linking with other libraries (to create an executable), it ensures
that the library will use the local definition of a routine rather than a
definition that occurs earlier in the link order.

Exporting a symbol is necessary if the symbol must be accessible outside
the shared library. But remember that, by default, most symbols are
global definitions anyway, so it is seldom necessary to explicitly export
symbols. In C, all functions and global variables that are not explicitly
declared as static have global definitions, while static functions and
variables have local definitions. In FORTRAN, global definitions are
generated for all subroutines, functions, and initialized common blocks.

When using +e, be sure to export any data symbols defined in the shared
library that will be used by another shared library or the program, even
if these other files have definitions of the data symbols. Otherwise, your
shared library will use its own private copy of the global data, and
another library or the program file will not see any change.

One example of a data symbol that should almost always be exported
from a shared library is errno . errno is defined in every shared library
and program; if this definition is hidden, the value of errno will not be
shared outside of the library.

Hiding Symbols When Combining .o Files with the -r
Option

The -r option combines multiple .o files, creating a single .o file. The
reasons for hiding symbols in a .o file are the same as the reasons listed
above for shared libraries. However, a performance improvement will
occur only if the resulting .o file is later linked into a shared library.

Hiding and Exporting Symbols When Creating an
a.out File

By default, the linker exports all of a program's global definitions that
are imported by shared libraries specified on the linker command line.
For example, given the following linker command, all global symbols in
crt0.0 and prog.o that are referenced by libm or libc are
automatically exported:

$ Id /usr/ccsl/lib/crt0.0 prog.o -Im -Ic

With libraries that are explicitly loaded with shl_load , this behavior
may not always be sufficient because the linker does not search explicitly
loaded libraries (they aren't even present on the command line). You can
work around this using the -E or +e linker option.

Chapter 3 83

Linker Tasks
Using Linker commands

As mentioned previously in the section “Exporting Symbols from main
with -E”, the -E option forces the export of all symbols from the program,
regardless of whether they are referenced by shared libraries on the
linker command line. The +e option allows you to be more selective in
what symbols are exported. You can use +e to limit the exported symbols
to only those symbols you want to be visible.

For example, the following I[d command exports the symbols main and
foo . The symbol main is referenced by libc . The symbol foo is
referenced at run time by an explicitly loaded library not specified at link
time:

$ Id /usr/ccs/lib/crt0.0 prog.o +e main +e foo -Im -Ic -Idid

When using +e, be sure to export any data symbols defined in the
program that may also be defined in explicitly loaded libraries. If a data
symbol that a shared library imports is not exported from the program
file, the program uses its own copy while the shared library uses a
different copy if a definition exists outside the program file. In such
cases, a shared library might update a global variable needed by the
program, but the program would never see the change because it would
be referencing its own copy.

One example of a data symbol that should almost always be exported
from a program is errno . errno is defined in every shared library and
program; if this definition is hidden, the value of errno will not be
shared outside of the program in which it is hidden.

Moving Libraries after Linking with +b

A library can be moved even after an application has been linked with it.
This is done by providing the executable with a list of directories to
search at run time for any required libraries. One way you can store a
directory path list in the program is by using the +b path_list linker
option.

Note that dynamic path list search works only for libraries specified with
-I on the linker command line (for example, -Ifoo). It won't work for
libraries whose full path name is specified (for example,
/usr/contrib/lib/libfoo.sl). However, it can be enabled for such
libraries with the -I option to the chatr command (see “Changing a
Program's Attributes with chatr(1)” on page 104).

84 Chapter3

Linker Tasks
Using Linker commands

Specifying a Path List with +b
The syntax of the +b option is
+b path_list

where path_list is the list of directories you want the dynamic loader to
search at run time. For example, the following linker command causes
the path .:/app/lib:: to be stored in the executable. At run time, the
dynamic loader would search for libfoo.sl ,libm.sl , and libc.sl in
the current working directory (.), the directory /app/lib , and lastly in
the location in which the libraries were found at link time (::):
$ Icli /0||ot/IangtooIs/Iib/crt0.o +b .:/appl/lib:: prog.o -Ifoo \

-im -IC
If path_list is only a single colon, the linker constructs a path list
consisting of all the directories specified by -L , followed by all the
directories specified by the LPATHenvironment variable. For instance,
the following linker command records the path list as /app/lib:/tmp
$ LPATH=/tmp ; export LPATH

$ Id /opt/langtools/lib/crt0.0 +b : -L/app/lib prog.o -Ifoo \
-Im -lc

The Path List

Whether specified as a parameter to +b or set as the value of the
SHLIB_PATH environment variable, the path list is simply one or more
path names separated by colons (:), just like the syntax of the PATH
environment variable. An optional colon can appear at the start and end
of the list.

Absolute and relative path names are allowed. Relative paths are
searched relative to the program's current working directory at run time.

Remember that a shared library's full path name is stored in the
executable. When searching for a library in an absolute or relative path
at run time, the dynamic loader uses only the basename of the library
path name stored in the executable. For instance, if a program is linked

with /ustr/local/lib/libfoo.sl , and the directory path list contains
lappsl/lib:xyz , the dynamic loader searches for
/appsl/lib/libfoo.sl , then ./xyz/libfoo.sl

The full library path name stored in the executable is referred to as the
default library path. To cause the dynamic loader to search for the
library in the default location, use a null directory path (). When the
loader comes to a null directory path, it uses the default shared library
path stored in the executable. For instance, if the directory path list in

Chapter 3 85

Linker Tasks
Using Linker commands

the previous example were /apps/lib::xyz , the dynamic loader would
search for /apps/lib/libfoo.sl , lusr/local/lib/libfoo.sl .
then ./xyz/libfoo.sl

If the dynamic loader cannot find a required library in any of the
directories specified in the path list, it searches for the library in the
default location () recorded by the linker.

Moving Libraries After Linking with +s and
SHLIB_PATH

A library can be moved even after an application has been linked with it.
Linking the program with +s, enables the program to use the path list
defined by the SHLIB_PATH environment variable at run time.

Specifying a Path List with +s and SHLIB_PATH

When a program is linked with +s, the dynamic loader will get the
library path list from the SHLIB_PATHenvironment variable at run time.
This is especially useful for application developers who don't know where
the libraries will reside at run time. In such cases, they can have the user
or an install script set SHLIB_PATH to the correct value.

For More Information:

= “The Path List” provides additional details about the path list to
SHLIB_PATH.

= “Moving Libraries after Linking with +b” provides another way to
move libraries.

Passing Linker Options in a file with -c

The -c file option causes the linker to read command line options from
the specified file. This is useful if you have many -h or +e options to
include on the [d command line, or if you have to link with numerous
object files. For example, suppose you have over a hundred +e options
that you need when building a shared library. You could place them in a
file named eopts and force the linker to read options from the file as
follows:

$ Id -o libmods.sl -b -c eopts mod*.o

$ cat eopts Display the file.
+e foo

+e bar

86 Chapter3

Linker Tasks
Using Linker commands

+e reverse_tree
+e preorder_traversal
+e shift_reduce_parse

Note that the linker ignores lines in that option file that begin with a
pound sign (#). You can use such lines as comment lines or to temporarily
disable certain linker options in the file. For instance, the following
linker option file for an application contains a disabled -O option:

Exporting only the "compress" symbol resulted

in better run-time performance:

+e compress

When the program is debugged, remove the pound sign

from the following optimization option:
-O

Passing Linker Options with LDOPTS

If you use certain linker options all the time, you may find it useful to
specify them in the LDOPTSenvironment variable. The linker inserts the
value of this variable before all other arguments on the linker command
line. For instance, if you always want the linker to display verbose
information (-v) and a trace of each input file (-t), set LDOPTSas
follows:

$ LDOPTS="-v -t" Korn and Bourne shell syntax.
$ export LDOPTS

Thereafter, the following commands would be equivalent:

$ Id /opt/langtools/lib/crt0.0 -u main prog.o -lc
$ Id -v -t /opt/langtools/lib/crt0.0 -u main prog.o -Ic

Specifying Libraries with -1 and I:

To direct the linker to search a particular library, use the -I name option.
For example, to specify libc , use -lc ; to specify libm , use -Im ; to
specify libXm , use -IXm .

Specifying Libraries (-1)

When writing programs that call routines not found in the default
libraries linked at compile time, you must specify the libraries on the
compiler command line with the -| x option. For example, if you write a C
program that calls POSIX math functions, you must link with libm .

Chapter 3 87

Linker Tasks
Using Linker commands

The x argument corresponds to the identifying portion of the library path
name — the part following lib and preceding the suffix .a or .sl . For
example, for the libm.sl or libm.a library, x is the letter m

$ cc -Aa mathprog.c -Im

The linker searches libraries in the order in which they are specified on
the command line (that is, the link order). In addition, libraries
specified with -I are searched before the libraries that the compiler links
by default.

Using the -I: option

The -I: option works just like the -I option with one major difference:
-l: allows you to specify the full basename of the library to link with.
For instance, -l:llibm.a causes the linker to link with the archive
library /usr/lib/libm.a , regardless of whether -a shared was
specified previously on the linker command line.

The advantage of using this option is that it allows you to specify an
archive or shared library explicitly without having to change the state of
the -a option. (See also “Caution When Mixing Shared and Archive
Libraries” on page 164.)

For instance, suppose you use the LDOPTSenvironment variable (see
“Passing Linker Options with LDOPTS”) to set the -a option that you
want to use by default when linking. And depending on what
environment you are building an application for, you might set LDOPTS
to -a archive or -ashared .Youcanuse-l: toensurethatthe linker
will always link with a particular library regardless of the setting of the
-a option in the LDOPTSvariable.

Example Using -I:

For example, even if LDOPTSwere set to -a shared , the following
command would link with the archive libfoo.a in the directory
/usr/mylibs , the archive libm.a and libc.a

$ Id /opt/langtools/lib/crt0.0 -u main prog.o -L/usr/mylibs \
-l:libfoo.a -l:libc.a -l:libm.a

88 Chapter3

Linker Tasks
Using Linker commands

Stripping Symbol Table Information from the
Output File with -s and -x

The a.out file created by the linker contains symbol table, relocation,
and (if debug options were specified) information used by the debugger.
Such information can be used by other commands that work on a.out
files, but is not actually necessary to make the file run. Id provides two
command line options for removing such information and, thus, reducing
the size of executables:

-S Strips all such information from the file. The
executable becomes smaller, but difficult or impossible
to use with a symbolic debugger. You can get much the
same results by running the strip command on an
executable (see strip(1)). In some cases, however, -s
rearranges the file to save more space than strip

-X Strips only local symbols from the symbol table. It
reduces executable file size with only a minimal affect
on commands that work with executables. However,
using this option may still make the file unusable by a
symbolic debugger.

These options can reduce the size of executables dramatically. Note, also,
that these options can also be used when generating shared libraries
without affecting shareability.

Chapter 3 89

Linker Tasks
Using 64-bit Mode Linker Options

Using 64-bit Mode Linker Options

This section introduces 64-bit-only linker options.

Using the 64-bit Mode Linker with +compat or
+std

In the HP-UX 11.0 release, the linker toolset supports extended features
for linking in 64-bit mode. Since compatibility with the previous linker
toolset is a high priority, the 64-bit linker uses much of the old behavior
in the new toolset. The 64-bit mode linker includes two options to allow
you to instruct the linker to link in one of two modes:

= Compatibility mode, with the +compat option, to create a link and
operation in 32-bit style. Because of some object file format
restrictions, the mode is not completely compatible with the style of
the 32-bit linker.

= Standard mode, with the +std option, set by default in 64-bit mode,
to create a link and load operation in 64-bit style. This mode uses the
new behaviors and features of the 64-bit linker.

Using the Linker with +compat for Compatibility
Mode

The +compat option instructs the linker to do a 32-bit-style link.

When you use the +compat option, the linker:

= Uses 32-bit style shared library internal name processing.

= Lists all dependent shared libraries in a DT_HP_NEEDEDentry the
dynamic table using the 32 bit-style shared library naming
conventions. These dependent libraries are recorded as compatibility
mode libraries even if they are really created as standard mode
dependent libraries.

= If an error occurs during the link, the linker creates an a.out
without the executable permission bits set.

= Does not use embedded paths at link time to find dependent
libraries.

e Considers the order of Id +b and +s.

90 Chapter3

Linker Tasks
Using 64-bit Mode Linker Options

< +b first means dld looks at the RPATHfirst when searching for
dependent shared libraries.

To get the default RPATH you must specify Id +b . This instructs
the linker to construct a default RPATHconsisting of the -L
directories and LPATH

< +s first means the dynamic loader looks at the SHLIB_PATH
environment variable first when searching for dependent shared
libraries.

You must specify Id +s to force the dynamic loader to use
SHLIB_PATH to search for shared libraries at runtime.

At runtime, the dynamic loader does a 32-bit style load for all
compatibility mode dependent shared libraries. The dynamic loader:

Does dynamic path searching for compatibility-mode dependent
shared libraries that have the dynamic path selected (set in the
DT_HP_NEEDEBNtry if the shared library was specified with -).

Uses SHLIB_PATH only if you specify Id +s (or chatr +s) for
compatibility-mode shared libraries.

Allows RPATHinheritance from ancestors to children when searching
for dependent compatibility-mode shared libraries specified with Id

-l . This is only allowed in an a.out that was linked with +compat .

If the a.out was linked +std , no library (even a compatibility mode

shared library) uses embedded RPATHinheritance.

Allows dynamic path searching on shared libraries loaded by
shl_load routines, if the DYNAMIC_FLAds passed to shl_load()

Does a depth-first search of all compatibility-mode dependent
libraries.

Looks at RPATHor SHLIB_PATH first, depending on the Id +b /+s
ordering for all Id -I dependent shared libraries. The dynamic
loader looks at whichever has second precedence next, and then
looks for the shared library as specified in the dynamic load entry.

Looks for the dynamic table entry as if the dynamic path bit is not
set.

Using the 64-bit Linker with +std for Standard Mode

The +std option instructs the linker to do a standard mode 64-bit style
link. This is currently the default in 64-bit mode.

Chapter 3 91

Linker Tasks
Using 64-bit Mode Linker Options

This default may change in future releases.

When you use +std , the linker:

Assumes -dynamic was passed to Id . The linker looks for shared
libraries first. The output executable is a shared executable.

All dependent shared libraries are output in the dynamic table in a
DT_NEEDERNtry. These dependent shared libraries are recorded as
standard mode shared libraries.

Id +b and +s ordering is ignored. Id +s is on by default.

If an error occurs during the link, the linker does not generate an
a.out file.

Uses de facto standard internal name processing for dependent
shared libraries.

Uses embedded RPATH at link time to find dependent shared
libraries.

If you do not specify Id +b, the linker uses a default RPATHconsisting
of the -L directories, LPATH and the default directories
lusr/lib/pa20_64:/usr/ccsl/lib/pa20_64

At runtime, the dynamic loader does a 64-bit-style load for all standard
mode dependent shared libraries. The dynamic loader:

Does dynamic path searching only for standard-mode shared libraries
in the DT_NEEDELRNtry of the dynamic table which do not contain a
path. For those standard-mode dynamic libraries that contain paths,
did looks for the library as specified.

Looks for the shared library as specified in the DT_NEEDERIynamic
table entry if it contains a path.

Looks at LD_LIBRARY_PATHand SHLIB_PATHenvironment variables
at runtime by default when doing dynamic path searching for
standard-mode shared libraries.

Does not allow RPATHinheritance from ancestors to children (only
allowed from parent to child).

Does a breadth-first search for all standard-mode dependent shared
libraries.

92

Chapter3

NOTE

Linker Tasks
Using 64-bit Mode Linker Options

< Looks at the environment variables first, followed by RPATH and the
default directories by default when doing dynamic path searching for
standard-mode dependentshared libraries.

Linking Shared Libraries with -dynamic

Use the -dynamic option to instruct the linker to look for shared
libraries first and then archive libraries. The linker outputs a
dynamically linked executable.

This option is on by default in standard mode.
In the following example, the linker only looks for shared libraries:

$ld main.o -dynamic -L. -lbar -Ic

If you specified an archive library, the linker links it in, but the resulting
executable is still a dynamically linked executable. This is true even if
the linker finds no shared libraries at link time.

Linking Archived Libraries with -noshared

Use the -noshared option if you need to link with all archive libraries.
The linker outputs a statically bound executable.

You cannot link in shared libraries if you specify this option.

In the following example, the linker only looks for
lusr/lib/pa20_64/libfoo.a and /usr/lib/pa20_64/libc.a

Id crt0.0 main.o -noshared -L. -Ifoo -Ic

If you specify a shared library with this option, the linker emits an error
message.
Id: The shared library “libbar.sI” cannot be processed in a static

link.
Fatal error.

Controlling Archive Library Loading with
+[no]forceload
Use the +[no]forceload option to control how the linker loads object

files from an archived library. +forceload instructs the linker to load
all object files from an archive library. +noforceload tells the linker to

Chapter 3 93

Linker Tasks
Using 64-bit Mode Linker Options

only load those modules from an archive library that is needed. The
mode you select, either by default or explicitly, remains on until you
change it.

+noforceload is the default on both 32-bit and 64-bit modes.

In the following example, main() references foo() , which is a module
inmylib.a .foo() doesn’t reference any other module in mylib.a and
libc.a .Ifmylib.a containsfoo.o andbar.o ,thenonlyfoo.0 is
linked in.

Id crt0.0 main.o +vtype libraries mylib.a -Ic

éélecting liba.a[foo.0] to resolve foo

Id crt0.0 main.o +forceload mylib.a -Ic +vtype libraries

éélecting liba.a[foo.0] to forcibly load
Selecting liba.a[bar.o] to forcibly load

Flagging Unsatisfied Symbols with
+[no]allowunsats

Use the +allowunsats option to instruct the linker to not flag
unsatisfied symbols at link time. This is the default for relocatable (-r)
and shared library builds (-b), and is the default behavior in 32-bit
mode.

Use the +noallowunsat option to instruct the linker to flag as an error
any unsatisfied symbol in the resulting output file. The linker still
creates a.out , but the file does not have any execute permission bits set.
This is the default for program files (same behavior as in 32-bit mode).

For example, where main() references functions foo() and bar()
bar() resides in libbar.sl .foo() resides in libfoo.sl

Id main.o +allowunsats -L. -Ibar -Ic

Id: (warning) Unsatisfied symbol “foo”.

1 warning.

+allowunsats still causes the linker to emit a warning message and
output a.out . If you do not specify the option and the linker finds an
unsatisfied symbol, the linker emits an error message and an
unexecutable a.out only if linking with +compat set.

Id main.o -L. -Ibar -lc

Id: Unsatisfied symbol “foo”.
1 error.

94 Chapter3

NOTE

Linker Tasks
Using 64-bit Mode Linker Options

Hiding Symbols from export with
+hideallsymbols

Use the +hideallsymbols option to hide all symbols to prevent the
linker from exporting them in a shared link.

In the following example, main() exports func() andtest() . Using
+hideallsymbols , the linker does not export these two routines in the
a.out .

Id main.o +hideallsymbols -L. -Ifoo -lc
elfdump -t a.out

a.out:

:éymtab
index Type Bind Other SectValueSizeName
1 FUNC LOCL 00xb 0x4000000000001104 Otest

10FUNCLOCL00xb0x40000000000012000func

Changing Mapfiles with -k and +nodefaultmap

The linker automatically maps sections from input object files onto
output segments in executable files. These options to the Id command
allow you to change the linker’s default mapping.

Use the -k filename option to provide a memory map. The linker uses
the file specified by filename as the output file memory map.

The +nodefaultmap option used with -k option prevents the linker
from concatenating the default memory map to the map provided by
filename. If you specify +nodefaultmap , the linker does not append the
default mapfile to your mapfile. If you do not specify +nodefaultmap
with -k , the linker appends the output file to the default mapfile.

In most cases, the linker produces a correct executable without the use of
the mapfile option. The mapfile option is an advanced feature of the
linker toolset intended for systems programming use, not application
programming use. When using the mapfile option, you can create
executable files that do not execute.

For more information on mapfiles and examples using these options, see
Appendix A, “Using Mapfiles,” on page 295.

Chapter 3 95

Linker Tasks
Using 64-bit Mode Linker Options

Ignoring Dynamic Path Environment
Variables with +noenvvar

Use the +noenvvar to instruct the dynamic loader not to look at the
environment variables relating to dynamic path searching at runtime. It
ignores LD_LIBRARY_PATHand SHLIB_PATH environment variables.
This option is on by default in with Id +compat . It is off by default with
Id +std

For example, if libbar.sl has dependent library libfee.sl thatis i
[/ at link time, but is moved to /tmp by runtime:
Id main.o -L. -lbar -lc

export LD_LIBRARY_PATH=/tmp

mv libbar.sl /tmp

a.out

called bar()

called fee()

mv /tmpl/libbar.sl ./

Id main.o +noenvvar -L. -lbar -lc

mv libbar.sl /tmp

a.out

did.sl: Unable to find library “libbar.sl”

Linking in 64-bit Mode with +std

Use the +std option to instructs the linker to do a 64-bit mode link. This
is the default mode. For more information, see “Using the 64-bit Mode
Linker with +compat or +std”.

Linking in 32-bit Mode Style with +compat

Use the +compat option to instruct the linker to do a 32-bit mode style
link. For more information, see “Using the 64-bit Mode Linker with
+compat or +std”.

Controlling Output from the Unwind Table
with +stripwind
Use the +stripunwind option to suppress output of the unwind table.

Id -b foo.0 -0 libfoo.sl +stripunwind
elfdump -U libfoo.sl

libfoo.sl:

96 Chapter3

Linker Tasks
Using 64-bit Mode Linker Options

Selecting Verbose Output with +vtype

Use the +vtype option to get verbose output about specified elements of
the link operation. The following values specify the type:

Parameter Description
files Dump information about each object file loaded.

Id main.o +vtype files -L. -Ifilel -Ifile2 -lc
Loading main.o:

Loading ./libfilel.sl:

Loading ./libfile2.sl:

Loading /usr/lib/pa20_64/libc.2:
Loading /ust/lib/pa20_64/libdl.1:

libraries Dump information about libraries searched.

Id main.o +vtype libraries -L. -Ifilel -Ifile2 -Ilc
Searching /usr/lib/pa20_64/libc.a:

Selecting /usr/lib/pa20_64/libc.a[printf.o] to
resolve printf

Selecting /usr/lib/pa20_64/libc.a[data.o] to
resolve __iob

sections Dump information about each section added to the
output file.
Id main.o +vtype sections -L. -Ifilel -Ifile2 -Ic
main.o:
section .text PROG_BITS AX 116 8 added to text
segment
section .PARISC.unwind UNWIND 16 4 added to text
segment
section .data PROG_BITS AW 96 8 added to data
segment

symbols Dump information about global symbols

referenced/defined from/in the input files.

Id main.o +vtype symbols -L. -Ifilel -Ifile2 -Ic
main.o:

main is DEFINED GLOBAL FUNC

printf is UNDEF GLOBAL FUNC

libl_func is UNDEF GLOBAL FUNC
lib2_func is UNDEF GLOBAL FUNC
Jlibfilel.s:

printf is UNDEF GLOBAL FUNC
_DYNAMIC is DEFINED GLOBAL OBJECT
libl func is DEFINED GLOBAL FUNC

all Dump all of the above. Same as -v .

Chapter 3 97

Linker Tasks
Using 64-bit Mode Linker Options

Id main.o +vtype all -L. -Ifilel -Ifile2 -Ic
Loading main.o:

main.o:

main is DEFINED GLOBAL FUNC
printf is UNDEF GLOBAL FUNC
libl_func is UNDEF GLOBAL FUNC
lib2_func is UNDEF GLOBAL FUNC
main.o:

section .text PROG_BITS AX 116 8 added to text
segment

section .PARISC.unwind UNWIND 16 4 added to text
segment

section .data PROG_BITS AW 96 8 added to data
segment

Loading ./libfilel.sl:

Jlibfilel.sl:

Linking with the 64-bit crt0.o0 Startup File

In 32-bit mode, you must always include crt0.0 on the link line.

In 64-bit mode, you must include crt0.0 on the link line for all fully
archive links (Id -noshared) and in compatibility mode (+compat). You
do not need to include the crt0.0 startup file on the Id command line
for shared bound links. In 64-bit mode, the dynamic loader, did.sl , does
some of the startup duties previously done by crt0.o0

See “The crt0.o Startup File” on page 43, and crt0O(3) manual page for
more information.

98 Chapter3

Linker Tasks
Linker Compatibility Warnings

Linker Compatibility Warnings

Beginning with the HP-UX 10.20 release, the linker generates
compatibility warnings. These warnings include HP 9000 architecture
issues, as well as linker features that may change over time.
Compatibility warnings can be turned off with the

+vnocompatwarnings linker option. Also, detailed warnings can be
turned on with the +vallcompatwarnings linker option. See the Id(1)
man page for a description of these options.

Link-time compatibility warnings include the following:

= Linking PA-RISC 2.0 object files on any system — PA-RISC 1.0
programs run on 1.1 and 2.0 systems. PA-RISC 2.0 programs do not
run on 1.1 or 1.0 systems. See Also “PA-RISC Changes in Hardware
Compatibility” on page 21.

= Dynamic linking with -A — If you do dynamic linking with -A, you
should migrate to using the shared library management routines
described in Chapter 6, “Shared Library Management Routines,” on
page 195. These routines are also described in the sh_load(3X) and
dI*(3X) man page.

The 64-bit mode linker does not support the -A option.

= Procedure call parameter and return type checking (which can be
specified with -C) — The 32-bit linker checks the number and types of
parameters in procedure calls across object modules. In a future
release, you should expect HP compilers to perform cross-module type
checking, instead of the linker. This impacts HP Pascal and HP
Fortran programs.

The 64-bit mode linker does not support the -C option.

= Duplicate names found for code and data symbols — The 32-bit linker
can create a program that has a code and data symbol with the same
name. In the HP-UX 11.00 release, the 64-bit mode linker adopts a
single name space for all symbols. This means that code and data
symbols cannot share the same name. Renaming the conflicting
symbols solves this problem.

Chapter 3 99

Linker Tasks
Linker Compatibility Warnings

= Unsatisfied symbols found when linking to archive libraries — If you
specify the -v option with the +vallcompatwarnings option and
link to archive libraries, you may see new warnings. For an example,
see “Linking to Archive Libraries with Unsatisfied Symbols” in this
chapter.

< Versioning within a shared library — If you do versioning within a
shared library with the HP_SHLIB_VERSION(C and C++); or the
SHLIB_VERSION (Fortran and Pascal) compiler directive, you should
migrate to the industry standard and faster-performing library-level
versioning. See “Library-Level Versioning” on page 150 to learn how
to do library-level versioning. In the HP-UX 11.00 release, the 64-bit
mode linker does not support internal library versioning.

Linking to Archive Libraries with Unsatisfied
Symbols

If you link a program that contains a reference to an archive library, and
the archive library contains an undefined symbol, you may see the
following warning:

Id: (Warning) The file library.a(x.0) has not been fully

checked for unsatisfied symbols. This behavior may
change in future releases.

The 32-bit mode linker does not include an object from an archive library
simply because it contains a needed definition of an uninitialized global
data symbol. Instead, it changes the existing undefined symbol to an
uninitialized data symbol. This symbol has the same size as the
definition of the global variable in the library.

For example, given these source files:

archive.c
int foo; [* definition of uninitialized
global data symbol */
void func()
unsat();
main.c

extern int foo; /* declaration of global data symbol */
main()

100 Chapter3

Linker Tasks
Linker Compatibility Warnings

printf ("\tfoo = %d\n", foo);

If these files are compiled and linked as:

cC -C main.c

cc -c archive.c

ar rv liba.a archive.o

Id /opt/langtools/lib/crt0.0 -v \
+vallcompatwarnings main.o liba.a -Ic -o test

The linker issues the following warning:
Id: (Warning) The file liba.a(archive.0) has not been fully

checked for unsatisfied symbols. This behavior may change
in future releases.

due to an unresolved symbol for unsat()

In the HP-UX 11.00 release, the linker includes the archive library object
definition rather than fixing up the external reference.

Chapter 3 101

Linker Tasks
Linker Compatibility Warnings

102 Chapter3

Linker Tools

This chapter describes the linker toolset, which provides several tools to
help you find symbols, display and modify object files, and determine link
order. Some of these tools are specific to a particular object file type;
others are available in both 32-bit and 64-bit mode.

The following table lists the linker toolset.

Tool Mode Description

chatr 32-bit/ | Displays or modifies the internal attributes of
64-bit an object file. See “Changing a Program's
Attributes with chatr(1)”.

elfdump 64-bit Displays the contents of an ELF object file.
See “Viewing the Contents of an Object File
with elfdump(1)”.

fastbind 32-bit/ | Improves startup time of programs that use
64-bit shared libraries. See “Improving Program
Start-up with fastbind(1)”.

ldd 64-bit Lists dynamic dependencies of executable files
and shared libraries. “Viewing library
dependencies with ldd(1)”.

lorder 32-bit/ | Finds ordering relationship for an object
64-bit library. See“Finding Object Library Ordering
Relationships with lorder(1)”.

nm 32-bit/ | Displays the symbol table of an object file. See
64-bit “Viewing Symbols in an Object file with
nm(1)”.
size 32-bit/ | Prints sizes of object file elements. See
64-bit “Viewing the Size of Object File Elements
with size(1)”.
strip 32-bit/ | Strips symbol and debugging information

64-bit from an object file, executable, or archive
library. See “Reducing Storage Space with
strip(1)”.

103

Linker Tools
Changing a Program's Attributes with chatr(1)

Changing a Program's Attributes with

chatr(1)

The chatr

command (see chatr(1)) allows you to change various program

attributes that were determined at link time. When run without any

options, chatr

displays the attributes of the specified file.

Using chatr for 32-bit Program Attributes

The following table summarizes the options you can use to change

various attributes:

To do this: Use this option:
32-bit mode only: Set the file's magic number to SHARE_MAGIC -n
32-bit mode only: Set the file's magic number to DEMAND_MAGIC -q
32-bit mode only: Change the file’s magic number from EXEC_MAGIC| -M
to SHMEM_MAGI
32-bit mode only: Change the file’'s magic number from -N
SHMEM_MAGI@ EXEC_MAGIC
Use immediate binding for all libraries loaded at program startup. -B immediate
Use deferred binding for all libraries loaded at program startup. -B deferred
Use nonfatal binding. Must be specified with -B immediate or -B -B nonfatal
deferred
Use restricted binding. Must be specified with -B immediate or -B -B restricted

deferred

Enable run-time use of the path list specified with the +b option at
link time.

+b enable 2

Disable run-time use of the path list specified with the +b option at
link time.

+b disable

104

Chapter4

Linker Tools

Changing a Program's Attributes with chatr(1)

To do this: Use this option:
Enable the use of the SHLIB_PATH environment variable to perform | 15 enable 2
run-time path list lookup of shared libraries.
Disable the use of the SHLIB_PATHenvironment variable to perform | +s disable
run-time path list lookup of shared libraries.
32-bit mode only: Do not subject a library to path list lookup, even if | +I libname
path lists are provided. That is, use default library path stored in
the executable.
32-bit mode only: Subject a library to path list lookup if directory -l libname
path lists are provided. Useful for libraries that were specified with
a full path name at link time.
Set the virtual memory page size for data segments. +pd size
Set the virtual memory page size for instructions. +pi size
Assist branch prediction on PA-RISC 2.0 systems. Programs must be | +k
linked with +Ostaticprediction
Request static branch prediction. +r

a. If +b enable and +s enable
determines which search path is used first.

are both specified, the order in which they appear

Using chatr for 64-bit Program Attributes

In 64-bit mode, chatr

supports two different command syntaxes. One is

compatible with the 32-bit command. Use it to modify files that have only
a single text segment and data segment. The second command syntax
allows you specify selected segments to modify. The following sections

list the additional 64-bit mode options for the chatr

For the 32-bit compatible syntax:

command.

Chapter 4

105

Linker Tools
Changing a Program's Attributes with chatr(1)

To do this: Use this option:
Set the modification bit for the file’'s data +md
segment(s).
Set the modification bit for the file’s text +mi
segment(s).
Set the code bit for the file’s data segment(s). +cd
Set the code bit for the file’s text segment(s). +Ci
Enable lazy swap on all data segments. Do not +z

use with non-data segments.

For the 64-bit only syntax:

To do this: Use this option:
Set the code bit for a specified segment. +C
Enables or disables lazy swap allocation for +dz
dynamically allocated segments (such as the
stack or heap).
Set the modification bit for a specified segment. +m
Set the page size for a specified segment. +p
Identify a segment using a segment index +si
number.
Identify a segment using an address. +sa
Use all segments in the file for a set of attribute +sall
modifications.
Enable lazy swap on a specific segment (using the | +z

second command syntax). Do not use with
non-data segments.

106

Chapter4

Linker Tools
Viewing Symbols in an Object file with nm(1)

Viewing Symbols in an Object file with
nm(1)

The nm(1) command displays the symbol table of each specified object.
file can be a relocatable object file or an executable object file, or an
archive of relocatable or executable object files.

nmprovides three general output formats: the default (neither —p nor —P
specified), —p , and —P. See the nm(1) man page for a detailed description
of the output formats.

To Use This
Option
Prefix each output line with the name of the object file or archive, file. -A
Equivalent to —r .
64-bit mode ELF files only: Demangle C++ names before printing them. —-C

Display the value and size of a symbol in decimal. This is the default for the | —d
default format or the —p format. Equivalent to -t d

Display only external and static symbols. This option is ignored (see —f). —e
Display full output. This option is in force by default. —f
Display only external (global) symbol information. —g
Do not display the output header data. —h

Distinguish between weak and global symbols by appending * to the key -
letter of weak symbols. Only takes effect with -p and/or -P.

Sort symbols by name, in ascending collation order, before they are printed. | —n
This is the default. To turn off this option, use -N.

Display symbols in the order in which they appear in the symbol table. -N
Display the value and size of a symbol in octal. Equivalentto-to . -0

Chapter 4 107

Linker Tools
Viewing Symbols in an Object file with nm(1)

To Use This
Option

Display information in a blank-separated output format. Each symbol name | —p
is preceded by its value (blanks if undefined) and one of the letters
A absolute
B bss symbol
C common symbol
D data symbol
R section region
S tstorage symbol (32-bit mode SOM files only) If the symbol

is local (nonexternal), the type letter is in lowercase. If the

symbol is a secondary definition, the type letter is followed

by the letter S. Note that —p is not compatible with —P.
T text symbol
U undefined
Display information in a portable output format as specified below, to -P
standard output. Note that -P is not compatible with -P .
32-bit mode SOM files only: Silence some warning messages. -q
Prefix each output line with the name of the object file or archive, file. -r
Equivalent to —A.
64-bit mode ELF files only: Print the section index instead of the section -S
name.
Display each numeric value in the specified format. format can be one of: —t format

d

Display the value and size of a symbol in decimal. This is
the default for the default format or the —p format.
Equivalent to -d .

Display the value and size of a symbol in octal. Equivalent
to-o.

Display the value and size of a symbol in hexadecimal.
This is the default for the —P format. Equivalent to -x .

108

Chapter4

Linker Tools

Viewing Symbols in an Object file with nm(1)

To Use This
Option
32-bit mode SOM files only: Truncate every name that would otherwise -T
overflow its column and place an asterisk as the last character in the
displayed name to mark it as truncated. If —A or —r is also specified, the file
prefix is truncated first.
By default, nmprints the entire name of the symbols listed. Since object files
can have symbol names with an arbitrary number of characters, a name that
is longer than the width of the column set aside for names overflows its
column, forcing every column after the name to be misaligned.
Display undefined symbols only. -u
Print the usage menu. -U
Sort symbols by value before they are printed. -V
Display the executing version of the nmcommand on standard error. -V
Displays the value and size of a symbol in hexadecimal. this is the default -X
for the -P format. Equivalent to -t x .

Examples

= Display which object files have undefined references for the symbol

“leap "

"nm —rup *.0 | grep leap"

= Display which object files have a definition for the text symbol “leap ”:

nm —rp *.0 | awk '{ if\
($3==""T"" && $4 ==""leap" ") { print $0 } }"

= To view the symbols defined in an object file, use the nmcommand.
The following 32-bit mode example shows output from running nm -p

on the func.o and main.o object files.

$ nm -p func.o

Other symbols created from compiling.

1073741824 d $THIS_DATA$
1073741824 d $THIS_SHORTDATA$
1073741824 b $THIS_BSS$
1073741824 d $THIS_SHORTBSS$

0000000000 T sum_n Global definitions of sum_n.

$ nm -p main.o

Chapter 4

109

Linker Tools

Viewing Symbols in an Object file with nm(1)

0000000000
compiling.

1073741824
1073741872
1073741872
1073741872
0000000000
0000000000
0000000000
0000000000

ccc-Haoaa C

$global$ Other symbols created from

$THIS_DATAS$

$THIS_SHORTDATAS$

$THIS BSS$

$THIS_SHORTBSS$

main Global definition of main.
printf

scanf

sum_n

The first column shows the address of each symbol or reference. The
last column shows the symbol name. The second column denotes the

symbol's type:

T

u
d
b

indicates a global definition.
indicates an external reference.
indicates a local definition of data.

indicates a local definition of uninitialized data
(bss).

Thus, a global definition of sum_n is found in func.o . An external
reference to sum_n is found in main.o . External references to the C
printf and scanf routines are found in main.o . For details on the
use of nm see nm(1).

110

Chapter4

Linker Tools
Viewing the Contents of an Object File with elfdump(1)

Viewing the Contents of an Object File
with elfdump(1)

NOTE The elfdump command works on 64-bit executables or shared libraries.

The elfdump(1) command displays information contained in ELF format
object files, archives, and shared libraries.

Use the following options to select the information you want to display:

To view the contents. Lés;tit:ri]s

Symbol table entries. -t
Archive headers from an archive library. -a
String table(s). -C
File header. -f
Global symbols from an archive. -g
Section headers. -h
The .dynamic section in shared libraries and -L
dynamically linked program files.

Optional headers (program headers). -0
Relocations. -r
Section contents. -S
Unwind table. -U

elfdump provides the following additional options to modify your
selections:

Chapter 4 111

Linker Tools

Viewing the Contents of an Object File with elfdump(1)

Option | Modifies Causes elfdump to
-H all Select output format in hexadecimal, octal, or decimal.
-p all Suppress title printing.
-S -h ,-0 Display headers in short format.
-C -C ., -, Demangle C++ symbol names before displaying them.
s = With -H, ignored.
= With -n name, display the symbol whose unmangled name
matches name, and prints its symbol name as a demangled
name.
-D num -h, -s Display the section whose index is num.
+Dnum2 | -h,-s Display the sections in the range 1 to numz2.
= With -D, display the sections in the range num to hum2.
-D num -r Display the relocation whose index is num.
+Dnum2 | -r Display only the relocations which apply to the section(s) in the
range.
+s name | -c, -t Display the section specified by name.
-n name -h,-r, Display information about the section specified by name.
-s
-n name -t Display information about the symbol entry specified by name.
-T num -t Display the symbol whose index is num.
+T num2 | -t Display the symbols in the range 0 to numz2.
= With-T, display the symbols in the range num to num2.
112 Chapter4

NOTE

Linker Tools
Viewing library dependencies with ldd(1)

Viewing library dependencies with
Idd(1)

The Idd command works on 64-bit executables or shared libraries.

The Idd(1) command lists the dynamic dependencies of executable files
or shared libraries. [dd displays verbose information about dynamic
dependencies and symbol references:

Executable All shared libraries that would be loaded as a result of
executing the file.

Shared library All shared libraries that would be loaded as a result of
loading the library.

Idd uses the same algorithm as the dynamic loader
(/usr/lib/pa20_64/dId.sl) to locate the shared libraries.

Idd does not list shared libraries explicitly loaded using dlopen (3X) or
shl_load (3X).

Idd prints the record of shared library path names to stdout . It prints
the optional list of symbol resolution problems to stderr

To do this Use _the
option
Check reference to data symbols. -d
Check reference to data and code symbols. -r
Displays the search path used to locate the shared -S
libraries.
Display all dependency relationships. -v
Examples

= By default, Idd prints simple dynamic path information, including
the dependencies recorded in the executable (or the shared library)
followed by the physical location where the dynamic loader finds
these libraries.

Chapter 4 113

Linker Tools
Viewing library dependencies with |dd(1)

$ldd a.out

Jlibx.sl => /libx.sl
libc.2 =>/lib/pa20_64/libc.2
libdl.1 =>/lib/pa20_64/libdl.1

= The-v option causesIdd to print dependency relationship along with
the dynamic path information.

$ldd -v a.out

find library=./libx.sl; required by a.out

Jlibx.sl =>./libx.sl

find library=libc.2; required by a.out

libc.2 =>/lib/pa20_64/libc.2

find library=libdl.1; required by /lib/pa20_64/libc.2
libdl.1 =>/lib/pa20_64/libdl.1

< The -r option to causes it to analyze all symbol references and print
information about unsatisfied code and data symbols.

$ldd -r a.out

Jlibx.sl=>./libx.sl
libc.2=>/lib/pa20_64/libc.2
libdl.1=>/lib/pa20_64/libdl.1
symbol not found: vall (./libx.sl)
symbol not found: count (./libx.sl)
symbol not found: funcl (./libx.sl)
symbol not found: func2 (./libx.sl)

114 Chapter4

Linker Tools

Viewing the Size of Object File Elements with size(1)

Viewing the Size of Object File Elements

with size(1)

The size(1) command produces section size information for each section
in your specified object files. It displays the size of the text, data and bss
(uninitialized data) sections with the total size of the object file. If you
specify an archive file, the information for all archive members is

displayed.

Use the following options to display information for your specified files:

. Use this
To display option
Sizes in decimal (default). -d
Sizes in octal. -0
Sizes in hexadecimal. -X
Version information about the size command. -V
Verbose list of the subspaces in the object files. Each -v
subspace is listed on a separate line with its size,
physical address, and virtual address.
64-bit mode only: Size of each allocatable section (=. -f
64-bit mode only: Size and permission bits of each -F
loadable segment=.
64-bit mode only: Sizes of non loadable segments or non | -n
allocatable sections.
Chapter 4 115

NOTE

Linker Tools
Reducing Storage Space with strip(1)

Reducing Storage Space with strip(1)

The strip(1) command removes the symbol table and line number
information from object files, including archives. Thereafter, no symbolic
debugging access is available for that file. The purpose of this command
is to reduce file storage overhead consumed by the object file. Use this
command on production modules that have been debugged and tested.
The effect is nearly identical to using the -s option of Id .

You can control the amount of information stripped from the symbol
table by using the following options:

Use this

To option

Strip line number information only; do not strip any -l
symbol table information.

Do not strip static or external symbol information. -X

32-bit mode only: Reset the relocation indexes into the -r
symbol table. This option allows strip to be run on
relocatable files, in which case the effect is also to strip
only symbolic debugging information and unloadable
data.

Print the version of the strip command to stderr . -V

The -I and -x options are synonymous because the symbol table
contains only static and external symbols. Either option strips only
symbolic debugging information and unloadable data.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip issues a message and terminates
without stripping the specified file unless the -r option is used.

116 Chapter4

Linker Tools
Reducing Storage Space with strip(1)

If you execute strip on an archive file (see ar(4)), it removes the archive
symbol table. The archive symbol table must be restored by executing ar
with its s operator (see ar(1)) before the |d command (see Id (1)) can use
the archive. strip issues appropriate warning messages when this

situation occurs.

Chapter 4

117

Linker Tools
Improving Program Start-up with fastbind(1)

Improving Program Start-up with
fastbind(1)

The fastbind(1) command prepare an incomplete executable for faster
program start-up. It can improve the start-up time of programs that use
shared libraries (incomplete executables) by storing information about
needed shared library symbols in the executable file.

fastbind performs analysis on the symbols used to bind an executable
and all of its dependent shared libraries, and stores this information in
the executable file. The next time the executable is run, the dynamic
loader (/usr/lib/did.sl for 32-bit mode or

[usr/lib/pa20_64/dld.sl for 64-bit mode) detects that this
information is available, and uses it to bind the executable instead of
using the standard search method for binding the symbols.

Because fastbind writes the fastbind information in the executable file,
you must have write permission on the executable file. If the executable
file being analyzed is being run as another process or the file is locked
against modifications by the kernel, the fastbind command fails.

If the shared libraries that an executable is dependent on are modified
after the fastbind information is created, the dynamic loader silently
reverts to standard search method for binding the symbols. The fastbind
information can be re—created by running fastbind on the executable
again. fastbind automatically erases the old fastbind information and
generate the new one.

Use this

To do this .
option

Remove the fastbind information from the executable, -n
returning it to the same state it as was in before you
ran fastbind onit.

Normally, if fastbind detects any unsatisfied symbols | -u
while building the fastbind information, it generates an
error message and does not modify the executable file.
When you invoke fastbind with the -u option
however, it allows unresolved symbols.

118 Chapter4

Linker Tools
Improving Program Start-up with fastbind(1)

The 32-bit mode fastbind command does not work with EXEC_MAGIC
executables.

fastbind effectively enforces the binding modes bind-restricted and
bind-immediate. For example, consider an executable linked
bind-deferred, which calls a function foo() defined in an implicitly
loaded library. Before the actual call is made, if it explicitly loads a
shared library (using shl_load (3X) with BIND_FIRST) having a
definition for foo() when foo() is finally called, it is resolved from the
explicitly-loaded library. But after running fastbind , the symbol foo()
is resolved from the implicitly-loaded library.

For more information about fastbind and performance, see “Improving
Shared Library Start-Up Time with fastbind” on page 293.

Example

e Torun fastbind on the executable file a.out :
$fastbind a.out

= To later remove the fastbind information from the executable file
a.out

$fastbind -n a.out

Chapter 4 119

Linker Tools
Finding Object Library Ordering Relationships with lorder(1)

Finding Object Library Ordering
Relationships with lorder(1)

The lorder command finds the ordering relation for an object library. You
can specify one or more object or archive library files (see ar(1)) on the
command line or read those files from standard input. The standard
output is a list of pairs of object file names, meaning that the first file of
the pair refers to external identifiers defined in the second.

You can process the output with tsort to find an ordering of a library
suitable for one-pass access by Id (see tsort(1) and Id(1)). The linker Id is
capable of multiple passes over an archive in the archive format and does
not require that you use lorder when building an archive. Using the
lorder command may, however, allow for a slightly more efficient access
of the archive during the link-edit process.

The symbol table maintained by ar allows Id to randomly access
symbols and files in the archive, making the use of lorder unnecessary
when building archive libraries (see ar(1)).

lorder overlooks object files whose names do not end with .0 , even
when contained in library archives, and attributes their global symbols
and references to some other file.

Examples

= Build a new library from existing .o files:
$ar cr library ‘lorder *.0 | tsort'

= When creating libraries with so many objects that the shell cannot
properly handle the *.0 expansion, the following technique may
prove useful:

$Is |grep '.o%'|lorder|tsort|xargs ar cq library

120 Chapter4

Creating and Using Libraries

Creating and Using Libraries

Many libraries come with HP-UX. You can also create and use your own
libraries on HP-UX. This chapter provides information on the following

topics:

= General Information about Shared and Archive Libraries

“Overview of Shared and Archive Libraries”

“What are Archive Libraries?”

“What are Shared Libraries?”

“Example Program Comparing Shared and Archive Libraries”

“Shared Libraries with Debuggers, Profilers, and Static Analysis”

= Creating Libraries on HP-UX

“Creating Shared Libraries”

“Creating Archive Libraries”

e Using Libraries on HP-UX

“Switching from Archive to Shared Libraries”
“Summary of HP-UX Libraries”

“Caution When Mixing Shared and Archive Libraries”

= Using Shared Libraries in 64-bit Mode

“Internal Name Processing”

“Dynamic Path Searching for Shared Libraries”
“Shared Library Symbol Binding Semantics”
“Mixed Mode Shared Libraries”

“64-bit Mode Library Examples”

Chapter 5 121

Creating and Using Libraries

Overview of Shared and Archive Libraries

Overview of Shared and Archive

Libraries

HP-UX supports two kinds of libraries: archive and shared. A shared
library is also called a dll (dynamically linked library), particularly in
the context of the 64-bit mode linker. Archive libraries are the more
traditional of the two. The following table summarizes differences
between archive and shared libraries.

Comparing

Archive

Shared (or dll)

file name suffix

Suffix is .a .

Suffix is .sl or .number representing a
particular version of the library.

object code

Made from relocatable
object code.

Made from position-independent object
code, created by compiling with the +z or
+Z compiler option. Can also be created in
assembly language (see Chapter 7,
“Position-Independent Code,” on page
259).

creation

Combine object files with
the ar command

Combine PIC object files with the Id
command

122

Chapter5

Creating and Using Libraries
Overview of Shared and Archive Libraries

Comparing

Archive

Shared (or dll)

address binding

Addresses of library
subroutines and data are
resolved at link time.

Addresses of library subroutines are
bound at run time. Addresses of data in
a.out are bound at link time; addresses of
data in shared libraries are bound at run
time.

a.out files Contains all library Does not contain library routines; instead,
routines or data (external contains a linkage table that is filled in
references) referenced in with the addresses of routines and shared
the program. An a.out file | library data. An a.out that uses shared
that does not use shared libraries is known as an incomplete
libraries is known as a executable, and is almost always much
complete executable. smaller than a complete executable.

run time Each program has its own Shared library routines are shared among

copy of archive library
routines.

all processes that use the library.

Almost all system libraries are available both as a shared library and as

an archive library for 32-bit mode in the directory /usr/lib
64-bit mode in /usr/lib/pa20_lib
with .a whereas shared library file names end with .sl
32-bit mode, the archive C library libc
shared version is /usr/lib/libc.sl

is /usr/lib/pa20_64/libc.a

library libc
Jusr/lib/pa20_64/libc.sl

and for
. Archive library file names end
. For example, in
is /usr/lib/libc.a and the
. In 64-bit mode, the archive C
and the shared version is

If both shared and archived versions of a library exist, Id uses the one
that it finds first in the default library search path. If both versions exist
in the same directory, Ild uses the shared version. For example,

compiling the C program prog.c

command like this:

causes cc to invoke the linker with a

= For 32-bit mode: Id /opt/langtools/lib/crt0.0 prog.o -Ic

e [or 64-bit mode:

Id /opt/langtools/lib/pa20_64/crt0.0 prog.o -Ic

The -lc option instructs the linker to search the C library, libc or

libc/pa20_64
shared libc
lusr/lib/pa20_64/libc.sl

, to resolve unsatisfied references from prog.o . Ifa
exists (/ust/lib/libc.sl or

), Id uses it instead of the archive libc

Chapter 5

123

Creating and Using Libraries
Overview of Shared and Archive Libraries

(/usr/lib/libc.a or /usr/lib/pa20_64/libc.a). You can, however,
override this behavior and select the archive version of a library with the
-a option or the -I: option. These are described in “Choosing Archive or

Shared Libraries with -a” on page 63 and “Specifying Libraries with -I
and I:” on page 87.

In addition to the system libraries provided on HP-UX, you can create
your own archive and shared libraries. To create archive libraries,
combine object files with the ar command, as described in “Overview of
Creating an Archive Library”. To create shared libraries, use Id to
combine object files containing position-independent code (PIC), as
described in “Creating Shared Libraries”.

For more information, see “Caution When Mixing Shared and Archive
Libraries”.

124 Chapter5

Creating and Using Libraries
What are Archive Libraries?

What are Archive Libraries?

An archive library contains one or more object files and is created with
the ar command. When linking an object file with an archive library, Id
searches the library for global definitions that match up with external
references in the object file. If a match is found, Id copies the object file
containing the global definition from the library into the a.out file. In
short, any routines or data a program needs from the library are copied
into the resulting a.out file.

NOTE For 32-bit only:
If the only definition referenced in an object file of an archive library is a
common symbol, only that common symbol is copied into the a.out and
not the entire object file. This helps reduce the size of the a.out file.
Example
For example, in 32-bit mode, suppose you write a C program that calls
printt from the libc library. “Linking with an Archive Library” shows
how the resulting a.out file would look if you linked the program with
the archive version of libc
Figure 5-1 Linking with an Archive Library
main.o a.out
external linker (Id)
reference —= call to printf call to printf
to "printf" match external
reference to printf
/usr/lib/libc.a definition in libe; — - T
copy that portion
of libc into a.out printf defined
global
definition —3 printf defined
for "printf"

Chapter 5 125

NOTE

Creating and Using Libraries
What are Shared Libraries?

What are Shared Libraries?

Like an archive library, a shared library contains object code. However,
Id treats shared libraries quite differently from archive libraries. When
linking an object file with a shared library, I|d does not copy object code
from the library into the a.out file; instead, the linker simply notes in
the a.out file that the code calls a routine in the shared library. An
a.out file that calls routines in a shared library is known as an
incomplete executable.

The Dynamic Loader did.sl

When an incomplete executable begins execution, the HP-UX dynamic
loader (see dld.sl(5)) looks at the a.out file to see what libraries the
a.out file needs during execution. In 32-bit mode, the startup code in
crt0.0 activates the dynamic loader. In 64-bit mode, the kernel
activates the dynamic loader for a 64-bit a.out .The dynamic loader then
loads and maps any required shared libraries into the process's address
space — known as attaching the libraries. A program calls shared
library routines indirectly through a linkage table that the dynamic
loader fills in with the addresses of the routines. By default, the dynamic
loader places the addresses of shared library routines in the linkage
table as the routines are called — known as deferred binding.
Immediate binding is also possible — that is, binding all required
symbols in the shared library at program startup. In either case, any
routines that are already loaded are shared.

Consequently, linking with shared libraries generally results in smaller
a.out files than linking with archive libraries. Therefore, a clear benefit
of using shared libraries is that it can reduce disk space and virtual
memory requirements.

In prior releases, data defined by a shared library was copied into the
program file at link time. All references to this data, both in the libraries
and in the program file, referred to the copy in the executable file.

With the HP-UX 10.0 release, however, this data copying is eliminated.
Data is accessed in the shared library itself. The code in the executable
file references the shared library data indirectly through a linkage
pointer, in the same way that a shared library would reference the data.

126 Chapter5

Creating and Using Libraries
What are Shared Libraries?

Default Behavior When Searching for
Libraries at Run Time

By default, if the dynamic loader cannot find a shared library from the
list, it generates a run-time error and the program aborts. For example,
in 32-bit mode, suppose that during development, a program is linked
with the shared library liblocal.sl in your current working directory
(say, /users/hyperturbo):

$ Id /opt/langtools/lib/crt0.0 prog.o -Ic liblocal.sl

In 32-bit mode, the linker records the path name of liblocal.sl in the
a.out file as /users/hyperturbol/liblocal.sl . When shipping this
application to users, you must ensure that (1) they have a copy of
liblocal.sl on their system, and (2) it is in the same location as it was
when you linked the final application. Otherwise, when the users of your
application run it, the dynamic loader will look for
/users/hyperturbo/liblocal.sl , fail to find it, and the program
will abort.

In 64-bit mode, the linker records ./liblocal.sl

This is more of a concern with non-standard libraries—that is, libraries
not found in /ust/lib or /usr/lib/pa20_64 . There is little chance of
the standard libraries not being in these directories.

Caution on Using Dynamic Library Searching

If different versions of a library exist on your system, be aware that the
dynamic loader may get the wrong version of the library when dynamic
library searching is enabled with SHLIB_PATH or +b. For instance, you
may want a program to use the PA1.1 libraries found in the

Jusr/lib/pal.l directory; but through a combination of SHLIB_PATH
settings and +b options, the dynamic loader ends up loading versions
found in /ust/lib instead. If this happens, make sure that

SHLIB_PATHand +b are set to avoid such conflicts.

Chapter 5 127

Figure 5-2

Creating and Using Libraries
Example Program Comparing Shared and Archive Libraries

Example Program Comparing Shared
and Archive Libraries

As an example, suppose two separate programs, progl and prog2 , use
shared libc routines heavily. Suppose that the a.out portion of progl
is 256Kb in size, while the prog2 a.out portion is 128Kb. Assume also
that the shared libc is 512Kb in size. Figure 5-2 shows how physical
memory might look when both processes run simultaneously. Notice that
one copy of libc is shared by both processes. The total memory
requirement for these two processes running simultaneously is 896Kb
(256Kb + 128Kb + 512Kb).

Two Processes Sharing libc

(V] ® (¥]
prog1
(256Kb)
V ///////y
7555 | e
prog2 .
(128kb) :utlil::s
7 /////////
755
libc.sl
(512Kb) pf—
W [] W

[]

L]
Compare this with the memory requirements if progl and prog2 had
been linked with the archive version of libc . As shown in Figure 5-3,
1428Kb of memory are required (768Kb + 640Kb). The numbers in this
example are made up, but it is true in general that shared libraries
reduce memory requirements.

128 Chapter5

Figure 5-3

Creating and Using Libraries

Example Program Comparing Shared and Archive Libraries

Two Processes with Their Own Copies of libc

prog1)
(768Kb)

prog2)
(640Kb)

L]
[J
n [} v

progl.o

libc
routines

Wy,

X 707977

prog2.o

libc
routines

calls
to libc
routines

calls
to libc
routines

Chapter 5

129

Creating and Using Libraries
Shared Libraries with Debuggers, Profilers, and Static Analysis

Shared Libraries with Debuggers,
Profilers, and Static Analysis

As of the HP-UX 10.0 release, debugging of shared libraries is supported
by the HP/DDE debugger. For details on how to debug shared libraries,
refer to the HP/DDE Debugger User's Guide.

Profiling with prof and gprof and static analysis are not allowed on
shared libraries.

130 Chapter5

Creating and Using Libraries
Creating Archive Libraries

Creating Archive Libraries
Two steps are required to create an archive library:

1. Compile one or more source files to create object files containing
relocatable object code.

2. Combine these object files into a single archive library file with the
ar command.

Shown below are the commands you would use to create an archive
library called libunits.a

cc -Aa -c length.c volume.c mass.c
ar r libunits.a length.o volume.o mass.o

These steps are described in detail in “Overview of Creating an Archive
Library”.

Other topics relevant to archive libraries are:

= *“Contents of an Archive File”

= “Example of Creating an Archive Library”

= “Replacing, Adding, and Deleting an Object Module”

e “Summary of Keys to the ar(1) Command”

« “Archive Library Location”

Overview of Creating an Archive Library
To create an archive library:

1. Create one or more object files containing relocatable object code.
Typically, each object file contains one function, procedure, or data
structure, but an object file could have multiple routines and data.

2. Combine these object files into a single archive library file with the ar
command. Invoke ar with ther key.

(“Keys” are like command line options, except that they do not require
a preceding - .)

Chapter 5 131

Figure 5-4

Creating and Using Libraries
Creating Archive Libraries

Figure 5-4 summarizes the procedure for creating archive libraries from
three C source files (filel.c ,file2.c ,andfile3.c). The process is
identical for other languages, except that you would use a different
compiler.

Creating an Archive Library

archive
library
source object PR
files files
i P s.t.
filel.c R\ compiler filel.o —I—\orchiver filel.o
file2.c ¢ =€ ... file2.0 ar ... [pfile2.o]
file3.0
file3.c file3.0
@ Create object files | @ Combine with ar

Contents of an Archive File

An archive library file consists of four main pieces:

1.

a header string, "l<arch>\n ", identifying the file as an archive file
created by ar (\n represents the newline character)

a symbol table, used by the linker and other commands to find the
location, size, and other information for each routine or data item
contained in the library

an optional string table used by the linker to store file names that
are greater than 15 bytes long (only created if a long file name is
encountered)

object modules, one for each object file specified on the ar command
line

To see what object modules a library contains, run ar with the t key,
which displays a t able of contents. For example, to view the “table of
contents” for libm.a

$

ar t /usr/lib/libm.a

Run ar with the t key.

132 Chapter5

Creating and Using Libraries
Creating Archive Libraries

cosh.o
Object modules are displayed.

erf.o
fabs.o
floor.o

This indicates that the library was built from object files named cosh.o
erfo ,fabs.o ,floor.o ,and soforth. In other words, module names
are the same as the names of the object files from which they were
created.

Example of Creating an Archive Library

Suppose you are working on a program that does several conversions
between English and Metric units. The routines that do the conversions
are contained in three C-language files shown:

length.c - Routine to Convert Length Units
float in_to_cm(float in) /* convert inches to centimeters */

return (in * 2.54);

volume.c - Routine to Convert Volume Units
float gal_to_I(float gal) /* convert gallons to liters */

return (gal * 3.79);

mass.c - Routine to Convert Mass Units
float oz_to_g(float oz) /* convert ounces to grams */

return (oz * 28.35);
}

During development, each routine is stored in a separate file. To make
the routines easily accessible to other programmers, they should be
stored in an archive library. To do this, first compile the source files,
either separately or together on the same command line:

$ cc -Aa -c length.c volume.c mass.c Compile them together.
length.c:

volume.c:

mass.c:

$ls*.0 List the .o files.
length.o mass.o volume.o

Chapter 5 133

Creating and Using Libraries
Creating Archive Libraries

Then combine the .0 files by running ar with the r key, followed by the
library name (say libunits.a), followed by the names of the object files
to place in the library:

$ arr libunits.a length.o volume.o mass.o
ar: creating libunits.a

To verify that ar created the library correctly, view its contents:

$ artlibunits.a Use ar with the t key.

length.o

volume.o

mass.o All the .0 modules are included; it worked.

Now suppose you've written a program, called convert.c , that calls

several of the routines in the libunits.a library. You could compile the
main program and link it to libunits.a with the following cc
command:

$ cc -Aa convert.c libunits.a

Note that the whole library name was given, and the -I option was not
specified. This is because the library was in the current directory. If you
move libunits.a to /usr/lib before compiling, the following
command line will work instead:

$ cc -Aa convert.c -lunits

Linking with archive libraries is covered in detail in Chapter 3, “Linker
Tasks,” on page 51.

Replacing, Adding, and Deleting an Object
Module

Occasionally you may want to replace an object module in a library, add
an object module to a library, or delete a module completely. For instance,
suppose you add some new conversion routines to length.c (defined in
the previous section) and want to include the new routines in the library
libunits.a . You would then have to replace the length.o module in
libunits.a

Replacing or Adding an Object Module

To replace or add an object module, use the r key (the same key you use
to create a library). For example, to replace the length.o object module
in libunits.a

$ ar r libunits.a length.o

134 Chapter5

Creating and Using Libraries
Creating Archive Libraries

Deleting an Object Module

To delete an object module from a library, use the d key. For example, to
delete volume.o from libunits.a

$ ar d libunits.a volume.o Delete volume.o.
$ ar t libunits.a List the contents.
length.o

mass.o volume.o is gone.

Summary of Keys to the ar(1) Command

When used to create and manage archive libraries, ar 's syntax is:

ar [-] keys archive [modules] ...

archive is the name of the archive library. modules is an optional list of
object modules or files. See ar(1) for the complete list of keys and options.

Useful ar Keys

Here are some useful ar keys and their modifiers:

key Description
d Delete the modules from the archive.
r Replace or add the modules to the archive. If archive

exists, ar replaces modules specified on the command
line. If archive does not exist, ar creates a new archive
containing the modules.

t Display a t able of contents for the archive.

u Used with the r, this modifier tells ar to replace only
those modules with creation dates later than those in
the archive.

v Display verbose output.

X Extracts object modules from the library. Extracted

modules are placed in .o files in the current directory.
Once an object module is extracted, you can use nmto
view the symbols in the module.

For example, when used with the v flag, the t flag creates a verbose table
of contents — including such information as module creation date and
file size:

Chapter 5 135

Creating and Using Libraries
Creating Archive Libraries

$ artv libunits.a

rw-rr - 265/ 20 230 Feb 2 17:19 1990 length.o
rw-rr 265/ 20 228 Feb 2 16:25 1990 mass.o

rw-rr 265/ 20 230 Feb 2 16:24 1990 volume.o

The next example replaces length.o in libunits.a , only if length.o
is more recent than the one already contained in libunits.a

$ ar ru libunits.a length.o

crt0.o

In 64-bit mode, the crt0.0 startup file is not needed for shared bound
links because did.sl does some of the startup duties previously done by
crt0.0 . You still need to include crt0.0 on the link line for all fully
archive links (Id -noshared). In 32-bit mode, crt0.0 must always be
included on the link line.

Users who link by letting the compilers such as cc invoke the linker do
not have include crt0.0 on the link line.

Archive Library Location

After creating an archive library, you will probably want to save it in a
location that is easily accessible to other programmers who might want
to use it. There are two main choices for places to put the library:

= in the 32-bit /usr/lib or 64-bit /user/lib/pa20_64 directory
= in the 32-bit /usr/local/lib or /usr/contrib/lib directory

Using /usr/lib and /usr/lib/pa20_64

Since the linker searches /ust/lib or /usr/lib/pa20_64 by default,
you might want to put your archive libraries there. You would eliminate
the task of entering the entire library path name each time you compile
or link.

The drawbacks of putting the libraries in /usr/lib or
lusr/lib/pa20_64 are:

= You usually need super-user (system administrator) privileges to
write to the directory.

< You could overwrite an HP-UX system library that resides in the
directory.

136 Chapter5

Creating and Using Libraries
Creating Archive Libraries

Check with your system administrator before attempting to use
[usr/lib or /usr/lib/pa20_64

Using /usr/local/lib or /usr/contrib/lib

The /usr/local/lib and /ust/local/lib/pa20_64 library typically
contain libraries created locally — by programmers on the system;
[usr/contrib/lib and /usr/contrib/lib/pa20_64 contain

libraries supplied with HP-UX but not supported by Hewlett-Packard.
Programmers can create their own libraries for both 32-bit and 64-bit
code using the same library name. Although Id does not automatically
search these directories, they are still often the best choice for locating
user-defined libraries because the directories are not write-protected.
Therefore, programmers can store the libraries in these directories

without super-user privileges. Use -L/usr/local/lib or
-L/usr/contrib/lib for 32-bit libraries, or
-L/usr/local/lib/pa20_64 or -L/usr/contrib/lib/pa20_64 for

64-bit libraries to tell the linker to search these directories.

Chapter 5 137

Creating and Using Libraries
Creating Shared Libraries

Creating Shared Libraries
Two steps are required to create a shared library:

1. “Creating Position-Independent Code (PIC)” by compiling with +z.
2. “Creating the Shared Library with Id” by linking with -b .

Shown below are the commands you would use to create a shared library
called libunits.sl

$ cc -Aa -c +z length.c volume.c mass.c
$1d -b -o libunits.sl length.o volume.o mass.o

Other topics relevant to shared libraries are:

= “Shared Library Dependencies”

= “Updating a Shared Library”

= “Version Control with Shared Libraries”
< “Shared Library Location”

= “Improving Shared Library Performance”

Creating Position-Independent Code (PIC)

The first step in creating a shared library is to create object files
containing position-independent code (PIC). There are two ways to
create PIC object files:

= Compile source files with the +z or +Z compiler option, described
below.

= Write assembly language programs that use appropriate addressing
modes, described in Chapter 7, “Position-Independent Code,” on page
259,

In 32-bit mode, the +z and +Z options force the compiler to generate PIC
object files. In 64-bit mode, the +Z option is the default.

138 Chapter5

Creating and Using Libraries
Creating Shared Libraries

Example Using +z

Suppose you have some C functions, stored in length.c , that convert
between English and Metric length units. To compile these routines and
create PIC object files with the C compiler, you could use this command:

$ cc-Aa-c +z length.c The +z option creates PIC.

You could then link it with other PIC object files to create a shared
library, as discussed in “Creating the Shared Library with 1d”.

Comparing +z and +Z

In 32-bit mode, the +z and +Z options are essentially the same. Normally,
you compile with +z. However, in some instances — when the number of
referenced symbols per shared library exceeds a predetermined limit —
you must recompile with the +Z option instead. In this situation, the
linker displays an error message and tells you to recompile the library
with +Z.

In 64-bit mode, +Z is the default and the compilers ignore the options
and generate PIC code.

Compiler Support for +z and +Z

In 32-bit mode, the C, C++, FORTRAN, and Pascal compilers support the
+z and +Z options.

In 64-bit mode, +Z is the default for the C and C++ compilers.

Creating the Shared Library with Id

To create a shared library from one or more PIC object files, use the
linker, Id , with the -b option. By default, Id will name the library
a.out . You can change the name with the -0 option.

For example, suppose you have three C source files containing routines to
do length, volume, and mass unit conversions. They are named

length.c , volume.c , and mass.c , respectively. To make a shared
library from these source files, first compile all three files using the +z
option, then combine the resulting .0 files with Id . Shown below are the
commands you would use to create a shared library named

libunits.sl

Chapter 5 139

NOTE

Creating and Using Libraries
Creating Shared Libraries

$ cc -Aa -c +z length.c volume.c mass.c

length.c:

volume.c:

mass.cC:

$ Id -b -o libunits.sl length.o volume.o mass.o

Once the library is created, be sure it has read and execute permissions
for all users who will use the library. For example, the following chmod
command allows read/execute permission for all users of the

libunits.sl library:
$ chmod +r+x libunits.sl

This library can now be linked with other programs. For example, if you
have a C program named convert.c that calls routines from
libunits.sl , you could compile and link it with the cc command:

$ cc -Aa convert.c libunits.sl

In 32-bit mode, once the executable is created, the library should not be
moved because the absolute path name of the library is stored in the
executable. (In 64-bit mode, ./libunit.sl is stored in the
executable.)For details, see “Shared Library Location”.

For details on linking shared libraries with your programs, see Chapter
3, “Linker Tasks,” on page 51.

If you are linking any C++ object files to create an executable or a shared
library, you must use the CCcommand to link. This ensures that
c++patch executes and chains together your nonlocal static constructors
and destructors. If you use Id , the library or executable may not work
correctly and you will probably not get any error messages. For more
information see the HP C++ Programmer's Guide.

Shared Library Dependencies

You can specify additional shared libraries on the ld command line when
creating a shared library. The created shared library is said to have a
dependency on the specified libraries, and these libraries are known as
dependent libraries or supporting libraries. When you load a
library with dependencies, all its dependent libraries are loaded too. For
example, suppose you create a library named libdep.sl using the
command:

$ Id -b -o libdep.sl mod1.0 mod2.0 -Icurses -lcustom

140 Chapter5

Creating and Using Libraries
Creating Shared Libraries

Thereafter, any programs that load libdep.sl — either explicitly with
shl_load or implicitly with the dynamic loader when the program
begins execution — also automatically load the dependent libraries
libcurses.sl and libcustom.sl

There are two additional issues that may be important to some shared
library developers:

= When a shared library with dependencies is loaded, in what order are
the dependent libraries loaded?

= Where are all the dependent libraries placed in relation to other
already loaded libraries? That is, where are they placed in the
process's shared library search list used by the dynamic loader?

The Order in Which Libraries Are Loaded (Load
Graph)

When a shared library with dependencies is loaded, the dynamic loader
builds a load graph to determine the order in which the dependent
libraries are loaded.

For example, suppose you create three libraries — libQ , libD , and libP
— using the Id commands below. The order in which the libraries are
built is important because a library must exist before you can specify it
as a dependent library.

$ Id -b -0 libQ.sl modg.o -IB

$ Id -b -o libD.sl modd.o -IQ -IB

$ Id-b -0 libP.sl modp.o -IA -ID -IQ

The dependency lists for these three libraries are:

< [ibQ depends on libB

< |ibD dependson libQ and libB

< libP dependsonlibA |IlibD , and libQ
+-->libA.sl

|
libP.sl-->libD------ +
|

| Y
+-->[ibQ.sl-->libB.sl

For 32-bit mode. The loader uses the following algorithm in 32-bit
mode:

Chapter 5 141

Creating and Using Libraries
Creating Shared Libraries

if the library has not been visited then
mark the library as visited.
if the library has a dependency list then
traverse the list in reverse order.
Place the library at the head of the load list.

Shown below are the steps taken to form the load graph when libP is
loaded:

=

mark P, traverse Q

mark Q traverse B

mark B, load B

load Q

traverse D

mark D, traverse B

B is already marked, so skip B, traverse Q
Qis already marked, so skip Q
load D

10.mark A, load A

11.load P

© © N o 0k~ D

The resulting load graph is:

libP SIlibA =libD - libQ - libB
For 64-bit mode. The dynamic loader uses the following algorithm in
64-bit mode:

if the library has not been visited then
mark the library as visited;
append the library at the end of the list.
if the library has a dependency list then
traverse the list in reverse order.

Shown below are the steps taken to form the load graph when libP is
loaded:

1. mark P, load P

2. traverse P

142 Chapter5

Creating and Using Libraries
Creating Shared Libraries

mark A, load A

mark D, load D

mark Q load Q

traverse D

Dis already marked, so skip D

traverse Q

© © N o 0 bk~ w

Qis already marked, so skip Q
10.traverse Q
11.Qis already marked, so skip Q
12.traverse B
13.mark B, load B
14.traverse B
15.B is already marked, so skip B
The resulting load graph is:

libP —libA SlibD - libQ - libB

Placing Loaded Libraries in the Search List

Once a load graph is formed, the libraries must be added to the shared
library search list, thus binding their symbols to the program. If the
initial library is an implicitly loaded library (that is, a library that is
automatically loaded when the program begins execution), the libraries
in the load graph are appended to the library search list. For example, if
libP is implicitly loaded, the library search list is:

<current search list> - libP - libA - libD - libQ - libB

The same behavior occurs for libraries that are explicitly loaded with
shl_load , but without the BIND_FIRST modifier (see “BIND_FIRST
Modifier” on page 220 for details). If BIND_FIRST is specified in the
shl_load call, then the libraries in the load graph are inserted before
the existing search list. For example, suppose libP is loaded with this
call:

lib_handle = shl_load("libP.sl", BIND_IMMEDIATE | BIND_FIRST, 0);
Then the resulting library search list is:

Chapter 5 143

Creating and Using Libraries
Creating Shared Libraries

libP - libA - libD - libQ - libB - <currentsearch list>

Updating a Shared Library

The Id command cannot replace or delete object modules in a shared
library. Therefore, to update a shared library, you must relink the library
with all the object files you want the library to include. For example,
suppose you fix some routines in length.c (from the previous section)
that were giving incorrect results. To update the libunits.sl library to
include these changes, you would use this series of commands:

$ cc-Aa-c +z length.c

$ Id -b -o libunits.sl length.o volume.o mass.o

Any programs that use this library will now be using the new versions of
the routines. That is, you do not have to relink any programs that use this
shared library. This is because the routines in the library are attached to
the program at run time.

This is one of the advantages of shared libraries over archive libraries: if
you change an archive library, you must relink any programs that use
the archive library. With shared libraries, you need only recreate the
library.

Incompatible Changes to a Shared Library

If you make incompatible changes to a shared library, you can use library
versioning to provide both the old and the new routines to ensure that
programs linked with the old routines continue to work. See “Version
Control with Shared Libraries” for more information on version control
of shared libraries.

Shared Library Location

You can place shared libraries in the same locations as archive libraries
(see “Archive Library Location”). Again, this is typically

lusr/local/lib and /usr/contrib/lib (32-bit mode) or
/user/local/lib/pa20_64 and /usr/contrib/lib/pa20_64 (64
bit mode) for application libraries, and /ust/lib (32-bit mode) or
/userl/lib/pa20_64 (64-bit mode) for system libraries. However, these
are just suggestions.

144 Chapter5

Creating and Using Libraries
Creating Shared Libraries

Prior to the HP-UX 9.0 release, moving a shared library caused any
programs that were linked with the library to fail when they tried to load
the library. Prior to 9.0, you were required to relink all applications that
used the library if the library was moved to a different directory.

Beginning with the HP-UX 9.0 release, a program can search a list of
directories at run time for any required libraries. Thus, libraries can be
moved after an application has been linked with them. To search for
libraries at run time, a program must know which directories to search.
There are two ways to specify this directory search information:

= Store a directory path list in the program with the linker option +b
path_list.

= Link the program with +s, enabling the program to use the path list
defined by the SHLIB_PATH environment variable at run time.

For 64-bit programs, you can also use the LD_LIBRARY_PATH
environment variable, and the +s option is enabled by default.

For details on the use of these options, refer to “Moving Libraries after
Linking with +b” on page 84 and “Moving Libraries After Linking with
+s and SHLIB_PATH” on page 86.

Improving Shared Library Performance

This section describes methods you can use to improve the run-time
performance of shared libraries. If, after using the methods described
here, you are still not satisfied with the performance of your program
with shared libraries, try linking with archive libraries instead to see if it
improves performance. In general, though, archive libraries will not
provide great performance improvements over shared libraries.

Using Profile-Based Optimization on Shared Libraries

You can perform profile-based optimization on your shared libraries to
improve their performance. See “Profile-Based Optimization” on page
274 for more information.

Exporting Only the Required Symbols

Normally, all global variables and procedure definitions are exported
from a shared library. In other words, any procedure or variable defined
in a shared library is made visible to any code that uses this library. In
addition, the compilers generate “internal” symbols that are exported.

Chapter 5 145

Creating and Using Libraries
Creating Shared Libraries

You may be surprised to find that a shared library exports many more
symbols than necessary for code that uses the library. These extra
symbols add to the size of the library's symbol table and can even
degrade performance (since the dynamic loader has to search a
larger-than-necessary number of symbols).

One possible way to improve shared library performance is to export only
those symbols that need exporting from a library. To control which
symbols are exported, use either the +e or the -h option to the Id
command. When +e options are specified, the linker exports only those
symbols specified by +e options. The -h option causes the linker to hide
the specified symbols. (For details on using these options, see “Hiding
Symbols with -h” on page 81 and “Exporting Symbols with +e” on page
79.)

As an example, suppose you've created a shared library that defines the
procedures init_prog and quit_prog and the global variable
prog_state . To ensure that only these symbols are exported from the
library, specify these options when creating the library:

+e init_prog +e quit_prog +e prog_state

If you have to export many symbols, you may find it convenient to use the
-c file option, which allows you to specify linker options in file. For
instance, you could specify the above options in a file named

export_opts as:

+e init_prog

+e quit_prog
+e prog_state

Then you would specify the following option on the linker command line:

-C export_opts

(For details on the -c option, see “Passing Linker Options in a file with
-c” on page 86.)

Placing Frequently-Called Routines Together

When the linker creates a shared library, it places the PIC object
modules into the library in the order in which they are specified on the
linker command line. The order in which the modules appear can greatly
affect performance. For instance, consider the following modules:

a.o Calls routines in c.o heavily, and its routines are
called frequently by c.o .

146 Chapter5

Creating and Using Libraries
Creating Shared Libraries

b.o A huge module, but contains only error routines that
are seldom called.

c.0 Contains routines that are called frequently by a.o ,
and calls routines in a.0 frequently.

If you create a shared library using the following command line, the
modules will be inserted into the library in alphabetical order:

$ Id -b -o libabc.sl *.0

The potential problem with this ordering is that the routines in a.o and
c.0 are spaced far apart in the library. Better virtual memory
performance could be attained by positioning the modules a.0o and c.o
together in the shared library, followed by the module b.o . The following
command will do this:

$ Id-b -olibabc.sla.o c.o b.o

One way to help determine the best order to specify the object files is to
gather profile data for the object modules; modules that are frequently
called should be grouped together on the command line.

Another way is to use the lorder(1) and tsort(1) commands. Used together
on a set of object modules, these commands determine how to order the
modules so that the linker only needs a single pass to resolve references
among the modules. A side-effect of this is that modules that call each
other may be positioned closer together than modules that don't. For
instance, suppose you have defined the following object modules:

Module Calls Routines in Module

a.o X.0Yy.0

b.o X.0Yy.0

d.o none

e.0 none

X.0 d.o

y.0 d.o

Then the following command determines the one-pass link order:
$ lorder 2.0 | tsort Pipe lorder's output to tsort.
bio

e.o

X.0

Chapter 5 147

NOTE

Creating and Using Libraries
Creating Shared Libraries

y.0
d.o

Notice that d.o is now closer to x.0 andy.o , which call it. However, this
is still not the best information to use because a.0 and b.o are
separated from x.0 and y.o by the module e.o , which is not called by
any modules. The actual optimal order might be more like this:

a.0 b.o x.0 y.o d.o e.o

Again, the use of lorder and tsort is not perfect, but it may give you
leads on how to best order the modules. You may want to experiment to
see what ordering gives the best performance.

Making Shared Libraries Non-Writable

You may get an additional performance gain by ensuring that no shared
libraries have write permissions. Programs that use more than one
writable library can experience significantly degraded loading time. The
following chmod command gives shared libraries the correct permissions
for best load-time performance:

$ chmod 555 libname

Using the +ESIit Option to cc

Normally, the C compiler places constant data in the data space. If such
data is used in a shared library, each process will get its own copy of the
data, in spite of the fact that the data is constant and should not change.
This can result in some performance degradation.

To get around this, use the C compiler's +ESIit option, which places
constant data in the LIT text space (or in 64-bit mode, in a .text text
segment) instead of the data space. This results in one copy of the
constant data being shared among all processes that use the library.

This option requires that programs not write into constant strings and
data. In addition, structures with embedded initialized pointers won't
work because the pointers cannot be relocated since they are in read-only
$TEXTS$ space. In this case, the linker outputs the error message

"Invalid loader fixup needed "

148 Chapter5

NOTE

Creating and Using Libraries
Version Control with Shared Libraries

Version Control with Shared Libraries

HP-UX provides two ways to support incompatible versions of shared
library routines. “Library-Level Versioning” describes how you create
multiple versions of a shared library. “Intra-Library Versioning”
describes how a single shared library can have multiple versions of an
object module. Library-level versioning is recommended over
intra-library versioning.

Beginning with HP-UX Release 11.00, the 64-bit linker toolset supports
only library-level versioning.

When to Use Shared Library Versioning

For the most part, updates to a shared library should be completely
upward-compatible; that is, updating a shared library won't usually
cause problems for programs that use the library. But sometimes — for
example, if you add a new parameter to a routine — updates cause
undesirable side-effects in programs that call the old version of the
routine. In such cases, it is desirable to retain the old version as well as
the new. This way, old programs will continue to run and new programs
can use the new version of the routine.

Here are some guidelines to keep in mind when making changes to a
library:

= When creating the first version of a shared library, carefully consider
whether or not you will need versioning. It is easier to use
library-level versioning from the start.

When creating the first version of a shared library using intra-library
versioning, version control is not an issue: The default version
number is satisfactory.

= When creating future revisions of a library, you must determine when
a change represents an incompatible change, and thus deserves a new
version. Some examples of incompatible changes are as follows:

Chapter 5 149

Creating and Using Libraries
Version Control with Shared Libraries

= As ageneral rule, when an exported function is changed such that
calls to the function from previously compiled object files should
not resolve to the new version, the change is incompatible. If the
new version can be used as a wholesale replacement for the old
version, the change is compatible.

= For exported data, any change in either the initial value or the
size represents an incompatible change.

= Any function that is changed to take advantage of an incompatible
change in another module should be considered incompatible.

Maintaining Old Versions of Library Modules

When using shared library versioning, you need to save the old versions
of modules in the library:

= With library-level versioning, when an incompatible change is made
to a module, the entire old version of the library must be retained
along with the new version.

= With intra-library versioning, when an incompatible change is made
to a module, all the old versions of the module should be retained
along with the new version. The new version number should
correspond to the date the change was made. If several modules are
changed incompatibly in a library, it is a good idea to give all modules
the same version date.

Library-Level Versioning

HP-UX 10.0 adds a new library-level versioning scheme that allows you
to maintain multiple versions of shared libraries when you make
incompatible changes to the library. By maintaining multiple versions,
applications linked with the older versions continue to run with the older
libraries, while new applications link and run with the newest version of
the library. Library-level versioning is very similar to the library
versioning on UNIX System V Release 4.

How to Use Library-Level Versioning

To use library-level versioning, follow these steps:

150 Chapter5

Creating and Using Libraries
Version Control with Shared Libraries

1. Name the first version of your shared library with an extension of .0
(that's the number zero), for example libA.0 . Use the +h option to
designate the internal name of the library, for example, libA.O

Id -b *.0 -0 libA.O +h libA.O Creates the shared library libA.O.

2. Since the linker still looks for libraries ending in .sl with the -
option, create a symbolic link from the usual name of the library
ending in .sl to the actual library. For example, libA.sl points to
libA.O

In -s libA.O libA.sl libA.sl is a symbolic link to libA.O.
3. Link applications as usual, using the -1 option to specify libraries.
The linker searches for libA.sl , as usual. However, if the library it

finds has an internal name, the linker places the internal name of the
library in the executable's shared library dependency list. When you
run the application, the dynamic loader loads the library named by
this internal name. For example:

Id /opt/langtools/lib/crt0.0 prog.o -IA -Ic Binds a.out with libA.O.

Creating a New, Incompatible Version of the Library

When you create a new version of the library with incompatible changes,
repeat the above steps except increment the number in the suffix of the
shared library file name. That is, create libA.1 rather than libA.0 and
set the symbolic link libA.sl to point to libA.1 . Applications linked
with [ibA.0 continue to run with that library while new applications
link and run with libA.1 . Continue to increment the suffix number for
subsequent incompatible versions, for example libA.2 | libA.3 , and so
forth.

Migrating an Existing Library to Use Library-Level
Versioning

If you have an existing library you can start using library-level
versioning. First rename the existing library to have the extension .0 .
Then create the new version of the library with the extension .1 and an
internal name using the .1 extension. Create a symbolic link with the
extension .sl to point to the .1 library.

Chapter 5 151

Creating and Using Libraries
Version Control with Shared Libraries

When you run a program that uses shared libraries and was linked
before HP-UX 10.0, the dynamic loader first attempts to open the shared
library ending in .0 . If it cannot find that library, it attempts to open the
library ending in .sl

The +h Option and Internal Names

The +h option gives a library an internal name for library-level
versioning. Use +h to create versioned libraries:

+h internal_name

internal_name is typically the same name as the library file itself, for
example libA.1 asin+hlibA.1 . When you link with a library that
has an internal name, the linker puts the internal_name in the shared
library dependency list of the executable or shared library being created.
When running the resulting executable or shared library, it is the library
named by this internal name that the dynamic loader loads.

You can include a relative or absolute path with the internal name, but
you must ensure the dynamic loader can find the library from this name
using its normal search process.

For 32-bit mode, if internal_name includes a relative path (that is, a path
not starting with /), the internal name stored by the linker is the
concatenation of the actual path where the library was found and
internal_name, including the relative path. When the resulting program
is run, if the dynamic loader cannot find the library at this location, the
program will not run.

If internal_name includes an absolute path (that is, a path starting with
/), the internal name stored by the linker is simply the internal_name,
including the absolute path. When the resulting program is run, if the
dynamic loader cannot find the library at this location, the program will
not run.

For 64-bit mode, see “Internal Name Processing” for more information.

File System Links to Shared Libraries

This section discusses the situation where you have used the In(1)
command to create file system links to shared library files. For example:

$ Id -b -0 /Xl/libapp.sl *.0 Create shared library.
$ In -s /X/libapp.sl /tmp/libmine.sl Make the link.

152 Chapter5

Creating and Using Libraries
Version Control with Shared Libraries

Figure 5-5

is a link to
/tmp/libmine. sl »| /X/libapp.sl

During a link, the linker records the file name of the opened library in
the shared library list of the output file. However, if the shared library is
a file system link to the actual library, the linker does not record the
name of the library the file system link points to. Rather it records the
name of the file system link.

For example, if /tmp/libmine.sl is a file system link to
IXllibapp.sl , the following command records /tmp/libmine.sl in
a.out , not /X/libapp.sl as might be expected:

$ Id /opt/langtools/lib/crt0.0 main.o -L /tmp -Imine -Ic

To use library-level versioning in this situation, you must set up
corresponding file system links to make sure older applications linked
with the older libraries run with these libraries. Otherwise, older
applications could end up running with newer shared libraries. In
addition, you must include the absolute path name in the internal name
of the new library.

For example, in 32-bit mode, to make the above example work correctly
with library-level versioning, first implement library-level versioning
with the actual library /X/libapp.sl and include the absolute path in
the internal name of the new library:

$ mv /X/libapp.sl /X/libapp.0 Rename old version.
$ Id -b -0 /Xl/libapp.1 +h /X/libapp.1 *.0 Create new version.
$ In -s /Xllibapp.1 /X/libapp.sl Set up symbolic link.

Then set up the corresponding file system links:

$ In -s /X/libapp.0 /tmp/libmine.0 Link to old version.
$ In -s /X/libapp.1 /tmp/libmine.1 Link to new version.
$ rm /tmp/libmine.sl Remove old link.
$ In -s /X/libapp.sl /tmp/libmine.sl Link to the link.

Chapter 5 153

Figure 5-6

Creating and Using Libraries
Version Control with Shared Libraries

e 18 a link fo -
/tmp/libmine.0 —.|/X/1ibapp.0

. s alink (o
/tmp/libmine.l —__o.}/X/1ibapp.1

is a link to AZ link to

/tmp/libmine.sl —— s /X/libapp.sl

NOTE

With these links in place, the loader will load /X/libapp.0 when
running the a.out file created above. New applications will link and run
with /X/libapp.1

Renaming the old version of the .0 version library only works for 32-bit
mode.

For 64-bit mode programs, the dynamic loader only loads the library
recorded in the dynamic load table. You should use library-lever
versioning and create your 64-bit shared library with an internal name
unless the library will not be versioned in the future.

Using shl_load(3X) with Library-Level Versioning

Once library level versioning is used, calls to shl_load(3X) should specify
the actual version of the library to be loaded. For example, if libA.sl is
now a symbolic link to libA.1 , then calls to dynamically load this
library should specify the latest version available when the application is
compiled as shown below:

shl_load("libA.1", BIND_DEFERRED, O0);

This insures that when the application is migrated to a system that has
a later version of libA available, the actual version desired is the one
that is dynamically loaded.

Intra-Library Versioning

Intra-library versioning is a second method of maintaining multiple
incompatible versions of shared library routines. Library-level
versioning is recommended over intra-library versioning.

This section provides information on the following topics:

= “The Version Number Compiler Directive”

154 Chapter5

Creating and Using Libraries
Version Control with Shared Libraries

= “Shared Library Dependencies and Version Control”
< “Adding New Versions to a Shared Library”

= “Specifying a Version Date”

The Version Number Compiler Directive

With intra-library versioning, you assign a version number to any
module in a shared library. The version number applies to all global
symbols defined in the module's source file. The version number is a date,
specified with a compiler directive in the source file. The syntax of the
version number directive depends on the language:

C and C++: #pragma HP_SHLIB_VERSION "date"
FORTRAN: $SHLIB_VERSION 'date'
Pascal: $SHLIB_VERSION 'date'$

The date argument in all three directives is of the form month/ year. The
month must be 1 through 12, corresponding to January through
December. The year can be specified as either the last two digits of the
year (94 for 1994) or a full year specification (1994). Two-digit year codes
from 00 through 40 represent the years 2000 through 2040.

This directive should only be used if incompatible changes are made to a
source file. If a version number directive is not present in a source file,
the version number of all symbols defined in the object module defaults
to 1/90 .

Shared Library Dependencies and Version Control

A shared library as a whole can be thought of as having a version
number itself. This version number is the most recent of the versioned
symbols in the library and any dependent libraries.

When a shared library is built with a dependent shared library, the
version number of the dependent library used during the link is recorded
with the dependency.

When shl_load(3X) is called to load a shared library, the latest version of
the library is loaded. If that library has dependencies, the dynamic
loader (dld.sl(5)) will load the versions of the dependent libraries that
were recorded in the dependency list. Note that these are not necessarily
the most recent versions of the dependent libraries. When did.sl loads
a particular version of a shared library, it will load the same version of
any dependent libraries.

Chapter 5 155

Creating and Using Libraries
Version Control with Shared Libraries

If a shared library lists a second shared library as a dependency, did.sl
will generate an error if the second shared library has a version number
which is older than the version number recorded with the dependency.
This means that the first library was built using a more recent version of
the second library than the version that did.sl currently finds.

Adding New Versions to a Shared Library

To rebuild a shared library with new versions of object files, run Id again
with the newly compiled object files. For example, suppose you want to
add new functionality to the routines in length.c , making them

incompatible with existing programs that call libunits.sl . Before
making the changes, make a copy of the existing length.c and name it
oldlength.c . Then change the routines in length.c with the version

directive specifying the current month and date. The following shows the
new length.c file:

#pragma HP_SHLIB_VERSION "11/93" /* date is November 1993 */
/*

* New version of "in_to_cm" also returns a character string
* "cmstr" with the converted value in ASCIl form.
*/
float in_to_cm(float in, char *cmstr) /* convert in to cm *
/
{ .
e /* build "cmstr" */
return(in * 2.54);

}
/* other length conversion routines */

To update libunits.sl to include the new length.c routines, copy the
old version of length.o to oldlength.o ; then compile length.c and
rebuild the library with the new length.o and oldlength.o
$ cp length.c oldlength.c Save the old source.
$ mv length.o oldlength.o Save old length.o.

L Make new length.c.
$ cc -Aa -c +z length.c Make new length.o.
$ Id -b -o libunits.sl oldlength.o \ Relink the library.

volume.o mass.o length.o

Thereafter, any programs linked with libunits.sl use the new
versions of length-conversion routines defined in length.o . Programs
linked with the old version of the library still use those routines from
oldlength.o . For details on linking with shared libraries, see Chapter
3, “Linker Tasks,” on page 51.

156 Chapter5

Creating and Using Libraries
Version Control with Shared Libraries

Specifying a Version Date

When adding modules to a library for a particular release of the library,
it is best to give all modules the same version date. For example, if you
completefilel.o on04/93,file2.o on05/93,andfile3.0 on 07/93, it
would be best to give all the modules the same version date, say 07/93.

The reason for doing this is best illustrated with an example. Suppose in
the previous example you gave each module a version date corresponding
to the date it was completed: 04/93 for filel.o , 05/93 for file2.o0 , and
07/93 for file3.0 . You then build the final library on 07/93 and link an
application a.out with the library. Now suppose that you introduce an
incompatible change to function foo found in filel.o , set the version
date to 05/93, and rebuild the library. If you run a.out with the new
version of the library, a.out will get the new, incompatible version of
foo because its version date is still earlier than the date the application
was linked with the original library!

Chapter 5 157

Creating and Using Libraries
Switching from Archive to Shared Libraries

Switching from Archive to Shared
Libraries

There are cases where a program may behave differently when linked
with shared libraries than when linked with archive libraries. These are
the result of subtle differences in the algorithms the linker uses to
resolve symbols and combine object modules. This section covers these
considerations. (See also “Caution When Mixing Shared and Archive
Libraries™.)

Library Path Names

As discussed previously, in 32-bit mode, Id records the absolute path

names of any shared libraries searched at link time in the a.out file.
When the program begins execution, the dynamic loader attaches any
shared libraries that were specified at link time. Therefore, you must

ensure that any libraries specified at link time are also present in the
same location at run time.

For 64-bit naming, see “Internal Name Processing” for more information.

Relying on Undocumented Linker Behavior

Occasionally, programmers may take advantage of linker behavior that
is undocumented but has traditionally worked. With shared libraries,
such programming practices might not work or may produce different
results. If the old behavior is absolutely necessary, linking with archive
libraries only (-a archive) produces the old behavior.

For example, suppose several definitions and references of a symbol exist
in different object and archive library files. By specifying the files in a
particular link order, you could cause the linker to use one definition over
another. But doing so requires an understanding of the subtle (and
undocumented) symbol resolution rules used by the linker, and these
rules are slightly different for shared libraries. So make files or shell
scripts that took advantage of such linker behavior prior to the support
of shared libraries may not work as expected with shared libraries.

158 Chapter5

Creating and Using Libraries
Switching from Archive to Shared Libraries

More commonly, programmers may take advantage of undocumented
linker behavior to minimize the size of routines copied into the a.out
files from archive libraries. This is no longer necessary if all libraries are
shared.

Although it is impossible to characterize the new resolution rules exactly,
the following rules always apply:

= If a symbol is defined in two shared libraries, the definition used at
run time is the one that appeared first, regardless of where the
reference was.

= The linker treats shared libraries more like object files.

As a consequence of the second rule, programs that call wrapper libraries
may become larger. (A wrapper library is a library that contains
alternate versions of C library functions, each of which performs some
bookkeeping and then calls the actual C function. For example, each
function in the wrapper library might update a counter of how many
times the actual C routine is called.) With archive libraries, if the
program references only one routine in the wrapper library, then only the
wrapper routine and the corresponding routine from the C library are
copied into the a.out file. If, on the other hand, a shared wrapper library
and archive C library are specified, in that order, then all routines that
can be referenced by any routine in the wrapper library are copied from
the C library. To avoid this, link with archive or shared versions for both
the wrapper library and C library, or use an archive version of the
wrapper library and a shared version of the C library.

Absolute Virtual Addresses

Writing code that relies on the linker to locate a symbol in a particular
location or in a particular order in relation to other symbols is known as
making an implicit address dependency. Because of the nature of
shared libraries, the linker cannot always preserve the exact ordering of
symbols declared in shared libraries. In particular, variables declared in
a shared library may be located far from the main program's virtual
address space, and they may not reside in the same relative order within
the library as they were linked. Therefore, code that has implicit address
dependencies may not work as expected with shared libraries.

An example of an implicit address dependency is a function that assumes
that two global variables that were defined adjacently in the source code
will actually be adjacent in virtual memory. Since the linker may

Chapter 5 159

NOTE

Creating and Using Libraries
Switching from Archive to Shared Libraries

rearrange data in shared libraries, this is no longer guaranteed. Another
example is a function that assumes variables it declares statically (for

example, C static variables) reside below the reserved symbol _end in
memory (see end(3)). In general, it is a bad idea to depend on the relative
addresses of global variables, because the linker may move them around.

In assembly language, using the address of a label to calculate the size of
the immediately preceding data structure is not affected: the assemblers
still calculate the size correctly.

Stack Usage

To load shared libraries, a program must have a copy of the dynamic
loader (did.sl) mapped into its address space. This copy of the dynamic
loader shares the stack with the program. The dynamic loader uses the
stack during startup and whenever a program calls a shared library
routine for the first time. If you specify -B immediate , the dynamic
loader uses the stack at startup only.

For 32-bit mode only:

Although it is not recommended programming practice, some programs
may use stack space “above” the program's current stack. To preserve the
contents “above” the program's logical top of the stack, the dynamic
loader attempts to use stack space far away from program's stack
pointer. If a program is doing its own stack manipulations, such as those
implemented by a “threads” package, the dynamic loader may
inadvertently use stack space that the program had reserved for another
thread. Programs doing such stack manipulations should link with
archive libraries, or at least use immediate binding, if this could
potentially cause problems.

Also be aware that if a program sets its stack pointer to memory
allocated in the heap, the dynamic loader may use the space directly
“above” the top of this stack when deferred binding of symbols is used.

Version Control

You can maintain multiple versions of a shared library using
library-level versioning. This allows you to make incompatible changes
to shared libraries and ensure programs linked with the older versions
continue to run. (See “Library-Level Versioning” for more information.)

160 Chapter5

Creating and Using Libraries
Switching from Archive to Shared Libraries

Debugger Limitations

Shared libraries can be debugged just like archive libraries with few
exceptions. For details on debugging shared libraries, refer to the
HP/DDE Debugger User's Guide or the HP-UX Symbolic Debugger
User's Guide.

Using the chroot Command with Shared
Libraries

Some users may use the chroot super-user command when developing
and using shared libraries. This affects the path name that the linker
stores in the executable file. For example, if you chroot to the directory
/users/hyperturbo and develop an application there that uses the
shared library libhype.sl in the same directory, Id records the path
name of the library as /libhype.sl . If you then exit from the chroot ed
directory and attempt to run the application, the dynamic loader won't
find the shared library because it is actually stored in
/users/hyperturbo/libhype.sl , hot in /libhype.sl

Conversely, if you move a program that uses shared libraries into a
chroot ed environment, you must have a copy of the dynamic loader,
did.sl , and all required shared libraries in the correct locations.

Profiling Limitations

Profiling with the prof (1) and gprof (1) commands and the monitor
library function is only possible on a contiguous chunk of the main
program (a.out). Since shared libraries are not contiguous with the
main program in virtual memory, they cannot be profiled. You can still
profile the main program, though. If profiling of libraries is required,
relink the application with the archive version of the library, using the
-a archive option.

Chapter 5 161

NOTE

Creating and Using Libraries
Summary of HP-UX Libraries

Summary of HP-UX Libraries

What libraries your system has depends on what components were
purchased. For example, if you didn't purchase Starbase Display List,
you won't have the Starbase Display List library on your system.

HP-UX library routines are described in detail in sections 2 and 3 of the
HP-UX Reference. Routines in section 2 are known as system calls,
because they provide low-level system services; they are found in libc
Routines in section 3 are other “higher-level” library routines and are
found in several different libraries including libc

Each library routine, or group of library routines, is documented on a
man page. Man pages are sorted alphabetically by routine name and
have the general form routine(nL), where:

routine is the name of the routine, or group of closely related
routines, being documented.

n is the HP-UX Reference section number: 2 for system
calls, 3 for other library routines.

L is a letter designating the library in which the routine
is stored.

For example, the printf(3S) man page describes the standard
input/output libc routines printf , nl_printf , fprintf

nl_fprintf , sprintf , and nl_sprintf . And the pipe(2) man page
describes the pipe system call.

The major library groups defined in the HP-UX Reference are shown
below:

Certain language-specific libraries are not documented in the HP-UX
Reference; instead, they are documented with the appropriate language
documentation. For example, all FORTRAN intrinsics (MAX MODand so
forth) are documented in the HP FORTRAN/9000 Programmer's
Reference.

Group Description

162 Chapter5

Creating and Using Libraries
Summary of HP-UX Libraries

(2) These functions are known as system calls. They
provide low-level access to operating system services,
such as opening files, setting up signal handlers, and
process control. These routines are located in libc

(3C) These are standard C library routines located in libc

(3S) These functions comprise the Standard input/output
routines (see stdio(3S)). They are located in libc

(3M) These functions comprise the Math library. The linker
searches this library under the -lm option (for the
SVID math library) or the -IM option (for the POSIX
math library).

(3G) These functions comprise the Graphics library.

(31 These functions comprise the Instrument support
library.

(3X) Various specialized libraries. The names of the

libraries in which these routines reside are
documented on the man page.

The routines marked by (2), (3C), and (3S) comprise the standard C
library libc . The C, C++, FORTRAN, and Pascal compilers
automatically link with this library when creating an executable
program.

For more information on these libraries, see C, A Reference Manual by
Samual P. Harbison and Guy L. Steele Jr., published in 1991 by
Prentice-Hall, or UNIX System V Libraries by Baird Peterson, published
in 1992 by Van Nostrand Reinhold, or C Programming for UNIX by John
Valley, published in 1992 by Sams Publishing. For more information on
system calls see Advanced UNIX Programming by Marc J. Rochkind,
published in 1985 by Prentice-Hall or Advanced Programming in the
UNIX Environment by W. Richard Stevens, published in 1992 by
Addison-Wesley.

Chapter 5 163

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

I
Caution When Mixing Shared and
Archive Libraries
Mixing shared and archive libraries in an application is not
recommended and should be avoided. That is, an application should use
only shared libraries or only archive libraries.
Mixing shared and archive libraries can lead to unsatisfied symbols,
hidden definitions, and duplicate definitions and cause an application to
abort or exhibit incorrect behavior at run time. The following examples
illustrate some of these problems.
Example 1: Unsatisfied Symbols
This example (in 32-bit and 64-bit +compat mode) shows how mixing
shared and archive libraries can cause a program to abort. Suppose you
have a main program, main() , and three functions, f1() ,f2() , and
f3() each in a separate source file. main() callsfl() andf3() butnot
f2()
$ cc -c main.c fl.c f2.c Compile to relocatable object code.
$ cc -c +z f3.c Compile to position-independent code
Figure 5-7
main.o fl.o f2.0 f3.0
main () { £1(0) {} £2 () {} £30) {}
£1():
£3();
}

Next suppose you put f3.0 into the shared library lib3.sl and fl.0
and f2.0 into the archive library lib12.a

$ Id -b -0 lib3.sl f3.0 Create a shared library.
$ ar gqvc libl2.a fl.o f2.0 Create an archive library.

164 Chapter5

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Figure 5-8
main.o libl2.a lib3.sl
main () { f1() {1} £3() {1}
£1();
£3(0); £f2() {}
}
Now link the main with the libraries and create the executable a.out :
$ cc main.o libl2.a lib3.sl Link the program
Figure 5-9
a.out lib3.sl
main () { £3() {1}
£1();
£3();
}
£1() {1}

When you run a.out , it runs correctly. Now suppose you need to modify
f3() tocall f2()

Chapter 5 165

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Figure 5-10
£3.c

£3() {
£2();

Compile the new f3() and rebuild the shared library lib3.sl

$ cc -c +z f3.c Compile to relocatable code
$ Id -b -0 lib3.sl f3.0 Create a new shared library.

Figure 5-11
1lib3.sl

£3() {
£2();

Problem
Here's where the problem can occur. If you do not relink the application,
main.o , and just run a.out with the new version of lib3.sl , the

program will abort since f2() is not available in the application. The
reference to f2() from f3() remains unsatisfied, producing an error in
32-bit mode:

166 Chapter5

Figure 5-12

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

a.out libk3.=1
main () { £3() {
£1(); £2();
£3():; }
1
£1() {1}
$ a.out

/usr/lib/did.sl: Unresolved symbol: 2 (code) from
/users/steve/dev/lib3.sl
Abort(coredump)

Example 2: Using shl _load(3X)

This example (in 32-bit and 64-bit +compat mode shows how mixing
archive libraries and shared libraries using shl_load(3X) can lead to
unsatisfied symbols and cause a program to abort.

If a library being loaded depends on a definition that does not exist in the
application or any of the dependent shared libraries, the application will
abort with an unsatisfied definition at run time. This seems obvious
enough when an application is first created. However, over time, as the
shared libraries evolve, new symbol imports may be introduced that were
not originally anticipated. This problem can be avoided by ensuring that
shared libraries maintain accurate dependency lists.

Suppose you have a main program, main() , and three functions, f1()
f2() ,andf3() each in a separate source file. main() callsfl() and
uses shl_load() tocall f3() . main() does not call f2()

$ cc -¢c main.c fl.c f2.c Compile to relocatable object code
$ cc -c +z f3.c Compile to position-independent code

Chapter 5 167

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Figure 5-13
main.o fl.o £f3.0
main() { £1() {} £3() {}
£1();
shl locad(lib3.s1);
}
£2 () {}
Next suppose you put f3.0 into the shared library lib3.sl and fl.0
and f2.0 into the archive library lib12.a
$ Id -b -0 lib3.sl f3.0 Create a shared library.
$ ar qvc libl2.a fl.o f2.0 Create an archive library.
Figure 5-14
main.o likbl2.a likb3.s1
main () { £1() {} £3() {}
£1();
shl load(lib3.sl); £2() {}
£3();
}

Now link the main with the archive library and create the executable
a.out :
$ cc main.o libl2.a -Idid Link the program.

168 Chapter5

Figure 5-15

a.out

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

1lib3.sl

main ()
£1();

£3();
}

{

shl load(l1ib3.sl);

£3() {}

£1()

{}

Figure 5-16

When you run a.out , it runs correctly. Now suppose you need to modify
f3() tocall f2()

f3.¢
£3() {
£2();

Problem

Here is where a problem can be introduced. If you compile the new f3()
and rebuild the shared library lib3.sl without specifying the
dependency on a shared library containing f2() , calls tof3() will abort.

$ cc -c +z f3.c Compile to position-independent code.
$ Id -b -0 lib3.sl f3.0 Error! Missing library containing f2().

Chapter 5 169

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Figure 5-17
1lib3.sl
£3() {
£2();
Here's where the problem shows up. If you do not relink the application,
main.o , and just run a.out with the new version of lib3.sl , the
program will abort since f2() is not available in the program's address
space. The reference to f2() from f3() remains unsatisfied, generating
the 32-bit error message:
Figure 5-18
a.out 1lib3.sl
main () { £3() {
£1(); £2();
shl load(lib3.sl); }
£3();

}

£1() {1}

$ a.out
lllegal instruction (coredump)

170 Chapter5

NOTE

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Example 3: Hidden Definitions

This example shows how mixing archive libraries and shared libraries
can lead to multiple definitions in the application and unexpected
results. If one of the definitions happens to be a data symbol, the results
can be catastrophic. If any of the definitions are code symbols, different
versions of the same routine could end up being used in the application.
This could lead to incompatibilities.

Duplicate definitions can occur when a dependent shared library is
updated to refer to a symbol contained in the program file but not visible
to the shared library. The new symbol import must be satisfied somehow
by either adding the symbol to the library or by updating the shared
library dependency list. Otherwise the application must be relinked.

Using an archive version of libc in an application using shared libraries
is the most common cause of duplicate definitions. Remember that
symbols not referenced by a shared library at link time will not be
exported by default.

Duplicate definitions can be avoided if any or all symbols that may be
referenced by a shared library are exported from the application at link
time. Shared libraries always reference the first occurrence of a
definition. In the following example the first definition is in the
executable file, a.out . See the -E option and +e symbol option described
in 1d(1) and “Exporting Symbols from main with -E” on page 81,
“Exporting Symbols with +ee” on page 81, and “Exporting Symbols with
+e” on page 79.

The following example illustrates this situation. Suppose you have a
main program, main() , and three functions, f1() ,f2() ,andf3() each
in a separate source file. main() callsf1() ,f2() ,andf3()

$ cc -c main.c Compile to relocatable code.
$ cc -c +z fl.c f2.c f3.c Compile to position-independent code.

Chapter 5 171

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Figure 5-19
main.o fl.o £f2Z2.0 £f3.0
main () { £1() {} £2 () {} £3() {}
£1();
£2();
£3();
}
Next suppose you put f3.0 into the shared library lib3.sl and fl.0
and f2.0 into the archive librarylibl2.a .Alsoputfl.o andf2.0 into
the shared library lib12.sl
$ Id -b -0 lib3.sl f3.0 Create a shared library.
$ Id -b -0 libl2.sl fl.o f2.0 Create a shared library.
$ ar gqvc libl2.a fl.o f2.0 Create an archive library.
Figure 5-20
main.o libl2 . sl libl2.a 1lib3.s1
main{) { £1() {} £1() {1} £3() {1}
£1();
£2(); £2() {1} £f2() {1}
£3();
}

Now link the main with the archive library libl2.a and the shared
library lib3.sl and create the executable a.out :

$ cc main.o libl2.a lib3.sl Link the program.

172 Chapter5

Figure 5-21

Figure 5-22

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

a.out lib3.sl

main () { £3() {1}
£1();
£2();
£3();

£1() {}

£2() {}

When you run a.out , it runs correctly. Now suppose you need to modify
f3() to call f2()

1lib3.sl

£3() {
£2();

}

Compile the new f3() and rebuild the shared library lib3.sl
including the new dependency on f2() in lib12.sl

$ cc -c +z f3.c Compile to PIC.
$Id -b -0 lib3.sl f3.0 -L . -112 Create library with dependency.

Chapter 5 173

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Figure 5-23

1lib3.sl libl2.sl

£3() { £1() {}
£2();

} £2() {}

Problem

Here's where the problem can occur in 32-bit and 64-bit +compat modes.
If you do not relink the application, main.o , and just run a.out with the
new version of lib3.sl , the program will execute successfully, but it
will execute two different versions of f2() . main() callsf2() in the
program file a.out andf3() callsf2() inlibl2.sl . Even though

f2() is contained within the application, it is not visible to the shared
library, lib3.sl

174 Chapter5

Creating and Using Libraries
Caution When Mixing Shared and Archive Libraries

Figure 5-24
a.out lib3.sl libl2.sl
main () | £3() { £1() {}
£1(); £2();
£2(); 1 £2() {}
£3();

£1() {}

£2() {}

Summary of Mixing Shared and Archive
Libraries

Applications that depend on shared libraries should not use archive
libraries to satisfy symbol imports in a shared library. This suggests that
only a shared version of libc should be used in applications using
shared libraries. If an archive version of a dependent library must be
used, all of its definitions should be explicitly exported with the -E or +e
options to the linker to avoid multiple definitions.

Providers of shared libraries should make every effort to prevent these
kinds of problems. In particular, if a shared library provider allows
unsatisfied symbols to be satisfied by an archive version of libc , the
application that uses the library may fail if the shared library is later
updated and any new libc dependencies are introduced. New
dependencies in shared libraries can be satisfied by maintaining
accurate dependency lists. However, this can lead to multiple
occurrences of the same definition in an application if the definitions are
not explicitly exported.

Chapter 5 175

NOTE

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

Using Shared Libraries in 64-bit mode

In the HP-UX 11.00 release, HP provides an industry-standard linker
toolset for programs linked in 64-bit mode. The new toolset consists of a
linker, dynamic loader, object file class library, and an object file tool
collection. Although compatibility between the current and previous
toolset is an important goal, some differences exist between these
toolsets.

The 64-bit mode linker toolset introduces different types of shared
libraries. (In SVR4 Unix, shared libraries are sometimes called dlls.)

= Compatibility mode shared library: Using the 64-bit mode linker,
a compatibility mode shared library is basically a library built with
Id -b +compat that has dependent shared libraries. The +compat
option affects the way the linker and loader search for dependent
libraries of a shared library and records their names.

= Standard mode shared library: A standard mode shared library is
a library built with Id-b or Id -b +std with dependent shared
libraries.

If you specify Id -b +compat with no dependent libraries, you create a
shared library that has no mode —neither compatibility mode nor
standard mode.

The linker handles these libraries in different way with regard to
internal naming and library search modes.

Internal Name Processing

For both 32-bit mode and 64-bit mode, you specify shared library internal
names using Id +h name However, their dependent libraries’ internal
names may not be recorded the same way in a standard mode link.

Inanld +compat link, the linker treats the internal names like it does
in 32-bit mode:

= If the dependent library’s internal name is rooted (starts with “/”), it
is inserted as is in the DT_HP_NEEDEENtry. If it was specified with
-| , the dynamic path bit is set to TRUEin the DT_HP_NEEDEBNtry.

176 Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

If the dependent library’s internal name contains a relative path, the
internal name is inserted at the end of the path where the shared
library is found at link time, replacing the library’s filename in the
DT_HP_NEEDEREBNtry. If the library is specified with -I , the dynamic
path bit is set to TRUE

If the dependent library’s internal name contains no path, it is
inserted at the end of the path where the shared library is found at
link time, replacing the library’s filename. If the library is specified
with -| , the dynamic path bit is set to TRUE

If the dependent shared library does not have an internal name, the
path where the library is found and the library filename is recorded
in the DT_HP_NEEDEBNtry. If specified with -I , the dynamic path
bit is set to TRUE

If the shared libraries are specified with a relative or no path in this
mode, the linker expands the current working directory when
constructing the DT_HP_NEEDEI[Ntry. So instead of getting
something like ./libdk.sl , you get /home/your_dir/libdk.sl

All DT_HP_NEEDELENtries with the dynamic path bit set are subject
to dynamic path lookup.

In standard mode, the linker treats shared library names as follows:

If the dependent shared library has an internal name, it is recorded
in the DT_NEEDEDentry.

otherwise

If the dependent shared library is specified with the -1 or -I:
option, only the libname.ext is recorded in the DT_NEEDERntry.

otherwise

The path of the dependent shared library as seen on the link line is
recorded in the DT_NEEDERnNtry.

All DT_NEEDERnNtries with no "/" in the libname are subject to
dynamic path lookup.

Dynamic Path Searching for Shared Libraries

In the 64-bit mode of the linker toolset (selected by default or with the
+std option), any library whose name has no "/ " character in it becomes
a candidate for dynamic path searching. Also, the linker always uses the

Chapter 5 177

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

LD_LIBRARY_PATHand the SHLIB_PATH environment variable to add
directories to the run time search path for shared libraries, unless the Id
+noenvvar option is set.

In the 32-bit mode of the linker toolset (selected by the +compat option),
the linker enables run-time dynamic path searching when you link a
program with the -l library and +b path_name options. Or, you can use
the -I library option with the +s path_name option. When programs are
linked with +s, the dynamic loader searches directories specified by the
SHLIB_PATH environment variable to find shared libraries.

The following example shows dynamic path searching changes for 64-bit
mode.

Id /opt/langtools/lib/crt0.0 main.o \ Subiject to
-Ifoo -0 main dynamic path searching.

In 32-bit mode, main aborts at run time if libfoo.sl is moved from its
standard location, /usr/lib or /usr/ccs/lib . The linker does not do
dynamic path searching unless you specify the +b or +s options to the Id
or chatr commands. In 64-bit mode, the dynamic loader searches for
libfoo.sl in the directories specified by the LD_LIBRARY_PATHand
SHLIB_PATH environment variables.

Shared Library Symbol Binding Semantics

Symbol binding resolution, both at link time and run time, changes
slightly in the 64-bit mode HP-UX linker toolset. The symbol binding
policy is more compatible with other open systems.

This section covers the following topics:

Link-time symbol resolution in shared libraries

Resolution of unsatisfied shared library references

Promotion of uninitialized global variables

Symbol searching in dependent libraries

Link-Time Symbol Resolution in Shared Libraries

In the 64-bit mode of the linker toolset, the linker remembers all symbols
in a shared library for the duration of the link. Global definitions satisfy
trailing references, and unsatisfied symbols remaining in shared
libraries are reported.

178 Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

The 32-bit mode linker does not remember the definition of a procedure
in a shared library unless it was referenced in previously scanned object
files.

If you have function names that are duplicated in a shared and archive
library, the 64-bit mode linker may reference a different version of a
procedure than is referenced by the 32-bit mode linker. This change can
lead to unexpected results.

For example, given these source files:
sharedlib.c
void afunc()

printf("\tin SHARED library procedure ‘afunc'\n");

unsat.c
void bfunc()
{

afunc();

archive.c
void afunc()

printf ("\tin ARCHIVE library procedure ‘afunc\n");

main.c
main()

bfunc();

If these files are compiled and linked as:

CC -C main.c unsat.c archive.c

cc -c +z sharedlib.c

Id -b sharedlib.o -0 libA.sl

ar rv libB.a archive.o

cc main.o libA.sl unsat.o libB.a -o testl

The 32-bit linker toolset produces:
$ testl

in ARCHIVE library procedure “afunc'

Chapter 5 179

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

At link time, there is an outstanding unsatisfied symbol for afunc()
when libB is found. The exported symbol for afunc() is not
remembered after libA.sl is scanned. At run time, the afunc() symbol
that is called is the one that came from the archive library, which resides
in testl

The 64-bit mode linker toolset produces:
$ testl

in SHARED library procedure “afunc'

The 64-bit mode linker remembers the symbol for afunc() , and
archive.o will not be pulled out of libB.a . The shared library version
of afunc is called during execution. This behavior is consistent with
other SVR4 systems.

Resolution of Unsatisfied Shared Library References

In the 64-bit mode linker toolset, the dynamic loader requires that all
symbols referenced by all loaded libraries be satisfied at the appropriate
time. This is consistent with other SVR4 systems.

The 32-bit mode linker toolset accepts unresolved symbols in some cases.
For example, if an entry point defined in an object file is never reachable
from the main program file, the unresolved symbol is allowed. You can
use the +vshlibunsats linker option to find unresolved symbols in
shared libraries.

For example, given these source files:

libl.c
void a()
{
}
lib2.c
extern int unsat;
void b()
t unsat = 14;
}
main.c
main()
a();
}

180 Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

If these files are compiled and linked as:

cC -C main.c

cc -c +z libl.c lib2.c

Id -b libl.0 lib2.0 -0 liba.sl
cc main.o liba.sl -o test2

Using the 32-bit mode linker, test2 executes without error. The module
in liba.sl created from lib2.0 is determined to be unreachable
during execution, so the global symbol for unsat (inlib2.0) is not
bound.

The 64-bit mode linker toolset reports an unsatisfied symbol error for
unsat at link time or at run time if the program were made executable.

Promotion of Uninitialized Global Data Items

In the 64-bit mode linker toolset, the linker expands and promotes
uninitialized global data symbols in object files linked into a shared
library to global data objects, exactly like executable files. This is
standard with other SVR4 systems.

The result of this change is that load-time symbol resolution for one of
these objects stops at the first one encountered, instead of continuing
through all loaded libraries to see if an initialized data object exists.

For example, given these source files:

a.c
int object; /* Uninitialized global data symbol */
void a()
printf ("\tobject is %d\n", object);
b.c
int object =1; /* Initialized global data symbol */
void b()
{
}
main.c
main()
a();
}

If these files are compiled and linked as:

Chapter 5 181

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

cC -C main.c

cc-c+zach.c

Id -b a.0 -o libA.sl

Id -b b.o -0 libB.sl

cc main.o libA.sl libB.sl -o test3

The 32-bit mode linker toolset produces:

$ test3
object is 1

The 32-bit mode linker toolset defines the object global variable in
libA.sl as a storage export symbol. The dynamic loader, when
searching for a definition of object to satisfy the import request in
libA.sl , does not stop with the storage export in that library. It
continues to see if there is a data export symbol for the same symbol
definition.

The 64-bit mode linker toolset produces:

$ test3
object is 0

The 64-bit mode linker toolset does not allow storage exports from a
shared library. The uninitialized variable called object ina.o turns
into a data export in libA.sl , with an initial value of 0. During symbol
resolution for the import request from that same library, the dynamic
loader stops with the first seen definition.

Symbol Searching in Dependent Libraries

In the 64-bit mode linker toolset, the linker searches dependent
libraries in a breadth-first order for symbol resolution. This means it
searches libraries linked to the main program file before libraries linked
to shared libraries. This behavior change is consistent with other SVR4
systems. The linker also searches siblings of a dependent shared library
before its children. For example, using the structure described in Figure
5-25, if libD had dependent libraries libDK and libLH, libD, libE, libF,
then libDK, libLH would be searched in that order. The dlopen library
management routines and executable files (a.out) created by the linker
with the +std option (default) use the breadth-first search order.

The 32-bit mode linker toolset searches dependent libraries in a
depth-first order. This means it searches dependent shared library files
in the order in which they are linked to shared libraries. The shl_load
library management routines and executable files (a.out) created by the
linker with the +compat option use the depth-first search order.

182 Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

NOTE If you have data or function names that are duplicated in different
shared libraries, the 64-bit mode linker may link in a different version of
a procedure than the current release. This can lead to unexpected
results.

Figure 5-25 shows an example program with shared libraries (the
shaded boxes are libA.sl dependent libraries; and the example does
not consider libDK or libLH) and compares the two search methods:

Figure 5-25 Search Order of Dependent Libraries

(aout)

libA libB libC

y

¢
7 R T

In 64-bit breadth-first search mode:
a.out --> libA --> libB --> libC -->libD --> libE --> libF --> LibDK --> libLH

In 32-bit depth-first search mode:
a.out --> libA --> libD --> libDK--> libLH --> libE --> LibF --> libB --> libC

The commands to build the libraries and the executable in Figure 5-25
are shown below. Note the link order of libraries in steps 2 and 3:

Chapter 5 183

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

1. First, the dependent shared libraries for libA are built. (Other
libraries are also built.)

Id -b libD.o -0 libD.sl libA dependent shared library
Id -b libE.o -0 libE.sl libA dependent shared library
Id -b libF.o -o libF.sl libA dependent shared library

Id -b libB.o -0 libB.sl
Id -b libC.0 -0 libC.sl

2. Next, libA.o s linked to its dependent libraries and libA.sl is
built.

Id -b libA.o -ID -IE -IF -0 libA.sl

3. Finally, main.o is linked to its shared libraries.

cc main.o -IA -IB -IC -0 main

In the 32-bit mode linker toolset, if a procedure called same_name() is
defined in libD.sl and libB.sl , main calls the procedure defined in
libD.sl . In 64-bit linker toolset, main calls same_name() in libB.sl

If you use mixed mode shared libraries, the search mechanism may
produce unexpected results.

For the following command, libA.sl and its dependent libB.sl are
compatibility mode libraries and libC.sl and libD.sl are standard
mode libraries.

Id -b libF.o +compat -L.-IA -IC -o LibF.sl

libF.sl is a compatibility mode library, but is dependent libC.sl isa
standard mode library. The linker uses depth-first searching
mechanisms because the highest-level library is in compatability mode.

Mixed Mode Shared Libraries

A mixed mode shared library is a library whose children are all of one
type (for example, +compat), but whose grandchildren may be of the
other mode. This poses some problems when linking and loading the
libraries. To help resolve this, the linker treats each library as having
any mode. Therefore, when it sees a compatibility mode library, it
searches for it using the 32-bit-style algorithms. For any standard mode
library, it uses the 64-bit-style algorithms.Only the load order of the
libraries themselves is fixed between depth-first or breadth-first.

184 Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

If you use mixed mode shared libraries, you get behavior based on the
first mode encountered. At runtime, the dynamic loader does a
depth-first search if the dependent libraries at the highest level are
compatibility mode libraries. Otherwise, it does breadth-first searching.
This applies to all dependent libraries of the incomplete executable file.
The loader cannot toggle back and forth between depth-first and
breadth-first at the library level, so the first dependent library it sees
determines which search method to use.

For example:

build standard mode dlls
libfilel.sl is a dependent of libfile2.sl

Id -b filel.0 -o libfilel.sl +h libfilel.1
Id -b file2.0 -o libfile2.sl +h libfile2.1 -L. -Ifilel

build compatibility mode dlls
libfile3.sl is a dependent of libfile4.sl

Id -b file3.0 -o libfile3.sl +h libfile3.1
Id -b filed.0 -o libfile4.sl +h libfile4.1 -L. -Ifile3 +compat

In -s libfilel.sl libfile1.1
In -s libfile3.sl libfile3.1

build a dll using both standard and compatibility mode dependent
dlils

since we didn’t specify +compat, the resulting dll is a standard
mode dll

Id -b file5.0 -o libfile5.sl +h libfile5.1 -L. -Ifile4 -Ifile2
In -s libfile4.sl libfile4.1

In -s libfile2.sl libfile2.1

Id main.o -L. -Ifile5 -Ic

The resulting a.out has standard mode dependents, libfile5.sl and
libc.sl . libfile5.sl has two dependents,: libfile4.sl and
libfile2.sl . libfile4.sl is a compatibility mode library, and has a
dependent, libfile3.sl . libfile2.sl is a standard mode library,
and has a dependent, libfilel.sl . The dynamic loader does a
breadth-first search of all dependent libraries needed by a.out because
the link was done without +compat and libfile5.sl is a standard

Chapter 5 185

NOTE

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

mode library. The loader uses 64-bit mode search techniques on all
libraries except for libfile3.sl , in which case it uses 32-mode search
techniques.

Embedded path inheritance is not applied to any mixed mode shared
library and its descendents. It is only applied to libraries in an a.out
linked with +compat . Embedded path inheritance does not apply to a
breadth-first search mechanism.

64-bit Mode Library Examples

The examples demonstrate the behavior of compatibility and standard
mode shared libraries created by the 64-bit mode linker toolset:

Library Example: Creating a 64-bit Mode
Compatibility Mode Shared Library.

The following example creates a compatibility mode shared library.

Id -b filel.0 -o libfilel.sl +h libfile1.1

Id -b file2.0 -o libfile2.sl +h ./libfile2.1

Id -b file3.0 -0 libfile3.sl +h /var/tmpl/libfile3.1

Id -b filed.o -o libfile4.sl

Id -b +compat file3a.o -o libfile3a.sl -L. -Ifile -Ifile3 +h
libfile3a.1

Id -b +compat file2a.o -o libfile2a.sl libfile2.sl ./libfile4.sl
+b /var/tmp

elfdump -L libfile3a.sl libfile2a.sl

libfile3a.sl:

*** Dynamic Section ***

Index Tag Value
0 HPNeeded1: /libfile1l.1 subject to dynamic path lookup
1 HPNeeded1:/varitmpl/libfile3.1 subject to dyanmic path lookup

2 Sonamelibfile3a.1

libfile2a.sl:

*** Dynamic Section ***

Index Tag Value

0 HPNeeded 0:/home/knish/./libfile2.1 not subject to dynamic path
lookup)]

1 HPNeeded 0:./libfile4.s not subject to dynamic path lookup

2 Rpath Ivartmp

186 Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

Library Example: Creating a 64-bit Standard Mode
Shared Library

The following example builds a standard mode library.

Id -b filel.0 -o libfilel.sl +h libfile1.1

Id -b file2.0 -o libfile2.sl +h ./libfile2.1

Id -b file3.0 -0 libfile3.sl +h /var/tmpl/libfile3.1

Id -b filed.o -o libfile4.sl

Id -b file3a.o0 -o libfile3a.sl -L. -[filel -Ifile3 +h libfile3a.1
Id -b file2a.0 -o libfile2a.sl libfile2.sl /libfile4.sl +b
Ivartmp

elfdump -L libfile3a.sl libfile2a.sl

libfile3a.sl:

*** Dynamic Section ***
Index Tag Value/Ptr
0 Needed libfile1.1 subject to dynamic path lookup

1 Needed /var/tmp/libfile3.1 not subject to dynamic path
lookup--internal pathname has a “/™

2 Soname libfile3a.1
3 Rpath

libfile2a.sl:

** Dynamic Section ***

Index Tag Value/Ptr

0 Needed .Jlibfile2.1 not sub'!ect to dgnamic path _lookup
1 Needed ./libfile4.sl not subject to dynamic path lookup
2 Rpath /var/tmp

The dynamic loader does dynamic path searching for libfilel1.sl Lt

does not do dynamic path searching for libfile2.sl , libfile3.sl ,
and libfile4.sl

Library example: 64-bit Mode Dynamic Path
Searching

This example of dynamic path searching demonstrates differences
between compatibility mode and standard mode dependent shared
libraries. The example builds standard mode libraries and does a
standard mode link. By default, the dynamic loader looks at the
environment variables LD_LIBRARY_PATHand SHLIB_PATH to find the
shared libraries.

build standard mode shared libraries
#libfilel.sl is a dependent of libfile2.sl

Chapter 5 187

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

Id -b filel.0 -o libfilel.sl +h libfilel.1
Id -b file2.0 -o libfile2.sl +h libfile2.1 -L. -Ifilel
Id main.o -L. -Ifile2 -Ic

move dependent lib so dld can't find it

dld won't find library because we didn't set the environment

variable LD_LIBRARY_PATH and SHLIB_PATH

By default, did will look at the environment variables

LD_LIBRARY_PATH and

SHLIB_PATH when doing dynamic path searching unless +noenvvar
is specified

mv libfile2.sl /var/tmp

In -s /var/tmpllibfile2.sl /var/tmp/libfile2.1
a.out

did.sl: Unable to find library ‘libfile2.1’

export SHLIB_PATH=/vartmp
a.out

in filel

in file2

Library Example: 64-bit Mode Compatibility Mode

Link

This example builds a compatibility mode library and does a

compatibility mode link. The +s option is not specified at link time, so
the dynamic loader does not look at any environment variables to do

dynamic path searching.

build compatibility mode dlls
libfilel.sl is a dependent of libfile2.sl

Id -b filel.0 -o libfilel.sl +h libfile1.1

Id -b file2.0 -o libfile2.sl +h libfile2.1 -L. -Ifilel +compat
In -s libfilel.sl libfilel.1

Id main.o +compat -L. -Ifile2 -Ic

move dependent lib so dld can’t find it. Even when we specify
SHLIB_PATH did won't be
able to find the dependent because we didn’t link with +s

mv libfile2.sl /var/tmp

In -s /vartmpllibfile2.sl /var/tmpl/libfile2.1
a.out

did.sl: Unable to find library ‘1:./libfile2.1’
export SHLIB_PATH=/var/tmp

a.out

did.sl: Unable to find library ‘1:./libfile2.1’

You can use chatr +s to enable a.out infilel and file2

chatr +s enable a.out

188

Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

Library Example: Using 64-bit Mode Compatibility
and Standard Shared Libraries

This example mixes compatibility and standard mode shared libraries. It
uses 32-it-style linking and loading for the compatibility mode libraries
and 64-bit-style linking and loading for standard mode libraries.

build standard mode dlls
libfilel.sl is a dependent of libfile2

Id -b filel.0 -o libfilel.sl +h libfilel.1
mkdir TMP
Id -b +b $pwd/TMP file2.0 -o libfile2.sl +h libfile2.1 -L. -Ifilel

build compatibility mode dlls
libfile3.sl is a dependent of libfile4

Id -b file3.0 -0 libfile3.sl +h libfile3.1
I(ijib file4.0 -o libfile4.sl +b $pwd/TMP +h libfile4.1 +compat -L.
-Ifile3

In -s libfilel.sl libfilel.1

In -s libfile3.sl libfile3.1

mv libfilel.sl TMP

mv libfile3.sl TMP

cd TMP

In -s libfilel.sl libfilel.1

In -s libfile3.sl libfile3.1

cd ..

link with +b so Id will use RPATH at link time to find

libfilel.sl (standard mode dll)

the linker will not use RPATH to find libfile3.sl

(compatibility mode dll)

Note that this is true in both a standard mode link and a

compatibility mode link. The

linker never uses RPATH to find any compatibility mode dlls

Id -b +b pwd/TMP main.o -o libfile5.sl +h libfile5.1 -L. -Ifile2
-Ifile4

Id: Can't find dependent library “./libfile3.sl”

Id -b +b pwd/TMP main.o -o libfile5a.sl +h libfile5.1 -L. -Ifile2
-Ifile4 +compat

Id: Can't find dependent library “./libfile3.sl”

Comparing Breadth-first and Depth-first Search in
64-bit Mode

For the following libraries, with the dependencies:

libl.sl has dependents lib2.sl, lib3.sl, and lib4.sl
lib2.sl has dependents lib2a.sl and lib2b.sl
lib3.sl has dependents lib3a.sl and lib3b.sl
lib3a.sl has dependent lib3aa.sl

Chapter 5 189

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

+-->lib2a.sl
|
+-->lib2.sl-->lib2b.sl
I
libl.sl-->lib3.sl-->lib3a.sl-->lib3aa.sl

I
+-->lib3b.sl
+-->lib4 s

In breadth-first searching, the load order is siblings before children:

libl.sl->lib2.sl->lib3.sl->lib4.sl->lib2a.sl->lib2b.sl->lib3a.sl-
>|ib3b.sl->lib3aa.sl

In depth-first searching, the load order is children before siblings:

libl.sl->lib2.sl->lib2a.sl->lib2b.sl->lib3.sl->lib3a.sl->lib3aa.s
I->1ib3b.sl->lib4.sl

Library Example: Using RPATHwith Standard Mode
Shared Library

In the following example, the linker uses the embedded RPATH at link
time to find the dependent library. For compatibility mode shared
libraries, embedded RPATHS are ignored.

Id -b bar.o -o libbar.sl

Id -b foo.0 -o libfoo.sl -L. -Ibar +b /var/tmp

1d should look in /var/tmp to find libbar.sl since libfoo.sl|
has an embedded RPATH of

Ivar/tmp

mv libbar.sl /var/tmp

Id main.o -L. -lfoo -lc

For compatibility mode dlls, embedded RPATHs are ignored

Id -b bar.o -o libbar.sl

Id -b foo.0 -o libfoo.sl +compat -L. -Ibar +b /var/tmp

1d won't find libbar.sl since it does not look at embedded RPATHs
mv libbar.sl /var/tmp

Id main.o -L. -Ifoo +compat -lc

Id: Can't find dependent library “libbar.s|”

Fatal error.

Linking Libraries with +b pathlist

The following examples compare 32-bit and 64-bit mode linking with the
Id +b pathlist option. The dynamic loader uses the directory specified
by the -L option at link time for dynamic library lookup at run time, if
you do not use the +b option.

190 Chapter5

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

Library Example: Linking to Libraries with +b path_listin
64-bit Mode. In this example, the program main calls a shared library
routine in libbar.sl . The routine in libbar.sl in turn calls a routine
in the shared library libme.sl . The +b linker option indicates the
search path for libme.sl when linking libbar.sl . (You use +b
path_list with libraries specified with the -I library or -I: library
options.)

cc -c +DD64 me.c

Id -b me.o -o libme.sl

Id -b bar.o -o libbar.sl -L. -Ime +b /var/tmp
mv libme.sl lvar/tmp

Id main.o -L. -Ibar -Ic

In 64-bit mode, the linker finds libme.sl in /var/tmp because the +b
/var/tmp option is used when linking libbar.sl . Since -lme was
specified when linking libbar.sl , libme.sl is subject to run-time
dynamic path searching.

When linking main.o , the link order in the above example is:

1. .Jlibbar.sl found

2. .Jlibme.sl not found

3. /var/tmp/libme.sl found

4. Jlibc.sl not found

5. Jusr/lib/pa20_64/libc.sl found
In the above example, if you type:

Id main.o -L. -Ibar -Ic
mv libme.sl /var/tmp

instead of:

mv libme.sl /var/tmp
Id main.o -L. -Ibar -Ic

the linker findslibme.sl in./ at link time, and the dynamic loader
finds libme.sl in /vartimp at run time.

At run time, the dynamic loader searches paths to resolve external
references made by main in the following order:

1. LD_LIBRARY_PATHrto find libbar.sl not found
2. SHLIB_PATHto find libbar.sl not found

Chapter 5 191

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

3. .libbar.sl (/libbar.sl) found

4. LD_LIBRARY_PATHto find libme.sl not found
5. SHLIB_PATHto find libme.sl not found

6. /vartmp/libme.sl found

7. LD_LIBRARY_PATHto find libc.sl not found
8. SHLIB_PATHto find libc.sl not found

9. .libc.sl not found

10./usr/lib/pa20_64/libc.sl found

Library Example: Linking to Libraries with +b path_list in
32-bit Mode. This example is the same as “Library Example: Linking
to Libraries with +b path_list in 64-bit Mode”, but this time the program
is compiled in 32-bit mode.

cc -c +DD32 me.c

Id -b me.o -o libme.sl

Id -b bar.o -o libbar.sl -L. -Ime +b /varitmp
Id main.o -L. -Ibar -Ic

mv libme.sl ivar/tmp

When linking main.o , the link order is:

1. Jlibbar.sl found

2. .Jlibme.sl found

3. Jlibc.sl not found

4. |usr/lib/libc.sl found

In the above example, if you type:

mv libme.sl lvar/tmp
Id main.o -L. -Ibar -Ic

instead of:

Id main.o -L. -Ibar -Ic
mv libme.sl lvar/tmp

the linker issues the following error:

Id: Can’t find dependent library ./libme.sl|
Fatal Error

192 Chapter5

NOTE

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

The linker does not look in /var/tmp to find shared libraries because in
32-bit mode the directories specified by +b pathname are only searched
at run time.

Because libme.sl is specified with the -I option, it is subject to
dynamic path searching.

At run time, the dynamic loader looks for shared libraries used by main
in the following order:

1. .Jlibbar.sl found

2. Ivar/tmpl/libme.sl found

3. .libc.sl not found

4. [usr/lib/libc.sl found

In 32-bit mode, the dynamic loader does not search the default

directories to find libme.sl at run time. In 64 bit mode, by default, the
dynamic loader looks in the default directories.

Chapter 5 193

Creating and Using Libraries
Using Shared Libraries in 64-bit mode

194 Chapter5

NOTE

NOTE

Shared Library Management Routines

Shared Library Management
Routines

You can explicitly load and use shared libraries from your program. The
linker toolset provides two families of load routines, shl_load and
dlopen . Theshl_load routines support the shared library mechanisms
provided in previous version of HP-UX. The dlopen routines (available
for 64-bit mode only) use Unix SVR4 compatible mechanism for library
management.

Both families of routines support initializer and terminator routines. The
64-bit mode linker supports init/fini and 10.X release mechanisms. The
32-bit mode linker supports only the style used for the 10.X releases.

Support for shl_load library management routines may be
discontinued in a future 64-bit HP-UX release. You are encouraged to
migrate to the dlopen family of routines for shared library management
if you use the 64-bit mode linker toolset.

Chapter 6 195

Shared Library Management Routines
Shared Library Management Routine Summaries

Shared Library Management Routine
Summaries

The following sections introduce the shared library management
routines available for the HP-UX 11.00 release.

The shl_load Routine Summary

The shl_load family of shared library management routines are
available for both the 32-bit and 64-bit mode linker.

All of the shl_load family routines use the same user interface in 32-bit
and 64-bit mode linking.

Use the following shl_load routines for shared library management:

Routine Action
shl_load and Explicitly load a shared library and a C++
cxxshl_load shared library, respectively. They have the

same syntax. shl_load() lets you load a
compatibility or standard mode shared library.
It does depth-first searching.

shl_findsym Finds the address of a global symbol in a
shared library.

shl_get and Get information about currently loaded

shl_get r libraries. shl_get r is a thread-safe version
of shl_get with the same syntax.

shl_gethandle Get descriptor information about a loaded

and shared library. shl_gethandle_r isa

shl_gethandle_r thread-safe version of shl_gethandle with

the same syntax.

196 Chapter6

Shared Library Management Routines
Shared Library Management Routine Summaries

Routine

Action

shl_definesym

Adds a new symbol to the global shared library
symbol table.

shl_getsymbols

Returns a list of symbols in a shared library.

shl_unload and
cxxshl_load

Unload a shared library and a C++ shared
library, respectively. They have the same
syntax.

Except for shl_get
safe.

and shl_gethandle

These routines are described in the shl_load(3x) man page.

The dlopen Routines Summary

The dlopen family of shared library management routines is available
only for the 64-bit linker.

The dlopen family of routines use Unix SVR4 shared library

mechanisms.

Use the following dI*

routines for shared library management:

Routine Action

dlopen Loads a shared library. This routine does
breadth-first searching.

dlerror Prints the last error message recorded by did .

disym Gets the address of a symbol in a shared library.

diget Returns information on a loaded module.

dimodinfo Returns information about a loaded module.

digetname Retrieves the name of a loaded module given a
load model descriptor.

diclose Unloads a shared library previously loaded by
dlopen().

Chapter 6

197

, all these routines are thread

Shared Library Management Routines
Shared Library Management Routine Summaries

All the dlopen routines are thread-safe.

These routines are described in the dI*(3C) man pages.

Related Files and Commands

These commands and files provide more information about using shared
library management routines.

Command/File Action

a.out(4) Executable file from assembler, compiler, and
linker output.

cc(1) Command to invoke the HP-UX C compiler.

exec(2) System loader.

Id(1) Command to invoke the linker.

198 Chapter6

Shared Library Management Routines
Shared Library Header Files

Shared Library Header Files

The shl_load family of shared library management routines use some
special data types (structures) and constants defined in the C-language
header file /usr/include/dl.h . When using these functions from C
programs, be sure to include dl.h

#include <dl.h>
If you are using HP C++, also include /opt/CC/include/CC/cxxdl.h

Similarly, if you are using the dlopen family of routines, include
{usr/include/dlfcn.h

#include <dlfnc.h>

If an error occurs when calling shared library management routines, the
system error variable errno is set to an appropriate error value.
Constants are defined for these error values in /usr/include/errno.h

(see errno(2)). Thus, if a program checks for these error values, it must
include errno.h

#include <errno.h>

Throughout this section, all examples are given in C. To learn how to call
these routines from C++, FORTRAN, or Pascal, refer to the
inter-language calling conventions described in the compiler
documentation.

Chapter 6 199

Shared Library Management Routines
Using Shared Libraries with cc and |d Options

Using Shared Libraries with cc and Id
Options

In 32-bit mode, you can access the shl_load family of routines
specifying the -Idild option on the cc(1) or Id(1) command line. In 64-bit
mode, you can access the shl_load and dlopen routines by specifying
either -Idild or-ldl on the command line.

Some 32-bit mode implementations do not, by default, export all symbols
defined by a program (instead exporting only those symbols imported by
a shared library seen at link time). Use the -E option told to ensure that
all symbols defined in the program are available to the loaded libraries.
This is the default behavior in 64-bit mode.

To create shared libraries, compile source files and link the resultant
object files with the -b with the cc or Id command.

200 Chapter6

NOTE

Shared Library Management Routines
Initializers for Shared Libraries

Initializers for Shared Libraries

A shared library can have an initialization routine—known as an
initializer—that is called when the load module (a shared library or
executable) is loaded (initializer) or explicitly unloaded (terminator).
Typically, an initializer is used to initialize a shared library's data when
the library is loaded.

When a program begins execution its initializers are called before any
other user code is executed.This allow for setup at initialization and
cleanup at termination. Also, when a shared library is explicitly loaded
using shl_load or dlopen or unloaded using shl_unload or diclose ,
it initializers and terminators are called at the appropriate time.

In 64-bit mode, you can specify initializers and terminators even for
archive libraries or nonshared executables.

Styles of Initializers
The linker supports two different types of initializers and terminators:

e HP-UX 10.X style.
< Init/fini style.

The 32-bit mode linker supports only the HP-UX 10.X style initializers.
See “32-bit Mode Initializers” for more information.

The 64-bit mode linker supports both of these styles.See “64-bit Mode
Initializers” for more information.

HP-UX-10.X-Style Initializers

HP-UX 10.X style initializers are the same type supported in all HP-UX
10.X releases. These are called both before the user’s code is started or a
shared library is loaded (using shl_load or dlopen) as well as when
the shared library is unloaded (using shl_unload or diclose). The
linker option +1 is used to create this type of initializer. The function
returns nothing but takes two arguments. The first is a handle to the
shared library being initialized. This handle can be used in calling
shl_load routines. The second is set to non-zero at startup and zero at
program termination.

Chapter 6 201

NOTE

Shared Library Management Routines
Initializers for Shared Libraries

$1d -b foo.0 +I my_10x_init -o libfoo.sl
#include <dl.h>
void my_10x_init(shl_t handle, int loading)

{

/* handle is the shi_load API handle for the shared library being
initialized. */

/* loading is non-zero at startup and zero at termination. */
if (loading) {

... do some initializations ...

}else {

... do some clean up ...

}

}

Unlike 32-bit mode, the 64-bit HP-UX 10.X style initiators are called
when unloading implicitly lordered shared libraries.

See “32-bit Mode Initializers” for more information on using these
initiators.

Init/Fini Style Initializers

This style uses init and fini functions to handle initialization operations.

Init. Inits are called before the user’s code starts or when a shared
library is loaded. They are functions which take no arguments and
return nothing. The C compiler pragma “init” is used to declare them.
For example:

#pragma init “my_init”
void my_init() { ... do some initializations ... }

The Id command supports the +init option to specify the initializer.

Fini. Finis are called after the user’s code terminates by either calling
the libc exit function, returning from the main or _start functions, or
when the shared library which contains the fini is unloaded from
memory. Like inits, these also take no arguments and return nothing.
The C compiler pragma “fini” is used to create them. For example:

#pragma fini “my_fini”
void my_fini() { ... do some clean up ... }

202 Chapter6

Shared Library Management Routines
Initializers for Shared Libraries

The Id command supports the +fini option to specify theterminator.

32-bit Mode Initializers
The 32-bit mode linker supports HP-UX 10.X style initializers.

This section contains the following topics:

e Using HP-UX 10.X Style Initializers

= “Declaring the Initializer with the +I Option”
= “Initializer Syntax”

< “Example: An Initializer for Each Library”

e “Example: A Common Initializer for Multiple Libraries”

Using HP-UX 10.X Style Initializers

The initializer is called for libraries that are loaded implicitly at program
startup, or explicitly with shl_load

When calling initializers for implicitly loaded libraries, the dynamic
loader waits until all libraries have been loaded before calling the
initializers. It calls the initializers in depth-first order—that is, the
initializers are called in the reverse order in which the libraries are
searched for symbols. All initializers are called before the main program
begins execution.

When calling the initializer for explicitly loaded libraries, the dynamic
loader waits until any dependent libraries are loaded before calling the
initializers. As with implicitly loaded libraries, initializers are called in
depth-first order.

Note that initializers can be disabled for explicitly loaded libraries with
the BIND_NOSTARTflag to shl_load . For more information, see “The
shl_load and cxxshl_load Routines”.

Declaring the Initializer with the +1 Option

To declare the name of the initializer, use the +I linker option when
creating the shared library. The syntax of the +I option is:

+1 initializer
where initializer is the initializer's name.

Multiple initializers may be called by repeating the +I initializer option.

Chapter 6 203

NOTE

Shared Library Management Routines
Initializers for Shared Libraries

For example, to create a shared library named libfoo.sl that uses an
initializer named init_foo , use this linker command line:

$ Id -b -o libfoo.sl libfoo.o +l init_foo

Order of Execution of Multiple Initializers . Multiple
initializers are executed in the same order that they appear on the
command line; they are unloaded in reverse order. (This applies only to
the calling order within a shared library, not across multiple shared
libraries.)

Initializers are not executed when unloading shared libraries which were
implicitly loaded since the program exits without re-entering the
dynamic loader to unload them. Initializers are only called during the
explicit unloading of a shared library.

Initializers behave the same as other symbols; once they are bound they
cannot be overridden with a new symbol through the use of
shl_definesym() or by loading a more visible occurrence of the
initializer symbol with the BIND_FIRST flag. What this means is that
once the initializer is executed upon a load, it is guaranteed to be the
same initializer that is called on an explicit unload.

Initializer Syntax

void initializer(shl_t handle,

int loading)
initializer The name of the initializer as specified with the +I|
linker option.
handle The initializer is called with this parameter set to the

handle of the shared library for which it was invoked.

loading The initializer is called with this parameter set to -1
(true) when the shared library is loaded and 0 (false)
when the library is unloaded.

The initializers cannot be defined as local definitions. Initializers cannot
be hidden through the use of the -h option when building a shared
library.

It is strongly recommended that initializers be defined with names which
do not cause name collisions with other user-defined names in order to
avoid overriding behavior of shared library symbol binding.

204 Chapter6

NOTE

Shared Library Management Routines
Initializers for Shared Libraries

Accessing Initializers' Addresses . Prior to the HP-UX 10.0
release, initializer's addresses could be accessed through the initializer
field of the shared library descriptor which is returned from a call to
shl_get() . To support multiple initializers, the shl_getsymbols()
routine has been enhanced to support the return of the initializer's
address.

If only one initializer is specified for a given library, its address is still
available through the initializer field of a shared library descriptor. If
more than one initializer is specified, the initializer field will be set to
NO_INITIALIZER . Access to multiple initializers can then be

accomplished through the use of shl_getsymbols() .(The
shl_getsymbols() routine can also access a single initializer.)
shl_getsymbols() may not return the initializer which was invoked

for a given library if a more visible initializer symbol is defined after the
library being queried has been loaded. This can occur through the use of
shl_definesym() and by explicitly loading a more visible symbol using
the BIND_FIRST flag upon loading.

To access initializers, a new flag, INITIALIZERS , has been defined for
the shl_getsymbols() routine. It can be ORed with the NO_VALUES
and GLOBAL_VALUESIags. For example,
shl_getsymbols(handle,

TYPE_PROCEDURE,

INITIALIZERS | GLOBAL_VALUES,

malloc,
&symbol_array);

If the GLOBAL_VALUE®nodifier is not used and the initializer is defined
in another shared library or in the program file, shl_getsymbols()

does not find the initializer for the requested library because it is not
defined within the library.

For more information on the usage of shl_getsymbols() , see “The
shl_getsymbols Routine”.
Example: An Initializer for Each Library

One way to use initializers is to define a unique initializer for each
library. For instance, the following example shows the source code for a
library named libfoo.sl that contains an initializer named init_foo

Chapter 6 205

Shared Library Management Routines
Initializers for Shared Libraries

C Source for libfoo.sl

#include <stdio.h>

#include <dl.h>

/*

* This is the local initializer that is called when the libfoo.sl
* is loaded and unloaded:

*/

void init_foo(shl_t hndl, int loading)

if (loading)

printf(“libfoo loaded\n”);
else

printf(“libfoo unloaded\n”);

float in_to_cm(float in) /* convert inches to
centimeters */

{
return (in * 2.54);
}
float gal_to_lI(float gal) /* convert gallons to litres
*/
{
return (gal * 3.79);

float 0z_to_g(float 0z) /* convert ounces to grams */

return (oz * 28.35);

You can use the +I linker option to register a routine as an initializer.
Here are the commands to create libfoo.sl and to register init_foo

as the initializer:

$ cc-Aa -c +z libfoo.c

$ Id -b -o libfoo.sl +1 init_foo libfoo.o

To use this technique with multiple libraries, each library should have a
unique initializer name. The following example program loads and
unloads libfoo.sl

C Source for testlib

#include <stdio.h>
#include <dl.h>
main()

{

float (*in_to_cm)(float), (*gal_to_I)(float), (*oz_to_g)(float);
shl_t hndl_foo;

*

* Load libfoo.sl and find the required symbols:
*/

if (hndl_foo = shl_load(“libfoo.sl”,
BIND_IMMEDIATE, 0)) == NULL)

perror(“shl_load: error loading libfoo.sl”), exit(1);

206 Chapter6

Shared Library Management Routines
Initializers for Shared Libraries

if (shl_findsym(&hndl_foo, “in_to_cm”, TYPE_PROCEDURE,
(void *) &in_to_cm))
perror(“shl_findsym: error finding in_to_cm?”), exit(1);
if (shl_findsym(&hndl_foo, “gal_to_I", TYPE_PROCEDURE,
(void *) &gal_to_l))
perror(“shl_findsym: error finding gal_to_I"), exit(1);
if (shl_findsym(&hndl_foo, “0z_to_g", TYPE_PROCEDURE,
(void *) &oz_to_Q))
perror(“shl_findsym: errror finding 0z_to_g"), exit(1);
/*
* Call routines from libfoo.sl:
printf(*1.0in = %5.2fcm\n”, (*in_to_cm)(1.0));
printf(*1.0gal = %5.2fl\n", (*gal_to_I)(1.0));
printf(“1.00z = %5.2fg\n”, (*oz_to_g)(1.0));
/*
* Unload the library:
*/

shl_unload(hndl_foo);

The following is the output of running the testlib program:

Output of testlib

libfoo loaded
1.0in = 2.54cm
1.0gal = 3.79I
1.00z =28.35g

libfoo unloaded

Example: A Common Initializer for Multiple Libraries

Rather than have a unique initializer for each library, libraries could
have one initializer that calls the actual initialization code for each
library. To use this technique, each library declares and references the
same initializer (for example, _INITIALIZER), which calls the
appropriate initialization code for each library.

This is easily done by defining load and unload functions in each
library. When _INITIALIZER is called, it uses shl_findsym to find and
call the load or unload function (depending on the value of the loading
flag).

The following example shows the source for an _INITIALIZER function:

Chapter 6 207

Shared Library Management Routines
Initializers for Shared Libraries

C Source for _INITIALIZER (file init.c)

#include <dl.h>
/*

* Global initializer used by shared libraries that have

* registered it:

*/
void _INITIALIZER(shl_t hand, int loading)
{

void (*load_unload)();

if (loading)

shl_findsym(&hand, “load”, TYPE_PROCEDURE, (void *)
&load_unload);

else

shl_findsym(&hand, “unload”, TYPE_PROCEDURE, (void *)

&load_unload(;

(*load_unload((); [* call the function */

The following two source files show shared libraries that have registered
_INITIALIZER

C Source for libunits.sl

#include <stdio.h>
#include <dl.h>
void load() /* called after libunits.sl loaded */

printf(“libunits.sl loaded\n”);
void unload() [* called after libunits.sl unloaded
*/

printf(“libunits.sl unloaded\n™);

extern void _INITIALIZER();
floatin_to_cm(floatin) /* convert inches to centimeters */

{
return (in * 2.54);

float gal_to_I(float gal) /* convert gallons to litres */

return (gal * 3.79);

float oz_to_g(float 0z) [* convert ounces to grams */

return (oz * 28.35);
}

208 Chapter6

Shared Library Management Routines
Initializers for Shared Libraries

C Source for libtwo.sl

#include <stdio.h>
void load() /* called after libtwo.sl loaded */

printf(“libtwo.sl loaded\n”);

void unload() [* called after libtwo.sl unloaded
*/
printf(“libtwo.sl unloaded\n”);

extern void _INITIALIZER();
void (*init_ptr)() = _INITIALIZER;

void foo()

printf(“foo called\n”);
\}/oid bar()

printf(“bar called\n”);

Here are the commands used to build these libraries:

$ cc-Aa -c +z libunits.c

$ Id -b -o libunits.sl +I _INITIALIZER libunits.o
$ cc-Aa -c +z libtwo.c

$ Id -b -o libtwo.sl +I _INITIALIZER libtwo.o

The following is an example program that loads these two libraries:

C Source for testlib2

#include <stdio.h>
#include <dl.h>
main()

float (*in_to_cm)(float), (*gal_to_I)(float), (*oz_to_g)(float);
void (*foo)(), (*bar)();
shl_t hndl_units, hndl_two;

/*
*/Load libunits.sl and find the required symbols:
if (hndl_units = shi_load(“libunits.sI”, BIND_IMMEDIATE, 0)) ==
NULL)
perror(“shl_load: error loading libunits.sl”), exit(1);
if (shl_findsym(&hndl_units, “in_to_cm”,
TYPE_PROCEDURE, (void *) &in_to_cm))
perror(“shl_findsym: error finding in_to_cm”), exit(1);
if (shl_findsym(&hndl_units, “gal_to_l",
TYPE_PROCEDURE, (void *) &gal_to_l))
perror(“shi_findsym: error finding gal_to_l"), exit(1);

if (shl_findsym(&hndl_units, “oz_to_g",

Chapter 6 209

Shared Library Management Routines
Initializers for Shared Libraries

TYPE_PROCEDURE, (void *) &0z_to_g))
perror(“shl_findsym: errror finding oz_to_g"), exit(1);
/*
* Load libtwo.sl and find the required symbols:
*/
if ((hndI_two = shi_load(“libtwo.sl”, BIND_IMMEDIATE, 0)) ==
NULL)
perror(“shl_load: error loading libtwo.sl”), exit(1);
if (shl_findsym(&hndl_two, “foo”, TYPE_PROCEDURE, (void *) &fo0))
perror(“shl_findsym: error finding foo”), exit(1);
if (shl_findsym(&hndl_two, “bar”, TYPE_PROCEDURE, (void *) &bar))
perror(“shl_findsym: error finding bar”), exit(1);
/*

* Call routines from libunits.sl:
*/

printf(*1.0in = %5.2fcm\n”, (*in_to_cm)(1.0));
printf(“1.0gal = %5.2fl\n", (*gal_to_I)(1.0));
printf(*1.00z = %5.2fg\n", (*oz_to_g)(1.0));
/*

* Call routines from libtwo.sl:

*/

(*foo)();

(*bar)();

/*

* Unload the libraries so we can see messages displayed by
initializer:

*/

shl_unload(hndl_units);
shl_unload(hndl_two);

Here is the compiler command used to create the executable testlib2

$ cc -Aa -WI,-E -o testlib2 testlib2.c init.c -Idid

Note that the -WI,-E option is required to cause the linker to export all
symbols from the main program. This allows the shared libraries to find
the _INITIALIZER function in the main executable.

Finally, the output from running testlib2 is shown:
Output of testlib2

libfoo loaded
1.0in = 2.54cm
1.0gal = 3.79I
1.00z =28.359

libfoo unloaded

64-bit Mode Initializers

The 64-bit mode linker support both styles of initializers:

e HP-UX 10.X style: see “HP-UX-10.X-Style Initializers” and “32-bit
Mode Initializers” for more information.

210 Chapter6

Shared Library Management Routines
Initializers for Shared Libraries

= Init/Fini style: see “Init/Fini Style Initializers” and the topics
described in this section:

- “Init and Fini Usage Example”
= “Ordering Within an Executable or Shared Library”

= “Ordering Among Executables and Shared Libraries”

Init and Fini Usage Example

This example consists of three shared libraries libl.sl |, lib2.sl and
lib3.sl . The libl.sl depends on lib3.sl . The main program (a.out)
depends on libl.sl and lib2.sl . Each shared library has an init
style initializer and a fini style terminator. The lib1.sl and lib2.sl
uses linker options (+init and +fini) to specify the initializers and
terminators and lib3.sl uses compiler pragmas.

C source for libl.sl (file libl.c):
libl()
printf(“lib1\n");
void
lib1_init()
printf(“lib1_init\n");
void
lib1_fini()
printf(“lib1_fini\n");

C source for lib2.sl (file lib2.c):
lib2()
printf(“lib2\n”);
void
lib2_init()
printf(“lib2_init\n”);
void
lib2_fini()
printf(“lib2_fini\n");

Chapter 6 211

Shared Library Management Routines
Initializers for Shared Libraries

C source for lib3.sl (file lib3.c):
lib3()
printf(“lib3\n”);

#pragma init “lib3_init”
void
lib3_init()

printf(“lib3_init\n");

#pragma fini “lib3_fini"

void
lib3_fini()

printf(“lib3_fini\n");
}

Commands used to build these libraries:

$ cc +DD64 libl.c lib2.c lib3.c main.c -c;

$1d -b lib3.0 -0 lib3.sl;

$ Id -b +init lib2_init +fini lib2_fini lib2.0 -0 lib2.sl;
$ Id -b +init lib1_init +fini lib1_fini libl.o0 ./lib3.sl -0\
libl.sl;

$ cc -L. +DD64 main.o -1 -12 -Ic;

Output from running a.out:
lib2_init

lib3_init

lib1_init

libl

lib2

lib3

lib1_fini

lib3_fini

lib2fini

Ordering Within an Executable or Shared Library

Multiple initializers/terminators within the same load module (an
executable or shared library) are called in an order following these rules:

= Initsin .o (object) files or .a (archive) files are called in the reverse
order of the link line.

e Finisin .o or.a files are called in forward order of the link line.

212 Chapter6

NOTE

Shared Library Management Routines
Initializers for Shared Libraries

e HP-UX 10.X style initializers are called in forward order of the +I
options specified on the link line when loading a shared library. They
are then called in reverse order when unloading the library.

< HP-UX 10.X style initializers are called after inits and before finis.

< Any inits or finis in archive (.a) files are called only if the .0 which
contains it is used during the link. Use the linker -v option to
determine which .0 files within an archive file were used.

= Shared libraries on the link line (dependent libraries) follow the
ordering described in “Ordering Among Executables and Shared
Libraries”.

For example, the linker command:

$ 1d -b first_64bit.o -l:libfoo.sl second_64bit.o my_64bit.a +|
first_10x_init +1 second_10x_init -o libbar.sl

results in the following order when library is loaded:
1. inits from any .o files used in my_64bit.a

2. inits in second_64bit.o

3. inits in first_64bit.o

4, first_10x_init

5. second_10x_init

and the following order when library is unloaded:
1. second_10x_init

2. first_10x_init

3. finis in first_64bit.0

4. finis in second_64bit.o

5. finis from any .0 files used in my_64bit.a

libfoo.sl is ignored in this example. It follows the rules in “Ordering
Among Executables and Shared Libraries”.

Ordering Among Executables and Shared Libraries

When multiple load modules have initializers/terminators, the following
rules apply to ordering:

Chapter 6 213

Shared Library Management Routines
Initializers for Shared Libraries

= When loading, the inits and HP-UX 10.X initializers of any dependent
libraries are called before the ones in the current library.

< When unloading, the finis and HP-UX 10.X initializers of any
dependent libraries are called after the finis of the current library.

= If ashared library is itself a dependent of one of its dependents (a
“circular” dependency), no ordering between them is guaranteed.

For example, given three libraries: libA.sl | libB.sl ,libC.sl . If
libA.sl were linked as (libB.sl and libC.sl are “dependent”
libraries of libA.sl):

$ Id-bfoo.0 -IB -IC -0 libA.sl
One possible ordering while loading is:

e jinitsinC
e jinitsinB
e jinitsin A

and while unloading is:
« finisinA
e finisinB

e finisinC

214 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

NOTE

The shl _load Shared Library
Management Routines

This section describes the shl_load family of shared library
management routines.

You can use these routines in both 32-bit and 64-bit mode. Support for
these routines may be discontinues in a future 64-bit HP-UX release. If
you use these routines in 64-bit mode, consider converting your
programs to the dI* family of shared library management routines.

The shl_load and cxxshl_load Routines
Explicitly loads a library.

Syntax

shl_t shl_load(const char * path,
int flags,
long address)

Parameters

path A null-terminated character string containing the path
name of the shared library to load.

flags Specifies when the symbols in the library should be
bound to addresses. It must be one of these values,
defined in <dl.h>

BIND_IMMEDIATE

Bind the addresses of all symbols immediately upon
loading the library.

BIND_DEFERRED
Bind the addresses when they are first referenced.

Be aware that BIND_IMMEDIATE causes the binding of
all symbols, and the resolution of all imports, even from
older versioned modules in the shared library. If

symbols are not accessible because they come from old
modules, they are unresolved and shl_load may fail.

Chapter 6 215

Shared Library Management Routines
The shl_load Shared Library Management Routines

In addition to the above values, the flags parameter
can be ORed with the following values:

BIND_NONFATAL
Allow binding of unresolved symbols.
BIND_VERBOSE

Make dynamic loader display verbose messages when
binding symbols.

BIND_FIRST

Insert the loaded library before all others in the
current link order.

DYNAMIC_PATH

Causes the dynamic loader to perform dynamic library
searching when loading the library. The +s and +b
options to the Id command determine the directories
the linker searches. This is the default mode for the
64-bit mode linker if +compat linker option is not
specified.

BIND_NOSTART

Causes the dynamic loader to not call the initializer,
even if one is declared for the library, when the library
is loaded or on a future call to shl_load or dlopen .
This also inhibits a call to the initializer when the
library is unloaded.

BIND_RESTRICTED

Causes the search for a symbol definition to be
restricted to those symbols that were visible when the
library was loaded.

BIND_TOGETHER

Causes the library being loaded and all its dependent
libraries to be bound together rather than each
independently. Use this when you have interdependent
libraries and you are using BIND_FIRST.

BIND_BREADTH_FIRST
64-bit mode only:

216

Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

Causes the dependent libraries to be loaded breadth
first. By default, the 64-bit mode shl_load loads
dependent libraries depth-first.

These flags are discussed in detail in“shl_load
Example”.

address Specifies the virtual address at which to attach the
library. Set this parameter to O (zero) to tell the system
to choose the best location. This argument is currently
ignored; mapping a library at a user-defined address is
not currently supported.

Return Value

If successful, shl_load returns a shared library handle of type

shl_t . This address can be used in subsequent calls to shl_close
shl_findsym , shl_gethandle , and shl_gethandle r . Otherwise,
shl_load returns ashared library handle of NULLand sets errno to one
of these error codes (from <errno.h>):

ENOEXEC The specified path is not a shared library, or a format
error was detected in this or another library.

ENOSYM A symbol needed by this library or another library
which this library depends on could not be found.

ENOMEM There is insufficient room in the address space to load
the shared library.

EINVAL The requested shared library address was invalid.

ENOENT The specified path does not exist.

EACCESS Read or execute permission is denied for the specified
path.

Description

A program needs to explicitly load a library only if the library was not
linked with the program. This typically occurs only when the library
cannot be known at link time — for example, when writing programs
that must support future graphics devices.

Chapter 6 217

Shared Library Management Routines
The shl_load Shared Library Management Routines

However, programs are not restricted to using shared libraries only in
that situation. For example, rather than linking with any required
libraries, a program could explicitly load libraries as they are needed.
One possible reason for doing this is to minimize virtual memory
overhead. To keep virtual memory resource usage to a minimum, a
program could load libraries with shl_load and unload with
shl_unload when the library is no longer needed. However, it is
normally not necessary to incur the programming overhead of loading
and unloading libraries yourself for the sole reason of managing system
resources.

Note that if shared library initializers have been declared for an
explicitly loaded library, they are called after the library is loaded. For
details, see “Initializers for Shared Libraries”.

To explicitly load a shared library, use the shl_load routine. If loading a
C++ library, use the cxxshl_load routine. This ensures that
constructors of nonlocal static objects are executed when the library is
loaded. The syntax of cxxshl_load is the same as that of shl_load

In 64-bit mode, shl_load lets you load a compatibility or standard mode
shared libraries. The BIND_BREADTH_FIRSTflag overrides the default
depth-first loading mechanism.

shl_load Usage

Since the library was not specified at link time, the program must get the
library name at run time. Here are some practical ways to do this:

= Hard-code the library name into the program (the easiest method).

= Get the library name from an environment variable using the getenv
library routine (see getenv(3C)).

= Get the library path name from the command line through argv .
= Read the library name from a configuration file.
< Prompt for the library path name at run time.

If successful, shl_load returns a shared library handle (of type shl_t),
which uniquely identifies the library. This handle can then be passed to
the shl_findsym or shl_unload routine.

218 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

Once a library is explicitly loaded, use the shl_findsym routine to get
pointers to functions or data contained in the library; then call or
reference them through the pointers. This is described in detail in“The
shl_findsym Routine”.

shl_load Example

The following example shows the source for a function named load_lib
that explicitly loads a library specified by the user. The user can specify
the library in the environment variable SHLPATHor as the only
argument on the command line. If the user chooses neither of these
methods, the function prompts for the library path name.

The function then attempts to load the specified library. If successful, it
returns the shared library handle, of type shl_t . If an error occurs, it
displays an error message and exits. This function is used later in “The
shl_findsym Routine”.

load_lib — Function to Load a Shared Library
#include <stdio.h> /* contains standard I/O

defs */
#include <stdlib.hn> /* contains getenv
definition */

#include <dl.h> /*contains shared library type defs
*/

shl_t load_lib(int argc,
char * argv[]) /* pass argc and argv from main */

{

shl_t lib_handle; /* temporarily holds library
handle */

char lib_path[MAXPATHLEN]; /* holds library path
name */

char *env_ptr; * points to SHLPATH variable
value */

/*

* Get the shared library path name:

*/

if (argc > 1) /* library path given on command line
*/

strepy(lib_path, argv[1]);
else /* get lib_path from SHLPATH variable
*/

env_ptr = getenv(“SHLPATH");
if (env_ptr 1= NULL)
strepy(lib_path, env_ptr);
) else /* prompt user for shared library path

printf(“Shared library to use >>*);
scanf(“%s”, lib_path);

Chapter 6 219

Shared Library Management Routines
The shl_load Shared Library Management Routines

}
/*
* Dynamically load the shared library using BIND_IMMEDIATE
binding:
*/

lib_handle = shl_load(lib_path, BIND_IMMEDIATE, 0);
if (lib_handle == NULL)

perror(“shl_load: error loading library”), exit(1);
return lib_handle;

BIND_NONFATAL Modifier

If you load a shared library with the BIND_IMMEDIATE flag and the
library contains unresolved symbols, the load fails and sets errno to
ENOSYMORing BIND_NONFATALwith BIND_IMMEDIATE causes
shl_load to allow the binding of unresolved symbols to be deferred if
their later use can be detected — for example:

shl_t libH;
libH = shi_load("libxyz.sl", BIND_IMMEDIATE | BIND_NONFATAL, 0);

However, data symbol binding cannot be deferred, so using the
BIND_NONFATALmodifier does not allow the binding of unresolved data
symbols.

BIND_VERBOSE Modifier

If BIND_VERBOSHSs ORed with the flags parameter, the dynamic loader
displays messages for all unresolved symbols. This option is useful to see
exactly which symbols cannot be bound. Typically, you would use this
with BIND_IMMEDIATE to debug unresolved symbols — for example:

shi_t libH;
libH = shl_load("libxyz.sl", BIND_IMMEDIATE | BIND_VERBOSE, 0);

BIND_FIRST Modifier

If BIND_FIRST is ORed with the flags parameter, the loaded library is
inserted before all other loaded shared libraries in the symbol resolution
search order. This has the same effect as placing the library first in the
link order — that is, the library is searched before other libraries when
resolving symbols. This is used with either BIND_IMMEDIATE or
BIND_DEFERRED- for example:

shl_t libH;
libH = shi_load("libpdg.sl", BIND_DEFERRED | BIND_FIRST, 0):

220 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

BIND_FIRST is typically used when you want to make the symbols in a
particular library more visible than the symbols of the same name in
other libraries. Compare this with the default behavior, which is to
append loaded libraries to the link order.

DYNAMIC_PATH Modifier

The flag DYNAMIC_PATHan also be ORed with the flags parameter,
causing the dynamic loader to search for the library using a path list
specified by the +b option at link time or the SHLIB_PATH environment
variable at run time.

BIND_NOSTART Modifier
The flag BIND_NOSTARTinhibits execution of initializers for the library.

BIND_RESTRICTED Modifier

This flag is most useful with the BIND_DEFERREDlag; it has no effect
with BIND_IMMEDIATE. It is also useful with the BIND_NONFATALflag.

When used with only the BIND_DEFERREDlag, it has this behavior:
When a symbol is referenced and needs to be bound, this flag causes the
search for the symbol definition to be restricted to those symbols that
were visible when the library was loaded. If a symbol definition cannot
be found within this restricted set, it results in a run-time
symbol-binding error.

When used with BIND_DEFERRERnNd the BIND_NONFATALmodifier, it
has the same behavior, except that when a symbol definition cannot be
found, the dynamic loader will then look in the global symbol set. If a
definition still cannot be found within the global set, a run-time
symbol-binding error occurs.

BIND_TOGETHER Modifier

BIND_TOGETHERNodifies the behavior of BIND_FIRST . When the
library being loaded has dependencies, BIND_FIRST causes each
dependent library to be loaded and bound separately. If the libraries
have interdependencies, the load may fail because the needed symbols
are not available when needed.

Chapter 6 221

Shared Library Management Routines
The shl_load Shared Library Management Routines

BIND_FIRST | BIND_TOGETHER causes the library being loaded and its
dependent libraries to be bound all at the same time, thereby resolving
interdependencies. If you are not using BIND_FIRST, libraries are bound
together by default so this option has no effect.

BIND BREADTH_FIRST Modifier
64-bit mode only:

This flag causes the dependent libraries to be loaded breadth first. By
default, the 64-bit mode shl_load loads dependent libraries depth-first.
This modifier overrides the default load order.

Binding Flags Examples

Suppose you have the libraries libE.sl | libF.sl ,andlibG.sl . The
libE library depends on libF and libF depends on libG . In addition,
libG dependsonlibF —IlibF and libG are interdependent. Your
program loads libE.sl with shl_load()

When using BIND_DEFERRED®r BIND_IMMEDIATE without
BIND_FIRST, these libraries are loaded such that all symbols are visible
and the interdependencies are resolved:

shl_t libE;

libE = shl_load("libE.sI", BIND_IMMEDIATE, 0);

shl_load succeeds.

When using BIND_IMMEDIATE | BIND_FIRST , however, libG is loaded
and bound first and since it depends on libF , an error results because
the needed symbols in libF are not yet available:

libE = shl_load("libE.sI", BIND_IMMEDIATE | BIND_FIRST, 0);

shl_load fails.

Using BIND_IMMEDIATE | BIND_FIRST | BIND TOGETHER loads
libE ,libF ,andlibG together and correctly resolves all symbols:

libE = shi_load("libE.sI", BIND_IMMEDIATE | BIND_FIRST | BIND_TOG

ETHER, 0);
shl_load succeeds.

The shl_findsym Routine

Obtains the address of an exported symbol from a shared library. To call
a routine or access data in an explicitly loaded library, first get the
address of the routine or data with shl_findsym

222 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

Syntax
int shl_findsym(shl_t * handle,
const char * sym,
short type,
void * value)
Parameters
handle A pointer to a shared library handle of the library to
search for the symbol name sym. This handle could be
obtained from the shl_get routine (described in the

“The shl_get and shl_get_r Routines”). handle can also

point to:

NULL If a pointer to NULL is specified,
shl_findsym searches all loaded
libraries for sym. If sym is found,
shl_findsym sets handle to a
pointer to the handle of the shared
library containing sym. This is useful
for determining which library a
symbol resides in. For example, the
following code sets handle to a
pointer to the handle of the library
containing symbol _foo :
shl_t handle;
handle = NULL;
shl_findsym(&handle,"_foo",...);

PROG_HANDLE This constant, defined in dl.h , tells
shl_findsym to search for the
symbol in the program itself. This
way, any symbols exported from the
program can be accessed explicitly.

sym A null-terminated character string containing the
name of the symbol to search for.
type The type of symbol to look for. It must be one of the

following values, defined in <dl.h>
TYPE_PROCEDURE
Look for a function or procedure.

TYPE_DATA

Chapter 6

223

Shared Library Management Routines
The shl_load Shared Library Management Routines

Look for a symbol in the data segment (for example,
variables).

TYPE_UNDEFINED
Look for any symbol.
TYPE_STORAGE
32-bit mode only.
TYPE_TSTORAGE
32-bit mode only.
value A pointer in which shl_findsym stores the address of
sym, if found.
Return Value

If successful, shl_findsym returns an integer (int) value zero. If
shl_findsym cannot find sym, it returns -1 and sets errno to zero. If
any other errors occur, shl_findsym returns -1 and sets errno to one
of these values (defined in <errno.h>):

ENOEXEC A format error was detected in the specified library.
ENOSYM A symbol on which sym depends could not be found.
EINVAL The specified handle is invalid.

Description

To call a routine or access data in an explicitly loaded library, first get the
address of the routine or data with shl_findsym

To call a routine in an explicitly loaded library

1. declare a pointer to a function of the same type as the function in the
shared library

2. using shl_findsym with the type parameter set to
TYPE_PROCEDURENd the symbol in the shared library and assign
its address to the function pointer declared in Step 1

3. call the pointer to the function obtained in Step 2, with the correct
number and type of arguments

To access data in an explicitly loaded library

224 Chapter6

#include <stdio.h>

#include <stdlib.h>

#include <dl.h>
%

* Define linker symbols:

*

Shared Library Management Routines
The shl_load Shared Library Management Routines

1. declare a pointer to a data structure of the same type as the data
structure to access in the library

2. using shl_findsym with the type parameter set to TYPE_DATAfind
the symbol in the shared library and assign its address to the pointer
declared in Step 1

3. access the data through the pointer obtained in Step 2

shl_findsym Example

Suppose you have a set of libraries that output to various graphics
devices. Each graphics device has its own library. Although the actual
code in each library varies, the routines in these shared libraries have
the same name and parameters, and the global data is the same. For
instance, they all have these routines and data:

gopen() opens the graphics device for output
gclose() closes the graphics device
move2d(X, y) moves to pixel location x,y

draw2d(X, y) draws to pixel location x,y from current x,y

maxX contains the maximum X pixel location on the output
device

maxyY contains the maximum Y pixel location on the output
device

The following example shows a C program that can load any supported
graphics library at run time, and call the routines and access data in the
library. The program calls load_lib (see “load_lib — Function to Load a
Shared Library”) to load the library.

Load a Shared Library and Call Its Routines and Access Its Data

/* contains standard 1/O defs */
/* contains getenv definition */
/* contains shared library type defs */

#define GOPEN “gopen”
#define GCLOSE *“gclose”
#define MOVE2D “move2d”
#define DRAW2D “draw2d”
#define MAXX “maxX”
#define MAXY “maxY”

Chapter 6 225

Shared Library Management Routines
The shl_load Shared Library Management Routines

shl_t load_lib(int argc, char * argv[]);
main(int argc,
char * argv[])

shl_t lib_handle; /* handle of shared library */

int (*gopen)(void); [* opens the graphics device */
int (*gclose)(void); /* closes the graphics device */

int (*move2d)(int, int); /* moves to specified x,y location */
int (*draw2d)(int, int); /* draw line to specified x,y location*/

int *maxX; /* maximum X pixel on device */

int *maxy; /* maximum Y pixel on device */
lib_handle = load_lib(argc, argv); /* load required shared library */
/*

* Get addresses of all functions and data that will be used:

*/

if (shl_findsym(&lib_handle, GOPEN, TYPE_PROCEDURE, (void *) &gopen))
perror(“shl_findsym: error finding function gopen”), exit(1);

if (shl_findsym(&lib_handle, GCLOSE, TYPE_PROCEDURE, (void *) &gclose))
perror(“shl_findsym: error finding function gclose”), exit(1);

if (shl_findsym(&lib_handle, MOVE2D, TYPE_PROCEDURE, (void *) &move2d))
perror(“shl_findsym: error finding function move2d”), exit(1);

if (shl_findsym(&lib_handle, DRAW2D, TYPE_PROCEDURE, (void *) &draw2d))
perror(“shl_findsym: error finding function draw2d”), exit(1);

if (shl_findsym(&lib_handle, MAXX, TYPE_DATA, (void *) &maxX))
perror(“shl_findsym: error finding data maxX”), exit(1);

if (shl_findsym(&lib_handle, MAXY, TYPE_DATA, (void *) &maxY))
perror(“shl_findsym: error finding data maxy”), exit(1);

/*

* Using the routines, draw a line from (0,0) to (maxX,maxyY):
*/

(*gopen)(); /* open the graphics device */
(*move2d)(0,0); /* move to pixel 0,0 */
(*draw2d)(*maxX,*maxY); /* draw line to maxX,maxy pixel */
(*gclose)(); /* close the graphics device */

Shown below is the compile line for this program, along with the
commands to set SHLPATHappropriately before running the program.
SHLPATHis declared and used by load_lib() , defined in“The shl_load
and cxxshl_load Routines” example. Notice that load_lib() is compiled
here along with this program. Finally, this example assumes you have
created a graphics library, libgrphdd.sl
$ cc -Aa -o drawline shl_findsym.c load_lib.c -Idid

SHLPATH=/usr/lib/libgrphdd.sl

$
$ export SHLPATH
$ drawline

The shl_get and shl_get r Routines

Obtains information on the currently loaded libraries.

226 Chapter6

Syntax

int shl_get(int

Shared Library Management Routines
The shl_load Shared Library Management Routines

index,

struct shl_descriptor ** desc)

Parameters

index

desc

Specifies an ordinal number of the shared library in the
process. For libraries loaded implicitly (at startup
time), index is the ordinal number of the library as it
appeared on the command line. For example, if libc
was the first library specified on the Id command line,
then libc has an index of 1. For explicitly loaded
libraries, index corresponds to the order in which the
libraries were loaded, starting after the ordinal
number of the last implicitly loaded library. Two index
values have special meaning:

0 Refers to the main program itself

-1 Refers to the dynamic loader
(did.sl).

A shared library's index can be modified during
program execution by either of the following events:

= The program loads a shared library with the
BIND_FIRST modifier to shl_load . This
increments all the shared library indexes by one.

= The program unloads a shared library with
shl_unload . Any libraries following the unloaded
library have their index decremented by one.

Returns a pointer to a statically allocated buffer
(struct shl_descriptor **) containing a shared
library descriptor. The structure contains these
important fields:

tstart The start address (unsigned long)
of the shared library text segment.

tend The end address (unsignedlong) of
the shared library text segment.

dstart The start address (unsigned long)
of the shared library data segment.

Chapter 6

227

Shared Library Management Routines
The shl_load Shared Library Management Routines

dend The end address (unsignedlong) of
the shared library bss segment. The
data and bss segments together form
a contiguous memory block starting
atdstart and ending at dend.

handle The shared library's handle (type
shl_t).
filename A character array containing the

library's path name as specified at
link time or at explicit load time.

initializer A pointer to the shared library's
initializer routine (see “Initializers
for Shared Libraries”. It is NULL if
there is no initializer. This field is
useful for calling the initializer if it
was disabled by the BIND_NOSTART
flag to shl_load

If the shared library has multiple
initializers, this field will also be set
to NULL Multiple initializers can be
found with shl_getsymbols
described later in this chapter.

This buffer is statically allocated. Therefore, if a
program intends to use any of the members of the
structure, the program should make a copy of the
structure before the next call to shl_get . Otherwise,
shl_get will overwrite the static buffer when called
again.

Return Value

If successful, shl_get returns an integer value 0. If the index value
exceeds the number of currently loaded libraries, shl_get returns -1
and sets errno to EINVAL.

228 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

Description

To obtain information on currently loaded libraries, use the shl_get
function. If you are programming in a threaded environment, use the
thread-safe version shl_get r which is the same as shl_get inall
other respects. (See Programming with Threads on HP-UX for more
information about threads.)

Other than obtaining interesting information, this routine is of little use
to most programmers. A typical use might be to display the names and
starting/ending address of all shared libraries in a process's virtual
memory address space.

Example

The function show_loaded_libs shown below displays the name and
start and end address of the text and data/bss segments the library
occupies in a process's virtual address space.

show_loaded_libs — Display Library Information

#include <stdio.h> /* contains standard 1/O defs */
#include <dl.h> /* contains shared library type defs */
void show_loaded_libs(void)

int idx;
struct shl_descriptor *desc;

printf(*SUMMARY of currently loaded libraries:\n");
printf(“%-25s %10s %10s %10s %10s\n”,
“ library___ ", “ tstart ", tend__",“ dstart ", dend__");

idx =0;
for (idx = O; shl_get(idx, &desc) != -1; idx++)
printf(“%-25s %#10Ix %#10Ix %#10Ix %#10Ix\n",
desc->filename, desc->tstart, desc->tend, desc->dstart, desc->dend);
}

Calling this function from a C program compiled with shared libc and
libdld produced the following output:

SUMMARY of currently loaded libraries:

_library___ _tstart __ tend _dstart _ dend
Ja.out 0x1000 0x1918 0x40000000 0x40000200
Jusr/lib/libdld.sl 0x800ac800 0x800ad000 0x6df62800 0x6df63000
Jusr/lib/libc.sl 0x80003800 0x80091000 0x6df63000 0x6df85000

Chapter 6 229

Shared Library Management Routines
The shl_load Shared Library Management Routines

The shl_gethandle and shl_gethandle r
Routines

Returns descriptor information about a loaded shared library.

Syntax

int shl_gethandle(shl_t handle,
struct shl_descriptor ** desc)

Parameters

handle The handle of the shared library you want information
about. This handle is the same as that returned by
shl_load

desc Points to shared library descriptor information — the
same information returned by the shl_get routine.
The buffer used to store this desc information is static,
meaning that subsequent calls to shl_gethandle will
overwrite the same area with new data. Therefore, if
you need to save the desc information, copy it
elsewhere before calling shl_gethandle again.

Return Value

If handle is not valid, the routine returns —1 and sets errno to EINVAL.
Otherwise, shl_gethandle returns 0.

Description

The shl_gethandle routine returns descriptor information about a
loaded shared library. If you are programming in a threaded
environment, use the thread-safe version shl_gethandle_r which is
the same as shl_gethandle in all other respects. (See Programming
with Threads on HP-UX for more information about threads.)

Example

The following function named show_lib_info displays information
about a shared library, given the library's handle.

show_lib_info — Display Information for a Shared Library

#include <stdio.h>
#include <dl.h>

230 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

int show_lib_info(shl_t libH)
struct shl_descriptor *desc;
if (shl_gethandle(libH, &desc) == -1)

fprintf(stderr, "Invalid library handle.\\n");
return -1,

}

printf("library path: %s\\n", desc->filename);
printf("text start: %#10Ix\\n", desc->tstart);
printf("text end: %#10Ix\\n", desc->tend);
printf("data start: ~ %#210Ix\\n", desc->dstart);
printf("data end: %#10Ix\\n", desc->dend);
return O;

}

The shl_definesym Routine

Adds new symbols to the global shared library symbol table.

Syntax

int shl_definesym(const char * sym,
short type,
long value,
int flags)

Parameters

sym A null-terminated string containing the name of the
symbol to change or to add to the process's shared
library symbol table.

type The type of symbol — either TYPE_PROCEDUR#
TYPE_DATA

value If value falls in the address range of a currently loaded
library, an association will be made and the symbol is
undefined when the library is unloaded. (Note that
memory dynamically allocated with malloc(3C) does
not fall in the range of any library.) The defined symbol
may be overridden by a subsequent call to this routine
or by loading a more visible library that provides a
definition for the symbol.

flags Must be set to zero.

Chapter 6 231

Shared Library Management Routines
The shl_load Shared Library Management Routines

Return Value

If successful, shl_definesym returns 0. Otherwise, it returns -1 and
sets errno accordingly. See shl_definesym(3X) for details.

Description

The shl_definesym function allows you to add a new symbol to the
global shared library symbol table. Use of this routine will be
unnecessary for most programmers.

There are two main reasons to add or change shared library symbol table
entries:

= to generate symbol definitions as the program runs — for example,
aliasing one symbol with another

« to override a current definition

Symbol definitions in the incomplete executable may also be redefined
with certain restrictions:

= The incomplete executable always uses its own definition for any data
(storage) symbol, even if a more visible one is provided.

= The incomplete executable only uses a more visible code symbol if the
main program itself does not provide a definition.

The shl_getsymbols Routine

The shl_getsymbols function retrieves symbols that are imported
(referenced) or exported (defined) by a shared library. This information is
returned in an allocated array of records, one for each symbol. Most
programmers do not need to use this routine.

Syntax
int shl_getsymbols(shl_t handle,
short type,
int flags,
void * (* memfunc)(),
struct shl_symbol ** symbols)

232 Chapter6

Parameters
handle

type

flags

Shared Library Management Routines
The shl_load Shared Library Management Routines

The handle of the shared library whose symbols you
want to retrieve. If handle is NULL, shl_getsymbols
returns symbols that were defined with the
shl_definesym routine.

Defines the type of symbol to retrieve. It must be one of
the following values, which are defined as constants in
<dl.h>

TYPE_PROCEDURE
Retrieve only function or procedure symbols.
TYPE_DATA

Retrieve only symbols from the data segment (for
example, variables).

TYPE_UNDEFINED

Retrieve all symbols, regardless of type.
TYPE_STORAGE

32-bit mode only.

TYPE_TSTORAGE

32-bit mode only.

Defines whether to retrieve import or export symbols
from the library. An import symbol is an external
reference made from a library. An export symbol is a
symbol definition that is referenced outside the library.
In addition, any symbol defined by shl_definesym s
an export symbol. Set this argument to one of the
following values (defined in <dl.h>):

IMPORT_SYMBOLS

To return import symbols.
EXPORT_SYMBOLS

To return export symbols.
INITIALIZERS

To return initializer symbols.

Chapter 6

233

Shared Library Management Routines
The shl_load Shared Library Management Routines

One of the following modifiers can be ORed with both
the EXPORT_SYMBOL#&hd the INITIALIZERS flags:

NO_VALUES Do not calculate the value field of
the shl_symbol structure for
symbols. The value field has an
undefined value.

GLOBAL_VALUES
For symbols that are defined in
multiple libraries, this flag causes
shl_getsymbols to return the
most-visible occurrence, and to set
the value and handle fields of the
shl_symbol structure (defined in
the description of the symbols
parameter).

memfunc Points to a function that has the same interface (calling
conventions and return value) as malloc(3C). The
shl_getsymbols function uses this function to
allocate memory to store the array of symbol records,
symbols.

symbols This points to an array of symbol records for all
symbols that match the criteria determined by the type
and value parameters. The type of these records is
struct shl_symbol , defined in <dl.h> as:
struct shl_symbol {
char * name;
short type;

void * value;
shl_t handle;

h
The members of this structure are described in “The
shl_symbol Structure”.

Return Value

If successful, shl_getsymbols returns the number of symbols found;
otherwise, -1 is returned and shl_getsymbols sets errno to one of
these values:

ENOEXEC A format error was detected in the specified library.

234 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

ENOSYM Some symbol required by the shared library could not
be found.

EINVAL The specified handle is invalid.

ENOMEM memfunc failed to allocate the requested memory.

The shl_symbol Structure
The members of the shl_symbol structure are defined as follows:
name Contains the name of a symbol.

type Contains the symbol's type: TYPE_PROCEDURE
TYPE_DATAor TYPE_STORAGHYPE_STORAGIES a
data symbol used for C uninitialized global variables or
FORTRAN common blocks.

value Contains the symbol's address. It is valid only if
EXPORT_SYMBOLS specified without the NO_VALUES
modifier.

handle Contains the handle of the shared library in which the

symbol is found, or NULL in the case of symbols defined
by shl_definesym . It is valid only if
EXPORT_SYMBOLS INITIALIZERS were requested
without the NO_VALUESnodifier. It is especially useful
when used with the GLOBAL_VALUE®odifier, allowing
you to determine the library in which the most-visible
definition of a symbol occurs.

shl_getsymbols Example

“show_symbols — Display Shared Library Symbols” shows the source for
a function named show_symbols that displays shared library symbols.
The syntax of this routine is defined as:

int show_symbols(shl_t hndl,
short type,
int flags)
hndl The handle of the shared library whose symbols you

want to display.

Chapter 6 235

Shared Library Management Routines
The shl_load Shared Library Management Routines

type The type of symbol you want to display. This is the
same as the type parameter to shl_getsymbols and
can have these values: TYPE_PROCEDUREYPE_DATA
or TYPE_UNDEFINEDIf it is TYPE_UNDEFINED
show_symbols displays the type of each symbol.

flags This is the same as the flags parameter. It can have the
value EXPORT_SYMBOL® IMPORT_SYMBOLSnN

addition, it can be ORed with NO_VALUESr

GLOBAL_VALUESIf EXPORT_SYMBOLSS specified
without being ORed with NO_VALUESshow_symbols

displays the address of each symbol.

show_symbols — Display Shared Library Symbols

#include <dl.h>

#include <stdio.h>

#include <stdlib.h>

int show_symbols(shl_t hndl,
short type,
int flags)

int num_symbols, sym_idx;
struct shl_symbol *symbols, *orig_symbols;

num_symbols = shl_getsymbols(hndl, type, flags, malloc,
&symbols);
if (num_symbols < 0) {
printf(“shl_getsymbols failed\n”);
exit(1);

orig_symbols = symbols;
for (sym_idx = 0; sym_idx < num_symbols; sym_idx++)

printf(* %-30s”, symbols->name); /* display symbol name */
if (type == TYPE_UNDEFINED) /* display type if TYPE_UNDEFINED */
switch (symbols->type) {
case TYPE_PROCEDURE:
printf(* PROCEDURE");
break;
case TYPE_DATA:
printf(* DATA “);
break;
case TYPE_STORAGE:
printf(* STORAGE “);

if (flags & EXPORT_SYMBOLS) /*exportsymbolsrequested
*/

&& (flags & NO_VALUES)==0) /* NO_VALUES was NOT
specified */
printf(* 0x%8X”", symbols->value); /* so display symbol's
address */

printf(*\n”); /* terminate output line
*/
symbols++; /* move to next symbol record
236 Chapter6

NOTE

Shared Library Management Routines
The shl_load Shared Library Management Routines

*

}
free(orig_symbols); * free memory allocated by
malloc */
return num_symbols; /* return the number of symbols
*
}

The following example shows the source for a program named
show_all.c that calls show_symbols to show all imported and
exported symbols for every loaded shared library. It uses shl_get to get
the library handles of all loaded libraries.

show_all — Use show_symbols to Show All Symbols

#include <dl.h>

#include <stdio.h>

/* prototype for show_syms */

int show_syms(shl_t hndl, short type, int flags);
main()

int idx, num_syms;
struct shl_descriptor * desc;

for (idx=0; shl_get(idx, &desc) != -1; idx++) /* step through
libs */

printf(“[%s]\n”, desc->filename); /* show imports & exports for
each */

printf(* Imports:\n”);

num_syms = show_symbols(desc->handle, TYPE_UNDEFINED,
IMPORT_SYMBOLS);

printf(* ~ TOTAL SYMBOLS: %d\n”, num_syms);

printf(* Exports:\n”);

num_syms = show_symbols(desc->handle, TYPE_UNDEFINED,
EXPORT_SYMBOLS);

printf(* TOTAL SYMBOLS: %d\n”, num_syms);

}

}

The show_all program shown above was compiled with the command:

$ cc -Aa -o show_all show_all.c show_symbols.c -ldid

The following output for the example will differ in 64-bit mode. For
example, STORAGHS not supported.

The output produced by running this program is shown below:

[show_all]
Imports:
erro STORAGE
_start PROCEDURE
malloc PROCEDURE
free PROCEDURE
exit PROCEDURE

Chapter 6 237

Shared Library Management Routines
The shl_load Shared Library Management Routines

printf PROCEDURE

shl_get PROCEDURE
shl_getsymbols PROCEDURE

__d_trap PROCEDURE

TOTAL SYMBOLS: 9
Exports:

environ DATA 0x40001018
errno STORAGE 0x400011CC
_SYSTEM_ID DATA 0x40001008
__dld_loc STORAGE 0x400011C8
_FPU_MODEL DATA 0x4000100C
_end DATA 0x400011D0
_environ DATA 0x40001018
_d_trap PROCEDURE 0x7AFFF1A6
main PROCEDURE Ox7AFFF1BE

TOTAL SYMBOLS: 9
[lusr/lib/libc.1]

Imports:
_res_rmutex STORAGE
errno STORAGE
_regrpc_rmutex STORAGE
_yellowup_rmutex STORAGE
_FPU_MODEL STORAGE
_environ_rmutex STORAGE
_lop_rmutex STORAGE
_rpcnls_rmutex STORAGE
_switch_rmutex STORAGE
_mem_rmutex STORAGE
_dir_rmutex STORAGE

The shl_unload and cxxshl _unload Routines

Unloads or frees up space for a shared library.

Syntax
int shl_unload(shl_t handle)

Parameters

handle The handle of the shared library you wish to unload.
The handle value is obtained from a previous call to
shl_load , shl_findsym , or shl_get

Return Value

If successful, shl_unload returns 0. Otherwise, shl_unload returns -1
and sets errno to an appropriate value:

EINVAL Indicates the specified handle is invalid.

238 Chapter6

Shared Library Management Routines
The shl_load Shared Library Management Routines

Description

To unload a shared library, use the shl_unload function. One reason to
do this is to free up the private copy of shared library data and swap
space allocated when the library was loaded with shl_load . (This is
done automatically when a process exits.)

Another reason for doing this occurs if a program needs to replace a
shared library. For example, suppose you implement some sort of shell or
interpreter, and you want to load and execute user “programs” which are
actually shared libraries. So you load one program, look up its entry
point, and call it. Now you want to run a different program. If you do not
unload the old one, its symbol definitions might get in the way of the new
library. So you should unload it before loading the new library.

Note that if shared library initializers have been declared for a shared
library, they will be called when the shared library is explicitly unloaded.
For details, see “Initializers for Shared Libraries”.

If unloading a C++ library, use the cxxshl_unload routine. This
ensures that destructors of nonlocal static objects are executed when the
library is unloaded. The syntax of cxxshl_unload is the same as that of
shl_unload

Usage

When a library is unloaded, existing linkages to symbols in an unloaded
library are not invalidated. Therefore, the programmer must ensure that
the program does not reference symbols in an unloaded library as
undefined behavior will result. In general, this routine is recommended
only for experienced programmers.

In 32-bit mode the shl_unload routine unloads a shared library
irrespective of whether other shared libraries depend on it. In 64-bit
mode shl_unload unloads a shared library only if no other shared
library depend on it.

Chapter 6 239

Shared Library Management Routines
The dlopen Shared Library Management Routines

The dlopen Shared Library
Management Routines

This section describes the dI* family of shared library management
routines.

NOTE

Use these routines in 64-bit mode only

The dlopen Routine

Opens a shared library.

Syntax

void *dlopen(const char *file, int mode);

Parameters

Parm

Definition

file

Used to construct a pathname to the shared library file.

If files contain a slash character (/), dlopen uses the file argument itself as the
pathname. If not, dlopen searches a series of directories for file.

= Any directories specified by the environment variable LD _LIBRARY_PATH
= Any directories specified by the RPATHof the calling load module.
= The directories /usr/lib/pa20_64 and usr/ccs/lib/pa20_64

240 Chapter6

Shared Library Management Routines
The dlopen Shared Library Management Routines

Parm

Definition

flags

Mode

Definition

RTLD_LAZY

Under this mode, only references to data symbols are
relocated when the library t is loaded. References to functions
are not relocated until a given function is invoked for the first
time. This mode should result in better performance, since a
process may not reference all of the functions in any given
shared object.

RTLD_NOW

Under this mode, all necessary relocations are performed
when the library is first loaded. This can cause some wasted
effort, if relocations are performed for functions that are
never referenced, but is useful for applications that need to
know as soon as an object is loaded that all symbols
referenced during execution are available.

RTLD_GLOBAL

The shared library's symbols are made available for the
relocation processing of any other object. In addition, symbol
lookup using dlopen(0, mode) and an associated dlsym()
allows objects loaded with RTLD_GLOBALto be searched.

RTLD_LOCAL

The shared library’s symbols are made available for
relocation processing only to objects loaded in the same
dlopen invocation.

If neither RTLD_GLOBAInor RTLD_LOCALare specified, the
default is RTLD_LOCAL

Return Values

A successful dlopen call returns to the process a handle which the
process can use on subsequent calls to disym and diclose . This value
should not be interpreted in any way by the process.

dlopen returns NULL under the following conditions:

« file cannot be found.

= file cannot be opened for reading.

= file is not a shared object.

= An error occurs during the process of loading file or relocating its
symbolic references.

Chapter 6

241

Shared Library Management Routines
The dlopen Shared Library Management Routines

More detailed diagnostic information is available through dlerror

Description

dlopen is one of a family of routines that give the user direct access to
the dynamic linking facilities. dlopen makes a shared library specified
by a file available to a running process. A shared library may specify
other objects that it “needs” in order to execute properly. These
dependencies are specified by DT_NEEDERntries in the.dynamic section
of the original shared library. Each needed shared library may, in turn,
specify other needed shared libraries. All such shared libraries are
loaded along with the original shared library as a result of the call to
dlopen .

If the value of file is O, dlopen provides a handle on a “global symbol
shared library.” This shared library provides access to the symbols from
an ordered set of shared libraries consisting of the original a.out , all of
the shared libraries that were loaded at program startup along with the
a.out , and all shared libraries loaded using a dlopen operation along
with the RTLD_GLOBAIflag. As the latter set of shared libraries can
change during execution, the set identified by handle can also change
dynamically.

Only a single copy of an shared library file is brought into the address
space, even if dlopen is invoked multiple times in reference to the file,
and even if different pathnames are used to reference the file.

When a shared library is brought into the address space of a process, it
can contain references to symbols whose addresses are not known until
the shared library is loaded. These references must be relocated before
the symbols can be accessed. The mode parameter governs when these
relocations take place and may have the following values (defined in
Parameters): RTLD_LAZYand RTLD_NOW

Any shared library loaded by dlopen that requires relocations against
global symbols can reference the following:

= Symbols in the original a.out .

< Any shared libraries loaded at program startup, from the shared
library itself.

= Any shared library included in the same dlopen invocation.

=« Any shared libraries that were loaded in any dlopen invocation that
specified the RTLD_GLOBAIflag.

242 Chapter6

Shared Library Management Routines
The dlopen Shared Library Management Routines

To determine the scope of visibility for the symbols loaded with a dlopen
invocation, bitwise OR the mode parameter with one of the following
values: RTLD_GLOBAlor RTLD_LOCAL

If neither RTLD_GLOBAInor RTLD_LOCALare specified, the default is
RTLD_LOCAL

If a file is specified in multiple dlopen invocations, mode is interpreted
at each invocation. Note, however, that once RTLD_NOWias been
specified, the linker operation completes all relocations, rendering any
further RTLD_NOWperations redundant and any further RTLD_LAZY
operations irrelevant. Similarly note that once you specify
RTLD_GLOBALthe shared library maintains the RTLD_GLOBAIstatus
regardless of any previous or future specification of RTLD_LOCAL as long
as the shared library remains in the address space [see diclose(3C)].

Symbols introduced into a program through calls to dlopen may be used
in relocation activities. Symbols so introduced may duplicate symbols
already defined by the program or previous dlopen operations. To
resolve the ambiguities such a situation might present, the resolution of
a symbol reference to a symbol definition is based on a symbol resolution
order. Two such resolution orders are defined: load and dependency
ordering.

= Load order establishes an ordering among symbol definitions using
the temporal order in which the shared libraries containing the
definitions were loaded, such that the definition first loaded has
priority over definitions added later. Load ordering is used in
relocation processing.

= Dependency ordering uses a “breadth-first” order starting with a
given shared library, then all of its dependencies, then any
dependents of those, iterating until all dependencies are satisfied.

The disym function uses dependency ordering, except when the global
symbol shared library is obtained via a dlopen operation on file with a
value 0. The dlsym function uses load ordering on the global symbol
shared library.

When a dlopen operation first makes it accessible, an shared library
and its dependent shared libraries are added in dependency order. Once
all shared libraries are added, relocations are performed using load
order. Note that if an shared library and its dependencies have been
loaded by a previous dlopen invocation or on startup, the load and
dependency order may yield different resolutions.

Chapter 6 243

NOTE

Shared Library Management Routines
The dlopen Shared Library Management Routines

The symbols introduced by dlopen operations and available through
disym are those which are “exported” as symbols of global scope by the
shared library. For shared libraries, such symbols are typically those that
were specified in (for example) C source code as having extern linkage.
For a.out files, only a subset of externally visible symbols are typically
exported: specifically those referenced by the shared libraries with which
the a.out is linked. The exact set of exported symbols for any shared
library or the a.out can be controlled using the linker [see Id(1)].

The environment variable LD_LIBRARY_PATHshould contain a
colon-separated list of directories, in the same format as the PATH
variable [see sh(1)]. LD_LIBRARY_PATHis ignored if the process’ real
user id is different from its effective user id or its real group id is
different from its effective group id [see exec(2)] or if the process has
acquired any privileges [see tfadmin(1M)].

Example

The following example shows how to use dlopen to load a shared library.
The RTLD_GLOBAIflag enables global visibility to symbols in lib1.sl

The RTLD_LAZYflag indicates that only references to data symbols are to
be relocated and all function symbol references are to be delayed until
their first invocation.

#include <stdio.h>
#include <dlfcn.h>

int main(int argc, char **argv)
void* handle;
handle = dlopen(“./libl.slI”, RTLD_GLOBAL | RTLD_LAZY);

if (handle == NULL) {
printf(*Cannot load library\n”);
}

}

The dlerror Routine

Gets diagnostic information.

Syntax

char *dlerror(void);

244 Chapter6

NOTE

Shared Library Management Routines
The dlopen Shared Library Management Routines

Description

dlerror returns a null-terminated character string (with no trailing
newline character) that describes the last error that occurred during
dynamic linking processing. If no dynamic linking errors have occurred
since the last invocation of dlerror , it returns NULL. Thus, invoking
dlerror asecond time, immediately following a prior invocation, results
in NULL being returned.

The messages returned by dlerror may reside in a static buffer that is
overwritten on each call to dlerror . Application code should not write to
this buffer. Programs wishing to preserve an error message should make
their own copies of that message.

Example

The following code sequence shows how to use dlerror to get diagnostic
information.

void*handle;

/* Try to load a non-existing library */
handle = dlopen(“invalid.sl”, RTLD_GLOBAL | RTLD_LAZY);

if (handle == NULL) {
printf(“%s\n”, dlerror());
}

The dlsym Routine

Gets the address of a symbol in shared library.

Syntax

void *dlsym(void *handle, const char *name);

Chapter 6 245

Shared Library Management Routines
The dlopen Shared Library Management Routines

Parameters
Parameter Definition
handle Either the value returned by a call to dlopen or
the special flag RTLD_NEXT In the former case,
the corresponding shared library must not have
been closed using diclose
name The symbol's name as a character string.

Return Values

If handle does not refer to a valid shared library opened by dlopen , or if
the named symbol cannot be found within any of the shared libraries
associated with handle, dilsym returns NULL. The dlerror routine
provides more detailed diagnostic information.

Description

disym allows a process to obtain the address of a symbol defined within
a shared library previously opened by dlopen .

The disym routine searches for the named symbol in all shared libraries
loaded automatically as a result of loading the shared library referenced
by handle [see dlopen(3C)].

If handle is RTLD_NEXT the search begins with the “next” shared library
after the shared library from which dilsym was invoked. Shared libraries
are searched using a load order symbol resolution algorithm [see
dlopen(3C)]. The “next” shared library, and all other shared libraries
searched, are either of global scope (because they were loaded at startup
or as part of a dlopen operation with the RTLD_GLOBAIflag) or are
shared libraries loaded by the same dlopen operation that loaded the
caller of dlsym .

Usage

RTLD_NEXTcan be used to navigate an intentionally created hierarchy of
multiply defined symbols created through interposition. For example, if a
program wished to create an implementation of malloc that embedded
some statistics gathering about memory allocations, such an
implementation could define its own malloc which would gather the

246 Chapter6

Shared Library Management Routines
The dlopen Shared Library Management Routines

necessary information, and use disym with RTLD_NEXTto find the “real”
malloc , which would perform the actual memory allocation. Of course,
this “real” malloc could be another user-defined interface that added its
own value and then used RTLD_NEXTto find the system malloc

Examples

The following example shows how to use dlopen and disym to access
either function or data objects. (For simplicity, error checking has been
omitted.)

void *handle;

int i, *iptr;

int (*fptr)(int);

/* open the needed object */
handle = dlopen("/usr/mydir/mylib.so", RTLD_LAZY);

/* find address of function and data objects */
fptr = (int (*)(int))dIsym(handle, "some_function");

iptr = (int *)dIsym(handle, "int_object");
/* invoke function, passing value of integer as a parameter */
i = (*fptr)(*iptr);
The next example shows how to use dlsym with RTLD_NEXTto add
functionality to an existing interface. (Error checking has been omitted.)
extern void record_malloc(void *, size_t);
void *
malloc(size_t sz)

void *ptr;
void *(*real_malloc)(size_t);

real_malloc = (void * (*) (size_t))
disym(RTLD_NEXT, "malloc");
ptr = (*real_malloc)(sz);
record_malloc(ptr, sz);

return ptr;

Chapter 6 247

Shared Library Management Routines
The dlopen Shared Library Management Routines

The dlget Routine

Retrieves information about a loaded module (program or shared
library).

Syntax

void *dlget(unsigned int index,
struct load_module_desc *desc,
size_t desc_size);

Parameters
Parameter Definition
index Specifies the requested shared library by its placement

on the dynamic loader's search list. An index of zero
requests information about the program file itself. An
index of -1 requests info about the dynamic loader.

desc Must be preallocated by the user. The structure
members are filled in by the dynamic loader with
information about the requested shared library.

desc_size Specifies the size in bytes of the load_module_desc
structure sent in by the user.

Return Values

If successful, diget returns a handle for the shared library as defined by
the return value from dlopen() . If acall to diget is unsuccessful, a
NULL pointer is returned and desc remains unchanged.

Description

diget is one of a family of routines that give the user direct access to the
dynamic linking facilities. dlget retrieves information about a load
module from an index specifying the placement of a load module in the
dynamic loader’s search list.

A load_module_desc structure has the following members:

248 Chapter6

Shared Library Management Routines
The dlopen Shared Library Management Routines

struct load_module_desc {
unsigned long text_base;
unsigned long text_size;
unsigned long data_base;
unsigned long data_size;
unsigned long unwind_base;
unsigned long linkage_ptr;
unsigned long phdr_base;
unsigned long tls_size;
unsigned long tls_start_addr;

Example

The following code sequence shows how to use diget to retrieve
information about loaded modules. The following code sequence prints
the text base of all loaded modules:

void* handle;
int index;
struct load_module_desc desc;

for (index = 0; ; i++) {
handle = diget(i, &desc, sizeof(struct load_module_desc));
if (handle = NULL) {

printf(“%s\n”, dlerror());
break;

else {
printf(“library %d text base = %Ix\n”, index,
desc.text_base);

[a———

The dimodinfo Routine

Retrieves information about a loaded module (program or shared
library).

Syntax

cc [flag...] file... -IdI [library]...
#include <difcn.h>

unsigned long dimodinfo(unsigned long ip_value,
struct load_module_desc *desc,
size_t desc_size,
void *(*read_tgt_mem)(void* buffer,
unsigned long ptr,
size_t bufsiz,
int ident),

Chapter 6 249

Shared Library Management Routines
The dlopen Shared Library Management Routines

int ident_parm,
uint6é4_t load_map_parm);

Parameters

Parameter Description
ip_value An address. The instruction pointer value of the requested library.
desc A buffer of memory allocated by the user program. The dynamic
loader fills this in with module information.
desc_size Size in bytes of the desc buffer.

read_tgm_mem

A pointer to a function used by dimodinfo to retrieve needed
information.

If the value is NULL, the dynamic loader uses its own internal data
structures to find the correct load module and ignore the
ident_parm and load_map_parm parameters.

buffer A buffer supplied by dimodinfo to read into.

ptr The virtual memory address to read from.

bufsiz Tthe size of buffer in bytes.

ident The value of the ident_parm parameter to dimodinfo

ident_parm

Only used to pass the fourth parameter to read_tgt_mem.

load_map_parm

Only used when calling through read_tgt_mem. Contains the
starting address of the load map.

Return Values

If successful, dimodinfo returns a handle for the shared library as
defined by the return value from dlopen() . NULL is returned
otherwise. The return values are type-converted to unsigned long

Description

dimodinfo is one of a family of routines that give the user direct access
to the dynamic linking facilities. The dimodinfo routine retrieves
information about a load module from a given address value. dimodinfo

250 Chapter6

Shared Library Management Routines
The dlopen Shared Library Management Routines

searches all currently loaded load modules looking for a load module
whose address range (address range of all loaded segments) holds the
given address value. The dimodinfo routine fills the load_module_desc
with information from the matching load module.

read_tgm_mem allows dimodinfo to find a load module in one process
on behalf of another. The calling process passes a callback via
read_tgt_mem in order to read memory in a different process address
space from the one in which dimodinfo resides. ip_value,
load_map_parm, and ptr from read_tgt_mem can be pointers to shared
libraries in another process.

If the calling process calls dimodinfo with a callback registered via
read_tgt_mem, it must supply the starting address of the target process’
load map in the load_map_parm parameter to dimodinfo . This can be
retrieved from the DT_HP_LOAD_MAPNtry in the .dynamic section in the
target executable file.

Example

The following code sequence shows how to use dimodinfo to retrieve
information about a load module. In this example the dimodinfo is
provided with the address of a function foo . The address of foo is
matched with the address range (the address range of all loaded
segments) of all load modules. The dimodinfo fills in the
load_module_desc with information form the matching load module.

void foo()

printf(“foo\n”);

int retrieve_info()

unsigned longhandle;
struct load_module_desc desc;

handle = dimodinfo((unsigned long) &foo,
&desc

sizeof(struct load_module_desc),
NULL,
0,

0);

if (handle = 0) {
printf(“text base = %Ix\n", desc.text_base);

Chapter 6 251

Shared Library Management Routines
The dlopen Shared Library Management Routines

The dlgethame Routine

Retrieves the name of a load module given a load module descriptor.

Syntax

char *dlgetname(struct load_module_desc *desc,
size_t desc_size,
void *(*read_tgt_mem)(void* buffer,
unsigned long long ptr,
size_t bufsiz,
int ident),
int ident_parm,
unsigned long long load_map_parm);

Parameters

Parameter Description
desc A buffer of memory allocated by the user program. The dynamic
loader fills this in with module information.
desc_size Size in bytes of the desc buffer.

read_tgm_mem

A pointer to a function used by dimodinfo to retrieve needed
information.

If the value is NULL, the dynamic loader uses its own internal data
structures to find the correct load module and ignore the
ident_parm and load_map_parm parameters.

buffer A buffer supplied by dimodinfo to read into.

ptr The virtual memory address to read from.

bufsiz The size of buffer in bytes.

ident The value of the ident_parm parameter to dimodinfo

ident_parm

Only used to pass the fourth parameter to read_tgt_mem.

load_map_parm

Only used when calling through read_tgt_mem. Contains the
starting address of the load map.

252 Chapter6

Shared Library Management Routines
The dlopen Shared Library Management Routines

Return Values

digetname returns the pathname of a load module represented by desc.
If desc does not describe a loaded module, dlgetname returns NULL.

Description

digetname is one of a family of routines that give the user direct access
to the dynamic linking facilities.

The read_tgt_mem, ident_parm, and load_map_parm parameters are
identical to those for dimodinfo

The caller of digethame must copy the return value to insure that it is
not corrupted.

Example

The following code sequence shows how to use dlgetname to retrieve the
pathname of a load module. This example uses diget to get a
load_module_desc of the required load module and passes that
load_module_desc to digethame to retrieve the pathname.

void*handle;
struct load_module_desc desc;
char* dil_name;

/* Get load module of the index’th shared library */
handle = diget(1, &desc, sizeof(struct load_module_desc));

/* Retrieve pathname of the shared library */
dll_name = digetname(&desc,
sizeof(struct load_module_desc),
NULL,
0,
NULL);
printf(“pathname of 1st shared library : %s\n”, dll_name);

The dlclose Routine

Closes a shared library.

Syntax

int diclose(void *handle);

Chapter 6 253

Shared Library Management Routines
The dlopen Shared Library Management Routines

Parameters
Parm Definition
handle Value returned by a previous invocation of dlopen .

Return Values

If the referenced shared library was successfully closed, diclose

returns 0. If the shared library could not be closed, or if handle does not
refer to an open shared library, diclose returns a non-0 value. More
detailed diagnostic information is available through dlerror

Description

diclose disassociates a shared library previously opened by dlopen
from the current process. Once an shared library has been closed using
diclose , dlsym no longer has access to its symbols. All shared
libraries loaded automatically as a result of invoking dlopen on the
referenced shared library [see dlopen(3C)] are also closed.

A successful invocation of diclose does not guarantee that the shared
libraries associated with handle have actually been removed from the
address space of the process. shared libraries loaded by one invocation of
dlopen may also be loaded by another invocation of dlopen . The same
shared library may also be opened multiple times. An shared library is
not removed from the address space until all references to that shared
library through an explicit dlopen invocation have been closed and all
other shared libraries implicitly referencing that shared library have
also been closed. Once an shared library has been closed by diclose ,
referencing symbols contained in that shared library can cause
undefined behavior.

Example

The following example shows how to use diclose to unload a shared
library:

void* handle;

int ret_value;

handle = dlopen(“./lib1.sI”, RTLD_GLOBAL | RTLD_LAZY);

254 Chapter6

Shared Library Management Routines
The dlopen Shared Library Management Routines

if (handle == NULL) {
printf(“%s\n”, dlerror());

ret_value = diclose(handle);

if (ret_value = 0) {
printf(“%s\n”, dlerror());

Chapter 6 255

Shared Library Management Routines
Dynamic Loader Compatibility Warnings

Dynamic Loader Compatibility
Warnings

Starting with the HP-UX 10.20 release, the dynamic loader generates
compatibility warnings. These warnings include linker toolset features
that may change over time. To display run-time compatibility warnings,
set the HP_DLDOPTSnvironment variable as follows:

export _HP_DLDOPTS=-warnings Turn on compatibility warnings

The following sections provide information about the dynamic loader
compatibility warnings.

Unsupported Shared Library Management
Routines

The following shared library management shl_load(3X) routines may
become unsupported in a future HP-UX release:

= shl_definesym()
« shl_get()

« shl_get r()

= shl_gethandle()

= shl_gethandle r()
= shl_getsymbols()

When these routines become unsupported, the SVR4 dlopen (3C) family
of routines will be the only dynamic loading routines supported.

Unsupported Shared Library Management
Flags

The following shared library management shl_load(3X) flags may
become unsupported in a future HP-UX-release:

= BIND_FIRST
= BIND_NOSTART
= BIND_RESTRICTED

256 Chapter6

Shared Library Management Routines
Dynamic Loader Compatibility Warnings

= BIND_TOGETHER
= BIND_NONFATAL
= BIND_VERBOSE
= DYNAMIC_PATH

The following shl_findsym() flags may become unsupported in a
future release:

= TYPE_PROCEDURE
= TYPE_DATA
= TYPE_STORAGE

NOTE The for HP-UX Release 11.00 64-bit mode linker does not support the
TYPE_STORAGE flag

Chapter 6 257

Shared Library Management Routines
Dynamic Loader Compatibility Warnings

258 Chapter6

NOTE

Position-Independent Code
Position-Independent Code

This chapter discusses

= “What Is Relocatable Object Code?”

= “What is Absolute Object Code?”

< “What Is Position-Independent Code?”

= “Generating Position-Independent Code”

This chapter is useful mainly to programmers who want to write
position-independent assembly language code, or who want to convert
existing assembly language programs to be position-independent. It is
also of interest to compiler developers. This chapter assumes you have a
good understanding of virtual memory concepts and memory
management.

Throughout this chapter, examples of PIC are shown in assembly code.

For the corresponding information for 64-bit mode, see 64-bit Runtime
Architecture for PA-RISC 2.0 available from the HP-UX Software
Transition Toolkit (STK) at http://www.software.hp.com/STK/

Chapter 7 259

Position-Independent Code
What Is Relocatable Object Code?

What Is Relocatable Object Code?

Relocatable object code is machine code that is generated by
compilers and assemblers and stored in relocatable object files, or .0
files. A relocatable object file contains symbolic references to locations
defined within the compilation unit as well as symbolic references to
locations defined outside the compilation unit. The object file also
contains relocation information. The linker uses this information to
replace the symbolic references with actual addresses.

For example, if you write a program that references the external variable
errno , the object code created by the compiler contains only a symbolic
reference to errno since errno is not defined in your program. Only
when the linker links this object code does the reference to errno change
(relocate) to an absolute address in virtual memory.

If your program defines a global variable, the compiler assigns a
relocatable address to that variable. The compiler also marks all
references to that variable as relocatable. The linker replaces the
references to the variable with the absolute address of the variable.

260 Chapter7

Position-Independent Code
What is Absolute Object Code?

What is Absolute Object Code?

Absolute object code is machine code that contains references to
actual addresses within the program's address space. When the linker
combines relocatable object files to build a program file, or a.out file, it
writes absolute object code into the file. Thus, when the program is
executed, its routines and data must reside at the addresses determined
by the linker.

Note that absolute object code does not contain physical addresses.
Physical addresses refer to exact locations in physical memory. Instead,
absolute object code contains virtual addresses within a process's
address space. These virtual addresses are mapped to physical addresses
by the HP-UX virtual memory management system.

Because program files contain absolute virtual addresses, the HP-UX
program loader, exec , must always load the code and data into the same
location within a process's address space. Because this code always
resides at the same location within the address space, and because it
contains virtual addresses, it is not suitable for shared libraries,
although it can be shared by several processes running the same
program.

Chapter 7 261

Position-Independent Code
What Is Position-Independent Code?

What Is Position-Independent Code?

Position-independent code (PIC) is a form of absolute object code
that does not contain any absolute addresses and therefore does not
depend on where it is loaded in the process's virtual address space. This
is an important property for building shared libraries.

In order for the object code in a shared library to be fully shareable, it
must not depend on its position in the virtual address space of any
particular process. The object code in a shared library may be attached at
different points in different processes, so it must work independent of
being located at any particular position, hence the term
position-independent code.

Position independence is achieved by two mechanisms: First,
PC-relative addressing is used wherever possible for branches within
modules. Second, indirect addressing through a per-process linkage
table is used for all accesses to global variables, or for inter-module
procedure calls and other branches and literal accesses where
PC-relative addressing cannot be used. Global variables must be
accessed indirectly since they may be allocated in the main program's
address space, and even the relative position of the global variables may
vary from one process to another.

The HP-UX dynamic loader (see dld.sl(5)) and the virtual memory
management system work together to find free space at which to attach
position-independent code within a process's address space. The dynamic
loader also resolves any virtual addresses that might exist in the library.

Calls to PIC routines are accomplished through a procedure linkage
table (PLT), which is built by the linker. Similarly, references to data are
accomplished through a data linkage table (DLT). Both tables reside
in a process's data segment. The dynamic loader fills in these tables with
the absolute virtual addresses of the routines and data in a shared
library at run time (known as binding). Because of this, PIC can be
loaded and executed anywhere that a process has free space.

On compilers that support PIC generation, the +z and +Z options cause
the compiler to create PIC relocatable object code.

262 Chapter7

Position-Independent Code
Generating Position-Independent Code

NOTE

Generating Position-Independent Code

To be position-independent, object code must restrict all references to
code and data to either PC-relative or indirect references, where all
indirect references are collected in a single linkage table that can be
initialized on a per-process basis by dld.sl

Register 19 (%r19) is the designated pointer to the linkage table. The
linker generates stubs that ensure %r19 always points to the correct
value for the target routine and that handle the inter-space calls needed
to branch between shared libraries.

The linker generates an import stub for each external reference to a
routine. The call to the routine is redirected to branch to the import stub,
which obtains the target routine address and the new linkage table
pointer value from the current linkage table; it then branches to an
export stub for the target routine. In 32-bit mode, the linker generates an
export stub for each externally visible routine in a shared library or
program file. The export stub is responsible for trapping the return from
the target routine in order to handle the inter-space call required
between shared libraries and program files.

The 64-bit mode linker does not require or support export stubs.

Shown below is the PIC code generated for import and export stubs. Note
that this code is generated automatically by the linker; you don't have to
generate the stubs yourself.

;Import Stub (Incomplete Executable)

X': ADDIL L'lt_ptr+ltoff,%dp ; get procedure entry point
LDW R'It_ptr+ltoff(%r1),%r21
LDW R'lt_ptr+ltoff+4(%r1),%r19 ; get new rl9 value.
LDSID (%r21),%r1
MTSP %r1,%sr0

BE 0(%sr0,%r21) ; branch to target
STW %rp,-24(%sp) ; save rp

;Import Stub (Shared Library)

X': ADDIL L'ltoff,%r19 ; get procedure entry point
LDW R'ltoff(%r1),%r21
LDW R'ltoff+4(%r1),%r19 ; get new rl9 value

LDSID (%r21),%r1

MTSP %r1,%sr0

BE 0(%sr0,%r21) ; branch to target
STW %rp,-24(%sp) ; save rp

;Export Stub (Shared libs and Incomplete Executables)
X' BL,N X,%rp ; trap the return

Chapter 7 263

Position-Independent Code
Generating Position-Independent Code

NOP

LDW -24(%sp),%rp ; restore the original rp
LDSID (%rp),%rl

MTSP %r1,%sr0

BE,N 0(%sr0,%rp) ; inter-space return

For More Information:

The remainder of this section describes how compilers generate PIC for
the following addressing situations:

e “PIC Requirements for Compilers and Assembly Code”
< “Long Calls”

< “Long Branches and Switch Tables”

« “Assigned GOTO Statements”

= “Literal References”

= “Global and Static Variable References”

= “Procedure Labels”

You can use these guidelines to write assembly language programs that
generate PIC object code. For details on assembly language, refer to the
Assembler Reference Manual and PA-RISC 2.0 Architecture.

PIC Requirements for Compilers and
Assembly Code

The linkage table pointer register, %r19, must be stored at %sp-32 by all
PIC routines. This can be done once on procedure entry. %r19 must also
be restored on return from a procedure call. The value should have been
stored in %sp-32 (and possibly in a callee-saves register). If the PIC
routine makes several procedure calls, the routine should copy %r19 into
a callee-saves register as well, to avoid a memory reference when
restoring %r19 upon return from each procedure call. Just like %r27
(%dp), the compilers treat %r19 as a reserved register whenever PIC
mode is in effect.

In general, references to code are handled by the linker, and the
compilers act differently only in the few cases where they would have
generated long calls or long branches. References to data, however, need
a new fixup request to identify indirect references through the linkage
table, and the code generated will change slightly.

264 Chapter7

NOTE

Position-Independent Code
Generating Position-Independent Code

Any code which is PIC or which makes calls to PIC must follow the
standard procedure call mechanism.

When linking files produced by the assembler, the linker exports only
those assembly language routines that have been explicitly exported as
entry (thatis, symbols of type ST_ENTRY. Compiler generated
assembly code does not explicitly export routines with the entry type
specified, so the assembly language programmer must ensure that this is
done with the .EXPORT pseudo-op.

For example: In assembly language, a symbol is exported using
.EXPORT foo, type

where type can be code, data , entry , and others. To ensure that foo is
exported from a shared library, the assembly statement must be:

.EXPORT foo,entry

Long Calls

Normally, the compilers generate a single-instruction call sequence using
the BL instruction. The compilers can be forced to generate a long call
sequence when the module is so large that the BL is not guaranteed to
reach the beginning of the subspace. In the latter case, the linker can
insert a stub. The existing long call sequence is three instructions, using
an absolute target address:

LDIL L'target,%rl

BLE R'target(%sr4,%r1)

COPY %r1,%rp
When the PIC option is in effect, the compilers must generate the
following instruction sequence, which is PC-relative:

BL .+8,%rp ; get pc into rp
ADDIL L'target - $LO + 4, %rp ; add pc-rel offset to rp
LDO R'target - $L1 + 8(%rl), %rl

$LO: LDSID (%rl), %r31
$L1: MTSP %r31, %sr0
BLE 0(%sr0,%r1)
COPY %r31,%rp

Long Branches and Switch Tables

Long branches are similar to long calls, but are only two instructions
because the return pointer is not needed:

Chapter 7 265

Position-Independent Code
Generating Position-Independent Code

LDIL L'target,%rl
BE R'target(%sr4,%r1)

For PIC, these two instructions must be transformed into four
instructions, similar to the long call sequence:

BL .+8,%r1 ; get pc into rl
ADDIL L'target-L,%r1 ; add pc-relative offset

L: LDO R'target-L,%r1 ; add pc-relative offset
BV,N 0(%r1) ; and branch

The only problem with this sequence occurs when the long branch is in a
switch table, where each switch table entry is restricted to two words. A
long branch within a switch table must allocate a linkage table entry and
make an indirect branch:

LDW T'target(%r19),%r1l ; load LT entry

BV,N 0(%r1) ; branch indirect
Here, the T' operator indicates a new fixup request supported by the
linker for linkage table entries.

Assigned GOTO Statements

ASSIGNstatements in FORTRAN must be converted to a PC-relative
form. The existing sequence forms the absolute address in a register
before storing it in the variable:

LDIL L'target,tmp
LDO R'target(tmp),tmp

This must be transformed into the following four-instruction sequence:

BL .+8,tmp ; get rp into tmp

DEPI 0,31,2,tmp ; zero out low-order 2 bits
L: ADDIL L'target-L,tmp ; get pc-rel offset

LDO R'target-L(%r1),tmp

Literal References

References to literals in the text space are handled exactly like ASSIGN
statements (shown above). The LDOinstruction can be replaced with LDW
as appropriate.

An opportunity for optimization in both cases is to share a single label (L)
throughout a procedure, and let the result of BL become a common
sub-expression. Thus only the first literal reference within a procedure is
expanded to three instructions; the rest remain two instructions.

266 Chapter7

Position-Independent Code
Generating Position-Independent Code

Global and Static Variable References

References to global or static variables currently require two instructions
either to form the address of a variable, or to load or store the contents of
the variable:

; to form the address of a variable
ADDIL L'var-$global$+x,%dp
LDO R'var-$global$+x(%r1),tmp
; to load the contents of a variable
ADDIL L'var-$global$+x,%dp
LDW R'var-$global$+x(%r1),tmp

These sequences must be converted to equivalent sequences using the
linkage table pointer in %r19:

; to form the address of a variable

LDW T'var(%r19),tmp1l

LDO X(tmpl),tmp2 ; omit if x ==
; to load the contents of a variable
LDW T'var(%r19),tmpl

LDW X(tmp1),tmp2

Note that the T' fixup on the LDWinstruction allows for a 14-bit signed
offset, which restricts the DLT to be 16Kh. Because %r19 points to the
middle of the DLT, we can take advantage of both positive and negative
offsets. The T' fixup specifier should generate a DLT_RELfixup proceeded
by an FSEL override fixup. If the FSEL override fixup is not generated,
the linker assumes that the fixup mode is LD/RDfor DLT_RELfixups. In
order to support larger DLT table sizes, the following long form of the
above data reference must be generated to reference tables that are
larger. If the DLT table grows beyond the 16Kb limit, the linker emits an
error indicating that the user must recompile using the +Z option which
produces the following long-load sequences for data reference:

; form the address of a variable

ADDIL LT'var,%r19

LDW RT'var(%r1),tmpl

LDO X(tmp1),tmp2 ; omit if x ==

; load the contents of a variable

ADDIL LT'var,%r19

LDW RT'var(%r1),tmp1l
LDW x(tmp1),tmp2

Procedure Labels

The compilers already mark procedure label constructs so that the linker
can process them properly. No changes are needed to the compilers.

Chapter 7 267

Position-Independent Code
Generating Position-Independent Code

When building shared libraries and incomplete executables, the linker
modifies the plabel calculation (produced by the compilers in both
shared libraries and incomplete executables) to load the contents of a
DLT entry, which is built for each symbol associated with a
CODE_PLABEIfixup.

In shared libraries and incomplete executables, a plabel value is the
address of a PLT entry for the target routine, rather than a procedure
address; therefore $$dyncall must be used when calling a routine with
a procedure label. The linker sets the second-to-last bit in the procedure
label to flag this as a special PLT procedure label. The $$dyncall

routine checks this bit to determine which type of procedure label has
been passed, and calls the target procedure accordingly.

In order to generate a procedure label that can be used for shared
libraries and incomplete executables, assembly code must specify that a
procedure address is being taken (and that a plabel is wanted) by using
the P' assembler fixup mode. For example, to generate an assembly
plabel, the following sequence must be used:

LDIL LP'function,%rl

LDO RP'function(%rl), %r22

; Now to call the routine

BL $$dyncall, %r31 ; r22 is the input register for $$dyncall

COPY %r31, %r2

This code sequence generates the necessary PLABEL fixups that the
linker needs in order to generate the proper procedure label. The
dyncall millicode routine in /usr/lib/milli.a must be used to call a
procedure using this type of procedure label; that is, a BL or BV will not
work).

268 Chapter7

Ways to Improve Performance

Ways to Improve Performance

The linker provides several ways you can improve your application
performance.

= “Linker Optimizations” describes how the linker -O option removes
unnecessary ADDIL instructions and “dead” or unused procedures.

= “Options to Improve TLB Hit Rates”describes performance
improvements in Translation Lookaside Buffer (TLB) hit rates.

= “Profile-Based Optimization” describes how the linker can position
your code in the object file or shared library to improve performance.

< “Improving Shared Library Start-Up Time with fastbind” describes
how to improve shared library performance by saving startup
information and bypassing the lookup process when running an
application.

Chapter 8 269

Ways to Improve Performance
Linker Optimizations

Linker Optimizations

The linker supports the -O option which performs the following
optimizations at link time:

= optimizes references to data by removing unnecessary ADDIL
instructions from the object code.

= removes procedures that can never be reached.

These optimizations can be separately enabled or disabled with the
+O[no]fastaccess and +O[no]procelim options respectively. The -O
linker option simply combines enabling of these into one option. For
example, the following Id command enables linker optimizations and
results in a smaller, faster executable:

$ Id -O -o prog /usr/ccsl/lib/crt0.0 prog.o -Im -lc
To enable one or the other optimization only, use the appropriate +O
option:

$ Id +Ofastaccess -o prog /usr/ccs/lib/crt0.0 prog.o -Im -Ic
$ Id +Oprocelim -0 prog /usr/ccs/lib/crt0.0 prog.o -Im -lc

Invoking Linker Optimizations from the
Compile Line

The compilers automatically call the linker with the +Ofastaccess and
+Oprocelim options if compiler optimization level 4 is selected. For
example, the following cc command invokes full compiler optimization
as well as linker optimization:

$ cc -o prog +04 prog.c 04 invokes +Ofastaccess and +Oprocelim

If invoked with +0O4, the compilers generate object code in such a way
that code optimization is done at link time. Thus, the linker does a better
job of optimizing code that was compiled with +O4.

When the compile and link phases are invoked by separate commands,
specify +O4 on both command lines. For example:

$ cc-c +O4 prog.c invokes compiler optimizations
$ cc -0 prog +O4 prog.o invokes linker optimizations

270 Chapter8

NOTE

Ways to Improve Performance
Linker Optimizations

With the HP-UX 10.0 release, you can also invoke linker optimizations at
levels 2 and 3 by using the +Ofastaccess or +Oprocelim option.

See Also:

For a brief description of compiler optimization options see “Selecting an
Optimization Level with PBO”. For a complete description, see your
compiler manuals or online help.

Incompatibilities with other Options

The -O, +Ofastaccess , and +Oprocelim options are incompatible with
these linker options:

-b These options have no effect on position-independent
code, so they are not useful when building shared
libraries with Id -b

-A Dynamic linking is incompatible with link-time
optimization.

-r Relocatable linking is incompatible with link-time
optimization.

-D Setting the offset of the data space is incompatible with

link-time optimization.

The linker issues a warning when such conflicts occur. If you require any
of these features, do not use the linker optimization options.

Unused Procedure Elimination with
+Oprocelim

Unused or “dead” procedure elimination is the process of removing
unreferenced procedures from the $TEXT$ space of an executable or
shared library to reduce the size of the program or library.

Dead procedure elimination is performed after all symbols have been
resolved prior to any relocation. It works on a per subspace basis. That is,
only entire subspaces are removed and only if all procedures in the
subspace are unreferenced. Typically, if a relocatable link (Id -r) has
not been performed and the code is not written in assembly, every
procedure is in its own subspace. Relocatable links may merge

Chapter 8 271

Ways to Improve Performance
Linker Optimizations

subspaces. Merged subspaces can prevent the removal of dead
procedures. Therefore, it is optimal to have each procedure in its own
subspace.

Complete Executables

For complete executables, dead procedure elimination removes any
text subspaces that are not referenced from another subspace. Self
references, such as recursive procedures or subspaces with multiple
procedures that call each other, are not considered outside references
and are therefore candidates for removal.

If the address of a procedure is taken, the subspace within which it
resides is not removed. If a subspace is referenced in any way by a fixup
representing a reference other than a PC-relative call or an absolute call
it is not removed.

Incomplete Executables

For incomplete executables, dead procedure elimination works the
same as for complete executables except that no exported symbols or
their dependencies are removed. If an incomplete executable contains a
symbol that is to be referenced by a shared library and is not exported, it
is removed if the other conditions discussed above hold.

Shared Libraries

In shared libraries only symbols that are not referenced and not exported
are removed. In shared libraries all symbols that are not of local scope
are exported. Therefore only locally scoped symbols not referenced are
removed.

Relocatable Objects

When performing a relocatable link with the -r option, dead procedure
elimination is disabled since the only possible gain would be the removal
of unreferenced local procedures. Objects resulting from a relocatable
link are subject to dead procedure elimination upon a final link.

Affects on Symbolic Debugging

Any procedure that has symbolic debug information associated with it is
not removed. Procedures that do not have symbolic debug information
associated with them but are included in a debug link are removed if
they are not referenced.

272 Chapter8

Ways to Improve Performance
Options to Improve TLB Hit Rates

Options to Improve TLB Hit Rates

To improve Translation Lookaside Buffer (TLB) hit rates in an
application running on a PA 8000-based system, use the following linker
or chatr virtual memory page setting options:

= +pd size — requests a specified data page size of 4K bytes, 16K, 64K,
256K, 1M, 4M, 16M, 64M, 256M, or L. Use L to specify the largest
page size available. The actual page size may vary if the requested
size can not be fulfilled.

= +pi size — requests a specified instruction page size. (See +pd size for
size values.)

The default data and instruction page size is 4K bytes on PA-RISC
systems.

The PA-RISC 2.0 architecture supports multiple page sizes, from 4K
bytes to 64M bytes, in multiples of four. This enables large contiguous
regions to be mapped into a single TLB entry. For example, if a
contiguous 4MB of memory is actively used, 1000 TLB entries are
created if the page size is 4K bytes, but only 64 TLB entries are created if
the page size is 64K bytes.

Applications and benchmarks have larger and larger working-set sizes.
Therefore, the linker and chatr TLB page setting options can help boost
performance by improving TLB hit rates.

Some scientific applications benefit from large data pages. Alternatively,
some commercial applications benefit from large instruction page sizes.

Examples:

= To set the virtual memory page size by using the linker:

Id +pd 64K +pi 16K /opt/langtools/lib/crt0.0 myprog.o -Ic

= To set the page size from HP C and HP Fortran:
cc -WI,+pd,64K,+pi, 16K myprog.c
f90 -WI,+pd,64K,+pi,16K myprog.f

= To set the page size by using chatr :
chatr +pd 64K +pi 16K a.out

Chapter 8 273

NOTE

Ways to Improve Performance
Profile-Based Optimization

Profile-Based Optimization

In profile-based optimization (PBO), the compiler and linker work
together to optimize an application based on profile data obtained from
running the application on a typical input data set. For instance, if
certain procedures call each other frequently, the linker can place them
close together in the a.out file, resulting in fewer instruction cache
misses, TLB misses, and memory page faults when the program runs.
Similar optimizations can be done at the basic block levels of a
procedure. Profile data is also used by the compiler for other general
tasks, such as code scheduling and register allocation.

General Information about PBO

e “When to Use PBO”
e “Restrictions and Limitations of PBO”
e “Compatibility with 9.0 PBO”

Using PBO

= “How to Use PBO”

= “Instrumenting (+1/-1)”

= “Profiling”

= “Optimizing Based on Profile Data (+P/-P)”
= “Selecting an Optimization Level with PBO”
= “Using PBO to Optimize Shared Libraries”
e “Using PBO with Id -r”

The compiler interface to PBO is currently supported only by the C, C++,
and FORTRAN compilers.

274 Chapter8

NOTE

Ways to Improve Performance
Profile-Based Optimization

When to Use PBO

PBO should be the last level of optimization you use when building an
application. As with other optimizations, it should be performed after an
application has been completely debugged.

Most applications will benefit from PBO. The two types of applications
that will benefit the most from PBO are:

= Applications that exhibit poor instruction memory locality. These are
usually large applications in which the most common paths of
execution are spread across multiple compilation units. The loops in
these applications typically contain large numbers of statements,
procedure calls, or both.

= Applications that are branch-intensive. The operations performed in
such applications are highly dependent on the input data. User
interface managers, database managers, editors, and compilers are
examples of such applications.

Of course, the best way to determine whether PBO will improve an
application's performance is to try it.

Under some conditions, PBO is incompatible with programs that
explicitly load shared libraries. Specifically, PBO will not function
properly if the shl_load routine has either the BIND_FIRST or the
BIND_NOSTARTlags set. For more information about explicit loading of
shared libraries, see “The shl_load and cxxshl_load Routines” on page
215.

How to Use PBO
Profile-based optimization involves these steps:

1. Instrument the application — prepare the application so that it will
generate profile data.

2. Profile the application — create profile data that can be used to
optimize the application.

3. Optimize the application — generate optimized code based on the
profile data.

Chapter 8 275

Ways to Improve Performance
Profile-Based Optimization

A Simple Example

Suppose you want to apply PBO to an application called sample . The
application is built from a C source file sample.c . Discussed below are
the steps involved in optimizing the application.

Step 1 Instrumentation

First, compile the application for instrumentation and level 2
optimization:

$ cc-v-c +l -O sample.c

/opt/langtools/Ibin/cpp sample.c /var/tmp/ctm123

/opt/ansic/lbin/ccom /var/tmp/ctm123 sample.o -O2 -I

$ cc -v -0 sample.inst +1 -O sample.o

Jusr/ccs/bin/ld /opt/langtools/lib/icrt0.0 -u main \
-0 sample.inst sample.o -l -lc

At this point, you have an instrumented program called sample.inst
Step 2 Profile

Assume you have two representative input files to use for profiling,
input.filel and input.file2 . Now execute the following three
commands:

$ sample.inst < input.filel

$ sample.inst < input.file2

$ mv flow.data sample.data

The first invocation of sample.inst creates the flow.data file and
places an entry for that executable file in the data file. The second
invocation increments the counters for sample.inst in the flow.data
file. The third command moves the flow.data file to a file named
sample.data

Step 3 Optimize

To perform profile based optimizations on this application, relink the
program as follows:
$ cc -v -0 sample.opt +P +pgm sample.inst\
+df sample.data sample.o

/usr/ces/bin/ld /usr/ccs/lib/crt0.0 -u main -0 sample.opt \

+pgm sample.inst +df sample.data sample.o -P -lc
Note that it was not necessary to recompile the source file. The +pgm
option was used because the executable name used during
instrumentation, sample.inst , does not match the current output file
name, sample.opt . The +df option is necessary because the profile
database file for the program has been moved from flow.data to
sample.data

276 Chapter8

Ways to Improve Performance
Profile-Based Optimization

Instrumenting (+1/-1)

Although you can use the linker alone to perform PBO, the best
optimizations result if you use the compiler as well; this section describes
this approach.

To instrument an application (with C, C++, and FORTRAN), compile the
source with the +I compiler command line option. This causes the
compiler to generate a .0 file containing intermediate code, rather than
the usual object code. (Intermediate code is a representation of your
code that is lower-level than the source code, but higher level than the
object code.) A file containing such intermediate code is referred to as an
I-SOM file.

After creating an I-SOM file for each source file, the compiler invokes the
linker as follows:

1. In 32-bit mode, instead of using the startup file

{usr/ccsllib/crt0.0 , the compiler specifies a special startup file
named /opt/langtools/lib/icrt0.o . When building a shared
library, the compiler uses /usr/ccs/lib/scrt0.o0 . In 64-bit mode,
the linker automatically adds

{usr.css/lib/pa20_64/fdp_init.o or
{usr.css/lib/pa20_64/fdp_init_sl.o to the link when detects
that -I crt0.0 is not changed.

2. The compiler passes the -1 option to the linker, causing it to place
instrumentation code in the resulting executable.

You can see how the compiler invokes the linker by specifying the -v
option. For example, to instrument the file sample.c , to name the
executable sample.inst , to perform level 2 optimizations (the compiler
option -O is equivalent to +O2), and to see verbose output (-v):

$ cc -v -0 sample.inst +I -O sample.c
/opt/langtools/Ibin/cpp sample.c /var/tmp/ctm123
/opt/ansic/lbin/ccom /var/tmp/ctm123 sample.o -O2 -I
/usr/ccs/bin/ld /opt/langtools/lib/icrt0.0 -u main -0 \

sample.inst sample.o -l -lc
Notice in the linker command line (starting with /usr/ccs/bin/ld),
the application is linked with /opt/langtools/lib/icrt0.o and the

-l option is given.

To save the profile data to a file other than flow.data in the current
working directory, use the FLOW_DATAnvironment variable as
described in “Specifying a Different flow.data with FLOW_DATA".

Chapter 8 277

Ways to Improve Performance
Profile-Based Optimization

The Startup File icrt0.o

Theicrt0.0 startup file uses the atexit system call to register the
function that writes out profile data. (For 64-bit mode, the initialization
code is in /usr/ccs/lib/pa20_64/fdp_init.0 .) That function is
called when the application exits.

atexit allows a fixed number of functions to be registered from a user
application. Instrumented applications (those linked with -I) will have
one less atexit call available. One or more instrumented shared
libraries will use a single additional atexit call. Therefore, an
instrumented application that contains any number instrumented
shared libraries will use two of the available atexit calls.

For details on atexit , see atexit(2).

The -I Linker Option

When invoked with the -1 option, the linker instruments all the
specified object files. Note that the linker instruments regular object files
as well as I-SOM files; however, with regular object files, only procedure
call instrumentation is added. With 1-SOM files, additional
instrumentation is done within procedures.

For instance, suppose you have a regular object file named foo.o created
by compiling without the +1 option, and you compile a source file bar.c
with the +1 option and specify foo.0 on the compile line:

$ cc -c foo.c

$ cc -v -o foobar -O +l bar.c foo.o

/opt/langtools/Ibin/cpp bar.c /var/tmp/ctm456
/opt/ansic/lbin/ccom /var/tmp/ctm456 bar.o -O2 -I
/usr/ccs/bin/ld /opt/langtools/lib/icrt0.0 -u main -0 foobar \
bar.o foo.o -l -lc

In this case, the linker instruments both bar.o and foo.o . However,
since foo.0 is not an I-SOM file, only its procedure calls are
instrumented; basic blocks within procedures are not instrumented. To
instrument foo.c to the same extent, you must compile it with the +I
option — for example:

$ cc-v-c+l-O foo.c

/opt/langtools/Ibin/cpp foo.c /var/tmp/ctm432
/opt/ansic/lbin/ccom /var/tmp/ctm432 foo.0 -O2 -I

$ cc -v -o foobar -O +| bar.c foo.o

/opt/langtools/lbin/cpp bar.c /var/tmp/ctm456
/opt/ansic/lbin/ccom /var/tmp/ctm456 bar.o -O2 -
/usr/ccs/bin/ld /opt/langtools/lib/icrt0.0 -u main -0 foobar \
bar.o foo.o -l -Ic

278 Chapter8

NOTE

Ways to Improve Performance
Profile-Based Optimization

A simpler approach would be to compile foo.c and bar.c with a single
cc command:

$ cc -v +| -O -o foobar bar.c foo.c

/opt/langtools/Ibin/cpp bar.c /var/tmp/ctm352

/opt/ansic/lbin/ccom /var/tmp/ctm352 bar.o -O2 -

/opt/langtools/Ibin/cpp foo.c /var/tmp/ctm456

/opt/ansic/lbin/ccom /var/tmp/ctm456 foo.o -O2 -I

/usr/ccs/bin/ld /opt/langtools/lib/icrt0.0 -u main -0 foobar \
bar.o foo.o -I -lc

Code Generation from I-SOMs

As discussed in “Looking “inside” a Compiler” on page 38, a compiler
driver invokes several phases. The last phase before linking is code
generation. When using PBO, the compilation process stops at an
intermediate code level. The PA-RISC code generation and optimization
phase is invoked by the linker. The code generator is
/opt/langtools/Ibinflucomp

Since the code generation phase is delayed until link time with PBO,
linking can take much longer than usual when using PBO. Compile
times are faster than usual, since code generation is not performed.

Profiling

After instrumenting a program, you can run it one or more times to
generate profile data, which is ultimately used to perform the
optimizations in the final step of PBO.

This section provides information on the following profiling topics:
e “Choosing Input Data”

= “The flow.data File”

= “Storing Profile Information for Multiple Programs”

= “Sharing the flow.data File Among Multiple Processes”

= “Forking an Instrumented Application”

Choosing Input Data

For best results from PBO, use representative input data when running
an instrumented program. Input data that represents rare cases or error
conditions is usually not effective for profiling. Run the instrumented
program with input data that closely resembles the data in a typical

Chapter 8 279

Ways to Improve Performance
Profile-Based Optimization

user's environment. Then, the optimizer will focus its efforts on the parts
of the program that are critical to performance in the user's
environment. You should not have to do a large number of profiling runs
before the optimization phase. Usually it is adequate to select a small
number of representative input data sets.

The flow.data File

When an instrumented program terminates with the exit(2) system call,
special code in the 32-biticrt0.0 startup file or the 64-bit
/usr/ccsl/lib/pa20_64/fdp_init.o file writes profile data to a file
called flow.data in the current working directory. This file contains
binary data, which cannot be viewed or updated with a text editor. The
flow.data file is not updated when a process terminates without calling
exit . That happens, for example, when a process aborts due to an
unexpected signal, or when program calls exec(2) to replace itself with
another program.

There are also certain non-terminating processes (such as servers,
daemons, and operating systems) which never call exit . For these
processes, you must programmatically write the profile data to the
flow.data file. In order to do so, a process must call a routine called
_write_counters() . This routine is defined in the icrt0.0 file. A
stub routine with the same name is present in the crt0.0 file so that the
source does not have to change when instrumentation is not being done.

If flow.data does not exist, the program creates it; if flow.data
exists, the program updates the profile data.

As an example, suppose you have an instrumented program named
prog.inst , and two representative input data files named

input_filel and input_file2 . Then the following lines would create
aflow.data file:

$ prog.inst < input_filel

$ Is flow.data

flow.data
$ prog.inst < input_file2

The flow.data file includes profile data from both input files.
To save the profile data to a file other than flow.data in the current

working directory, use the FLOW_DATAnvironment variable as
described in “Specifying a Different flow.data with FLOW_DATA".

280 Chapter8

Ways to Improve Performance
Profile-Based Optimization

Storing Profile Information for Multiple Programs

A single flow.data file can store information for multiple programs.
This allows an instrumented program to spawn other instrumented
programs, all of which share the same flow.data file.

To allow multiple programs to save their data in the same flow.data
file, a program's profile data is uniquely identified by the executable's
basename (see basename(1)), the executable's file size, and the time the
executable was last modified.

Instead of using the executable's basename, you can specify a basename
by setting the environment variable PBO_PGM_PATH his is useful when
a number of programs are actually linked to the same instrumented
executables.

For example, consider profiling the Is , Isf and Isx commands. (Isx is
Is with the -x option and Isf isls with the -F option.) Since the three
commands could be linked to the same instrumented executables, the
developer might want to collect profile data under a single basename by
setting PBO_PGM_PATH=IsIf PBO_PGM_PATH=Iawvere not set, profile
data would be saved under the Is , the Isf , and the Isx basenames.

When an instrumented program begins execution, it checks whether the
basename, size, and time-stamp match those in the existing flow.data
file. If the basename matches but the size or time-stamp does not match,
that probably means that the program has been relinked since it last
created profile data. In this case, the following error message will be
issued:

program: Can't update counters. Profile data exists
but does not correspond to this executable. Exit.

You can fix this problem any one of these ways:
= Remove or rename the existing flow.data file.
= Run the instrumented program in a different working directory.

= Set the FLOW_DATAnvironment variable so that profile data is
written to a file other than flow.data

= Rename the instrumented program.

Chapter 8 281

Ways to Improve Performance
Profile-Based Optimization

Sharing the flow.data File Among Multiple Processes

A flow.data file can potentially be accessed by several processes at the
same time. For example, this could happen when you run more than one
instrumented program at the same time in the same directory, or when
profiling one program while linking another with -P .

Such asynchronous access to the file could potentially corrupt the data.
To prevent simultaneous access to the flow.data file in a particular
directory, a lock file called flow.lock is used. Instrumented programs
that need to update the flow.data file and linker processes that need to
read it must first obtain access to the lock file. Only one process can hold
the lock at any time. As long as the flow.data file is being actively read
and written, a process will wait for the lock to become available.

A program that terminates abnormally may leave the flow.data file
inactive but locked. A process that tries to access an inactive but locked
flow.data file gives up after a short period of time. In such cases, you
may need to remove the flow.lock file.

If an instrumented program fails to obtain the database lock, it writes
the profile data to a temporary file and displays a warning message
containing the name of the file. You could then use the +df option along
with the +P option while optimizing, to specify the name of the
temporary file instead of the flow.data file.

If the linker fails to obtain the lock, it displays an error message and
terminates. In such cases, wait until all active processes that are reading
or writing a profile database file in that directory have completed. If no
such processes exist, remove the flow.lock file.

Forking an Instrumented Application

When instrumenting an application that creates a copy of itself with the
fork system call, you must ensure that the child process calls a special
function named _clear_counters() , Which clears all internal profile
data. If you don't do this, the child process inherits the parent's profile
data, updating the data as it executes, resulting in inaccurate
(exaggerated) profile data when the child terminates. The following code
segment shows a valid way to call _clear_counters

if ((pid = fork()) == 0) /* this is the child process */
{

_clear_counters(); /* reset profile data for child */
. [* other code for the child */
}

282 Chapter8

Ways to Improve Performance
Profile-Based Optimization

The function _clear_counters isdefined inicrt0.0 . Itis also defined
as a stub (an empty function that does nothing) in crt0.0 . This allows
you to use the same source code without modification in the
instrumented and un-instrumented versions of the program.

Optimizing Based on Profile Data (+P/-P)

The final step in PBO is optimizing a program using profile data created
in the profiling phase. To do this, rebuild the program with the +P
compiler option. As with the +| option, the +P option causes the compiler
to generate an I-SOM .o file, rather than the usual object code, for each
source file.

Note that it is not really necessary to recompile the source files; you
could, instead, specify the I-SOM .o files that were created during the
instrumentation phase. For instance, suppose you have already created
an I-SOM file named foo.o from foo.c using the +I compiler option;
then the following commands are equivalent in effect:

cc +P foo.c

cc +P foo.o

Both commands invoke the linker, but the second command doesn't
compile before invoking the linker.

The -P Linker Option

After creating an I-SOM file for each source file, the compiler driver
invokes the linker with the -P option, causing the linker to optimize all
the .0 files. As with the +I option, the driver uses
/opt/langtools/Ibinflucomp to generate code and perform various
optimizations.

To see how the compiler invokes the linker, specify the -v option when
compiling. For instance, suppose you have instrumented prog.c and
gathered profile data into flow.data . The following example shows how
the compiler driver invokes the linker when +P is specified:
$ cc-o prog -v +P prog.o
/usr/ces/bin/ld /usr/ccs/lib/crt0.0 -u main -0 prog \

prog.o -P -lc
Notice how the program is now linked with /usr/ccs/lib/crt0.0
instead of /opt/langtools/lib/icrt0.0 because the profiling code is
no longer needed.

Chapter 8 283

Ways to Improve Performance
Profile-Based Optimization

Using The flow.data File

By default, the code generator and linker look for the flow.data file in
the current working directory. In other words, the flow.data file
created during the profiling phase should be located in the directory
where you relink the program.

Specifying a Different flow.data File with +df

What if you want to use a flow.data file from a different directory than
where you are linking? Or what if you have renamed the flow.data file
— for example, if you have multiple flow.data files created for different
input sets? The +df option allows you to override the default +P behavior
of using the file flow.data in the current directory. The compiler passes
this option directly to the linker.

For example, suppose after collecting profile data, you decide to rename
flow.data to prog.prf . You could then use the +df option as follows:
$ cc -v -o prog +P +df prog.prf prog.o
/usr/ces/bin/ld /usr/ccs/lib/crt0.0 -u main -0 prog \

+df prog.prf prog.o -P -Ic
The +df option overrides the effects of the FLOW_DATAnvironment
variable.

Specifying a Different flow.data with FLOW_DATA

The FLOW_DATAnvironment variable provides another way to override
the default flow.data file name and location. If set, this variable
defines an alternate file name for the profile data file.

For example, to use the file /home/adam/projX/prog.data instead of
flow.data ,set FLOW_DATA
$ FLOW_DATA=/home/adam/projX/prog.data

$ export FLOW_DATA Bourne and Korn shell
$ setenv FLOW_DATA /home/adam/projX/prog.data C shell

Interaction between FLOW_DATA and +df

If an application is linked with +df and -P, the FLOW_DATAnvironment
variable is ignored. In other words, +df overrides the effects of
FLOW_DATA

284 Chapter8

Ways to Improve Performance
Profile-Based Optimization

Specifying a Different Program Name (+pgm)

When retrieving a program's profile data from the flow.data file, the
linker uses the program's basename as a lookup key. For instance, if a
program were compiled as follows, the linker would look for the profile
data under the name foobar
$ cc -v -o foobar +P foo.0 bar.o
Jusr/ccs/bin/ld /usr/ccs/lib/crt0.0 -u main -0 foobar \
foo.0 bar.o -P -lc

This works fine as long as the name of the program is the same during
the instrumentation and optimization phases. But what if the name of
the instrumented program is not the same as name of the final optimized
program? For example, what if you want the name of the instrumented
application to be different from the optimized application, so you use the
following compiler commands?
$ cc -O +l -0 prog.inst prog.c Instrument prog.inst.
$ prog.inst < input_filel Profile it, storing the data

under the name prog.inst.

$ prog.inst < input_file2
$ cc +P -0 prog.opt prog.c Optimize it, but name it prog.opt.

The linker would be unable to find the program name prog.opt in the
flow.data file and would issue the error message:

No profile data found for the program prog.opt in flow.data

To get around this problem, the compilers and linker provide the +pgm
name option, which allows you to specify a program name to look for in
the flow.data file. For instance, to make the above example work

properly, you would include +pgm prog.inst on the final compile line:

$ cc +P -0 prog.opt +pgm prog.inst prog.c
Like the +df option, the +pgmoption is passed directly to the linker.

Selecting an Optimization Level with PBO

When -P is specified, the code generator and linker perform profile-based
optimizations on any I-SOM or regular object files found on the linker
command line. In addition, optimizations will be performed according to
the optimization level you specified with a compiler option when you
instrumented the application. Briefly, the compiler optimization options
are:

+00 Minimal optimization. This is the default.

+01 Basic block level optimization.

Chapter 8 285

NOTE

Ways to Improve Performance
Profile-Based Optimization

+02 Full optimization within each procedure in a file. (Can
also be invoked as -0.)

+03 Full optimization across all procedures in an object file.
Includes subprogram inlining.

+04 Full optimization across entire application, performed
at link time. (Invokes Id +Ofastaccess
+Oprocelim .) Includes inlining across multiple files.

Be aware that +O3 and +04 are incompatible with symbolic debugging.
The only compiler optimization levels that allow for symbolic debugging
are +O2and lower.

For more detailed information on compiler optimization levels, see your
compiler documentation.

PBO has the greatest impact when it is combined with level 2 or greater
optimizations. For instance, this compile command combines level 2
optimization with PBO (note that the compiler options +O2and -O are
equivalent):
$ cc-v-0 +l -c prog.c
/opt/langtools/Ibin/cpp prog.c /var/tmp/ctm123
/opt/ansic/lbin/ccom /var/tmp/ctm123 prog.o -O2 -I
$ cc-v-O +l -0 prog prog.o
Jusr/ccs/bin/ld /opt/langtools/lib/icrt0.0 -u main -0 prog \

prog.o -l -lc
The optimizations are performed along with instrumentation. However,
profile-based optimizations are not performed until you compile later
with +P:
$ cc -v +P -0 prog prog.o

lusr/ccs/bin/ld /usr/ccs/lib/crt0.0 -u main \
-0 prog prog.o -P -lc

Using PBO to Optimize Shared Libraries

Beginning with the HP-UX 10.0 release, the -I linker option can be used
with -b to build a shared library with instrumented code. Also, the -P,
+df , and +pgm command-line options are compatible with the -b option.

To profile shared libraries, you must set the environment variable
SHLIB_FLOW_DATAo the file that receives profile data. Unlike
FLOW_DATASHLIB_FLOW_DAT#Aas no default output file. If
SHLIB_FLOW_DATASs not set, profile data is not collected. This allows
you to activate or suspend the profiling of instrumented shared libraries.

286 Chapter8

Ways to Improve Performance
Profile-Based Optimization

Note that you could set SHLIB_FLOW_DATAOo flow.data which is the
same file as the default setting for FLOW_DATABuUt, again, profile data
will not be collected from shared libraries unless you explicitly set
SHLIB_FLOW_DATAO0 some output file.

The following is a simple example for instrumenting, profiling, and
optimizing a shared library:

$ cc +z +l -c -O libcode.c Create I-SOM files.

$ Id -b -l libcode.o -0 mylib.inst.sl Create instrumented sl.

$ cc main.c mylib.inst.sl Creat executablea.outile.

$ export SHLIB_FLOW_DATA=./flow.data Specify output file for

profile data

$ a.out < input_file Run instrumented executable
with representative input data

$ Id -b -P +pgm mylib.inst.sl \

libcode.o -0 mylib.sl Perform PBO.

Note that the name used in the database will be the output pathname
specified when the instrumented library is linked (mylib.inst.sl in
the example above), regardless of how the library might be moved or
renamed after it is created.

Using PBO with Id -r

Beginning with the HP-UX 10.0 release, you can take greater advantage
of PBO on merged object files created with the -r linker option.

Briefly, Id -r combines multiple .o files into a single .0 file. It is often
used in large product builds to combine objects into more manageable
units. It is also often used in combination with the linker -h option to
hide symbols that may conflict with other subsystems in a large
application. (See “Hiding Symbols with -h” on page 81 for more
informationonld-h)

In HP-UX 10.0, the subspaces in the merged .0 file produced by Id -r
are relocatable which allows for greater optimization.

The following is a simple example of using PBO with Id -r

$ cc +l -cfilel.c file2.c Create individual 1-SOM files

$ Id -r -1 -o reloc.o filel.o file2.0 Build relocatable, merged file.

$ cc +l -0 a.outreloc.o Create instrumented executable file.

$ a.out < input_file Run instrumented executable with
representative input data.

$ Id -r -P +pgm a.out -o reloc.o \

filel.o file2.0 Rebuild relocatable file for PBO.
$ cc +P -oa.outreloc.o Perform PBO on the final executable file.

Chapter 8 287

NOTE

Ways to Improve Performance
Profile-Based Optimization

Notice in the example above, that the +pgmoption was necessary because
the output file name differs from the instrumented program file name.

If you are using -r and C++ templates, check "Known Limitations" in the
HP C++ Release Notes for possible limitations.

Restrictions and Limitations of PBO

This section describes restrictions and limitations you should be aware of
when using Profile-Based Optimization.

= “Temporary Files”
= “Source Code Changes and PBO”

= “Profile-Based Optimization (PBO) and High-Level Optimization
(HLO)”

“l1-SOM File Restrictions”

PBO calls malloc() during the instrumentation (+I) phase. If you
replace libc malloc(3C) calls with your own version of malloc() , use
the same parameter list (data types, order, number, and meaning of
parameters) as the HP version. (For information on malloc() , see
malloc(3C).)

Temporary Files

The linker does not modify I-SOM files. Rather, it compiles, instruments,
and optimizes the code, placing the resulting temporary object file in a
directory specified by the TMPDIRenvironment variable. If PBO fails due
to inadequate disk space, try freeing up space on the disk that contains
the $STMPDIRdirectory. Or, set TMPDIRto a directory on a disk with more
free space.

Source Code Changes and PBO

To avoid the potential problems described below, PBO should only be
used during the final stages of application development and performance
tuning, when source code changes are the least likely to be made.
Whenever possible, an application should be re-profiled after source code
changes have been made.

288 Chapter8

Ways to Improve Performance
Profile-Based Optimization

What happens if you attempt to optimize a program using profile data

that is older than the source files? For example, this could occur if you

change source code and recompile with +P, but don't gather new profile
data by re-instrumenting the code.

In that sequence of events, optimizations will still be performed.
However, full profile-based optimizations will be performed only on those
procedures whose internal structure has not changed since the profile
data was gathered. For procedures whose structure has changed, the
following warning message is generated:

ucomp warning: Code for name changed since profile

database file flow.data built. Profile data for name

ignored. Consider rebuilding flow.data.

Note that it is possible to make a source code change that does not affect
the control flow structure of a procedure, but which does significantly
affect the profiling data generated for the program. In other words, a
very small source code change can dramatically affect the paths through
the program that are most likely to be taken. For example, changing the
value of a program constant that is used as a parameter or loop limit
value might have this effect. If the user does not re-profile the
application after making source code changes, the profile data in the
database will not reflect the effects of those changes. Consequently, the
transformations made by the optimizer could degrade the performance of
the application.

Profile-Based Optimization (PBO) and High-Level
Optimization (HLO)

High-level optimization, or HLO, consists of a number of optimizations,
including inlining, that are automatically invoked with the +O3and +0O4
compiler options. (Inlining is an optimization that replaces each call to a
routine with a copy of the routine's actual code.) +O3 performs HLO on
each module while +O4 performs HLO over the entire program and
removes unnecessary ADDIL instructions. Since HLO distorts profile
data, it is suppressed during the instrumentation phases of PBO.

When +| is specified along with +O3 or +0O4, an I-SOM file is generated.
However, HLO is not performed during I-SOM generation. When the
I-SOM file is linked, using the +P option to do PBO, HLO is performed,
taking advantage of the profile data.

Example . The following example illustrates high-level optimization
with PBO:

Chapter 8 289

Ways to Improve Performance
Profile-Based Optimization

$ cc +l +0O3 -c file.c Create I-SOM for instrumentation.

$ cc +l +03file.o Link with instrumentation.

$ a.out <input_file Run instrumented executable with representative input
data.

$ cc +P +0O3file.o Perform PBO and HLO.

Replace +O3with +O4 in the above example to get HLO over the entire
program and ADDIL elimination. (You may see a warning when using
+04 at instrumentation indicating that the +O4 option is being ignored.
You can ignore this warning.)

I-SOM File Restrictions

For the most part, there are not many noticeable differences between
I-SOM files and ordinary object files. Exceptions are noted below.

Id . Linking object files compiled with the +I or +P option takes much
longer than linking ordinary object files. This is because in addition to
the work that the linker already does, the code generator must be run on
the intermediate code in the I-SOM files. On the other hand, the time to
compile a file with +I or +P is relatively fast since code generation is
delayed until link time.

All options to Id should work normally with 1-SOM files with the
following exceptions:

-r The -r option works with both -1 and -P . However, it
produces an object file, not an I-SOM file. In 64-bit
mode, use -| , -P, or the +nosectionmerge option on

a -r linker command to allow procedures to be
positioned independently. Without these options, a -r
link merges procedures into a single section.

-S Do not use this option with -1 . However, there is no
problem using this option with -P .

-G Do not use this option with -l . There is no problem
using this option with -P .

-A Do not use this option with -I or -P.

-N Do not use this option with -I or -P.

290 Chapter8

Ways to Improve Performance
Profile-Based Optimization

nm . The nmcommand works on I-SOM files. However, since code
generation has not yet been performed, some of the imported symbols
that might appear in an ordinary relocatable object file will not appear in
an I-SOM file.

ar . 1-SOM files can be manipulated with ar in exactly the same way
that ordinary relocatable files can be.

strip . Do not run strip on files compiled with +I or +P. Doing so
results in an object file that is essentially empty.

Compiler Options . Except as noted below, all cc, CG and {77
compiler options work as expected when specified with +l or +P:

-g This option is incompatible with +1 and +P.

-G This option is incompatible with +l , but compatible
with +P (as long as the insertion of the gprof library
calls does not affect the control flow graph structure of
the procedures.)

-p This option is incompatible with +1 option, but is
compatible with +P (as long as the insertion of the
prof code does not affect the control flow graph
structure of the procedures.)

-S You should not use this option together with +1 . Doing
so will result in an object file that is essentially empty.

-S This option is incompatible with +1 and +P options
because assembly code is not generated from the
compiler in these situations. Currently, it is not
possible to get assembly code listings of code generated
by +1 and +P.

-y [ty The same restrictions apply to these options that were
mentioned for -g above.

+0 This option is incompatible with +1 and +P. Currently,
you cannot get code offset listings for code generated by
+l and +P.

Compatibility with 9.0 PBO
PBO is largely compatible between the 9.0 and 10.0 releases.

Chapter 8 291

Ways to Improve Performance
Profile-Based Optimization

I-SOM files created under 9.0 are completely acceptable in the 10.0
environment.

However, it is advantageous to re-profile programs under 10.0 in order to
achieve improved optimization. Although you can use profile data in
flow.data files created under 9.0, the resulting optimization will not
take advantage of 10.0 enhancements. In addition, a warning is
generated stating that the profile data is from a previous release. See the
section called “Profiling” in this chapter for more information.

See the section called “Profiling” for more information about the warning
generated for profile data generated from a previous release.

292 Chapter8

Ways to Improve Performance
Improving Shared Library Start-Up Time with fastbind

Improving Shared Library Start-Up
Time with fastbind

The fastbind tool improves the start-up time of programs that use
shared libraries. When fastbind is invoked, it caches relocation
information inside the executable file. The next time the executable file
runs, the dynamic loader uses this cached information to bind the
executable instead of searching for symbols.

The syntax for fastbind is:

fastbind [-n] [-u] incomplete executable...

where:
-n Removes fastbind data from the executable.
-u Performs fastbind even when unresolved symbols are

found. (By default, fastbind stops when it cannot
resolve symbols.)

Using fastbind

You can create and delete fastbind information for an executable file
after it has been linked with shared libraries. You can invoke fastbind
from the linker or use the fastbind tool directly. You can set the
_HP_DLDOPT®@nvironment variable to find out if fastbind information
is out-of-date and to turn off fastbind at run time.

Invoking the fastbind Tool

To invoke fasthind on an incomplete executable file, verify that your
executable has write access (because fastbind writes to the file) and then
run fastbind

$ Is - main

-PWXIWXIWX 1 janet 191 28722 Feb 20 09:11 main

$ fastbind main

The fastbind tool generates fastbind information for main and
rewrites main to contain this information.

Chapter 8 293

Ways to Improve Performance
Improving Shared Library Start-Up Time with fastbind

Invoking fastbind from the Linker

To invoke fastbind from Id , pass the request to the linker from your
compiler by using the -WI ,+fb options. For example:

$ Id -b convert.o volume.o -o libunits.sl Build the shared library.
$ cc -Aa -WI,+fb main.c -0 main \ Link main to the shared
libunits.sl -Ic library. Perform fastbind.

The linker performs fastbind after it creates the executable file.

How to Tell if fastbind Information is Current

By default, when the dynamic loader finds that fastbind information is
out-of-date, it silently reverts back to the standard method for binding
symbols. To find out if an executable file has out-of-date fastbind
information, set the _HP_DLDOPTS®nvironment variable as follows:

$ export _HP_DLDOPTS=-fbverbose

$ main
/usr/lib/dld.sl: Fastbind data is out of date

The dynamic loader provides a warning when the fastbind information
is out-of-date.

Removing fastbind Information from a File

To remove fastbind information from a file, use the fastbind tool with
the -n option. For example:

$ fastbind -n main Remove fastbind information from main.

Turning off fastbind at Run Time

To use the standard search method for binding symbols, instead of the
fastbind information in an executable file, set the _HP_DLDOPTS
environment variable as follows:

export _HP_DLDOPTS=-nofastbind Turns off fastbind at run time.

For More Information:
See the fastbind(1) man page.

294 Chapter8

A Using Mapfiles

The Id command automatically maps sections from input object files
onto output segments in executable files. The mapfile option allows you
to change the default mapping provided by the linker.

NOTE The mapfile option is supported only in 64-bit mode linking.

NOTE In most cases, the linker produces a correct executable without the use of
the mapfile option. The mapfile option is an advanced feature of the
linker toolset intended for system programming use, not for application
programming use. When using the mapfile option, you can easily create
executable files that do not execute.

295

Using Mapfiles
Controlling Mapfiles with the -k Option

Controlling Mapfiles with the -k Option

The -k option to Id specifies a text file containing mapfile directives:
Id-k mapfile[flags] files ...

The Id command automatically maps sections from input object files
onto output segments in executable files. The mapfile option allows you
to change the default mapping provided by the linker.

Use the -k filename option to specify a text file that contains mapfile
directives. The linker appends the specified mapfile to the default
mapfile unless you specify the +nodefaultmap option.

Mapfile Example: Using -k filename (without
+nodefaultmap Option):

cat mapfile

text = LOAD ?RX V0x1000;
text : .rodata;

text : .PARISC.milli;

text : .dynamic;

text : .dynsym;

text : .dynstr;

text : .hash;

text : SPROGBITS ?AX;
text : .PARISC.unwind;
text : SUNWIND;

data = LOAD ?RW V0x4000000040001000;
data : .opd;

data : .plt;

data : .dlt;

data : .data;

data : $PROGBITS ?AW!S;
data : .sdata;

data : $PROGBITS ?AWS;
data : .sbss;

data : SNOBITS ?AWS;
data : .bss;

data : SNOBITS ?AW!S;
note = NOTE;

note : $NOTE;

Id main.o -k mapfile -Ic

elfdump -h -S a.out

a.out:

*** Section Header ***

Index TypeVaddr Offset Size Name

296 Appendix A

PBIT 0000000000001718
PBIT 000000000000175¢
RELA 0000000000001778
PBIT 4000000040001020
PBIT 4000000040001030
PBIT 4000000040001030
PBIT 4000000040001030
PBIT 4000000040001030
PBIT 4000000040001030
PBIT 4000000040001030
PBIT 4000000040001030
NOBI 4000000040001038
NOBI 0000000000000000
STRT 0000000000000000
SYMT 0000000000000000
STRT 0000000000000000

Using Mapfiles

Controlling Mapfiles with the -k Option

0000000000000718
000000000000075¢
0000000000000778
0000000000001020
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001038
0000000000001038
0000000000001038
00000000000011ec
000000000000169¢c

00000120
00000270
00000113

000000a4

DYNM 00000000000012a8 00000000000002a8 00000120 .dynamic
DYNM 00000000000011c8 00000000000001c8
DYNS 00000000000012e8 (00000000000002e8
STRT 0000000000001558 0000000000000558
HASH 0000000000001670 (0000000000000670

.dynamic
.dynsym
.dynstr
.hash

00000044 .text

00000018 .
00000000
00000010 .
00000000 .
00000000 .
00000000 .
00000000 .
00000000 .
00000000 .
00000008 .
00000008
00000000
000001b2
000004b0
000000de

interp
.rela.opd
plt

dit

data
HP.init
preinit
init

fini
sdata
.bss
.thss
.strtab
.symtab
.shstrtab

Appendix A

297

Using Mapfiles
Changing Mapfiles with -k filename and +nodefaultmap

Changing Mapfiles with -k filename and
+nodefaultmap

The +nodefaultmap option used with -k option prevents the linker
from concatenating the default memory map to the map provided by
filename. If you specify +nodefaultmap , the linker does not append the
default mapfile to your mapfile. If you do not specify +nodefaultmap
with -k , the linker appends the default to the output file.

Mapfile Example: Using -k mapfile and
+nodefaultmap

cat mapfile

text = LOAD ?RX V0x1000;
text : .rodata;

text : .PARISC.milli;

text : .dynamic;

text : .dynsym;

text : .dynstr;

text : .hash;

text : SPROGBITS ?AX;
text : .PARISC.unwind;
text : SUNWIND;

data = LOAD ?RW V0x4000000040001000;
data : .opd;

data : .plt;

data : .dlt;

data : .data;

data : $PROGBITS ?AW!S;
data : .sdata;

data : $PROGBITS ?AWS;
data : .sbss;

data : SNOBITS ?AWS;
data : .bss;

data : SNOBITS ?AW!S;
note = NOTE;

note : $NOTE;

Id main.o +nomapfile -k mapfile -lc
elfdump -h -S a.out

a.out:

*** Section Header ***

Index TypeVaddr Offset Size Name

1 DYNM 00000000000011c8 00000000000001c8 00000120 .dynamic
2 DYNS 00000000000012e8 00000000000002e8 00000270 .dynsym
3 STRT 0000000000001558 0000000000000558 00000113 .dynstr

4 HASH 0000000000001670 0000000000000670 000000a4 .hash

298 Appendix A

5 PBIT
6 PBIT
7 RELA
8 RELA
9 RELA
10RELA
11RELA
12RELA
13UNWI
14PBIT
15PBIT
16PBIT
17PBIT
18PBIT
19PBIT
20PBIT
21PBIT
22PBIT
23NOBI
24NOBI
25STRT
26SYMT
27STRT

0000000000001718
000000000000175¢c
0000000000001778
0000000000001778
0000000000001778
0000000000001778
0000000000001778
0000000000001790
0000000000001790
4000000040001000
4000000040001020
4000000040001030
4000000040001030
4000000040001030
4000000040001030
4000000040001030
4000000040001030
4000000040001030
4000000040001038
0000000000000000
0000000000000000
0000000000000000
0000000000000000

Using Mapfiles

Changing Mapfiles with -k filename and +nodefaultmap

0000000000000718 00000044 .text

000000000000075¢c
0000000000000778
0000000000000778
0000000000000778
0000000000000778
0000000000000778
0000000000000790
0000000000000790
0000000000001000
0000000000001020
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001030
0000000000001038
0000000000001038
0000000000001038
00000000000011ec
000000000000169¢c

00000018 .
00000000
00000000
00000000
00000000
00000018
00000000
00000010
00000020 .
00000010 .
00000000 .
00000000 .
00000000 .
00000000 .
00000000 .
00000000 .
00000008 .
00000008
00000000
000001b2
000004b0
000000de

interp
.rela.HP.init
rela.init
rela.fini
.rela.opd
rela.plt
rela.dlt
.PARISC.unwind
opd

plt

dit

data
HP.init

preinit

init

fini

sdata

.bss

.thss
.strtab
.symtab

.shstrtab

Appendix A

299

Using Mapfiles
Simple Mapfile

Simple Mapfile
The following directives show how a simple mapfile would appear:

text segment

text = LOAD ?RX;

text : .rodata ?A,

text : $PROGBITS ?AX;

data segment

data = LOAD ?RW;

data : $PROGBITS ?AW!S;
data : $PROGBITS ?AWS;
data : SNOBITS ?AWS;
data : SNOBITS ?AW!S;

note segment

note = NOTE;

note : $NOTE;

non-segment
nonsegment = NONSEGMENT;

300 Appendix A

Using Mapfiles
Default HP-UX Release 11.0 Mapfile

Default HP-UX Release 11.0 Mapfile

The HP-UX Release 11.0 64-bit linker uses the following default mapfile:

text segment

text = LOAD ?RXc V0x4000000000001000;
text : .dynamic;

text : .dynsym;

text : .dynstr;

text : .hash;

text : SREL ?A;

text : $RELA ?A,;

text : SUNWIND ?A;

text : $PROGBITS ?AIXIW;
text : .PARISC.milli;

text : .text;

text : $PROGBITS ?AX!W;

data segment

data : .hdata;

data =LOAD ?RWmo V0x8000000000001000;
data : .data;

data : $PROGBITS ?AWIS;
data : .opd;

data : .plt;

data : .dlt;

data : .sdata;

data : $PROGBITS ?AWS;
data : .sbss;

data : $NOBITS ?AWS;

data : .bss;

data : SNOBITS ?AW!S;

data : .hbss

Thread specific storage segment
thread_specific = HP_TLS ?RW;
thread_specific : .tbss;

Appendix A 301

Using Mapfiles
Default HP-UX Release 11.0 Mapfile

thread_specific : $NOBITS ?AWT,;
Note segment

note = NOTE;

note : $NOTE;

non-segment

nonsegment = NONSEGMENT,;
nonsegment : .debug_header;
nonsegment : .debug_gntt;
nonsegment : .debug_ntt;
nonsegment : .debug_slt;

nonsegment : .debug_vt;

302

Appendix A

Using Mapfiles
Defining Syntax for Mapfile Directives

Defining Syntax for Mapfile Directives

A mapfile can have zero or more mapfile directives. There are two types
of mapfile directives: segment declarations and section mapping
directives. The directives can span across lines and are terminated by a
semicolon.

The following syntax conventions are used to describe the directives:
o [.]* means zero or more

e [.]+ means one or more

e [..] means optional

= The section_names and segment_names are the same as a C identifier
except that a period (.) is treated as a letter.

= A number can be hexadecimal, following the same syntax as the C
language.

= The section, segment, file, and symbol names are case-sensitive.

= A string of characters following # and ending at a new-line is
considered a comment.

Appendix A 303

Using Mapfiles

Defining Mapfile Segment Declarations

Defining Mapfile Segment Declarations

A segment declaration can create a new segment with a set of attributes
or change the attributes of an existing segment.

segment_name ={ segment_attribute value}* ;

The segment attributes and their valid values are as follows:

Attribute

Value

segment_type

LOAD(default), HP_TLS, NOTE NONSEGMENT

segment_flags

?[RIMIX]Ls]I 1[mi[e]ik]lg][o]

virtual_address Vnumber
physical_address Pnumber
alignment Anumber

NOTEsegments cannot be assigned any segment attribute other than
a segment_type.

If you do not specify virtual_address, physical_address and
alignment, the linker calculates these values as it builds the
executable. If you specify both a virtual_address and an alignment for
a segment, the virtual_address value takes priority.

An alignment value greater than the file system block size (4K) also
specifies the page size. In that case, the value of the alignment is also
the size of the page. The operating system uses the largest page size
available that is no greater than the value of the alignment when
mapping a segment.

The segment_type NONSEGMENiEscribes sections placed at the end of
the executable file. The linker does not create a program header entry
for this segment.

Segment Flags

Segment declarations support the following segment flags:

304 Appendix A

Using Mapfiles
Defining Mapfile Segment Declarations

Flag Action
R Readable
w Writable
X Executable

The default segment_flags for a LOADable segment is ?RWX

Segment declarations support the following special flags:

Flag Action

s Enables static branch prediction on a segment. This flag is
not set by default. (Dynamic branch prediction is the default.)

I Enables lazy swap allocation for a segment. This flag is not
set by default. (The lazy swap is disabled by default.)

m Sets the “modification” hint for a segment. When this flag is
set, it indicates that the program expects to modify the pages
in the segment. If not set, the program does not expect to
modify any pages in the segment, even though it may have
permission to do so. This flag is not set by default. (The
modification hint is off by default.)

c Sets the “code” hint for a segment. When this flag is set, it
indicates that the segment mostly contains code that may be
executed. When not set, it indicates that it is unlikely that
the segment contains code. This flag is not set by default.
(The code hint is off by default.)

Appendix A 305

Using Mapfiles
Defining Mapfile Segment Declarations

Flag Action

k Locks a particular segment into memory when loaded. This
flag is set off for all segments.

g Groups segments together. A segment declared with g flag is
grouped with a segment preceding it in the mapfile. Any
number of segments can be grouped together. The grouping
affects the way in which addresses are assigned to segments.
The segments in one group are assigned consecutive virtual
addresses.

o} Tells the linker that all the segment attributes declared for
this segment can be changed or modified to achieve space
and/or time optimization. When this flag is set, the linker
considers all other segment attribute specifications (for this
segment) as hints and change or modify them as it thinks fit
for space and/or time optimization.

Mapfile Segment Declaration Examples

= The following example declares a segment with segment_type LOAD
and segment_flags readable and executable.
text = LOAD ?RX;

= The following example declares a LOADable segment (default) with
segment_flags readable and writable. The virtual_address and
alignment values are set to VOx80000000 and AOx1000 respectively.

mydata = ?RW V0x80000000 A0x1000;

306 Appendix A

Using Mapfiles
Defining Mapfile Section Mapping Directives

Defining Mapfile Section Mapping

Directives

A section mapping directive specifies how the linker should map the
input section onto output segments. This directive tells the linker what
attributes of a section must be matched in order to map that section into
the named segment. The set of attribute values that a section must have
to map into a specific segment is called the entrance criteria.

segment_name : {section_attribute_value}* ;

The section attributes and their valid values are as follows:

Section
Attribute

Value

section_name

Any valid section name

section_type

$PROGBITS $NOBITS, SUNWIND$NOTE, $REL,
$RELA

section_flags

20 AN NI DXL T0SHLE 0TILL 1R

Flag Value
A Allocatable (takes up virtual memory)
w Writable
X Executable
S Short data
T TLS (thread local storage)
R Static branch prediction

= At most one section_type can be specified in a mapping directive.

Appendix A

307

Using Mapfiles
Defining Mapfile Section Mapping Directives

= If a section flag is preceded by an exclamation mark (!), it indicates
that the flag should not be set to meet the entrance criteria.

If you do not specify section_flags, the flag can have any value to
meet the entrance criteria.

S1: ?XR;

The linker maps all executable sections with static branch prediction
enabled onto segment S1.

= The section_name attribute indicates that the linker should map the
input sections with the specified name onto the named segment.

text : .rodata;

= An input section can satisfy more than one entrance criteria.
S1: $PROGBITS;
S2 : $PROGBITS;

In this case, all sections with section type $PROGBITSare mapped
onto segment S1 as the first rule takes precedence.

= An AND relationship exits between attributes specified on the same
line. An OR relationship exits between attributes specified for the
same segment that span more than one line.

= Example 1:

All sections with section_type $PROGBITSand section_flags AX
(allocatable and executable) are mapped onto the text segment.

text : $PROGBITS ?AX;
= Example 2
text : $PROGBITS ?AX;
text : .rodata;
In this case, the linker maps a section onto the text segment if:
Its section_type is $PROGBITS and section_flags is AX.
(or)

Its section_name is .rodata

308 Appendix A

Using Mapfiles
Internal Map Structure

Internal Map Structure

The linker use a default map structure corresponding to the default
mapfile. When you use the mapfile option with the [d command, the
linker appends the default mapfile to the end of your user-specified
mapfile. (You can override the default mapfile by using the
+nodefaultmap option.)

Placement of Segments in an Executable

As it processes each segment declaration in the mapfile, the linker
compares it with the existing list of segment declarations as follows:

= If the segment does not exist already, but another with the same
segment_type exists, the linker adds the segment after all of the
existing segments with the same segment_type.

= If no segment with the same segment_type exists, the linker adds the
new segment to the list to maintain the following order based on
segment_type:

- LOAD
- HP_TLS

- NOTE

- NONSEGMENT

= If segments of same type already exists, the linker adds the new
segment after the last segment with the same type.

Mapping Input Sections to Segments

As each section mapping directive in a mapfile is read in, the linker
creates a new entrance criteria and appends it to the existing list of
entrance criteria. It applies the entrance criteria in the order in which
they are specified in the mapfile. The linker maps out the input sections
in the same order as their matching entrance criteria.

Appendix A 309

Using Mapfiles
Internal Map Structure

Figure A-1
Entrance 1 2
Criteria =~ ——] zodata | $PROGEITS
3 q
B [P e B5ET e BEE
I I]
7
FHOTE:
Segrment
Attribute
Descriptors L J
¥
Lo AD NOTE HNONSEGHENT
LioAD TR
TRE
Ern:-dsltsl e Edsltsl
PROGEBITS | e rodata PROGEBITS| jpgedata pedata Cther zections
I3 from AWIS from from added at the end
foo .o foo.o 00,0 of the a.out
Entrance
Criteria atva}d. Esdata
dit’ PROGERITS Lot PROGEITS| pya.zdata
:;D;j:wd AN +from AWS from
Outprt foo .o foo.o
Section
Descriptors
e Es]:-ss
NOEITS | jgw.shzs
AWS frorm
000
HNOEBITS b=z
AWIS frorm
foo.o

310

Appendix A

Using Mapfiles
Internal Map Structure

Figure A-1 shows the map structure. The entrance criteria boxes
correspond to the information from the section mapping directives and
the segment attribute descriptors correspond to the information from the
segment declarations. The output section descriptors boxes group the
sections that fall under each segment based on their section attributes.
The linker associates each entrance criteria with a list of “output section
descriptors”. In Figure A-1, the entrance criteria are labeled with
numbers to illustrate their associated output section descriptors.

The linker performs the following steps when mapping sections to
segments:

1. When a section is read in, the liner checks the list of entrance criteria
looking for a match. All specified criteria must be matched. When an
entrance criteria matches, the linker traverses its associated “output
section descriptor” list.

2. If the section attribute values match those of an existing output
section descriptor exactly, the linker places the section at the end of
the list of sections associated with that output section descriptor.

3. If no matching output section descriptor is found, but output section
descriptors of the same section_type exists, the linker creates a new
output section descriptor with the same attribute values as the
section and adds that section to the new output section descriptor. It
places the new output section descriptor after the last output section
descriptor with the same section type.

4. 1f no other output section descriptor of the indicated section_type
exists, the linker creates a new output section descriptor and
associates the section with the new output section descriptor. It
places the new output section descriptor after the last output section
descriptor associated with that entrance criteria.

5. If no entrance criteria match is found, the linker places the section at
the end of the “nonsegment”. It does not create a program header
entry for the nonsegment.

The following rules apply when the linker adds a new output section
descriptor to a list of output section descriptors associated with an
entrance criteria:

= Ifanentrance criteria selects both $PROGBITSand $NOBITS sections,
the linker enforces an order such that the $PROGBITSsections
precede $NOBITS sections.

Appendix A 311

Using Mapfiles
Internal Map Structure

If an entrance criteria selects both S (short data) and !S (non-short
data) sections, the layout of the sections depends on section_type and
S flag status.The linker maintains the following order:

$PROGBITSand IS
$PROGBITSand S
$NOBITSand S
$NOBITS and IS

The linker always tries to group all $NOBITS sections at the end of
the data segment. If it does not place a $NOBITS section at the end of
the data segment because of user-specified mapping directives, the
linker converts that section to a $PROGBITSsection and zero-fills the
section contents. The linker issues a warning message when it
converts a SNOBITS section into a $PROGBITSsection.

Interaction between User-defined and
Default Mapfile Directives

The linker adds the section mapping directives from the default mapfile
after the user-specified mapping directives. The following rules apply if
the you declare a built-in segment (a segment defined in the default
mapfile):

If the segment_type and “segment_flags” differ from the default
mapfile declarations, the linker issues a warning and uses the
user-specified segment_type and/or segment_flags for that segment.

If your segment declaration does not specify a
segment_attribute_value, the linker takes it from the default mapfile’s
segment declaration.

The linker completely ignores the default mapfile if you use the
option +nodefaultmap on the ld command line.

312 Appendix A

Using Mapfiles
Mapfile Option Error Messages

Mapfile Option Error Messages

Fatal Errors

The following conditions can result in a fatal error:

Specifying more than one -k option on the command line
Mapfile cannot be opened or read
The linker finds a syntax error in the mapfile

More than one segment_type, segment_flags, virtual_address,
physical_address or alignment value appears on a single declaration
line

More than one section_name, section_type, or section_flags value
appears on a single directive line

A user-defined virtual address causes a segment to overlap the
previous segment

Warnings

The following conditions can produce a warning message:

A physical_address or a virtual_address value is specified for any
segment other than a LOADable segment. The directive is ignored.

A second declaration for the same segment changes an attribute
value. The second declaration overrides the original.

An attribute value for a built-in segment is changed.

Appendix A 313

Using Mapfiles
Mapfile Option Error Messages

314 Appendix A

Glossary

absolute object code Machine
code that contains absolute virtual
addresses. Created by the linker
when it combines relocatable
object files.

archive library A library,
created by the ar command, which
contains one or more object
modules. By convention, archive
library file names end with .a .
Compare with "shared library."

attaching a shared library The
process the dynamic loader goes
through of mapping the shared
library code and data into a
process's address space, relocating
any pointers in the shared library
data that depend on actual virtual
addresses, allocating the bss
segment, and binding routines and
data in the shared library to the
program.

basic block A contiguous section
of assembly code, produced by
compilation, that has no branches
in except at the top, and no
branches out except at the bottom.

binding The process the dynamic
loader goes through of filling in a
process's procedure linkage tables
and data linkage tables with the
addresses of shared library

routines and data. When a symbol
is bound, it is accessible to the
program.

breadth-first search order The
dependent library search
algorithm used when linking and
loading 64-bit applications.

bss segment A segment of
memory in which uninitialized
data is stored. Compare with "text
segment” and "data segment.” For
details, refer to a.out(4).

buffer A temporary holding area
for data. Buffers are used to
perform input and output more
efficiently.

child A process that is spawned by
a process (a sub-process).

code generation A phase of
compilation in which object code is
created.

compilation phase A particular
step performed during compilation
— for example, pre-processing,
lexical analysis, parsing, code
generation, linking.

complete executable An
executable (a.out) file that does
not use shared libraries. It is
"complete"” because all of its library

Glossary

315

Glossary

code is contained within it.
Compare with "incomplete
executable."

crt0.o file See startup file.

data export symbol An
initialized global variable that may
be referenced outside of the library.

data linkage table A linkage
table that stores the addresses of
data items.

data segment A segment of
memory containing a program's
initialized data. Compare with "bss
segment” and "text segment.” For
details, refer to a.out(4).

deferred binding The process of
waiting to bind a procedure until a
program references it. Deferred
binding can save program startup
time. Compare with "immediate
binding.”

demand-loadable When a
process is "demand-loadable,"” its
pages are brought into physical
memory only when they are
accessed.

dependency Occurs when a
shared library depends on other
libraries — that is, when the
shared library was built (with Id

-b...), other libraries were
specified on the command line. See
also "dependent library."

dependent library A library
that was specified on the command
line when building a shared library
(with Id -b...). See "dependency.”

depth-first search order The
dependent library search
alogrithm used when linking and
loading in 32-bit mode. Searching
a list starting at the end of the list
and moving toward the head.
Shared library initialization
routines are invoked by traversing
the list of loaded shared libraries
depth-first.

dll See "dynamic loading library.”
DLT See "data linkage table.”

driver A program that calls other
programs.

dynamic linking The process of
linking an object module with a
running program and loading the
module into the program's address
space.

dynamic loader Code that
attaches a shared library to a
program. See dld.sl(5).

316

Glossary

Glossary

dynamic loading library An
SVR4 term for a shared library.

dynamic search path The
process that allows the location of
shared libraries to be specified at
runtime.

entry point The location at
which a program starts running
after HP-UX loads it into memory.
The entry point is defined by the
symbol $STARTS$in crt0.o

explicit loading The process of
using the shl_load(3X) function to
load a shared library into a
running program.

export stub A short code
segment generated by the linker
for a global definition in a shared
library. External calls to shared
library procedures go through the

export stub. See also import stub.

export symbol A symbol
definition that may be referenced
outside the library.

exporting a symbol Making a
symbol visible to code outside the
module in which the symbol was
defined. This is usually done with
the +e or -E option.

external reference A reference
to a symbol defined outside an
object file.

feedback-directed positioning

An optimization technique
wherein procedures are relocated
in a program, based on profiling
data obtained from running the
program. Feedback-directed
positioning is one of the
optimizations performed during
profile-based optimization.

file descriptor A file descriptor is
returned by the open(2), creat(2),
and dup(2) system calls. The file
descriptor is used by other system
calls (for example, read(2),
write(2), and close(2)) to refer to a
the file.

filters Programs that accept input
data and modify it in some way
before passing it on. For example,
the pr command is a filter.

flush The process of emptying a
buffer's contents and resetting its
internal data structures.

global definition A definition of a
procedure, function, or data item
that can be accessed by code in
another object file.

Glossary

317

Glossary

header string A string,
"l<arch>\n ", which identifies a
file as an archive created by ar (\n
represents the newline character).

hiding a symbol Making a
symbol invisible to code outside the
module in which the symbol was
defined. Accomplished with the -h
linker option.

immediate binding By default,
the dynamic loader attempts to
bind all symbols in a shared
library when a program starts up
— known as "immediate binding.”
Compare with "deferred binding."

implicit address dependency

Writing code that relies on the
linker to locate a symbol in a
particular location or in a
particular order in relation to
other symbols.

implicit loading Occurs when
the dynamic loader automatically
loads any required libraries when
a program starts execution.
Compare with "explicit" loading.

import stub A short code segment
generated by the linker for
external references to shared
library routines. See also export
stub.

import symbol An external
reference made from a library.

incomplete executable An
executable (a.out) file that uses
shared libraries. It is "incomplete”
because it does not actually
contain the shared library code
that it uses; instead, the shared
library code is attached when the
program runs. Compare with
"complete executable.”

indirect addressing The process
of accessing a memory location
through a memory address that is
stored in memory or a register.

initializer An initialization
routine that is called when a
shared library is loaded or
unloaded.

intermediate code A
representation of object code that
is at a lower level than the source
code, but at a higher level than the
object code.

I-SOM Intermediate code-System
Object Module. Used during
profile-based optimizations and
level 4 optimization.

library A file containing object
code for subroutines and data that
can be used by programs.

318

Glossary

Glossary

link order The order in which
object files and libraries are
specified on the linker command
line.

link-edit phase The compilation
phase in which the compiler calls
the linker to create an executable
(a.out) file from object modules
and libraries.

linkage table A table containing
the addresses of shared library
routines and data. A process calls
shared library routines and
accesses shared library data
indirectly through the linkage
table.

load graph A list of dependent
shared libraries in the order in
which the libraries are to be loaded
by the dynamic loader. Any
executable program or shared
library with dependencies has a
load graph.

local definition A definition of a
routine or data that is accessible
only within the object file in which
it is defined.

lock file A file used to ensure that
only one process at a time can
access data in a particular file.

magic number A number that
identifies how an executable file
should be loaded. Possible values
are SHARE_MAGIC
DEMAND_MAGIG&nd
EXEC_MAGICRefer to magic(4) for
details.

man page A page in the HP-UX
Reference. Man page references
take the form title(section), where
title is the name of the page and
section is the section in which the
page can be found. For example,
open(2) refers to the open(2) page
in section 2 of the HP-UX
Reference. Or use the man(1)
command to view man pages, for

example, man open .

mapfile The file which describes
the mapping of input sections to
segments in an output file.

millicode Special-purpose
routines written in assembly
language and designed for
performance.

nonfatal binding Like
immediate binding, nonfatal
immediate binding causes all
required symbols to be bound at
program startup. The main
difference from immediate binding

Glossary

319

Glossary

is that program execution
continues even if the dynamic
loader cannot resolve symbols.

object code See relocatable
object code.

object file A file containing
machine language instructions and
data in a form that the linker can
use to create an executable
program.

object module A file containing
machine language code and data in
a form that the linker can use to
create an executable program or
shared library.

parent process The process that
spawned a particular process. See
also "process ID."

PBO See "profile-based
optimization.”

PC-relative A form of machine-
code addressing in which
addresses are referenced relative
to the program counter register, or
PC register.

physical address A reference to
an exact physical memory location
(as opposed to virtual memory
location).

PIC See "position-independent
code.”

pipe An input/output channel
intended for use between two
processes: One process writes into
the pipe, while the other reads.

n

PLT See "procedure linkage table.

position-independent code

Object code that contains no
absolute addresses. All addresses
are specified relative to the
program counter or indirectly
through the linkage table.
Position-independent code can be
used to create shared libraries.

pragma A C directive for
controlling the compilation of
source.

procedure linkage table A
linkage table that stores the
addresses of procedures and
functions.

process ID An integer that
uniquely identifies a process.
Sometimes referred to as "PID."

profile-based optimization A
kind of optimization in which the
compiler and linker work together
to optimize an application based on

320

Glossary

Glossary

profile data obtained from running
the application on a typical input
data set.

relocatable object code

Machine code that is generated by
compilers and assemblers. It is
relocatable in the sense that it
does not contain actual addresses;
instead, it contains symbols
corresponding to actual addresses.
The linker decides where to place
these symbols in virtual memory,
and changes the symbols to
absolute virtual addresses.

relocation The process of revising
code and data addresses in
relocatable object code. This occurs
when the linker must combine
object files to create an executable
program. It also occurs when the
dynamic loader loads a shared
library into a process's address
space.

restricted binding A type of
binding in which the dynamic
loader restricts its search for
symbols to those that were visible
when a library was loaded.

RPATH The variable which
contains the search path for
dynamic libraries.

section mapping directive A
mapfile directive which specifies
how the linker should map the
input sections onto the output
segments.

segment declaration A mapfiel
directive which creates a new
section or edits the attributes of an
existing segment.

shared executable An a.out
file whose text segment is
shareable by multiple processes.

shared library A library, created
by the Id command, which
contains one or more PIC object
modules. Shared library file names
end with .sl . Compare with
"archive library."

shared library handle A
descriptor of type shl_t (type
defined in <dl.h>), which shared
library management routines use
to refer to a loaded shared library.

standard error The default
stream for sending error messages
— usually connected to the screen.

standard input The default
stream for collecting character
input data — usually connected to
the keyboard.

Glossary

321

Glossary

standard input/output library

A collection of routines that
provide efficient and portable
input/output services for most C
programs.

standard output The default
stream for sending character
output data — usually connected
to the screen.

startup file Also known as

crt0.0 , this is the first object file
that is linked with an executable
program. It contains the program'’s
entry point. The startup code does
such things as retrieving command
line arguments into the program at
run time, and activating the
dynamic loader (dld.sl(5)) to load
any required shared libraries.

storage export symbol An
uninitialized global variable that
may be referenced outside of the
library.

stream A data structure of type
FILE * used by various input/
output routines.

stub A short code segment
inserted into procedure calling
sequences by the linker. Stubs are
used for very specific purposes,
such as inter-space calls (for

example, shared-library calls), long
branches, and preserving calling
interfaces across modules (for
example, parameter relocation).
Refer to the manual PA-RISC
Procedure Calling Conventions
Reference Manual. See also
import stub and export stub.

supporting library A library
that was specified on the command
line when building a shared library
(with Id -b...). Same as
dependent library.

symbol name The name by
which a procedure, function, or
data item is referred to in an object
module.

symbol table A table, found in
object and archive files, which lists
the symbols (procedures or data)
defined and referenced in the file.
For symbols defined in the file, an
offset is stored.

system calls System library
routines that provide low-level
system services; they are
documented in section 2 of the HP-
UX Reference.

text segment A segment of read-
only memory in which a program'’s
machine language instructions are

322

Glossary

Glossary

typically stored. Compare with
"bss segment" and "data segment.”
For details, refer to a.out(4).

umask A field of bits (set by the
umask(1l) command) that turns off
certain file permissions for newly
created files.

version number A number that
differentiates different versions of
routines in a shared library.

wrapper library A library that
contains alternate versions of
library functions, each of which
performs some bookkeeping and
then calls the actual function.

Glossary

323

Glossary

324 Glossary

Index

Symbols

SLITS text space and
performance, 148

$STARTS symbol, 43

$TEXTS space and performance,
148

+b linker option, 176, 178

+b path_list linker option, 84,
104, 145

+cg linker option, 28

+compat linker option, 25, 90

+DA compiler option, 21

+df compiler and linker option,
282, 284

+df option, 276

+dpv linker option, 28

+e linker option, 79, 84, 146

+ee linker option, 81

+ESlit option to cc, 148

+fb linker option, 294

+fini linker option, 202

+h linker option, 152

+hideallsymbols linker option,
25, 95

+1 compiler option, 277, 278

+1 linker option, 203

+init linker option, 202

+noallowunsats linker option,
25,94

+nodefaultmap linker option,
25, 95, 296, 298

+noenvvar linker option, 25, 96

+noforceload linker option, 25,
93

+nosectionmerge linker option,
290

+0 compiler option, 291

+0O level optimization option,
270

+Ofastaccess linker option, 270

+Olevel optimization option, 285

+Oprocelim linker option, 270

+P compiler option, 283

+pd chatr option, 273

+pd linker option, 273

+pgm compiler/linker option,
285

+pi chatr option, 273

+pi linker option, 273

+s linker option, 86, 104, 145,
178

+std linker option, 25, 90, 91

+stripunwind linker option, 25,
96

+vtype linker option, 25, 97

+y compiler option, 291

+z and +Z compiler options, 122,
138, 262

.0 suffix for shared library, 46,
122, 150

.1 suffix for shared library, 151

.a suffix for archive library, 46,
122

.sl suffix for shared library, 46,
122

/opt/langtools/lib/icrt0.0 startup
file, 277, 278

/usr/ccs/lib/scrt0.o startup file,
277

{/usr/contrib/lib directory, 136

/usr/lib directory, 47, 136

lusr/lib/libp directory, 47

{usr/local/lib directory, 136

_clear_counters function, 282

_HP_DLDOPTS environment
variable, 294

_start symbol, 43

_write_counters() routine, 280

Numerics

32-bit mode initializers, 203
64-bit mode
compatibility mode, 90
linker options, 90
standard mode, 90

A

-A linker option, 99, 271, 290
-A name linker option, 28
-a search linker option, 63
a.out executable file
$START$ symbol, 43
_start symbol, 43
aouthdr.h header file, 67
attributes, changing, 104
creating, 36
entry point, 43, 317
filehdr.h header file, 67
format, 44
header structure, 67
permissions, 45
renaming, 55
som_exec_auxhdr structure,
67
-Aa ANSI C compiler option, 36
absolute object code, 261, 315
accessing online help, 33
ADDIL elimination, 270
alloc_load_space function, 72
aouthdr.h header file, 67
ar command, 131, 136
adding object modules, 134
deleting object modules, 135
extracting modules, 135
keys, summary, 135
replacing object modules, 134
using with I-SOM files, 291
verbose output, 135
archive library
adding object modules, 134
compared with shared, 122,
124
contents, 132
creating, 131, 133
creation dates, 135
definition of, 125, 315
deleting object modules, 135
extracting modules, 135
header string, 132

Index

325

Index

linking, 93
loading, 93
location, 136
migrating to shared library,
158, 161
mixing with shared libraries,
164
naming, 122
replacing object modules, 134
selecting at link time, 63
symbol table, 132, 322
assembler
internal pseudo-op, 160
position-independent code, 264
atexit function, 278
attaching a shared library, 48,
126, 315

B

-B bind linker option, 49, 58, 60
-b linker option, 82, 139, 271
basic block, 274, 315
BIND_BREADTH_FIRST flag to
shl_load, 222
BIND_DEFERRED flag to
shl_load, 215
BIND_FIRST flag to shl_load,
59, 143, 220
BIND_IMMEDIATE flag to
shl_load, 215
BIND_NOSTART flag to
shil_load, 221
BIND_RESTRICTED flag to
shl_load, 221
BIND_TOGETHER flag to
shil_load, 221
BIND_VERBOSE flag to
shl_load, 220
binding, 48, 122, 262, 315
deferred, 49, 104, 126, 316
immediate, 58, 104, 126, 318
nonfatal, 59, 104, 320

restricted, 59, 104, 321
BIND-NONFATAL flag to
shl_load, 220
breadth-first search order, 182,
315
bss segment, 315
buffer, 315

C

-c compiler option, 55
-c filename linker option, 86
-C linker option, 28, 99
C++
linking with CC command, 41,
140
shared library, explicit loading,
215, 240
shared library, explicit
unloading, 238
CC command for linking C++
programs, 41, 140
changes
future release, 32
changing a shared library, 144
chatr command, 84, 104
child process, 315
chmod and shared library
performance, 148
chroot command and shared
libraries, 161
code generation, 277, 279, 315
code symbol, 28
compatibility mode, 90
compatibility warnings, 99
compiler
+df option, 282, 284
+1 option, 277, 278
+0 option, 291
+P option, 283
+y option, 291
+z and +Z options, 138, 262
-c option, 55

code generation, 315
default libraries, 46
driver, 38
flow.data file, specifying with
+df, 282, 284
-G option, 291
-g option, 291
incompatibilities with PBO,
291
instrumenting for PBO with
+1, 277, 278
library search path,
augmenting with (-WI,-L),
53
link-edit phase, 38
linker interface, 42
naming the a.out file (-0), 55
optimization levels and PBO,
285
optimizing using PBO data
(+P), 283
overview, 36
-p option, 291
phases, 38, 315
position-independent code (+z
and +Z), 138
profile-based optimization,
274, 292
-S option, 291
-s option, 291
specifying libraries (-1), 55
suppressing link-edit phase (-
c), 55
verbose output (-v), 38, 54
-WI option, 53
-y option, 291
complete executable, 122, 316
crt0.0
32-bit mode link, 57
64-bit mode link, 98
crt0.0 startup file, 43, 55, 277,
322
cxxdl.h header file, 199

326

Index

Index

cxxshl_load function for C++,
215

cxxshl_unload function for C++,
238

D

-D linker option, 271

data copy elimination in shared
libraries, 126

data export symbol, 316

data linkage table, 262, 316

data references, optimizing, 270

data segment, 316

data symbol, 28

dead procedure elimination,
270, 271

debugging optimized code, 286

debugging shared libraries, 130,
161

default libraries, 46

default mapfile, 298, 301

deferred binding, 49, 104, 126,
316

DEMAND_MAGIC, 28, 44

demand-loaded executable, 316

dependency, shared library, 140,
316

dependent library, 30, 140, 316

depth-first search order, 182,
203, 316

descriptor, file, 317

dI* family summary, 197

dl.h header file, 199

diclose function, 253

dlerror function, 244

dlget function, 248

dlgetname function, 252

dll, 176

dimodinfo function, 249

dlopen family summary, 197

dlopen function, 240

dlsym function, 245

driver, 38, 316

DT_NEEDED entry, 176

dyn_load function, 72, 74, 75, 78

dynamic library search, 84, 104,
144, 145

-dynamic linker option, 25, 93

dynamic linking, 65, 93, 271,
316

dynamic loader, 48, 126, 262,
316

stack usage problems, 160

dynamic path searching, 178,
317

DYNAMIC_PATH flag to
shil_load, 221

dynprog program, 70

E

-E linker option, 81, 84

-e linker option, 66

ELF object file format, 24, 111

elfdump command, 24, 111

entry point, 43, 317

environment variables, 96

exec function, 48

EXEC_MAGIC, 28, 44

explicit loading, 215, 240, 317

export stub, 263, 317

export symbol, 233, 317

exporting main program symbols
(-E), 81, 84, 317

exporting shared library symbols
(+e), 79, 84, 146, 317

external reference, 40, 317

F

fastbind, 293

fastbind command, 118

-fbverbose to _HP_DLDOPTS,
294

feedback-directed positioning,
317

file
descriptor, 317
lock file, 282, 319
filehdr.h header file, 67
filters, 317
fini, 202
fini pragma, 202
flow.data file, 280, 284
empty, 280
location, 284
lock file (flow.lock), 282
renaming with +df, 282, 284
sharing among processes, 282
storing data for multiple
programs, 281
writingwith _write_counters(),
280
flow.lock file, 282
FLOW_DATA environment
variable, 284
flush, 317
flush_cache function, 68, 78
fork function and profile-based
optimization, 282

G

-G compiler option, 291
-g compiler option, 291
-G linker option, 290
gcert0.o startup file, 43
global data symbols, 181
global definition, 40, 317
gprof profiler, 130
graphics library, 163

H

-h linker option, 81, 84, 146
handle, shared library, 217, 321
hard links to shared libraries,
152
header file
aouthdr.h, 67

Index

327

Index

cxxdl.h, 199
dl.h, 199, 215, 223, 233
errno.h, 199, 217, 224
filehdr.h, 67
header string, 132, 318
header structure, 67
hiding shared library symbols (-
h), 81, 82, 84, 146, 318
high-level optimization, 289
HP_SHLIB_VERSION pragma,
28, 99, 155
HP-UX 10.X initializers, 201
HP-UX Reference, 162

-1 linker option, 277, 278
icrt0.o startup file, 277, 278
immediate binding, 58, 104,
126, 318
implicit address dependency,
159, 318
implicit loading, 318
import stub, 263, 318
import symbol, 318
importing main program
symbols, 81, 84
incompatible changes to a shared
library, 144
incomplete executable, 122, 126,
318
indirect addressing, 262, 318
init, 202
init pragma, 202
init/fini
example, 211
init/fini initializers, 202
initializer, 318
+1 linker option, 203
32-bit mode, 203
64-bit mode, 210
example, 211
accessing addresses, 205

declaring, 203
fini, 202
for shared libraries, 201, 210
HP-UX 10.X, 201
ordering, 212, 213
HP-UX 10.X style, 201, 203,
210
init, 202
init/fini, 202
example, 211
ordering, 212
style, 210
init/fini style, 201
multiple, 203, 204
order of execution, 204
ordering
executable, 212, 213
shared library, 212, 213
syntax, 204
inlining, 289
instrumenting for PBO with +I
and -1, 277, 278
intermediate code, 277, 318
internal assembler pseudo-op,
160
internal name, 176
internal name of shared library,
152
intra-library versioning, 28, 154
Invalid loader fixup needed
message, 148
I-SOM file, 277, 318
and PBO, 290

K
-k linker option, 25, 95, 296, 298

L

-L dir linker option, 47, 57
-l linker option, 88

-1 option, 55, 87

Id

+b option, 176, 178

+b path_list option, 84, 104,
145

+compat option, 90

+df option, 282, 284

+e option, 79, 84, 146

+ee option, 81

+fini option, 202

+hideallsymbols option, 95

+1 option, 203

+init option, 202

+noallowunsats option, 94

+nodefaultmap option, 95,
296, 298

+noenvvar option, 96

+noforceload option, 93

+nosectionmerge option, 290

+pd option, 273

+pgm option, 285

+pi option, 273

+s option, 86, 104, 145, 178

+std option, 90, 91

+stripunwind option, 96

+vtype option, 97

64-bit mode options, 25

-A option, 65, 271, 290

-a search option, 63

a.out file permissions, 45

archive libraries, selecting (-a),
63

archive libraries, selecting (-

), 88

-B bind option, 49

-b option, 139, 271

binding, choosing (-B), 49

-c option, 86

C++ programs, linking, 41, 140

code generation, 279

combining object files into one
(-n), 80, 83, 271, 290

compiler interface, 38, 42

-D option, 271

328

Index

Index

data segment, placing after
text (-N), 66

data space offset, setting (-D),
271

DEMAND_MAGIC magic
number (-q), 45

duplicate symbol definitions,
47

dynamic library search of
SHLIB_PATH, enabling
(+s), 86, 104, 145

dynamic library search path,
specifying (+b), 84, 104,
145

dynamic linking (-A), 65, 271,
290

dynamic linking (-R), 65, 316

-dynamic option, 93

-E option, 81, 84

-e option, 66

entry point, specifying (-e), 66

EXEC_MAGIC magic number
('N)a 45

exporting main program
symbols (-E), 81, 84

exporting shared library
symbols (+e), 79, 84, 146

flow.data file, specifying with
+df, 282, 284

FLOW_DATA environment
variable, 284

-G option, 290

-h option, 81, 84, 146

hiding shared library symbols
(-h), 81, 84, 146

-1 option, 277, 278

instrumenting for PBO with -1,
277, 278

-k option, 95, 296, 298

-L dir option, 47, 53, 57

-l option, 55, 87, 88

LDOPTS environment
variable, 87

libraries, specifying (-1), 55, 87
library basename, specifying (-1
), 88

library search path,
augmenting (-L), 47, 53

library search path, overriding
(LPATH), 47, 57

link order, 47, 88, 147, 158

link-edit phase, 38

link-edit phase, suppressing,
55

magic number, 44

-N option, 45, 290

-n option, 45

-noshared option, 93

-O optimization option, 270

-0 option, 55

optimization, 270

optimizing using PBO data (-
P), 283

option file (-c), 86

output file (-0), 55

-P option, 283

performance with PBO, 279,
290

profiling (-G), 290

program name for PBO,
changing (+pgm), 285

-q option, 45

-R offset option, 65, 316

-r option, 80, 83, 271, 290

relocation, 42

resolution rules, 158

-s option, 89, 290

SHARE_MAGIC magic
number (-n), 45

shared libraries, building (-b),
139, 271

shared libraries, selecting (-a),
63

shared libraries, selecting (-1

), 88
shared libraries, updating, 144

SHLIB_PATH environment
variable, 86, 104, 145
symbol table information,
stripping (-s, -x), 89, 290
unshared executables (-N), 290
verbose output (-v), 54
-X option, 89
Id options
64-bit mode, 25
LD_LIBRARY_PATH
environment variable, 96,
178
ldd command, 113
LDOPTS environment variable,
87
libc, 163
libelf(3x) routines, 24
libm, libM libraries, 163
library, 46, 318
archive, 122, 124, 315
default, 46
dependent, 140, 316
intra-library versioning, 28
location, 127, 136
naming conventions, 46
search path, augmenting (-L),
47, 53, 57
search path, overriding
(LPATH), 47, 57
searching of shared libraries,
30
shared, 122, 124, 321
specifying with -1, 55, 87
supporting, 140, 322
system, 162
version control, shared library,
149, 157
wrapper, 159, 323
library dependencies, 113
library-level versioning, 150
link order, 47, 88, 147, 158, 319
linkage table, 122, 126, 262, 319
link-edit phase, 38, 319

Index

329

Index

suppressing, 55
linker
compatibility features, 23
options
64-bit mode, 25, 90
SVR4-compliant features, 23
linker tool summary, 103
linker toolset
unsupported features, 28
linking C++ programs, 41, 140
links with In(1) to shared
libraries, 152
link-time behavior changes, 28
load graph, shared library, 141
loading a shared library, 126,
215, 240
local definition, 40, 319
lock file, 282, 319
lorder command, 147
LPATH environment variable,
47, 57

M

magic number, 44
malloc() and PBO, 288
man page, 162, 319
mapfile, 95, 295, 296, 319
default, 298, 301
entrance criteria, 307
internal structure, 309
section mapping directive, 307,
321
segment
mapping sections, 309
segment declaration, 304, 321
segment placement, 309
mapfile directive, 296
default, 312
section mapping directive, 303
segment declaration, 303
user-defined, 312
mapfile linker option, 25

math library (libm, libM), 163
mcrt0.o0 startup file, 43
mixed mode shared library, 184
mixing shared and archive
libraries, 164
example using shi_load(3X),
167
example with hidden
definitions, 171
potential problems, 164
unsatisfied symbol example,
164
model command, 22
moving shared libraries after
linking, 84, 104, 158

N

-n linker option, 28, 45
-N option, 45, 66, 290
naming libraries, 46
nlist function, 68
nm command, 107
and PBO, 291
nonfatal binding, 59, 104, 320
-noshared linker option, 25, 93

o

-0 compiler/linker option, 55
-O linker option, 270
object code
absolute, 261
position-independent, 262
relocatable, 260
object file, 320
external reference, 40
global definition, 40
local definition, 40
symbol name, 40, 322
symbol table, 40, 322
symbol types, 109
using nm to view symbols, 107
object module, 132, 320

online help, 33
optimization
+Olevel compiler option, 285
compiler optimization level
and PBO, 285
data references, 270
dead procedure elimination,
270
level 1 through level 4, 285
profile-based optimization,
274, 292
unused procedure elimination,
271
using PBO data (+P/-P), 283

P

-p compiler option, 291
-P linker option, 283
parent process, 320
PA-RISC 2.0 object files, 21, 99
PBO_PGM_PATH environment
variable, 281
PC-relative addressing, 262, 320
performance
shared library, 60, 145
permissions
a.out executable file, 45
shared library, 148
phases
compiler, 38, 315
physical address, 261, 320
pipe, 320
plabel and PIC, 268
position-independent code, 262,
263, 268, 320
assembly language, 264
creating, 122, 138
POSIX
math library (libM), 163
pragma, 320
"fini", 202
"init", 202

330

Index

Index

HP_SHLIB_VERSION
pragma, 28
SHLIB_VERSION pragma, 28
procedure labels and PIC, 268
procedure linkage table, 262,
320
process 1D, 320
prof profiler, 130
profile-based optimization, 274,
292, 321
+df option, 282, 284
+1 and -1 options, 277, 278
+P and -P options, 283
_clear_counters function, 282
-A linker option, 290
ar command, 291
atexit function, 278
-b linker option, 286
basic block, 274, 315
code generation, 279
compatibility with 9.0, 291
compiler incompatibilities, 291
crt0.o startup file, 277, 278
disk space usage, 288
empty flow.data file, 280
example, 276
flow.data file, 280, 284
flow.data file, renaming with
+df, 282, 284
FLOW_DATA environment
variable, 284
forking an instrumented
application, 282
-G linker option, 290
high-level optimization,
interaction with, 289
icrt0.o startup file, 277, 278
instrumenting with +1 and -1,
277, 278
I-SOM file restrictions, 290
limitations, 288
linker performance, 279, 290
lock file, 282

malloc(), 288
nm command, 291
optimization levels, selecting,
285
optimizing with +P and -P, 283
overview, 274
PBO_PGM_PATH
environment variable, 281
profile data file, 280, 284
profile data for multiple
programs, 281
profiling phase, 279
program name, changing
(+pgm), 285
-r linker option, 287, 290
restrictions, 288
-s linker option, 290
scrt0.o startup file, 277
shared library optimization,
286
source code changes, 288
strip command, 291
temporary files, 288
when to use, 275
profiling
data file for PBO, 280, 284
phase of PBO, 279
search path, 47
shared libraries, 130, 161
program start-up, 118

Q
-Q linker option, 28
-q linker option, 28, 45

R

-r linker option, 83, 271, 290
C++ limitation, 288
profile-based optimization, 287

relocatable object code, 260, 321

relocation, 42, 321

restricted binding, 59, 104, 321

RPATH, 321

run-time behavior changes, 30

run-time path environment
variables, 30

S

-S compiler option, 291
-s compiler option, 291
-S linker option, 28
-s linker option, 89, 290
scrt0.o startup file, 43, 277
search order for shared library
symbols, 143
search path
dynamic, 317
section mapping directive, 303,
307, 321
segment, 95, 309, 321
segment declaration, 303, 304,
321
SHARE_MAGIC, 28, 44
shared executable, 321
shared library, 321
+h option, 152
accessing explicitly loaded
routines and data, 222
attaching, 48, 126, 315
binding, 48, 122, 126, 315
compared with archive, 122,
124
compatibility mode, 176
creating, 139
cxxdl.h header file, 199
data copy eliminated, 126
data linkage table, 262, 316
debugging, 130, 161
deferred binding, 49, 104, 126
definition of, 126, 129
dependency, 140, 316
dependent library, 140, 316
dl.h header file, 199

Index

331

Index

dynamic library search, 144,
145
dynamic loader, 48, 126, 262,
316
dynamic loader stack usage
problems, 160
explicit loading, 215, 240, 317
explicit unloading, 238
exporting symbols, 79, 82, 84,
146, 317
file system links, 152
handle, 217, 321
hiding symbols, 81, 82, 84,
146, 318
immediate binding, 58, 104,
126
importing main program
symbols, 81, 84
incomplete executable, 126,
318
initializer, 201, 210
ordering, 212, 213
initializer style
HP-UX 10.X, 201
init/fini, 201
internal name (+h), 152
intra-library versioning, 154
library-level versioning, 150
linkage table, 122, 126, 262,
319
linking, 93
links with In(1), 152
link-time symbol resolution,
178
load graph, 141
loading routines, 126
location, 127, 144, 158
management, 199, 239
migrating to, 158, 161
mixed mode, 184
mixing with archive libraries,
164
moving, 84, 104, 158

naming, 46, 122, 139
new versions, 156
nonfatal binding, 59, 104, 320
performance, 60, 145
permissions, 148
position-independent code, 138
procedure linkage table, 262,
320
profile-based optimization, 286
profiling, 130, 161
restricted binding, 59, 104,
321
search list, 143
search order
breadth-first, 315
depth-first, 316
selecting at link time, 63
standard mode, 176
supporting library, 140, 322
symbol binding, 178
symbolic links, 152
terminator, 201
unsatisfied references, 180
updating, 144
using chroot during
development, 161
version control, 149, 157
version date format, 157
version number, 155, 323
virtual memory usage, 128,
129
shl_definesym function, 60, 231
shil_findsym function, 222
shl_get function, 226
shl_get_r thread-safe function,
226
shl_gethandle function, 230
shl_gethandle_r thread-safe
function, 230
shl_getsymbols function, 232
shl_load family summary, 196
shl_load function, 59, 215

BIND_BREADTH_FIRST flag,
222
BIND_DEFERRED flag, 215
BIND_FIRST flag, 59, 143,
220
BIND_IMMEDIATE flag, 215
BIND_NONFATAL flag, 220
BIND_NOSTART flag, 221
BIND_RESTRICTED flag, 221
BIND_TOGETHER flag, 221
BIND_VERBOSE flag, 220
DYNAMIC_PATH flag, 221
library-level versioning, 154
shl_load routine
with cc options, 200
with Id options, 200
shl_load symbol structure to
shl_getsymbols, 235
shl_t type, 217
shl_unload function, 238
SHLIB_FLOW_DATA
environment variable, 286
SHLIB_PATH environment
variable, 86, 104, 145, 178
SHLIB_VERSION directive, 99,
155
SHLIB_VERSION pragma, 28
size command, 115
som_exec_auxhdr structure, 67
stack usage and the dynamic
loader, 160
standard error, 321
standard 1/O library, 163, 322
standard input, 321
standard mode, 90
standard output, 322
startup file, 43, 277, 322
storage export symbol, 322
stream, 322
strip command, 89, 116
and PBO, 291
stub, 322

332

Index

Index

suffix for shared and archive
libraries, 46
supporting library, 140, 322
SVID math library (libm), 163
symbol
code, duplicate, 28
data, duplicate, 28
hiding, 95
linker-defined, 26
searching dependent libraries,
182
unsatisfied, 94
symbol binding semantics, 178
symbol name, 40, 99, 322
symbol searching of dependent
libraries, 30
symbol table, 116
archive library, 132, 322
object file, 40, 322
stripping from a.out file, 89
symbol type, 109
symbol, duplicate definitions, 47
symbolic links to shared
libraries, 152
system call, 162, 322
system libraries, 162
location, 136, 144

T

-T linker option, 28
temporary files and PBO, 288
terminators
for shared library, 201
text segment, 323
threads programming
shl_get_r function, 226
shl_gethandle_r function, 230
thread-safe support in linker, 50
tsort command, 147

U
ucomp code generator, 279

umask command, 45, 323

unloading a shared library, 238

unused procedure elimination,
270, 271

unwind table, 96

updating a shared library, 144

\Y

-v compiler/linker option, 38, 54
version control, shared library,
149, 157
+h option, 152
date format, 157
intra-library versioning, 154
library-level versioning, 150
version number, 155, 323
virtual address dependency, 159
virtual memory usage and
shared libraries, 128, 129

W

warnings for compatibility, 99

where to put archive libraries,
136

where to put shared libraries,
144

-WI compiler option, 53, 54

wrapper library, 159, 323

write permissions and shared
library performance, 148

X
-x linker option, 89

Y
-y compiler option, 291

Index

333

